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Abstract

Achieving energy efficiency has recently become a key topic of networking research due to the

ever-increasing power consumption and CO2 emissions generated by large data networks. This

problem is becoming even more concerning and challenging given the drastic traffic increase

expected over the next few years. However, the use of efficient energy-aware strategies could

overturn this situation reducing the electricity consumption of Internet data transmission net-

works, as well as contributing to mitigate the environmental impact of other sectors.

The existence of redundant network elements with high capacities is a common design prac-

tice in current network infrastructures in order to face suddenly failures or peak traffic flows.

However, these additional resources remain either unused or barely used most of the time leading

to an undesired energy waste. Therefore, putting into sleep mode (i.e. a low-power state) un-

used elements is an effective and widely-accepted strategy to decrease the consumption of data

networks. In this context, Software-Defined Networking (SDN) can be seen as an attractive

solution to achieve the long-awaited energy efficiency in current communications systems, since

they allow a flexible programmability suitable for this problem.

This doctoral thesis tackles the problem of optimizing the power consumption in SDN

through the design of energy-aware routing techniques that minimize the number of network

elements required to satisfy an incoming traffic load. Different from existing related works, we

focus on optimizing energy consumption in SDN with in-band control traffic in order to close

this important gap in the literature and provide solutions compatible with operational backbone

networks. Complementing the general aim of improving the energy efficiency in SDN, this re-

search is also intended to cover important related features such as network performance, Quality

of Service (QoS) requirements and real-time operation. Accordingly, this study gives a general
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perspective about the use of energy efficient routing techniques, which cover integrated routing

considerations for the data and control plane traffic in SDN.

By using realistic input data, significant values of switched-off links and nodes are reached,

which demonstrates the great opportunity for saving energy given by our proposals. The ob-

tained results have also validated the intrinsic trade-off between environmental and performance

concerns, considering several performance indicators. These findings confirm that energy-aware

routing schemes should be designed considering specific traffic requirements and performance

metric bounds. Moreover, it is shown that jointly considering QoS requirements and energy

awareness is an effective approach to improve, not only the power consumption, but the per-

formance on critical parameters such as control traffic delay and blocking rate. Similarly, the

proposed dynamic traffic allocation with congestion-aware rerouting is able to handle demanding

traffic arrival without degrading the performance of higher priority traffic.

In general, our proposals are fine-grained, easy to implement and quite balanced and effec-

tive in their results looking for a suitable and readily deployment in real-world SDN scenarios.

Therefore, the conducted research and contributions reported through this document not only

add to what is known about the potential of energy-aware routing techniques, but also stand as

a valuable solution on the road to a sustainable networking.
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Chapter 1
Introduction

Over the last decade, Information and Communication Technologies (ICT) have been forced to

face an exponential demand growth from an ever-increasing number of connected devices. For

instance, global Internet traffic in 2021 will be equivalent to 127 times the corresponding volume

observed in 2005, reaching 30 GB per capita, up from 10 GB per capita in 2016, while the

number of devices connected to IP networks will triple the global population [1]. Such steady

rise has implied an increasing energy usage contributing to a non-negligible and concerning

impact on the environment as well as associated operational costs. Consequently, the need for

energy efficient networking has become a major goal involving government and industry efforts

and attracting a great deal of attention from research community.

According to [2], between 2007 and 2012 the global energy use of ICT grew at an annual rate

of nearly 7% representing a higher value than the 3% yearly growth of the overall worldwide

electricity consumption in the same time frame. These figures correspond with an increase of

ICT’s relative share in worldwide electricity consumption from about 4% in 2007 to 4.7% in

2012 [3].

Currently, this sector is responsible for about 2.4-3% of global electricity consumption and

it is expected an annual increase of 20% [4]. Accordingly, the global carbon dioxide footprint

of ICT equipments accounts for 2-2.5% of worldwide emissions [5], which equals the amount

generated by the aviation industry [6]. Moreover, it is projected that the ICT-related CO2

emissions will increase to 4% by 2020 [7]. Similarly, it has been forecasted that, compared to

the level in 2010, the total electricity consumption of ICT will be doubled by 2022 and tripled

by 2030 [8].

1
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Among the main ICT areas, data transmission networks account for more than a third

part of the total energy consumption in this sector [9]. Moreover, they presented the strongest

electricity consumption growth (10.1% per year) with respect to end-user equipment (5.2% per

year) and data centers (4.3% per year) [10].

A recent estimation from the International Energy Agency (IEA) [11] states that global

electricity used by internet data transmission networks in 2015 amounted to around 185 TWh

(i.e. 1% of total worldwide electricity demand). Moreover, considering the increasing global use

of Internet (with an estimated growth rate between 30 and 40% per year), the electricity demand

of data networks in 2021 can rise by over 70% to about 320 TWh. However, the use of efficient

energy-aware strategies could overturn this estimation reducing the electricity consumption of

Internet data transmission networks by 15% to about 160 TWh.

As a result, the reduction of power consumption in telecommunication networks is a crucial

step to accomplish significant energy savings in this sector. The future direction of ICT impact on

energy consumption and carbon emissions will depend on the adoption of power efficient solutions

in data networks. At the same time, being ICT a support technology for many industries,

increasing the energy efficiency in data networks can also substantially reduce the environmental

impact of other sectors.

Given that in practice, the energy consumption of network equipment is not in proportion

with their traffic load [12], the reduction of the number of active elements is an effective and

widely-accepted strategy to decrease the consumption of data networks [13]. This feature can

be implemented by putting into sleep mode (i.e. a low-power state) unused networks elements

such as interconnection devices, line cards or port interfaces [14].

Although turning off entire interconnection devices enables greater energy savings, this pos-

sibility should be carefully considered, since it leads to resiliency concerns in case of network

failures. Nevertheless, due to the link over-provisioning typically considered in the design and

operation of backbone networks, substantial energy can still be saved by changing the status of

network interfaces to sleep mode whenever a link is not transferring data.

Within this context, SDN, which is further described in this section, is a very well-suited

architecture to perform an energy-aware routing and to manage the state of unused switch

interfaces in a coordinated and centralized way. Therefore, the implementation of an energy-

aware solution in the control plane is a valuable opportunity to solve the power consumption

2
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problem in data networks.

1.1 Software Defined Networks: An Overview

The optimization of power consumption could be considered as one promising field of appli-

cation for SDN [15, 16]. In this networking architecture, control functions (routing decisions)

are decoupled from the data plane (forwarding nodes) and delegated to a new entity called the

controller.

The standardization work behind SDN concepts and technicalities is led by the Open Net-

working Foundation (ONF) in collaboration with major standards organizations such as ETSI,

IETF, 3GPP, and IEEE. SDN provides four essential features [17]:

• Control and data planes separation;

• Logically centralized control and network view;

• Control plane and data plane connected through open interfaces;

• Use of external applications providing network programmability.

In essence, the basic idea of SDN –moving control functions from hardware into software–

makes network environments more manageable. Unlike traditional networks, requiring manual

and individual configuration of network devices to change the network behavior, network-wide

routing and forwarding decisions can be taken in the decoupled and logically centralized (or

even possibly distributed) control plane.

The logically centralized controller in SDN provides global knowledge of the network state

and topology information. Moreover, it can manage network tasks and perform device program-

ming without additional software or hardware-based intelligence in each one of the switching

elements. In particular, an SDN controller can collect traffic patterns, perform path computa-

tion using its knowledge of the existing topology and push such routing decisions down to the

data plane devices for execution.

On the other hand, forwarding nodes in the data plane are merely required to follow the

instructions set by the controller to forward the traffic, being no longer involved in network

control. Routing strategies are sent by the controller in the form of flow table rules and installed
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in the Ternary Content Addressable Memory (TCAM) of the forwarding elements. Additionally,

flow entries can be modified or removed by the controller in order to manage the switches

behavior with respect to traffic forwarding.

Consequently, the use of an underlying SDN architecture will facilitate the introduction and

deployment of new applications and services, making it easier than with classical hardware-

dependent implementations. Another advantage of exploiting SDN is the possibility to dynami-

cally adapt control decisions to comply with diverse QoS requirements to handle heterogeneous

application-driven networks.

The different planes and interfaces conforming the SDN architecture can be appreciated in

the diagram shown in Fig. 1.1.

Fig. 1.1: SDN architecture.

Control plane implementations can be categorized into centralized and distributed architec-

tures, according to the number of physical controllers deployed in the network [18]. Obviously,

the use of a physically-centralized control plane consisting of a single server is a recurrent con-

cern, since it brings scalability and reliability issues. As an alternative, the logically centralized

control in SDN can be implemented with multiple physically-distributed servers in order to mit-

igate such issues. In this regard, two main categories of distributed SDN control architectures
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have been discerned based on the physical organization of SDN controllers, namely flat and

hierarchical [19]. In the first approach, the network is partitioned into multiple areas, where

each is handled by a single controller [20], while in the second, multiple vertical control layers

are defined depending on the required services [21].

The exchange of traffic flows between switches and controllers is possible through an open

southbound interface. OpenFlow [22, 23] is the first and most commonly used protocol for

the southbound interface of SDN. It is already supported by commercial products of different

vendors [24] and has been applied in a wide range of network environments [25]. Other examples

of protocols defined for the southbound interface in SDN are ForCES [26] and OpFlex [27].

(a) Out-of-band control (b) In-band control

Fig. 1.2: Signaling modes in SDN.

Regarding the traffic flows between control elements and forwarding nodes on the data plane,

two operational modes can be identified, namely out-of-band and in-band control [18]. Out-of-

band control, depicted in Fig. 1.2(a), is based on the deployment of a separate control network

in addition to the one used for the data traffic. This is a common approach in data centers

limited in geographical size, where CAPEX and OPEX associated with an additional control

network are usually acceptable.

With in-band control, the same links are used by both data and control plane traffic, as

illustrated in Fig. 1.2(b). Hence, control messages are exchanged without the need for addi-

tional infrastructure [28,29]. Evidently, in wide-ranging carrier networks, this is a more realistic

scenario since additional links dedicated to directly connect controllers and forwarding nodes

are impractical and cost-inefficient.

By allowing innovation and flexibility, SDN can dramatically simplify network control pro-

cedures [30]. Specifically, the use of these programmable networks can have a significant role in
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reducing the energy consumption [31]. The centralized decision-making mechanism can be lever-

aged to perform an energy-aware routing that determines, in a coordinated way, the network

elements that should be put into sleep mode and to accordingly program the forwarding nodes.

Therefore, an energy-aware solution could be easily implemented in the SDN control plane.

Based on the aforementioned reasons, throughout this work we exploit the benefits of SDN

to solve the problem of power consumption in data networks. Complementing the general aim

of an energy-aware routing that minimizes the number of active network elements needed to

route the required traffic in SDN, this research also seeks to propose several novel methods to

address the following research problems with energy efficiency at its focus.

1.2 Research Problems and Objectives

As stated before, this research aims to tackle the energy consumption problem in SDN. For

such purpose, we have identified four key related challenges which have naturally guided and

motivated the investigation.

• How to route, in an energy efficient way, connection requests in an SDN envi-

ronment with multiple controllers. To address this question we aim at achieving the

optimal energy-aware routing in the network by selecting the number of physical resources

that lead to minimum power consumption and meet a given traffic demand. We pursue

to optimize energy consumption in OpenFlow networks with in-band control traffic to ad-

vance the state of the art that considers only the data plane traffic in SDN. We also seek

to optimize the distribution of switches between controllers and the controllers location in

terms of energy efficiency.

• How to increase the energy saving and quantify its impact on network perfor-

mance. Considering that executing an energy efficient routing technique is only reasonable

if the impact on other network performance parameters is tolerable, we need to determine

the intrinsic inter-relation between both essential features. We endeavour to provide a

broader analysis about the existing trade-off between power consumption and network

performance, considering several performance indicators, in order to shed light on this

crucial issue for communication systems nowadays.
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• How to jointly optimize QoS requirements and energy efficiency while still

meeting control traffic requirements. The conflicting nature between QoS and energy-

related objectives calls for an integrated networking solution. In this context, optimization

refers to a more complex joint criterion combining the traditional Traffic Engineering (TE)

goals with the new energy-related ones in a common multi-objective framework in order

to achieve the best compromise solution between the aforementioned goals. In this regard,

control traffic requirements in terms of latency should also be included in the integrated

model.

• How to provide online energy efficient traffic allocation to real-time demands

without performance degradation. For current networking environments, which are

facing less predictable traffic patterns, incoming demands need to be strategically allocated

in real-time along energy efficient paths. In this way, dynamic awaking/sleeping decisions

can be taken based on the arrival/departure of network traffic. In addition to minimizing

the number of active elements, the routing framework should also reduce the network

congestion in order to avoid associated performance degradation.

To achieve the aim of this thesis, a set of main objectives, closely related to the aforemen-

tioned research problems, have been defined:

1. Develop an energy-aware routing approach in SDN beyond the current state of the

art by taking into account integrated routing considerations for data and control plane

traffic, often neglected in the past.

2. Evaluate the impact of energy-aware routing on SDN performance considering

crucial network parameters such as control traffic delay, data path latency, link utilization

and TCAM occupation.

3. Compose a multiple objective optimization solution, jointly considering QoS require-

ments and energy awareness to avoid performance degradation while reducing the power

consumption.

4. Design an online energy-aware routing to support time-variable traffic demands that

dynamically employs traffic reallocation to ensure energy efficiency and congestion avoid-

ance.
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In addition, we specify a set of secondary objectives to provide support in attaining the

main goals.

1. Identify the existing solutions already proposed about energy consumption in SDN, the

granularity of which they are applied and the remaining limitations in this subject.

2. Formulate exact mathematical programming models and heuristic optimization

algorithms sufficiently generic, in line with different system requirements and constraints.

3. Generalize the proposed algorithms by focusing on in-band control traffic to ensure

compatibility with current physical topologies without a dedicated control network.

4. Compare proposed algorithms with existing related approaches in order to validate the

effectiveness and benefits of the proposed solutions.

1.3 Contributions

For the sake of convenience, the contributions of the thesis in accordance with the proposed

research problems and objectives can be summarized as follows:

I. To overcome current energy-related limitations and move to a more flexible, effective and

environmentally friendly TE approach, this thesis presents as a first contribution, a set

of energy-aware routing approaches tailored to fit SDN requirements [32–35].

To this end, exact optimization models, considering routing requirements for control and

data plane communications, are formulated. In order to reduce the associated complexity

of these models in large-scale topologies, heuristic algorithms are developed as well. In

addition, we derive a simple and efficient algorithm to find the best controllers placement

in terms of energy saving.

II. To stress the importance of energy efficiency, we propose a novel strategy aiming to reduce

the number of active links. By jointly considering specific network topological properties

and the use of TE techniques, a low-complexity and energy efficient strategy is

achieved. This combined approach is used to evaluate its impact on crucial perfor-

mance metrics [36, 37]. Being the proposal energy efficiency oriented, notable improve-
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ments in terms of energy saving can be achieved while disclosing the intrinsic trade-off

between environmental and performance concerns.

III. Performance constraints, such as bounded delay for the control plane traffic and QoS

requirements for data plane traffic, are crucial in the correct operation of SDN. In this

context, an algorithm is proposed, which is able to tackle a multi-objective routing

scenario combining QoS requirements and energy awareness [38]. This novel solu-

tion is implemented using a Multi-Objective Evolutionary Algorithm (MOEA) customized

to our particular routing problem. In this way, data and control paths are established

according to the changing traffic scenario and a significant performance improvement on

critical network parameters is attained.

IV. Considering the unpredictable nature of incoming traffic in current networking environ-

ments, performing a dynamic energy-aware routing is one of the main technical challenges.

For such purpose, a strategic traffic allocation is designed through an online energy ef-

ficient and congestion aware routing [39]. This proposal is conceived to dynamically

reduce the number of active nodes and links required to manage load demanding real-time

traffic patterns while avoiding the performance degradation of higher priority traffic.

1.4 Thesis Organization

In line with the thesis scope, this document is structured as shown in Fig. 1.3:

Fig. 1.3: Thesis outline.

Chapter 2 discusses the principles of the energy-aware routing problem addressed by the

thesis. The chapter also presents a literature review with the relevant research work and assesses

their main contributions and drawbacks. The aim of this chapter is to provide an updated and

thorough perspective of the state of the art scope in this research area, identifying the networking

challenges that are covered by the present thesis.
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Chapter 3 introduces novel energy-aware routing solutions for SDN with in-band control

traffic. Starting from the initial case of having a single controller, the model is extended to

support multiple controllers, either allocated in distributed domains or logically centralized.

Exact mathematical formulations as well as heuristic algorithms are derived in this chapter.

The problem of energy-aware controllers location is also addressed.

Chapter 4 develops a novel low-complexity heuristic algorithm relying on topology knowledge

combined with TE techniques to reduce the overall power consumption. Using a link-based

mathematical formulation the problem is formulated. Two heuristic algorithms are designed: a

static network configuration and a dynamic energy-aware routing improving convergence times

by several orders of magnitude and finding results very close to the optimal ones. Moreover, an

insightful analysis is performed to evaluate the impact on several network performance metrics.

Chapter 5 describes the design of a multi-objective routing approach jointly considering QoS

requirements and energy awareness, suitable for SDN environments with in-band control traffic.

To achieve this, we present an optimization problem that integrates the routing requirements for

data and control traffic and implement this approach using a MOEA. Performance simulations

confirm the flexibility of the proposal to provide different solutions according to the specific

traffic needs and validate the performance improvement on critical network parameters.

Chapter 6 proposes an online solution minimizing the number of active nodes and links

required in an SDN architecture with multiple controllers and in-band control traffic. This

proposal comprises of two modules: a green initial setup and a dynamic power-aware routing.

Besides being compatible with SDN environments without a dedicated control network, the

proposed strategy is able to handle demanding traffic arrival without degrading the performance

of higher priority traffic. Simulation results show that our heuristic approach allows to obtain

close-to-optimal power savings. Moreover, they validate the improvements achieved by our

solution in terms of power efficiency and performance degradation avoidance.

Chapter 7 summarizes the thesis contributions and presents future research directions and

perspectives.
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Chapter 2
Background and Literature Review

This chapter is divided into four main parts, according to the research problems covered by

this study. In each part, relevant research works in the literature dealing with the energy-

aware routing problem related to this thesis are introduced. Finally, we extract the main open

issues regarding the energy awareness property in routing strategies for SDN and propose some

guidelines to overcome these existing challenges.

Energy-aware routing mechanisms were initially considered for traditional IP networks. How-

ever, the disadvantages of implementing these approaches in traditional networks have brought

the attention of the networking research community to the use of SDN for minimizing power

consumption. Therefore, works concerning to both networking environments are covered along

this chapter.

2.1 Principles of Energy-Aware Routing

The basic idea of energy-aware routing is to manage the incoming traffic reducing the number

of unused network resources, or equivalently, adjusting the offered capacity to the actual net-

work utilization [40–42]. However, this long-awaited proportional behaviour seems incompatible

with current design criteria. Typically, network infrastructures are designed with more network

elements than needed to ensure redundancy in case of failures. Likewise, network links are

equipped with high capacity in order to handle sudden peak traffic flows. Therefore, under light

traffic loads, these additional resources are either not used or less frequently used, which leads

to an undesired energy waste.
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Fig. 2.1: Power model (redrawn from [12]).

To solve the problem of power consumption in data networks two well-known power man-

agement approaches have been proposed [43–45]. The first approach, also known as link rate

adaptation, adjusts the speed (and capacity) of individual device’s interfaces, to meet actual

traffic loads and requirements. The second approach, also known as sleeping mode, attempts to

concentrate the incoming traffic over the fewest amount of nodes and links in order to put the

remaining unused network elements to sleep (i.e. a low-power state).

To better understand the motivations behind the two aforementioned energy management

approaches, the power characterization of network equipments should be considered. In general,

power consumption of networking devices is composed by a static component (due to power

consumed by chassis, fans, line-cards, etc.) and a dynamic one, related to the rate of traffic

flowing through their port interfaces.

Ideally, the static part –also known as the idle component– that represents the power required

by an unused device, should be null. Then, in presence of an increasing traffic load, the power

consumption should behave proportionally and linearly grow along with the traffic increase as

shown by the line marked as Ideal in Fig. 2.1.

However, this model differs considerably from the real behaviour. In practice, whenever a

device is active it consumes a fixed amount of power (Pn), irrespective of the load conditions.

Additionally, this baseline power is increased by the number of active ports and the utilization

of each port, which is depicted in Fig. 2.1 with the line indicated as Real.
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Precisely, the link rate adaptation technique is based on the relation between the power

consumed by a device and the data rate at which its interfaces operate. Instead of running

networking devices at full capacity, which implies that they remain under-utilized most of the

time, the reasoning behind this method is to vary the capacities of network interfaces as a

function of the current link load. Therefore, the energy consumption of the equipment is reduced

minimizing the required network link data rates in accordance with the link utilization.

In this regard, several measurement studies [12,13] have previously proved that energy con-

sumption of networking devices is largely independent of the amount of traffic handled by its

port interfaces. In addition, reducing link data rates has a less significant effect on power con-

sumption than putting unused network elements into energy saving modes. Explicitly, while

most of the power is consumed only by turning the device on, increasing the port capacities

from zero to full load represents less than 8% of total power consumption [46]. Therefore, an

active port, even without carrying traffic, consumes almost full power but nearly zero power

consumption is measured when it is set to the sleep mode.

Given that power consumption of network equipment is only slightly influenced by their data

rate configuration and current traffic load, the sleeping mode approach is able to obtain higher

energy savings than solutions based on adapting the link data rates [43,47].

Consequently, the sleeping mode is used in this work as the power saving strategy. This

means that the problem of energy consumption is tackled reducing the number of required

active elements in proportion to the network load. Accordingly, we consider that the power

consumed by a network node depends on the baseline power and the number of active ports,

both of which represent a fixed contribution.

In the model considered in this thesis, each network element (i.e. nodes and links) can

have one of two possible states: the active state at which it operates at full rate and the sleep

state with zero rates. In active state, we assume that the same amount of energy is consumed

by elements of the same type, thus the overall network consumption is in proportion with the

number and kind of active elements. Inversely, network elements do not consume energy being

in the sleep state.

Another aspect that may emerge concerning the use of the sleeping mode strategy is related

to the reconfiguration times. Although turning off entire networking devices yields the major

power conservation, a non-negligible amount of time is required to switch them on. According
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to reported measures, booting up a switch may take between 30 seconds and 5 minutes [12,46].

Meanwhile, individual ports can be rapidly reactivated from the sleeping state in about 1-3

seconds [46,48]. Therefore, the implementation of sleeping mode solutions is conditioned by the

use of technologies allowing a quick response and low reconfiguration times. This constraint

should be carefully considered by energy-aware approaches based on the sleeping mode strategy.

In this regard, it should be noted that when a node is in sleep mode it is essentially removed

from the network topology, which means that it is not able to receive, process and forward traffic.

Therefore, a node can only be put into sleep mode if it is not the source or destination of any

incoming demand. This is the reason why our first routing strategies exclusively concentrate on

minimizing only the number of active links.

Identifying the most suitable links and switches that should remain active to route incoming

flows introduces an additional level of complexity in the network. In fact, the difficulty of the

classical energy-aware routing problem is known to be NP-Hard, which has been proved in several

research works [49–51] by reduction from different well known network optimization problems

such as the fixed point-to-point connection problem [52]. This means that the consumption of

resources and time complexity of optimal solutions grow exponentially with the network size,

until become impractical for real-world networks. For this reason, multiple heuristic algorithms

have been developed in the literature to find approximate solutions to the considered problem.

Existing energy-aware techniques based on the reduction of active network elements can be

divided into two categories, namely traffic-based and topology-based solutions, according to the

elements considered in the model. In this section, we analyze in more detail works that deal

with each one of these two approaches.

2.1.1 Traffic-Based Solutions

Under the assumption of dealing with expected (i.e., known in advance) traffic, traffic-based

solutions are routing mechanisms that aggregate traffic over a network subset in over-provisioned

systems. By adopting this strategy, the number of turned on network components handling the

incoming traffic is minimized. Over the last decade, traffic-based solutions have been widely

studied in order to tackle the problem of power consumption.

One of the most significant works in this area is [53], in which authors propose GreenTE, an

intra-domain, centralized TE mechanism that finds a set of links that can be turned off under
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a given traffic load or matrix. The approach is based on a Mixed-Integer Linear Programming

(MILP) formulation where the traffic demands are routed through a set of previously computed

k-shortest paths. Performance requirements such as Maximum Link Utilization (MLU) and

network delay are considered as constraints in the problem.

In a similar way, Bianzino et al. [54] aim to find the network configuration that minimizes

the network energy consumption, modeled as the sum of the energy spent by all nodes and

links carrying traffic. To achieve this, they formulated an optimization problem for finding

minimum-power network subsets assuming the existence of traffic level with known daily be-

haviour. Therefore, an accurate prediction of incoming traffic is required.

In [55] the problem of switching off network elements is formulated as a variant of the Multi-

Commodity Minimum Cost Flow (MCMF) problem [56]. A greedy heuristic that iterates first

over all the network nodes and then through the links (both sets sorted according to rules such

as random, least-link, least-flow and most-power) is proposed. The authors studied all possible

node/link sorting combinations.

More recently, in [57], the authors introduce a state-of-the-art study of energy efficiency

strategies in SDN. This paper addresses the importance of implementing green routing methods

in SDN, taking advantage of the flexibility given by dynamic configuration and centralized

network view capabilities. A summary of some existing energy-aware techniques in SDN with

their key properties (benefits and drawbacks) is presented, based on a four category classification

namely: traffic aware, compacting TCAM, rule placement, and end host aware.

Regarding the use of partially deployed SDN, the authors of [58] face the problem of saving

energy in these hybrid scenarios. For this, they formulate an optimization model which aims to

find minimum power network subsets. After proving the problem is NP-hard, they propose a

heuristic solution to approach the exact solution, based on the use of several groups of spanning

trees to satisfy the traffic loads.

The energy efficiency in hybrid IP/SDN networks is also addressed in [59]. In particular,

this paper introduces the energy-aware SDN nodes replacement problem aiming to improve the

energy efficiency during the transition from traditional IP networks to fully deployed SDN. To

solve this problem an Integer Linear Programming (ILP) formulation and a genetic algorithm

are proposed. The most appropriate set of traditional IP nodes to be upgraded to SDN-enabled

switches are selected according to six different replacement methods.
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Taking into account the rule space limitations of the TCAM in SDN forwarding nodes,

Giroire et al. [60] propose an energy-aware routing method for a backbone network. An ILP

optimization model is presented as well as an efficient heuristic, respecting capacity constraints

on links and rule space constraints on routers. Performed simulations show that important

savings (similar to the classical TCAM-agnostic approach) can be achieved using the proposed

smart rule space allocation.

Markiewicz et al. [61] formulated an MILP model that aims to switch on a minimum amount

of routers and links to carry the traffic. To solve the problem for large networks, they present

a heuristic method, called Strategic Greedy Heuristic (SGH), that iteratively selects a pre-

computed shortest path for each request, according to four different strategies of processing

order of requests.

Similarly, two heuristic algorithms, namely Next Shortest Path (NSP) and Next Maximum

Utility (NMU), are proposed in [62] to deal with the energy aware routing problem in SDN.

Considering an initial Shortest Path Routing (SPR), both models seek to minimize the energy

consumption of links and switches redirecting selected flows from under-utilized links to a more

utilized replacement path in order to turn off the under-utilized links if all flows are redirected.

The new selected path corresponds, respectively, to the next shortest path or the most-loaded

path calculated after excluding the under-utilized links. Results show that, although NSP

and NMU are more efficient in minimizing the average path length, more energy can be saved

initializing the network with the outputs of [61] instead of using the SPR approach.

The authors of [63] provide two greedy algorithms for minimizing the power of integrated

chassis and line-cards used under constraints of link utilization and packet delay. One attempts

to adjust as few requests as possible while the other reroutes all requests sorted by priority in

order to get better energy savings. To achieve this they considered an expanded network topology

according to the connections between forwarding nodes. Specifically, routers are symbolized as

star graphs, where the center represents the integrated chassis and the leaves are the line-cards.

Although the proposed scheme saves an important amount of energy, it results in a highly-loaded

network environment, making the network vulnerable to link failures and sudden traffic bursts.

Focusing on the use of pre-established multi-paths, an SDN-based green routing and resource

management model for Multi-Protocol Label Switching (MPLS) networks is presented in [64]. In

this approach, the controller, considering several pre-established Label Switching Paths (LSPs)
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between each ingress and egress pair, performs three main operations: path selection, load

balancing and path resizing. In the first case, paths are activated or deactivated in order to

reduce energy consumption. The two other functions are intended to manage resource utilization.

Instead of assuming dedicated links between the controller and SDN nodes, in [65] the authors

propose a model for controller-switch associations that aims to maximize the energy efficiency of

the network. Although the routing of control traffic is considered in this work, they assume that

controllers act as well as forwarding nodes, i.e. data plane traffic demands are routed through

network controllers. Therefore, only links that belong to control paths are activated and data

traffic demands are routed using these links until an MLU threshold is reached. We argue

that data plane traffic should not pass through network controllers, since this will represent an

additional load in these devices.

2.1.2 Topology-Based Solutions

The lack of awareness of traffic conditions in typical operative networks has led to several

research works that, in order to reduce the number of active links, are oriented to control

the network topology. Basically, these approaches modify the existing topology considering

different requirements such as the resulting connectivity. Consequently, during the selection of

the sleeping components, topology-based solutions are only concerned about keeping reachable

network endpoints.

In [66] the authors present an Open Shortest Path First (OSPF)-based routing mechanism

that considers the topological information exchanged among routers. The proposed energy-aware

routing algorithm is based on the definition of the “exportation” mechanism where a Shortest

Path Tree (SPT) is shared between neighbor nodes. The routers with the highest node-degree,

called “exporters”, calculate the SPTs that are used to route the traffic and force the use of

these paths to all their neighbors, so that the overall set of active links can be reduced.

The exportation mechanism is enhanced in [67], where the concept of “move” was introduced

turning the energy saving routing problem into a formulation of the well-known Maximum Clique

Problem (MCP) in an undirected weighted graph. Given that the MCP is NP-hard, a Max-

Compatibility heuristic is proposed to select the maximum number of compatible moves. In this

way, the selection of exporter routers is optimized leading to further energy savings.

Authors in [68] propose a routing algorithm called Energy Saving based on Algebraic CON-
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nectivity (ESACON), using the algebraic connectivity [69] as a metric to control the resulting

network topology. Based on this metric, ESACON is able to identify and switch off the network

links that less affect the network connectivity, keeping this value over a given threshold. Con-

sequently, significant energy saving is achieved while still preserving network connectivity and

performance to efficiently support the incoming traffic.

Similarly, the topology-based solution reported in [70] also takes into account the algebraic

connectivity as a requirement to preserve the overall network connectivity. This work also

considers the edge betweenness [71] as a metric to measure the links role in the network, placing

the links least frequently used as the first candidates to be pruned. However, this approach is

conceived to be implemented in a distribute way into each IP router.

The work in [72] also aims to improve the energy efficiency reducing the number of active

links. For this purpose, the authors propose four different versions of the Energy Saving based

on Occurrence of Links (ESOL) algorithm that show the trade-off between complexity and

efficiency in powering off a great number of links. The parameters used in this approach to

select the network interfaces to be switched off are the occurrences of nodes and links in shortest

paths, extracted from the network topology by using the classical Dijkstra algorithm.

The analysis of including QoS requirements in an energy-aware topology-based solution is

discussed by the authors of [73]. Their approach, called Energy Saving IP Routing (ESIR), is

also based on the concepts of SPT exportation and move but constrained to a maximum load

boundary on network links in the traffic-aware scenario. However, such requirements in their

study are considered of fixed values which is not practical (given the heterogeneity of flows in

networks) and limits the suitability of their work for network services of varying patterns.

In order to switch off entire networking devices, the Steiner-tree-based algorithm proposed

in [74] models the network topology as a graph composed of edge and core routers and their

respective links. Specifically, this approach relies on the computation of a Steiner tree [75] to

obtain the minimum subgraph connecting all the edge nodes. Then, the links and core nodes

not involved on this subgraph are switched off to save energy. In case of routes with hop-counts

above a given threshold, the original shortest path is added to the Steiner tree in order to

minimize the path length along with energy savings.

The idea of using the algebraic connectivity concept to measure the importance of a link

has been proposed in the literature by different works, such as [68, 70, 76]. More in detail, the
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authors of [76] introduce the ADequacy Index (ADI), a traffic-agnostic metric, which depends

on the algebraic connectivity, for quantifying the quality of a frugal topology. Two heuristic

algorithms are proposed to create pruned topologies by removing links in some order until a

given ADI threshold is reached. They differ on the order followed to remove the links. The first

one relies on the algebraic connectivity, while the second on the betweenness centrality.

All the previously described works mainly tend to minimize the number of active network

elements in the current topology restricting the path selection to meet some specific metric

bound or connectivity rate according to the energy-aware routing, without properly address-

ing the performance or traffic quality indicators. Moreover, their lack of awareness about the

requirements of incoming connection requests can lead to performance degradations, which is

highly undesired.

2.2 Energy Efficiency and Performance Concerns

While energy-aware routing solutions optimize the power efficiency finding the minimum number

of active elements needed to support the concentrated traffic for all source-to-terminal requests,

the performance of this remaining subnetwork in crucial parameters such as traffic delay and

link utilization is more likely to be affected.

Precisely, the existing trade-off between energy saving and network performance is illustrated

in the approach presented in [77]. This work presents Routing On Demand (ROD), an OSPF-

based routing mechanism that considers energy saving and performance in terms of MLU. Using

non-linear optimization approaches, authors formulate a problem that aims to minimize both

the MLU and energy consumption of a network subject to capacity and flow conservation con-

straints. After considering different scenarios, two stages are identified, namely power-sensitive

and performance-sensitive each of them with a particular compromise between both metrics.

They prove mathematically that, for each scenario, a set of link weights exist, under which

routes derived from ROD can be converted into shortest paths and realized through OSPF.

These link weights are the solution of their approach.

In this regard, there are several works that, in order to address performance concerns in the

energy-aware routing problem, restrict the path selection to the ones that meet specific network

metrics [53,65,78,79].
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For instance, authors in [78] propose a heuristic-based algorithm, Multiple Paths by Shortest

Path First (MSPF), which aims to maximise the number of switched-off routers and cables

subject to satisfying MLU and path length constraints. They consider links with bundled cables

that can be switched off independently and demands are routed through one or more paths.

Two versions of the algorithm are proposed, which differ in the type of network elements (links

or nodes) that are first considered to be switched-off.

Similarly, the power-aware routing reported in [79] also takes into account the MLU con-

straint. In this work the behavior of the overall power consumption achieved under different

QoS requirements is studied. Specifically, the traffic transmission on the link was modeled as a

M/M/1 queue (considering a service rate equal to the link capacity) and the analysis concerning

the QoS requirements was carried out by varying the MLU factor between appropriate values

that guarantee a low end-to-end delay.

Negative effects on signaling overhead and service quality experienced by traffic flows may be

incurred in case of recurrent configuration changes. Following this idea, in [80] authors present

an energy-aware management strategy that selectively turns off network devices considering a

set of multiple traffic scenarios. Two single-path routing strategies are developed (i.e. a fixed

and a variable routing), which include a penalty parameter for switch state transitions and

an upper bound limiting the number of state changes of each network interface. Comparisons

between both models suggest that the flexibility of the variable routing is beneficial for both

congestion and consumption metrics. Moreover, the effects of restricting the number of times a

network interface can be switched on are discussed. In this regard, it is shown that, compared

with the conventional scheme, adding the card reliability constraint does not affect significantly

the energy savings and prolongs the lifetime of equipments.

A different approach is introduced in [81], where authors analyze the increase in the number

of control messages as a result of implementing energy-aware algorithms in an SDN controller.

In particular, they model the problem as an ILP aiming to minimize the control overhead subject

to an energy constraint that limits the total energy consumption of the network. Additionally,

two polynomial-time heuristic algorithms are proposed to find near-optimal solutions for the

problem. Finally, the existing trade-off between energy efficiency of green routing and the

generated control overhead was validated in an SDN domain with a single controller.

Despite the potential benefits of energy efficient routing, its suitability to be implemented
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by network operators is naturally conditioned by the impact on other performance parameters.

The work in [82] investigates the scope of the impact on route lengths and on fault tolerance. To

do so, they propose a heuristic approach which iteratively tries to remove the edges that are less

loaded. Simulation results show that the route lengths increase only 27% in average for almost

all studied topologies. Meanwhile, to achieve fault tolerance fast switching-on technologies can

be used or disjoint path constraints may be added to the problem.

Undoubtedly, network fault tolerance is one of the most concerning performance parameters

that limits the deployment of energy-aware solutions. The disposition to put a network element

into sleep mode is determined by the capability of the network to quickly react in case of failures.

Authors of [83] discuss the trade-off between energy optimization and network reliability. They

studied five existing green routing algorithms to analyze the impact of these proposed approaches

on two reliability measures (terminal and route reliability). This work is extended in [84], where

the authors formulate the Reliable Energy-Aware Routing (R-EAR) problem, which aims to

switch off as many links as possible to optimize energy consumption, while guaranteeing the

MLU and the required level of terminal reliability or route reliability. To solve this problem a

heuristic algorithm is also provided.

The implications of achieving different levels of resiliency to failures and robustness to traffic

variations for the network energy-aware efficiency are analyzed in [85]. To do so, two schemes

are proposed: (i) optimization models minimizing the energy consumption of IP networks while

guaranteing survivability and robustness; and (ii) suboptimal MILP-based heuristics exploiting

variants of the original exact formulations. In particular, eight different protection/robustness

strategies are considered combining the different features to quantitatively analyze the trade-off

between energy cost and level of protection and robustness. It is shown that significant savings

are achieved even when both survivability and robustness are fully guaranteed.

On the other hand, in some networking scenarios achieving energy saving does not neces-

sarily affect negatively the network performance or its impact is tolerable. This is validated

by the work presented in [54] where the average link utilization does not increase considerably

as a consequence of the proposed green routing approach. By contrast, it is noted that the

establishment of a maximum load bound on links may significantly limit the applicability of

energy-aware techniques. This is due to the existence of low capacity access links which remain

heavily loaded even under an energy-agnostic routing approach. Thus, reducing the maximum
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link load may easily conduct to unfeasible solutions.

A similar analysis is conducted in [86], where authors investigate the impact of practical

constraints on the performance of energy-aware routing schemes in SDN. For such purpose, the

energy-aware routing problem is modeled as an ILP considering discreteness of link rates and

limitation of flow rule space. Results confirm that the inclusion of these practical constraints

has a major impact not only on the energy efficiency of SDN but also on routes length and links

utilization.

2.3 Multi-Objective Traffic Engineering

In common energy-aware routing models, path selection is generally formulated as a single

objective optimization problem with either a single metric (minimizing the number of active

links) or a single function encompassing different metrics (minimizing the number of active

nodes and links). However, existing trade-off between network performance and energy saving

has motivated the necessity to consider QoS requirements in order to achieve multiple TE goals.

A first trivial way to reduce energy consumption and guarantee QoS is to incorporate traffic

requirements into mathematical models by means of additional constraints. However, this simple

approach may led to over-provisioning (i.e. routing a connection onto a path that has too many

resources for it) and, consequently, to a reduction in the number of future requests that can

potentially be accommodated. Moreover, several performance studies have shown that, by opti-

mizing multiple objectives simultaneously, better solutions can be obtained [87–89]. Therefore,

instead of considering only traditional single objective functions with requirement constraints

for the paths computation, several works evaluate the potential and the effective applicability of

multi-objective procedures, in order to define routing strategies that can guarantee low energy

consumption and good performance at the same time.

For such purpose, authors in [90] tackle a multi-objective optimization problem managing the

link weights so as to minimize the energy consumption (primary objective) as well as a network

congestion measure (secondary objective). To do so, a MILP-based algorithm for Energy-aware

Weights Optimization (MILP-EWO) is presented. This approach takes advantage of the Interior

Gateway Protocol Weight Optimization (IGP-WO) algorithm [91] to modify the OSPF weights

according to the considered objectives. Predicted traffic matrices are assumed and link capacities
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are considered in this off-line intra-domain proposal to put network elements (links and routers)

into sleep mode and to guarantee low levels of network congestion. Thus, the quality of solutions

heavily relies on the traffic prediction accuracy.

The approach proposed in [92] simultaneously optimizes the power saving and different QoS-

related parameters in software defined data center networks, according to a pre-defined combi-

nation of software quality requirements. The authors propose four different linear programming

approaches that schedule requested traffic flows on the switches considering different metrics

in the objective function such as energy consumption, throughput, transition time between

sleep/active mode and their combination. An evaluation decision framework is implemented

to assess their proposal. However, the size of the set of path for all flows considered in their

solution is only scalable for data center topologies such as Fat-Tree [93], where the number of

possible paths is small and does not grow rapidly along with the network size.

The work in [94] aims to improve the energy efficiency together with the quality of transmis-

sion in software defined flexible optical networks. To do so, the authors propose a multi-domain

routing and spectrum assignment algorithm that takes into account quality of transmission (in

terms of bit error rate) and energy saving. These two objectives are balanced considering connec-

tion requests separated into two classes of services, for each of which one objective is optimized

in the path selection.

In the same way, both metrics can be improved if two different routing approaches are

implemented in the SDN controller and applied depending on the context and network operator

goals. This idea is conceived in [95], where a heuristic-based algorithm, named GoGreen, is

designed to compute routing paths being energy efficient and satisfying the traffic requirement in

terms of bit rate. According to the traffic type (video streaming, web browsing, sensor messages),

one of the aforementioned objectives is taken as the first metric and used to determine the best

k paths. Then, computed paths are sorted following the second metric and the first route is

selected as the most suitable solution. Simulations show the trade-off between the number of

considered paths (i.e. k) and the solutions quality.

The possibility of choosing different routing algorithms is also proposed in [89] through the

design of an SDN-based integrated control plane. After collecting the network energy related

information and the QoS requirements, specific traffic groups are defined. Then, based on the

specific user application one out of three possible routing algorithms, namely Least Cost (LC),
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Shortest Path (SP) and Load Balancing (LB), is selected. Specifically, the LC algorithm is

assigned to the web-surfing traffic, the SP algorithm to the VoIP traffic and the LB algorithm

to the IPTV traffic. In this way, the QoS level for crucial traffic type can still be maintained,

while a more energy efficient routing algorithm is employed for non-crucial traffic.

On the other hand, evolutionary algorithms [96, 97] have been applied to solve single and

multi-objective problems in a wide variety of contexts in SDN [98], including routing strategies

oriented to achieve power efficiency. For instance, the use of a MOEA for route selection has

been proposed in [99] for dynamic optical networks with a centralized software defined integrated

control plane. The solution is based on considering different objective functions according to the

traffic type. In particular for higher priority traffic, they improve the energy performance without

degrading QoS by taking energy saving as the secondary objective. Their approach supports

multiple QoS requirements in terms of network performance, such as delay and blocking rate.

However, only one network topology is considered, neglecting the effect that different network

scenarios may have on the solution quality.

Similarly, in [100] a multi-objective particle swarm optimization algorithm is conceived to

achieve network energy saving and load balancing in SDN. In this work, the problem is for-

mulated as a multi-objective mixed integer programming model adding QoS constrains to the

basic maximum concurrent flow problem. Specifically, it guarantees that the total delay of a

routing path allocated to a demand cannot exceed the maximum delay it allows. The proposed

heuristic algorithm, called MOPSO, dynamically aggregates and balances the incoming traffic

putting the unused switches and links into sleeping mode.

2.4 Dynamic Green Traffic Allocation

Despite being efficient approaches to reduce the energy consumption, most of the aforementioned

approaches are still limited since they are off-line. Assuming accurate traffic patterns fixed and

known a priori may not be appropriate for current dynamic networks in which users can join or

leave the network in an unpredictable way, affecting the overall traffic. Evidently, an online input

is a more realistic consideration for energy-aware solutions and allows to dynamically adapt the

number of active network elements to the arriving traffic.

An energy-aware routing and traffic management solution is proposed in [101] to reduce the
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energy consumption, determined as the number of active Open-Flow switches in the network. For

this, a low complexity algorithm is presented using, for each pair of endpoints, a pre-computed

set of shortest paths to select the route that minimizes the number of switches that become

active after allocating the flow. Although this proposal allows real-time operation routing flows

sequentially, only low-loaded nighttime traffic is considered, failing to extensively examine the

implications of more demanding scenarios.

A similar approach is conceived in [102], where a dynamic routing scheme applying traffic

aggregation for each incoming flow is proposed. Instead of only considering the number of hops,

in this proposal the number of active links and nodes is also used as a routing metric. Paths are

only taken into account if they have sufficient residual bandwidth to assume the incoming flow.

In case of congested shortest paths, the path minimizing the MLU is selected.

In order to deal with traffic change in real-time manner, a Centralized Energy-efficient Rout-

ing Control (CERC) strategy is proposed in [103]. In this strategy the centralized controller is

in charge of four main functions: link status monitoring, link sleeping, link awakening, and link

status forecast. In essence, during traffic idle times low-loaded links are put into sleep mode and

switched back on once the traffic increases, in order to avoid network congestion. During the

sleeping procedure, candidate links are selected following two criteria of link utilization: traffic

amount and number of node pairs. Routing paths are calculated based on the link metrics and

the use of Equal Cost Multiple Path (ECMP). Additionally, the granularity of interval time for

uploading the link status information to the controller is analyzed in this paper. However, simu-

lations only consider a synthetic topology, without evaluating the performance of such approach

in real-world networks with measured traffic traces.

The authors of [104] present the design of an Energy Monitoring and Management Applica-

tion (EMMA) to minimize energy consumption in SDN-based backhaul networks. They formu-

lated this problem as a non-linear optimization model and proposed heuristic algorithms for the

dynamic routing of flows and the management of the resulting link and switch activity. However,

such algorithms were implemented in an SDN emulation environment with out-of-band control

traffic, limiting their applicability to networks where dedicated links between the controller and

forwarding nodes are deployed. Different proof-of-concept prototypes showing the applicability

of EMMA in three realistic use cases (i.e. a software switch network, a mmWave mesh network

and an analogue RoF domain for ground-to-train radio access) are discussed in [105].
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An online flow-based approach that takes into account the dynamic arrival and departure of

users in SDN-based campus networks is designed in [106]. In this paper, the authors formulate

the problem of routing the new incoming flow and dynamically re-optimizing the existing flows

as an ILP subject to QoS constraints (i.e. bandwidth and delay), which aims to reduce the

total energy consumption in the wireless and wired parts of the network. Given the NP-hard

nature of such problem, an ant colony-based heuristic, called Ant Colony Online Flow-based

Energy-efficient Routing (AC-OFER), is proposed to approximate to the ILP optimal solution.

Considering the undesired consequences of recomputing the routing paths in dynamic energy

saving approaches, in [107] an energy efficient routing scheme based on Fast Rerouting (FRR),

namely GreenFRR, is introduced. This paper aims to reduce the routing convergence time

considering the occurrence of frequent traffic changes in a network. To do so, authors first

formalize the FRR-based energy efficient routing problem and prove the associated NP-hardness.

Thus, heuristic algorithms are proposed, which maximize the number of sleeping links and

provide available rerouting paths quickly when a routing convergence is triggered.

In [46] authors propose ElasticTree, a network-wide power manager to save energy in data

centers using SDN. This solution dynamically finds the minimum set of network elements re-

quired by changing traffic loads, while satisfying performance and fault tolerance constraints.

In this regard, three strategies were studied, namely Formal Model, Greedy Bin-Packing and

Topology-aware Heuristic. While the first option presents scalability issues and the second saves

less power, the best performance is obtained by the Topology-aware Heuristic. However, this

approach is specifically conceived for FatTree networks.

Another approach about power efficiency in software defined data center networks is pre-

sented in [108]. In this work different energy-aware routing strategies, combining common rout-

ing and scheduling algorithms, are evaluated and implemented as a OpenNaaS-based prototype.

However, these strategies are only applicable in data centers and are also incompatible with

environments without dedicated control networks.

2.5 Open Issues

Although throughout recent years the power consumption of communication networks has been

extensively treated and several solutions focused on reducing the number of active elements
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have been proposed, existing methods have a number of weaknesses to be applied in current and

future data networks.

First, green routing methods in SDN focus on power minimization considering only the data

plane traffic, neglecting thus the energy consumption associated with the required control mes-

sages exchanged between controllers and forwarding nodes. Furthermore, there is little or no

work that provides energy-aware routing mechanisms in OpenFlow networks where implement-

ing a dedicated control network is not feasible either for physical or cost-related restrictions.

Obviously, this practical implementation modality of SDN (i.e. the in-band mode) is a more

realistic scenario for large backbone networks, where additional links dedicated to transfer the

control messages between controllers and forwarding nodes, are impractical and cost-inefficient.

Different from previous works, we aim to extend the energy-aware routing performance to SDN

with in-band control traffic.

Second, the impact of energy-aware routing on network performance has been corroborated

and examined by several existing works. However, this challenge becomes even more critical

for SDN with in-band control traffic where performance degradations will affect not only data

plane communications but connections with the controller. In this regard, a further evaluation

is required for the considered scenario. To do so, specific network topological properties and the

use of TE techniques can be jointly exploited to provide a low-complexity energy-aware strategy

in SDN with multiple controllers.

Third, few energy-aware works in SDN take QoS requirements into consideration. In ad-

dition, they do not reflect performance indicators that are crucial in the correct operation of

SDN (such as control traffic delay) and therefore, should be prioritized in order to provide an

effective and useful solution. Hence, there is still room for routing schemes that find the best

compromise solution between environmental and quality challenges.

Finally, there are no energy-aware proposals providing real-time operation for in-band SDN.

Consequently, this may limit the utilization of such approaches in real world deployments. More-

over, existing online solutions are mostly designed for low-loaded nighttime traffic, being the

implication of more demanding scenarios still an open issue. Thus, a novel energy-aware rout-

ing, including dynamic routing decisions and congestion awareness, should be designed for this

analysis.
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Chapter 3
Tailored Solutions to the Energy-Aware
Routing Problem in SDN

This chapter is based on:

• A. Fernández-Fernández, C. Cervelló-Pastor and L. Ochoa-Aday, "A Distributed
Energy-Aware Routing Algorithm in Software-Defined Networks," in Advances in Intel-
ligent Systems and Computing. Trends in Practical Applications of Scalable Multi-Agent
Systems, the PAAMS Collection. Cham: Springer International Publishing, 2016, vol.
473, pp. 369–373.

• A. Fernández-Fernández, C. Cervelló-Pastor and L. Ochoa-Aday, "Energy-Aware
Routing in Multiple Domains Software-Defined Networks," Advances in Distributed Com-
puting and Artificial Intelligence Journal (ADCAIJ), vol. 5, no. 3, pp. 13–19, Nov. 2016.

• A. Fernández-Fernández, C. Cervelló-Pastor and L. Ochoa-Aday, "Improved Energy-
Aware Routing Algorithm in Software-Defined Networks," in Proc. 41st IEEE Conference
on Local Computer Networks (LCN’16), Dubai, UAE, Nov. 2016, pp. 196–199.

• A. Fernández-Fernández, C. Cervelló-Pastor and L. Ochoa-Aday, "Achieving Energy
Efficiency: An Energy-Aware Approach in SDN," in Proc. 59th IEEE Conference on
Global Communications (GLOBECOM’16), Washington DC, USA, Dec. 2016, pp. 1–7.

3.1 Introduction

By exploiting the flexibility of SDN control plane, in this chapter we make use of TE techniques

to optimize the overall power consumption reducing the number of links required to handle a

given traffic matrix. To ensure compatibility with SDN using in-band control traffic, in this

proposal control paths between controllers and switches (and between controllers) are also es-
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tablished. Moreover, to avoid additional traffic load in the controllers, we establish that data

plane communications cannot be routed through these devices. Similarly, we consider the dif-

ferent variants for control plane implementation in SDN (i.e. centralized and distributed) in

order to provide a wide-scope perspective. In addition to the energy-aware routing problem, the

controller placement issue is also addressed in this chapter. Different from previous works [109],

which focus on minimizing the control traffic delay, we propose a simple and efficient approach

that aims to determine the best controller location in terms of energy saving.

The rest of this chapter is structured as follows. In Section 3.2 we explain the main consid-

erations of our approaches together with the exact optimization models formulated for each one

of the different control plane implementations in SDN. The developed heuristic algorithms are

described in Section 3.3. The simulation strategies and the obtained results are presented and

analyzed in Section 3.4. Finally, Section 3.5 concludes this chapter.

3.2 Exact Algorithms

The problem at hand is formulated using ILP models, where the objective is to minimize the

number of links used to route a given traffic demand.

3.2.1 One Single Controller

A single centralized controller is considered in this initial system model, which performs the

energy-aware routing and determines the link interfaces that should be put into sleep mode.

3.2.1.1 Network Model

Given the controller location Ct, we modeled the SDN by a directed graph G = (V,E) where V

is the set of nodes (being Ct ∈ V ) and E denotes the set of links. Each link e ∈ E has associated

its capacity, denoted by ce. Considering D as the set of data traffic demands between any pair

of forwarding nodes, let T denote the set of associated control plane traffic required. In this

respect, we will use K to denote the overall set of traffic flows in the network (D ∪ T = K). We

use tk to denote the throughput of a traffic flow k ∈ K.

A basic diagram illustrating the network model considered in this subsection is depicted in

Fig. 3.1. This figure shows, at the left, a simple SDN topology with in-band control composed
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of 3 forwarding nodes and one centralized controller. The possible source/target pairs of data

and control traffic are also included in this diagram.

In Fig. 3.1, links connected to the controller are differentiated from the rest of network links

(with the color and type of line) in order to graphically identify them as inadmissible routes for

the data plane traffic.

C

BA

Ct
D =


A←→ B,

B ←→ C,

C ←→ A

T =


Ct←→ A,

Ct←→ B,

Ct←→ C

Fig. 3.1: Basic diagram of considered network model with a centralized controller.

In addition, considering Pk as the set of paths that can be used to route each k ∈ K, let

P k
e ⊂ Pk be the subset of paths that use link e ∈ E and P k

c ⊂ Pk denote the subset of paths

that pass through the controller Ct.

3.2.1.2 Optimization Problem Formulation

To minimize the number of links used to route a given traffic demand, we define the following

binary variables:

xe: describes the state of a link e ∈ E.

xe =


1 if e is active,

0 otherwise.

γk,p: describes the selection of a path p ∈ Pk to route each k ∈ K.

γk,p =


1 if p is selected to route k,

0 otherwise.
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Considering the notation of binary variables given above, the optimization model can be

formulated as:

minimize
∑
e∈E

xe (3.1)

subject to the following constraints:

∑
p∈Pk

γk,p = 1 ∀k ∈ K (3.2)

γk,p = 0 ∀k ∈ D,∀p ∈ P k
c (3.3)∑

k∈K

∑
p∈P k

e

γk,ptk ≤ cexe ∀e ∈ E (3.4)

The objective function in (3.1) minimizes the number of active links, i.e. the number of links

used to route the control and data traffic.

Constraints in (3.2) ensure that only one path p ∈ Pk is selected to route each k ∈ K.

Constraints in (3.3) force that paths passing through the controller cannot be used to route

data plane traffic. Constraints in (3.4) ensure that the total traffic in each active link e ∈ E is

less than its capacity ce.

3.2.2 Multiple Controllers

In practice, the logically centralized control in SDN can be implemented with multiple dis-

tributed physical controllers, which is the scenario considered in this section.

3.2.2.1 Distributed Proposal

We first consider a multi-domain SDN architecture, where each domain has a centralized con-

troller with a number of predefined switches associated to it. We assume that each controller

has a total knowledge of its domain topology and a partial knowledge of the global network

topology, i.e. it has identified border nodes that it shares with each other domain. Inter-domain

data traffic demands are routed in each domain using these nodes. It is also worth noting that

we consider a network model with intra-domain in-band control.
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3.2.2.1.1 Network Model

Each controller domain is represented by a directed graph G = (V,E), where V and E denote

the set of nodes and links respectively. Each link e ∈ E has associated its capacity, denoted

by ce. The set B = {b1, . . . , b|B|} ⊂ V contains the border nodes. Dv and Dw denote the set

of intra-domain traffic flows for the data and control plane, respectively. Du denote the set of

inter-domain data traffic demands. Therefore, while both endpoints of traffic requests in Dv and

Dw are contained inside each domain, connections included in Du should be established across

multiple domains.

To better illustrate the network model considered in this subsection, Fig. 3.2 provides a

basic diagram. This figure shows a simple SDN topology with in-band control composed of

two controller domains and a border node between them (i.e. node D). In addition, the intra-

domain connection requests included in Dv and Dw are exposed for each domain as well as the

origin/destination pairs for the inter-domain data traffic in Du.

Domain 1

Ct1

A B

C

D

Domain 2

Ct2

E F

G

Du =



A←→ E,

A←→ F,

A←→ G,

B ←→ E,

B ←→ F,

B ←→ G,

C ←→ E,

C ←→ F,

C ←→ G

Domain 1

Dv =



A←→ B,

A←→ C,

A←→ D,

B ←→ C,

B ←→ D,

C ←→ D

Dw =


Ct1←→ A,

Ct1←→ B,

Ct1←→ C,

Ct1←→ D

Domain 2

Dv =



E ←→ F,

E ←→ G,

E ←→ D,

F ←→ G,

F ←→ D,

G←→ D,

Dw =


Ct2←→ D,

Ct2←→ E,

Ct2←→ F,

Ct2←→ G

Fig. 3.2: Basic diagram of considered network model with a centralized controller.

33



Chapter 3. Tailored Solutions to the Energy-Aware Routing Problem in SDN

As in Fig. 3.1, links are represented either by solid/black or dashed/grey lines. While the

former will be shared by data and control traffic, the latter cannot be used to route the data

plane communication.

For each k ∈ Dv, let tk denote its throughput and Pk be the set of intra-domain paths that

can be used to route this traffic. P k
c ⊂ Pk denote the set of paths that pass through the domain

controller for each k ∈ Dv. In addition, let P k
e ⊂ Pk be the set of intra-domain paths between

the source and target of k that use link e ∈ E. Similarly, this notation holds for the intra-domain

control traffic flows (i.e. Dw) and the inter-domain data traffic flows (i.e. Du).

3.2.2.1.2 Optimization Problem Formulation

The distributed proposal of our approach in multiple domains SDN, called Distributed

Energy-Aware Routing (DEAR), can be formulated as an ILP model with two steps of opti-

mization, using the following binary variables:

qk
b : describes the selection of a border node b to route a traffic k ∈ Du.

qk
b =


1 if b is selected to route k,

0 otherwise.

lkb,p: describes the selection of a path p ∈ Pk to route a traffic k ∈ Du through border node b.

lkb,p =


1 if p is selected to route k through b,

0 otherwise.

rk
p : describes the selection of a path p ∈ Pk to route a traffic k ∈ Dv ∪Dw.

rk
p =


1 if p is selected to route k,

0 otherwise.

In the first step, each controller-instantiated agent individually computes the routing paths

in its domain that minimize the number of links used. In this phase, performance constraints
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(e.g., control traffic delay and link utilization) could be included. Considering the notation of

binary variables shown above, the optimization model of the first phase can be formulated as:

minimize
∑
e∈E

xe (3.5)

subject to the following constraints:

∑
b∈B

qk
b = 1 ∀k ∈ Du (3.6)

∑
p∈Pk

lkb,p = qk
b ∀k ∈ Du,∀b ∈ B (3.7)

∑
p∈Pk

rk
p = 1 ∀k ∈ Dv ∪Dw (3.8)

rk
p = 0 ∀k ∈ Dv, ∀p ∈ P k

c (3.9)

lkb,p = 0 ∀k ∈ Du,∀b ∈ B, ∀p ∈ P k
c (3.10)∑

k∈Du

∑
p∈P k

e

∑
b∈B

lkb,ptk +
∑

k∈Dv∪Dw

∑
p∈P k

e

rk
ptk ≤ cexe ∀e ∈ E (3.11)

The objective function (3.5) minimizes the number of active links.

Equation (3.6) assures that exactly one border node is selected for every inter-domain data

traffic demand. Equation (3.7) guarantees that exactly one path is used to route every inter-

domain data traffic demand through the border node selected. Equation (3.8) ensures that

exactly one path is used to route every intra-domain traffic flow for the data and control plane.

Equations (3.9) and (3.10) guarantee that paths passing through the controller cannot be used

to route data plane traffic. Finally, Equation (3.11) assures that the total traffic in each active

link e ∈ E is less than its capacity ce. To do so, this constraint contains two terms; the former

is meant to determine the amount of inter-domain traffic flowing on the link e while the latter

does the equivalent analysis for the intra-domain (data and control) traffic.

After completing this computation, the distributed control plane agents in different SDN

domains must exchange some performance metric (e.g. MLU in each domain) and the identifier

of the selected border nodes to route each inter-domain data traffic demand (i.e. qk
b ∀k ∈ Du).

The first element of this shared information is intended to be used as a comparison metric to

define the domain with the best performance, which is also the one with the lowest probability to
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run out of capacity, while the second one allows a proper and coherent rerouting of inter-domain

data traffic demands.

In the second step, the agent of the domain with the best performance (less MLU, for in-

stance) recomputes its energy-aware routing paths using now, for each inter-domain data traffic

demand, the border nodes preselected by its neighbor domains. The corresponding problem for

the second step of optimization could be formulated using these received identifiers in Equa-

tion (3.7) of the model above.

3.2.2.2 Centralized Proposal

In SDN, multiple controllers are also deployed under hierarchical control structures to make

network-wide decisions. In this way, network events and device programming are handled locally

while routing paths are computed in a centralized way.

Taking as input of our system the controllers placement in the network topology, the model

presented in this section determines the optimal distribution of switches between controllers in

terms of energy efficiency, considering as well the load balance between controllers.

In addition, this solution takes into account the utilization of links and the delay of control

paths. Therefore both elements are constrained in our model.

3.2.2.2.1 Network Model

The SDN is represented by a directed graph G = (V,E,C), where V , E and C denote the

set of nodes, links and controllers respectively, being C ⊂ V . We use ce to denote the capacity

of a link e ∈ E. We define the set of forwarding nodes as S = {n | n ∈ V ∧ n /∈ C}.

Let D denote the subset of data plane communications. For the control plane, we use T to

denote the subset of traffic flows between controllers and switches. In this respect, we will use

K to denote the overall set of traffic flows in the network (D + T ⊂ K). Note that, in this

case, the traffic flows associated with the control plane communications between controllers are

also included in K. Each traffic flow k ∈ K from source sk to destination dk, has associated its

throughput, denoted by tk.

In Fig. 3.3 a basic diagram representing the network model considered in this subsection is

drawn. Specifically, this figure shows an in-band SDN with two controllers (Ct1, Ct2), assuming

that Ct2 is on top of the hierarchy, and five switches. In this case forwarding nodes are depicted
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with a different color and shape than controllers to illustrate that they are not initially associated

with any of the two controllers.

In addition, all possible data and control traffic endpoints included in D and T , respectively,

are exposed in the figure. As in previous diagrams in Fig. 3.1 and Fig. 3.2, dashed/grey lines

are used for links connected to the controllers, to indicate that they cannot be used to route the

data plane traffic.

A

BC DE

Ct1

Ct2

D =



A←→ B,

A←→ C,

A←→ D,

A←→ E,

B ←→ C,

B ←→ D,

B ←→ E,

C ←→ D,

C ←→ E,

D ←→ E

T =



Ct1←→ A,

Ct1←→ B,

Ct1←→ C,

Ct1←→ D,

Ct1←→ E,

Ct2←→ A,

Ct2←→ B,

Ct2←→ C,

Ct2←→ D,

Ct2←→ E

Fig. 3.3: Basic diagram of considered network model with a centralized controller.

In addition, let Pk be the set of paths that can be used to route each k ∈ K. Note that,

in order to assure a certain delay for the subset of control plane traffic, the paths considered

for these flows satisfy a maximum allowed latency bound, denoted as Lb. Let P k
e ⊂ Pk be the

subset of paths that use link e ∈ E and P k
c ⊂ Pk denote the subset of paths that pass through

controller c ∈ C, for each k ∈ K.

3.2.2.2.2 Optimization Problem Formulation

To optimize the number of links used to route a given data traffic demand we use the following

binary variables:

37



Chapter 3. Tailored Solutions to the Energy-Aware Routing Problem in SDN

xe: describes the state of a link e ∈ E.

xe =


1 if e is active,

0 otherwise.

γk,p: describes the selection of a path p ∈ Pk to route each k ∈ K.

γk,p =


1 if p is selected to route k,

0 otherwise.

λn,c: describes the association of each forwarding node n ∈ S with a controller c ∈ C.

λn,c =


1 if n is associated with c,

0 otherwise.

Considering the binary variable given above, the optimization model can be formulated as:

minimize
∑
e∈E

xe (3.12)

subject to the following constraints:

∑
c∈C

λn,c = 1 ∀n ∈ S (3.13)

∑
n∈S

λn,c ≤
⌈ |S|
|C|

⌉
∀c ∈ C (3.14)

∑
p∈Pk

γk,p =


λn,c

1

∀k ∈ T, n, c ∈ [sk, dk], n 6= c

∀k ∈ K \ T
(3.15)

γk,p ≤ λn,c


∀k ∈ T, ∀p ∈ P k

c

∀c ∈ C, n ∈ [sk, tk], n 6= c

(3.16)

γk,p = 0


∀k ∈ D,∀p ∈ P k

c

∀c ∈ C
(3.17)
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∑
k∈K

∑
p∈P k

e

γk,ptk ≤ umaxcexe ∀e ∈ E (3.18)

The objective function (3.12) minimizes the number of active links, i.e. the number of links

used to route the traffic.

Constraints (3.13) and (3.14) are related to controller-switch associations. The former indi-

cates that each switch can only be associated with one controller, whereas the latter establishes

the maximum number of switches that can be associated with each controller. The aim of this

last set of constraints is to balance the load of switches among controllers, looking to avoid

congested controllers.

Constraints (3.15)-(3.17) are related to paths selection. Specifically, constraint (3.15) en-

sures that only one path is selected to route each k ∈ K. Furthermore, this set of constraints

guarantees for the subset of traffic flows between controllers and switches T , that each switch

exchanges control messages only with its controller. Constraints (3.16) and (3.17) avoid the

routing of additional traffic load through the controllers. Constraint (3.16) ensures that the

control paths used for traffic flows between controllers and switches do not include any other

controller that is not the source or target of the traffic. Constraint (3.17) forces that paths

passing through any controller c ∈ C cannot be used to route data plane traffic.

Finally, constraint (3.18) ensures that the total traffic in each active link e ∈ E is less than

the established MLU, denoted as umax.

3.2.3 Model Operation Example

Taking as inputs the network graphs shown in Fig. 3.1, Fig. 3.2 and Fig. 3.3, we now illustrate

an example of our models operation. In each case the corresponding ILP formulation explained

above is used to determine the best paths (in terms of minimizing the number of used links).

This is done assuming a one-to-one data traffic scenario together with the control traffic between

each switch and its associated controller. For the sake of comparison, in Fig. 3.4 we show only

the resulting active links after applying the three aforementioned models.

Specifically, in Fig. 3.4(a) for the single controller case, only 5 links (out of 10 total links)

are needed to establish the required data paths and associated control routes. In this way, a

50% of energy saving (in terms of number of active links) is attained.
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The physically and logically distributed scenario, covered in Fig. 3.4(b), shows a reduction in

power consumption of 42.3%. This result is achieved after performing the two steps optimization

process described in subsection 3.2.2.1.2.

Finally, in Fig. 3.4(c) the operation of the logically-centralized approach with multiple con-

trollers can be appreciated. In this case the traffic between controllers is also considered and the

control path delay is constrained by the network diameter (according to the number of hops). In

addition, the distribution of switches between controllers is depicted through colors and shapes,

indicating that nodes A, C and E are associated with Ct1 and switches B and D are controlled

by Ct2. As a result of applying our optimization model in this example, only 13 links (out of 22

total links) stay active to satisfy the given traffic demand considering the routing requirements

established for control and data plane traffic, allowing 41% of energy saving.

C

BA

Ct

(a) Single controller.

Ct1

A B

C

D

Ct2

E F

G
(b) Logically-distributed controllers.

A

BC DE

Ct1

Ct2

(c) Logically-centralized controllers.

Fig. 3.4: Models operation example.
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3.3 Heuristic Algorithms

Although the models presented above allow the attainment of optimal solutions for the power

consumption problem in SDN, they become challenging to solve on large and even medium-scale

topologies given the NP-Hard difficulty of the energy-aware routing problem. To overcome this

issue, in this section we develop some heuristic algorithms.

3.3.1 Energy-Aware Routing

The proposed algorithm, shown in Algorithm 1, starts finding the set of admissible routes

between every pair of network nodes that satisfy the required constraints for control and data

plane communications (line 1). For control traffic, these paths are delay-constrained by the

maximum allowed latency bound (Lb) and do not pass through any other controller that is not

the source or target of the switch-controller pair. Meanwhile, possible data paths do not pass

through any controller in the network. In addition, the subset of paths from each forwarding

node to all the controllers in the network is stored in Pc (line 3). Using these computed control

paths, in line 5, a sorted list of forwarding nodes is stored in L. This list is sorted in ascending

order following two criteria:

1. the number of possible controllers to associate with,

2. the number of possible control paths.

Going through this list, the algorithm starts satisfying the most critical cases and the solution

can be found with fewer iterations. Then, after setting the first element in L as the node n to

be initially considered (line 6), the algorithm initializes the set of active links with a maximum

value.

The main loop of the algorithm determines for each possible control path of the selected

node n, the number of active links in the network after routing all data and control traffic. The

configuration of paths with fewer active links is then selected in this process. Inside this loop,

we will use a set of additional variables, denoted in the pseudocode as P ′, X ′, Y ′, U ′, to denote

the temporal values computed at each iteration. Therefore, for each possible control path of the

selected node n, these variables are initialized with the resulting values (i.e. control path, active

links, controller-switch association and links utilization) derived from routing the considered
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Algorithm 1 Energy-Aware Routing
Require: G = (V,E,C) network graph with controller placements, S forwarding nodes, D data

traffic demands
Ensure: P data and control paths, X active links, Y controller-switch associations, U links

utilization
1: R← Array of admissible routes between every pair of nodes in G
2: for s ∈ S do
3: Pc[s]← subset of routes r ∈ R from s to every controller c ∈ C
4: end for
5: L← S_Sorted
6: n← First node in L
7: len(X)←∞
8: repeat
9: for p ∈ Pc[n] do
10: Initialize(P ′, X ′, Y ′, U ′) by routing p
11: for s ∈ L− {n} do
12: PathSelector(s,None, Pc[s])
13: end for
14: O ← List of (c, s) in P ′

15: for (c, s) ∈ O do
16: PathSelector(c, s, R[c, s])
17: end for
18: for (c, c) ∈ G do
19: PathSelector(c, c, R[c, c])
20: end for
21: for (s, s) ∈ D do
22: PathSelector(s, s,R[s, s])
23: end for
24: if len(X ′) ≤ len(X) then
25: len(X), P,X, Y, U ← len(X ′), P ′, X ′, Y ′, U ′

26: end if
27: end for
28: if len(X) =∞ then
29: if n = last node in L then break
30: end if
31: n← Next node in L
32: end if
33: until len(X) 6=∞

control path (line 10).

Four inner loops are included inside the main loop of the algorithm. The first inner loop is

used to determine the path to a controller for each other forwarding node in L (line 12). Note

that the possible control paths from each forwarding node are to any controller in the network

to which it could be associated under the maximum allowed latency bound (Lb) considered for

control paths. The path selected in this step precisely defines the controller for each forwarding
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node, which is stored in O (line 14). Using this switch-controller associations, the algorithm

performs a second inner loop to determine now the control paths from each controller to its

associated switches (line 16). Then, the two remaining loops are used to search the rest of

required control paths (i.e. controller to controller in line 19) and the data paths (line 22).

In the four cases, the paths selection is done using the PathSelector method, which will be

further explained later on in this section.

Once all the required paths are computed, a checking process is used to evaluate the suit-

ability of the current configuration of paths in line 24. That is, the algorithm compares the

number of links required by the current iteration with the values stored in the global variables.

If a smaller amount of links is found, the global variables are updated. In this way, the best

values achieved after considering all control paths of node n are returned by the algorithm.

On the contrary, if after analyzing all control paths of node n, the algorithm still cannot find

a feasible configuration of paths to route all control and data plane traffic flows, the main loop

repeats this process for the next node stored in L. This is done until the solution is found or

until all forwarding nodes are analyzed, i.e. when the algorithm breaks without a solution. Note

that this last option occurs when, given a controller placement, an admissible configuration

for controller-switches association could not be found or when the network has not sufficient

capacity to meet the demand requirements under the established constraints.

As previously said, the paths selection is done by the PathSelector method described in

Algorithm 2. This function is used to select for a pair of nodes (a, b), the best admissible route

between them, denoted in the algorithm as SeP , in terms of minimizing the number of active

links in the network. When this function is called for the first time, i.e. for determining the

path between each forwarding node and one controller, the number of forwarding nodes already

associated with the controller is considered (line 4 to 8). In this way, the controller load, in

terms of managed forwarding nodes, remains balanced.

For each admissible path the number of required additional links is computed in line 9. This

value is used to compare the current route with the previous ones and in case of improvement

(i.e. fewer additional links are required), a new candidate solution is saved (line 13). In addition,

a path can only be selected if it has sufficient bandwidth to route the demand volume, under

the considered MLU constraint.

Finally, if no paths could be found, the algorithm skips to another control path of node
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Algorithm 2 PathSelector(a, b, Admisible_Paths)
1: B ←∞
2: SeP ← None
3: for p ∈ Admisible_Paths do
4: if b = None then
5: if p is related to an already loaded controller then
6: continue
7: end if
8: end if
9: off ← number of links in p that are not in X ′

10: if off ≤ B then
11: if p has sufficient bandwidth then
12: B ← off
13: SeP ← p
14: end if
15: end if
16: end for
17: if SeP = None then
18: continue to evaluate next p ∈ Pc[n]
19: end if
20: Update P ′, X ′, Y ′, U ′ by routing SeP

n for a new iteration. Alternatively, the algorithm returns the selected path and updates the

considering variables with the values corresponding to the establishment of this new route.

3.3.2 Energy-Aware Location of a Single SDN Controller

In addition to the route scheduling used, the energy saving in a network is also impacted by the

choice of the controller location. Thus, based on the proposed energy-aware routing approach, in

this subsection the controller location problem is investigated. This analysis aims to define the

best network nodes where to place the controllers and to yield the minimum power consumption.

In particular, we evaluate the energy saving for all possible controller locations and select the

one with the maximum value as the energy-aware controller placement.

Although the maximum energy saving is attained, if the size of the network is large, a

thorough search among all locations becomes challenging to solve. Therefore, in Algorithm 3

we present a simple heuristic approach that reduces the space search to find the energy-aware

controller location, considering the number of neighbor nodes and the connections between

them. Since our model establishes that data plane communications cannot be routed through

the network controller, locations with neighbors directly connected between them require a fewer
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Algorithm 3 Controller Location
Require: G = (V,E) network graph, |C| number of controllers
Ensure: Controllers placement (C)
1: Search_Space← NULL
2: Nv ← Set of neighbors of node v ∈ V
3: A← Sorted list of nodes in ascending order of |Nv|
4: h← 0 . number of hops
5: while |Search_Space| < |C| do
6: neigh←∞ . number of neighbors
7: for v ∈ A \ Search_Space do
8: for i, j ∈ Combinations(Nv, 2) do
9: if i, j are connected through h hops and |Nv| ≤ neigh then
10: Add v to Search_Space
11: neigh← |Nv|
12: end if
13: end for
14: end for
15: increment h
16: end while
17: ES ← 0
18: for c ∈ Combinations(Search_Space, |C|) do
19: ES′ ← Energy-Aware Routing(C = c)
20: if ES′ > ES then
21: C ← c
22: end if
23: end for

number of links to meet the data and control traffic demands.

Based on this analysis and taking as inputs the network graph together with the amount of

controllers to be placed, the algorithm initially defines the set of neighbors Nv for each node

v ∈ V , which is used to create the list of nodes A sorted in an ascending node degree order

(lines 2 and 3). Then, the variable h is initialised to a minimum value, which is used to indicate

the values of hops between neighbors that will be incrementally considered along the algorithm

operation. After performing this preparatory stage, the algorithm starts a while loop, which is

meant to assure that the reduced list of possible locations (Search_Space) has enough elements

to place all the required controllers. Inside this loop, the temporal variable neigh, which is

used to store the minimum value of neighbors found for a given value of h, is initialised with a

maximum value (line 6).

In the next steps, the algorithm iterates over the ordered list A evaluating each network node

that has not been already allocated in the set of candidate solutions (line 7). In particular, for
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each node v ∈ A, the algorithm then iterates over all the combinations of two nodes that can be

drawn from the set of neighbors Nv (line 8). Using this combinations, it determines which are

the nodes with neighbors connected through a given number of hops h (without considering the

connections through v) and simultaneously selects the ones that also present the minimum |Nv|.

In this way, the locations with neighbors connected between them, either directly or through the

fewest number of intermediate elements and with fewer number of neighbor nodes (i.e. |Nv|), are

stored in the Search_Space list (line 10). If more locations are still needed to place the required

controllers, the value of h is incremented and the process previously described is repeated.

Once the length of the reduced search space is at least the same than |C|, the second part

of the algorithm is preformed (lines 17 to 23). Using the list of nodes stored in Search_Space,

the algorithm builds candidate solutions combining the selected nodes according to the amount

of required controller locations (line 18). For each of these possible solutions, the algorithm de-

termines the number of links needed using the proposed Energy-Aware Routing (Algorithm

1). The one with the greater energy saving is selected then as the most convenient controllers

location.

3.3.3 Complexity Analysis

The computational complexity of the energy-aware routing presented in Algorithm 1 is deter-

mined by its main loop. In the worst case, this while loop will be executed S times, being S

the number of forwarding nodes. However, it should be emphasised that as a consequence of

iterating over an ordered list, in most of the cases the algorithm is able to find a solution after

analyzing only the first node in L and the extreme case of executing S times will be quite un-

common. Inside this loop, the iterative process and the related complexity are directly linked to

the number of connections to be established (i.e. K), which are considered along the inner loops,

and the complexity introduced by the PathSelector method. Given that in Algorithm 2 a

greedy search is performed, the complexity of the PathSelector method can be specified as

O(M), where M denotes the maximum number of admissible routes evaluated by this function.

Please note that M cannot be found beforehand since it will depend of several factors such as

the network topology, the number and location of controllers and the maximum allowed latency

bound (Lb). Therefore, the overall algorithm complexity should be formulated based on it.

Consequently, the worst run-time complexity of Algorithm 1 can be expressed as O(SKM2).
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Regarding the energy-aware controller location, the complexity of the first part of Algorithm

3 (i.e. the generation of the reduced space search) is strongly dependent on the considered

network topology. Considering H as the minimum number of hops between neighbors for at

least C nodes, being C the amount of required controllers, and assuming a full mesh scenario

as the worst case for the combinations of two nodes from the set of neighbors, this step has

an upper-bound complexity of O(HV 3), where V denotes the number of network nodes. Given

that generating all combinations of r elements from a list of size n takes O(nr), the second part

of Algorithm 3 has a complexity of O(nrSKM2), where r and n denote the required number

of controllers and the amount of nodes in Search_Space, respectively. Therefore, the overall

algorithm complexity can be defined as O(HV 3 + nrSKM2).

3.4 Simulations and Results

In this section we describe the evaluation of our energy-aware routing approach and analyze the

results obtained. We used the linear programming solver Gurobi Optimizer [110] to assess the

performance of the ILP models and the heuristic algorithms were developed using Python as

programming language. All computations were carried out on a computer equipped with 3.30

GHz Intel Core i7 and 16 GB RAM.

We conducted our simulations using real-world network topologies collected from SNDlib [111],

considering each router in the network as an SDN node or as a possible controller placement.

The topology graphs considered along this section are shown in Fig. 3.5.

For the considered topologies, the traffic matrices have been obtained from specific files also

downloaded from [111]. These files contain the directed data traffic demands between different

origin/destination pairs of the considered network scenarios. To introduce the presence of control

plane traffic, for each network topology we have replaced the data traffic demands from/to the

node(s) acting at each instance as controller(s), by the considered control traffic rate, which is

fixed to 1.7 Mbps according to the work in [112]. In case of assuming multiple controllers, the

same operation is performed between each pair of nodes used as controllers.

Since the topologies used in our experiments are backbone networks, for the sake of simplicity

and without loss of generality, we opted to compute the communication delay as the propagation

latency. The energy savings were computed as the number of links in sleep mode over the total
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Fig. 3.5: Real-world network topologies used in the simulations.

amount of network links. In general, the results gathered in this section are obtained without

blocking, i.e. all incoming traffic demands have been allocated for the different considered

approaches.
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Fig. 3.6: DEAR performance in the Abilene topology with two domains.

3.4.1 DEAR Performance

The evaluation of DEAR in the Abilene topology (11 nodes, 28 links) is shown in Fig. 3.6 for

the case of having two controller domains. Two other versions of the algorithm with additional

constraints (that is MLU and control traffic delay constraints) are also included in the figure. We

used the subset of online available traffic matrices measured at 00:00 on March 1st 2004 [113].

Taking into account the geographical distribution of nodes in the Abilene topology shown

in Fig. 3.5(a), we assume the two domains divided by Houston (HST) and Kansas City (KSC),
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which are therefore the border nodes. Then, a centralized controller is placed at each domain

using the energy-aware controller location described in Algorithm 3. As a result, in the western

domain the controller is placed at Seattle (STT), while Indianapolis (IPL) is the controller

location for the eastern domain.

Results show that DEAR can save until near to 40% of energy consumption with low traffic.

As expected, more restrictive constraints will imply less energy saving. This is due to, in order

to meet the new performance requirements, a fewer number of alternate paths can be considered

in the optimization. Therefore, it will be a trade-off to manage in accordance with the main

objectives of each implementation.

To get a sense of the energy saving values achieved by our approach, we also included the

analysis of using a Modified Shortest Path Routing (Mod-SPR). Mod-SPR can be considered as

a default SPR algorithm for SDN with in-band control traffic, where data plane traffic cannot

be routed through any controller. We use Mod-SPR as a fair comparison in our evaluation since

there is no research considering energy saving with in-band control traffic in SDN under the

routing behaviour presented in our proposal.

Moreover, in all cases our distributed energy-aware routing approach outperforms the Mod-

SPR in terms of energy saving. In general, DEAR achieves significant energy savings but bigger

improvements over Mod-SPR are reached when the traffic grows.

3.4.2 Optimal vs. Heuristic Solutions

To evaluate the performance of our heuristic algorithms against the optimal solutions achieved

by the ILP models we start considering the case of one centralized controller. To do so, besides

the Abilene topology, we also include in this analysis the Nobel-US (14 nodes, 42 links) topology

with its default traffic matrix provided in [111].

Fig. 3.7 and Fig. 3.8 show the energy savings reached by the routing models in the Abilene

and Nobel-US topologies, respectively, varying: a) the amount of data traffic load and b) the

controller location. In the first case we show the average values of energy savings computed

after running the proposed solutions considering each network node as the controller (i.e. 11

simulations were performed in Abilene and 14 in Nobel-US). For the second case we fix the

number of incoming data connections to the maximum provided value (i.e. 90 data traffic

demands for Abilene and 78 for Nobel-US).
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Fig. 3.7: Energy saving comparison between optimal, heuristic and Mod-SPR models for one network controller
in the Abilene topology.
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Fig. 3.8: Energy saving comparison between optimal, heuristic and Mod-SPR models for one network controller
in the Nobel-US topology.

In both networks our energy-aware routing approach outperforms the Mod-SPR in terms of

energy saving. Furthermore, for the case of only one network controller the heuristic algorithm

accomplishes close-to-optimal average energy savings, with differences under 8%.

As expected, in Fig. 3.7(a) and Fig. 3.8(a) the energy saving decreases while the number of

data flows grows, since new paths need to be established. The impact of controller placement on

the power consumption is revealed in Fig. 3.7(b) and Fig. 3.8(b). In general, results have been

determined with a 95% confidence interval not exceeding 5% of the indicated average values.

We now extend the analysis to the case of multiple logically-centralized controllers. To do so,

in both networks we consider all possible controller placements (i.e. by which feasible solutions

could be found) and compute the average energy savings for different numbers of controllers.

Fig. 3.9 shows the average values of energy saving and the obtained confidence intervals for a
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Fig. 3.9: Average energy saving comparison between optimal and heuristic solutions for different numbers of
controllers.

95% confidence level. In essence, the average energy savings reached by our optimization model

are up to 30% and 43% in the Abilene and Nobel-US topologies, respectively. Moreover, our

heuristic algorithm allows to obtain close-to-optimal energy savings in all cases, with differences

under 13%.

As it is shown, energy savings decrease while the number of controllers grows. This behavior

is expected given that in our approach data plane traffic cannot be routed through network

controllers. Therefore, with the increase of network controllers a higher number of links, used to

52



3.4. Simulations and Results

Table 3.1: Average Execution Time (s) for different numbers of controllers on real topologies.

Topology |C| Simulations Optimal Heuristic

Abilene

1 11 0.6351166 0.02545899
2 39 0.5631809 0.03049248
3 60 0.4893286 0.03668678
4 41 0.4268516 0.04307767

Nobel-US

1 14 8.068126 0.1452133
2 89 6.307062 0.1227532
3 318 4.995122 0.1465722
4 711 4.150009 0.1727835
5 927 3.445598 0.2240748

Geant
1 22 3446.204 305.5014
2 217 2616.54 53.60402

route control traffic, cannot be used for data plane communications (i.e. links directly connected

to the controllers).

Table 3.1 shows the average execution times required by the optimal model and the heuristic

algorithm in the three network topologies considered in our experimental simulations. The

number of simulations conducted in each case is also listed in the table for the different topologies.

Although in all cases the heuristic algorithm is better in computation time, when the number

of nodes and links is small, like in the Abilene and Nobel-US topologies, there is little difference

between both approaches. However, as the network size grows, like in the Geant topology (22

nodes, 72 links), the processing time increases dramatically. For instance, in this topology the

ILP model can take more than 3000 s to find solution while it is almost less than 300 s for the

heuristic algorithm, i.e. one order of magnitude improvement.

For the Geant topology we only show the case of having one and two controllers, because

beyond this limit the convergence time of solving the exact model considering all possible com-

binations of nodes as controllers placement, became unfeasible. This is because, although the

computation time decreases as the number of controllers grows, the amount of possible combina-

tions is considerably increased (i.e. 1273 simulations for |C| = 3, 4977 simulations for |C| = 4

and 13757 simulations for |C| = 5).
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Fig. 3.10: Average energy saving in the Geant topology varying the number of controllers.

3.4.3 Performance in Large-Scale Topologies

Due to the computational complexity of the exact model showed above in networks similar or

larger in size than Geant, we use our heuristic algorithm to test the energy efficiency in this

topology considering the subset of online available traffic matrices measured at 00:00 on May

5th 2005. The average power saving potential of Geant for different number of controllers is

then shown in Fig. 3.10.

This figure enables us to analyze the level of energy savings achieved, as well as their dis-

tributional characteristics for different amount of controllers. Note that when the number of

controllers is between 2 and 5, the values of energy savings are approximately balanced around

50%. However, as the number of controllers in the network is increased, there are substan-

tially more variation and outlier values. As previously stated, the maximum energy savings are

attained when the network has a single controller.

In this network, higher energy savings than in the Abilene and Nobel-US topologies are

achieved. The reason for this is that Geant has more link redundancy, therefore a higher number

of alternate paths between each pair of nodes could be considered in order to reduce the number

of links used in the network.
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Fig. 3.11: Average energy saving in the Geant topology with two controllers during a day period varying the
control paths delay bound.

3.4.4 Impact of Control Paths Delay Bound

So far, we had considered the control paths latency bounded by the network diameter, but now

we analyze how the energy efficiency is affected varying this constraint. To do so, we use the daily

set of traffic matrices measured every 15 minutes on May 5th 2005. Then, we ran our algorithm

at each 15-min interval and collected the power savings for different values of control paths

delay constraint (Lb). In this experiment we set to 100 the number of simulations conducted at

each 15-min interval during this day period, each one considering a different placement of two

controllers in the Geant topology. We use the notation r to denote the relation among Lb and

the shortest path propagation latency for every control pair of nodes.

Fig. 3.11 shows the average energy savings using the network diameter (nd) as delay bound

against three more restrictive possibilities (r = 1, 1.5 and 2). For instance, r = 2 means that

every control path latency is, at most, twice that of the shortest path. In addition, error

bands are included to reflect the 95% confidence interval of the obtained results. Since the

traffic offered for the Geant topology is almost constant during a day period, the energy savings

outlined present very few variations. As expected, less energy is saved when we use only shortest

paths (i.e. r = 1) to route the control messages, but even then, energy savings of 30% could

be achieved. This result shows that our approach enables considerable power savings without

degrading the delay of control plane traffic.

55



Chapter 3. Tailored Solutions to the Energy-Aware Routing Problem in SDN

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

20

25

30

35

0.4

0.6

0.8

1.0

0 25 50 75 100

Possible Combination of two Controllers in Geant Topology

A
v
er
a
g
e
E
n
er
g
y
S
av
in
g
s
(%

)
A
v
era

g
e
C
o
n
tro

l
P
a
th

D
elay

(n
o
rm

a
lized

)

Control Path Delay

Energy Savings

Fig. 3.12: Average energy saving and average control paths delay in the Geant topology for different controllers
placement.

3.4.5 Impact of Controllers Placement

The controller placement, a key issue in SDN, has also a direct influence in the energy efficiency

that can be achieved in network topologies. To better understand this behaviour, we use the

previous 100 simulations for different placements of two controllers in the Geant topology when

r = 1.

Fig. 3.12 shows, for the different controllers placement, the energy savings together with the

average control path delay (normalized to a maximum value of unity). The x-axis enumerates

the 100 possible locations of two controllers considered in our simulations. The index of this axis

is according to the descending order of energy savings. The first controller pair emphasized at

the left in the figure (with the letter A) presents the best performance in terms of both metrics

for the considered sample. This point corresponds with the selection of United Kingdom and

Czech Republic as controllers placement. We can observe a small difference in terms of average

latency between this point and the one denoted as B, which in this subset of possible controller

placements, achieves the minimum average control paths latency. However, the average energy

saving can change in more than 10% between both points.

Although the energy saving and the control paths delay could be considered as opposing

optimization aims, this solution enables the reduction of power consumption with minor im-

pacts on delay of control plane traffic. Based on this approach the controllers can be placed

56



3.4. Simulations and Results

Table 3.2: Energy Saving (%) for different placement strategies on real topologies.

Topologies Abilene Nobel-US
Nobel-

Geant Nobel-EU
Germany

Nodes 11 14 17 22 28
Links 28 42 52 72 82

k-median 35.71 59.52 46.15 58.33 52.44
k-center 35.71 54.76 51.92 59.72 52.44

Algorithm 3 57.14 64.29 65.38 66.67 60.98
Ex_Search 57.14 64.29 65.38 66.67 62.20

Max_Improv 21.43 9.53 19.23 8.34 8.54

strategically in the network, considering these two metrics as requirements.

Table 3.2 shows the results of testing our energy-aware controller location approach (Algo-

rithm 3) to place a centralized controller for 5 different network topologies. For each network,

we also consider two other well-known controller placement strategies, namely k-median and k-

center [109], which determine the node that minimizes the average and maximum control delay,

respectively, as the controller placement. In addition, an exhaustive search among all locations

(Ex_Search) was included to verify the maximum energy saving achieved in each topology

using our energy-aware routing algorithm.

The four placement strategies use our energy-aware routing to establish the data and control

paths, making them comparable models. Therefore, the difference between them relies only on

the criterion to select the best controller placement. We compute the maximum improvement

(Max_Improv) as the difference between the energy saving reached by our heuristic algorithm

and the minimum value, achieved by the k-median or k-center methods.

As it is shown, in all cases our heuristic approach improves the energy saving achieved by the

k-median and k-center strategies, with increases of around 20% of energy saving in Abilene and

Nobel-Germany. Moreover, it achieves the maximum energy saving in almost all the topologies,

except in Nobel-EU, where the maximum energy saving is achieved placing the controller at

Munich or Brussels, locations that do not have the fewest number of neighbor nodes. Therefore,

these locations do not appear in the Search_Space list formed by our algorithm. Even so,

differences are under 1.5%.
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3.5 Conclusion

In this chapter we proposed several energy-aware routing approaches minimizing the number of

active links required to route the control and data plane communications for large-scale SDN

with in-band control traffic. The proposed approaches comprise the different control plane

implementations in SDN, i.e. single controller, multiple domains managed by a single controller

and multiple controllers under network-wide routing. In the last one, performance constraints

that are crucial in the correct operation of SDN, such as maximum link utilization, bounded

delay for the control plane traffic and load balance between controllers, were considered. To solve

the problem at hand, we have formulated optimization models that integrate the specific routing

requirements for data and control traffic. Due to the time complexity of exact models in large-

scale topologies, we also developed heuristic algorithms that improve the power consumption in

the network with results close to the optimal responses, while reducing the computation times.

In addition, we derived a simple and efficient algorithm to find the best controller placement

in terms of energy saving. Based on experimental simulations using real topologies and traffic

demand, we have proved that our energy-aware approaches achieve significant energy savings

and outperforms the SPR with noticeable improvements. In addition, results showed that the

heuristic algorithms converge much faster and can handle larger network sizes for which the exact

model cannot find solutions in reasonable time. Moreover, we proved that energy consumption

depends on the specific controller location, and the proposed algorithm for controller placement

attains comparably good results. Using this approach, for a given traffic demand, controllers can

perform energy-aware routing and determine the link interfaces that should be put into sleep

mode. In this way, an energy-aware control plane could be achieved.
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Chapter 4
Impact of Energy-Aware Routing on SDN
Performance

This chapter is based on:

• A. Fernández-Fernández, C. Cervelló-Pastor and L. Ochoa-Aday, "Evaluating the Im-
pact of Energy-Aware Routing on Software-Defined Networking Performance," in Proc.
of the XIII Jornadas de Ingeniería Telemática (JITEL’17), Valencia, Spain, Sep. 2017,
pp. 241–248.

• A. Fernández-Fernández, C. Cervelló-Pastor and L. Ochoa-Aday, "Energy Efficiency
and Network Performance: A Reality Check in SDN-Based 5G Systems," Energies, vol.
10, no. 12, pp. 2132:1–2132:27, Dec. 2017.

4.1 Introduction

Despite consistent efforts to improve the network power efficiency, energy-aware routing tech-

niques may lead to performance degradations when QoS requirements are neglected [31, 114].

Inspired by this reality, this chapter introduces a novel energy-aware strategy which will be used

to evaluate its impact on crucial performance metrics.

Instead of restricting the path selection and potential improvements in terms of energy

efficiency to meet specific metric bounds –as previously done in Chapter 3– this proposal aims

to get insight into energy saving capability and to quantify the existing trade-off between power

consumption and several performance indicators, which is a crucial issue for communication

systems nowadays.

Looking for an energy efficient and low-complexity approach, in this chapter we propose a
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hybrid strategy comprising topology and traffic-based decisions. Additionally, it is also fully

compatible with current dynamic networking environments considering an SDN architecture

with multiple controllers and in-band control traffic.

On the other hand, the complexity of considering the entire topology for the selection of the

most suitable routes in the models presented in Chapter 3 can be very expensive in networks

with major path redundancy. Alternatively, in this work the network topology is strategically

pruned, which reduces the number of paths and the consequent computation complexity.

The rest of this chapter is structured as follows. In Section 4.2 the energy consumption

optimization problem is formalized through a general link-based mathematical formulation. In

Section 4.3 we explain the main features of our low-complexity energy-aware approach together

with a detailed description of its two comprised modules. The simulation strategies and the

obtained results are presented and analyzed in Section 4.4. Finally, Section 4.5 concludes this

chapter.

4.2 Problem Statement

To formalize the energy consumption optimization problem in this Section we provide a link-

based mathematical formulation intended to reduce the overall complexity of the exact approach

in network topologies with large-scale path redundancy. Additionally, QoS constraints and

performance metric boundaries are not considered in this model, as it aims to provide upper

bounds for the energy efficiency.

4.2.1 Network Model

We consider an SDN represented by a directed graph G = (V,E,C), where V , E and C denote

the set of nodes, links and controllers respectively, being C ⊂ V . We use ci,j to denote the

capacity of a link (i, j) ∈ E. We define the set of forwarding nodes as S = {n | n ∈ V ∧ n /∈ C}.

Considering F as the entire set of traffic flows existing in the network between any pair of

nodes, let D denote the subset of data plane communications. For the control plane, we use T

to denote the subset of traffic between controllers and switches, and H to denote the subset of

traffic between controllers. Accordingly, F = D ∪ T ∪ H. Each flow f ∈ F from source sf to

destination tf , has associated its throughput, denoted by bf .
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4.2.2 Formulation

To optimize the number of links used to route a given traffic demand matrix we develop an ILP

model, using the following binary variables:

xi,j : describes the state of a link (i, j) ∈ E.

xi,j =


1 if (i, j) is active,

0 otherwise.

tfi,j : describes the selection of a link (i, j) ∈ E to route a flow f ∈ F .

tfi,j =


1 if (i, j) is selected to route f,

0 otherwise.

λn,c: describes the association of each forwarding node n ∈ S with a controller c ∈ C.

λn,c =


1 if n is associated with c,

0 otherwise.

Considering the entire set of demands fixed and known in advance, all the optimal control

and data paths in terms of energy efficiency can be computed jointly in a global optimization

process. Given the notation of binary variables given above, the optimization model can be

formulated as follows:

minimize
∑

(i,j)∈E

xi,j (4.1)

subject to the following constraints:

To manage each forwarding node in the network n ∈ S, a single controller is selected.

∑
c∈C

λn,c = 1 ∀n ∈ S (4.2)

Additionally, the number of switches associated with each controller cannot exceed the con-

troller capacity. In this expression we use Rc to denote the computational and networking
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resources, in terms of number of forwarding nodes that can be supported by a controller c ∈ C.

∑
n∈S

λn,c ≤ Rc ∀c ∈ C (4.3)

To avoid additional traffic load through network controllers, data plane communications (i.e.

f ∈ D) cannot be routed through these devices. Furthermore, control traffic between controllers

and switches (i.e. f ∈ T ) will not pass through any other controller that is not the source or

target of the traffic. The same must hold true for the traffic between controllers (i.e. f ∈ H).

In these constraints we use N(i) to denote the set of neighbors of a node i and nf to identify

the forwarding node involved in the source/target pair of traffic flow f ∈ T .

∑
j∈N(i)

tfi,j ≤



0

λnf ,i

0

∀f ∈ D,∀i ∈ C

∀f ∈ T, ∀i ∈ C

∀f ∈ H,∀i ∈ C \ {sf , tf}

(4.4)

The routing of data plane communications and control traffic exchange between controllers,

follows the traditional flow conservation constraints.

∀i ∈ V,∀f ∈ D ∪H :

∑
j∈N(i)

tfi,j −
∑

j∈N(i)
tfj,i =



1

−1

0

if i = sf

if i = tf

otherwise

(4.5)

Meanwhile, for the subset of control plane communications between controllers and switches

f ∈ T , these constraints are modified to assure that each switch exchanges control messages only

with its controller. Similarly, the forwarding node and controller involved in the source/target

pair of traffic flow f ∈ T , are denoted with nf and cf , respectively.

∀i ∈ V,∀f ∈ T :
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∑
j∈N(i)

tfi,j −
∑

j∈N(i)
tfj,i =



λnf ,cf

−λnf ,cf

0

if i = sf

if i = tf

otherwise

(4.6)

A link (i, j) is active if it is used by some traffic flow f ∈ F . Furthermore, the total traffic

in each active link must be less than its assigned capacity.

∑
f∈F

tfi,jbf ≤ ci,jxi,j ∀(i, j) ∈ E (4.7)

Using this model, the centralized controller can determine the optimal routes and set the

required flow rules on each forwarding node before the traffic arrival. However, considering the

high complexity of the presented optimization problem [49], the definition of heuristic solutions

is needed to solve it on current real-world networks.

4.3 Heuristic Algorithms

In this section we present a novel solution for the energy efficiency problem in SDN comprising

topology and traffic-based decisions. More precisely, we exploit specific network topological

properties combined with the use of TE to reduce the overall power consumption.

An illustrative diagram of this strategy is shown in Fig. 4.1. The first component, denoted as

Static Network Configuration Algorithm (SNetCA), is a topology-based solution intended to be

statically activated at specific instances as a planned operation. On the other hand, the traffic-

based module, denoted as Dynamic Energy Saving Routing Algorithm (DESRA), is activated

by the arrival of each incoming traffic demand. Therefore, an accurate prediction of incoming

traffic is not needed.

In essence, this approach finds the routes between network elements that minimize the num-

ber of active links used, considering that links are shared between data and control plane traffic

(i.e. in-band mode). Therefore, control paths between controllers and switches (in both senses)

and between controllers are also established.

Additionally, given the controllers placement in the network topology, our model determines

the ideal distribution of switches between controllers in terms of energy efficiency and load
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Fig. 4.1: Illustrative diagram of the proposed approach.

balancing among controllers. In our energy-aware approach, the routing of additional traffic

load through controllers is avoided, i.e. admissible control paths do not pass through any other

controller that is not the source or target of the traffic and data plane communications cannot

be routed through these devices. The two main parts enclosed within the proposed energy-aware

approach are described in more details in the following subsections.

4.3.1 Static Network Configuration Algorithm (SNetCA)

By considering the typical link redundancy of backbone networks, we design a Static Network

Configuration Algorithm, denoted as SNetCA, which aims to prune as many links as possible

in order to stress the importance of energy saving. Additionally, the most favorable switch-

controller associations in terms of energy efficiency and load balance, are determined in this

stage.

The algorithm, described in the Algorithm 4 pseudo-code, is composed of three steps:

1. selecting one of the controller’s neighbors, as the node that will remain connected to it in
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the outcome topology;

2. identifying the links that do not disconnect the graph to be put into sleep mode;

3. associating each node with one controller and computing the control path between them.

The input of the Algorithm 4 is the network topology with controllers placement and its

outputs are a pruned network with a reduced number of links, denoted as G′, an array keeping

the controller-switch associations, denoted as A, and the control paths from each node to its

controller, denoted as Psc. Additionally, we use X to denote the set of active links X ⊆ E and

U to store the utilization of network links.

In the first step, the algorithm iterates over the set of network controllers in order to evaluate

each one of its neighbors (lines 4-20). The selection of one neighbor node for each controller

is based on the betweenness centrality, which measures the intermediary role of a node in the

network. In the proposed approach, we use a simplified version of this metric considering only

the shortest paths from a controller to every switch. The array B defined on line 5 is used to

record the betweenness centrality computed by the algorithm for each neighbor of the considered

controller.

In particular, after computing the shortest paths from one controller as single source in line 6,

the algorithm determines whether a neighbor node belongs to each of these paths and increases

the Bn associated with that node (lines 7-13). Note that when a controller’s neighbor is another

controller, the link between them is not considered as a candidate to be pruned (line 7).

For each controller the list of neighbor nodes is sorted according to the decreasing order of

Bn and stored in L (line 14). This list is then used to identify the neighbor with the highest

betweenness centrality, which will be the node that will remain connected to the controller in

the resulting pruned topology. To do so, in line 16 the algorithm selects, for the controller

considered in the current iteration, the first node in L and stores this pair in Sel_N . For the

remaining nodes in L, the links between them and the controller are removed from the resulting

network graph (line 18). This means that they are put into sleep mode in the original graph.

In the next step, the algorithm iterates over the set of directional links in the pruned network

that do not have any controller as its extreme nodes (lines 21-28). At each iteration the algorithm

attempts to increase the number of switched-off edges. A new link is removed only when the

resulting graph remains being strongly connected, i.e. at least one path exists between every
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Algorithm 4 SNetCA
Require: G = (V,E,C), S
Ensure: G′ = (V,E′, C), A, Psc

1: Nc ← Set of neighbors of controller c ∈ C
2: Sel_N ← NULL . Array of selected switch for each controller
3: G′ ← G

Step 1
4: for c ∈ C do
5: B ← NULL . Array of betweenness values
6: SPc ← Set of shortest paths from controller c ∈ C to every other node v ∈ V
7: for n ∈ Nc \ C do
8: Bn = 0
9: for p ∈ SPc do
10: if path p goes through node n then Bn = Bn + 1
11: end if
12: end for
13: end for
14: L← Nc_Sorted according to decreasing order of B
15: for s ∈ L do
16: if c not already in Sel_N then Sel_N = Sel_N ∪ (s, c)
17: end if
18: Remove links (s, c) and (c, s) from G′

19: end for
20: end for

Step 2
21: for i, j ∈ E′ do
22: if i ∈ C or j ∈ C then continue
23: end if
24: G′′ ← G′

25: Remove controllers c ∈ C and link i, j from G′′

26: if G′′ remains strongly connected then remove link i, j from G′

27: end if
28: end for

Step 3
29: for s, c ∈ Sel_N do
30: if s is already associated with another c′ 6= c then continue
31: end if
32: PathSelector(s, c)
33: Update Psc, A, X, U
34: end for
35: for the rest of s ∈ S do
36: PathSelector(s, C)
37: Update Psc, A,X,U
38: end for

pair of nodes in the network. To accomplish this, a temporal graph, denoted as G′′, is created

in line 24. This graph is used to check the required connectivity between all the forwarding
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nodes without passing through any controller in the network. Thus, after removing from G′′

the network controllers and the considered link in line 25, the algorithm validates whether the

possibility of reaching any node in the network is not affected. This being the case, the considered

link is removed from the resulting graph (line 26).

The last step of the algorithm is intended to determine a control path from each forwarding

node to one controller (lines 29-38). To achieve this goal, the algorithm starts evaluating the

pairs of controller-switch already stored in Sel_N (line 29). For each pair, the algorithm first

determines whether the considered switch is still available. If this is the case, in line 32 an

admissible control path minimizing the number of active links is computed for this switch-

controller pair using the method PathSelector described in Algorithm 5, which will be further

explained below. As stated previously, admissible control paths do not pass through any other

controller that is not the source or target of the traffic.

The remaining forwarding nodes are then considered by the algorithm in line 35. Note that

in this case the algorithm takes into account the control paths to all controllers in the network

(line 36). Precisely, the path computed by the PathSelector in this step defines the controller

for the rest of forwarding nodes. After computing the selected paths for the two aforementioned

loops, the different involved sets (Psc, A,X,U) are updated according to the performed routing

decisions (line 33 and 37).

Using this initial control plane configuration, switches send to the controller requests through

packet_in messages when a new traffic flow arrives, as well as statistics and failure notifications.

Consequently, there is an initial set of active links in the network before the ingress of traffic

flows as well as some link utilization.

The PathSelector method, first introduced in Section 3.3.1, performs the energy-aware

path selection. In essence, this function is used to select the best admissible route between a

pair of nodes, in terms of minimizing the number of active links in the network.

The key idea of this function is to perform a low-complexity greedy evaluation between

all the admissible paths to select the most suitable route in terms of energy-efficiency, while

guaranteeing a balanced load of switches between controllers and the capacity constraint of

links. Since this method works over the pruned network with a reduced number of links, (i.e.

G′), the considered set of admissible paths is significantly smaller than in the original topology

and the solution can be found with fewer iterations.
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Algorithm 5 PathSelector(a, b)
1: L←∞
2: SeP ← None
3: for p ∈ Get_All_Admissible_Paths(G′, a, b) do
4: if b = C and p is related to an already loaded controller then
5: continue
6: end if
7: off ← number of links in p that are not in X
8: if off < L and p has sufficient bandwidth then
9: SeP ← p
10: L← off
11: end if
12: end for

When this function is called for determining the path between a forwarding node and a non-

specific controller (i.e. using the set of controllers C as the traffic destination in the line 36 of

Algorithm 4), the controller load, in terms of managed forwarding nodes, is analyzed in line 4.

In this way, each path related to a controller with a number of already associated forwarding

nodes equal to the given threshold, is not further considered.

In general, for each admissible path in G′ between node a and b the algorithm computes

the number of links required by this path that are not included yet in the set of active links X

(line 7). This number, which represents the amount of additional links to be activated if the

incoming flow is allocated over the considered path, is stored in the variable off. Then, each time

we go through line 8, the algorithm checks whether exists an admissible path with an off value

smaller than the one already selected during one of the earlier passages through this step. If

the considered path is more energy efficient (i.e. requires the activation of fewer links) than the

current recorded path, that path is replaced with this new one in SeP (line 9) and the variable

L is populated with its off value to keep the record of the smaller amount of required links

(line 10). In addition, the path only can be selected if it has sufficient link capacity to route the

required traffic volume (line 8).

To better illustrate the operation of our static approach proposed in Algorithm 4, Fig. 4.2

provides a detailed example which goes across each one of the three steps explained above.

In Fig. 4.2(a) we show the original network with 8 forwarding nodes, 2 controllers (Ct1, Ct2)

and 34 directed links. Then, after executing the first step of SNetCA, only one neighbor node

remains connected to each controller as can be corroborated in Fig. 4.2(b). This step implied a
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(d) SNetCA Step 3.

Fig. 4.2: Example of SNetCA operation.

reduction of 8 links with respect to the original graph.

The second step, exemplified in Fig. 4.2(c), identifies the links that do not affect the data

plane connectivity between forwarding nodes and removes all these links from the considered

graph. Consequently, the number of links in sleep mode is considerably increased by this step.

Specifically, only 15 links remains active in the resulting pruned network, which represents

around 56% of energy saving (in terms of number of active links).

Finally, the controller-switch associations determined by the step 3 are shown in Fig. 4.2(c).

In this figure, the distribution of switches between controllers is depicted through colors, indi-

cating that exactly 4 nodes are associated with each controller. In this way, the load of switches

is evenly distributed among controllers. This step also establishes a control path between each

forwarding node and its controller.
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Algorithm 6 DESRA
Require: G′, A, d incoming traffic request
Ensure: Pss, Pcs, Pcc data and control paths, X active links, U links utilization
1: Ct1 ← A[sd]
2: p = PathSelector(sd, td)
3: Update Pss, X, U
4: for n ∈ p do
5: Ct← A[n]
6: PathSelector(Ct, n)
7: Update Pcs, X, U
8: if Ct1 6= Ct then
9: PathSelector(Ct1, Ct)

10: Update Pcc, X, U
11: end if
12: end for

4.3.2 Dynamic Energy Saving Routing Algorithm (DESRA)

When a new traffic demand arrives, a routing request is sent from the input node to its associated

controller using the path between both devices previously computed during the static network

configuration phase. Based on its global knowledge of the network topology, this controller

calculates the required data path minimizing the number of links that need to be activated for

this connection request and creates the flow forwarding rules.

The proposed dynamic energy-aware routing is shown in Algorithm 6. For an incoming

demand d from source sd to destination td, the algorithm starts storing in Ct1 the controller

associated with the source node (line 1). This controller is the main responsible of managing

this traffic request. Using the PathSelector method in line 2, the most favorable admissible

data path in terms of energy consumption is computed. This is done considering that admissible

paths do not pass through any controller in the network.

Next, a loop is used to establish the required control plane communications for each node

along this path (lines 4-12). Inside this loop the algorithm starts identifying the controller

associated with each node in the data path (line 5). Then, in line 6, a control path is computed

from the identified controller to the considered node. These paths are needed to set the required

flow forwarding rules in each switch using the flow_mod messages.

Given the multidomain scenario considered, the nodes traversed by the data traffic may be

associated with different controllers. When a node is not associated with Ct1 (lines 8-11), an

additional control message is sent from this controller to the other, in order to inform the second
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controller of the flow forwarding rule that needs to be installed in one of its managed nodes. To

do so, in line 9, a control path is also computed between both controllers.

In each case, after computing the corresponding data or control path, the variables involved

with such routing (i.e. established paths, active links and links utilization) are updated (lines

3, 7 and 10).

4.3.3 Complexity Analysis

Considering that the computation of the shortest paths from each single controller is done in

O(V log V ) using the Dijkstra algorithm, the selection of one controller’s neighbor in the fist

step of Algorithm 4 has a worst run-time complexity equal to O(V log V + V 2 + S logS + S),

where V is the number of total network devices and S is the number of forwarding nodes. Given

that this operation is performed C times, being C the number of controllers, the complexity of

step 1 becomes O(CV 2).

Pruning as many links as possible without disconnecting the network graph during the second

step has a complexity equal to O(L(V +L)), where L is the number of links which are not directly

connected to any controller and O(V + L) refers to the connectivity checking process [115].

The complexity of the last step is determined by O(SM), where M indicates the worst-

case complexity of Algorithm 5, i.e. the maximum number of admissible paths between a pair

of nodes in the pruned graph. Although M cannot be found beforehand since it will depend

of several factors such as the path redundancy of the network topology and the number and

location of controllers, it should be noted that after pruning the network topology, the number

of admissible paths and the consequent computation complexity of this method are significantly

reduced with respect to the original graph. Therefore, the SNetCA complexity can be expressed

as O(CV 2 + L2).

The complexity of the proposed dynamic routing solution, mixing together both Algorithms 5

and 6, is O(SM2) since the maximum length of a data path is precisely the number of forwarding

nodes given the routing restrictions avoiding data traffic through network controllers. Given that

M is usually a small number after pruning the network topology and does not grow rapidly along

with the network size, it is reasonable to run the algorithm upon each flow request.

Based on the previous analysis, the overall algorithm complexity of the solution presented in

this chapter, considering the static and dynamic parts, can be formulated as O(CV 2+L2+SM2).
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4.4 Simulations and Results

In this section we describe the evaluation of our energy-aware approach and analyze the achieved

results. We used the linear programming solver Gurobi Optimizer [110] to assess the performance

of the ILP model. Meanwhile, the proposed control framework described in Section 4.3 was

implemented using the programming language Python to develop the heuristic algorithms. All

computations were carried out on a computer equipped with 3.30 GHz Intel Core i7 and 16 GB

RAM.

We conducted our simulations using real-world network topologies and traffic demands col-

lected from SNDlib [111], considering each router in the network as an SDN node or as a possible

controller placement. Since the topologies used in our experiments are backbone networks, for

the sake of simplicity and without loss of generality, we opted to compute the communications

delay as the propagation latency. Specifically, we use three of the most link-redundant network

topologies existing in SNDlib in order to assess the effectiveness of the proposed scheme. The

mentioned topologies are: New York, Geant and Norway. In Fig. 4.3 we show the network

graphs of New York and Norway (for the Geant topology please see Section 3.4).
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Fig. 4.3: Real-world network topologies used in the simulations.

In addition, the main characteristics of the three considered topologies are summarized in

Table 4.1. This table presents the topological properties together with a general description of

the provided traffic load for each studied topology. Specifically, for New York and Norway we

use the default traffic matrices provided, while for Geant we select the subset of available traffic
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matrices measured at 00:00 on May 5th 2005.

Table 4.1: Main characteristics of considered topologies.

Topology |V | |E| |D|
Mean node Traffic demand (Mbps)

degree Total Mean

New York 16 98 240 6.12 1774.0 7.39
Geant 22 72 430 3.27 42565.53 98.99
Norway 27 102 702 3.78 5348.0 7.62

As we are considering an in-band scenario, after placing the controllers in each simulation

instance, we have deleted the data traffic demands from/to them. Being the network load an

important parameter that impacts the efficiency of any energy-aware solution, we also compute

the average network load ρ, defined as follows, where the traffic flowing on each link was obtained

routing each traffic demand using the shortest path.

ρ =

∑
(i,j)∈E

∑
f∈D

tfi,jbf∑
(i,j)∈E

xi,jci,j
(4.8)

Results from this early analysis confirm that the real scenarios considered present a low

network traffic load. More in detail, the average network loads of the three network topologies

are less than 0.05, being New York links particularly lightly loaded (i.e. ρ < 0.01). This behavior

is typical in real backbone topologies where capacity planning strategies aim to ensure that core

links are always significantly over-provisioned relative to the offered average load. This is done

as an attempt to avoid congestion in case of peak load and to allow the fulfillment of Service

Level Agreement (SLA) requirements. Intuitively, low loaded networks are suitable scenarios

for deploying energy-aware solutions that concentrate traffic and turn off unused network links.

Therefore, this analysis suggests that substantial energy savings are possible. Moreover, we can

deduce that potential energy benefits will be more limited by the required connectivity and

topological properties than by the network traffic load. For the control traffic we assume an

average rate of 1.7 Mbps [112].

Considering a homogeneous scenario, where all controllers have the same computational and

networking capabilities, in our simulations we set the maximum number of forwarding nodes that
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can be associated with each controller as follows. In this way, switches are evenly distributed

and the load of switches is balanced among controllers.

Rc =
⌈ |S|
|C|

⌉
∀c ∈ C (4.9)

To analyze the performance of our energy-aware approach five groups of evaluations are

presented varying the number of controllers in the considered topologies. In the first part,

performance of our heuristic algorithms with respect to the optimal model are analyzed in order

to fix an upper bound of the power saving capabilities of proposed solutions. In the second

part, the potential of SNetCA to prune a network topology is investigated. Then, we compare

our solution with the four strategies of another energy-aware method proposed in the literature.

Next, we analyze the impact of our model on crucial network performance metrics, such as

latency, link utilization and TCAM occupation. Finally, we provide an initial analysis exploring

the existing trade-off between energy savings and network resilience.

In general, the results gathered in this section are obtained without blocking, i.e. all incoming

traffic demands have been allocated for the different considered approaches.

4.4.1 Optimal vs. Heuristic Solutions

To assess the performance of proposed heuristic algorithms against the optimal solution achieved

by the ILP model, we show their behaviors in Fig. 4.4 using the considered topologies.

We compute the average energy savings considering all admissible controller placements

for different numbers of controllers. Note that a controller placement is admissible when the

assumptions established in this proposal to avoid the routing of additional traffic load through

network controllers can be kept (i.e. the network graph without any controller is strongly

connected). Energy savings were computed as the number of links in sleep mode over the total

amount of network links.

As shown in Fig. 4.4, the energy savings reached by the optimization model are up to 64%,

72% and 83% in the Geant, Norway and New York topologies, respectively. On the other hand

the heuristic strategy (denoted in the figure as SNetCA/DESRA) allows to obtain close-to-

optimal energy savings, with differences under 10% in all cases. In general, results have been

determined with a 95% confidence interval not exceeding 1.1% of the indicated average values.
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Fig. 4.4: Average energy saving comparison between optimal and heuristic solutions for different numbers of
controllers.

We can also see that energy savings slightly decrease while the number of controllers grows.

This behavior is expected given that in our approach data plane traffic cannot be routed through

network controllers. Therefore, with the increase of network controllers a higher number of links,

used to route control traffic, cannot be used for data plane communications (i.e. links directly

connected to the controllers). A similar decreasing behavior can be noticed in the gap between

optimal and heuristic results since, as the amount of network controllers grows, a fewer number
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Table 4.2: Average execution time (s) for different numbers of controllers on real topologies.

Topology |C| Simulations Optimal SNetCA DESRA

New York
1 16 165.25394 0.06042855 0.7634286
2 119 155.11156 0.05261856 0.6301443
3 546 73.87162 0.04025800 0.5103288

Geant
1 22 111.58066 0.05155555 2.4344444
2 217 77.18424 0.04857143 1.9748800
3 1273 43.45415 0.04672522 1.5586752

Norway
1 27 9748.63320 0.09865218 8.9823043
2 349 4828.40740 0.09627403 7.2662776
3 1000 2246.13205 0.08228750 6.4095375

of feasible solutions can be considered by the linear solver.

Table 4.2 shows the average execution times required by the optimal model and the heuristic

algorithms in the three network topologies considered in our experimental simulations. These

values were computed using a 10% trimmed mean in order to reduce the effect of outliers on the

central tendency. While the SNetCA column shows the execution times required to prune the

network, the other two columns contain how many seconds are spent by each routing approach

to compute all the required control and data paths according to the incoming traffic. As it

is shown, in both approaches computation times mostly tend to decrease while the number of

controllers grows. This is due to the fact that these energy-aware approaches avoid the routing

of additional traffic load through network controllers. Therefore, with the increase of network

controllers a fewer number of alternate paths between each pair of nodes need to be considered

in the simulation.

Although in all cases the proposed strategy outperforms the optimal model in terms of

computation time, a higher improvement is achieved as the network size grows. For instance, in

the Norway topology the processing times required by the optimal model increase dramatically.

The ILP model in this topology can take more than two hours on average to find a solution, which

is a great limitation in current networking environments. Meanwhile, it is always less than 10 s

for the heuristic strategy, i.e. almost a three order of magnitude improvement. This comparison

validates the improvements achieved by the heuristic proposal in terms of computation time and

clearly justifies its necessity.
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The number of simulations conducted in each case is also listed in Table 4.2 for the different

topologies. This value represents the combinations of nodes considered as controllers placement

for a given amount of controllers. A combination of nodes is an admissible controller placement

as long as feasible solutions can be found under the required routing restrictions avoiding the

routing of additional traffic through network controllers. For the Norway topology all possible

combinations of 3 nodes as controllers were not considered in this subsection because the overall

convergence time of solving the exact model for such amount of simulations (a total of 2844)

became unfeasible. Instead, for the comparison with the optimal solutions we limit the analysis

of this topology when |C| = 3 to 1000 simulations as shown in Table 4.2. In the following

subsections the total amount of possible combinations are considered when referring to the

evaluation of the heuristic approach.

4.4.2 SNetCA Performance

In order to evaluate the effectiveness of the proposed topology-based module, Fig. 4.5 shows

an example of the performance of SNetCA on the Norway topology, considering two network

controllers placed at nodes denoted as 1 and 2 and emphasized with a different color in the

figure. The distribution of switches between controllers is depicted through the use of labels in

each node, indicating the controller number to which the node is associated. Here we focus our

attention on the Norway topology, but similar results have been obtained for the two remaining

topologies considered.

A comparison between the original network and the resulting graph illustrated in Fig. 4.5(a)

and Fig. 4.5(b) respectively, shows a difference of 67 edges, which represents more than 65% of

total network links. These links are pruned by our algorithm guaranteeing that the resulting

graph remains being strongly connected and avoiding additional traffic load through network

controllers.

Additionally, as a result of applying SNetCA on the Norway topology, switches are dis-

tributed between controllers minimizing the number of required active links and ensuring a

balanced load among controllers. For instance, 12 switches are associated with controller 1

while the remaining 13 are managed by controller 2. Regarding the average path length, in the

pruned topology, an increase of 4.30 ms or, equivalently, 5 hops with respect to the original

graph is incurred as a consequence of putting the links into sleep mode.
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(a) Original Norway graph.

(b) Resulting Norway graph.

Fig. 4.5: Performance of SNetCA on the Norway topology.

To provide a more general perspective, Fig. 4.6 shows, for the three considered topologies, the

average number of links pruned by SNetCA, which contributes directly with the energy efficiency

achieved by this proposal. In this analysis we also consider all the admissible placements of 1

to 3 controllers.

As it is shown, an important number of links is pruned in all the topologies considered,

but the highest energy savings are achieved in the New York topology. The reason for this is

that New York has much more link redundancy than Geant and Norway. Therefore a higher

number of links can be pruned while guaranteeing the network connectivity. In general, the

more redundant the network, the higher number of links can be put to sleep mode applying this

strategy.
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Fig. 4.6: Average number of pruned links in the three topologies varying the number of controllers.

4.4.3 Assessment of Energy Saving Potential

To assess the suitability of the proposed solution in terms of energy efficiency we compare its

performance with another related work existing in the state of the art. SGH [61] is an energy-

aware routing solution based on knowledge of the incoming traffic requests. This proposal

selects, among a certain number of pre-calculated shortest paths, the most suitable one in terms

of energy savings to allocate each traffic demand, as long as it has enough capacity. To do so,

traffic demands are ordered according to the following four different strategies:

• Node pairs with shortest shortest path first (SPF)

• Node pairs with longest shortest path first (LPF)

• Node pairs with smallest demand first (SDF)

• Node pairs with highest demand first (HDF)

Fig. 4.7 shows the average performance in terms of energy savings of the two-module based

strategy SNetCA/DESRA with respect to the four different versions of SGH in the three real

topologies analyzed for different amount of controllers.

As we are considering an in-band SDN with multiple controllers, the traffic matrix provided

to SGH includes, together with the data demands, a control traffic flow for each pair of associated

controller-switch and for each pair of controllers in the network. In this way, required control
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Fig. 4.7: Average energy saving comparison between proposed strategy and SGH solutions for different numbers
of controllers.

plane paths are also established by SGH. This is done taking into account the distribution of

switches between controllers obtained from SNetCA.

Additionally, the routing restrictions established in this proposal to avoid additional traffic

load through network controllers are considered in the computation of the pre-calculated shortest

paths. On the other hand, given that DESRA is an online routing strategy, the connection

requests are sequentially allocated as they appear in the considered traffic matrix.

80



4.4. Simulations and Results

In Fig. 4.7a, Fig. 4.7b and Fig. 4.7c we can see that SNetCA/DESRA performs better than

the remaining energy-aware algorithms. While similar results are obtained by the four different

versions of SGH, the proposed strategy achieves notable improvements in the three considered

topologies. For instance, differences up to 35%, 29% and 45% of energy savings are reached

in the New York, Geant and Norway topologies, respectively. In general, results have been

determined with a 95% confidence interval not exceeding 2.2% of the indicated average values.

The significant differences obtained in terms of energy savings are mostly due to the operation

of SNetCA before the traffic arrival, which is able to prune a great number of links without

affecting the network capabilities to manage the incoming requests. Additionally, the routing

decisions performed by SGH are limited to a predefined number of pre-computed shortest paths

and fail to extensively exploit the energy saving potential of each topology. Therefore, even

without a prior arrangement of demands based on an accurate knowledge about the incoming

traffic, the proposed scheme puts to sleep mode a higher percentage of links, being able to save

substantially more energy.

4.4.4 Impact on Network Performance

It is to be emphasized that in our energy-aware approach QoS constraints and performance

metric boundaries are not taken into account. This is not a limitation but a choice; since we

intend to measure the impact of our proposal on the network performance metrics as a trade-

off with the energy saving improvements. In fact, we are presenting an effective and easy to

implement green routing mechanism that emphasizes the importance of energy efficiency in the

operation of current data networks.

In order to assess the impact of our energy-aware approach on the network performance,

we adapt two well-known state-of-the-art routing algorithms: SPR and LB, for their use in the

considered in-band SDN environment. Additionally, being the rule space a significant issue of

concern in SDN, we include in this analysis an algorithm balancing the number of rules installed

in each forwarding node, denoted here as TCAM Occupation Balancing (TOB). In general, these

algorithms are greedy heuristics that follow the procedure described in Algorithm 7.

More precisely, these algorithms will evaluate every candidate admissible path and find the

one prioritizing some performance metric such as: traffic latency, link utilization or TCAM

occupation. According to the approach used the selected path will be:
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Algorithm 7 Greedy_Baselines
Require: G, A, D
1: for d ∈ D do
2: pd = Find_Best_Data_Path
3: Update network metrics
4: for s ∈ pd do
5: if s has no control path already established in A then
6: pc = Find_Best_Control_Path
7: Update network metrics
8: end if
9: end for

10: end for

SPR The one minimizing the propagation latency

LB The one minimizing the maximum link utilization

TOB The one minimizing the maximum TCAM occupation

It is clear that, for each metric, the corresponding baseline algorithm will have better perfor-

mance than our energy-aware approach. However, the purpose of this evaluation is to use these

algorithms as a reference point to illustrate the energy-aware solution impact on network per-

formance. All of them follow the assumptions established in this proposal to avoid the routing

of additional traffic load through network controllers. Similarly, SNetCA is still used to deter-

mine the distribution of switches between controllers. Although we may focus our attention on

some specific network for the different performance metrics, the general conclusions that will be

derived are independent of the specific topology and hold whichever network is examined.

4.4.4.1 Traffic Latency

In a first set of simulations, we analyze how the data and control paths latency is affected by

routing decisions. To evaluate the impact of our algorithm on control path delay, we collect, for

each traffic demand, the lengths of its associated control paths and the corresponding shortest

paths.

Fig. 4.8, Fig. 4.9 and Fig. 4.10 show this behavior for the three studied topologies considering

all possible placements for different amount of controllers.

82



4.4. Simulations and Results

|C| = 1 |C| = 2 |C| = 3

4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10

0

25

50

75

100

Maximum Over-length (Hops)

F
ra
ct
io
n
o
f
d
em

a
n
d
s
(%

)

Fig. 4.8: Distribution of maximum control traffic over-length in the New York topology.

|C| = 1 |C| = 2 |C| = 3

3 4 5 6 7 8 9 10 11 12 13 14 3 4 5 6 7 8 9 10 11 12 13 14 3 4 5 6 7 8 9 10 11 12 13 14

0

25

50

75

100

Maximum Over-length (Hops)

F
ra
ct
io
n
o
f
d
em

a
n
d
s
(%

)

Fig. 4.9: Distribution of maximum control traffic over-length in the Geant topology.
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Fig. 4.10: Distribution of maximum control traffic over-length in the Norway topology.

The notation Maximum Over-length is used to denote the maximum difference (in number

of hops) between the length of the routing solution and the shortest path. For instance, when

this value is equal to 0, it means that every control traffic is routed using exactly the shortest

path. As it is shown, in all cases when the number of controllers grows, the control traffic is

routed using a larger number of hops for a higher fraction of demands. Being Norway the largest
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Fig. 4.11: Cumulative distribution function of data paths latency varying the amount of controllers.

one in terms of network size (number of nodes and links), control paths in this topology are

increased by a higher number of hops.

To take a closer look at the data plane, we draw in Fig. 4.11 the Cumulative Distribution

Function (CDF) of data paths latency for the three topologies considering all possible locations

of one to three controllers. As shown in Fig. 4.11(a), Fig. 4.11(b) and Fig. 4.11(c), the CDFs

of data paths latency for different amount of controllers are quite similar. However, we can see
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that under the energy-aware routing, data path delay is affected since larger data paths are used

in order to minimize the number of active links. For instance, in Fig. 4.11(b), only 87% of data

paths exhibit delays lower than 50 ms, meanwhile all control paths in the SPR case are under

this value. This performance degradation is less critical in the two other topologies, which are

deployed in smaller geographic areas compared to Geant. In general, the larger the network (in

terms of geographic length), the more increase in latency is incurred.

Despite the presented latency degradations with respect to SPR, the solution performance

observed in Fig. 4.11(a) and Fig. 4.11(c) are suitable for supporting latency critical services in 5G

networks demanding end-to-end delays lower than 10 ms [116], such as robotics and telepresence,

virtual reality, health care, among others. Likewise, less demanding applications and use case

scenarios to be addressed in 5G networks, such as intelligent transport systems and smart grid,

with latency requirements up to 100 ms [116], could be conceived and deployed in Geant-like

environments.

These latency degradations confirm that, according to traffic requirements, specific perfor-

mance bounds may be required. In addition, even when the latency degradations are acceptable,

longer average path lengths impact the resilience of the traffic flows, since a greater number of

network elements (nodes and links) gets involved in the routing increasing the probability of

incurring network failures. To mitigate these negative implications and assure the suitability of

the proposed algorithm for delay-critical services, we include in this analysis the evaluation of

a delay-constrained version. To do so, we now restrict the number of links that can be initially

pruned by SNetCA. Specifically, network links belonging to the shortest path between any pair

of nodes are not removed during the static network configuration phase. In this way, the shortest

path will always be available if it is needed for allocating the incoming traffic when executing

the DESRA module.

Fig. 4.12 and Fig. 4.13 show the performance of the delay-constrained version considering

data and control paths latency bounded by the factor r. This latency threshold is used to

denote the relation in between the delay requirement and the shortest path propagation latency

for every established path. For instance, r = 2 means that every path latency is, at most, twice

that of the shortest path.

On the one hand, as shown in Fig. 4.12, under the delay-constrained approach the control

traffic can be routed incurring in smaller over-lengths with respect to the performance-agnostic
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Fig. 4.12: Distribution of maximum control traffic over-length for 1 controller under delay constraints.

approach. Higher differences in number of hops between r = 2 and r = 5 can be seen in New York

and Norway than in Geant. In this topology, although the distribution of demands reflects the

expected difference between both approaches, the maximum number of hops is not particularly

increased. This is due to the existence of longer links (i.e. links with higher propagation delays)

in Geant with respect to the other two topologies. Therefore, in the Geant topology, an increase

in the allowed path latency in terms of delay, for instance from r = 2 to r = 5, can be equivalent

to a small increase in terms of hops (i.e. to just a few additional long links).

On the other hand, Fig. 4.13 shows that data paths delays are less compromised when more

restrictive possibilities in terms of latency (r = 2 and 5) are considered. In general, as more

restrictive is the latency bound used, a better performance in terms of delay can be achieved.

As expected, considering a latency restriction during paths selection will negatively impact

the potential improvements in terms of energy efficiency. To validate this affirmation we re-

compute the energy saving under the delay-constrained approach using r = 2. Optimal values

were obtained after adding to the ILP model presented in Section 4.2 the following constraint,

where di,j and Lf denote the link propagation delay and the traffic maximum latency bound,
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Fig. 4.13: Cumulative distribution function of data paths latency for 1 controller under delay constraints.

respectively.

∑
(i,j)∈E

tfi,jdi,j ≤ Lf ∀f ∈ F (4.10)

The energy savings achieved by the delay-constrained version for r = 2 are shown in Table 4.3.

In this table optimal and heuristic values are depicted as well as the energy saving differences

87



Chapter 4. Impact of Energy-Aware Routing on SDN Performance

Table 4.3: Energy savings with paths delay constrained to r = 2.

Topology |C| Optimal Delay-constrained heuristic Difference

New York
1 58.16327 39.92347 34.63010
2 61.40456 41.11645 33.05608
3 62.37759 42.04418 31.74105

Geant
1 29.67172 17.67677 37.87879
2 33.81976 18.65719 35.61828
3 34.72549 19.85249 33.16422

Norway
1 30.93682 16.95715 45.42484
2 35.87280 17.98141 43.20742
3 37.58308 18.48646 41.84001

between the performance-agnostic heuristic results shown in Fig. 4.4 and the delay-constrained

version. Interestingly, we can also see that, unlike the values observed in Fig. 4.4, as the amount

of controllers is increased greater energy savings are achieved. Evidently, for a given amount of

nodes an increase in the number of network controllers is directly related with a reduction in

the number of data paths that need to be allocated by the proposed solution. The effect of this

relation is less significant under the performance-agnostic approach as data path lengths can be

considerably increased. However, in this case, the data paths established by the DESRA module

are more likely to require the activation of additional links in order to meet the considered delay

restriction. Thus, it can be concluded that, under the delay-constrained version, the number

of data demands to be allocated has a higher impact on the amount of links required over the

initially pruned topology and hence, on the final energy efficiency.

4.4.4.2 Links Utilization

The selection of routing paths minimizing the energy consumption has a direct influence in the

traffic load of all the network links. To better showcase this situation, we use the New York and

Geant topologies and the LB algorithm. Fig. 4.14 provides the CDF of link utilization under

both algorithms considering all possible locations of one to three controllers in both topologies.

As expected, the fairness of traffic distribution is altered by the energy-aware routing, since

under this approach traffic is concentrated in a fewer number of links. Therefore, there is a

subset of active links that is more overloaded than the others. For instance, in Fig. 4.14(b) the
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Fig. 4.14: Cumulative distribution function of link utilization varying the amount of controllers.

link utilization of some links in Geant is increased to more than twice the value achieved by the

LB algorithm. Nevertheless, even in the more loaded cases the link utilization in this topology

is under 60%. A less concerning situation can be observed in Fig. 4.14(a) since the given traffic

load in the New York topology is very low.
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Fig. 4.15: Average TCAM occupation with |C| = 2.

4.4.4.3 TCAM Occupation

Intuitively, an energy-aware routing would affect the allocation of flow rules, which is a prac-

tical constraint in OpenFLow-based network devices, given that traffic flows are redirected to

minimize the number of active links. In Fig. 4.15, we evaluate the impact of our approach on

TCAM occupation with respect to the TOB algorithm using the Geant and Norway topologies

and all possible locations of two network controllers.

As expected, the number of installed rules is raised by the energy-aware routing. For instance,
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this increase is observed in all network devices in the Norway topology and in 17 out of 22 nodes

in the Geant topology, being in some cases more than twice the value obtained by the TOB

algorithm. This behavior is related to the fact that the path length increases considerably in

proportion with the amount of links pruned by the proposed solution. As the path length is

increased, a higher number of flow rules is required to allocate each single flow. Furthermore,

the SNetCA/DESRA performance in both topologies is still physically acceptable considering

that a routing table can support around a few thousands of rules [60].

4.4.4.4 Energy Savings

To get a sense of the other side of the trade-off between energy efficiency and network perfor-

mance, Fig. 4.16 shows the average energy performance of all the considered routing models in

the New York and Norway topologies for the case of one centralized controller in the network.

Results have been determined with a 95% confidence interval not exceeding 5% of the indicated

average values.

As expected, in all cases energy savings decrease while the number of demands grows, since

new paths need to be established to accommodated such traffic. The flat tendency of energy

savings achieved by the power-aware solution despite the increase in allocated demands is pos-

sible given the low network load discussed at the beginning of this section. Moreover, the

proposed strategy greatly outperforms SPR, LB and TOB in terms of energy saving. In general,

SNetCA/DESRA is able to achieve significant energy savings but bigger improvements with

respect to the other approaches are reached when the traffic grows.

4.4.5 Resilience Considerations

While SNetCA allows important gains in terms of energy efficiency by pruning as many links

as possible and leaving available only the minimum number of links needed to support the

incoming traffic, the remaining subnetwork is more vulnerable to resource failures and sudden

traffic bursts. To ensure an adequate network reliability while keeping low energy consumption,

resilience constraints should be taken into account.

Given that the largest Laplacian eigenvalue of a graph (referred here as λmax) is a widely

accepted metric to assess network robustness with respect to link and node removals [117], we

use it to control the resulting resilience after applying SNetCA. Several papers about graph
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Fig. 4.16: Average energy saving with |C| = 1.

theory [118,119] sustain that a network is more resilient the higher the largest eigenvalue of its

Laplacian matrix. In general, these networks are more robust since they have small diameters,

higher numbers of nodes and link disjoint paths and are likely to expand faster.

In order to provide an initial investigation exploring the existing trade-off between energy

savings and network reliability, in this analysis we evaluate a resilience-constrained version of

SNetCA (i.e. SNetCA’), which enables to limit the admissible λmax reduction rate due to the

link removal process. Additionally, to improve the redundancy for the control paths the amount
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Table 4.4: Average performance of SNetCA’ under connectivity and resilience constraints.

Ccon δ
New York Geant Norway

ES (%) λmax ES (%) λmax ES (%) λmax

1
0 54.0816 11.4983 29.7979 9.51619 51.6703 8.05608
1 74.5535 10.9656 55.5555 7.60123 62.3819 6.76403

2
0 52.0408 11.6290 27.0202 9.64202 49.7095 8.09439
1 72.3214 11.1583 52.7146 7.78362 60.3485 6.84699

3
0 50.2721 11.7208 31.0185 9.60844 47.8823 8.10417
1 70.1360 11.3623 49.0740 8.04641 58.2352 6.90745

4
0 48.2312 11.8481 37.2685 9.46297 46.9079 8.08731
1 67.9591 11.4991 46.9907 7.76580 55.7315 6.96638

5
0 46.3556 12.0095 33.3333 9.47861 45.7516 8.06783
1 65.7434 11.6203 44.1666 7.98822 54.2483 7.04646

6
0 44.8979 11.9304 27.3148 9.42488 44.1176 8.14669
1 63.7755 11.5188 42.5925 8.02495 51.4705 7.57228

of neighbors that will remain connected to the controller is relaxed using different bounds (from

one to the controller degree).

Table 4.4 gathers some of the obtained results, in terms of energy savings and λmax, after

applying SNetCA’ in the three considered topologies with one centralized controller. The pre-

sented results validate the impact of varying these two criteria (i.e. the controller connectivity

and the λmax reduction rate) on energy savings and network robustness.

While the controller connectivity (denoted as Ccon) is bounded by a number of neighbors

between one and the controller degree, the allowed λmax reduction rate (denoted as δ) was

normalized using the following expression:

δ = 1− λmax(SNetCA’)
λmax(Original) (4.11)

Accordingly, δ is able to adjust the reduction of the λmax derived from the loss of link

redundancy. Specifically, values of δ closer to 0 are only possible if the λmax achieved after

applying SNetCA’ is similar to the value of this metric in the original graph.

As shown in the table, when Ccon = 1 and δ = 1, the resilience-constrained version of
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SNetCA behaves exactly as the resilience-agnostic one. However, less energy can be saved as

more restrictive values of Ccon and δ are imposed, since each of these elements determines that

a fewer number of links could be put into sleep mode by the pruning function of SNetCA.

Inversely, when no resilience degradation is allowed (i.e., δ = 0), higher values of λmax are

obtained. More importantly, we can observe that considerable energy savings can still be reached

by the proposed heuristic strategy, while ensuring the original network reliability.

Although higher values of λmax are expected when the bound of nodes that will remain

connected to the controller is increased, this is not always the behavior that can be appreciated

in the table for the three network scenarios considered. The reason for this is that every network

node, which is considered in one particular instance of the simulation as the controller, does not

have the same node degree. Thus, for each considered possibility of Ccon, different amounts of

nodes are part of the presented average values.

We stress that the impact of switching off networks links on SDN reliability is even more

critical for networks with in-band control traffic where any links/node failure will affect not only

data plane communications but the connection with the controller. Hence, a further analysis

about this crucial issue will be done in follow-on work.

4.5 Conclusion

In this chapter we proposed an energy-aware strategy that minimizes the number of active links

required to route the incoming traffic suitable for SDN environments with in-band control traffic

and multiple controllers. To achieve such goal, we first provided a link-based formulation of the

optimization problem, integrating the routing requirements for data and control traffic. Given

the overall complexity of the exact model in large-scale topologies, a heuristic hybrid approach

is conceived, comprising two algorithms: a static network configuration and a dynamic energy-

aware routing. In this way, the number of links to be considered in the paths’ computation is

significantly reduced by the first component, which contributes to decreasing the computation

times. Based on experimental simulations using real-world topologies and traffic matrices, energy

savings between around 50% and 80% are reached by the proposed energy-aware approaches.

In addition, the heuristic strategy attains results very close to the optimal values, converges

much faster and can handle larger network sizes for which the exact model fails to find solutions
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in reasonable time. Besides the notable improvements in terms of achieved energy saving, an

insightful analysis was presented to evaluate the impact on network performance. In this regard,

extensive simulations validate that crucial network parameters such as control traffic delay, data

path latency, link utilization and TCAM occupation are affected by the performance-agnostic

energy-aware model. Therefore, this proposal stands as a valuable proposal for designing routing

schemes suitable for current control planes, since it discloses and manages the intrinsic trade-off

between environmental and performance concerns.
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Chapter 5
Multi-Objective Routing Combining QoS and
Energy Awareness

This chapter is based on:

• A. Fernández-Fernández, C. Cervelló-Pastor and L. Ochoa-Aday, "A Multi-Objective
Routing Strategy for QoS and Energy Awareness in Software-Defined Networks," IEEE
Communications Letters, vol. 21, no. 11, pp. 2416–2419, Nov. 2017.

5.1 Introduction

An effective energy management, as well as an enhanced user experience, are essential design

goals to fulfill the requirements of current and future communications systems for heterogeneous

applications and services. However, some of these objectives may be in conflict, and specific

strategies must be developed. Precisely, the existing trade-off between energy efficiency and

network performance, which was established in the previous chapter, is now further addressed.

In this chapter we derive a multi-objective routing approach in order to limit the implications

of energy-aware routing on QoS. This approach enables the reduction of power consumption

without service degradation yet considering the routing for data and control plane traffic in

SDN. This factor is of key importance in order to jointly optimize QoS requirements for the

data plane traffic and energy efficiency while still meeting control traffic requirements. More

precisely, given a current network topology and the controller location, the proposed algorithm

will find how data traffic demands and associated control traffic should be routed such that the

energy consumption, the control traffic delay and the blocking rate are minimized. The results
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indicate that the proposed solution can significantly improve these metrics, in accordance with

the traffic type.

The rest of this chapter is structured as follows. In Section 5.2 a complete mathematical

formulation of the optimization problem is presented. In Section 5.3 we design a Multi-Objective

Evolutionary Algorithm and explain its main features. The simulation strategies and the ob-

tained results are presented and analyzed in Section 5.4. Finally, Section 5.5 concludes this

chapter.

5.2 Problem Statement

In this Section we provide a mathematical formulation to describe the considered multi-objective

optimization problem. In essence, two objective functions are defined in order to simultaneously

optimize the energy efficiency and the performance of control and data plane communications

while routing a given traffic demand. The former objective refers to the number of used links,

while the second integrates QoS requirements and control traffic delay.

5.2.1 Network Model

We consider an SDN modeled as a directed graph G = (V,E,C), where V , E and C denote the

set of nodes, links and controllers respectively, being C ⊂ V . We use ce to denote the capacity

of a link e ∈ E. We define the set of forwarding nodes as S = {n | n ∈ V ∧ n /∈ C}.

Each incoming demand k, has associated its QoS requirements imposed by the SLA, in terms

of bandwidth and latency, denoted by bk and lk, respectively. With respect to the control plane,

the incoming demand k has associated several traffic flows between controller and switch pairs,

which are denoted by the set T . Consequently, we will use Fk to refer to the overall set of traffic

flows generated in the network due to the demand k (i.e. k+ T ⊆ Fk). For each flow f ∈ Fk we

use sf and df to denote its source and destination, respectively.

Let Pf be the set of paths that can be used to route each flow f ∈ Fk, being Pk the notation

used to identify the subset of paths corresponding to demand k. In addition, let P f
e ⊂ Pf

be the subset of paths that use link e ∈ E, for each f ∈ Fk and P k
c ⊂ Pk denote the subset

of data paths that pass through controller c ∈ C, which will not be used to route data plane

communications. We use bp and lp to denote the minimum bandwidth and total latency of a
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path p ∈ Pf , respectively.

5.2.2 Formulation

The proposed multi-objective optimization problem can be formulated using the following deci-

sion variables:

xe: describes the state of a link e ∈ E.

xe =


1 if e is active,

0 otherwise.

γf,p: describes the selection of a path p ∈ Pf to route a traffic flow f ∈ Fk.

γf,p =


1 if p is selected to route f,

0 otherwise.

λi: describes the use of a node i ∈ S by the selected data path.

λi =


1 if i belongs to the selected data path,

0 otherwise.

wf,p: describes the cost of using a path p ∈ Pf to route a traffic flow f ∈ Fk.

The cost of using a path to route a traffic flow is defined to evaluate the suitability of each

available route. This variable is in accordance with the traffic type (i.e. data or control) and

based on a best-fit scheme. Consequently, the two objective functions are defined as follows:

Minimize the number of active links in the network:

minimize
∑
e∈E

xe (5.1)

Minimize the total cost of routing the incoming demand:

minimize
∑

f∈Fk

∑
p∈Pf

γf,pwf,p (5.2)
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subject to the following constraints:

To route the incoming traffic demand k, a single data path is selected in Equation (5.3a).

Afterward, using Equation (5.3b), control messages are sent from controllers only to those

switches belonging to the selected data path.

∑
p∈Pf

γf,p =


1 f = k (5.3a)

λdf
∀f ∈ T, df ∈ S (5.3b)

Equation (5.4) establishes that paths passing through any controller c ∈ C cannot be used

to route a data plane demand k.

γk,p = 0 ∀p ∈ P k
c , ∀c ∈ C (5.4)

A node i ∈ S belongs to the data path selected to route the incoming demand k if there is

traffic in any of its incoming or outgoing edges, being N(i) in Equation (5.5) the set of neighbors

of i.

λi ≥
1
2
∑

j∈N(i)

(∑
p∈Pk

(i,j)∈p

γk,p +
∑
p∈Pk

(j,i)∈p

γk,p

)
∀i ∈ S (5.5)

The cost of using a data path to route the incoming traffic demand k depends on the

gap between the requested amount of resource quality and the available ones as established

in Equation (5.6a). Likewise, the cost of using a control path is related to its latency, being lsp
f

in Equation (5.6b) the shortest path delay of a control traffic flow f ∈ T .

wf,p =


1
2

[
W (x)

(
bp − bk

bp

)
+W (x)

(
lk − lp
lk

)]
f = k, ∀p ∈ Pk (5.6a)

lp − lsp
f

lp
∀f ∈ T, ∀p ∈ Pf (5.6b)

To ensure the SLA fulfillment, data paths that do not meet QoS requirements, are penalized

with an infinite cost using the validation function W (x) defined in Equation (5.7).

W (x) =


x, if x ≥ 0

∞, otherwise
(5.7)
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Equation (5.8) ensures that a link e is active if it is used by some path p ∈ Pf of some traffic

flow f ∈ Fk

xe ≥ γf,p ∀f ∈ Fk, ∀p ∈ P f
e , ∀e ∈ E (5.8)

Finally, Equation (5.9) assures that the total traffic in each active link e ∈ E is less than the

link capacity.

∑
f∈Fk

∑
p∈P f

e

γf,pbf ≤ cexe ∀e ∈ E (5.9)

Using this model, the centralized controller can determine the optimal routes and set the

required flow rules on each forwarding node before the traffic arrival. Then, when a new demand

enters the system, it is carried over the single path previously computed.

However, the use of traditional mathematical programming methods (such as linear combi-

nation of weights, goal programming and ε-constraint methods) to solve a multi-objective opti-

mization problem has a number of important drawbacks [120]. For instance, they will require a

precise definition of weights, desired targets or objective function bounds, being the quality of

the obtained results dependent on the selection done. These values are not usually known a pri-

ori and finding the correct ones is not easy and will require some extra computational effort. An

additional problem with these techniques is that they may not yield a non-dominated solution

when the Pareto front is concave or discontinuous, which certainly limits their applicability.

Therefore, in the next section an effective routing scheme is proposed for the presented

multi-objective optimization problem based on the use of evolutionary algorithms.

5.3 Multi-Objective Evolutionary Algorithm

Evolutionary algorithms have been extensively used in multi-objective problems involving con-

flicting objectives and intractable large and highly complex search spaces. These mechanisms

are particularly suitable to solve multi-objective optimization problems since they deal simul-

taneously with a set of possible solutions (the so-called population). Commonly known as

MOEAs [96], these strategies simulate the process of natural evolution using a class of stochas-

tic optimization methods.
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Different to traditional mathematical programming techniques, evolutionary algorithms can

explore solutions over the entire search space and are less susceptible to the shape or continuity

of the Pareto front. A striking property is the fact that even with an incorrect initial param-

eter setting, these population-based metaheuristics are robust enough to provide fairly good

results [121]. Moreover, many of these techniques make use of the elitism concept to reduce the

computation time. Additionally, they can be implemented using a parallel approach (multiple

threads and processes in order to achieve parallelism inherent in current multi-core CPUs), which

allows potential benefits in terms of speed and quality of the obtained approximations [122].

The goal of MOEA is to find or approximate a group of trade-off solutions called the Pareto-

optimal solution set. A solution is Pareto-optimal when no improvement can be made on one

objective value without degrading any other. Therefore, multiple optimal solutions can be found

in a single run of the algorithm, instead of having to perform a series of separate simulation

runs [123]. Then, a further processing is needed to select a preferred solution from this set based

on user-defined criteria.

The particular MOEA proposed in this work is based on the Strength Pareto Evolutionary

Algorithm 2 (SPEA2) [124] which is an enhanced version of its predecessor SPEA [125]. This

mechanism, characterized by few configuration parameters, rapid converging speed, good ro-

bustness and orderly-distributed solution sets, stands out as one of the most representative and

currently used MOEA [126–129].

More in detail, SPEA2 implements a Pareto-based fitness assignment strategy with a nearest

neighbor density estimation to determine the relevance of each individual in the current popula-

tion. At each generation, the non-dominated solutions found are kept in a secondary population

(B), which is the outcome of the algorithm once the terminal condition is reached. The general

methodology of SPEA2 exploited in this approach is shown in Fig. 5.1. For a more in-depth

description, please see [124].

The motivations behind this choice arise from the fact that SPEA2 is regarded as one of the

most efficient elitist MOEA. The fitness assignment strategy employed to select a solution at each

iteration, based on the number of solutions that dominate it, the number of solutions that are

dominated by it, and the distance to the k-th nearest neighbor, allows to maintain a well-spread

Pareto front while impeding local optima. Additionally, the use of a secondary population with

a constant size and the enhanced archive truncation procedure guarantees an adjustable elitism
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Start

Initialize Population
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no
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Fig. 5.1: SPEA2 general procedure.

scheme able to preserve non-dominated solutions and prevent the removal of boundary solutions.

Finally, it has been widely applied to several multi-objective problems in both industrial and

academic fields with prominent results compared to similar approaches [130–133].

The following outlines the specific considerations done to customize these basic concepts to

our particular routing problem.

5.3.1 Design Issues

The key idea of this proposal is to fully take advantage of the high control flexibility given by

the dynamic configuration capabilities and centralized network view of SDN.

The initially required control plane configuration (i.e. controller-switches association and

node to controller control paths) is determined off-line adapting the integer linear problem

previously presented in Section 3.2.2.2. Using this initial control plane configuration, switches

send to the controller packet_in requests when a new traffic flow arrives, as well as statistics and

failure notifications. Consequently, there is an initial set of active links in the network before

the ingress of traffic flows.

When a new demand arrives, a routing request is sent to the controller, which calculates the
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data and remaining control paths (from it to its associated switches), based on the proposed

multi-objective approach. The computed paths are established then, through the required flow

forwarding rules.

5.3.1.1 Chromosome Structure

In the proposed scheme, a candidate solution or chromosome represents a selected set of n

paths. The first n− 1 routes identify the control paths used by the controller to install the flow

forwarding rules in each node traversed by the data traffic. The last gene in the solution is the

data path for the requested connection, being n − 1 precisely the number of nodes along this

path.

5.3.1.2 Initial Population

The set of solutions that form the initial population (A) of an evolutionary algorithm is usually

obtained by random generation. In this instance, a hybrid approach is considered. Data paths

are selected randomly from the set of admissible paths, i.e. the ones that satisfy the QoS

requirements and do not pass through the network controller. By contrast, control paths are

selected considering the routes used previously by other demands, if they still have enough

capacity. Hence, the traffic is likely to be concentrated on the same links, as long as it can

be accommodated, reducing the number of active links. In case that no path has been already

established between the controller and a node, control paths are selected randomly from the

overall set of feasible routes.

5.3.1.3 Evaluation

To evaluate the suitability of each individual in the population, two objective functions were

defined according to the conflicting goals considered in this multi-objective routing strategy.

The first objective function supports performance requirements for control and data plane

communications using a best-fit scheme. This behaviour is modeled in Equation (5.10) consider-

ing an individual i. The first term of this expression deals with the latency of the control paths

associated to the demand k, while the second term is related with the QoS requirements of such

incoming data traffic. Specifically, using this equation, a lower cost is assigned to individuals

whose control paths (pc) have the closest delays to the lowest ones (spc) and data path (pd)
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best satisfies the SLA thresholds. Consequently, two important routing performance metrics

are improved, namely the control traffic delay is reduced (first term) and the number of future

requests that can potentially be accommodated is increased (second term). In order to avoid

dominant effect, the possible values of the different parameters are normalized into the interval

(0, 1).

Qi =
∑
pc∈i

lpc − lspc

lpc

+ 1
2

(
bpd
− bk

bpd

+ lk − lpd

lk

)
(5.10)

The second objective, related to energy awareness, aims to minimize the number of links that

need to be activated when a connection request arrives. Although the most convenient paths for

the incoming demands are computed as they arrive, the existing routing should be taking into

account in order to reduce the number of active links. Therefore, control paths required for the

incoming traffic are selected considering the routes used previously by other demands, if they

still have enough capacity. Considering Li as the set of links used to route an individual i and

J the record of links currently active in the network, Equation (5.11) determines the amount of

additional links required for the incoming demand.

Ri = |Li − J | (5.11)

5.3.1.4 Crossover

According to a crossover rate (cr), two solutions from the mating pool (M) are selected randomly

to be parents. We apply a single-point approach, where a random common node from both data

paths (apart from the source and the destination nodes) is selected as the crossover point. Two

different data paths are generated by swapping the first part and second part of both parents.

Then, a loop detection process (similar to the one explained in [99]) is applied to ensure the

validity of resulting data paths. Finally, the control path for each node is taken from the

corresponding parent and added to form the two children.

5.3.1.5 Mutation

Likewise, based on a mutation rate (mr), a random node is selected from an individual data

path. A new solution is then generated considering this node as traffic source. Using this new

solution, the original data path is modified from the selected node to the destination node. After
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applying the loop detection process, a new solution is created adding to the resulting data path,

the corresponding control routes.

5.3.1.6 Selected solutions

To select a preferred solution we use a service-differentiation approach, i.e. demands have been

separated into two classes with different QoS requirements. Incoming traffic belonging to the

class 1 (QoS_sensitive) is routed using the solution with the best performance in the first

objective function. Otherwise, for demands under the class 2 (Best_effort) the solution that

minimizes energy consumption is selected for transmission.

5.3.2 Complexity Analysis

The computational complexity of the proposed algorithm is dictated by the respective complex-

ities of the fitness assignment and the environmental selection [134]. The fitness assignment step

has a worst run-time complexity equal to O(N2 logN + N2 + N2), where N = A + B, which

can be expressed as O(N2 logN), determined by the density estimation process. Meanwhile,

the complexity of the environmental selection is dominated by the truncation procedure, which

has a worst run-time of O(N3). However, this feature can be implemented in such a way that

its run-time is reduced to O(N2 logN), since farther neighbors are only considered when they

are actually used and not in advance. Therefore, the overall time complexity after a number of

T generations is O(TN2 logN).

Given the good performance of SPEA2 when the population size and the number of iterations

are small [130], reasonable computation times can be expected. Moreover, the overall complexity

of this approach does not grow rapidly along with the network size avoiding thus scalability

issues.

5.4 Simulations and Results

5.4.1 Simulation Setup

The proposed model was tested using a real-world network topology collected from the online

available database SNDlib [111], considering one node as the controller (according to the well
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known minimum k-median model [109]) and the remaining nodes as SDN switches. All com-

putations were carried out on a computer equipped with 3.30 GHz Intel Core i7 and 16 GB

RAM.

The evolutionary parameters were empirically selected after performing several trials to

confirm their suitability in maintaining a good trade-off between quality of solutions and required

running time. These values are also commonly used in other related works which employ MOEAs

(see [89]). Specifically, to implement the SPEA2 algorithm we use the following parameters:

• Primary population size (A): 20

• Secondary population size (B): 10

• Mating pool size (M): 5

• Crossover rate (cr): 0.9

• Mutation rate (mr): 0.1

Additionally, in order to reduce computation times, two stopping criteria are considered. The

MOEA terminates either when 100 generations were explored or when there was no improvement

after 30 consecutive generations.

Results have been determined with a 95% confidence interval not exceeding 4% of the indi-

cated average values, estimated by running our algorithm 30 times with different prime number

seeds on each scenario instance. This value for the number of conducted runs is also widely used

by several related works on the field [89,124,135].

Three scenarios were considered according to the α ∈ [0, 1] value, which defines the propor-

tion of demands that belongs to the class 1, being demands randomly allocated in one of the

two classes. For the control traffic we assume an average rate of 1.7 Mbps [112].

The average running time of the algorithm, implemented in Python, takes less than 3 s.

This result is perfectly suitable for the considered use case of traffic provisioning on large-scale

transport SDN. Traditional transport networks can lead to over dimensioning the network and

to a non-optimal use of resources. On the other hand, on large-scale transport or carrier SDN

the control layer builds up a view of the topology, and a global view of network resources

is attained. Thus, control applications can be constructed to optimize traffic flows over the

network and automate the provisioning of the network. Moreover, on many of this kind of
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Fig. 5.2: Average energy saving in Abilene with the reported traffic matrices.

networks demands are characterized by large bandwidths (due to traffic aggregation) and long

durations, which are also predictable. As a consequence, the path networking has a time scale

that allows using this type of algorithms, to provide an efficient flow scheduling.

To the best of our knowledge, there are no similar multi-objective strategies involving QoS

requirements and energy awareness in SDN with in-band control traffic for comparing the perfor-

mance of our approach. Therefore, we use a modified version of the SPR (Mod-SPR). Mod-SPR

can be considered as a default SPR algorithm for SDN with in-band control traffic and no data

plane communications through any controller. The motivations behind this choice arise from

the fact that SPR is a standard routing approach still widely used in current operative networks,

and no proposal should be considered unless it can outperform this traditional benchmark.

5.4.2 Energy Efficiency and Control Path Delay Trade-off

Fig. 5.2 shows the average energy savings using the Abilene topology (11 nodes, 28 links) with

the reported traffic matrices (measured at 00:00 on March 1st 2004) and the number of nodes

as the required delay (in terms of hops). The energy savings were computed as the number of

links in sleep mode over the total amount of network links.

As expected, the energy saving decreases while the number of demands grows, since new

paths need to be established for the incoming traffic. It is also observed that less energy is saved

when the amount of class 1 demands grows, due to the reduction of traffic routed through the
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Fig. 5.3: Control traffic over-length in Abilene with the reported traffic matrices.

paths minimizing the number of active links in the network. Nevertheless, even in the more

demanding scenario (α = 1) the achieved energy saving values are no worse than the ones

obtained with Mod-SPR.

Given the conflicting nature of the considered objectives, the best energy efficiency is achieved

while sacrificing performance on QoS-related parameters. To examine this trade-off, in Fig. 5.3

we show the impact of our algorithm on control path delay, a crucial performance metric in

SDN. For each allocated data traffic demand, we collect the length (in number of hops) of all

its associated control paths and their corresponding shortest paths. The notation Maximum

Over-length, shown in the figure, is used to denote the maximum difference between these two

values for each data traffic demand. For instance, when this value is equal to 0, it means that

every control traffic required by the considered data demand is routed using exactly the shortest

path. As it is shown, in scenarios with larger amount of QoS_sensitive demands, the control

traffic is routed using a fewer number of hops for a higher fraction of demands, avoiding thus

performance degradations. Specifically, when α = 1 all the control traffic required for every data

demand is allocated without incurring any additional delay with respect to the shortest paths.

On the contrary, when traffic is all of class 2 (α = 0) the control path delay is affected in order

to minimize the number of active links, being for some cases (around the 25% of data demands)

3 hops longer than the corresponding minimum path delay. In the remaining scenario, where

demands are equally distributed between both classes (α = 0.5), we can see that up to 2 hops
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Fig. 5.4: Average energy saving in Abilene with generated traffic demands.

can be added to a control path, yet for more than 60% of demands all the associated control

traffic is allocated over the shortest path.

5.4.3 Blocking Rate

To further evaluate the implications of a more demanding traffic load in the energy efficiency

and the number of accepted requests, 250 demands were generated with random sources and

destinations. In order to get a higher amount of incoming requests with lower bandwidth

requirements, we assume an exponentially distributed traffic rate with mean value of 100 Mbps.

A random delay ranging from the shortest path length to x times this value (where x is the total

number of switches) is used to consider a wider range of different delay requirements.

On the one hand, it can be confirmed from Fig. 5.4 that a higher volume of traffic will

imply the use of more active links and thus, less energy can be saved. In the three scenarios,

the increasing load limits the possibilities of aggregating the traffic and new paths are required

in order to avoid the blocking. However, some savings can still be achieved when not all the

incoming traffic belongs to the class 1.

On the other hand, Fig. 5.5 shows the performance of the considered approaches in terms

of blocking rate. We can see in this figure that, in all cases, the proposed routing algorithm

significantly outperforms the Mod-SPR in terms of accepted demands. This result is mainly

because, while Mod-SPR evaluates only the shortest path and if it is saturated blocks the traffic
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demand, the proposed evolutionary algorithm finds the most suitable paths across the network

taking into account the considered objective functions. Furthermore, the best-fit scheme used

in the first objective function also contributes to mitigate the blocking since it accommodates

the traffic trying to leave more resources available for future demands. Although, following this

reasoning, a lower number of blocked demands is expected when a higher number of demands

uses the paths prioritizing the first objective function, it can be appreciated in Fig. 5.5 that

the performance of our algorithm in this topology is almost the same in terms of accepted

demands for the three scenarios considered. This is caused by the topological characteristics

of the Abilene network, where the blocking rate depends heavily on the low redundancy of

admissible data paths.

5.5 Conclusion

In this chapter, we have proposed a multi-objective routing approach jointly considering QoS

requirements and energy awareness, suitable for SDN environments with in-band control traf-

fic. To achieve this, we have formulated an optimization problem that integrates the routing

requirements for data and control traffic and implemented this approach using a MOEA based

on SPEA2. In this way, multiple objectives are jointly optimized achieving the best compromise

solution between crucial performance goals. Besides of being an effective routing scheme, the
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most significant added value of this proposal is the flexibility of driving different solutions ac-

cording to the changing traffic scenario. Extensive simulations using a real topology with static

and randomly generated traffic matrices validate the performance improvement on critical net-

work parameters such as energy efficiency, control traffic delay and blocking rate. The proposed

strategy is a valuable and preliminary approach for designing routing schemes for SDN control

planes aware of multiple objectives.
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Chapter 6
Dynamic Performance and Congestion Aware
Energy Efficient Routing

This chapter is based on:

• A. Fernández-Fernández, C. Cervelló-Pastor, L. Ochoa-Aday and P. Grosso, "An On-
line Power-Aware Routing in SDN with Congestion-Avoidance Traffic Reallocation," in
Proc. of the 17th IFIP-TC6 International Networking Conference (NETWORKING’18),
Zurich, Switzerland, May 2018, to be published.

6.1 Introduction

In previous chapters we assume that the entire set of traffic demands is fixed and known in

advance, thus all the routes (for data and associated control traffic) are computed jointly in

a global optimization process. Although this assumption is completely suitable for planning

purposes and operative transport networks with predictable incoming traffic, it can be a lim-

itation for more dynamic networking environments. Inspired by this reality, the work in this

chapter aims to adapt previous heuristic approaches to support time-variable traffic demands

while performing online rearrangements of previously allocated paths.

In essence, the approach presented in this chapter builds on the work in Chapter 4 combining

a control plane configuration with a dynamic routing for an SDN architecture with multiple

controllers and in-band control traffic. However, such approach is leveraged to dynamically

reduce the number of active nodes and links required to manage the incoming traffic in real-

time.
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Furthermore, instead of restricting the potential of power-aware solutions to low-loaded

environments, a novel strategy is proposed to manage more demanding environments. To do

so, a congestion-aware rerouting is also included to efficiently manage currently active resources

while avoiding the performance degradation of higher priority demands.

The rest of this chapter is structured as follows. The energy consumption optimization

problem is formalized in Section 6.2 through a link-based mathematical formulation, which

extends previously presented models to support that forwarding nodes can be put into sleep

mode. In Section 6.3 we explain the main features of our heuristic power-aware approach

together with a detailed description of its two comprised modules. The simulation strategies

and the obtained results are presented and analyzed in Section 6.4. Finally, Section 6.5 concludes

this chapter.

6.2 Problem Statement

To formalize the power consumption optimization problem in SDN, in this section we present

its mathematical formulation. The proposed model computes in a global optimization process

all the optimal control and data paths in terms of power efficiency. To that end, similar to

previously presented models, the incoming traffic demands are considered fixed and known

in advance. Although this assumption is not suitable for dynamic scenarios, the purpose of

this model is to provide optimal bounds for the energy efficiency that can be achieved at any

particular time for a given traffic load flowing through the network.

In this case, to optimize the overall power consumption the number of active network ele-

ments (links and nodes) is minimized. Therefore, this model leverages preliminary work pre-

sented in Sections 3.2 and 4.2 supporting that forwarding nodes are put into sleep mode.

Being a general formulation, multiple controllers as well as SDN with in-band mode are

also supported by this proposal. Given the controllers placement, this model also determines

the optimal distribution of switches between controllers in terms of power efficiency and load

balancing.
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6.2.1 Network Model

In the proposed scheme the network topology can be modeled as a graph G = (V,E,C), where

V , E and C denote the set of nodes, links and controllers respectively. We define the set of

forwarding nodes as S = {n | n ∈ V ∧ n /∈ C}. Note that network devices can only fulfill one

role, i.e. controller or forwarding node. We use ci,j to denote the capacity of a link (i, j) ∈ E.

Considering F as the entire set of traffic flowing through the network between any pair of

nodes, let D denote the subset corresponding to data plane communications. For the control

plane, we use T to denote the subset of traffic between controllers and switches, and H to denote

the subset of control traffic between controllers. Each flow f ∈ F from source sf to destination

tf , has associated a throughput, denoted by df .

6.2.2 Formulation

To formulate such optimization problem, the required variables, objective functions and con-

straints are defined as follows:

xi,j : describes the state of a link (i, j) ∈ E.

xi,j =


1 if (i, j) is active,

0 otherwise.

yv: describes the state of a node v ∈ V .

yv =


1 if v is active,

0 otherwise.

tfi,j : describes the selection of a link (i, j) ∈ E to route a flow f ∈ F .

tfi,j =


1 if (i, j) is selected to route f,

0 otherwise.
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λn,c: describes the association of each forwarding node n ∈ S with a controller c ∈ C.

λn,c =


1 if n is associated with c,

0 otherwise.

The objective function of our model seeks to reduce the overall power consumption consid-

ering the number of active nodes and links in the network. Consequently, both elements are

integrated in the following expression, where Pp and Pn denote the power consumption of a port

and a node, respectively.

minimize 2Pp

∑
(i,j)∈E

xi,j + Pn

∑
v∈V

yv (6.1)

A single controller must be selected to manage each active forwarding node in the network.

∑
c∈C

λn,c = yn ∀n ∈ S (6.2)

With the objective to avoid congested controllers, we set the maximum number of forwarding

nodes that can be associated with each controller. In this way, active switches are evenly

distributed and the load is balanced among controllers.

∑
n∈S

λn,c ≤


∑

n∈S
yn

|C|

 ∀c ∈ C (6.3)

A node v ∈ V is active if there is traffic in any of its incoming or outgoing edges, being N(v)

the set of neighbors of v.

yv ≥
1

2 |F |
∑
f∈F

( ∑
u∈N(v)

tfu,v +
∑

u∈N(v)
tfv,u

)
∀v ∈ V (6.4)

To avoid additional traffic load through network controllers, data plane communications (i.e.

f ∈ D) cannot be routed through these devices. Furthermore, control traffic between controllers

and switches (i.e. f ∈ T ) will not pass through any other controller that is not the source or

target of the traffic. The same must hold true for the traffic between controllers (i.e. f ∈ H).

In these constraints we use N(c) to denote the set of neighbors of a controller c ∈ C and vf
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to identify the forwarding node involved in the source/target pair of traffic flow f ∈ T .

∑
n∈N(c)

tfn,c ≤



0

λvf ,c

0

∀f ∈ D,∀c ∈ C

∀f ∈ T, ∀c ∈ C

∀f ∈ H,∀c ∈ C \ {sf , tf}

(6.5)

The routing of data plane communications and control traffic exchange between controllers,

follows the traditional flow conservation constraints.

∀v ∈ V,∀f ∈ D ∪H : (6.6)

∑
u∈N(v)

tfv,u −
∑

u∈N(v)
tfu,v =



1

−1

0

if v = sf

if v = tf

otherwise

Meanwhile, for the subset of traffic between controllers and switches f ∈ T , these constraints

are modified to assure that only active switches exchange control messages with its controller.

Similarly, the forwarding node and the controller involved in the source/target pair of traffic

flow f ∈ T , are denoted with vf and cf , respectively.

∀v ∈ V,∀f ∈ T : (6.7)

∑
u∈N(v)

tfv,u −
∑

u∈N(v)
tfu,v =



yvλvf ,cf

−yvλvf ,cf

0

if v = sf

if v = tf

otherwise

Finally, a link (i, j) is active if it is used by some traffic flow f ∈ F . Furthermore, the total

traffic in each active link must be less than its assigned capacity.

∑
f∈F

tfi,jdf ≤ ci,jxi,j ∀(i, j) ∈ E (6.8)

To compute all the routes (i.e. for data and associated control traffic) using this global

optimization model, the entire set of traffic demands need to be fixed and known in advance.

Considering this as a limitation for current dynamic networking environments, in the next section
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we propose a new approach to support time-variable traffic requirements.

6.3 Heuristic Algorithms

The key idea of this proposal is to fully take advantage of the high control flexibility given by

the dynamic configuration capabilities and centralized network view of SDN without needing an

accurate prediction of incoming traffic. In order to allow that nodes are put into sleep mode we

assume network topologies with forwarding nodes divided into two categories: edge nodes (N),

which are connected to some traffic source/target and transit nodes (I), which merely route

other nodes traffic.

6.3.1 Green Initial Setup (GrIS)

An initial control plane configuration, previous to the data traffic arrival, is required in order

to support the in-band mode in SDN. This control plane setup is intended to establish the

required paths between switches and controllers, as well as between controllers. In this way,

when new traffic flows arrive, switches can send to the controller routing requests through

packet_in messages. To do so, in this section we propose an off-line solution denoted as Green

Initial Setup (GrIS). This component will be statically activated at specific time instances as a

planned operation.

The proposed strategy, shown in Algorithm 8, takes as inputs the original network topology

G with the controller placements and the set of forwarding nodes (i.e., C and S), the subsets

of edge and intermediate nodes (i.e., N and I) and the control traffic requirements Rc. The

outputs are a reduced graph with the initially active network elements GA = (V A, EA, C), an

array keeping the controller-switch associations A and the initially required control paths Pc.

In the first step, the algorithm attempts to reduce the number of initially activated nodes

using the Net_Pruning function, shown in Algorithm 9. This method aims to remove as many

devices as possible, considering as candidates the set of intermediate forwarding nodes I. These

transit nodes are meant to be core nodes which will not generate or receive data traffic.

For each node inside the set I of intermediate nodes, the function computes its betweenness

centrality (Bn), as a measure of its intermediary role in the network (lines 4-13). In the proposed

approach, we use a simplified version of this metric considering only the shortest paths from each
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Algorithm 8 GrIS Pseudocode
Require: G,Rc, N, I
Ensure: GA = (V A, EA, C), Pc, A, U
1: G′ ← Net_Pruning(G, I)
2: O ← Get_All_Admissible_Control_Paths(G′, Rc)
3: N ′ ← N sorted by nodes priority criteria
4: f ← First node in N ′

5:
∣∣∣V A

∣∣∣ , ∣∣∣EA
∣∣∣←∞

6: repeat
7: for p ∈ O[f ] do
8: Initialize (V A′

, EA′
, P ′

c, A
′, U ′) routing p

9: for intermediate node u ∈ p not in N do
10: Power_Aware_Path_Selection(O[u])
11: Update (V A′

, EA′
, P ′

c, A
′, U ′)

12: end for
13: for edge node n ∈ N ′ \ f do
14: r = Power_Aware_Path_Selection(O[n])
15: Update (V A′

, EA′
, P ′

c, A
′, U ′)

16: for intermediate node v added to V A by r do
17: Power_Aware_Path_Selection(O[v])
18: Update (V A′

, EA′
, P ′

c, A
′, U ′)

19: end for
20: end for
21: for (c1, c2) ∈ G′ do
22: Power_Aware_Path_Selection(O[c1, c2])
23: Update (V A′

, EA′
, P ′

c, A
′, U ′)

24: end for
25: if

∣∣∣V A′∣∣∣ ≤ ∣∣∣V A
∣∣∣ ∧ ∣∣∣EA′∣∣∣ ≤ ∣∣∣EA

∣∣∣ then
26: V A, EA, Pc, A, U ← V A′

, EA′
, P ′

c, A
′, U ′

27: end if
28: end for
29: if

∣∣∣V A
∣∣∣ =∞∨

∣∣∣EA
∣∣∣ =∞ then

30: if f = last node in N ′ then break
31: end if
32: f ← Next node in N ′

33: end if
34: until

∣∣∣V A
∣∣∣ 6=∞∧ ∣∣∣EA

∣∣∣ 6=∞
controller to every other node in the network (line 7). In particular, after computing the shortest

paths from each controller as single source, the Bn associated with a node n is increased for each

path containing the node (line 9). Using these values, in line 14, transit nodes are sorted and

stored in the list I ′. At each iteration of this list the function attempts to increase the number

of switched-off nodes (lines 15-23). A new node is removed only when in the resulting graph

forwarding nodes remain being reachable by network controllers (lines 17-18), i.e. at least one
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Algorithm 9 Net_Pruning
Require: G, I
Ensure: G′ = (V,E′, C)
1: G′ ← G
2: Z ← NULL . Removed nodes
3: B ← NULL . Array of betweenness values
4: for n ∈ I do
5: Bn = 0
6: for c ∈ C do
7: SPc ← Set of shortest paths from controller c ∈ C to every other node v ∈ V
8: for p ∈ SPc do
9: if path p goes through node n then Bn = Bn + 1
10: end if
11: end for
12: end for
13: end for
14: I ′ ← I sorted according to increasing order of B
15: for n ∈ I ′ do
16: Remove from G′ node n
17: if nodes are still reachable by controllers in G′ then
18: Save n in Z
19: else
20: G′ ← G
21: Remove from G′ nodes in Z
22: end if
23: end for

path exists between every controller-switch pair in the network.

To accomplish this, a temporal graph, denoted as G′, is created. This graph is used to

check the required connectivity between controllers and forwarding nodes. After validating that

the possibility of reaching every node in the network from any controller is not affected, the

considered node is removed from the resulting graph. This means that these nodes together

with their links are put into sleep mode in the original graph.

After pruning the network, the GrIS algorithm uses the reduced graph G′ to find the overall

set of admissible control paths which satisfy control traffic requirements Rc (line 2 in Algorithm

8). As previously stated, these paths do not pass through any other controller that is not the

source or target of the traffic. Using these computed control paths, a sorted list of ingress and

egress forwarding nodes is stored in N ′ (line 3). This list is sorted in ascending order following

two priority criteria:

1. the number of possible controllers to associate with,
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2. the number of possible control paths.

Going through this list, the algorithm starts satisfying the most critical cases and the solution

can be found with fewer iterations. The main loop of the Algorithm 8 (lines 6-34) determines for

each possible control path of the selected node f , the number of active elements in the network

after computing all control routes. The configuration of paths with fewer active elements is then

selected in this process.

Inside this loop the algorithm first determines the paths between controllers and forwarding

nodes (lines 13-20). Note that, for each forwarding node x, O[x] contains admissible control

paths to each controller available in the network (lines 7, 10, 14 and 17). Precisely, paths

selected in this step define one controller for each forwarding node. Additionally, any time a

path between a switch and a controller is computed, intermediate nodes belonging to the control

path but not yet in the set of currently active nodes V A are analyzed by the algorithm (lines

9-12 and 16-19). Note that these nodes are the transit nodes that remained in the resulting

graph after pruning the network. Since they are used to route some traffic, a control path

is also established between them and some controller. After determining all switch-controller

associations, the algorithm searches the paths between controllers (lines 21-24).

In general, the power-aware path selected for every control pair is the best route between

them in terms of minimizing the number of active elements in the network as long as it has suffi-

cient link capacity to route the traffic volume, under the considered MLU constraint. Addition-

ally, during the selection of one control path between each forwarding node and one controller,

the number of forwarding nodes already attached to the controllers is considered in order to

keep a balanced load. Since the set of admissible paths obtained from the pruned network with

a reduced number of elements is significantly smaller than in the original topology, the solution

can be found with fewer iterations.

If after analyzing all control paths of node f , the algorithm cannot find a feasible configura-

tion of paths to route all control and data plane traffic, the main loop repeats this process for

the next node stored in N ′ (line 32). This is done until the solution is found or until all for-

warding nodes are analyzed, i.e. when the algorithm breaks without a solution (line 30). Note

that this last option occurs when, given a controllers placement, an admissible configuration

for controller-switches association could not be found or when the network has not sufficient

121



Chapter 6. Dynamic Performance and Congestion Aware Energy Efficient Routing

capacity to meet the control traffic requirements under established constraints.

6.3.2 Dynamic Power-Aware Routing (DyPAR)

When a new traffic demand arrives, a routing request is sent from the input node to its associ-

ated controller using the previously computed path between both devices. Based on its global

knowledge of the network topology, this controller calculates the required data path minimiz-

ing the number of elements that need to be activated for this connection request and creates

the flow forwarding rules. The proposed dynamic power-aware routing, denoted as Dynamic

Power-Aware Routing (DyPAR) and shown in Algorithm 10, performs in essence three crucial

functions:

1. Power-aware data and control path selection;

2. Performance-aware data path selection;

3. Congestion-aware traffic reallocation.

For each incoming demand d, the algorithm starts trying to get the set of admissible data

paths across the current active topology (line 1). This is done considering that admissible data

paths do not pass through any controller in the network. If several paths were found, the one

with the highest remaining available link capacity is selected (line 3). In this way, the number

of future requests that can potentially be accommodated over the currently active paths is

increased. Then, traffic is allocated and links utilization are updated (line 4).

On the other hand, if no admissible data path was found to route the incoming traffic across

the currently active topology, the original network graph is then considered by the algorithm

(line 6). Since the now determined candidate routes will imply the use of additional network

elements, the most favorable admissible data path in terms of power consumption, i.e. the one

minimizing the number of active network elements, is selected to carry the demand (line 8).

After updating the active topology and links utilization in line 9, a loop is used to establish

the required control plane communications for each added node along the data path (lines 10-

17). In the same way, the algorithm first considers the currently active topology to set the

required control path with some network controller (line 11) and the entire network in case of

failing the initial attempt (line 13).
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Algorithm 10 DyPAR Pseudocode
Require: G,GA, Pc, A, U, d
1: Pd ← Get_Admissible_Paths(GA, d)
2: if Pd 6= Null then
3: pd ← Lest loaded path in Pd

4: Update U after routing pd

5: else
6: Pd ← Get_Admissible_Paths(G, d)
7: if Pd 6= Null then
8: pd ← Power_Aware_Path_Selection(Pd)
9: Update GA, U after routing pd

10: for node n added to GA by pd do
11: Pc ← Get_Admissible_Paths(GA, n, C)
12: if Pc = Null then
13: Pc ← Get_Admissible_Paths(G,n,C)
14: end if
15: pc ← Power_Aware_Path_Selection(Pc)
16: Update GA, U,A after routing pc

17: end for
18: else
19: Pd ← Get_All_Paths(G, d)
20: pd ← Performance_Aware_Path_Selection(Pd)
21: Update U, T after routing pd

22: end if
23: BL← Link with maximum load
24: F ← Demands established through BL
25: Congestion_Aware_Rerouting(GA, F,BL,U)
26: end if

In case of incoming traffic rates exceeding the remaining available network capacity, the

algorithm considers all data paths in the original network without taking into account the

capacity restrictions, but keeping that data plane traffic cannot be routed through network

controllers (line 19). Then, the algorithm performs a data path selection based on reducing the

performance degradation incurred. More in detail, the algorithm in line 20 selects the data path

inside this group whose congested links are less used by previously established demands. The

reason is that, to allow the new traffic flow, the capacity remaining on those links, after allocating

the QoS sensitive demands and control traffic, will be fairly divided between the involved lower-

priority demands. Rates beyond this resulting throughput will be reduced and traffic will be

handled on a "best-effort" basis. In this way, the proposed algorithm can efficiently handle bursty

traffic and accommodate rates that exceed the remaining available capacity without affecting

the QoS sensitive traffic if the network is not heavily loaded.

123



Chapter 6. Dynamic Performance and Congestion Aware Energy Efficient Routing

Algorithm 11 Congestion_Aware_Rerouting
Require: GA, F,BL,U
1: Current_MaxU ← U [BL]
2: G′′ ← GA

3: Remove BL from G′′

4: F ′ ← F sorted by decreasing order of flow rate
5: for established demand f in F ′ do
6: P ← Get_Admissible_Paths(G′′, f)
7: p← Congestion_Avoidance_Path_Selection(P )
8: MaxUp ← Maximum link utilization in p
9: if p 6= None ∧MaxUp < Current_MaxU then

10: Reroute f and associated control traffic
11: Update U and Current_MaxU
12: end if
13: end for

Every time a new network element is added to the active topology, the algorithm tries to

alleviate the congestion level on the network. To accomplish this, after identifying the bottle-

neck link (line 23) and the group of traffic flows going through this link (line 24), a Conges-

tion_Aware_Rerouting is performed (line 25). This function, described in Algorithm 11,

starts creating in line 2 a temporal graph G′′ where the most loaded link is removed (line 3).

Additionally, currently established demands sharing the most loaded link are sorted in decreas-

ing order of rate requirements with the aim of reducing the congestion after rerouting the fewer

number of connections (line 4). In order to avoid frequent reallocations of a traffic flow and

mitigate related negative implications, a time threshold can be easily included to select only

demands that have been allocated long enough over the current path.

Using the residual graph a new set of admissible paths is obtained for each involved traffic

flow (line 6). Then, the function looks for a path with lower load values trying to leave more

resources available for future demands (line 7). A traffic flow is reallocated only when a feasible

path is found and the MLU in the network is reduced (line 9). At the same time, the required

control paths are updated (line 10).

Since the proposed approach is conceived for dynamic traffic environments, the set of es-

tablished demands will be constantly checked. For those connection requests whose holding

time have expired, the algorithm performs a demand removal, which means that their assigned

paths are released and resources occupied by these routes become available again. Consequently,

network elements used only by completed traffic demands will be then put into sleep mode.
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6.3.3 Complexity Analysis

To derive the computational complexity of the green initial setup presented in Algorithm 8 we

should first consider the Net_Pruning function. This function, shown in Algorithm 9, per-

forms two iterative operations over the set of I transit nodes. Considering that, using the Dijk-

stra algorithm, the single source shortest paths are computed for each controller in O(V log V ),

and that O(V + E) time is required by the connectivity checking process, being V and E the

amount of network nodes and links, respectively, the Net_Pruning function has a complexity

equal to O(I(CV log V + E)).

Additionally, the runtime of Algorithm 8 is also due to its main loop. In the worst case,

this while loop will be executed N times, being N the number of forwarding nodes which

are endpoints of traffic demands. However, it should be emphasised that as a consequence of

iterating over an ordered list, in most of the cases the algorithm is able to find a solution after

analyzing the first node and this extreme case will be quite uncommon. Inside this loop, the

iterative process and the related complexity are directly linked to the maximum number of

admissible paths between any pair of nodes and the number of control plane connections to be

initially established, which are considered along the inner loops. It is easy to conclude that the

maximum number of admissible paths, denoted here as M , cannot be found beforehand since

it will depend of several factors such as the network topology and the number and location

of controllers. Therefore, the overall algorithm complexity should be formulated based on it.

With respect to the number of control plane connections, they can be estimated by the upper

bound O(S + H), where S denotes the total number of forwarding nodes and H refers to the

connections between controllers. Thus, the complexity of the main loop of Algorithm 8 can be

expressed as O(NM2(S +H)).

Regarding the dynamic power-aware routing proposed in Algorithm 10, the worst run-time

complexity is imposed by data demands requiring, in addition to the generation of the data

path, the activation of new forwarding nodes and the corresponding computation of a control

path between them and the controllers. Since simple paths can be found in O(V + E) time,

using a modified depth-first search (poner la ref), and taking M as the maximum number of

admissible paths, the algorithm complexity can be defined as O(M(I+D)(V +E)), where I and

D denote, respectively, the upper bounds of transit nodes to be activated and data demands to
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be rerouted. Precisely, in the previous expression the O(MD(V + E)) component is result of

applying the Congestion_Aware_Rerouting function described in Algorithm 11.

6.4 Simulations and Results

In this section we describe the evaluation of our power-aware approach and analyze the achieved

results. We used the linear programming solver Gurobi Optimizer [110] to assess the perfor-

mance of the ILP model. Meanwhile, the proposed control framework previously described was

implemented using the programming language Python to develop the heuristic algorithms. All

computations were carried out on a computer equipped with 3.30 GHz Intel Core i7 and 16 GB

RAM.

6.4.1 Simulation Scenario

6.4.1.1 Network Topology

Similar to previous chapters, we conducted our simulations using real-world network topologies

collected from SNDlib [111], considering each router in the network as an SDN node or as a

controller placement. Specifically, we use three topologies of different sizes in order to assess the

effectiveness of the proposed scheme in small, medium and large scale networks. The mentioned

networks are: Nobel-US (|V | = 14; |E| = 21), Geant (|V | = 22; |E| = 36) and Cost266

(|V | = 37; |E| = 57). The topology of Cost266 can be seen in Fig. 6.1.
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Fig. 6.1: Network topology of Cost266 used in the simulations.
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To allow the possibility of putting network nodes into sleep mode, different scenarios were

considered varying T , which represents the percentage of forwarding nodes that will not generate

or receive traffic. According to this value, for each network topology we have selected as transit

nodes the devices with the highest degree centrality as in [54,79].

6.4.1.2 Controllers Placement

Being the controller placements out of the scope of this work we assume as preferred locations

the ones minimizing the worst-case mean latencies. More precisely, we compute the mean

propagation latency between each pair of nodes and associate each admissible location with the

maximum average value involving it. Then, according to the number of controllers considered

for each simulation instance, we place the controllers at node locations with smaller associated

latency values. Note that a controller placement is admissible when the assumptions established

in this proposal to avoid the routing of additional traffic load through network controllers can

be kept (i.e. the network graph without any controller remains being strongly connected).

6.4.1.3 Traffic Patterns

Apart of the real static traffic matrices obtained from the topologies database in [111], we also

performed some tests considering a dynamic scenario where connection requests arrive with

exponentially distributed inter-arrival and holding times, taking different mean values from the

sets [0.2, 1, 5] and [100, 150, 200], respectively. Accordingly, a traffic demand is generated

between each pair of edge nodes (i.e. network devices which do not act as controllers or transit

nodes).

Additionally, we evaluated the power savings and performance degradations considering in-

creasing loads. To accomplish this, for each network topology we considered every pair of edge

nodes with an initial random assigned data rate and computed the required data paths according

to the SPR. We then identified the most loaded link from which we derived a scaling factor.

Lastly, the initially assigned values were multiplied by this scaling factor to obtain the corre-

sponding data rates for each incoming demand (see [55]). This was done considering different

values of over-provisioning factor (α) to further evaluate the implications of varying traffic load.

For the control traffic we assume an average rate of 1.7 Mbps [112].
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6.4.1.4 Power Values

Based on the power consumption behavior of data networks explained in Section 2.1, we char-

acterize the power consumption of a forwarding node according to the 3:1 idle:active ratio given

in [46]. This proportion, obtained from measurements on real switches, assigns 3W of power for

each idle port of a switch and 1W extra when the port is active. Thus, power consumption Pn

of an idle forwarding node n can be computed as 3D(n) where D(n) denotes the node degree

and Pp = 1W. Null power consumption is assumed when the node is put into sleep mode.

6.4.2 Optimal vs. Heuristic Solutions

To assess the suitability of the proposed solution we start evaluating the performance of the

heuristic algorithms against the optimal ILP model, using the Nobel-US and Geant topologies.

In this particular case, we use the traffic matrices provided in [111] assuming a static scenario

where demands are allocated during the entire simulation (i.e. their holding times are set

to infinite and no demand removal is performed by the dynamic approach). On the other

hand, given that DyPAR is an online routing strategy, the connection requests are sequentially

allocated as they appear in the considered traffic matrix. This comparison is illustrated in

Fig. 6.2 for different amount of controllers placement and percentage of transit nodes.

Power savings are computed using the following expression:

Overall_Pw − Pw_X
Overall_Pw (6.9)

where Pw_X refers to the power consumption achieved by the considered approach (i.e. Optimal

or DyPAR) and Overall_Pw can be determined as:

Overall_Pw =
∑
n∈V

Pn + 2Pp |E| (6.10)

In Fig. 6.2 power savings of up to 35% can be reached by our optimization model in both

topologies. Moreover, the heuristic approach allows to obtain close-to-optimal power savings

with differences under 4% (Nobel-US) and 8% (Geant). It is also observed in both networks

that lower savings are achieved when the percentage of transit nodes decreases from 50% to

10%. This behavior is expected given that a reduction in the percentage of considered transit
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Fig. 6.2: Power saving in the Nobel-US topology as a function of controllers amount, varying the percentage of
transit nodes (T ).

nodes means that a smaller number of forwarding nodes can be put into sleep mode, which

yield the major contribution to the attained power savings. Additionally, fewer transit nodes

imply that a higher number of demands are handled, thus more paths need to be established to

accommodate such traffic.

On the other hand, an increase in the number of controllers can also cause in some cases a

reduction in the power savings. The reason is that in our approach data plane traffic cannot be

routed through network controllers. When the number of network controllers grows, a higher

number of links used to route control traffic (i.e. links directly connected to the controllers),

cannot be used for data plane communications. Therefore, more links are needed to route the

data and control traffic.

6.4.3 Assessment of Power Saving Potential

Due to the computational complexity of the exact model in networks similar in size or larger than

Geant (see 4.4.1 for similar running time values), in what follows we use our heuristic algorithms.

This is done taking into account a dynamic scenario with connection requests generated following
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the procedure previously explained. Several test were conducted and average values have been

determined with a margin error less than 5.5% in the three considered networks, estimated by

running our algorithm 10 times with different prime number seeds on each traffic configuration

instance.

In terms of average running time of the algorithms, the off-line GrIS module requires around

39 ms (Nobel-US), 0.25 s (Geant) and 283 s (Cost266). Meanwhile, the DyPAR algorithm

takes always less than 6.4 ms (Nobel-US), 16.5 ms (Geant) and 282.6 ms (Cost266), for all the

considered traffic patterns.

In addition, in order to evaluate the benefits of our proposal we compare the performance

of the proposed algorithms with other two existing energy-aware routing approaches presented

in related works [101] and [104], referred to here as SP and EMMA, respectively. As we are

considering an in-band SDN, required control plane communications will be also established by

these two approaches. At the same time, shortest paths used by SP and EMMA are computed

holding restrictions established to avoid additional traffic load through the network controller

(i.e. data traffic cannot be routed through this device). On the other hand, we set the time

threshold for demands reallocation (half of connection expected duration) and the number of

transit nodes (T = 50%) as in [104] for the three algorithms used in this comparison.

Given the lack of support in SP and EMMA for network environments with multiple con-

trollers we only consider the case of having one centralized network controller. However, the

derived conclusions are general and a similar behavior is expected in case of having multiple

controllers.

Fig. 6.3 shows the power consumption achieved by the three algorithms considering different

topological scenarios and over-provisioning factor (α). These results correspond with an average

arrival time of 0.2 demands/s and a mean holding time of 100 s, but similar values have been

obtained for all the considered traffic patterns.

Given the initial control plane configuration performed by the GrIS module, in the three

considered topologies the other two methods exhibit a better behaviour at the beginning of

simulations. However, after allocating few demands more power can be saved by our approach.

As it is shown, in terms of consumed power, DyPAR outperforms SP in all cases and it is

generally better (in some cases just slightly better) than EMMA. For instance, after routing all

incoming traffic, DyPAR attains power consumption reductions of up to 26.5% and 19.4% with
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(c) Cost266 topology.

Fig. 6.3: Power consumption in the three topologies with one controller as a function of traffic arrival, varying
the over-provisioning factor (α).

respect to SP and EMMA, respectively. The reason is that SP only uses pre-computed shortest

paths to allocate the incoming traffic, while EMMA also performs a power-aware rerouting any

time the active topology changes in order to find better paths for already allocated flows.

On the other hand, power improvements achieved by our proposal are consequence of the

combined GrIS/DyPAR operation where a minimum network subset is initially activated and

new network elements (nodes and links) are only added when the incoming demand cannot be
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allocated on the currently active topology.

6.4.4 Performance Degradation Avoidance

These power savings are only valid if the performance of QoS sensitive demands is not com-

promised. Moreover, to avoid overloaded networks a capacity reserve is typically set. So far,

we had not considered this capacity margin, but now we analyze how the number of allocated

demands is impacted when facing a more demanding traffic pattern and in presence of a MLU

constraint. In this evaluation we set the average arrival time to 5 demands/s and the mean

holding time to 200 s, while keeping the over-provisioning level equal to 1, since this represents

the most demanding of the considered traffic patterns for the heuristics and the most critical

from the performance degradation perspective.

Fig. 6.4 shows the percentage of demands that can be allocated by DyPAR, EMMA and SP

in Nobel-US and Geant using different values of MLU.

As it is shown, DyPAR is able to reduce the blocking rate with respect to the other two

approaches as a result of the Congestion_Aware_Rerouting performed by this solution.

In particular, while only negligible blocking rates are attained by our approach (less than 1.2%),

up to 7 and 12 demands are blocked by SP and EMMA, respectively. SP performs better than

EMMA given that in case of having more than one candidate route this algorithm selects the

one leaving more available link capacity.

Intuitively, the capacity to successfully allocate the incoming traffic will not only be a result

of the performed routing, since it is also related to the considered topology. In network topologies

with more path redundancy a higher number of requests can potentially be accommodated. This

difference can be noticed between Nobel-US and Geant, where an increase of allocated demands

of up to 26.7% and 15.6% can be reached, respectively. Cost266 is not shown in Fig. 6.4, since a

complete routing was always achieved in this topology by the three compared algorithms under

the considered traffic patterns and MLU levels.

6.5 Conclusion

In this chapter we proposed a power-aware strategy that reduces the number of active nodes and

links used to handle the incoming traffic suitable for SDN environments with in-band control
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Fig. 6.4: Number of allocated demands with one controller as a function of traffic arrival, varying the MLU.

traffic and multiple controllers. To achieve such goal, we first provided a link-based formu-

lation of the optimization problem, integrating the routing requirements for data and control

traffic. For large-scale topologies a heuristic approach is conceived combining a static control

plane configuration with a dynamic power-aware routing. Besides being compatible with SDN

environments without a dedicated control network, this strategy is able to handle demanding

traffic arrival without degrading the performance of higher priority traffic. Through simula-

tions using real-world topologies, we have validated that our heuristic approach allows to obtain
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close-to-optimal power savings, with differences under 8%. Furthermore, our proposal achieves

better results in terms of power consumption and number of allocated demands than two ex-

isting related algorithms. For instance, after routing all incoming traffic, a reduction of power

consumption of up to 26.5% and an increase of allocated demands of up to 26.7% can be reached

by our solution.
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Reducing energy consumption of modern communication networks has been recognized as an

ever-increasingly important need, given the noteworthy use of electrical energy by the ICT

sector. To face the negative environmental implications of the rising penetration of Internet-

based services in our daily lives, society and industry, we reckon that programable networks, and

especially SDN, can play a very important role. With growing users’ needs, networking models

should evolve not only in terms of service provisioning but in the capability to improve energy

efficiency and mitigate environmental impact by reducing CO2 emissions. Given that energy

efficiency in a telecommunication system relies mainly on the power consumption of its individual

components, a coordinated routing and management of the whole network configuration that

puts into sleep mode the redundant network devices, is an effective strategy to reduce energy

concerns. Adequate solutions to this challenge are needed in order to provide the green support

currently required for networks operation.

Throughout this thesis we have addressed some of the most challenging issues regarding the

design of energy-aware routing solutions reducing the number of active network elements in SDN

with in-band control traffic. It should be emphasized that all the contributions of this research

stand as novel and original proposals which were designed from scratch. In other words, we

do not adapt or extend existing mechanisms for their conception. This thesis, focused on green

routing, has proposed several methods to increase the energy efficiency of wide-range SDN-based

carrier networks. We here briefly describe the main outcomes of this research in order to assess

the fulfillment of research objectives. In addition, we discuss the identified limitations of the

research and propose possible directions in which our work can be extended.
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7.1 Research Outcomes

The first research question posed by this thesis –how to route, in an energy efficient way, con-

nection requests in an SDN environment with multiple controllers– was answered in Chapter 3.

A key observation identified by this thesis is that existing energy-aware routing approaches in

SDN do not consider the in-band mode and neglect the energy consumption associated with

the control plane communications. Thus, this work contributes to the literature by providing

efficient routing solutions to the energy consumption problem in SDN environments without

a dedicated control network. The proposed approaches cover the different variants for control

plane implementation in SDN (i.e. centralized and distributed). In addition, other particularly

important issues of SDN, such as controllers placement and distribution of switches between

controllers, were also considered in our proposals.

In Chapter 4 we address our second research objective –how to increase the energy saving

and quantify its impact on network performance. For such purpose, we focused on the use of

topology knowledge available at the SDN controller followed by TE decisions for improving the

energy efficiency and reducing the solution complexity. This approach, unlike existing related

works, was not based on restricting the traffic aggregation according to specific performance

thresholds such as link utilization or path latency. In this way, we were able to more deeply

examine the implications of our energy-aware routing solution on several network performance

metrics.

The closely related third question –how to jointly optimize QoS requirements and energy

efficiency while still meeting control traffic requirements– was discussed in Chapter 5. Despite

being a more challenging scheme, the proposed multi-objective approach enables the reduction

of power consumption without performance degradation. Moreover, the proposed energy-aware

routing gives a more fine-grained approach since it manages integrated routing considerations for

data and control plane traffic in SDN, such as QoS requirements and traffic delay, respectively.

By exploiting the use of this multi-objective framework, a flexible and configurable routing

decision process can be achieved, suitable to support sophisticated strategies based on the traffic

type.

Finally, in Chapter 6 we tackle our last research problem –how to provide online energy

efficient traffic allocation to real-time demands without performance degradation. In order to
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overcome the lack of energy-aware proposals providing real-time operation for in-band SDN, we

provide a power-aware control plane configuration combined with a dynamic routing strategy

for generic SDN architectures (i.e. compatible with multiple controllers and in-band control

traffic). Our approach is also able to handle more demanding traffic patterns while avoiding the

network congestion and thus reducing the performance degradation of higher priority traffic.

It is designed to be suitable for real-time network control and management as well as effective

in providing important energy savings together with low blocking rates, leading to an efficient

usage of the network’s resources.

In general, solutions proposed along this document hold the potential to deliver substantial

energy savings while considering important features for their deployment in real-world networks.

Extensive simulation experiments, conducted on several real-world network topologies, demon-

strate the viability and efficacy of proposed approaches. These findings are of special interest to

improve the power efficiency of large backbone networks using the SDN architecture without a

dedicated control infrastructure.

7.2 Room for Improvement

Some of the contributions presented in this manuscript have still room for further improvement.

For instance, given the lack of comparable approaches in the literature, the heuristic algorithms

for energy-aware routing and controller placement proposed in Chapter 3 have been compared

against general baselines (i.e. Mod-SPR, k-median and k-center), which are not optimized in

terms of energy efficiency. In this regard, future work can be devoted to adapt existing energy-

aware solutions in the state of the art to also support the considered scenarios of SDN with

in-band control traffic and no data plane traffic through the controllers.

Considering the impact of energy-aware routing, based on the reduction of active network

elements, on SDN reliability reported in Chapter 4, further research might well be conducted on

the inclusion of restoration mechanisms in order to improve the fault tolerance capacity of our

models. In this way, control and data planes failures can be quickly handled while maintaining

active the minimum number of links.

Regarding the Multi-Objective Evolutionary Algorithm presented in Chapter 5, another

interesting future work would be to obtain exact results for this bi-objective approach. While an
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exact mathematical formulation was provided to define the considered problem, this ILP model

was not used as a benchmark to compare the quality of solutions achieved by our algorithm

due to the complexity of the system and the limitations of traditional methods to solve multi-

objective optimization problems. However, for some limited cases, optimal bounds could be

investigated as a follow-on task. Additionally, the use of another MOEA to implement this

model (e.g. Non Sorting Genetic Algorithm 2 (NSGA2)) can be performed as future work in

order to compare results obtained from both algorithms.

In general, the most evident limitation of our entire work concerns the lack of practical

implementation of the proposed approaches. Implementing the proposed methods as northbound

applications running on top of commercial SDN controllers, would allow to test their suitability

in a real network environment and empirically validate the power consumption reduction.

7.3 Road Ahead

The adoption of 5G networks, expected by 2020, will allow handling more traffic in dense

environments, providing higher data rates and reduced end-to-end latency [136]. In this scenario,

achieving energy efficiency becomes even more concerning and challenging. Nevertheless, a

strongly related Key Performance Indicator (KPI) to be addressed by the 5G generation is

precisely the energy efficiency [137]. Accordingly, an effective energy management, as well as an

enhanced network performance, are essential design goals to fulfill the requirements of future

5G systems for heterogeneous applications and services.

Energy consumption in 5G system is currently attracting a great deal of attention from

networking researchers and several papers have been proposed with solutions enabling signifi-

cant energy efficiency gains in the mobile networks division [138–140]. Although 5G is mostly

perceived as wireless access by the user, different communication facilities and users need to be

connected through backhaul networks –either using optical fiber networks or radio links– and

backbone networks. Apart from being key enablers for a successful deployment of this com-

plex architecture, these network segments are of paramount importance to reduce the energy

consumption of 5G systems.

SDN is expected to play a major role in 5G systems in order to provide a more intelligent

utilization of the underlying transport networks [141]. Moreover, this technology, together with
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Network Functions Virtualization (NFV), can provide the required tools to support network

slicing in order to accommodate simultaneously the wide range of demanded services over a

common infrastructure [142–144].

Within 5G networks, more flexible network control and management strategies will be re-

quired in order to provide a higher degree of adaptability for new applications and network

services. In that direction, the contributions of this thesis can be exploited as a first step to

move towards an energy efficient paradigm in 5G networking using SDN and NFV technologies.
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