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Abstract 

This Thesis aims to advance the state-of-the-art in light field representation and coding. In this 

context, proposals to improve functionalities like light field random access and scalability are 

also presented. As the light field representation constrains the coding approach to be used, 

several light field coding techniques to exploit the inherent characteristics of the most popular 

types of light field representations are proposed and studied, which are normally based on micro-

images or sub-aperture-images.  

To encode micro-images, two solutions are proposed, aiming to exploit the redundancy between 

neighboring micro-images using a high order prediction model, where the model parameters are 

either explicitly transmitted or inferred at the decoder, respectively. In both cases, the proposed 

solutions are able to outperform low order prediction solutions.  

To encode sub-aperture-images, an HEVC-based solution that exploits their inherent intra and 

inter redundancies is proposed. In this case, the light field image is encoded as a pseudo video 

sequence, where the scanning order is signaled, allowing the encoder and decoder to optimize 

the reference picture lists to improve coding efficiency.  

A novel hybrid light field representation coding approach is also proposed, by exploiting the 

combined use of both micro-image and sub-aperture-image representation types, instead of 

using each representation individually. 

In order to aid the fast deployment of the light field technology, this Thesis also proposes 

scalable coding and representation approaches that enable adequate compatibility with legacy 

displays (e.g., 2D, stereoscopic or multiview) and with future light field displays, while 

maintaining high coding efficiency. Additionally, viewpoint random access, allowing to 

improve the light field navigation and to reduce the decoding delay, is also enabled with a 

flexible trade-off between coding efficiency and viewpoint random access. 
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Resumo 

Esta Tese tem como objetivo avançar o estado da arte em representação e codificação de campos 

de luz. Neste contexto, são também apresentadas propostas para melhorar funcionalidades como 

o acesso aleatório ao campo de luz e a escalabilidade. Como a representação do campo de luz 

limita a abordagem de codificação a ser utilizada, são propostas e estudadas várias técnicas de 

codificação de campos de luz para explorar as características inerentes aos seus tipos mais 

populares de representação, que são normalmente baseadas em micro-imagens ou imagens de 

sub-abertura.  

Para codificar as micro-imagens, são propostas duas soluções, visando explorar a redundância 

entre micro-imagens vizinhas utilizando um modelo de predição de alta ordem, onde os 

parâmetros do modelo são explicitamente transmitidos ou inferidos no decodificador, 

respetivamente. Em ambos os casos, as soluções propostas são capazes de superar as soluções 

de predição de baixa ordem.  

Para codificar imagens de sub-abertura, é proposta uma solução baseada em HEVC que explora 

a inerente redundância intra e inter deste tipo de imagens. Neste caso, a imagem do campo de 

luz é codificada como uma pseudo-sequência de vídeo, onde a ordem de varrimento é sinalizada, 

permitindo ao codificador e decodificador otimizar as listas de imagens de referência para 

melhorar a eficiência da codificação.  

Também é proposta uma nova abordagem de codificação baseada na representação híbrida do 

campo de luz, explorando o uso combinado dos tipos de representação de micro-imagem e sub-

imagem, em vez de usar cada representação individualmente. 

A fim de facilitar a rápida implantação da tecnologia de campo de luz, esta Tese também propõe 

abordagens escaláveis de codificação e representação que permitem uma compatibilidade 
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adequada com monitores tradicionais (e.g., 2D, estereoscópicos ou multivista) e com futuros 

monitores de campo de luz, mantendo ao mesmo tempo uma alta eficiência de codificação. 

Além disso, o acesso aleatório de pontos de vista, permitindo melhorar a navegação no campo 

de luz e reduzir o atraso na descodificação, também é permitido com um equilíbrio flexível entre 

eficiência de codificação e acesso aleatório de pontos de vista. 

 

Palavras-chave: Campos de luz, Codificação de campos de luz, Representação de campos de 

luz, Escalabilidade de ponto de vista, Acesso aleatório de ponto de vista 
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Chapter 1. Introduction 

1.1. Context and motivation 

In the last ten years we have witnessed exponential improvements in multimedia enabling 

technologies, which span from the vastly improved transmission capabilities to the exponential 

increase in processing power. One of the areas that was influenced the most by these 

improvements is video content distribution, as shown Figure 1.1. In 2017 video traffic, which 

includes internet video and IP video on demand (VOD), accounted for 75% of the total global 

IP traffic and it is expected to increase to 82% by 2022 [1]. Moreover, the preferred device in 

2017 was the PC with 41% of global IP traffic, however, the current trend has already shown 

that smartphones are the dominant device and it is expected that in 2022 they are going to 

account for 44% of the global IP traffic [1].  

 

 

Figure 1.1. Global IP traffic by application (top) and device (bottom) category in Exabytes per month [1]. 
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As mentioned above, the transmission capabilities have improved exponentially, especially 

when it comes to internet speeds not only for wired connections but also for wireless 

connections. Technologies like 5G (ITU-T IMT-2020) [2] and Wi-Fi 6 (IEEE 802.11ax) [3] 

allow for speeds of up to 10 Gbps and 1ms latency over a wireless connection for the end-user, 

which further potentiate the use of portable devices. 

Besides the improvements in display technology, several video characteristics have contributed 

to the increased user visual quality of experience (QoE) and that also influence the increased 

volume of video related traffic, notably: 

• Spatial resolution: In 2022 it is expected that 22% of the global IP video traffic will be 

4K ultra-high definition (UHD) [1]; 

• Temporal resolution: Increased refresh rates (over 120Hz) in several type of devices, 

e.g., computer monitors, TVs, smartphones; 

• Color gamut: Increased range in terms of color and luminosity components, e.g., high-

dynamic-range (HDR); 

Several efforts have been made throughout the years to also increase the angular resolution, 

through technologies such as stereoscopic 3D and autostereoscopic 3D. Although this 

technology allows for a decent depth perception, the inconvenience of requiring a special type 

of eyewear to consume 3D content, specifically in the case of stereoscopic 3D, as well as 

restricting the end-user to specific viewing perspectives reduced the demand for this type of 

technology. Nowadays alternative media acquisition and display systems have been rapidly 

progressing towards more immersive media production and consumption.  

Light field (LF) is one of the examples of these new immersive media formats. LF is an imaging 

technology that allows to jointly capture the scene radiance and angular information using 

single-tier lenslet LF cameras, i.e., with narrow baseline, or by using, for example, a high-

density camera array (HDCA), i.e., with a wider baseline. A lenslet LF camera is composed by 

the standard main lens and sensor, common to 2D cameras, with the addition of a third element: 

the microlens array (MLA) [4]. The MLA allows the LF camera to capture both spatial and 

angular information about the light that converges to the sensor [5]. Depending on the LF 

capturing device, different degrees of freedom are available in terms of both spatial and angular 
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resolution [6]. Nonetheless, the captured LF information has the ability to convey 3D 

information about the scene, instead of representing just a single 2D perspective. 

The LF technology has recently attracted the interest of many research groups as well as 

standardization bodies, such as JPEG Pleno [7] and MPEG-I [8], targeting to improve 

compression efficiency and to normalize LF data representation, as well as other types of new 

immersive media formats like point cloud, holographic and 360-video. 

Technologies that benefit from LF include augmented and virtual reality (AR/VR) and 3D 

displays that allow realistic depth perception, including continuous motion parallax through the 

viewing zone. In addition, new post-production functionalities are possible, such as, a posteriori 

refocusing of a scene or changing the scene’s viewing perspective.  

The large amount of data required to adequately represent a LF scene, when compared to the 

case of typical 2D pictures, calls for efficient techniques for both transmission and storage of 

this type of content. To this end, it is mandatory that new coding techniques are developed 

specifically designed with LF content in mind. 

The following sections describe this Thesis objectives and contributions as well as its outline. 

1.2. Thesis objectives and contributions 

This Thesis aims to advance the state-of-the-art in terms of LF image coding, representation and 

associated functionalities. In this sense, three major research objectives were defined: 

1. Proposal of LF enhanced coded representations:  

The representation format of LF has to be carefully defined because it directly influences 

other processing blocks of the transmission pipeline. LF representation heavily affects how 

the coding efficiency as well as the types of functionalities that are possible for the end-user. 

The most popular LF data representations are the Lenslet “Raw” and the 4D LF 

representations, including their micro-image (MI) and sub-aperture image (SAI) based 

variants. In order to determine how much does the representation affect LF coding, the 

following contribution was published [9], where these LF data representations were 

compared using the HEVC standard: 
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• R. J. S. Monteiro, N. M. M. Rodrigues, S. M. M. Faria, and P. J. L. Nunes, “Light 

field image coding: objective performance assessment of Lenslet and 4D LF data 

representations,” in Proc. SPIE, 2018, vol. 10752, pp. 109-125. 

This study allowed the authors to assess how the representation affects the coding efficiency 

results when a state-of-the-art standard video encoder is used without any modifications. 

Although this solution is not specifically suited for LF coding, it is widely available.  

It was concluded that, when LF content is encoded using a SAI-based representation the 

coding efficiency is higher than when using a MI-based representation. This result makes 

sense, considering that most of the coding technology is based on exploiting intra and inter 

image prediction. However, it was observed that when the MI-based representation was 

being used, the redundancy between the MIs was not exploited by any technique, which 

contributes to the lack of coding efficiency. Therefore, the authors proposed the following 

contribution where the proposed LF image codec is able to select the most efficient LF 

representation for each coding block, either based on MIs or SAIs: 

• R. J. S. Monteiro, P. J. L. Nunes, N. M. M. Rodrigues and S. M. M. Faria, “Light 

Field Image Coding Based on Hybrid Data Representation,” IEEE Access 

(submitted in December 2019). 

When each type of representation is selected, the prediction techniques change in order to 

either exploit the intra and inter SAI redundancy or the intra and inter MI redundancy. This 

coding solution shows that the combination of both types of representation allows for better 

coding efficiency than when relying on only one solution individually. 

2. Proposal of efficient LF coding algorithms: 

Although the combination of both representations leads to better coding results, the authors 

also proposed LF coding algorithms which are based on only one representation type, i.e., 

MI or SAI-based representations. One of the first type of solutions that showed high 

efficiency coding results for MI-based representation LF images was the search algorithm-

based solutions. Therefore, a study was conducted on using a combination of two coding 

approaches to exploit the inter-MI redundancy, namely, self-similarity and locally linear 

embedding [10]:  
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• R. J. S. Monteiro, L. F. R. Lucas, C. Conti, P. J. L. Nunes, N. M. M. Rodrigues, S. 

M. M. Faria, C. L. P. Pagliari, E. A. B. Silva, L. D. Soares, “Light Field HEVC-

Based Image Coding using Locally Linear Embedding and Self-Similarity 

Compensated Prediction,” IEEE International Conference on Multimedia and Expo 

(ICME), 2016, pp. 1-4 

Although this study produced a very efficient solution to encode LF images, especially when 

LF was captured using a focused LF camera, the main denominator of most search-based 

coding techniques was that these techniques were based on low order prediction, only 

limited to two degrees of freedom. If complex transformations, such as perspective change 

between the several MIs, require to be accurately described, prediction methods based on 

high order prediction were necessary. Consequently, the authors proposed a new block 

prediction method specifically designed for LF content, which allows geometric 

transformations between several blocks to be described with up to eight degrees of freedom 

[11]: 

• R. J. S. Monteiro, P. J. L. Nunes, N. M. M. Rodrigues, S. M. M. Faria, “Light Field 

Image Coding Using High-Order Intra block Prediction,” IEEE Journal on Selected 

Topics in Signal Processing, 2017, Vol. 11, No. 7, pp. 1120-1131. 

One of the short comings of the high order prediction-based techniques is the fact that they 

require more information, i.e. transformation parameters to be transmitted to the decoder, 

when compared to low order prediction-based techniques. Therefore, the following 

contribution was published,  which is based on performing a training step for several training 

directions in the encoder side that allows the transformation parameters to be inferred in the 

decoder, consequently, vastly reducing the amount of information transmitted by the 

encoder [12]: 

• R. J. S. Monteiro, P. J. L. Nunes, S. M. M. Faria, N. M. M. Rodrigues, “Light Field 

Image Coding using High Order Prediction Training,” European Signal Processing 

Conference (EUSIPCO), 2018, pp. 1845-1849. 

Alternatively to the MI-based representation, the SAI-based representation allows for 

existent video or multiview coding solutions to be used to very efficiently encode the LF 

image, despite requiring additional processing steps. As mentioned before, the SAI-based 
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representations are more advantageous when the HEVC standard is straightforwardly 

applied. Several scanning orders are available in the literature that allowed the conversion 

of SAIs to a pseudo video sequence, i.e. a sequence of SAIs. However, most conversions 

are blindly applied as a pre-processing step and the encoder is not aware of the original 

spatial position of each SAI. The following contribution [13] allows the HEVC to transmit 

the scanning order applied in pre-processing step, allowing the reference picture selection 

to be optimized according to the distance between the original spatial positions of each SAI: 

• R. J. S. Monteiro, P. J. L. Nunes, S. M. M. Faria, N. M. M. Rodrigues, “Optimized 

Reference Picture Selection for Light Field Image Coding”, European Signal 

Processing Conference (EUSIPCO), 2019, pp. 1-5. (best student paper award 

candidate) 

3. Proposal of LF coding algorithms that allow for scalability and random access: 

In order to enable LF content to be presented on various types legacy displays, such as 2D, 

and 3D/Stereo displays, as well as on newer LF displays, with different characteristics in 

terms of spatial and angular resolutions, an efficient scalable codec is proposed. As spatial 

resolution scalable approaches are already widely available, part of this Thesis is focused on 

proposing highly efficient coding solution for LF images that also allows high flexibility in 

terms of viewpoint scalability. Viewpoint scalability allows for not only support for legacy 

displays but also features like scalable decoding that can be based on factors like available 

processing power, storage space or network conditions. Additionally, the proposed solution 

also provides viewpoint random access functionalities. These functionalities are also very 

advantageous to the end-user, providing features like improved LF navigation and reducing 

the decoding delay and the computational complexity. This proposed scalable codec is 

configurable to allow a fine control and a tradeoff between coding efficiency and viewpoint 

random access: 

• R. J. S. Monteiro, P. J. L. Nunes, N. M. M. Rodrigues, S. M. M. Faria, “Efficient 

Light Field Image Coding with Viewpoint Scalability and Random Access,” IEEE 

Transactions on Circuits and Systems for Video Technology (submitted December 

2019). 



Chapter 1. Introduction 

7 

1.3. Thesis outline 

This Thesis proposes several improvements to the state-of-the-art regarding LF representation, 

coding and functionalities such as scalability and random access. 

After this introductory chapter, the remaining of the Thesis is organized as follows: 

• Chapter 2 briefly describes the LF transmission/storage pipeline, which include, LF 

acquisition, representation, coding, rendering, display and objective evaluation. 

• Chapter 3 reviews the current most relevant coding standards, namely HEVC video 

coding standard and JPEG Pleno Part 2: LF Coding. Additionally, a review on the 

state-of-the-art LF image coding approaches is presented.   

• Chapter 4 includes a study on the different LF representations and their effects on 

LF coding efficiency.  

• Chapter 5 includes the main contributions in terms of LF image coding, based on a 

MI-based representation. 

• Chapter 6 presents a proposed LF image coding approach which is based on a 

hybrid representation, including both MI and SAI representations.  

• Chapter 7 proposes a LF image codec based a SAI representation which is able to 

achieve high coding efficiency as well as functionalities such as viewpoint scalability 

and random access. 

• Chapter 8 concludes this Thesis discussing the achievements and some future work. 
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Chapter 2. Light field imaging 

In this chapter, the typical full LF storage/transmission pipeline considered in this Thesis is 

described, from LF acquisition to visualization. As this Thesis is mostly focused on lenslet LF 

images, the explanation will follow the lenslet LF image storage/transmission pipeline, which 

presents more processing blocks than pipelines used for LFs acquired by other means. 

 

Figure 2.1 LF imaging storage/transmission pipeline. 

As shown in Figure 2.1, the LF storage/transmission pipeline can be composed by 5 steps:  

1. Acquisition: LFs may be acquired using different types of devices, which allow for 

different capabilities in terms of spatial, angular and temporal resolution, as described 

in Section 2.1.  

2. Representation: The chosen LF representation, may have a heavy influence in the 

coding efficiency. To illustrate this, the most used LF representations such as the Lenslet 

“Raw” and the 4D LF data representation are described in Section 2.2. A further study 

is presented in Chapter 4, which compares several LF representations in terms of coding 

efficiency. 

3. Encoding/Decoding: The main standardization initiatives for LF coding and enabled 

functionalities are briefly discussed in Section 2.3. Additionally, as coding efficiency is 

the main focus of this research, Chapter 3 presents a state-of-the-art review on LF coding 
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solutions while Chapters 5, 6 and 7 detail and discuss the author’s contributions in this 

field.  

4. Rendering: Prior to visualization, the viewpoints are rendered according to the type of 

used capturing device. Some examples of LF rendering techniques organized by LF 

capturing device type are discussed in Section 2.4. 

5. Visualization: LF content may be visualized in various types of devices, that range from 

standard 2D displays up to full-fledged 4D LF displays, as described in Section 2.5. 

In order to evaluate the efficiency of the proposed LF image codecs in terms of objective quality, 

two processing chains are described in Section 2.6. 

2.1. Light field acquisition 

A regular LF image can be defined as a four-dimensional signal, as defined by (2.1): 

𝐿𝐹(ℎ, 𝑣, 𝑥, 𝑦) (2.1) 

where two dimensions describe the spatial positions, i.e., (𝑥, 𝑦) and the two remaining 

dimensions describe the angular positions i.e., (ℎ, 𝑣) [14]. However, conventional camera 

sensors can only measure the information from two dimensions, i.e., the two spatial dimensions. 

Consequently, the remaining information required, i.e., angular information, can only be derived 

by having multiple 2D perspectives, which may be achieved by capturing a LF image. The most 

popular approaches to capture LF images may be grouped into two major categories [15]: 

1. Based on conventional cameras (multiple or single): These approaches include the 

well-known HDCA, which capture a LF image by using an array of conventional 

cameras, as well as using a single conventional camera to capture several viewpoints at 

different perspectives within a specific time interval; 

2. Based on lenslet LF cameras: This type of camera uses a conventional camera sensor, 

as well as an MLA to capture both spatial and angular information. There are essentially 

two types of lenslet LF cameras – unfocused [5] and focused [6], i.e., plenoptic 1.0 and 

plenoptic 2.0, respectively – that provide different capabilities in terms of spatial and 

angular resolution. 
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The next sections describe each category in more detail, as well as listing the advantages and 

disadvantages of each type of LF capturing device.  

2.1.1. Conventional light field acquisition  

The most common way to capture LF images using conventional 2D cameras, is to have a multi-

sensor solution like an array of cameras capturing a scene. This solution is also used in 

multiview video applications, however, in such case, typically only one-dimensional horizontal 

camera array is used. Figure 2.2 shows two examples of 2D camera arrays used for LF 

acquisition from Stanford University [16] and Fraunhofer [17], respectively. 

      

Figure 2.2 Examples of camera arrays from Stanford University [16] (left) and Fraunhofer [17] (right). 

The main advantage of using an array of cameras 2D to capture a LF is the fact that it allows 

the cameras to have different configurations, such as parallel or convergent camera 

arrangements. Such freedom also allows the baseline between the several cameras to be adjusted 

according to the required application. Additionally, the spatial and temporal resolution of each 

viewpoint is only limited by the camera hardware. 

Alternatively, a solution involving a time-sequential capture approach using a single image 

sensor is also possible, in case of static scenes. This approach consists in capturing the desired 

viewpoints using a conventional 2D camera mounted on a mechanical gantry on different time 

intervals, as can be seen in Figure 2.3 [18]. 

Although it is not possible to capture video using this 2D camera gantry, it allows for a 

potentially more cost-effective approach when compared to a 2D camera array. Additionally,  
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Figure 2.3. 2D camera gantry from Stanford University [18]. 

the solution used by Stanford University is able to position the camera with four degrees of 

freedom (DoF), while achieving sub-millimetric accuracy [18]. 

2.1.2. Lenslet light field acquisition 

A lenslet LF camera is a device based on a single image sensor approach that can be categorized 

as multiplexed imaging [19]. This type of approach works by multiplexing the angular and the 

spatial domain, effectively imposing a tradeoff to be made between angular and spatial 

resolution being captured by the camera sensor. This is achieved by using a MLA between the 

sensor and the main lens. Some example of this type of devices include the hand-held Lytro 

Illum [20] and the Raytrix R42 [21] LF cameras shown in Figure 2.4. 

        

Figure 2.4. Examples of lenslet LF camers, Lytro Illum [20] (left) and Raytrix R42 [21] (right). 

These are representative of the two different models of LF cameras, as the Lytro Illum is an 

unfocused LF camera and the Raytrix R42 is a focused LF camera. The type of model is based 

on the position of the camera sensor and the MLA relatively to the main lens, as illustrated in 

Figure 2.5. With different distances, different samplings of the LF can be performed, which 

characterizes the lenslet LF camera model [6]. 
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Figure 2.5. Unfocused (left) and focused (right) LF camera models. 

In the classic unfocused camera model case (Figure 2.5 left), the sensor is one focal distance 

away from the MLA. Thus, the MLA is focused at infinity, i.e., the light rays that reach the 

MLA are parallel [5]. Consequently, the MLA is completely defocused from the main lens 

image plane. Therefore, each microlens only captures angular information, meaning that each 

pixel, within the MI, corresponds to a different angle or viewpoint [5]. In the focused lenslet LF 

camera model (Figure 2.5 right), the sensor is away from the MLA focal distance and the MLA 

is focused on the main lens image plane, allowing for each microlens to generate a focused MI. 

This feature allows a higher spatial resolution for rendering, since more than one pixel can be 

extracted from each MI in the rendering process [6]. 

2.1.3. Comparison of light field acquisition methods 

In order to better understand the advantages and disadvantages of the several LF acquisition 

methods, Table 2.1 shows a comparison in terms of usability and resolution (spatial and 

angular). 

Although the hand-held LF camera has potentially the highest usability and also a potentially 

high angular resolution when compared to camera arrays, it has a very low baseline, between 

neighboring microlenses. This is a limitation when trying to generate a 3D representation of a 

scene. If a higher baseline is required in order to capture a specific scene, then the only 

alternative is to use a 2D camera array or a 2D camera gantry. Regardless, some LF 

representation and coding solutions are independent with relation to the type of LF acquisition 

method, which simplifies the remainder of the storage/transmission pipeline. 

𝑓 
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Table 2.1. Advantages and disadvantages between the several LF acquisition methods 

LF acquisition 

methods 
Advantages Disadvantages 

2D camera 

array 

Spatial resolution is independent from the 

angular resolution 

 

Low portability 

Requires calibration and synchronization 

before being used 

Cost scales with the angular resolution 

2D camera 

gantry 

Spatial resolution is independent from the 

angular resolution 

Mostly unlimited angular resolution 

Cost is independent from angular 

resolution 

Does not allow video capture 

Low portability 

Requires calibration and synchronization 

before being used 

Unfocused 

LF camera 

High portability 

Mostly “plug and play” 

High angular resolution 

Low spatial resolution 

Focused 

LF camera 

High portability 

Mostly “plug and play 

High spatial resolution 

Low angular resolution 

 

2.2. Light field representation 

After acquiring the LF, it is necessary to apply a pre-processing step to mitigate some problems 

related to the acquisition step, e.g., vignetting., This pre-processing step will define the LF 

representation, which is also will influence the following steps of the storage/transmission 

pipeline, such as the LF encoding step. These processing blocks that comprise the LF pre-

processing step are shown in Figure 2.6. 

 

 

Figure 2.6. Typical processing blocks that compose the LF pre-processing step. 
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It is worth mentioning that the only step that is mandatory is the demosaicking, however the 

remaining steps have several advantages that should be considered. The processing blocks 

present in Figure 2.6 can be described as follows: 

• Demosaicking (mandatory): The process of reconstructing a full-resolution color 

image from the sampled data acquired by a digital camera that applies a color filter array 

to a single sensor. This processing block allows the generation of a RGB image from the 

raw image, as shown in Figure 2.7. 

      

Figure 2.7. LF image before (left) and after (right) the demosaicking step. 

• Devignetting (optional): It is the process used to eliminate vignetting, very common in 

optics, which is characterized by darkening of the image corners. In LFs captured using 

MLA-based LF cameras, this problem is more noticeable because it may occur on every 

single microlens, as shown in Figure 2.8. Consequently, some rendered views may be 

darker as well, if this characteristic is not mitigated.  

      

Figure 2.8. LF image before (left) and after (right) the devignetting step. 
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• Conversion to 4D LF (optional): This data conversion corresponds to organizing the 

LF image as in (2.1). If the LF data was captured with a lenslet LF camera, the 

conversion to 4D LF requires some metadata information about the camera. Although 

less compact than the “Raw” Lenslet data representation, the 4D LF data representation 

facilitates view rendering. 

• Color & Gamma correction (optional): This processing block is used to fix color and 

illumination issues, making the images look more similar to the captured scene, as 

illustrated in Figure 2.9. 

      

Figure 2.9. Rendered central view before (left) and after (right) color ad gamma correction. 

The lenslet LF image is typically represented either as the “Raw” Lenslet data or using the 4D 

LF format. The following sections define how each LF data representation is generated using 

the processing blocks shown in Figure 2.6. 

2.2.1. Raw lenslet light field representation 

The “Raw” Lenslet (LL) data representation, as shown in Figure 2.10, is generated by applying 

only two pre-processing steps to the captured LF image, that are demosaicking and devignetting. 

The devignetting process normally uses metadata information about the LF camera used to 

capture the LF image. In the case of the Lytro Illum for example, the metadata includes white 

images. As shown in Figure 2.11, these images were acquired using a white diffuser or a white 

scene [14], being used to estimate the center of each microlens, which is considered the brightest 

pixel within each microlens (marked in red in Figure 2.11). The center location of each 

microlens can also be used for the view’s rendering process of the LL LF image or to convert it 

to the 4D LF data representation. 
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Figure 2.10. Full LF image (left) and zoom of the same LF image (right), using the ”Raw” Lenslet data 

representation. 

  

Figure 2.11. Microlens center estimation using the Lytro Illum white images [14]. 

2.2.2. 4D light field representation 

The 4D LF data representation organizes the LF image into a four-dimensional array of data 

that can be defined as 𝐿𝐹(ℎ, 𝑣, 𝑥, 𝑦), i.e., as it was in (2.1). It comprises a stack of SAIs that is 

generated from the LL data representation. As previously mentioned, the first two dimensions, 

i.e., ℎ and 𝑣, index the SAI location using horizontal and vertical coordinates, and the remaining 

two dimensions index the 𝑥 and 𝑦 spatial position within each SAI, as shown in Figure 2.12. 

The 4D LF data representation shares the initial steps with the LL data representation, where 

demosaicking and devignetting pre-processing steps are applied. After these initial steps, LL to 

SAIs conversion is applied in two steps. In the first step, resampling, rotation and scaling is 

applied, such that all MI centers become aligned with an integer grid of pixels. The second step 

applies slicing to the LF image with the aligned MI centers, therefore splitting the LF image into 

identically sized rectangles, effectively converting the hexagonally sampled data into a square 

based grid of MIs. After this step, the SAIs can be constructed by extracting one pixel from a  
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Figure 2.12. 4D LF data representation indexing (image "Fountain and Vincent 2", i.e., I09 from the EPFL LF 

dataset) [22]. 

fixed position in each MI and organizing them into a matrix. When using the Lytro Illum, 15×15 

SAIs with an individual resolution of 625×434 pixels can be obtained from the LF image. This 

means that the total number of pixels is increased by about 47%, when compared to the LL data 

representation. 

 

      

Figure 2.13. Full LF image (left) and zoom of the same LF image (right), using the 4D LF data representation. 

Once the LF image is converted into the 4D LF data representation, i.e., a stack of SAIs, it can 

be organized in several ways. For example, a single LF image with concatenated squared 15×15 

pixel MIs (4DLF-MI) as in Figure 2.13; or generating a so called pseudo video sequence (PVS), 

using the SAIs where a scanning order like raster or spiral is used (4DLF-PVS). All these 
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conversions are reversible due to the four-dimensional indexing, which also facilitates view 

rendering. 

2.3. Light field encoding 

The LF technology has recently attracted many research groups and also standardization bodies, 

such as JPEG and MPEG. This occurs not only because of its new appealing features and the 

necessity to normalize the LF data representation, but also due to the very large amount of data 

associated with these LFs. Thus, these groups are currently developing coding standards for 

emerging imaging technologies like LF, point cloud, holographic and 360º-video content, whose 

activities are known as JPEG Pleno [7] and MPEG-I [8], which structure is shown in Table 2.2.  

 

Table 2.2. Structure of both MPEG-I ISO/IEC 23090 (left) and JPEG Pleno ISO/IEC 21794 (right). 

MPEG-I ISO/IEC 23090 [23] JPEG Pleno ISO/IEC 21794 [24] 

Part 1: Immersive Media Architectures 

Part 2: Omnidirectional Media Format 

Part 3 Versatile Video Coding 

Part 4: Immersive Audio Coding 

Part 5 Point Cloud Compression 

Part 6: Immersive Media Metrics 

Part 7: Immersive Media Metadata 

Part 8: Network Based Media 

Processing 

Part 9: Geometry-based Point Cloud 

Compression 

Part 10: Carriage of Point Cloud Data 

Part 11: Implementation Guidelines for 

Network-based Media Processing 

Part 12: Immersive Video 

Part 1: Framework 

Part 2: Light Field Coding 

Part 3: Conformance Testing 

Part 4: Reference Software 

Part X: Point Cloud Coding 

Part Y: Hologram Coding 

Part Z: Quality Assessment 

 

The emerging imaging technologies that each standard is tackling are also highlighted in Table 

2.2 in bold. The scope of this Thesis is directly aligned with JPEG Pleno Part 2: Light Field, 

which, therefore, will be reviewed more thoroughly in Chapter 3, while some examples of 
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functionalities of both MPEG-I and JPEG Pleno will be briefly discussed in the following 

sections. 

2.3.1. MPEG-I functionalities 

Although MPEG-I does not directly consider 4D LF signals, it is structured to have several 

functionalities and use cases that can be considered specific cases of LF applications. The 

following functionalities [25] are possible by using immersive media such as 360º video and 

point clouds:  

• AR/VR functionalities: Support for one or multiple users in an AR/VR environment, 

e.g., telepresence; multiple user embodiment in a 360 video; object interaction in 

AR/VR; 

• 3DoF/3DoF+/6DoF capabilities: When wearing a head mounted display (HMD), the 

user is allowed different types of movement freedom, depending on the number of DoF 

that are supported. Figure 2.14 shows the various possible movements according to the 

available DoF [26]. 

 

Figure 2.14. Different types of movement freedom that are allowed for 3DoF, 3DoF+ and 6DoF [26]. 

• 2D/3D support: The users can experience both monoscopic and stereoscopic video 

content, depending if one or two viewpoints are being rendered and displayed for each 

user.  

• Free-viewpoint television (FTV): The user is able to freely select the monoscopic or 

stereoscopic 360º content from multiple viewpoints of the same scene.  
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2.3.2. JPEG Pleno functionalities 

JPEG Pleno has decided to put special emphasis on three major plenoptic modalities, notably 

light fields, point clouds and holography, as well as adding the possibility to mutually convert 

from one modality to another. However, currently (at the time of writing) the identification of 

use cases and definition of associated requirements is still ongoing for both point cloud and 

holographic modalities [24]. Regardless, several functionalities are being considered for each 

plenoptic modality: 

• Holography: Despite the limited success in applications and market, specifically with 

analogic holograms, several applications are proposed by JPEG Pleno, which include 

microscopy and interferometry [24]. 

• Point clouds: The same functionalities that are reported by MPEG-I can be applied in 

this case, such as telepresence or FTV. 

• Light field: Due to the flexibility of the 4D nature of the LF image, it can be used for a 

number of scenarios which range from capturing and representing a 2D, stereo and 

multiview scenes, using different capturing devices, as well as the ability to refocus the 

rendered image after the picture has been taken. 

2.4. Light field rendering 

After the LF image has been encoded and decoded, depending on the LF capturing device and 

representation, it might be necessary to render one or several viewpoints from the LF content: 

• 2D camera array/2D camera gantry: When the LF is captured by such types of 

capturing device, the rendering step is not necessary, if the desired viewpoint 

corresponds to the position of each 2D camera. This happens because each viewpoint is 

already captured individually, i.e., a standard 2D image or video, therefore the content 

can be displayed as is.  

• Unfocused LF camera: When the unfocused LF camera is used to capture a scene, a 

lenslet LF is captured, which requires a rendering step in order to generate the individual 

viewpoints, or SAIs. This step can be done before or after the encoding step, depending 

on the application and chosen LF representation. For example, when a SAI-based 
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representation is used, the viewpoint rendering needs to be applied before the encoding 

step. Regardless, the process that generates SAIs from the LL LF image consists in 

extracting one pixel from each MI in a fixed position and organizing those pixels in a 

matrix, forming a SAI [5]. The pixel location that is chosen, determines the SAI that is 

being selected. In order to perform this viewpoint rendering it is necessary to know 

which pixel in each MI corresponds to the central pixel, so the desired SAI can be chosen 

relatively to the central viewpoint. Such information can be normally inferred from 

metadata that is captured with the LF image, i.e., the white images referred in Section 

2.2.1. This process is already performed when using the 4D LF representation. 

Refocusing can be selected by applying a shear transform in the 4D LF representation 

[27]. Depending on the angle that is used during the transform step different focus planes 

can be selected. 

• Focused LF camera: The requirements in terms of LF rendering for the focused LF 

camera are the same as the unfocused LF camera. The main difference is the fact that 

instead extracting one pixel per MI, a patch of pixels is extracted to compose the desired 

SAI. The size of the patch determines the focus plane that is being selected. When larger 

patches are used, this means that the selected focus plane is closer to the camera than 

when using smaller patches. In this case, since more than one pixel is extracted from 

each MI, the spatial resolution is higher than when the unfocused LF camera is used, 

however a smaller number of SAIs can be generated [6]. The patches that are combined 

to generate the SAI can be either directly concatenated, i.e., basic rendering, or they can 

be combined using a blending algorithm using a slightly larger patch, i.e., blended 

rendering. Blended rendering is a rendering method that tries to mitigate the visual 

artifacts caused by basic rendering due to non-matching patches in areas of the SAI that 

are not in focus [6]. 

Additionally, regardless of the capturing device, it is possible to synthesize virtual viewpoints 

from existing ones through the depth image-based rendering (DIBR) process. In such case, depth 

information is necessary to generate the virtual viewpoints, which can be either transmitted as 

side information during the encoding and decoding process or it can be generated from the 

existing viewpoints [28]. 
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2.5. Light field display 

LF images, as 4D signals, can be displayed and experienced by the end user in various ways. 

Although the main goal of this technology is to be able to display the full-fledged 4D LF in a 

full parallax, glasses-free display, several formats can be derived from the full 4D LF image. 

These formats can be displayed in other types of display devices, such as:  

• Standard 2D displays: Multiple 2D images can be extracted from a LF image, which 

allows the user to visualize regular 2D images. 

• Stereo 3D displays: A pair of 2D images is rendered from a LF image, which can be 

visualized in a stereo 3D display. In order to correctly visualize the 3D content (depth 

perception), normally, glasses are required to separate the left and right view that is 

displayed to each corresponding eye. 

• Multiview autostereoscopic displays: When multiple pairs of images are rendered from 

the 4D LF image, the user is able to visualize several horizontal viewpoints (horizontal 

parallax) as opposed to the stereo 3D display where just a fixed pair of viewpoints is 

presented to the user. This technology allows, therefore, a more realistic depth illusion 

when compared to the stereo 3D display. 

It is also worth mentioning that even without a 4D LF display, all the legacy display types, can 

be used to display LF by allowing functionalities like FTV. In this case, the end user is able to 

select the desired point of view of the scene, regardless of how many viewpoints the display is 

able to reproduce at the same time. 

The advances in display technology have also allowed to develop LF displays prototypes. Some 

examples of prototypes are shown in Figure 2.15, namely the FOVI3D LF display [29] and the 

HoloVizio 80WLT LF display [30]. 

The FOVI3D LF display [29] uses the same principle as the MLA-based capturing technology. 

However, instead of using an MLA to sample the angle of the LF hitting the sensor, a flat panel 

with an MLA overlay is used. The light rays are intersected by the MLA recreating the LF that 

was captured through the inverse process. The technology used by the Holovizio 80WLT LF 

display [30] is the so called super-multiview LF display which uses a very dense number of 

views to replicate the 4D LF. Since this display technologies are able to reproduce the light,  



Scalable Light Field Representation and Coding 

24 

      

Figure 2.15. FOVI3D LF display [29] (left) Holovizio 80WLT LF display [30] (right). 

 

both in the spatial and angular domain, as it was observed during the content acquisition, it 

allows for a full parallax (horizontal and vertical) 3D experience without the need for glasses. 

Finally, another display technology that has become more affordable, while providing a more 

natural and immersive experience when compared to 3D displays, is the HMD. HMDs are 

essentially capable of reproducing either AR or VR experiences by generating several virtual 

viewpoints of a 3D scene, which are shown according to the user head movement. There are 

several examples of HMDs in the market that are already able to create very realistic full parallax 

3D experiences, such as the Oculus Quest [31] or the Valve Index [32] (shown in Figure 2.16). 

Moreover, in Figure 2.17 another variant of HMDs [33] is shown, which instead of using regular 

2D displays such as the previously mentioned HMDs it uses small LF displays that take 

advantage of the same MLA-based principle explained before. 

 

      

Figure 2.16. HMDs examples, Oculus Quest [31] (left) and Valve Index [32] (right).  
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Figure 2.17. NVIDIA Near-Eye head mounted display [33]. 

2.6. Light field objective evaluation  

JPEG Pleno also contributes for establishing the objective evaluation tools to compare different 

LF image codecs. In order to perform LF objective evaluation during this research, two 

processing chains were used, according to the provided metadata and type of camera used to 

acquire the LF: 

• Base evaluation processing chain (BEPC): This processing chain is used whenever 

the acquired LF image does not have any metadata to determine the center of each MI, 

i.e., making it difficult to correctly render SAIs. The objective evaluation is performed 

using the LL representation, i.e., evaluating the captured LF directly. LF images from 

any type of LF camera, i.e., unfocused or focused, can be compared using this 

processing chain, however, it is more prominently used with focused LF cameras.  

• JPEG Pleno common test conditions (CTCs): This processing chain is based on 

generating and comparing a LF image in the SAI domain using the 4D LF data 

representation. This processing chain is used with LFs captured with non-MLA LF 

capturing devices and unfocused LF cameras. When evaluating focused LF cameras 

images, this processing chain is not used because when applying SAI rendering it uses 

a patch size of one pixel, i.e., effectively only rendering SAIs which are focused on 

furthest possible focus plane.  

2.6.1. Base evaluation processing chain 

The BEPC is used to perform objective quality evaluation without using any metadata, which 

processing chain is shown in Figure 2.18.  
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Figure 2.18. Base evaluation processing chain. 

As can be seen in this figure, after the LF image is acquired with any form of MLA based LF 

capturing device, only demosaicking is applied prior to directly encoding the LL LF image. 

After LF coding and decoding, the output LF will have the same data representation, i.e., LL. 

This output LF can then be compared against the reference LF image, which is generated by 

performing all the steps in the base evaluation processing chain, with the exception of the 

encoding/decoding steps, i.e., effectively only measuring the impact of the coding process. 

The objective quality impact of the coding process, 𝑃𝑆𝑁𝑅𝑌, between the output LF (𝐿𝐹𝑂) and 

the reference LF (𝐿𝐹𝑅) is calculated as defined by (2.2): 

𝑃𝑆𝑁𝑅𝑌 = 10 log10
𝑀𝐴𝑋2

𝑀𝑆𝐸𝑌
 (2.2) 

where 𝑀𝐴𝑋 is 2𝑛 − 1, i.e., 𝑛 is the bit depth. For example, for 𝑛 = 8, 𝑀𝐴𝑋 = 255. The mean 

square error (𝑀𝑆𝐸𝑌) is calculated as defined by (2.3): 

𝑀𝑆𝐸𝑌 =
1

𝑊𝐻
∑ ∑[𝐿𝐹𝑂(𝑦, 𝑥) − 𝐿𝐹𝑅(𝑦, 𝑥)]

2

𝑊−1

𝑥=0

𝐻−1

𝑦=0

 (2.3) 

where 𝑊 and 𝐻 are the width and height, respectively, of the LF image in the LL data 

representation.  

2.6.2. JPEG Pleno common test conditions 

The JPEG Pleno CTCs are used to perform objective quality evaluation on LF images that were 

captured using for both unfocused LF cameras and non-MLA based solutions, such as HDCAs, 

with  the processing chain shown in Figure 2.19. 

The main difference between the JPEG Pleno CTCs processing chain for evaluating the LF 

objective quality and the BEPC, is the fact that, in the case of the JPEG Pleno CTCs processing 

chain, the objective quality is calculated in the SAI domain using the 4D LF data representation. 
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Figure 2.19. JPEG Pleno CTCs processing chain. 

The LF toolbox [34] is recommended when using the JPEG Pleno CTCs processing chain, which 

is responsible for all the pre-processing steps, namely, demosaicking and devignetting, 

conversion to 4D LF data representation and color and gamma correction. After the pre-

processing steps are applied, the 4D LF image can be encoded using one of the mentioned 4D 

LF data representation variants shown in Section 2.2. After the decoding step, the output LF 

image will in the same 4D LF data representation, so it can be compared in the SAI domain. As 

in the base evaluation processing chain, the reference LF is created by using the same processing 

chain as the output LF, i.e., using the processing chain in Figure 2.19, with the exception of the 

LF encoding/decoding blocks. 

The number of SAIs that will be generated depends on the angular resolution of the LF capturing 

device. In order to perform objective evaluation, the PSNR of each SAI color component is 

calculated as defined by (2.4): 

𝑃𝑆𝑁𝑅𝑌,𝑈,𝑉(𝑣, ℎ) = 10 log10
𝑀𝐴𝑋2

𝑀𝑆𝐸𝑌,𝑈,𝑉(𝑣, ℎ)
 (2.4) 

where the 𝑀𝑆𝐸𝑌,𝑈,𝑉  of each SAI is calculated as defined by (2.5): 

𝑀𝑆𝐸𝑌,𝑈,𝑉(𝑣, ℎ) =
1

𝑊𝐻
∑ ∑[𝐿𝐹𝑂𝑌,𝑈,𝑉(𝑣, ℎ, 𝑦, 𝑥) − 𝐿𝐹𝑅𝑌,𝑈,𝑉(𝑣, ℎ, 𝑦, 𝑥)]

2

𝑊−1

𝑥=0

𝐻−1

𝑦=0

 (2.5) 

where 𝐿𝐹𝑂 is the output LF and 𝐿𝐹𝑅 is the reference LF. The (𝑣, ℎ) coordinates are used to 

access the desired output SAI. For example, the top left SAI can be accessed by using (𝑣, ℎ) =

(0,0). 

In order to combine the contributions of the PSNR from each color component, the 𝑃𝑆𝑁𝑅𝑌𝑈𝑉 

of each individual SAI can be calculated as [35], as shown in (2.6): 

𝑃𝑆𝑁𝑅𝑌𝑈𝑉(𝑣, ℎ) =
6𝑃𝑆𝑁𝑅𝑌(𝑣, ℎ) + 𝑃𝑆𝑁𝑅𝑈(𝑣, ℎ) + 𝑃𝑆𝑁𝑅𝑉(𝑣, ℎ)

8
 (2.6) 
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The average 𝑃𝑆𝑁𝑅𝑌𝑈𝑉 and 𝑃𝑆𝑁𝑅𝑌 is normally used to perform objective evaluation, however, 

the number of SAIs used to calculate the average depend on the capturing device. Normally, all 

the SAIs are considered for the average calculation, with the exception of the LF images 

captured by Lytro Illum [20] cameras. In the case of the Lytro Illum, the 4D LF generated from 

the LF Toolbox is composed by 15 × 15 SAIs [34]. However, since the outer SAIs are mostly 

unusable they are not considered for the average calculation [35]. As such, only the inner 

13 × 13 SAIs are considered. The average 𝑃𝑆𝑁𝑅𝑌𝑈𝑉 value can be computed as defined by (2.7): 

𝑃𝑆𝑁𝑅𝑌𝑈𝑉𝑚𝑒𝑎𝑛 =
1

(𝑉 − 2)(𝐻 − 2)
∑ ∑ 𝑃𝑆𝑁𝑅𝑌𝑈𝑉(𝑣, ℎ)

𝑊−2

𝑥=1

𝑉−2

𝑣=1

 (2.7) 

where 𝑉 and 𝐻 are the maximum number of vertical and horizontal SAIs, i.e., 15. Consequently, 

the average 𝑃𝑆𝑁𝑅𝑌 can also be computed as defined by (2.8): 

𝑃𝑆𝑁𝑅𝑌𝑚𝑒𝑎𝑛 =
1

(𝑉 − 2)(𝐻 − 2)
∑ ∑ 𝑃𝑆𝑁𝑅𝑌(𝑣, ℎ)

𝑊−2

𝑥=1

𝑉−2

𝑣=1

 (2.8) 

2.7. Final remarks 

This chapter presented the LF imaging principles of the LF storage/transmission processing 

chain, which ranges from: 

• LF image acquisition: The LF can be acquired through conventional 2D cameras or 

using LF cameras based on MLAs.  

• LF representation: The most common LF data representations include the “Raw” 

Lenslet and 4D LF formats. 

• LF encoding/decoding: The JPEG Pleno: Part 2 standard is specifically designed with 

LF in mind while MPEG-I standard allows for other types of media (specific cases of 

LF), such as 360-video, to be encoded.  

• LF rendering: The rendering step depends on the type of capturing device that was 

used, i.e., typically, only MLA-based LFs requires a rendering step, unless the desired 

view is a virtual view. 
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• LF display: The LF content can be visualized from a vast range of solutions: from 

regular 2D displays up to full-fledged 4D LF displays. 

• LF objective quality evaluation: Two objective quality evaluation techniques were 

presented which are used depending on the provided metadata and LF acquisition type. 
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Chapter 3. Related work on light field image coding 

The LF transmission pipeline requires that all the traditional processing blocks present in 

traditional image storage/transmission systems to be adapted to the 4D nature of the LF signal. 

Although the LF image can be represented as a 2D signal and consequently to be encoded and 

decoded by a standard 2D image or video coding standard such as HEVC [36], it is not expected 

that such coding solutions will fully exploit the redundancy and intrinsic characteristic of the 

LF signal. Therefore, the additional degrees of freedom that exist in the LF technology need to 

be considered when developing a specific LF coding solution. As such, it is useful to first 

identify the four types of redundancy that can be exploited when encoding a LF signal, which 

are intrinsically connected to the representation that is being used, i.e., MI redundancy or SAI 

redundancy: 

• MI redundancy:  

1. Intra-MI redundancy that exists between neighboring pixels within an MI.  

2. Inter-MI redundancy that exploits the similarity between different MIs, which is also 

known as non-local spatial redundancy. 

• SAI redundancy: 

1. Intra-SAI redundancy that exists between neighboring pixels within a SAI, which 

can be related with conventional spatial redundancy in image and video coding 

standards; 

2. Inter-SAI redundancy, that exploits the similarity between different SAIs, 

corresponding to different perspectives of the same scene. This can also be referred 

to as inter-view redundancy in multiview image and video coding standards; 
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In this context, several solutions have been proposed in the literature, which can be categorized 

by the type of exploited redundancy: MI-based approaches or SAI-based approaches. 

Alternatively, there are some methods which do not exploit directly the redundancy of either 

SAIs or MIs, using instead alternative representations to encode the LF signal, such as low rank 

approximations. 

The remainder of this chapter is organized as follows: Section 3.1 describes a summary of the 

coding tools present in HEVC standard, which are relevant due to their use in several state-of-

the-art methods, as well as in several contributions of this Thesis; Section 3.2 presents a 

summary of the coding tools defined in JPEG Pleno Part 2: LF coding; Section 3.3 to 3.5 

describe several state-of-the-art contributions on LF image coding, which rely on exploiting 

redundancy from MIs, SAIs or alternative representations, respectively; finally Section 3.6 

concludes this chapter with some final remarks. 

3.1. High efficiency video coding standard 

The main concept of the HEVC standard [36] coding architecture, shown in Figure 3.1, is similar 

to its predecessor H.264/AVC [37]. Each picture is split into blocks, which are predicted in the 

spatial or temporal domains. Depending on the prediction scheme, each picture can be encoded 

using I, P or B modes. In I-pictures, intra prediction is applied by exploiting only spatial 

redundancy. In P- or B-pictures, temporal prediction can be additionally used. The residue, i.e., 

the difference between the predicted block and the original block, is encoded using a spatial 

transform. The resulting coefficients are scaled and quantized. This information is entropy 

coded and transmitted with the prediction information, like the selected mode or the motion 

vectors (if applicable). The encoder also includes a decoder, such that the decoding process is 

replicated in the encoder. This allows the decoded pictures to be used as reference pictures for 

prediction of the future frames. The decoding loop includes the reconstruction of the 

approximated residue using inverse quantization and transform. The residue is added to the 

prediction generating the decoded block. In order to reduce coding artifacts, the decoded picture 

may be filtered after or during the decoding process. 

The HEVC standard only specifies the bitstream structure and syntax, as has been the case for 

all past ITU-T and ISO/IEC video coding standards. This way, the standard provides maximum 
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Figure 3.1. HEVC video encoder architecture [36]. 

flexibility to optimize implementations on the encoder side while still being standard complaint. 

The following sections describe in more detail the most important blocks within HEVC, which 

include block partitioning, intra and inter prediction, spatial transform, entropy coding and in-

loop filters, since these blocks can be extremely relevant for LF encoding. 

3.1.1. Block partitioning 

The input video signal is split into coding tree units (CTU) which are quadtree elements. CTUs 

are composed by coding tree blocks (CTB), one for the luminance and two for the chrominance 

components. The possible luminance CTB sizes are 64×64, 32×32 and 16×16. The CTUs are 

divided into coding units (CU), which contain luminance coding blocks (CB) and two 

chrominance CBs. CUs can have prediction units (PU) and transform units (TU). A PU is a unit 

that can have a size between 4×4 and 64×64, where either intra or inter prediction is performed 

at a CU level. TU size depends on the PU size, varying from to 32×32 down to 4×4. Each CU 

may have more than one PU and it is always square shaped, with a size between 8×8 and the 

size of the CTU. A CB with 𝑀 ×𝑀 pixels can have partitioned prediction blocks (PB), which 

are the luminance and chrominance components of a PU, as 2𝑁 × 2𝑁, 𝑁 ×𝑁, 𝑁 × 2𝑁 and 
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2𝑁 × 𝑁, where 𝑀 = 2𝑁. A PB can also be partitioned asymmetrically using asymmetric motion 

prediction (AMP) using sizes: 2𝑁 × 𝑛𝑈, 2𝑁 × 𝑛𝐷, 𝑛𝐿 × 2𝑁 and 𝑛𝑅 × 2𝑁, where 𝑈, 𝐷, 𝐿 and 

𝑅 correspond to Up, Down, Left and Right. For example, if 𝑀 = 16, the 2𝑁 × 𝑛𝑈 the resulting 

partition will be one 16×4 block on top and a 16×12 on the bottom, because the division is 

horizontal and on the upper part of the block. 

All possible sizes for CTU, CU, TU and PU are shown in Table 3.1 in a hierarchical order. For 

example, for 16×16 CTU size, the only possible sizes for CU, PU and TU are the ones on the 

same line or below in the table. Therefore, the only possible CU sizes are 16×16 and 8×8 and 

TU sizes are between 16×16 and 4×4. 

Table 3.1. Possible CTU, CU, TU and PU sizes. 

M N CTU CU TU PU 

64 32 64×64 64×64 - 

64×64 2N×2N 

64×32 2N×N 

32×64 N×2N 

64×16 / 64×48 2N×nU / 2N×nD 

16×64 / 48×64 nL×2N / nR×2N 

32 16 32×32 32×32 32×32 

32×32 2N×2N 

32×16 2N×N 

16×32 N×2N 

32×8 / 32×24 2N×nU / 2N×nD 

8×32 / 24×32 nL×2N / nR×2N 

16 8 16×16 16×16 16×16 

16×16 2N×2N 

16×8 2N×N 

8×16 N×2N 

16×4 / 16×12 2N×nU / 2N×nD 

4×16 / 12×16 nL×2N / nR×2N 

- - - 8×8 8×8 

8×8 N×N 

8×4 N×N/2 

4×8 N/2×N 

- - - - 4×4 4×4 N/2×N/2 

3.1.2. Intra prediction  

The similarities between neighboring pixels in homogenous regions, patterns or contours in 2D 

images are normally referred to as spatial redundancy. The concept of spatial redundancy can 

be exploited by image/video codecs to improve the compression efficiency.  

In HEVC, spatial redundancy is exploited by using 35 intra prediction modes, which use 

decoded boundary samples of adjacent blocks as reference data to predict the current PU. The 
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intra predictions modes include: DC mode, planar mode and 33 directional modes. The DC 

mode creates a flat surface that is the mean of the boundary samples, which is useful when trying 

to predict homogeneous regions. The planar mode is efficient when trying to predict gradient 

surfaces of the picture. The directional modes are very efficient in predicting image contours, 

which is also the reason the existence of 33 different directional modes. Each directional mode 

represents a different direction that can be exploited. These directional modes are used to predict 

contour directions which range from 45º (directional mode 2) to -135º (directional mode 34), as 

shown in Figure 3.2.   

 

Figure 3.2. Modes and directional orientations for intra prediction modes [36]. 

Depending on the chosen direction, different boundary samples from decoded PUs are used to 

predict the current PU. All directional modes are available for PU sizes of 32×32, 16×16 and 

8×8. However, when the PU is 64×64 only four directional modes are available and if the PU is 

4×4 only sixteen are available.  

3.1.3. Inter prediction  

Successive frames in a video sequence normally exhibit a large amount of similarities depending 

on the scene’s motion, i.e., a static scene will have much more temporal redundancy than an 

action scene, for instance.  

HEVC includes several inter prediction modes that can be used to exploit the temporal 

redundancy. When encoding the current PB, one or several decoded picture references will be 

available in the reference picture lists (RPL), which will be used by HEVC to describe the 

motion of the current PB using a 2D displacement vector. The way this motion vector is 

calculated and transmitted to the decoder depends on the used inter prediction mode: 
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• Merge: The motion vector is derived from a spatial or temporal neighboring PB, and no 

residual data is encoded. This is typically used when the current PB has the same motion 

vector as a neighboring PU. Figure 3.3 shows the several spatial candidates that can be 

used to infer the motion vector. The availability of each candidate is checked in the 

following order {𝑎1, 𝑏1, 𝑏0, 𝑎0, 𝑏2}. The temporal candidates include the right bottom 

position, and if not available, the center position, i.e., a motion vector from a co-

collocated PB. The skip mode is a special case of merge mode that is used when the 

motion vector is derived from the first available candidate. 

• Motion estimation: The motion vector is determined using a (non-normative) matching 

algorithm to identify the PB on previously encoded pictures that correspond (best match) 

to the current PB of the current picture. The motion is therefore identified explicitly by 

a motion vector that has one quarter pixel precision. HEVC uses an eight-tap filter to 

interpolate the half-sample positions and then a seven-tap filter for the quarter-sample 

positions. After the motion vector is determined, advanced motion vector prediction 

(AMVP) is used, so the motion vector can be transmitted relatively to previously 

encoded motion vectors. AMVP uses the same candidates shown in Figure 3.3 as 

predictors for the determined motion vector. 

 

Figure 3.3. Positions of spatial candidates for merge and motion estimation inter prediction modes [36]. 

The motion vector can be generated relatively to one or two reference pictures. In the second 

case two vectors are generated for two different reference pictures; the two PBs generated by 

this process (bi-prediction) are combined by the use of a simple average or an explicit weighted 

average. 
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3.1.4. Spatial transform  

After applying the intra or inter prediction modes to the PB, the residue block is generated, by 

subtracting the original block with the PB. This residue block is encoded by HEVC and 

transmitted to the decoder, however, unlike the prediction information, the residual information 

is lossy encoded. The discrete cosine transform (DCT) is used to encode the residual block by 

converting it into the frequency domain allowing its energy to be concentrated in a small number 

of DCT coefficients. The DCT coefficients can be further compressed by applying quantization 

as in H.264/AVC, but the DCT block sizes can vary from 32×32 down to 4×4. The higher the 

QP, the lower the quality of the reconstructed residual block.  

HEVC also uses an alternative transform for 4×4 TBs, the discrete sine transform (DST), 

providing marginal better results than the DCT when the residue amplitude is higher on the 

pixels that are furthest way from the boundary samples used for intra prediction.  

3.1.5. Entropy coding 

Entropy coding is used to encode all the symbols generated by the encoder, which include 

quantized transform coefficients, intra prediction data, motion data and filter control data. 

Entropy coding exploits the statistical redundancy of the occurrence of each symbol. The 

context adaptive binary arithmetic coding (CABAC) core algorithm remains unchanged from 

H.264/AVC. However, improvements have been made in terms of computational complexity 

and memory requirements. Its output is the HEVC bitstream. 

3.1.6. In-loop filters 

One of the main drawbacks of block-based coding is the generation of blocking artifacts, i.e., 

visible discontinuities at the block boundaries, on the decoded image, especially when encoding 

an image/video with a high QP. In order to mitigate this problem two filters are applied by the 

decoder to the reconstructed image: 

• Deblocking filter (DBF): It was designed to improve the subjective quality of the 

decoded video by reducing blocking artifacts as shown in Figure 3.4. This filter is 

applied to all samples of adjacent PU or TU boundary using three filter intensity options, 

that are chosen by HEVC depending on the content.  
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Figure 3.4. Reconstructed image before DBF (left) and after DBF (right) [38]. 

• Sample adaptive offset (SAO): It is used after DBF in order to further improve the 

signal representation in smooth areas and around edges as shown in Figure 3.5. The 

application of SAO consists in adding an offset value to the decoded samples that is 

based on a look-up table transmitted by the HEVC encoder. 

      

Figure 3.5. Reconstructed image before SAO filter (left) and after SAO filter (right) [39]. 

3.2. JPEG Pleno part 2: light field coding 

The JPEG Pleno part 2 describes the LF coding part of the upcoming standard. JPEG Pleno part 

2 is divided into several annexes describing each structural part of the standard. It provides two 

separate solutions to encode a LF image [40] which are described as 4D Transform Mode, i.e., 

Annex B, and 4D Prediction Mode, Annexes C, D and E. These solutions correspond to 

adaptations of the state-of-the-art methods Multidimensional LF encoder (MuLE) [41] and 

hierarchical warping, merging and sparse prediction encoder, (WaSP) [42]. Two solutions were 

proposed because they provide more efficient results for different types of LF images, where 

MuLE is more efficient for MLA-based LF images and WaSP is more efficient for LF captured 

with HDCAs. Such solutions are described in the following sections. 
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3.2.1. MuLE: Multidimensional light field encoder 

MuLE [41] LF coding solution was developed with the 4D LF representation in mind. Instead 

of focusing exclusively on either MI- or SAI-based redundancy exploitation, it is focused on the 

full 4D redundancy of the LF image. It works in three steps: 

1. 4D transform: A 4D-DCT, separable spatial transform, is applied to a LF image in each 

one of the four dimensions, i.e., both spatial (𝑥, 𝑦) and angular dimensions (ℎ, 𝑣), thus 

exploiting the redundancy in each dimension. The generated coefficients are grouped 

into a 4D array of subbands of the same frequency transform coefficients. As in most 

2D coding scenarios it is expected that after quantizing most of the energy of the DCT 

coefficients is concentrated in the lower frequencies, which also applies in this case. 

These DCT coefficients are then sliced into 4D bit planes, i.e., a binary representation 

of the 4D DCT coefficients. 

2. Hexadeca-tree bitplane clustering: The DCT coefficients in the 4D bit planes are 

clustered using a hexadeca-tree. The concept is similar to a quadtree, however, since in 

this case, the DCT coefficients are organized in 4D, this means that when each node is 

segmented, i.e., segmentation flag is true, it has sixteen leaf nodes instead of four, as 

shown in Figure 3.6. The hexadeca-tree is described using a series of ternary flags 

signaling: 

i. Lower bitplane: This indicates that the decedent of this node is a block with the 

same dimensions as the original one, however it is represented with a bit plane 

with a reduced precision of one bit. 

ii. Split block: This indicates that this node has sixteen leaf nodes, each one with 

half the length of the original one in all four dimensions 

iii. Zero block: This indicates that this node has no descendants and it is represented 

by zeros. 

Each leaf node is going to be further partitioned until the 4D block is 1 × 1 × 1 × 1 or 

if the coefficient magnitudes are below a certain threshold. 
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Figure 3.6. Hexadeca-tree representing the clustering of bit-planes of 4D transform coefficients. 

3. Entropy coding: When the clustering step is concluded, a context-based binary adaptive 

arithmetic coder is used to encode both the segmentation flags and the DC and AC 

coefficients per bitplane. There are three different contexts for each one of the respective 

types of information being encoded. The output of the entropy coder is the MuLE 

bitstream. 

3.2.2. WaSP: Hierarchical warping, merging, and sparse prediction 

WaSP [42] LF coding solution was designed to be an extension of JPEG 2000 allowing 

backward compatibility within the JPEG standards. This hierarchical approach exploits the SAI-

based redundancy which is present in the LF image. WaSP is used to hierarchically encode a 

LF image using four different steps: 

1. Encode the reference SAIs: 𝑁 reference SAIs at the lowest hierarchy level are encoded 

independently using JPEG 2000. 

2. Encode reference inverse depth maps: At least one reference SAI inverse depths maps, 

i.e., 1/𝐷, where 𝐷 is the depth of the SAI, at the lowest hierarchy level are encoded 

using JPEG 2000.  

3. Perform warping merging and sparse prediction for each non-reference SAI:  

i. Warping: Both the reference inverse depth and reference SAIs are warped to the 

position of the target SAIs, i.e., all the remaining non-reference SAIs. After this 

step, 𝑁 synthesized versions of both the inverse depth and SAIs are generated 

for each non-reference position. 
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ii. Merging: The warped synthesized SAIs are merged (combined) using the 

camera centers and the coefficients of an optimal least square merger. For low 

bitrates, however, the merging process can be done using fixed weights derived 

from the distance between the current SAI and warped SAI. Occlusions are 

mitigated using a post processing median filter. The warped synthesized inverse 

depth maps use an algorithm that, although not optimal, requires no access to a 

ground truth inverse depth [42], which is necessary because normally, there is no 

ground truth available for the SAI depth maps. The merging step information, 

i.e., the necessary weights to apply to merging step, are transmitted to the 

decoder. 

iii. Sparse prediction: The merged SAI is adjusted using a sparse predictor 

proposed in [43], which improves the quality of the merged SAI by performing 

an optimal least squares interpolation of neighboring encoded SAIs. The sparse 

predictor information signaling the neighboring encoded SAIs used for 

prediction is transmitted to the decoder. 

4. Encode residual of each non-reference SAI: The improved merged SAI generated in 

the last step is subtracted to the original non-reference SAI generating the residual SAI, 

which is then encoded using JPEG 2000. 

3.3. MI-based approaches 

This section presents the main contributions to efficiently encode LF images which are mostly 

based on exploiting the MI redundancy. This includes intra- and inter-MI redundancy, which is 

a characteristic type of redundancy of LF images. This new type of redundancy can typically be 

exploited using search-based approaches, explained in Section 3.3.1. Alternatively, other 

approaches based on using spatial transforms, reshaping the MIs or disparity-based approaches 

can be used to efficiently exploit the MI redundancy, as explained in Sections 3.3.2 to 3.3.4, 

respectively. 
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3.3.1. Search algorithm-based approaches 

When using the MI-based LF representation, the inter-MI redundancy is normally much higher 

than the typical image spatial redundancy, therefore, most methods consist on search algorithms 

that exploit the MI similarity. The search algorithms can be based on different techniques and 

may use one or multiple references [44]–[55]. 

• Unidirectional search: In [46], a self-similarity (SS) compensated prediction is 

proposed that takes advantage of the flexible partition patterns used by HEVC. This 

approach consists in an adaptation of the inter prediction mode present in HEVC, such 

as, Skip, Merge and Motion Estimation to be used in the causal area, i.e., decoded area, 

of the LF image as intra modes. Such adaptations are described as SS-Skip, SS-

Compensation and SS-Merge. The SS compensated prediction allows the inter-MI 

redundancy to be exploited by describing the similarities between the current MI and 

neighboring MIs using 2D displacement vectors, i.e., SS vectors, as illustrated in Figure 

3.7. In [44], [45], the SS approach is validated using the H.264 coding standard for both 

LF image and video coding. Finally, in [50], the SS compensated prediction performance 

is further improved by adding vector prediction candidates specifically for SS vectors, 

to be used in both SS-Compensation and SS-Merge. 

 

Figure 3.7. Unidirectional search example. 

• Bidirectional search: The authors in [47] extended the unidirectional search proposed 

in [46] as a bidirectional search version of SS. This search algorithm can use two 

displacement vectors from different areas of the LF image, in order to then average the 

prediction block of both searches, as shown in Figure 3.8. This approach was later tested 

for LF images captured with an unfocused LF camera [52]. Furthermore it was finally 
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generalized in [53] as a coding method using up to two hypotheses for prediction in 

spatial and time domain. Recently, the unidirectional approach proposed in [50] was 

extended to have weighted bidirectional capabilities, using a locally optimal rate 

constrained algorithm [55]. Several combinations of weights are tested; however, it is 

concluded that the RD efficiency is higher when the weights for both directions are 

closer to 0.5, i.e., regular average.  

 

 

Figure 3.8. Bidirectional search example. 

 

• Locally linear embedding (LLE): Alternatively to the several approaches that propose 

search algorithms capable of combining prediction blocks up to two candidates, the 

authors in [48] proposed a prediction technique that allows to use 𝑁 directions. As shown 

in Figure 3.9, a template matching algorithm is applied to find the 𝑁 nearest template 

candidates of the current block. A least-squares optimization problem is then solved in 

order to estimate the weights used to linearly combine the 𝑁 template candidates into a 

prediction block. In [48], this approach was tested using between one and eight neighbor 

templates. The main advantage of the template matching over the block matching 

algorithm, as it is used in unidirectional and bidirectional searches, is the fact that the 

displacement vector information is implicit, i.e., the same template search can be 

repeated at the decoder in order to generate the same displacement vectors.  
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Figure 3.9. Template matching for one (left) and n directions (right). 

• Gaussian process regression: The authors in [54] proposed an alternative search 

algorithm that does not require as much computational effort as more traditional search 

methods, e.g., full search algorithms. A search algorithm similar to [48], however, with 

a reduced search area, allowing only horizontal and vertical directions, is used to find 

the 𝑁 nearest neighbor templates in the causal area. This simplified search algorithm is 

shown in Figure 3.10. The normalized cross correlation (NCC) is used to assess the 

reliability of the obtained templates. The prediction from the 𝑁 templates is modeled as 

a non-linear gaussian process and gaussian process regression is used for estimating the 

prediction block. More recently in order to improve de prediction accuracy for non-

homogenous textures and reduce the computational complexity in this work, the authors 

in [56] proposed to apply a classification method which can segment the non-

homogeneous texture areas improving the prediction accuracy. Moreover, the 

computational complexity is improved by using different prediction modes for each 

specific area of the lenslet LF image, i.e., content-based prediction.  

 

Figure 3.10. Reduced search area proposed in [54]. 
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3.3.2. Transform-based approaches 

LF coding schemes can also rely on the use of transforms, e.g., DCT to exploit the intra- and 

inter-MI redundancy. In [57] a three dimensional version of the DCT is used to exploit the 

redundancy of a stack of MIs. The 3D-DCT is applied on stacks of four MIs and then the DCT 

coefficients are quantized, using a 3D scalar quantizer. The resulting quantized coefficients are 

encoded with a hybrid run-length/Huffman entropy encoder. In [58], this approach was further 

tested using different stack configuration of MIs, such as 1 × 2𝑁 and 2𝑁 × 1 or 𝑁 × 2 and 

2 × 𝑁 MIs configurations, where 𝑁 can be 2 or 4. Figure 3.11 shows how the 1 × 2𝑁 

configuration is assembled when 𝑁 = 2. 

 

Figure 3.11. Assembling 1×2N configuration for 3D-DCT when N=2 [57]. 

3.3.3. MI reshaping-based approaches 

Most of the MI-based LF coding approaches try to fit a block structure into a lenslet LF image, 

which is organized in an irregular square or hexagonal grid of MIs, which may not be very 

efficient. There are two types of alternative approaches that try to fit the LF image structure and 

the coding structure, which include: 

• Reshaping the LF image structure to fit the coding structure: In [48, 49], a reversible 

image reshaping and adaptive interpolation method is designed to align the MI structure 

with the CTU grid for HEVC, as shown in Figure 3.12. In [59], once the LF image is 

reshaped, the inter MI redundancy is exploited by using four blocks in four neighboring 

MIs to create a prediction block for the current MI. In [60], the authors use a prediction 

mode base on dictionary learning where the MIs are represented by a sparse linear 

combination of atoms from a generic dictionary. 

 

MIs 

1 × 2𝑁 
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Figure 3.12. LF image before MI reshaping (left) and after MI reshaping (right) [60]. 

• Reshape the coding structure to fit the LF image structure: Alternatively, the authors 

in [61] propose to change HEVC coding structure in order to recognize an hexagonal MI 

grid as regular CU structure. In this case, the inter-MI redundancy is exploited using the 

neighboring MIs with an optimized linear prediction design based on L1 minimization. 

Figure 3.13 shows the inter-MI prediction mode being applied to the current MI using 

MIs R0, R1 and R2 as reference MIs. Note that in this approach, each MI is recognized 

as an individual modified CU by HEVC facilitating the coding procedure. 

 

Figure 3.13. MI prediction based on a linear combination of three reference MIs (𝑅0, 𝑅1 and 𝑅2). 

3.3.4. Disparity-based approaches 

Since the LF image consist in capturing a scene from several points of view, some authors 

proposed techniques to exploit the geometrical information of the scene, namely by exploiting 

the inter-MI redundancy by using the depth information between several MIs. In [49], a 

unidirectional search algorithm is used, but, instead of applying a full search in order to find the 

SS vector, the approach considers the estimated disparity between the several MIs. In [62], a 

prediction mode is proposed that uses a depth-adaptive convolutional neural network (CNN). 
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Several neighboring blocks in different neighboring MIs feed the CNN that at the output 

generates a prediction block.  

3.4. SAI-based approaches  

This section presents the main literature contributions to efficiently encode LF images that are 

mostly based on exploiting the SAI-based redundancy. This includes intra- and inter-SAI 

redundancy, i.e., spatial and inter-view redundancy, which is already widely studied in image 

and multiview codecs, respectively. Since in this case, the most prominent type of redundancy 

is normally the inter-SAI redundancy, many of the proposed solutions in the state-of-the-art are 

based either in video codecs or multiview codecs, such as HEVC [36] or MV-HEVC [63], 

respectively. These types of approaches rely on converting SAIs into a sequence of pictures, 

i.e., a PVS, or multiple PVS. Since the temporal prediction tools are as effective as inter-view 

prediction tools in exploiting the inter-SAI redundancy. Alternatively, other approaches based 

on structural key views (SKV) and spatial transforms are used to efficiently exploit the SAI 

redundancy. Sections 3.4.1 and 3.4.2 include approaches that rely on PVS and multiview 

solutions, respectively, while Sections 3.4.3 and 3.4.4 include alternative approaches based on 

SKVs and spatial transforms, respectively. 

3.4.1. PVS-based approaches 

Most state-of-the-art video codecs rely on non-normative motion estimation tools, like, for 

example, block matching algorithms, to exploit the temporal redundancy of video data. As a 

similar redundancy exists between SAIs, these tools can also be used to exploit the inter-SAI 

redundancy. To this end, several scanning strategies [64]–[66] have been proposed to transform 

SAIs into a PVS which is then encoded as a regular video sequence. In [64], [65] two different 

types of raster scan, i.e., raster and “serpentine” scans, are proposed as well as a spiral scan, 

which is shown to be in general more efficient than both raster scans. Such scanning orders are 

illustrated in Figure 3.14. In [66] an improved raster scan is proposed which includes 

enhancement illumination compensation and an improved reconstruction of the MIs using 

adaptive filters. In [67], the authors used a PVS scheme to organize the SAIs into layers, 

depending on the proximity to the central SAI, starting with the central SAI and moving on to 

the outer SAIs. The further away the SAI is from the center, the higher the value of the used 
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quantization parameter (QP). More recently, the authors in [68] also proposed 2D hierarchical 

coding structure with a limited number of reference frames, where the reference frames for each 

SAI would be selected based on the distance to the current SAI instead of the picture order count 

(POC), i.e., as in a typical video coding scenario. Additionally, an optimal bit allocation 

algorithm was proposed for the 2D hierarchical coding structurer which further improves the 

coding efficiency. 

 

Figure 3.14. Examples of scanning orders: Raster (left), Serpentine (center), Spiral (right). 

3.4.2. Multiview-based approaches 

Several multiview-based approaches have been proposed in the state-of-the-art where all the 

SAIs can be interpreted as a HDCA signal and encoded with a multiview coding solution. The 

main advantage of this solution is that it is compatible with HDCA signals allowing for a single 

solution for encoding both types of LFs. Consequently, coding standards like MVC or MV-

HEVC can be directly applied to these signals, allowing for high coding efficiency. These 

codecs allowed for intra-SAI redundancy to be exploited by the standard intra prediction modes 

in both H.264 and HEVC, as well as inter-SAI redundancy to be exploited by inter-view, i.e., 

disparity prediction modes [63]. Finally, in case LF video is being encoded, temporal 

redundancy is exploited using motion prediction modes.  

Two types of configurations are typically used: i) each SAI is considered to be an individual 

view [69]–[72], allowing LF video to be encoded as well; ii) The LF image is organized in 

multiple PVS with an equal amount of frames, where each PVS is considered to be a different 

view [73], [74], as illustrated in Figure 3.15. In both types of configuration it is possible to have 

a 2D prediction structure relating several SAIs. However, in the case of the second 

configuration, part of the inter-SAI prediction is applied on the time domain. Some of the 



Chapter 3. Related work on light field image coding 

49 

proposed approaches to encode LF images based on the multiview coding standards [73], [74], 

also include improved 2D rate allocation schemes. Alternatively, in [75], the second 

configuration type is used, however, the authors use a neural network to synthetize virtual 

references from reconstructed neighbor frames. The previously encoded SAIs in both horizontal 

and vertical directions, relative to the current SAI are used to feed the neural network, which 

then generates the desired virtual reference images to improve the encoding process. The 2D 

prediction structure was modified in order to maximize the provided number of virtual 

references to each SAI that is being encoded. 

      

Figure 3.15. Two possible configurations to encode LF image and video that use multiview coding approaches 

where each SAI is considered an individual view (left) and multiple PVS are encoded as a multiview video 

(right). 

3.4.3. SKV-based approaches 

When exploiting inter-SAI redundancy, the main factor that contributes to higher redundancy is 

the disparity between each SAI. In scenarios where the LF is captured by a hand-held LF camera, 

i.e., using an MLA, the baseline between the several microlenses is very small, which typically 

contributes to very low disparities between each SAI. Consequently, several authors have 

proposed to only encode and transmit part of the SAIs, normally referred to as SKVs, and then 

transmitting additional information in the bitstream to the decoder to generate the remaining 

non-SKVs. These approaches are normally structurally similar, as shown in Figure 3.16.  
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Figure 3.16. SKV-based LF image coding approach structure. 

In Figure 3.16, the SAIs that compose the LF image are split into two groups, SKVs and non-

SKVs. The SKVs are encoded directly and an approximation of the non-SKVs is generated, 

based on the decoded SKVs and some additional information extracted from the original non-

SKVs. The residual image of the non-SKVs is also encoded and transmitted. In order to decode 

the non-SKVs, it is only necessary to transmit the SKVs, the residual image of the non-SKV 

and some additional information gathered by the technique used to approximate the non-SKVs. 

The differentiating factor between the several SKV-based approaches is the distribution of 

SKVs and non-SKVs and the technique used to approximate the non-SKVs. The following non-

SKVs approximation approaches can be found in the literature: 

• Linear approximation: In [76], the SKVs and non-SKVs are first separated in a 

checkboard pattern, i.e., the SKVs are about half the total number of SAIs. Firstly, a 

view approximation model is constructed assuming that the disparity between SAIs is 

linearly distributed, i.e., the disparity is the same for two pairs of SAIs with the same 

baseline between them. Secondly, once the disparity between SAIs is known, the SKVs 

are warped to the current non-SKV position which are then combined using a weighted 

sum, generating an approximation of the non-SKV.  

• Depth/disparity image based rendering: In [77] the disparity maps of the four corner 

SAIs (SKVs) are estimated using optical flow. The remaining disparity maps (the 

disparity maps of the non-SKVs) are generated by forward warping of the four corner 
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SKVs disparity maps. DIBR is then applied to synthesize the non-SKVs. Alternatively, 

in [78] five SKVs are selected from the LF image, which correspond to the central SAI, 

and border SAIs in the upper, lower, left and right position relative to the central SAI. 

The LF is approximated with disparity guided sparse coding over a perspective shifted 

LF dictionary based on the SKVs. The non-SKVs are generated using approximated 

disparity maps, while the SKVs and residuals of the non-SKVs are transmitted to the 

decoder. Finally, in [79], the SKVs are selected as seven sequences of SAIs (PVS) that 

correspond to the odd columns of SAIs present in a 13×13 LF image. The SKVs are 

encoded using MV-HEVC, similarly to the second configuration mentioned in the 

multiview-based approaches in the previous section. The estimated depth maps of the 

SKVs are then used on the decoder to generate the approximated non-SKVs. 

• Neural network-base prediction: In [80], four SKVs are selected from the LF image 

to be encoded as a PVS. The decoded SKVs feed a CNN which applies angular super 

resolution to generate predictions of the non-SKVs. The residuals between the predicted 

non-SKVs and the original non-SKVs are encoded and added to the bitstream. The same 

CNN is used at the decoder to generate the same predicted non-SKVs, based on the four 

decoded SKVs. In [81], the SKVs are selected as a checkered pattern and encoded as a 

PVS. The non-SKVs are predicted using a generative adversarial network (GAN). The 

residuals between the original non-SKVs and the predictions provided by the GAN are 

transmitted to the decoder with the compressed SKVs.  

• Graph-based prediction: In [82], the four corner SAIs are selected as SKVs as in [77]. 

The SKVs are fed to a CNN in order to generate predictions of the remaining non-SKVs. 

The residuals between such predictions and the original non-SKVs are then grouped into 

super pixels, i.e., group of connected pixels with similar colors, using the super linear 

iterative clustering (SLIC) algorithm [83]. Afterwards, graph transforms are applied on 

each super-pixel followed by quantization and entropy coding, generating the bitstream. 

Alternatively, in [84], a graph is estimated between all the SAIs that compose the LF 

image. The encoder selects a subset of SAIs (about half of the SAIs, in a checkerboard 

pattern) that are compressed (SKVs) using a lossy view encoder, while the graph weights 

are encoded using a lossless graph encoder. The non-SKVs are generated in the decoder 

using the information from both the decoded SKVs and the decoded graph weights. 
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3.4.4. Transform-based approaches 

As in MI-based methods, transforms, such as a three-dimensional discrete wavelet transform 

(3D-DWT), can also be used to exploit the LF redundancy [85]. In this case, the LF image is 

decomposed into SAIs, and a 3D-DWT is applied to the stack of SAIs. The lower frequency 

bands are transformed using a two-dimensional discrete wavelet transform (2D-DWT), while 

the remaining higher frequency coefficients are simply quantized and arithmetically encoded. 

The 2D-DWT lower frequency bands of several SAIs are grouped into a 3D block, as shown in 

Figure 3.17. A 3D-DCT is applied to the generated 3D block and the DCT coefficients are 

quantized and encoded using Huffman coding. 

 

Figure 3.17. 2D-DWT lower bands grouping example: 8 SAIs are grouped generating an 8×8×8 block [85]. 

3.5. Alternative-representation-based approaches 

Alternatively to the MI- and SAI redundancy based techniques, some approaches are based on 

different data representations, allowing different types of redundancy to be exploited. Some 

examples of such representations include: 

• Homography-based low-rank approximation: In homography-based low-rank 

approximation (HLRA) approaches [78, 79], there is a joint search for a set of 

homographies that best align the SAIs. The SAIs can be aligned using either one global 

homography or multiple homographies, depending on how much the disparity across 

SAIs varies from one depth plane to the other. All the warped SAIs using the selected 

homographies are then vectorized and concatenated in a 𝑀 ×𝑁 pixels matrix, where 𝑁 

is the number of SAIs and 𝑀 is the number of pixels per warped SAI. A joint 

optimization of homography parameters and low rank matrix approximation is 
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performed for a target 𝐾 rank. The low rank approximation is represented as 𝐵 × 𝐶, 

where 𝐵 has a size of 𝑀 ×𝐾 and 𝐶 has a size of 𝐾 × 𝑁, which is smaller (lower rank) 

than the initial representation 𝑀 ×𝑁 if 𝐾 < 𝑁. Each column of matrix 𝐵 is encoded 

using HEVC-Intra while the weights contained in 𝐶 and the homography parameters are 

encoded using scalar quantization followed by Huffman coding. 

• Super-Ray based low rank approximation: In [88] a super-ray low rank 

approximation is used to improve LF image coding. Firstly, a SLIC segmentation 

technique is used to create the SAI super-pixels. Secondly, using disparity information, 

the super-rays are constructed by connecting the several super-pixels across the several 

SAIs using the central SAI as the reference. Thirdly, disparity compensation is applied 

to each super-ray, in order to align them across the multiple SAIs. Finally, a low rank 

approximation is computed using singular value decomposition (SVD) applied to the 

aligned super-ray representation resulting in two sets of eigen images, corresponding to 

the light rays visible in the central view and the occlusions. This information is 

transmitted to the decoder together with a matrix of coefficients and side information 

that allow the inverse alignments of super-rays in the decoder. 

3.6. Final remarks 

This chapter briefly reviews the HEVC video coding standard and JPEG Pleno Part 2, as well 

as the most relevant LF image coding techniques available in the literature. HEVC is presented 

because, although it is not generally the most efficient solution to encode LF images, it is the 

base of several state-of-the-art LF image coding techniques that rely on a MI- or SAI-based 

representation.  

JPEG Pleno Part 2 introduces two different approaches to encode LF images: MuLE that is 

based on 4D Transform mode and WaSP that is based on 4D prediction. MuLE is typically more 

efficient for MLA-based LF images and WaSP is more efficient for LF images captured using 

HDCAs. 

Both MI and SAI representations allow to exploit different types of redundancy, which can be 

achieved by using different image coding techniques. The available techniques in the literature 

can be organized by the type of representation: 
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• MI-based approaches are able to more efficiently exploit the intra- and inter-MI 

redundancy which is especially relevant for MLA-based LF images. Most solutions are 

able to encode the LF image without prior knowledge about the type of capturing device. 

The presented approaches can be categorized based on the type of technique used to 

exploit intra-MI and inter-MI redundancy, namely: search algorithms, spatial 

transforms, MI reshaping and disparity compensation. 

• SAI-based approaches require a prior knowledge about the type of capturing device in 

order to correctly convert the MI representation into a SAI representation. However, 

once the LF image is converted to SAIs, several approaches based on existent video and 

multiview coding standards can be used to efficiently encode the LF image. Such 

approaches are able to exploit the intra-SAI and inter-SAI redundancy being categorized 

based on the type of technique used to exploit these types of redundancy: PVS, 

multiview, SKV and spatial transforms. 

Finally, some techniques use alternative representations and, therefore, different types of 

redundancy that cannot be categorized as solely MI- or SAI-based, namely low rank 

approximations based on homographies applied to SAIs and super-rays.  
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Chapter 4. Light field representation comparison  

State-of-the-art LF image coding solutions, usually, rely in one of two LF data representation 

formats: LL or 4D LF. While the LL data representation is a more compact version of the LF, it 

requires additional camera metadata and processing steps prior to image rendering. On the 

contrary, 4D LF data, consisting of a stack of SAI, provides a more redundant representation 

requiring, however, minimal side information, thus facilitating image rendering. 

As mentioned in Chapter 2, JPEG Pleno CTCs, regarding the objective evaluation of LF image 

coding defined a processing chain that allows to compare different 4D LF data codecs, aiming 

to facilitate codec assessment and benchmark. Thus, any codec that does not rely on the 4D LF 

representation needs to undergo additional processing steps to generate an output comparable 

to a reference 4D LF image. These additional processing steps may have impact on the quality 

of the reconstructed LF image, especially if color subsampling format and bit depth conversions 

have been performed. Consequently, the influence of these conversions needs to be carefully 

assessed as it may have a significant impact on a comparison between different LF codecs.  

The remainder of this chapter is organized as follows: Section 4.1 presents an exhaustive 

comparative analysis of the processing chains of LL and 4D LF data representation formats, 

considering different color subsampling formats and bit depths; Section 4.2 shows how each 

processing chain affects the coding efficiency; Finally, Section 4.3 concludes this chapter with 

some final remarks. 

4.1. Processing chain for objective quality assessment 

JPEG Pleno CTCs proposes a reference processing chain to assess the coding efficiency of 

different LF coding solutions (see Figure 4.1). This processing chain aims to accommodate 
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different LF coding solutions that may rely on different LF data representations [35]. However, 

objective and subjective performance assessment is done using a common data representation: 

the 4D LF data representation [35]. Therefore, regardless of the coding approach, the 

corresponding output format must be converted into a 4D LF, organized as a stack of RGB 4:4:4 

10 bit/sample SAIs, i.e., the same format of the reference 4D LF image generated using the 

reference processing chain shown in Figure 4.1. 

 

Figure 4.1. JPEG Pleno reference LF processing chain. 

The JPEG Pleno reference LF processing chain is comprised by the steps described in Chapter 

2 to generate the LL and 4D LF data representation from the raw LF data. To assess the objective 

quality of a LF image codec, it is required to encode and decode the LF image using a coding 

solution and then converting the LF image to the 4D LF data representation using a RGB 4:4:4 

10 bit/sample color format. If the codec is limited to a specific LF data representation, e.g., LL, 

and or a specific color format, e.g., YUV 4:2:0 8 bit/sample, the processing chain needs to be 

adapted.  

The following sections will tackle the processing chain when two data representations are tested: 

LL and the 4D LF common data representation. Additionally, for both data representations two 

color subsampling formats with different bit depths are also compared, YUV 4:4:4 10 bit/sample 

(10 bit) and YUV 4:2:0 8 bit/sample (8 bit). 

4.1.1. Processing chain for the LL data representation 

When the LL data representation is used in a given codec, since it is different from the 4D LF 

common data representation, some adaptations to the processing chain are necessary. These 

adaptations will allow the output LF image to use the same data representation and color format 

as the reference 4D LF image, and therefore to be comparable in terms of objective metrics. 
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Additionally, since each codec might be designed for a specific color format, the required color 

conversions for the specific color format must also be included.  

The processing chain for a LL data representation with an YUV 4:4:4 10 bit format is shown in 

Figure 4.2. 

 

 

Figure 4.2. Processing chain to encode and decode LF data with LL data representation and YUV 4:4:4 10 bit 

format. 

In the case of Figure 4.2, the codec uses the YUV 4:4:4 10 bit format, therefore the necessary 

color conversion is applied prior to the encoding step. After encoding and decoding the LL LF 

image, a conversion to the 4D LF data representation is necessary. The LF Toolbox [34] for 

such conversion requires the input to be in RGB 4:4:4 10 bit format, therefore the decoded LL 

LF image is converted to such specific color format and then converted to 4D LF data 

representation. Color and Gamma correction is applied to the 4D LF image that is, finally, 

converted to YUV 4:4:4 10 bit in order to be compared to the reference 4D LF image in terms 

of objective metrics. 

When a different color format is required, e.g., YUV 4:2:0 8 bit, some changes must be done in 

the processing chain, as shown by the yellow arrows in Figure 4.3. 

In Figure 4.3, as the encoded LL LF image is in the YUV 4:2:0 8 bit format, the image color 

quality may be potentially degraded, but the amount of information to be compressed is greatly 

reduced. 
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Figure 4.3. Processing chain to encode and decode LF data using the LL data representation and YUV 4:2:0 8 

bit color format. 

When using the LL data representation, some additional information, i.e., camera metadata [89], 

has to be transmitted to the decoder, in order to allow a proper view rendering. Converting the 

LL data representation into 4D LF facilitates the view rendering [89]. This metadata must 

include, at least, the MI center coordinates and MI size [14]. Any alternative to the 4D LF data 

representation format requires a processing step to convert the specific data representation to 

4D LF using RGB 4:4:4 10 bit, in order to be compared with the reference 4D LF image. 

4.1.2. Processing chain for the 4D LF data representation 

To encode the LF image using a variation of the 4D LF data representation, enables to use a 

simpler processing chain than that used to encode the LL data representation. In Figure 4.4 and 

Figure 4.5, the required processing chain for 4D LF is shown for the encoder and decoder, 

respectively. 

In this study only two variants of the 4D LF are considered: 4DLF-MI and 4DLF-PVS. The 

4DLF-MI consists on a 2D frame with all MIs concatenated as a matrix and the 4DLF-PVS is a 

sequence of SAIs (pseudo-video) using a spiral scan [64]. Although the formats are different, 

the conversion between both is seamless, without losing any information. However, to encode 

the LF image using the 4DLF-PVS variant by, efficiently exploiting the redundancy between 

each SAI, a video codec is necessary. 
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Figure 4.4. Processing chain to encode LF data using the 4DLF-MI (top) and 4DLF-PVS (bottom) data 

representation and YUV 4:4:4 10 bit color format. 

 

 

Figure 4.5. Processing chain to decode LF data using the 4DLF-MI and 4DLF-PVS data representation and 

YUV 4:4:4 10 bit color format. 

In the case of Figure 4.4, the 4D LF image is converted into the color format required by the 

codec, in this case YUV 4:4:4 10 bit. After this step, the image is converted into the 4D LF 

variant 4DLF-MI or 4DLF-PVS. Finally, the resulting LF data is encoded, decoded, converted 

to 4D LF and compared to the reference 4D LF image.  

When the codec is limited to the color format YUV 4:2:0 8 bit, the arrows in yellow in Figure 

4.6 and Figure 4.7 show the added block to the processing chain. 

In this case, since the required color format is YUV 4:2:0 8 bit, a color conversion block is 

added to the processing chain, allowing the output LF image to be compared with the reference 

4D LF image. 
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Figure 4.6. Processing chain to encode LF data using the 4DLF-MI (top) and 4DLF-PVS (bottom) data 

representation and YUV 4:2:0 8 bit color format. 

 

Figure 4.7. Processing chain to decode LF data using the 4DLF-MI and 4DLF-PVS data representation and 

YUV 4:2:0 8 bit color format. 

4.1.3. Comparison of LL and 4D LF data representations 

The following major differences between the LL and 4D LF data representations may drastically 

impact on the objective performance assessment: 

1. Camera metadata: By effectively converting the LF data into a stack of SAIs, the 4D 

LF data representation does not require any camera metadata to perform basic rendering 

tasks at the decoder side, namely, view generation and focus change. However, when 

using the LL data representation, some specific camera metadata is required to enable 

proper rendering tasks. This information is not standardized; however, it could include 

transmitting the MI size and MI centers, which are necessary to convert from the non-

integer hexagonal grid to the integer square grid of MIs.  

2. LF image resolution: In the case of the LL data representation, the LF image resolution 

will be the native resolution, i.e., 7728×5368 pixels for the Lytro Illum. However, when 

this format is converted to the 4D LF data representation, the number of pixels is 
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expanded to 9375×6510 pixels, or 625×434×15×15 pixels, when using 4DLF-MI or 

4DLF-PVS data representations, respectively, which represents an increase of around 

47% in the amount of data to be transmitted to the decoder. Therefore, the LL data 

representation is much more compact if camera metadata is not considered. 

3. Color processing: Due to the color conversion and color and gamma correction 

processing steps, which are necessary for both 4D LF and LL data representations, color 

degradation along the processing chain is likely to occur. In such case, the LL data 

representation is likely to suffer from a more prevalent degradation of color components 

when compared to the 4D LF data representation, due to two main reasons: i) The higher 

number of color conversions steps for both YUV 4:4:4 10 bit and YUV 4:2:0 8 bit; ii) 

the color and gamma correction step is only performed on the decoder side after the 

losses introduced by the encoder and by the color conversion processing steps, reducing 

the final color accuracy. 

4.2. Experimental results 

In this section, the LF data representations described in the previous sections, namely LL, 4DLF-

MI and 4DLF-PVS, are used. Additionally, for each LF data representation two color formats, 

YUV 4:4:4 10 bit and YUV 4:2:0 8 bit, are used in the codec block of the processing chain. 

With these combinations of LF data representation and color formats, the effects of the 

suggested processing chain are evaluated in terms of objective results. The codec used in these 

experimental tests is the HM-16.9 implementation of HEVC-RExt [90], that may use different 

coding profiles, depending on the combination of the LF data representation and color format. 

The following six scenarios were tested, along the specific coding profiles and used processing 

chains: 

1. LL YUV 4:2:0 8 bit, using Main Intra profile and the processing chain of  Figure 4.3; 

2. 4DLF-MI YUV 4:2:0 8 bit, using Main Intra profile and the processing chain of Figure 

4.6; 

3. 4DLF-PVS YUV 4:2:0 8 bit, using Main profile and the processing chain of Figure 4.6; 

4. LL YUV 4:4:4 10 bit, using Main 4:4:4 10 Intra profile and the processing chain of 

Figure 4.2; 



Scalable Light Field Representation and Coding 

62 

5. 4DLF-MI YUV 4:4:4 10 bit, using Main 4:4:4 10 Intra profile and the processing chain 

of Figure 4.4; 

6. 4DLF-PVS YUV 4:4:4 10 bit, using Main 4:4:4 10 profile and the processing chain of 

Figure 4.4. 

In the following sections, the specific block settings for each processing chain are described, as 

well as the achieved experimental results and individual conclusions. 

4.2.1. Color correction 

The reference LF images were generated by the reference processing chain, shown in Figure 

4.1, using the LF Toolbox v0.4 [34] for the Demosaicking, Devignetting and Conversion to 4D 

LF data representation blocks. For the Color and Gamma correction blocks, the configuration 

suggested in JPEG Pleno CTCs [35] was used. 

𝐶𝑜𝑙𝑜𝑟𝑀𝑎𝑡𝑟𝑖𝑥 =  [
2.2172 −0.4233 −0.1989

−1.0467 1.7511 −0.7366

−0.1706 −0.3278 1.9354

] ;    

𝐶𝑜𝑙𝑜𝑟𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = [1 1 1];    𝐺𝑎𝑚𝑚𝑎 = 1 2.2⁄  

(4.1) 

After applying the Color and Gamma correction defined by (4.1), the reference 4D LF image 

was generated, in order to be compared with the output LF images, either from the LL or 4D LF 

processing chains. 

4.2.2. Chroma and bit depth upsampling and downsampling 

Regardless of using the LL or 4D LF data representations, the color conversion blocks are 

necessary to convert the LF images to YUV 4:4:4 10 bit or YUV 4:2:0 8 bit. Additionally, the 

conversion from RGB to YUV is done using the Recommendation ITU-R BT.709-6, as it was 

described in the JPEG Pleno CTCs [35].  

Additionally, subsampling the chroma components from YUV 4:4:4 to YUV 4:2:0 and 

upsampling from YUV 4:2:0 to YUV 4:4:4 is done using scripts made available for the ICME 

2016 Light Field Challenge [91]. Bit depth downsampling from 10 bit to 8 bit is performed by 

truncating the two least significant bits. Bit depth upsampling from 8 bit to 10 bit is done by 

applying a left bit shift of 2 bits. 
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4.2.3. Objective performance assessment 

In order to access the objective performance of the codec, in this case HEVC-RExt, for six 

different scenarios, it is necessary to: i) calculate the number of bits per pixel the codec uses to 

encode the LF image plus the metadata necessary to perform image rendering; ii) calculate the 

average PSNR of each rendered SAI, in comparison to the SAIs rendered from the reference 4D 

LF. 

Since the EPLF dataset [22] is based on LF images, captured using the Lytro Illum LF camera, 

the number of possible SAIs that can be extracted using the LF Toolbox is 15×15. However, 

since the outer views are mostly unusable, JPEG Pleno recommends that only the results for the 

inner 13×13 views are evaluated [35]. Because of this, when the 4D LF data representation is 

used, the outer views are discarded before the encoding step, so effectively, only 13×13 views 

are encoded. Each view has a resolution of 625×434 pixels, thus the total number of pixels is 

45841250. Although there is a significant reduction in the number of views (approximately 

25%), i.e., from 225 (15×15) views to 169 (13×13) views, the spatial resolution used to encode 

the 4D LF data representation is still, approximately 11% larger than the one used by the LL 

data representation. The number of bits per pixel is calculated by dividing the number of bits 

used to encode the LF image by the total number of pixels, i.e., 45841250. 

As it was explained in the previous section, regardless of the used data representation, the LF 

images that reach the decoder side are converted into 4D LF, with the color format YUV 4:4:4 

10 bit, to be compared to the reference 4D LF image. The objective quality is obtained by 

calculating the individual PSNR-YUV for each SAI, comparing the output and the reference 4D 

LF image, and then averaging the 13×13 individual PSNR-YUV values as described in Section 

2.6.2.  

Every image from the EPFL LF dataset (see Appendix A.2) was encoded and decoded using 

HEVC-RExt, with the appropriate profile. The QPs used for the LL and 4DLF-MI data 

representations were 22, 27, 32, 37, 42 and 47, and the QPs used for 4DLF-PVS were 17, 22, 

27, 32, 37 and 42. The achieved results for this selection of QPs, for both representations, 

roughly produce bitrates within the target bit rates proposed by JPEG Pleno CTCs document, 

i.e., between 0.001 bpp and 0.75 bpp [35] . 
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4.2.4. Analysis of the experimental results 

The experimental results for the full EPFL LF dataset using HEVC-RExt codec, in the six 

scenarios previously listed are shown in Figure 4.8.  
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Figure 4.8. Rate-Distortion results comparing all six combinations of LF data representations and color formats 

for the twelve LF images from the EPFL LF dataset. 
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LF data representation comparison 

When comparing the results shown in Figure 4.8 in terms of LF data representation, it is possible 

to observe that the least efficient LF data representation is the 4DLF-MI. In general, the 4DLF-

MI, regardless of the color format, and LL, using YUV 4:2:0 8 bit color format, achieve the 

worst performance in comparison to the remaining LF data representations. It indicates that the 

redundancy that exists within neighboring MIs is not properly exploited by HEVC. Both data 

representations are expected to perform significantly better if using a prediction tool to exploit 

the MI redundancy in HEVC [51].  

The LL format, using YUV 4:4:4 10 bit and 4DLF-PVS, regardless of the color format, provide 

higher efficiency, but in general the 4DLF-PVS allows for better results. It is possible to observe 

that the LL data representation tends to be more competitive against the 4DLF-PVS at higher 

bitrates, namely, when encoding images I01, I02, I03, I04 and I10, It is worth reinforcing the 

fact that no metadata is being considered for the LL data representation, and that the 4D LF 

based data representations generate roughly 11% more pixels to encode. Moreover, when using 

HEVC to encode the 4DLF-PVS, the intra- and inter-SAI redundancy is exploited, which does 

not happen when HEVC encodes LL or 4DLF-MI data representations due to the lack of 

adequate coding tools. 

Color format comparison 

When strictly comparing color formats within each LF data representation, there is a clear 

tendency of the 4D LF to be more efficient to encode YUV 4:2:0 8 bit color when compared to 

the YUV 4:4:4 10 bit. This can be seen in both 4DLF-PVS data representation, for all images, 

and for 4DLF-MI data, for images I02, I03, I07, I09 and I11, while for the remaining images 

both color formats achieve similar coding efficiencies.  

The exact opposite tendency can be seen in the case of the LL data representation, where using 

YUV 4:4:4 10 bit is more efficient than using YUV 4:2:0 8 bit. This can be seen for all images, 

across every tested bitrate.  

These results can be justified by the use of color correction and color conversions processing 

block. In the case of 4D LF data representation, the color correction processing step is applied 

early in the processing chain, before any color conversion or encoding takes place. As the color 

conversion and encoding steps add distortion to the LF image luma and chroma components, 
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and since the color correction was applied before chroma subsampling and encoding, in the case 

of YUV 4:2:0 8 bit, the objective quality of these components is higher.  

In the case of the LL data representation, more color conversion steps are necessary, especially 

when YUV 4:2:0 8 bit color format is used. As the color correction step, for the LL format, is 

only applied on the decoder side, the chroma components carry the distortion introduced by 

color conversion and encoding steps.  

Maximum objective quality 

In order to encode 4D LF RGB 4:4:4 10 bit, it is necessary to add processing blocks that 

introduce irreversible distortion to the LF image, regardless of the coding method. In order to 

assess the maximum objective quality, the processing chains used in the last section for the six 

possible scenarios are reused but removing the codec processing block. The maximum objective 

quality for both LL and 4D LF data representations, using YUV 4:4:4 10 bit and YUV 4:2:0 8 

bit color formats, are shown in Table 4.1 and Table 4.2 for the average PSNR-Y and average 

PSNR-YUV, respectively.  

Table 4.1. Maximum objective quality measured in Average PSNR-Y (bold and italic PSNR values correspond to 

the maximum and minimum, respectively). 

Avg. PSNR-

Y (dB) 
I01 I02 I03 I04 I05 I06 I07 I08 I09 I10 I11 I12 AVG. 

LL YUV 

4:2:0 8 bit 
44.55 39.17 41.92 48.06 35.68 47.65 40.07 41.31 41.10 37.23 35.96 38.77 40.96 

4D LF YUV 

4:2:0 8 bit 
58.49 58.45 58.46 58.45 58.57 58.45 60.01 58.45 58.48 58.51 58.45 58.45 58.60 

LL YUV 

4:4:4 10 bit 
65.23 61.47 62.36 65.51 59.42 66.21 59.29 59.85 63.93 62.11 56.10 60.39 61.82 

4D LF YUV 

4:4:4 10 bit 
Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. 

 

Table 4.2. Maximum objective quality measured in Average PSNR-YUV (bold and italic PSNR values correspond 

to the maximum and minimum, respectively). 

Avg. PSNR-

YUV (dB) 
I01 I02 I03 I04 I05 I06 I07 I08 I09 I10 I11 I12 AVG. 

LL YUV 

4:2:0 8 bit 
41.86 36.97 39.09 44.41 34.33 45.08 38.41 40.06 38.95 35.82 34.29 37.03 38.86 

4D LF YUV 

4:2:0 8 bit 
54.52 54.24 54.01 54.75 54.50 54.95 55.16 54.82 54.23 54.94 53.46 54.38 54.50 

LL YUV 

4:4:4 10 bit 
62.34 58.48 59.16 62.38 57.12 63.87 57.63 58.67 61.04 55.66 54.16 58.12 59.05 

4D LF YUV 

4:4:4 10 bit 
Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. 

 



Scalable Light Field Representation and Coding 

68 

From Table 4.1 and Table 4.2 it is possible to conclude that the processing chain for the 4D LF 

data representation has a smaller impact on the final average PSNR. This is justified by the fact 

that the alternative LF data representations, in this case the LL, need additional processing steps 

that introduce distortion to the LF image.  

The average PSNR-Y is higher than the average PSNR-YUV for every tested case, which is 

justified by the additional color conversions that are applied to each individual processing chain. 

Although this is true for both LL and 4D LF data representations, in the case of the LL data 

representation, the average PSNR-YUV reaches values as low as 34 dB when YUV 4:2:0 8 bit 

color format is used and 54 dB when YUV 4:4:4 10 bit color format is used. 

The average PSNR-YUV for all images is roughly 15 dB higher for the 4D LF data 

representation in comparison with the LL data representation. This confirms that the LL data 

representations is more affected by the processing chain than the 4D LF data representation, in 

terms of both luma and chroma components. 

In this case, no distinction is done between 4DLF-MI and 4DLF-PVS, because the conversion 

between both of these 4D LF data representation is reversible and can be applied at any point in 

the processing chain.  

In the case of the 4D LF data representation used with YUV 4:4:4 10 bit color format, when 

removing the codec processing block, the processing chain becomes identical to the reference 

processing chain, consequently, the PSNR is infinite for every case. 

 

Summary of the experimental results 

The upper triangle in Table 4.3 shows the comparisons between the tested LF data 

representations in terms of color degradation and maximum objective quality. While, the lower 

triangle compares them in terms of achieved coding efficiency for each color format. 

4.3. Final remarks 

This chapter presented an in-depth comparison of the effects of using existing LF data 

representations, namely, LL, 4DLF-MI and 4DLF-PVS, considering different color formats  
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Table 4.3. Summary of the LF data representation comparisons 

  VS 4DLF-MI 4DLF-PVS LL 

4DLF-MI 

 

Both LF data 

representations achieve 

the same color 

degradation and 

maximum objective 

quality 

4DLF-MI has less color 

degradation and 

achieves a higher 

maximum objective 

quality 

4DLF-PVS 

4DLF-PVS is more 

efficient for every image 

that was tested regardless 

of the color format 

 

4DLF-PVS has less 

color degradation and 

achieves a higher 

maximum objective 

quality 

LL 

YUV 4:4:4 10 bit: LL is 

more efficient for every 

image that was tested 

YUV 4:2:0 8 bit: LL is 

in general more efficient 

for low bitrates 

YUV 4:4:4 10 bit: 

4DLF-PVS is more 

efficient, with the 

exception of I01, I02, 

I03, I04, 10 for higher 

bitrates  

YUV 4:2:0 8 bit: 4DLF-

PVS is more efficient for 

every case 

 

 

namely YUV 4:4:4 10-bit and YUV 4:2:0 8-bit, using JPEG Pleno CTCs. Six individual 

combinations where tested each one requiring a specific encoding and decoding processing 

chain, and finally converted to the common format for objective quality assessment, i.e., 4D LF 

YUV 4:4:4 10-bit [35].  

The experimental results that have been performed using the HEVC-RExt codec [90], show that 

the 4DLF-MI data representation achieves the lowest coding efficiency, regardless of the color 

format. Although the same number of pixels are being encoded, the 4DLF-PVS achieves a 

higher coding efficiency, when compared to 4DLF-MI, by exploiting the inter-SAI redundancy 

using the temporal predictions tools available in HEVC. The 4DLF-PVS is also more efficient, 

in general, than the LL data representation. This can be observed for every image and bitrate 

tested, with the exception of the higher bitrates for five out of the twelve tested images. In such 

cases, the LL data representation is only able to outperform the 4DLF-PVS data representation 

when using the YUV 4:4:4 10 bit color format. 
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The LL data representation benefits from using the color format YUV 4:4:4 10-bit while both 

4D LF data representations produce better results when YUV 4:2:0 8-bit color format is used. 

This conclusion can be further verified by comparing the results using the average PSNR-Y and 

average PSNR-YUV. When analyzing the results for average PSNR-Y, the efficiency gains of 

the YUV 4:2:0 8-bit color format are even more notorious than when using the average PSNR-

YUV. However, when performing the same analysis using the 4D LF data representation, the 

opposite tendency occurs; the efficiency gains of the YUV 4:4:4 10-bit are lower when using 

the average PSNR-Y, instead of average PSNR-YUV. 

When analyzing the results for the maximum quality of each of the six tested scenarios, with 

the different LF data representations and color formats, one can conclude that the maximum 

quality is lower when the LL data representations is used. When the YUV 4:2:0 8-bit color 

format is used, the maximum quality using the average PSNR-YUV can be as a low as 34 dB. 

When analyzing the maximum quality results using the average PNSR-Y metric, the objective 

quality is always higher, with an average increase of about 3 dB. These results lead to the 

conclusion that, an alternative LF data representation like LL, although more compact than the 

4D LF variants, suffers more color degradation due to the more extensive processing chain. 
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Chapter 5. Light field image coding using high order 

intra block prediction 

It was seen in the LF representation study presented in Chapter 4, that the MI-based 

representations tends to be less efficient than the SAI-based ones when being directly encoded 

by HEVC. Therefore, developing coding techniques that will exploit the MI redundancy which 

is exclusive to LF content, is likely to produce high gains in coding efficiency because it is not 

being exploited. 

As it was shown in Chapter 3, several state-of-the-art LF coding schemes rely on search 

algorithms mostly based on block matching or template matching techniques to exploit the 

inherent intra- and inter-MI redundancy in LF images. Such search algorithms can be 

unidirectional, bidirectional, based on locally linear embedding or gaussian process regression. 

However, the common denominator in these approaches is that all these coding schemes use 

low order prediction (LOP) which only allow two DoF, as only translations are used to describe 

the inherent LF image inter-MI redundancy.  

Due to the small baseline between MIs in lenslet LF images, the different MIs can be 

approximately related by changes in perspective, which require eight DoF to be described. This 

additional matching accuracy is important to develop a coding method able to cope with 

important features of the LF content, such as: 

• The LF camera model, i.e., both focused and unfocused models should be handled;  

• The type of microlens array structure, e.g., rectangular or hexagonal microlens layouts, 

creating rectangular, hexagonal or circular MIs; 
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• The MI size, i.e., a parameter that depends on the camera, and has a strong influence on 

the number of possible rendered SAIs and their spatial resolution. 

• The LF representation, i.e., any MI based data representation, (e.g., LL or 4DLF-MI), 

should be handled. 

High order prediction (HOP) models, e.g., using geometric transformations with more DoF, 

have been studied during the last two decades in traditional 2D and 3D image coding scenarios. 

Several geometric models, like translation, rotation, scale, shear and perspective changes have 

been used to improve the coding efficiency, by exploiting spatial [92], temporal [93]–[98] and 

inter-view [99]–[102] redundancy. In most proposals, these models have been applied image-

wise (instead of block-wise), due to two main reasons: (i) high computational complexity in 

block-wise model parameter estimation, and (ii) significant additional bit rate required for 

parameter transmission. Despite these drawbacks, this chapter demonstrates that block-wise 

HOP models can increase block matching accuracy and, thus, coding efficiency for LF images.  

The method proposed in this chapter for encoding LF images relies on a two-stage block-wise 

HOP model, where each image block is intra predicted from a reference in the causal area of the 

image, i.e., containing pixels that were already encoded. Since this approach is applied block-

wise, it is possible to optimize the HOP model (number of DoF) for each block to be encoded. 

Taking advantage of the extra DoF available in HOP models, it is possible to outperform state-

of-the-art coding techniques based on LOP models. 

The remainder of this chapter is organized as follows: Section 5.1 describes the geometric 

transformations used in the proposed prediction method; Section 5.2 presents the proposed HOP 

model; Section 5.3 presents the proposed HOP training model; Section 5.4 presents 

experimental results, and, finally, Section 5.5 concludes the chapter with some final remarks. 

5.1. Geometric transformations for high order prediction 

In most state-of-the-art encoders, e.g., HEVC, prediction between blocks of pixels is performed 

using very simple transformations, like translations. However, a lenslet LF image is comprised 

of MIs that are related by more complex transformations, resulting from the fact that each MI 

represents the scene being captured from slightly different perspectives. In such cases, it is 
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advantageous to use, for example, a projective geometric transformation that better exploit the 

features of the LF image and its MIs.  

A geometric transformation (GT) is able to map perspective changes from one view (generically 

associated to a quadrilateral) into another view, requiring up to eight DoF. Considering two 

different blocks, 𝐴 and 𝐴′, each one with its own coordinate system, (𝑢, 𝑣) and (𝑥, 𝑦), 

respectively, it is possible to define a generic relationship: 

(𝑥, 𝑦) = (𝑋(𝑢, 𝑣), 𝑌(𝑢, 𝑣)) (5.1) 

where 𝑋 and 𝑌 are mapping functions for each coordinate. These functions create a point to 

point correspondence between images. Depending on the number of DoF used by the mapping 

functions in (5.1), different number of independent point-to-point correspondences are possible. 

To describe these mapping functions, some GTs may be used, namely, Projective, Bilinear or a 

simpler Affine GT, as illustrated in Figure 5.1. 

 

Figure 5.1. Examples of possible GTs applied to block A: Projective (𝐴𝑃
′ ), Bilinear (𝐴𝐵

′ ) and Affine (𝐴𝐴
′ ). 

5.1.1. Projective geometric transformation 

In order to simplify the mathematics used in this kind of GT, homogeneous coordinates are 

commonly used [103]. Thus, the Projective GT can be defined by a 3×3 matrix 𝑯 verifying 

(5.2): 

[𝑥, 𝑦, 1] = [𝑢ℎ, 𝑣ℎ, ℎ]𝑯  (5.2) 

The Projective matrix 𝑯 can be decomposed into three different submatrices, 𝑳𝒑, 𝑻𝒑 and 𝑷𝒑: 

𝑯 = [
𝑳𝒑 𝑷𝒑
𝑻𝒑 1

], 𝑳𝒑 = [
𝑙00 𝑙01
𝑙10 𝑙11

], 𝑻𝒑 = [𝑡𝑥 𝑡𝑦], 𝑷𝒑
𝑻 = [𝑝𝑥 𝑝𝑦] (5.3) 
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Each submatrix is responsible for a different elementary type of GT: 𝑻𝒑 is responsible for the 

description of translations, 𝑳𝒑 is able to define linear transformations such as rotation, scaling, 

and shearing, and 𝑷𝒑 describes perspective transformations. 

To fully exploit the capabilities of the projective matrix 𝑯, a four-point correspondence is 

necessary between blocks 𝐴 and 𝐴′. In this case, the full transformation matrix corresponds to 

the following system of equations: 

{
 
 

 
 𝑥 = 𝑋(𝑢, 𝑣) =

𝑙00𝑢 + 𝑙10𝑣 + 𝑡𝑥
𝑝𝑥𝑢 + 𝑝𝑦𝑣 + 1

𝑦 = 𝑌(𝑢, 𝑣) =
𝑙01𝑢 + 𝑙11𝑣 + 𝑡𝑦

𝑝𝑥𝑢 + 𝑝𝑦𝑣 + 1

 (5.4) 

The system of equations (5.4) defines the necessary calculations for mapping the coordinates of 

every pixel of block A into the transformed block 𝐴′.  

The number of available DoF is directly related with the number of known points of 

correspondence which exist between both images. For less than four points of correspondence, 

simpler transformations can be represented by the perspective model. For example, if one point 

is known, the only component that can be possibly described is a translation, i.e., 𝑻𝒑 = [𝑡𝑥, 𝑡𝑦], 

𝑷𝒑 = [0,0]
𝑇 and 𝑳𝒑 = 𝑰𝟐, where 𝑰𝟐 is the 2×2 identity matrix. This case is defined by (5.5): 

[𝑥, 𝑦, 1] = [𝑢ℎ, 𝑣ℎ, ℎ] [
𝑰𝟐 𝟎
𝑻𝒑 1]  (5.5) 

which can be translated into the system of equations (5.6): 

{
𝑥 = 𝑋(𝑢) = 𝑢 + 𝑡𝑥
𝑦 = 𝑌(𝑣) = 𝑣 + 𝑡𝑦

  (5.6) 

This is the case in most state-of-the-art MI search-based schemes to encode LF images [50], 

where one or several vectors signal one or several 2D displacements, i.e., using only two DoF.  

5.1.2. Bilinear geometric transformation 

The Bilinear GT is an alternative to the Projective GT, defined by a 4×2 matrix 𝑩 verifying 

(5.7): 
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[𝑥, 𝑦] = [𝑢𝑣, 𝑢, 𝑣, 1]𝑩, (5.7) 

where: 

𝑩 = [
𝑷𝒃
𝑳𝒃
𝑻𝒃

] = [

𝑝𝑥 𝑝𝑦
𝑙00 𝑙01
𝑙10 𝑙11
𝑡𝑥 𝑡𝑦

] (5.8) 

The Bilinear GT matrix 𝑩 can represent similar GTs as the Projective GT, with the same number 

of DoF. However, it performs a non-planar transformation, which makes it more flexible. Thus, 

only horizontal and vertical lines, as well as equispaced points along these directions, are 

preserved [104]. Diagonal lines, on the other hand, are not mapped as lines but as quadratic 

curves. This feature is illustrated in Figure 5.1, where, in the case of the Bilinear GT, points 

along vertical parallel lines are kept equispaced, while the points along diagonal lines are 

mapped onto a quadratic curve (see block 𝐴𝐵
′ ). When the Projective GT (block 𝐴𝐴

′ ) is used, 

points along the parallel vertical lines do not stay equispaced but points along diagonal lines are 

also mapped along a line. Another property of this GT, when compared to the Projective GT, is 

the need for simpler calculations per pixel, given by (5.9): 

{
𝑥 = 𝑋(𝑢, 𝑣) = 𝑢𝑣𝑝𝑥 + 𝑢𝑙00 + 𝑣𝑙10 + 𝑡𝑥
𝑦 = 𝑌(𝑢, 𝑣) = 𝑢𝑣𝑝𝑦 + 𝑢𝑙01 + 𝑣𝑙11 + 𝑡𝑦

, (5.9) 

5.1.3. Affine geometric transformation 

When using either the Projective or the Bilinear GT, eight DoF are available. However, a simpler 

case exists, which is known as the Affine GT, that can describe GTs up to six DoF. The Affine 

GT can be described as a particular case of Projective or Bilinear GTs, by using matrices 𝑯 and 

𝑩 with 𝑷𝒑
𝑻 = [0 0] and 𝑷𝒃 = [0 0], respectively. This GT only requires three points of 

correspondence between images, defined by (5.10): 

{
𝑥 = 𝑋(𝑢, 𝑣) = 𝑙00𝑢 + 𝑙10𝑣 + 𝑡𝑥
𝑦 = 𝑌(𝑢, 𝑣) = 𝑙01𝑢 + 𝑙11𝑣 + 𝑡𝑦

, (5.10) 
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5.2. Proposed high order prediction mode 

This section proposes a LF image coding method, based on a HOP mode, which is implemented 

as a block-wise prediction mode in HEVC. This HOP mode is added to the set of HEVC intra 

prediction modes, i.e., DC, Planar and the 33 intra Directional modes. 

 

Figure 5.2. Block prediction using a HOP model: generic single-stage HOP model mapping (left side), and 

proposed two-stage HOP model mapping (right side). 

The proposed HOP mode predicts each block by applying a GT between two quadrilaterals, the 

current block and a block in the reference region, the causal area of pixels already encoded. The 

algorithm for the proposed prediction mode can be described through the following steps: 

1. Selection of the next set of correspondence points to be evaluated: Selection of a 

quadrilateral in the causal area of pixels (from a set of pre-defined cases), with corners 

{𝑃𝑛
′}, that is mapped into the block which is being predicted, with corners {𝑃𝑛} (see left 

side of Figure 5.2); 

2. Calculation of the GT parameters: Calculation of the transformation parameters that 

map the quadrilateral defined by {𝑃𝑛
′} into the one defined by {𝑃𝑛}; 

3. Inverse GT mapping: Mapping of the causal quadrilateral defined by {𝑃𝑛
′} to the one 

defined by {𝑃𝑛}, using an inverse mapping procedure with the parameters calculated in 

the previous step, in order to compute the block prediction error and the estimated 

number of bits to transmit the GT parameters; 

4. Estimation of the GT RD cost: Estimation of the rate-distortion (RD) cost, 𝐽, associated 

to the GT that is being evaluated, considering the computed block prediction; 
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5. Repeat the above steps to find the GT with minimum RD cost: Evaluate iteratively 

all the pre-defined combinations of correspondence points and choose the one that has 

the minimum RD cost 𝐽. 

6. Encode the HOP mode information: The corner displacement between the 

quadrilateral in the causal area {𝑃𝑛
′} and the block which is being predicted {𝑃𝑛} is 

signaled to the decoder. 

The following sections explain each step of the proposed HOP mode in more detail.  

5.2.1. Selection of the correspondence points 

The major challenges faced by the proposed algorithm are the computational complexity 

required to estimate the optimal set of GT parameters and the necessary bitrate for transmitting 

these data. To tackle both problems, a rate-distortion-complexity tradeoff is defined. From 

Figure 5.2 (left side) it can be inferred that, if all possible four-point correspondences between 

the prediction block and the current block to be encoded were evaluated, the number of tested 

transformations per block would be larger than (2𝑊2)4, i.e., for a search window (𝑊 = 128) 

more than 1.15 × 1018 correspondence possibilities per block exist. To reduce the number of 

tests to a practicable number, a two-stage minimization problem is proposed, aiming to 

determine a good approximation to the optimal HOP model, as illustrated in Figure 5.2 (right 

side): 

LOP Model Estimation 

 

Figure 5.3. LOP model estimation. 
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In the first stage, a pure translational LOP model (two DoF) is used as shown in Figure 5.3. The 

result of this stage is, the bidimensional vector, 𝑻, with the lowest RD cost, pointing into the 

search window of the causal area (see the blue vector on the right side of Figure 5.2). The search 

to determine 𝑻 is performed using a full search algorithm, as described in [50]. The LOP 

estimation stage of the proposed HOP mode is based on the SS prediction method. The 

prediction cost is minimized by testing all the possible positions inside the search window for a 

single vector that relates the current block to the prediction block. The 𝑻 vectors, generated by 

the first stage, can be either encoded explicitly, similarly to motion vectors in HEVC or using 

the SS-Skip mode, which creates a list of candidates that includes the 𝑻 vectors used to encode 

neighboring blocks. If one candidate from this list is selected to encode the current block, it is 

only necessary to encode its index, as in the HEVC merge mode. Additionally, some 

predetermined vectors are added to the candidate list, referred to as MI-based candidates [50]. 

These candidates correspond to vectors that are very likely to be selected by the SS prediction 

mode, such as, vectors pointing to the same spatial position of the current MI within the left, 

above and above-left MIs. 

HOP Model Estimation  

 

Figure 5.4. Fast search method adopted for each corner of the prediction block (blue rectangle) used to estimate 

the HOP model (red quadrilateral). 

In the second stage, a HOP model (up to eight DoF) is used, employing as a starting point the 

result of the first stage (see, respectively, the red and blue quadrilaterals on the right side of 
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Figure 5.2). For this, a set of four vectors, {𝑣𝐻𝑂𝑃𝑛}, is computed, each of them defining the 

position of one corner of the reference quadrilateral, thus defining the 2D GT.  

To further reduce the computational complexity of the second stage of this minimization 

problem, a 2D logarithmic fast search method has been adopted, which is applied to each corner 

of the prediction block (blue rectangle). In this case, the maximum number of search steps has 

been set to 𝑙𝑜𝑔2(𝑚𝑖𝑛(𝐵𝑥, 𝐵𝑦)) − 1, depending on the size of the prediction block, i.e., 𝐵𝑥 

(width) and 𝐵𝑦 (height). In each step, the searching points are defined according to a five-point 

small diamond-shaped basis pattern with an initial search step size equal to 𝑚𝑖𝑛(𝐵𝑥, 𝐵𝑦)/4 

[105], [106]. This 2D logarithmic fast search method using the five-point small diamond-shaped 

basis pattern is graphically represented in Figure 5.4 across three search steps, represented, 

respectively, by black circles, green pentagons and yellow triangles. After each search step, the 

point that minimizes the RD cost function is set as the center of the next step and the search step 

size is halved until a unitary step value is reached. In the example of Figure 5.4, in the first 

corner (𝑃0), the five points associated with the first step, represented by the black circles, are 

tested. The point that minimizes the RD cost function for the first search step is the black circle 

on the top. For the second and third search steps, the points on left, respectively, green pentagon 

and yellow triangle, are the points that yield the lowest RD cost. The final point is selected to 

define the red arrow that describes the corner displacement of the first corner of the block. 

Considering that the search procedure must be applied to all the corners of the prediction block 

over several search steps, there are two ways of implementing this second stage search: by 

jointly optimizing each step of the search procedure for the four corners or by independently 

optimizing each step of the search procedure. By considering five points for each of the 𝑆 search 

steps of the 2D logarithm search, the required number of search points for each option is given 

by (5 × 𝑆)𝑛 or 5𝑛 × 𝑆, respectively where 𝑛 is the number of corners. In order to reduce the 

computational complexity, the second option was used, where each step is optimized 

individually. 

The stop condition for this search method is met when the corner step size reaches the unit. 

Therefore, the example shown in Figure 5.4 represents the unitary steps as the yellow triangles. 

Since the underlying codec uses variable block sizes, 𝑆 will depend on the block size. The search 



Scalable Light Field Representation and Coding 

80 

window for each corner is limited to 𝑚𝑖𝑛(𝐵𝑥, 𝐵𝑦) − 1, as illustrated in Figure 5.4 (see the 

dashed red block).  

The quadrilateral used by the HOP model estimation may be scaled to increase pixel precision. 

Figure 5.2 and Figure 5.4 illustrate the second stage applied to a blue rectangle with the same 

size of the block being predicted (in black) to not overload the figures. However, in terms of our 

implementation, a rectangle, twice the size of the original block, is used to determine the HOP 

model.  This modification means that an integer pixel displacement in one of the corners of the 

large quadrilateral corresponds to a sub-pixel displacement in the area of the original rectangle. 

For a block twice the size of the original block, one extra search step is performed by the 2D 

logarithmic search algorithm that is used at the HOP stage. This occurs because the stopping 

condition for the search algorithm is the unitary step size. The pixel precision can be further 

extended by using a rectangle with sides four or eight times the size of the original blue 

rectangle, which increase, the number of search steps by one or two, respectively. After 

extensive testing, the best solution in a RD sense was adopted, that is increasing the blue 

rectangle to twice the original size, despite requiring one extra step.  

As the second stage of the HOP search can be biased by the first stage result, the global result 

of the search method also tests the 𝑻 vectors used in the previously encoded neighboring blocks 

(vector predictors), instead of considering only the best 𝑻 vector from the first stage. 

Additionally, other 𝑻 vectors can be tested in conjunction with the HOP model estimation, e.g., 

top ten candidates from the first stage. However, it was experimentally verified in this Thesis 

that the vectors that are more RD cost efficient are the 𝑻 vector predictors. 

The proposed approach can be implemented using either the Projective GT defined in (5.3): 

𝑯 = [
𝟎 𝟎
𝑻 0

] + [
𝑳𝒑
′ 𝑷𝒑

′

𝑻𝒑
′ 1

] = [
𝑳𝒑
′ 𝑷𝒑

′

𝑻 + 𝑻𝒑
′ 1

], (5.11) 

or the Bilinear GT defined in (5.8): 

𝑩 = [
𝟎
𝟎
𝑻
] + [

𝑷𝒃
′

𝑳𝒃
′

𝑻𝒃
′

] = [

𝑷𝒃
′

𝑳𝒃
′

𝑻 + 𝑻𝒃
′

], (5.12) 

Where 𝑻 is the vector estimated during the LOP stage and 𝑻′, 𝑳′ and 𝑷′ are the GT parameters 

that describe the HOP stage. 
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5.2.2. Calculation of the GT parameters 

After obtaining vector 𝑻 (see the right side of Figure 5.2), it is possible to determine submatrices 

𝑻′, 𝑷′ and 𝑳′ in equations (5.11) and (5.12), by using their width and height, 𝐵𝑥 and 𝐵𝑦, 

respectively, and the small vectors associated with the corner position change of the blue 

rectangle: 

{
 
 

 
 
�⃗�𝐻𝑂𝑃0 = (𝑢0, 𝑣0)

�⃗�𝐻𝑂𝑃1 = (𝑢1 − (𝐵𝑥 − 1), 𝑣1)

�⃗�𝐻𝑂𝑃2 = (𝑢2 − (𝐵𝑥 − 1), 𝑣2 − (𝐵𝑦 − 1))

�⃗�𝐻𝑂𝑃3 = (𝑢3, 𝑣3 − (𝐵𝑦 − 1))

, (5.13) 

Note that in the proposed two-stage approach, vectors  �⃗�𝑛, represented in the left of Figure 5.2, 

correspond to the sum of vector 𝑻 from the first stage, with the four smaller vectors from the 

second stage, i.e.,�⃗�𝑛 = 𝑇 + �⃗�𝐻𝑂𝑃𝑛 , represented in the right of Figure 5.2. If the Projective GT 

is used some auxiliary variables are defined: 

{
Δ𝑢1 = 𝑢1 − 𝑢2
Δ𝑢2 = 𝑢3 − 𝑢2
Δ𝑢3 = 𝑢0 − 𝑢1 + 𝑢2 − 𝑢3

     {
Δ𝑣1 = 𝑣1 − 𝑣2
Δ𝑣2 = 𝑣3 − 𝑣2
Δ𝑣3 = 𝑣0 − 𝑣1 + 𝑣2 − 𝑣3

, (5.14) 

The Affine GT can be defined by any three of the four vectors (�⃗�𝐻𝑂𝑃). In this Thesis, the first 

three vectors, �⃗�𝐻𝑂𝑃0 , �⃗�𝐻𝑂𝑃1and �⃗�𝐻𝑂𝑃2 are generated using the second stage of the proposed 

approach, where the remaining vector, �⃗�𝐻𝑂𝑃3, is calculated assuming 𝛥𝑢3 =  𝛥𝑣3 = 0, thus 

resulting in �⃗�𝐻𝑂𝑃3 = (𝑢0 − 𝑢1 + 𝑢2,  𝑣0 − 𝑣1 + 𝑣2 − (𝐵𝑦 − 1)).Using (5.14), the individual 

parameters in the submatrices can then be calculated by (5.15) for the Projective GT: 

𝑷𝒑
′ =

[
 
 
 
 
 1

𝐵𝑥−1

|
Δ𝑢3 Δ𝑢2
Δ𝑣3 Δ𝑣2

|

|
Δ𝑢1 Δ𝑢2
Δ𝑣1 Δ𝑣2

|

1

𝐵𝑦−1

|
Δ𝑢1 Δ𝑢3
Δ𝑣1 Δ𝑣3

|

|
Δ𝑢1 Δ𝑢2
Δ𝑣1 Δ𝑣2

|]
 
 
 
 
 

      𝑳𝒑
′ = [

𝑢1−𝑢0

𝐵𝑥−1
+ 𝑝𝑥𝑢1

𝑢3−𝑢0

𝐵𝑦−1
+ 𝑝𝑦𝑢3

𝑣1−𝑣0

𝐵𝑥−1
+ 𝑝𝑥𝑣1

𝑣3−𝑣0

𝐵𝑦−1
+ 𝑝𝑦𝑣3

] (5.15) 

Similarly, for the Bilinear GT, the corresponding submatrices are calculated by (5.16):  
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𝑷𝒃
′𝑻 = [

𝑢0−𝑢1+𝑢2−𝑢3

(𝐵𝑥−1)(𝐵𝑦−1)

𝑣0−𝑣1+𝑣2−𝑣3

(𝐵𝑥−1)(𝐵𝑦−1)

]     𝑳𝒃
′ = [

𝑢3−𝑢0

𝐵𝑦−1

𝑣3−𝑣0

𝐵𝑦−1

𝑢1−𝑢0

𝐵𝑥−1

𝑣1−𝑣0

𝐵𝑥−1

]. (5.16) 

For both cases:  

𝑻𝒑
′ = 𝑻𝒃

′ = [𝑢0 𝑣0]. (5.17) 

5.2.3. Inverse GT mapping 

As previously mentioned, a GT between two blocks corresponds to a mapping of every pixel 

within one block into the other block, e.g., the mapping functions (5.4) and (5.9) correspond to 

the Projective and Bilinear GT, respectively. When the mapping is performed from the 

rectangular block to be encoded to an arbitrary reference quadrilateral it is called a direct 

mapping, otherwise it is called an inverse mapping. An example of both mapping procedures 

for a simple scaling GT can be found in Figure 5.5. As can be observed in Figure 5.5, when 

direct mapping is used the final quadrilateral shape (red block) does not match the desired 

reference block pixel grid, requiring to perform pixel interpolation prior to calculate the 

distortion between the transformed block and the reference block. For the sake of simplicity, an 

inverse mapping has been adopted, as it generates a rectangular prediction block with the same 

dimensions of the block to be encoded. 

 

Figure 5.5. Example of Direct Mapping and Inverse Mapping when a scale GT is applied. 

Thus, regardless of the size of the quadrilateral used for estimation, (5.4) and (5.9) take as input 

the coordinates of the block to be encoded, i.e., 𝑢 ∈ [0, 𝐵𝑥 − 1] and 𝑣 ∈ [0, 𝐵𝑦 − 1], and 

generate as output the coordinates (𝑥, 𝑦) in the causal area, where the reference pixel value is 

going to be extracted from. Since 𝑥 and 𝑦 are typically fractional values, a bilinear interpolation 

filter is used to compute the actual pixel value. 
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5.2.4. Estimation of the GT RD cost 

The optimal HOP model for each block is determined through RD optimization, minimizing the 

associated Lagrangian cost, 𝐽 = 𝐷 + 𝜆𝑅, over the entire set of pre-defined GT. 𝐷 refers to the 

distortion between the prediction block and the current block, 𝑅 is the estimated number of bits 

used to encode the block using the GT under evaluation, and 𝜆 is the Lagrange multiplier. The 

parameter 𝜆 is the same for all prediction modes, including the intra modes, so no biases in terms 

of prediction mode selection are introduced. In this Thesis, 𝐷, is computed as the sum of 

absolute differences (SAD) in the pixel domain, in the first stage, and SAD in the Hadamard 

domain, in the second stage, as suggested in [107]. 

By using a two-stage method it is possible to evaluate if it is more advantageous to use LOP or 

HOP for each block, by comparing the associated costs, given by: 

𝐽𝐿𝑂𝑃 = 𝐷𝐿𝑂𝑃 + 𝜆𝑅𝐿𝑂𝑃  and  𝐽𝐻𝑂𝑃 = 𝐷𝐻𝑂𝑃 + 𝜆𝑅𝐻𝑂𝑃 , (5.18) 

where 𝑅𝐿𝑂𝑃 and 𝑅𝐻𝑂𝑃 are the estimated number of bits for the corresponding coding mode.  

The usage of LOP or HOP is conveyed to the decoder through a binary flag, 𝐹𝐻𝑂𝑃. When LOP 

is considered more efficient in a RD sense, 𝐹𝐻𝑂𝑃 = 0, and only 𝑻 is transmitted in the bitstream. 

On the contrary, if HOP is used, all the elements that describe 𝑻 are transmitted, followed by 

𝐹𝐻𝑂𝑃 = 1 and the four additional �⃗�𝐻𝑂𝑃𝑛 vectors. 

The number of bits required to signal the HOP mode, 𝑅𝐻𝑂𝑃, is the sum of 𝑅𝐿𝑂𝑃 and the estimated 

bits for encoding the four vectors, �⃗�𝐻𝑂𝑃𝑛, that define the used HOP model. The rate of these 

small amplitude vectors is estimated using the same procedure as vector 𝑻. 

5.2.5. Encode the HOP mode information 

After finding the optimal HOP model, the cost of the HOP mode, 𝐽𝐻𝑂𝑃, is compared against the 

cost of the other intra prediction modes, i.e., DC, Planar and the 33 Directional modes, and the 

mode with the lowest RD cost is encoded. For this, CABAC entropy coding method is used by 

HEVC is used to encode the HOP mode information. The CABAC entropy coder is based on 

three steps: (i) binarization of syntax elements, (ii) context modeling, and (iii) binary arithmetic 

coding. In this implementation, these three steps have been maintained using, however, new 

contexts. Vectors 𝑻 and �⃗�𝐻𝑂𝑃𝑛, and flag, 𝐹𝐻𝑂𝑃, are transmitted to the decoder using the HEVC 



Scalable Light Field Representation and Coding 

84 

approach for motion vectors and merge flags [108]. To encode 𝑻, the same syntax elements of 

HEVC for motion data are used, i.e., motion vector differences, motion vector prediction index, 

RPL and RPL index.  

The way the HOP model information is conveyed to the decoder can highly influence the coding 

efficiency. One possible approach is to send the GT parameters, i.e., in the 𝑯 or 𝑩 matrix, which 

need to be represented with high precision. Alternatively, as proposed in this Thesis, the encoder 

just sends the four vectors, �⃗�𝐻𝑂𝑃𝑛, which can be represented with just a few bits. The major 

advantage of encoding the GT parameters matrix is that they do not need to be recalculated at 

the decoder side through equations (5.13) – (5.17). However, they need to be encoded with a 

very high precision because these values are not very robust to quantization [96]. Consequently, 

encoding the vectors, �⃗�𝐻𝑂𝑃𝑛, leads to higher compression efficiency 

5.3. Proposed high order prediction training 

This section proposes an alternative LF image coding method to the method proposed in section 

5.2 also based on the same HOP model. This alternative HOP method is able to estimate an 

efficient GT using a HOP training stage applied to a causal area of the LF image. The same two-

stage block-wise HOP model is used, however, instead of explicitly transmitting the HOP 

vectors, i.e., �⃗�𝐻𝑂𝑃𝑛., the vectors are inferred by the decoder. In this case, a HOP training is 

applied using several predetermined training directions in the causal area of the LF image. Each 

training direction corresponds to the location of adjacent MIs that are already encoded, e.g., the 

upper, left and upper-left MIs. Since adjacent MIs are typically very similar, it is expected that 

the GT that is generated from the training step, will also produce an efficient prediction block. 

The most efficient training direction is transmitted to the decoder as an index. Since the training 

is performed in the causal area of the LF image, the GT for the second stage of the proposed 

HOP approach can be also calculated at the decoder side. Therefore, no overhead is necessary 

to describe the second stage of the HOP approach, but the most efficient training direction index.  

The proposed HOP training algorithm can be described by the following steps:  

1. LOP model estimation: The LOP model is applied in order to estimate 𝑻 vector and 

generate prediction block 𝐵𝐿𝑂𝑃 described in Section 5.2.1;  
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2.  𝑱𝑳𝑶𝑷 cost estimation: The 𝐽𝐿𝑂𝑃 cost is estimated which accounts for transmitting the 

LOP model information, described in Section 5.2.4; 

3. HOP model estimation for each 𝒏 predetermined training direction:  

i. HOP model estimation: The HOP model explained in Section 5.2 is used with 

the 𝑛 prediction blocks 𝐵𝑡 and the reference region to generate a 𝐺𝑇𝑛 candidate  

ii. Apply the GT candidate to 𝑩𝑳𝑶𝑷: The output from the HOP model, i.e., the GT 

candidate, is applied to 𝐵𝐿𝑂𝑃 in order to generate the prediction block, 𝐵𝐻𝑂𝑃𝑛  

iii. 𝑱𝑯𝑶𝑷 cost estimation: The 𝐽𝐻𝑂𝑃𝑛 cost is estimated, which accounts for 

transmitting the HOP information necessary to generate 𝐵𝐻𝑂𝑃𝑛 , i.e., vector 𝑻 and 

HOP training index (𝑛 + 1) 

4. LOP and HOP parameters encoding: Encode the information for both LOP and HOP 

that corresponds to the lowest cost among 𝐽𝐿𝑂𝑃 and 𝐽𝐻𝑂𝑃𝑛 candidates, respectively. 

In the first stage, a LOP search is used between the current block and the reference region. A 

full search algorithm is used, as proposed in Section 5.2.1, and the output is a translational vector 

𝑻 (two DoF). This option is available in case the HOP training is not able to find a “good” GT 

candidate. The efficiency of the HOP training tends to be higher when the redundancy between 

the current block and at least one of the 𝐵𝑡 blocks, available in each training direction, is high. 

The proposed algorithm can be applied to any number of training directions as it is shown in 

Figure 5.6. The goal is to find a training direction that minimizes the RD cost of the generated 

prediction block, 𝐵𝐻𝑂𝑃𝑛 . Since the HOP training index is transmitted to the decoder, only the 

training that provides the best result is repeated on the decoder side. However, the number of 

bits necessary to transmit the HOP training index increases with the number of training 

directions. The training directions are selected based on the proximity to the current block. For 

example, for three training directions, i.e., 𝑛 = 3, using a square-based MLA, the blocks 𝐵𝑡 are 

located in: 𝐵𝑡0 = (−𝑚, 0); 𝐵𝑡1 = (0,−𝑚), which are both shown in Figure 5.6, and 𝐵𝑡2 =

(−𝑚,−𝑚). Where 𝑚 is the size of the MI in pixels. These locations correspond to estimated 

locations of the block 𝐵𝑡𝑛 in the left, upper and upper-left MIs. 



Scalable Light Field Representation and Coding 

86 

 

Figure 5.6. Proposed HOP training algorithm being applied in three different directions, left, upper and upper-

right direction. 

For each of the defined training directions, the HOP model is applied (see Section 5.2), using as 

an input block 𝐵𝑡𝑛 and the reference region. The output of the HOP model estimation is a GT 

candidate per training direction. Each GT candidate is therefore applied to the prediction block, 

𝐵𝐿𝑂𝑃, generating 𝑛 different 𝐵𝐻𝑂𝑃𝑛 prediction blocks. To determine which training direction is 

the one that generates the most efficient prediction block, an RD cost value is calculated for 

each of the 𝑛 training directions.  

The RD cost is mostly calculated the same way as in Section 5.2.4, with the only exception 

being the rate associated with the HOP prediction, 𝑅𝐻𝑂𝑃. In this case, the estimated 𝑅𝐻𝑂𝑃 is 

given by log2(𝑛 + 1), where 𝑛 is the number of training directions, because instead of 

transmitting the individual HOP vectors, the training direction index is transmitted. 

Once all the costs 𝐽𝐿𝑂𝑃 and 𝐽𝐻𝑂𝑃𝑛  associated to each possible candidate are generated, the lowest 

one corresponds to the most RD efficient. The most efficient option is then compared to the cost 

of the other intra prediction modes, i.e., DC, Planar, and the 33 Directional modes, and the mode 

with the lowest RD cost is selected and encoded. Vector 𝑻 and the HOP training index are 
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transmitted to the decoder using the HEVC approach for motion vectors and motion vector 

prediction index, and encoded using the CABAC entropy coding method. 

5.4. Experimental results 

In this section the performance of the proposed LF coding solution, incorporating the HOP mode 

and HOP training, is evaluated in comparison with state-of-the-art coding solutions based on 

LOP approaches. First, this section describes the test conditions, including the used LF test 

images, the benchmark solutions and the relevant test parameters. Afterwards, experimental 

results comparing the RD performance of different types of prediction models and evaluation 

processing chains are presented and discussed. These results are complemented with some 

statistical information about prediction mode usage.  

5.4.1. Test conditions 

In order to evaluate the RD performance of the proposed LF coding solution, two types of LF 

images were selected for the experimental test setup. The first type of images were acquired 

using LF cameras with a focused (FOC) optical setup (see Appendix A.1), which include two 

images from the Plane and Toy sequence; one image from Demichelis Spark and Demichelis 

Cut; and Laura and Seagull LF images. The second type of images were acquired using a Lytro 

Illum camera that is commercially available and uses an unfocused (UNF) optical setup 

extracted from the EPFL LF dataset (see Appendix A.2). All images use the YUV 4:2:0 8 bit 

color format. This selection includes LF images with different resolutions, MI resolutions and 

types of microlens arrays, with different MI shape and different LF camera models.  

Two evaluation processing chains are used for testing, which include the BEPC, presented in 

Section 2.6.1 when encoding the LL images directly (both UNF and FOC LF images), and the 

JPEG Pleno CTCs, presented in Section 2.6.2, when encoding the UNF LF images using the 

4DLF-MI data representation. The FOC LF images are not tested using the JPEG Pleno CTCs 

because no metadata is included with the LF images, which hampers the conversion to the 4D 

LF data representation.  

The solution using the proposed HOP mode will be referred to as HEVC-HOP, while the 

solution using the proposed HOP training will be referred as HEVC-HOP-𝑛T, where 𝑛 is the 
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number of predetermined training directions. Finally, HEVC using only the standard intra 

modes is simply referred to as HEVC. Additionally, the work in [50] is used as benchmark for 

RD performance of a LOP-based solution and it is referred to as HEVC-SS.  

All the test images were encoded using QP values of 22, 27, 32, 37, 42 and 47. The causal 

window size 𝑊 is 128 for both HEVC-HOP, HEVC-HOP-𝑛T and HEVC-SS, for every encoded 

image. The number of available SS or 𝑻 vector predictors, used for coding, is two. These 𝑻 

vector predictors are used as additional vector 𝑻 candidates for the LOP model estimation stage. 

The number of candidates available for SS-Skip is five in both HEVC-SS and HEVC-HOP and 

HEVC-HOP-𝑛T. All the referred LF images are encoded and decoded using the HEVC, HEVC-

HOP, HEVC-HOP-𝑛T and HEVC-SS codecs, and the RD performance is evaluated using a 

Bjøntegaard delta (BD) Metrics [109]. 

5.4.2. HOP mode performance assessment 

When evaluating the HOP mode, several variants of HEVC-HOP are tested. These variants of 

HEVC-HOP are referred to as HEVC-HOP-A, HEVC-HOP-P and HEVC-HOP-B, respectively 

for Affine (6 DoF), Projective (8 DoF) and Bilinear (8 DoF) GTs. Table 5.1 shows the RD 

performance comparison between HEVC and HEVC-SS, and between HEVC-SS and the 

various HEVC-HOP variants using the BEPC (see Section 2.6.1). The values in bold correspond 

to the best achieved result for each specific test image. 

Comparison between LOP and HOP 

Table 5.1 shows that HEVC-SS can outperform HEVC, for all tests, with bitrate savings up to 

45.35%. Nevertheless, all versions of the proposed HEVC-HOP method are even more efficient 

than HEVC-SS to encode LF images. This increased performance, with bitrate savings up to 

12.62% for certain images relatively to HEVC-SS (49.82% relatively to HEVC), comes from 

the use of a higher order prediction model. Since HEVC-SS is limited to two DoF, it is not able 

to accurately describe block transformations more complex than a simple translation. When 

comparing the results by means of comparing the effectiveness of adding prediction tools with 

more than two DoF, it is possible to notice that for the encoded LF images, the best case is when 

eight DoF are used. If eight DoF are available, i.e., when HEVC-HOP-P is being used, four 

points of correspondence are transmitted, which allows the description of not only translations, 
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but also rotations, scaling, shearing and perspective changes. In this case, although extra 

information needs to be encoded, relative to the HEVC-SS case, the bitrate savings increases to 

5.86% (28.81% relative to HEVC), on average, for all tested LF images. 

Table 5.1. BD-PSNR-Y and BD-Rate results using the BEPC comparing HEVC, HEVC-SS (2 DoF) and HEVC-

HOP, using 6 DoF and 8 DoF and two different geometric transformations 

Image 

HEVC-SS (2 DoF)  

vs HEVC 

HEVC-HOP-A (6 DoF) 

vs HEVC-SS (2 DoF) 

HEVC-HOP-P (8 DoF)  

vs HEVC-SS (2 DoF) 

HEVC-HOP-B (8 DoF) 

vs HEVC-SS (2 DoF) 

BD- 

PSNR-Y 

BD-  

RATE 

BD- 

PSNR-Y 

BD-  

RATE 

BD- 

PSNR-Y 

BD-  

RATE 

BD- 

PSNR-Y 

BD-  

RATE 

PT0 0.90 dB -14.64 % 0.23 dB -3.93 % 0.27 dB -4.66 % 0.23 dB -4.02 % 

PT150 1.44 dB -19.02 % 0.64 dB -9.44 % 0.75 dB -11.05 % 0.71 dB -10.50 % 

DS 1.09 dB -31.43 % 0.23 dB -7.41 % 0.26 dB -8.39 % 0.26 dB -8.31 % 

DC 1.05 dB -29.25 % 0.26 dB -8.06 % 0.30 dB -9.14 % 0.29 dB -8.83 % 

Laura 2.26 dB -30.35 % 0.15 dB -2.76 % 0.27 dB -4.78 % 0.32 dB -5.62 % 

Seagull 2.81 dB -42.78 % 0.22 dB -4.89 % 0.31 dB -6.82 % 0.43 dB -9.21 % 

I01 0.81 dB -18.50 % 0.11 dB -2.91 % 0.13 dB -3.34 % 0.11 dB -2.97 % 

I02 0.61 dB -14.67 % 0.10 dB -2.72 % 0.11 dB -2.94 % 0.10 dB -2.75 % 

I03 0.17 dB -4.10 % 0.03 dB -0.75 % 0.03 dB -0.77 % 0.03 dB -0.67 % 

I04 0.25 dB -6.31 % 0.02 dB -0.61 % 0.02 dB -0.57 % 0.02 dB -0.57 % 

I05 0.89 dB -28.73 % 0.10 dB -3.90 % 0.14 dB -5.30 % 0.12 dB -4.89 % 

I06 1.43 dB -45.35 % 0.05 dB -1.26 % 0.06 dB -4.46 % 0.05 dB -2.91 % 

I07 0.48 dB -13.73 % 0.26 dB -8.05 % 0.25 dB -7.78 % 0.29 dB -8.93 % 

I08 0.66 dB -22.95 % 0.06 dB -3.52 % 0.06 dB -5.19 % 0.05 dB -2.62 % 

I09 1.49 dB -30.72 % 0.17 dB -4.39 % 0.20 dB -5.31 % 0.20 dB -5.28 % 

I10 0.22 dB -8.10 % 0.05 dB -2.01 % 0.06 dB -2.21 % 0.06 dB -2.36 % 

I11 1.49 dB -42.84 % 0.27 dB -11.19 % 0.31 dB -12.30 % 0.32 dB -12.62 % 

I12 1.42 dB -41.35 % 0.24 dB -9.28 % 0.27 dB -10.42 % 0.27 dB -10.47 % 

AVG. 

FOC 
1.59 dB -27.91 % 0.29 dB -6.08 % 0.36 dB -7.47 % 0.37 dB -7.75 % 

AVG. 

UNF 
0.83 dB -23.11 % 0.12 dB -4.22 % 0.14 dB -5.06 % 0.14 dB -4.75 % 

AVG. 

ALL 
1.08 dB -24.71 % 0.18 dB -4.84 % 0.21 dB -5.86 % 0.21 dB -5.75 % 

 

Comparison between the proposed GTs 

The proposed prediction mode HEVC-HOP-B, using a Bilinear GT, can achieve similar results 

to HEVC-HOP-P for most images, both in terms of average PSNR (BD-PSNR) and bitrate 

savings. However, comparing the average performance of each method regarding the type of 

camera models (AVG. FOC and AVG. UNF) it is possible to observe that HEVC-HOP-P is 

slightly more efficient for the UNF model images and HEVC-HOP-B is slightly more efficient 

for the FOC model images. In the case of HEVC-HOP-A only six DoF are available because 

only three points of correspondence are transmitted. When compared HEVC-HOP-A to HEVC-

HOP-P, the bitrate savings gains relatively to HEVC-SS are reduced to 4.84% (28.12% 
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relatively to HEVC) on average considering all tested LF images, which may be due to the fact 

that HEVC-HOP-A is not able to compensate for perspective changes. However, in terms of 

computational complexity HEVC-HOP-A is approximately 4.5 times faster than HEVC-HOP-

P. Note that none of the implementations is optimized in terms of computational complexity; 

therefore, the reported values for comparison may vary. It is worthwhile mentioning that for 

some cases (e.g., I04 test image) HEVC-HOP-A can outperform both eight DoF GTs. In HEVC-

HOP-P four correspondence points are always encoded, even if only three are necessary. Since 

in some cases, more information might be transmitted to describe the same GT, HEVC-HOP-P 

is, for this particular test image, less efficient than HEVC-HOP-A. 

Regarding the computational complexity, a study was performed using the image VESPA, from 

the EPFL LF dataset. This image was encoded and decoded using the codecs, HEVC, HEVC-

SS, HEVC-HOP-A, HEVC-HOP-P and HEVC-HOP-B, with QP=32. These tests were 

performed using a PC equipped with an Intel Xeon CPU E3-1240 V2@3.4GHz and 24GB of 

RAM, running Ubuntu 16.04. The obtained running time to encode and decode each image is 

depicted in Table 5.2. The computational complexity of the proposed schemes must be 

compared to HEVC-SS, as it is used as reference. The HEVC-SS complexity is equivalent to 

encoding a P-Slice in HEVC [50]. As can be seen from Table 5.2, the proposed algorithm 

increases the computational burden at the encoder side, where HEVC-HOP-A, HEVC-HOP-P 

and HEVC-HOP-B are 1.51, 6.84 and 5.23 times more complex than HEVC-SS, respectively. 

However, at the decoder the running time is reduced in relation to HEVC-SS. As the proposed 

method uses a more efficient prediction, the LF image encoder creates a lower number of 

partitions than the HEVC-SS.  

 

Table 5.2. Codec computational complexity comparison 

Encoder HEVC HEVC-SS HEVC-HOP-A HEVC-HOP-P HEVC-HOP-B 

Run time (h) 0.06 3.88 5.88 26.54 20.30 

vs HEVC-SS 0.02 1 1.51 6.84 5.23 

Decoder HEVC HEVC-SS HEVC-HOP-A HEVC-HOP-P HEVC-HOP-B 

Run time (s) 1.70 33.56 30.54 29.98 28.56 

vs HEVC-SS 0.05 1 0.91 0.89 0.85 
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Table 5.3. Average prediction mode usage in percentage of pixels for the HEVC-HOP-P case 

Image 

DC, Planar 

and 

Directional 

Proposed prediction method 

SS-Skip [50] 
LOP stage  HOP stage 

PT0 57.76 % 3.32 % 22.81 % 16.12 % 

PT150 26.53 % 4.39 % 51.27 % 17.62 % 

DS 27.35 % 3.84 % 40.31 % 28.51 % 

DC 27.25 % 1.93 % 44.04 % 26.78 % 

Laura 21.51 % 10.25 % 45.22 % 23.03 % 

Seagull 13.87 % 9.27 % 41.81 % 35.05 % 

I01 44.12 % 5.69 % 33.44 % 16.75 % 

I02 49.28 % 5.99 % 31.15 % 13.59 % 

I03 81.54 % 2.63 % 10.55 % 5.28 % 

I04 82.66 % 2.75 % 9.60 % 4.99 % 

I05 38.42 % 7.94 % 30.03 % 23.61 % 

I06 24.39 % 10.89 % 30.26 % 34.46 % 

I07 57.50 % 2.67 % 15.68 % 24.14 % 

I08 28.88 % 9.57 % 28.42 % 33.14 % 

I09 30.12 % 8.38 % 37.66 % 23.84 % 

I10 78.01 % 3.08 % 11.35 % 7.57 % 

I11 15.62 % 8.94 % 38.14 % 37.30 % 

I12 11.40 % 11.29 % 41.57 % 35.75 % 

 

One of the most important advantages of the proposed prediction method is the ability to choose 

between the LOP stage and the HOP stage for each image block. This decision is taken based 

on RDO criteria, which allows the proposed HEVC-HOP to outperform HEVC-SS in all cases. 

From Table 5.3 it is possible to observe that despite the HOP stage of the proposed prediction 

method being used more frequently than the LOP stage, there is always a considerable part of 

the image that is encoded using only the LOP prediction mode. However, the fact that the HOP 

stage is used more often than the LOP stage alone indicates that, although the proposed method 

HEVC-HOP-P requires additional overhead for transmitting the prediction information, i.e., one 

flag (𝐹𝐻𝑂𝑃) and four vectors ({�⃗�𝐻𝑂𝑃𝑛}), it is very efficient in reducing the distortion between the 

current block and prediction block, therefore reducing the RD cost. An example of this can be 

seen in Figure 5.7 where a comparison between the generated prediction block using either the 

LOP method or the proposed HOP method is shown. In this example, the prediction block 

generated using the proposed HOP stage has a lower RD cost (𝐽𝐻𝑂𝑃 = 5080) than the prediction 

block using LOP (𝐽𝐿𝑂𝑃 = 7851), despite the extra bits necessary to convey to the decoder the 

GT parameters ({�⃗�𝐻𝑂𝑃𝑛} = {(3; 0), (4; 0), (2;−1), (2; 1)}). 
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Figure 5.7. Comparison between the prediction block generated by LOP and HOP stages. 

Results for different lenslet LF camera models 

In general, the bitrate savings across the different codecs when compared to HEVC are higher 

when encoding LF images captured with cameras using a focused LF camera model. This is 

possible to see when comparing the average bitrate savings for the LF images captured with an 

unfocused camera model or the focused camera model in Table 5.1. This occurs because HEVC-

SS and HEVC-HOP are based on matching prediction tools. In the focused images, the MIs are 

focused, therefore sharper than the unfocussed images. In sharper MI, more prominent features 

exist and therefore the block matching is more reliable [52]. Additionally, since the incident 

light in the camera’s sensor in the unfocused case is focused at infinity, the disparity between 

MIs tends to be zero, which means that theoretically no perspective compensation can be 

matched. This can be justified by the noticeable lower relative prediction mode usage, shown in 

Table 5.3, for the proposed prediction method as well as SS-Skip for most LF images captured 

with unfocused camera models.  

The proposed HOP model is also more suited to adapt to non-rectangular shape MIs, e.g., 

hexagonal and circular shape, when compared to LOP model based methods. This happens 

because the corners of the prediction blocks, when using the proposed HOP model, are flexible 

to adapt for different block shapes. 
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Comparison using the JPEG Pleno CTCs 

To further evaluate the compression efficiency of the proposed HEVC-HOP-P, the experimental 

results were also performed using the 4DLF-MI data representation and the JPEG Pleno CTCs 

(see section 2.6.2). Since the LF images are encoded using the YUV 4:2:0 8 bit color format the 

adaptations shown in Figure 4.6, in Section 4.1.2 were applied. Table 5.4 shows the 

experimental results using the JPEG Pleno CTCs comparing HEVC, HEVC-SS (2 DoF) and 

HEVC-HOP-P (8 DoF). 

Table 5.4. BD-PSNR-YUV and BD-Rate results using the JPEG Pleno CTCs comparing HEVC, HEVC-SS (2 

DoF) and HEVC-HOP-P (8 DoF) 

Image 

HEVC-SS (2 DoF) vs              

HEVC 

HEVC-HOP-P (8 DoF) vs     

HEVC-SS (2 DoF) 

BD-PSNR- 

YUV 
BD-RATE 

BD-PSNR- 

YUV 
BD-RATE 

I01 2.65 dB -60.17 % 0.13 dB -4.39 % 

I02 1.71 dB -46.12 % 0.12 dB -3.92 % 

I03 1.36 dB -37.36 % 0.08 dB -2.68 % 

I04 2.48 dB -60.81 % 0.01 dB -0.23 % 

I05 2.32 dB -62.33 % 0.08 dB -3.55 % 

I06 5.00 dB -90.69 % 0.07 dB -2.46 % 

I07 4.67 dB -73.34 % 0.17 dB -5.88 % 

I08 5.99 dB -87.18 % 0.02 dB -1.02 % 

I09 2.87 dB -62.05 % 0.17 dB -5.53 % 

I10 4.22 dB -73.73 % 0.00 dB -0.11 % 

I11 4.32 dB -83.37 % 0.33 dB -14.87 % 

I12 4.68 dB -75.08 % 0.37 dB -11.27 % 

AVG. 3.52 dB -67.69 % 0.13 dB -4.66 % 

 

From the results presented in Table 5.4 it is possible to observe that there is a coherence between 

the results for the BEPC and the JPEG Pleno CTCs using different LF data representations. The 

average bitrate savings achieved by HEVC-HOP-P relative to HEVC-SS are very similar for 

both cases. Nevertheless, since the images in 4DLF-MI are 11% larger than the LF images using 

the LL data representation, the inter-MI redundancy is even higher, therefore, solutions like 

HEVC-SS are even more efficient in this data representation when compared to HEVC, which 

does not exploit the inter-MI redundancy. 
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5.4.3. HOP training mode performance assessment 

The experimental results for the above-mentioned test images using the BEPC comparing 

HEVC, HEVC-SS, HEVC-HOP-P and HEVC-HOP-𝑛T using one, three and seven training 

directions are shown in Table 5.5. The values in bold correspond to the best achieved result for 

each specific test image. 

Table 5.5. BD-PSNR-Y and BD-RATE results using BEPC comparing HEVC, HEVC-SS, HEVC-HOP and 

HEVC-HOP-𝑛T, using one, three and seven training directions 

Image 

HEVC-SS vs       

HEVC 

HEVC-HOP-P vs  

HEVC-SS 

HEVC-HOP-1T vs 

HEVC-SS 

HEVC-HOP-3T vs 

HEVC-SS 

HEVC-HOP-7T vs 

HEVC-SS 

BD-

PSNR-Y 

BD-

RATE 

BD- 

PSNR-Y 

BD-

RATE 

BD- 

PSNR-Y 

BD-

RATE 

BD- 

PSNR-Y 

BD-

RATE 

BD- 

PSNR-Y 

BD-

RATE 

PT0 0.90 dB -14.64 % 0.27 dB -4.66 % 0.07 dB -1.20 % 0.12 dB -2.18 % 0.17 dB -3.06 % 

PT150 1.44 dB -19.02 % 0.75 dB -11.05 % 0.28 dB -4.12 % 0.47 dB -6.98 % 0.56 dB -8.30 % 

DS 1.09 dB -31.43 % 0.26 dB -8.39 % 0.18 dB -5.71 % 0.24 dB -7.50 % 0.29 dB -9.14 % 

DC 1.05 dB -29.25 % 0.30 dB -9.14 % 0.17 dB -5.41 % 0.24 dB -7.43 % 0.30 dB -9.09 % 

Laura 2.26 dB -30.35 % 0.27 dB -4.78 % 0.15 dB -2.65 % 0.34 dB -6.11 % 0.40 dB -7.09 % 

Seagull 2.81 dB -42.78 % 0.31 dB -6.82 % 0.23 dB -5.09 % 0.51 dB -11.08 % 0.59 dB -12.57 % 

I01 0.81 dB -18.50 % 0.27 dB -4.66 % 0.07 dB -1.20 % 0.12 dB -2.18 % 0.17 dB -3.06 % 

I02 0.61 dB -14.67 % 0.75 dB -11.05 % 0.28 dB -4.12 % 0.47 dB -6.98 % 0.56 dB -8.30 % 

I03 0.17 dB -4.10 % 0.26 dB -8.39 % 0.18 dB -5.71 % 0.24 dB -7.50 % 0.29 dB -9.14 % 

I04 0.25 dB -6.31 % 0.30 dB -9.14 % 0.17 dB -5.41 % 0.24 dB -7.43 % 0.30 dB -9.09 % 

I05 0.89 dB -28.73 % 0.27 dB -4.78 % 0.15 dB -2.65 % 0.34 dB -6.11 % 0.40 dB -7.09 % 

I06 1.43 dB -45.35 % 0.31 dB -6.82 % 0.23 dB -5.09 % 0.51 dB -11.08 % 0.59 dB -12.57 % 

I07 0.48 dB -13.73 % 0.13 dB -3.45 % 0.01 dB -0.18 % 0.03 dB -1.01 % 0.06 dB -1.58 % 

I08 0.66 dB -22.95 % 0.11 dB -2.94 % 0.00 dB -0.06 % 0.02 dB -0.58 % 0.06 dB -1.52 % 

I09 1.49 dB -30.72 % 0.03 dB -0.77 % 0.00 dB -0.01 % 0.01 dB -0.19 % 0.02 dB -0.37 % 

I10 0.22 dB -8.10 % 0.02 dB -0.57 % 0.00 dB 0.00 % 0.00 dB -0.04 % 0.01 dB -0.15 % 

I11 1.49 dB -42.84 % 0.14 dB -5.30 % 0.00 dB -0.46 % 0.04 dB -1.59 % 0.06 dB -2.48 % 

I12 1.42 dB -41.35 % 0.06 dB -4.46 % 0.00 dB 0.99 % 0.00 dB -1.14 % 0.02 dB -1.99 % 

AVG. 

FOC 
1.59 dB -27.91 % 0.36 dB -7.47 % 0.18 dB -4.03 % 0.32 dB -6.88 % 0.39 dB -8.21 % 

AVG. 

UNF 
0.83 dB -23.11 % 0.14 dB -5.06 % 0.02 dB -0.65 % 0.04 dB -1.34 % 0.06 dB -2.14 % 

AVG. 

ALL 
1.08 dB -24.71 % 0.21 dB -5.86 % 0.07 dB -1.78 % 0.13 dB -3.19 % 0.17 dB -4.16 % 

 

When comparing HEVC with HEVC-SS, which is limited to only two DoF, it is possible to see 

that HEVC-SS is able to outperform HEVC with average bitrate savings of 27.91% and 23.11% 

for LF images using FOC and UNF camera models, respectively. However, when comparing 

HEVC-HOP, which supports up to eight DoF, with HEVC-SS, additional average bitrate 

savings of 7.47% and 5.06% are achieved for LF images using FOC and UNF camera models, 

respectively.  
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When comparing the results for the proposed HEVC-HOP-𝑛T it is possible to see that the bitrate 

savings increase for every image when the number of training directions is increased. For seven 

training directions, i.e., HEVC-HOP-7T, the achieved average bitrate savings, for the LF images 

captured by a camera using a FOC model when compared to HEVC-SS, is 8.21% (up to 

12.57%). Additionally, when compared to HEVC the average bitrate savings is 33.55% (up to 

50.03%). In this case, HEVC-HOP-7T is able to outperform HEVC-HOP. However, when 

encoding images from the EPFL LF dataset using HEVC-HOP, the average bitrate savings 

relatively to HEVC-SS is 5.06%, where when the proposed HEVC-HOP-7T is used, average 

bitrate savings of only 2.14% are achieved. Concluding that for LF images captured with a UNF 

camera model, HEVC-HOP is more efficient than the proposed HEVC-HOP-7T. The number 

of training directions can be further increased, however the bitrate savings gains for a higher 

number of training directions is residual and the encoder computational complexity is vastly 

increased. 

Comparison using the JPEG Pleno CTCs 

To further evaluate the compression efficiency of the proposed HEVC-HOP-𝑛T, the 

experimental results were also performed using the 4DLF-MI data representation and the JPEG 

Pleno CTCs. In this case only the EPFL LF dataset is used due to the metadata requirement to 

convert from the LL image to the 4D LF data representation. Since the LF images are encoded 

using the YUV 4:2:0 8 bit color format the adaptations shown in Figure 4.6, in Section 4.1.2 

were applied Table 5.6 shows the experimental results using the JPEG Pleno CTCs comparing 

HEVC, HEVC-SS, HEVC-HOP-P and HEVC-HOP-7T. The values in bold correspond to the 

best achieved result for each specific test image. 

The results presented in Table 5.6 further validate the assumption that although HEVC-HOP-

7T is able to be more efficient than a LOP solution such as HEVC-SS, it is not as efficient as 

HEVC-HOP-P for LF images captured with a UNF camera model. Regardless, the average 

bitrate savings increased by about 1% over HEVC-SS, when performing the tests with the 

4DLF-MI representation using the JPEG Pleno CTCs (3.02%), instead of using the LL 

representation with the BEPC (2.14%). 
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Table 5.6. BD-PSNR-YUV and BD-Rate results using the JPEG Pleno CTCs comparing HEVC, HEVC-SS, 

HEVC-HOP-P and HEVC-HOP-7T 

Image 

HEVC-SS vs              

HEVC 

HEVC-HOP-P vs     

HEVC-SS 

HEVC-HOP-7T vs     

HEVC-SS 

BD-PSNR- 

YUV 
BD-RATE 

BD-PSNR- 

YUV 
BD-RATE 

BD-PSNR- 

YUV 
BD-RATE 

I01 2.65 dB -60.17 % 0.13 dB -4.39 % 0.08 dB -2.53 % 

I02 1.71 dB -46.12 % 0.12 dB -3.92 % 0.07 dB -2.27 % 

I03 1.36 dB -37.36 % 0.08 dB -2.68 % 0.03 dB -0.85 % 

I04 2.48 dB -60.81 % 0.01 dB -0.23 % 0.00 dB 0.14 % 

I05 2.32 dB -62.33 % 0.08 dB -3.55 % 0.07 dB -2.81 % 

I06 5.00 dB -90.69 % 0.07 dB -2.46 % 0.10 dB -4.56 % 

I07 4.67 dB -73.34 % 0.17 dB -5.88 % 0.08 dB -2.78 % 

I08 5.99 dB -87.18 % 0.02 dB -1.02 % 0.00 dB 0.18 % 

I09 2.87 dB -62.05 % 0.17 dB -5.53 % 0.10 dB -3.32 % 

I10 4.22 dB -73.73 % 0.00 dB -0.11 % 0.03 dB -0.92 % 

I11 4.32 dB -83.37 % 0.33 dB -14.87 % 0.23 dB -10.37 % 

I12 4.68 dB -75.08 % 0.37 dB -11.27 % 0.19 dB -6.09 % 

AVG. 3.52 dB -67.69 % 0.13 dB -4.66 % 0.08 dB -3.02% 

 

5.5. Final remarks 

In this chapter, a HOP mode and HOP training for LF image coding was proposed, using GTs 

of up to eight DoF. The proposed HOP model is a two-stage block-wise approach that is able to 

achieve RD efficiency gains, relative to a LOP state-of-the-art solution for LF image coding and 

HEVC. These gains occur, regardless of the LF camera model, MI representation, LF image 

resolution and microlens array type. Experimental results using the BEPC show that the 

proposed HOP mode achieves an average bitrate savings of 5.86% and 28.81%, when compared 

to HEVC-SS and HEVC, respectively, across different types of LF images, when using the 

Projective GT. It is also possible to conclude that, the GTs with eight DoF, namely Projective 

and Bilinear, are generally more efficient than Affine GT in a RD sense. Additionally, the 

proposed HOP training is able to outperform HEVC-SS and HEVC by an average bitrate savings 

of 4.16% and 27.37%, respectively. It was observed that the HOP training is able to outperform 

the HOP mode when encoding images captured with a FOC LF camera model, however, the 

opposite was observed for UNF LF camera models. 

The same proposed solutions were also tested when encoding the EPFL LF dataset, using JPEG 

Pleno CTCs. In this case the average bitrate savings achieved for the HOP mode is 4.81% and 
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69.86% when over HEVC-SS and HEVC, respectively. When comparing the HOP training 

using the same evaluation metrics, the average bitrate savings achieved are 3.02% and 68.95% 

when compared to HEVC-SS and HEVC, respectively. 
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Chapter 6. Light field image coding based on hybrid 

data representation 

Most techniques reviewed in Chapter 3 either rely on exclusively exploiting the redundancy of 

MIs or SAIs which limits the amount of redundancy that the LF image coding is able to exploit, 

thus limiting its overall efficiency. This chapter proposes a hybrid LF data representation (HR), 

i.e., one which uses both the MI and SAI representations, enabling a more exhaustive 

exploitation of the inherent LF redundancy and improving the LF coding efficiency. The use of 

the hybrid approach enables the use of four main types of redundancy: (i) intra spatial 

redundancy of each SAI, (ii) inter-view redundancy between SAIs, (iii) intra-MI redundancy 

within each MI, and (iv) inter-MI between neighboring MIs.  

The efficiency of the proposed HR is demonstrated by incorporating this new paradigm in a 

standard HEVC PVS codec [64]. In this codec, spatial redundancy of each SAI can be exploited 

by standard intra coding tools. The inter-view redundancy between SAIs and the intra and inter-

MI redundancies are exploited by using a new hybrid reference picture list (HRPL). The 

proposed HRPL, allows the already encoded LF information to be stored simultaneously in a 

SAI- and a MI-based manner, which allows all types of redundancy to be exploited, by applying 

different prediction modes. 

The proposed codec uses an optimized set of pixelwise prediction methods, evaluated amongst 

state-of-the-art methods such as: DC predictor, median edge detector (MED) [110], gradient 

adjusted predictor (GAP) [111] and accurate gradient selective prediction (AGSP) [112]. 

Additionally, new prediction methods based on least squares prediction (LSP) [113] are 

proposed, to further improve the coding efficiency. Experimental results show that the proposed 
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codec using this HR is able to outperform state-of-the-art LF image codecs that rely exclusively 

on either MI- or SAI-based representations. 

This chapter is organized as follows: Section 6.1 presents the proposed hybrid LF data 

representation; Section 6.2 describes the new intra-MI prediction modes proposed in this 

Chapter; Section 6.3 presents the new inter-MI prediction modes proposed in this chapter, 

Section 6.4 evaluates the performance of the proposed LF coding solution against relevant state-

of-the-art solutions; and finally, Section 6.5 concludes this chapter with some final remarks. 

6.1. Proposed hybrid LF data representation  

The HR proposed in this chapter uses a combination of the 4DLF-PVS and 4DLF-MI 

representations. This LF data representation takes advantage of the seamless and reversible 

conversion between 4DLF-PVS and 4DLF-MI representations (see Section 2.2). This hybrid 

representation enables the use of more prediction paradigms (modes) in the compression of LF 

data. Figure 6.1 shows the coding diagram of a video codec which uses the hybrid representation 

in a HEVC-like encoder, which employs the proposed hybrid data representation. 

From Figure 6.1 it is possible to see the use of two decoded picture buffers: (i) the SAI decoded 

picture buffer, which is the standard HEVC decoded picture buffer, and (ii) the new MI decoded 

picture buffer that stores the full LF image using the 4DLF-MI representation, which is 

gradually generated from the decoded SAIs. The combination of both decoded picture buffers 

is referred to as HRPL. 

The use of the HRPL enables four types of estimation/prediction blocks that exploit different 

types of redundancy available in each data representation model: 

• Intra-SAI prediction: Corresponds to the intra-picture prediction modes, i.e., DC, 

Planar, and Directional modes in HEVC, which are used to exploit the spatial 

redundancy of SAIs;  

• Inter-SAI prediction: Corresponds to the inter-picture prediction modes, i.e., Motion 

Estimation, Merge/Skip modes in HEVC, which are used to exploit the inter-view 

redundancy of SAIs. These prediction modes make use of the SAI decoded picture 

buffer; 
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• Intra-MI prediction: Corresponds to new prediction modes that exploit the intra-MI 

redundancy, by using the MI decoded picture buffer (see Section 6.2); 

• Inter-MI prediction: Corresponds to new prediction modes that exploit the inter-MI 

redundancy, by using the MI decoded picture buffer (see Section 6.3). 

 

Figure 6.1. Proposed LF coding architecture using the hybrid data representation. The highlighted portions in 

orange correspond to the contributions of this work. 

6.1.1. Generation of the MI decoded picture buffer 

As illustrated in Figure 6.1, in the proposed LF coding solution, both input and output data use 

the 4DLF-PVS data representation. Therefore, the full LF image using the 4DLF-MI data 

representation must be generated from the decoded SAIs, by using the correspondence between 

the 4DLF-PVS and 4DLF-MI representations. The pixel position on the 4DLF-MI image, (𝑖, 𝑗), 

can be defined as a function of the 4DLF-PVS pixel position: 

(
𝑖

𝑗
)
4𝐷𝐿𝐹−𝑀𝐼

= (
ℎ(𝑓𝑛) + 𝑥𝑀𝑤

𝑣(𝑓𝑛) + 𝑦𝑀ℎ
)
4𝐷𝐿𝐹−𝑃𝑉𝑆

, (6.1) 

where, 𝑀𝑤 and 𝑀ℎ correspond to the MI width and height, respectively and 𝑓𝑛 is the PVS frame 

number. As mentioned before, the (𝑥, 𝑦) coordinates index the pixel position within each SAI 

and (ℎ, 𝑣) coordinates index the SAI position. Since the SAIs are organized in a PVS the (ℎ, 𝑣) 
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coordinates depend on the frame number 𝑓𝑛. Figure 6.2 shows how the 4DLF-MI image is 

generated from the nine decoded SAIs when a spiral scan is used. Note that the dashed red arrow 

shows the scanning order being applied on the 4DLF-PVS representation and the consequent 

scanning order from the 4DLF-MI representation point of view. When applying (6.1) to the 

example in Figure 6.2 the pixel at the 𝑃𝑃𝑉𝑆(𝑥, 𝑦, 𝑓𝑛) coordinate in the 4DLF-PVS representation 

is copied to the 𝑃𝑀𝐼(𝑖, 𝑗) coordinate on the 4DLF-MI representation. This allows the 4DLF-MI 

decoded picture buffer to be gradually filled after encoding each full SAI. 

 

Figure 6.2. Pixel correspondence between 4DLF-PVS and 4DLF-MI data representations. 

Since the conversion to the 4DLF-MI representation is performed progressively the 4DLF-MI 

decoded picture buffer is going to resemble a sparse LF image. Figure 6.3 shows the conversion 

of the first 2×2 block when encoding the sixth SAI of the 4DLF-PVS from the example shown 

before in Figure 6.2. As it is possible to see from the example in Figure 6.3, the reference 2×2 

block in the 4DLF-PVS representation, leads to four individual pixels in four different MIs, in 

the 4DLF-MI representation. Because of this characteristic, the intra-MI and inter-MI prediction 

modes are applied pixelwise, instead of blockwise, as in the 4DLF-PVS representation case. In 

the example of Figure 6.4, each one of the four individual pixels is predicted using either the 

causal area in the same MI (intra-MI) or the causal area in neighboring MIs (inter-MI). After 

pixelwise pixel prediction, the predicted pixels are mapped back to the 4DLF-PVS 

representation positions forming a prediction block for the reference 2×2 block. 
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Figure 6.3. Converting a reference 2×2 block in the 4DLF-PVS representation to the 4DLF-MI representation. 

6.1.2. Selection of the ‘best’ prediction mode 

Several prediction modes are going to be available to exploit each type of redundancy. The 

HEVC encoder decides between both intra and inter prediction modes, i.e., intra-SAI and inter-

SAI prediction modes, respectively, by generating a prediction block for each prediction mode 

and then comparing the predicted block with the original block. The prediction mode that 

minimizes a Lagrangian RD cost function, given by 𝐽 = 𝐷 + 𝜆𝑅, is selected. In the proposed 

coding approach, the same process is extended to the proposed prediction modes to be used in 

the 4DLF-MI data representation. The prediction modes in both representation domains are 

going to be used to also generate prediction blocks, which will then compete, in terms of RD 

cost, with the ones generated by the standard HEVC prediction modes.  

6.1.3. Prediction mode signaling 

Since in the proposed coding architecture four different types of redundancies can be exploited 

with the different prediction modes, it is also necessary to efficiently signal the usage of such 

prediction modes. The standard intra and inter modes, i.e., intra-SAI and inter-SAI, from HEVC 

are signaled as in the HEVC standard. The proposed intra-MI and inter-MI prediction modes 

also use the same signaling rational, from the 35 possible intra-SAI prediction modes, eight 

directional mode indexes are allocated for intra-MI modes and inter-MI modes. The substituted 

modes are the suggested ones in [48] which include intra directions that are not used as often as 
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the others. Table 6.1 shows the list of used modes (name/number) for each of the four prediction 

types. 

Table 6.1. List of mode name/number for the proposed coding structure 

Prediction 

type 
Mode name/index 

intra-SAI 

0 (Planar), 1 (DC), 2, 4, 5, 6, 8, 9, 10, 

12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 

25, 26, 28, 29, 30, 32, 33, 34 

Inter-SAI Skip, Merge, Motion Compensation 

intra-MI 3, 7, 11, 15 

Inter-MI 19, 23, 27, 31 

 

6.2. Intra-MI prediction 

The intra-MI prediction modes are responsible to exploit intra-MI redundancy which is present 

in each individual MI. In order to exploit this type of redundancy several modes are proposed, 

such as DC, MED [110], GAP [111], and AGSP [112].  These modes, with the exception of 

AGSP, are used in popular image coding approaches, such as HEVC, JPEG-LS [114] and 

CALIC [111], respectively. AGSP was selected because it is able to outperform MED and GAP 

when encoding natural images. However, such prediction modes cannot be used directly in the 

proposed codec. An adaptation of the prediction area is necessary because the causal area may 

differ, depending on the scanning strategy adopted. The following sections describe the 

proposed pixel prediction modes, including the necessary adaptations to the spiral scanning 

strategy.  

6.2.1. Spiral scanning predictor adaptations 

In the proposed hybrid representation, a clockwise spiral PVS scan is performed, causing the 

causal area to grow differently from a raster scan. When using a raster scan, as in the case of the 

original DC, MED, GAP and AGSP predictors, the causal area is always on the top and left of 

the current pixel. The predicted pixel generated by each of these predictors is a combination of 

part or all of the available pixels in the causal area. For example, the predicted pixel that is 

generated by the DC predictor is an average, i.e., a linear combination, of the surrounding pixels. 

The set of pixels that are selected within the causal area of pixels are hereafter referred to as 
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pixel support. Differently from the raster scan, for the clockwise spiral scan, the causal area of 

each new pixel is not always available in the upper-left area relative to the new pixel. Thus, the 

pixel support is dynamically adapted to maximize the number of available pixels for prediction, 

which is illustrated in Figure 6.4 for Frame 33 of a PVS, where each individual predictor is used 

to predict the orange pixel.  

 

 

 

Figure 6.4. Pixel support for the pixel predictors DC, MED, GAP and AGSP, when using a clockwise spiral scan. 

The spiral scanning is divided into four phases, i.e., Right, Down, Left and Up, named according 

to the direction of the spiral scan. Figure 6.4 shows a pixel prediction, the causal area and the 

pixel support, when the scan direction is left (i.e., Left phase). For the following phases (Up, 

Right and Down) the same pixel prediction structure is used, but rotated relatively to the Left 

phase as follows: 

• Up phase: 90º; 

• Right phase: 180º; 

• Down phase: 270º. 

At few positions of the scan, one or more pixels of the pixel support area may not exist. When 

some predictor pixel value is not available, due to being part of the non-causal area, it is copied 
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from a neighboring location. The filling pattern for the unavailable pixels is shown in Figure 6.5 

with red arrows.  

 

Figure 6.5. Generic pixel support and filling pattern. 

6.2.2. DC prediction mode 

The DC prediction mode consists in applying an average of the available pixels in a 3×3 template 

centered on the current pixel. In the example shown in Figure 6.4 the predictor is an average of 

the values of pixels 𝑆0, ⋯ , 𝑆3. If 𝑁 is the number of available pixels, the prediction value �̂� is 

generically calculated by (6.2): 

�̂� =
∑ 𝑆𝑛
𝑁−1
0

𝑁
, (6.2) 

The number of available pixels varies between one and four. Notice that the decoder has access 

to the same predictor values, since a causal prediction is used. 

6.2.3. MED prediction mode 

The MED [110] prediction mode consists of a three-pixel template, as shown in Figure 6.4. The 

prediction value is calculated by (6.3): 

�̂� = {

min(𝑆1, 𝑆0) , 𝑖𝑓 𝑆2  ≥ max (𝑆1, 𝑆0)

max(𝑆1, 𝑆0) , 𝑖𝑓 𝑆2  ≤ min (𝑆1, 𝑆0)
𝑆1 + 𝑆0 − 𝑆2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

. (6.3) 

6.2.4. GAP prediction mode 

The GAP [111] prediction mode consists of a seven-pixel template, as shown in Figure 6.4. 

Firstly, the vertical ( 𝑔𝑣) and horizontal ( 𝑔ℎ) gradients are estimated using (6.4): 

 𝑔ℎ = |𝑆1 − 𝑆5| + |𝑆0 − 𝑆2| + |𝑆0 − 𝑆3| 

  𝑔𝑣 = |𝑆1 − 𝑆2| + |𝑆0 − 𝑆4| + |𝑆3 − 𝑆6|, 
(6.4) 
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Secondly, depending on the values of  𝑔𝑣 and  𝑔ℎ, GAP will recognize weak, regular and sharp 

vertical (Ver) and horizontal (Hor) axis as well as smooth edges. The prediction value �̂� is 

determined by the thresholds [111] and equations shown in Figure 6.4. 

Table 6.2. Prediction value calculation based on the vertical and horizontal gradients 

Edge 
Threshold 

(𝑔𝑣 − 𝑔ℎ) 
Prediction (�̂�) 

Sharp Hor > 80 𝑆1 

Sharp Ver < −80 𝑆0 

Regular Hor > 32 
𝑆1 + 𝑆0
4

+
𝑆3 − 𝑆2
8

+
𝑆1
2

 

Regular Ver < −32 
𝑆1 + 𝑆0
4

+
𝑆3 − 𝑆2
8

+
𝑆0
2

 

Weak Hor > 8 
3(𝑆1 + 𝑆0)

8
+
3(𝑆3 − 𝑆2)

16
+
𝑆1
4

 

Weak Ver < −8 
3(𝑆1 + 𝑆0)

8
+
3(𝑆3 − 𝑆2)

16
+
𝑆0
4

 

Smooth otherwise 
𝑆1 + 𝑆0
2

+
𝑆3 − 𝑆2
4

 

 

6.2.5. AGSP prediction mode 

The AGSP [112] prediction mode uses a nine-pixel predictor as, shown in Figure 6.4. AGSP is 

able to determine horizontal, vertical and diagonal edges. In order to determine the direction of 

the edge, 4 gradients are calculated in (6.5), corresponding to the horizontal (𝑔ℎ), vertical (𝑔𝑣), 

45º diagonal (𝑔45) and -45º diagonal (𝑔−45): 

 𝑔ℎ = (2|𝑆1 − 𝑆5| + 2|𝑆0 − 𝑆2| + 2|𝑆0 − 𝑆3| + |𝑆4 − 𝑆7| + |𝑆4 − 𝑆6| + |𝑆2 − 𝑆8| )/9 + 1 

 𝑔𝑣 = (2|𝑆1 − 𝑆2| + 2|𝑆0 − 𝑆4| + |𝑆3 − 𝑆6| +  |𝑆5 − 𝑆8| + |𝑆2 − 𝑆7| )/7 + 1 

 𝑔45 = (2|𝑆1 − 𝑆0| + 2|𝑆0 − 𝑆6| + |𝑆5 − 𝑆2|  +  |𝑆2 − 𝑆4| )/6 + 1 

 𝑔−45 = (2|𝑆1 − 𝑆8| + 2|𝑆0 − 𝑆7| + |𝑆3 − 𝑆4| )/5 + 1 

(6.5) 

After calculating the four gradients, the two lowest ones are selected as  𝑔𝑚𝑖𝑛  and  𝑔𝑚𝑖𝑛2  . 

Additionally, the causal pixels 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑖𝑛2 that correspond to the direction of each of the 

selected gradients, i.e.,  𝑔min  and  𝑔min2  , are selected. The correspondent causal pixel for the 

gradients 𝑔𝑣, 𝑔ℎ, 𝑔45 and 𝑔−45, is 𝑆0, 𝑆1, 𝑆2 and 𝑆3, respectively. For example, if  𝑔min  = 𝑔𝑣 
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and  𝑔min2  = 𝑔45, then 𝑃𝑚𝑖𝑛 = 𝑆0 and 𝑃𝑚𝑖𝑛2 = 𝑆2. The final prediction value is calculated in 

(6.6): 

�̂� =
 𝑔𝑚𝑖𝑛  𝑃𝑚𝑖𝑛2 +  𝑔𝑚𝑖𝑛2  𝑃𝑚𝑖𝑛

 𝑔𝑚𝑖𝑛  +  𝑔𝑚𝑖𝑛2 
 (6.6) 

6.3. Inter-MI prediction 

The inter-MI prediction modes are responsible to exploit the inter-MI redundancy which is also 

known, as non-local spatial redundancy. The similarities between the neighboring MIs in the 

LF image using the 4DLF-MI representation can be exploited in several ways as it was discussed 

in Chapter 3. However, most approaches proposed in the literature are block-based instead of 

pixel-based. This work describes the use of an LSP-based prediction mode which can be applied 

in a pixelwise manner, in order to exploit the inter-MI redundancy. 

6.3.1. LSP- based prediction mode 

LSP is a prediction tool that adaptively estimates optimal linear coefficients using least squares 

training. Thus, the main advantage of the LSP-based prediction mode, when compared with the 

previously presented predictors, is its ability to dynamically adapt to the available causal area 

and determine the best prediction direction depending on the causal area [113]. The least squares 

training step based on a least squares minimization problem is defined as: 

min
𝒂
(‖𝒚 − 𝑪𝒂‖2

2) (6.7) 

where 𝒂 =  [𝑎0, … , 𝑎𝑀−1]
𝑇, a 𝑀 × 1 column vector, corresponds to the linear coefficients to 

estimate. The closed-form solution for (6.7) is given by: 

𝒂 = (𝑪𝑇𝑪)−1(𝑪𝑇𝒚). (6.8) 

The matrix 𝑪 is a 𝑇 × 𝑀  matrix, where 𝑀 is the order of the LSP pixel support, i.e., the number 

of pixels that compose the pixel support, and 𝑇 is the number of causal neighbors used for 

training, which can include the causal area in the current MI or several neighboring MIs. The 

vector 𝒚 is a 𝑇 × 1 column vector, i.e., 𝒚 =  [𝑦0, … , 𝑦𝑇−1]
𝑇. The value 𝑇 is calculated as (6.9): 

𝑇 = (𝑓𝑛 − 1) ×𝑀𝑇 , (6.9) 
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where 𝑓𝑛 is the frame number of the PVS and 𝑀𝑇  is the number of MIs used for training. Note 

that if 𝑀𝑇 = 1 this mode can be considered intra-MI, because the training step only uses pixels 

from the current MI. If 𝑀𝑇 > 1 then, this prediction mode is considered an inter-MI prediction 

mode. Additionally, the training size increases with the frame number, because more pixels are 

available for training.  

6.3.2. Adaptive pixel support and training 

In order to perform the LSP training, the pixel support, i.e., the pixels used for prediction after 

the training step is performed, for the predictor needs to be determined as well as the matrix 𝑪 

and the vector 𝒚 need to be constructed. In this approach, since the causal area grows in a spiral, 

the pixel support needs to be adapted accordingly, by selecting the 𝑀 available pixels closest to 

the current pixel. The distance between the current pixel, 𝐼𝑐, and the causal pixel, 𝐼𝑛, is 

determined by the Manhattan distance in (6.10): 

𝑑(𝐼𝑐, 𝐼𝑛) = |𝐼𝑐𝑥 − 𝐼𝑛𝑥| + |𝐼𝑐𝑦 − 𝐼𝑛𝑦|. (6.10) 

For example, an adaptive pixel support generation, by minimizing the Manhattan distance, for 

𝑀 = 5 and 𝑀 = 9, is shown in Figure 6.6; the numbers displayed in the neighboring pixels 

(blue pixels) correspond to the Manhattan distance of using as an example the pixel 33 shown 

in Figure 6.4, 𝑇 = 32 ×𝑀𝑇, because 𝐹𝑛 = 33. The neighboring pixels that have the same 

Manhattan distance are selected by using a raster scan. High values of 𝑀𝑇 may heavily increase 

the computational complexity, therefore, in this Thesis, only values between one and nine have 

been considered. In this case, each pixel relative to pixel 33. As illustrated in Figure 6.7, vector 

𝒚 comprises every single causal pixel inside the MIs that contain the training area, with the 

exception of the current pixel. The matrix 𝑪 is composed by the pixel support determined in the 

previous step, centered on each neighboring pixel included in vector 𝒚. Using the example 

shown in Figure 6.7, if using a fifth order pixel support, i.e., LSP using 𝑀 = 5, this support is 

centered on pixel 0 and, therefore, the first row of the matrix 𝑪 is 𝑪𝟎 = [𝐼7, 𝐼1, 𝐼22, 𝐼6, 𝐼8] and 

𝑦0 = 𝐼0.  

Since the matrix 𝑪 and vector 𝒚 are already determined then (6.8) can be solved. After solving 

(6.8), vector 𝒂 is used to estimate a prediction value �̂� for the current pixel as: 
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�̂� = ∑ 𝑆𝑛 × 𝑎𝑛
𝑀−1
0 , (6.11) 

where 𝑆𝑛 are the 𝑀 pixels that compose the pixel support.  

 

Figure 6.6. Example of an adaptive pixel support generation by minimizing the Manhattan distance (No pixel 

support, M=5 and M=9). 

 

Figure 6.7. Composition of matrix C and vector y for the current MI necessary for the training step of LSP. 

6.4. Experimental results 

In this section the performance of the proposed LF coding solution based on a hybrid LF data 

representation is evaluated against the most relevant state-of-the-art coding solutions. First, the 

test conditions, including the processing chain for objective quality assessment, is explained. 

Then, experimental results comparing the RD performance of the proposed codec are presented 

and discussed. A statistical analysis of the prediction mode usage as well as the performance for 

different encoder configurations are evaluated and discussed. 

6.4.1. Test conditions 

The experimental tests for all coding solutions presented in this section adopted the JPEG Pleno 

CTCs [35]. The EPFL LF dataset (see Appendix A.2), comprised of twelve LF images acquired 

using a Lytro Illum camera, was used [22] to evaluate the several benchmarks. The state-of-the 
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art LF codecs that were used as benchmarks, include: HEVC-PVS [64], WaSP [42], MuLE [41], 

HEVC-SS [50], HEVC-HOP [11] and HEVC-LLE [48]. The proposed codec, based on a hybrid 

LF representation, is referred to as HEVC-HR. The LF input resolution, LF data representation 

and the supported color format, are presented in Table 6.3. 

Table 6.3. Benchmark coding solutions 

Codec 
Input 

Resolution 

Color 

format 

LF Data 

Representation 

HEVC-PVS [64] 
625×434 

(169 SAIs) 

YUV 4:4:4 

10 bit 
SAI 

WaSP [42] 
625×434 

(169 SAIs) 

RGB 4:4:4 

10 bit  
SAI 

MuLE [41] 
625×434 

(169 SAIs) 

RGB 4:4:4 

10 bit- 
4D LF 

HEVC-SS [50] 
8125×5642 

(13×13 MIs) 

YUV 4:2:0 

8 bit 
MI 

HEVC-HOP [11] 
8125×5642 

(13×13 MIs) 

YUV 4:2:0 

8 bit 
MI 

HEVC-LLE [48] 
8125×5642 

(13×13 MIs) 

YUV 4:2:0 

8 bit 
MI 

HEVC-HR 
625×434 

(169 SAIs) 

YUV 4:4:4 

10 bit 

Hybrid (SAI 

and MI) 

 

As mentioned before, the output color format for objective comparison of all benchmarks is 

YUV 4:4:4 10 bit. However some codec implementations only support the YUV 4:2:0 8 bit 

color format. This is the case for the HEVC-SS, HEVC-HOP and HEVC-LLE codecs. For these 

codecs, a pre-processing step is applied at the encoder, to generate the YUV 4:2:0 8 bit input 

color format, and a post-processing step is performed at the decoder to generate the YUV 4:4:4 

10 bit output color format. In order to evaluate the achieved objective quality the processing 

chains shown in Figure 4.4 and Figure 4.6, (seen in Section 4.1.2) are used for the codecs that 

support YUV 4:4:4 10 bit and YUV 4:2:0 8 bit, respectively.  

Table 6.4 shows the list of tested codecs including the corresponding configurations. The 

different QP and 𝜆 values selected allow the use of a common bitrate range for every tested 

codec, enabling a direct comparison through the BD metrics. The HEVC 4DLF-PVS based 

codecs use the low delay with B slices configuration and the 4DLF-MI based codecs use the 

intra main configuration.  
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Table 6.4. List of tested codecs and corresponding configurations 

Codec Configuration 

HEVC-HR 
𝑄𝑃 = [17,22,27,32,37,42] 

HEVC-PVS 

HEVC-SS 

𝑄𝑃 = [22,27,32,37,42,47] HEVC-HOP 

HEVC-LLE 

MuLE 𝜆 = [270,3880,30000,310000,4600000] 

WaSP 𝑇𝑎𝑟𝑔𝑒𝑡 𝑏𝑝𝑝 = [0.001,0.005,0.02,0.1,0.75] 

 

6.4.2. Performance assessment 

The proposed HEVC-HR was tested in three different phases. In the first phase, each intra-MI 

prediction mode was individually tested, i.e., DC, MED, GAP and AGSP. In the second phase, 

each inter-MI prediction mode was tested, i.e., several configurations in terms of LSP order and 

training area of the proposed LSP prediction mode were tested. In the final phase the prediction 

modes presenting a higher tradeoff between coding efficiency and computational complexity 

were selected to be part of HEVC-HR. The experimental results in Table 6.5 and Table 6.6 show 

the BD-PSNR-YUV and BD-RATE averaged across the twelve EPFL LF images, comparing 

the HEVC-PVS with the HEVC-HR using only one prediction mode. 

 

Intra-MI prediction modes evaluation 

Table 6.5 presents the results of each individual intra-MI prediction mode described in section 

6.2. As can be observed, the prediction mode with highest bitrate savings (12.87%) is AGSP. 

From the experimental results it can be inferred that increasing the order of the prediction 

increases the prediction accuracy and, consequently, improves the coding efficiency. The only 

exception is the MED prediction mode, which achieves lower bitrate savings when compared 

to the DC prediction mode, which has an order value of one to four, depending on how many 

support pixels are available. Overall, it is possible to observe that the proposed intra-MI 

prediction modes improve the LF image coding efficiency. Since their low computational 

complexity, especially when compared to LSP-based prediction modes, DC, MED, GAP and 

AGSP were used in the final version of HEVC-HR. 

 



Chapter 6. Light field image coding based on hybrid data representation 

113 

Table 6.5. BD-PSNR-YUV and BD-RATE results against HEVC-PVS using different intra-MI prediction modes 

Prediction Mode Order BD-PSNR-YUV BD-RATE 

DC 1 to 4 0.25 dB -10.72 % 

MED 3 0.15 dB -6.77% 

GAP 7 0.28 dB -12.12% 

AGSP 9 0.29 dB -12.87% 

 

Table 6.6. BD-PSNR-YUV and BD-RATE results against HEVC-PVS using different LSP prediction mode 

configurations 

LSP Order (𝑀) 𝑀𝑇 BD-PSNR-YUV BD-RATE 

3 

1 (Intra) 0.26 dB -11.37 % 

5 (Inter) 0.31 dB -13.10 % 

9 (Inter) 0.31 dB -13.29 % 

5 

1 (Intra) 0.22 dB -9.73 % 

5 (Inter) 0.32 dB -13.42 % 

9 (Inter) 0.43 dB -13.98 % 

7 

1 (Intra) 0.17 dB -7.47 % 

5 (Inter) 0.30 dB -12.55 % 

9 (Inter) 0.32 dB -13.50 % 

9 

1 (Intra) 0.20 dB -6.89 % 

5 (Inter) 0.32 dB -13.31 % 

9 (Inter) 0.34 dB -13.69 % 

 

Inter-MI prediction modes evaluation 

Table 6.6 presents the experimental results for different configurations of the LSP-based modes 

described in Section 6.3. Two parameters were tested, corresponding to the LSP order (𝑀) and 

the number of MIs used for training (𝑀𝑇). By varying 𝑀, it is possible to compare the 

performance of an adaptive mode with prediction modes with similar orders, like MED, GAP 

and AGSP. The value 𝑀𝑇 was tested for one, five and nine, which corresponds to use, 

respectively: the current MI for training (equivalent to an intra-MI prediction mode, as 

mentioned in Section 6.3); the current MI and the MI on the left, top, right and bottom of the 

current MI; and the current MI and the eight surrounding MIs.  

From Table 6.6 it is possible to conclude that, regardless of the LSP order, when the training 

area (𝑀𝑇) increases, the coding efficiency also increases. This is especially noticeable when 

using more than one MI for training. However, increasing the order does not always result into 

higher bitrate savings. This occurs because the use of higher LSP orders requires larger areas of 

reconstructed pixels, for LSP training. The size of the available training grows from the first 

frames to the last ones, affecting the quality of the training step. Thus, the use of higher LSP 
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orders will be more efficient only at later stages of the coding process, while using a lower order 

may be beneficial since an earlier stage of the coding process. Higher prediction orders and 

larger training areas also impact negatively (i.e., increase) on the computational complexity. In 

Table 6.6, the best three LSP based prediction methods in terms of bitrate savings vs. 

computational complexity are represented in bold (LSP3, LSP5 and LSP7, using five MIs for 

training. These modes were included in HEVC-HR. LSP9 modes were excluded, due to their 

high computational complexity.  

 

HEVC-HR using Intra-MI and inter-MI prediction modes 

Table 6.7 presents the experimental results achieved by HEVC-HR when the prediction modes 

selected in the previous sections (DC, MED, GAP, AGSP, LSP3, LSP5 and LSP7) are jointly 

used; HEVC-HR using the intra-MI prediction modes only (DC, MED, GAP and AGSP); MuLE 

and WaSP LF image codecs in comparison with HEVC-PVS. 

Table 6.7. BD-PSNR-YUV and BD-RATE results against HEVC-PVS using HEVC-HR, MULE and WASP codecs 

Img. 

HEVC-HR vs 

HEVC-PVS 

HEVC-HR (Intra-MI) 

vs HEVC-PVS 

MuLE vs 

HEVC-PVS  

WaSP vs 

HEVC-PVS 

BD-PSNR 

(dB) 

BD-RATE  

(%) 

BD-PSNR 

(dB) 

BD-RATE  

(%) 

BD-PSNR 

(dB) 

BD-RATE 

(%) 

BD-PSNR 

(dB) 

BD-RATE  

(%) 

I01 0.69 -24.65 0.48 -18.04 0.97 -33.15 -0.24 9.14 

I02 0.92 -30.37 0.63 -21.72 1.54 -45.55 0.56 -23.07 

I03 0.72 -25.34 0.50 -18.30 0.81 -28.74 0.25 -17.04 

I04 0.57 -25.49 0.44 -20.20 0.48 -22.29 -0.06 -2.05 

I05 0.49 -23.40 0.35 -17.48 0.40 -20.79 -0.19 1.93 

I06 0.33 -17.59 0.25 -13.49 -0.58 31.16 -0.85 64.00 

I07 0.50 -20.44 0.36 -15.30 0.23 -12.20 -0.79 25.53 

I08 0.36 -17.68 0.27 -13.58 -0.70 38.08 -1.05 39.75 

I09 0.49 -19.00 0.31 -12.46 0.49 -19.94 -0.01 -7.13 

I10 0.60 -24.91 0.48 -20.35 0.48 -21.34 -0.07 9.44 

I11 0.37 -18.20 0.26 -12.92 0.07 -5.32 -0.99 36.33 

I12 0.69 -25.23 0.45 -17.26 -0.19 5.02 -1.02 34.86 

Avg.. 0.56 -22.69 0.40 -16.76 0.33 -11.26 -0.37 14.31 

 

From Table 6.7 it is possible to observe that HEVC-HR consistently outperforms HEVC-PVS 

in terms of coding efficiency. An average of 22.69% of bitrate savings is achieved by using 

multiple prediction modes, which is considerably higher than the best performance of an 

individual prediction mode, i.e., LSP5, with 13.98%. Additionally, HEVC-HR using only intra-
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MI prediction modes, achieved 16.76% bitrate savings over HEVC-PVS. From this table it is 

also possible to observe that MuLE exhibits an average bitrate savings, of 11.26%, while WaSP 

exhibits an average increase in bitrate of 14.31%, relatively to HEVC-PVS. This means that the 

proposed HEVC-HR is on average more efficient than both MuLE and WaSP for the twelve LF 

images. Moreover, from the twelve test LF images used, HEVC-HR is more efficient than 

MuLE for eight out of the twelve images. MuLE is more efficient than HEVC-HR for images 

I01, I02, I03 and I09. The RD curves for the four LF image codecs when encoding the twelve 

EPFL LF dataset images are shown in Figure 6.8. From these RD curves it is possible to observe 

that HEVC-HR is able to outperform HEVC-PVS consistently for every image. Additionally, 

HEVC-HR tends to be more efficient than MuLE for lower bitrates. 
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Figure 6.8. RD Curves comparing the proposed hybrid representation LF coding approach (HEVC-HR) and 

HEVC-PVS, MuLE and WaSP. 

In order to further analyze the usefulness of each prediction mode in HEVC-HR, the average 

prediction mode usage across the six QPs is shown in Table 6.8. The values in bold correspond 

to the most used prediction modes, while the values in italic correspond to the least used 

prediction modes. It is possible to observe that most of the pixels are encoded using inter-SAI 

prediction modes, because the inter-view redundancy is very high in this type of LF content. 

However, when analyzing the prediction mode usage for intra-MI and inter-MI prediction, 

which include the new seven modes, it is possible to conclude that, for most images, the new 

modes are more often used than the intra-SAI modes, i.e., DC, Planar and the 26 remaining   

directional modes. These statistics allow to conclude that exploiting the intra- and inter-MI 

redundancy results in more coding efficiency than exploiting the spatial redundancy within each 

SAI.  

Amongst the new prediction modes, proposed in this Thesis, the most used prediction mode is 

LSP7, which verifies the assumption made about the usefulness of LSP-based prediction modes. 

LSP7 when tested individually is not as efficient as LSP5, because of the higher requirements 

in terms of training area in the initial phase of encoding process. Nevertheless, the use of three 

LSP-based prediction modes, with different orders and, therefore, different requirements in 

terms of training area, allows the encoder to choose the more suitable prediction mode for every 

phase of the coding process.  
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Table 6.8. Average prediction mode usage across the six QPs, in percentage of pixels for the HEVC-HR codec 

Img. 
Inter-

SAI 

Intra-

SAI 

Intra-MI Inter-MI 

DC MED GAP AGSP LSP3 LSP5 LSP7 

I01 72.3 1.5 3.7 2.6 1.4 2.4 3.2 5.3 7.5 

I02 73.0 1.4 3.1 2.2 1.2 2.2 3.3 4.9 8.8 

I03 78.7 1.3 2.3 1.5 0.8 1.9 2.5 4.0 7.1 

I04 75.5 1.3 3.3 1.8 1.3 2.1 2.4 4.5 7.8 

I05 76.0 2.0 3.5 2.4 1.0 1.8 3.2 4.3 5.8 

I06 70.6 6.9 5.5 3.0 2.2 1.6 3.0 3.4 3.7 

I07 79.1 2.2 2.7 2.0 1.4 1.5 2.5 3.6 5.0 

I08 68.9 7.9 5.0 3.3 2.0 1.8 3.1 4.0 4.1 

I09 69.8 2.3 3.9 3.7 1.1 1.8 3.2 6.3 8.0 

I10 75.6 1.4 4.1 2.4 1.8 2.2 2.9 3.9 5.7 

I11 69.2 4.0 4.4 4.9 2.5 1.6 4.1 4.8 4.6 

I12 70.0 2.2 3.3 3.3 1.5 2.2 3.3 6.2 7.8 

 

Experimental evaluation for YUV 4:2:0 8 bit color format 

In order to compare HEVC-HR with MI data representation LF coding approaches, a set of 

similar tests using the YUV 4:2:0 8 bit color format were performed, since the available 

implementations of HEVC-SS, HEVC-HOP and HEVC-LLE are only compatible with the YUV 

4:2:0 8 bit color format. This allows for a fair comparison between PVS, MI and the proposed 

hybrid approach for LF image coding. The RD curves for the twelve EPFL LF dataset images 

are shown in Figure 6.9. These RD curves are used to compare all the codecs listed in Table 6.3 

using the YUV 4:2:0 8 bit color format. 
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Figure 6.9. RD performance of the proposed hybrid representation LF coding approach (HEVC-HR) against the 

4DLF-MI and 4DLF-PVS representation approaches for selected LF test images. 

The RD curves in Figure 6.9 show that coding approaches based on 4DLF-PVS outperform 

approaches based on 4DLF-MI. This is explained by the fact that the inter-view redundancy 

between SAIs is very high and easily exploited by the inter-prediction tools of HEVC.  

Although HEVC-PVS is more efficient than approaches based on 4DLF-MI, the proposed 

HEVC-HR, based on a hybrid LF data representation, is able to achieve the highest coding 

efficiency, outperforming HEVC-PVS. The achieved average bitrate savings when compared to 

HEVC-PVS, for the twelve LF images in the YUV 4:2:0 8 bit color format, is 9.36%. This 

shows that the proposed hybrid data representation and prediction modes are able to increase 

the coding efficiency, regardless of the color format. 
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Computational complexity assessment 

The computational complexity of the tested codecs is presented in Table 6.9. The runtime values 

shown in this table were measured while encoding and decoding the image I01, with a 𝑄𝑃 =

22, for all the listed HEVC-based codecs. MuLE was tested using a 𝜆 value of 270 and WaSP 

was tested using a target bitrate of 0.75 bpp. These tests were performed using a PC equipped 

with an Intel Core i7 CPU 4790K@4.0GHz and 32GB of RAM, running Ubuntu 16.04.  

Table 6.9. Codec single thread computational complexity comparison 

Codec 

Encoder Decoder 

Run  

Time (hours) 

vs HEVC-PVS 

(ratio) 

Run 

Time (seconds) 

vs HEVC-PVS 

(ratio) 

                          YUV 4:2:0 8bpp 

HEVC-PVS 0.34 -  1.22 - 

HEVC-SS 4.43 13.18 372.10 304.01 

HEVC-HOP 6.50 19.32 396.81 324.19 

HEVC-LLE 11.74 34.90 1011.89 826.71 

HEVC-HR 22.18 65.25 326.10 267.30 

HEVC-HR 

(Intra-MI) 
0.38 1.12 5.25 4.30 

                            YUV 4:4:4 10bpp 

HEVC-PVS 0.54 -  3.21 - 

MuLE 0.15 0.28 18.19 5.67 

WaSP* 0.14 0.26 38.46 11.98 

HEVC-HR 24.14 44.70 3293.75 1026.09 

HEVC-HR 

(Intra-MI) 
0.59 1.09 11.53 3.58 

*using multithread (8 threads) 

 

Although the coding efficiency of the proposed HEVC-HR is higher than all the tested 

benchmarks, this comes at the expense of a higher computational complexity. From Table 6.9 

it is possible to see that HEVC-HR takes a much longer time to encode and decode the same LF 

image. Note however that, none of the implementations, including the HEVC-HR and the 

4DLF-MI coding approaches, are optimized. It is also possible to see that when testing HEVC-

HR using only the intra-MI prediction modes, the computational complexity is only marginally 

higher than HEVC-PVS, while still being on average more efficient than MuLE and WaSP. 

From this result it is possible to conclude that the computational complexity increase of HEVC-

HR relative to HEVC-PVS comes mostly from the inter-MI prediction modes, therefore these 

prediction modes would benefit from a more optimized implementation or parallelization. 
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6.5. Final remarks 

In this chapter, a new hybrid LF data representation paradigm for LF data coding is presented. 

A HEVC-based codec implementation is described, as well as a set of pixel-based prediction 

modes to efficiently compress LF images. The hybrid LF data representation comprises both 

MI- and SAI-based representations to enhance the reference domain for the prediction modes. 

To efficiently exploit the intra-MI redundancy of each MI, some pixel-based prediction 

methods, such as DC, MED, GAP and AGSP were adapted to the proposed codec. Additionally, 

in order to exploit the inter-MI redundancy, efficient pixel prediction modes based on LSP using 

different order values were proposed.  

The proposed HEVC-HR codec was evaluated against state-of-the-art codecs. When compared 

with HEVC-PVS, for the YUV 4:4:4 10 bit color format, an average bitrate saving of 22.69 % 

was achieved, while for the YUV 4:2:0 8 bit color format, the average bitrate saving was 9.36%. 

Additionally, the RD curves show that the proposed HEVC-HR was also able to outperform MI-

based benchmarks such as HEVC-SS, HEVC-HOP and HEVC-LLE using the YUV 4:2:0 8 bit 

color format, for all used test images. 

Approaches such as MuLE and WaSP, which (at the time of writing) are being considered for 

the JPEG Pleno standard, were also used as benchmarks. Such approaches were outperformed 

by the proposed HEVC-HR solution, which only achieve overall bitrate savings over HEVC-

PVS of 11.26% and -14.31%, respectively. 



 

123 

Chapter 7. Light field image coding with viewpoint 

scalability and random access 

This chapter proposes a LF image codec based on PVS that presents state-of-the-art coding 

efficiency, whose main contribution is to provide viewpoint scalability and random access 

functionalities. In this context, a new scanning order is proposed, combined with an optimized 

reference picture selection to allow viewpoint scalability over six layers. The viewpoint random 

access functionality can be used according to the application requirements.  However, it implies 

a tradeoff between viewpoint random access capabilities and coding efficiency. This is achieved 

by adjusting the viewpoint dependencies through the use of several proposed coding profiles. 

The remainder of this chapter is organized as follows: Section 7.1 reviews the available solutions 

for LF viewpoint scalability and random access; Section 7.2 presents the proposed PVS-based 

LF image codec; in Section 7.3 viewpoint scalability is added to the proposed codec; Section 

7.4 presents the proposed control parameters that allow viewpoint random access; Section 7.5 

presents the experimental results and, finally, Section 7.6 concludes the chapter with some final 

remarks. 

7.1. Related work on viewpoint scalability and random access 

This section presents several schemes to encode LF images that allow some viewpoint 

scalability and random access.  

7.1.1. Viewpoint scalability 

In [115], the authors started exploring scalability functionalities for LF, by proposing a two-

layer LF coding approach for the focused LF camera model. It uses a LF representation that 
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consists of a sparse set of MIs and associated disparity maps. Based on the sparse set of MIs and 

the associated disparity maps (first layer), a reference prediction LF image is obtained through 

a reconstruction method that relies on disparity-based interpolation and inpainting. This 

reconstructed LF image is then used to encode the original LF image (second layer), by encoding 

the prediction residue. This approach was later extended [116] with a third layer of scalability 

and the use of lossy encoded disparity maps to improve the coding efficiency, in contrast with 

the lossless transmission of the disparity maps used in the previous approach. 

In order to increase backward compatibility with legacy displays, the authors in [117] propose 

a three-layer approach. A certain number of viewpoints was assigned to each layer, i.e., the first 

layer encodes the central view, the second layer encodes stereo or multiview and the third layer 

encodes the full LF image. In order to increase the coding efficiency inter-layer prediction was 

used to exploit the redundancy between layers. This work was recently extended [118] to a 

higher number of scalability layers, allowing to improve the coding efficiency by using an 

exemplar-based algorithm for texture synthesis.  

Also, the techniques based on structural key views (see Section 3.4.3), may be considered as 

scalable approaches. In these cases, several authors propose to encode only few viewpoints and 

use additional information to generate the remaining ones. These types of approaches allow for 

viewpoint scalability, because the LF image is in fact encoded using two scalable layers. The 

base layer comprises the SKVs and the enhancement layer includes the non-SKVs. 

7.1.2. Viewpoint random access 

In order to provide viewpoint random access, the LF coding algorithm needs to select the 

dependencies between viewpoints. The more constrained these dependencies are, the higher the 

viewpoint random access capabilities, however, the coding efficiency tends to decrease. In 

[119], the authors propose to eliminate prediction at the encoder, therefore eliminating 

viewpoint dependency, by using Wyner-Ziv coding for compressing LF images. This work was 

extended in [120] by using SP-frame predictive encoding. More recently, in [121], the authors 

decompose 15×15 viewpoints into 25 groups of viewpoints and allocate four different 

dependency levels to each group. Finally, in [122], it was proposed a MV-HEVC based coding 

solution, that allows diagonal viewpoint prediction instead of exclusively allowing horizontal 

and vertical viewpoint prediction. Experimental results show that allowing diagonal viewpoint 
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prediction provides a good compromise between coding efficiency and viewpoint random 

access when compared to algorithms that are exclusively based on horizontal and vertical 

viewpoint prediction. 

7.2. Optimized reference picture selection 

As discussed in Section 3.4.1, the PVS format is comprised of a sequence of SAIs, whose inter-

SAI redundancy may be efficiently exploited by the HEVC inter-prediction tools. The existence 

of redundancy between the selected viewpoints is crucial for the performance of the prediction 

techniques. Since the SAIs scanning order plays an important role on the prediction 

performance, a reference picture selection (RPS) method was developed to optimize it. This 

method is able to implicitly signal to the decoder the scanning order used prior to be encoded. 

Once the encoder and the decoder are aware of the scanning order, the RPS can be optimized. 

7.2.1. Generic scanning order 

This PVS-based LF image coding approach is generic in terms of scanning order, because this 

information can be signaled to the decoder. Therefore, the spiral scan was adopted as it was seen 

in Section 3.4.1 is more efficient than the raster and serpentine scan. Figure 7.1 shows the spiral 

scan being applied to an 𝑁 × 𝑁 matrix of viewpoints, where 𝑗 = [0, 1, … ,𝑁 − 1] and 𝑖 =

[0, 1, … ,𝑁 − 1] are the vertical and horizontal axis spatial positions, respectively, for each 

viewpoint in the matrix of viewpoints. In this case the decoder can determine the spatial position 

of each viewpoint based on the viewpoint order in the spiral scanning. 

 

Figure 7.1. Spiral PVS scanning order applied to a N×N matrix of viewpoints, where P represents the position of 

each viewpoint. 
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Figure 7.2. RPS for frames 12 and 22 when using the HEVC Low Delay configuration, represented in the 

temporal domain (top) and corresponding N×N matrix of viewpoints (bottom). 

 

 

 

Figure 7.3. Optimized RPS for frames 12 and 22 represented in the temporal domain (top) and the corresponding 

N×N matrix of viewpoints (bottom). 

7.2.2. Optimized RPS 

In the common application of a PVS-based LF coding a default configuration such as the HEVC 

Low Delay configuration, is used [64]. Consequently, the inherent 2D spatial location of each 

viewpoint is not considered and the used reference pictures are not selected based on their 
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expected correlation with the current viewpoint. This situation can be observed in Figure 7.2 for 

frames 12 and 22, represented in the temporal domain and organized in the 𝑁 × 𝑁 matrix of 

viewpoints. Indeed, there is a regular pattern, which is defined by HEVC Low Delay 

configuration, being applied in the temporal domain in terms of RPS. However, the RPS is not 

optimal for most of the reference pictures of the 𝑁 ×𝑁 matrix of viewpoints. In the example of 

Figure 7.2, when encoding frame 22, frames 6, 7 and 8 are closer, in terms of spatial position, 

when compared to frames 20, 16 and 12. 

To create an optimized RPS, the Euclidean distance, 𝑑, between the spatial positions of 𝑅 

reference pictures, 𝑃𝑗𝑖
𝑟, and the current viewpoint, 𝑃𝑗𝑖, should be minimized. The Euclidean 

distance between the current viewpoint and the remaining available encoded viewpoints is 

calculated by: 

𝑑(𝑃𝑗𝑖 , 𝑃𝑗𝑖
𝑟) = √(𝑗 − 𝑗𝑟)2 + (𝑖 − 𝑖𝑟)2, (7.1) 

where 𝑟 = [0,1, … , 𝑅 − 1]. Once the 𝑅 closer reference pictures (in terms of Euclidean distance) 

to the current viewpoint are found, the selected reference pictures are organized in an ascending 

order of distance, in the RPL of each viewpoint that is being encoded. When two or more 

reference pictures have the same Euclidean distance, the one with the lowest frame number is 

selected first. Figure 7.3 shows the optimized RPS for 𝑅 = 4, after minimizing the Euclidean 

distance as in (7.1), for the examples of frame 12 and 22, previously shown in Figure 7.2. From 

Figure 7.3 it is possible to see that, although in the temporal domain there is no longer a regular 

pattern, in the 𝑁 × 𝑁 matrix of viewpoints the RPS minimizes (7.1), potentially maximizing the 

correlation between viewpoints and, consequently, the coding efficiency. 

7.3. Viewpoint scalability 

In this section, the coding approach described in Section 7.2 is modified to accommodate 

viewpoint scalability, which allows the codec to enable LF content to be captured and displayed 

using various types of devices. These devices range from standard 2D cameras and displays, up 

to full-fledged LF cameras and displays. The following sections present the features that are 

enabled by viewpoint scalability, as well as the proposed scalable scanning order and the 

scalability layers. 
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7.3.1. LF viewpoint scalability features 

Viewpoint scalability allows the LF content to be represented in several layers, where each layer 

comprises a group of viewpoints, ultimately allowing compatibility with capture and display 

devices with different capabilities, like spatial resolution, angular resolution and processing 

power. Also, network conditions may also vary, regardless of the capabilities of the device. 

Therefore, viewpoint scalability can be advantageous for several steps of the transmission 

pipeline like the capturing and encoding steps: 

• Support for legacy capturing devices: The first two layers should include the central 

view (base layer) and a small number of horizontal and vertical views (second layer). 

This allows the scalable representation to be compatible with 2D and 3D/Stereo 

capturing devices; 

• Support for LF captured from both lenslet LF cameras and HDCAs: When both 

lenslet and HDCA LFs are represented by viewpoints the only significant difference is 

the baseline between the several viewpoints. 

• Support for scalable coding profiles: The number of scalability layers to be encoded 

and transmitted can be selected based on several criteria, such as: the available 

processing power, the available storage space and the network conditions. 

Additionally, viewpoint scalability can also be advantageous for decoding and displaying steps:  

• Support for legacy display devices: Compatibility with legacy, non-LF displays, e.g., 

2D and 3D/Stereo displays, where the first layers include the central view and the first 

side views. 

• Support for scalable decoding: Each consecutive layer is decoded cumulatively, 

therefore after each decoded layer the content can be displayed. The angular resolution 

fidelity is increased as the remaining layers are decoded. 

• Support for LF displays with varying capabilities: Each layer will require additional 

capabilities in terms of angular resolution and processing power. Therefore, the number 

of displayed layers can be adaptively adjusted based on both criteria; 
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• Support for the newest LF displays: LF displays that allow to show the full LF content 

are able to request all the layers to be received and decoded. 

7.3.2. Proposed scalability layers and scalable scanning order 

Various combinations of scalability layers can be used to implement the mentioned features. 

Regardless, it was adopted the hierarchical structure in [42], which provides the required 

distribution of viewpoints throughout the coding process for the viewpoint scalability features 

mentioned in this section. The proposed scalability structure is shown in Figure 7.4, where the 

orange and the yellow blocks represent the viewpoints from the current and previous layers, 

respectively, and the blue blocks stand for the viewpoints not considered yet.  

 

Figure 7.4. Proposed LF scalability layers with respective coding order per layer. 

The viewpoint distribution across the several layers, roughly follows a (2𝑛 + 1) × (2𝑛 + 1) 

pattern, where n is the layer number. Layer 0 allows for the central view to be encoded/decoded 

independently for compatibility with 2D displays. Layer 1 allows a 3×3 LF to be displayed, or 

a pair of views can be selected to be displayed in a stereo display. After decoding Layers 2, 3 

and 4, the resulting LF is roughly a 5×5, 7×7 and 9×9 LF, respectively. These intermediate 
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layers allow to have some flexibility in terms of angular resolution and processing capabilities, 

as well as when the network condition changes. Finally, Layer 5 includes the remaining 

viewpoints that represent the full 13×13 LF image.  

In order to encode and decode several scalability layers, a scalable scanning order is proposed. 

Since the optimized RPS minimizes the Euclidean distance to the viewpoint that is being 

encoded, this means that it will adapt to the used scanning order. 

 

Figure 7.5. Scalability layer mask. 

 

 

 

Figure 7.6. Optimized RPS when applied to the proposed LF scalable spiral scanning order. 
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The proposed LF scalable spiral scan is shown for each individual layer in Figure 7.4. As it is 

shown, the number in each viewpoint corresponds to the scalable spiral scan being applied to 

each scalability layer. 

A spiral scanning order is applied to each individual scalability layer, as shown in Figure 7.5. 

Each number inside an element of the mask represents the layer that each viewpoint is assigned 

to. The scalable spiral scan is generated by applying the spiral scan to viewpoints within each 

layer. For example, the spiral marked in black in Figure 7.5 corresponds to the Layer 4 spiral 

scan.  

When encoding the LF image using the proposed scalable spiral scanning order, the optimized 

RPS coding technique will adapt to the new scanning order. It will provide the most adequate 

reference frames for each situation, as can be seen in Figure 7.6 for frames 11 and 14, by 

minimizing the Euclidian distance (7.1). 

7.4. Viewpoint random access 

The viewpoint random access functionality allows the codec to generate a bitstream that 

facilitates viewpoint navigation and user interaction. The following sections present how to 

accommodate viewpoint random access with the proposed viewpoint scalability, as well as the 

proposed random access profiles. 

7.4.1. Viewpoint random access features 

In video coding algorithms, random access points are used to facilitate the interaction with the 

video sequence. This way it is possible to navigate the video sequence without having to decode 

the entire bitstream. In such case, I-frames are used as random access points because they can 

be decoded independently from the remaining frames, as only intra prediction modes are used.  

In the case of a LF, the navigation can be performed using a 2D/3D display, a LF display or 

even a HMD [123]. Therefore, there is a vast number of possibilities because during visualizing 

the user shall be able to select the desired viewpoint. But, due to inter-viewpoint predictions 

used in the coding process several dependencies are created, which increase the number of 

decoded viewpoints in order to visualize a specific viewpoint. The aim of the proposed approach 
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in this chapter is to minimize the number of viewpoint dependencies, i.e., to maximize viewpoint 

random access, allowing to: 

• Improve LF navigation efficiency: the number of necessary viewpoints to decode the 

desired viewpoints is reduced; 

• Reduce decoding delay: since less viewpoints are necessary; the decoding time may be 

reduced; 

• Reduce computational complexity: the computational complexity is also reduced, 

facilitating cases where the available processing power is limited. 

Although maximizing viewpoint random access presents several advantages, this will interfere 

with the coding efficiency. Thus, depending on the application, it is possible to have a tradeoff 

between viewpoint random access and coding efficiency. 

7.4.2. Proposed random access profiles 

The measurement of the random access capability will be accessed using the random access 

penalty (RAP) metric [35]:  

𝑅𝐴𝑃 =
# 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑏𝑖𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑎𝑐𝑐𝑒𝑠𝑠 𝑎 𝑅𝑜𝐼

# 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑏𝑖𝑡𝑠 𝑡𝑜 𝑑𝑒𝑐𝑜𝑑𝑒 𝑡ℎ𝑒 𝑓𝑢𝑙𝑙 𝐿𝐹
, (7.2) 

The region of interest (RoI) can have different representations, depending on the application and 

coding algorithm, e.g., specific viewpoints or specific pixels. In this case, since the coding 

algorithm uses a viewpoint-based representation, the RoI corresponds to a specific viewpoint. 

The RAP for a specific viewpoint is the ratio between the number of bits required to decode that 

viewpoint, including the number of bits required to decode the reference viewpoints used to 

encode it, and the total number of bits to encode the full LF, as defined by (7.2). Since these 

reference viewpoints may also have other dependencies, it may happen that the full LF needs to 

be decoded in order to decode the RoI, which results in a 𝑅𝐴𝑃 = 1. However, if only part of the 

LF image needs to be decoded, then 0 ≤ 𝑅𝐴𝑃 < 1. Since the RAP depends on the selected RoI, 

in order to increase the fairness of the metric, only the maximum value will be considered, i.e., 

the viewpoint that requires the largest number of bits to be decoded. 
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The main factor that influences the RAP is the amount of inter-viewpoint dependencies created 

during the coding process. In order to manage these inter-viewpoint dependencies three control 

parameters are proposed: 

• RPL size: Since by increasing the RPL size the maximum number of reference pictures 

increases, it is likely that the coding efficiency improves, until a certain limit. 

Consequently, since more inter-viewpoint dependences are created, the RAP increases 

as well; 

• Maximum scalability layer: This parameter limits the depth of the scalability layer 

where viewpoints can be used as reference pictures. As shown in Figure 7.7, when this 

value is two, only the first nine viewpoints are used as reference pictures for the 

remaining viewpoints, which correspond to Layers 0 and 1. A lower coding efficiency 

and RAP are expected by using just part of the scalability layers as possible references. 

In Figure 7.7, several examples are shown, where the maximum scalability layer is 

adjusted as: six (all), four, three and two. 

• Viewpoint region: When the user is navigating the LF image, either through a 2D/3D 

display (LF display with different capabilities) or an HMD, it is likely that certain spatial 

regions of the LF will be more visualized than others [124]. This way, several profiles 

are suggested in Figure 7.8, relying on different configurations of spatial regions and 

number of intra frames within the same LF. The red lines represent the limit of the 

reference picture’s region. The yellow blocks show the viewpoints that belong to more 

than one region, e.g., in the “4-Regions 1-Intra” scenario, the block to the left of the I 

frame (central viewpoint) belongs to Region C and B. Such restrictions limit the choice 

of the reference pictures of each viewpoint to a spatial region. But, it ensures, for 

example in the case of the “2-Regions 1-Intra” scenario, that to visualize the upper 

viewpoints the lower viewpoints do not need to be decoded. When more than one intra 

frame is used, e.g., in the “5-Regions 5-Intra” scenario, there is an exclusive partition of 

the LF, which means that region A can be decoded independently from the remaining 

regions. 
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Figure 7.7. LF scalability layer dependency scenarios: the orange blocks represent the viewpoints belonging to 

the scalability layers that can be used as reference pictures. 

 

Figure 7.8. LF scalability viewpoint region scenarios: the suggested region separation using different number of 

regions and I frames per LF image. 
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7.5. Experimental results 

In this section the performance of the proposed LF coding solution is evaluated against several 

state-of-the-art LF coding solutions. First, the test conditions, including the processing chain for 

objective quality assessment, is explained. Then, experimental results comparing the RD 

performance of the proposed scalable codec using various viewpoint scalability and random 

access profiles are presented and discussed. Statistical results about the computational 

complexity and random access penalty are shown to support the experimental results analysis. 

7.5.1. Test conditions 

In order to evaluate the RD performance of the proposed LF coding solution the EPFL LF 

dataset (see Appendix A.2) is used. JPEG Pleno CTCs [35] are used to evaluate all the tested 

benchmarks. Several LF image coding solutions were used as benchmark, namely HEVC-PVS 

[64], HEVC-OPT [13], WaSP [42] and MuLE [41]. The codec HEVC-OPT, which was 

described in Section 7.2, is the basis of the proposed scalable codec. The proposed scalable 

codec is tested using two variants, the first one is HEVC-SLF, which has the scalable 

functionalities mentioned in Section 7.3. The second alternative is referred to as HEVC-SLF-

RA and has both the scalable functionalities described in Section 7.3, as well as the viewpoint 

random access functionalities described in Section 7.4. Table 7.1 shows the list of tested codecs 

including the respective configurations. The different QPs and λ values allow the use of a 

common bitrate range for every tested codec, enabling a direct comparison. The HEVC-PVS 

uses the Low Delay with B slices configuration.  

Table 7.1. List of tested codecs and respective configurations. 

Codec Configuration 

HEVC-PVS 

𝑄𝑃 = [17,22,27,32,37,42] 
HEVC-OPT 

HEVC-SLF 

HEVC-SLF-RA 

MuLE 𝜆 = [270,3880,30000,310000,4600000] 

WaSP 𝑇𝑎𝑟𝑔𝑒𝑡 𝑏𝑝𝑝 = [0.001,0.005,0.02,0.1,0.75] 
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7.5.2. Viewpoint scalability performance assessment 

The experimental results in Table 7.2 shows the average BD-PSNR-YUV and average BD-

RATE for the twelve images of the EPFL LF dataset, comparing the proposed HEVC-SLF with 

HEVC-OPT, MuLE, WaSP and HEVC-PVS. From Table 7.2 it is possible to observe that the 

proposed HEVC-SLF outperforms all the tested benchmarks for the twelve LF images with 

average bitrate savings of 2.66%, 25.59%, 47.29% and 44.95%, respectively. When analyzing 

each result individually it is possible to see that HEVC-OPT outperforms HEVC-SLF for the 

LF images I09, I11 and I12 and MuLE is able to outperform HEVC-SLF for the LF images I02, 

in terms of bitrate savings. From the experimental results it is possible to see that the optimized 

RPS is able to effectively adapt to both non-scalable and scalable scanning orders, used 

respectively for HEVC-OPT and HEVC-SLF. The disparity estimation in both HEVC-OPT and 

HEVC-SFL is facilitated for lenslet LF images, because the disparity is very small. However, 

the proposed scalable spiral used in HEVC-SLF, in combination with the optimized RPS, creates 

an advantage in terms of disparity vectors statistic, when compared to HEVC-OPT using the 

common spiral scan . Most reference picture locations in HEVC-SLF create a disparity vector 

that is either horizontal or vertical, which is predicted and encoded by CABAC much more 

efficiently than diagonal disparity vectors. While in the case of HEVC-OPT, due to the location 

of the reference pictures, the disparity vectors are more likely to use horizontal and vertical 

components, with more combinations and larger magnitudes. 

In order to further analyze the results of the proposed HEVC-SLF regarding the added viewpoint 

scalability features, Figure 7.9 shows the cumulative bits per layer as well as the encoding and 

decoding times per layer for QP 27. This QP was chosen because it represents a consistent 

medium point in terms of compression ratio and objective quality. Regardless, when using 

HEVC-SLF the lower the QP the higher the runtime and bitrate. 

It is possible to see from Figure 7.9 that the number of bits per scalability layer is well distributed 

along the bitstream. The number of bits generated by Layer 0 is significant, knowing that only 

the central viewpoint is encoded. Some examples of this include, I03 and I04 where the size of 

Layer 0 is higher than Layer 1, which comprises eight encoded viewpoints.  

As expected, Layer 5 normally carries most of the information, as it is the scalability layer with 

the highest number of viewpoints, i.e., 88. Additionally, it is also possible to conclude that the 
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compression ratio increases in layers with a higher number of encoded viewpoints. This can be 

observed in LFs I01 and I09, where the size per layer is similar, even though the number of 

viewpoints is larger. When the number of the layer increases, the disparity between viewpoints 

is reduced due to the scalable spiral scanning order. The last layers are composed by viewpoints 

that are closer to each other, which reduces the disparity, therefore the encoder is able to perform 

inter-view prediction more efficiently, thus increasing the compression ratio, without 

necessarily affecting the objective quality.  

Table 7.2. BD-PSNR-YUV and BD-RATE results of the proposed HEVC-SLF vs HEVC-OPT, MULE, WASP and 

HEVC-PVS 

Img. 

 vs HEVC-OPT [64] vs MuLE [41]  vs WaSP [42] vs HEVC-PVS [64] 

BD-

PSNR 

BD-

RATE 

BD-

PSNR 

BD-

RATE 

BD-

PSNR 

BD-

RATE 

BD-

PSNR 

BD-

RATE 

I01 0.24 dB -9.97 % 0.32 dB -13.65 % 1.54 dB -46.94 % 1.52 dB -48.80 % 

I02 0.41 dB -16.00 % 0.00 dB 1.21 % 1.04 dB -29.22 % 1.67 dB -50.79 % 

I03 0.22 dB -9.11 % 0.56 dB -18.57 % 1.17 dB -29.81 % 1.58 dB -48.65 % 

I04 0.15 dB -7.61 % 0.40 dB -20.48 % 0.95 dB -37.73 % 1.13 dB -44.97 % 

I05 0.14 dB -7.59 % 0.60 dB -26.05 % 1.27 dB -42.75% 1.15 dB -48.33 % 

I06 0.06 dB -4.82 % 1.44 dB -52.35 % 2.45 dB -73.46 % 0.93 dB -43.51 % 

I07 0.05 dB -2.00 % 0.59 dB -19.78 % 1.68 dB -43.61 % 1.03 dB -39.61 % 

I08 0.06 dB -4.04 % 1.48 dB -50.51 % 2.26 dB -66.43 % 0.93 dB -40.71 % 

I09 -0.12 dB 6.10 % 0.65 dB -21.31 % 1.30 dB -32.92 % 1.35 dB -45.94 % 

I10 0.01 dB -0.88 % 0.62 dB -24.62 % 1.37 dB -46.33 % 1.26 dB -45.69 % 

I11 -0.22 dB 14.60 % 0.59 dB -22.51 % 2.61 dB -66.20 % 0.71 dB -35.57 % 

I12 -0.16 dB 7.64 % 1.30 dB -38.51 % 2.21 dB -52.11 % 1.45 dB -46.85 % 

Avg. 0.17 dB -2.66 % 0.71 dB -25.59 % 1.65 dB -47.29 % 1.23 dB -44.95 % 

 

The computational complexity, in terms of runtime, of the proposed HEVC-SLF is compared to 

its counterparts in Figure 7.9, for every scalability layer for images encoded with QP 27. 

Additionally, the computational complexity of the tested benchmarks for I04 is shown in Table 

7.3. These tests were performed using a PC equipped with an Intel Core i7 CPU 

4790K@4.0GHz and 32GB of RAM, running Ubuntu 16.04 The runtimes for MuLE and WaSP 

were obtained for cases where the resultant objective quality is similar to the HEVC-based 

codecs, i.e., MuLE using a 𝜆 of 3880 and WaSP using a target bitrate of 0.1 bpp. From Table 

7.3 it is possible to observe that all the HEVC-based encoder and decoder have similar runtimes. 

MuLE and WaSP have faster encoders than the HEVC-based codecs, however, their decoders 

are slower than the HEVC-based decoders. From Figure 7.9 it is also possible to observe that, 

differently from the distribution of bits per scalability layer, the time required to encode and 
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decode each viewpoint is similar. Consequently, the time required to encode and decode each 

scalability layer is roughly proportional to the number of viewpoints in each layer. The only 

exception is Layer 0, that is encode as an intra frame, which takes less time to encode than the 

inter frames, but it takes longer runtime to decode. It is also worth mentioning that Layer 0 

encoding time is very small relative to the remaining layers, which is the reason why it is not 

noticeable in Figure 7.9. The steady behavior of the computational complexity codec along the 

several scalability layers, as mentioned in Section 7.3, may be advantageous in scenarios where 

the existing computational power is scarce. 

 

     

 

Figure 7.9. Statistical coding information of HEVC-SLF, including bits per layer (top-left), encoding time per 

layer (top-right) and decoding time per layer (bottom) for QP 27. 
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Table 7.3. Computational complexity comparison of the tested benchmarks. 

Codec 
Encoder Decoder 

Runtime vs HEVC-PVS Runtime vs HEVC-PVS 

HEVC-PVS 1192 s -  2.83 s - 

HEVC-OPT 1018 s 0.85 2.96 s 1.05 

MuLE 209 s 0.18 15.67 s 5.54 

WaSP* 214 s 0.18 32.68 s 11.55 

HEVC-SLF 1245 s 1.04 3.83 s 1.35 
*using multithread (8 threads) 

 

7.5.3. Viewpoint Random access performance assessment 

The experimental results of comparing viewpoint random access for several combinations of 

coding profiles are shown in Table 7.4 and Table 7.5. All the three proposed control parameters 

described in Section 7.4 were used to test the proposed HEVC-SLF-RA. These control 

parameters include the RPL size per viewpoint, i.e., two or four; the maximum scalability layer 

that can contain reference pictures, i.e., six (all), four, three and two; and, the viewpoint region 

and the number of intra frames, which can be categorized as the following scenarios: 1Region-

1Intra, 2Region-1Intra, 4Region-1Intra, 5Region-5Intra and 9Region-9Intra. 

The values marked in bold in Table 7.4 and Table 7.5 correspond to the coding profiles that 

achieve higher coding efficiency than HEVC-PVS. The average, standard deviation, maximum 

and minimum RAP values were calculated for the twelve LF images used for testing (encoded 

with a QP 27). Note that, HEVC-SLF corresponds to the following coding profile: Max. 

reference per viewpoint of four, 1Region-1Intra, six reference scalability layers. As previously 

mentioned, QP 27 was chosen because it represents a consistent medium point in terms of 

compression ratio and objective quality. It was also verified that the RAP will decrease for 

higher QPs, i.e., lower objective quality. 

From the results in Table 7.4 and Table 7.5 it is possible to observe that the proposed 

combination of control parameters allows for a vast number of coding profiles that balance the 

tradeoff between coding efficiency and the viewpoint random access capabilities. Such coding 

profiles used to restrict the inter-viewpoint dependencies, consequently, decrease the RAP for 

the HEVC-SLF-RA codec. However, for some coding profiles, namely when testing an RPL 

size per viewpoint of two (Table 7.4), the results are identical when using 1Region-1Intra, 
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2Region-1Intra and 4Region-1Intra. This occurs because the inter-viewpoint dependencies are 

only affected after the third reference picture. However, since in this case the RPL size is two, 

the reference picture selection is the same and, therefore, the results for RAP and coding 

efficiency are unchanged. Figure 7.10 shows different plots of the same points as in Table 7.4 

and Table 7.5, comparing the maximum RAP and the AVG. BD-RATE against HEVC-PVS.  

Table 7.4. HEVC-SLF-RA random access penalty and average BD-RATE vs HEVC-PVS for the different profile 

combinations for twelve LF images when using RPL size per viewpoint of two 

RPL size per viewpoint = 2 

Regions/ Intra Ref. Layers AVG. STD MAX MIN AVG. BD-RATE 

1/1 

6 0.2395 0.0843 0.4914 0.0496 -36.44 % 

4 0.2366 0.0834 0.4730 0.0491 -35.65 % 

3 0.1825 0.0671 0.3731 0.0413 -17.59 % 

2 0.1444 0.0557 0.3121 0.0355 2.69 % 

2/1 

6 0.2395 0.0843 0.4914 0.0496 -36.44 % 

4 0.2366 0.0834 0.4730 0.0491 -35.65 % 

3 0.1825 0.0671 0.3731 0.0413 -17.59 % 

2 0.1444 0.0557 0.3121 0.0355 2.69 % 

4/1 

6 0.2395 0.0843 0.4914 0.0496 -36.45 % 

4 0.2366 0.0834 0.4730 0.0491 -35.65 % 

3 0.1825 0.0671 0.3731 0.0413 -17.59 % 

2 0.1444 0.0557 0.3121 0.0355 2.69 % 

5/5 

6 0.0975 0.0275 0.2244 0.0181 -0.01 % 

4 0.0948 0.0272 0.2226 0.0176 2.30 % 

3 0.0771 0.0239 0.1919 0.0149 25.05 % 

2 0.0596 0.0207 0.1633 0.0129 52.78 % 

9/9 

6 0.0723 0.0213 0.1676 0.0174 15.51 % 

4 0.0694 0.0213 0.1657 0.0163 20.10 % 

3 0.0569 0.0204 0.1487 0.0140 42.71 % 

2 0.0468 0.0181 0.1350 0.0125 62.13 % 

 

The coding efficiency can be analyzed from three different perspectives: 

• RPL size: From the plot on the left of Figure 7.10, it is possible to see that when using 

a lower RPL size per viewpoint, a reduction between 0% and 10% of bitrate savings is 

expected, which corresponds to a reduction between 0 and 0.1 of RAP.  

• Viewpoint region: From the middle plot in Figure 7.10, the consequences of the 

different viewpoint regions are evaluated, where it is possible to see that the number of 

intra frames creates well defined curves, i.e., the first three configurations, which use 

one intra (grey, orange and dark blue), five intra (yellow) and nine intra (light blue) 



Chapter 7. Light field image coding with viewpoint scalability and random access 

141 

configuration. There is little variation when changing the number of viewpoint regions, 

without changing the number of intra frames. Additionally, when considering bitrate 

savings of roughly 5% over HEVC-PVS it is possible to observe that the 5Region-5Intra 

option is superior to a single intra frame in terms of RAP.  

• Maximum scalability layer: From the right plot in Figure 7.10 it is possible to see that 

the reduction in the number of reference scalability layers only becomes more evident 

when using less than four reference scalability layers. In most cases the difference in 

terms of coding efficiency and RAP is low when using six or four reference scalability 

layers. 

 

Table 7.5. HEVC-SLF-RA random access penalty and average BD-RATE vs HEVC-PVS for the different profile 

combinations for twelve LF images when using RPL size per viewpoint of four 

RPL size per viewpoint = 4 

Regions/ intra Ref. Layers AVG. STD MAX MIN AVG. BD-RATE 

1/1 

6 0.3583 0.0898 0.5875 0.0599 -44.95% 

4 0.3220 0.0912 0.5474 0.0537 -42.15 % 

3 0.2318 0.0685 0.4160 0.0444 -23.76 % 

2 0.1551 0.0560 0.3204 0.0366 -0.65 % 

2/1 

6 0.3452 0.0874 0.5736 0.0597 -44.57 % 

4 0.3090 0.0886 0.5304 0.0537 -41.8 % 

3 0.2214 0.0680 0.4089 0.0440 -23.2 % 

2 0.1539 0.0552 0.3163 0.0365 -0.09 % 

4/1 

6 0.3370 0.0873 0.5635 0.0590 -44.39 % 

4 0.3006 0.0884 0.5213 0.0531 -41.61 % 

3 0.2150 0.0683 0.4070 0.0437 -22.81 % 

2 0.1535 0.0550 0.3151 0.0364 0.43 % 

5/5 

6 0.1276 0.0298 0.2342 0.0205 -6.81 % 

4 0.1107 0.0275 0.2269 0.0182 -0.85 % 

3 0.0856 0.2420 0.1986 0.0154 21.50 % 

2 0.0596 0.0207 0.1633 0.0129 52.78 % 

9/9 

6 0.088 0.0230 0.1729 0.0192 9.84 % 

4 0.0775 0.0232 0.1691 0.0169 16.71 % 

3 0.0603 0.0219 0.1520 0.0141 40.89 % 

2 0.0468 0.0181 0.1350 0.0125 62.13 % 
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Figure 7.10. Tradeoff between the Maximum RAP for twelve images encoded with QP 27 and the average BD-

RATE savings against HEVC-PVS. 

 

From the vast number of coding profiles that generate different tradeoffs between random access 

capabilities and coding efficiency, the authors created a list of suggested profiles based on four 

different tradeoff points. This list is shown in Table 7.6, which includes a maximum coding 

efficiency profile, achieving more than 40% bitrate savings over HEVC-PVS; two balanced 

profile biased towards coding efficiency and random access capabilities, achieving more than 

20% and 5% bitrate savings over HEVC-PVS, respectively; and, a maximum viewpoint random 

access capabilities profile that values the RAP over the coding efficiency, achieving a maximum 

RAP of 0.17. Although the “Max. RA” profile is 20% less efficient than HEVC-PVS, the 

maximum RAP is much superior, considering that HEVC-PVS maximum RAP is 1. 
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Table 7.6. List of four suggested profiles with different tradeoffs between the random access capabilities and 

coding efficiency. 

Suggested 

Profiles 

Max. 

Ref 

Ref. 

Layers 

Regions/ 

Intra 

Max. 

RAP 

BD-

RATE. 

Max.  

Eff. 
4 6 4/1 0.5635 -44.39% 

Balanced 

High Eff. 
4 3 4/1 0.4070 -22.81% 

Balanced 

High RA 
4 6 5/5 0.2342 -6.81 % 

Max.  

RA 
2 4 9/9 0.1657 20.10% 

 

7.6. Final remarks 

In this chapter, a new coding approach that allows viewpoint scalability and random access 

capabilities for LF is proposed. The availability of these features, while maximizing the coding 

efficiency, can be achieved by using a new optimized RPS method that is able to adapt to any 

scanning order. This technique is very important to accommodate the new scanning order 

proposed for the viewpoint scalability features, allowing to maintain the coding efficiency 

comparable to the non-scalable version. Additionally, the proposed control parameters allow to 

exploit a vast number of coding profiles, enabling a fine control over the dependencies between 

viewpoints, therefore, the viewpoint random access capabilities. 

When compared to the state-of-the-art HEVC-PVS, the proposed HEVC-SLF codec achieved, 

for the EPFL LF dataset, an average bitrate saving of 44.95%, which is 2.66% more efficient 

than the its non-scalable version (HEVC-OPT). In comparison to the benchmarks MuLE and 

WaSP, which are being considered for the JPEG Pleno standard, the proposed HEVC-SLF also 

achieves average bitrate savings of 25.59% and 47.29%, respectively.  

To enable viewpoint random access capabilities, a scalable codec HEVC-SLF-RA was 

proposed, introducing a vast range of random access profiles. According to the application, these 

profiles can be used to control the tradeoff between the random access capabilities and the 

coding efficiency. By acting on the control parameters, the maximum RAP of the proposed 

HEVC-SLF-RA in relation HEVC-PVS (RAP=1) ranges from 0.22 to 0.56, respectively, for bit 

rating savings from 0 to 44.95%. 



Scalable Light Field Representation and Coding 

144 

 

 

 

 

 

 

 

 



 

145 

Chapter 8. Achievements and future work 

8.1. Achievements 

In this Thesis, several contributions have been proposed towards advancing the state-of-the-art 

on LF image representation and coding. The work developed in the context of this Thesis 

involved the research and development of techniques related to several steps of the LF 

transmission/storage pipeline in order to develop efficient LF coding solutions. 

The first achievement of this Thesis concerns the in-depth analysis of the most popular state-of-

the-art LF representations. This analysis, performed in Chapter 4, compares the coding 

efficiency of the most popular LF representations, namely, LL and 4D LF, including both MI 

and SAI-based variants. HEVC has been selected as the coding solution for this analysis since 

it provides powerful intra and inter prediction tools able to exploit the different types of 

redundancy inherent in LF content. The achieved coding performance by HEVC is a useful 

benchmark to establish the baseline results for what is expected from each LF representation 

when a non-specific LF coding solution is used to encode LF content. As a result of this analysis, 

it was concluded that the 4DLF-PVS representation achieves the highest coding efficiency. 

Moreover, it was also concluded that both LL and MI-based variants of 4D LF representations 

tend to be less efficient than SAI-based variants since there are no prediction tools are available 

in HEVC to exploit the MI redundancy. 

The second achievement of this Thesis concerns the development of efficient coding solutions 

that support both LL and 4D LF representations. Both data representations were exhaustively 

tested and evaluated in Chapter 4 in terms of coding efficiency. When comparing the MI-based 

variants in Chapter 4, it was concluded that the LL representation, although more prone to color 

distortion, achieved higher coding efficiency. This result is important as it is expected that some 
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applications may benefit from the more compact nature of LL. Therefore, Chapter 5 proposed a 

coding solution, which is able to encode any MI-based LF image, regardless of the camera type 

and data representation (LL or 4DLF-MI). In this context, two algorithms were proposed based 

on the HOP model, which allow for up to eight DoF when exploiting the inter-MI redundancy. 

The first algorithm uses the HOP model to estimate the GT that best approximates a target block 

within a reference region containing neighboring MIs, explicitly transmitting the HOP 

information in the form of one translational vector and three (six DoF) to four (eight DoF) HOP 

vectors. The second algorithm uses the HOP model to estimate the GT through a training step 

that optimizes the match between several predetermined pairs of two quadrilaterals of the 

reference region, i.e., several training directions. This allows the HOP information to be 

implicitly available at the decoder side, by repeating the selected training step, providing a 

higher RD efficiency. Both algorithms were able to consistently outperform state-of-the-art 

solutions based on LOP models, for both LL and 4D LF representations. 

The third achievement of this Thesis concerns the effective exploitation of MI and SAI 

redundancies. As introduced in Chapter 3, there are four types of redundancies that stem from 

two types of representations, MIs and SAIs. While Chapter 5 proposed two solutions to exploit 

the Inter-MI redundancy, which are based on the HOP model, Chapter 6 proposed a LF image 

codec based on a hybrid representation, which uses both 4DLF-MI and 4DLF-PVS 

representations. The proposed codec allows both MI and SAI redundancies to be exploited, since 

the encoder is able to select the type of representation (and associated prediction mode) that 

achieves the highest RD performance. When the MI based representation is used, several 

prediction modes are available to exploit the intra-MI redundancy, such as DC, MED, GAP and 

AGSP. To exploit the inter-MI redundancy, several LSP-based prediction modes were 

developed specifically for LF data. Experimental results show that the proposed codec, based 

on this proposed hybrid representation, is more efficient than the versions that rely exclusively 

on MIs or SAIs. Finally, Chapter 7 proposed a solution that takes advantage of the HEVC intra 

and inter prediction tools to exploit the intra-SAI and inter-SAI redundancy, respectively. This 

solution signals the scanning order used to generate the 4DLF-PVS signal, which allows the 

encoder and decoder to implicitly optimize the RPLs based on a distance minimization between 

each encoded SAI and the current SAI. 
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The fourth achievement of this Thesis concerns the support for viewpoint scalability and random 

access. The LF image codec based on the 4DLF-PVS representation proposed in Chapter 7 was 

modified to provide additional functionalities like viewpoint scalability and random access. A 

novel scalable spiral scan was proposed, allowing for six layers of viewpoint scalability. The 

gradual increase in viewpoints in each scalability layer effectively allows for compatibility with 

legacy 2D and 3D/stereoscopic displays, as well as with LF displays with different capabilities 

in terms of angular resolutions. Additionally, it was demonstrated the comparable efficiency 

between both scalable and non-scalable variants, since the proposed LF image codec adapts to 

the scalable scanning order. This scalable codec also allows for several configurations that alter 

the inter-dependencies between SAIs, which has the advantage of allowing for viewpoint 

random access. Control parameters that limit the RPS in terms of access to the different 

scalability layers and LF regions allow a fine adjustment of the tradeoff between viewpoint 

random access and coding efficiency. Maximizing the viewpoint random access capabilities, or 

even a more balanced configuration, that, while penalizing coding efficiency, allows for 

improved LF navigation efficiency, as well as lower decoding delay and lower computational 

complexity. 

8.2. Future Work 

The development of the contributions described in the previous section also raised some possible 

lines for future work to further improve the LF coding efficiency and functionalities, related 

with: 

Improved HOP approach 

The main results produced by the proposed HOP model in Chapter 5 showed potential when 

applied to LF image coding. However, the coding efficiency of the HOP model can be further 

improved by performing efficient HOP vector prediction. This would require a study on the 

HOP vector statistics for several LF images and block sizes. It is expected that in the case of the 

LF images captured using a focused LF camera, the combination of vectors would be correlated 

with the disparity between neighboring MIs. This correlation would produce good vector 

predictions and potentially decrease the bitrate required to transmit the HOP information. 

Additionally, the computational complexity can potentially be reduced by having an effective 
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HOP vector prediction, since, if the HOP vectors can be accurately predicted, a reduced number 

of vector combinations needs to be tested.  

Improved coding efficiency for focused LF cameras 

With the exception of Chapter 5, which was developed for both UNF and FOC LF cameras, 

most of the proposed approaches were proposed specifically considering the UNF LF camera, 

because of its simplicity when it comes to viewpoint rendering. However, the FOC LF camera, 

despite having typically a lower angular resolution, generates viewpoints with higher spatial 

resolution than an UNF LF camera. This characteristic may be important for some applications, 

therefore, future work may include developing techniques exclusively for FOC LF cameras by 

optimizing the RD criteria based on the rendered viewpoints. Alternatively, the approach 

proposed in Chapter 6 can be adapted to better accommodate FOC LF images by altering the 

conversion algorithm that is applied between the MI and SAI representation. In the proposed 

codec, since it was specifically designed for the UNF LF cameras, the conversion is applied 

with a 1 × 1 patch since each pixel in each MI is part of a different SAI, however when encoding 

FOC LF images, different patch sizes could be tested for improved coding efficiency.  

Extend techniques to HDCA signals 

A generic solution for LFs captured with both HDCAs and MLA-based LF cameras is also in 

line with the standardization initiatives goals, as it would allow a single solution to be used to 

encode content with varying degrees of angular resolutions and camera baselines. The proposed 

techniques in Chapter 6 and 7 are based on the 4D LF data representation, which allows for their 

application in LF images generated from both UNF LF cameras and HDCAs. It is expected that 

the application of such techniques to HDCA signals can be performed almost in a seamless way, 

i.e., with minimum changes to the current implementations. Nevertheless, since the main 

difference between both capturing devices is the baseline, several techniques can be proposed 

that would be able to adapt to both narrow and wide baselines. Additionally, the scalability and 

random access functionalities allowed by Chapter 7 would also benefit end-user when used to 

transmit/store HDCA signals.  
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 Light field test content 

This appendix illustrates the LF test content that was used to validate the several contributions 

throughout this Thesis. Section A.1. presents the FOC LF test content and Section A.2. presents 

the UNF LF test content. 

A.1. Focused 

The FOC LF test content that was used in this Thesis includes images from project 3D-VIVANT 

dataset [125] and from Todor Georgiev LF dataset [126]. These LF images are listed in Table 

A.1 and the central rendered view of each corresponding LF image is shown in Figure A.1. 

Table A.1. Main characteristics of the FOC LF test content 

Name (frame) Figure Dataset Resolution MI resolution MLA type 

Plane and Toy (0) (a) 

3D-VIVANT 

[125] 

1920×1088 28×28 
Square grid / 

Square MIs Plane and Toy (150) (b) 

Demichelis Spark (0) (c) 
2880×1620 38×38 

Square grid / 

Circular MIs Demichelis Cut (0) (d) 

Laura (e) T. Georgiev 

[126] 
7240×5432 75×75 

Square grid / 

Square MIs Seagull (f) 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
 (f) 

Figure A.1. Rendered central view from each FOC LF image. 

A.2. Unfocused 

The UNF LF test content that was used in this Thesis includes images the EPFL LF dataset [22]. 

These LF images are listed in Table A.2 and the central rendered view of each corresponding 

LF image is shown in Figure A.2. 

Table A.2. Main characteristics of the UNF LF test content 

Name Code Figure Dataset Resolution MI resolution MLA type 

Bikes I01 (a) 

EPFL [22] 7728×5368 15×15 

Hexagonal 

grid / 

Circular MIs 

Danger de mort I02 (b) 

Flowers I03 (c) 

Stone pillars 

outside 
I04 (d) 

Vespa I05 (e) 

Ankylosaurus & 

Diplodocus 1 
I06 (f) 

Desktop I07 (g) 

Magnets 1 I08 (h) 

Fountain & 

Vincent 2 
I09 (i) 

Friends 1 I10 (j) 

Color chart 1 I11 (k) 

ISO chart 1 I12 (l) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Figure A.2. Rendered central view from each UNF LF image. 
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