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Abstract

Models obtained by decision tree induction techniques excel in being interpretable.
However, they can be prone to overfitting, which results in a low predictive per-
formance. Ensemble techniques are able to achieve a higher accuracy. However,
this comes at a cost of losing interpretability of the resulting model. This makes
ensemble techniques impractical in applications where decision support, instead of
decision making, is crucial.
To bridge this gap, we present the GENESIM algorithm that transforms an ensemble
of decision trees to a single decision tree with an enhanced predictive performance
by using a genetic algorithm. We compared GENESIM to prevalent decision tree
induction and ensemble techniques using twelve publicly available data sets. The
results show that GENESIM achieves a better predictive performance on most of
these data sets than decision tree induction techniques and a predictive performance
in the same order of magnitude as the ensemble techniques. Moreover, the resulting
model of GENESIM has a very low complexity, making it very interpretable, in
contrast to ensemble techniques.

1 Introduction

Decision tree induction is a white-box machine learning technique that obtains an easily interpretable
model after training. For each prediction from the model, an accompanying explanation can be given.
Moreover, as opposed to rule extraction algorithms, the complete structure of the model is easy to
analyze as it is encoded in a decision tree.

In domains where the decisions that need to be made are critical, the emphasis of machine learning is
on offering support and advice to the experts instead of making the decisions for them. As such, the
interpretability and comprehensibility of the obtained models are of primal importance for the experts
that need to base their decision on them. Therefore, a white-box approach is preferred. Examples of
critical domains include the medical domain (e.g. cardiology and oncology) and the financial domain
(e.g. claim management and risk assessment).

One of the disadvantages of decision trees is that they are prone to overfit [1]. To overcome this
shortcoming, ensemble techniques have been proposed. These techniques combine the results of
different classifiers [2], leading to an improvement in the prediction performance because of three
reasons. First, when the amount of training data is small compared to the size of the hypothesis
space, a learning algorithm can find many different hypotheses that correctly classify all the training
data, while not performing well on unseen data. By averaging the results of the different hypotheses,
the risk of choosing a wrong hypothesis can be reduced. Second, many learning algorithms can get
stuck in local optima. By constructing different models from different starting points, the chance to
find the global optimum is increased. Third, because of the finite size of the training data set, the
optimal hypothesis can be outside of the space searched by the learning algorithm. By combining
classifiers, the search space gets extended, again increasing the chance to find the optimal classifier.
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Nevertheless, ensemble techniques also have disadvantages. First, they take considerably longer
to train and make a prediction. Second, their resulting models require more storage. The third
and most important disadvantage is that the obtained model consists either out of many decision
trees or only one decision tree that contains uninterpretable nodes, making it infeasible to even
impossible for experts to interpret and comprehend the obtained model. To bridge the gap between
decision tree induction algorithms and ensemble techniques, methods are required that can convert the
ensemble into a single model. By first constructing an ensemble from the data and then applying this
post-processing method, a better predictive performance can possibly be achieved than constructing a
decision tree from the data directly.

This post-processing technique is not only useful to increase the predictive performance while
maintaining excellent interpretability. It can also be used in a big data setting where the size of the
training data set is too large to construct a predictive model on a single node in a feasible amount of
time. To solve this, the data set can be partitioned and a predictive model can be constructed for each
of these partitions in a distributed fashion. Finally, the different models can be combined together.

In this paper, we present a novel post-processing technique for ensembles, called GENESIM, which is
able to convert the different models from the ensemble into a single, interpretable model. Since each
of the models in the ensemble being merged will have an impact on the predictive performance of the
final, combined model, a genetic approach can be applied which constructs a large ensemble and tries
combining models from different subsets of this ensemble. The outline of the rest of this paper is
as follows. First, in Section 2 work related to our technique and their shortcomings are presented.
Then, in Section 3, the different steps of GENESIM are depicted. In Section 4, a comparison regarding
predictive performance and model complexity is made between the proposed algorithm and prevalent
ensemble & decision tree induction techniques. Finally, in Section 5, a conclusion and possible future
work are presented.

2 Related work

In Van Assche et al. [3], a technique called Interpretable Single Model (ISM) is proposed. This
technique is very similar to an induction algorithm, as it constructs a decision tree recursively top-
down, by first extracting a fixed set of possible candidate tests from the trees in the ensemble. For
each of these candidate tests, a split criterion is calculated by estimating the parameters using the
ensemble instead of the training data. Then, the test with the optimal split criterion is chosen and
the algorithm continues recursively until a pre-prune condition is met. Two shortcomings of this
approach can be identified. First, information from all models, including the ones that will have a
negative impact, are used to construct a final model. Second, because of the similarity with induction
algorithms, it is possible to get stuck in the same local optimum as these algorithms.

Deng [4] introduced STEL, which converts an ensemble into an ordered rule list using the following
steps. First, for each tree in the ensemble, each path from the root to a leaf is converted into a
classification rule. After all rules are extracted, they are pruned and ranked to create an ordered
rule list. This sorted rule set can then be used for classification by iterating over each rule and
returning the target when a matching rule is found. While a good predictive performance is reported
for this technique, it is much harder to grasp an ordered rule list completely than a decision tree.
Therefore, when interpretability is of primal importance, the post-processing technique, that converts
the ensemble of models into a single model, should result in a decision tree.

A thorough survey of evolutionary algorithms for decision tree evolving can be found in [5]. Evolu-
tionary algorithms for decision trees generate an initial population of decision trees, and then crosses
over the trees by replacing subtrees in one tree with subtrees of another. With a certain probability, an
individual of the population can be mutated by applying operations such as replacing a subtree by a
randomly generated tree, changing the information corresponding to the test in a node or swapping
two subtrees in the same decision tree.

3 GENetic Extraction of a Single, Interpretable Model (GENESIM)

While in Barros et al. [5], genetic algorithms are discussed which genetically construct decision trees
from the data directly, in this paper, a genetic algorithm is applied on an ensemble of decision trees,
created by using well-known induction algorithms combined with techniques including bagging and
boosting. Applying a genetic approach allows to efficiently traverse the very large search space of
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name #samples #cont #disc class_dist name #samples #cont #disc class_dist
iris 150 4 0 33.3 - 33.3 - 33.3 austra 690 5 9 55.5 - 44.5
cars 1727 0 6 70.0 - 22.2 - 4.0 - 3.8 ecoli 326 5 2 43.6 - 23.6 - 16.0 - 10.7 - 6.1
glass 213 9 0 32.4 - 35.7 - 8.0 - 6.1 - 4.2 - 13.6 heart 269 5 8 55.8 - 44.2
led7 2563 0 7 13 - 13 - 12 - 11 - 13 - 13 - 13 - 12 lymph 142 0 18 57.0 - 43.0
pima 768 7 1 65.1 - 34.9 vehicle 846 14 4 25.1 - 25.7 - 25.8 - 23.5
wine 177 13 0 32.8 - 40.1 - 27.1 breast 698 0 9 65.5 - 34.5

Table 1: Table with the characteristics for each data set

possible model combinations. This results in an innovative approach for merging decision trees that
exploits the positive properties of creating an ensemble. By exploiting multi-objective optimization,
the resulting algorithm increases the accuracy ánd decreases the decision tree size at the same time,
while most of the state-of-the-art succeeds in only one of the two.

Below, the different generic steps of a genetic algorithm [6], applied on GENESIM1, are elaborated:

• Initialization: to create an initial population, decision trees are generated from a training
set of data using different induction algorithms, combined with ensemble techniques such as
bagging and boosting. It is important that this population provides enough diversity, which
allows for an extensive search space and reduces the chance of being stuck at local optima.

• Evaluation: in order to measure how ‘fit’ a certain individual is in our population, the
accuracy on a validation set is measured. In case of a tie, the model with the lowest model
complexity is preferred.

• Selection: tournament selection [7] is applied to select which individuals get combined in
each iteration.

• Recombination: in order to merge two decision trees together, they are first converted to a
set of k-dimensional hyperplanes. When all the nodes from all the trees are converted to their
corresponding set of hyperplanes, the different decision spaces can be merged together by
calculating their intersection using a sweep line approach discussed in [8]. In this approach,
each hyperplane is projected on a line segment in each dimension. These line segments
are then sorted, making it easy to find the intersecting line segments in a dimension. In
the end, if the projected line segments of two hyperplanes intersect in each dimension, the
hyperplanes intersect as well. Subsequently, their intersection can be calculated and added
to the resulting decision space. This method requires O(k ∗ n ∗ log(n)) computational time,
with k the dimensionality of the data and n the number of planes in the sets, opposed to the
quadratic complexity of a naive approach which calculates the intersection of each possible
pair of planes. Finally, we need to convert our merged decision space back to a decision tree.
A heuristic approach is taken which identifies candidate splitting planes to create a node
from, and then picks one from these candidates. To select a candidate, a metric (such as
information gain) could be used, but this would introduce a bias. Therefore, a candidate is
selected randomly. The candidate hyperplanes need to fulfill the constraint that they have no
boundaries in all dimensions (or bounds equal to the lower and upper bound of the range of
each dimension) except for one.

• Mutation: two possible mutations are implemented: (i) choosing a random node in the tree
and replacing its threshold value by a new random number and (ii) swapping two random
subtrees with eachother.

• Replacement: the population for the next iteration is created by sorting the individuals by
their fitness and only selecting the first population_size individuals.

4 Results and evaluation

The proposed algorithm is compared, regarding the predictive performance and model complexity, to
two ensemble methods (Random Forests (RF [9]) & eXtreme Gradient Boosting (XGBOOST [10]))
and four decision tree induction algorithms (C4.5 [11], CART [9], GUIDE [12] and QUEST [13]). For
this, twelve data sets, having very distinct properties, from the UCI Machine Learning Repository
[14] were used. An overview of the characteristics of each data set can be found in Table 1.

The hyper-parameters of each of the tree induction and ensemble techniques were tuned using grid
search when the number of parameters was lower than four, else bayesian optimization was used.

1https://github.com/IBCNServices/GENESIM
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Unfortunately, because of a rather high complexity of GENESIM, hyper-parameter optimization could
not be applied. The ensemble that was transformed into a single model by GENESIM was constructed
using different induction algorithms (C4.5, CART, QUEST and GUIDE) combined with bagging and
boosting. We applied 3-fold cross validation 10 times on each of the data sets and stored the mean
accuracy and model complexity for the 3 folds. The mean accuracy and mean model complexity
(and their corresponding standard deviations) over these 10 measurements can be found in Table
2 and Table 3. Bootstrap statistical significance testing was applied to construct a Win-Tie-Loss
matrix, which can be seen in Figure 1. Algorithm A wins over B for a certain data set when the mean
accuracy is higher than B on that data set and the ρ-value for the statistical test is lower than 0.05.
When an algorithm has more wins than losses compared to another algorithm, the cell is colored
green (and hatched with stripes). Else, the cell is colored red (and hatched with dots). The darker the
green, the more wins the algorithm has over the other. Similarly, the darker the red, the more losses
an algorithm has over the other.

A few things can be deduced from these matrices. First, we can clearly see that the ensemble
techniques RF and XGBOOST have a superior accuracy compared to all other algorithms on these data
sets, and that XGBOOST performs better than RF. While the accuracy is indeed better, the increase
can be of a rather moderate size while the resulting model is completely uninterpretable. Second,
in terms of accuracy, the proposed GENESIM is better than all decision tree induction algorithms,
except C4.5. Although, GENESIM is very competitive to it (winning on two data sets while losing
on three) and C4.5 could be better due to the fact that no hyper-parameter optimization was applied
to GENESIM. For each data set, the same hyperparameters were used (such as a limited amount of
iterations and using 50% of the training data as validation data). Third, GENESIM produces very
interpretable models with a very low model complexity (expressed here as the number of nodes in
the tree). The average number of nodes in the resulting tree is lower than in CART and C4.5, but
higher than QUEST and GUIDE. But the predictive performance of the two last-mentioned algorithms
is much lower than GENESIM.

(a) WTL matrix for the accuracies (b) WTL matrix for the average number of nodes
(or trees) in the resulting model

Figure 1: Win-Tie-Loss matrices for the different algorithms for accuracies and model complexities

5 Conclusion

In this paper, a technique called GENESIM is proposed. While exploiting the positive properties of
constructing ensembles, it results in a single, interpretable model which is ideally suited to support
experts in critical domains. Results show that in most cases, an increased predictive performance
can be achieved, while having a model complexity similar to the complexity of trees produced by
induction algorithms. Results of GENESIM can still be improved by reducing the computational
complexity of our algorithm, allowing hyper-parameter optimization and our technique to run for
more iterations in a feasible amount of time. Moreover, in the future, an implementation of similar
techniques, such as ISM, to allow a comparison with GENESIM can be performed.
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XGB CART QUEST GENESIM RF ISM C4.5 GUIDE

heart 0.8257
±0.01σ

0.7441
±0.02σ

0.7585
±0.02σ

0.7982
±0.02σ

0.8129
±0.01σ

0.8024
±0.02σ

0.7877
±0.03σ

0.7829
±0.02σ

led7 0.8018
±0.0σ

0.7997
±0.0σ

0.7986
±0.0σ

0.7926
±0.0σ

0.8027
±0.0σ

0.7996
±0.0σ

0.8012
±0.0σ

0.761
±0.01σ

iris 0.9505
±0.01σ

0.9504
±0.01σ

0.9562
±0.0σ

0.9463
±0.01σ

0.95
±0.01σ

0.9519
±0.01σ

0.9395
±0.01σ

0.9467
±0.01σ

cars 0.9842
±0.0σ

0.9749
±0.0σ

0.9411
±0.01σ

0.9543
±0.01σ

0.9701
±0.01σ

0.9685
±0.0σ

0.966
±0.0σ

0.9426
±0.01σ

ecoli 0.8651
±0.01σ

0.8196
±0.02σ

0.8195
±0.01σ

0.8325
±0.02σ

0.8486
±0.01σ

0.7507
±0.04σ

0.817
±0.03σ

0.8319
±0.01σ

glass 0.7494
±0.02σ

0.6667
±0.03σ

0.649
±0.03σ

0.6696
±0.03σ

0.7526
±0.03σ

0.6489
±0.03σ

0.6763
±0.03σ

0.6557
±0.02σ

austra 0.8686
±0.01σ

0.8506
±0.01σ

0.8547
±0.01σ

0.8553
±0.01σ

0.8663
±0.01σ

0.8557
±0.01σ

0.8528
±0.01σ

0.8582
±0.01σ

vehicle 0.7606
±0.01σ

0.6988
±0.01σ

0.6986
±0.01σ

0.6834
±0.01σ

0.7383
±0.01σ

0.6672
±0.01σ

0.7115
±0.01σ

0.6821
±0.01σ

breast 0.9591
±0.0σ

0.94
±0.01σ

0.947
±0.01σ

0.9496
±0.01σ

0.958
±0.01σ

0.9466
±0.0σ

0.9443
±0.0σ

0.937
±0.01σ

lymph 0.8354
±0.02σ

0.7686
±0.02σ

0.7907
±0.03σ

0.7866
±0.02σ

0.817
±0.02σ

0.7822
±0.03σ

0.7839
±0.03σ

0.7659
±0.04σ

pima 0.7543
±0.01σ

0.7174
±0.02σ

0.7385
±0.01σ

0.7266
±0.01σ

0.7626
±0.01σ

0.7346
±0.01σ

0.7348
±0.01σ

0.7285
±0.02σ

wine 0.9709
±0.01σ

0.9072
±0.01σ

0.9055
±0.03σ

0.9128
±0.03σ

0.9603
±0.01σ

0.8838
±0.01σ

0.9217
±0.01σ

0.8828
±0.03σ

Table 2: Mean accuracies for the different data sets and algorithms using 10 measurements

XGB(*) CART QUEST GENESIM RF(*) ISM C4.5 GUIDE

heart 408.4815
±188.2σ

35.8148
±12.54σ

9.1852
±2.97σ

17.4444
±4.84σ

448.6113
±154.6σ

35.8889
±10.71σ

23.5556
±6.62σ

9.1481
±2.28σ

led7 459.9792
±152.2σ

201.9583
±1.2σ

57.625
±4.91σ

92.0417
±17.08σ

516.25
±155.4σ

111.2917
±15.45σ

58.9583
±2.09σ

32.9167
±2.55σ

iris 544.5238
±144.6σ

12.2857
±1.34σ

5.8571
±0.59σ

5.9048
±0.65σ

453.2381
±204.4σ

10.5714
±1.91σ

7.3809
±1.06σ

5.3333
±0.55σ

cars 631.2821
±123.7σ

140.1282
±2.66σ

45.6667
±4.7σ

103.1539
±14.42σ

438.4615
±178.3σ

131.4102
±9.62σ

98.4359
±4.6σ

43.6154
±5.07σ

ecoli 487.5625
±202.9σ

35.6667
±11.77σ

14.5833
±3.48σ

19.0833
±4.27σ

447.0623
±147.7σ

60.125
±16.06σ

19.25
±2.84σ

10.0833
±1.43σ

glass 530.7017
±179.2σ

57.8421
±11.27σ

22.4035
±5.66σ

29.6667
±5.75σ

486.9825
±160σ

80.3684
±24.1σ

36.2982
±3.09σ

16.1579
±2.47σ

austra 433.0392
±72.7σ

7.7451
±6.19σ

7.902
±3.23σ

23.7843
±7.37σ

396.3333
±181.5σ

38.8824
±15.73σ

26.7255
±6.82σ

8.2941
±3.12σ

vehicle 465.6667
±119.4σ

177.1111
±22.26σ

81.7778
±14.85σ

83.2222
±9.68σ

485.2778
±146.8σ

345.5556
±45.92σ

92.4444
±12.43σ

33.2222
±8.71σ

breast 563.3333
±170.6σ

30.619
±7.89σ

12.619
±3.73σ

18.5238
±3.49σ

395.5714
±161.4σ

43.7619
±13.31σ

19.4762
±2.38σ

10.4286
±1.65σ

lymph 608.4375
±140.5σ

32.0417
±5.75σ

13.5417
±3.14σ

14.8333
±4.0σ

497.9375
±162.3σ

30.9583
±6.6σ

16.9583
±2.44σ

8.875
±2.81σ

pima 180.0556
±85.5σ

52.4445
±19.8σ

12.0
±4.32σ

45.2222
±8.53σ

434.8334
±68.04σ

101.6667
±18.5σ

26.0
±5.12σ

8.1111
±2.36σ

wine 487.0948
±176.9σ

13.4762
±1.58σ

9.1905
±1.66σ

8.0476
±0.93σ

409.2381
±116.1σ

33.3809
±3.04σ

9.381
±0.33σ

6.8095
±0.77σ

Table 3: Mean model complexities, expressed as either number of nodes in the resulting decision tree
or number of decision trees in the ensemble (*), for the different data sets and algorithms using 10
measurements
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