17 research outputs found

    QuickCast: Fast and Efficient Inter-Datacenter Transfers using Forwarding Tree Cohorts

    Full text link
    Large inter-datacenter transfers are crucial for cloud service efficiency and are increasingly used by organizations that have dedicated wide area networks between datacenters. A recent work uses multicast forwarding trees to reduce the bandwidth needs and improve completion times of point-to-multipoint transfers. Using a single forwarding tree per transfer, however, leads to poor performance because the slowest receiver dictates the completion time for all receivers. Using multiple forwarding trees per transfer alleviates this concern--the average receiver could finish early; however, if done naively, bandwidth usage would also increase and it is apriori unclear how best to partition receivers, how to construct the multiple trees and how to determine the rate and schedule of flows on these trees. This paper presents QuickCast, a first solution to these problems. Using simulations on real-world network topologies, we see that QuickCast can speed up the average receiver's completion time by as much as 10×10\times while only using 1.04×1.04\times more bandwidth; further, the completion time for all receivers also improves by as much as 1.6×1.6\times faster at high loads.Comment: [Extended Version] Accepted for presentation in IEEE INFOCOM 2018, Honolulu, H

    AnyTraffic routing algorithm for label-based forwarding

    Get PDF
    The high capacity provided by packet-switched networks is supporting the proliferation of bandwidth intensive multimedia applications which require multicasting capability. As a consequence on today’s networks, unicast and multicast traffic compete for shared resources where a router must maintain both unicast and multicast forwarding states. Pursuing a forwarding state reduction, in this paper we introduce the novel concept of AnyTraffic data group which consists of a group of nodes receiving both unicast and multicast traffic over the same single minimum-cost network entity. A novel heuristic algorithm is specifically defined to accommodate such data group and has been compared with the standard shortest path (SP) algorithm - the optimal case for unicast routing - and a classical Steiner tree (ST) heuristic algorithm - the optimal case for multicast routing. Exhaustive experiments have been performed to validate the proposed algorithm.Postprint (published version

    GMPLS-OBS interoperability and routing acalability in internet

    Get PDF
    The popularization of Internet has turned the telecom world upside down over the last two decades. Network operators, vendors and service providers are being challenged to adapt themselves to Internet requirements in a way to properly serve the huge number of demanding users (residential and business). The Internet (data-oriented network) is supported by an IP packet-switched architecture on top of a circuit-switched, optical-based architecture (voice-oriented network), which results in a complex and rather costly infrastructure to the transport of IP traffic (the dominant traffic nowadays). In such a way, a simple and IP-adapted network architecture is desired. From the transport network perspective, both Generalized Multi-Protocol Label Switching (GMPLS) and Optical Burst Switching (OBS) technologies are part of the set of solutions to progress towards an IP-over-WDM architecture, providing intelligence in the control and management of resources (i.e. GMPLS) as well as a good network resource access and usage (i.e. OBS). The GMPLS framework is the key enabler to orchestrate a unified optical network control and thus reduce network operational expenses (OPEX), while increasing operator's revenues. Simultaneously, the OBS technology is one of the well positioned switching technologies to realize the envisioned IP-over-WDM network architecture, leveraging on the statistical multiplexing of data plane resources to enable sub-wavelength in optical networks. Despite of the GMPLS principle of unified control, little effort has been put on extending it to incorporate the OBS technology and many open questions still remain. From the IP network perspective, the Internet is facing scalability issues as enormous quantities of service instances and devices must be managed. Nowadays, it is believed that the current Internet features and mechanisms cannot cope with the size and dynamics of the Future Internet. Compact Routing is one of the main breakthrough paradigms on the design of a routing system scalable with the Future Internet requirements. It intends to address the fundamental limits of current stretch-1 shortest-path routing in terms of RT scalability (aiming at sub-linear growth). Although "static" compact routing works fine, scaling logarithmically on the number of nodes even in scale-free graphs such as Internet, it does not handle dynamic graphs. Moreover, as multimedia content/services proliferate, the multicast is again under the spotlight as bandwidth efficiency and low RT sizes are desired. However, it makes the problem even worse as more routing entries should be maintained. In a nutshell, the main objective of this thesis in to contribute with fully detailed solutions dealing both with i) GMPLS-OBS control interoperability (Part I), fostering unified control over multiple switching domains and reduce redundancy in IP transport. The proposed solution overcomes every interoperability technology-specific issue as well as it offers (absolute) QoS guarantees overcoming OBS performance issues by making use of the GMPLS traffic-engineering (TE) features. Keys extensions to the GMPLS protocol standards are equally approached; and ii) new compact routing scheme for multicast scenarios, in order to overcome the Future Internet inter-domain routing system scalability problem (Part II). In such a way, the first known name-independent (i.e. topology unaware) compact multicast routing algorithm is proposed. On the other hand, the AnyTraffic Labeled concept is also introduced saving on forwarding entries by sharing a single forwarding entry to unicast and multicast traffic type. Exhaustive simulation campaigns are run in both cases in order to assess the reliability and feasible of the proposals

    QoS routing for MPLS networks employing mobile agents

    Full text link

    A differentiated quality of service oriented multimedia multicast protocol

    Get PDF
    Les systèmes de communication multimédia modernes aspirent à fournir de nouveaux services tels que des communications multipoints. Néanmoins, l'apparition de dispositifs multimédias très diversifiés et le nombre croissant de clients ont révélé de nouveaux besoins pour les mécanismes et les protocoles. Dans une communication multimédia, les flux présentent des contraintes différentes et la QdS requise pour chaque flux n'est pas la même. De plus, dans une communication multipoint, tous les utilisateurs ne peuvent pas ou ne sont pas capables de recevoir la même QdS ; cette contrainte implique que les nouveaux mécanismes de communication doivent prendre en compte les besoins des utilisateurs pour fournir un service adéquat à chaque utilisateur, surtout pour éviter le gaspillage des ressources réseau. Cette thèse propose une architecture multipoint à QdS différentiée appelée M-FPTP. Basée sur des proxies client/serveur, elle relie plusieurs LANs multipoints à travers des liens point-à-point partiellement fiables. Cette architecture fournit une QdS différente à chaque LAN dépendant des besoins des utilisateurs. Pour ce faire, nous proposons un modèle du réseau appelé Arbre Hiérarchisé (AH) qui représente en même temps les performances du réseau et les contraintes de QdS des utilisateurs. Nonobstant, l'application de méthodes standard pour la création d'arbres sur un AH peut conduire à des problèmes de surcharge du degré de sortie dans la source. Pour résoudre ce problème, nous proposons alors un nouvel algorithme appelé Arbre de Plus Courts Chemins à Degré de Sortie Limité. Le déploiement de ce service nécessite, pour gérer les utilisateurs et le déploiement correct des proxies, un nouveau protocole appelé Protocole Simple de Session pour QdS multipoint. L'ensemble des solutions proposées a été modélisé, vérifié, validé et testé en utilisant UML 2.0 et l'outil TAU G2. ABSTRACT : Modern multimedia (MM) communication systems aim to provide new services such as multicast (MC) communication. But the rising of new very different MM capable devices and the growing number of clients drive to new requirements for mechanisms and protocols. In a MM communication, there are some flows that have constraints different from others and the required QoS for each flow is not the same. Furthermore, in MC communications, all the users do not want or are not able to receive the same QoS. These constraints imply that new communication mechanisms have to take into account the user requirements in order to provide an ad hoc service to each user and to avoid wasting the network resources. This dissertation proposes a new differentiated QoS multicast architecture, based on client/server proxies, called M-FPTP, which relays many MC LANs by single partially reliable links. This architecture provides a different QoS to each LAN depending on the users requirements. For doing so, it is also provided a network model called Hierarchized Graph (HG) which represents at the same time the network performances and the users QoS constraints. Nevertheless, the application of standard tree creation methods on an HG can lead to source overloading problems. It is then proposed a new algorithm called Degree-Bounded Shortest-Path-Tree (DgB-SPT) which solves this problem. However, the deployment of such a service needs a new protocol in order to collect users requirements and correctly deploy the proxies. This protocol is called Simple Session Protocol for QoS MC (SSP-QoM). The proposed solutions have been modeled, verified, validated and tested by using UML 2.0 and TAU G2 CASE tool

    Advanced techniques for multicast service provision in core transport networks

    Get PDF
    Although the network-based multicast service is the optimal way to support of a large variety of popular applications such as high-definition television (HDTV), videoon- demand (VoD), virtual private LAN service (VPLS), grid computing, optical storage area networks (O-SAN), video conferencing, e-learning, massive multiplayer online role-playing games (MMORPG), networked virtual reality, etc., there are a number of technological and operational reasons that prevents a wider deployment. This PhD work addresses this problem in the context of core transport network, by proposing and analyzing new cost-effective and scalable techniques to support multicast both at the Optical layer and at the Network layer (MPLS-IP networks). In the Optical layer, in particular in Wavelength Division Multiplexing (WDM) Optical Circuit Switched networks, current multicast-capable OXC node designs are of a great complexity and have high attenuation levels, mainly because of the required signal splitting operation plus the traversal of a complex switching stage. This makes multi-point support rarely included in commercial OXC nodes. Inspired in previous works in the literature, we propose a novel architecture that combines the best of splitting and tap-and-continue (TaC), called 2-STC (2-split-tap-and-continue) in the framework of integrated optics. A 2-STC OXC node is a flexible design capable of tapping and splitting over up to two outgoing links in order to obtain lower end-to-end latency than in TaC and an improved power budget distribution over split-and-delivery (SaD) designs. Another advantage of this architecture is its simplicity and the reduced number of components required, scaling well even for implementations of the node with many input/output ports. Extensive simulations show that the binary split (2-split) is quite enough for most real-life core network topologies scenarios, since the average node degree is usually between 3 and 4. A variant of this design, called 2-STCg, for making the node capable of optical traffic grooming (i.e. accommodation of low-speed demands into wavelength-links) is also presented. At the Network layer, one of the main reasons that hinder multicast deployment is the high amount of forwarding state information required in core routers, especially when a large number of medium/small-sized multicast demands arrive to the core network, because the state data that needs to be kept at intermediate core routers grows proportionally to the number of multicast demands. In this scenario, we study the aggregation of multicast demands into shared distribution trees, providing a set of techniques to observe the trade-off between bandwidth and state information. This study is made in the context of MPLS VPN-based networks, with the aggregation of multicast VPNs in different real network scenarios and using novel heuristics for aggregation. Still, the main problem of aggregation is the high percentage of wasted bandwidth that depends mainly on the amount of shared trees used. On the other hand, recent works have brought back Bloom filters as an alternative for multicast forwarding. In this approach the packet header contains a Bloom filter that is evaluated at each hop for matching with the corresponding outgoing link ID. Although this approach is claimed to be stateless, it presents serious drawbacks due to false positives, namely important forwarding anomalies (duplicated flows, packet storms and loops) and the header overhead. In order to solve these drawbacks we propose D-MPSS (Depth-Wise Multi-Protocol Stateless Switching). This technique makes use of a stack of Bloom filters instead of a single one for all the path/tree, each one including only the links of a given depth of the tree. Analytical studies and simulations show that our approach reduces the forwarding anomalies present in similar state-of-the-art techniques, achieving in most network scenarios a forwarding efficiency (useful traffic) greater than 95%. Finally, we study the possibility of using tree aggregation and Bloom filters together, and propose a set of techniques grouped as H-ABF techniques (hybrid aggregation - Bloom filter-based forwarding), which improve D-MPSS and other previously proposed techniques, practically eliminating the forwarding loops and increasing the forwarding efficiency up to more than 99% in most network scenarios. -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Aunque el servicio de multidifusión (multicast) basado en redes es la mejor manera de dar soporte a una gran variedad de aplicaciones populares como la televisión de alta definición (HDTV), el video bajo demanda (VoD), el servicio de LAN privadas virtuales (VPLS), la computación grid, las redes de área de almacenamiento óptico (O-SAN), la videoconferencia, la educación a distancia, los juegos masivos de rol en línea de múltiples jugadores (MMORPG), la realidad virtual en red, etc., hay varias razones tecnológicas y operacionales que le impiden un mayor despliegue. Esta tesis doctoral aborda este problema en el contexto de las redes troncales de transporte, proponiendo y analizando técnicas de bajo coste y escalables para dar soporte al multicast tanto para la capa óptica como para la capa de red (redes MPLS-IP). En la capa óptica, en particular en las redes ópticas conmutadas por circuitos con multiplexación de longitud de onda (WDM), los diseños de nodos OXC con capacidades multicast muestran una gran complejidad y altos niveles de atenuación, principalmente debido a la necesaria operación de división de la señal, además del paso de ella a través de una compleja fase de conmutación. Esto hace que el soporte multi-punto sea raramente incluido en los nodos OXC comerciales. Inspirados en trabajos previos de la literatura, proponemos una novedosa arquitectura que combina lo mejor de dividir (splitting) y tap-y-continuar (TaC), llamado 2-STC (2-split-tapand- continue) en el marco de trabajo de la óptica integrada. Un nodo OXC 2-STC es un diseño flexible capaz de hacer tapping (tomar una pequeña muestra de la señal) y dividir la señal hacia un máximo de dos enlaces de salida, con el fin de obtener una menor latencia terminal-a-terminal que en TaC y una mejorada distribución de la disponibilidad de potencia por encima de los diseños split-and-delivery (SaD). Otra ventaja de esta arquitectura es su simplicidad y el número reducido de componentes requerido, escalando bien para las implementaciones del nodo con muchos puertos de entrada/salida. Extensas simulaciones muestran que la división binaria (2-split) es prácticamente suficiente para la mayoría de las topologías de redes de transporte en la vida real, debido a que el grado promedio de los nodos es usualmente 3 y 4. Una variante de este diseño, llamada 2-STCg, para hacer el nodo capaz de realizar grooming (es decir, la capacidad de acomodar demandas de menor velocidad en longitudes de onda - enlaces) de tráfico óptico, es también presentada. En la capa de red, una de las principales razones que obstaculizan el despliegue del multicast es la gran cantidad de información del estado de reenvío requerida en los enrutadores de la red de transporte, especialmente cuando un gran número de demandas multicast de tamaño mediano/pequeño llegan a la red de transporte, ya que los datos de estado a ser almacenados en los enrutadores crecen proporcionalmente con el número de demandas multicast. En este escenario, estudiamos la agregación de demandas multicast en árboles de distribución, proporcionando un conjunto de técnicas para observar el equilibrio entre el ancho de banda y la información de estado. Este estudio está hecho en el contexto de las redes basadas en redes privadas virtuales (VPN) MPLS, con la agregación de VPNs multicast en distintos escenarios de redes reales y utilizando nuevos heurísticos para la agregación. Aún así, el principal problema de la agregación es el alto porcentaje de ancho de banda desperdiciado que depende principalmente de la cantidad de árboles compartidos usados. Por otro lado, trabajos recientes han vuelto a traer a los filtros de Bloom como una alternativa para realizar el reenvío multicast. En esta aproximación la cabecera del paquete contiene un filtro de Bloom que es evaluado en cada salto para emparejarlo con el identificador del enlace de salida correspondiente. Aunque se afirma que esta solución no utiliza información de estado, presenta serias desventajas debido a los falsos positivos, esto es, anomalías de reenvío importantes (flujos duplicados, tormentas de paquetes y bucles) y gasto de ancho de banda por la cabecera de los paquetes. Para poder resolver estos problemas proponemos D-MPSS (Depth- Wise Multi-Protocol Stateless Switching). Esta técnica hace uso de una pila de filtros de Bloom en lugar de uno sólo para todo el camino/árbol, incluyendo cada uno sólo los enlaces de una determinada profundidad del árbol. Estudios analíticos y simulaciones demuestran que nuestra propuesta reduce los anomalías de reenvío presentes en otras técnicas similares del estado del arte, alcanzando en la mayoría de escenarios reales una eficiencia de reenvío (tráfico útil) mayor que 95%. Finalmente, estudiamos la posibilidad de usar agregación de árboles y filtros de Bloom juntos, y proponemos un conjunto de técnicas agrupadas como técnicas HABF (hybrid aggregation - Bloom filter-based forwarding), que mejoran D-MPSS y las otras técnicas propuestas previamente, eliminando prácticamente los bucles e incrementando la eficiencia de reenvío hasta más de un 99% en la mayoría de los escenarios de redes

    Energy-aware routing techniques for software-defined networks

    Get PDF
    Achieving energy efficiency has recently become a key topic of networking research due to the ever-increasing power consumption and CO2 emissions generated by large data networks. This problem is becoming even more concerning and challenging given the drastic traffic increase expected over the next few years. However, the use of efficient energy-aware strategies could overturn this situation reducing the electricity consumption of Internet data transmission networks, as well as contributing to mitigate the environmental impact of other sectors. The existence of redundant network elements with high capacities is a common design practice in current network infrastructures in order to face suddenly failures or peak traffic flows. However, these additional resources remain either unused or barely used most of the time leading to an undesired energy waste. Therefore, putting into sleep mode (i.e. a low-power state) unused elements is an effective and widely-accepted strategy to decrease the consumption of data networks. In this context, SDN can be seen as an attractive solution to achieve the long-awaited energy efficiency in current communications systems, since they allow a flexible programmability suitable for this problem. This doctoral thesis tackles the problem of optimizing the power consumption in SDN through the design of energy-aware routing techniques that minimize the number of network elements required to satisfy an incoming traffic load. Different from existing related works, we focus on optimizing energy consumption in SDN with in-band control traffic in order to close this important gap in the literature and provide solutions compatible with operational backbone networks. Complementing the general aim of improving the energy efficiency in SDN, this research is also intended to cover important related features such as network performance, QoS requirements and real-time operation. Accordingly, this study gives a general perspective about the use of energy efficient routing techniques, which cover integrated routing considerations for the data and control plane traffic in SDN. By using realistic input data, significant values of switched-off links and nodes are reached, which demonstrates the great opportunity for saving energy given by our proposals. The obtained results have also validated the intrinsic trade-off between environmental and performance concerns, considering several performance indicators. These findings confirm that energy-aware routing schemes should be designed considering specific traffic requirements and performance metric bounds. Moreover, it is shown that jointly considering QoS requirements and energy awareness is an effective approach to improve, not only the power consumption, but the performance on critical parameters such as control traffic delay and blocking rate. Similarly, the proposed dynamic traffic allocation with congestion-aware rerouting is able to handle demanding traffic arrival without degrading the performance of higher priority traffic. In general, our proposals are fine-grained, easy to implement and quite balanced and effective in their results looking for a suitable and readily deployment in real-world SDN scenarios. Therefore, the conducted research and contributions reported through this document not only add to what is known about the potential of energy-aware routing techniques, but also stand as a valuable solution on the road to a sustainable networking.L'assoliment de l'eficiència energètica s'ha convertit recentment en un tema clau de recerca de xarxes a causa dels creixents nivells de consum d'energia i emissions de CO2 generats per les xarxes de dades. Aquest problema es torna cada vegada més preocupant i desafiant, donat el dràstic augment del trànsit esperat en els propers anys. No obstant això, l'ús d'estratègies energètiques eficients podria invertir aquesta situació, reduint el consum d'electricitat de les xarxes de dades d'Internet i contribuint a mitigar l'impacte ambiental d'altres sectors. L'existència d'elements de xarxa redundants i amb grans capacitats és una pràctica de disseny habitual en les infraestructures de xarxes actuals per afrontar fallades sobtades o fluxos de trànsit més elevats. Tanmateix, aquests recursos addicionals romanen poc o gens utilitzats la major part del temps, generant un desaprofitament d'energia no desitjat. Per tant, posar en mode de repòs (és a dir, un estat de baixa potència) elements no utilitzats és una estratègia efectiva i àmpliament acceptada per disminuir el consum en xarxes de dades. En aquest context, les xarxes definides per programari (SDN) es poden considerar una solució atractiva per aconseguir l'esperada eficiència energètica en els sistemes de comunicacions actuals, ja que permeten una flexible programabilitat idònia per a aquest problema. Aquesta tesi doctoral aborda el problema d'optimitzar el consum d'energia en SDN a través del disseny de tècniques d'encaminament conscients de l'energia que minimitzen la quantitat d'elements de xarxa necessaris per satisfer una càrrega de trànsit entrant. Diferent dels treballs existents, aquesta tesi es centra a optimitzar el consum d'energia en SDN amb el control de tràfic dins de banda per tancar aquesta important bretxa en la literatura i proporcionar solucions compatibles amb xarxes troncals operatives. Complementant l'objectiu general de millorar l'eficiència energètica en SDN, aquesta recerca també pretén cobrir altres importants paràmetres relacionats, com ara el rendiment de la xarxa, els requisits de qualitat de servei (QoS) i el funcionament en temps real. En conseqüència, aquest estudi ofereix una perspectiva general sobre l'ús de tècniques d'encaminament eficients energèticament, que contempla consideracions integrades per al tràfic de dades i del pla de control en SDN. Prenent dades d'entrada realistes, es van aconseguir desconnectar significatives quantitats d'enllaços i nodes, la qual cosa demostra la gran oportunitat d'estalvi d'energia que ofereixen les nostres propostes. Els resultats obtinguts també validen el estret compromís entre les preocupacions ambientals i les qüestions de rendiment de la xarxa, considerant diversos indicadors de rendiment. Aquests resultats confirmen que els esquemes d'encaminament conscients de l'energia s'han de dissenyar tenint en compte els requisits de tràfic específics i els límits desitjats de les mètriques de rendiment. A més, es demostra que, considerant conjuntament els requisits de QoS i de l'energia necessària, és un enfocament eficaç per millorar, no només el consum d'energia, sinó també el rendiment en paràmetres crítics, com la latència del tràfic de control i la probabilitat de bloqueig. De manera semblant, l'assignació dinàmica de tràfic proposta, amb re-encaminament conscient de la congestió, permet gestionar grans volums de trànsit sense degradar el rendiment de les demandes de major prioritat. En general, les nostres propostes són precises, fàcils d'implementar i bastant equilibrades i efectives en els seus resultats, buscant un desplegament adequat i fàcil en escenaris pràctics de SDN. Per tant, la recerca realitzada i les contribucions contingudes en aquest document no només afegeixen el que es coneix sobre el potencial de les tècniques d'encaminament conscients de l'energia, sinó que també representen una valuosa solució en el camí cap a una xarxa sostenibl

    Making Networks Robust to Component Failures

    Get PDF
    In this thesis, we consider instances of component failure in the Internet and in networked cyber-physical systems, such as the communication network used by the modern electric power grid (termed the smart grid). We design algorithms that make these networks more robust to various component failures, including failed routers, failures of links connecting routers, and failed sensors. This thesis divides into three parts: recovery from malicious or misconfigured nodes injecting false information into a distributed system (e.g., the Internet), placing smart grid sensors to provide measurement error detection, and fast recovery from link failures in a smart grid communication network. First, we consider the problem of malicious or misconfigured nodes that inject and spread incorrect state throughout a distributed system. Such false state can degrade the performance of a distributed system or render it unusable. For example, in the case of network routing algorithms, false state corresponding to a node incorrectly declaring a cost of 0 to all destinations (maliciously or due to misconfiguration) can quickly spread through the network. This causes other nodes to (incorrectly) route via the misconfigured node, resulting in suboptimal routing and network congestion. We propose three algorithms for efficient recovery in such scenarios and evaluate their efficacy. The last two parts of this thesis consider robustness in the context of the electric power grid. We study the use and placement of a sensor, called a Phasor Measurement Unit (PMU), currently being deployed in electric power grids worldwide. PMUs provide voltage and current measurements at a sampling rate orders of magnitude higher than the status quo. As a result, PMUs can both drastically improve existing power grid operations and enable an entirely new set of applications, such as the reliable integration of renewable energy resources. However, PMU applications require correct (addressed in thesis part 2) and timely(covered in thesis part 3) PMU data. Without these guarantees, smart grid operators and applications may make incorrect decisions and take corresponding (incorrect) actions. The second part of this thesis addresses PMU measurement errors, which have been observed in practice. We formulate a set of PMU placement problems that aim to satisfy two constraints: place PMUs near each other to allow for measurement error detection and use the minimal number of PMUs to infer the state of the maximum number of system buses and transmission lines. For each PMU placement problem, we prove it is NP-Complete, propose a simple greedy approximation algorithm, and evaluate our greedy solutions. In the last part of this thesis, we design algorithms for fast recovery from link failures in a smart grid communication network. We propose, design, and evaluate solutions to all three aspects of link failure recovery: (a) link failure detection, (b) algorithms for pre-computing backup multicast trees, and (c) fast backup tree installation. To address (a), we design link-failure detection and reporting mechanisms that use OpenFlow to detect link failures when and where they occur inside the network. OpenFlow is an open source framework that cleanly separates the control and data planes for use in network management and control. For part (b), we formulate a new problem, Multicast Recycling, that pre-computes backup multicast trees that aim to minimize control plane signaling overhead. We prove Multicast Recycling is at least NP-hard and present a corresponding approximation algorithm. Lastly, two control plane algorithms are proposed that signal data plane switches to install pre-computed backup trees. An optimized version of each installation algorithm is designed that finds a near minimum set of forwarding rules by sharing forwarding rules across multicast groups. This optimization reduces backup tree install time and associated control state. We implement these algorithms using the POX open-source OpenFlow controller and evaluate them using the Mininet emulator, quantifying control plane signaling and installation time
    corecore