17 research outputs found

    Improved Sequential MAP estimation of CABAC encoded data with objective adjustment of the complexity/efficiency tradeoff

    No full text
    International audienceThis paper presents an efficient MAP estimator for the joint source-channel decoding of data encoded with a context adaptive binary arithmetic coder (CABAC). The decoding process is compatible with realistic implementations of CABAC in standards like H.264, i.e., handling adaptive probabilities, context modeling and integer arithmetic coding. Soft decoding is obtained using an improved sequential decoding technique, which allows to obtain various tradeoffs between complexity and efficiency. The algorithms are simulated in a context reminiscent of H264. Error detection is realized by exploiting on one side the properties of the binarization scheme and on the other side the redundancy left in the code string. As a result, the CABAC compression efficiency is preserved and no additional redundancy is introduced in the bit stream. Simulation results outline the efficiency of the proposed techniques for encoded data sent over AWGN and UMTS-OFDM channels

    MAP Joint Source-Channel Arithmetic Decoding for Compressed Video

    Get PDF
    In order to have robust video transmission over error prone telecommunication channels several mechanisms are introduced. These mechanisms try to detect, correct or conceal the errors in the received video stream. In this thesis, the performance of the video codec is improved in terms of error rates without increasing overhead in terms of data bit rate. This is done by exploiting the residual syntactic/semantic redundancy inside compressed video along with optimizing the configuration of the state-of-the art entropy coding, i.e., binary arithmetic coding, and optimizing the quantization of the channel output. The thesis is divided into four phases. In the first phase, a breadth-first suboptimal sequential maximum a posteriori (MAP) decoder is employed for joint source-channel arithmetic decoding of H.264 symbols. The proposed decoder uses not only the intentional redundancy inserted via a forbidden symbol (FS) but also exploits residual redundancy by a syntax checker. In contrast to previous methods this is done as each channel bit is decoded. Simulations using intra prediction modes show improvements in error rates, e.g., syntax element error rate reduction by an order of magnitude for channel SNR of 7.33dB. The cost of this improvement is more computational complexity spent on the syntax checking. In the second phase, the configuration of the FS in the symbol set is studied. The delay probability function, i.e., the probability of the number of bits required to detect an error, is calculated for various FS configurations. The probability of missed error detection is calculated as a figure of merit for optimizing the FS configuration. The simulation results show the effectiveness of the proposed figure of merit, and support the FS configuration in which the FS lies entirely between the other information carrying symbols to be the best. In the third phase, a new method for estimating the a priori probability of particular syntax elements is proposed. This estimation is based on the interdependency among the syntax elements that were previously decoded. This estimation is categorized as either reliable or unreliable. The decoder uses this prior information when they are reliable, otherwise the MAP decoder considers that the syntax elements are equiprobable and in turn uses maximum likelihood (ML) decoding. The reliability detection is carried out using a threshold on the local entropy of syntax elements in the neighboring macroblocks. In the last phase, a new measure to assess performance of the channel quantizer is proposed. This measure is based on the statistics of the rank of true candidate among the sorted list of candidates in the MAP decoder. Simulation results shows that a quantizer designed based on the proposed measure is superior to the quantizers designed based on maximum mutual information and minimum mean square error

    System-on-Chip design of a high performance low power full hardware cabac encoder in H.264/AVC

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    3D video compression based on high efficiency video coding

    Get PDF
    With the advent of autostereoscopic displays, questions rise on how to efficiently compress the video information needed by such displays. Additionally, for gradual market acceptance of this new technology it is valuable to have a solution offering forward compatibility with stereo 3D video as it is used nowadays. In this paper, a multiview compression scheme making use of the efficient single-view coding tools used in High Efficiency Video Coding (HEVC) is provided. Although efficient single view compression can be obtained with HEVC, a multiview adaptation of this standard under development is proposed, offering additional coding gains. On average, for the texture information, the total bitrate can be reduced by 37.2% compared to simulcast HEVC. For depth map compression, gains largely depend on the quality of the captured content. Additionally, a forward compatible solution is proposed offering the possibility for a gradual upgrade from H.264/AVC based stereoscopic 3D systems to an HEVC-based autostereoscopic environment. With the proposed system, significant rate savings compared to Multiview Video Coding (MVC) are presented(1)

    Scalable light field representation and coding

    Get PDF
    This Thesis aims to advance the state-of-the-art in light field representation and coding. In this context, proposals to improve functionalities like light field random access and scalability are also presented. As the light field representation constrains the coding approach to be used, several light field coding techniques to exploit the inherent characteristics of the most popular types of light field representations are proposed and studied, which are normally based on micro-images or sub-aperture-images. To encode micro-images, two solutions are proposed, aiming to exploit the redundancy between neighboring micro-images using a high order prediction model, where the model parameters are either explicitly transmitted or inferred at the decoder, respectively. In both cases, the proposed solutions are able to outperform low order prediction solutions. To encode sub-aperture-images, an HEVC-based solution that exploits their inherent intra and inter redundancies is proposed. In this case, the light field image is encoded as a pseudo video sequence, where the scanning order is signaled, allowing the encoder and decoder to optimize the reference picture lists to improve coding efficiency. A novel hybrid light field representation coding approach is also proposed, by exploiting the combined use of both micro-image and sub-aperture-image representation types, instead of using each representation individually. In order to aid the fast deployment of the light field technology, this Thesis also proposes scalable coding and representation approaches that enable adequate compatibility with legacy displays (e.g., 2D, stereoscopic or multiview) and with future light field displays, while maintaining high coding efficiency. Additionally, viewpoint random access, allowing to improve the light field navigation and to reduce the decoding delay, is also enabled with a flexible trade-off between coding efficiency and viewpoint random access.Esta Tese tem como objetivo avançar o estado da arte em representação e codificação de campos de luz. Neste contexto, são também apresentadas propostas para melhorar funcionalidades como o acesso aleatório ao campo de luz e a escalabilidade. Como a representação do campo de luz limita a abordagem de codificação a ser utilizada, são propostas e estudadas várias técnicas de codificação de campos de luz para explorar as características inerentes aos seus tipos mais populares de representação, que são normalmente baseadas em micro-imagens ou imagens de sub-abertura. Para codificar as micro-imagens, são propostas duas soluções, visando explorar a redundância entre micro-imagens vizinhas utilizando um modelo de predição de alta ordem, onde os parâmetros do modelo são explicitamente transmitidos ou inferidos no decodificador, respetivamente. Em ambos os casos, as soluções propostas são capazes de superar as soluções de predição de baixa ordem. Para codificar imagens de sub-abertura, é proposta uma solução baseada em HEVC que explora a inerente redundância intra e inter deste tipo de imagens. Neste caso, a imagem do campo de luz é codificada como uma pseudo-sequência de vídeo, onde a ordem de varrimento é sinalizada, permitindo ao codificador e decodificador otimizar as listas de imagens de referência para melhorar a eficiência da codificação. Também é proposta uma nova abordagem de codificação baseada na representação híbrida do campo de luz, explorando o uso combinado dos tipos de representação de micro-imagem e sub-imagem, em vez de usar cada representação individualmente. A fim de facilitar a rápida implantação da tecnologia de campo de luz, esta Tese também propõe abordagens escaláveis de codificação e representação que permitem uma compatibilidade adequada com monitores tradicionais (e.g., 2D, estereoscópicos ou multivista) e com futuros monitores de campo de luz, mantendo ao mesmo tempo uma alta eficiência de codificação. Além disso, o acesso aleatório de pontos de vista, permitindo melhorar a navegação no campo de luz e reduzir o atraso na descodificação, também é permitido com um equilíbrio flexível entre eficiência de codificação e acesso aleatório de pontos de vista

    Video QoS/QoE over IEEE802.11n/ac: A Contemporary Survey

    Get PDF
    The demand for video applications over wireless networks has tremendously increased, and IEEE 802.11 standards have provided higher support for video transmission. However, providing Quality of Service (QoS) and Quality of Experience (QoE) for video over WLAN is still a challenge due to the error sensitivity of compressed video and dynamic channels. This thesis presents a contemporary survey study on video QoS/QoE over WLAN issues and solutions. The objective of the study is to provide an overview of the issues by conducting a background study on the video codecs and their features and characteristics, followed by studying QoS and QoE support in IEEE 802.11 standards. Since IEEE 802.11n is the current standard that is mostly deployed worldwide and IEEE 802.11ac is the upcoming standard, this survey study aims to investigate the most recent video QoS/QoE solutions based on these two standards. The solutions are divided into two broad categories, academic solutions, and vendor solutions. Academic solutions are mostly based on three main layers, namely Application, Media Access Control (MAC) and Physical (PHY) which are further divided into two major categories, single-layer solutions, and cross-layer solutions. Single-layer solutions are those which focus on a single layer to enhance the video transmission performance over WLAN. Cross-layer solutions involve two or more layers to provide a single QoS solution for video over WLAN. This thesis has also presented and technically analyzed QoS solutions by three popular vendors. This thesis concludes that single-layer solutions are not directly related to video QoS/QoE, and cross-layer solutions are performing better than single-layer solutions, but they are much more complicated and not easy to be implemented. Most vendors rely on their network infrastructure to provide QoS for multimedia applications. They have their techniques and mechanisms, but the concept of providing QoS/QoE for video is almost the same because they are using the same standards and rely on Wi-Fi Multimedia (WMM) to provide QoS

    Wavelet based image compression integrating error protection via arithmetic coding with forbidden symbol and map metric sequential decoding with ARQ retransmission

    Get PDF
    The phenomenal growth of digital multimedia applications has forced the communication

    Towards Computational Efficiency of Next Generation Multimedia Systems

    Get PDF
    To address throughput demands of complex applications (like Multimedia), a next-generation system designer needs to co-design and co-optimize the hardware and software layers. Hardware/software knobs must be tuned in synergy to increase the throughput efficiency. This thesis provides such algorithmic and architectural solutions, while considering the new technology challenges (power-cap and memory aging). The goal is to maximize the throughput efficiency, under timing- and hardware-constraints

    Schémas de tatouage d'images, schémas de tatouage conjoint à la compression, et schémas de dissimulation de données

    Get PDF
    In this manuscript we address data-hiding in images and videos. Specifically we address robust watermarking for images, robust watermarking jointly with compression, and finally non robust data-hiding.The first part of the manuscript deals with high-rate robust watermarking. After having briefly recalled the concept of informed watermarking, we study the two major watermarking families : trellis-based watermarking and quantized-based watermarking. We propose, firstly to reduce the computational complexity of the trellis-based watermarking, with a rotation based embedding, and secondly to introduce a trellis-based quantization in a watermarking system based on quantization.The second part of the manuscript addresses the problem of watermarking jointly with a JPEG2000 compression step or an H.264 compression step. The quantization step and the watermarking step are achieved simultaneously, so that these two steps do not fight against each other. Watermarking in JPEG2000 is achieved by using the trellis quantization from the part 2 of the standard. Watermarking in H.264 is performed on the fly, after the quantization stage, choosing the best prediction through the process of rate-distortion optimization. We also propose to integrate a Tardos code to build an application for traitors tracing.The last part of the manuscript describes the different mechanisms of color hiding in a grayscale image. We propose two approaches based on hiding a color palette in its index image. The first approach relies on the optimization of an energetic function to get a decomposition of the color image allowing an easy embedding. The second approach consists in quickly obtaining a color palette of larger size and then in embedding it in a reversible way.Dans ce manuscrit nous abordons l’insertion de données dans les images et les vidéos. Plus particulièrement nous traitons du tatouage robuste dans les images, du tatouage robuste conjointement à la compression et enfin de l’insertion de données (non robuste).La première partie du manuscrit traite du tatouage robuste à haute capacité. Après avoir brièvement rappelé le concept de tatouage informé, nous étudions les deux principales familles de tatouage : le tatouage basé treillis et le tatouage basé quantification. Nous proposons d’une part de réduire la complexité calculatoire du tatouage basé treillis par une approche d’insertion par rotation, ainsi que d’autre part d’introduire une approche par quantification basée treillis au seind’un système de tatouage basé quantification.La deuxième partie du manuscrit aborde la problématique de tatouage conjointement à la phase de compression par JPEG2000 ou par H.264. L’idée consiste à faire en même temps l’étape de quantification et l’étape de tatouage, de sorte que ces deux étapes ne « luttent pas » l’une contre l’autre. Le tatouage au sein de JPEG2000 est effectué en détournant l’utilisation de la quantification basée treillis de la partie 2 du standard. Le tatouage au sein de H.264 est effectué à la volée, après la phase de quantification, en choisissant la meilleure prédiction via le processus d’optimisation débit-distorsion. Nous proposons également d’intégrer un code de Tardos pour construire une application de traçage de traîtres.La dernière partie du manuscrit décrit les différents mécanismes de dissimulation d’une information couleur au sein d’une image en niveaux de gris. Nous proposons deux approches reposant sur la dissimulation d’une palette couleur dans son image d’index. La première approche consiste à modéliser le problème puis à l’optimiser afin d’avoir une bonne décomposition de l’image couleur ainsi qu’une insertion aisée. La seconde approche consiste à obtenir, de manière rapide et sûre, une palette de plus grande dimension puis à l’insérer de manière réversible

    The Effective Transmission and Processing of Mobile Multimedia

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore