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Abstract 
 
 
Context-based Adaptive Binary Arithmetic Coding (CABAC) is the entropy coding tool 

adopted in Main and High profiles of H.264/AVC video coding standard. CABAC 

provides significantly higher compression ratio than Baseline profile entropy coder 

CAVLC. Rate-Distortion Optimization (RDO) is another important technique that 

improves the encoding performance of H.264/AVC. It is necessary to support both 

CABAC and RDO in the high quality and high definition H.264/AVC applications; 

however, this results in significantly increased computational complexity. Due to the 

sequential coding nature of CABAC with strong data dependency and frequent memory 

access, it is not efficient to accelerate CABAC encoding by software optimization. 

Therefore, hardware acceleration of CABAC encoding is necessary in the high bit-rate 

real time video encoding. This work focuses on high performance circuit design of 

CABAC encoder IP targeting at Main Profile of H.264/AVC. 

SoC-based design flow is explored during the CABAC encoder IP design, including steps 

of encoder performance and complexity analysis; system specification; HW/SW 

partitioning that minimizes computation complexity on the host processor and data 

transfer on system bus; HW functional partitioning that maximizes encoding parallelism; 

HW function block design; SoC feature insertion including system bus interface and 

interconnection IP design; circuit implementation and verification, etc. The encoder is 

designed and fully verified at RTL level, gate level, and post-layout stage targeting at 

0.13um CMOS process. FPGA prototyping is also completed successfully. 
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In order to accelerate sequential and highly data dependent procedure of CABAC and 

optimize circuit performance, various design methodologies are explored in this work, 

including: prefetch and local buffering for frequent accessed data to reduce data fetch 

delay; precalculation to reduce critical path length; pipeline implementation of complex 

sequential computation steps to achieve higher clock frequency; SRAM access 

optimization with context line access & buffering and context RAM reallocation to 

significantly reduce RAM access frequency and dynamic power; parallel processing of 

function blocks of different throughput with FIFO insertion; system power reduction with 

clock gating insertion, etc. 

This work provides the only reported CABAC encoder design that achieves high 

processing speed of real time coding in CIF format full RDO mode and in HDTV 720p 

format RDO-off mode. The compression efficiency of the proposed encoder is the best 

compared to the reported designs, because of solving design difficulty of CABAC coding 

in RDO mode. Encoder power consumption is the lowest, consuming only 0.79 mW at 

HDTV 720p60 8.9 Mbps RDO-off mode coding. Only this work provides complete SoC-

based IP solution of CABAC encoder that can efficiently support different H.264 coding 

configurations including RDO-off, fast RDO, and full RDO mode, and the application 

range of the IP is wider, from real time coding to high quality compression. This work 

enhances performance of both CABAC encoder and H.264 video coding system and 

achieves global performance optimization, with utilization of encoder design flexibility. 
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Chapter 1 Introduction 

Video coding technology has significantly changed the daily life of human beings in the 

last two decades. A variety of software/hardware applications of video coding technology 

have emerged recently. Because uncompressed video signals require huge amount of data 

storage and network bandwidth, video coding technologies are necessary to compress 

original video signals to reduce redundancy in spatial, temporal, and code word domain. 

Several video coding standards have been established since 1980’s to specify video 

coding  techniques utilized for different applications, including H.261 [1], MPEG-1 [2], 

MPEG-2 [3], H.263 [4], MPEG-4 Part 2 [5], and H.264/AVC [6]. H.261 is the first video 

coding standard targeting at low delay, slow motion applications such as video 

conference. MPEG-1 introduces half-pixel motion estimation and bi-direction motion 

estimation (ME), with perceptual-based quantization, similar to JPEG [7]. MPEG-2 (also 

known as H.262) supports interlaced video format and broadcasting quality video coding. 

H.263 achieves a significant improvement of video compression especially at low bit rate, 

with more efficient ME and techniques of variable block size ME and arithmetic coding 

adopted in H.263 Annex. MPEG-4 Part 2 adopts ¼-pixel ME, and several commercial 

codecs are designed based on Advanced Simple Profile (ASP) of the standard. The latest 

video coding standard H.264/AVC (MPEG-4 Part 10) [6] is developed to target at a wide 

range of applications and high compression capability.  

1.1 Overview of H.264/AVC Standard 

H.264/AVC was jointly developed by ITU-T and ISO/IEC, and gained rapid adoptions in 

a wide variety of applications, because of over 50% bit-rate reduction achieved compared 
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to the previous standards. Several profiles are defined in H.264/AVC, including Baseline, 

Main, Extended, High profiles, etc., with a set of technologies specified for each profile 

targeting at a particular range of applications. H.264/AVC standard covers two layers: 

Video Coding Layer (VCL) that efficiently represents video contents, and Network 

Abstraction Layer (NAL) that formats the representation of VCL in the manner suitable 

for transport layer or storage media. A coded sequence of H.264/AVC consists of a 

sequence of pictures, and each picture is represented by either a frame or a field. Each 

frame or field is further partitioned into one or more slices, and each slice consists of a 

sequence of MBs. Slice is the smallest self-contained [8] decoding unit in H.264/AVC bit 

stream. According to prediction modes, slices are commonly classified to 3 types, 

including I slice (intra prediction), P slice (single-direction inter prediction), and B slice 

(bi-direction inter prediction). Block-based hybrid video coding approach is utilized in 

VCL layer. 

The block diagrams of MB encoding and decoding of VCL layer are shown in Figure 1-1. 

As shown in Figure 1-1(a), MBs in each slice are sequentially processed at the encoder. 

Intra prediction is applied to reduce spatial redundancy of coding MB by predicting 

pixels of current MB based the boundary pixels of neighboring coded MBs. As only 

prediction residual values of intra-coded MBs are encoded, compression efficiency is 

enhanced. Inter prediction includes ME and motion compensation (MC), which are 

applied to inter-coded MBs to reduce temporal redundancy. Precise motion estimation is 

achieved through procedure of Integer ME (IME) and Fractional ME (FME: include 1/2 

pixel and 1/4 pixel precision ME). IME locates the best position of 16x16 pixel array in 

the global searching area of reference frame/filed that achieves best match of current MB 
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and reference frame/filed. FME further explore the local searching area around best IME 

position to find potential better match in the fractional-pixel interpolated frame/filed. 

After intra or inter prediction, integer transform & quantization are applied to reduce 

redundancy of prediction residual by reducing high-frequency information of residual 

values. Quantized residual coefficients, intra/inter prediction data (including prediction 

modes, reference  frame/filed list, motion vector difference MVD), and coding control 

signals such as MB type, QP delta, and transform size flag are further compressed by the 

lossless entropy (statistical) coding to reduce redundancy of code words. An in-loop 

deblocking filter is allocated in the MB encoding feedback loop to reduce artifacts at the 

block edges of reconstructed frame/field. As the distortion of reconstructed reference 

frame/filed is reduced, deblocking filter can improve both subjective and objective visual 

qualities. Deblocking filter was applied as post processing stage in earlier standards, 

while it is integrated as an in-loop filter in H.264/AVC. 

The MB decoding procedure of H.264/AVC is illustrated in Figure 1-1(b), including 

entropy (statistical) decoding, inverse quantization & inverse transform, MC or 

compensation of intra prediction, and deblocking filter. Computation complexity of 

decoding is significantly lower compared to encoding, because high complexity 

intra/inter prediction is not involved in decoding, and also because decoding mode of 

each MB is fixed according to MB type value; while in MB encoding procedure, multiple 

possible MB encoding modes need to be tested to select best MB coding mode and 

achieve better compression efficiency. The architecture of interpolation, reference 

frame/filed reconstruction and deblocking filter are same in both encoder and decoder. 

Computation complexity ratio of CABAC decoder in the video decoder is higher than 
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that of CABAC encoder in video encoder because of lower computation of other function 

blocks. 
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Figure 1-1: Block diagram of MB processing in H.264/AVC. (a) MB encoding, (b) MB 
decoding. 
 

The significant improvement of compression efficiency of H.264/AVC [6] is attributed to 

several techniques, including adaptive Intra16×16/Intra4×4 intra prediction, multi-

reference ME & MC, and variable block-size & ¼-pixel precision of ME that reduce 
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intra/inter prediction error, adaptive block-size (4×4 or 8×8) integer transform that 

efficiently concentrates energy of residual blocks with lower computation complexity 

compared to DCT, in-loop deblocking filter that enhances both subjective & objective 

video quality, more efficient entropy coding tools including CAVLC [9] and CABAC [10] 

compared to all previous standards, and Rate-Distortion Optimization (RDO) [11], etc. 

Moreover, adaptive frame/field coding at picture level (PAFF) and MB level (MBAFF) 

[8, 12] is beneficial in some scenarios, compared to frame coding or field coding.  

Intra prediction: In the previous standards, intra prediction is always carried out in the 

transform domain, such as prediction of DC coefficients based on the neighboring coded 

DC coefficients in intra frame/fileds. In comparison, intra prediction of H.264/AVC is 

implemented in spatial domain, by referring to the neighboring pixels of previous coded 

blocks on the left and/or top of current predicting block. Four Intra-16×16 prediction 

modes are supported for block size of 16×16 and 9 Intra-4×4 modes are supported for 

block size of 4×4. Best prediction block size and prediction mode are chosen for each 

MB, and spatial redundancy is more efficiently reduced by coding the prediction error 

and prediction modes.  

Integer transform: To remove redundancy in the transform domain, integer transform of 

H.264/AVC is used, which is an approximation of the DCT transform. The technique 

achieves exact match after decoding and the computation is also simplified, compared to 

the floating-point DCT transform in the other standards. More specifically, block sizes of 

4×4 or 8×8 of integer transform can be adaptively chosen in the high level profiles of 

H.264/AVC to fit for various video scenarios. Small 4×4 transform is more locally 

adaptive and is required of transform region within small prediction Region [8]. After 
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redundancy reduction in the spatial and temporal domains, entropy coding tools are 

utilized to further remove the redundancy of code word. 

8x8

0
0

0
0

1
1

1

2 3

4 partition modes 
of 8x8 partition of 

P8x8 mode:

8x4 4x8 4x4

16x16 16x8 8x16

4 partition 
modes of MB: 0

0
0

0

1
1

1

2 3

8x8

P8x8 
partition
mode

Block size of 
partitions:

Block size of 
sub-partitions:  

Figure 1-2: MB partition modes and sub-MB partition modes of ME in H.264/AVC 

Inter prediction: The precision of inter prediction is enhanced compared to the earlier 

standards because of following technical improvements: 

 Multi-reference inter-picture prediction allows encoder to select from a larger 

number of decoded and stored frame/fileds for motion compensation, compared to 

those of H.263 and MPEG-2. As a result, bit rate reduction is significant in certain 

types of video scene such as repetitive motion and back-and-forth scene.  

 Variable block-size motion estimation of H.264/AVC supports more flexible 

selection of block size of motion compensation. As shown in Figure 1-2, except 

the 4 types of MB partition modes P16×16, P16×8, P8×16, and P8×8 of motion 

estimation with the corresponding partition sizes of 16×16, 8×16, 16×8, and 8×8 

pixels that are supported in MPEG-4 Part 2, for the mode P8×8, each sub-MB 

(8×8 partition) can be further partitioned into small partitions of 8×8, 8×4, 4×8, 

and 4×4 pixels. The index numbers in the figure indicate scan and processing 

order of the partitions. It enables better match of various motion patterns and 
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more precise segmentations of motion regions, and results in bit-rate reduction of 

prediction residual data. 

 The precision of motion estimation is ¼ of a pixel (quarter-pixel-precision or 

qpel), which is higher than that of most of previous standards. Interpolation 

operations using 6-tap FIR filter and bilinear interpolation are used to generate the 

pixels at half-pixel and ¼ pixel positions. The computation complexity of 

interpolation is lower than that of MPEG-4 Part 2.  

Rate-Distortion Optimization (RDO): At MB level, coding efficiency depends on the 

selecting among different coding options. The best choice of coding options of MB 

achieves minimum distortion D within a constrained bit rate R. Instead of solving 

constrained selection problem, the widely used Lagrange multiplier methodology is 

applied, and the problem is transferred to a simpler unconstrained problem by finding the 

minimum (1-1), in which constant λ is the multiplier.   

3
12

mod

cos

285.0
−

⋅=

⋅+=
QP

e

t RDRD

λ

λ
 (1-1)

In H.264/AVC RDO algorithm, Lagrange optimization procedure of motion estimation of 

inter modes is separated from the successive procedure of MB coding mode decision. The 

multiplier λmode is used for MB mode decision, and it is a positive value proportional to 

the Quantization Parameter QP, as shown in (1-1). The multiplier λmotion of motion 

estimation is set as the square root of λmode. For MB mode decision, coding modes are 

selected from intra and inter modes, including Intra-16×16, Intra-4×4, Skip, P16×16, 

P16×8, P8×16, P8×8, etc. Coding rate R and RDcost of each MB coding mode are 

precisely evaluated, as all SEs of the MB are encoded by entropy coder CABAC or 
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CAVLC to obtain the accumulative value of R for MB coding mode. In comparison, the 

calculation of R is simplified in the procedure of best motion vector selection during 

motion estimation. The idea of RDO simplification of motion estimation was first 

proposed by Sullivan, et al. in [13] and updated in [11]. Because large amount 

computation involved in the evaluation of RDcost values, R is approximated by a value 

proportional to the length of motion vector instead of going through entropy coding. A 

special case of RDO MB coding mode decision is mode P8×8, in which entropy coding is 

required to accurately evaluate the R of RDcost for each sub-MB partition mode for the 

selection of best mode of each 8×8 sub-MB. 

Entropy coding: Two entropy (statistical) coding tools are utilized in H.264/AVC at the 

final stage of VCL including CAVLC (context-based adaptive variable length coding) [9] 

and CABAC (context-based adaptive binary arithmetic coding) [10, 14]. In the Baseline 

and Extended profiles targeting at low bit-rate conversational network video service and 

stream services, CAVLC is utilized to encode SE of 4×4 block quantized transform 

coefficients, and Exp-Golomb coding is applied to encode other MB-level and high level 

SEs. For the Main and High profiles targeting at high bit-rate and high definition service 

such as TV broadcasting or DVD, CABAC is used. CABAC achieves even higher 

compression ratio than CAVLC, with over 10% in bit-rate reduction. More details of 

arithmetic coding theory and CABAC will be introduced and analyzed in Chapter 2. 

Although large percentage of H.264/AVC encoding computation is used for ME, 

throughputs (number of symbols coded per cycle) of both H.264/AVC video encoder and 

decoder are also limited by the entropy coding stage, because of sequential coding nature 

and high data dependency of CABAC coding procedure. As it is not efficient to remove 
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the bottleneck by software optimization and acceleration alone, it is reasonable to exploit 

parallelism at all levels to accelerate CABAC coding procedure in the H.264/AVC codec 

system targeting at high bit rate real-time coding.  

1.2 Approaches of H.264/AVC Codec Acceleration 

Because computation complexity of H.264/AVC is significantly higher compared to the 

previous standards, there has been much research on accelerating H.264/AVC encoding 

or decoding procedure in the aspects of embedded software implementation, algorithm 

modification and simplification, and hardware acceleration of codec system or particular 

function blocks by either FPGA or ASIC designs. For SW acceleration, DSP-based 

H.264/AVC encoder designs are reported in [15-18], while Cell processor [19] and ARM 

processor [20] are reported to achieve low-resolution SW decoding. Fast algorithms are 

developed to accelerate particular function blocks such as intra prediction [21], coding 

mode decision and RDO [12, 22-24], ME and MC [25], and rate control [26, 27]. 

However, SW acceleration is limited by the low degree of parallellism and is not suitable 

for high bit rate high definition real time coding. 

Hardware acceleration of H.264/AVC codec is reported in the literatures targeting at 

encoder/decoder system or particular function blocks. For encoder design, MB encoding 

is accelerated by 4-stage pipeline [28, 29] or 3-stage pipeline [30] to enable parallel 

processing of different MB coding steps such as integer ME, fractional ME, transform & 

quantization. To remove data dependency and enable pipelined coding, algorithm is 

adjusted, including simplified MV prediction in [28, 29]. Different encoding stages are 

controlled by embedded processor [31] or through control signals input from system bus 

interface [30]. As computation complexity of decoder is significantly lower, FPGA is 
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utilized to achieve real time decoding excluding entropy decoding in [32]. Schemes of 

memory access reduction and memory size reduction of decoder are reported with 

strategies of optimized scheduling of decoding order [33], data reuse by allocation of 

shared memory and local buffers [28-30, 34], and multi-bank SRAM access [35]. Power 

reduction and chip testing schemes of codec are considered in [36, 37]. 

HW designs that focus on accelerating of particular function block are also reported. To 

reduce ME computation, MB partition modes and search candidates are reduced in [30], 

full search early termination of ME is applied in [34], and control of search range and 

reference frame number in [38] according to input variations. However, video quality is 

also degraded [39] with such simplification. SIMD architecture of ME is designed in [40] 

to enhance computation parallelism. For MC of decoder, interpolation window reuse 

scheme [41] is utilized to reduce memory bandwidth. For intra prediction, acceleration 

strategies are proposed including prediction mode decision with reference to the mode of 

coded blocks [42] and scheduling of parallel processing of Intra16×16 & Intra4×4 

prediction [43]. 

HW acceleration of entropy coding stages at H.264/AVC is necessary because the 

bottleneck of strong data dependency and sequential coding property can not be 

efficiently removed by SW design and optimization. HW architectures of CABAC and 

CAVLC codec designs and related design strategies will be analyzed in Chapter 3. 

1.3 Objectives of the Research 

As aforementioned, the entropy coding tool CABAC exhibits outstanding efficiency of 

lossless compression compared to CAVLC and other VLC encoders and contributes 

significantly to the performance enhancement of H.264/AVC. However, sequential 
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coding nature and strong data dependency of CABAC coding procedure prevent efficient 

software acceleration in both single-core and multi-core parallel coding at MB level. 

Although multi-core parallel coding can be applied at slice level, compression efficiency 

of CABAC will be degraded when a frame/filed is divided into multiple slices. Quite a 

number of research projects have been carried out targeting at hardware design of 

CABAC encoder of H.264/AVC standard in recent years. Although different approaches 

have been investigated to accelerate the encoding procedure, these designs still have 

limitations in several aspects, including incomplete functional implementations, 

inefficient removing of the dependency of coding data, no support of RDO coding in the 

CABAC encoder, and high frequency of memory access for the context model and 

related high power consumption.  

Because CABAC is the final encoding stage of video encoder and the first decoding stage 

of video decoder of H.264/AVC, it has significant influence on the coding performance 

of the top-level video codec. Furthermore, because the processing data rate at CABAC 

encoder is significantly higher compared to that of decoder, especially when RDO is used 

in the coding control procedure, it is challenging to design a real-time CABAC encoder 

targeting at high definition high quality H.264/AVC video coding applications.  

In this thesis, research work is carried out to design a hardware IP of CABAC encoder 

targeting at the Main profile of H.264/AVC. The general research objectives include: 

(1) Design a SoC based full hardware CABAC encoder that minimizes computation on 

the host processor and data transfer on system bus. (2) Enhance throughput of encoder 

and achieve high quality real time video coding. (3) Provide a solution of SoC-based 

CABAC encoder IP with complete RDO support, and insure integratability and 
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reusability, and wide application field. (4) Minimize memory access frequency and 

power consumption of encoder. (5) Explore general circuit design methodologies 

(strategies) that can be used for sequential coding algorithm and system such as entropy 

coding. 

1.4 List of Publications 

 X.H. Tian, T.M. Le, X. Jiang, and Y. Lian, "Full RDO-Support Power-Aware 

CABAC Encoder with Efficient Context Access," IEEE Transactions on Circuits and 

System for Video Technology (T-CSVT), vol. 19, no. 9, pp. 1262-1273, Sept. 2009. 

 X.H. Tian, T.M. Le, X. Jiang, and Y. Lian, "A HW CABAC encoder with efficient 

context access scheme for H.264/AVC," in Proceedings of IEEE International 

Symposium on Circuits and Systems, pp.37-40, 2008. 

 X.H. Tian, T.M. Le, X. Jiang, and Y. Lian, "Implementation Strategies for Statistical 

Codec Designs in H.264/AVC Standard," in Proceedings of The 19th IEEE/IFIP 

International Symposium on Rapid System Prototyping, pp.151-157, 2008. 

 X.H. Tian, T.M. Le, H.C. Teo, B.L. Ho, and Y. Lian, "CABAC HW Encoder with 

RDO Context Management and MBIST Capability," in Proceedings of International 

Symposium on Integrated Circuits, pp.236-239, 2007. 

 X.H. Tian, T.M. Le, B.L. Ho, and Y. Lian, "A CABAC Encoder Design of 

H.264/AVC with RDO Support," in Proceedings of 18th IEEE/IFIP International 

Workshop on Rapid System Prototyping, pp.167-173, 2007. 
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 T.M. Le, X.H. Tian, B.L. Ho, J. Nankoo, and Y. Lian, "System-on-Chip Design 

Methodology for a Statistical Coder," in Proceedings of Seventeenth IEEE 

International Workshop on Rapid System Prototyping, pp.82-90, 2006. 

 Patent: US Provisional Application No. 61/151,269. Title:  Method and Device for 

Encoding Syntax Element using CABAC Encoder. Filing Date:  10 February 2009 

 X.H. Tian, T.M. Le, and Y. Lian, Entropy Coders of the H.264/AVC Standard – 

Algorithms and VLSI Architectures, Springer-Verlag GmbH, Publisher in editing 

procedure, Nov. 2009. 

 X.H. Tian, T.M. Le, and Y. Lian, "Analyses on the Implementation Techniques of 

CAVLC and CABAC Codecs in H.264/AVC," IEEE Transactions on Multimedia, 

2009. (Journal submission under review) 

This research is restricted to the efficient design of CABAC encoder, and the other 

functional blocks of H.264/AVC standard are not implemented in hardware circuits. The 

thesis is organized as follows. Arithmetic coding theory and CABAC algorithm are 

introduced first in Chapter 2. After that, related literatures on H.264/AVC entropy codec 

designs are reviewed in Chapter 3. The proposed CABAC encoder design of this thesis is 

introduced in Chapter 4 and Chapter 5. Functional partitioning schemes, top-level HW 

encoder architecture, and part of function blocks of encoder are discussed in Chapter 4, 

while the architecture of context modeling is discussed in Chapter 5. Then the design of 

the SoC system bus interfaces and inter-connection of the encoder is described in Chapter 

6. After that, design, synthesis, verification, and performance comparison to the reported 

designs are illustrated in Chapter 7. Conclusions are given in the last chapter. 
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Chapter 2 Review of Arithmetic Coding and 
CABAC 

2.1 Introduction of Arithmetic Coding 

Compared to the previous lossless variable length coding (VLC) methods [44] including 

Elias, Golomb and Rice, Shannon-Fano, and Huffman [45], the distinct difference of 

arithmetic coding is that code words can be represented using fractional number of bits, 

while in other VLCs, each code word must occupy integer number of bits. Shannon first 

mentioned the possibility of such coding method in 1948 [46]. Elias explores the idea of 

successive subdivision of coding interval [47] in 1960s. Complete scheme of arithmetic 

coding was proposed by Rissanen [48] and Pasco [49] independently in 1976, in which 

finite-precision arithmetic coding was implemented. Further research work include 

hardware-oriented arithmetic coders [50] of IBM and software-oriented arithmetic coders 

by Witten et al. [51], which made it practical in the image and video compression 

applications. Arithmetic coder generates code word by representation of subintervals of 

the interval [0, 1) with enough bits. Ratio of each subinterval to the current interval is 

proportional to the probability of the corresponding event. If only two events (symbols) 

are coded, 1 bit is enough to represent most probable symbol (MPS) and least probable 

symbol (LPS), and it is called binary arithmetic coding and each coding symbol is called 

a bin. Context-based adaptive binary arithmetic coding is binary arithmetic coding with 

adaptive symbol probability according to the recent coding events. 

As shown in Figure 2-1, coding interval of binary arithmetic coding can be defined as 

[Low, Low + Range). For each bin encoding, the interval is subdivided into two 
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subintervals [LowLPS, LowLPS + RangeLPS) and [LowMPS, LowMPS + RangeMPS), and one 

subinterval is selected based on whether the coding bin is MPS or LPS. Confirmed bits of 

Low are output as coding result. Subinterval calculation of MPS and LPS is according to 

(2-1), in which Range of LPS (RangeLPS) is calculated according to pLPS, the probability 

that the coding bin is LPS. Low is updated accordingly after Range update.  

RangeLPS

RangeMPS

Range

LowMPS

LowLPS

Low

MPS

LPS

 

Figure 2-1: Coding interval subdivision of binary arithmetic coding. 
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RangeRangeRange
pRangeRange

MPS

MPSLPS

LPSMPS

LPSLPS

=
+=

−=
×=

 (2-1)

 

As coding interval is represented by finite number of bit, to overcome precision loss 

introduced by the shrinking of current interval and achieve incremental encoding and 

decoding procedure, an incremental output method of arithmetic encoding is proposed in 

[51], in which the interval is upscaled by left-shift of Range and Low when Range of 

interval is less then ¼ of the max range. This interval upscale procedure is named 

renormalization, during which, higher bits of Low need to be output as coding results. 

One bit of Low is output only when it is confirmed that the interval is within the upper 
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half or lower half of the max interval range. Otherwise, the length of outstanding bits of 

Low is accumulated before the value of bits is confirmed. This coded bit output 

mechanism of binary arithmetic coding is adopted by CABAC of H.264/AVC. 

2.2 CABAC of H.264/AVC  

CABAC stands for Context-based Adaptive Binary Arithmetic Coding. Although Q-

coder [52], QM coder [53], and MQ coder [54]of previously image coding standards are 

also binary arithmetic coders with statistical adaptivity, CABAC is first proposed by 

Marpe et al. in 2001 [55] as a proposal to the H.264/AVC standard committee. It is 

adopted as the entropy coding tool used in the Main profile and High profiles of 

H.264/AVC standard. Before CABAC of H.264/AVC, LUT(lookup table)-based 

variable-length coding (VLC) are generally utilized for entropy coding in the hybrid 

block-based video coding standards including H.263, MPEG-2, MPEG-4 Part 2, etc. The 

limitation of VLCs [10] is that coding event with probability higher than 0.5 cannot be 

efficiently represented and the coding procedure is not adaptive to the actual symbol 

statistics as the values of LUTs are fixed. The only arithmetic coder adopted in video 

standard is of Annex E of H.263 [4], in which coding efficiency of entropy coding is not 

significantly improved, because of directly using of SEs of VLC for arithmetic coding 

without redefinition. Before CABAC proposals of [55-57] of H.264/AVC, similar 

arithmetic coding approaches were first investigated and applied in non-block-based 

video coding [58, 59], such as DWT. 

CABAC [6, 10, 14] of H.264/AVC is the first successful arithmetic coding scheme 

deployed in video coding standard, with significant compression improvement compared 

to previous entropy coding tools. As shown in Figure 2-2, CABAC encoding process 
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consists of three elementary steps: binarization, context modeling, and binary arithmetic 

coding (BAC).  Input SEs are binarized into bin strings, in which regular bins and bypass 

bins are encoded separately by the encoding engines of BAC. For regular bin coding, 

context model (probability model) of the bin is prepared by the step of context modeling. 

Techniques of the three steps will be discussed in the following subsections. 
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Figure 2-2: Block diagram of CABAC encoder [6] of H.264/AVC. 

2.2.1 Binarization  

Binarization maps non-binary valued syntax elements (SE) into bin string, which is a 

sequence of binary decision (bin). Three types of bins are generated in the binarization 

step: regular bin, bypass bin, and terminate bin for the bins with unequal (variable), 
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equal, or dominant probabilities of value 1 and 0, respectively. Advantages of 

binarization [10] include: (a) the probability of non-binary SE can be represented by the 

probabilities of individual coding bins, while compression efficiency is not influenced; (b) 

low-complexity binary arithmetic coding can be utilized; (c) context modeling at sub-

symbol (sub-SE) level provides more accurate probability estimation than context 

modeling at symbol level, and the alphabet of encoder is reduced. 

Five binarization schemes are used in CABAC: Unary (U), Truncated Unary (TU), kth 

order Exp-Golomb (EGk), concatenation of the first and third scheme (UEGk), and fixed 

length binarization (FL). Kth order Exp-Golomb binarization (EGk) [60], a derivative of 

Golomb coding [61], is proved to be optimal prefix-free coding for geometrically 

distributed sources. EGk code word consists of prefix and suffix bin strings, with total 

length of 2l+k+1 bits. EGk prefix is a Unary code word, with l bits of 1 and one 

terminating bit 0). The length l of string of bit 1 is represented as: 

    ⎥
⎦

⎥
⎢
⎣

⎢
⎟
⎠
⎞
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⎝
⎛ += 1

2
log2 k

xl  

 

(2-2)

The length of suffix binary string is equal to l + k, and the value of the suffix string is: 

    
lkkxsuffixEGk +−+= 22_  (2-3)

UEGk is combinational binarization scheme of TU and EGk. It is utilized for binarization 

of SEs of absolute value of residual coefficient level and MVD. TU generates prefix of 

the bin string, and EGk is adopted to generate the suffix with k set to 0 and 3 for 

coefficient level and MVD respectively. TU is simple and it permits fast adaptation of 

probability of coding symbol. However, it is only beneficial for small SE values. For 
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large SE values, suffix bin string generated by EGk provides a good fit to the probability 

distribution, and bypass bin coding is utilized to reduce computation complexity. 

2.2.2 Context Modeling 

The context modeling step shown in Figure 2-2 implements two aspects of functions: 

context model selection & context model access. The statistics of coded SEs are utilized 

to update probability models (context model) [8] of regular bins. For regular bin coding, 

one context model is chosen and fetched from a pre-defined set of context models to 

provide probability of regular bin to be MPS or LPS, and context model is updated after 

bin coding based on bin value. Context index (CtxIdx) is calculated to select context 

model, which is the sum of context offset (CtxOffset) and context index increment 

(CtxIdxInc). CtxOffset locates the context model set of processed SE; while CtxIdxInc 

selects one context model from the set based on the values of coded bins or coded SEs of 

neighboring coded blocks.  

The idea of multiplication-free arithmetic coding of H.264/AVC is based on the 

assumption that estimated probability of each context model can be represented by a 

sufficient limited set of representative values, and in CABAC the number of the 

representative values is set to 64 to enable accurate estimation, which is larger than the 30 

of Q-coder. Each context model contains 1-bit tag of MPS value and a 6-bit pStateIdx 

(probability state index) that addresses one of 64 representative probability values of LPS 

from p0 to p63 in the range of [0.01875, 0.5]. The probability values of LPS are derived 

from (2-4). The ratio of two neighboring probability values is a constant value α, which is 

approximated to 0.949. 
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Probability update of context model is based on the rule in (2-5), in which pold and pnew 

are the probabilities for the bin to be LPS before and after bin coding. If the coding bin is 

MPS, the probability of LPS decreases by simply multiplying the ratio α, while for the 

LPS bin, the update probability of MPS is calculated first, and then the probability of 

LPS is obtained. 
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By mapping the update probability value of LPS of (2-5) to the closest value in the 

aforementioned set of representative values, multiplication of probability estimation of 

CABAC is replaced by simple table lookup for the pStateIdx of next probability state 

according to pStateIdx of current bin and based on whether it is MPS or LPS. This 

probability value estimation of context state is actually the function state transition of 

FSM with 64 predefined states. This type of probability FSM is first utilized in Q-coder, 

and adopted in QM coder and MQ coder. Compared to Q-coder, QM coder, and MQ 

coder, the representative LPS probability values need not to be stored in CABAC. Instead, 

the approximation of the products of coding interval Range and the LPS probability of 

(2-1) are stored. In order to be more adaptive to the coding context, the values of MPS 

and LPS can be exchanged when the probabilities of MPS and LPS are equal and the 

coding bin is LPS. 
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For particular regular bins of CABAC, multiple context models are allocated for single 

bin to more precisely represent probabilities of bin in different coding contexts. Four 

types of context model selection methods are supported in CABAC, based on (a) 

neighboring coded SE values of current SE, (b) values of prior coded bins of SE bin 

string, (c) position of the to-be-encoded residual coefficient in the scanning path of 

residual block coefficients, and (d) level values of encoded coefficients of residual block. 

2.2.3 Binary Arithmetic Coding (BAC) 

The step of binary arithmetic coding performs arithmetic coding of each bin based on bin 

value, type, and corresponding context model of the bin. BAC is a recursive procedure of 

coding interval subdivision and selection, as shown in Figure 2-3.  

MPS
MPS

LPS MPS

Range

Low

Range
Low

CABAC Bin Encoding Flow

 

Figure 2-3: Coding interval subdivision and selection procedure of CABAC.  

Coding interval subdivision mechanism of CABAC is different from that of QM and MQ 

coders. In QM and MQ coders, calculation of RangeLPS of (2-1) is simplified by using 

approximated value 1 of Range, and the multiplication is removed. In comparison, Range 

is also utilized for RangeLPS calculation of CABAC.  Figure 2-4 shows the reference 

pseudo C program of interval subdivision and selection of regular bin, in which 2 higher 



Chapter 2 Review of Arithmetic Coding and CABAC 
 

 22

bits of Range (bit 7 and bit 6) and the index of probability state (pStateIdx) of LPS are 

used to lookup pre-calculated product of Range and pLPS of (2-1) from a 2-dimentional 

LUT. Although the product of LUT is of with limited precision, precision of RangeLPS 

calculation and interval subdivision is improved and computation complexity is 

minimized in CABAC, compared to that of QM and MQ coders. 

RangeIdx =  (Range >> 6) & 3; //Range[7:6] 
RangeLPS = rangeTableLPS[pStateIdx][RangeIdx]; 
RangeMPS = Range – RangeLPS; 
if(bin == MPS) //bin is MPS 
  Range = RangeMPS; 
else { //bin is LPS 
  Range = RangeLPS; 
  Low = Low + RangeMPS; 
} 

Figure 2-4: Coding interval subdivision and selection of regular bin of CABAC.  

while (Range < 0x100) { 
  if (Low >= 0x100) {  

if (Low >= 0x200) { 
  //Output bit 0 and following outstanding bits of 1 
  PutBit(1); 
  Low = Low – 0x200; 
} 
else {  // Low is between 0x100 and 0x200 
  Low = Low – 0x100; 
  NumOutstandingBits ++;  //Accumulate outstanding bits 

    } 
  } 
  else {  
    //Output bit 0 and following outstanding bits of 1 

PutBit(0);   
  } 
  //scale up Range and Low values by left shift 
       Range = Range << 1; 
       Low = Low << 1; 
} 

Figure 2-5: Pseudo-C program of renormalization and bit output of CABAC.  
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Because Range and Low of coding interval are represented by finite number of bits 

(Range: 9 bits, Low: 10 bits), it is necessary to renormalize (scale up) the interval to 

prevent precision degradation, and the upper bits of Low are output as coded bits during 

renormalization. Coding interval renormalization and bit output of CABAC is based on 

algorithm of [51], as illustrated in the reference pseudo C program of Figure 2-5. The 

coding interval of [Low, Low + Range) is renormalized when Range is smaller than the 

threshold value 256 (0x100), which is ¼ of the maximum range of coding interval.  

As illustrated in Figure 2-5, renormalization of Range and Low is an iterative procedure, 

and the maximum iteration number is 6, as the smallest possible value of Range is 6. For 

the processing of carry propagation and output of coding bits, coded bits of CABAC are 

not output until it is confirmed that further carry propagation will not influence bit values. 

Figure 2-6 illustrates that only when interval length (Range) is smaller than 0x100 

(threshold), one bit can be output if the interval is located within the top half [0x200, 

0x400) or bottom half [0, 0x200) of maximum coding range, or an OS bit is accumulated 

when the interval is within [0x100, 0x300). When a bit of value X is output in BAC, the 

accumulated OS bits are output with value 1-X. Compared to the bit stuffing or byte 

stuffing schemes of Q-coder, QM coder, and MQ coder, carry propagation is completely 

solved during renormalization of BAC, and no additional processing of bit stream is 

needed at CABAC decoder. Moreover, as no bits or bytes are stuffed in bit stream, 

compression efficiency of CABAC is further improved. However, renormalization 

illustrated in Figure 2-5 is a highly sequential operation, and as the iteration number is 

variable depending on selected subinterval Range, it is challenging for SW or HW 
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acceleration of renormalization and bit output of BAC. In some situations, long delay can 

be caused when large number of OS bits are accumulated. 
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Figure 2-6: Decision of bit output and accumulation of outstanding (OS) bit.  

2.2.4 Comparisons of CABAC with Other Entropy Coders 

Coding efficiency of CABAC is higher compared to that of the other arithmetic coders 

including Q-coder, QM coder, and MQ coder that are in the earlier image processing 

standards, because (a) more precise approximation of multiplication of RangeLPS, (b) 

larger number of probability states for each probability model and more precise 

probability estimation of coding bins; and (c) more context models ( probability models) 

deployed for various coding contexts of different types of SEs.  

Because of high computation complexity of CABAC, another entropy coding tool 

CAVLC [9] is deployed in the Baseline profile and Extended profile of H.264/AVC 

targeting at low bit-rate real-time video coding. It offers compression-complexity tradeoff 

with lower coding efficiency and lower complexity compared to CABAC [10]. It is 

employed to encode quantized transform coefficients of 4×4 residual blocks, while zero-
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order Exp-Golomb codes [60] (EG0) are used for all other types of non-residual SEs. 

Adaptivity is introduced to CAVLC by switching among multiple VLC tables based on 

already processed SEs, and coding efficiency of CAVLC is better than the previous VLC 

coders with single VLC table. Instead of coding data pair of run-level as single SE, run 

and level of residual block are encoded separately in CAVLC, so that the inter-symbol 

redundancy can be more efficiently exploited. However, compression efficiency of 

CABAC is significantly higher, with typically bit rate reduction of 9%-14% in the video 

quality range of 30-38 dB [10], compared to CAVLC & EG0. This is because (a) in 

CABAC, encoding symbols can be more precisely represented in non-integer number of 

bits, especially for the symbol with probability higher than 0.5, and (b) CABAC encoder 

is more adaptive to the non-stationary symbol statistics with efficient context modeling 

(probability estimation) for the coding bins of all types of SEs.  
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Chapter 3 Review of Existing CABAC 
Designs 

Since the adoption of CABAC entropy coding scheme in H.264/AVC [10, 14, 58, 59, 62, 

63], CABAC is also applied in many applications of image and video processing 

including motion mode and residual data of 3D dynamic mesh [64], prediction residual in 

lossless 4D medical image compression [65], SEs of 8×8 transform coefficients of AVS 

coding standard [66], motion vector coding of scalable video coder [67], parameters of 

depth and correction vectors in multi-view video coding [68]. CABAC is also utilized to 

encode affine motion vector [69], and MVD of 3-D DWT-based subband video encoder 

[70].  

Algorithm optimization of CABAC of H.264/AVC is also carried out targeting at 

enhancing accuracy of the context model selection in MVD coding [71], investigating 

parallel CABAC coding using table lookup technique with parallelized probability 

models [72], analyzing error detection probability (EDP) of CABAC coded SEs [73], 

error resilience enhancement of coded bit stream by inserting detective markers based on 

CABAC semantics [74], or error detection based on joint source-channel MAP estimation 

[75, 76]. 

Recognizing the highly computational complexity of motion estimation, because of the 

sequential coding nature and high data dependency of coding procedure in CABAC, the 

throughput of a H.264/AVC video codec is also limited by the entropy coding stage. As it 

is not efficient to remove the bottleneck by software optimization and acceleration alone, 

a number of hardware designs for CABAC have been proposed, to enhance throughput in 
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various applications. In the following sections, different implementation strategies of 

CABAC encoding and decoding architectures will be investigated. The strategies are 

evaluated using circuit area, processing time, and power consumption as judging criteria. 

The strategies are also investigated at the video codec level in terms of host 

computational complexity, data transfer on system bus, and total memory/buffer usage. 

The suitability of strategies is evaluated in different application scenarios such as low 

power or high speed application. Discussion and analysis of technical advantages and 

limitations of these implementations are beneficial for the further design of high 

performance entropy codec in various image and video processing applications. 

3.1 CABAC Decoder and Encoder IP designs of H.264/AVC 

CABAC achieves higher compression efficiency compared to CAVLC. CABAC encoder 

and decoder IPs in the recently reported literatures are reviewed as follows. Benefits and 

limitations of the implementation strategies of these designs are discussed and analyzed. 

3.1.1 CABAC Decoder Designs 

Block diagram of CABAC decoder of H.264/AVC is illustrated in Figure 3-1, including 

the following 3 functional steps: (1) binary arithmetic decoding (BAD), (2) context 

model selection & access (CM), and (3) binarization matching (BM).  



Chapter 3 Review of Existing CABAC Designs 
 

 28

Binarization
Matching

Context
Model

Selection 
& AccessRegular Bin 

Decoding
Engine

Bypass Bin 
Decoding

Engine
Binary Arithmetic Decoding

Parsed SE
bin string

(2)

(3)

(1)
Output SEs

SE type
Bin Idx

Bin value

Selected Ctx 
Model

Bin value for Ctx 
Mode Update

Input Coded
Bit Stream

 

Figure 3-1: Block diagram of CABAC decoder. 

As shown in Figure 3-1, coded bit stream from H.264/AVC encoder is input to BAD, in 

which regular bin (RB) and bypass bin (BB) are decoded in the regular bin decoding 

engine and bypass bin decoding engine, respectively. For RB decoding, one context 

model is selected for each bin in CM based on the decoding SE type, bin index (binIdx) 

and decoded bin values provided by BM and SE values of decoded SEs of neighboring 

decoded MBs. Each context model can be accessed according to CtxIdx, which is the sum 

of context offset (CtxOffset) and context index increment (CtxIdxInc). CtxOffset locates 

one context model within the set of context models of one SE type. CtxIdxInc depends on 

values of coded bin or coded SE in the neighboring coded MB. The decoding Range and 

Offset are updated based on context model, and the bin value is decoded in BAD. Based 

on the decoded value of regular bin, the corresponding context model is updated to 

adaptively adjust the probability estimation of RB. Decoded bins are parsed in BM, 

where the decoded bin string is compared with the bin string patterns of the same SE type 

to decide whether the decoding of current SE completes. Decoded SEs are sent to the 

following decoding steps of H.264/AVC to reconstruct the video sequence. A long loop 
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of data dependency exists to select a proper context model for next RB (BAD -> BM -> 

CM -> BAD). Design challenge of CABAC decoder is to break the loop and enhance 

decoding throughput. 

(1) Binary Arithmetic Decoding (BAD) 

In BAD, input bins of RB, BB, and TB (terminate bin) are decoded separately, and 

context model is provided by CM for RB decoding. During decoding of some types of SE, 

the current decoded bin is used to select the context model of next decoding bin. Because 

of data dependency aforementioned, it is difficult to achieve multi-bin decoding per cycle 

in such situation. However, when the context access pattern is fixed, such as decoding of 

residual SEs including significant coefficient flag (SCF), last SCF (LSCF), and 

coefficient level, cascaded decoding units for multiple bins can be achieved with 

throughput of 2 bin/cycle (2 RB, 2 BB, or 1 RB and 1 BB) [77-79]. To reduce the critical 

path of 2 RB decoding, two possible RLPS_4 (4 possible values of Range of LPS) values 

of RB2 are pre-calculated during RB1 decoding in [77], and the correct RLPS_4 value is 

selected for RB2 when RB1 is decoded. Dual-RB decoding of [80] constantly predicts 

that RB1 is MPS, and begins RB2 decoding, and the critical path of RB decoding is 

shorter than that of [77]. However, throughput of [80] is only 0.56 bin/cycle, because if 

the prediction is wrong, decoded RB2 is discarded. The limitation of dual-bin decoding 

scheme is that although throughput of residual SE decoding can be increased to 2 

bins/cycle in some situations, critical path length also increases by a ratio in the range of 

(1Y, 2Y]. For the SEs that can only be decoded at throughput of 1 bin/cycle including 

non-residual SEs and coded block flag (CBF), decoding time is prolonged because of 

longer critical path length. The overall performance improvement is not significant, 
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especially in low bit-rate coding, with consideration of significantly larger area to support 

cascaded decoding engines and more complex control logic. 

(2) Context Model Selection & Access 

Context model of the decoding RB is selected in this step and accessed from context 

RAM according to the calculated CtxIdx. In order to reduce context RAM access delay, a 

group of context models can be prefetched to the local buffers [77, 81]. Because the 

context model selection and access of coded block pattern (CBF) requires multiple cycles 

[82], CtxIdx of the next CBF is pre-calculated during decoding of current 4×4 block [79]. 

The decoding bin percentage of the SEs of significant map including SCF and LSCF is 

also significant. To accelerate significant map decoding in the dual-bin decoding 

architecture, context models of LSCF are stored in a separate SRAM and it is possible to 

simultaneously access context models of both SCF and LSCF SEs [79]. The techniques 

of context model prefetch, CtxIdx pre-calculation, and parallel access of multiple context 

models are beneficial to reduce context access delay. 

(3) Binarization Matching and SE Generation 

BM is the inverse binarization of CABAC encoding. It can be controlled by a FSM to 

identify the type of next decoding SE. The corresponding LUT of the SE is accessed to 

match the decoded code word. The parsed SE is output in this step. Because BM is one 

decoding stage of CABAC decoding pipeline, several strategies are discussed in 

subsection 4) to reduce pipeline stall and enhance decoding throughput, including parallel 

processing of BAD and BM. 

(4) Solutions to Pipeline Hazards of CABAC Decoding 

A FPGA-based acceleration of critical decoding loop of context model access (CA) of 
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CM and BAD is proposed in [83]. The acceleration strategy is to map sequential 

operations of memory access and table lookup of CA & BAD into pipeline stages with 

data prefetching and data forwarding. Throughput of 1 bin/cycle is claimed. However, the 

data dependency between the decoded RB and the context model of the next decoding 

RB is not removed. Actual throughput of decoder is influenced by both the maximum 

processing speed of CA & BAD and the architecture of BM and context model selection.  

To enhance decoding throughput, BAD and BM are designed in the same pipeline stage 

in [81], which is also adopted in [84] and [85]. The benefit of combining BAD and BM in 

the same stage is that the SE type and CtxIdx of the next decoding bin can be decided by 

BM after the bin is decoded by the BAD. Therefore, one cycle is saved in regular bin 

decoding. A small context buffer named CMR is also allocated in [81] that can buffer 

maximum of 8 context models of one SE type. With the assists of CMR, context model 

selection (CtxIdxInc calculation) and operation of context models loading from SRAM 

(CL) based on CtxOffset can be designed as two parallel units in the same pipeline stage. 

Another benefit of CMR as discussed in [81] is that SRAM write operation of updated 

context model (CU) can be separated from the pipeline stages and the conflict of CL and 

CU on the same SRAM position is solved by data forwarding. The limitation of [81] is 

that two cycles of pipeline stall cannot be avoided for CU and CL operations when the 

type of decoding SE changes. For large ratio of decoding SEs, number of bins per SE of 

is small. Thus, pipeline stall occurs frequently, and it takes an average of 3.93 cycles to 

decode one bin. In the updated design [85] of [81], the pipeline stall frequency is reduced 

by predicting the type of next SE. Prediction is made according to the SE values of 

neighboring coded blocks. With the SE prediction technique applied to the 2-stage 
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decoding pipeline in [85], over 60% decoding cycles are reduced compared to [81]. The 

limitation of SE type prediction is that if the prediction is incorrect, one cycle of stall will 

still be introduced for the loading of correct context models.  

To eliminate pipeline stall of CABAC decoding, an architecture of 4-stage pipeline is 

reported in [84] that achieves decoding throughput of 1 bin/cycle for RB decoding. 

Context model selection, and CL are separated to stage 1 and stage 2 of the pipeline. 

During decoding of current SE, the first context model of next SE is selected in stage 1 

and loaded from context RAM in stage 2. In stage 2, two context models are read 

separately from two context RAMs in parallel per cycle. One context model is of current 

SE and is read from one RAM containing entire context models, while the other context 

model is of the next SE and is read from a small RAM that is not allocated in the other 

designs. The decoded bin in stage 3 of BAD & BM decides whether a new SE will be 

decoded in the next cycle. Based on the decision, one of the two loaded context models is 

selected in stage 2 for the next decoding RB of stage 3. Updated context model of 

decoded RB is written back to context RAM in stage 4. By prefetching context model of 

next SE during current SE decoding, pipeline stall in the case of SE change is avoided in 

[84] compared to the other designs. Decoding speedup of 6.6 times is achieved in this 4-

stage pipeline, compared to conventional design. Throughput is enhanced at the cost of 

doubling of context RAM access frequency and complicated multi-branch CtxIdx 

calculation. Power consumption and circuit area are relatively increased. 

3.1.2 CABAC Encoder Designs 

Block diagram of CABAC encoder of H.264/AVC is shown in Figure 2-2. CABAC 

encoder consists of 3 functional steps: (1) Binarization to map SE value to bin string; (2) 
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Context model selection & access to select the proper context model (probability model) 

for regular bin (RB) according to context index (CtxIdx), and update context model after 

RB coding; (3) Binary arithmetic coding (BAC) to encode each bin by dividing coding 

interval of [Low, Low + Range) and selecting one of the two subintervals RangeLPS and 

RangeMPS based on whether the bin is MPS or LPS, and probability of MPS. For the bin 

with equal probability, bypass bin (BB) coding route is used. The upper bins of Low are 

shifted out as coding result when the bin values are fixed.  

Compared to CABAC decoding, CABAC encoding has lower level of data dependency. 

It is because binarization is an independent functional step with no feedback loop from 

CM or BAC to binarization compared to the BM in CABAC decoding. Additionally, 

context model selection of CM does not depend on the result of context access (CA) of 

CM and BAC. After binarization, CtxIdx calculation of each RB of bin string of SE can 

be carried out, which is used to select context model. Therefore, binarization and context 

model selection can be pre-calculated and separated from CABAC encoding pipeline. 

Because only CA and BAC are the two necessary coding steps for each RB, it is easier to 

design encoder pipeline with less frequent pipeline stall compared to previously 

discussed decoder designs. CABAC encoder designs of H.264/AVC are reviewed as 

follows.  

Reported by Li et al. [86], a dynamic pipeline scheme is used to reduce pipeline bubbles. 

However, because coding interval subdivision and renormalization are separated in two 

pipeline stages, data dependency of the two stages causes frequent pipeline stall, and it 

only achieves a throughput of 0.59 bin/cycle.  

A CABAC encoding core of context access and BAC is proposed in [87] with low power 
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design consideration. A variable bit length tag cache and a register file of 72×7 bits are 

allocated in the design to reduce SRAM access frequency and the associated power 

consumption. Low power technique such as clock gating is also adopted to reduce power 

consumption of the tag cache. Throughput is less than 1 bin/cycle because of additional 

cycles for RAM access of context models when cache miss occurs.  

An arithmetic encoder that supports both JPEG2000 and H.264/AVC is proposed in [88]. 

To encode 2 RBs per cycle, the inverse multiple branch selection (IMBS) is adopted and 

parallelism of Range update is achieved by pre-calculating all possible output values of 

first Range before the correct value is selected. IMBS results in large circuit area for the 

pre-calculation of all possible branches. Because data forwarding mechanism in context 

model access is not built, the pipeline will stall when two successive RBs access the same 

context model. Because coding of bin with equal probability (BB) is not implemented, 

the design cannot fully support BAC. Furthermore, only estimated value of average 

throughput of the encoder is given in [88]. 

In [86, 87], binarization and context model selection are left to be run on the host 

processor. This implies additional processing power and memory bandwidth must be 

supported by the higher level system.  

Chen et al. [89] combines the CtxIdx (context index) calculation and binarization into one 

module of a 3-stage pipeline. Similar to [88], the pipeline stalls when the same context 

model is successively accessed during RB encoding. As a result, the achievable 

throughput is 0.56 bin/cycle. Context selection is not completely implemented in the 

design, and binarization is overlapped in the encoder and host. 

Compared with the previous CABAC encoder designs, Liu et al. [90] implements context 
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model selection (CtxIdx generation) fully in HW with reference to the stored SEs of 

neighboring coded MBs. Although a 3-stage pipelined module is designed to accelerate 

the RAM access of coded SEs from neighboring blocks, encoding pipeline still stalls 4 

cycles for each access. The resulting throughput of the encoder is 0.67 bin/cycle. 

A full hardware CABAC encoder is also proposed by Lo et al. [91] with average 

throughput of more than 1 bin/cycle. Throughput is enhanced because cascaded 

arithmetic coding engines are allocated in BAC to support coding of 2 bins/cycle of 

residual SEs including significant map and level values of coefficients. To support coding 

of 2 bins/cycle of significant map, context models of SCF and LSCF are allocated in a 

separate SRAM, which enables reading of 4 context models (2 pairs of SCF and LSCF) 

per cycle. Although it is claimed that the coding speed can be doubled, the speed up ratio 

is actually below 2. Because critical path length of BAC is prolonged, encoding time of 

non-residual SEs and CBF is extended because throughput of this part of SEs is still 1 

bin/cycle and clock frequency is lower. Additionally, because only one context model of 

level can be accessed per cycle, throughput of level coding will be only 1 bin/cycle in 

some situations. Circuit area is also increased to support higher coding throughput. 

The multi-bin arithmetic encoding is investigated in [92]. To enable multiple context 

model access in each cycle, SRAM banks are utilized to provide sufficient SRAM ports 

for parallel access of context models from different banks. Data forwarding architecture 

is utilized to avoid read and write conflicts of SRAM access and pipeline bubble when 

the same context model is accessed in successive cycles. The limitation of this scheme is 

that a highly complicated context selection block is needed to prepare multiple context 

models for the context access pipeline in each cycle. Additionally, cascaded units coding 
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interval subdivision and selection are needed and the critical path length is significantly 

longer compared to single bin coding scheme. Throughput is degraded because of data 

dependency in the binarization and context model selection. 

In all CABAC encoder designs discussed above, Rate Distortion Optimization (RDO) is 

not supported. It is analyzed in [93] that the high computational requirement of CABAC 

is largely due to the support of RDO in the H.264/AVC encoding system. Design of 

CABAC encoder with RDO functionality is considered in [93], with supports of context 

state backup & restoration operations when RDO mode changes. Three large FIFO 

buffers are allocated in the design to back up the intermediate states of context models 

during RDO mode decision procedure. However, because throughput of FIFO read or 

write is single context model per cycle, timing delay is long for the operations of context 

state backup and restoration. Additionally, large FIFO buffers occupy large circuit area. 

Because single context model is accessed from context RAM in the design, and there is 

no mechanism to reduce RAM access by allocating local cache or context buffer, the 

access frequency and power consumption of the context RAM is significant. In [93], the 

encoding core only focuses on acceleration of context access and BAC. Binarization and 

context model selection are not implemented. RDO is not fully supported in [93] because 

context model selection related RDO operations are not implemented including the state 

of coded SEs backup and restoration of current coding MB during RDO mode decision 

procedure. 

Osorio et al. proposes the first arithmetic coding architecture of H.264/AVC of 

throughput of 1 bin/cycle, utilizing multi-stage pipeline to accelerate CABAC coding 

steps including context access, BAC, and bit packing [94]. The coding throughput is 
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further enhanced in their latest design [95], in which Range & Low are updated in 

separate arithmetic coding pipeline stages with duplicated computational resources to 

significantly increase throughput to around 2 bins/cycle. A small cache of 16 context 

models is utilized to buffer context models read from RAM. The context access delay is 

reduced, because for RBs of residual SE, context models are prefetched to the cache 

before bin coding. In each cycle, a pair of two RBs with the corresponding context 

models is processed by BAC. For the non-residual SEs and CBF, binarization, bin pair 

preparation, and context model selection are assumed to be performed by the host 

processor. However, these operations take up large percentage of total CABAC encoding 

instructions. To enable data pairing operation, additional computational cost is further 

assumed by the host processor. To support RDO, two RAM blocks are allocated to store 

original and updated context models during RDO coding. However, P8×8 RDO coding 

mode is not supported in [95], which is critical to the efficiency of inter frame coding of 

H.264/AVC. In Chapter 7, limitations of [95] will be analyzed in details.  

3.2 Summary of Implementation Strategies of Entropy Codecs 

Hardware design implementation strategies of entropy coding tools CABAC of 

H.264/AVC have been investigated. The strategies are evaluated using criteria of circuit 

area, processing time, power consumption, etc. To accelerate decoding procedure, 

strategies of cascaded processing units, data pre-calculation, and reducing pipeline stage 

number are useful. To reduce context model access delay, strategies of context model 

prefetch and local buffering, separating context RAM tables for multi-context models 

accessing, and CtxIdxInc pre-calculation are efficient. In CABAC encoder design, it is 

beneficial to allocate multiple pipeline stages to increase encoding speed. Multi-bin 
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encoding is a choice to enhance throughput. However, performance improvement of it is 

not significant because of lower clock frequency, non-constant throughput, and larger 

area of the control logic for multi-bin encoding.  

For CABAC encoder designs, the implementations discussed above have several 

limitations in general, including:  

(1) HW encoder function is not complete, which costs high computation complexity 

on the host processor and limits the performance of CABAC design;  

(2) Data dependency of coding steps is not effectively removed, so the encoder 

cannot be implemented in a full pipeline structure, and the throughput is low;  

(3) RDO is not supported in these designs or at least not efficiently supported, which 

costs high computation burden on the host processor, and requires large 

bandwidth to support backup and restoration of CABAC coding states;  

(4) Memory access frequency and related power consumption are high in most 

designs because of single context model access from context RAM, and encoder 

power reduction techniques are not reported in most designs;  

(5) Reusability and integratability of encoder IP are not considered.  

In the following chapters, a dedicated CABAC encoder IP of H.264/AVC standard with 

comprehensive coding functions and stable high performance is proposed to solve the 

limitations aforementioned and achieve research objectives listed in Chapter 1. 

Implementation strategies of the proposed CABAC encoder will also be discussed, and 

comprehensive performance comparison of proposed design and reference designs will 

be given. 
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Chapter 4 The Proposed Design of 
Hardware CABAC Encoder 

In this chapter, architecture of the proposed hardware (HW) CABAC encoder is 

illustrated. Firstly, the design methodology of a SoC (System-on-Chip) based entropy 

coder is presented. Secondly, based on the design methodology, hardware/software 

(HW/SW) functional partitioning of CABAC encoder function is carried out to decide 

proper portion of functions to be designed as HW circuits and the portion of functions 

remained to be processed on host processor. Furthermore, the strategy of functional 

partitioning of HW encoder is applied, and the top-level function blocks and encoding 

flow of the encoder are introduced. In the following sections, design details of major 

function blocks are presented including binarization & bin packet generation and binary 

arithmetic coding (BAC). Moreover, additional functions supported by the encoder are 

discussed including context model initialization, RDO function support in BAC, etc.  

4.1  Design Methodology of SoC-based Entropy Coder 

Design methodology for a SoC-based entropy coder such as CABAC is proposed [96], in 

which the entropy coder is realized as an IP block that can be integrated in a SoC video 

coding system. The IP block can be a logic synthesizable RTL design or a hard IP block 

where physical implementation is done and GDSII is ready. The design flow, as shown in 

Figure 4-1, contains 9 elementary steps including performance and complexity analyses, 

derivation of system specifications, HW/SW functional partitioning, HW top-level 

functional partitioning, function block design of HW IP, HW IP verification, applying 

constraints and synthesis, introducing SoC features, and HW/SW co-simulation. 
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Figure 4-1: SoC-based entropy coder design flow.  

The first step of design flow is performance and complexity analyses. It is crucial to 

assess the complexity of software to be mapped onto the supposedly application specific 

top-level architecture. When the complexity is low, decision can be made to run the 

software using the existing microprocessor. If the complexity is high, it is better to 
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identify the bottlenecks. After complexity analysis is performed, system specifications 

are written in step 2 to address not only user’s needs but also plans to minimize the 

effects of bottlenecks. In step 3, system HW/SW partition is carried out. The portion of 

coding function - which can be effectively realized into HW – is replaced by HW 

preferred modules, while the remaining portion is left to be run in SW on the existing 

embedded microprocessor (host processor). The decision by which HW/SW are 

partitioned is based on the system specification such as coding speed of entropy coder, 

and constraints of communication latency between host process and HW IP block, data 

transfer bandwidth on system bus, and remaining computation on the host processor. All 

SW preferred modules are referred to as one single SW non-IP block, while all HW 

preferred modules are referred to as one single HW IP block. In step 4, the function of the 

HW IP block is further partitioned into proper function blocks during top-level HW 

architecture design, which is crucial to the performance of HW IP. All function blocks of 

HW IP are designed accordingly in step 5, followed by top-level HW IP block 

verification in step 6. Verification is performed by comparing the compressed bit stream 

generated by the reference SW (without any HW assisted circuitries), with that output by 

the top-level HW architecture. It is important to be certain that design errors are caught at 

this step. The RTL-level functional correct design is constrained with timing, area, and 

power constraints and synthesized into gate-level circuits in step 7. If any of the 

constraints are violated, function blocks are redesigned in step 5. If design violations still 

exist after critical function block redesign, the design flow will go back to step 4 to adjust 

the top-level entropy coder architecture with more proper functional partitioning scheme. 

Design constraints can also be adjusted with tighter or looser constraints according to the 
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synthesis results.  The recursive procedure stops when all design constraints are met and 

the design is verified at gate-level.  In step 8, SoC design features will be designed into 

the HW IP block. Such features are system bus interfaces and the signals of system bus, 

input and output FIFO buffers, debug structures, reset signal, etc. Function correctness 

and design constraints also need to be checked after SoC related function blocks 

integrated in step 8. Co-simulation of both HW IP block and SW non-IP block is done in 

step 9 to verify if communication between SW non-IP block and HW IP block is 

minimized including data transfer latency and system bus bandwidth occupation. 

4.1.1  Performance & Complexity Analysis of CABAC Encoder 

The design methodology of the SoC-based entropy coder is applied to CABAC encoder 

design of H.264/AVC. Design step of performance and complexity analyses is presented 

first, and the following steps will be discussed in the later sections and chapters. The 

coding performance of CABAC encoder IP design is compared to that of CAVLC 

(including Exp-Golomb coding for non-Residual SEs) by testing on H.264/AVC 

reference software JM 12.4 [97] in the QP (quantization parameter) range of 28 to 40 

using three video sequences in both CIF and HDTV 720p formats. The 3 sequences, 

named Seq1, Seq2, and Seq3 are: Foreman, Coastguard, and News in CIF format, and 

City, Night, and Crew in HDTV 720p format.  

Results of Table 4-1 illustrate that CABAC achieves an average bit rate reduction of 

10.0% in CIF test and 15.5% in 720p test over CAVLC. The benefit is more significant in 

high definition sequence and low bit rate (high QP) range. The performance difference is 

similar in RDO-off (RDO not used) mode and RDO-on (RDO used) mode.  
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Table 4-1: H.264/AVC encoder bit rate reduction, with CABAC compared to with 
CAVLC 

 RDO 
Mode Seq1 Seq2 Seq3 Average 

RDO-off 9.0% 13.8% 6.7% 9.8% CIF 
RDO-on 10.1% 13.7% 6.8% 10.2% 
RDO-off 12.4% 11.1% 22.4% 15.3% HDTV 720p 
RDO-on 13.3% 10.6% 23.4% 15.7% 

Instruction-level program analyzing tool PIN [98] is used to utilized for profiling 

reference JM encoder, and it is found that the algorithm in CABAC reference SW is more 

computational intensive compared to that of CAVLC & Exp-Golomb code of Baseline 

profile, partly due to the additional instructions executed for binarization and context 

modeling (context model selection and access from memory). The higher computational 

demand required by CABAC is reflected in the video encoder when RDO is employed, as 

large number of intra and inter prediction modes are tested during MB coding mode 

decision. Compared to CAVLC & Exp-Golomb, the computational complexity of 

CABAC is higher by up to 55%, while its data transfer rate is higher by up to 74%, when 

RDO is used. High computation and bandwidth make it difficult for CABAC reference 

SW to meet requirements of real-time encoding. Therefore, it is necessary to accelerate 

CABAC encoding by ASIC design.  

In order to assist decisions in the following design steps including HW/SW functional 

partitioning and HW top-level functional partitioning, instruction-level complexity 

analysis is carried out on the CABAC encoder of JM reference H.264/AVC encoder. All 

CABAC related functions are classified into 5 categories, including C1 to C5. The details 

of CABAC function of each category is shown in Table 4-2.  

Sequence 

Format 
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Table 4-2: Five function categories of CABAC encoder of instruction-level analysis 

Category number Descriptions of computation of the category 

C1 Context Access (CA) & Binary arithmetic coding (BAC) 
C2 Non-residual SE coding, excluding computation of CA & BAC 
C3 CBF coding, excluding computation of CA & BAC 

C4 Coding of residual SEs including SCF, LSCF, and level, 
excluding computation of CA & BAC 

C5 Operation of mapping quantized block coefficients to run-level 
pairs by scanning of coefficient block 

C2 & C3 Coding of non-residual SE and CBF, excluding computation in 
CA & BAC (more complex for context model selection) 

 

PIN tool is utilized to monitor the number of instructions of each category of CABAC 

encoding functions during H.264/AVC video coding. The percentage of instruction 

numbers of each category of CIF sequence test is calculated and shown in Figure 4-2 and 

Table 4-3. 
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Figure 4-2: Five CABAC functional categories as % of total CABAC instructions in CIF 
test of H.264/AVC encoder of JM reference SW in the QP range of 12 to 36. 
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Table 4-3: Percentage of instructions of each category of CABAC encoding function in 
CIF sequence analysis 

 C1 C2 C3 C4 C5 C2 & C3

36 32.85% 23.50% 23.75% 10.30% 9.61% 47.24% 
32 35.07% 21.72% 21.32% 12.17% 9.72% 43.04% 
28 37.34% 19.73% 19.18% 13.84% 9.91% 38.91% 
24 39.16% 16.56% 18.25% 15.56% 10.47% 34.80% 
20 41.40% 12.59% 17.26% 17.63% 11.12% 29.85% 
16 43.19% 9.71% 16.34% 19.21% 11.55% 26.05% 
12 45.17% 9.33% 14.18% 19.92% 11.41% 23.51% 

Average 39.17% 16.16% 18.61% 15.52% 10.54% 34.77% 
 

Table 4-4: Percentage of instructions of each category of CABAC encoding function in 
HDTV 720p sequence analysis 

 C1 C2 C3 C4 C5 C2 & C3

36 32.41% 21.30% 27.04% 9.17% 10.08% 48.34% 
32 33.27% 19.01% 26.19% 11.03% 10.50% 45.20% 
28 34.49% 16.54% 24.87% 13.22% 10.89% 41.41% 
24 35.81% 12.73% 24.25% 15.67% 11.53% 36.98% 
20 38.25% 8.76% 22.56% 18.28% 12.16% 31.31% 
16 41.47% 7.86% 18.72% 19.72% 12.22% 26.58% 
12 44.35% 9.45% 14.69% 19.85% 11.66% 24.14% 

Average 37.15% 13.66% 22.62% 15.28% 11.29% 36.28% 

From Figure 4-2 and Table 4-3, it can be observed that CA & BAC (C1) only occupies 

32.9% to 45.2% of total CABAC instructions, and the percentage number decreases when 

QP increases. CBF coding excluding computation of CA & BAC (C3) occupies 14.2% to 

23.8% of total CABAC instructions, because of high data traffic and complex procedure 

of context model selection (CtxIdx calculation) of CBF. The remaining computation (C4) 

of SCF, LSCF, and level, excluding CA & BAC occupies 10.3% to 19.9% of total 

Category 

QP 

Category 

QP 
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CABAC instructions. The mapping procedure of run-level pairs to 4×4 block coefficients 

(C5) takes up 9.6% to 10.5% total CABAC instructions. The sum of % instructions of C2 

and C3 is demonstrated as dashed line in Figure 4-2, representing the sum of non-residual 

SE and CBF coding (excluding CA & BAC). This sum occupies 23.5% to 47.2% of total 

CABAC instructions, and increases when QP increases. The instruction-level analysis is 

also done in HDTV 720p test, with analyzing result shown in Table 4-4. Compared to 

that of CIF sequence coding, percentage of C3 increases significantly, while that of C1 

decreases. This is because details of HDTV video are smoother, and the probability is 

higher that all coefficients of residual block are quantized to zero, and the instruction 

ratio of CBF coding increases, and that of other residual SEs decreases. Average of C2 & 

C3 instructions increases from 34.8% (CIF) to 36.3% (HDTV 720p). 

4.2 HW/SW Functional Partitioning of CABAC Encoder 

HW/SW functional partitioning is the precondition of an efficient HW IP design of a 

particular function block of SoC-based video encoder, in which function of HW IP and 

SW non-IP on host processor, and data communication manner between host processor 

and HW IP are decided. System specification (step 2 of SoC-based entropy coder design) 

is derived before HW/SW functional partitioning, and detail targets of the design are 

specified. CABAC encoder IP design is required to achieve real-time HDTV encoding at 

Main profile of H.264/AVC, support different video coding configurations including 

RDO, minimize remaining computation on the host processor, minimize bandwidth and 

transfer delay on the system bus, and constrain circuit area and power consumption of the 

design. Based on these specifications, different HW/SW partitioning schemes of CABAC 
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encoder are analyzed and evaluated.  Furthermore, necessity of supporting RDO 

functions in CABAC encoder IP is emphasized. 

4.2.1 Analysis of Different Partitioning Schemes 

 
Figure 4-3: Five schemes of HW/SW partitioning of CABAC encoding. 

In the 3 elementary CABAC encoding steps binarization (BN), context modeling (CM), 

and BAC, CM can be further partitioned into context model selection (CS) and context 

model access (CA), and CABAC encoding can sequentially go through steps of BN, CS, 

CA, and BAC. CS can be further partitioned into two categories: CS1, if coded SEs of 

neighboring MBs on the left or top of current block of current MB are needed during 

context model selection; or CS2, if this type of information is not needed. Five possible 

schemes of HW/SW functional partitioning of CABAC encoding in the reported designs 

and proposed design of this thesis are summarized and analyzed as follows, and in Figure 
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4-3, the functions partitioned to HW implementation of each scheme are highlighted as 

blocks, while the functions partitioned to SW are shown as text containing “SW”. 

Scheme 1: HW Design of Context Model Access (CA) and BAC 
As shown in the figure, the HW partition only contains CA and BAC, while the 

remaining function of BN and CS are left to be completed by SW. This is the scheme 

adopted by several designs including [86, 87]. In some designs [93, 99, 100], CA is also 

partitioned to SW, and both binarized bin string of SEs and corresponding context models 

are required to be prepared by SW and input to HW IP through HW/SW interfaces. For 

this scheme, remaining computation on host processor is even higher than HW IP. As 

shown in 4.1.1, CA & BAC occupies only 39.2% of CABAC instructions. System bus 

bandwidth is also high because the bin value and context model index (CtxIdx) of each 

regular bin need to be transferred through system bus. In general, CABAC encoding 

acceleration is not significant in scheme 1. 

Scheme 2: HW Design of Binarization, CA, and BAC 
In this scheme [101], binarization is also partitioned to HW, compared to scheme 1. Only 

context model selection is partitioned to SW. However, binarization still needs to be 

executed in SW because for a number of SE types, bin values of previous binarized bins 

are used for context model selection of following bins during encoding the SE. Therefore, 

binarization is also required in SW. The improvement of this scheme compared to 

scheme 1 is that CABAC packet size can be reduced as SE values are transferred instead 

of bin strings. However, as computation resources of HW and SW are overlapped in this 

scheme, CABAC encoding is not sped up compared to scheme 1. 

Scheme 3: SW Implementation of Context Model Selection of CS1 
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In this scheme, only when coded SEs of neighboring blocks/MBs are refer to select 

context model (calculation of CtxIdxInc), the CS function is partitioned to SW (shown as 

CS1 in Figure 4-3). This scheme is adopted in our previous work [102], because 

compared to the scheme 1 and scheme 2, large ratio of CS operations are removed from 

host processor. CS1 calculation is only necessary for some types of non-residual SEs and 

CBF of residual block, and the calculation is only for the 1st bin of SE, while for the 

remaining bins, CS2 is adopted instead, which is implemented in HW. In addition, 

binarization is completely removed from SW non-IP block in this scheme, and 

computation on the host processor is further reduced. However, calculation of CS1 is 

complex and inefficient in SW. Profiling results of 4.1.1 illustrate that computation of C2 

& C3 occupies over 1/3 of CABAC instructions in average, and large ratio of 

computation is utilized for CS1. For instance, CS1 of CBF utilizes 18.6% to 22.6% of 

CABAC instructions. SW design of CS1 also reduces integratability of the encoder IP and 

increases bandwidth on system bus. 

Scheme 4: Scheme 1 with HW Support of Residual SEs of BN and CS, Excluding CBF 

In this scheme [95, 103], HW design of CABAC encoder focuses on accelerating coding 

of residual SEs including SCF, LSCF, and coefficient level. Binarization and CS of non-

residual SEs are all partitioned to SW. Although the ratio of bins of SCF, LSCF, and 

level is large in the total number of encoding bins, the remaining computation of SW is 

still significant (23.5% to 47.2% of CABAC instructions in CIF test, and 24.1% to 48.1% 

in HDTV 720p test in QP range of 12 to 36). Consequently, CABAC encoding can not be 

significantly accelerated, as the processing speed is restrained by the SW non-IP for the 

remaining part of CABAC functions. If the host processor can not generate and transfer 
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bin packets of non-residual SEs and CBFs as fast as the speed that bin packet are 

processed in the HW encoder, encoding procedure will pause and throughput is degraded.  

(5) Scheme 5: Complete HW Function Support of CABAC Encoder 

As aforementioned, computational burden of the host processor can be significantly 

reduced only when binarization and context model selection (CS) of non-residual SEs 

and CBF are implemented in hardware IP. In scheme 5, the functions SE encoding 

including binarization, CS, CA, and BAC are all partitioned to HW, and the remaining 

computation of SW is only data packet preparation for the HW encoder and coding result 

receiving from HW encoder. Compared to the other schemes of incomplete HW design of 

SE encoding, computation of host processor and data transfer on the system bus are 

minimized. Although design complexity of HW encoder is higher to support context 

selection in CS1 and larger memory is required to store coded SEs that can be referenced 

by CS1 during later MB coding, CABAC encoding is significantly accelerated because 

the bottleneck of SW non-IP is removed. Additionally, integratability of HW IP of 

CABAC encoder is also enhanced because it is easier to separate CABAC function from 

H.264 video encoding system to a function block. Considering the benefits of scheme 5, 

the proposed CABAC encoder IP of this thesis is based on this HW/SW functional 

partitioning scheme.  

The proposed HW encoder design introduced in the following subsections is based on 

this selected HW/SW partitioning scheme (scheme 5) with completely support of SE 

encoding in HW. The key elements of this HW CABAC encoder include BN 

(binarization), CM (context modeling) in CS and CA (context access), and BAC (binary 

arithmetic coding). The elements of CS include CS1 that needs to reference coded SEs of 
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neighboring MBs during context selection of current MB and simpler CS2 with no 

reference of SEs of neighboring MBs. The functions of these key elements are further 

partitioned and reorganized properly in the encoder architecture during top-level HW 

functional partitioning to enhance average coding throughput and reduce clock cycle 

length, which will be discussed in the next subsection. 

4.2.2 RDO Function Support in HW CABAC Encoder Design 

To analyze the influence of RDO on the performance of H.264/AVC encoder, encoding 

simulation of JM reference encoder is carried out using same test sequences of Table 4-1, 

for both RDO-on mode and RDO-off mode. As shown in Table 4-5, RDO achieves 

similar bit rate reduction ratio in the test when two entropy coders CABAC and CAVLC 

are used. For CABAC encoding, RDO contributes an average bit rate reduction of 11.8% 

in CIF test, and 16.4% in HDTV 720p test.  

Table 4-5: Bit rate reduction of H.264/AVC encoder, using RDO-on mode compared to 
RDO-off mode 

 
Format Seq1 Seq2 Seq3 Average 

CIF 11.1% 13.0% 10.2% 11.4% CAVLC 
HDTV 720p 14.0% 16.3% 16.9% 15.7% 

CIF 12.2% 13.0% 10.3% 11.8% CABAC 
HDTV 720p 14.9% 15.9% 18.5% 16.4% 

The test results of Table 4-1 and Table 4-5 also indicates that compared to CAVLC in 

RDO-off mode, CABAC in RDO-on mode can achieve average bit rate reduction of 

around 20.4% in CIF coding and 29.1% in HDTV coding. It is beneficial to support both 

Sequence 

Coder
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RDO and CABAC, especially for high quality coding to obtain the significant benefit of 

the combinational coding gain of CABAC and RDO. 

Computation of CABAC encoder significantly increases in RDO-on mode. As shown in 

the CIF sequence coding results of Table 4-6, the ratio of instructions of CABAC 

encoding to H.264/AVC of RDO-off mode is 0.17% to 1.18%, while the ratio is 6.64% to 

20.63% in RDO-on mode. Support of RDO in HW CABAC encoder is necessary to 

accelerate CABAC encoding in RDO-on mode. 

Table 4-6: Computation complexity of CABAC encoder in RDO-off/RDO-on mode 

RDO 
Mode QP Instructions of 

H.264/AVC  
Instructions of 

CABAC 
Ratio of CABAC / 

H.264 

28 1.87E+10 3.13E+07 0.17% 

24 1.88E+10 4.89E+07 0.26% 

20 1.88E+10 8.05E+07 0.43% 

16 1.89E+10 1.43E+08 0.75% 

RDO 
-off 

12 1.89E+10 2.23E+08 1.18% 

28 2.38E+10 1.58E+09 6.64% 

24 2.45E+10 2.10E+09 8.56% 

20 2.57E+10 2.99E+09 11.64% 

16 2.76E+10 4.45E+09 16.09% 

RDO 
-on 

12 2.96E+10 6.10E+09 20.63% 

During RDO-on coding, CABAC encoder is utilized to calculate and feedback coding 

rate (length of the coded bit stream) of each RDO mode, and operations of coding state 

backup & restoration are required when RDO mode changes. The coding state of 

CABAC encoder includes three aspects: (a) the state of all context models of context 

modeling (CM); (b) state of coding interval of Range and Low of BAC; and (c) the state 

of coded SEs which are referred by CS1 during context model selection. These coding 
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state backup and restoration operations are necessary during RDO-on coding because of 

data dependency during arithmetic coding. In order to support RDO in H.264/AVC, it is 

required to support (a) coding rate accumulation and feedback of each RDO mode and (b) 

coding state backup and restoration in CABAC encoder. These two types of RDO 

operations are partitioned to HW IP in this thesis to enhance top-level CABAC encoding 

performance by removing the bandwidth of huge amount of data transfer of RDO coding 

states between HW IP and SW non-IP, significantly longer memory access delay caused 

by access of both system memory and local embedded memory of HW IP, and more 

complex control logic for the RDO related data transfer. 

4.3 Top-level HW Encoder Functional Partitioning 

The key elements of HW encoder discussed in Scheme 5 of HW/SW functional 

partitioning in 4.2 include binarization in BN, context modeling in CM, and binary 

arithmetic coding in BAC. During HW top-level functional partitioning, functions of 

these 3 key elements are further partitioned and reorganized in the SE coding flow of HW 

encoder to maximize parallelism of different encoding elements and enhance coding 

speed of encoder. Two partitioning schemes are discussed, including (1) a preliminary 

scheme of FSM(Finite State Machine)-based architecture with low throughput and (2) the 

proposed scheme of parallel processing of SE encoding steps of BN, CS, and later full 

pipelined processing of bin packet generation (BS), context access (CA), and binary 

arithmetic coding (BAC). Both two schemes are introduced and compared to illustrate 

influence of functional partitioning to the encoder performance. 
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Figure 4-4: FSM-based HW CABAC encoder partitioning scheme. 

FSM-based functional partitioning scheme is adopted in the earlier design stage of 

proposed HW encoder. CABAC coding steps of binarization (BN), context modeling 

(CM), and BAC shown in Figure 4-4 (a) can be implemented as FSM, which is shown in 

Figure 4-4 (b). BN is separated from CM and BAC, with a FIFO buffer inserted between 

the two parts of functions. In BN, SE is binarized to bin string and packed with additional 

parameters including SE type, bin string length, etc. and buffered in the FIFO before 

being processed by the encoding FSM of CM and BAC.  

The FSM consists of four sequential coding steps (states): PR, AC, RN, and CTR, with 

function of CM mapped to states PR and CTR, and that of BAC mapped to AC and RN. 

In PR, RangeLPS (Range value of LPS) of each regular bin is prepared by table lookup 

based on context model and bin value. In AC, coding interval of [Low, Low+Range) is 

subdivided and updated by the selected sub-interval. In RN, updated coding interval is 

renormalized to maintain precision of arithmetic coding, while coded bits are output 

during renormalization. In control state CTR, next encoding bin is prepared with the 
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corresponding context model of regular bin read from context RAM based on context 

model. RAM write operation of updated context model is executed in state RN during 

interval renormalization. RAM read and write are scheduled in different states as single-

port context RAM is adopted. Compared to regular bin coding, bypass bin coding only 

goes through states AC and CTR, as context model access is not required. 

Encoder coding throughput of FSM-based partitioning scheme is low because it takes 2 

or more cycles to encode one bin (average of 4.3 cycles for each regular bin and 2 cycles 

for bypass bin). The throughput is not constant because renormalization of state RN, 

which is based on the reference algorithm of the standard [6], takes variable numbers of 

cycles from 0 to 7, with an average of 1.3 cycles. It is not easy to enhance CABAC 

encoding throughput, because of variable cycles of renormalization in RN.  

4.3.1 Proposed Hardware Functional Partitioning Scheme 

The analyses of HW/SW functional partitioning schemes aforementioned prove that it is 

necessary to support complete CABAC function of binarization, context modeling, and 

binary arithmetic coding in HW IP. FSM-based HW functional partitioning scheme is 

inefficient, because of sequential bin encoding manner. The proposed partitioning scheme 

is targeting at acceleration of CABAC encoding by exploiting parallelism of different bin 

encoding steps in maximum degree. 
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Figure 4-5: Proposed HW CABAC encoder partitioning scheme. 

(1) Preliminary Partitioning 

A preliminary stage of the proposed HW functional partitioning is shown in Figure 4-5 

(b). At this stage, the three coding steps of CABAC algorithm shown in Figure 4-5 (a) are 

partitioned into function units of BN, CS1, CS2, CA, and BAC. CM is partitioned to two 

consecutive coding stages CS and CA for context model selection and context model 

access. CS is partitioned to two units CS1 and CS2 based on whether coded SEs of 

neighboring MBs needed to be referenced during selection. CABAC coding procedure is 

executed in sequential order of BN, CS, CA, and BAC. The reason that CS and CA are 

allocated as two sequential coding stages after BN is that: (a) in some conditions, CS of 
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current bin depends on the value of previous bin of same bin string; (b) for non-binarized 

SE, CS and CA are multi-cycle procedure that loop over all regular bins of the SE, while 

BN can be completed in single cycle, and it is beneficial to separate BN and CM to 

enable parallel processing of BN and CM; (c) CA depends on the context model selection 

result of CS, and it must be scheduled after CS. After preliminary partitioning, further 

functional partitioning and adjustment are necessary targeting at high-throughput full-

pipelined encoding. Data dependency between coding stages should be reduced, and 

computation complexity among partitioned function units needs to be balanced. 

(2) Proposed Functional Partitioning Scheme for SE Coding 

The proposed HW functional partitioning scheme for SE coding is illustrated in Figure 

4-5 (c). Compared to the preliminary partitioning (Figure 4-5 (b)), unit BS is allocated to 

fetch bin string of SE generated by BN and serially generate packet of coding bins of bin 

string to CA & BAC. Additional parameters including bin type and CtxIdx of regular bin 

are packed with coding bin in single packet, named bin packet in BS, which will be 

processed by CA and BAC. In order to reduce critical path length of BAC, function of 

BAC is further partitioned to two coding units, including: unit AR for interval 

subdivision and renormalization of arithmetic coding and unit BP for bit packing of 

output bit stream. 

CS1 is scheduled in the coding stage before CS2 in CABAC encoding flow. The reason is 

that compared to CS2, computation of CS1 is more complex and irregular, and the 

selection of context model of CS1 needs to reference and access coded SEs of 

neighboring blocks/MBs. Moreover, as a further 9-bit addition of CtxIdxInc and 

CtxOffset is required to calculate CtxIdx of each regular bin, critical path can be 
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efficiently reduced when the complex CtxIdxInc calculation is done in CS1, and CtxIdx is 

calculated and packed into bin packet in CS2. Therefore, CS1 is scheduled as the previous 

coding stage of CS2 in the CABAC encoding flow, processing each input SE packet in 

parallel with BN. Although BN and CS1 utilize similar input SE packet parsing circuit, 

packet processing mechanisms of the two are distinctly different. The two units are not 

combined in this scheme to avoid increase of circuit complexity and critical path delay 

and enhance coding efficiency. Because CS1 is only triggered to calculate CtxIdxInc of 

the first regular bin of several types of SEs, it is ensured in this scheme that CtxIdxInc 

selected in unit CS1 is ready for CtxIdx calculation in unit BS when the bin packet of 

corresponding regular bin is to be generated in BS. Partitioning of CS functions of this 

scheme has no influence on the throughput of bin packet generation of BS. 

Two FIFO buffers are inserted to buffer the output of unit BN and CS1: bin string packet 

of BN and CtxIdxInc of CS1. FIFO buffer insertion enables BN and CS1 to work in 

parallel with the following coding units. FIFO buffer insertion after BN is necessary 

because for the coefficients of residual block, it takes 1 to 16 cycles to receive input 

packets of run-level data pair before bin string generation of residual SEs including CBF, 

SCF, LSCF, and level. During this output idle period of BN, the buffered bin strings in 

FIFO can still provide bin strings to unit BS without interruption. 

The function units partitioned in the proposed scheme (Figure 4-5 (c)) include BN & CS1, 

BS & CS2, CA, AR, and BP. The units are scheduled as sequential SE coding stages. 

Data dependency among these coding stages is minimized, and the units consist of a top-

level SE encoding pipeline, in which all units work in parallel. Compared to the FSM-

based partitioning scheme aforementioned, 1 bin/cycle throughput can be achieved in the 
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proposed scheme. For regular bin coding, the throughput speedup of the proposed scheme 

compared to FSM-based scheme is 4.3; and for bypass bin coding, the speedup is 2. The 

top-level full-pipelined encoder architecture will be introduced in the following sections. 

(3) Functional Partitioning of Additional Functions of CABAC Encoder 

As discussed in 4.2, additional functions need to be supported in the HW partition of 

CABAC encoder, including (a) initialization of context models of context RAM during 

slice initialization and (b) context state backup and restoration during P8×8 sub-MB 

RDO mode decision. Because these two types of functions are not frequently triggered 

during CABAC encoding compared to SE coding and context memory access operations 

are required in both, the two types of functions are partitioned to one function block in 

the proposed CABAC encoder. The block and the other SE encoding units of the encoder 

are activated alternately. When the block is triggered by the control signals parsed from 

input packets, the other SE encoding units of the encoder will stay in idle state until 

operation of the block completes. HW acceleration of this block is necessary to reduce 

idle time of the top-level SE coding pipeline. Compared to the reported designs, design of 

this function block is only proposed in this thesis. 
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4.3.2 Full-Pipelined Top-level HW CABAC Encoder Architecture 
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Figure 4-6: Block diagram of top-level architecture of HW CABAC encoder. 
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The top-level architecture of the proposed CABAC encoder is shown in Figure 4-6. The 

encoder consists of three functional blocks and a memory block: Block 1 for input 

parameter parsing & binarization and context model selection (CS); Block 2 for context 

model access (CA) and binary arithmetic coding (BAC); Block 3 for functions of context 

model initialization and context state backup & restoration during P8×8 sub-MB RDO 

mode decision (P8×8 RDO coding); and a memory block for context RAMs and ROM 

tables.  

As shown in the figure, Block 1 consists of 3 function units CS1, BN, BS&CS2, 3 FIFO 

buffers, and a RAM of coded SEs that is only accessed by CS1. Unit BS and CS2 are 

integrated into one unit in order to complete operations of context model selection 

(CtxIdx calculation) and packing of bin and CtxIdx in the same cycle. Block 2 consists of 

3 function units including CA, AR, and BP, as introduced in 4.3.1. The WISHBONE 

(WB) system bus [104] master and slave interfaces are also integrated to the encoder to 

enhance the portability and reusability of the IP, and design of system bus interfaces will 

be discussed in Chapter 6. 

Input SE received from WB slave interface is encoded in Block 1 and Block 2. In Block 1, 

FIFO1 (16-word×22-bit) buffers 22-bit input SE packets. Unit BN binarizes SE value 

into 33-bit bin string package. Read of FIFO1 is controlled by BN, while the packet read 

from FIFO1 is parsed in BN and CS1 simultaneously. Context models of part of regular 

bins are selected in CS1 by calculating a 3-bit CtxIdxInc when coded SEs of neighboring 

blocks/MBs need to be referenced, which are stored in the SE RAM. The size of SE 

RAM depends on the maximum horizontal resolution of input video sequences supported 

by the encoder. In unit BS&CS2, context model selection of regular bin is completed by 
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calculating CtxIdx of each regular bin based on SE type and calculated CtxIdxInc from 

CS1 or CS2. For each bin of SE bin string, 13-bit bin packet containing bin value, bin type, 

and CtxIdx of regular bin is generated in S&CS2 and sent to Block 2. As previously 

discussed, FIFO2 (32-word×3-bit) and FIFO3 (8-word×33-bit) are inserted in Block 1 to 

buffer the bin string of BN and CtxIdxInc of CS1 that can largely reduce pause 

probability of unit BS&CS2 and following coding stages when the input data of BS&CS2 

is not ready. In Block 2, context model of each regular bin is accessed in unit CA from 

context RAMs according to CtxIdx. Coding interval is subdivided and renormalized in 

unit AR by updating values of Range & Low. After renormalization, upper bits of Low 

are parsed in unit BP, and packed and output through the WB system bus master interface. 

Coding throughput of top-level pipeline of Block 1 and Block 2 is 1 bin/cycle, as in each 

cycle one bin packet can be generated in BS&CS2 and encoded in AR. 

The context memory block of the encoder (top-right of Figure 4-6) contains one context 

initialization ROM (4 ROM tables, 106-word×64-bit each) used by Block 3 and five 

context RAMs including a 53-word×56-bit Normal context RAM (Normal RAM), a 53-

word×56-bit Temp context RAM (Temp RAM), a 11-word×6-bit context line access 

address list (Address list), a 11-word×62-bit RAM that stores coding address and context 

line in P8×8 RDO coding (P8×8 RAM), and a 11-word×62-bit RAM that stores address 

and context line in P8×8 RDO coding (Best RAM). Normal RAM, Temp RAM, and 

Address list are accessed by both Block 2 and Block 3, while P8×8 RAM and Best RAM 

are only accessed by Block 3. In the following sections of this chapter, unit BN and 

BS&CS2 of Block 1 and unit AR and BP of Block 2 will be discussed in details. Context 

model selection and access including CS1 and CA will be discussed in Chapter 5. 
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4.3.3 Date Dependency Removing & Encoding Acceleration 
Data dependency of CABAC encoding algorithm can not be reduced efficiently in SW 

implementation. In the reported HW designs, data dependency needs to be efficiently 

removed to enhance coding throughput and clock frequency. Data dependency of 

CABAC encoding algorithm and proposed techniques of data dependency removing and 

encoding acceleration are briefly discussed here: 

(a) During bin coding, context models of regular bin need to be accessed from context 

RAM, updated based on bin value, and stored to RAM. Same context model can be 

accessed by successive coding bins, and RAM access delay will cause bin coding 

pipeline pause. The solution of this design includes techniques of access context 

model by context line and local buffer context models. Updated context models can 

be accessed in the next cycle from local buffer instead of context RAM. Context 

models are also prefetched according to context selection results of two CS units in 

pipeline manner before they are used. 

(b) For each bin coding, coding interval update and renormalization, and bit packing and 

bit stream output consist of sequential operations of complex computation. Range of 

LPS of next coding bin can only be determined after update and renormalization of 

coding interval of current bin. Because of data dependency, direct implementation of 

bin coding results in long critical path length and low coding speed. To remove data 

dependency of bin coding, all possible RangeLPS values are prefetched in unit CA 

based on the selected context model. In unit AR, corresponding RangeLPS is selected 

when the updated Range is available. Following computation of parsing, packing, and 

output of coded bits have no feed back to the coding interval update of AR, and this 
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part of computation is assigned to later pipeline stages to reduce critical path length of 

Block 2. 

(c) In SW implementation, bin generation of SE binarization and context selection of bin 

are processed sequentially for each binarized bin. It is because context selection of 

current bin can reference previous bins of same SE or coded SEs of neighboring 

coded block or MBs. Block 1 design of the proposed HW encoder removes the 

dependency by dividing binarization and context selection into two sequential units of 

BN and CS2 with FIFO insertion to enable parallel processing of the two steps at 

higher speed. The more complex context selection of CS1 is precalculated in parallel 

with BN to minimize critical path length in unit CS2. Coded SEs of neighboring MBs 

are prefetched and local buffered during current MB coding in CS1, so that data 

dependency of reference SEs is removed during context selection. 

(d) Context selection and context access are two sequential coding steps with no 

feedback loop. Instead of sequential computing of CS and CA in SW algorithm, the 

two steps are divided into different units with pipeline buffer insertion. Therefore, CS 

and CA can process data in parallel. 

The techniques introduced above are applied in the proposed CABAC encoder 

architecture with efficient removing of data dependency and acceleration of CABAC 

encoding. Parallel processing of binarization, context selection, and bin coding are 

achieved in the encoder. 
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4.4 Binarization and Generation of Bin Packet 

4.4.1 Input SE Parsing & Binarization of Unit BN 
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Figure 4-7: Input packet format of CABAC encoder. 
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Input packets of CABAC encoder provide necessary data for both SE coding and encoder 

control. Input packets are buffered in FIFO1 and accessed by both unit BN and CS1. The 

format of the 22-bit packet is illustrated in Figure 4-7. The top 2 bits (bit 21~20) decide 

one of 4 categories of input packets: non-residual SE, Run-Level pair of residual block 

coefficients, RDO coding control parameter, and slice initialization parameters and 

frame/filed coding flag at frame level. For non-residual SEs, 4-bit tag (bit 19~16) is used 

to classify different SE types including MVD-S (MVD abs value that can be represented 

in 6 bits), MVD-L (for large MVD value), reference index, MB QP delta, Skip flag, EOS 

(end of slice), luma/chroma intra prediction mode, CBP,  MB type, and sub-MB type. 

For residual coefficients, the packet of run-level pair supports 13-bit absolute value of 

level, and 4-bit run, which are the maximum range of Main profile. Two types of RDO 

control parameters are supported that control RDO operation of context state backup & 

restoration in Block 3 and coding interval backup & restoration and coding rate output of 

each RDO mode in Block 2. Slice initialization parameters are parsed from two input 

packets including slice type, slice QP, CABAC initialization IDC, number of MBs in the 

horizontal resolution of frame/filed, and position of the 1st MB of slice. The slice 

initialization parameters are utilized in BN and CS1 and Block 3. 

Details of input packet parsing and SE binarization procedure of unit BN is illustrated in 

Figure 4-8. BN contains 3 major data paths that process input packets of non-residual SEs, 

residual SEs, and encoding control parameters. When control parameters of Block 3 are 

parsed and sent to Block 3, BN waits for acknowledgment of Block 3 before processing 

next input packet. End-of-slice (EOS) flag and RDO operation parameters including 
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Range and Low backup & restoration modes, RDO on/off flag, and RDO coding rate 

output instruction are buffered in FIFO3 and forwarded to units of Block 2.  
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Figure 4-8: Procedure for parsing and binarization non-/residual SE and control 
parameters of unit BN, Block 1. 

 

Different types of non-residual SEs shown in Figure 4-7 are parsed according to the 4-bit 

tag in the packet and binarized in BN. Except SE type and SE value that are utilized for 

binarization, addition parameters are provided in the input SE packets of some types of 

SEs including MVD, reference index, CBP, sub-MB type, etc. These parameters include 

forward/backward direction, partition category, and block index of 8×8 sub-MB and 4×4 

block which provide necessary information to locate and access coded SEs in the current 
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MB or neighboring coded MBs during context model selection of CS1. Because several 

numbers of parameters of MVD are required in CS1, in order to reduce packet size, input 

parameters of large MVD (abs MVD >=64) are separated to two packets, as shown in 

Figure 4-7. Throughput of CABAC encoder is not influenced by such packet partitioning, 

because frequency of encoding large MVD is very low, and it takes multiple cycles to 

generate bin packets of SE in BS&CS2. In order to simplify packet parsing in BS&CS1, 

prefix and suffix bin strings of SE are sent to BS&CS1 in separate packets, and bin strings 

of regular bin, bypass bin, and EOS bin are also packed separately. Barrel shifter is 

utilized to implement binarization schemes of unary or truncated unary (TU) for SEs such 

as reference index, MB QP delta, prefix of MVD, and residual coefficient level. For the 

SEs with LUT-based binarization scheme, including MB type and sub-MB type of I, P, 

and B slices, LUT is implemented by combinational circuits instead of memory-based 

LUT to reduce table lookup delay. 

Coefficients of residual block are processed in a different path, because SE values are not 

available until run-level pairs of a 4×4 block are all received. Figure 4-8 shows that SEs 

of various flags, such as CBF (coded block flag), SCF (significant coefficient flag), and 

LSCF (last SCF) are generated during run-level pair receiving procedure. After output of 

CBF, a single packet of SCF and LSCF are output, which contains 15-bit SCF map, 4-bit 

index of LSCF position, and 4-bit CtxOffset index consisting of frame/field coding flag 

and residual block category. The benefits of single output packet of SCF and LSCF 

include: total processing time of residual block in unit BN is reduced, and coding 

throughput of BS&CS2 is significantly improved. The absolute level values (abs_level) 

and signs of coefficients are output in LIFO (last in first out) pattern. CtxIdxInc of 1st bin 
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and the remaining bins of abs_level prefix bin string are calculated in BN and sent to 

BS&CS2 according to the number of coded level values equal to 1 (Eq1) and number of 

coded levels of value greater than 1 (Gt1) of the processing block, as shown in Figure 4-8. 

The counters of Eq1 and Gt1 are accumulated for each block during coefficient level 

binarization procedure. 

Assume input value of EGk is x, with m+1 bits, represented 
by x[M:0], and k >= 0  
For k=0: 

y=x[M:0]+1, MSB of y is y[N], N can be M or M+1 
The output bin string contains 2N+1 bits, including N 
bits of 1, 1 bit of 0, and lower N bits of y: y[N-1:0] 

For k>0: 
x[M:0] is the concatenation of two parts: 
x[M:k] and x[k-1:0] 
y=x[M:k]+1, MSB of y is y[N], n can be M-k or M-k+1 
The output bin string contains 2N+1+k bits, including 
N bits of 1, 1 bit of 0, y[N-1:0], and x[k-1:0] 

Figure 4-9: HW-oriented EGk binarization algorithm. 

For SEs of MVD (motion vector difference) and residual coefficient levels, binarization 

methods of TU (truncated unary) and EGk (kth order Exp-Golomb code) are used to 

binarize prefix and suffix bin string, respectively. SW-based implementation of EGk 

binarization introduced in Chapter 2 is not suitable for HW implementation because of 

long and variable operation delay. A fast EGk coding circuit is proposed and applied in 

unit BN for suffix binarization of MVD (k=3) and coefficient level (k=0). In general, the 

HW-oriented EGk binarization algorithm can be described in the following pseudo code, 

shown in Figure 4-9.  

According to the algorithm of Figure 4-9, EG3 circuits that support 11-bit range of 

absolute MVD is designed to generate MVD suffix bin string in single cycle, as shown in 

Figure 4-10(a). The absolute value of MVD is subtracted by 1 first (equal to: abs_MVD - 
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9 + (1<<k), in which k is 3). The 8 most significant bits of abs_MVD-1 are checked in 

the detection circuit of Most-Significant-One (MSB), and bin N is detected as Most-

Significant-One. The output suffix string consists of N bits 1, one bit 0, and lower N+3 

bits of abs_MVD-1. MSB index and the sign of MVD are output in the same packet. A 

fast EG0 circuit similar to that of MVD is designed for the abs_level suffix binarization, 

which supports maximum range of bin string length of 25, as shown in Figure 4-10(b). 
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(b)(a)  
Figure 4-10: Fast EGK binarization implementaion. (a) EG3 binarization for the suffix of 
MVD; (b) EG0 binarization for the suffix of abs_level_minus1. 

4.4.2 Bin Packet Generation and Serial Output of Unit BS&CS2 

Unit BS&CS2 fetches 33-bit bin string packet from FIFO3 and serially outputs bin packet 

for each bin of SE bin string with the related context information to unit CA of Block 2. 

For regular bin, context model selection is completed in this unit by calculating CtxIdx, 

which is used to locate the context model of coding bin from context RAM in unit CA. 

For regular bin, the 13-bit bin packet consists of bin value, CtxIdx, and bin type. For 
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bypass bin, terminate bin (including EOS), and control parameters of Block 2, no 

calculation of CtxIdx is needed. The architecture of unit BS&CS2 is shown in Figure 4-11. 
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Figure 4-11: Architecture of unit BS&CS2: (a) CtxIdx calculation and bin packet serial 
output circuit for all SE, excluding SCF and LSCF; (b) CtxIdx calculation and SE serial 
output of SCF and LSCF packet of residual coefficient block. 

Figure 4-11(a) illustrates processing procedure of regular and bypass bin string excluding 

SCF and LSCF of residual block. Regular or bypass bin in the string is output from MSB 

to LSB. CtxIdx value of regular bin is calculated by the addition of CtxOffset and 

CtxIdxInc. CtxOffset decides the initial RAM address of a group of context models of the 

same SE type, while CtxIdxInc decides the position of the selected context model within 

the group. CtxOffset is looked up from LUTs according to SE type, which is packed to 

the bin string packet by unit BN. For large ratio of regular bins of non-residual SEs, 

CtxIdxInc is looked up from LUTs in unit BS&CS2 based on bin index (position of the 

bin in bin string) and/or the value of previous bin in the bin string. Only for a small part 

of regular bins of non-residual SEs, CtxIdxInc is input from the context model selection 

results of unit CS1, which are buffered in FIFO2; while for abs_level, context model 
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selection is generated in unit BN, and CtxIdxInc values of the 1st bin and remaining bins 

are packed in the same input bin string packet of abs_level.  

Bin packet generation of SCF and LSCF is shown in Figure 4-11(b). The map of SCF of 

residual block is stored in a 15-bit buffer, and bin packets of SCF and LSCF are output 

from the position of SCF index 0. The LSCF/SCF coding flag decides the output order of 

bin packet of SCF and LSCF, and controls the increase of SCF index. Bin value of SCF 

in the packet is read from SCF map, while LSCF value is generated in the Finish Control 

block according to LSCF position. CtxOffset values of SCF and LSCF are looked up 

according to CtxOffset index, and CtxIdxInc is generated from SCF index directly. 

Context model selection of unit CS1 will be discussed in Chapter 5. 

The processing of SE bin string and generation of bin packet in unit BS&CS2 are 

designed as FSM. According to bin type, SE type, and whether context model is selected 

by CS1 or CS2, first FSM state parses bin string and processes the first bin of string, and 

the other FSM states can be triggered to process following bins in the string. For each bin 

string packet, 1 bin packet can be generated per cycle. Processing steps of input packet 

paring, CtxIdx calculation, and bin packet generation & output can be completed in the 

same cycle. If the next bin string packet is ready in FIFO3 during processing of current 

bin string, unit BS&CS2 will continue generation & output of bin packet of next bin 

string with no pause. Therefore, constant throughput of 1 bin packet per cycle is insured 

for the proposed design of unit BS&CS2. 

4.5 Binary Arithmetic Coding (BAC) 

Binary arithmetic coding (BAC) is the encoding and bit stream output stage of CABAC. 

Functions of BAC include: (a) encoding of regular bin, bypass bin, and terminate bin by 
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subdivision and selection of coding interval according to the context model (probability 

model) of coding bin, (b) renormalization of coding interval to keep encoding precision 

by upscaling Range and Low, and (c) output confirmed higher bits of Low as coded bits 

of CABAC. Proper functional partitioning and efficient removing of data dependency are 

important to accelerate BAC. As aforementioed, BAC is partitioned into two consecutive 

coding stages: AR and BP. In the proposed HW encoder, BAC is partitioned and 

designed as a 3-stage pipeline: first stage for unit AR and following 2 stages for unit BP. 

In the following subsections, proposed HW-oriented renormalization and bit packing 

scheme is introduced first. Then, design consideration and architectures of the pipeline 

stages of BAC will be discussed respectively.  

4.5.1 Proposed Renormalization & Bit Packing Algorithm 
As discussed in the FSM-based functional partitioning scheme, direct implementation of 

SW-oriented renormalization algorithm is not timing-efficient and restricts the 

throughput of BAC. A HW-oriented renormalization and bit packing algorithm is 

proposed in this thesis, which provides identical results, but significantly higher coding 

throughput, compared to the reference algorithm of H.264/AVC [6]. The proposed 

algorithm is different from the QM coder renormalization derived in [93, 95]. After 

coding interval subdivision, Range & Low of selected subinterval are input to the 

renormalization & bit packing stage. The complexity of this algorithm is in two aspects: 

leading zeros detection (LZD) of updated Range of coding interval to determine shift 

length of renormalization, and least significant zero (LSZ) detection of bit string shifted 

out from Low of interval to determine output bits and outstanding bits. Fast 
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combinational circuits can be designed to accelerate LZD and LSZ detection, instead of 

recursive renormalization and bit output procedure of SW implementation. 

The proposed algorithm can be partitioned into two pipeline stages for renormalization 

and bit packing. Renormalization can be completed within single clock cycle by checking 

leading zeros of updated Range, while bit packing is more complex. Critical path of bit 

packing can be divided into two pipeline stages, because there is no data dependency 

(feedback loop) in sequential bit packing operations. Leading zeros detection and least 

significant zero detection are implemented by fast table lookup implemented in 

combinational circuits, while the other operations are implemented as arithmetic 

operations including addition, barrel shift, bit concatenation, comparison, etc. Because 

outstanding bits are not output until bit value is confirmed, the issue of carry propagation 

is not involved in this design compared to that of [93, 95].  

The proposed renormalization and bit packing algorithm is implemented as a 3-stage 

pipeline illustrated in Figure 4-12. Because the updated Range after renormalization is 

required for the selection of proper RangeLPS for the next regular bin, operations of 

coding interval subdivision and renormalization of Range & Low need to be completed 

within one clock cycle. Therefore, these operations are designed as sequential steps of 

unit AR of Block 2. Prefetch of RangeLPS is necessary before AR operations, because the 

lookup of 64-entry LUT based on the 6-bit pStateIdx of context model is timing 

consuming. The prefetch of RangeLPS is implemented during context model access of unit 

CA, which is one stage before the operation of AR, and it can efficiently reduce critical 

path length of unit AR.  
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Figure 4-12: Three-stage pipeline implementation of renormalization and bit packing 
algorithm in unit AR and unit BP. 

Because Range value is not available during prefetch, 4 possible values of RangeLPS of 

the next regular bin are all prefetched. As shown in Figure 4-12, a 4-to-1 multiplexer is 

allocated in unit AR to select the correct RangeLPS before coding interval subdivision 

based on 2 bits of updated value of Range (Range [7:6]). In unit BP, string parsing of 

higher bits of Low and the following operation of bit string packing and output are 

separated to two pipeline stages. The throughput is not influenced in continuous BAC 

coding procedure, while critical path of unit BP is significantly reduced. 
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4.5.2 Coding Interval Subdivision & Renormalization of Unit AR 
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Figure 4-13: Architecture of unit AR. 

 

The architecture of unit AR is shown in Figure 4-13. Regular bin, bypass bin, and 

terminate bin (EOS) are encoded in 3 separate coding routes. The coding interval 

represented by Range and Low is subdivided and updated to one of the two subdivisions 

according to bin value, bin type, and MPS of bin in regular bin coding. For regular bin 

coding, interval subdivision and renormalization can be implemented as two sequential 

steps. Coding interval is updated to one of two subintervals based on whether bin is MPS 

or LPS. Then, Range and Low of the interval are renormalized.  

In unit AR, MPS bin and LPS bin are processed separately, as shown in Figure 4-13. For 

MPS bin, renormalization is not needed or only 1 bit renormalization is taken; while for 

LPS bin, length (1 to 6 bits) of renormalization is decided by a 5-bit leading-zero-
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detection (LZD) circuit of Range. Separate processing of MPS and LPS simplifies coding 

procedure and reduces critical path length in unit AR, compared to the scheme with a 

unified renormalization step for both MPS and LPS bin. Renormalization is executed by 

left shifting N bits (LZD length) of the updated Range & Low. Multiplexers are allocated 

to select proper results from one of the three coding routes including Range, Low, and 

coding parameters to the bit packing stage. The critical path of unit AR is from RangeLPS 

selection to coding interval update and renormalization of LPS bin, to the data input of 

Range registers. In [95], update and renormalization of Low is scheduled one cycle later 

than that of Range, because selection of RangeLPS does not depend on the updated value 

of Low. However, because Low computation is not complex during interval subdivision 

and renormalization, it is beneficial to schedule the operations of Low and Range in the 

same cycle to avoid one cycle delay of bit packing. 

4.5.3 Bit Packing of Unit BP 

The early design version of this unit only contains single pipeline stage. In order to 

reduce critical path length of unit BP, a two-stage bit packing unit with 8-bit packet size 

is proposed, and the architecture is shown in Figure 4-14. In the 1st pipeline stage of BP, 

least significant zero (LSZ) bit position of parsing string (the output bit string from Low 

after renormalization generated in unit AR) is determined. Based on LSZ position, 

parsing string is separated into output bit string and outstanding (OS) bit string. In the 

2nd stage of BP, the first output bit, confirmed OS bits, and remaining output bits are 

appended in the packing buffer. Because output packet size is reduced from 32 bits to 8 

bits (1 byte), the size of packing buffer and operation delay of bit packing are reduced 

significantly. A 3-bit OS byte counter and a 3-bit OS bit counter are allocated to calculate 
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the accumulated length of OS bits, and the design can tolerate a maximum length of 63 

bits of OS bit string (enough for extreme case) before OS bit string value is confirmed. 

Coded bits are output from bit packing buffer in integer number of bytes with confirmed 

bytes of OS bits inserted after the 1st output byte.  
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Figure 4-14: Two-stage design of bit packing. 

As shown in Figure 4-14, excluding the confirmed stuffing OS bytes, maximum of 3 

bytes can be output from BP per cycle when EOS flag is coded in BAC, including EOS 

byte, 1st output byte, and 2nd output byte. Compared CABAC encoder designs [94, 95, 

105] with FIFO buffer allocated for output packets, output FIFO buffer is not inserted 

after unit BP, and output delay of coded packets is reduced. Situation of multiple output 
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bytes in one cycle can be handled by the system bus interface of CABAC encoder, in 

which coded bytes are packed and serially output. 

4.6 Additional Functions of CABAC Encoder 

4.6.1 Context Model Initialization 

Before CABAC coding of SEs of one slice, context models need to be initialized based 

on parameters of slice type, QP, and CABAC initialization IDC [6]. Compared to most of 

the reported designs, context model initialization is implemented in HW in the proposed 

encoder. The advantage of HW initialization is that HW calculation is more timing-

efficient compared to the calculation on the host processor, and system bus occupation 

for context model transfer and memory access of context initialization parameters is 

removed. As shown in Figure 4-6, one of 4 ROM tables is selected to provide context 

model initialization parameters to Block 3. Each ROM table is 106-line×64-bit, and each 

64-bit line stores context initialization parameters of 4 context models. A 5-stage pipeline 

is designed to process 4 context models per cycle. Stage 1: read address of one line of 

ROM table is output from Block 3; stage 2: the ROM stores read address; stage 3:  

initialization parameters of 4 context models are read from ROM; stage 4: 4 

multiplications are executed in parallel; and stage 5: 4 context models are generated in 

parallel, with one addition and several bitwise operations. Four identical processing units 

are allocated in this pipeline, and the calculation is further accelerated. With the 

additional computation resources allocated, idle cycles between coding slices are 

significantly reduced. In every two cycles, 8 context models are generated, concatenated, 

and written to Normal context RAM. Total of 424 context models can be initialized in 

110 cycles, including pipeline preparing time. 
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4.6.2 RDO Function Support in BAC 

During RDO-on coding, according to the RDO control parameters,  state of coding 

interval (values of Range & Low) are backed up or restored in unit AR when RDO mode 

changes. Three backup copies of Range & Low values are allocated. During coding of 

non-P8×8 RDO mode, only one copy of backup values are accessed, which stores the 

original state of interval; while in P8×8 RDO coding, 3 backup copies are all utilized 

during selection of the best coding mode (partition mode of ME) of each 8×8 sub-MB.  

The coding rate of each RDO mode is accumulated in the 13-bit counter allocated in the 

first pipeline stage of unit BP during coding of each RDO mode. Instead of parsing 

output bit string, length of code bit stream (um of confirmed output bits and outstanding 

bits) is accumulated in a local counter. When coding of one RDO mode is finished, the 

coding rate is output to the host processor through system bus interface. In SoC video 

encoder system of H.264/AVC with the proposed CABAC encoder, coding of the next 

RDO mode will begin only when the rate of current mode is received by higher level 

system controller (host processor). If there is no data dependency between consecutive 

coding modes, such as intra4×4 prediction mode, input coding packets of next mode can 

be sent to CABAC encoder after packets of current mode is sent, even the rate of current 

mode is not received by the host processor. 

4.6.3 FWFT Internal FIFO buffers 

For conventional design of FIFO buffers, if FIFO data output ready signal is set in cycleN, 

FIFO read signal can only be sent to FIFO in cycleN+1, and FIFO output data can only be 

used in cycleN+2. One cycle of delay of FIFO read can not be avoided in such architecture. 

In the CABAC encoder design aiming for high throughput, it is necessary that FIFO 



Chapter 4 The Proposed Design of Hardware CABAC Encoder 
 

 81

output data can be used in cycleN+1 when ready signal is set in cycleN. One solution is to 

access FIFO at the negative edge of clock edge. However, clock frequency will be 

degraded because for the critical path start from FIFO output data, critical path is limited 

to half of cycle length. 

In the proposed CABAC encoder design, FIFO of FWFT (first word fall through) 

architecture is designed and used for the 3 FIFOs in Block 1. The FIFO consists of a 

single port SRAM, combinational control circuits, and one output data buffer. The output 

ready signal is not registered so as to respond to the read request from Block 1 in the 

same cycle. Although circuit area of FWFT FIFO (with output data buffered) is larger 

than that of conventional FIFO, one cycle of FIFO read access delay is removed, and the 

throughput of CABAC encoder is not influenced by FIFO access. 
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Chapter 5 Efficient Architecture of CABAC 
Context Modeling 

In this chapter, context modeling related functions of the proposed CABAC encoder 

design are introduced including context model selection of unit CS1 and context model 

access of unit CA. A scheme of context line access & local buffering is proposed to 

reduce RAM access frequency. Coding state backup & restoration operations of RDO-on 

mode are also introduced including the operations for context models of Block 3 and 

codes SEs of unit CS1. Compared to the reported designs, full support of coding state 

backup & restoration of RDO-on mode is only proposed in this thesis. 

5.1 Context Model Selection 

The outstanding compression efficiency achieved in CABAC encoder of H.264/AVC 

with comparison to the previous arithmetic coders can be attributed to the proper 

selection of context model and regular bin coding based on selected context model. For 

bypass bin coding, no compression can be gained in CABAC. In order to select most 

suitable context model of each regular bin, a number of factors need to be analyzed, 

including SE type, coded bins of current SE, coded SEs of neighboring blocks, etc.  

As introduced in Chapter 2, context model of context RAM addressed by CtxIdx, which 

is the sum of CtxOffset and CtxIdxInc. Function of context model selection is partitioned 

to unit CS1 and unit BS&CS2 of Block 1. In CS1, context model selection needs to 

reference to coded SEs of neighboring blocks of current MB or neighboring MBs. As 

shown in Figure 5-1, unit CS1 is further partitioned to two sub-units: IC sub-unit for 



Chapter 5 Efficient Architecture of CABAC Context Modeling 
 

 83

coded SE access and CtxIdxInc calculation for current coding MBs, and MA sub-unit for 

memory access operations of backup coded SE. Generated CtxIdxInc values of CS1 are 

buffered in FIFO2 and utilized by BS&CS1 for CtxIdx calculation. In the following 

subsections of 5.1, the scheme of storage and fast access of coded SE in IC sub-unit will 

be introduced first, followed by separate discussion of the architectures of IC and MA 

sub-units.  

 

Figure 5-1: Block diagram of unit CS1, including MA sub-unit and IC sub-unit. 

5.1.1 Scheme of Storage & Fast Access of Coded SEs of IC Sub-unit 

IC sub-unit of unit CS1 calculates CtxIdxInc value for particular bins at specified position 

(bin index) of several types of SEs, as specified in Table 9-30 of [6]. Coded SEs of 

neighboring BPMB (4×4 block, MB/sub-MB partition, or MB) on the top or left of 

current BPMB are used for the CtxIdxInc calculation of one regular bin of current SE in 

IC sub-unit.  

Implementation of CtxIdxInc calculation with reference to the coded SEs in unit CS1 is 

challenging because the irregular manner of accessing coded SE of neighboring BPMB 

for different types of SE. The SW-oriented derivation process of coded SEs of 
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neighboring BPMB specified in the H.264/AVC standard [6] can be described as the 

following steps: (a) for the processed bin, the category of the SE is identified first 

whether the SE is of MB, partition, or block; (b) neighboring reference BPMB is derived 

in a complex procedure by first locating a neighboring pixel on the left or top of the top 

left pixel of current processed position, and then deciding which block, partition, or MB 

the located pixel belongs to; (c) the SE of neighboring block, partition, or MB is accessed 

from memory and used for CtxIdxInc calculation. The SW-oriented BPMB derivation is 

complicated and not suitable for HW design targeting at fast access and high throughput. 

In order to complete derivation of neighboring BPMB, access of coded SE of the BPMB, 

and calculation of CtxIdxInc in single cycle with constrained critical path length, a 

scheme of storage and fast access of coded SEs of neighboring BPMB is proposed as 

follows. Figure 5-2 illustrates the basic concept of the scheme. 

 

 
Figure 5-2: Reference MBs on the top and left of current MB, and storage of 3 categories 
of coded SEs (MB, 8×8 sub-MB, and 4×4 block) in the reference BPMB of current and 
reference MBs. 
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As shown in Figure 5-2, storage of coded SEs of variable types of BPMB are classified to 

3 levels: MB level, 8×8 sub-MB level, and 4×4 block level. The classification is based on 

the minimum size of BPMB of the coded SE: 

 MB level: For the SEs including MB type, CBF of DC coefficient block, CBP, 

QP delta, intra chroma prediction mode, the minimum size is 16×16 and the SEs 

are classified to MB level and stored one SE per MB. 

 Sub-MB level: For the SEs including reference index and prediction direction, the 

size of BPMB can be 16×16, 16×8, 8×16, and 8×8, based on the partition mode of 

MB. As the minimum size of BPMB is 8×8, the SE is stored for each 8×8 sub-

MB partition of the BPMB that can be accessed in IC calculation of following 

SEs of same type. For example, for a BPMB of size 16×8, 2 copies of SE values 

need to be stored for the corresponding two 8×8 sub-MBs in the BPMB. 

 Block level: For the SEs including MVD, CBF of AC coefficient block, and CBF 

of luma coefficient block of non-Intra16×16 MB, the minimum size of BPMB is 

4×4, and coded SE values, are stored for the 4×4 blocks in the BPMB that can be 

further accessed in IC calculation. Although BPMB size of MB/sub-MB partition 

of MVD is in the range of 16×16 to 4×4, MVD is stored in the unit of 4×4 block. 

In the reference MBs on the top and left of current MB, the SEs of MB level are all stored. 

For the SEs of sub-MB level and block level, only coded SEs of the 4 blocks and 2 sub-

MBs on the neighboring edge of current MB can be accessed and need to be stored. In the 

IC sub-unit of unit CS1, the necessary SEs of 3 levels in the reference MBs are prepared 

before coding of current MB, while the coded SEs of current MB are stored for the MB, 

sub-MBs, or blocks based on which level the SE is classified to. Although more than one 
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copy of SE value can be stored for the SEs of sub-MB level or block level including 

MVD, reference index, and prediction direction, access of coded SE is significantly more 

efficient in circuit complexity and processing speed (throughput × clock frequency) and 

for HW design, compared to SW-oriented procedure aforementioned.  

(1) Fast Access of Coded SEs of Neighboring Block or sub-MB 
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                                       (a)                                                      (b) 
Figure 5-3: Fast access of neighboring coded block and sub-MBs. (a) Access of 
neighboring luma 4×4 blocks, and (b) access of neighboring 8×8 sub-MBs and chroma 
4×4 blocks of 4:2:0 video format. 

Fast access scheme of neighboring coded block or sub-MB of IC sub-unit is illustrated in 

Figure 5-3. For block level SE, a four-bit block index of the SE is provided in input SE 

packet. The range of block index is from 0 to 15, with higher 2 bits of index locating one 

of four 8×8 sub-MB in the MB and lower 2 bits locating one of 4 blocks in the sub-MB. 

The 4 blocks of left reference MB are indexed from 16 to 19, and the 4 blocks of top 

reference MB are indexed from 20 to 23. The derivation of block index of left and top 

block of current block is based on combinational circuit implementation of table lookup. 
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The lookup table (LUT) of block index can be derived from Figure 5-3 (a), as shown in 

Table 5-1. The 4-bit index of current block is mapped to 5-bit index of neighboring block 

in the range of 0 to 23, with MSB (most significant bit) indicating whether the block is in 

the current MB or neighboring coded MB. 

Table 5-1: Fast table lookup of block index of neighboring block on the left or top of 
current block for block level SE processing 

Left Block Top Block Left Block Top Block Current 
Block 
Index Index Current 

MB Index Current 
MB 

Current
Block
Index Index Current 

MB Index Current 
MB 

0 16 0 20 0 8 18 0 2 1 
1 0 1 21 0 9 8 1 3 1 
2 17 0 0 1 10 19 0 8 1 
3 2 1 1 1 11 10 1 9 1 
4 1 1 22 0 12 9 1 6 1 
5 4 1 23 0 13 12 1 7 1 
6 3 1 4 1 14 11 1 12 1 
7 6 1 5 1 15 14 1 13 1 

Table 5-2: Fast table lookup of Block/sub-MB index of neighboring Chroma block/8×8 
sub-MB on the left or top of current block/8×8 sub-MB 

Left Block/sub-MB Top Block/sub-MB Current Block/ 
sub-MB Index Index Current 

MB Index Current 
MB 

0 4 0 6 0 
1 0 1 7 0 
2 5 0 0 1 
3 2 1 1 1 

The 8×8 sub-MBs and chroma 4×4 blocks of 4:2:0 format of the Main profile of 

H.264/AVC, the index of block or sub-MB of current MB is from 0 to 3, as shown in 

Figure 5-3 (b). The two sub-MBs or blocks of the left reference MB of current MB are 

indexed with value 4 and 5, while the two of top reference MB are indexed with value 6, 
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and 7. As shown in Table 5-2, the fast LUT of 3-bit index of neighboring sub-MB or 

block can be implemented based on 2-bit index of current MB. The LUT can be derived 

from Figure 5-3 (b), and it is implemented as combinational circuit to reduce access time.  

In one special situation of CtxIdxInc calculation, it is necessary to access coded SE of 

8×8 sub-MB that contains the neighboring 4×4 block on the left or top of current 4×4 

block. The sub-MB index can be derived in two steps:  

 Decide whether neighboring block locates in current sub-MB or neighboring sub-

MB, based on the lower two bits of 4-bit block index of current block and left/top 

direction of neighboring block 

 If the block is in current sub-MB, the derived sub-MB index is 2 higher bits of 

block index of current block; else, the sub-MB index is looked up in the LUT 

(Table 5-2) based on 2 higher bits of block index of current block 

Table 5-3: Fast table lookup of sub-MB index of neighboring block on the left or top of 
current block based on current block index 

Sub-MB Index  Sub-MB Index Current 
Block 
Index Left 

Block 
Top  

Block 

Current 
Block 
Index Left 

Block 
Top 

Block 

0 4 6 8 5 0 
1 0 6 9 2 0 
2 4 0 10 5 2 
3 0 0 11 2 2 
4 0 7 12 2 1 
5 1 7 13 3 1 
6 0 1 14 2 3 
7 1 1 15 3 3 

 

To accelerate access of coded SE in this situation, a fast LUT is established using the 

two-step derivation, and it is implemented as combinational circuit in IC sub-unit to 
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accelerate sub-MB locating and SE access. The LUT is shown in Table 5-3, in which 

LUT input is the current block index and output is sub-MB index of the neighboring 

block. 

 
Block level and sub-MB level SEs of current MB and neighboring reference MBs are 

stored in registers of the blocks and sub-MBs indexed in Figure 5-3 (a) and (b). During 

CtxIdxInc calculation of block/sub-MB level SE in unit CS1, fast access of reference SEs 

of neighboring block/sub-MB is implemented through index lookup of LUT and direct 

read of SE value from local registers, instead of complicated calculation and memory 

access of SW-oriented procedure. 

(2) Storage of Coded SEs of Reference MB 

The storage of codes SEs of the top and left reference MBs are shown in Table 5-4. Total 

of 141 bits are allocated for top or left reference MB to store all necessary coded SEs that 

can be accessed by IC sub-unit during CtxIdxInc calculation of current MB. QP delta of 

previous coded MB needs to be stored separately from SEs of top and left MB, and it is 

only accessed by current MB. In order to reduce memory storage and simplify 

computation in IC sub-unit, the values of several types of SEs are not stored directly, but 

remapped to a small set of values represented by fewer bits. MB type in the range of 0 to 

48 is mapped to 3-bit value that classifies 7 types of MBs. Reference index, intra chroma 

prediction mode, and QP delta are represented by 1 bit, indicating if the value is 0 or not. 

MVD values occupy large amount of storage of reference MBs and current MB, because 

for each 4×4 block, 4 MVD values need to be stored. Although absolute MVD value of 

11 bits is supported in the proposed CABAC encoder, it is not necessary to store all 11 

bits for each MVD Selection of context model is only influenced by MVD with small 
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values. Therefore, 7 bits are allocated for each MVD instead of 11 of proposed scheme, 

with MSB indicating if absolute MVD is less than 64 or not. The benefit is that for each 

reference MB, 64 bits of SRAM storage is reduced, and size of SE RAM reduces 31.2%.  

Table 5-4: Storage of coded SEs of top/left reference MBs 

Stored 
SE type 

Num 
of SEs 

Stored
bits/SE

Location of SE in MB,  
and usage description  

MB type 1 3 3 bits to classify 7 types of MB in I, P, and B slice 

CBP 1 6 6 bits for 4:2:0, 4 bits for luma 8×8 sub-MB, 2 bits 
for chroma 8×8 sub-MB 

IntraChroma 
prediction 1 1 Indicate if intra chroma prediction mode is of DC 

mode or not 

Top
Forward/backward direction, 2 of 8×8 sub-
MBs of index 2 and 3 at MB bottom, 1 bit 
indicates reference index is 0 or not 

Reference 
index 
(f/b) 

2×2: 
4 1 

Left Sub-MBs w/ index: 1 and 3 

Top 2 of 8×8 sub-MBs w/ index 2 and 3 at MB 
bottom Prediction 

direction 2 2 
Left Sub-MB index: 1 and 3 

Top

For the 4 of 4×4 blocks of index 10,11,14,15 
at bottom of MB, 4 MVD components per 
block for forward/backward directions, x/y 
components 

MVD 
component 

(f/b and x/y) 

4×4: 
16 7 

Left 4 blocks with index 5,7,13,15 

CBF (DC) 3 1 1 for DC of luma of I16 MB, 2 for DC blocks of 
chroma (Cb and Cr) 

Top
4 bits for luma 4×4 blocks of index 10, 11, 
14,15; 4 bits for chroma 4×4 blocks (2 of Cb 
and 2 of Cr of index 2 and 3) at MB bottom 

CBF  
(AC & non- 
Intra16×16 
luma block) 

8 1 

Left Luma block w/ index: 5,7,13,15,  and                
chroma block w/ index: 1, 3 on the right side 

Total stored bits / MB 1×3+1×6+1×1+4×1+2×2+16×7+11×1 = 141 bits 

QP delta 1bit per MB, indicating if QP delta is 0 or not 
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As shown in Table 5-4, for SEs of block level and sub-MB level including reference 

index, prediction direction, and MVD, the positions of block/sub-MB of coded SEs that 

are stored for top and left reference MBs are different, which is discriminated by the 

index of block/sub-MB in the table. The 2-bit prediction direction is utilized to indicate if 

one MB/sub-MB partition is of forward, backward, or bi-directional prediction in B slice. 

Although prediction direction is not coded in the later stages of CABAC, the value is 

referenced during CtxIdxInc calculation of MVD and reference index in IC sub-unit. 

Therefore, 2 values (2 bits each) are stored for 2 sub-MBs of each reference MB. In the 

proposed scheme, local storage of coded SEs of MB level and CBF values of DC 

coefficient blocks is shared for top and left reference MBs, so that 13 bits of registers can 

be reduced in IC sub-unit. This part of SEs are stored in the local registers of left 

reference MB first, and then moved to SE RAM of top reference MBs. 

5.1.2 CtxIdxInc Calculation (IC) of Unit CS1 

CtxIdxInc calculation (selection of context model) of unit CS1 is implemented in the IC 

sub-unit, which parses each input packet of CABAC encoder, stores coded SE values in 

local register buffers, calculates 3-bit CtxIdxInc with reference to the coded SEs of 

neighboring BPMBs, and writes CtxIdxInc values into FIFO2, which will be accessed by 

unit BS&CS2 of Block 1. As shown in Figure 4-7, additional parameters are provided in 

input packets to assist processing of block/sub-MB level SEs, including block/sub-MB 

index, partition category, block category, etc. that are used to locate SE in the current MB, 

and provide storage position of coded SEs. 

Different processing routes of IC sub-unit are illustrated in Figure 5-4, including 

CtxIdxInc calculation of several types of non-residual SE, CtxIdxInc calculation of 
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residual block (CBF), backup & restoration of the state of coded SEs in RDO-on coding 

mode, and End-of-MB process triggered by MB end flag. RDO related operations will be 

discussed in 5.4. Multi-cycle CtxIdxInc calculation is proposed in [90], in which 4 cycles 

are required to access codes SEs of top and left reference BPMBs and 1 more cycle to 

select context model. Compared to [90], single-cycle CtxIdxInc calculation is achieved in 

the IC sub-unit of the proposed CABAC encoder for all types of SEs, which avoids the 

situation of CABAC encoding pipeline stall caused by the access of coded SEs of 

neighboring reference BPMBs, and ensures constant high throughput of CABAC 

encoding. Functions of CtxIdxInc calculation and storage of coded SE values of different 

SE types are discussed separately. 

 

Figure 5-4: Functions of IC sub-unit of unit CS1. 

(1) CtxIdxInc Calculation of Different SE Types 

Input packets of CABAC encoder are buffered in FIFO1 of Block 1. Read access of 

FIFO1 is controlled by unit BN of Block 1, while each packet is also sent to and parsed in 

unit CS1 when it is read out from FIFO1. Packets are classified to different types of SEs 

or control parameters according to packet identification bits. 
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Table 5-5: Parameters of reference BPMBs required for CtxIdxInc calculation of 
different types of SEs 

SE type Description of required parameters for CtxIdxInc calculation  

MB type Reference MBs: MB availability, MB type 

Skip Reference MBs: MB availability, MB skip 

QP delta Reference MB (previous MB): MB type, QP delta, CBP 

Intra chroma 
prediction mode 

Reference MBs:  
MB availability, MB type, Intra Chroma prediction mode 

Luma (4 bins for non-P8×8 mode, 1 bin for sub-MB of P8×8 mode):
reference sub-MBs: MB availability, MB type,  
CBP bit of sub-MB (Table 5-2) CBP 
Chroma (2 bins):  
reference MBs: MB availability, MB type, CBP chroma value 

MVD Reference blocks: MB type, MB availability, MVD value (Table 
5-1), predict direction of sub-MB of reference blocks (Table 5-3) 

Reference Index Reference sub-MBs: MB type, MB availability,  slice type,   
prediction direction (Table 5-2), reference index (Table 5-2) 

DC block 
Reference MBs:  
MB type, MB availability, CBF of DC block 

CBF 
Other 
category 

Reference blocks:  
MB type, MB availability, CBF of reference block  
(Table 5-1 for CBP luma, Table 5-2 for CBP chroma) 

 

During CtxIdxInc calculation of IC sub-unit, required parameters for different SE types 

are diversified, as listed in Table 5-5. For most types of SEs processed in IC sub-unit 

(excluding QP delta), coded SEs of the two neighboring reference BPMBs (on the top 

and left of current BPMB) need to be accessed from local SE buffers of IC sub-unit. For 

the neighboring coded SE values of block/sub-MB level, index of BPMB (block/sub-MB) 

is decided through table lookup according to the index of 8×8 sub-MB (B8 index) and/or 

4×4 block (concatenation of B8 & B4 index) from input packets, as shown in Figure 4-7. 
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Three LUTs aforementioned are utilized to derive index of neighboring reference 

block/sub-MB for the access of reference SEs, with utilization of combinational circuits. 

Additional required parameters of each neighboring reference BPMB are listed in Table 

5-5, including MB type and MB availability of reference BPMB. If reference BMPM is 

located in neighboring MB, MB availability is derived based on the position of current 

MB. Top reference MB is not available if current MB is in the first row of coding frame, 

while left reference MB is not available if current MB is in the first column.  

In IC sub-unit, the 3-bit CtxIdxInc is calculated based on SE values and other parameters 

obtained from reference BPMBs and parameters of current SE parsed from input packet. 

The calculation of each type of SE is implemented as combinational circuit. For  the 

calculation that needs to access coded SEs of top and left reference BPMBs, SE access of 

two BPMBs are executed in parallel to reduce critical path length. For the calculation of 

non-residual SEs, CtxIdxInc is calculated and written to FIFO2 in the same cycle when 

the input packet is parsed. For CBP processing of non-P8×8 MB (4:2:0 video format), 6 

CtxIdxInc values are generated from single input SE packet in 6 consequential cycles 

including 4 for CBP luma and 2 for CBP chroma. For MB of P8×8 mode, CBP bit of 

each 8×8 sub-MB is input separately with sub-MB index concatenated in the same packet, 

and one CtxIdxInc is generated. For the calculation of residual SEs, only CBF of each 

4×4 block is processed in unit CS1. According to the block index and 3-bit residual block 

category of EOB (end of block: indicating the last packet of one residual block) packet of 

residual block, CtxIdxInc of CBF is calculated. The critical path of IC sub-unit is in the 

combinational circuit of CtxIdxInc calculation of MVD, which consists of two sequential 

table lookup operations, one 6-bit addition, and 7-bit comparison, and several other 
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bitwise operations. Calculation of MVD is more complex as the context model is selected 

based on the evaluation of sum of two absolute MVD values of neighboring BPMBs. 

(2) Storage of Coded SE Values During CtxIdxInc Calculation 

During CtxIdnInc calculation of IC sub-unit, SE value parsed from input packet needs to 

be stored in local buffer and SE RAM if the value can be further referenced during 

CtxIdxInc calculation of current MB or following MBs in the same slice. SE type, 

number and position of SEs, and number of bits per SE of each type of SE to be stored in 

the top and left reference MBs are discussed previously in Table 5-4. For several types of 

SEs with large data range of SE values including MB type, MVD, reference index, etc., 

original SE values are classified and remapped to smaller data set to reduce storage size 

of code SEs in local buffers and SE RAM. Storage operations of several types of SEs 

including MB type, MVD, CBF, etc. are discussed briefly in this subsection. 

Table 5-6: Classification of MB type and stored values of MB type 

MB type 3-bit Stored
Value Descriptions 

Intra4×4 (I4) 0 
Intra16×16 (I16) 1 

I_PCM 2 
Intra-coded MB in I, P, and B slices 

P8×8 3 In P and B slice, when MB partition mode of 8×8 
or smaller partition is selected 

Skip 4 In P and B slice, based on coding value of MB skip 
flag before MB type coding 

Direct 5 MB type only in B slice coding 
Other types 6 Inter-coded MB in P and B slice, excluding P8×8 

 

Values of MB type are classified into 7 categories as shown in Table 5-6, including 3 

categories for intra MB (Intra4×4, Intra16×16, and I_PCM), 2 categories for inter MB 

(P8×8 and Skip), 1 for B slice (Direct), and 1 for other types of inter MB. During parsing 
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and processing of MB type and sub-MB type, 2-bit prediction direction (forward, 

backward, and bi-direction) of each 8×8 sub-MB of inter MB is stored. For MB type of 

Intra16×16 in I, P, and B slice, 6-bit CBP value is derived from MB type value through 

table lookup of a small 6-entry LUT, while for other types of MB, CBP is parsed and 

stored from packets of CBP or CBP bit. 

For the SEs of block/sub-MB level, only the SEs of blocks/sub-MBs located on the right 

edge and bottom edge of current BPMB need to be stored, because SE of other block/sub-

MB can not be referenced during processing of following BPMBs of current MB or 

following MBs. As shown in Table 5-7, for MB partition mode including 16×16, 16×8, 

and 8×16, and sub-MB partition mode 8×8, MVD vectors (forward/backward, x/y) of 

current BPMB are only stored in part of blocks. Dynamic power consumption of MVD 

processing can be saved when power reduction technique is applied to unit CS1. 

Table 5-7: Numbers and positions of blocks that need to store coded MVD of different 
MB/sub-MV partition modes 

MB 
Partition 

Mode 

Num of 
Blocks 
Stored 

Block  
Index 

Sub-MB 
Partition 

Mode 

Num of 
Blocks 
Stored 

Block  
Index 

16×16 7 of 16 5,7,10,11, 
13,14,15 8×8 3 of 4 All exclude 

top left block
16×8 Top 3 of 8 2,5,7 8×4 2 of 2 All 

16×8 
Bottom 5 of 8 10,11,13, 

14,15 4×8 2 of 2 All 

8×16 Left 3 of 8 1,10,11 4×4 1 of 1 All 
8×16 Right 5 of 8 5,7,13,14,15    

Storage of CBF of each residual block is triggered by the parsing of EOB packet, and 

CBF value is located from buffer based on 4-bit block index and 3-bit block category, 

which classifies block of luma DC coefficients, luma AC coefficients, luma coefficients 
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of non-Intra16×16 MB, chroma DC coefficients, and chroma AC coefficients. In the local 

buffer of IC sub-unit, 49 bits are allocated to buffer CBF values of current MB and 2 

reference MBs, including 9 bits for CBF of DC blocks (3 for current MB), 24 bits for 

luma blocks of non-Intra16×16 MB (16 for current MB); and 16 bits for chroma AC 

blocks (8 for current MB). 

(3) End-of-MB Process 

The last input packet of each MB is defined as MB end flag for the proposed encoder. 

End-of-MB process of IC sub-unit is timing efficient. When the MB end flag is parsed in 

unit CS1, the design supports that the input packet of next MB to be received and 

processed in the next cycle. Two operations of End-of-MB process are triggered in IC 

sub-unit simultaneously, including (a) loading of coded SEs of next top reference MB 

from SE RAM output, and (b) loading of coded SEs of next left reference MB from local 

buffer of current MB. The coded SE buffers of top and left MB are loaded for the next 

MB in single cycle, and operation delay of coded SE loading is minimized compared to 

the reported CABAC decoder design [82]. During processing of current MB in [82], it 

takes 96 cycles to load SEs of top reference MB from RAM for the next coding MB and 

write coded SEs of previous MB to RAM. Limitation of such scheme is that, RAM 

access frequency and related power consumption is high, and for the situation that the 

coding MB only contains a few packets, such as Skip MB, CABAC encoding stalls until 

data transfer between RAM of coded SE and context model selection module completes. 

Compared to [82], the situation is avoided in the proposed encoder design.  
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5.1.3 Memory Access (MA) sub-Unit of Unit CS1  

Coded SEs of top reference MBs are stored in SE RAM of Block 1. 141 bits are allocated 

in SE RAM to store coded SEs for each MB that can be referenced during MB coding. 

All 141 bits of one MB are stored as one word of RAM to enable single cycle read/write 

RAM access. Word number of SE RAM is proportional to the horizontal definition of 

coding frame/field, as coded MBs from top-right MB of current coding MB will be 

referenced as top reference MBs in further coding procedure. In HDTV 720p video 

format, each row of MBs of frame/field contains 80 MBs. In order to support HDTV 

720p, 78 words are allocated in SE RAM with another 141-bit output buffer at RAM 

interface. It is designed as single-port RAM supporting sequential read & write access, as 

circuit area is small and SE RAM is not frequently accessed in the proposed coded SE 

access scheme. 

MB processing flow of MA sub-unit and IC sub-unit are shown in Figure 5-5. MA sub-

unit is only active in the first 3 cycles of processing procedure of one MB. The process of 

MBi is shown in the figure. In Cycle 1, after parsing MB end flag of MBi-1, MA sub-unit 

requests to read coded SEs of top reference MB of MBi+1 from SE RAM, while IC sub-

unit is triggered for the End-of-MB process including update of SE values of top and left 

reference MBs of MBi. In cycle 2, MA sub-unit writes a single packet of 141 bits of 

coded SEs of MBi-1 to SE RAM, while IC sub-unit starts MB processing procedure 

including input packet parsing, CtxIdxInc calculation, and storage of coded SEs of MBi. 

In cycle 3, MA sub-unit updates RAM address for the read of MBi+2 and write of MBi. 

After the first 3 cycles, MA sub-unit is idle, while IC sub-unit continues processing 

following packets of MBi till the end flag of MBi.  
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Figure 5-5: MB processing in MA sub-unit and IC sub-unit of unit CS1. 

One example of 3-cycle MB processing scheme of MA sub-unit is shown in Figure 5-6. 

N is MB row number. M is number of MBs in the horizontal direction of coding 

frame/field (M is 80 in HDTV 720p video format). MBi,j denotes MB with index j in row 

i. MBs of row N are processed sequentially. In cycle 1, the end flag of MBN,M-2 is parsed 

in unit CS1. At the end of MBN,M-2 processing, MBs from MBN,0 to MBN,M-3 are stored in 

M-2 words of SE RAM, MB N-1,M-1 is already read to the output buffer of SE RAM, and 

SE RAM is addressed at the word of MBN,0. The operations of MA sub-unit in cycle 1 

include: storing MBN-1,M-1 of RAM output buffer to the top reference MB of MBN,M-1 and 

reading the word of MB N,0 to RAM output buffer. In cycle 2, the word of MBN,0 is stored 

to RAM output buffer, which will be referenced during MBN+1,0 processing; and MA sub-

unit writes the coded SEs of MBN,M-2 to the RAM and overwrites the word of MBN,0. In 

cycle 3, SE RAM address increases 1 in MA sub-unit, which points to the word of MBN,1 

that will be accessed after MBN,M-1 processing. 
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Figure 5-6: Operations of MA sub-unit in the first 3 cycles of MBN,M-1 processing. 

The benefits of SE RAM access scheme of MA sub-unit includes: (a) RAM access 

frequency and related dynamic power consumption of SE RAM is minimized compared 

to the other designs [82, 90] that support context model selection of unit CS1, because the 

RAM is read and write only once per MB; (b) compared to [82], RAM size is reduced 

with the proposed RAM read & write access order, and only M-1 words of reference 

MBs need to be stored in SE RAM including that of output buffer; (c) allocation of RAM 

output buffer and schedule of reading next top reference MB during processing of current 

MB insure that no delay of coded SE access will occur between processing MBs, and 
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throughput of CABAC encoding is not influenced by the access of coded SE, compared 

to [90]; (d) RAM access control is simplified, as addresses of RAM read and write 

operations are identical in cycle 1 and cycle 2 of MA sub-unit. 

5.2 Unit CA: Efficient Context Model Access 

For each regular bin of CABAC encoder, one context model must be read from context 

RAM to provide MPS value and probability index of LPS of the bin. Each accessed 

context model is updated according to bin value and written back to context RAM in 

order to be adaptive to the change of MPS/LPS probability. Scheme of single context 

model access is adopted in most reference designs [86, 89, 90, 93, 105, 106], in which 

one context model (7 bits) is fetched from RAM each time according to CtxIdx of regular 

bin. Although memory control logic of single context model access is simple, RAM 

access frequency and related dynamic power are high, which significantly increases 

power consumption of CABAC encoder, as discussed in [87]. Moreover, control logic of 

context model access is complex, because parsing of multiple 9-bit RAM addresses is 

required to decide whether context model should be read from RAM or local buffer, and 

critical path of CA can not be reduced efficiently.  

5.2.1 Context Line Access & Local Buffering 

In this thesis, an efficient context model access scheme is proposed and implemented in 

unit CA, as shown in Figure 5-7. Before design of unit CA, computational and data 

transfer complexity analyses have been performed on a reference CABAC code [107], 

and it is found that memory accesses in CABAC entropy coder (as opposed to CAVLC), 

increases by 20-44% for RDO-off mode, and a higher of 104-115% for a RDO-on mode. 
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Therefore, the use of multi-level memory hierarchy is suggested. Instead of using single 

context model access scheme adopted in [86, 89, 90, 93, 105, 106], the proposed CABAC 

encoder accesses the context models of context RAM by context lines, each of which 

contains eight 7-bit context models. Two context line buffers are allocated in unit CA to 

buffer the context models read from context RAM. The difference from the cache-based 

context access in [87, 95] is that, any context line, which contains the required context 

model, is pre-fetched from RAM before the context model is used. The situation of cache 

miss will not occur in this design. 

 
Figure 5-7: Architecture of unit CA with pipelined context line access and local buffering 
scheme. 
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In Figure 5-7, the 9-bit CtxIdx of input bin packet of regular bin is separated into context 

RAM address (higher 6 bits of CtxIdx), and context line address (lower 3 bits of CtxIdx) 

in unit CA. Context line is accessed from RAM and updated in a 4-stage pipeline. 

Context RAM address parsed from input packet is used to locate one context line in the 

context RAM. It is buffered in 4 pipeline stages in unit CA for RAM read & write access. 

Before one context line is read from context RAM, the corresponding context RAM 

address is buffered in 2 cycles (2 stages). Context line address parsed from input packet is 

used to locate one of 8 context models in the context line. It is buffered in 3 pipeline 

stages before it is used. As shown in the figure, two context line buffers CtxLine_buf1 

and CtxLine_buf2 of unit CA can buffer 16 different context models during CABAC 

encoding. The 6-bit pStateIdx of selected context model from CtxLine_buf1 is used to 

prefetch 4 possible sub-Range values of LPS bin (RangeLPS, 8 bits) for unit AR through a 

64-word×32-bit LUT. The pStateIdx of context model is updated through table lookup 

based on whether the bin is MPS or LPS. The two 64-word×6-bit LUTs of MPS bin and 

LPS bin are implemented as combinational circuits. Coding bin, bin type, and RDO 

control parameters parsed in unit CA are buffered in several stages and output to unit AR 

and unit BP. For regular bin, 1-bit decision of whether the bin is MPS is output to unit 

AR instead of the value of bin. 

RAM access frequency of the proposed scheme is significantly lower compared to that of 

single context model access scheme. A context line needs to be read from context RAM 

and buffered in CtxLine_buf1 only when the accessed context model is not located in the 

two context line buffers, in which situation the content of CtxLine_buf2 is written back to 

context RAM. Since the context models of the same SE type are located in proximity in 
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the context RAM, and in many situations, context models consecutively accessed are 

located in the same or neighboring context line, the frequencies of RAM read & write 

access can be significantly reduced with the context line access and buffering scheme, 

especially during the processing of residual SE such as SCF, LSCF, and abs_level. 

5.2.2 Context RAM Access Scheme Supporting RDO-on Mode 

 
Figure 5-8: Architecture of memory access control of unit CA in both RDO-off and 
RDO-on mode. 

In RDO-on coding mode, the state of context models in the context RAM needs to be 

restored to the previous state after testing one RDO mode. One scheme to support RDO-
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on coding is to store context line and the corresponding context RAM address into a 

FIFO buffer before the context line is updated during RDO coding, and restore the 

updated context lines of context RAM after RDO coding according to the stored context 

RAM addresses of the context lines. However, in non-P8×8 RDO coding, large number 

of context lines can be accessed. Thus, large FIFO buffers are required to backup the 

original state of context lines, and operation delay is not avoidable to restore of state of 

context RAM from FIFO buffer. Because context RAM is accessed by context line, delay 

of context state restoration can be reduced compared to the scheme in [93]. In this thesis, 

a more efficient context RAM access scheme is adopted in the design of unit CA with no 

operation delay in non-P8×8 RDO coding, as shown in Figure 5-8. 

In RDO-off mode, context models are stored in and accessed from Normal RAM. During 

RDO-on coding, Temp RAM, which is identical to Normal RAM, stores the updated 

context lines while Normal RAM keeps the original context lines. During coding of each 

RDO mode, if the context line is not accessed previously, it is read from Normal RAM, 

while updated context lines are stored to and accessed from Temp RAM. During non-

P8×8 RDO coding, because Normal RAM is unchanged, context state restoration 

operation is not needed, and the operation delay is removed. In order to identify which 

context lines have been accessed during coding of one RDO mode, a 53-bit dirty list is 

allocated in unit CA and controlled by a dirty bit update logic. Each bit of the dirty list 

records whether the corresponding context line is updated. One context line is read from 

Normal RAM only if the dirty bit of the context line is 0.  

In non-P8×8 RDO coding, because the updated context lines of Temp RAM will not be 

further used after coding of current RDO mode, it is not needed to write the two context 
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lines that are buffered in unit CA to Temp RAM when the context line access of current 

RDO mode completes. Therefore, context RAM write frequency can be reduced in non-

P8×8 RDO coding for the proposed context line access scheme. 

During P8×8 sub-MB mode decision of RDO-on mode coding, the updated context lines 

of one RDO mode need to be stored, if the mode is currently the best mode of sub-MB. 

Therefore, a small 11-word×6-bit RAM named Address list is allocated to store the 

context RAM address of each updated context line. Address list is accessed by Block 3 

during operations of context state backup & restoration of P8×8 RDO coding. 

5.2.3 Context Model Reallocation in Context RAM 

In order to further reduce memory access frequency, context models in the context RAM 

are reallocated, as illustrated in Figure 5-9. In the cache-based designs [87], context 

RAMs are also reallocated to enhance cache hit probability. In the proposed scheme, 

reallocation aims at enhancing the efficiency of context-line-based context model access. 

The context model allocations of different SE types are adjusted in the context RAM, 

compared to the original allocation in Table 9-11 of the standard [6]. The objective is to 

allocate the context models of the same SE type in one context line to avoid unnecessary 

RAM access. For the SE type with over 8 context models, such as SCF, LSCF, and level, 

2 context lines are allocated. 53 context lines (424 context models) are allocated in the 

context RAM with only 6.8% dummy context models inserted. 
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Figure 5-9: Reallocation of context model in context RAM (Normal RAM). Context 
models of Normal RAM are illustrated as two continuous parts in the figure. 

5.3 Context State Backup & Restoration in P8×8 RDO Coding 

As introduced in 0, during CABAC coding of RDO-on mode, different MB coding 

modes are tested, including Skip, intra modes including Intra16×16 and Intra4×4, inter 

modes including Direct, P16×16, P16×8, P8×16, and P8×8, etc. The best mode is 

selected that achieves lowest rate-distortion cost. During RDO MB mode selection, 

CABAC encoder is adopted to calculate coding rate (length of output bit stream) of each 

testing mode by encoding the SEs of the mode. Context state (state of context models in 

context RAM) needs to be restored to a previous state before testing of the next RDO 

mode. During RDO-on coding, large number of context models need to be frequently 
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backed up or restored when RDO modes change. It causes long delay, and requires large 

amount of backup memory resources. With the aforementioned context access scheme of 

unit CA, the updated context models are stored in Temp RAM and context state of 

Normal RAM is not changed during non-P8×8 RDO coding. Therefore, it is not needed 

to backup and restore context state during non-P8×8 RDO coding, and the no operation 

delay is removed, compared to [93]. 

However, during P8×8 RDO coding, the best partition mode of one 8×8 sub-MB is 

selected from the modes of 8×8, 8×4, 4×8, and 4×4. During RDO mode decision of one 

sub-MB, context state needs to be restored to the state before testing of current sub-MB, 

after testing of each sub-MB partition mode. After testing all modes of the sub-MB, 

context state needs to be set to the state of best mode, which is the original state of next 

sub-MB of current MB. After processing of all 4 sub-MBs of P8×8 RDO coding, context 

state needs to be restored to the original state of current MB (the context state after RDO-

off coding of previous MB). Because of the context state coherence of adjacent 8×8 sub-

MBs during P8×8 RDO coding, it is indispensable to implement mechanisms of context 

state backup & restoration, compared to non-P8×8 RDO coding. In this design, it is found 

that a maximum of 11 context lines can be modified during P8×8 RDO coding of the 

Main profile of H.264/AVC. Three small RAM blocks of depth of 11 including Address 

list (11-word×6-bit), Best RAM (11-word×62-bit), and P8×8 RAM (11-word×62-bit) are 

utilized to store intermediate context states, including (a) addresses of the context lines 

accessed in each RDO mode stored in the Address list, (b) addresses and context lines of 

best P8×8 coding mode stored in the Best RAM used to update Normal RAM, and (c) 

addresses and context lines of original context state stored in the P8×8 RAM used to 
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restore Normal RAM to the original state after P8×8 RDO coding. The CA dirty list in 

unit CA and P8×8 RDO dirty list in Block 3 are updated and referenced during RDO-on 

coding and RDO operations of context state backup & restoration. 

As shown in Figure 5-10, four pipeline architectures are designed in Block 3 to support 4 

types of context state backup & restoration operations during P8×8 RDO coding with 

data transfer speed of 1 context line per cycle. Buffering stages of context line and RAM 

address are inserted to implement pipeline operations. In the 2 context RAMs and 3 small 

backup RAMs, 3 to 4 RAMs are involved in each pipelined operation. Detail operations 

of each pipeline stage of the 4 pipelines are shown in the figure and introduced as follows: 

 Best mode context state backup: If the RDO mode is currently the best mode of 

the processed 8×8 sub-MB, the modified context lines in the Temp RAM are 

fetched according to the stored RAM addresses in the Address list. The modified 

context line and corresponding RAM address are packed in single packet and 

backed up in the Best RAM;  

 Context state restore from Best RAM: After testing all RDO modes of one 8×8 

sub-MB, if the context state of the best mode is stored in the Best RAM, Normal 

RAM is updated by the context lines of Best RAM according to the RAM 

addresses stored with the context lines. The original context lines of Normal 

RAM are stored to P8×8 RAM with corresponding context RAM addresses before 

Normal RAM is updated by the context lines of Best RAM. Write access of P8×8 

RAM is according to the state of 53-bit dirty list of Block 3.  
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Figure 5-10: Four types of pipelined context state backup & restoration operation in P8×8 
RDO coding. 
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 Context state restore from Temp RAM: If the best mode of current sub-MB is the 

last RDO mode, the updated context state is not stored in the Best RAM, but in 

the Temp RAM. Therefore, Normal RAM is updated by the context lines of Temp 

RAM that are accessed in the last mode according to the addresses stored in the 

Address list. Before the update, original context lines of Normal RAM are stored 

in P8×8 RAM with context RAM address if the corresponding bit of dirty list is 0. 

 Normal RAM context state restore from P8×8 RAM: After P8×8 RDO coding, the 

context state of Normal RAM is restored to the original state by writing back the 

unmodified context lines stored in the P8×8 RAM according to the addresses that 

are packed with the corresponding context lines. 

With the proposed pipelined context state backup & restoration and context line access 

scheme of context RAM, the operational delay of context state backup & restoration of 

P8×8 RDO coding is significantly reduced, and the context RAM size to support is P8×8 

RDO coding is reduced to a large extent, compared to the reference design. Performance 

comparison of the proposed design and reference design will be discussed in Chapter 7. 

5.4 Coded SE State Backup & Restoration of Unit CS1 

In RDO-on mode coding, state of coded SEs of one RDO mode need to be backed up if 

the SEs can be referenced during testing of following RDO modes of the MB. A 

particular situation is P8×8 sub-MB mode decision. Coded SEs of the best mode 

(selected mode) of current sub-MB can be referenced during RDO coding of block/sub-

MB level SEs of following sub-MBs (on the right or bottom of current sub-MB) of 

current MB. Compared to the context state backup and restoration of P8×8 RDO coding, 

it is only necessary to backup part of coded SEs of one sub-MB before the best mode is 
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decided, and restoration of coded SE state is not required after processing of 4 sub-MBs. 

Table 5-8 illustrates the SE type and number of bits of coded SEs that need to be backed 

up during P8×8 mode decision of one sub-MB. For block level SEs including MVD and 

CBF, only coded SEs of right and bottom blocks of sub-MB need to be backed up, 

because SEs of top left block can not be referenced during CtxIdxInc calculation of 

following sub-MBs. Coded sub-MB level SEs including prediction direction and 

reference index are backed up for the coding sub-MB. For the MB level SEs of CBP, 

single bit is necessary to record the CBP bit of best mode of current sub-MB, and one of 

4 bits of CBP is updated after mode decision of the corresponding luma sub-MB. 

Table 5-8: Types, bit Numbers, and usage descriptions of backup values of SEs of 8×8 
sub-MB during P8×8 RDO coding 

SE type Num of bits Description of usage 

MVD 3×4×7=84 MVDs for 3 blocks of sub-MB, excluding top left block, 
forward/backward directions, x/y components 

CBF luma 3 CBFs for 3 blocks of current sub-MB,  
excluding top left block 

CBP 1 Used in P8×8 RDO coding, CBP bit of current sub-MB 
of best mode 

Pred dir 2 Prediction direction for current sub-MB 
Ref index 2×1 Forward/backward direction, 1 bit each 

 

Four types of coded SE state backup & restoration operations are supported, and can be 

triggered by the same control parameters that also control operations of context state 

backup & restoration during P8×8 RDO coding. (a) After coding of one RDO mode, if it 

is currently best mode (with minimum RD cost) of the processing sub-MB, coded SEs are 

backed up, including CBP bit, prediction direction, reference index, CBF and MVDs of 3 

blocks of the sub-MB. (b) After all RDO modes of the sub-MB are tested, if the last 
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mode is not best mode and the sub-MB is not the last of the MB, the coded SEs of best 

mode are restored, which were backed up in (a). (c) After all RDO modes of the sub-MB 

are tested, if the last mode is the best mode and the sub-MB is not the last of the MB, no 

restoration of coded SEs is needed. (d) After processing of all four 8×8 sub-MBs, values 

of CBP, CBF, prediction direction, and reference index are restored to the default values 

before coding of non-P8×8 RDO modes. During P8×8 RDO coding, if the RDO mode is 

not the best mode during current sub-MB coding, coded SEs including CBF, reference 

index, and prediction direction need to be restored to the default values.  

During coding of other non-P8×8 RDO modes, some types of SEs need to be restored to 

initial values. For instance, CBF needs to be restored after testing each Intra4×4 RDO 

mode, and in non-P8×8 RDO inter mode, prediction direction values of sub-MBs need to 

be restored to default values after the RDO mode is tested. These types of coded SE 

restorations are triggered by the RDO coding rate output signal of input packet, which is 

sent to unit BP of Block 2 after all SE packets of the RDO mode are processed. 

5.5 Summary 

In this chapter, the most complete context modeling scheme of CABAC encoder is 

proposed for the context model selection and context model access in both RDO-on and 

RDO-off modes. For the function of context model selection, single-cycle CtxIdxInc 

calculation of regular bin is achieved for all types of SEs, which can be attributed to the 

proposed efficient scheme of storage & fast access of coded SEs of current MB and 

reference MBs. Additionally, RAM access of coded SEs is significantly lower, compared 

to the reported designs [82, 90]. For the function of context model access, a pipelined 

context line access & local buffering scheme is proposed, which can be significantly 



Chapter 5 Efficient Architecture of CABAC Context Modeling 
 

 114

reduce context RAM access frequency. In order to fully support RDO in CABAC 

encoder, operations of backup & restoration of context state and coded SE state are 

implemented in the 3 functional blocks of CABAC encoder. Coded SE state backup & 

restoration is only supported in the proposed design, and context state backup & 

restoration is more efficient compared to [93], with significant lower operation delay and 

smaller size of context RAMs. 
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Chapter 6 System Bus Interface and Inter-
connection Design 

As introduced in Chapter 4, one step of SoC-based entropy coder design flow is SoC 

features introduction. Design of system bus interface for the CABAC encoder enhances 

portability and reusability of the design in the SoC video encoder system. In this chapter, 

design of master and slave interfaces of WISHBONE [104] system bus of CABAC 

encoder is discussed after introduction of WISHBONE system bus specification. 

Crossbar system bus inter-connection is also designed, which enables convenient 

integration of the proposed CABAC encoder with other function components in the 

H.264/AVC encoding system. 

6.1 Introduction of the WISHBONE System Bus Specification 

WISHBONE system bus provides a flexible design methodology to create a common 

interface between IP cores of System-on-Chip (SoC). By adopting the standard inter-

connection scheme of WISHBONE and designing system bus interface of each IP core, 

the IP cores can be integrated more quickly and easily. The goal of WISHBONE bus is to 

provide robust inter-connection that is complete compatible among IP cores and does not 

constrained the creativity of core developers or end users.   

6.1.1 Interface Signals of the WISHBONE System Bus 
 

The simplest point-to-point interconnection of the WISHBONE bus that directly connects 

one master and one slave is illustrated in Figure 6-1.  
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Figure 6-1: Point-to-point inter-connection of single master & slave of the WISHBONE 
system bus. 

Input signal of interface is named with System reset (rst_i) and clock (clk_i) signals are 

generated by SysCon module of the WISHBONE bus and input to all masters and slaves 

that are connected to the bus. For the other signals of WISHBONE bus, output signals of 

master correspond to the input signals of slave, and vice versa. The signals of 

WISHBONE master interface are listed in Table 6-1, and functions of the interface 

signals are described accordingly. 
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Table 6-1: Signals of WISHBONE master interface 

Signals of 
master 

interface 
Function descriptions of signals of master interface 

Corresponding 
signals of slave 

interface 
rst_i Interface reset signal rst_i 
clk_i Clock of WISHBONE interface clk_i 
adr_o The address of WISHBONE slave adr_i 
dat_o Master output data bus dat_i 
dat_i Master input data bus dat_o 

we_o Write/read enable signal  
(high logic for write, low for read) we_i 

sel_o Bit array that indicates valid data units on the data bus 
that master wants to send or receive data sel_i 

cyc_o High logic indicates a valid bus cycle, which can 
contains multiple data transfers cyc_i 

stb_o Strobe output that indicates a valid data transfer cycle stb_i 

ack_i Cycle termination signal from slave for the 
acknowledgement of a successful data transfer ack_o 

rty_i & 
err_i 

Cycle termination signal from slave indicating retry & 
error of the data transfer; the signals help to enhance 
robustness of data communication 

rty_o & 
err_o 

tagn_i & 
tagn_o 

Tag values that provide additional information of data 
bus, address bus, and bus cycles 

tagn_o & 
tagn_i 

 

6.1.2 Types of Bus Cycles on the WISHBONE System Bus 
Data transfer on WISHBONE is implemented using two types of bus cycles: (a) the 

classic bus cycles and (b) the registered feedback bus cycles. Bus cycle is defined [104] 

as the procedure whereby digital signals affect the transfer of data across a bus by means 

of an interlocked sequence of control signals, and it is differentiated from the clock cycle 

of signal clk_i. Each bus cycle contains one or several data transfer phases.  

For the registered feedback bus cycles, signals of ack_i, rty_i, and err_i are registered at 

slave interface, which costs one additional wait cycle during data transfer. However, the 

delay of feedback loop is significantly reduced and the cycles are suitable for high speed 

applications. Additionally, WISHBONE interface that supports registered feedback 
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cycles also supports classic cycles, and can communicate to the interface that only 

supports classic cycles. 

6.1.3 Comparison of WISHBONE and AMBA System Buses 

Compared to the state of the art SoC system bus – AMBA (Advanced Microcontroller 

Bus Architecture) [108] of ARM, WISHBONE has the following differences: 

 Data bus configuration of WISHBONE is more flexible. Granularity is used to 

define the minimum unit of data transfer supported by the bus interface.  

 Tagging technique (user defined tag) of WISHBONE provides methodology to 

modify or extend the function of system bus interface. Inter-connection 

configuration of WISHBONE IP cores is also more flexible, with multiple choices 

of inter-connection modes.  

 Complexity of WISHBONE system bus architecture is lower, and the circuit area 

is relatively smaller.  

 WISHBONE inter-connection is loyalty free. Additionally, many WISHBONE 

compatible free IPs have been developed and can be adopted to implement 

particular functions in SoC design. 

Because of simplicity, flexibility, and loyalty free of WISHBONE, the proposed CABAC 

encoder is equipped with WISHBONE system bus interfaces to enable easy integration 

with other HW IPs or host processor of H.264/AVC encoding system.  
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6.2 Design of WISHBONE System Bus Interfaces for CABAC 

Encoder 

Functions of the proposed CABAC encoder can be summarized as: i) parsing and 

encoding of SE values of input packets according to the control parameters parsed from 

input packets, and ii) output packets of coded bit stream in RDO-off mode coding and 

output coding rate of each RDO mode in RDO-on mode coding. Input packets of SE 

values and control parameters of CABAC encoding are generated by the host processor 

during MB encoding procedure, while the output packets of RDO coding rate need to be 

feedback to the host processor during RDO-on MB coding mode decision, and coded bit 

stream of CABAC encoder of RDO-off mode should be sent to the output buffer of 

H.264/AVC encoder. WISHBONE interfaces are designed to support packet input and 

output process of CABAC encoder. Functional partitioning and architecture of the 

interfaces are discussed as follows. 

6.2.1 Functional Partitioning of WISHBONE System Bus Interfaces 

Function of input packets receiving and coded results output can be implemented in one 

or two WISHBONE interfaces. For single interface design, circuit area is reduced as 

interface signals are shared by both input and output procedures; and it requires only 

single channel of system bus. However, in each clock cycle, only read or write operation 

can be performed at the bus interface, and in the case that unit BP needs to output packet 

and unit BN need to read input packet, one of the two operations needs to be paused, and 

throughput of CABAC encoding pipeline is degraded. Furthermore, system bus 

occupation time is long. The reason is that: for a single master interface design, the 

master cannot estimate when the next input packet will be available, and needs to keep 
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cyc_o and stb_o high for request to read next input packet; and for a single slave interface 

design, host processor or the bit stream buffer equipped with master interface cannot 

estimate when the CABAC encoder will output next coded packet, and has to occupy the 

bus to keep read request. 

The better functional partitioning scheme adopted in this thesis is to input packet through 

a WISHBONE slave interface and output packet through a master interface. Data transfer 

is controlled by the functional block which generates packets. Packet input is controlled 

by the host processor and WISHBONE read cycle is triggered only when a input packet 

is available at host; on the other hand, packet output is controlled by the CABAC encoder, 

and write cycle is triggered when a output packet is ready in unit BP. Maximum coding 

throughput can be achieved in this partitioning scheme, and system bus occupation is 

minimized.  

6.2.2 Analysis of Support of WISHBONE Registered Feedback Cycles 

Both master and slave interfaces are designed to support registered feedback cycles of 

WISHBONE system bus in order to achieve high data rate required by CABAC encoding. 

The types of registered feedback cycles are identified according to the 3-bit cycle tag 

cti_o (cycle type identifier) generated at master interface. As shown in Table 6-2, the four 

types of registered feedback cycles are classic cycle, constant address burst cycle, 

incrementing burst cycle, and end-of-burst. 

Table 6-2: Type of register feedback cycles of WISHBONE classified by cti_o 

3-bit value of cti_o Type of registered feedback cycle 
‘000’ Classic cycle 
‘001’ Constant address burst cycle 
‘010’ Incrementing burst cycle 
‘111’ End-of-burst 
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To enable easy integration of WISHBONE classic and registered feedback IP cores, it is 

required [104] that the WISHBONE interface with registered feedback of termination 

signal (ack_i, etc.) must support classic cycle (cti_i is ‘000’). Because ack_i is asserted 

one clock cycle after assertion of stb_o in registered feedback cycle, it requires 2 clock 

cycles to complete each data transfer for classic cycle, and the maximum throughput is 

1/2 data transfer per clock cycle.  

 
Figure 6-2: One classic cycle of a WISHBONE master interface with registered feedback 
of cycle termination. 

Figure 6-2 illustrates the signals of master interface of one classic cycle in 5 clock cycles 

from cyc0 to cyc4, with two data transfers (write, and then read). Slave interface asserts 

ack_i in cyc1 to indicate that the master dat_o will be latched at clock edge of cyc2. 

Because there is no information about what master will do in cyc2, slave negates ack_i in 
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cyc2. In cyc2, master requires to read data. In cyc3, slave asserts the registered ack_i, and 

prepares read data on dat_i. At clock edge of cyc4, master latches dat_i and negates stb_o 

and cyc_o, and the classic cycle completes. 

Throughput of constant address burst cycle and incrementing burst cycle are significantly 

higher, compared to that of classic cycle. Assume burst length of the cycle is N, it takes 

N+1 clock cycles to complete N data transfers instead of 2N clock cycles of classic cycle. 

The throughput of burst increases and approximates 1 when the burst length N increases. 

Therefore, supporting of burst cycle is necessary for high speed data transfer. End-of-

burst indicates that the next transfer is the last of current burst. It is required to support 

end-of-burst if any of the two types of burst cycles is supported. 

For the proposed design of WISHBONE interfaces, because function of packet input and 

output of CABAC encoding are partitioned to the two interfaces, it is only necessary to 

support write cycle that receives input packets at slave interface and to support write 

cycle that sends out packets of coded bit stream and RDO rate at master interface. In 

CABAC encoding, packet output frequency is significantly lower than packet input 

frequency. The master interface is designed to support classic cycle, while the slave 

interface supports not only classic cycle, but also constant address burst and end-of-burst. 

As single address of slave interface is accessed, it is no need to support incrementing 

burst cycle, in which consecutive addresses are accessed sequentially during data transfer. 

6.2.3 Design of Slave Interface of WISHBONE System Bus 

The slave interface of WISHBONE system bus is designed to receive the input packets of 

CABAC encoder. It supports 3 types of registered feedback cycles including classic cycle, 

constant address burst cycle, and end-of-burst. The host processor equipped with 
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WISHBONE master interface controls the generation and transfer of input packets of 

CABAC encoder. Input packets received by the slave interface are buffered in FIFO1 of 

CABAC encoder, which is accessed by functional units of binarization and context model 

selection. Insertion of FIFO1 enables input packing receiving of slave interface and 

following packet parsing and processing steps to execute in parallel, with higher average 

throughput. An example of burst bus cycle of WISHBONE slave interface of CABAC 

encoder is shown in Figure 6-3.  
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Figure 6-3: Illustration of constant address burst cycle of WISHBONE slave interface. 

The cycle involves 8 clock cycles from cyc0 to cyc7. The 3-bit value ‘001’ of cti_i 

indicates that it is a constant burst cycle. Signal ack_o of slave is asserted in cyc1, which 

is one clock cycle after assertion of stb_i. Input packet on dat_i is latched at the next 
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clock edge if ack_i is asserted. In this example, 4 input packets are transferred from host 

processor and latched by the WISHBONE slave at clock edge of cyc2, cyc4, cyc6, and 

cyc7. In cyc6, cti_i is set to ‘111’ indicating end-of-burst, and the burst completes in cyc7. 

It is also shown in the figure that both master and slave can suspend data transfer by 

negating stb_i or ack_o, respectively. Thus, packet input speed can be constrained by the 

master and slave interfaces. Assertion of ack_o of slave interface depends on the 

following conditions: (a) FIFO1 of input packets is NOT nearly full, so that the next input 

packet can be buffered; (b) the slave interface is addressed; and (c) cyc_o, stb_o, and 

we_o are of high value, indicating master requests a write operation.  

For the interface signals, the width of input data bus dat_i is 22 bits, which is the size of 

input packet of CABAC encoder. The 4 MSBs of address bus adr_i are allocated to 

identify the slave devices connected to the WISHBONE system bus, and 16 slave devices 

can be identified. If the WISHBONE master and slave devices are connected through a 

system bus inter-connection block (INTERCON), the address bus between INTERCON 

and slave interface can be removed by applying partial address decoding scheme, in 

which adr_i  are decoded in INTERCON. 

6.2.4 Design of Master Interface of WISHBONE System Bus 

Master interface of WISHBONE system bus is designed to output packets of coded bit 

stream or rate of each tested RDO mode, which are generated in the two pipeline stages 

of unit BP (bit packing) of CABAC encoder. As aforementioned, the rate of output 

packets is significantly lower compared to that of input packets during CABAC encoding. 

The interface is designed to support only one type of registered feedback cycles: classic 

cycle. It is not efficient in timing and area to support burst cycle when burst length is only 
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1, because the timing efficiency is same compared to that of classic cycle, and interface 

complexity is higher to support burst. In CABAC encoding procedure, the probability is 

low to output packets of coded bit stream in continuous clock cycles. Therefore, burst 

cycle is not supported in the proposed system bus master interface of CABAC encoder. 

Coded results of CABAC encoder are input to the master interface from unit BP, 

including 13-bit RDO rate in RDO-on coding and coded bytes in RDO-off coding. 

Trigger signals are generated in unit BP to notify the master interface whether the output 

is RDO rate or coded bytes, and during RDO-off coding, additional flag (EOS_true) 

indicates whether the output bytes are of EOS (end of slice) coding. It is shown in Table 

6-3 the output order of coded bytes according to the values of EOS_true and Byte index. 

Excluding the confirmed OS (outstanding) bytes, 1 to 2 coded bytes can be output when 

EOS_true is 0, and 2 to 3 bytes can be output when EOS_true is 1, as the value of coding 

interval needs to be flushed out at the end of slice coding. The confirmed OS bytes are 

output after the first byte, and the number of OS bytes is based on a 3-bit counter in unit 

BP. In the WISHBONE master interface, coded bytes are packed on data bus dat_o and 

output in the order shown in Table 6-3. 

Table 6-3: Configuration of coded bytes output order of RDO-off coding 
 

EOS_true Byte index EOS byte Byte2 Byte1 Confirmed OS bytes 
(0 to 7 bytes) 

0 0 N/A N/A 1st byte Output after Byte1 
0 1 N/A 1st byte 2nd byte Output after Byte2 
1 0 N/A 1st byte 2nd byte Output after Byte2 
1 1 1st byte 2nd byte 3rd byte Output after EOS byte 

 

Design of master interface with 32-bit data bus is shown in Figure 6-4. The 32-bit width 

of data bus is commonly adopted in WISHBONE compatible IP design, which makes it 
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easy to integrate with other IP cores. Four-bit sel_o is allocated to indicate the valid bytes 

on the bus during transfer. As shown in the figure, one of two processing paths is 

triggered during packet output in the master interface according to whether CABAC 

encoder is in RDO-off mode or RDO-on mode. Multiplexers are allocated to select the 

proper output signals of system bus from the two paths. During RDO-on mode, one data 

packet (dat_o) of RDO rate is output for each RDO mode; while in RDO-off mode, coded 

bytes can be output in 1 or more packets, including one packet of first byte, one to two 

packets of confirmed OS bytes, and one packet of remaining bytes. In the proposed 

packet output procedure, it is not needed to accumulate 4 bytes before output of 32-bit 

dat_o, as sel_o is utilized to indicate the positions of valid bytes of dat_o.  

 
Figure 6-4: Data output control of WISHBONE master interface with 32-bit dat_o bus. 
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Figure 6-5: Data output control of WISHBONE master interface with 8-bit dat_o bus. 

An alternative design of master interface is also implemented with dat_o bus width of 8 

bits. As shown in Figure 6-5, rate of each RDO mode is output in two sequential packets 

in RDO-on mode, and OS bytes are output sequentially in 1 to 7 packets in RDO-off 

mode. Control logic is simpler compared to that of master interface with 32-bit dat_i. 

However, coded byte output delay is longer, as maximum of 10 packets need to be output, 

and the integratability of the CABAC encoder equipped with the interface is lower. 

6.2.5 Consideration of Data Transfer Speed of System Bus 

Long interconnection delay of system bus can limit maximal coding speed of CABAC 

encoder. Because of implementing data transfer of system bus interfaces as register 

feedback cycle, all inputs and outputs of CABAC are buffered with registers. Data 

transfer delay is only determined by transfer delay on the system bus. With proper 

insertion of buffers on the system bus similar to buffer insertion during clock tree 

synthesis, data transfer delay on the system bus will efficiently constrained with no 
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negative influence on CABAC encoding speed after integration of CABAC encoder IP in 

the SoC-based video coding system. 

6.3 Design of System Bus Inter-connection (INTERCON) 

System bus inter-connection is a key functional block of WISHBONE system bus that 

builds connection between masters and slaves according to a predefined manner. The 

block is named INTERCON in WISHBONE system bus specification [104]. Several 

inter-connection modes are supported in WISHBONE system bus. Point-to-point 

INTERCON only supports connection of a single master interface and a single slave 

interface, and is not suitable for SoC multi-device inter-connection. Shared bus 

INTERCON supports connection of multiple masters and slaves. However, only single-

channel connection is supported, and one master is allowed to initiate a bus cycle to a 

target slave through the connected channel in INTERCON. Data transfer rate of shared 

bus INTERCON is limited for high data rate video coding system. In comparison, 

crossbar INTERCON (crossbar switch) allows multi-channel inter-connection between 

masters and slaves. Each connection channel can be operated in parallel to other 

connection channels. This increases the data transfer rate of the entire system by 

employing parallelism. Crossbar INTERCON is inherently faster than traditional bus 

schemes. Crossbar routing mechanisms generally support dynamic configuration. This 

creates a configurable and reliable network system. The proposed crossbar INTERCON 

is introduced as follows. 

6.3.1 Design of WISHBONE Crossbar INTERCON 

The top-level architecture of WISHBONE crossbar INTERCON is shown in Figure 6-6. 

The INTERCON supports connection with 4 masters and 4 slaves through system bus 
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interfaces, and maximum of 4 connection channels can be established in the INTERCON 

if each master addresses a different slave. As shown in Figure 6-6, the INTERCON 

consists of 4 sub-units (named M0, M1, M2, and M3) for the function of master input 

selection & slave cyc generation and 4 sub-units (named S0, S1, S2, and S3) for the 

function of master connection arbitration & slave input selection. Sub-units M0, M1, M2, 

and M3 can connect to the corresponding interfaces of 4 WISHBONE slaves through 

system bus, and sub-units S0, S1, S2, and S3 can connect to the corresponding interfaces 

of 4 WISHBONE masters. Each of M0-M3 generates cyc signals for the 4 slaves. Based 

on the 4 cyc signals from M0-M3, each of S0-S3 sub-units makes arbitration on which 

master can connect to the slave that is connected to the sub-unit, generates Grant signals 

to M0-M3, and selects the WISHBONE input signals of the slave. Based on the Grant 

signals from S0-S3, each of M0-M3 selects WISHBONE input signals for the master that 

is connected to the sub-unit. 
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Figure 6-6: Top-level architecture of 4-channel crossbar INTERCON of WISHBONE 
system bus. 

 
(1) Master Connection Arbitration & Slave Input Selection 

The architecture of master connection arbitration and slave input selection sub-units (S0-

S3) of INTERCON is shown in Figure 6-7. WISHBONE bus cycle signal cyc_o indicates 

the request of master to initiate a bus cycle to the addressed slave. For the same slave, bus 

cycle signals of 4 masters (M0_cyc, M1_cyc, M2_cyc, and M3_cyc) generated in M0-

M3 are input to the arbiter of master connection. The bus connection of one of the 4 
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masters can be granted, and the 4-bit Grant signal is stored in registers. It is used to 

control system bus connection of the granted master to the slave in the multiplexer. The 

4-bit Grant is also connected to M0-M3 for the selection of master input signals. 

 
Figure 6-7: Round-robin arbitration of master that connects to the slave. 

Round-robin arbiter and priority arbiter can be adopted for the arbitration of mater 

connection. Compared to round-robin arbiter, the limitation of priority arbiter is that, in 

very busy systems, there is no limit to how long a lower priority request may need to wait 

until it receives a grant [109]. A round-robin arbiter on the other hand allows every 

requester to take a turn in order. The maximum amount of time that a requester will wait 

is limited by the number of requesters. In the proposed design, the arbiters in sub-units 

S0-S3 are designed as round-robin arbiters. If the currently granted master completes bus 

cycle and any of the remaining masters requests to initiate a bus cycle, the first requesting 

master in the round-robin order will be granted based on the stored Grant value.  

(2) Master Input Selection & Slave cyc Signal Generation 
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Figure 6-8: Architecture of M0 sub-unit: (a) Generation of cyc signals of 4 slaves that can 
connect to the master, and (b) selection of master input signal including dat_i and ack_i. 
 

Architecture of master input selection & slave cyc generation sub-units (M0-M3) of 

INTERCON are illustrated in Figure 6-8, with M0 sub-unit shown as an example. For the 

generation of bus cycle signal cyc of each of the 4 slaves that can connect to the master 

(Figure 6-8(a)), address comparison of master address adr_o and the predefined address 

of the slave is carried out first. If the addresses are identical, and the master is requesting 

bus connection (cyc_o is high), the generated bus cycle signal M0_cyc of the slave is set 

high, which is used for master connection arbitration in S0-S3. As address comparison is 

completed in M0-M3, computation complexity of arbitration of S0-S3 is simplified. As 

shown in Figure 6-8(b), input data bus dat_i of each master is selected from dat_o of 4 

slaves in multiplexer based on the Grant signals generated in S0-S3. Because a 

WISHBONE master can be granted to connect to only one WISHBONE slave, ack_i of 

the master is set high if any slave set ack_o high, and the master is granted to connect to 

the slave. 
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6.3.2 Compact SoC-based CABAC Encoding System 
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Figure 6-9: A compact inter-connection of CABAC encoder with other components of 
video encoder. 

 

A compact SoC-based CABAC encoding system is shown in Figure 6-9, which consists 

of the proposed CABAC encoder and WISHBONE INTERCON. Input packets of SE and 

control parameters are connected from interface of Master0 to M0 sub-unit of 

INTERCON. WISHBONE slave interface of CABAC encoder is connected to the S0 

sub-unit of INTERCON. An internal channel is granted from M0 to S0, which enables 

the input packets to transfer from Master0 to CABAC encoder. The master interface of 

CABAC encoder is connected to M1 of INTERCON to output packets of coded results. 

Based on the adr_o of master interface bus cycle, internal channel of M1 to S1 or M1 to 

S2 can be connected in INTERCON that enables packets of CABAC coded bit stream to 

be sent to Slave1 interface, and RDO rate to be sent to Slave2 interface. Interfaces of 

Master0 and Slave 2 can be located in the host processor that controls video coding of 

H.264/AVC, while interface of Slave 1 can be connected to the buffer of coded frames of 

video encoder.  Two channels of crossbar INTERCON are utilized in this compact 
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CABAC encoding system, and no conflicts of packet input and output exist, compared to 

the system with shared bus INTERCON. 

For the prospect of SoC-based H.264/AVC encoder based on the WISHBONE system 

bus, the crossbar INTERCON can be scaled up to allow more master and slave devices to 

connect to the WISHBONE system bus. With the accomplishment of other HW IP cores 

such as ME & MC, intra prediction, integer transform and quantization, in-loop 

deblocking filtering, etc., the IPs are connected to the INTERCON through the system 

bus interface. Encoding procedure of H.264/AVC video sequence can be managed in a 

timing-efficient manner, which enables the IP cores to encode in parallel, reduces average 

encoding time per MB, enhance the utilization efficiency of connection channels, and 

minimize the bandwidth of system bus. 
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Chapter 7 Design, Synthesis, and 
Performance Comparison 

In this chapter, design procedure and performance of the proposed CABAC encoder are 

discussed. Design and verification steps of the encoder are introduced first, followed by 

results discussion of synthesis & physical design. Then, contributions of other team 

members such as MBIST circuit insertion are briefly discussed for completeness. The 

performance of the ASIC-implemented CABAC encoder is analyzed in terms of its 

acceleration over CABAC software encoding, influence on the overall video encoding 

system performance, and the efficiency of context model access. Finally, comprehensive 

performance comparison is given for the proposed encoder and the existing CABAC 

encoder designs. 

7.1 Design & Verification Flow of CABAC Encoder HW IP 

In this section, design and verification flow of the CABAC encoder are introduced 

separately. Design steps of the proposed CABAC encoder are introduced first. Functional 

verification strategies of the encoder are discussed then, including verification strategies 

of each design step, complete verification flow of ASIC design, and FPGA prototype. 

7.1.1 Steps in Designing a CABAC Encoder 

Complete functions of the proposed CABAC encoder introduced in previous 3 chapters 

are implemented and verified in 7 design steps, as illustrated in Figure 7-1. The step-by-

step design & verification procedure of CABAC encoder enables function verification 

and removes potential problems in the early stage, and reduces verification difficulty. In 
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the encoder design procedure, functional units and blocks that generate CABAC output 

results are designed in earlier steps and the units or block of the additional functions are 

designed in later steps. The benefit is that reference coded results in RDO-off mode that 

are generated from SW encoder keep unchanged and verification procedure is simplified. 
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: Context model selection
: Context model access
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coded SEs of neighboring MBs

: CS that NOT needs to refer to 
coded SEs of neighboring MBs

Step1: Design BAC
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Step4: Design CS2

Step5: Design CS1

Step6: Design Block3, RDO 
related function of Block1 & 
Block2

CABAC encoder 
HW IP design steps

: Binarization
: Coding bin serial output to CA 

: Coding interval subdivision & 
renormalization

: Bit packing of output bits

Step7: Design WISHBONE 
system bus interfaces

 
Figure 7-1: Design steps of CABAC encoder. 

 

In Step1, binary arithmetic coding (BAC) in unit AR and BP is implemented. Context 

model of regular bin is provided in the input test vectors in Step1, which are used to look 

up sub-range of LPS of coding interval. In Step2, context RAM access operations are 

implemented in unit CA, including read of context line that contains the accessed context 

model from context RAM and write of context line that contains the updated context 
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model to context RAM. CtxIdx (context index) is provided in the input test vectors to 

address the accessed context model. Functions of Block 2 is completed after Step2. In 

Step3, binarization of SE value and serial generation of bin packet are implemented in 

unit BN and unit BS, with CtxIdx of regular bin provided from input. In Step4 and Step5, 

context model selection is designed in unit CS2 and CS1 respectively. Unit CS1 is the 

most complex unit of SE encoding with RAM access of coded SEs of neighboring blocks 

during selection of context model. After Step5, Block 1 is built, and CABAC encoding 

functions of binarization, context modeling, and binary arithmetic coding are completed. 

In Step6, the additional functions including context model initialization of slice 

initialization and context state backup and restoration of RDO-on mode coding are 

implemented in Block 3 and other RDO related functions are added to Block 1 and Block 

2, including coding state backup and restoration of coded SEs & coding interval and 

RDO coding rate output. In the last step (Step7), WISHBONE system bus interfaces with 

a FIFO buffer of input packets are finally designed and integrated into the CABAC 

encoder. This completes the circuit realization of the proposed CABAC encoder. After 

RTL-level function implementation in the 7 design steps, synthesis and physical design 

are carried out targeting at two types of foundry process technologies, and the results will 

be given in the next section. 

7.1.2 Functional Verification of CABAC Encoder 

The encoder is verified using two sets of video sequences: CIF (352×288) and HDTV 

720p (1280×720), and each set of sequences contains 1 or more GOPs (Group of Picture), 

and each GOP contains I, P, and B frames/fields. The encoder is tested in various video 

encoding configurations, including progressive/interlace coding control including frame, 
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field, picture-level adaptive frame/field (PAFF), and MB-level adaptive frame/field 

(MBAFF), RDO-off/RDO-on, wide range of encoding bit rates controlled by QP, and 

various video encoding complexities controlled by the parameters including ME search 

range, number of reference frames, number of inter prediction modes, etc. 
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Figure 7-2: Verification of the HW IP block. 

 

Verification of CABAC encoder design is illustrated in Figure 7-2. Two bit streams are 

generated and compared with each other. Stream 1 is generated from the reference SW 

[97] without any HW-assisted circuits using a video test sequence.. It can contain coded 

bit stream in RDO-off mode, or RDO coding rate in RDO-on mode. Stream 2 is 

generated by replacing the respective CABAC SW function with the proposed CABAC 

encoder IP block, and feeding it with the parameter files generated by the same video test 

sequence. During comparison, any differences between Stream 1 and Stream 2 would 

indicate a design error in the CABAC HW IP.  

(1) Verification at Different Design Stages 
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The input to the CABAC SW encoder is redirected to a parameter file of test 

vectorswhich is then used as input of CABAC HW encoder, assuming the same system-

level host processor. For each design step discussed previously, different sets of test 

vectors are utilized to verify encoder function. Detailed descriptions of required 

parameters of input test vectors at each design step are listed in Table 7-1.  

Table 7-1: Testing vectors of CABAC encoder at different design steps 

Steps Units Description of input test vectors of CABAC encoder 
 

Step1 BAC (unit AR 
& BP) 

Bin packet containing bin, bin type, and context model 

Step2 unit CA Bin packet consisting of bin, bin type, CtxIdx 
Step3 unit BN & BS Packet of SE type & value, CtxIdx of regular bin  
Step4 unit CS2 Packet of SE type & value, CtxIdxInc of regular bin that 

needs to reference coded SE of neighboring blocks (calc by 
CS1) 

Step5 unit CS1 Packet of SE type & value 
Step6 Block3 Packet of SE type & value, Block3 ctrl parameters  

(ctx initialization, RDO ctx state backup & restoration), and 
RDO coding rate accumulation and output 

Step7 Sys Bus I/F dat_i of WISHBONE sys bus contains packet of step6 
  

In order to accelerate verification of complex logic, excluding reference coded results of 

encoder, intermediate reference results are generated for some design steps to assist 

verification, such as context model value in Step2, CtxIdx of regular bin of unit CS2 in 

Step4, and CtxIdxInc values used to verify context model selection of unit CS1 in Step5. 

One efficient verification strategy of the step-by-step encoder design is to compare 

intermediate coding state values of current step with previous step during verification in 

order to quickly locate time slot of encoding error and position of bugs. 

(2) Verification of ASIC Design Flow and Approach of FPGA Prototype 
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In the ASIC design flow, the encoder is tested at RTL level, gate level, and post-layout 

logic simulation. At RTL level, the encoder is verified after each design step to confirm 

the correctness of newly implemented function unit or block. Gate-level and post-layout 

verifications of the encoder are also carried out to insure functional consistence utilizing 

netlist and SDF (standard delay format) file that provides timing delay information of 

cells and connecting wires.  

FPGA prototyping is useful to find and solve design issues such as timing or area at early 

stage, and it is widely used in digital circuit design. Speed of FPGA verification is 

significantly faster compared to logic simulation. Therefore, FPGA prototyping is also 

attempted in this thesis in addition to the ASIC design to verify design prototype for the 

entire CABAC encoder design with system bus interfaces integrated. Xilinx ISE [110] 

and Modelsim [111] are adopted to verify the encoder targeting at Virtex-II Pro FPGA at 

implementation steps of synthesis, mapping, and place & route. After logic simulation 

targeting at Virtex-4 library, bit stream of the design is generated and downloaded to the 

FPGA. ChipScope of Xilinx [112] is utilized to insert testing probes on the design before 

generation of bitstream, monitor probe values during hardware emulation, and transfer 

coded results to computer throughput USB cable. Design is successfully verified in two 

test cases. In case I: testing block and CABAC encoder are implemented in Single FPGA 

chip, and 100 MHz clock frequency is achieved. In case II, as shown in the following 

figure: two FPGAs are used for testing block and CABAC encoder. Clock frequency of 

case II is 20 MHz, because interconnection delay is long between two FPGA boards & 

interconnection wires. As the design is fully verified, the encoder can be integrated 

directly into FPGA video coding system. 
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Figure 7-3: FPGA implementation and verification platform 

7.2 Results of Synthesis and Physical Design 

The scope of this research includes logic synthesis of the SoC-based CABAC using 

Design Compiler [113], and not the physical layout of the proposed design. Thanks to Xi 

Jiang, the proposed CABAC encoder was laid out using TSMC 0.13 μm process to the 

GDS-II stage targeting at TSMC 0.13 μm process using Astro [114]. Because of 

significant differences of implemented functions of reported designs and proposed 

encoder, functional completeness of CABAC encoder designs are analyzed first, before 

the result discussion of synthesis and physical implementation. 

Most of reported designs only implement functions of context model access (CA) and 

BAC or only implement BAC, which are only part of functions of Block 2 of the 

proposed CABAC encoder, and it means that the designs only complete Step1 or Step2 of 

the 7 steps of CABAC encoder. In comparison, the proposed design fully supports 

CABAC encoder function including binarization and context model selection in Block 1; 
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context model access and BAC in Block 2; and fast context model initialization with a 

throughput of 4 models per cycle and fast RDO context state backup & restoration 

operations in Block 3. Binarization and context model selection of CABAC were not 

implemented in [86, 87, 93, 105], and it was partially implemented in [95].  

The proposed CABAC encoder is the only design that fully supports both SE encoding 

and RDO related operations in the HW IP. The supported RDO related functions include 

RDO coding rate output and 3 types of coding state backup & restoration operations for 

the state of context models, coded SEs of neighboring block, and coding interval of BAC. 

In comparison, RDO is not fully support in all the other reported designs, and the 

CABAC encoder [93] that focuses on HW assisted RDO only supports context state 

backup & restoration. In order to support CABAC encoding in both RDO-off and RDO-

on modes, more complex encoding control logic is required in the proposed design to 

implement similar functions such as CA and BAC. 

The encoding pipeline throughputs (bin/cycle), synthesis/layout maximum operating 

frequencies (cycle/s), and areas (number of 2-input NAND gates or mm2) of the proposed 

design and other reported designs targeting at CMOS process technologies or FPGA are 

compared in Table 7-2.  
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Table 7-2: Encoding pipeline throughput, max frequency, area of CABAC encoders 

Design Process 
technology 

Bin/
cycle

Clock 
Freq 
MHz 

Circuit area of the implemented 
functions 

Li06 
[86] 

0.35 μm syn. 
ROHM 0.59 150 4.57K gates (only part of Block 2) 

4.1Kb RAM 
Kuo06 

[87] 
0.18 μm syn. 

TSMC 1 200 0.31mm2 (only part of Block 2) 

Chen07 
[89] 0.15 μm syn. 0.56 333 13.3K excluding mem 

(CtxIdxInc calc. at host) 
Liu07 
[90] 

0.13 μm syn. 
TSMC 0.67 200 34.3K excluding mem 

Nunez06 
[93] 

XilinxV4 
FPGA 1 130 1158 slices ( encoder only for part of 

block 2: 856 slices) 
Osorio06 

[95] 
0.35 μm syn. 

AMS 
1.9 ~
2.3 186 19.4K  excluding mem 

(Block 2, partial of binarization) 
Shojania05 

[105] 
0.18 μm syn. 

TSMC 0.33 263 0.423 mm2 (only part of Block 2) 

0.13μm  
TSMC 

post-layout 

328 
(worst- 
case) 

1.41 
mm2 

Including: 
WB I/F, all RAMs, 

ROMs 
  Total unit CS1 Block 3 

0.13 μm syn. 
TSMC 578 44.6K 15.2K 8.9K 

This 
design 

0.35 μm syn. 
AMS 

1 

186 31.2K 11.1K 5.7K 

 

In terms of areas, the proposed design is relatively larger than others. This is because the 

proposed design offers more complete CABAC encoder functions including context 

model selection and full support of RDO, as aforementioned. Reported designs that 

implement similar encoder functions are compared. The proposed functional Block 3 – 

unique to all reported designs – takes up 8.9K gates (20.0% of circuit area) in 0.13μm 

process; while unit CS1 of this design occupies 15.2K gates (34.1% of circuit area) in the 

same technology, because large number of registers is allocated to store coded SE data. 

Design of unit CS1 and Block 3 occupy over 54% of encoder logic area, while Block 2 
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occupies 23.2% including RDO support in CA & BAC, and function of binarization and 

context model selection of CS2 utilize 18.6%. Only design in [90] supports similar 

function of unit CS1 with 15.9K gates of the block. However, in [90], RDO is not 

supported in the block, and SE access delay of neighboring MB is significant. In terms of 

throughput, those of [86, 89, 90, 105] are lower than 1 bin/cycle, while those of [87, 93], 

and the proposed design are 1 bin/cycle, and [95] is at round 2 bin/cycle. If the maximum 

number of bins processed per second is a determining factor, the proposed design offers 

higher processing speed (bin/s) compared to[86, 87, 89, 90, 105]. Design [95] reportedly 

offers the highest processing speed. Performance of the proposed encoder and [95] will 

be compared in details in the later section of this chapter. 

The layout of the proposed design is completed with TSMC 0.13 μm CMOS process, 

going through design flow of floor planning, power ring and power straps insertion, 

placement and clock tree synthesis (CTS), routing, and DRC & LVS checking. The chip 

layout is shown in Figure 7-4.  The core size of encoder is 1.41 mm2 with core utilization 

of 90.8%. Post-layout simulation can be run at a clock frequency of 328 MHz in the 

worst-case corner (1.08V, 125˚C) with constant encoding pipeline throughput of 1 

bin/cycle. Up to now, this design is the only CABAC encoder reported with the most 

precise post-layout results.  
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Figure 7-4: Chip Layout of the CABAC Encoder.  

7.3 Power Reduction Strategies & Power Consumption Analysis 

Power consumption has always been a topic of great interest when comes to designs for 

portable applications. In our CABAC design, all the CABAC functions including support 

for RDO have been implemented with more local register buffers and larger memory 

allocation. Thus, it is important to implement power reduction techniques wherever 

possible to reduce power consumption.  

RTL-level power reduction techniques are adopted in the proposed design. Net switching 

power of RAM blocks is reduced by decreasing RAM access frequency of both context 

RAMs and SE RAM with the proposed context model access scheme and MB-based SE 

RAM access discussed in Chapter 5.  

Clock gating is applied to the whole CABAC encoder design to gate the clock signals to 

the registers of different function blocks and constrain cell internal power of large 

number of registers of encoder. During synthesis, clock uncertainty is reasonably defined 

to estimate clock latency across clock gating cells, and hold time violations are resolved 
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to ensure next data input of register arrives after clock edge of gated clock. Function 

correctness of the encoder is verified after applying power reduction techniques.  

In order to precisely evaluate power consumption with the proposed designs, gate-level 

SAIF (Switching Activity Interchange Format) file is generated from CIF and HDTV 

720p sequences simulation in both RDO-off and RDO-on modes in several test 

conditions. The SAIF file is imported to the state-of-the-art power analysis tool Power 

Compiler [115]. Dynamic power of the design is significantly reduced with power 

reduction techniques applied. 

Available power consumptions of reported designs ([87], [105]) and proposed design 

(RDO-off mode) are precisely compared using same TSMC 0.18µm CMOS process at 

same clock frequency of 200 MHz, as listed in Table 7-3. For the same function block of 

Block 2 and Normal RAM access, power consumptions of [87], [105], and this design are 

20.7 mW, 36.5 mW, and 19.6 mW, respectively. This design achieves power reduction of 

6% and 46% compared to [87] and [105], indicating that power is more efficiently 

constrained compared to Kuo’s low power cache-based design.  

Table 7-3: Gate-level power consumption (mW) of reported designs and proposed design 

Design Total 
power 

Power of Block 2 and 
Normal context RAM access 

Kuo06 [87] 
(partial of Block 2 func & RAM acc) N/A 20.7

(200MHz, 0.18µm)

Shojania05 [105] 
(partial of Block 2 func & RAM acc) N/A 48.0 

(263MHz, 0.18µm) 
36.5

(263MHz, 0.18µm)

This design at 200Mbps, 0.18µm TSMC 
RDO-off mode 48.9 25.7  

(w RDO)  
19.6 

(w/o RDO)
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For the power consumption on the host processor, low power embedded processors 

typically consumes 0.2 mw to 2 mw per MIPS [116], such as the ARM 9-11 series and 

the PowerPC. In the instruction-level analysis of H.264/AVC reference SW encoder [97] 

in QP 12 to 28, it is found that 58.8% of CABAC computation still need to be calculated 

by the host processor in [87] and [105], which is an average of 1.54E+04 MIPS. Even if 

power-efficient embedded processor is assumed with 0.2 mW/MIPS, 3.09 W will be 

consumed on the host processor of reported designs, while this part of computation is 

entirely implemented in the proposed HW encoder. Therefore, the total power 

consumption of the proposed CABAC encoder is significantly lower compared to the 

reported designs. 

Power consumption of whole encoder of the proposed design in TSMC 0.13 µm CMOS 

process is evaluated in several video coding configurations, as shown in Table 7-4. In the 

RDO-off CIF test at bit rate of 980 Kbps, this design only consumes 0.087 mW at clock 

frequency of 1.3 MHz. To support full RDO-on coding of CIF sequence at 490 Kbps, the 

encoder consumes 9.95 mW at 211.5 MHz. To support HDTV 720p 60 fps RDO-off 

coding at 8.9 Mbps, power consumption of the encoder is 0.79 mW. Power consumption 

of the proposed encoder is higher in RDO-on mode because of significantly higher input 

SE packet frequency. 

Table 7-4: Power consumption of the proposed encoder in 3 video coding configurations 

Video 
format 

Clock 
(MHz) 

RDO 
mode 

Bit 
rate 

Power 
(mW) 

CIF, 60 fps 1.3 Off 980 Kbps 0.087 
CIF, 30 fps 211.5 On 490 Kbps 9.95 
720p, 60 fps 11.6 Off 8.9 Mbps 0.79 
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Table 7-5: Distribution of power consumption of the proposed CABAC encoder in RDO-
on / RDO-off mode coding 

RDO 
Mode Memory FIFOs Block1 Block2 Block3 WB

I/Fs
Normal 
RAM 

3 Func
Blocks

RDO-off 27.0% 9.1% 18.9% 40.4% 3.4% 1.0% 12.3% 62.6%
RDO-on 28.3% 8.9% 20.5% 36.3% 4.6% 1.0% 11.0% 61.5%

 

The average distribution of power consumption of the proposed CABAC encoder in 

different function blocks are listed in Table 7-5 for RDO-off/RDO-on modes. As shown 

in the table, large percentage of the encoder power is consumed by Block 1, Block 2, and 

memory block, while the power consumption of WISHBONE system bus interfaces is 

only 1.0%. Table 7-5 illustrates that percentage of power consumption of Block 3 and 

Memory block increases in RDO-on mode. It is because in RDO-on mode, Block 3 and 

context RAMs are more frequently accessed for context state backup & restoration of 

P8×8 mode decision. In RDO-on mode, unit BP (bit packing) of Block 2 consumes less 

power as bit packing related logic is idle, and encoding pipeline stages of unit CA and 

AR of Block 2 can also turn idling after bin packet processing of one RDO mode, and 

before high-level RDO mode decision and receiving of input packets of next mode.  

The P8×8 RDO mode decision is not frequently triggered during RDO-on coding 

compared to some of other RDO modes such as Intra4×4, and in some situations such as 

HD videos with complex textures and motions, P8×8 mode does not contribute 

significantly to the bit rate reduction. Therefore, it is reasonable to constrain the power 

consumption of the P8×8 mode related function blocks. Block 3 and unit CS1 are the two 

major functional blocks that control the backup & restoration of context state and state of 

coded SEs during P8×8 coding, and the two blocks occupy over 54% of logic area of 
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CABAC encoder, because in unit CS1 large local buffers are allocated to temporarily 

store coded SEs and 5 pipelines are utilized in Block 3. After clock gating is applied, 

dynamic power of unit CS1 and Block 3 is efficiently reduced, consuming 9.5% encoder 

power in RDO-off mode and 11.0% in RDO-on mode. 

7.4 MBIST Circuit of Memory Block of CABAC Encoder 

CABAC encoder requires frequent access of context models from context RAMs and 

access of context model initialization parameters from ROM tables during slice 

initialization. Enhance testability of the Memory Block of the encoder is another design 

consideration. Test circuit insertion procedure of memory blocks is not similar to the scan 

chain insertion of registers of function logic. MBISTArchitect of Mentor Graphics [117] 

is employed to generate and insert complete RTL-level Built-In-Self-Test (BIST) logic 

for the context RAMs and ROMs of Memory Block. After MBIST circuit insertion, the 

RTL-level architecture is an integration of the original coding logic together with the new 

test circuits required for BIST purposes. The encoder is able to either do the normal 

coding function or perform memory self test when activated.  

 
Figure 7-5: BIST testing circuits of memory block, including RAM BIST and ROM BIST. 
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A wide range of test algorithms that offer high fault coverage can be selected.  March2 

and ROM2 algorithms are chosen for RAM and ROM test respectively because they both 

cover a wide range of faults in short test procedure. The test mode is triggered when 

test_enable is set to 1, otherwise the CABAC encoder functions as normal.  The 

successful completion of memory test is indicated by logic 1 in test_done and logic 0 in 

test_fail in the RAM test, as shown in Figure 7-5. If any fault is found, test_fail goes high 

and the test ceases.  RAM test can be reset at any time to initialize the test, while BIST 

clock uses the same clock as the encoder.  For ROM test shown in Figure 7-5, all values 

read from ROM are compressed into a signature by a compressor, and it is in turn 

compared with a reference signature when the test is done. The test fail signal goes high 

in the case of signature mismatch. Compared to the default scan-out result checking 

scheme of ROM BIST, this scheme with local comparator is simpler and more time-

efficient.  

In order to contain MBIST capabilities for the CABAC encoder, input BIST signals from 

BIST controller and the normal memory input signals are selected by the multiplexer at 

memory interface according to test enable signal(s).  ROM BIST capabilities are added to 

the 4 ROM tables of context model initialization parameters, and 4 RAM BIST 

controllers are allocated, including 1 for Normal RAM & Temp RAM, 1 for Best RAM 

and P8x8 RAM, 1 for Address list, and 1 for the FIFO buffer RAM blocks. The memory 

blocks can be self-tested simultaneously or selectively according to the test scheme. The 

BIST circuits of ROMs, context RAMs, and FIFOs occupy 4.0 K gates in total in 0.13 

µm CMOS process, which is not significant compared to the encoder area.  Influence on 

the encoder clock frequency is trivial, because critical path is not located in the test logic. 
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It is necessary to integrate MBIST and logic test circuits into the proposed encoder IP 

when the design is to be fabricated or integrated into a video encoding system as a hard 

IP in the further work. 

7.5 Performance Comparison 

In the following subsections, performance of the proposed CABAC encoder is evaluated 

from the aspects of CABAC encoding acceleration, encoding throughput, and impact of 

CABAC encoder IP on the overall system performance. Performance of the CABAC 

encoder is compared to two reported designs to illustrate the advantages of the proposed 

design in context model access efficiency and encoder function completeness. 

7.5.1 CABAC Encoding Speed Performance of the Encoder 

(1) Acceleration of CABAC Encoding 

In order to evaluate the speed up of encoding of the proposed CABAC IP, the timing 

performance of the proposed top-level CABAC encoding architecture is compared to that 

of running reference SW CABAC encoder on host processor of the video encoding 

system. It is done by measuring the time taken by each to perform CABAC encoding of 

the same test sequence. Let tCABAC_top denotes the encoding time taken by the proposed 

top-level CABAC architecture, and tref_SW denote the time taken by the reference SW 

encoder, the design objective is to achieve significant time-saving as shown in (7-1).  

SWreftopCABAC tt __ <<  (7-1) 

It is further assumed that the operating clock frequencies of host processor and the HW 

CABAC encoding architecture are similar. Because the current processor core embedded 

in the FPGA chip such as MicroBlaze [118] in the Xilinx Virtex-4 platform can achieve 
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clock frequency up to 200 MHz, it is reasonable to estimate that an RISC processor core 

can work at the clock frequency of 300~500 MHz which is similar to the clock frequency 

of HW CABAC encoder generated by synthesis and physical design tool. Therefore, the 

expression for number of cycles corresponding to (7-1) can be derived as: 

SWreftopCABAC cc __ <<  (7-2) 

For SW/HW co-design architecture of CABAC encoder, cycle number of top-level 

CABAC encoder CCABAC_top consists of three parts: cycles of HW IP (CHW_IP), cycles of 

SW non-IP (CSW_nonIP) running by the host processor, and cycle of data transfer delay 

from host processor to HW IP (Ctransfer_latency). If encoding function of SW non-IP, HW IP, 

and data transfer are sequential executed, CCABAC_top is the sum of three parts: 

latencytransfernonIPSWIPHWtopCABAC cccc ____ ++=  (7-3) 

CSW_nonIP of the proposed design is minimized compared to all reported designs, because 

CABAC encoding functions are full implemented in HW IP, and the host processor only 

needs to re-package the input SE packets and control parameters. CSW_nonIP is also 

significantly lower compared to CHW_IP. Moreover, HW IP and SW non-IP are processing 

CABAC HW input packets in parallel, and CHW_IP is significant larger compared to 

CSW_nonIP. Thus, CSW_nonIP and transfer delay Ctransfer_latency can be ignored in (7-3), and 

CCABAC_top can be represented by CHW_IP for the proposed top-level CABAC encoding 

architecture. The acceleration of CABAC encoding is illustrated in Table 7-6, in which 

number of cycles of HW IP, cycles of reference SW encoding, and acceleration times of 

the HW IP are listed for coding test of one GOP CIF format Foreman sequence at 3 QP 

values.  
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Table 7-6: Speed-up of CABAC encoding of the HW IP compared to SW 

RDO mode QP 24 28 32 
CHW_IP 3.2E+05 1.9E+05 1.2E+05 
Cref_SW 4.6E+07 2.8E+07 1.8E+07 RDO-off 

Speed-up 145 147 153 
CHW_IP 8.0E+07 6.3E+07 5.2E+07 
Cref_SW 2.1E+09 1.6E+09 1.2E+09 RDO-on 

speed-up 26 25 24 
 
In RDO-off mode coding, speed-up of HW CABAC encoder are significant in different 

QPs, and it is more efficient in high QP (low bit rate). It is because the percentage of 

regular bins is proportional, and SW encoding of regular bin is inefficient, which requires 

memory access in multiple cycles. In RDO-on mode, speed-up is relatively lower 

compared to RDO-off mode. This is because in RDO-on coding, CABAC encoding 

pipeline is empty when coding rate is output when all bins of current mode are encoded, 

and the multi-stage pipeline is reloaded when the mode decision is made, and SE packets 

of next RDO mode are received by the encoder. Pipeline efficiency is degraded; however, 

the encoding speed of proposed encoder is still faster in RDO-on mode. Speed-up can be 

further increased if the RDO mode decision algorithm of host processor is adjusted. SE 

packets of the next RDO mode can be generated before the coding rate of current mode is 

calculated in the encoder IP, if the decision of next RDO mode does not depend on the 

coding rate of current mode, such as intra prediction mode decision of 4×4 blocks. 

(2) Constant Throughput of CABAC Encoder 

Although encoding throughput is limited by the maximum throughput of BAC pipeline 

stages, it is also influenced by the performance of previous encoding stages. For the full 

HW CABAC encoder design, SEs of residual blocks are generated during binarization. 

Bin strings of one residual block cannot be generated until all values of residual 
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coefficients are received. Therefore, bubbles can be inserted in the pipeline when the bin 

string of next SE is not available. Additionally, context model selection is also a complex 

procedure when the coded SEs of neighboring blocks needed be referenced and accessed 

from SE RAM, in which situation pipeline can be stalled when the CtxIdxInc calculation 

of regular bin cannot be completed when CtxIdx is needed. In this thesis, the problem of 

residual SE generation is released by (a) input run-level pairs instead of all coefficients of 

residual block to reduce residual input cycles, (b) calculate SEs during run-level pair 

input procedure, and (c) insert FIFO buffer after unit BN. Context model selection is also 

accelerated by partitioning the function in unit CS1 and CS2, the pre-calculation of  

CtxIdxInc of unit CS1 in parallel with binarization of BN. Average throughput of the 

entire encoder is tested in one GOP of CIF Foreman sequence in the QP range of 12 to 32. 

As shown in Table 7-7, throughput of the encoder is constant in the whole QP range. 

Pipeline stall probability is minimized to 1% or even lower, and the stall is only caused 

when FIFO of bin string is empty and SEs of next residual block are still being processed 

in unit BN. The average throughput of encoder is 0.99 bin/cycle, which is quite 

approximate to the maximum throughput of 1 bin/cycle of CABAC encoding pipeline. In 

comparison, actual throughput of [90] and [95]  are degraded, compared to the reported 

maximum throughput, as design of binarization and context model selection is inefficient 

and encoding pipeline stall frequency is high. It will be further discussed in section 7.5.3.  

Table 7-7: Average throughput of the proposed CABAC encoder in video coding tests  

QP 12 16 20 24 28 32 
Total encoding  

cycles 1874123 1103743 566390 314376 190255 117383 

bin number 1855991 1096048 562211 311756 188186 115195 
Avg throughput 0.990 0.993 0.993 0.992 0.990 0.981 
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(3) Worst-Case Analysis of Proposed CABAC Encoder 

For the worst-case analysis, the H.264/AVC encoder is tested in HDTV 720p 60fps 

coding, with all encoding tools turned on including full RDO mode. The best coding 

performance is achieved at the cost of high computation. It is found that to achieve output 

bit rate of 10.7 ~ 24.4 Mbps, CABAC encoder needs to support encoding speed of 0.77 ~ 

1.52 Gbin/s in RDO-on mode, which is beyond the processing speed of any of the 

CABAC encoder designs at current stage. For the proposed CABAC encoder at post-

layout stage, a maximum encoding speed of 325 Mbin/s at worst-case corner (1.08V, 

125˚C) is supported. However, in the typical case, the post-layout design can work at 

significantly higher encoding speed of over 500 Mbin/s. To achieve HDTV real-time 

RDO coding, simplified RDO-on mode may be adopted to reduce RDO testing modes, 

and the scheme of parallel encoding of multiple slices of same frame on multiple 

CABAC encoding engines may be applied. 

7.5.2 Performance Comparison of Context Model Access Efficiency 

The performance of context model access of the proposed design is evaluated from two 

aspects: (1) efficiency of context RAM read & write access; and (2) efficiency of context 

state backup & restoration operation. The performance is compared with [93], which is 

the only reported design that fully supports different RDO context state backup & 

restoration operations. The influence of context RAM reallocation is also evaluated. 

(1) Comparison of Context RAM Read & Write Access Efficiency 

CABAC encoder is tested using 4 CIF video sequences: Foreman, Mother & Daughter 

(M&D), Coastguard, and News, with QPs set at 12, 16, 20, 24, 28, and 32 in both RDO-
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off and RDO-on modes. The context RAM read & write access frequency ratio of this 

design over [93] is illustrated in different coding conditions.  

 RDO-off mode 

In the RDO-off mode coding test of IPB video sequence (2 GOP, 19 CIF frames), the 

averaged context RAM access frequency ratio of this design over [93] (access ratio) in 

the QP range of 12 to 32 is shown in Table 7-8. With techniques of both context line 

access scheme and context RAM reallocation applied, the context RAM access frequency 

of this design is 26.1% to 33.2% of that of [93] in the 4-sequence tests, with an average 

of 28.4%. The RAM access frequency of this design is significantly lower than [93]. 

Table 7-8: Average context RAM access frequency ratio (This design over [93] in RDO-
off mode coding) 

Sequence RAM access ratio 
Foreman 28.2% 

M&D 33.2% 
Coastguard 26.2% 

News 26.1% 
Average 28.4% 

 

Applying the context line access scheme alone, the average access ratio of this design 

over [93] is 33.9%. After context RAM reallocation, the average RAM access frequency 

of this design further reduces 16.1%, as shown in Table 7-9, indicating that the 

reallocated context RAM efficiently reduces context RAM access frequency. 
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Table 7-9: Reduction of RAM access frequency of the proposed encoder, attributed to 
Context RAM reallocation 

Sequence RAM access reduction
Foreman 13.7% 
M & D 14.6% 

Coastguard 18.8% 
News 17.5% 

Average 16.1% 
 

Figure 7-6 illustrates the access ratio with respect to QP. In the low QP range, RAM 

access ratio of sequence Coastguard is lower (more efficient), while access ratios of 

M&D and News are higher. However, in the high QP range, the access ratio of 

Coastguard increases rapidly. For sequence News, variation of access ratio is small in the 

whole QP range. 
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Figure 7-6: Context RAM access frequency ratio of this design over [93], during RDO-

off coding in the QP range of 12 to 32 of 4 typical video sequences. 
 

The access ratio is more sensitive to the change of QP if the total energy of transform 

coefficients is more scattered in frequency domain (low and high frequency coefficients), 

such as Coastguard. In comparison, if the energy of transform coefficients concentrates 
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more in the low frequency, such as News, the access ratio is more stable as QP changes, 

compared to that of Coastguard. 

In the low QP range, context RAM access of high motion sequences Coastguard is more 

efficient with lower access ratio, while RAM access ratio of low motion sequence M&D 

and News is higher. This is because higher motion of video sequence introduces larger 

MVD and residual blocks with more non-zero coefficient after quantization, which 

reduce the context RAM access ratio. However, in high QP range, access ratios of high 

motion sequences increase more rapidly. At QP 32, access ratio of Coastguard is highest 

among all sequences. In comparison, low motion sequence News has lower access ratio. 

As QP increases, bit rate of Coastguard reduces more rapidly compared to that of M&D 

and News. As motion estimation related SEs need to be processed in all QP range, 

variation of RAM access ratio and bit rate is caused by the change of quantized residual 

coefficient. Prediction error energy of Coastguard is more evenly distributed in low and 

high frequency range, and less energy is kept as most coefficients are quantized to 0 in 

high QP coding, and access ratio increases rapidly. Residual coefficients energy of News 

is more concentrated in low frequency range, and more energy is kept and more non-zero 

coefficients are kept after high QP quantization. Therefore, context RAM access ratio of 

News is lower in high QP.  

 RDO-on mode 

The variation of RAM access frequency of P or B frames in the same GOP is very small 

in the video coding tests. Because computation complexity increases significantly during 

RDO coding, proposed design is tested with the 1st I, P, and B frame in RDO-on mode. 
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Figure 7-7:  Context RAM read and write frequency access ratio of this design over [93], 
during RDO-on coding. The average access ratios of I, P, and B frames of 4 video 
sequences in QP range of 12 to 32 are shown. 
 

Figure 7-7 shows the average RAM read frequency ratio (read ratio) and RAM write 

frequency ratio (write ratio) of this design over [93] in the QP of 12 to 32. Average read 

ratios are 22.4% (I), 23.9% (P), and 24.1% (B), and write ratios are 14.5% (I), 15.3% (P), 

and 15.4% (B).  RAM access of News is more efficient compared to that of other 

sequences. For each sequence, the read and write ratios of P and B frames are higher than 

I frames, because the percentage of non-residual SE in the P or B frame is higher, and 

RAM access efficiency of non-residual SE is lower than that of residual SE. Compared to 

RDO-off coding, context access of this design is more efficient (lower access ratio) in 

RDO-on coding because large percentage of RDO modes are Intra prediction mode 

decision of 4×4 block (Intra4×4), in which the percentage of residual SEs is higher. In 

RDO-on coding, write ratio is significantly lower than read ratio, because in non-P8×8 

RDO mode coding, the last two context lines stored in the context line buffers of unit CA 
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need not to be written back to Temp RAM. The difference of read and write ratio is more 

significant for the low bit rate sequence, such as M&D. 
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Figure 7-8: Context RAM access frequency ratio of this design over [93] during RDO 
coding in the QP range of 12 to 32 of 4 video coding sequences. Read ratio of I, P, and B 
frames are illustrated in (a), (c), and (e) respectively; Write ratio of I, P, and B frames are 
illustrated in (b), (d), and (f). 
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Figure 7-8 shows the read ratio and write ratio of this design over [93] with respect to QP 

in I, P, and B frame RDO coding. The RAM access ratio increases with QP because the 

percentage of residual SE decreases. The curves of inter (P and B) and intra frame (I) are 

similar, because most RDO coding modes of inter frames are still Intra4×4 modes in inter 

coding, which is a dominating factor of RAM access efficiency. Spatial characteristics of 

the frame have stronger influence on the RAM access property than the temporal 

characteristics.  

In Intra4x4 mode RDO coding, 4 types of residual SEs are processed in high ratio: CBF, 

SCF, LSCF, and abs_level_minus1. Several factors are found that influence the RAM 

read ratio for residual SE coding. (a) The sum of abs level values in the coding 4×4 block 

blk_sum: decides the utilization efficiency of context models of abs_level_minus1; (b) 

Non-zero coefficient number in each block blk_coef_num: influences the access of LSCF 

context models; (c) Percentage of 4×4 blocks with zero coefficients in the total blocks 

processed zero_blk: If the percentage of zero blocks is high, utilization of context line is 

less efficient; (d) Position of the Last SCF in the block: decides average number of SCF 

context models accessed per block. These factors reflect the distribution of residual 

transform coefficients energy and influence the efficiency of RAM read access in RDO-

on mode coding. 

Power consumption of the context RAM during RDO-on and RDO-off coding is also 

compared with reference design [93] and other designs with single context model access 

scheme. The widely used industry SRAM model CACTI 5.3 of HP lab (Available from: 

quid.hpl.hp.com:9081/cacti/sram.y) is utilized to evaluate SRAM access energy of the 

two types of SRAM architecture including 53-wordx56-bit of this design and 400-
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wordx8-bit of reference. According to SRAM access frequency ratio of this design and 

[93], context RAM power consumption is evaluated. Power reduction of context RAM of 

this design is 16% in RDO-off, and 31% (read) and 56% (write) in RDO-on mode 

compared to the reference. 

(2) Efficiency of Context State Backup & Restoration (B&R) Operation  

Compared to [93], the operations of context state restoration are removed during non-

P8×8 RDO coding, because of allocation of Temp RAM to store updated context lines 

during coding of each RDO mode, as discussed in Chapter 5. During RDO-on coding of 

P8×8 sub-MB mode decision, 4 partition modes 8×8, 8×4, 4×8, and 4×4 are tested for 

each 8×8 sub-MB. The context state of context RAM needs to be restored after coding of 

each RDO mode, and the context state of the best mode needs to be stored to context 

RAM after all modes are tested. With the architecture of 3 backup FIFO buffers and 1 

coding context RAM, all context state restoration operations must be executed in [93], 

and at least 20 context state B&R operations are required per inter MB.  

In the proposed design, the backup and restoration operation is removed if the mode is 

not the currently best mode. With pipeline structure in the proposed design, the backup & 

restoration operations can be executed concurrently, so at most 1 operation is performed 

per mode. In each operation, because of context line are accessed, the average cycles per 

operation are also lower than [93]. With fewer cycles per operation and fewer operations 

per MB, the operation timing delay per MB (cycle number) of this design is significantly 

lower than [93]. 

Average P8×8 context state B&R operation delay ratio ctx_opt_delay_ratio of the 

proposed encoder to [93] is evaluated by (7-4). MB_num_frm is the number of MB per 
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frame. ctx_opt_frm is the average number of context state B&R operations taken in each 

frame, which can be obtained in video coding tests. In each context state B&R operation, 

ratio of operation cycles of proposed design to [93] is evaluated as the ratio of the context 

lines accessed in proposed design (ctx_line_num) to the context models accessed in [93] 

(ctx_model_num) during P8×8 sub-MB mode decision. Average numbers of 

ctx_line_num and ctx_model_num are used for the calculation of (7-4). 
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                                 (a)                                                                 (b) 
Figure 7-9: Context state backup & restoration operation delay ratio of this design to [93] 
in P8×8 RDO coding for QP 12 to 32 of 4 video coding sequences. Ratio of P frame 
coding in (a) and ratio of B frame in (b). 

Figure 7-9 illustrates the timing delay ratio of this design to [93] of context state B&R 

operation in P8×8 RDO coding. Operation delay ratio is lower (more efficient) in high 

motion sequence such as Coastguard, and higher in lower motion sequence incluidng 

M&D and News. Because only 2 context lines are accessed to encode a MVD, context 

RAM access efficiency is higher for larger MVD. For high motion sequence, the 

percentage of non-zero MVD and residual coefficients are larger compared to that of low 

motion sequence. The ratio of ctx_line_num to ctx_model_num in (7-4) decreases when 
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the percentage of non-zero MVD increases. Increase of non-zero residual coefficients 

also causes decrease of the delay ratio. The variation of ctx_opt_frm in each sequence is 

not as significant as that of the ratio of ctx_line_num to ctx_model_num. In general, the 

context state backup & restoration operation of proposed CABAC encoder is more timing 

efficient for high motion sequence such as Coastguard. The average operation delay of 

this design is 15.5% and 16.6% of [93] for P and B frame coding of in 5 CIF sequences 

coding tests, as shown in Table 7-10. 

Table 7-10: Average context state backup and restore operation delay ratio of the 
proposed design to [93] 

Sequence P frame B frame
Foreman 15.0% 16.8% 
Walk 12.3% 14.4% 
M&D 20.0% 19.2% 
Coastguard 12.6% 13.9% 
News 17.6% 18.8% 
Average 15.5% 16.6% 

 
(3) Context RAM Occupation Reduction 

In [93], 46 Kbits backup context memory is allocated to support RDO coding. Instead of 

allocating 3 large FIFOs to backup 3 intermediate context states during P8×8 RDO 

coding, only 4 small RAMs are allocated to support RDO, including Temp RAM, Best 

RAM, P8×8 RAM, and Address list, and Best RAM and P8×8 RAM are used to backup 

only maximum of 11 context lines that can be modified during P8×8 mode decision. 

Additionally, because context models are accessed by context line instead of single 

context model in the proposed design, fewer memory addresses of the accessed context 

models need to be stored in the backup RAMs. Compared to [93], only 7.37 Kbits of 

context RAMs are allocated in this design, which is 16.0 % of [93]. The reduction of 



Chapter 7 Design, Synthesis, and Performance Comparison 
 

 165

context memory size in the proposed design is attributed to the context line access 

scheme and more efficient allocation of backup memory resources.  

7.5.3 Performance Comparison with the State-of-the-Art Design 

(1) Function Completeness 

Table 7-11: Functional comparisons of [95] and the proposed design 

Function difference [95] This design 
Binarization for non-residual SE No Yes 
CtxIdxInc calculation  (context model 
selection) for regular bins 

Only support for SCF, 
LSCF, level 

Full support for 
all types of SE 

Additional bin pairing process for non-
residual SE in the host processor Yes No 

Input of residual coefficients per  4×4 
residual block 

16 cycles, 
Degrade actual 

throughput 

1~16 cycles, 
lower input delay 

Context model initialization No Yes 
P8×8 RDO coding modes No Yes 
 

Design [95] is reported to have higher coding throughput of 1.9~2.3 bin/cycle because it 

was claimed that pairs of bins (combinations of regular bins and/or bypass bins) can be 

processed per cycle. However, the throughput is only evaluated at the pipeline stages of 

BAC based on the statistical distribution of generated bin pairs of test video sequences, 

without consideration of the processing capability of previous encoding stages including 

binarization & bin packet generation. The claimed throughput can only be achieved on 

the condition that bin pairs and the related context models are continuously fed to the 

BAC of encoder without any stall, which is not possible for the proposed encoder 

architecture. Several functional differences of [95] and the proposed design are 

summarized in Table 7-11. 
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For non-residual SE and CBF processing of [95], binarization, bin pair preparation, and 

context model selection are assumed to perform by the host processor. As discussed in 

the instruction-level analysis of CABAC encoding of Chapter 4, these operations take up 

from 23.5% to 47.2% of total CABAC encoding instructions in CIF format coding. To 

enable data pairing operation in [95], computation cost on the host processor is even 

higher, and CABAC encoding speed is limited by the speed of host processor. In 

comparison, these operations are moved to the CABAC hardware encoder in the 

proposed design, and the host processor is mainly used to send output SE packets.  

In this design, coefficients of 4×4 residual block generated in host processor are sent to 

CABAC encoder by run-level pairs. It reduces the average input delay of residual block 

compared to [95], especially in high QP coding, in which the ratio of non-zero residual 

coefficients are low. In [95], 16 cycles are required to input each residual 4×4 block 

regardless of block types and coding QP, which is significantly longer than that of the 

proposed design in high QP coding. In [95], the encoder stalls and the throughput is 

degraded when the ratio of zero coefficients in the residual block is high, because not 

enough residual bin pairs can be generated for the BAC stage. This situation does not 

occur in the proposed design. Design [95] can support non-P8×8 RDO coding mode. 

However, the support of P8×8 RDO coding is critical to the accuracy of motion 

estimation of H.264/AVC. Compared to [95], the proposed design supports complete SE 

encoding function including context model selection, provides complete supports of RDO 

including  P8×8 RDO coding, and reduces computation on the host processor and 

bandwidth of system bus to the minimum. 
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(2) Context RAM Access Efficiency 

0E+00

1E+04

2E+04

3E+04

4E+04

5E+04

10 15 20 25 30 35
QP

Co
nt

ex
t R

AM
 a

cc
es

s 
nu

m
be

r
(R

DO
-o

ff 
m

od
e)

Compared
design
This design

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

10 15 20 25 30 35QP

C
on

te
xt

 R
A

M
 a

cc
es

s 
nu

m
be

r
(R

D
O

-o
n 

m
od

e)

Compared
design
This design

 
                                   (a)                                                                 (b) 
Figure 7-10: Average context RAM access number per frame of residual SEs in [95] 
(compared design) and this design in CIF frame coding for QP 12 to 32. The access 
numbers of RDO-off coding and RDO-on coding are shown in (a) and (b), respectively. 

Table 7-12: Context access performance (number of RAM access) of the proposed 
encoder compared to [95] in residual SE coding  

Test 
cond. RDO Design QP 12 QP 16 QP 20 QP 24 QP 28 Avg.

%↓ 
This 38026 26015 13283 6757 3725 
[95] 45542 27788 12796 5932 3059 Off 
%↓ 16.5% 6.4% -3.8% -13.9% -21.7% 

-3.3%
 

This 1919744 1620159 1287209 1015775 809390 
[95] 2840789 2299346 1743681 1323572 1039464 

Avg.  
of  

1frame 
of one 
GOP On 

%↓ 32.4% 29.5% 26.2% 23.3% 22.1% 26.7%

This 48754 40412 31237 21934 15322 
[95] 62428 48178 33743 21697 14086 Off 
%↓ 21.9% 16.1% 7.4% -1.1% -8.8% 7.1%

This 1754173 1549247 1305428 1067836 873608 
[95] 2701221 2293064 1828704 1419576 1126159 

First 
intra 

frame 
On 

%↓ 35.1% 32.4% 28.6% 24.8% 22.4% 28.7%
This: The proposed encoder of this thesis. 
%↓: Percentage of encoding cycles reduction, proposed design compared to [95]. 
 
Design [95] allocates a small cache of 4-line×4-context model to reduce RAM access 

delay. It focuses on the efficient context access scheme for the residual SEs. Thus, the 

context access performance of residual SEs of [95] and this paper can be compared. In 
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Figure 7-10, average numbers of context RAM access for each CIF frame coding in the 

GOP of I, P, and B of the two designs are compared. Although 16 context models are 

buffered in both designs, the context RAM access efficiency differs in various QP ranges 

and in RDO-off mode (Figure 7-10 (a)) and RDO-on mode (Figure 7-10 (b)), and the 

context RAM access numbers of two designs in QP 12 to 28 are listed in Table 7-12. 

In RDO-off coding, the averaged RAM access efficiency of [95] is a little better (with 

lower access number) in the low bit-rate range (high QP from 20 to 32) for one GOP 

coding in the whole QP range. It is because two cache lines are allocated to store the 

context models of CBF, and the 1st encoding level coefficient, and the RAM access of 

these two types of SE are reduced. However, in the high bit-rate range (low QP from 12 

to 20), the RAM access performance of the proposed design is better, because it is more 

efficient to access context models of significant map, and large level values using wider 

context line of 8 models instead of 4 models per cache line in [95]. Because this CABAC 

design is targeting at high quality and high bit-rate coding, it is beneficial to have lower 

RAM access frequency in this QP range. Table 7-12 also shows that average context 

RAM access efficiency of the proposed design is better (7.1% reduction) for intra frame 

coding in RDO-off mode. It is because percentage of non-zero residual coefficients of 

residual block is larger in intra frame coding, and it is beneficial to use large context line 

to reduce RAM access of context models significant map and levels. 

In full RDO-on mode, the context RAM access frequency of the proposed design is 

significantly lower (better) in QP range, as shown in Figure 7-10 (b) and Table 7-12. It is 

because in the RDO-on mode of [95], the two cache lines containing context models of 

CBF and 1st level coefficient need to be fetched from RAM to restore the context state 
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after coding of each RDO mode, which causes additional RAM accesses. On the average 

of one GOP coding, 27.6% of context RAM access operations are reduced compared to 

[95] in RDO-on coding, and 28.7% of access can be reduced for intra frame coding. 

In general, small cache based context access scheme of [95] is more efficient in low bit-

rate RDO-off CABAC coding, while the proposed context access scheme with larger 

context line buffers is more beneficial in high bit-rate coding and RDO-on. Operation 

delay of context state backup & restoration in P8×8 RDO coding and related context 

RAM size are not comparable because the operation is not supported in [95]. 

(3) SoC-based CABAC Encoder IP 

Compared to [95] and most other reported designs, system bus interfaces (WISHBONE 

compatible) are integrated in the proposed CABAC encoder to improve the portability 

and reusability of the encoder in the further SoC-based video codec systems. The data 

transfer rate at WISHBONE system bus interfaces of the proposed design is related to the 

CABAC coding mode, video resolution, frame rate, and compression ratio. In video 

coding test of the proposed encoder, to support RDO-off coding at 16Mbps bit rate, input 

data rate to the encoder is 5.8 M packet/s, and output data rate is 1.9 M packet/s. Data 

transfer on the system bus and data packet output rate from the host are very low. Output 

bit packets can be sent to destination memory space directly with very low-complexity 

control from the host processor. To support full RDO-on mode coding of the same video 

sequence at 328 MHz post-layout clock frequency, input data rate is 97.3M packet/s, and 

output RDO rate is 11.3M packet/s. 
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Chapter 8 Conclusions 

In this thesis, the design and implementation of a high-performance CABAC encoder 

targeting at the Main profile of H.264/AVC video coding standard has been carried out 

with success. The main purpose of the research is to accelerate serial CABAC encoding 

procedure in different video coding configurations and remove the bottleneck of 

H.264/AVC encoding at statistical coding stage by the approach of hardware IP 

(intellectual property) design of CABAC encoder, which can support the following 

important design features: functional completeness of CABAC encoding of SE, high 

coding throughput, SoC-based IP design with enhanced reusability and portability, 

complete functional support of rate-distortion optimization (RDO) in different RDO 

modes, efficient context model access, and low power consumption.  

8.1.1 Summary of Design Advantages 

Generally speaking, this work enhances the performance of both CABAC encoder and 

the H.264 video coding system. It achieves global performance optimization compared to 

local optimization of particular HW function blocks such as CA, BAC, and residue SE 

coding in most of reference designs. Computation on the host processor and data transfer 

of system bus are minimized, and more importantly, this work is the first reported design 

that successfully solves design difficulty of CABAC coding in RDO mode and provides 

best video compression efficiency of H.264/AVC standard. Power consumption of this 

high performance encoder is also lowest for both HW and system power in the reported 

designs. Flexibility of encoder design is utilized by selection of proper encoding 

functions to achieve targeting performance. This is different from decoder design, and it 
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is ignored by most of other designs. It is the only design that provides a complete SoC-

based IP solution for CABAC encoder that can support different types of video coding 

configurations such as RDO-off coding, fast RDO and full RDO coding, etc. The 

application range of the design is wider, from real time coding to high quality 

compression. This IP is reusable and suitable for future video coding system. Considering 

encoding speed, it is the only CABAC encoder that achieves real time CIF coding in full 

RDO mode and HDTV coding in RDO-off and fast RDO mode. The major design 

advantages of the proposed CABAC encoder IP of the thesis are summarized as follows. 

1. Full-hardware CABAC Encoding of Syntax Elements (SEs) 

Compared to most reported designs, the proposed CABAC encoder fully supports all 3 

steps of SE encoding: binarization, context modeling, and binary arithmetic coding 

(BAC). The most complex function unit design - context model selection of context 

modeling is efficiently designed, which achieves single cycle context model selection. 

The benefits of full-hardware SE encoding include: (1) computation complexity on the 

host processor of the video codec system is significantly reduced for the preparation of 

CABAC input data, and the data transfer bandwidth on the system bus is also reduced; (2) 

the bottleneck of CABAC encoder data input is removed; (3) reusability of the hardware 

CABAC encoder IP is enhanced and integration complexity of the encoder in high-level 

video codec system is significantly reduced. 

2. Complete Solution of CABAC Encoding in RDO Coding Modes 

Compared to all reported designs, the proposed CABAC encoder is the only design (to 

date) that solves the difficulties to develop RDO functions in CABAC encoder design 

with the approaches of allocating small RAMs to record intermediate context states, 
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pipelined context state backup and restoration, multiplexing of bit backing and RDO rate 

accumulation, local buffering of best mode SE states, etc. It fully supports RDO related 

functions, including RDO coding rate generation and elaborate operations of backup & 

restoration of CABAC coding states including state of context models, state of coding 

interval of BAC, and state of coded SEs for the context model selection. RDO is one of 

the key techniques that enhances the coding efficiency of H.264/AVC, and support of 

RDO is significant to the CABAC encoder design to further expand the application fields 

of the design, because RDO is indispensable in the high-quality high-definition video 

coding applications such as HDTV and movie studio encoding systems. 

3. High & Constant Encoding Speed  

Several design strategies are explored and applied in the proposed encoder to reduce data 

dependency of CABAC encoding steps and improve encoding speed (in terms of 

throughput × clock frequency) of the CABAC encoder. Full pipelined architecture of bin 

encoding is designed that can process 1 bin packet per cycle. Functional partitioning of 

encoding pipeline stages of bin packet generation, context model access, coding interval 

subdivision & renormalization, and bit packing efficiently reduce the data dependency of 

the sequential coding steps. Insertion of FIFO buffers in the encoding flow enables 

parallel processing of SE binarization, complex context model selection, and bin 

encoding pipeline, and efficiently removes pipeline bubbles of CABAC encoding. With 

the adoption of FIFO buffer insertion and pipelined coding structure, constant encoding 

throughput is ensured in different video coding configurations, compared to the variable 

throughput of [95] and [90]. Additionally, circuit critical path is significantly reduced and 

higher encoder clock frequency is achieved, compared to most reported designs. 
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4. Efficient Context Model Access 

An efficient context model access scheme of CABAC encoder is proposed in this thesis, 

including techniques of context line access and buffering, context memory reallocation, 

and pipelined context model B&R operation in P8×8 RDO coding. Context memory size 

is reduced to 16.0% of [93]. Context RAM read and write access frequency in both RDO-

off and RDO-on coding modes are significantly lower than [93]. Context state backup & 

restoration operation delay of P8×8 RDO coding mode is 15.5% and 16.6% of [93] in P 

and B frame coding tests, while the operation of non-P8×8 coding is removed. With the 

reduction of memory access frequency, power consumption of context RAM blocks is 

also lower, especially in RDO coding with power reduction of 31% (read) and 56% 

(write). Compared to the cache-based context model access of [95], context model access 

frequency of the proposed design is significantly lower in RDO-on mode, and cache miss 

data fetch delay is avoided. 

5. Low Power Encoder Design 

Compared to most reported designs, the proposed encoder is a low power design with 

power reduction techniques applied including clock-gating and context RAM access 

frequency reduction. Power consumption of HW CABAC encoder is efficiently 

constrained, and HW power is lower than references (46% and 6% reduction compared to 

two references including a cache-based low power design) for the same function blocks 

with same 0.18μm process technology and clock frequency. Total power consumption of 

CABAC encoding on the host processor and HW encoder is even lower. Therefore, 

proposed encoder is also suitable for portable and mobile applications, in which power 

consumption is a critical design consideration. 
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6. Other Advantages of the Proposed CABAC Encoder 

The proposed encoder achieves fastest context model initialization with processing 

throughput of 4 context models per cycle during slice initialization. Lowest operation 

delay of slice initialization is achieved compared to reported designs, which is attributed 

to the parallel and pipelined circuit architecture. MBIST circuit insertion is also 

attempted for the context RAMs and ROMs of the encoder with simplified interface 

testing signals and self-test procedure, which can be applied in the further system 

integration and ASIC fabrication procedures to enhance testability of the proposed IP. 

To summarize, a full-hardware high-performance low power SoC-based CABAC encoder 

IP is designed in this thesis utilizing different design strategies to achieve complete 

function features, high & constant coding throughput, and improved reusability and 

portability. This design is verified, synthesized, and laid out at the GDS-II stage with 

post-layout speed suitable for high quality real time video coding. 

Several design strategies utilized for the proposed CABAC encoder of this thesis are also 

suitable for similar R&D projects of serial coding and highly data dependent system. The 

strategies include: 

 Widely used pipeline architectures in the operations of bin encoding, context state 

backup & restoration, and context model initialization that enhance data processing 

throughput and reduce operation delay. 

 Strategies of data prefetch and pre-calculation to reduce data dependency, operation 

delay, and critical path length, such as prefetch of context model from context RAM, 

pre-calculation of possible values of RangeLPS and pre-calculation of context model 

selection that require access of coded SEs of neighboring blocks. 
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 Reduction of RAM access frequency for the operations that require frequent memory 

access, utilizing design strategies including context line access and local buffering, 

context memory reallocation, etc. 

 Strategy of proper top-level functional partitioning with FIFO buffer insertion that 

enables parallel data processing of original sequential coding stages. 

The design strategies utilized in the proposed CABAC encoder can be referenced in the 

designs that are of serial data processing nature, require frequent memory access, or have 

strong data dependency, such as statistical codec designs including CABAC decoder and 

CAVLC codec of H.264/AVC and statistical (entropy) codec design of JPEG2000, or 

other similar data processing codec designs. 

Although the proposed CABAC encoder is designed targeting at the Main profile of 

H.264/AVC standard, it can be easily scaled to the High profiles of the standard, because 

of very similar implementation schemes and design architectures of Main profile and 

High profiles. Additional area is required for the memory storage of context models and 

control logic circuits for encoding of 8×8 transform coefficients. Similar design 

architectures and functional partitioning scheme can be utilized and adopted for the future 

CABAC decoder design. 

8.1.2 Future Research Directions 

Future research directions of CABAC encoder design can be: (1) Throughput 

enhancement of context-dependent SE coding with multiple bin per cycle coding 

throughput, which is more difficult than residual SE acceleration; (2) Acceleration of the 

current RDO coding scheme by reducing pipeline filling and empty delay of each RDO 

mode; (3) The direction discussed in VCEG for the next generation of video coding 
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standard: parallel CABAC coding using multiple independent processing units of ASIC 

cores or general multiple core processors, which is a tradeoff between coding 

acceleration and compression efficiency, and it is not compatible to the current H.264 

standard. 

The current design follows SoC-based HW/SW design flow with SW/HW interface 

defined and HW IP implemented through RTL level, gate level, FPGA implementation, 

and physical design stage. FPGA-based design is flexible with lower risk compared to 

ASIC tape out flow. However, coding speed is limited by the logic and memory volume 

of FPGA chip and longer interconnection delay of FPGA chip. In the future design, it is 

possible to use large volume FPGA chip fabricated with new process technology that can 

provide enough HW resources and speed for real time CABAC encoding in high 

complexity HDTV video coding. It is beneficial to avoid using platform-specific FPGA 

IP cores, so that same RTL design can be easily used in different FPGA chips. Because it 

is more suitable to implement high level video coding control in SW, it is necessary to 

select proper FPGA chip with high performance HW processor core and SoC SDK tools 

to enable system integration of processor and HW IP through on-chip system bus. 

As discussed above in research direction (3), parallel CABAC encoding can be explored 

in multi-core or many-core processor platform or in multiple CABAC HW encoding 

cores. However, CABAC encoding and decoding algorithms need to be revised in order 

to break data dependency of coding states and enable processing of multiple entropy 

slices inside each slice. It is possible to accelerate CABAC codec by parallel coding 

scheme if the technique is accepted by the next generation of video coding standard. 

Compared to the scheme with multiple processor cores, scheme with multiple HW cores 
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is more efficient in coding speed enhancement. Cautious update of CABAC algorithm is 

necessary to minimize compression efficiency loss of parallel processing by exploring 

strategies using available context information. 
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