104 research outputs found

    WDM/TDM PON bidirectional networks single-fiber/wavelength RSOA-based ONUs layer 1/2 optimization

    Get PDF
    This Thesis proposes the design and the optimization of a hybrid WDM/TDM PON at the L1 (PHY) and L2 (MAC) layers, in terms of minimum deployment cost and enhanced performance for Greenfield NGPON. The particular case of RSOA-based ONUs and ODN using a single-fibre/single-wavelength is deeply analysed. In this WDM/TDM PON relevant parameters are optimized. Special attention has been given at the main noise impairment in this type of networks: the Rayleigh Backscattering effect, which cannot be prevented. To understand its behaviour and mitigate its effects, a novel mathematical model for the Rayleigh Backscattering in burst mode transmission is presented for the first time, and it has been used to optimize the WDM/TDM RSOA based PON. Also, a cost-effective, simple design SCM WDM/TDM PON with rSOA-based ONU, was optimized and implemented. This prototype was successfully tested showing high performance, robustness, versatility and reliability. So, the system is able to give coverage up to 1280 users at 2.5 Gb/s / 1.25 Gb/s downstream/upstream, over 20 Km, and being compatible with the GPON ITU-T recommendation. This precedent has enabled the SARDANA network to extend the design, architecture and capabilities of a WDM/TDM PON for a long reach metro-access network (100 km). A proposal for an agile Transmission Convergence sub-layer is presented as another relevant contribution of this work. It is based on the optimization of the standards GPON and XG-PON (for compatibility), but applied to a long reach metro-access TDM/WDM PON rSOA-based network with higher client count. Finally, a proposal of physical implementation for the SARDANA layer 2 and possible configurations for SARDANA internetworking, with the metro network and core transport network, are presented

    Integration of Hybrid Passive Optical Networks (PON) with Radio over Fiber (RoF)

    Get PDF
    A cost effective, robust, and high capacity access network necessitated to meet the mounting customer demands for bandwidth-desirous services. A remarkable evolution of access networks is observed both in wired and wireless, predominantly driven by ever-changing bandwidth requirements. A wireless connection releases the end user from the restrictions of a physical link to a network that results in mobility, flexibleness, and ease of use. Whereas, optical networks offer immense amount of bandwidth that appease the most bandwidth voracious customers compared to bandwidth limited wireless networks. The integration of wired and wireless domains in the access landscape that presents a technical analysis of optical architectures suitable to support radio over fiber (RoF) is the objective of this chapter. Investigate the main trends that drive the merger of fiber and wireless technologies in access networks. Moreover, study the primary terms and the particular transmission features of integrated fiber-radio links to form a well-defined classification of hybrid systems and techniques. This work also recognizes the major problems for realization of RoF systems and examines the limitation, advantages, and diversity of integrated RoF-PON technology

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    Dynamic bandwidth allocation with SLA awareness for QoS in ethernet passive optical networks

    Get PDF
    Quality-of-service (QoS) support in Ethernet passive optical networks is a crucial concern. We propose a new dynamic bandwidth allocation (DBA) algorithm for service differentiation that meets the service-level agreements (SLAs) of the users. The proposed delay-aware (DA) online DBA algorithm provides constant and predictable average packet delay and reduced delay variation for the high-and medium-priority traffic while keeping the packet loss rate under check. We prove the effectiveness of the proposed algorithm by exhaustive simulations

    Měření Triple play služeb v hybridní síti

    Get PDF
    The master's thesis deals with a project regarding the implementation, design and the quality of IPTV, VoIP and Data services within the Triple Play services. In heterostructural networks made up of GEPON and xDSL technologies. Different lengths of the optical and metallic paths were used for the measurements. The first part of the thesis is theoretically analyzed the development and trend of optical and metallic networks. The second part deals with the measurement of typical optical and metallic parameters on the constructed experimental network, where its integrity was tested. Another part of the thesis is the evaluation of Triple play results, regarding the test where the network was variously tasked/burdened with data traffic and evaluated according to defined standards. The last part is concerned with the Optiwave Software simulation environment.Diplomová práce se zabývá návrhem, realizací a kvalitou služeb IPTV, VoIP a Data v rámci Triple play služeb v heterostrukturní sítí tvořené GEPON a xDSL technologiemi. Pro měření byli využity různé délky optické a metalické trasy. První části diplomové práce je teoreticky rozebrán vývoj a trend optických a metalických sítí. Druhá část se zaměřuje na měření typických optických a metalických parametrů na vybudované experimentální síti, kde byla následně testována její integrita. Dalším bodem práce je vyhodnocení výsledků Triple play, kde síť je různě zatěžována datovým provozem a následně vyhodnocována podle definovaných norem. Závěr práce je věnovaný simulačnímu prostředí Optiwave.440 - Katedra telekomunikační technikyvýborn

    Multicast service for ultraflow access networks

    Get PDF
    Optical Flow Switching (OFS) is envisaged as an efficient solution for ultra-broadband end-to-end Internet data transfers. In this paper, we investigate the possibility of providing multicast services over a recently proposed UltraFlow access network that offers two types of access service to its end-users at the same time: IP over GPON and OFS. Our focus is set on the viability of multicast in this dual-mode access concept. This paper studies several application scenarios for multicast UltraFlow access and makes a preliminary assessment of practical feasibility of this service.The authors would like to acknowledge the support of the Chair of Excellence of Bank of Santander – UC3M, the National Science Foundation, NSERC and the Spanish projects CRAMnet (grant no. TEC2012-38362-C03-01), and MEDIANET

    Gestão de recursos de rádio em redes WiFi

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesPassive optical networks have been subject of research in recent years, standing out from the other distribution networks not only by the speed and distribution of multiple services, including video, data and voice, but also by the absence of active equipment between the central and terminal devices, not requiring the use of electricity. Also the progress made in mobile and "smart" equipment led to the increase of its popularity and personal use. The increase of mobile devices, as well as their features, were boosted by the evolution of WiFi technologies, mostly fueled by passive optical networks, favoring the connection of several devices through radio waves. There has been several improvements in wireless communications, especially in WiFi technology, in order to keep up with the speed increase in optical distribution networks. However the limitations in the frequency spectrum and the vast implementation of the technology itself became an obstacle to the development of WiFi networks. The main goal of this dissertation is the development of processes dedicated to the frequency spectrum management in WiFi networks within environments congestedbymultipleradiosignaltransmitters. Thisworkisdevelopedaround a gateway under development by Altice Labs combining optical network terminal and access point features, and presents a solution to the equipment transmission power management and the frequency channel selection.As redes ópticas passivas têm sido alvo de grande investigação nos últimos anosdestacando-sedasoutrasredesdedistribuiçãonãosópelavelocidadee distribuição de multiplos serviços, incluindo video, dados e voz, mas também pela ausência de equipamentos activos entre a central local e o equipamento terminal, não sendo necessário o uso de energia eléctrica. Também o avanço que se tem verificado no desenvolvimento de equipamentos móveis e "inteligentes" tem levado a sua popularidade e utilização a crescer de forma constante. Por sua vez, este aumento do número de dispositivos móveis, bem como das respectivas características, foi impulsionado pela evolução da tecnologia WiFi, em grande parte alimentada pelas redes ópticas passivas, facilitando a conexão de múltiplos dispositivos através de ondas de rádio. Têm sido várias as melhorias nas comunicações sem fios, especialmente na tecnologia WiFi, no sentido de acompanhar o aumento da velocidade das redes de distribuição ópticas. No entanto as limitações ao nível do espectro de frequência e a vasta implementação da própria tecnologia têm-se revelado obstáculos ao desenvolvimento das redes WiFi. Esta dissertação tem como objectivo o desenvolvimento de soluções para a gestão do espectro de frequência das rede WiFi em ambientes congestionados pela presença de múltiplos transmissores de sinal rádio. Este trabalho é desenvolvido sob um gateway em desenvolvimento pela Altice Labs que combina as funcionalidades de um terminal de redes ópticas e de um access point, e apresenta uma solução para a gestão da potência de transmissão do equipamento e para a escolha do canal de frequência a utilizar

    Dynamic bandwidth allocation algorithms with non-zero laser tuning time in TWDM passive optical networks

    Get PDF
    The goal of this document is to analyse the functionality of Passive Optical Networks (PONs). The reason for focusing on these technique networks is due to their high efficiency in terms of high bandwidth, high rate, low energy consumption and low cost. PONs are composed of Optical Network Unit (ONU), Optical Line Terminal (OLT) and passive elements (splitters/combiners, optical fibres…). Specifically, this document analyses Ethernet Passive Optical Networks (EPONs) defined by Institute of Electrical and Electronics Engineers (IEEE) in the IEEE 802.3ah standard although there is another standard. The main difference between them is the framing protocol, being the EPONs compliance with Ethernet frames. The first PONs used a single optical carrier. That means that upstream channel is a shared resource and a scheduling is needed to avoid collisions between users’ transmissions, by using Time-Division Multiple Access (TDMA). In PONs the OLT plays an important paper, since it is the responsible of the dynamic bandwidth allocation (DBA). The DBA agent in the OLT has an algorithm that schedules the users’ transmissions. Since the deployment of the first PONs, the requirements of the users have increased, and users need high bandwidth and high rate. Thus, a new generation of PONs (NG-PON) have been designed. These next generation of PONs are multicarrier. That means that upstream channel that is a shared resource needs a Medium Access Protocol (MAC) based on wavelength/time-sharing known as Wavelength-Time Division Multiple Access (WTDMA). The algorithm placed on the DBA agent in the OLT increases its complexity. The algorithm should be able to schedule the transmissions based on time and wavelength. In the new generation of PON, in order to change the transmission wavelength, the ONUs have to retune their lasers. This wavelength change causes a tuning time delay. The target of this project is to design, implement and analyse an algorithm based on WTDMA and able to consider the tuning time delay and to minimize the global average delay of the system. Besides, the algorithm should apply the Just-In-Time (JIT) technique for increasing the system efficiency. All the simulations and implementations have been performed in the OPNET simulator, over a base code based on multicarrier EPON created by another student. In order to implement our algorithm a previous upgrading work has been realized for running the model and adapting it for the new requirements. We have succeeded in simulating an EPON with 4 channels where every channel has a 1 Gbps of bandwidth in OPNET simulator. In EPON we have introduced a laser tuning time control. Finally, we have implemented the designed algorithm. The algorithm schedules efficiently the network transmissions considering the laser tuning time delay. We have successfully simulated an EPON with 4 carriers, with 1 Gbps per carrier. Finally, we have implemented an algorithm able to schedule efficiently the network transmissions considering the laser tuning time delay

    Análise tecno-económica em redes de acesso óptico

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaEsta dissertação tem como objectivo analisar os principais problemas que os fornecedores de serviços têm que considerar ao implementar e ao migrar as redes de acesso ópticas existentes e futuras. Iremos considerar a migração da rede GPON, como rede de acesso actual, para as Redes Óticas de Acesso de Próxima Geração (NG-OANs), como a WDM-PON e a OFDM-PON. O trabalho foca-se nos Custos de Capital (CapEx) por utilizador, e em três factores que condicionam este custo: densidade populacional, topologia da rede e custo dos componentes. Uma visão geral e avaliação das redes óticas passivas existentes e futuras é apresentada. Um modelo tecno-económico para o cálculo do custo das redes de acesso é proposto, tendo em conta o efeito da taxa de subscrição. O custo total de cada tecnologia de rede é calculado. O CapEx por utilizador para esquemas divisores simples e em cascata é também calculado, para diferentes taxas de subscrição. O custo dos componentes é considerado quando o preço é extrapolado em função do tempo e do volume.This dissertation aims to analyse the main issues to be faced by the service providers in implementation and migration of existing and future optical access networks. We are going to consider the migration of the networks from GPON, as the current access network technology, to Next Generation Optical Access Networks (NG-OANs), such as WDM-PON and OFDM-PON. The work focuses on the Capital Expenditures (CapEx) per user and three factors that drive this cost: population density, network topology and components cost. An overview and assessment of existing and future passive optical networks is provided. A techno-economic model for calculating of deployment cost of access networks is presented, accounting for the effect of take rate. The total cost of each network technology is calculated. The CapEx per user for both single and cascaded splitter schemes for different take rates is also calculated. Furthermore the components cost is considered, when the price is extrapolated considering time and volume

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study
    corecore