

SYSTEM-ON-CHIP DESIGN OF A HIGH

PERFORMANCE LOW POWER FULL

HARDWARE CABAC ENCODER IN

H.264/AVC

TIAN XIAOHUA

(M.Eng, HUST)

A THESIS SUBMITTED FOR THE DEGREE OF PH.D.

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2009

 ii

Acknowledgements

First of all, I would like to thank my supervisors Dr. Le M. Thinh and Prof. Lian Yong

for their advices, encouragement, and long-term supports during my Ph. D. study and

research work. Without these two great mentors, I would not complete my research work

successfully.

Thanks to the colleagues of our research group including Mr. Jiang Xi, Ho Boon Leng,

Shyam Krishnamurthy, Hong Zhiqian, Thu Trang, Esmond Teo Haochun, and John

Nankoo for their supports, suggestions, and helpful discussions. Without them, I could

not build up the complete scheme of this CABAC encoder design of my thesis.

Thanks to my friends in VLSI lab including Wei Ying, Zhang Wenjuan, Zhu Youpan,

Chen Xiaolei, Zhang Xiaoyang, Bai Na, Zhang Jinghua, Yang Zhenglin, Pu Yu, Zou

Xiaodan, Xiaoyuan, Wu Liqun, Yu Heng, Li Yanhui, San Jeow, Cheng Xiang, Tan Jun,

Chang Xiaofei, Niu Tianfang, Wang Lei, Qiu Lin, Raja, Amit, Lynn, John, Shakith, my

seniors Yu Jianghong, Yu Rui, Chen Jianzhong, He Lin, Hu Yingping, Tong Yan, Cen

Lin, Gu Jun, and many others.

Thanks for the valuable advices and help from Mr. Jiang Xiping, Dr. Ha Yajun, Prof. Xu

Yong Ping, Ms. Zheng Huanqun, Mr. Teo Seow Miang, Prof. Zhu Minghua, et al. for my

research work.

Finally, I would like to thank my dear Father and Mother, my Grandma, uncles and aunts,

Wenxiu, Liu Yu, Tian Jun, Xiang Li, Tian Zhenzhen, Li Jie, Li Chi, Fang Congbiao, my

friends Wang Enbo, Zhou Jinxin, Liu Chunhui, Zhang Jing, Teng Mingqing, Wen Qiang,

Liang Kun, et al. for their encouragements that support me to complete this thesis.

 iii

Abstract

Context-based Adaptive Binary Arithmetic Coding (CABAC) is the entropy coding tool

adopted in Main and High profiles of H.264/AVC video coding standard. CABAC

provides significantly higher compression ratio than Baseline profile entropy coder

CAVLC. Rate-Distortion Optimization (RDO) is another important technique that

improves the encoding performance of H.264/AVC. It is necessary to support both

CABAC and RDO in the high quality and high definition H.264/AVC applications;

however, this results in significantly increased computational complexity. Due to the

sequential coding nature of CABAC with strong data dependency and frequent memory

access, it is not efficient to accelerate CABAC encoding by software optimization.

Therefore, hardware acceleration of CABAC encoding is necessary in the high bit-rate

real time video encoding. This work focuses on high performance circuit design of

CABAC encoder IP targeting at Main Profile of H.264/AVC.

SoC-based design flow is explored during the CABAC encoder IP design, including steps

of encoder performance and complexity analysis; system specification; HW/SW

partitioning that minimizes computation complexity on the host processor and data

transfer on system bus; HW functional partitioning that maximizes encoding parallelism;

HW function block design; SoC feature insertion including system bus interface and

interconnection IP design; circuit implementation and verification, etc. The encoder is

designed and fully verified at RTL level, gate level, and post-layout stage targeting at

0.13um CMOS process. FPGA prototyping is also completed successfully.

 iv

In order to accelerate sequential and highly data dependent procedure of CABAC and

optimize circuit performance, various design methodologies are explored in this work,

including: prefetch and local buffering for frequent accessed data to reduce data fetch

delay; precalculation to reduce critical path length; pipeline implementation of complex

sequential computation steps to achieve higher clock frequency; SRAM access

optimization with context line access & buffering and context RAM reallocation to

significantly reduce RAM access frequency and dynamic power; parallel processing of

function blocks of different throughput with FIFO insertion; system power reduction with

clock gating insertion, etc.

This work provides the only reported CABAC encoder design that achieves high

processing speed of real time coding in CIF format full RDO mode and in HDTV 720p

format RDO-off mode. The compression efficiency of the proposed encoder is the best

compared to the reported designs, because of solving design difficulty of CABAC coding

in RDO mode. Encoder power consumption is the lowest, consuming only 0.79 mW at

HDTV 720p60 8.9 Mbps RDO-off mode coding. Only this work provides complete SoC-

based IP solution of CABAC encoder that can efficiently support different H.264 coding

configurations including RDO-off, fast RDO, and full RDO mode, and the application

range of the IP is wider, from real time coding to high quality compression. This work

enhances performance of both CABAC encoder and H.264 video coding system and

achieves global performance optimization, with utilization of encoder design flexibility.

 v

Table of Contents

Acknowledgements..ii

Abstract...iii

List of Figures... ix

List of Tables ...xii

Chapter 1 Introduction...1

1.1 Overview of H.264/AVC Standard... 1

1.2 Approaches of H.264/AVC Codec Acceleration .. 9

1.3 Objectives of the Research.. 10

1.4 List of Publications ... 12

Chapter 2 Review of Arithmetic Coding and CABAC............................14

2.1 Introduction of Arithmetic Coding ... 14

2.2 CABAC of H.264/AVC.. 16

2.2.1 Binarization.. 17

2.2.2 Context Modeling .. 19

2.2.3 Binary Arithmetic Coding (BAC).. 21

2.2.4 Comparisons of CABAC with Other Entropy Coders................................. 24

Chapter 3 Review of Existing CABAC Designs26

3.1 CABAC Decoder and Encoder IP designs of H.264/AVC................................. 27

3.1.1 CABAC Decoder Designs ... 27

3.1.2 CABAC Encoder Designs.. 32

3.2 Summary of Implementation Strategies of Entropy Codecs............................... 37

Chapter 4 The Proposed Design of Hardware CABAC Encoder............. 39

4.1 Design Methodology of SoC-based Entropy Coder ... 39

4.1.1 Performance & Complexity Analysis of CABAC Encoder......................... 42

 vi

4.2 HW/SW Functional Partitioning of CABAC Encoder 46

4.2.1 Analysis of Different Partitioning Schemes .. 47

4.2.2 RDO Function Support in HW CABAC Encoder Design 51

4.3 Top-level HW Encoder Functional Partitioning ... 53

4.3.1 Proposed Hardware Functional Partitioning Scheme 55

4.3.2 Full-Pipelined Top-level HW CABAC Encoder Architecture 60

4.3.3 Date Dependency Removing & Encoding Acceleration 63

4.4 Binarization and Generation of Bin Packet .. 65

4.4.1 Input SE Parsing & Binarization of Unit BN... 65

4.4.2 Bin Packet Generation and Serial Output of Unit BS&CS2 70

4.5 Binary Arithmetic Coding (BAC)... 72

4.5.1 Proposed Renormalization & Bit Packing Algorithm 73

4.5.2 Coding Interval Subdivision & Renormalization of Unit AR 76

4.5.3 Bit Packing of Unit BP .. 77

4.6 Additional Functions of CABAC Encoder ... 79

4.6.1 Context Model Initialization .. 79

4.6.2 RDO Function Support in BAC... 80

4.6.3 FWFT Internal FIFO buffers ... 80

Chapter 5 Efficient Architecture of CABAC Context Modeling............. 82

5.1 Context Model Selection... 82

5.1.1 Scheme of Storage & Fast Access of Coded SEs of IC Sub-unit 83

5.1.2 CtxIdxInc Calculation (IC) of Unit CS1... 91

5.1.3 Memory Access (MA) sub-Unit of Unit CS1... 98

5.2 Unit CA: Efficient Context Model Access ... 101

5.2.1 Context Line Access & Local Buffering ... 101

5.2.2 Context RAM Access Scheme Supporting RDO-on Mode....................... 104

5.2.3 Context Model Reallocation in Context RAM .. 106

5.3 Context State Backup & Restoration in P8×8 RDO Coding 107

5.4 Coded SE State Backup & Restoration of Unit CS1 ... 111

 vii

5.5 Summary ... 113

Chapter 6 System Bus Interface and Inter-connection Design 115

6.1 Introduction of the WISHBONE System Bus Specification 115

6.1.1 Interface Signals of the WISHBONE System Bus 115

6.1.2 Types of Bus Cycles on the WISHBONE System Bus 117

6.1.3 Comparison of WISHBONE and AMBA System Buses 118

6.2 Design of WISHBONE System Bus Interfaces for CABAC Encoder 119

6.2.1 Functional Partitioning of WISHBONE System Bus Interfaces 119

6.2.2 Analysis of Support of WISHBONE Registered Feedback Cycles........... 120

6.2.3 Design of Slave Interface of WISHBONE System Bus 122

6.2.4 Design of Master Interface of WISHBONE System Bus 124

6.2.5 Consideration of Data Transfer Speed of System Bus............................... 127

6.3 Design of System Bus Inter-connection (INTERCON).................................... 128

6.3.1 Design of WISHBONE Crossbar INTERCON ... 128

6.3.2 Compact SoC-based CABAC Encoding System....................................... 133

Chapter 7 Design, Synthesis, and Performance Comparison................. 135

7.1 Design & Verification Flow of CABAC Encoder HW IP................................ 135

7.1.1 Steps in Designing a CABAC Encoder ... 135

7.1.2 Functional Verification of CABAC Encoder... 137

7.2 Results of Synthesis and Physical Design .. 141

7.3 Power Reduction Strategies & Power Consumption Analysis 145

7.4 MBIST Circuit of Memory Block of CABAC Encoder 149

7.5 Performance Comparison.. 151

7.5.1 CABAC Encoding Speed Performance of the Encoder............................. 151

7.5.2 Performance Comparison of Context Model Access Efficiency 155

7.5.3 Performance Comparison with the State-of-the-Art Design...................... 165

Chapter 8 Conclusions... 170

8.1.1 Summary of Design Advantages ... 170

8.1.2 Future Research Directions.. 175

 viii

Bibliography .. 178

 ix

List of Figures

Figure 1-1: Block diagram of MB processing in H.264/AVC. (a) MB encoding, (b) MB
decoding.. 4

Figure 1-2: MB partition modes and sub-MB partition modes of ME in H.264/AVC....... 6

Figure 2-1: Coding interval subdivision of binary arithmetic coding............................... 15

Figure 2-2: Block diagram of CABAC encoder [6] of H.264/AVC................................. 17

Figure 2-3: Coding interval subdivision and selection procedure of CABAC. 21

Figure 2-4: Coding interval subdivision and selection of regular bin of CABAC. 22

Figure 2-5: Pseudo-C program of renormalization and bit output of CABAC................. 22

Figure 2-6: Decision of bit output and accumulation of outstanding (OS) bit. 24

Figure 3-1: Block diagram of CABAC decoder. .. 28

Figure 4-1: SoC-based entropy coder design flow. .. 40

Figure 4-2: Five CABAC functional categories as % of total CABAC instructions in CIF
test of H.264/AVC encoder of JM reference SW in the QP range of 12 to 36................. 44

Figure 4-3: Five schemes of HW/SW partitioning of CABAC encoding. 47

Figure 4-4: FSM-based HW CABAC encoder partitioning scheme. 54

Figure 4-5: Proposed HW CABAC encoder partitioning scheme. 56

Figure 4-6: Block diagram of top-level architecture of HW CABAC encoder. 60

Figure 4-7: Input packet format of CABAC encoder. .. 65

Figure 4-8: Procedure for parsing and binarization non-/residual SE and control
parameters of unit BN, Block 1. ... 67

Figure 4-9: HW-oriented EGk binarization algorithm.. 69

Figure 4-10: Fast EGK binarization implementaion. (a) EG3 binarization for the suffix of
MVD; (b) EG0 binarization for the suffix of abs_level_minus1...................................... 70

Figure 4-11: Architecture of unit BS&CS2: (a) CtxIdx calculation and bin packet serial
output circuit for all SE, excluding SCF and LSCF; (b) CtxIdx calculation and SE serial
output of SCF and LSCF packet of residual coefficient block. .. 71

Figure 4-12: Three-stage pipeline implementation of renormalization and bit packing
algorithm in unit AR and unit BP. .. 75

Figure 4-13: Architecture of unit AR.. 76

Figure 4-14: Two-stage design of bit packing. ... 78

Figure 5-1: Block diagram of unit CS1, including MA sub-unit and IC sub-unit............. 83

 x

Figure 5-2: Reference MBs on the top and left of current MB, and storage of 3 categories
of coded SEs (MB, 8×8 sub-MB, and 4×4 block) in the reference BPMB of current and
reference MBs... 84

Figure 5-3: Fast access of neighboring coded block and sub-MBs. (a) Access of
neighboring luma 4×4 blocks, and (b) access of neighboring 8×8 sub-MBs and chroma
4×4 blocks of 4:2:0 video format.. 86

Figure 5-4: Functions of IC sub-unit of unit CS1.. 92

Figure 5-5: MB processing in MA sub-unit and IC sub-unit of unit CS1. 99

Figure 5-6: Operations of MA sub-unit in the first 3 cycles of MBN,M-1 processing. 100

Figure 5-7: Architecture of unit CA with pipelined context line access and local buffering
scheme... 102

Figure 5-8: Architecture of memory access control of unit CA in both RDO-off and
RDO-on mode... 104

Figure 5-9: Reallocation of context model in context RAM (Normal RAM). Context
models of Normal RAM are illustrated as two continuous parts in the figure. 107

Figure 5-10: Four types of pipelined context state backup & restoration operation in P8×8
RDO coding. ... 110

Figure 6-1: Point-to-point inter-connection of single master & slave of the WISHBONE
system bus... 116

Figure 6-2: One classic cycle of a WISHBONE master interface with registered feedback
of cycle termination. ... 121

Figure 6-3: Illustration of constant address burst cycle of WISHBONE slave interface.
... 123

Figure 6-4: Data output control of WISHBONE master interface with 32-bit dat_o bus.
... 126

Figure 6-5: Data output control of WISHBONE master interface with 8-bit dat_o bus. 127

Figure 6-6: Top-level architecture of 4-channel crossbar INTERCON of WISHBONE
system bus... 130

Figure 6-7: Round-robin arbitration of master that connects to the slave. 131

Figure 6-8: Architecture of M0 sub-unit: (a) Generation of cyc signals of 4 slaves that can
connect to the master, and (b) selection of master input signal including dat_i and ack_i.
... 132

Figure 6-9: A compact inter-connection of CABAC encoder with other components of
video encoder. ... 133

Figure 7-1: Design steps of CABAC encoder... 136

Figure 7-2: Verification of the HW IP block. ... 138

Figure 7-3: FPGA implementation and verification platform .. 141

 xi

Figure 7-4: Chip Layout of the CABAC Encoder. ... 145

Figure 7-5: BIST testing circuits of memory block, including RAM BIST and ROM BIST.
... 149

Figure 7-6: Context RAM access frequency ratio of this design over [93], during RDO-
off coding in the QP range of 12 to 32 of 4 typical video sequences. 157

Figure 7-7: Context RAM read and write frequency access ratio of this design over [93],
during RDO-on coding. The average access ratios of I, P, and B frames of 4 video
sequences in QP range of 12 to 32 are shown. ... 159

Figure 7-8: Context RAM access frequency ratio of this design over [93] during RDO
coding in the QP range of 12 to 32 of 4 video coding sequences. Read ratio of I, P, and B
frames are illustrated in (a), (c), and (e) respectively; Write ratio of I, P, and B frames are
illustrated in (b), (d), and (f). .. 160

Figure 7-9: Context state backup & restoration operation delay ratio of this design to [93]
in P8×8 RDO coding for QP 12 to 32 of 4 video coding sequences. Ratio of P frame
coding in (a) and ratio of B frame in (b)... 163

Figure 7-10: Average context RAM access number per frame of residual SEs in [95]
(compared design) and this design in CIF frame coding for QP 12 to 32. The access
numbers of RDO-off coding and RDO-on coding are shown in (a) and (b), respectively.
... 167

 xii

List of Tables

Table 4-1: H.264/AVC encoder bit rate reduction, with CABAC compared to with
CAVLC... 43

Table 4-2: Five function categories of CABAC encoder of instruction-level analysis 44

Table 4-3: Percentage of instructions of each category of CABAC encoding function in
CIF sequence analysis... 45

Table 4-4: Percentage of instructions of each category of CABAC encoding function in
HDTV 720p sequence analysis... 45

Table 4-5: Bit rate reduction of H.264/AVC encoder, using RDO-on mode compared to
RDO-off mode .. 51

Table 4-6: Computation complexity of CABAC encoder in RDO-off/RDO-on mode 52

Table 5-1: Fast table lookup of block index of neighboring block on the left or top of
current block for block level SE processing ... 87

Table 5-2: Fast table lookup of Block/sub-MB index of neighboring Chroma block/8×8
sub-MB on the left or top of current block/8×8 sub-MB.. 87

Table 5-3: Fast table lookup of sub-MB index of neighboring block on the left or top of
current block based on current block index .. 88

Table 5-4: Storage of coded SEs of top/left reference MBs ... 90

Table 5-5: Parameters of reference BPMBs required for CtxIdxInc calculation of
different types of SEs.. 93

Table 5-6: Classification of MB type and stored values of MB type 95

Table 5-7: Numbers and positions of blocks that need to store coded MVD of different
MB/sub-MV partition modes.. 96

Table 5-8: Types, bit Numbers, and usage descriptions of backup values of SEs of 8×8
sub-MB during P8×8 RDO coding ... 112

Table 6-1: Signals of WISHBONE master interface .. 117

Table 6-2: Type of register feedback cycles of WISHBONE classified by cti_o 120

Table 6-3: Configuration of coded bytes output order of RDO-off coding.................... 125

Table 7-1: Testing vectors of CABAC encoder at different design steps....................... 139

Table 7-2: Encoding pipeline throughput, max frequency, area of CABAC encoders .. 143

Table 7-3: Gate-level power consumption (mW) of reported designs and proposed design
... 146

Table 7-4: Power consumption of the proposed encoder in 3 video coding configurations
... 147

 xiii

Table 7-5: Distribution of power consumption of the proposed CABAC encoder in RDO-
on / RDO-off mode coding ... 148

Table 7-6: Speed-up of CABAC encoding of the HW IP compared to SW................... 153

Table 7-7: Average throughput of the proposed CABAC encoder in video coding tests154

Table 7-8: Average context RAM access frequency ratio (This design over [93] in RDO-
off mode coding)... 156

Table 7-9: Reduction of RAM access frequency of the proposed encoder, attributed to
Context RAM reallocation.. 157

Table 7-10: Average context state backup and restore operation delay ratio of the
proposed design to [93]... 164

Table 7-11: Functional comparisons of [95] and the proposed design........................... 165

Table 7-12: Context access performance (number of RAM access) of the proposed
encoder compared to [95] in residual SE coding .. 167

Chapter 1 Introduction

 1

Chapter 1 Introduction

Video coding technology has significantly changed the daily life of human beings in the

last two decades. A variety of software/hardware applications of video coding technology

have emerged recently. Because uncompressed video signals require huge amount of data

storage and network bandwidth, video coding technologies are necessary to compress

original video signals to reduce redundancy in spatial, temporal, and code word domain.

Several video coding standards have been established since 1980’s to specify video

coding techniques utilized for different applications, including H.261 [1], MPEG-1 [2],

MPEG-2 [3], H.263 [4], MPEG-4 Part 2 [5], and H.264/AVC [6]. H.261 is the first video

coding standard targeting at low delay, slow motion applications such as video

conference. MPEG-1 introduces half-pixel motion estimation and bi-direction motion

estimation (ME), with perceptual-based quantization, similar to JPEG [7]. MPEG-2 (also

known as H.262) supports interlaced video format and broadcasting quality video coding.

H.263 achieves a significant improvement of video compression especially at low bit rate,

with more efficient ME and techniques of variable block size ME and arithmetic coding

adopted in H.263 Annex. MPEG-4 Part 2 adopts ¼-pixel ME, and several commercial

codecs are designed based on Advanced Simple Profile (ASP) of the standard. The latest

video coding standard H.264/AVC (MPEG-4 Part 10) [6] is developed to target at a wide

range of applications and high compression capability.

1.1 Overview of H.264/AVC Standard

H.264/AVC was jointly developed by ITU-T and ISO/IEC, and gained rapid adoptions in

a wide variety of applications, because of over 50% bit-rate reduction achieved compared

Chapter 1 Introduction

 2

to the previous standards. Several profiles are defined in H.264/AVC, including Baseline,

Main, Extended, High profiles, etc., with a set of technologies specified for each profile

targeting at a particular range of applications. H.264/AVC standard covers two layers:

Video Coding Layer (VCL) that efficiently represents video contents, and Network

Abstraction Layer (NAL) that formats the representation of VCL in the manner suitable

for transport layer or storage media. A coded sequence of H.264/AVC consists of a

sequence of pictures, and each picture is represented by either a frame or a field. Each

frame or field is further partitioned into one or more slices, and each slice consists of a

sequence of MBs. Slice is the smallest self-contained [8] decoding unit in H.264/AVC bit

stream. According to prediction modes, slices are commonly classified to 3 types,

including I slice (intra prediction), P slice (single-direction inter prediction), and B slice

(bi-direction inter prediction). Block-based hybrid video coding approach is utilized in

VCL layer.

The block diagrams of MB encoding and decoding of VCL layer are shown in Figure 1-1.

As shown in Figure 1-1(a), MBs in each slice are sequentially processed at the encoder.

Intra prediction is applied to reduce spatial redundancy of coding MB by predicting

pixels of current MB based the boundary pixels of neighboring coded MBs. As only

prediction residual values of intra-coded MBs are encoded, compression efficiency is

enhanced. Inter prediction includes ME and motion compensation (MC), which are

applied to inter-coded MBs to reduce temporal redundancy. Precise motion estimation is

achieved through procedure of Integer ME (IME) and Fractional ME (FME: include 1/2

pixel and 1/4 pixel precision ME). IME locates the best position of 16x16 pixel array in

the global searching area of reference frame/filed that achieves best match of current MB

Chapter 1 Introduction

 3

and reference frame/filed. FME further explore the local searching area around best IME

position to find potential better match in the fractional-pixel interpolated frame/filed.

After intra or inter prediction, integer transform & quantization are applied to reduce

redundancy of prediction residual by reducing high-frequency information of residual

values. Quantized residual coefficients, intra/inter prediction data (including prediction

modes, reference frame/filed list, motion vector difference MVD), and coding control

signals such as MB type, QP delta, and transform size flag are further compressed by the

lossless entropy (statistical) coding to reduce redundancy of code words. An in-loop

deblocking filter is allocated in the MB encoding feedback loop to reduce artifacts at the

block edges of reconstructed frame/field. As the distortion of reconstructed reference

frame/filed is reduced, deblocking filter can improve both subjective and objective visual

qualities. Deblocking filter was applied as post processing stage in earlier standards,

while it is integrated as an in-loop filter in H.264/AVC.

The MB decoding procedure of H.264/AVC is illustrated in Figure 1-1(b), including

entropy (statistical) decoding, inverse quantization & inverse transform, MC or

compensation of intra prediction, and deblocking filter. Computation complexity of

decoding is significantly lower compared to encoding, because high complexity

intra/inter prediction is not involved in decoding, and also because decoding mode of

each MB is fixed according to MB type value; while in MB encoding procedure, multiple

possible MB encoding modes need to be tested to select best MB coding mode and

achieve better compression efficiency. The architecture of interpolation, reference

frame/filed reconstruction and deblocking filter are same in both encoder and decoder.

Computation complexity ratio of CABAC decoder in the video decoder is higher than

Chapter 1 Introduction

 4

that of CABAC encoder in video encoder because of lower computation of other function

blocks.

Motion
Compensation

Intra
Prediction

Inverse
Quantization

& Inverse
Transform

Deblocking
Filter

Intra/Inter
Coding Mode

Picture buffer

Output
Video Signal

Entropy
Decoding
(Statistical
Decoding)

+

+

H.264/AVC
Encoded

Bit Stream

Intra/Inter
Prediction Data

(b)

Motion
Compensation

Motion
Estimation

Intra
Prediction

Transform &
Quantization

Inverse Quantization
& Inverse Transform

Entropy
Coding
(Statistical

Coding)

Deblocking
Filter

Intra/Inter
Mode Decision

_
+

++
Input Video Signal

Picture buffer

Reconstructed
Video Signal

Residual
Data

Intra/Inter
Prediction

Data

Control
Data

(a)

H.264/AVC
Encoded

Bit Stream

Inter
Prediction

Figure 1-1: Block diagram of MB processing in H.264/AVC. (a) MB encoding, (b) MB
decoding.

The significant improvement of compression efficiency of H.264/AVC [6] is attributed to

several techniques, including adaptive Intra16×16/Intra4×4 intra prediction, multi-

reference ME & MC, and variable block-size & ¼-pixel precision of ME that reduce

Chapter 1 Introduction

 5

intra/inter prediction error, adaptive block-size (4×4 or 8×8) integer transform that

efficiently concentrates energy of residual blocks with lower computation complexity

compared to DCT, in-loop deblocking filter that enhances both subjective & objective

video quality, more efficient entropy coding tools including CAVLC [9] and CABAC [10]

compared to all previous standards, and Rate-Distortion Optimization (RDO) [11], etc.

Moreover, adaptive frame/field coding at picture level (PAFF) and MB level (MBAFF)

[8, 12] is beneficial in some scenarios, compared to frame coding or field coding.

Intra prediction: In the previous standards, intra prediction is always carried out in the

transform domain, such as prediction of DC coefficients based on the neighboring coded

DC coefficients in intra frame/fileds. In comparison, intra prediction of H.264/AVC is

implemented in spatial domain, by referring to the neighboring pixels of previous coded

blocks on the left and/or top of current predicting block. Four Intra-16×16 prediction

modes are supported for block size of 16×16 and 9 Intra-4×4 modes are supported for

block size of 4×4. Best prediction block size and prediction mode are chosen for each

MB, and spatial redundancy is more efficiently reduced by coding the prediction error

and prediction modes.

Integer transform: To remove redundancy in the transform domain, integer transform of

H.264/AVC is used, which is an approximation of the DCT transform. The technique

achieves exact match after decoding and the computation is also simplified, compared to

the floating-point DCT transform in the other standards. More specifically, block sizes of

4×4 or 8×8 of integer transform can be adaptively chosen in the high level profiles of

H.264/AVC to fit for various video scenarios. Small 4×4 transform is more locally

adaptive and is required of transform region within small prediction Region [8]. After

Chapter 1 Introduction

 6

redundancy reduction in the spatial and temporal domains, entropy coding tools are

utilized to further remove the redundancy of code word.

8x8

0
0

0
0

1
1

1

2 3

4 partition modes
of 8x8 partition of

P8x8 mode:

8x4 4x8 4x4

16x16 16x8 8x16

4 partition
modes of MB: 0

0
0

0

1
1

1

2 3

8x8

P8x8
partition
mode

Block size of
partitions:

Block size of
sub-partitions:

Figure 1-2: MB partition modes and sub-MB partition modes of ME in H.264/AVC

Inter prediction: The precision of inter prediction is enhanced compared to the earlier

standards because of following technical improvements:

 Multi-reference inter-picture prediction allows encoder to select from a larger

number of decoded and stored frame/fileds for motion compensation, compared to

those of H.263 and MPEG-2. As a result, bit rate reduction is significant in certain

types of video scene such as repetitive motion and back-and-forth scene.

 Variable block-size motion estimation of H.264/AVC supports more flexible

selection of block size of motion compensation. As shown in Figure 1-2, except

the 4 types of MB partition modes P16×16, P16×8, P8×16, and P8×8 of motion

estimation with the corresponding partition sizes of 16×16, 8×16, 16×8, and 8×8

pixels that are supported in MPEG-4 Part 2, for the mode P8×8, each sub-MB

(8×8 partition) can be further partitioned into small partitions of 8×8, 8×4, 4×8,

and 4×4 pixels. The index numbers in the figure indicate scan and processing

order of the partitions. It enables better match of various motion patterns and

Chapter 1 Introduction

 7

more precise segmentations of motion regions, and results in bit-rate reduction of

prediction residual data.

 The precision of motion estimation is ¼ of a pixel (quarter-pixel-precision or

qpel), which is higher than that of most of previous standards. Interpolation

operations using 6-tap FIR filter and bilinear interpolation are used to generate the

pixels at half-pixel and ¼ pixel positions. The computation complexity of

interpolation is lower than that of MPEG-4 Part 2.

Rate-Distortion Optimization (RDO): At MB level, coding efficiency depends on the

selecting among different coding options. The best choice of coding options of MB

achieves minimum distortion D within a constrained bit rate R. Instead of solving

constrained selection problem, the widely used Lagrange multiplier methodology is

applied, and the problem is transferred to a simpler unconstrained problem by finding the

minimum (1-1), in which constant λ is the multiplier.

3
12

mod

cos

285.0
−

⋅=

⋅+=
QP

e

t RDRD

λ

λ
 (1-1)

In H.264/AVC RDO algorithm, Lagrange optimization procedure of motion estimation of

inter modes is separated from the successive procedure of MB coding mode decision. The

multiplier λmode is used for MB mode decision, and it is a positive value proportional to

the Quantization Parameter QP, as shown in (1-1). The multiplier λmotion of motion

estimation is set as the square root of λmode. For MB mode decision, coding modes are

selected from intra and inter modes, including Intra-16×16, Intra-4×4, Skip, P16×16,

P16×8, P8×16, P8×8, etc. Coding rate R and RDcost of each MB coding mode are

precisely evaluated, as all SEs of the MB are encoded by entropy coder CABAC or

Chapter 1 Introduction

 8

CAVLC to obtain the accumulative value of R for MB coding mode. In comparison, the

calculation of R is simplified in the procedure of best motion vector selection during

motion estimation. The idea of RDO simplification of motion estimation was first

proposed by Sullivan, et al. in [13] and updated in [11]. Because large amount

computation involved in the evaluation of RDcost values, R is approximated by a value

proportional to the length of motion vector instead of going through entropy coding. A

special case of RDO MB coding mode decision is mode P8×8, in which entropy coding is

required to accurately evaluate the R of RDcost for each sub-MB partition mode for the

selection of best mode of each 8×8 sub-MB.

Entropy coding: Two entropy (statistical) coding tools are utilized in H.264/AVC at the

final stage of VCL including CAVLC (context-based adaptive variable length coding) [9]

and CABAC (context-based adaptive binary arithmetic coding) [10, 14]. In the Baseline

and Extended profiles targeting at low bit-rate conversational network video service and

stream services, CAVLC is utilized to encode SE of 4×4 block quantized transform

coefficients, and Exp-Golomb coding is applied to encode other MB-level and high level

SEs. For the Main and High profiles targeting at high bit-rate and high definition service

such as TV broadcasting or DVD, CABAC is used. CABAC achieves even higher

compression ratio than CAVLC, with over 10% in bit-rate reduction. More details of

arithmetic coding theory and CABAC will be introduced and analyzed in Chapter 2.

Although large percentage of H.264/AVC encoding computation is used for ME,

throughputs (number of symbols coded per cycle) of both H.264/AVC video encoder and

decoder are also limited by the entropy coding stage, because of sequential coding nature

and high data dependency of CABAC coding procedure. As it is not efficient to remove

Chapter 1 Introduction

 9

the bottleneck by software optimization and acceleration alone, it is reasonable to exploit

parallelism at all levels to accelerate CABAC coding procedure in the H.264/AVC codec

system targeting at high bit rate real-time coding.

1.2 Approaches of H.264/AVC Codec Acceleration

Because computation complexity of H.264/AVC is significantly higher compared to the

previous standards, there has been much research on accelerating H.264/AVC encoding

or decoding procedure in the aspects of embedded software implementation, algorithm

modification and simplification, and hardware acceleration of codec system or particular

function blocks by either FPGA or ASIC designs. For SW acceleration, DSP-based

H.264/AVC encoder designs are reported in [15-18], while Cell processor [19] and ARM

processor [20] are reported to achieve low-resolution SW decoding. Fast algorithms are

developed to accelerate particular function blocks such as intra prediction [21], coding

mode decision and RDO [12, 22-24], ME and MC [25], and rate control [26, 27].

However, SW acceleration is limited by the low degree of parallellism and is not suitable

for high bit rate high definition real time coding.

Hardware acceleration of H.264/AVC codec is reported in the literatures targeting at

encoder/decoder system or particular function blocks. For encoder design, MB encoding

is accelerated by 4-stage pipeline [28, 29] or 3-stage pipeline [30] to enable parallel

processing of different MB coding steps such as integer ME, fractional ME, transform &

quantization. To remove data dependency and enable pipelined coding, algorithm is

adjusted, including simplified MV prediction in [28, 29]. Different encoding stages are

controlled by embedded processor [31] or through control signals input from system bus

interface [30]. As computation complexity of decoder is significantly lower, FPGA is

Chapter 1 Introduction

 10

utilized to achieve real time decoding excluding entropy decoding in [32]. Schemes of

memory access reduction and memory size reduction of decoder are reported with

strategies of optimized scheduling of decoding order [33], data reuse by allocation of

shared memory and local buffers [28-30, 34], and multi-bank SRAM access [35]. Power

reduction and chip testing schemes of codec are considered in [36, 37].

HW designs that focus on accelerating of particular function block are also reported. To

reduce ME computation, MB partition modes and search candidates are reduced in [30],

full search early termination of ME is applied in [34], and control of search range and

reference frame number in [38] according to input variations. However, video quality is

also degraded [39] with such simplification. SIMD architecture of ME is designed in [40]

to enhance computation parallelism. For MC of decoder, interpolation window reuse

scheme [41] is utilized to reduce memory bandwidth. For intra prediction, acceleration

strategies are proposed including prediction mode decision with reference to the mode of

coded blocks [42] and scheduling of parallel processing of Intra16×16 & Intra4×4

prediction [43].

HW acceleration of entropy coding stages at H.264/AVC is necessary because the

bottleneck of strong data dependency and sequential coding property can not be

efficiently removed by SW design and optimization. HW architectures of CABAC and

CAVLC codec designs and related design strategies will be analyzed in Chapter 3.

1.3 Objectives of the Research

As aforementioned, the entropy coding tool CABAC exhibits outstanding efficiency of

lossless compression compared to CAVLC and other VLC encoders and contributes

significantly to the performance enhancement of H.264/AVC. However, sequential

Chapter 1 Introduction

 11

coding nature and strong data dependency of CABAC coding procedure prevent efficient

software acceleration in both single-core and multi-core parallel coding at MB level.

Although multi-core parallel coding can be applied at slice level, compression efficiency

of CABAC will be degraded when a frame/filed is divided into multiple slices. Quite a

number of research projects have been carried out targeting at hardware design of

CABAC encoder of H.264/AVC standard in recent years. Although different approaches

have been investigated to accelerate the encoding procedure, these designs still have

limitations in several aspects, including incomplete functional implementations,

inefficient removing of the dependency of coding data, no support of RDO coding in the

CABAC encoder, and high frequency of memory access for the context model and

related high power consumption.

Because CABAC is the final encoding stage of video encoder and the first decoding stage

of video decoder of H.264/AVC, it has significant influence on the coding performance

of the top-level video codec. Furthermore, because the processing data rate at CABAC

encoder is significantly higher compared to that of decoder, especially when RDO is used

in the coding control procedure, it is challenging to design a real-time CABAC encoder

targeting at high definition high quality H.264/AVC video coding applications.

In this thesis, research work is carried out to design a hardware IP of CABAC encoder

targeting at the Main profile of H.264/AVC. The general research objectives include:

(1) Design a SoC based full hardware CABAC encoder that minimizes computation on

the host processor and data transfer on system bus. (2) Enhance throughput of encoder

and achieve high quality real time video coding. (3) Provide a solution of SoC-based

CABAC encoder IP with complete RDO support, and insure integratability and

Chapter 1 Introduction

 12

reusability, and wide application field. (4) Minimize memory access frequency and

power consumption of encoder. (5) Explore general circuit design methodologies

(strategies) that can be used for sequential coding algorithm and system such as entropy

coding.

1.4 List of Publications

 X.H. Tian, T.M. Le, X. Jiang, and Y. Lian, "Full RDO-Support Power-Aware

CABAC Encoder with Efficient Context Access," IEEE Transactions on Circuits and

System for Video Technology (T-CSVT), vol. 19, no. 9, pp. 1262-1273, Sept. 2009.

 X.H. Tian, T.M. Le, X. Jiang, and Y. Lian, "A HW CABAC encoder with efficient

context access scheme for H.264/AVC," in Proceedings of IEEE International

Symposium on Circuits and Systems, pp.37-40, 2008.

 X.H. Tian, T.M. Le, X. Jiang, and Y. Lian, "Implementation Strategies for Statistical

Codec Designs in H.264/AVC Standard," in Proceedings of The 19th IEEE/IFIP

International Symposium on Rapid System Prototyping, pp.151-157, 2008.

 X.H. Tian, T.M. Le, H.C. Teo, B.L. Ho, and Y. Lian, "CABAC HW Encoder with

RDO Context Management and MBIST Capability," in Proceedings of International

Symposium on Integrated Circuits, pp.236-239, 2007.

 X.H. Tian, T.M. Le, B.L. Ho, and Y. Lian, "A CABAC Encoder Design of

H.264/AVC with RDO Support," in Proceedings of 18th IEEE/IFIP International

Workshop on Rapid System Prototyping, pp.167-173, 2007.

Chapter 1 Introduction

 13

 T.M. Le, X.H. Tian, B.L. Ho, J. Nankoo, and Y. Lian, "System-on-Chip Design

Methodology for a Statistical Coder," in Proceedings of Seventeenth IEEE

International Workshop on Rapid System Prototyping, pp.82-90, 2006.

 Patent: US Provisional Application No. 61/151,269. Title: Method and Device for

Encoding Syntax Element using CABAC Encoder. Filing Date: 10 February 2009

 X.H. Tian, T.M. Le, and Y. Lian, Entropy Coders of the H.264/AVC Standard –

Algorithms and VLSI Architectures, Springer-Verlag GmbH, Publisher in editing

procedure, Nov. 2009.

 X.H. Tian, T.M. Le, and Y. Lian, "Analyses on the Implementation Techniques of

CAVLC and CABAC Codecs in H.264/AVC," IEEE Transactions on Multimedia,

2009. (Journal submission under review)

This research is restricted to the efficient design of CABAC encoder, and the other

functional blocks of H.264/AVC standard are not implemented in hardware circuits. The

thesis is organized as follows. Arithmetic coding theory and CABAC algorithm are

introduced first in Chapter 2. After that, related literatures on H.264/AVC entropy codec

designs are reviewed in Chapter 3. The proposed CABAC encoder design of this thesis is

introduced in Chapter 4 and Chapter 5. Functional partitioning schemes, top-level HW

encoder architecture, and part of function blocks of encoder are discussed in Chapter 4,

while the architecture of context modeling is discussed in Chapter 5. Then the design of

the SoC system bus interfaces and inter-connection of the encoder is described in Chapter

6. After that, design, synthesis, verification, and performance comparison to the reported

designs are illustrated in Chapter 7. Conclusions are given in the last chapter.

Chapter 2 Review of Arithmetic Coding and CABAC

 14

Chapter 2 Review of Arithmetic Coding and
CABAC

2.1 Introduction of Arithmetic Coding

Compared to the previous lossless variable length coding (VLC) methods [44] including

Elias, Golomb and Rice, Shannon-Fano, and Huffman [45], the distinct difference of

arithmetic coding is that code words can be represented using fractional number of bits,

while in other VLCs, each code word must occupy integer number of bits. Shannon first

mentioned the possibility of such coding method in 1948 [46]. Elias explores the idea of

successive subdivision of coding interval [47] in 1960s. Complete scheme of arithmetic

coding was proposed by Rissanen [48] and Pasco [49] independently in 1976, in which

finite-precision arithmetic coding was implemented. Further research work include

hardware-oriented arithmetic coders [50] of IBM and software-oriented arithmetic coders

by Witten et al. [51], which made it practical in the image and video compression

applications. Arithmetic coder generates code word by representation of subintervals of

the interval [0, 1) with enough bits. Ratio of each subinterval to the current interval is

proportional to the probability of the corresponding event. If only two events (symbols)

are coded, 1 bit is enough to represent most probable symbol (MPS) and least probable

symbol (LPS), and it is called binary arithmetic coding and each coding symbol is called

a bin. Context-based adaptive binary arithmetic coding is binary arithmetic coding with

adaptive symbol probability according to the recent coding events.

As shown in Figure 2-1, coding interval of binary arithmetic coding can be defined as

[Low, Low + Range). For each bin encoding, the interval is subdivided into two

Chapter 2 Review of Arithmetic Coding and CABAC

 15

subintervals [LowLPS, LowLPS + RangeLPS) and [LowMPS, LowMPS + RangeMPS), and one

subinterval is selected based on whether the coding bin is MPS or LPS. Confirmed bits of

Low are output as coding result. Subinterval calculation of MPS and LPS is according to

(2-1), in which Range of LPS (RangeLPS) is calculated according to pLPS, the probability

that the coding bin is LPS. Low is updated accordingly after Range update.

RangeLPS

RangeMPS

Range

LowMPS

LowLPS

Low

MPS

LPS

Figure 2-1: Coding interval subdivision of binary arithmetic coding.

LowLow
RangeLowLow

RangeRangeRange
pRangeRange

MPS

MPSLPS

LPSMPS

LPSLPS

=
+=

−=
×=

 (2-1)

As coding interval is represented by finite number of bit, to overcome precision loss

introduced by the shrinking of current interval and achieve incremental encoding and

decoding procedure, an incremental output method of arithmetic encoding is proposed in

[51], in which the interval is upscaled by left-shift of Range and Low when Range of

interval is less then ¼ of the max range. This interval upscale procedure is named

renormalization, during which, higher bits of Low need to be output as coding results.

One bit of Low is output only when it is confirmed that the interval is within the upper

Chapter 2 Review of Arithmetic Coding and CABAC

 16

half or lower half of the max interval range. Otherwise, the length of outstanding bits of

Low is accumulated before the value of bits is confirmed. This coded bit output

mechanism of binary arithmetic coding is adopted by CABAC of H.264/AVC.

2.2 CABAC of H.264/AVC

CABAC stands for Context-based Adaptive Binary Arithmetic Coding. Although Q-

coder [52], QM coder [53], and MQ coder [54]of previously image coding standards are

also binary arithmetic coders with statistical adaptivity, CABAC is first proposed by

Marpe et al. in 2001 [55] as a proposal to the H.264/AVC standard committee. It is

adopted as the entropy coding tool used in the Main profile and High profiles of

H.264/AVC standard. Before CABAC of H.264/AVC, LUT(lookup table)-based

variable-length coding (VLC) are generally utilized for entropy coding in the hybrid

block-based video coding standards including H.263, MPEG-2, MPEG-4 Part 2, etc. The

limitation of VLCs [10] is that coding event with probability higher than 0.5 cannot be

efficiently represented and the coding procedure is not adaptive to the actual symbol

statistics as the values of LUTs are fixed. The only arithmetic coder adopted in video

standard is of Annex E of H.263 [4], in which coding efficiency of entropy coding is not

significantly improved, because of directly using of SEs of VLC for arithmetic coding

without redefinition. Before CABAC proposals of [55-57] of H.264/AVC, similar

arithmetic coding approaches were first investigated and applied in non-block-based

video coding [58, 59], such as DWT.

CABAC [6, 10, 14] of H.264/AVC is the first successful arithmetic coding scheme

deployed in video coding standard, with significant compression improvement compared

to previous entropy coding tools. As shown in Figure 2-2, CABAC encoding process

Chapter 2 Review of Arithmetic Coding and CABAC

 17

consists of three elementary steps: binarization, context modeling, and binary arithmetic

coding (BAC). Input SEs are binarized into bin strings, in which regular bins and bypass

bins are encoded separately by the encoding engines of BAC. For regular bin coding,

context model (probability model) of the bin is prepared by the step of context modeling.

Techniques of the three steps will be discussed in the following subsections.

Bin String

Bypass
Bin

Bin &
Context
model

Coded
Bit stream

Bin Value
for

Context
Model
Update

Binarization

(1)
Input SE

Context Model
Selection & Access

Regular Bin
Coding
Engine

Bypass Bin
Coding
Engine

Binary
Arithmetic

Coding

(3)

(2)

Regular
Bin

Context
Modeling

Figure 2-2: Block diagram of CABAC encoder [6] of H.264/AVC.

2.2.1 Binarization

Binarization maps non-binary valued syntax elements (SE) into bin string, which is a

sequence of binary decision (bin). Three types of bins are generated in the binarization

step: regular bin, bypass bin, and terminate bin for the bins with unequal (variable),

Chapter 2 Review of Arithmetic Coding and CABAC

 18

equal, or dominant probabilities of value 1 and 0, respectively. Advantages of

binarization [10] include: (a) the probability of non-binary SE can be represented by the

probabilities of individual coding bins, while compression efficiency is not influenced; (b)

low-complexity binary arithmetic coding can be utilized; (c) context modeling at sub-

symbol (sub-SE) level provides more accurate probability estimation than context

modeling at symbol level, and the alphabet of encoder is reduced.

Five binarization schemes are used in CABAC: Unary (U), Truncated Unary (TU), kth

order Exp-Golomb (EGk), concatenation of the first and third scheme (UEGk), and fixed

length binarization (FL). Kth order Exp-Golomb binarization (EGk) [60], a derivative of

Golomb coding [61], is proved to be optimal prefix-free coding for geometrically

distributed sources. EGk code word consists of prefix and suffix bin strings, with total

length of 2l+k+1 bits. EGk prefix is a Unary code word, with l bits of 1 and one

terminating bit 0). The length l of string of bit 1 is represented as:

 ⎥
⎦

⎥
⎢
⎣

⎢
⎟
⎠
⎞

⎜
⎝
⎛ += 1

2
log2 k

xl

(2-2)

The length of suffix binary string is equal to l + k, and the value of the suffix string is:

lkkxsuffixEGk +−+= 22_ (2-3)

UEGk is combinational binarization scheme of TU and EGk. It is utilized for binarization

of SEs of absolute value of residual coefficient level and MVD. TU generates prefix of

the bin string, and EGk is adopted to generate the suffix with k set to 0 and 3 for

coefficient level and MVD respectively. TU is simple and it permits fast adaptation of

probability of coding symbol. However, it is only beneficial for small SE values. For

Chapter 2 Review of Arithmetic Coding and CABAC

 19

large SE values, suffix bin string generated by EGk provides a good fit to the probability

distribution, and bypass bin coding is utilized to reduce computation complexity.

2.2.2 Context Modeling

The context modeling step shown in Figure 2-2 implements two aspects of functions:

context model selection & context model access. The statistics of coded SEs are utilized

to update probability models (context model) [8] of regular bins. For regular bin coding,

one context model is chosen and fetched from a pre-defined set of context models to

provide probability of regular bin to be MPS or LPS, and context model is updated after

bin coding based on bin value. Context index (CtxIdx) is calculated to select context

model, which is the sum of context offset (CtxOffset) and context index increment

(CtxIdxInc). CtxOffset locates the context model set of processed SE; while CtxIdxInc

selects one context model from the set based on the values of coded bins or coded SEs of

neighboring coded blocks.

The idea of multiplication-free arithmetic coding of H.264/AVC is based on the

assumption that estimated probability of each context model can be represented by a

sufficient limited set of representative values, and in CABAC the number of the

representative values is set to 64 to enable accurate estimation, which is larger than the 30

of Q-coder. Each context model contains 1-bit tag of MPS value and a 6-bit pStateIdx

(probability state index) that addresses one of 64 representative probability values of LPS

from p0 to p63 in the range of [0.01875, 0.5]. The probability values of LPS are derived

from (2-4). The ratio of two neighboring probability values is a constant value α, which is

approximated to 0.949.

Chapter 2 Review of Arithmetic Coding and CABAC

 20

 5.0,
5.0

01875.0,63,,1: 0

63
1

1

=⎟
⎠
⎞

⎜
⎝
⎛==

⋅= −

pandfor

pp

ασ

α σσ

K
 (2-4)

Probability update of context model is based on the rule in (2-5), in which pold and pnew

are the probabilities for the bin to be LPS before and after bin coding. If the coding bin is

MPS, the probability of LPS decreases by simply multiplying the ratio α, while for the

LPS bin, the update probability of MPS is calculated first, and then the probability of

LPS is obtained.

⎩
⎨
⎧

=−⋅−
=⋅

=
LPSbinifp
MPSbinifpp

p
old

old
new),1(1

),,max(62

α
α

 (2-5)

By mapping the update probability value of LPS of (2-5) to the closest value in the

aforementioned set of representative values, multiplication of probability estimation of

CABAC is replaced by simple table lookup for the pStateIdx of next probability state

according to pStateIdx of current bin and based on whether it is MPS or LPS. This

probability value estimation of context state is actually the function state transition of

FSM with 64 predefined states. This type of probability FSM is first utilized in Q-coder,

and adopted in QM coder and MQ coder. Compared to Q-coder, QM coder, and MQ

coder, the representative LPS probability values need not to be stored in CABAC. Instead,

the approximation of the products of coding interval Range and the LPS probability of

(2-1) are stored. In order to be more adaptive to the coding context, the values of MPS

and LPS can be exchanged when the probabilities of MPS and LPS are equal and the

coding bin is LPS.

Chapter 2 Review of Arithmetic Coding and CABAC

 21

For particular regular bins of CABAC, multiple context models are allocated for single

bin to more precisely represent probabilities of bin in different coding contexts. Four

types of context model selection methods are supported in CABAC, based on (a)

neighboring coded SE values of current SE, (b) values of prior coded bins of SE bin

string, (c) position of the to-be-encoded residual coefficient in the scanning path of

residual block coefficients, and (d) level values of encoded coefficients of residual block.

2.2.3 Binary Arithmetic Coding (BAC)

The step of binary arithmetic coding performs arithmetic coding of each bin based on bin

value, type, and corresponding context model of the bin. BAC is a recursive procedure of

coding interval subdivision and selection, as shown in Figure 2-3.

MPS
MPS

LPS MPS

Range

Low

Range
Low

CABAC Bin Encoding Flow

Figure 2-3: Coding interval subdivision and selection procedure of CABAC.

Coding interval subdivision mechanism of CABAC is different from that of QM and MQ

coders. In QM and MQ coders, calculation of RangeLPS of (2-1) is simplified by using

approximated value 1 of Range, and the multiplication is removed. In comparison, Range

is also utilized for RangeLPS calculation of CABAC. Figure 2-4 shows the reference

pseudo C program of interval subdivision and selection of regular bin, in which 2 higher

Chapter 2 Review of Arithmetic Coding and CABAC

 22

bits of Range (bit 7 and bit 6) and the index of probability state (pStateIdx) of LPS are

used to lookup pre-calculated product of Range and pLPS of (2-1) from a 2-dimentional

LUT. Although the product of LUT is of with limited precision, precision of RangeLPS

calculation and interval subdivision is improved and computation complexity is

minimized in CABAC, compared to that of QM and MQ coders.

RangeIdx = (Range >> 6) & 3; //Range[7:6]
RangeLPS = rangeTableLPS[pStateIdx][RangeIdx];
RangeMPS = Range – RangeLPS;
if(bin == MPS) //bin is MPS
 Range = RangeMPS;
else { //bin is LPS
 Range = RangeLPS;
 Low = Low + RangeMPS;
}

Figure 2-4: Coding interval subdivision and selection of regular bin of CABAC.

while (Range < 0x100) {
 if (Low >= 0x100) {

if (Low >= 0x200) {
 //Output bit 0 and following outstanding bits of 1
 PutBit(1);
 Low = Low – 0x200;
}
else { // Low is between 0x100 and 0x200
 Low = Low – 0x100;
 NumOutstandingBits ++; //Accumulate outstanding bits

 }
 }
 else {
 //Output bit 0 and following outstanding bits of 1

PutBit(0);
 }
 //scale up Range and Low values by left shift
 Range = Range << 1;
 Low = Low << 1;
}

Figure 2-5: Pseudo-C program of renormalization and bit output of CABAC.

Chapter 2 Review of Arithmetic Coding and CABAC

 23

Because Range and Low of coding interval are represented by finite number of bits

(Range: 9 bits, Low: 10 bits), it is necessary to renormalize (scale up) the interval to

prevent precision degradation, and the upper bits of Low are output as coded bits during

renormalization. Coding interval renormalization and bit output of CABAC is based on

algorithm of [51], as illustrated in the reference pseudo C program of Figure 2-5. The

coding interval of [Low, Low + Range) is renormalized when Range is smaller than the

threshold value 256 (0x100), which is ¼ of the maximum range of coding interval.

As illustrated in Figure 2-5, renormalization of Range and Low is an iterative procedure,

and the maximum iteration number is 6, as the smallest possible value of Range is 6. For

the processing of carry propagation and output of coding bits, coded bits of CABAC are

not output until it is confirmed that further carry propagation will not influence bit values.

Figure 2-6 illustrates that only when interval length (Range) is smaller than 0x100

(threshold), one bit can be output if the interval is located within the top half [0x200,

0x400) or bottom half [0, 0x200) of maximum coding range, or an OS bit is accumulated

when the interval is within [0x100, 0x300). When a bit of value X is output in BAC, the

accumulated OS bits are output with value 1-X. Compared to the bit stuffing or byte

stuffing schemes of Q-coder, QM coder, and MQ coder, carry propagation is completely

solved during renormalization of BAC, and no additional processing of bit stream is

needed at CABAC decoder. Moreover, as no bits or bytes are stuffed in bit stream,

compression efficiency of CABAC is further improved. However, renormalization

illustrated in Figure 2-5 is a highly sequential operation, and as the iteration number is

variable depending on selected subinterval Range, it is challenging for SW or HW

Chapter 2 Review of Arithmetic Coding and CABAC

 24

acceleration of renormalization and bit output of BAC. In some situations, long delay can

be caused when large number of OS bits are accumulated.

1

3/4

1/2

1/4

0

Output
Bit 1

Output
Bit 0

Accumulate
Outstanding

Bit

Bit output when
Range < 1/4 of max interval range(0x0)

(0x200)

(0x300)

(0x400)

Ratio (Value)

(0x100)

Figure 2-6: Decision of bit output and accumulation of outstanding (OS) bit.

2.2.4 Comparisons of CABAC with Other Entropy Coders

Coding efficiency of CABAC is higher compared to that of the other arithmetic coders

including Q-coder, QM coder, and MQ coder that are in the earlier image processing

standards, because (a) more precise approximation of multiplication of RangeLPS, (b)

larger number of probability states for each probability model and more precise

probability estimation of coding bins; and (c) more context models (probability models)

deployed for various coding contexts of different types of SEs.

Because of high computation complexity of CABAC, another entropy coding tool

CAVLC [9] is deployed in the Baseline profile and Extended profile of H.264/AVC

targeting at low bit-rate real-time video coding. It offers compression-complexity tradeoff

with lower coding efficiency and lower complexity compared to CABAC [10]. It is

employed to encode quantized transform coefficients of 4×4 residual blocks, while zero-

Chapter 2 Review of Arithmetic Coding and CABAC

 25

order Exp-Golomb codes [60] (EG0) are used for all other types of non-residual SEs.

Adaptivity is introduced to CAVLC by switching among multiple VLC tables based on

already processed SEs, and coding efficiency of CAVLC is better than the previous VLC

coders with single VLC table. Instead of coding data pair of run-level as single SE, run

and level of residual block are encoded separately in CAVLC, so that the inter-symbol

redundancy can be more efficiently exploited. However, compression efficiency of

CABAC is significantly higher, with typically bit rate reduction of 9%-14% in the video

quality range of 30-38 dB [10], compared to CAVLC & EG0. This is because (a) in

CABAC, encoding symbols can be more precisely represented in non-integer number of

bits, especially for the symbol with probability higher than 0.5, and (b) CABAC encoder

is more adaptive to the non-stationary symbol statistics with efficient context modeling

(probability estimation) for the coding bins of all types of SEs.

Chapter 3 Review of Existing CABAC Designs

 26

Chapter 3 Review of Existing CABAC
Designs

Since the adoption of CABAC entropy coding scheme in H.264/AVC [10, 14, 58, 59, 62,

63], CABAC is also applied in many applications of image and video processing

including motion mode and residual data of 3D dynamic mesh [64], prediction residual in

lossless 4D medical image compression [65], SEs of 8×8 transform coefficients of AVS

coding standard [66], motion vector coding of scalable video coder [67], parameters of

depth and correction vectors in multi-view video coding [68]. CABAC is also utilized to

encode affine motion vector [69], and MVD of 3-D DWT-based subband video encoder

[70].

Algorithm optimization of CABAC of H.264/AVC is also carried out targeting at

enhancing accuracy of the context model selection in MVD coding [71], investigating

parallel CABAC coding using table lookup technique with parallelized probability

models [72], analyzing error detection probability (EDP) of CABAC coded SEs [73],

error resilience enhancement of coded bit stream by inserting detective markers based on

CABAC semantics [74], or error detection based on joint source-channel MAP estimation

[75, 76].

Recognizing the highly computational complexity of motion estimation, because of the

sequential coding nature and high data dependency of coding procedure in CABAC, the

throughput of a H.264/AVC video codec is also limited by the entropy coding stage. As it

is not efficient to remove the bottleneck by software optimization and acceleration alone,

a number of hardware designs for CABAC have been proposed, to enhance throughput in

Chapter 3 Review of Existing CABAC Designs

 27

various applications. In the following sections, different implementation strategies of

CABAC encoding and decoding architectures will be investigated. The strategies are

evaluated using circuit area, processing time, and power consumption as judging criteria.

The strategies are also investigated at the video codec level in terms of host

computational complexity, data transfer on system bus, and total memory/buffer usage.

The suitability of strategies is evaluated in different application scenarios such as low

power or high speed application. Discussion and analysis of technical advantages and

limitations of these implementations are beneficial for the further design of high

performance entropy codec in various image and video processing applications.

3.1 CABAC Decoder and Encoder IP designs of H.264/AVC

CABAC achieves higher compression efficiency compared to CAVLC. CABAC encoder

and decoder IPs in the recently reported literatures are reviewed as follows. Benefits and

limitations of the implementation strategies of these designs are discussed and analyzed.

3.1.1 CABAC Decoder Designs

Block diagram of CABAC decoder of H.264/AVC is illustrated in Figure 3-1, including

the following 3 functional steps: (1) binary arithmetic decoding (BAD), (2) context

model selection & access (CM), and (3) binarization matching (BM).

Chapter 3 Review of Existing CABAC Designs

 28

Binarization
Matching

Context
Model

Selection
& AccessRegular Bin

Decoding
Engine

Bypass Bin
Decoding

Engine
Binary Arithmetic Decoding

Parsed SE
bin string

(2)

(3)

(1)
Output SEs

SE type
Bin Idx

Bin value

Selected Ctx
Model

Bin value for Ctx
Mode Update

Input Coded
Bit Stream

Figure 3-1: Block diagram of CABAC decoder.

As shown in Figure 3-1, coded bit stream from H.264/AVC encoder is input to BAD, in

which regular bin (RB) and bypass bin (BB) are decoded in the regular bin decoding

engine and bypass bin decoding engine, respectively. For RB decoding, one context

model is selected for each bin in CM based on the decoding SE type, bin index (binIdx)

and decoded bin values provided by BM and SE values of decoded SEs of neighboring

decoded MBs. Each context model can be accessed according to CtxIdx, which is the sum

of context offset (CtxOffset) and context index increment (CtxIdxInc). CtxOffset locates

one context model within the set of context models of one SE type. CtxIdxInc depends on

values of coded bin or coded SE in the neighboring coded MB. The decoding Range and

Offset are updated based on context model, and the bin value is decoded in BAD. Based

on the decoded value of regular bin, the corresponding context model is updated to

adaptively adjust the probability estimation of RB. Decoded bins are parsed in BM,

where the decoded bin string is compared with the bin string patterns of the same SE type

to decide whether the decoding of current SE completes. Decoded SEs are sent to the

following decoding steps of H.264/AVC to reconstruct the video sequence. A long loop

Chapter 3 Review of Existing CABAC Designs

 29

of data dependency exists to select a proper context model for next RB (BAD -> BM ->

CM -> BAD). Design challenge of CABAC decoder is to break the loop and enhance

decoding throughput.

(1) Binary Arithmetic Decoding (BAD)

In BAD, input bins of RB, BB, and TB (terminate bin) are decoded separately, and

context model is provided by CM for RB decoding. During decoding of some types of SE,

the current decoded bin is used to select the context model of next decoding bin. Because

of data dependency aforementioned, it is difficult to achieve multi-bin decoding per cycle

in such situation. However, when the context access pattern is fixed, such as decoding of

residual SEs including significant coefficient flag (SCF), last SCF (LSCF), and

coefficient level, cascaded decoding units for multiple bins can be achieved with

throughput of 2 bin/cycle (2 RB, 2 BB, or 1 RB and 1 BB) [77-79]. To reduce the critical

path of 2 RB decoding, two possible RLPS_4 (4 possible values of Range of LPS) values

of RB2 are pre-calculated during RB1 decoding in [77], and the correct RLPS_4 value is

selected for RB2 when RB1 is decoded. Dual-RB decoding of [80] constantly predicts

that RB1 is MPS, and begins RB2 decoding, and the critical path of RB decoding is

shorter than that of [77]. However, throughput of [80] is only 0.56 bin/cycle, because if

the prediction is wrong, decoded RB2 is discarded. The limitation of dual-bin decoding

scheme is that although throughput of residual SE decoding can be increased to 2

bins/cycle in some situations, critical path length also increases by a ratio in the range of

(1Y, 2Y]. For the SEs that can only be decoded at throughput of 1 bin/cycle including

non-residual SEs and coded block flag (CBF), decoding time is prolonged because of

longer critical path length. The overall performance improvement is not significant,

Chapter 3 Review of Existing CABAC Designs

 30

especially in low bit-rate coding, with consideration of significantly larger area to support

cascaded decoding engines and more complex control logic.

(2) Context Model Selection & Access

Context model of the decoding RB is selected in this step and accessed from context

RAM according to the calculated CtxIdx. In order to reduce context RAM access delay, a

group of context models can be prefetched to the local buffers [77, 81]. Because the

context model selection and access of coded block pattern (CBF) requires multiple cycles

[82], CtxIdx of the next CBF is pre-calculated during decoding of current 4×4 block [79].

The decoding bin percentage of the SEs of significant map including SCF and LSCF is

also significant. To accelerate significant map decoding in the dual-bin decoding

architecture, context models of LSCF are stored in a separate SRAM and it is possible to

simultaneously access context models of both SCF and LSCF SEs [79]. The techniques

of context model prefetch, CtxIdx pre-calculation, and parallel access of multiple context

models are beneficial to reduce context access delay.

(3) Binarization Matching and SE Generation

BM is the inverse binarization of CABAC encoding. It can be controlled by a FSM to

identify the type of next decoding SE. The corresponding LUT of the SE is accessed to

match the decoded code word. The parsed SE is output in this step. Because BM is one

decoding stage of CABAC decoding pipeline, several strategies are discussed in

subsection 4) to reduce pipeline stall and enhance decoding throughput, including parallel

processing of BAD and BM.

(4) Solutions to Pipeline Hazards of CABAC Decoding

A FPGA-based acceleration of critical decoding loop of context model access (CA) of

Chapter 3 Review of Existing CABAC Designs

 31

CM and BAD is proposed in [83]. The acceleration strategy is to map sequential

operations of memory access and table lookup of CA & BAD into pipeline stages with

data prefetching and data forwarding. Throughput of 1 bin/cycle is claimed. However, the

data dependency between the decoded RB and the context model of the next decoding

RB is not removed. Actual throughput of decoder is influenced by both the maximum

processing speed of CA & BAD and the architecture of BM and context model selection.

To enhance decoding throughput, BAD and BM are designed in the same pipeline stage

in [81], which is also adopted in [84] and [85]. The benefit of combining BAD and BM in

the same stage is that the SE type and CtxIdx of the next decoding bin can be decided by

BM after the bin is decoded by the BAD. Therefore, one cycle is saved in regular bin

decoding. A small context buffer named CMR is also allocated in [81] that can buffer

maximum of 8 context models of one SE type. With the assists of CMR, context model

selection (CtxIdxInc calculation) and operation of context models loading from SRAM

(CL) based on CtxOffset can be designed as two parallel units in the same pipeline stage.

Another benefit of CMR as discussed in [81] is that SRAM write operation of updated

context model (CU) can be separated from the pipeline stages and the conflict of CL and

CU on the same SRAM position is solved by data forwarding. The limitation of [81] is

that two cycles of pipeline stall cannot be avoided for CU and CL operations when the

type of decoding SE changes. For large ratio of decoding SEs, number of bins per SE of

is small. Thus, pipeline stall occurs frequently, and it takes an average of 3.93 cycles to

decode one bin. In the updated design [85] of [81], the pipeline stall frequency is reduced

by predicting the type of next SE. Prediction is made according to the SE values of

neighboring coded blocks. With the SE prediction technique applied to the 2-stage

Chapter 3 Review of Existing CABAC Designs

 32

decoding pipeline in [85], over 60% decoding cycles are reduced compared to [81]. The

limitation of SE type prediction is that if the prediction is incorrect, one cycle of stall will

still be introduced for the loading of correct context models.

To eliminate pipeline stall of CABAC decoding, an architecture of 4-stage pipeline is

reported in [84] that achieves decoding throughput of 1 bin/cycle for RB decoding.

Context model selection, and CL are separated to stage 1 and stage 2 of the pipeline.

During decoding of current SE, the first context model of next SE is selected in stage 1

and loaded from context RAM in stage 2. In stage 2, two context models are read

separately from two context RAMs in parallel per cycle. One context model is of current

SE and is read from one RAM containing entire context models, while the other context

model is of the next SE and is read from a small RAM that is not allocated in the other

designs. The decoded bin in stage 3 of BAD & BM decides whether a new SE will be

decoded in the next cycle. Based on the decision, one of the two loaded context models is

selected in stage 2 for the next decoding RB of stage 3. Updated context model of

decoded RB is written back to context RAM in stage 4. By prefetching context model of

next SE during current SE decoding, pipeline stall in the case of SE change is avoided in

[84] compared to the other designs. Decoding speedup of 6.6 times is achieved in this 4-

stage pipeline, compared to conventional design. Throughput is enhanced at the cost of

doubling of context RAM access frequency and complicated multi-branch CtxIdx

calculation. Power consumption and circuit area are relatively increased.

3.1.2 CABAC Encoder Designs

Block diagram of CABAC encoder of H.264/AVC is shown in Figure 2-2. CABAC

encoder consists of 3 functional steps: (1) Binarization to map SE value to bin string; (2)

Chapter 3 Review of Existing CABAC Designs

 33

Context model selection & access to select the proper context model (probability model)

for regular bin (RB) according to context index (CtxIdx), and update context model after

RB coding; (3) Binary arithmetic coding (BAC) to encode each bin by dividing coding

interval of [Low, Low + Range) and selecting one of the two subintervals RangeLPS and

RangeMPS based on whether the bin is MPS or LPS, and probability of MPS. For the bin

with equal probability, bypass bin (BB) coding route is used. The upper bins of Low are

shifted out as coding result when the bin values are fixed.

Compared to CABAC decoding, CABAC encoding has lower level of data dependency.

It is because binarization is an independent functional step with no feedback loop from

CM or BAC to binarization compared to the BM in CABAC decoding. Additionally,

context model selection of CM does not depend on the result of context access (CA) of

CM and BAC. After binarization, CtxIdx calculation of each RB of bin string of SE can

be carried out, which is used to select context model. Therefore, binarization and context

model selection can be pre-calculated and separated from CABAC encoding pipeline.

Because only CA and BAC are the two necessary coding steps for each RB, it is easier to

design encoder pipeline with less frequent pipeline stall compared to previously

discussed decoder designs. CABAC encoder designs of H.264/AVC are reviewed as

follows.

Reported by Li et al. [86], a dynamic pipeline scheme is used to reduce pipeline bubbles.

However, because coding interval subdivision and renormalization are separated in two

pipeline stages, data dependency of the two stages causes frequent pipeline stall, and it

only achieves a throughput of 0.59 bin/cycle.

A CABAC encoding core of context access and BAC is proposed in [87] with low power

Chapter 3 Review of Existing CABAC Designs

 34

design consideration. A variable bit length tag cache and a register file of 72×7 bits are

allocated in the design to reduce SRAM access frequency and the associated power

consumption. Low power technique such as clock gating is also adopted to reduce power

consumption of the tag cache. Throughput is less than 1 bin/cycle because of additional

cycles for RAM access of context models when cache miss occurs.

An arithmetic encoder that supports both JPEG2000 and H.264/AVC is proposed in [88].

To encode 2 RBs per cycle, the inverse multiple branch selection (IMBS) is adopted and

parallelism of Range update is achieved by pre-calculating all possible output values of

first Range before the correct value is selected. IMBS results in large circuit area for the

pre-calculation of all possible branches. Because data forwarding mechanism in context

model access is not built, the pipeline will stall when two successive RBs access the same

context model. Because coding of bin with equal probability (BB) is not implemented,

the design cannot fully support BAC. Furthermore, only estimated value of average

throughput of the encoder is given in [88].

In [86, 87], binarization and context model selection are left to be run on the host

processor. This implies additional processing power and memory bandwidth must be

supported by the higher level system.

Chen et al. [89] combines the CtxIdx (context index) calculation and binarization into one

module of a 3-stage pipeline. Similar to [88], the pipeline stalls when the same context

model is successively accessed during RB encoding. As a result, the achievable

throughput is 0.56 bin/cycle. Context selection is not completely implemented in the

design, and binarization is overlapped in the encoder and host.

Compared with the previous CABAC encoder designs, Liu et al. [90] implements context

Chapter 3 Review of Existing CABAC Designs

 35

model selection (CtxIdx generation) fully in HW with reference to the stored SEs of

neighboring coded MBs. Although a 3-stage pipelined module is designed to accelerate

the RAM access of coded SEs from neighboring blocks, encoding pipeline still stalls 4

cycles for each access. The resulting throughput of the encoder is 0.67 bin/cycle.

A full hardware CABAC encoder is also proposed by Lo et al. [91] with average

throughput of more than 1 bin/cycle. Throughput is enhanced because cascaded

arithmetic coding engines are allocated in BAC to support coding of 2 bins/cycle of

residual SEs including significant map and level values of coefficients. To support coding

of 2 bins/cycle of significant map, context models of SCF and LSCF are allocated in a

separate SRAM, which enables reading of 4 context models (2 pairs of SCF and LSCF)

per cycle. Although it is claimed that the coding speed can be doubled, the speed up ratio

is actually below 2. Because critical path length of BAC is prolonged, encoding time of

non-residual SEs and CBF is extended because throughput of this part of SEs is still 1

bin/cycle and clock frequency is lower. Additionally, because only one context model of

level can be accessed per cycle, throughput of level coding will be only 1 bin/cycle in

some situations. Circuit area is also increased to support higher coding throughput.

The multi-bin arithmetic encoding is investigated in [92]. To enable multiple context

model access in each cycle, SRAM banks are utilized to provide sufficient SRAM ports

for parallel access of context models from different banks. Data forwarding architecture

is utilized to avoid read and write conflicts of SRAM access and pipeline bubble when

the same context model is accessed in successive cycles. The limitation of this scheme is

that a highly complicated context selection block is needed to prepare multiple context

models for the context access pipeline in each cycle. Additionally, cascaded units coding

Chapter 3 Review of Existing CABAC Designs

 36

interval subdivision and selection are needed and the critical path length is significantly

longer compared to single bin coding scheme. Throughput is degraded because of data

dependency in the binarization and context model selection.

In all CABAC encoder designs discussed above, Rate Distortion Optimization (RDO) is

not supported. It is analyzed in [93] that the high computational requirement of CABAC

is largely due to the support of RDO in the H.264/AVC encoding system. Design of

CABAC encoder with RDO functionality is considered in [93], with supports of context

state backup & restoration operations when RDO mode changes. Three large FIFO

buffers are allocated in the design to back up the intermediate states of context models

during RDO mode decision procedure. However, because throughput of FIFO read or

write is single context model per cycle, timing delay is long for the operations of context

state backup and restoration. Additionally, large FIFO buffers occupy large circuit area.

Because single context model is accessed from context RAM in the design, and there is

no mechanism to reduce RAM access by allocating local cache or context buffer, the

access frequency and power consumption of the context RAM is significant. In [93], the

encoding core only focuses on acceleration of context access and BAC. Binarization and

context model selection are not implemented. RDO is not fully supported in [93] because

context model selection related RDO operations are not implemented including the state

of coded SEs backup and restoration of current coding MB during RDO mode decision

procedure.

Osorio et al. proposes the first arithmetic coding architecture of H.264/AVC of

throughput of 1 bin/cycle, utilizing multi-stage pipeline to accelerate CABAC coding

steps including context access, BAC, and bit packing [94]. The coding throughput is

Chapter 3 Review of Existing CABAC Designs

 37

further enhanced in their latest design [95], in which Range & Low are updated in

separate arithmetic coding pipeline stages with duplicated computational resources to

significantly increase throughput to around 2 bins/cycle. A small cache of 16 context

models is utilized to buffer context models read from RAM. The context access delay is

reduced, because for RBs of residual SE, context models are prefetched to the cache

before bin coding. In each cycle, a pair of two RBs with the corresponding context

models is processed by BAC. For the non-residual SEs and CBF, binarization, bin pair

preparation, and context model selection are assumed to be performed by the host

processor. However, these operations take up large percentage of total CABAC encoding

instructions. To enable data pairing operation, additional computational cost is further

assumed by the host processor. To support RDO, two RAM blocks are allocated to store

original and updated context models during RDO coding. However, P8×8 RDO coding

mode is not supported in [95], which is critical to the efficiency of inter frame coding of

H.264/AVC. In Chapter 7, limitations of [95] will be analyzed in details.

3.2 Summary of Implementation Strategies of Entropy Codecs

Hardware design implementation strategies of entropy coding tools CABAC of

H.264/AVC have been investigated. The strategies are evaluated using criteria of circuit

area, processing time, power consumption, etc. To accelerate decoding procedure,

strategies of cascaded processing units, data pre-calculation, and reducing pipeline stage

number are useful. To reduce context model access delay, strategies of context model

prefetch and local buffering, separating context RAM tables for multi-context models

accessing, and CtxIdxInc pre-calculation are efficient. In CABAC encoder design, it is

beneficial to allocate multiple pipeline stages to increase encoding speed. Multi-bin

Chapter 3 Review of Existing CABAC Designs

 38

encoding is a choice to enhance throughput. However, performance improvement of it is

not significant because of lower clock frequency, non-constant throughput, and larger

area of the control logic for multi-bin encoding.

For CABAC encoder designs, the implementations discussed above have several

limitations in general, including:

(1) HW encoder function is not complete, which costs high computation complexity

on the host processor and limits the performance of CABAC design;

(2) Data dependency of coding steps is not effectively removed, so the encoder

cannot be implemented in a full pipeline structure, and the throughput is low;

(3) RDO is not supported in these designs or at least not efficiently supported, which

costs high computation burden on the host processor, and requires large

bandwidth to support backup and restoration of CABAC coding states;

(4) Memory access frequency and related power consumption are high in most

designs because of single context model access from context RAM, and encoder

power reduction techniques are not reported in most designs;

(5) Reusability and integratability of encoder IP are not considered.

In the following chapters, a dedicated CABAC encoder IP of H.264/AVC standard with

comprehensive coding functions and stable high performance is proposed to solve the

limitations aforementioned and achieve research objectives listed in Chapter 1.

Implementation strategies of the proposed CABAC encoder will also be discussed, and

comprehensive performance comparison of proposed design and reference designs will

be given.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 39

Chapter 4 The Proposed Design of
Hardware CABAC Encoder

In this chapter, architecture of the proposed hardware (HW) CABAC encoder is

illustrated. Firstly, the design methodology of a SoC (System-on-Chip) based entropy

coder is presented. Secondly, based on the design methodology, hardware/software

(HW/SW) functional partitioning of CABAC encoder function is carried out to decide

proper portion of functions to be designed as HW circuits and the portion of functions

remained to be processed on host processor. Furthermore, the strategy of functional

partitioning of HW encoder is applied, and the top-level function blocks and encoding

flow of the encoder are introduced. In the following sections, design details of major

function blocks are presented including binarization & bin packet generation and binary

arithmetic coding (BAC). Moreover, additional functions supported by the encoder are

discussed including context model initialization, RDO function support in BAC, etc.

4.1 Design Methodology of SoC-based Entropy Coder

Design methodology for a SoC-based entropy coder such as CABAC is proposed [96], in

which the entropy coder is realized as an IP block that can be integrated in a SoC video

coding system. The IP block can be a logic synthesizable RTL design or a hard IP block

where physical implementation is done and GDSII is ready. The design flow, as shown in

Figure 4-1, contains 9 elementary steps including performance and complexity analyses,

derivation of system specifications, HW/SW functional partitioning, HW top-level

functional partitioning, function block design of HW IP, HW IP verification, applying

constraints and synthesis, introducing SoC features, and HW/SW co-simulation.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 40

Results
correct?

2: Derivation of
System

Specifications

3: HW/SW
Partitioning

5: Design of
Function Blocks

of HW IP

1: Performance
and Complexity

Analyses

Any
Violations?

Min. Comm.
Btw HW/SW

8: SoC Features
Introduction

Finish

no6: HW IP block
Verification

4: HW Top-level
Partitioning

7: Set Design
Constraints of

Timing, Area, Power;
Synthesize Circuits

Start

no

yes

yes

yes

no

9: HW/SW co-
simulation

Figure 4-1: SoC-based entropy coder design flow.

The first step of design flow is performance and complexity analyses. It is crucial to

assess the complexity of software to be mapped onto the supposedly application specific

top-level architecture. When the complexity is low, decision can be made to run the

software using the existing microprocessor. If the complexity is high, it is better to

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 41

identify the bottlenecks. After complexity analysis is performed, system specifications

are written in step 2 to address not only user’s needs but also plans to minimize the

effects of bottlenecks. In step 3, system HW/SW partition is carried out. The portion of

coding function - which can be effectively realized into HW – is replaced by HW

preferred modules, while the remaining portion is left to be run in SW on the existing

embedded microprocessor (host processor). The decision by which HW/SW are

partitioned is based on the system specification such as coding speed of entropy coder,

and constraints of communication latency between host process and HW IP block, data

transfer bandwidth on system bus, and remaining computation on the host processor. All

SW preferred modules are referred to as one single SW non-IP block, while all HW

preferred modules are referred to as one single HW IP block. In step 4, the function of the

HW IP block is further partitioned into proper function blocks during top-level HW

architecture design, which is crucial to the performance of HW IP. All function blocks of

HW IP are designed accordingly in step 5, followed by top-level HW IP block

verification in step 6. Verification is performed by comparing the compressed bit stream

generated by the reference SW (without any HW assisted circuitries), with that output by

the top-level HW architecture. It is important to be certain that design errors are caught at

this step. The RTL-level functional correct design is constrained with timing, area, and

power constraints and synthesized into gate-level circuits in step 7. If any of the

constraints are violated, function blocks are redesigned in step 5. If design violations still

exist after critical function block redesign, the design flow will go back to step 4 to adjust

the top-level entropy coder architecture with more proper functional partitioning scheme.

Design constraints can also be adjusted with tighter or looser constraints according to the

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 42

synthesis results. The recursive procedure stops when all design constraints are met and

the design is verified at gate-level. In step 8, SoC design features will be designed into

the HW IP block. Such features are system bus interfaces and the signals of system bus,

input and output FIFO buffers, debug structures, reset signal, etc. Function correctness

and design constraints also need to be checked after SoC related function blocks

integrated in step 8. Co-simulation of both HW IP block and SW non-IP block is done in

step 9 to verify if communication between SW non-IP block and HW IP block is

minimized including data transfer latency and system bus bandwidth occupation.

4.1.1 Performance & Complexity Analysis of CABAC Encoder

The design methodology of the SoC-based entropy coder is applied to CABAC encoder

design of H.264/AVC. Design step of performance and complexity analyses is presented

first, and the following steps will be discussed in the later sections and chapters. The

coding performance of CABAC encoder IP design is compared to that of CAVLC

(including Exp-Golomb coding for non-Residual SEs) by testing on H.264/AVC

reference software JM 12.4 [97] in the QP (quantization parameter) range of 28 to 40

using three video sequences in both CIF and HDTV 720p formats. The 3 sequences,

named Seq1, Seq2, and Seq3 are: Foreman, Coastguard, and News in CIF format, and

City, Night, and Crew in HDTV 720p format.

Results of Table 4-1 illustrate that CABAC achieves an average bit rate reduction of

10.0% in CIF test and 15.5% in 720p test over CAVLC. The benefit is more significant in

high definition sequence and low bit rate (high QP) range. The performance difference is

similar in RDO-off (RDO not used) mode and RDO-on (RDO used) mode.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 43

Table 4-1: H.264/AVC encoder bit rate reduction, with CABAC compared to with
CAVLC

 RDO
Mode Seq1 Seq2 Seq3 Average

RDO-off 9.0% 13.8% 6.7% 9.8% CIF
RDO-on 10.1% 13.7% 6.8% 10.2%
RDO-off 12.4% 11.1% 22.4% 15.3% HDTV 720p
RDO-on 13.3% 10.6% 23.4% 15.7%

Instruction-level program analyzing tool PIN [98] is used to utilized for profiling

reference JM encoder, and it is found that the algorithm in CABAC reference SW is more

computational intensive compared to that of CAVLC & Exp-Golomb code of Baseline

profile, partly due to the additional instructions executed for binarization and context

modeling (context model selection and access from memory). The higher computational

demand required by CABAC is reflected in the video encoder when RDO is employed, as

large number of intra and inter prediction modes are tested during MB coding mode

decision. Compared to CAVLC & Exp-Golomb, the computational complexity of

CABAC is higher by up to 55%, while its data transfer rate is higher by up to 74%, when

RDO is used. High computation and bandwidth make it difficult for CABAC reference

SW to meet requirements of real-time encoding. Therefore, it is necessary to accelerate

CABAC encoding by ASIC design.

In order to assist decisions in the following design steps including HW/SW functional

partitioning and HW top-level functional partitioning, instruction-level complexity

analysis is carried out on the CABAC encoder of JM reference H.264/AVC encoder. All

CABAC related functions are classified into 5 categories, including C1 to C5. The details

of CABAC function of each category is shown in Table 4-2.

Sequence

Format

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 44

Table 4-2: Five function categories of CABAC encoder of instruction-level analysis

Category number Descriptions of computation of the category

C1 Context Access (CA) & Binary arithmetic coding (BAC)
C2 Non-residual SE coding, excluding computation of CA & BAC
C3 CBF coding, excluding computation of CA & BAC

C4 Coding of residual SEs including SCF, LSCF, and level,
excluding computation of CA & BAC

C5 Operation of mapping quantized block coefficients to run-level
pairs by scanning of coefficient block

C2 & C3 Coding of non-residual SE and CBF, excluding computation in
CA & BAC (more complex for context model selection)

PIN tool is utilized to monitor the number of instructions of each category of CABAC

encoding functions during H.264/AVC video coding. The percentage of instruction

numbers of each category of CIF sequence test is calculated and shown in Figure 4-2 and

Table 4-3.

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

10 20 30 40
QP

%
 o

f i
ns

tr
uc

tio
ns

 o
f e

ac
h

ca
te

go
ry

C2 & C3 C1 C2

C3 C4 C5

Figure 4-2: Five CABAC functional categories as % of total CABAC instructions in CIF
test of H.264/AVC encoder of JM reference SW in the QP range of 12 to 36.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 45

Table 4-3: Percentage of instructions of each category of CABAC encoding function in
CIF sequence analysis

 C1 C2 C3 C4 C5 C2 & C3

36 32.85% 23.50% 23.75% 10.30% 9.61% 47.24%
32 35.07% 21.72% 21.32% 12.17% 9.72% 43.04%
28 37.34% 19.73% 19.18% 13.84% 9.91% 38.91%
24 39.16% 16.56% 18.25% 15.56% 10.47% 34.80%
20 41.40% 12.59% 17.26% 17.63% 11.12% 29.85%
16 43.19% 9.71% 16.34% 19.21% 11.55% 26.05%
12 45.17% 9.33% 14.18% 19.92% 11.41% 23.51%

Average 39.17% 16.16% 18.61% 15.52% 10.54% 34.77%

Table 4-4: Percentage of instructions of each category of CABAC encoding function in
HDTV 720p sequence analysis

 C1 C2 C3 C4 C5 C2 & C3

36 32.41% 21.30% 27.04% 9.17% 10.08% 48.34%
32 33.27% 19.01% 26.19% 11.03% 10.50% 45.20%
28 34.49% 16.54% 24.87% 13.22% 10.89% 41.41%
24 35.81% 12.73% 24.25% 15.67% 11.53% 36.98%
20 38.25% 8.76% 22.56% 18.28% 12.16% 31.31%
16 41.47% 7.86% 18.72% 19.72% 12.22% 26.58%
12 44.35% 9.45% 14.69% 19.85% 11.66% 24.14%

Average 37.15% 13.66% 22.62% 15.28% 11.29% 36.28%

From Figure 4-2 and Table 4-3, it can be observed that CA & BAC (C1) only occupies

32.9% to 45.2% of total CABAC instructions, and the percentage number decreases when

QP increases. CBF coding excluding computation of CA & BAC (C3) occupies 14.2% to

23.8% of total CABAC instructions, because of high data traffic and complex procedure

of context model selection (CtxIdx calculation) of CBF. The remaining computation (C4)

of SCF, LSCF, and level, excluding CA & BAC occupies 10.3% to 19.9% of total

Category

QP

Category

QP

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 46

CABAC instructions. The mapping procedure of run-level pairs to 4×4 block coefficients

(C5) takes up 9.6% to 10.5% total CABAC instructions. The sum of % instructions of C2

and C3 is demonstrated as dashed line in Figure 4-2, representing the sum of non-residual

SE and CBF coding (excluding CA & BAC). This sum occupies 23.5% to 47.2% of total

CABAC instructions, and increases when QP increases. The instruction-level analysis is

also done in HDTV 720p test, with analyzing result shown in Table 4-4. Compared to

that of CIF sequence coding, percentage of C3 increases significantly, while that of C1

decreases. This is because details of HDTV video are smoother, and the probability is

higher that all coefficients of residual block are quantized to zero, and the instruction

ratio of CBF coding increases, and that of other residual SEs decreases. Average of C2 &

C3 instructions increases from 34.8% (CIF) to 36.3% (HDTV 720p).

4.2 HW/SW Functional Partitioning of CABAC Encoder

HW/SW functional partitioning is the precondition of an efficient HW IP design of a

particular function block of SoC-based video encoder, in which function of HW IP and

SW non-IP on host processor, and data communication manner between host processor

and HW IP are decided. System specification (step 2 of SoC-based entropy coder design)

is derived before HW/SW functional partitioning, and detail targets of the design are

specified. CABAC encoder IP design is required to achieve real-time HDTV encoding at

Main profile of H.264/AVC, support different video coding configurations including

RDO, minimize remaining computation on the host processor, minimize bandwidth and

transfer delay on the system bus, and constrain circuit area and power consumption of the

design. Based on these specifications, different HW/SW partitioning schemes of CABAC

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 47

encoder are analyzed and evaluated. Furthermore, necessity of supporting RDO

functions in CABAC encoder IP is emphasized.

4.2.1 Analysis of Different Partitioning Schemes

Figure 4-3: Five schemes of HW/SW partitioning of CABAC encoding.

In the 3 elementary CABAC encoding steps binarization (BN), context modeling (CM),

and BAC, CM can be further partitioned into context model selection (CS) and context

model access (CA), and CABAC encoding can sequentially go through steps of BN, CS,

CA, and BAC. CS can be further partitioned into two categories: CS1, if coded SEs of

neighboring MBs on the left or top of current block of current MB are needed during

context model selection; or CS2, if this type of information is not needed. Five possible

schemes of HW/SW functional partitioning of CABAC encoding in the reported designs

and proposed design of this thesis are summarized and analyzed as follows, and in Figure

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 48

4-3, the functions partitioned to HW implementation of each scheme are highlighted as

blocks, while the functions partitioned to SW are shown as text containing “SW”.

Scheme 1: HW Design of Context Model Access (CA) and BAC
As shown in the figure, the HW partition only contains CA and BAC, while the

remaining function of BN and CS are left to be completed by SW. This is the scheme

adopted by several designs including [86, 87]. In some designs [93, 99, 100], CA is also

partitioned to SW, and both binarized bin string of SEs and corresponding context models

are required to be prepared by SW and input to HW IP through HW/SW interfaces. For

this scheme, remaining computation on host processor is even higher than HW IP. As

shown in 4.1.1, CA & BAC occupies only 39.2% of CABAC instructions. System bus

bandwidth is also high because the bin value and context model index (CtxIdx) of each

regular bin need to be transferred through system bus. In general, CABAC encoding

acceleration is not significant in scheme 1.

Scheme 2: HW Design of Binarization, CA, and BAC
In this scheme [101], binarization is also partitioned to HW, compared to scheme 1. Only

context model selection is partitioned to SW. However, binarization still needs to be

executed in SW because for a number of SE types, bin values of previous binarized bins

are used for context model selection of following bins during encoding the SE. Therefore,

binarization is also required in SW. The improvement of this scheme compared to

scheme 1 is that CABAC packet size can be reduced as SE values are transferred instead

of bin strings. However, as computation resources of HW and SW are overlapped in this

scheme, CABAC encoding is not sped up compared to scheme 1.

Scheme 3: SW Implementation of Context Model Selection of CS1

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 49

In this scheme, only when coded SEs of neighboring blocks/MBs are refer to select

context model (calculation of CtxIdxInc), the CS function is partitioned to SW (shown as

CS1 in Figure 4-3). This scheme is adopted in our previous work [102], because

compared to the scheme 1 and scheme 2, large ratio of CS operations are removed from

host processor. CS1 calculation is only necessary for some types of non-residual SEs and

CBF of residual block, and the calculation is only for the 1st bin of SE, while for the

remaining bins, CS2 is adopted instead, which is implemented in HW. In addition,

binarization is completely removed from SW non-IP block in this scheme, and

computation on the host processor is further reduced. However, calculation of CS1 is

complex and inefficient in SW. Profiling results of 4.1.1 illustrate that computation of C2

& C3 occupies over 1/3 of CABAC instructions in average, and large ratio of

computation is utilized for CS1. For instance, CS1 of CBF utilizes 18.6% to 22.6% of

CABAC instructions. SW design of CS1 also reduces integratability of the encoder IP and

increases bandwidth on system bus.

Scheme 4: Scheme 1 with HW Support of Residual SEs of BN and CS, Excluding CBF

In this scheme [95, 103], HW design of CABAC encoder focuses on accelerating coding

of residual SEs including SCF, LSCF, and coefficient level. Binarization and CS of non-

residual SEs are all partitioned to SW. Although the ratio of bins of SCF, LSCF, and

level is large in the total number of encoding bins, the remaining computation of SW is

still significant (23.5% to 47.2% of CABAC instructions in CIF test, and 24.1% to 48.1%

in HDTV 720p test in QP range of 12 to 36). Consequently, CABAC encoding can not be

significantly accelerated, as the processing speed is restrained by the SW non-IP for the

remaining part of CABAC functions. If the host processor can not generate and transfer

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 50

bin packets of non-residual SEs and CBFs as fast as the speed that bin packet are

processed in the HW encoder, encoding procedure will pause and throughput is degraded.

(5) Scheme 5: Complete HW Function Support of CABAC Encoder

As aforementioned, computational burden of the host processor can be significantly

reduced only when binarization and context model selection (CS) of non-residual SEs

and CBF are implemented in hardware IP. In scheme 5, the functions SE encoding

including binarization, CS, CA, and BAC are all partitioned to HW, and the remaining

computation of SW is only data packet preparation for the HW encoder and coding result

receiving from HW encoder. Compared to the other schemes of incomplete HW design of

SE encoding, computation of host processor and data transfer on the system bus are

minimized. Although design complexity of HW encoder is higher to support context

selection in CS1 and larger memory is required to store coded SEs that can be referenced

by CS1 during later MB coding, CABAC encoding is significantly accelerated because

the bottleneck of SW non-IP is removed. Additionally, integratability of HW IP of

CABAC encoder is also enhanced because it is easier to separate CABAC function from

H.264 video encoding system to a function block. Considering the benefits of scheme 5,

the proposed CABAC encoder IP of this thesis is based on this HW/SW functional

partitioning scheme.

The proposed HW encoder design introduced in the following subsections is based on

this selected HW/SW partitioning scheme (scheme 5) with completely support of SE

encoding in HW. The key elements of this HW CABAC encoder include BN

(binarization), CM (context modeling) in CS and CA (context access), and BAC (binary

arithmetic coding). The elements of CS include CS1 that needs to reference coded SEs of

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 51

neighboring MBs during context selection of current MB and simpler CS2 with no

reference of SEs of neighboring MBs. The functions of these key elements are further

partitioned and reorganized properly in the encoder architecture during top-level HW

functional partitioning to enhance average coding throughput and reduce clock cycle

length, which will be discussed in the next subsection.

4.2.2 RDO Function Support in HW CABAC Encoder Design

To analyze the influence of RDO on the performance of H.264/AVC encoder, encoding

simulation of JM reference encoder is carried out using same test sequences of Table 4-1,

for both RDO-on mode and RDO-off mode. As shown in Table 4-5, RDO achieves

similar bit rate reduction ratio in the test when two entropy coders CABAC and CAVLC

are used. For CABAC encoding, RDO contributes an average bit rate reduction of 11.8%

in CIF test, and 16.4% in HDTV 720p test.

Table 4-5: Bit rate reduction of H.264/AVC encoder, using RDO-on mode compared to
RDO-off mode

Format Seq1 Seq2 Seq3 Average

CIF 11.1% 13.0% 10.2% 11.4% CAVLC
HDTV 720p 14.0% 16.3% 16.9% 15.7%

CIF 12.2% 13.0% 10.3% 11.8% CABAC
HDTV 720p 14.9% 15.9% 18.5% 16.4%

The test results of Table 4-1 and Table 4-5 also indicates that compared to CAVLC in

RDO-off mode, CABAC in RDO-on mode can achieve average bit rate reduction of

around 20.4% in CIF coding and 29.1% in HDTV coding. It is beneficial to support both

Sequence

Coder

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 52

RDO and CABAC, especially for high quality coding to obtain the significant benefit of

the combinational coding gain of CABAC and RDO.

Computation of CABAC encoder significantly increases in RDO-on mode. As shown in

the CIF sequence coding results of Table 4-6, the ratio of instructions of CABAC

encoding to H.264/AVC of RDO-off mode is 0.17% to 1.18%, while the ratio is 6.64% to

20.63% in RDO-on mode. Support of RDO in HW CABAC encoder is necessary to

accelerate CABAC encoding in RDO-on mode.

Table 4-6: Computation complexity of CABAC encoder in RDO-off/RDO-on mode

RDO
Mode QP Instructions of

H.264/AVC
Instructions of

CABAC
Ratio of CABAC /

H.264

28 1.87E+10 3.13E+07 0.17%

24 1.88E+10 4.89E+07 0.26%

20 1.88E+10 8.05E+07 0.43%

16 1.89E+10 1.43E+08 0.75%

RDO
-off

12 1.89E+10 2.23E+08 1.18%

28 2.38E+10 1.58E+09 6.64%

24 2.45E+10 2.10E+09 8.56%

20 2.57E+10 2.99E+09 11.64%

16 2.76E+10 4.45E+09 16.09%

RDO
-on

12 2.96E+10 6.10E+09 20.63%

During RDO-on coding, CABAC encoder is utilized to calculate and feedback coding

rate (length of the coded bit stream) of each RDO mode, and operations of coding state

backup & restoration are required when RDO mode changes. The coding state of

CABAC encoder includes three aspects: (a) the state of all context models of context

modeling (CM); (b) state of coding interval of Range and Low of BAC; and (c) the state

of coded SEs which are referred by CS1 during context model selection. These coding

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 53

state backup and restoration operations are necessary during RDO-on coding because of

data dependency during arithmetic coding. In order to support RDO in H.264/AVC, it is

required to support (a) coding rate accumulation and feedback of each RDO mode and (b)

coding state backup and restoration in CABAC encoder. These two types of RDO

operations are partitioned to HW IP in this thesis to enhance top-level CABAC encoding

performance by removing the bandwidth of huge amount of data transfer of RDO coding

states between HW IP and SW non-IP, significantly longer memory access delay caused

by access of both system memory and local embedded memory of HW IP, and more

complex control logic for the RDO related data transfer.

4.3 Top-level HW Encoder Functional Partitioning

The key elements of HW encoder discussed in Scheme 5 of HW/SW functional

partitioning in 4.2 include binarization in BN, context modeling in CM, and binary

arithmetic coding in BAC. During HW top-level functional partitioning, functions of

these 3 key elements are further partitioned and reorganized in the SE coding flow of HW

encoder to maximize parallelism of different encoding elements and enhance coding

speed of encoder. Two partitioning schemes are discussed, including (1) a preliminary

scheme of FSM(Finite State Machine)-based architecture with low throughput and (2) the

proposed scheme of parallel processing of SE encoding steps of BN, CS, and later full

pipelined processing of bin packet generation (BS), context access (CA), and binary

arithmetic coding (BAC). Both two schemes are introduced and compared to illustrate

influence of functional partitioning to the encoder performance.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 54

Figure 4-4: FSM-based HW CABAC encoder partitioning scheme.

FSM-based functional partitioning scheme is adopted in the earlier design stage of

proposed HW encoder. CABAC coding steps of binarization (BN), context modeling

(CM), and BAC shown in Figure 4-4 (a) can be implemented as FSM, which is shown in

Figure 4-4 (b). BN is separated from CM and BAC, with a FIFO buffer inserted between

the two parts of functions. In BN, SE is binarized to bin string and packed with additional

parameters including SE type, bin string length, etc. and buffered in the FIFO before

being processed by the encoding FSM of CM and BAC.

The FSM consists of four sequential coding steps (states): PR, AC, RN, and CTR, with

function of CM mapped to states PR and CTR, and that of BAC mapped to AC and RN.

In PR, RangeLPS (Range value of LPS) of each regular bin is prepared by table lookup

based on context model and bin value. In AC, coding interval of [Low, Low+Range) is

subdivided and updated by the selected sub-interval. In RN, updated coding interval is

renormalized to maintain precision of arithmetic coding, while coded bits are output

during renormalization. In control state CTR, next encoding bin is prepared with the

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 55

corresponding context model of regular bin read from context RAM based on context

model. RAM write operation of updated context model is executed in state RN during

interval renormalization. RAM read and write are scheduled in different states as single-

port context RAM is adopted. Compared to regular bin coding, bypass bin coding only

goes through states AC and CTR, as context model access is not required.

Encoder coding throughput of FSM-based partitioning scheme is low because it takes 2

or more cycles to encode one bin (average of 4.3 cycles for each regular bin and 2 cycles

for bypass bin). The throughput is not constant because renormalization of state RN,

which is based on the reference algorithm of the standard [6], takes variable numbers of

cycles from 0 to 7, with an average of 1.3 cycles. It is not easy to enhance CABAC

encoding throughput, because of variable cycles of renormalization in RN.

4.3.1 Proposed Hardware Functional Partitioning Scheme

The analyses of HW/SW functional partitioning schemes aforementioned prove that it is

necessary to support complete CABAC function of binarization, context modeling, and

binary arithmetic coding in HW IP. FSM-based HW functional partitioning scheme is

inefficient, because of sequential bin encoding manner. The proposed partitioning scheme

is targeting at acceleration of CABAC encoding by exploiting parallelism of different bin

encoding steps in maximum degree.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 56

Figure 4-5: Proposed HW CABAC encoder partitioning scheme.

(1) Preliminary Partitioning

A preliminary stage of the proposed HW functional partitioning is shown in Figure 4-5

(b). At this stage, the three coding steps of CABAC algorithm shown in Figure 4-5 (a) are

partitioned into function units of BN, CS1, CS2, CA, and BAC. CM is partitioned to two

consecutive coding stages CS and CA for context model selection and context model

access. CS is partitioned to two units CS1 and CS2 based on whether coded SEs of

neighboring MBs needed to be referenced during selection. CABAC coding procedure is

executed in sequential order of BN, CS, CA, and BAC. The reason that CS and CA are

allocated as two sequential coding stages after BN is that: (a) in some conditions, CS of

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 57

current bin depends on the value of previous bin of same bin string; (b) for non-binarized

SE, CS and CA are multi-cycle procedure that loop over all regular bins of the SE, while

BN can be completed in single cycle, and it is beneficial to separate BN and CM to

enable parallel processing of BN and CM; (c) CA depends on the context model selection

result of CS, and it must be scheduled after CS. After preliminary partitioning, further

functional partitioning and adjustment are necessary targeting at high-throughput full-

pipelined encoding. Data dependency between coding stages should be reduced, and

computation complexity among partitioned function units needs to be balanced.

(2) Proposed Functional Partitioning Scheme for SE Coding

The proposed HW functional partitioning scheme for SE coding is illustrated in Figure

4-5 (c). Compared to the preliminary partitioning (Figure 4-5 (b)), unit BS is allocated to

fetch bin string of SE generated by BN and serially generate packet of coding bins of bin

string to CA & BAC. Additional parameters including bin type and CtxIdx of regular bin

are packed with coding bin in single packet, named bin packet in BS, which will be

processed by CA and BAC. In order to reduce critical path length of BAC, function of

BAC is further partitioned to two coding units, including: unit AR for interval

subdivision and renormalization of arithmetic coding and unit BP for bit packing of

output bit stream.

CS1 is scheduled in the coding stage before CS2 in CABAC encoding flow. The reason is

that compared to CS2, computation of CS1 is more complex and irregular, and the

selection of context model of CS1 needs to reference and access coded SEs of

neighboring blocks/MBs. Moreover, as a further 9-bit addition of CtxIdxInc and

CtxOffset is required to calculate CtxIdx of each regular bin, critical path can be

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 58

efficiently reduced when the complex CtxIdxInc calculation is done in CS1, and CtxIdx is

calculated and packed into bin packet in CS2. Therefore, CS1 is scheduled as the previous

coding stage of CS2 in the CABAC encoding flow, processing each input SE packet in

parallel with BN. Although BN and CS1 utilize similar input SE packet parsing circuit,

packet processing mechanisms of the two are distinctly different. The two units are not

combined in this scheme to avoid increase of circuit complexity and critical path delay

and enhance coding efficiency. Because CS1 is only triggered to calculate CtxIdxInc of

the first regular bin of several types of SEs, it is ensured in this scheme that CtxIdxInc

selected in unit CS1 is ready for CtxIdx calculation in unit BS when the bin packet of

corresponding regular bin is to be generated in BS. Partitioning of CS functions of this

scheme has no influence on the throughput of bin packet generation of BS.

Two FIFO buffers are inserted to buffer the output of unit BN and CS1: bin string packet

of BN and CtxIdxInc of CS1. FIFO buffer insertion enables BN and CS1 to work in

parallel with the following coding units. FIFO buffer insertion after BN is necessary

because for the coefficients of residual block, it takes 1 to 16 cycles to receive input

packets of run-level data pair before bin string generation of residual SEs including CBF,

SCF, LSCF, and level. During this output idle period of BN, the buffered bin strings in

FIFO can still provide bin strings to unit BS without interruption.

The function units partitioned in the proposed scheme (Figure 4-5 (c)) include BN & CS1,

BS & CS2, CA, AR, and BP. The units are scheduled as sequential SE coding stages.

Data dependency among these coding stages is minimized, and the units consist of a top-

level SE encoding pipeline, in which all units work in parallel. Compared to the FSM-

based partitioning scheme aforementioned, 1 bin/cycle throughput can be achieved in the

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 59

proposed scheme. For regular bin coding, the throughput speedup of the proposed scheme

compared to FSM-based scheme is 4.3; and for bypass bin coding, the speedup is 2. The

top-level full-pipelined encoder architecture will be introduced in the following sections.

(3) Functional Partitioning of Additional Functions of CABAC Encoder

As discussed in 4.2, additional functions need to be supported in the HW partition of

CABAC encoder, including (a) initialization of context models of context RAM during

slice initialization and (b) context state backup and restoration during P8×8 sub-MB

RDO mode decision. Because these two types of functions are not frequently triggered

during CABAC encoding compared to SE coding and context memory access operations

are required in both, the two types of functions are partitioned to one function block in

the proposed CABAC encoder. The block and the other SE encoding units of the encoder

are activated alternately. When the block is triggered by the control signals parsed from

input packets, the other SE encoding units of the encoder will stay in idle state until

operation of the block completes. HW acceleration of this block is necessary to reduce

idle time of the top-level SE coding pipeline. Compared to the reported designs, design of

this function block is only proposed in this thesis.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 60

4.3.2 Full-Pipelined Top-level HW CABAC Encoder Architecture

WB Slave I/F
for SE & ctrl

22

22

333

Slice reset

RDO ctrl

Block 1

Ack
4

3

22

SE RAM for
coded MBs

Coded SE
values

33

RLPS_4

RDO
rate

Coded
bytes

Renorm
output 2

13

RDO ctrl
param

632

Block 2

4

WB Master I/F

Output to host processor

Block 3
Ctx model

initialization

Ctrl &
data

RDO Ctx state
backup &

restoration (P8X8)

642

Ctx Ini ROM

Sel MUX7
ROM Addr

RDO
ctrl

Table
I

106x64

Table
P0

106x64

Table
P1

106x64

Table
P2

106x64

Ctx Memory Block

Ctrl &
data

Ctrl &
data

Ctrl &
data

Input from host processor

Address
list
11x6

Temp
RAM
53x56

Normal
RAM

53x56

Best
RAM
11x62

P8x8
RAM
11x62

Ctrl &
data

CS1 BN

BS&CS2

CA

AR

BP

8x33
FIFO3

32x3
FIFO2

2 pipeline
stages of BP

13

FIFO1
16x22

BN: Parsing SE & ctrl param,
and SE Binarization

CS: Context model selection

CA: Context model access

CS1: CS that needs to refer to coded
SEs of neighboring MBs, including opts:
MB acc (MA) & CtxIdxInc calc (IC)

CS2: CS that NOT needs to refer to
coded SEs of neighboring MBs

BS: Coding bin packet serial output to CA

AR: Arithmetic coding interval (Range
& Low) subdivision & renormalization

BP: Bit packing of output bits

MPS &
bin type

4 pipeline
stages of CA

CtxLine &
Addr of CtxLine

Bin packet

Bin string packetCtxIdxInc

Input SE packet

Figure 4-6: Block diagram of top-level architecture of HW CABAC encoder.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 61

The top-level architecture of the proposed CABAC encoder is shown in Figure 4-6. The

encoder consists of three functional blocks and a memory block: Block 1 for input

parameter parsing & binarization and context model selection (CS); Block 2 for context

model access (CA) and binary arithmetic coding (BAC); Block 3 for functions of context

model initialization and context state backup & restoration during P8×8 sub-MB RDO

mode decision (P8×8 RDO coding); and a memory block for context RAMs and ROM

tables.

As shown in the figure, Block 1 consists of 3 function units CS1, BN, BS&CS2, 3 FIFO

buffers, and a RAM of coded SEs that is only accessed by CS1. Unit BS and CS2 are

integrated into one unit in order to complete operations of context model selection

(CtxIdx calculation) and packing of bin and CtxIdx in the same cycle. Block 2 consists of

3 function units including CA, AR, and BP, as introduced in 4.3.1. The WISHBONE

(WB) system bus [104] master and slave interfaces are also integrated to the encoder to

enhance the portability and reusability of the IP, and design of system bus interfaces will

be discussed in Chapter 6.

Input SE received from WB slave interface is encoded in Block 1 and Block 2. In Block 1,

FIFO1 (16-word×22-bit) buffers 22-bit input SE packets. Unit BN binarizes SE value

into 33-bit bin string package. Read of FIFO1 is controlled by BN, while the packet read

from FIFO1 is parsed in BN and CS1 simultaneously. Context models of part of regular

bins are selected in CS1 by calculating a 3-bit CtxIdxInc when coded SEs of neighboring

blocks/MBs need to be referenced, which are stored in the SE RAM. The size of SE

RAM depends on the maximum horizontal resolution of input video sequences supported

by the encoder. In unit BS&CS2, context model selection of regular bin is completed by

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 62

calculating CtxIdx of each regular bin based on SE type and calculated CtxIdxInc from

CS1 or CS2. For each bin of SE bin string, 13-bit bin packet containing bin value, bin type,

and CtxIdx of regular bin is generated in S&CS2 and sent to Block 2. As previously

discussed, FIFO2 (32-word×3-bit) and FIFO3 (8-word×33-bit) are inserted in Block 1 to

buffer the bin string of BN and CtxIdxInc of CS1 that can largely reduce pause

probability of unit BS&CS2 and following coding stages when the input data of BS&CS2

is not ready. In Block 2, context model of each regular bin is accessed in unit CA from

context RAMs according to CtxIdx. Coding interval is subdivided and renormalized in

unit AR by updating values of Range & Low. After renormalization, upper bits of Low

are parsed in unit BP, and packed and output through the WB system bus master interface.

Coding throughput of top-level pipeline of Block 1 and Block 2 is 1 bin/cycle, as in each

cycle one bin packet can be generated in BS&CS2 and encoded in AR.

The context memory block of the encoder (top-right of Figure 4-6) contains one context

initialization ROM (4 ROM tables, 106-word×64-bit each) used by Block 3 and five

context RAMs including a 53-word×56-bit Normal context RAM (Normal RAM), a 53-

word×56-bit Temp context RAM (Temp RAM), a 11-word×6-bit context line access

address list (Address list), a 11-word×62-bit RAM that stores coding address and context

line in P8×8 RDO coding (P8×8 RAM), and a 11-word×62-bit RAM that stores address

and context line in P8×8 RDO coding (Best RAM). Normal RAM, Temp RAM, and

Address list are accessed by both Block 2 and Block 3, while P8×8 RAM and Best RAM

are only accessed by Block 3. In the following sections of this chapter, unit BN and

BS&CS2 of Block 1 and unit AR and BP of Block 2 will be discussed in details. Context

model selection and access including CS1 and CA will be discussed in Chapter 5.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 63

4.3.3 Date Dependency Removing & Encoding Acceleration
Data dependency of CABAC encoding algorithm can not be reduced efficiently in SW

implementation. In the reported HW designs, data dependency needs to be efficiently

removed to enhance coding throughput and clock frequency. Data dependency of

CABAC encoding algorithm and proposed techniques of data dependency removing and

encoding acceleration are briefly discussed here:

(a) During bin coding, context models of regular bin need to be accessed from context

RAM, updated based on bin value, and stored to RAM. Same context model can be

accessed by successive coding bins, and RAM access delay will cause bin coding

pipeline pause. The solution of this design includes techniques of access context

model by context line and local buffer context models. Updated context models can

be accessed in the next cycle from local buffer instead of context RAM. Context

models are also prefetched according to context selection results of two CS units in

pipeline manner before they are used.

(b) For each bin coding, coding interval update and renormalization, and bit packing and

bit stream output consist of sequential operations of complex computation. Range of

LPS of next coding bin can only be determined after update and renormalization of

coding interval of current bin. Because of data dependency, direct implementation of

bin coding results in long critical path length and low coding speed. To remove data

dependency of bin coding, all possible RangeLPS values are prefetched in unit CA

based on the selected context model. In unit AR, corresponding RangeLPS is selected

when the updated Range is available. Following computation of parsing, packing, and

output of coded bits have no feed back to the coding interval update of AR, and this

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 64

part of computation is assigned to later pipeline stages to reduce critical path length of

Block 2.

(c) In SW implementation, bin generation of SE binarization and context selection of bin

are processed sequentially for each binarized bin. It is because context selection of

current bin can reference previous bins of same SE or coded SEs of neighboring

coded block or MBs. Block 1 design of the proposed HW encoder removes the

dependency by dividing binarization and context selection into two sequential units of

BN and CS2 with FIFO insertion to enable parallel processing of the two steps at

higher speed. The more complex context selection of CS1 is precalculated in parallel

with BN to minimize critical path length in unit CS2. Coded SEs of neighboring MBs

are prefetched and local buffered during current MB coding in CS1, so that data

dependency of reference SEs is removed during context selection.

(d) Context selection and context access are two sequential coding steps with no

feedback loop. Instead of sequential computing of CS and CA in SW algorithm, the

two steps are divided into different units with pipeline buffer insertion. Therefore, CS

and CA can process data in parallel.

The techniques introduced above are applied in the proposed CABAC encoder

architecture with efficient removing of data dependency and acceleration of CABAC

encoding. Parallel processing of binarization, context selection, and bin coding are

achieved in the encoder.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 65

4.4 Binarization and Generation of Bin Packet

4.4.1 Input SE Parsing & Binarization of Unit BN

21 20

Non-Residual SE

Residual coef Run-Level pair:

RDO ctrl param:

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 021 20

16171819

Skip, EOS:
0

1-bit value

4 categories
of packets

Non-residual SE type:
MB type, sub-MB type,
MVD_L, MVD_S, ref
idx, intra pred, chroma
intra pred, MB QP
delta, MB fld/frm, CBP,
EOS

MVD-S: for small MVD value

15

14 111213 78910 6 012345
f/b
dir

x/y
comp

Partition
category

B8 & B4
index

Sign 6-bit MVD abs value

MVD-L: for large MVD value

1:

0:

12 11
Signx/y comp

78910 6 012345
11-bit MVD abs value

8 7

15

f/b
dir

x/y
comp

6 45

Partition
category

0123

B8 & B4
index

Ref Idx:
8

f/b
dir

7 6

Partition
category

45

B8 index

0123

Ref idx
value

MB QP delta:

0123
MB QP delta abs value

4
Sign

Chroma intra
pred mode: 01

Pred mode

CBP: 45 0123

6

1:

0:

CBP chroma CBP luma

45

B8 idx

0

CBP bit
Intra pred
mode: 0123

Pred mode value

Sub-MB type:
012345

B8 idx Type value

22-bit input packet:

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

13-bit Abs level Sign 4-bit Run

19

1: Block 3 opt

0: Block 2 opt

161718

Backup & restoration of coding interval,
RDO rate output, RDO on/off

Backup & restoration of context state in
RDO P8x8 coding

161718 15 14 13

Slice initialization param & frm/fld flag:

19 18

2'b00:

2'b01:

2'b11:

2'b10:
2'b00: 1st slice ini packet 11 10 9 8 7 6 5 4 3 2 1 0

Slice type CABAC ini IDC

Flag value

2'b01: 2nd slice ini packet 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Horizontal resolution of
picture in MB numbers Position of 1st MB in slice

2'b10: frm/fld flag
(frame level)

0

012345

6-bit MB type value

MB type:

QP of slice

Figure 4-7: Input packet format of CABAC encoder.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 66

Input packets of CABAC encoder provide necessary data for both SE coding and encoder

control. Input packets are buffered in FIFO1 and accessed by both unit BN and CS1. The

format of the 22-bit packet is illustrated in Figure 4-7. The top 2 bits (bit 21~20) decide

one of 4 categories of input packets: non-residual SE, Run-Level pair of residual block

coefficients, RDO coding control parameter, and slice initialization parameters and

frame/filed coding flag at frame level. For non-residual SEs, 4-bit tag (bit 19~16) is used

to classify different SE types including MVD-S (MVD abs value that can be represented

in 6 bits), MVD-L (for large MVD value), reference index, MB QP delta, Skip flag, EOS

(end of slice), luma/chroma intra prediction mode, CBP, MB type, and sub-MB type.

For residual coefficients, the packet of run-level pair supports 13-bit absolute value of

level, and 4-bit run, which are the maximum range of Main profile. Two types of RDO

control parameters are supported that control RDO operation of context state backup &

restoration in Block 3 and coding interval backup & restoration and coding rate output of

each RDO mode in Block 2. Slice initialization parameters are parsed from two input

packets including slice type, slice QP, CABAC initialization IDC, number of MBs in the

horizontal resolution of frame/filed, and position of the 1st MB of slice. The slice

initialization parameters are utilized in BN and CS1 and Block 3.

Details of input packet parsing and SE binarization procedure of unit BN is illustrated in

Figure 4-8. BN contains 3 major data paths that process input packets of non-residual SEs,

residual SEs, and encoding control parameters. When control parameters of Block 3 are

parsed and sent to Block 3, BN waits for acknowledgment of Block 3 before processing

next input packet. End-of-slice (EOS) flag and RDO operation parameters including

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 67

Range and Low backup & restoration modes, RDO on/off flag, and RDO coding rate

output instruction are buffered in FIFO3 and forwarded to units of Block 2.

Single packet output :
{CtxOffset Index, LSCF

index, SCF map}

Residual coeff
block processing

TU binarize coef
level prefix, generate
{SE type, CtxIdxInc,

bin str}
update Eq1, Gt1

EG binarize suffix of
coef level, output

bypass bin str

Has
suffix?

Output coeff sign

Finish
all coeffs?

Yes

No

Collect {run, level}
pairs of residual

coeff blk, generate
CBF, SCF, LSCF

Output CBF &
SE type

CBF
True?

Yes

No

No

Yes

Parse non-
residual SE type

TU binarize
MVD prefix,
output SE

type & bin str

EG binarize
MVD suffix,

output
bypass bin

str

Has
Suffix?

Yes
No

Output 1st
regular bin
& SE type

Output
2nd bin

(EOS bin)

Output
remaining

bin str & SE
type

(regular bin)

Intra
4x4?

I_PCM?

Intra
Slice?

Intra
MB?

Output
bin str &
SE type

Output
bin str &
SE type
for prefix No

No
2-cycle BN

prefix &
suffix of bin

str & SE
type for

CBP & intra
pred mode

single-
cycle BN
bin str &
SE type
for other
types of

SE

Send slice
ini signal &
slice param
to Block3

Block3
Ack?

Send RDO
ctx copy
mode &

RDO trigger
to Block3

Block3
Ack?

Yes

No

No

Yes

Read & parse next
SE or ctrl param

YesNo

Yes

No

Yes

MB
TYPE

MVD

Non-residual SE
processing

Forward
RDO ctrl
param:

(1) R & L
copy

mode, (2)
RDO on/
off state,
(3) RDO
rate out

Forward
EOS
flag

Encoding ctrl param
processing

Yes

Figure 4-8: Procedure for parsing and binarization non-/residual SE and control
parameters of unit BN, Block 1.

Different types of non-residual SEs shown in Figure 4-7 are parsed according to the 4-bit

tag in the packet and binarized in BN. Except SE type and SE value that are utilized for

binarization, addition parameters are provided in the input SE packets of some types of

SEs including MVD, reference index, CBP, sub-MB type, etc. These parameters include

forward/backward direction, partition category, and block index of 8×8 sub-MB and 4×4

block which provide necessary information to locate and access coded SEs in the current

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 68

MB or neighboring coded MBs during context model selection of CS1. Because several

numbers of parameters of MVD are required in CS1, in order to reduce packet size, input

parameters of large MVD (abs MVD >=64) are separated to two packets, as shown in

Figure 4-7. Throughput of CABAC encoder is not influenced by such packet partitioning,

because frequency of encoding large MVD is very low, and it takes multiple cycles to

generate bin packets of SE in BS&CS2. In order to simplify packet parsing in BS&CS1,

prefix and suffix bin strings of SE are sent to BS&CS1 in separate packets, and bin strings

of regular bin, bypass bin, and EOS bin are also packed separately. Barrel shifter is

utilized to implement binarization schemes of unary or truncated unary (TU) for SEs such

as reference index, MB QP delta, prefix of MVD, and residual coefficient level. For the

SEs with LUT-based binarization scheme, including MB type and sub-MB type of I, P,

and B slices, LUT is implemented by combinational circuits instead of memory-based

LUT to reduce table lookup delay.

Coefficients of residual block are processed in a different path, because SE values are not

available until run-level pairs of a 4×4 block are all received. Figure 4-8 shows that SEs

of various flags, such as CBF (coded block flag), SCF (significant coefficient flag), and

LSCF (last SCF) are generated during run-level pair receiving procedure. After output of

CBF, a single packet of SCF and LSCF are output, which contains 15-bit SCF map, 4-bit

index of LSCF position, and 4-bit CtxOffset index consisting of frame/field coding flag

and residual block category. The benefits of single output packet of SCF and LSCF

include: total processing time of residual block in unit BN is reduced, and coding

throughput of BS&CS2 is significantly improved. The absolute level values (abs_level)

and signs of coefficients are output in LIFO (last in first out) pattern. CtxIdxInc of 1st bin

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 69

and the remaining bins of abs_level prefix bin string are calculated in BN and sent to

BS&CS2 according to the number of coded level values equal to 1 (Eq1) and number of

coded levels of value greater than 1 (Gt1) of the processing block, as shown in Figure 4-8.

The counters of Eq1 and Gt1 are accumulated for each block during coefficient level

binarization procedure.

Assume input value of EGk is x, with m+1 bits, represented
by x[M:0], and k >= 0
For k=0:

y=x[M:0]+1, MSB of y is y[N], N can be M or M+1
The output bin string contains 2N+1 bits, including N
bits of 1, 1 bit of 0, and lower N bits of y: y[N-1:0]

For k>0:
x[M:0] is the concatenation of two parts:
x[M:k] and x[k-1:0]
y=x[M:k]+1, MSB of y is y[N], n can be M-k or M-k+1
The output bin string contains 2N+1+k bits, including
N bits of 1, 1 bit of 0, y[N-1:0], and x[k-1:0]

Figure 4-9: HW-oriented EGk binarization algorithm.

For SEs of MVD (motion vector difference) and residual coefficient levels, binarization

methods of TU (truncated unary) and EGk (kth order Exp-Golomb code) are used to

binarize prefix and suffix bin string, respectively. SW-based implementation of EGk

binarization introduced in Chapter 2 is not suitable for HW implementation because of

long and variable operation delay. A fast EGk coding circuit is proposed and applied in

unit BN for suffix binarization of MVD (k=3) and coefficient level (k=0). In general, the

HW-oriented EGk binarization algorithm can be described in the following pseudo code,

shown in Figure 4-9.

According to the algorithm of Figure 4-9, EG3 circuits that support 11-bit range of

absolute MVD is designed to generate MVD suffix bin string in single cycle, as shown in

Figure 4-10(a). The absolute value of MVD is subtracted by 1 first (equal to: abs_MVD -

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 70

9 + (1<<k), in which k is 3). The 8 most significant bits of abs_MVD-1 are checked in

the detection circuit of Most-Significant-One (MSB), and bin N is detected as Most-

Significant-One. The output suffix string consists of N bits 1, one bit 0, and lower N+3

bits of abs_MVD-1. MSB index and the sign of MVD are output in the same packet. A

fast EG0 circuit similar to that of MVD is designed for the abs_level suffix binarization,

which supports maximum range of bin string length of 25, as shown in Figure 4-10(b).

level_suffix
13

13

abs_level -14

MostSigOne
detect (bin N)

111...10

N+1 N

MSB index

5

Output bin_str packet

(N<13)

NN+15
level_suffix [N-1:0]

abs_MVD

[10:3]

11

MostSigOne
detect (bin N)

111...10

N+1 N

MSB index

5

Output bin_str packet

(N<8)

NN+15

abs_MVD-1 [N+2:3]

1
11

[2:0]

MVD sign

abs_MVD-1 [10:0]
11

4 Bin typeBin type
4

(b)(a)
Figure 4-10: Fast EGK binarization implementaion. (a) EG3 binarization for the suffix of
MVD; (b) EG0 binarization for the suffix of abs_level_minus1.

4.4.2 Bin Packet Generation and Serial Output of Unit BS&CS2

Unit BS&CS2 fetches 33-bit bin string packet from FIFO3 and serially outputs bin packet

for each bin of SE bin string with the related context information to unit CA of Block 2.

For regular bin, context model selection is completed in this unit by calculating CtxIdx,

which is used to locate the context model of coding bin from context RAM in unit CA.

For regular bin, the 13-bit bin packet consists of bin value, CtxIdx, and bin type. For

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 71

bypass bin, terminate bin (including EOS), and control parameters of Block 2, no

calculation of CtxIdx is needed. The architecture of unit BS&CS2 is shown in Figure 4-11.

...
SCF string

(Max 15 bits)
SCF
Index

CtxOffset
lookup

Output packet
13

Bin type

Finish
control

LSCF/SCF
decision

39
CtxIdx

Output
bin

15
4

4

4

4

4
4

4

4

9

1
0

...

Output packet

MSB Index

1

CtxOffset
Table
lookup

9

55

5

5

5 4

Output
bin 9 3

Bin
select
index

4

13

Bin string (Max 25 bits)

CtxIdx

CtxIdxInc0
CtxIdxInc1

4

1st bin

Bin type

4

4

FIFO2

1st

bin

FIFO3

SE
type

NonResidual
CtxIdxInc

Table lookup

3

3

1

3
Table
Index
0

4

4

Table
Index

3

Ref
bin

Bin Index

CtxIdxInc
Table Index

SCF/LSCF
coding flag

LSCF pos

CtxOffset
Index

SCF/LSCF
coding flag

SCF
Index

FIFO3

 (a) (b)

Figure 4-11: Architecture of unit BS&CS2: (a) CtxIdx calculation and bin packet serial
output circuit for all SE, excluding SCF and LSCF; (b) CtxIdx calculation and SE serial
output of SCF and LSCF packet of residual coefficient block.

Figure 4-11(a) illustrates processing procedure of regular and bypass bin string excluding

SCF and LSCF of residual block. Regular or bypass bin in the string is output from MSB

to LSB. CtxIdx value of regular bin is calculated by the addition of CtxOffset and

CtxIdxInc. CtxOffset decides the initial RAM address of a group of context models of the

same SE type, while CtxIdxInc decides the position of the selected context model within

the group. CtxOffset is looked up from LUTs according to SE type, which is packed to

the bin string packet by unit BN. For large ratio of regular bins of non-residual SEs,

CtxIdxInc is looked up from LUTs in unit BS&CS2 based on bin index (position of the

bin in bin string) and/or the value of previous bin in the bin string. Only for a small part

of regular bins of non-residual SEs, CtxIdxInc is input from the context model selection

results of unit CS1, which are buffered in FIFO2; while for abs_level, context model

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 72

selection is generated in unit BN, and CtxIdxInc values of the 1st bin and remaining bins

are packed in the same input bin string packet of abs_level.

Bin packet generation of SCF and LSCF is shown in Figure 4-11(b). The map of SCF of

residual block is stored in a 15-bit buffer, and bin packets of SCF and LSCF are output

from the position of SCF index 0. The LSCF/SCF coding flag decides the output order of

bin packet of SCF and LSCF, and controls the increase of SCF index. Bin value of SCF

in the packet is read from SCF map, while LSCF value is generated in the Finish Control

block according to LSCF position. CtxOffset values of SCF and LSCF are looked up

according to CtxOffset index, and CtxIdxInc is generated from SCF index directly.

Context model selection of unit CS1 will be discussed in Chapter 5.

The processing of SE bin string and generation of bin packet in unit BS&CS2 are

designed as FSM. According to bin type, SE type, and whether context model is selected

by CS1 or CS2, first FSM state parses bin string and processes the first bin of string, and

the other FSM states can be triggered to process following bins in the string. For each bin

string packet, 1 bin packet can be generated per cycle. Processing steps of input packet

paring, CtxIdx calculation, and bin packet generation & output can be completed in the

same cycle. If the next bin string packet is ready in FIFO3 during processing of current

bin string, unit BS&CS2 will continue generation & output of bin packet of next bin

string with no pause. Therefore, constant throughput of 1 bin packet per cycle is insured

for the proposed design of unit BS&CS2.

4.5 Binary Arithmetic Coding (BAC)

Binary arithmetic coding (BAC) is the encoding and bit stream output stage of CABAC.

Functions of BAC include: (a) encoding of regular bin, bypass bin, and terminate bin by

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 73

subdivision and selection of coding interval according to the context model (probability

model) of coding bin, (b) renormalization of coding interval to keep encoding precision

by upscaling Range and Low, and (c) output confirmed higher bits of Low as coded bits

of CABAC. Proper functional partitioning and efficient removing of data dependency are

important to accelerate BAC. As aforementioed, BAC is partitioned into two consecutive

coding stages: AR and BP. In the proposed HW encoder, BAC is partitioned and

designed as a 3-stage pipeline: first stage for unit AR and following 2 stages for unit BP.

In the following subsections, proposed HW-oriented renormalization and bit packing

scheme is introduced first. Then, design consideration and architectures of the pipeline

stages of BAC will be discussed respectively.

4.5.1 Proposed Renormalization & Bit Packing Algorithm
As discussed in the FSM-based functional partitioning scheme, direct implementation of

SW-oriented renormalization algorithm is not timing-efficient and restricts the

throughput of BAC. A HW-oriented renormalization and bit packing algorithm is

proposed in this thesis, which provides identical results, but significantly higher coding

throughput, compared to the reference algorithm of H.264/AVC [6]. The proposed

algorithm is different from the QM coder renormalization derived in [93, 95]. After

coding interval subdivision, Range & Low of selected subinterval are input to the

renormalization & bit packing stage. The complexity of this algorithm is in two aspects:

leading zeros detection (LZD) of updated Range of coding interval to determine shift

length of renormalization, and least significant zero (LSZ) detection of bit string shifted

out from Low of interval to determine output bits and outstanding bits. Fast

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 74

combinational circuits can be designed to accelerate LZD and LSZ detection, instead of

recursive renormalization and bit output procedure of SW implementation.

The proposed algorithm can be partitioned into two pipeline stages for renormalization

and bit packing. Renormalization can be completed within single clock cycle by checking

leading zeros of updated Range, while bit packing is more complex. Critical path of bit

packing can be divided into two pipeline stages, because there is no data dependency

(feedback loop) in sequential bit packing operations. Leading zeros detection and least

significant zero detection are implemented by fast table lookup implemented in

combinational circuits, while the other operations are implemented as arithmetic

operations including addition, barrel shift, bit concatenation, comparison, etc. Because

outstanding bits are not output until bit value is confirmed, the issue of carry propagation

is not involved in this design compared to that of [93, 95].

The proposed renormalization and bit packing algorithm is implemented as a 3-stage

pipeline illustrated in Figure 4-12. Because the updated Range after renormalization is

required for the selection of proper RangeLPS for the next regular bin, operations of

coding interval subdivision and renormalization of Range & Low need to be completed

within one clock cycle. Therefore, these operations are designed as sequential steps of

unit AR of Block 2. Prefetch of RangeLPS is necessary before AR operations, because the

lookup of 64-entry LUT based on the 6-bit pStateIdx of context model is timing

consuming. The prefetch of RangeLPS is implemented during context model access of unit

CA, which is one stage before the operation of AR, and it can efficiently reduce critical

path length of unit AR.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 75

0 ... 0 1 x x x ... x xRange

x x ... x x x x x x ... x xLow

x x x ... x x 0 1 ... 1

(1) Parse N+1
higher bits

of Low

N bits
Leading zeros

N+1 bits
Parsing string

First
output bit

Remaining
output bits

Least
significant

zero

Outstanding
(OS) bits

Remaining parsing string

x x x … x x x x ... x x

Confirmed
OS bits

(2) Bit string
append &

output from
packing buffer

OS bit & byte
length

accumulate

R & L
Renorm

Bit
Packing

Range << N

Low << N

Interval
subdivision,

R & L
Update

MPS bin
R & L update

LPS bin
R & L update

Half Range
select &
update

Bypass bin
coding

Range state
flush output if

EOS true

Regular bin coding
4-to-1 RLPS select

Leading Zero Detect for
R (0 to 6)

EOS
coding

Output integer bytes from buffer
& confirmed OS bytes

Unit
BP

Unit
AR

Figure 4-12: Three-stage pipeline implementation of renormalization and bit packing
algorithm in unit AR and unit BP.

Because Range value is not available during prefetch, 4 possible values of RangeLPS of

the next regular bin are all prefetched. As shown in Figure 4-12, a 4-to-1 multiplexer is

allocated in unit AR to select the correct RangeLPS before coding interval subdivision

based on 2 bits of updated value of Range (Range [7:6]). In unit BP, string parsing of

higher bits of Low and the following operation of bit string packing and output are

separated to two pipeline stages. The throughput is not influenced in continuous BAC

coding procedure, while critical path of unit BP is significantly reduced.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 76

4.5.2 Coding Interval Subdivision & Renormalization of Unit AR

Regular bin coding

Range LowRangeLps4 bin
2

RLPS
8 9 10binMPS

Shift len

1st
out bit

parse string

6

EOS coding
Half Range selection

bin

Out
bit

OS
tag

Bypass bin coding

1st
out
bit

parse
string8

Range state flush
output if EOS true

EOS10

9

9

bin
type

bin
type

EOS tagparsing str

bin type

1st bitOS tagbin type2str. len
8

9

bin
type

bin
type 2

RDO state

inputinputinput

input

9
1010

bin
type

10 9

MPS bin
R & L update

LPS bin
R & L update

9
10 8

Renorm
(0 to 1 bit)

binMPSbinMPS

5-bit LZD(R[7:3])
& Renorm
(1 to 6 bit)

binMPS

binMPS

10

10

9 9

binMPS

3

9

Figure 4-13: Architecture of unit AR.

The architecture of unit AR is shown in Figure 4-13. Regular bin, bypass bin, and

terminate bin (EOS) are encoded in 3 separate coding routes. The coding interval

represented by Range and Low is subdivided and updated to one of the two subdivisions

according to bin value, bin type, and MPS of bin in regular bin coding. For regular bin

coding, interval subdivision and renormalization can be implemented as two sequential

steps. Coding interval is updated to one of two subintervals based on whether bin is MPS

or LPS. Then, Range and Low of the interval are renormalized.

In unit AR, MPS bin and LPS bin are processed separately, as shown in Figure 4-13. For

MPS bin, renormalization is not needed or only 1 bit renormalization is taken; while for

LPS bin, length (1 to 6 bits) of renormalization is decided by a 5-bit leading-zero-

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 77

detection (LZD) circuit of Range. Separate processing of MPS and LPS simplifies coding

procedure and reduces critical path length in unit AR, compared to the scheme with a

unified renormalization step for both MPS and LPS bin. Renormalization is executed by

left shifting N bits (LZD length) of the updated Range & Low. Multiplexers are allocated

to select proper results from one of the three coding routes including Range, Low, and

coding parameters to the bit packing stage. The critical path of unit AR is from RangeLPS

selection to coding interval update and renormalization of LPS bin, to the data input of

Range registers. In [95], update and renormalization of Low is scheduled one cycle later

than that of Range, because selection of RangeLPS does not depend on the updated value

of Low. However, because Low computation is not complex during interval subdivision

and renormalization, it is beneficial to schedule the operations of Low and Range in the

same cycle to avoid one cycle delay of bit packing.

4.5.3 Bit Packing of Unit BP

The early design version of this unit only contains single pipeline stage. In order to

reduce critical path length of unit BP, a two-stage bit packing unit with 8-bit packet size

is proposed, and the architecture is shown in Figure 4-14. In the 1st pipeline stage of BP,

least significant zero (LSZ) bit position of parsing string (the output bit string from Low

after renormalization generated in unit AR) is determined. Based on LSZ position,

parsing string is separated into output bit string and outstanding (OS) bit string. In the

2nd stage of BP, the first output bit, confirmed OS bits, and remaining output bits are

appended in the packing buffer. Because output packet size is reduced from 32 bits to 8

bits (1 byte), the size of packing buffer and operation delay of bit packing are reduced

significantly. A 3-bit OS byte counter and a 3-bit OS bit counter are allocated to calculate

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 78

the accumulated length of OS bits, and the design can tolerate a maximum length of 63

bits of OS bit string (enough for extreme case) before OS bit string value is confirmed.

Coded bits are output from bit packing buffer in integer number of bytes with confirmed

bytes of OS bits inserted after the 1st output byte.

Unit BP
Bit packing

stage1

EOS tagparsing str 1st bitOS tagbin type2str lenRDO state

CA
input 3 8

Least Significant
Zero (LSZ)
detection

(Regular bin)

Total len

RDO
coding rate

update

OS byte
Num_1

Bit packing
buffer

Output
byte1

Output
byte0

EOS
byte

RDO rate
counter

Output len Packing tag 1st bit OS len

OS byte
Num_0

EOS tag

Packing 1st bin
& OS bits

Packing
remain output str

EOS zero
stuffing

Packing
low[8:1] & bit 1

remain str

OS bit len &
OS byte num

update

Total len &
Output len

update

OS byte
value

13

6
13

5

5

3
Remain

len

5
EOS
tag

8

OS bits
3

EOS
tag

5

5 3

OS
len

OS byte
Num_0

5
3

3

3

5

Total
len

7

7

8
8888

8 8 8

8

EOS
tag

EOS
tag

13

Unit BP
Bit packing

stage2

5
5

24 6 24
8

3

3

Figure 4-14: Two-stage design of bit packing.

As shown in Figure 4-14, excluding the confirmed stuffing OS bytes, maximum of 3

bytes can be output from BP per cycle when EOS flag is coded in BAC, including EOS

byte, 1st output byte, and 2nd output byte. Compared CABAC encoder designs [94, 95,

105] with FIFO buffer allocated for output packets, output FIFO buffer is not inserted

after unit BP, and output delay of coded packets is reduced. Situation of multiple output

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 79

bytes in one cycle can be handled by the system bus interface of CABAC encoder, in

which coded bytes are packed and serially output.

4.6 Additional Functions of CABAC Encoder

4.6.1 Context Model Initialization

Before CABAC coding of SEs of one slice, context models need to be initialized based

on parameters of slice type, QP, and CABAC initialization IDC [6]. Compared to most of

the reported designs, context model initialization is implemented in HW in the proposed

encoder. The advantage of HW initialization is that HW calculation is more timing-

efficient compared to the calculation on the host processor, and system bus occupation

for context model transfer and memory access of context initialization parameters is

removed. As shown in Figure 4-6, one of 4 ROM tables is selected to provide context

model initialization parameters to Block 3. Each ROM table is 106-line×64-bit, and each

64-bit line stores context initialization parameters of 4 context models. A 5-stage pipeline

is designed to process 4 context models per cycle. Stage 1: read address of one line of

ROM table is output from Block 3; stage 2: the ROM stores read address; stage 3:

initialization parameters of 4 context models are read from ROM; stage 4: 4

multiplications are executed in parallel; and stage 5: 4 context models are generated in

parallel, with one addition and several bitwise operations. Four identical processing units

are allocated in this pipeline, and the calculation is further accelerated. With the

additional computation resources allocated, idle cycles between coding slices are

significantly reduced. In every two cycles, 8 context models are generated, concatenated,

and written to Normal context RAM. Total of 424 context models can be initialized in

110 cycles, including pipeline preparing time.

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 80

4.6.2 RDO Function Support in BAC

During RDO-on coding, according to the RDO control parameters, state of coding

interval (values of Range & Low) are backed up or restored in unit AR when RDO mode

changes. Three backup copies of Range & Low values are allocated. During coding of

non-P8×8 RDO mode, only one copy of backup values are accessed, which stores the

original state of interval; while in P8×8 RDO coding, 3 backup copies are all utilized

during selection of the best coding mode (partition mode of ME) of each 8×8 sub-MB.

The coding rate of each RDO mode is accumulated in the 13-bit counter allocated in the

first pipeline stage of unit BP during coding of each RDO mode. Instead of parsing

output bit string, length of code bit stream (um of confirmed output bits and outstanding

bits) is accumulated in a local counter. When coding of one RDO mode is finished, the

coding rate is output to the host processor through system bus interface. In SoC video

encoder system of H.264/AVC with the proposed CABAC encoder, coding of the next

RDO mode will begin only when the rate of current mode is received by higher level

system controller (host processor). If there is no data dependency between consecutive

coding modes, such as intra4×4 prediction mode, input coding packets of next mode can

be sent to CABAC encoder after packets of current mode is sent, even the rate of current

mode is not received by the host processor.

4.6.3 FWFT Internal FIFO buffers

For conventional design of FIFO buffers, if FIFO data output ready signal is set in cycleN,

FIFO read signal can only be sent to FIFO in cycleN+1, and FIFO output data can only be

used in cycleN+2. One cycle of delay of FIFO read can not be avoided in such architecture.

In the CABAC encoder design aiming for high throughput, it is necessary that FIFO

Chapter 4 The Proposed Design of Hardware CABAC Encoder

 81

output data can be used in cycleN+1 when ready signal is set in cycleN. One solution is to

access FIFO at the negative edge of clock edge. However, clock frequency will be

degraded because for the critical path start from FIFO output data, critical path is limited

to half of cycle length.

In the proposed CABAC encoder design, FIFO of FWFT (first word fall through)

architecture is designed and used for the 3 FIFOs in Block 1. The FIFO consists of a

single port SRAM, combinational control circuits, and one output data buffer. The output

ready signal is not registered so as to respond to the read request from Block 1 in the

same cycle. Although circuit area of FWFT FIFO (with output data buffered) is larger

than that of conventional FIFO, one cycle of FIFO read access delay is removed, and the

throughput of CABAC encoder is not influenced by FIFO access.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 82

Chapter 5 Efficient Architecture of CABAC
Context Modeling

In this chapter, context modeling related functions of the proposed CABAC encoder

design are introduced including context model selection of unit CS1 and context model

access of unit CA. A scheme of context line access & local buffering is proposed to

reduce RAM access frequency. Coding state backup & restoration operations of RDO-on

mode are also introduced including the operations for context models of Block 3 and

codes SEs of unit CS1. Compared to the reported designs, full support of coding state

backup & restoration of RDO-on mode is only proposed in this thesis.

5.1 Context Model Selection

The outstanding compression efficiency achieved in CABAC encoder of H.264/AVC

with comparison to the previous arithmetic coders can be attributed to the proper

selection of context model and regular bin coding based on selected context model. For

bypass bin coding, no compression can be gained in CABAC. In order to select most

suitable context model of each regular bin, a number of factors need to be analyzed,

including SE type, coded bins of current SE, coded SEs of neighboring blocks, etc.

As introduced in Chapter 2, context model of context RAM addressed by CtxIdx, which

is the sum of CtxOffset and CtxIdxInc. Function of context model selection is partitioned

to unit CS1 and unit BS&CS2 of Block 1. In CS1, context model selection needs to

reference to coded SEs of neighboring blocks of current MB or neighboring MBs. As

shown in Figure 5-1, unit CS1 is further partitioned to two sub-units: IC sub-unit for

Chapter 5 Efficient Architecture of CABAC Context Modeling

 83

coded SE access and CtxIdxInc calculation for current coding MBs, and MA sub-unit for

memory access operations of backup coded SE. Generated CtxIdxInc values of CS1 are

buffered in FIFO2 and utilized by BS&CS1 for CtxIdx calculation. In the following

subsections of 5.1, the scheme of storage and fast access of coded SE in IC sub-unit will

be introduced first, followed by separate discussion of the architectures of IC and MA

sub-units.

Figure 5-1: Block diagram of unit CS1, including MA sub-unit and IC sub-unit.

5.1.1 Scheme of Storage & Fast Access of Coded SEs of IC Sub-unit

IC sub-unit of unit CS1 calculates CtxIdxInc value for particular bins at specified position

(bin index) of several types of SEs, as specified in Table 9-30 of [6]. Coded SEs of

neighboring BPMB (4×4 block, MB/sub-MB partition, or MB) on the top or left of

current BPMB are used for the CtxIdxInc calculation of one regular bin of current SE in

IC sub-unit.

Implementation of CtxIdxInc calculation with reference to the coded SEs in unit CS1 is

challenging because the irregular manner of accessing coded SE of neighboring BPMB

for different types of SE. The SW-oriented derivation process of coded SEs of

Chapter 5 Efficient Architecture of CABAC Context Modeling

 84

neighboring BPMB specified in the H.264/AVC standard [6] can be described as the

following steps: (a) for the processed bin, the category of the SE is identified first

whether the SE is of MB, partition, or block; (b) neighboring reference BPMB is derived

in a complex procedure by first locating a neighboring pixel on the left or top of the top

left pixel of current processed position, and then deciding which block, partition, or MB

the located pixel belongs to; (c) the SE of neighboring block, partition, or MB is accessed

from memory and used for CtxIdxInc calculation. The SW-oriented BPMB derivation is

complicated and not suitable for HW design targeting at fast access and high throughput.

In order to complete derivation of neighboring BPMB, access of coded SE of the BPMB,

and calculation of CtxIdxInc in single cycle with constrained critical path length, a

scheme of storage and fast access of coded SEs of neighboring BPMB is proposed as

follows. Figure 5-2 illustrates the basic concept of the scheme.

Figure 5-2: Reference MBs on the top and left of current MB, and storage of 3 categories
of coded SEs (MB, 8×8 sub-MB, and 4×4 block) in the reference BPMB of current and
reference MBs.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 85

As shown in Figure 5-2, storage of coded SEs of variable types of BPMB are classified to

3 levels: MB level, 8×8 sub-MB level, and 4×4 block level. The classification is based on

the minimum size of BPMB of the coded SE:

 MB level: For the SEs including MB type, CBF of DC coefficient block, CBP,

QP delta, intra chroma prediction mode, the minimum size is 16×16 and the SEs

are classified to MB level and stored one SE per MB.

 Sub-MB level: For the SEs including reference index and prediction direction, the

size of BPMB can be 16×16, 16×8, 8×16, and 8×8, based on the partition mode of

MB. As the minimum size of BPMB is 8×8, the SE is stored for each 8×8 sub-

MB partition of the BPMB that can be accessed in IC calculation of following

SEs of same type. For example, for a BPMB of size 16×8, 2 copies of SE values

need to be stored for the corresponding two 8×8 sub-MBs in the BPMB.

 Block level: For the SEs including MVD, CBF of AC coefficient block, and CBF

of luma coefficient block of non-Intra16×16 MB, the minimum size of BPMB is

4×4, and coded SE values, are stored for the 4×4 blocks in the BPMB that can be

further accessed in IC calculation. Although BPMB size of MB/sub-MB partition

of MVD is in the range of 16×16 to 4×4, MVD is stored in the unit of 4×4 block.

In the reference MBs on the top and left of current MB, the SEs of MB level are all stored.

For the SEs of sub-MB level and block level, only coded SEs of the 4 blocks and 2 sub-

MBs on the neighboring edge of current MB can be accessed and need to be stored. In the

IC sub-unit of unit CS1, the necessary SEs of 3 levels in the reference MBs are prepared

before coding of current MB, while the coded SEs of current MB are stored for the MB,

sub-MBs, or blocks based on which level the SE is classified to. Although more than one

Chapter 5 Efficient Architecture of CABAC Context Modeling

 86

copy of SE value can be stored for the SEs of sub-MB level or block level including

MVD, reference index, and prediction direction, access of coded SE is significantly more

efficient in circuit complexity and processing speed (throughput × clock frequency) and

for HW design, compared to SW-oriented procedure aforementioned.

(1) Fast Access of Coded SEs of Neighboring Block or sub-MB

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Index of luma 4x4 blocks of
one MB (0~15),

Index of reference blocks of
neighboring MBs (16~23)

0 1

2 3

Index of luma 8x8 sub-MBs or
chroma 4x4 blocks of one MB (0~3)

Index of reference sub-MBs or
blocks of neighboring MBs (4~7)

16

17

18

19

20 21 22 23

6 7

4

5

Top ref MB

Top ref MB Left ref block

Top ref block

 (a) (b)
Figure 5-3: Fast access of neighboring coded block and sub-MBs. (a) Access of
neighboring luma 4×4 blocks, and (b) access of neighboring 8×8 sub-MBs and chroma
4×4 blocks of 4:2:0 video format.

Fast access scheme of neighboring coded block or sub-MB of IC sub-unit is illustrated in

Figure 5-3. For block level SE, a four-bit block index of the SE is provided in input SE

packet. The range of block index is from 0 to 15, with higher 2 bits of index locating one

of four 8×8 sub-MB in the MB and lower 2 bits locating one of 4 blocks in the sub-MB.

The 4 blocks of left reference MB are indexed from 16 to 19, and the 4 blocks of top

reference MB are indexed from 20 to 23. The derivation of block index of left and top

block of current block is based on combinational circuit implementation of table lookup.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 87

The lookup table (LUT) of block index can be derived from Figure 5-3 (a), as shown in

Table 5-1. The 4-bit index of current block is mapped to 5-bit index of neighboring block

in the range of 0 to 23, with MSB (most significant bit) indicating whether the block is in

the current MB or neighboring coded MB.

Table 5-1: Fast table lookup of block index of neighboring block on the left or top of
current block for block level SE processing

Left Block Top Block Left Block Top Block Current
Block
Index Index Current

MB Index Current
MB

Current
Block
Index Index Current

MB Index Current
MB

0 16 0 20 0 8 18 0 2 1
1 0 1 21 0 9 8 1 3 1
2 17 0 0 1 10 19 0 8 1
3 2 1 1 1 11 10 1 9 1
4 1 1 22 0 12 9 1 6 1
5 4 1 23 0 13 12 1 7 1
6 3 1 4 1 14 11 1 12 1
7 6 1 5 1 15 14 1 13 1

Table 5-2: Fast table lookup of Block/sub-MB index of neighboring Chroma block/8×8
sub-MB on the left or top of current block/8×8 sub-MB

Left Block/sub-MB Top Block/sub-MB Current Block/
sub-MB Index Index Current

MB Index Current
MB

0 4 0 6 0
1 0 1 7 0
2 5 0 0 1
3 2 1 1 1

The 8×8 sub-MBs and chroma 4×4 blocks of 4:2:0 format of the Main profile of

H.264/AVC, the index of block or sub-MB of current MB is from 0 to 3, as shown in

Figure 5-3 (b). The two sub-MBs or blocks of the left reference MB of current MB are

indexed with value 4 and 5, while the two of top reference MB are indexed with value 6,

Chapter 5 Efficient Architecture of CABAC Context Modeling

 88

and 7. As shown in Table 5-2, the fast LUT of 3-bit index of neighboring sub-MB or

block can be implemented based on 2-bit index of current MB. The LUT can be derived

from Figure 5-3 (b), and it is implemented as combinational circuit to reduce access time.

In one special situation of CtxIdxInc calculation, it is necessary to access coded SE of

8×8 sub-MB that contains the neighboring 4×4 block on the left or top of current 4×4

block. The sub-MB index can be derived in two steps:

 Decide whether neighboring block locates in current sub-MB or neighboring sub-

MB, based on the lower two bits of 4-bit block index of current block and left/top

direction of neighboring block

 If the block is in current sub-MB, the derived sub-MB index is 2 higher bits of

block index of current block; else, the sub-MB index is looked up in the LUT

(Table 5-2) based on 2 higher bits of block index of current block

Table 5-3: Fast table lookup of sub-MB index of neighboring block on the left or top of
current block based on current block index

Sub-MB Index Sub-MB Index Current
Block
Index Left

Block
Top

Block

Current
Block
Index Left

Block
Top

Block

0 4 6 8 5 0
1 0 6 9 2 0
2 4 0 10 5 2
3 0 0 11 2 2
4 0 7 12 2 1
5 1 7 13 3 1
6 0 1 14 2 3
7 1 1 15 3 3

To accelerate access of coded SE in this situation, a fast LUT is established using the

two-step derivation, and it is implemented as combinational circuit in IC sub-unit to

Chapter 5 Efficient Architecture of CABAC Context Modeling

 89

accelerate sub-MB locating and SE access. The LUT is shown in Table 5-3, in which

LUT input is the current block index and output is sub-MB index of the neighboring

block.

Block level and sub-MB level SEs of current MB and neighboring reference MBs are

stored in registers of the blocks and sub-MBs indexed in Figure 5-3 (a) and (b). During

CtxIdxInc calculation of block/sub-MB level SE in unit CS1, fast access of reference SEs

of neighboring block/sub-MB is implemented through index lookup of LUT and direct

read of SE value from local registers, instead of complicated calculation and memory

access of SW-oriented procedure.

(2) Storage of Coded SEs of Reference MB

The storage of codes SEs of the top and left reference MBs are shown in Table 5-4. Total

of 141 bits are allocated for top or left reference MB to store all necessary coded SEs that

can be accessed by IC sub-unit during CtxIdxInc calculation of current MB. QP delta of

previous coded MB needs to be stored separately from SEs of top and left MB, and it is

only accessed by current MB. In order to reduce memory storage and simplify

computation in IC sub-unit, the values of several types of SEs are not stored directly, but

remapped to a small set of values represented by fewer bits. MB type in the range of 0 to

48 is mapped to 3-bit value that classifies 7 types of MBs. Reference index, intra chroma

prediction mode, and QP delta are represented by 1 bit, indicating if the value is 0 or not.

MVD values occupy large amount of storage of reference MBs and current MB, because

for each 4×4 block, 4 MVD values need to be stored. Although absolute MVD value of

11 bits is supported in the proposed CABAC encoder, it is not necessary to store all 11

bits for each MVD Selection of context model is only influenced by MVD with small

Chapter 5 Efficient Architecture of CABAC Context Modeling

 90

values. Therefore, 7 bits are allocated for each MVD instead of 11 of proposed scheme,

with MSB indicating if absolute MVD is less than 64 or not. The benefit is that for each

reference MB, 64 bits of SRAM storage is reduced, and size of SE RAM reduces 31.2%.

Table 5-4: Storage of coded SEs of top/left reference MBs

Stored
SE type

Num
of SEs

Stored
bits/SE

Location of SE in MB,
and usage description

MB type 1 3 3 bits to classify 7 types of MB in I, P, and B slice

CBP 1 6 6 bits for 4:2:0, 4 bits for luma 8×8 sub-MB, 2 bits
for chroma 8×8 sub-MB

IntraChroma
prediction 1 1 Indicate if intra chroma prediction mode is of DC

mode or not

Top
Forward/backward direction, 2 of 8×8 sub-
MBs of index 2 and 3 at MB bottom, 1 bit
indicates reference index is 0 or not

Reference
index
(f/b)

2×2:
4 1

Left Sub-MBs w/ index: 1 and 3

Top 2 of 8×8 sub-MBs w/ index 2 and 3 at MB
bottom Prediction

direction 2 2
Left Sub-MB index: 1 and 3

Top

For the 4 of 4×4 blocks of index 10,11,14,15
at bottom of MB, 4 MVD components per
block for forward/backward directions, x/y
components

MVD
component

(f/b and x/y)

4×4:
16 7

Left 4 blocks with index 5,7,13,15

CBF (DC) 3 1 1 for DC of luma of I16 MB, 2 for DC blocks of
chroma (Cb and Cr)

Top
4 bits for luma 4×4 blocks of index 10, 11,
14,15; 4 bits for chroma 4×4 blocks (2 of Cb
and 2 of Cr of index 2 and 3) at MB bottom

CBF
(AC & non-
Intra16×16
luma block)

8 1

Left Luma block w/ index: 5,7,13,15, and
chroma block w/ index: 1, 3 on the right side

Total stored bits / MB 1×3+1×6+1×1+4×1+2×2+16×7+11×1 = 141 bits

QP delta 1bit per MB, indicating if QP delta is 0 or not

Chapter 5 Efficient Architecture of CABAC Context Modeling

 91

As shown in Table 5-4, for SEs of block level and sub-MB level including reference

index, prediction direction, and MVD, the positions of block/sub-MB of coded SEs that

are stored for top and left reference MBs are different, which is discriminated by the

index of block/sub-MB in the table. The 2-bit prediction direction is utilized to indicate if

one MB/sub-MB partition is of forward, backward, or bi-directional prediction in B slice.

Although prediction direction is not coded in the later stages of CABAC, the value is

referenced during CtxIdxInc calculation of MVD and reference index in IC sub-unit.

Therefore, 2 values (2 bits each) are stored for 2 sub-MBs of each reference MB. In the

proposed scheme, local storage of coded SEs of MB level and CBF values of DC

coefficient blocks is shared for top and left reference MBs, so that 13 bits of registers can

be reduced in IC sub-unit. This part of SEs are stored in the local registers of left

reference MB first, and then moved to SE RAM of top reference MBs.

5.1.2 CtxIdxInc Calculation (IC) of Unit CS1

CtxIdxInc calculation (selection of context model) of unit CS1 is implemented in the IC

sub-unit, which parses each input packet of CABAC encoder, stores coded SE values in

local register buffers, calculates 3-bit CtxIdxInc with reference to the coded SEs of

neighboring BPMBs, and writes CtxIdxInc values into FIFO2, which will be accessed by

unit BS&CS2 of Block 1. As shown in Figure 4-7, additional parameters are provided in

input packets to assist processing of block/sub-MB level SEs, including block/sub-MB

index, partition category, block category, etc. that are used to locate SE in the current MB,

and provide storage position of coded SEs.

Different processing routes of IC sub-unit are illustrated in Figure 5-4, including

CtxIdxInc calculation of several types of non-residual SE, CtxIdxInc calculation of

Chapter 5 Efficient Architecture of CABAC Context Modeling

 92

residual block (CBF), backup & restoration of the state of coded SEs in RDO-on coding

mode, and End-of-MB process triggered by MB end flag. RDO related operations will be

discussed in 5.4. Multi-cycle CtxIdxInc calculation is proposed in [90], in which 4 cycles

are required to access codes SEs of top and left reference BPMBs and 1 more cycle to

select context model. Compared to [90], single-cycle CtxIdxInc calculation is achieved in

the IC sub-unit of the proposed CABAC encoder for all types of SEs, which avoids the

situation of CABAC encoding pipeline stall caused by the access of coded SEs of

neighboring reference BPMBs, and ensures constant high throughput of CABAC

encoding. Functions of CtxIdxInc calculation and storage of coded SE values of different

SE types are discussed separately.

Figure 5-4: Functions of IC sub-unit of unit CS1.

(1) CtxIdxInc Calculation of Different SE Types

Input packets of CABAC encoder are buffered in FIFO1 of Block 1. Read access of

FIFO1 is controlled by unit BN of Block 1, while each packet is also sent to and parsed in

unit CS1 when it is read out from FIFO1. Packets are classified to different types of SEs

or control parameters according to packet identification bits.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 93

Table 5-5: Parameters of reference BPMBs required for CtxIdxInc calculation of
different types of SEs

SE type Description of required parameters for CtxIdxInc calculation

MB type Reference MBs: MB availability, MB type

Skip Reference MBs: MB availability, MB skip

QP delta Reference MB (previous MB): MB type, QP delta, CBP

Intra chroma
prediction mode

Reference MBs:
MB availability, MB type, Intra Chroma prediction mode

Luma (4 bins for non-P8×8 mode, 1 bin for sub-MB of P8×8 mode):
reference sub-MBs: MB availability, MB type,
CBP bit of sub-MB (Table 5-2) CBP
Chroma (2 bins):
reference MBs: MB availability, MB type, CBP chroma value

MVD Reference blocks: MB type, MB availability, MVD value (Table
5-1), predict direction of sub-MB of reference blocks (Table 5-3)

Reference Index Reference sub-MBs: MB type, MB availability, slice type,
prediction direction (Table 5-2), reference index (Table 5-2)

DC block
Reference MBs:
MB type, MB availability, CBF of DC block

CBF
Other
category

Reference blocks:
MB type, MB availability, CBF of reference block
(Table 5-1 for CBP luma, Table 5-2 for CBP chroma)

During CtxIdxInc calculation of IC sub-unit, required parameters for different SE types

are diversified, as listed in Table 5-5. For most types of SEs processed in IC sub-unit

(excluding QP delta), coded SEs of the two neighboring reference BPMBs (on the top

and left of current BPMB) need to be accessed from local SE buffers of IC sub-unit. For

the neighboring coded SE values of block/sub-MB level, index of BPMB (block/sub-MB)

is decided through table lookup according to the index of 8×8 sub-MB (B8 index) and/or

4×4 block (concatenation of B8 & B4 index) from input packets, as shown in Figure 4-7.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 94

Three LUTs aforementioned are utilized to derive index of neighboring reference

block/sub-MB for the access of reference SEs, with utilization of combinational circuits.

Additional required parameters of each neighboring reference BPMB are listed in Table

5-5, including MB type and MB availability of reference BPMB. If reference BMPM is

located in neighboring MB, MB availability is derived based on the position of current

MB. Top reference MB is not available if current MB is in the first row of coding frame,

while left reference MB is not available if current MB is in the first column.

In IC sub-unit, the 3-bit CtxIdxInc is calculated based on SE values and other parameters

obtained from reference BPMBs and parameters of current SE parsed from input packet.

The calculation of each type of SE is implemented as combinational circuit. For the

calculation that needs to access coded SEs of top and left reference BPMBs, SE access of

two BPMBs are executed in parallel to reduce critical path length. For the calculation of

non-residual SEs, CtxIdxInc is calculated and written to FIFO2 in the same cycle when

the input packet is parsed. For CBP processing of non-P8×8 MB (4:2:0 video format), 6

CtxIdxInc values are generated from single input SE packet in 6 consequential cycles

including 4 for CBP luma and 2 for CBP chroma. For MB of P8×8 mode, CBP bit of

each 8×8 sub-MB is input separately with sub-MB index concatenated in the same packet,

and one CtxIdxInc is generated. For the calculation of residual SEs, only CBF of each

4×4 block is processed in unit CS1. According to the block index and 3-bit residual block

category of EOB (end of block: indicating the last packet of one residual block) packet of

residual block, CtxIdxInc of CBF is calculated. The critical path of IC sub-unit is in the

combinational circuit of CtxIdxInc calculation of MVD, which consists of two sequential

table lookup operations, one 6-bit addition, and 7-bit comparison, and several other

Chapter 5 Efficient Architecture of CABAC Context Modeling

 95

bitwise operations. Calculation of MVD is more complex as the context model is selected

based on the evaluation of sum of two absolute MVD values of neighboring BPMBs.

(2) Storage of Coded SE Values During CtxIdxInc Calculation

During CtxIdnInc calculation of IC sub-unit, SE value parsed from input packet needs to

be stored in local buffer and SE RAM if the value can be further referenced during

CtxIdxInc calculation of current MB or following MBs in the same slice. SE type,

number and position of SEs, and number of bits per SE of each type of SE to be stored in

the top and left reference MBs are discussed previously in Table 5-4. For several types of

SEs with large data range of SE values including MB type, MVD, reference index, etc.,

original SE values are classified and remapped to smaller data set to reduce storage size

of code SEs in local buffers and SE RAM. Storage operations of several types of SEs

including MB type, MVD, CBF, etc. are discussed briefly in this subsection.

Table 5-6: Classification of MB type and stored values of MB type

MB type 3-bit Stored
Value Descriptions

Intra4×4 (I4) 0
Intra16×16 (I16) 1

I_PCM 2
Intra-coded MB in I, P, and B slices

P8×8 3 In P and B slice, when MB partition mode of 8×8
or smaller partition is selected

Skip 4 In P and B slice, based on coding value of MB skip
flag before MB type coding

Direct 5 MB type only in B slice coding
Other types 6 Inter-coded MB in P and B slice, excluding P8×8

Values of MB type are classified into 7 categories as shown in Table 5-6, including 3

categories for intra MB (Intra4×4, Intra16×16, and I_PCM), 2 categories for inter MB

(P8×8 and Skip), 1 for B slice (Direct), and 1 for other types of inter MB. During parsing

Chapter 5 Efficient Architecture of CABAC Context Modeling

 96

and processing of MB type and sub-MB type, 2-bit prediction direction (forward,

backward, and bi-direction) of each 8×8 sub-MB of inter MB is stored. For MB type of

Intra16×16 in I, P, and B slice, 6-bit CBP value is derived from MB type value through

table lookup of a small 6-entry LUT, while for other types of MB, CBP is parsed and

stored from packets of CBP or CBP bit.

For the SEs of block/sub-MB level, only the SEs of blocks/sub-MBs located on the right

edge and bottom edge of current BPMB need to be stored, because SE of other block/sub-

MB can not be referenced during processing of following BPMBs of current MB or

following MBs. As shown in Table 5-7, for MB partition mode including 16×16, 16×8,

and 8×16, and sub-MB partition mode 8×8, MVD vectors (forward/backward, x/y) of

current BPMB are only stored in part of blocks. Dynamic power consumption of MVD

processing can be saved when power reduction technique is applied to unit CS1.

Table 5-7: Numbers and positions of blocks that need to store coded MVD of different
MB/sub-MV partition modes

MB
Partition

Mode

Num of
Blocks
Stored

Block
Index

Sub-MB
Partition

Mode

Num of
Blocks
Stored

Block
Index

16×16 7 of 16 5,7,10,11,
13,14,15 8×8 3 of 4 All exclude

top left block
16×8 Top 3 of 8 2,5,7 8×4 2 of 2 All

16×8
Bottom 5 of 8 10,11,13,

14,15 4×8 2 of 2 All

8×16 Left 3 of 8 1,10,11 4×4 1 of 1 All
8×16 Right 5 of 8 5,7,13,14,15

Storage of CBF of each residual block is triggered by the parsing of EOB packet, and

CBF value is located from buffer based on 4-bit block index and 3-bit block category,

which classifies block of luma DC coefficients, luma AC coefficients, luma coefficients

Chapter 5 Efficient Architecture of CABAC Context Modeling

 97

of non-Intra16×16 MB, chroma DC coefficients, and chroma AC coefficients. In the local

buffer of IC sub-unit, 49 bits are allocated to buffer CBF values of current MB and 2

reference MBs, including 9 bits for CBF of DC blocks (3 for current MB), 24 bits for

luma blocks of non-Intra16×16 MB (16 for current MB); and 16 bits for chroma AC

blocks (8 for current MB).

(3) End-of-MB Process

The last input packet of each MB is defined as MB end flag for the proposed encoder.

End-of-MB process of IC sub-unit is timing efficient. When the MB end flag is parsed in

unit CS1, the design supports that the input packet of next MB to be received and

processed in the next cycle. Two operations of End-of-MB process are triggered in IC

sub-unit simultaneously, including (a) loading of coded SEs of next top reference MB

from SE RAM output, and (b) loading of coded SEs of next left reference MB from local

buffer of current MB. The coded SE buffers of top and left MB are loaded for the next

MB in single cycle, and operation delay of coded SE loading is minimized compared to

the reported CABAC decoder design [82]. During processing of current MB in [82], it

takes 96 cycles to load SEs of top reference MB from RAM for the next coding MB and

write coded SEs of previous MB to RAM. Limitation of such scheme is that, RAM

access frequency and related power consumption is high, and for the situation that the

coding MB only contains a few packets, such as Skip MB, CABAC encoding stalls until

data transfer between RAM of coded SE and context model selection module completes.

Compared to [82], the situation is avoided in the proposed encoder design.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 98

5.1.3 Memory Access (MA) sub-Unit of Unit CS1

Coded SEs of top reference MBs are stored in SE RAM of Block 1. 141 bits are allocated

in SE RAM to store coded SEs for each MB that can be referenced during MB coding.

All 141 bits of one MB are stored as one word of RAM to enable single cycle read/write

RAM access. Word number of SE RAM is proportional to the horizontal definition of

coding frame/field, as coded MBs from top-right MB of current coding MB will be

referenced as top reference MBs in further coding procedure. In HDTV 720p video

format, each row of MBs of frame/field contains 80 MBs. In order to support HDTV

720p, 78 words are allocated in SE RAM with another 141-bit output buffer at RAM

interface. It is designed as single-port RAM supporting sequential read & write access, as

circuit area is small and SE RAM is not frequently accessed in the proposed coded SE

access scheme.

MB processing flow of MA sub-unit and IC sub-unit are shown in Figure 5-5. MA sub-

unit is only active in the first 3 cycles of processing procedure of one MB. The process of

MBi is shown in the figure. In Cycle 1, after parsing MB end flag of MBi-1, MA sub-unit

requests to read coded SEs of top reference MB of MBi+1 from SE RAM, while IC sub-

unit is triggered for the End-of-MB process including update of SE values of top and left

reference MBs of MBi. In cycle 2, MA sub-unit writes a single packet of 141 bits of

coded SEs of MBi-1 to SE RAM, while IC sub-unit starts MB processing procedure

including input packet parsing, CtxIdxInc calculation, and storage of coded SEs of MBi.

In cycle 3, MA sub-unit updates RAM address for the read of MBi+2 and write of MBi.

After the first 3 cycles, MA sub-unit is idle, while IC sub-unit continues processing

following packets of MBi till the end flag of MBi.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 99

Figure 5-5: MB processing in MA sub-unit and IC sub-unit of unit CS1.

One example of 3-cycle MB processing scheme of MA sub-unit is shown in Figure 5-6.

N is MB row number. M is number of MBs in the horizontal direction of coding

frame/field (M is 80 in HDTV 720p video format). MBi,j denotes MB with index j in row

i. MBs of row N are processed sequentially. In cycle 1, the end flag of MBN,M-2 is parsed

in unit CS1. At the end of MBN,M-2 processing, MBs from MBN,0 to MBN,M-3 are stored in

M-2 words of SE RAM, MB N-1,M-1 is already read to the output buffer of SE RAM, and

SE RAM is addressed at the word of MBN,0. The operations of MA sub-unit in cycle 1

include: storing MBN-1,M-1 of RAM output buffer to the top reference MB of MBN,M-1 and

reading the word of MB N,0 to RAM output buffer. In cycle 2, the word of MBN,0 is stored

to RAM output buffer, which will be referenced during MBN+1,0 processing; and MA sub-

unit writes the coded SEs of MBN,M-2 to the RAM and overwrites the word of MBN,0. In

cycle 3, SE RAM address increases 1 in MA sub-unit, which points to the word of MBN,1

that will be accessed after MBN,M-1 processing.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 100

N
0

N
1

N
2

... ... N
M-3

N
M-2

N
M-1

Row N
of MBs

N+1
0

N+1
1

... N-1
M-2

N-1
M-1

Row N-1
of MBs

...

M: Number of MBs in horizontal
direction of coding picture

RAM
Output
buffer

... ...

SE RAM:
Storage of
coded SEs
of top ref
MBs

N
0

N
1

N
M-3

N
M-2

N
M-2

N
2

N
0

Storage of M-2 words of top ref MBs in SE RAM

N: Row number of MBs in picture

N-1
M-1

Store coded
SEs of top ref
MB of MB NM-1
to local regs

Read request of MB N0

Write coded SEs of MB
NM-2 to SE RAM, for top
ref MB

RAM address
increase 1

N
M-2

Store coded SEs to local regs
as left ref MB of MB NM-1

:
First 3 cycles in unit CS1, after
receiving end flag of one MB

Row N+1
of MBs

Same word address of SE RAM

Figure 5-6: Operations of MA sub-unit in the first 3 cycles of MBN,M-1 processing.

The benefits of SE RAM access scheme of MA sub-unit includes: (a) RAM access

frequency and related dynamic power consumption of SE RAM is minimized compared

to the other designs [82, 90] that support context model selection of unit CS1, because the

RAM is read and write only once per MB; (b) compared to [82], RAM size is reduced

with the proposed RAM read & write access order, and only M-1 words of reference

MBs need to be stored in SE RAM including that of output buffer; (c) allocation of RAM

output buffer and schedule of reading next top reference MB during processing of current

MB insure that no delay of coded SE access will occur between processing MBs, and

Chapter 5 Efficient Architecture of CABAC Context Modeling

 101

throughput of CABAC encoding is not influenced by the access of coded SE, compared

to [90]; (d) RAM access control is simplified, as addresses of RAM read and write

operations are identical in cycle 1 and cycle 2 of MA sub-unit.

5.2 Unit CA: Efficient Context Model Access

For each regular bin of CABAC encoder, one context model must be read from context

RAM to provide MPS value and probability index of LPS of the bin. Each accessed

context model is updated according to bin value and written back to context RAM in

order to be adaptive to the change of MPS/LPS probability. Scheme of single context

model access is adopted in most reference designs [86, 89, 90, 93, 105, 106], in which

one context model (7 bits) is fetched from RAM each time according to CtxIdx of regular

bin. Although memory control logic of single context model access is simple, RAM

access frequency and related dynamic power are high, which significantly increases

power consumption of CABAC encoder, as discussed in [87]. Moreover, control logic of

context model access is complex, because parsing of multiple 9-bit RAM addresses is

required to decide whether context model should be read from RAM or local buffer, and

critical path of CA can not be reduced efficiently.

5.2.1 Context Line Access & Local Buffering

In this thesis, an efficient context model access scheme is proposed and implemented in

unit CA, as shown in Figure 5-7. Before design of unit CA, computational and data

transfer complexity analyses have been performed on a reference CABAC code [107],

and it is found that memory accesses in CABAC entropy coder (as opposed to CAVLC),

increases by 20-44% for RDO-off mode, and a higher of 104-115% for a RDO-on mode.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 102

Therefore, the use of multi-level memory hierarchy is suggested. Instead of using single

context model access scheme adopted in [86, 89, 90, 93, 105, 106], the proposed CABAC

encoder accesses the context models of context RAM by context lines, each of which

contains eight 7-bit context models. Two context line buffers are allocated in unit CA to

buffer the context models read from context RAM. The difference from the cache-based

context access in [87, 95] is that, any context line, which contains the required context

model, is pre-fetched from RAM before the context model is used. The situation of cache

miss will not occur in this design.

Figure 5-7: Architecture of unit CA with pipelined context line access and local buffering
scheme.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 103

In Figure 5-7, the 9-bit CtxIdx of input bin packet of regular bin is separated into context

RAM address (higher 6 bits of CtxIdx), and context line address (lower 3 bits of CtxIdx)

in unit CA. Context line is accessed from RAM and updated in a 4-stage pipeline.

Context RAM address parsed from input packet is used to locate one context line in the

context RAM. It is buffered in 4 pipeline stages in unit CA for RAM read & write access.

Before one context line is read from context RAM, the corresponding context RAM

address is buffered in 2 cycles (2 stages). Context line address parsed from input packet is

used to locate one of 8 context models in the context line. It is buffered in 3 pipeline

stages before it is used. As shown in the figure, two context line buffers CtxLine_buf1

and CtxLine_buf2 of unit CA can buffer 16 different context models during CABAC

encoding. The 6-bit pStateIdx of selected context model from CtxLine_buf1 is used to

prefetch 4 possible sub-Range values of LPS bin (RangeLPS, 8 bits) for unit AR through a

64-word×32-bit LUT. The pStateIdx of context model is updated through table lookup

based on whether the bin is MPS or LPS. The two 64-word×6-bit LUTs of MPS bin and

LPS bin are implemented as combinational circuits. Coding bin, bin type, and RDO

control parameters parsed in unit CA are buffered in several stages and output to unit AR

and unit BP. For regular bin, 1-bit decision of whether the bin is MPS is output to unit

AR instead of the value of bin.

RAM access frequency of the proposed scheme is significantly lower compared to that of

single context model access scheme. A context line needs to be read from context RAM

and buffered in CtxLine_buf1 only when the accessed context model is not located in the

two context line buffers, in which situation the content of CtxLine_buf2 is written back to

context RAM. Since the context models of the same SE type are located in proximity in

Chapter 5 Efficient Architecture of CABAC Context Modeling

 104

the context RAM, and in many situations, context models consecutively accessed are

located in the same or neighboring context line, the frequencies of RAM read & write

access can be significantly reduced with the context line access and buffering scheme,

especially during the processing of residual SE such as SCF, LSCF, and abs_level.

5.2.2 Context RAM Access Scheme Supporting RDO-on Mode

Figure 5-8: Architecture of memory access control of unit CA in both RDO-off and
RDO-on mode.

In RDO-on coding mode, the state of context models in the context RAM needs to be

restored to the previous state after testing one RDO mode. One scheme to support RDO-

Chapter 5 Efficient Architecture of CABAC Context Modeling

 105

on coding is to store context line and the corresponding context RAM address into a

FIFO buffer before the context line is updated during RDO coding, and restore the

updated context lines of context RAM after RDO coding according to the stored context

RAM addresses of the context lines. However, in non-P8×8 RDO coding, large number

of context lines can be accessed. Thus, large FIFO buffers are required to backup the

original state of context lines, and operation delay is not avoidable to restore of state of

context RAM from FIFO buffer. Because context RAM is accessed by context line, delay

of context state restoration can be reduced compared to the scheme in [93]. In this thesis,

a more efficient context RAM access scheme is adopted in the design of unit CA with no

operation delay in non-P8×8 RDO coding, as shown in Figure 5-8.

In RDO-off mode, context models are stored in and accessed from Normal RAM. During

RDO-on coding, Temp RAM, which is identical to Normal RAM, stores the updated

context lines while Normal RAM keeps the original context lines. During coding of each

RDO mode, if the context line is not accessed previously, it is read from Normal RAM,

while updated context lines are stored to and accessed from Temp RAM. During non-

P8×8 RDO coding, because Normal RAM is unchanged, context state restoration

operation is not needed, and the operation delay is removed. In order to identify which

context lines have been accessed during coding of one RDO mode, a 53-bit dirty list is

allocated in unit CA and controlled by a dirty bit update logic. Each bit of the dirty list

records whether the corresponding context line is updated. One context line is read from

Normal RAM only if the dirty bit of the context line is 0.

In non-P8×8 RDO coding, because the updated context lines of Temp RAM will not be

further used after coding of current RDO mode, it is not needed to write the two context

Chapter 5 Efficient Architecture of CABAC Context Modeling

 106

lines that are buffered in unit CA to Temp RAM when the context line access of current

RDO mode completes. Therefore, context RAM write frequency can be reduced in non-

P8×8 RDO coding for the proposed context line access scheme.

During P8×8 sub-MB mode decision of RDO-on mode coding, the updated context lines

of one RDO mode need to be stored, if the mode is currently the best mode of sub-MB.

Therefore, a small 11-word×6-bit RAM named Address list is allocated to store the

context RAM address of each updated context line. Address list is accessed by Block 3

during operations of context state backup & restoration of P8×8 RDO coding.

5.2.3 Context Model Reallocation in Context RAM

In order to further reduce memory access frequency, context models in the context RAM

are reallocated, as illustrated in Figure 5-9. In the cache-based designs [87], context

RAMs are also reallocated to enhance cache hit probability. In the proposed scheme,

reallocation aims at enhancing the efficiency of context-line-based context model access.

The context model allocations of different SE types are adjusted in the context RAM,

compared to the original allocation in Table 9-11 of the standard [6]. The objective is to

allocate the context models of the same SE type in one context line to avoid unnecessary

RAM access. For the SE type with over 8 context models, such as SCF, LSCF, and level,

2 context lines are allocated. 53 context lines (424 context models) are allocated in the

context RAM with only 6.8% dummy context models inserted.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 107

mbtype I
mbtype B

mbtypeP
cbp_chroma
mvd0
mvd1

qp_delta cbf_3
cbf_1 cbf_2
cbf_4 cbf_5
level_1

mb_skip P mb_skip B

level_5

level_2
ref_idx

level_3
cbp_luma

sub_mbtype P sub_mbtype B

intra_chr_pred
SCF_1

LSCF_1

SCF_2
intra_pred

LSCF_2

SCF_3

LSCF_3
field

SCF_4 LSCF_4
SCF_5

LSCF_5

fld_SCF_1

fld_LSCF_1

fld_SCF_2

fld_LSCF_2

fld_SCF_3

fld_LSCF_3

fld_SCF_4 fld_LSCF_4
fld_SCF_5

fld_LSCF_5

0
8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128
136
144
152
160
168
176
184
192
200
208

216
224
232
240
248
256
264
272
280
288
296
304
312
320
328
336
344
352
360
368
376
384
392
400
408
416

Dummy context model
: Context model

level_4

Figure 5-9: Reallocation of context model in context RAM (Normal RAM). Context
models of Normal RAM are illustrated as two continuous parts in the figure.

5.3 Context State Backup & Restoration in P8×8 RDO Coding

As introduced in 0, during CABAC coding of RDO-on mode, different MB coding

modes are tested, including Skip, intra modes including Intra16×16 and Intra4×4, inter

modes including Direct, P16×16, P16×8, P8×16, and P8×8, etc. The best mode is

selected that achieves lowest rate-distortion cost. During RDO MB mode selection,

CABAC encoder is adopted to calculate coding rate (length of output bit stream) of each

testing mode by encoding the SEs of the mode. Context state (state of context models in

context RAM) needs to be restored to a previous state before testing of the next RDO

mode. During RDO-on coding, large number of context models need to be frequently

Chapter 5 Efficient Architecture of CABAC Context Modeling

 108

backed up or restored when RDO modes change. It causes long delay, and requires large

amount of backup memory resources. With the aforementioned context access scheme of

unit CA, the updated context models are stored in Temp RAM and context state of

Normal RAM is not changed during non-P8×8 RDO coding. Therefore, it is not needed

to backup and restore context state during non-P8×8 RDO coding, and the no operation

delay is removed, compared to [93].

However, during P8×8 RDO coding, the best partition mode of one 8×8 sub-MB is

selected from the modes of 8×8, 8×4, 4×8, and 4×4. During RDO mode decision of one

sub-MB, context state needs to be restored to the state before testing of current sub-MB,

after testing of each sub-MB partition mode. After testing all modes of the sub-MB,

context state needs to be set to the state of best mode, which is the original state of next

sub-MB of current MB. After processing of all 4 sub-MBs of P8×8 RDO coding, context

state needs to be restored to the original state of current MB (the context state after RDO-

off coding of previous MB). Because of the context state coherence of adjacent 8×8 sub-

MBs during P8×8 RDO coding, it is indispensable to implement mechanisms of context

state backup & restoration, compared to non-P8×8 RDO coding. In this design, it is found

that a maximum of 11 context lines can be modified during P8×8 RDO coding of the

Main profile of H.264/AVC. Three small RAM blocks of depth of 11 including Address

list (11-word×6-bit), Best RAM (11-word×62-bit), and P8×8 RAM (11-word×62-bit) are

utilized to store intermediate context states, including (a) addresses of the context lines

accessed in each RDO mode stored in the Address list, (b) addresses and context lines of

best P8×8 coding mode stored in the Best RAM used to update Normal RAM, and (c)

addresses and context lines of original context state stored in the P8×8 RAM used to

Chapter 5 Efficient Architecture of CABAC Context Modeling

 109

restore Normal RAM to the original state after P8×8 RDO coding. The CA dirty list in

unit CA and P8×8 RDO dirty list in Block 3 are updated and referenced during RDO-on

coding and RDO operations of context state backup & restoration.

As shown in Figure 5-10, four pipeline architectures are designed in Block 3 to support 4

types of context state backup & restoration operations during P8×8 RDO coding with

data transfer speed of 1 context line per cycle. Buffering stages of context line and RAM

address are inserted to implement pipeline operations. In the 2 context RAMs and 3 small

backup RAMs, 3 to 4 RAMs are involved in each pipelined operation. Detail operations

of each pipeline stage of the 4 pipelines are shown in the figure and introduced as follows:

 Best mode context state backup: If the RDO mode is currently the best mode of

the processed 8×8 sub-MB, the modified context lines in the Temp RAM are

fetched according to the stored RAM addresses in the Address list. The modified

context line and corresponding RAM address are packed in single packet and

backed up in the Best RAM;

 Context state restore from Best RAM: After testing all RDO modes of one 8×8

sub-MB, if the context state of the best mode is stored in the Best RAM, Normal

RAM is updated by the context lines of Best RAM according to the RAM

addresses stored with the context lines. The original context lines of Normal

RAM are stored to P8×8 RAM with corresponding context RAM addresses before

Normal RAM is updated by the context lines of Best RAM. Write access of P8×8

RAM is according to the state of 53-bit dirty list of Block 3.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 110

Figure 5-10: Four types of pipelined context state backup & restoration operation in P8×8
RDO coding.

Chapter 5 Efficient Architecture of CABAC Context Modeling

 111

 Context state restore from Temp RAM: If the best mode of current sub-MB is the

last RDO mode, the updated context state is not stored in the Best RAM, but in

the Temp RAM. Therefore, Normal RAM is updated by the context lines of Temp

RAM that are accessed in the last mode according to the addresses stored in the

Address list. Before the update, original context lines of Normal RAM are stored

in P8×8 RAM with context RAM address if the corresponding bit of dirty list is 0.

 Normal RAM context state restore from P8×8 RAM: After P8×8 RDO coding, the

context state of Normal RAM is restored to the original state by writing back the

unmodified context lines stored in the P8×8 RAM according to the addresses that

are packed with the corresponding context lines.

With the proposed pipelined context state backup & restoration and context line access

scheme of context RAM, the operational delay of context state backup & restoration of

P8×8 RDO coding is significantly reduced, and the context RAM size to support is P8×8

RDO coding is reduced to a large extent, compared to the reference design. Performance

comparison of the proposed design and reference design will be discussed in Chapter 7.

5.4 Coded SE State Backup & Restoration of Unit CS1

In RDO-on mode coding, state of coded SEs of one RDO mode need to be backed up if

the SEs can be referenced during testing of following RDO modes of the MB. A

particular situation is P8×8 sub-MB mode decision. Coded SEs of the best mode

(selected mode) of current sub-MB can be referenced during RDO coding of block/sub-

MB level SEs of following sub-MBs (on the right or bottom of current sub-MB) of

current MB. Compared to the context state backup and restoration of P8×8 RDO coding,

it is only necessary to backup part of coded SEs of one sub-MB before the best mode is

Chapter 5 Efficient Architecture of CABAC Context Modeling

 112

decided, and restoration of coded SE state is not required after processing of 4 sub-MBs.

Table 5-8 illustrates the SE type and number of bits of coded SEs that need to be backed

up during P8×8 mode decision of one sub-MB. For block level SEs including MVD and

CBF, only coded SEs of right and bottom blocks of sub-MB need to be backed up,

because SEs of top left block can not be referenced during CtxIdxInc calculation of

following sub-MBs. Coded sub-MB level SEs including prediction direction and

reference index are backed up for the coding sub-MB. For the MB level SEs of CBP,

single bit is necessary to record the CBP bit of best mode of current sub-MB, and one of

4 bits of CBP is updated after mode decision of the corresponding luma sub-MB.

Table 5-8: Types, bit Numbers, and usage descriptions of backup values of SEs of 8×8
sub-MB during P8×8 RDO coding

SE type Num of bits Description of usage

MVD 3×4×7=84 MVDs for 3 blocks of sub-MB, excluding top left block,
forward/backward directions, x/y components

CBF luma 3 CBFs for 3 blocks of current sub-MB,
excluding top left block

CBP 1 Used in P8×8 RDO coding, CBP bit of current sub-MB
of best mode

Pred dir 2 Prediction direction for current sub-MB
Ref index 2×1 Forward/backward direction, 1 bit each

Four types of coded SE state backup & restoration operations are supported, and can be

triggered by the same control parameters that also control operations of context state

backup & restoration during P8×8 RDO coding. (a) After coding of one RDO mode, if it

is currently best mode (with minimum RD cost) of the processing sub-MB, coded SEs are

backed up, including CBP bit, prediction direction, reference index, CBF and MVDs of 3

blocks of the sub-MB. (b) After all RDO modes of the sub-MB are tested, if the last

Chapter 5 Efficient Architecture of CABAC Context Modeling

 113

mode is not best mode and the sub-MB is not the last of the MB, the coded SEs of best

mode are restored, which were backed up in (a). (c) After all RDO modes of the sub-MB

are tested, if the last mode is the best mode and the sub-MB is not the last of the MB, no

restoration of coded SEs is needed. (d) After processing of all four 8×8 sub-MBs, values

of CBP, CBF, prediction direction, and reference index are restored to the default values

before coding of non-P8×8 RDO modes. During P8×8 RDO coding, if the RDO mode is

not the best mode during current sub-MB coding, coded SEs including CBF, reference

index, and prediction direction need to be restored to the default values.

During coding of other non-P8×8 RDO modes, some types of SEs need to be restored to

initial values. For instance, CBF needs to be restored after testing each Intra4×4 RDO

mode, and in non-P8×8 RDO inter mode, prediction direction values of sub-MBs need to

be restored to default values after the RDO mode is tested. These types of coded SE

restorations are triggered by the RDO coding rate output signal of input packet, which is

sent to unit BP of Block 2 after all SE packets of the RDO mode are processed.

5.5 Summary

In this chapter, the most complete context modeling scheme of CABAC encoder is

proposed for the context model selection and context model access in both RDO-on and

RDO-off modes. For the function of context model selection, single-cycle CtxIdxInc

calculation of regular bin is achieved for all types of SEs, which can be attributed to the

proposed efficient scheme of storage & fast access of coded SEs of current MB and

reference MBs. Additionally, RAM access of coded SEs is significantly lower, compared

to the reported designs [82, 90]. For the function of context model access, a pipelined

context line access & local buffering scheme is proposed, which can be significantly

Chapter 5 Efficient Architecture of CABAC Context Modeling

 114

reduce context RAM access frequency. In order to fully support RDO in CABAC

encoder, operations of backup & restoration of context state and coded SE state are

implemented in the 3 functional blocks of CABAC encoder. Coded SE state backup &

restoration is only supported in the proposed design, and context state backup &

restoration is more efficient compared to [93], with significant lower operation delay and

smaller size of context RAMs.

Chapter 6 System Bus Interface and Inter-connection Design

 115

Chapter 6 System Bus Interface and Inter-
connection Design

As introduced in Chapter 4, one step of SoC-based entropy coder design flow is SoC

features introduction. Design of system bus interface for the CABAC encoder enhances

portability and reusability of the design in the SoC video encoder system. In this chapter,

design of master and slave interfaces of WISHBONE [104] system bus of CABAC

encoder is discussed after introduction of WISHBONE system bus specification.

Crossbar system bus inter-connection is also designed, which enables convenient

integration of the proposed CABAC encoder with other function components in the

H.264/AVC encoding system.

6.1 Introduction of the WISHBONE System Bus Specification

WISHBONE system bus provides a flexible design methodology to create a common

interface between IP cores of System-on-Chip (SoC). By adopting the standard inter-

connection scheme of WISHBONE and designing system bus interface of each IP core,

the IP cores can be integrated more quickly and easily. The goal of WISHBONE bus is to

provide robust inter-connection that is complete compatible among IP cores and does not

constrained the creativity of core developers or end users.

6.1.1 Interface Signals of the WISHBONE System Bus

The simplest point-to-point interconnection of the WISHBONE bus that directly connects

one master and one slave is illustrated in Figure 6-1.

Chapter 6 System Bus Interface and Inter-connection Design

 116

rst_i

clk_i
adr_o
dat_o

dat_i

we_o
sel_o
stb_o
cyc_o
ack_i

tagn_o
tagn_i

rst_i

clk_i
adr_i
dat_o

dat_i

we_i
sel_i
stb_i
cyc_i
ack_o
tagn_i
tagn_o

User
defined

SysCon

Figure 6-1: Point-to-point inter-connection of single master & slave of the WISHBONE
system bus.

Input signal of interface is named with System reset (rst_i) and clock (clk_i) signals are

generated by SysCon module of the WISHBONE bus and input to all masters and slaves

that are connected to the bus. For the other signals of WISHBONE bus, output signals of

master correspond to the input signals of slave, and vice versa. The signals of

WISHBONE master interface are listed in Table 6-1, and functions of the interface

signals are described accordingly.

Chapter 6 System Bus Interface and Inter-connection Design

 117

Table 6-1: Signals of WISHBONE master interface

Signals of
master

interface
Function descriptions of signals of master interface

Corresponding
signals of slave

interface
rst_i Interface reset signal rst_i
clk_i Clock of WISHBONE interface clk_i
adr_o The address of WISHBONE slave adr_i
dat_o Master output data bus dat_i
dat_i Master input data bus dat_o

we_o Write/read enable signal
(high logic for write, low for read) we_i

sel_o Bit array that indicates valid data units on the data bus
that master wants to send or receive data sel_i

cyc_o High logic indicates a valid bus cycle, which can
contains multiple data transfers cyc_i

stb_o Strobe output that indicates a valid data transfer cycle stb_i

ack_i Cycle termination signal from slave for the
acknowledgement of a successful data transfer ack_o

rty_i &
err_i

Cycle termination signal from slave indicating retry &
error of the data transfer; the signals help to enhance
robustness of data communication

rty_o &
err_o

tagn_i &
tagn_o

Tag values that provide additional information of data
bus, address bus, and bus cycles

tagn_o &
tagn_i

6.1.2 Types of Bus Cycles on the WISHBONE System Bus
Data transfer on WISHBONE is implemented using two types of bus cycles: (a) the

classic bus cycles and (b) the registered feedback bus cycles. Bus cycle is defined [104]

as the procedure whereby digital signals affect the transfer of data across a bus by means

of an interlocked sequence of control signals, and it is differentiated from the clock cycle

of signal clk_i. Each bus cycle contains one or several data transfer phases.

For the registered feedback bus cycles, signals of ack_i, rty_i, and err_i are registered at

slave interface, which costs one additional wait cycle during data transfer. However, the

delay of feedback loop is significantly reduced and the cycles are suitable for high speed

applications. Additionally, WISHBONE interface that supports registered feedback

Chapter 6 System Bus Interface and Inter-connection Design

 118

cycles also supports classic cycles, and can communicate to the interface that only

supports classic cycles.

6.1.3 Comparison of WISHBONE and AMBA System Buses

Compared to the state of the art SoC system bus – AMBA (Advanced Microcontroller

Bus Architecture) [108] of ARM, WISHBONE has the following differences:

 Data bus configuration of WISHBONE is more flexible. Granularity is used to

define the minimum unit of data transfer supported by the bus interface.

 Tagging technique (user defined tag) of WISHBONE provides methodology to

modify or extend the function of system bus interface. Inter-connection

configuration of WISHBONE IP cores is also more flexible, with multiple choices

of inter-connection modes.

 Complexity of WISHBONE system bus architecture is lower, and the circuit area

is relatively smaller.

 WISHBONE inter-connection is loyalty free. Additionally, many WISHBONE

compatible free IPs have been developed and can be adopted to implement

particular functions in SoC design.

Because of simplicity, flexibility, and loyalty free of WISHBONE, the proposed CABAC

encoder is equipped with WISHBONE system bus interfaces to enable easy integration

with other HW IPs or host processor of H.264/AVC encoding system.

Chapter 6 System Bus Interface and Inter-connection Design

 119

6.2 Design of WISHBONE System Bus Interfaces for CABAC

Encoder

Functions of the proposed CABAC encoder can be summarized as: i) parsing and

encoding of SE values of input packets according to the control parameters parsed from

input packets, and ii) output packets of coded bit stream in RDO-off mode coding and

output coding rate of each RDO mode in RDO-on mode coding. Input packets of SE

values and control parameters of CABAC encoding are generated by the host processor

during MB encoding procedure, while the output packets of RDO coding rate need to be

feedback to the host processor during RDO-on MB coding mode decision, and coded bit

stream of CABAC encoder of RDO-off mode should be sent to the output buffer of

H.264/AVC encoder. WISHBONE interfaces are designed to support packet input and

output process of CABAC encoder. Functional partitioning and architecture of the

interfaces are discussed as follows.

6.2.1 Functional Partitioning of WISHBONE System Bus Interfaces

Function of input packets receiving and coded results output can be implemented in one

or two WISHBONE interfaces. For single interface design, circuit area is reduced as

interface signals are shared by both input and output procedures; and it requires only

single channel of system bus. However, in each clock cycle, only read or write operation

can be performed at the bus interface, and in the case that unit BP needs to output packet

and unit BN need to read input packet, one of the two operations needs to be paused, and

throughput of CABAC encoding pipeline is degraded. Furthermore, system bus

occupation time is long. The reason is that: for a single master interface design, the

master cannot estimate when the next input packet will be available, and needs to keep

Chapter 6 System Bus Interface and Inter-connection Design

 120

cyc_o and stb_o high for request to read next input packet; and for a single slave interface

design, host processor or the bit stream buffer equipped with master interface cannot

estimate when the CABAC encoder will output next coded packet, and has to occupy the

bus to keep read request.

The better functional partitioning scheme adopted in this thesis is to input packet through

a WISHBONE slave interface and output packet through a master interface. Data transfer

is controlled by the functional block which generates packets. Packet input is controlled

by the host processor and WISHBONE read cycle is triggered only when a input packet

is available at host; on the other hand, packet output is controlled by the CABAC encoder,

and write cycle is triggered when a output packet is ready in unit BP. Maximum coding

throughput can be achieved in this partitioning scheme, and system bus occupation is

minimized.

6.2.2 Analysis of Support of WISHBONE Registered Feedback Cycles

Both master and slave interfaces are designed to support registered feedback cycles of

WISHBONE system bus in order to achieve high data rate required by CABAC encoding.

The types of registered feedback cycles are identified according to the 3-bit cycle tag

cti_o (cycle type identifier) generated at master interface. As shown in Table 6-2, the four

types of registered feedback cycles are classic cycle, constant address burst cycle,

incrementing burst cycle, and end-of-burst.

Table 6-2: Type of register feedback cycles of WISHBONE classified by cti_o

3-bit value of cti_o Type of registered feedback cycle
‘000’ Classic cycle
‘001’ Constant address burst cycle
‘010’ Incrementing burst cycle
‘111’ End-of-burst

Chapter 6 System Bus Interface and Inter-connection Design

 121

To enable easy integration of WISHBONE classic and registered feedback IP cores, it is

required [104] that the WISHBONE interface with registered feedback of termination

signal (ack_i, etc.) must support classic cycle (cti_i is ‘000’). Because ack_i is asserted

one clock cycle after assertion of stb_o in registered feedback cycle, it requires 2 clock

cycles to complete each data transfer for classic cycle, and the maximum throughput is

1/2 data transfer per clock cycle.

Figure 6-2: One classic cycle of a WISHBONE master interface with registered feedback
of cycle termination.

Figure 6-2 illustrates the signals of master interface of one classic cycle in 5 clock cycles

from cyc0 to cyc4, with two data transfers (write, and then read). Slave interface asserts

ack_i in cyc1 to indicate that the master dat_o will be latched at clock edge of cyc2.

Because there is no information about what master will do in cyc2, slave negates ack_i in

Chapter 6 System Bus Interface and Inter-connection Design

 122

cyc2. In cyc2, master requires to read data. In cyc3, slave asserts the registered ack_i, and

prepares read data on dat_i. At clock edge of cyc4, master latches dat_i and negates stb_o

and cyc_o, and the classic cycle completes.

Throughput of constant address burst cycle and incrementing burst cycle are significantly

higher, compared to that of classic cycle. Assume burst length of the cycle is N, it takes

N+1 clock cycles to complete N data transfers instead of 2N clock cycles of classic cycle.

The throughput of burst increases and approximates 1 when the burst length N increases.

Therefore, supporting of burst cycle is necessary for high speed data transfer. End-of-

burst indicates that the next transfer is the last of current burst. It is required to support

end-of-burst if any of the two types of burst cycles is supported.

For the proposed design of WISHBONE interfaces, because function of packet input and

output of CABAC encoding are partitioned to the two interfaces, it is only necessary to

support write cycle that receives input packets at slave interface and to support write

cycle that sends out packets of coded bit stream and RDO rate at master interface. In

CABAC encoding, packet output frequency is significantly lower than packet input

frequency. The master interface is designed to support classic cycle, while the slave

interface supports not only classic cycle, but also constant address burst and end-of-burst.

As single address of slave interface is accessed, it is no need to support incrementing

burst cycle, in which consecutive addresses are accessed sequentially during data transfer.

6.2.3 Design of Slave Interface of WISHBONE System Bus

The slave interface of WISHBONE system bus is designed to receive the input packets of

CABAC encoder. It supports 3 types of registered feedback cycles including classic cycle,

constant address burst cycle, and end-of-burst. The host processor equipped with

Chapter 6 System Bus Interface and Inter-connection Design

 123

WISHBONE master interface controls the generation and transfer of input packets of

CABAC encoder. Input packets received by the slave interface are buffered in FIFO1 of

CABAC encoder, which is accessed by functional units of binarization and context model

selection. Insertion of FIFO1 enables input packing receiving of slave interface and

following packet parsing and processing steps to execute in parallel, with higher average

throughput. An example of burst bus cycle of WISHBONE slave interface of CABAC

encoder is shown in Figure 6-3.

111001

valid

valid

valid valid

0 1 2 3 4 5 6 7clk_i

cti_i

adr_i

dat_i

we_i

sel_i

stb_i

ack_o

cyc_i
slv latch
2nd dat

slv latch
1st dat slv latch

4th dat

validvalid valid

Constant address burst

End-of-burst

slv latch
3rd dat

1st dat
rdy

2nd dat
rdy

3rd dat
rdy

4th dat
rdy

Pause
2nd dat
transfer

Pause
3rd dat

transfer

Figure 6-3: Illustration of constant address burst cycle of WISHBONE slave interface.

The cycle involves 8 clock cycles from cyc0 to cyc7. The 3-bit value ‘001’ of cti_i

indicates that it is a constant burst cycle. Signal ack_o of slave is asserted in cyc1, which

is one clock cycle after assertion of stb_i. Input packet on dat_i is latched at the next

Chapter 6 System Bus Interface and Inter-connection Design

 124

clock edge if ack_i is asserted. In this example, 4 input packets are transferred from host

processor and latched by the WISHBONE slave at clock edge of cyc2, cyc4, cyc6, and

cyc7. In cyc6, cti_i is set to ‘111’ indicating end-of-burst, and the burst completes in cyc7.

It is also shown in the figure that both master and slave can suspend data transfer by

negating stb_i or ack_o, respectively. Thus, packet input speed can be constrained by the

master and slave interfaces. Assertion of ack_o of slave interface depends on the

following conditions: (a) FIFO1 of input packets is NOT nearly full, so that the next input

packet can be buffered; (b) the slave interface is addressed; and (c) cyc_o, stb_o, and

we_o are of high value, indicating master requests a write operation.

For the interface signals, the width of input data bus dat_i is 22 bits, which is the size of

input packet of CABAC encoder. The 4 MSBs of address bus adr_i are allocated to

identify the slave devices connected to the WISHBONE system bus, and 16 slave devices

can be identified. If the WISHBONE master and slave devices are connected through a

system bus inter-connection block (INTERCON), the address bus between INTERCON

and slave interface can be removed by applying partial address decoding scheme, in

which adr_i are decoded in INTERCON.

6.2.4 Design of Master Interface of WISHBONE System Bus

Master interface of WISHBONE system bus is designed to output packets of coded bit

stream or rate of each tested RDO mode, which are generated in the two pipeline stages

of unit BP (bit packing) of CABAC encoder. As aforementioned, the rate of output

packets is significantly lower compared to that of input packets during CABAC encoding.

The interface is designed to support only one type of registered feedback cycles: classic

cycle. It is not efficient in timing and area to support burst cycle when burst length is only

Chapter 6 System Bus Interface and Inter-connection Design

 125

1, because the timing efficiency is same compared to that of classic cycle, and interface

complexity is higher to support burst. In CABAC encoding procedure, the probability is

low to output packets of coded bit stream in continuous clock cycles. Therefore, burst

cycle is not supported in the proposed system bus master interface of CABAC encoder.

Coded results of CABAC encoder are input to the master interface from unit BP,

including 13-bit RDO rate in RDO-on coding and coded bytes in RDO-off coding.

Trigger signals are generated in unit BP to notify the master interface whether the output

is RDO rate or coded bytes, and during RDO-off coding, additional flag (EOS_true)

indicates whether the output bytes are of EOS (end of slice) coding. It is shown in Table

6-3 the output order of coded bytes according to the values of EOS_true and Byte index.

Excluding the confirmed OS (outstanding) bytes, 1 to 2 coded bytes can be output when

EOS_true is 0, and 2 to 3 bytes can be output when EOS_true is 1, as the value of coding

interval needs to be flushed out at the end of slice coding. The confirmed OS bytes are

output after the first byte, and the number of OS bytes is based on a 3-bit counter in unit

BP. In the WISHBONE master interface, coded bytes are packed on data bus dat_o and

output in the order shown in Table 6-3.

Table 6-3: Configuration of coded bytes output order of RDO-off coding

EOS_true Byte index EOS byte Byte2 Byte1 Confirmed OS bytes
(0 to 7 bytes)

0 0 N/A N/A 1st byte Output after Byte1
0 1 N/A 1st byte 2nd byte Output after Byte2
1 0 N/A 1st byte 2nd byte Output after Byte2
1 1 1st byte 2nd byte 3rd byte Output after EOS byte

Design of master interface with 32-bit data bus is shown in Figure 6-4. The 32-bit width

of data bus is commonly adopted in WISHBONE compatible IP design, which makes it

Chapter 6 System Bus Interface and Inter-connection Design

 126

easy to integrate with other IP cores. Four-bit sel_o is allocated to indicate the valid bytes

on the bus during transfer. As shown in the figure, one of two processing paths is

triggered during packet output in the master interface according to whether CABAC

encoder is in RDO-off mode or RDO-on mode. Multiplexers are allocated to select the

proper output signals of system bus from the two paths. During RDO-on mode, one data

packet (dat_o) of RDO rate is output for each RDO mode; while in RDO-off mode, coded

bytes can be output in 1 or more packets, including one packet of first byte, one to two

packets of confirmed OS bytes, and one packet of remaining bytes. In the proposed

packet output procedure, it is not needed to accumulate 4 bytes before output of 32-bit

dat_o, as sel_o is utilized to indicate the positions of valid bytes of dat_o.

Figure 6-4: Data output control of WISHBONE master interface with 32-bit dat_o bus.

Chapter 6 System Bus Interface and Inter-connection Design

 127

Figure 6-5: Data output control of WISHBONE master interface with 8-bit dat_o bus.

An alternative design of master interface is also implemented with dat_o bus width of 8

bits. As shown in Figure 6-5, rate of each RDO mode is output in two sequential packets

in RDO-on mode, and OS bytes are output sequentially in 1 to 7 packets in RDO-off

mode. Control logic is simpler compared to that of master interface with 32-bit dat_i.

However, coded byte output delay is longer, as maximum of 10 packets need to be output,

and the integratability of the CABAC encoder equipped with the interface is lower.

6.2.5 Consideration of Data Transfer Speed of System Bus

Long interconnection delay of system bus can limit maximal coding speed of CABAC

encoder. Because of implementing data transfer of system bus interfaces as register

feedback cycle, all inputs and outputs of CABAC are buffered with registers. Data

transfer delay is only determined by transfer delay on the system bus. With proper

insertion of buffers on the system bus similar to buffer insertion during clock tree

synthesis, data transfer delay on the system bus will efficiently constrained with no

Chapter 6 System Bus Interface and Inter-connection Design

 128

negative influence on CABAC encoding speed after integration of CABAC encoder IP in

the SoC-based video coding system.

6.3 Design of System Bus Inter-connection (INTERCON)

System bus inter-connection is a key functional block of WISHBONE system bus that

builds connection between masters and slaves according to a predefined manner. The

block is named INTERCON in WISHBONE system bus specification [104]. Several

inter-connection modes are supported in WISHBONE system bus. Point-to-point

INTERCON only supports connection of a single master interface and a single slave

interface, and is not suitable for SoC multi-device inter-connection. Shared bus

INTERCON supports connection of multiple masters and slaves. However, only single-

channel connection is supported, and one master is allowed to initiate a bus cycle to a

target slave through the connected channel in INTERCON. Data transfer rate of shared

bus INTERCON is limited for high data rate video coding system. In comparison,

crossbar INTERCON (crossbar switch) allows multi-channel inter-connection between

masters and slaves. Each connection channel can be operated in parallel to other

connection channels. This increases the data transfer rate of the entire system by

employing parallelism. Crossbar INTERCON is inherently faster than traditional bus

schemes. Crossbar routing mechanisms generally support dynamic configuration. This

creates a configurable and reliable network system. The proposed crossbar INTERCON

is introduced as follows.

6.3.1 Design of WISHBONE Crossbar INTERCON

The top-level architecture of WISHBONE crossbar INTERCON is shown in Figure 6-6.

The INTERCON supports connection with 4 masters and 4 slaves through system bus

Chapter 6 System Bus Interface and Inter-connection Design

 129

interfaces, and maximum of 4 connection channels can be established in the INTERCON

if each master addresses a different slave. As shown in Figure 6-6, the INTERCON

consists of 4 sub-units (named M0, M1, M2, and M3) for the function of master input

selection & slave cyc generation and 4 sub-units (named S0, S1, S2, and S3) for the

function of master connection arbitration & slave input selection. Sub-units M0, M1, M2,

and M3 can connect to the corresponding interfaces of 4 WISHBONE slaves through

system bus, and sub-units S0, S1, S2, and S3 can connect to the corresponding interfaces

of 4 WISHBONE masters. Each of M0-M3 generates cyc signals for the 4 slaves. Based

on the 4 cyc signals from M0-M3, each of S0-S3 sub-units makes arbitration on which

master can connect to the slave that is connected to the sub-unit, generates Grant signals

to M0-M3, and selects the WISHBONE input signals of the slave. Based on the Grant

signals from S0-S3, each of M0-M3 selects WISHBONE input signals for the master that

is connected to the sub-unit.

Chapter 6 System Bus Interface and Inter-connection Design

 130

Figure 6-6: Top-level architecture of 4-channel crossbar INTERCON of WISHBONE
system bus.

(1) Master Connection Arbitration & Slave Input Selection

The architecture of master connection arbitration and slave input selection sub-units (S0-

S3) of INTERCON is shown in Figure 6-7. WISHBONE bus cycle signal cyc_o indicates

the request of master to initiate a bus cycle to the addressed slave. For the same slave, bus

cycle signals of 4 masters (M0_cyc, M1_cyc, M2_cyc, and M3_cyc) generated in M0-

M3 are input to the arbiter of master connection. The bus connection of one of the 4

Chapter 6 System Bus Interface and Inter-connection Design

 131

masters can be granted, and the 4-bit Grant signal is stored in registers. It is used to

control system bus connection of the granted master to the slave in the multiplexer. The

4-bit Grant is also connected to M0-M3 for the selection of master input signals.

Figure 6-7: Round-robin arbitration of master that connects to the slave.

Round-robin arbiter and priority arbiter can be adopted for the arbitration of mater

connection. Compared to round-robin arbiter, the limitation of priority arbiter is that, in

very busy systems, there is no limit to how long a lower priority request may need to wait

until it receives a grant [109]. A round-robin arbiter on the other hand allows every

requester to take a turn in order. The maximum amount of time that a requester will wait

is limited by the number of requesters. In the proposed design, the arbiters in sub-units

S0-S3 are designed as round-robin arbiters. If the currently granted master completes bus

cycle and any of the remaining masters requests to initiate a bus cycle, the first requesting

master in the round-robin order will be granted based on the stored Grant value.

(2) Master Input Selection & Slave cyc Signal Generation

Chapter 6 System Bus Interface and Inter-connection Design

 132

cyc generation of 4
slaves of Master0

Selection of dat_i &
ack_i of Master0

= M0_cyc[0]

= M0_cyc[1]

= M0_cyc[2]

= M0_cyc[3]

S0 adr

M0 adr_o

M0 cyc_o

S1 adr

S2 adr

S3 adr

M0 ack_i

Grant0[0]

Grant1[0]

Grant2[0]

Grant3[0]

S0 ack_o

S0 ack_o

S0 ack_o

S0 ack_o

G
rant0[0]

G
rant1[0]

G
rant2[0]

G
rant3[0]

MUX

S0 dat_o

S1 dat_o

S2 dat_o

S3 dat_o

M0 dat_i

(a) (b)
Figure 6-8: Architecture of M0 sub-unit: (a) Generation of cyc signals of 4 slaves that can
connect to the master, and (b) selection of master input signal including dat_i and ack_i.

Architecture of master input selection & slave cyc generation sub-units (M0-M3) of

INTERCON are illustrated in Figure 6-8, with M0 sub-unit shown as an example. For the

generation of bus cycle signal cyc of each of the 4 slaves that can connect to the master

(Figure 6-8(a)), address comparison of master address adr_o and the predefined address

of the slave is carried out first. If the addresses are identical, and the master is requesting

bus connection (cyc_o is high), the generated bus cycle signal M0_cyc of the slave is set

high, which is used for master connection arbitration in S0-S3. As address comparison is

completed in M0-M3, computation complexity of arbitration of S0-S3 is simplified. As

shown in Figure 6-8(b), input data bus dat_i of each master is selected from dat_o of 4

slaves in multiplexer based on the Grant signals generated in S0-S3. Because a

WISHBONE master can be granted to connect to only one WISHBONE slave, ack_i of

the master is set high if any slave set ack_o high, and the master is granted to connect to

the slave.

Chapter 6 System Bus Interface and Inter-connection Design

 133

6.3.2 Compact SoC-based CABAC Encoding System

M0
M1

M2
M3

S0
S1

S2
S3

SE packet input to
CABAC encoder from
WB master interface of
high-level sys ctrl

CABAC bit
stream output

CABAC RDO
coding rate output

WB
slv

WB
mst

Master0
I/F Slave2

I/F

Slave1
I/F

Figure 6-9: A compact inter-connection of CABAC encoder with other components of
video encoder.

A compact SoC-based CABAC encoding system is shown in Figure 6-9, which consists

of the proposed CABAC encoder and WISHBONE INTERCON. Input packets of SE and

control parameters are connected from interface of Master0 to M0 sub-unit of

INTERCON. WISHBONE slave interface of CABAC encoder is connected to the S0

sub-unit of INTERCON. An internal channel is granted from M0 to S0, which enables

the input packets to transfer from Master0 to CABAC encoder. The master interface of

CABAC encoder is connected to M1 of INTERCON to output packets of coded results.

Based on the adr_o of master interface bus cycle, internal channel of M1 to S1 or M1 to

S2 can be connected in INTERCON that enables packets of CABAC coded bit stream to

be sent to Slave1 interface, and RDO rate to be sent to Slave2 interface. Interfaces of

Master0 and Slave 2 can be located in the host processor that controls video coding of

H.264/AVC, while interface of Slave 1 can be connected to the buffer of coded frames of

video encoder. Two channels of crossbar INTERCON are utilized in this compact

Chapter 6 System Bus Interface and Inter-connection Design

 134

CABAC encoding system, and no conflicts of packet input and output exist, compared to

the system with shared bus INTERCON.

For the prospect of SoC-based H.264/AVC encoder based on the WISHBONE system

bus, the crossbar INTERCON can be scaled up to allow more master and slave devices to

connect to the WISHBONE system bus. With the accomplishment of other HW IP cores

such as ME & MC, intra prediction, integer transform and quantization, in-loop

deblocking filtering, etc., the IPs are connected to the INTERCON through the system

bus interface. Encoding procedure of H.264/AVC video sequence can be managed in a

timing-efficient manner, which enables the IP cores to encode in parallel, reduces average

encoding time per MB, enhance the utilization efficiency of connection channels, and

minimize the bandwidth of system bus.

Chapter 7 Design, Synthesis, and Performance Comparison

 135

Chapter 7 Design, Synthesis, and
Performance Comparison

In this chapter, design procedure and performance of the proposed CABAC encoder are

discussed. Design and verification steps of the encoder are introduced first, followed by

results discussion of synthesis & physical design. Then, contributions of other team

members such as MBIST circuit insertion are briefly discussed for completeness. The

performance of the ASIC-implemented CABAC encoder is analyzed in terms of its

acceleration over CABAC software encoding, influence on the overall video encoding

system performance, and the efficiency of context model access. Finally, comprehensive

performance comparison is given for the proposed encoder and the existing CABAC

encoder designs.

7.1 Design & Verification Flow of CABAC Encoder HW IP

In this section, design and verification flow of the CABAC encoder are introduced

separately. Design steps of the proposed CABAC encoder are introduced first. Functional

verification strategies of the encoder are discussed then, including verification strategies

of each design step, complete verification flow of ASIC design, and FPGA prototype.

7.1.1 Steps in Designing a CABAC Encoder

Complete functions of the proposed CABAC encoder introduced in previous 3 chapters

are implemented and verified in 7 design steps, as illustrated in Figure 7-1. The step-by-

step design & verification procedure of CABAC encoder enables function verification

and removes potential problems in the early stage, and reduces verification difficulty. In

Chapter 7 Design, Synthesis, and Performance Comparison

 136

the encoder design procedure, functional units and blocks that generate CABAC output

results are designed in earlier steps and the units or block of the additional functions are

designed in later steps. The benefit is that reference coded results in RDO-off mode that

are generated from SW encoder keep unchanged and verification procedure is simplified.

: Binary arithmetic coding

: Context model selection
: Context model access

: CS that needs to refer to
coded SEs of neighboring MBs

: CS that NOT needs to refer to
coded SEs of neighboring MBs

Step1: Design BAC

Step2: Design CA

Step3: Design Binarization
(BN & BS)
Step4: Design CS2

Step5: Design CS1

Step6: Design Block3, RDO
related function of Block1 &
Block2

CABAC encoder
HW IP design steps

: Binarization
: Coding bin serial output to CA

: Coding interval subdivision &
renormalization

: Bit packing of output bits

Step7: Design WISHBONE
system bus interfaces

Figure 7-1: Design steps of CABAC encoder.

In Step1, binary arithmetic coding (BAC) in unit AR and BP is implemented. Context

model of regular bin is provided in the input test vectors in Step1, which are used to look

up sub-range of LPS of coding interval. In Step2, context RAM access operations are

implemented in unit CA, including read of context line that contains the accessed context

model from context RAM and write of context line that contains the updated context

Chapter 7 Design, Synthesis, and Performance Comparison

 137

model to context RAM. CtxIdx (context index) is provided in the input test vectors to

address the accessed context model. Functions of Block 2 is completed after Step2. In

Step3, binarization of SE value and serial generation of bin packet are implemented in

unit BN and unit BS, with CtxIdx of regular bin provided from input. In Step4 and Step5,

context model selection is designed in unit CS2 and CS1 respectively. Unit CS1 is the

most complex unit of SE encoding with RAM access of coded SEs of neighboring blocks

during selection of context model. After Step5, Block 1 is built, and CABAC encoding

functions of binarization, context modeling, and binary arithmetic coding are completed.

In Step6, the additional functions including context model initialization of slice

initialization and context state backup and restoration of RDO-on mode coding are

implemented in Block 3 and other RDO related functions are added to Block 1 and Block

2, including coding state backup and restoration of coded SEs & coding interval and

RDO coding rate output. In the last step (Step7), WISHBONE system bus interfaces with

a FIFO buffer of input packets are finally designed and integrated into the CABAC

encoder. This completes the circuit realization of the proposed CABAC encoder. After

RTL-level function implementation in the 7 design steps, synthesis and physical design

are carried out targeting at two types of foundry process technologies, and the results will

be given in the next section.

7.1.2 Functional Verification of CABAC Encoder

The encoder is verified using two sets of video sequences: CIF (352×288) and HDTV

720p (1280×720), and each set of sequences contains 1 or more GOPs (Group of Picture),

and each GOP contains I, P, and B frames/fields. The encoder is tested in various video

encoding configurations, including progressive/interlace coding control including frame,

Chapter 7 Design, Synthesis, and Performance Comparison

 138

field, picture-level adaptive frame/field (PAFF), and MB-level adaptive frame/field

(MBAFF), RDO-off/RDO-on, wide range of encoding bit rates controlled by QP, and

various video encoding complexities controlled by the parameters including ME search

range, number of reference frames, number of inter prediction modes, etc.

Pre-
processing

Major coding blocks
(MB mode decision,
Motion estimation,

transform,
quantization)

Statistical
(Entropy)

coding
(CABAC)

Statistical
(Entropy)

coding
(CABAC)

Compare

Correct?

Finish

yes

Hardware IP

Software

no

Adjust
HW

Stream 1

Stream 2

Param file:
Test vectors

Figure 7-2: Verification of the HW IP block.

Verification of CABAC encoder design is illustrated in Figure 7-2. Two bit streams are

generated and compared with each other. Stream 1 is generated from the reference SW

[97] without any HW-assisted circuits using a video test sequence.. It can contain coded

bit stream in RDO-off mode, or RDO coding rate in RDO-on mode. Stream 2 is

generated by replacing the respective CABAC SW function with the proposed CABAC

encoder IP block, and feeding it with the parameter files generated by the same video test

sequence. During comparison, any differences between Stream 1 and Stream 2 would

indicate a design error in the CABAC HW IP.

(1) Verification at Different Design Stages

Chapter 7 Design, Synthesis, and Performance Comparison

 139

The input to the CABAC SW encoder is redirected to a parameter file of test

vectorswhich is then used as input of CABAC HW encoder, assuming the same system-

level host processor. For each design step discussed previously, different sets of test

vectors are utilized to verify encoder function. Detailed descriptions of required

parameters of input test vectors at each design step are listed in Table 7-1.

Table 7-1: Testing vectors of CABAC encoder at different design steps

Steps Units Description of input test vectors of CABAC encoder

Step1 BAC (unit AR
& BP)

Bin packet containing bin, bin type, and context model

Step2 unit CA Bin packet consisting of bin, bin type, CtxIdx
Step3 unit BN & BS Packet of SE type & value, CtxIdx of regular bin
Step4 unit CS2 Packet of SE type & value, CtxIdxInc of regular bin that

needs to reference coded SE of neighboring blocks (calc by
CS1)

Step5 unit CS1 Packet of SE type & value
Step6 Block3 Packet of SE type & value, Block3 ctrl parameters

(ctx initialization, RDO ctx state backup & restoration), and
RDO coding rate accumulation and output

Step7 Sys Bus I/F dat_i of WISHBONE sys bus contains packet of step6

In order to accelerate verification of complex logic, excluding reference coded results of

encoder, intermediate reference results are generated for some design steps to assist

verification, such as context model value in Step2, CtxIdx of regular bin of unit CS2 in

Step4, and CtxIdxInc values used to verify context model selection of unit CS1 in Step5.

One efficient verification strategy of the step-by-step encoder design is to compare

intermediate coding state values of current step with previous step during verification in

order to quickly locate time slot of encoding error and position of bugs.

(2) Verification of ASIC Design Flow and Approach of FPGA Prototype

Chapter 7 Design, Synthesis, and Performance Comparison

 140

In the ASIC design flow, the encoder is tested at RTL level, gate level, and post-layout

logic simulation. At RTL level, the encoder is verified after each design step to confirm

the correctness of newly implemented function unit or block. Gate-level and post-layout

verifications of the encoder are also carried out to insure functional consistence utilizing

netlist and SDF (standard delay format) file that provides timing delay information of

cells and connecting wires.

FPGA prototyping is useful to find and solve design issues such as timing or area at early

stage, and it is widely used in digital circuit design. Speed of FPGA verification is

significantly faster compared to logic simulation. Therefore, FPGA prototyping is also

attempted in this thesis in addition to the ASIC design to verify design prototype for the

entire CABAC encoder design with system bus interfaces integrated. Xilinx ISE [110]

and Modelsim [111] are adopted to verify the encoder targeting at Virtex-II Pro FPGA at

implementation steps of synthesis, mapping, and place & route. After logic simulation

targeting at Virtex-4 library, bit stream of the design is generated and downloaded to the

FPGA. ChipScope of Xilinx [112] is utilized to insert testing probes on the design before

generation of bitstream, monitor probe values during hardware emulation, and transfer

coded results to computer throughput USB cable. Design is successfully verified in two

test cases. In case I: testing block and CABAC encoder are implemented in Single FPGA

chip, and 100 MHz clock frequency is achieved. In case II, as shown in the following

figure: two FPGAs are used for testing block and CABAC encoder. Clock frequency of

case II is 20 MHz, because interconnection delay is long between two FPGA boards &

interconnection wires. As the design is fully verified, the encoder can be integrated

directly into FPGA video coding system.

Chapter 7 Design, Synthesis, and Performance Comparison

 141

Bus

USB
ChipScope

Probes

CABAC
Encoder

WB
I/F

WB
I/F

FPGA：Xilinx Virtex II Pro

FPGA 1:
Testing block

FPGA 2:
Proposed Design

Block
RAMs

Input
packets

Output bit
stream

PC
Control &

Verification

Figure 7-3: FPGA implementation and verification platform

7.2 Results of Synthesis and Physical Design

The scope of this research includes logic synthesis of the SoC-based CABAC using

Design Compiler [113], and not the physical layout of the proposed design. Thanks to Xi

Jiang, the proposed CABAC encoder was laid out using TSMC 0.13 μm process to the

GDS-II stage targeting at TSMC 0.13 μm process using Astro [114]. Because of

significant differences of implemented functions of reported designs and proposed

encoder, functional completeness of CABAC encoder designs are analyzed first, before

the result discussion of synthesis and physical implementation.

Most of reported designs only implement functions of context model access (CA) and

BAC or only implement BAC, which are only part of functions of Block 2 of the

proposed CABAC encoder, and it means that the designs only complete Step1 or Step2 of

the 7 steps of CABAC encoder. In comparison, the proposed design fully supports

CABAC encoder function including binarization and context model selection in Block 1;

Chapter 7 Design, Synthesis, and Performance Comparison

 142

context model access and BAC in Block 2; and fast context model initialization with a

throughput of 4 models per cycle and fast RDO context state backup & restoration

operations in Block 3. Binarization and context model selection of CABAC were not

implemented in [86, 87, 93, 105], and it was partially implemented in [95].

The proposed CABAC encoder is the only design that fully supports both SE encoding

and RDO related operations in the HW IP. The supported RDO related functions include

RDO coding rate output and 3 types of coding state backup & restoration operations for

the state of context models, coded SEs of neighboring block, and coding interval of BAC.

In comparison, RDO is not fully support in all the other reported designs, and the

CABAC encoder [93] that focuses on HW assisted RDO only supports context state

backup & restoration. In order to support CABAC encoding in both RDO-off and RDO-

on modes, more complex encoding control logic is required in the proposed design to

implement similar functions such as CA and BAC.

The encoding pipeline throughputs (bin/cycle), synthesis/layout maximum operating

frequencies (cycle/s), and areas (number of 2-input NAND gates or mm2) of the proposed

design and other reported designs targeting at CMOS process technologies or FPGA are

compared in Table 7-2.

Chapter 7 Design, Synthesis, and Performance Comparison

 143

Table 7-2: Encoding pipeline throughput, max frequency, area of CABAC encoders

Design Process
technology

Bin/
cycle

Clock
Freq
MHz

Circuit area of the implemented
functions

Li06
[86]

0.35 μm syn.
ROHM 0.59 150 4.57K gates (only part of Block 2)

4.1Kb RAM
Kuo06

[87]
0.18 μm syn.

TSMC 1 200 0.31mm2 (only part of Block 2)

Chen07
[89] 0.15 μm syn. 0.56 333 13.3K excluding mem

(CtxIdxInc calc. at host)
Liu07
[90]

0.13 μm syn.
TSMC 0.67 200 34.3K excluding mem

Nunez06
[93]

XilinxV4
FPGA 1 130 1158 slices (encoder only for part of

block 2: 856 slices)
Osorio06

[95]
0.35 μm syn.

AMS
1.9 ~
2.3 186 19.4K excluding mem

(Block 2, partial of binarization)
Shojania05

[105]
0.18 μm syn.

TSMC 0.33 263 0.423 mm2 (only part of Block 2)

0.13μm
TSMC

post-layout

328
(worst-
case)

1.41
mm2

Including:
WB I/F, all RAMs,

ROMs
 Total unit CS1 Block 3

0.13 μm syn.
TSMC 578 44.6K 15.2K 8.9K

This
design

0.35 μm syn.
AMS

1

186 31.2K 11.1K 5.7K

In terms of areas, the proposed design is relatively larger than others. This is because the

proposed design offers more complete CABAC encoder functions including context

model selection and full support of RDO, as aforementioned. Reported designs that

implement similar encoder functions are compared. The proposed functional Block 3 –

unique to all reported designs – takes up 8.9K gates (20.0% of circuit area) in 0.13μm

process; while unit CS1 of this design occupies 15.2K gates (34.1% of circuit area) in the

same technology, because large number of registers is allocated to store coded SE data.

Design of unit CS1 and Block 3 occupy over 54% of encoder logic area, while Block 2

Chapter 7 Design, Synthesis, and Performance Comparison

 144

occupies 23.2% including RDO support in CA & BAC, and function of binarization and

context model selection of CS2 utilize 18.6%. Only design in [90] supports similar

function of unit CS1 with 15.9K gates of the block. However, in [90], RDO is not

supported in the block, and SE access delay of neighboring MB is significant. In terms of

throughput, those of [86, 89, 90, 105] are lower than 1 bin/cycle, while those of [87, 93],

and the proposed design are 1 bin/cycle, and [95] is at round 2 bin/cycle. If the maximum

number of bins processed per second is a determining factor, the proposed design offers

higher processing speed (bin/s) compared to[86, 87, 89, 90, 105]. Design [95] reportedly

offers the highest processing speed. Performance of the proposed encoder and [95] will

be compared in details in the later section of this chapter.

The layout of the proposed design is completed with TSMC 0.13 μm CMOS process,

going through design flow of floor planning, power ring and power straps insertion,

placement and clock tree synthesis (CTS), routing, and DRC & LVS checking. The chip

layout is shown in Figure 7-4. The core size of encoder is 1.41 mm2 with core utilization

of 90.8%. Post-layout simulation can be run at a clock frequency of 328 MHz in the

worst-case corner (1.08V, 125˚C) with constant encoding pipeline throughput of 1

bin/cycle. Up to now, this design is the only CABAC encoder reported with the most

precise post-layout results.

Chapter 7 Design, Synthesis, and Performance Comparison

 145

Figure 7-4: Chip Layout of the CABAC Encoder.

7.3 Power Reduction Strategies & Power Consumption Analysis

Power consumption has always been a topic of great interest when comes to designs for

portable applications. In our CABAC design, all the CABAC functions including support

for RDO have been implemented with more local register buffers and larger memory

allocation. Thus, it is important to implement power reduction techniques wherever

possible to reduce power consumption.

RTL-level power reduction techniques are adopted in the proposed design. Net switching

power of RAM blocks is reduced by decreasing RAM access frequency of both context

RAMs and SE RAM with the proposed context model access scheme and MB-based SE

RAM access discussed in Chapter 5.

Clock gating is applied to the whole CABAC encoder design to gate the clock signals to

the registers of different function blocks and constrain cell internal power of large

number of registers of encoder. During synthesis, clock uncertainty is reasonably defined

to estimate clock latency across clock gating cells, and hold time violations are resolved

Chapter 7 Design, Synthesis, and Performance Comparison

 146

to ensure next data input of register arrives after clock edge of gated clock. Function

correctness of the encoder is verified after applying power reduction techniques.

In order to precisely evaluate power consumption with the proposed designs, gate-level

SAIF (Switching Activity Interchange Format) file is generated from CIF and HDTV

720p sequences simulation in both RDO-off and RDO-on modes in several test

conditions. The SAIF file is imported to the state-of-the-art power analysis tool Power

Compiler [115]. Dynamic power of the design is significantly reduced with power

reduction techniques applied.

Available power consumptions of reported designs ([87], [105]) and proposed design

(RDO-off mode) are precisely compared using same TSMC 0.18µm CMOS process at

same clock frequency of 200 MHz, as listed in Table 7-3. For the same function block of

Block 2 and Normal RAM access, power consumptions of [87], [105], and this design are

20.7 mW, 36.5 mW, and 19.6 mW, respectively. This design achieves power reduction of

6% and 46% compared to [87] and [105], indicating that power is more efficiently

constrained compared to Kuo’s low power cache-based design.

Table 7-3: Gate-level power consumption (mW) of reported designs and proposed design

Design Total
power

Power of Block 2 and
Normal context RAM access

Kuo06 [87]
(partial of Block 2 func & RAM acc) N/A 20.7

(200MHz, 0.18µm)

Shojania05 [105]
(partial of Block 2 func & RAM acc) N/A 48.0

(263MHz, 0.18µm)
36.5

(263MHz, 0.18µm)

This design at 200Mbps, 0.18µm TSMC
RDO-off mode 48.9 25.7

(w RDO)
19.6

(w/o RDO)

Chapter 7 Design, Synthesis, and Performance Comparison

 147

For the power consumption on the host processor, low power embedded processors

typically consumes 0.2 mw to 2 mw per MIPS [116], such as the ARM 9-11 series and

the PowerPC. In the instruction-level analysis of H.264/AVC reference SW encoder [97]

in QP 12 to 28, it is found that 58.8% of CABAC computation still need to be calculated

by the host processor in [87] and [105], which is an average of 1.54E+04 MIPS. Even if

power-efficient embedded processor is assumed with 0.2 mW/MIPS, 3.09 W will be

consumed on the host processor of reported designs, while this part of computation is

entirely implemented in the proposed HW encoder. Therefore, the total power

consumption of the proposed CABAC encoder is significantly lower compared to the

reported designs.

Power consumption of whole encoder of the proposed design in TSMC 0.13 µm CMOS

process is evaluated in several video coding configurations, as shown in Table 7-4. In the

RDO-off CIF test at bit rate of 980 Kbps, this design only consumes 0.087 mW at clock

frequency of 1.3 MHz. To support full RDO-on coding of CIF sequence at 490 Kbps, the

encoder consumes 9.95 mW at 211.5 MHz. To support HDTV 720p 60 fps RDO-off

coding at 8.9 Mbps, power consumption of the encoder is 0.79 mW. Power consumption

of the proposed encoder is higher in RDO-on mode because of significantly higher input

SE packet frequency.

Table 7-4: Power consumption of the proposed encoder in 3 video coding configurations

Video
format

Clock
(MHz)

RDO
mode

Bit
rate

Power
(mW)

CIF, 60 fps 1.3 Off 980 Kbps 0.087
CIF, 30 fps 211.5 On 490 Kbps 9.95
720p, 60 fps 11.6 Off 8.9 Mbps 0.79

Chapter 7 Design, Synthesis, and Performance Comparison

 148

Table 7-5: Distribution of power consumption of the proposed CABAC encoder in RDO-
on / RDO-off mode coding

RDO
Mode Memory FIFOs Block1 Block2 Block3 WB

I/Fs
Normal
RAM

3 Func
Blocks

RDO-off 27.0% 9.1% 18.9% 40.4% 3.4% 1.0% 12.3% 62.6%
RDO-on 28.3% 8.9% 20.5% 36.3% 4.6% 1.0% 11.0% 61.5%

The average distribution of power consumption of the proposed CABAC encoder in

different function blocks are listed in Table 7-5 for RDO-off/RDO-on modes. As shown

in the table, large percentage of the encoder power is consumed by Block 1, Block 2, and

memory block, while the power consumption of WISHBONE system bus interfaces is

only 1.0%. Table 7-5 illustrates that percentage of power consumption of Block 3 and

Memory block increases in RDO-on mode. It is because in RDO-on mode, Block 3 and

context RAMs are more frequently accessed for context state backup & restoration of

P8×8 mode decision. In RDO-on mode, unit BP (bit packing) of Block 2 consumes less

power as bit packing related logic is idle, and encoding pipeline stages of unit CA and

AR of Block 2 can also turn idling after bin packet processing of one RDO mode, and

before high-level RDO mode decision and receiving of input packets of next mode.

The P8×8 RDO mode decision is not frequently triggered during RDO-on coding

compared to some of other RDO modes such as Intra4×4, and in some situations such as

HD videos with complex textures and motions, P8×8 mode does not contribute

significantly to the bit rate reduction. Therefore, it is reasonable to constrain the power

consumption of the P8×8 mode related function blocks. Block 3 and unit CS1 are the two

major functional blocks that control the backup & restoration of context state and state of

coded SEs during P8×8 coding, and the two blocks occupy over 54% of logic area of

Chapter 7 Design, Synthesis, and Performance Comparison

 149

CABAC encoder, because in unit CS1 large local buffers are allocated to temporarily

store coded SEs and 5 pipelines are utilized in Block 3. After clock gating is applied,

dynamic power of unit CS1 and Block 3 is efficiently reduced, consuming 9.5% encoder

power in RDO-off mode and 11.0% in RDO-on mode.

7.4 MBIST Circuit of Memory Block of CABAC Encoder

CABAC encoder requires frequent access of context models from context RAMs and

access of context model initialization parameters from ROM tables during slice

initialization. Enhance testability of the Memory Block of the encoder is another design

consideration. Test circuit insertion procedure of memory blocks is not similar to the scan

chain insertion of registers of function logic. MBISTArchitect of Mentor Graphics [117]

is employed to generate and insert complete RTL-level Built-In-Self-Test (BIST) logic

for the context RAMs and ROMs of Memory Block. After MBIST circuit insertion, the

RTL-level architecture is an integration of the original coding logic together with the new

test circuits required for BIST purposes. The encoder is able to either do the normal

coding function or perform memory self test when activated.

Figure 7-5: BIST testing circuits of memory block, including RAM BIST and ROM BIST.

Chapter 7 Design, Synthesis, and Performance Comparison

 150

A wide range of test algorithms that offer high fault coverage can be selected. March2

and ROM2 algorithms are chosen for RAM and ROM test respectively because they both

cover a wide range of faults in short test procedure. The test mode is triggered when

test_enable is set to 1, otherwise the CABAC encoder functions as normal. The

successful completion of memory test is indicated by logic 1 in test_done and logic 0 in

test_fail in the RAM test, as shown in Figure 7-5. If any fault is found, test_fail goes high

and the test ceases. RAM test can be reset at any time to initialize the test, while BIST

clock uses the same clock as the encoder. For ROM test shown in Figure 7-5, all values

read from ROM are compressed into a signature by a compressor, and it is in turn

compared with a reference signature when the test is done. The test fail signal goes high

in the case of signature mismatch. Compared to the default scan-out result checking

scheme of ROM BIST, this scheme with local comparator is simpler and more time-

efficient.

In order to contain MBIST capabilities for the CABAC encoder, input BIST signals from

BIST controller and the normal memory input signals are selected by the multiplexer at

memory interface according to test enable signal(s). ROM BIST capabilities are added to

the 4 ROM tables of context model initialization parameters, and 4 RAM BIST

controllers are allocated, including 1 for Normal RAM & Temp RAM, 1 for Best RAM

and P8x8 RAM, 1 for Address list, and 1 for the FIFO buffer RAM blocks. The memory

blocks can be self-tested simultaneously or selectively according to the test scheme. The

BIST circuits of ROMs, context RAMs, and FIFOs occupy 4.0 K gates in total in 0.13

µm CMOS process, which is not significant compared to the encoder area. Influence on

the encoder clock frequency is trivial, because critical path is not located in the test logic.

Chapter 7 Design, Synthesis, and Performance Comparison

 151

It is necessary to integrate MBIST and logic test circuits into the proposed encoder IP

when the design is to be fabricated or integrated into a video encoding system as a hard

IP in the further work.

7.5 Performance Comparison

In the following subsections, performance of the proposed CABAC encoder is evaluated

from the aspects of CABAC encoding acceleration, encoding throughput, and impact of

CABAC encoder IP on the overall system performance. Performance of the CABAC

encoder is compared to two reported designs to illustrate the advantages of the proposed

design in context model access efficiency and encoder function completeness.

7.5.1 CABAC Encoding Speed Performance of the Encoder

(1) Acceleration of CABAC Encoding

In order to evaluate the speed up of encoding of the proposed CABAC IP, the timing

performance of the proposed top-level CABAC encoding architecture is compared to that

of running reference SW CABAC encoder on host processor of the video encoding

system. It is done by measuring the time taken by each to perform CABAC encoding of

the same test sequence. Let tCABAC_top denotes the encoding time taken by the proposed

top-level CABAC architecture, and tref_SW denote the time taken by the reference SW

encoder, the design objective is to achieve significant time-saving as shown in (7-1).

SWreftopCABAC tt __ << (7-1)

It is further assumed that the operating clock frequencies of host processor and the HW

CABAC encoding architecture are similar. Because the current processor core embedded

in the FPGA chip such as MicroBlaze [118] in the Xilinx Virtex-4 platform can achieve

Chapter 7 Design, Synthesis, and Performance Comparison

 152

clock frequency up to 200 MHz, it is reasonable to estimate that an RISC processor core

can work at the clock frequency of 300~500 MHz which is similar to the clock frequency

of HW CABAC encoder generated by synthesis and physical design tool. Therefore, the

expression for number of cycles corresponding to (7-1) can be derived as:

SWreftopCABAC cc __ << (7-2)

For SW/HW co-design architecture of CABAC encoder, cycle number of top-level

CABAC encoder CCABAC_top consists of three parts: cycles of HW IP (CHW_IP), cycles of

SW non-IP (CSW_nonIP) running by the host processor, and cycle of data transfer delay

from host processor to HW IP (Ctransfer_latency). If encoding function of SW non-IP, HW IP,

and data transfer are sequential executed, CCABAC_top is the sum of three parts:

latencytransfernonIPSWIPHWtopCABAC cccc ____ ++= (7-3)

CSW_nonIP of the proposed design is minimized compared to all reported designs, because

CABAC encoding functions are full implemented in HW IP, and the host processor only

needs to re-package the input SE packets and control parameters. CSW_nonIP is also

significantly lower compared to CHW_IP. Moreover, HW IP and SW non-IP are processing

CABAC HW input packets in parallel, and CHW_IP is significant larger compared to

CSW_nonIP. Thus, CSW_nonIP and transfer delay Ctransfer_latency can be ignored in (7-3), and

CCABAC_top can be represented by CHW_IP for the proposed top-level CABAC encoding

architecture. The acceleration of CABAC encoding is illustrated in Table 7-6, in which

number of cycles of HW IP, cycles of reference SW encoding, and acceleration times of

the HW IP are listed for coding test of one GOP CIF format Foreman sequence at 3 QP

values.

Chapter 7 Design, Synthesis, and Performance Comparison

 153

Table 7-6: Speed-up of CABAC encoding of the HW IP compared to SW

RDO mode QP 24 28 32
CHW_IP 3.2E+05 1.9E+05 1.2E+05
Cref_SW 4.6E+07 2.8E+07 1.8E+07 RDO-off

Speed-up 145 147 153
CHW_IP 8.0E+07 6.3E+07 5.2E+07
Cref_SW 2.1E+09 1.6E+09 1.2E+09 RDO-on

speed-up 26 25 24

In RDO-off mode coding, speed-up of HW CABAC encoder are significant in different

QPs, and it is more efficient in high QP (low bit rate). It is because the percentage of

regular bins is proportional, and SW encoding of regular bin is inefficient, which requires

memory access in multiple cycles. In RDO-on mode, speed-up is relatively lower

compared to RDO-off mode. This is because in RDO-on coding, CABAC encoding

pipeline is empty when coding rate is output when all bins of current mode are encoded,

and the multi-stage pipeline is reloaded when the mode decision is made, and SE packets

of next RDO mode are received by the encoder. Pipeline efficiency is degraded; however,

the encoding speed of proposed encoder is still faster in RDO-on mode. Speed-up can be

further increased if the RDO mode decision algorithm of host processor is adjusted. SE

packets of the next RDO mode can be generated before the coding rate of current mode is

calculated in the encoder IP, if the decision of next RDO mode does not depend on the

coding rate of current mode, such as intra prediction mode decision of 4×4 blocks.

(2) Constant Throughput of CABAC Encoder

Although encoding throughput is limited by the maximum throughput of BAC pipeline

stages, it is also influenced by the performance of previous encoding stages. For the full

HW CABAC encoder design, SEs of residual blocks are generated during binarization.

Bin strings of one residual block cannot be generated until all values of residual

Chapter 7 Design, Synthesis, and Performance Comparison

 154

coefficients are received. Therefore, bubbles can be inserted in the pipeline when the bin

string of next SE is not available. Additionally, context model selection is also a complex

procedure when the coded SEs of neighboring blocks needed be referenced and accessed

from SE RAM, in which situation pipeline can be stalled when the CtxIdxInc calculation

of regular bin cannot be completed when CtxIdx is needed. In this thesis, the problem of

residual SE generation is released by (a) input run-level pairs instead of all coefficients of

residual block to reduce residual input cycles, (b) calculate SEs during run-level pair

input procedure, and (c) insert FIFO buffer after unit BN. Context model selection is also

accelerated by partitioning the function in unit CS1 and CS2, the pre-calculation of

CtxIdxInc of unit CS1 in parallel with binarization of BN. Average throughput of the

entire encoder is tested in one GOP of CIF Foreman sequence in the QP range of 12 to 32.

As shown in Table 7-7, throughput of the encoder is constant in the whole QP range.

Pipeline stall probability is minimized to 1% or even lower, and the stall is only caused

when FIFO of bin string is empty and SEs of next residual block are still being processed

in unit BN. The average throughput of encoder is 0.99 bin/cycle, which is quite

approximate to the maximum throughput of 1 bin/cycle of CABAC encoding pipeline. In

comparison, actual throughput of [90] and [95] are degraded, compared to the reported

maximum throughput, as design of binarization and context model selection is inefficient

and encoding pipeline stall frequency is high. It will be further discussed in section 7.5.3.

Table 7-7: Average throughput of the proposed CABAC encoder in video coding tests

QP 12 16 20 24 28 32
Total encoding

cycles 1874123 1103743 566390 314376 190255 117383

bin number 1855991 1096048 562211 311756 188186 115195
Avg throughput 0.990 0.993 0.993 0.992 0.990 0.981

Chapter 7 Design, Synthesis, and Performance Comparison

 155

(3) Worst-Case Analysis of Proposed CABAC Encoder

For the worst-case analysis, the H.264/AVC encoder is tested in HDTV 720p 60fps

coding, with all encoding tools turned on including full RDO mode. The best coding

performance is achieved at the cost of high computation. It is found that to achieve output

bit rate of 10.7 ~ 24.4 Mbps, CABAC encoder needs to support encoding speed of 0.77 ~

1.52 Gbin/s in RDO-on mode, which is beyond the processing speed of any of the

CABAC encoder designs at current stage. For the proposed CABAC encoder at post-

layout stage, a maximum encoding speed of 325 Mbin/s at worst-case corner (1.08V,

125˚C) is supported. However, in the typical case, the post-layout design can work at

significantly higher encoding speed of over 500 Mbin/s. To achieve HDTV real-time

RDO coding, simplified RDO-on mode may be adopted to reduce RDO testing modes,

and the scheme of parallel encoding of multiple slices of same frame on multiple

CABAC encoding engines may be applied.

7.5.2 Performance Comparison of Context Model Access Efficiency

The performance of context model access of the proposed design is evaluated from two

aspects: (1) efficiency of context RAM read & write access; and (2) efficiency of context

state backup & restoration operation. The performance is compared with [93], which is

the only reported design that fully supports different RDO context state backup &

restoration operations. The influence of context RAM reallocation is also evaluated.

(1) Comparison of Context RAM Read & Write Access Efficiency

CABAC encoder is tested using 4 CIF video sequences: Foreman, Mother & Daughter

(M&D), Coastguard, and News, with QPs set at 12, 16, 20, 24, 28, and 32 in both RDO-

Chapter 7 Design, Synthesis, and Performance Comparison

 156

off and RDO-on modes. The context RAM read & write access frequency ratio of this

design over [93] is illustrated in different coding conditions.

 RDO-off mode

In the RDO-off mode coding test of IPB video sequence (2 GOP, 19 CIF frames), the

averaged context RAM access frequency ratio of this design over [93] (access ratio) in

the QP range of 12 to 32 is shown in Table 7-8. With techniques of both context line

access scheme and context RAM reallocation applied, the context RAM access frequency

of this design is 26.1% to 33.2% of that of [93] in the 4-sequence tests, with an average

of 28.4%. The RAM access frequency of this design is significantly lower than [93].

Table 7-8: Average context RAM access frequency ratio (This design over [93] in RDO-
off mode coding)

Sequence RAM access ratio
Foreman 28.2%

M&D 33.2%
Coastguard 26.2%

News 26.1%
Average 28.4%

Applying the context line access scheme alone, the average access ratio of this design

over [93] is 33.9%. After context RAM reallocation, the average RAM access frequency

of this design further reduces 16.1%, as shown in Table 7-9, indicating that the

reallocated context RAM efficiently reduces context RAM access frequency.

Chapter 7 Design, Synthesis, and Performance Comparison

 157

Table 7-9: Reduction of RAM access frequency of the proposed encoder, attributed to
Context RAM reallocation

Sequence RAM access reduction
Foreman 13.7%
M & D 14.6%

Coastguard 18.8%
News 17.5%

Average 16.1%

Figure 7-6 illustrates the access ratio with respect to QP. In the low QP range, RAM

access ratio of sequence Coastguard is lower (more efficient), while access ratios of

M&D and News are higher. However, in the high QP range, the access ratio of

Coastguard increases rapidly. For sequence News, variation of access ratio is small in the

whole QP range.

15%

20%

25%

30%

35%

12 16 20 24 28 32QP

C
tx

 R
A

M
 a

cc
es

s
ra

tio
, N

on
-R

D
O

co

di
ng

Foreman

M & D

Coastgd

New s

Figure 7-6: Context RAM access frequency ratio of this design over [93], during RDO-

off coding in the QP range of 12 to 32 of 4 typical video sequences.

The access ratio is more sensitive to the change of QP if the total energy of transform

coefficients is more scattered in frequency domain (low and high frequency coefficients),

such as Coastguard. In comparison, if the energy of transform coefficients concentrates

Chapter 7 Design, Synthesis, and Performance Comparison

 158

more in the low frequency, such as News, the access ratio is more stable as QP changes,

compared to that of Coastguard.

In the low QP range, context RAM access of high motion sequences Coastguard is more

efficient with lower access ratio, while RAM access ratio of low motion sequence M&D

and News is higher. This is because higher motion of video sequence introduces larger

MVD and residual blocks with more non-zero coefficient after quantization, which

reduce the context RAM access ratio. However, in high QP range, access ratios of high

motion sequences increase more rapidly. At QP 32, access ratio of Coastguard is highest

among all sequences. In comparison, low motion sequence News has lower access ratio.

As QP increases, bit rate of Coastguard reduces more rapidly compared to that of M&D

and News. As motion estimation related SEs need to be processed in all QP range,

variation of RAM access ratio and bit rate is caused by the change of quantized residual

coefficient. Prediction error energy of Coastguard is more evenly distributed in low and

high frequency range, and less energy is kept as most coefficients are quantized to 0 in

high QP coding, and access ratio increases rapidly. Residual coefficients energy of News

is more concentrated in low frequency range, and more energy is kept and more non-zero

coefficients are kept after high QP quantization. Therefore, context RAM access ratio of

News is lower in high QP.

 RDO-on mode

The variation of RAM access frequency of P or B frames in the same GOP is very small

in the video coding tests. Because computation complexity increases significantly during

RDO coding, proposed design is tested with the 1st I, P, and B frame in RDO-on mode.

Chapter 7 Design, Synthesis, and Performance Comparison

 159

0%

5%

10%

15%

20%

25%

30%

Foreman M & D Coastgd News Average

C
tx

 R
A

M
 re

ad
 &

 w
rit

e
ra

tio
, R

D
O

-o
n read I read P

read B write I
write P write B

Figure 7-7: Context RAM read and write frequency access ratio of this design over [93],
during RDO-on coding. The average access ratios of I, P, and B frames of 4 video
sequences in QP range of 12 to 32 are shown.

Figure 7-7 shows the average RAM read frequency ratio (read ratio) and RAM write

frequency ratio (write ratio) of this design over [93] in the QP of 12 to 32. Average read

ratios are 22.4% (I), 23.9% (P), and 24.1% (B), and write ratios are 14.5% (I), 15.3% (P),

and 15.4% (B). RAM access of News is more efficient compared to that of other

sequences. For each sequence, the read and write ratios of P and B frames are higher than

I frames, because the percentage of non-residual SE in the P or B frame is higher, and

RAM access efficiency of non-residual SE is lower than that of residual SE. Compared to

RDO-off coding, context access of this design is more efficient (lower access ratio) in

RDO-on coding because large percentage of RDO modes are Intra prediction mode

decision of 4×4 block (Intra4×4), in which the percentage of residual SEs is higher. In

RDO-on coding, write ratio is significantly lower than read ratio, because in non-P8×8

RDO mode coding, the last two context lines stored in the context line buffers of unit CA

Chapter 7 Design, Synthesis, and Performance Comparison

 160

need not to be written back to Temp RAM. The difference of read and write ratio is more

significant for the low bit rate sequence, such as M&D.

10%

15%

20%

25%

30%

35%

40%

12 16 20 24 28 32
QP

 (a)

RD
O

 c
od

in
g

ct
x

re
ad

 ra
tio

, I
 fr

am
e

Foreman

M & D

CoastGuard

New s

8%

10%

12%

14%

16%

18%

20%

22%

12 16 20 24 28 32
QP
 (b)

R
D

O
 c

od
in

g
ct

x
w

rit
e

ra
tio

, I
 fr

am
e

Foreman

M & D
CoastGuard

News

10%

15%

20%

25%

30%

35%

40%

12 16 20 24 28 32QP
(c)

C
tx

 R
AM

 r
ea

d
ra

tio
 ,

P
fr

am
e

Foreman

M & D

CoastGuard

New s

8%

10%

12%

14%

16%

18%

20%

22%

24%

12 16 20 24 28 32QP
(d)

C
tx

 R
A

M
 w

rit
e

ra
tio

 ,
P

fr
am

e

Foreman

M & D

CoastGuard

New s

10%

15%

20%

25%

30%

35%

40%

12 16 20 24 28 32QP
(e)

C
tx

 R
A

M
 re

ad
 ra

tio
,B

 fr
am

e Foreman

M & D

CoastGuard

New s

8%

10%

12%

14%

16%

18%

20%

22%

24%

12 16 20 24 28 32QP
(f)

 C
tx

 R
AM

 w
rit

e
ra

tio
,B

 fr
am

e Foreman

M & D

CoastGuard

New s

Figure 7-8: Context RAM access frequency ratio of this design over [93] during RDO
coding in the QP range of 12 to 32 of 4 video coding sequences. Read ratio of I, P, and B
frames are illustrated in (a), (c), and (e) respectively; Write ratio of I, P, and B frames are
illustrated in (b), (d), and (f).

Chapter 7 Design, Synthesis, and Performance Comparison

 161

Figure 7-8 shows the read ratio and write ratio of this design over [93] with respect to QP

in I, P, and B frame RDO coding. The RAM access ratio increases with QP because the

percentage of residual SE decreases. The curves of inter (P and B) and intra frame (I) are

similar, because most RDO coding modes of inter frames are still Intra4×4 modes in inter

coding, which is a dominating factor of RAM access efficiency. Spatial characteristics of

the frame have stronger influence on the RAM access property than the temporal

characteristics.

In Intra4x4 mode RDO coding, 4 types of residual SEs are processed in high ratio: CBF,

SCF, LSCF, and abs_level_minus1. Several factors are found that influence the RAM

read ratio for residual SE coding. (a) The sum of abs level values in the coding 4×4 block

blk_sum: decides the utilization efficiency of context models of abs_level_minus1; (b)

Non-zero coefficient number in each block blk_coef_num: influences the access of LSCF

context models; (c) Percentage of 4×4 blocks with zero coefficients in the total blocks

processed zero_blk: If the percentage of zero blocks is high, utilization of context line is

less efficient; (d) Position of the Last SCF in the block: decides average number of SCF

context models accessed per block. These factors reflect the distribution of residual

transform coefficients energy and influence the efficiency of RAM read access in RDO-

on mode coding.

Power consumption of the context RAM during RDO-on and RDO-off coding is also

compared with reference design [93] and other designs with single context model access

scheme. The widely used industry SRAM model CACTI 5.3 of HP lab (Available from:

quid.hpl.hp.com:9081/cacti/sram.y) is utilized to evaluate SRAM access energy of the

two types of SRAM architecture including 53-wordx56-bit of this design and 400-

Chapter 7 Design, Synthesis, and Performance Comparison

 162

wordx8-bit of reference. According to SRAM access frequency ratio of this design and

[93], context RAM power consumption is evaluated. Power reduction of context RAM of

this design is 16% in RDO-off, and 31% (read) and 56% (write) in RDO-on mode

compared to the reference.

(2) Efficiency of Context State Backup & Restoration (B&R) Operation

Compared to [93], the operations of context state restoration are removed during non-

P8×8 RDO coding, because of allocation of Temp RAM to store updated context lines

during coding of each RDO mode, as discussed in Chapter 5. During RDO-on coding of

P8×8 sub-MB mode decision, 4 partition modes 8×8, 8×4, 4×8, and 4×4 are tested for

each 8×8 sub-MB. The context state of context RAM needs to be restored after coding of

each RDO mode, and the context state of the best mode needs to be stored to context

RAM after all modes are tested. With the architecture of 3 backup FIFO buffers and 1

coding context RAM, all context state restoration operations must be executed in [93],

and at least 20 context state B&R operations are required per inter MB.

In the proposed design, the backup and restoration operation is removed if the mode is

not the currently best mode. With pipeline structure in the proposed design, the backup &

restoration operations can be executed concurrently, so at most 1 operation is performed

per mode. In each operation, because of context line are accessed, the average cycles per

operation are also lower than [93]. With fewer cycles per operation and fewer operations

per MB, the operation timing delay per MB (cycle number) of this design is significantly

lower than [93].

Average P8×8 context state B&R operation delay ratio ctx_opt_delay_ratio of the

proposed encoder to [93] is evaluated by (7-4). MB_num_frm is the number of MB per

Chapter 7 Design, Synthesis, and Performance Comparison

 163

frame. ctx_opt_frm is the average number of context state B&R operations taken in each

frame, which can be obtained in video coding tests. In each context state B&R operation,

ratio of operation cycles of proposed design to [93] is evaluated as the ratio of the context

lines accessed in proposed design (ctx_line_num) to the context models accessed in [93]

(ctx_model_num) during P8×8 sub-MB mode decision. Average numbers of

ctx_line_num and ctx_model_num are used for the calculation of (7-4).

numelctx
numlinectx

frmnumMB
frmoptctxratiodelayoptctx

mod
__

__20
_____ ×

×
= (7-4)

8%

10%

12%

14%

16%

18%

20%

22%

24%

12 16 20 24 28 32
QP

R
D

O
 c

tx
 s

ta
te

 o
pt

 d
el

ay
 ra

tio
 ,

P
 fr

am
e Foreman

M & D
Coastguard

New s

8%

10%

12%

14%

16%

18%

20%

22%

24%

12 16 20 24 28 32

QP

R
D

O
 c

tx
 s

ta
te

 o
pt

 d
el

ay
 ra

tio
, B

 fr
am

e Foreman

M & D

Coastguard

New s

 (a) (b)
Figure 7-9: Context state backup & restoration operation delay ratio of this design to [93]
in P8×8 RDO coding for QP 12 to 32 of 4 video coding sequences. Ratio of P frame
coding in (a) and ratio of B frame in (b).

Figure 7-9 illustrates the timing delay ratio of this design to [93] of context state B&R

operation in P8×8 RDO coding. Operation delay ratio is lower (more efficient) in high

motion sequence such as Coastguard, and higher in lower motion sequence incluidng

M&D and News. Because only 2 context lines are accessed to encode a MVD, context

RAM access efficiency is higher for larger MVD. For high motion sequence, the

percentage of non-zero MVD and residual coefficients are larger compared to that of low

motion sequence. The ratio of ctx_line_num to ctx_model_num in (7-4) decreases when

Chapter 7 Design, Synthesis, and Performance Comparison

 164

the percentage of non-zero MVD increases. Increase of non-zero residual coefficients

also causes decrease of the delay ratio. The variation of ctx_opt_frm in each sequence is

not as significant as that of the ratio of ctx_line_num to ctx_model_num. In general, the

context state backup & restoration operation of proposed CABAC encoder is more timing

efficient for high motion sequence such as Coastguard. The average operation delay of

this design is 15.5% and 16.6% of [93] for P and B frame coding of in 5 CIF sequences

coding tests, as shown in Table 7-10.

Table 7-10: Average context state backup and restore operation delay ratio of the
proposed design to [93]

Sequence P frame B frame
Foreman 15.0% 16.8%
Walk 12.3% 14.4%
M&D 20.0% 19.2%
Coastguard 12.6% 13.9%
News 17.6% 18.8%
Average 15.5% 16.6%

(3) Context RAM Occupation Reduction

In [93], 46 Kbits backup context memory is allocated to support RDO coding. Instead of

allocating 3 large FIFOs to backup 3 intermediate context states during P8×8 RDO

coding, only 4 small RAMs are allocated to support RDO, including Temp RAM, Best

RAM, P8×8 RAM, and Address list, and Best RAM and P8×8 RAM are used to backup

only maximum of 11 context lines that can be modified during P8×8 mode decision.

Additionally, because context models are accessed by context line instead of single

context model in the proposed design, fewer memory addresses of the accessed context

models need to be stored in the backup RAMs. Compared to [93], only 7.37 Kbits of

context RAMs are allocated in this design, which is 16.0 % of [93]. The reduction of

Chapter 7 Design, Synthesis, and Performance Comparison

 165

context memory size in the proposed design is attributed to the context line access

scheme and more efficient allocation of backup memory resources.

7.5.3 Performance Comparison with the State-of-the-Art Design

(1) Function Completeness

Table 7-11: Functional comparisons of [95] and the proposed design

Function difference [95] This design
Binarization for non-residual SE No Yes
CtxIdxInc calculation (context model
selection) for regular bins

Only support for SCF,
LSCF, level

Full support for
all types of SE

Additional bin pairing process for non-
residual SE in the host processor Yes No

Input of residual coefficients per 4×4
residual block

16 cycles,
Degrade actual

throughput

1~16 cycles,
lower input delay

Context model initialization No Yes
P8×8 RDO coding modes No Yes

Design [95] is reported to have higher coding throughput of 1.9~2.3 bin/cycle because it

was claimed that pairs of bins (combinations of regular bins and/or bypass bins) can be

processed per cycle. However, the throughput is only evaluated at the pipeline stages of

BAC based on the statistical distribution of generated bin pairs of test video sequences,

without consideration of the processing capability of previous encoding stages including

binarization & bin packet generation. The claimed throughput can only be achieved on

the condition that bin pairs and the related context models are continuously fed to the

BAC of encoder without any stall, which is not possible for the proposed encoder

architecture. Several functional differences of [95] and the proposed design are

summarized in Table 7-11.

Chapter 7 Design, Synthesis, and Performance Comparison

 166

For non-residual SE and CBF processing of [95], binarization, bin pair preparation, and

context model selection are assumed to perform by the host processor. As discussed in

the instruction-level analysis of CABAC encoding of Chapter 4, these operations take up

from 23.5% to 47.2% of total CABAC encoding instructions in CIF format coding. To

enable data pairing operation in [95], computation cost on the host processor is even

higher, and CABAC encoding speed is limited by the speed of host processor. In

comparison, these operations are moved to the CABAC hardware encoder in the

proposed design, and the host processor is mainly used to send output SE packets.

In this design, coefficients of 4×4 residual block generated in host processor are sent to

CABAC encoder by run-level pairs. It reduces the average input delay of residual block

compared to [95], especially in high QP coding, in which the ratio of non-zero residual

coefficients are low. In [95], 16 cycles are required to input each residual 4×4 block

regardless of block types and coding QP, which is significantly longer than that of the

proposed design in high QP coding. In [95], the encoder stalls and the throughput is

degraded when the ratio of zero coefficients in the residual block is high, because not

enough residual bin pairs can be generated for the BAC stage. This situation does not

occur in the proposed design. Design [95] can support non-P8×8 RDO coding mode.

However, the support of P8×8 RDO coding is critical to the accuracy of motion

estimation of H.264/AVC. Compared to [95], the proposed design supports complete SE

encoding function including context model selection, provides complete supports of RDO

including P8×8 RDO coding, and reduces computation on the host processor and

bandwidth of system bus to the minimum.

Chapter 7 Design, Synthesis, and Performance Comparison

 167

(2) Context RAM Access Efficiency

0E+00

1E+04

2E+04

3E+04

4E+04

5E+04

10 15 20 25 30 35
QP

Co
nt

ex
t R

AM
 a

cc
es

s
nu

m
be

r
(R

DO
-o

ff
m

od
e)

Compared
design
This design

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

10 15 20 25 30 35QP

C
on

te
xt

 R
A

M
 a

cc
es

s
nu

m
be

r
(R

D
O

-o
n

m
od

e)

Compared
design
This design

 (a) (b)
Figure 7-10: Average context RAM access number per frame of residual SEs in [95]
(compared design) and this design in CIF frame coding for QP 12 to 32. The access
numbers of RDO-off coding and RDO-on coding are shown in (a) and (b), respectively.

Table 7-12: Context access performance (number of RAM access) of the proposed
encoder compared to [95] in residual SE coding

Test
cond. RDO Design QP 12 QP 16 QP 20 QP 24 QP 28 Avg.

%↓
This 38026 26015 13283 6757 3725
[95] 45542 27788 12796 5932 3059 Off
%↓ 16.5% 6.4% -3.8% -13.9% -21.7%

-3.3%

This 1919744 1620159 1287209 1015775 809390
[95] 2840789 2299346 1743681 1323572 1039464

Avg.
of

1frame
of one
GOP On

%↓ 32.4% 29.5% 26.2% 23.3% 22.1% 26.7%

This 48754 40412 31237 21934 15322
[95] 62428 48178 33743 21697 14086 Off
%↓ 21.9% 16.1% 7.4% -1.1% -8.8% 7.1%

This 1754173 1549247 1305428 1067836 873608
[95] 2701221 2293064 1828704 1419576 1126159

First
intra

frame
On

%↓ 35.1% 32.4% 28.6% 24.8% 22.4% 28.7%
This: The proposed encoder of this thesis.
%↓: Percentage of encoding cycles reduction, proposed design compared to [95].

Design [95] allocates a small cache of 4-line×4-context model to reduce RAM access

delay. It focuses on the efficient context access scheme for the residual SEs. Thus, the

context access performance of residual SEs of [95] and this paper can be compared. In

Chapter 7 Design, Synthesis, and Performance Comparison

 168

Figure 7-10, average numbers of context RAM access for each CIF frame coding in the

GOP of I, P, and B of the two designs are compared. Although 16 context models are

buffered in both designs, the context RAM access efficiency differs in various QP ranges

and in RDO-off mode (Figure 7-10 (a)) and RDO-on mode (Figure 7-10 (b)), and the

context RAM access numbers of two designs in QP 12 to 28 are listed in Table 7-12.

In RDO-off coding, the averaged RAM access efficiency of [95] is a little better (with

lower access number) in the low bit-rate range (high QP from 20 to 32) for one GOP

coding in the whole QP range. It is because two cache lines are allocated to store the

context models of CBF, and the 1st encoding level coefficient, and the RAM access of

these two types of SE are reduced. However, in the high bit-rate range (low QP from 12

to 20), the RAM access performance of the proposed design is better, because it is more

efficient to access context models of significant map, and large level values using wider

context line of 8 models instead of 4 models per cache line in [95]. Because this CABAC

design is targeting at high quality and high bit-rate coding, it is beneficial to have lower

RAM access frequency in this QP range. Table 7-12 also shows that average context

RAM access efficiency of the proposed design is better (7.1% reduction) for intra frame

coding in RDO-off mode. It is because percentage of non-zero residual coefficients of

residual block is larger in intra frame coding, and it is beneficial to use large context line

to reduce RAM access of context models significant map and levels.

In full RDO-on mode, the context RAM access frequency of the proposed design is

significantly lower (better) in QP range, as shown in Figure 7-10 (b) and Table 7-12. It is

because in the RDO-on mode of [95], the two cache lines containing context models of

CBF and 1st level coefficient need to be fetched from RAM to restore the context state

Chapter 7 Design, Synthesis, and Performance Comparison

 169

after coding of each RDO mode, which causes additional RAM accesses. On the average

of one GOP coding, 27.6% of context RAM access operations are reduced compared to

[95] in RDO-on coding, and 28.7% of access can be reduced for intra frame coding.

In general, small cache based context access scheme of [95] is more efficient in low bit-

rate RDO-off CABAC coding, while the proposed context access scheme with larger

context line buffers is more beneficial in high bit-rate coding and RDO-on. Operation

delay of context state backup & restoration in P8×8 RDO coding and related context

RAM size are not comparable because the operation is not supported in [95].

(3) SoC-based CABAC Encoder IP

Compared to [95] and most other reported designs, system bus interfaces (WISHBONE

compatible) are integrated in the proposed CABAC encoder to improve the portability

and reusability of the encoder in the further SoC-based video codec systems. The data

transfer rate at WISHBONE system bus interfaces of the proposed design is related to the

CABAC coding mode, video resolution, frame rate, and compression ratio. In video

coding test of the proposed encoder, to support RDO-off coding at 16Mbps bit rate, input

data rate to the encoder is 5.8 M packet/s, and output data rate is 1.9 M packet/s. Data

transfer on the system bus and data packet output rate from the host are very low. Output

bit packets can be sent to destination memory space directly with very low-complexity

control from the host processor. To support full RDO-on mode coding of the same video

sequence at 328 MHz post-layout clock frequency, input data rate is 97.3M packet/s, and

output RDO rate is 11.3M packet/s.

Chapter 8 Conclusions

 170

Chapter 8 Conclusions

In this thesis, the design and implementation of a high-performance CABAC encoder

targeting at the Main profile of H.264/AVC video coding standard has been carried out

with success. The main purpose of the research is to accelerate serial CABAC encoding

procedure in different video coding configurations and remove the bottleneck of

H.264/AVC encoding at statistical coding stage by the approach of hardware IP

(intellectual property) design of CABAC encoder, which can support the following

important design features: functional completeness of CABAC encoding of SE, high

coding throughput, SoC-based IP design with enhanced reusability and portability,

complete functional support of rate-distortion optimization (RDO) in different RDO

modes, efficient context model access, and low power consumption.

8.1.1 Summary of Design Advantages

Generally speaking, this work enhances the performance of both CABAC encoder and

the H.264 video coding system. It achieves global performance optimization compared to

local optimization of particular HW function blocks such as CA, BAC, and residue SE

coding in most of reference designs. Computation on the host processor and data transfer

of system bus are minimized, and more importantly, this work is the first reported design

that successfully solves design difficulty of CABAC coding in RDO mode and provides

best video compression efficiency of H.264/AVC standard. Power consumption of this

high performance encoder is also lowest for both HW and system power in the reported

designs. Flexibility of encoder design is utilized by selection of proper encoding

functions to achieve targeting performance. This is different from decoder design, and it

Chapter 8 Conclusions

 171

is ignored by most of other designs. It is the only design that provides a complete SoC-

based IP solution for CABAC encoder that can support different types of video coding

configurations such as RDO-off coding, fast RDO and full RDO coding, etc. The

application range of the design is wider, from real time coding to high quality

compression. This IP is reusable and suitable for future video coding system. Considering

encoding speed, it is the only CABAC encoder that achieves real time CIF coding in full

RDO mode and HDTV coding in RDO-off and fast RDO mode. The major design

advantages of the proposed CABAC encoder IP of the thesis are summarized as follows.

1. Full-hardware CABAC Encoding of Syntax Elements (SEs)

Compared to most reported designs, the proposed CABAC encoder fully supports all 3

steps of SE encoding: binarization, context modeling, and binary arithmetic coding

(BAC). The most complex function unit design - context model selection of context

modeling is efficiently designed, which achieves single cycle context model selection.

The benefits of full-hardware SE encoding include: (1) computation complexity on the

host processor of the video codec system is significantly reduced for the preparation of

CABAC input data, and the data transfer bandwidth on the system bus is also reduced; (2)

the bottleneck of CABAC encoder data input is removed; (3) reusability of the hardware

CABAC encoder IP is enhanced and integration complexity of the encoder in high-level

video codec system is significantly reduced.

2. Complete Solution of CABAC Encoding in RDO Coding Modes

Compared to all reported designs, the proposed CABAC encoder is the only design (to

date) that solves the difficulties to develop RDO functions in CABAC encoder design

with the approaches of allocating small RAMs to record intermediate context states,

Chapter 8 Conclusions

 172

pipelined context state backup and restoration, multiplexing of bit backing and RDO rate

accumulation, local buffering of best mode SE states, etc. It fully supports RDO related

functions, including RDO coding rate generation and elaborate operations of backup &

restoration of CABAC coding states including state of context models, state of coding

interval of BAC, and state of coded SEs for the context model selection. RDO is one of

the key techniques that enhances the coding efficiency of H.264/AVC, and support of

RDO is significant to the CABAC encoder design to further expand the application fields

of the design, because RDO is indispensable in the high-quality high-definition video

coding applications such as HDTV and movie studio encoding systems.

3. High & Constant Encoding Speed

Several design strategies are explored and applied in the proposed encoder to reduce data

dependency of CABAC encoding steps and improve encoding speed (in terms of

throughput × clock frequency) of the CABAC encoder. Full pipelined architecture of bin

encoding is designed that can process 1 bin packet per cycle. Functional partitioning of

encoding pipeline stages of bin packet generation, context model access, coding interval

subdivision & renormalization, and bit packing efficiently reduce the data dependency of

the sequential coding steps. Insertion of FIFO buffers in the encoding flow enables

parallel processing of SE binarization, complex context model selection, and bin

encoding pipeline, and efficiently removes pipeline bubbles of CABAC encoding. With

the adoption of FIFO buffer insertion and pipelined coding structure, constant encoding

throughput is ensured in different video coding configurations, compared to the variable

throughput of [95] and [90]. Additionally, circuit critical path is significantly reduced and

higher encoder clock frequency is achieved, compared to most reported designs.

Chapter 8 Conclusions

 173

4. Efficient Context Model Access

An efficient context model access scheme of CABAC encoder is proposed in this thesis,

including techniques of context line access and buffering, context memory reallocation,

and pipelined context model B&R operation in P8×8 RDO coding. Context memory size

is reduced to 16.0% of [93]. Context RAM read and write access frequency in both RDO-

off and RDO-on coding modes are significantly lower than [93]. Context state backup &

restoration operation delay of P8×8 RDO coding mode is 15.5% and 16.6% of [93] in P

and B frame coding tests, while the operation of non-P8×8 coding is removed. With the

reduction of memory access frequency, power consumption of context RAM blocks is

also lower, especially in RDO coding with power reduction of 31% (read) and 56%

(write). Compared to the cache-based context model access of [95], context model access

frequency of the proposed design is significantly lower in RDO-on mode, and cache miss

data fetch delay is avoided.

5. Low Power Encoder Design

Compared to most reported designs, the proposed encoder is a low power design with

power reduction techniques applied including clock-gating and context RAM access

frequency reduction. Power consumption of HW CABAC encoder is efficiently

constrained, and HW power is lower than references (46% and 6% reduction compared to

two references including a cache-based low power design) for the same function blocks

with same 0.18μm process technology and clock frequency. Total power consumption of

CABAC encoding on the host processor and HW encoder is even lower. Therefore,

proposed encoder is also suitable for portable and mobile applications, in which power

consumption is a critical design consideration.

Chapter 8 Conclusions

 174

6. Other Advantages of the Proposed CABAC Encoder

The proposed encoder achieves fastest context model initialization with processing

throughput of 4 context models per cycle during slice initialization. Lowest operation

delay of slice initialization is achieved compared to reported designs, which is attributed

to the parallel and pipelined circuit architecture. MBIST circuit insertion is also

attempted for the context RAMs and ROMs of the encoder with simplified interface

testing signals and self-test procedure, which can be applied in the further system

integration and ASIC fabrication procedures to enhance testability of the proposed IP.

To summarize, a full-hardware high-performance low power SoC-based CABAC encoder

IP is designed in this thesis utilizing different design strategies to achieve complete

function features, high & constant coding throughput, and improved reusability and

portability. This design is verified, synthesized, and laid out at the GDS-II stage with

post-layout speed suitable for high quality real time video coding.

Several design strategies utilized for the proposed CABAC encoder of this thesis are also

suitable for similar R&D projects of serial coding and highly data dependent system. The

strategies include:

 Widely used pipeline architectures in the operations of bin encoding, context state

backup & restoration, and context model initialization that enhance data processing

throughput and reduce operation delay.

 Strategies of data prefetch and pre-calculation to reduce data dependency, operation

delay, and critical path length, such as prefetch of context model from context RAM,

pre-calculation of possible values of RangeLPS and pre-calculation of context model

selection that require access of coded SEs of neighboring blocks.

Chapter 8 Conclusions

 175

 Reduction of RAM access frequency for the operations that require frequent memory

access, utilizing design strategies including context line access and local buffering,

context memory reallocation, etc.

 Strategy of proper top-level functional partitioning with FIFO buffer insertion that

enables parallel data processing of original sequential coding stages.

The design strategies utilized in the proposed CABAC encoder can be referenced in the

designs that are of serial data processing nature, require frequent memory access, or have

strong data dependency, such as statistical codec designs including CABAC decoder and

CAVLC codec of H.264/AVC and statistical (entropy) codec design of JPEG2000, or

other similar data processing codec designs.

Although the proposed CABAC encoder is designed targeting at the Main profile of

H.264/AVC standard, it can be easily scaled to the High profiles of the standard, because

of very similar implementation schemes and design architectures of Main profile and

High profiles. Additional area is required for the memory storage of context models and

control logic circuits for encoding of 8×8 transform coefficients. Similar design

architectures and functional partitioning scheme can be utilized and adopted for the future

CABAC decoder design.

8.1.2 Future Research Directions

Future research directions of CABAC encoder design can be: (1) Throughput

enhancement of context-dependent SE coding with multiple bin per cycle coding

throughput, which is more difficult than residual SE acceleration; (2) Acceleration of the

current RDO coding scheme by reducing pipeline filling and empty delay of each RDO

mode; (3) The direction discussed in VCEG for the next generation of video coding

Chapter 8 Conclusions

 176

standard: parallel CABAC coding using multiple independent processing units of ASIC

cores or general multiple core processors, which is a tradeoff between coding

acceleration and compression efficiency, and it is not compatible to the current H.264

standard.

The current design follows SoC-based HW/SW design flow with SW/HW interface

defined and HW IP implemented through RTL level, gate level, FPGA implementation,

and physical design stage. FPGA-based design is flexible with lower risk compared to

ASIC tape out flow. However, coding speed is limited by the logic and memory volume

of FPGA chip and longer interconnection delay of FPGA chip. In the future design, it is

possible to use large volume FPGA chip fabricated with new process technology that can

provide enough HW resources and speed for real time CABAC encoding in high

complexity HDTV video coding. It is beneficial to avoid using platform-specific FPGA

IP cores, so that same RTL design can be easily used in different FPGA chips. Because it

is more suitable to implement high level video coding control in SW, it is necessary to

select proper FPGA chip with high performance HW processor core and SoC SDK tools

to enable system integration of processor and HW IP through on-chip system bus.

As discussed above in research direction (3), parallel CABAC encoding can be explored

in multi-core or many-core processor platform or in multiple CABAC HW encoding

cores. However, CABAC encoding and decoding algorithms need to be revised in order

to break data dependency of coding states and enable processing of multiple entropy

slices inside each slice. It is possible to accelerate CABAC codec by parallel coding

scheme if the technique is accepted by the next generation of video coding standard.

Compared to the scheme with multiple processor cores, scheme with multiple HW cores

Chapter 8 Conclusions

 177

is more efficient in coding speed enhancement. Cautious update of CABAC algorithm is

necessary to minimize compression efficiency loss of parallel processing by exploring

strategies using available context information.

 178

Bibliography

[1] "Video Codec for Audiovisual Services at px64 kbit/s," ITU-T, ITU-T
Recommendation H.261, Version 1, 1990.

[2] "Information Technology - Coding of Moving Pictures and Associated Audio for
Digital Storage Media at Up to About 1.5 Mbit/s," ISO/IEC JTC 1, ISO/IEC
International Standard 11172 (MPEG-1), 1993.

[3] "Information Technology - Generic Coding of Moving Pictures and Associated
Audio Information - Part 2: Video," ITU-T and ISO/IEC JTC 1, ITU-T
Recommendation H.262 and ISO/IEC International Standard 13818-2 (MPEG-2
video), 1994.

[4] "Video Coding for Low Bit Rate Communication," ITU-T, ITU-T
Recommendation H.263 version 1, 1995.

[5] "Information Technology - Coding of Audio-Visual Objects—Part 2: Visual,"
ISO/IEC JTC1, ISO/IEC International Standard 14496-2 (MPEG-4 Visual
Version 1), 1999.

[6] "Advanced Video Coding for Generic Audiovisual Services," ITU-T and ISO/IEC,
ITU-T Recommendation H.264 and ISO/IEC International Standard 14496 Part
10 (AVC), 2003.

[7] "Information Technology-JPEG-Digital Compression and Coding of Continuous-
Cone Still Image-Part 1: Requirement and Guidelines," ISO/IEC and ITU-T,
ISO/IEC International Standard 10918-1 and ITU-T Recommendation T.81, 1994.

[8] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of the
H.264/AVC video coding standard," IEEE Transactions on Circuits and Systems
for Video Technology, vol.13, no.7, pp. 560-576, 2003.

[9] G. Bjøntegaard and K. Lillevold, "Context-adaptive VLC (CAVLC) coding of
coefficients," 3rd Meeting of Joint Video Team (JVT) of ISO/IEC MPEG and
ITU-T VCEG, Doc. JVT-C028, Fairfax, Virginia, USA, 2002.

[10] D. Marpe, H. Schwarz, and T. Wiegand, "Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard," IEEE
Transactions on Circuits and Systems for Video Technology, vol.13, no.7, pp.
620-636, 2003.

[11] G.J. Sullivan and T. Wiegand, "Rate-distortion optimization for video
compression," IEEE Signal Processing Magazine, vol.15, no.6, pp. 74-90, 1998.

 179

[12] L. Yu, J. Li, and Y. Shen, "Fast Frame/Field Coding for H.264/AVC," in
Proceedings of International Conference on Digital Telecommunications, pp.18-
18, 2006.

[13] G.J. Sullivan and R.L. Baker, "Rate-distortion optimized motion compensation
for video compression using fixed or variable size blocks," in Proceedings of
Global Telecommunications Conference, pp.85-90 vol.1, 1991.

[14] D. Marpe and T. Wiegand, "A highly efficient multiplication-free binary
arithmetic coder and its application in video coding," in Proceedings of
International Conference on Image Processing, pp.II-263-266 vol.3, 2003.

[15] Z. Wei, K.L. Tang, and K.N. Ngan, "Implementation of H.264 on Mobile
Device," IEEE Transactions on Consumer Electronics, vol.53, no.3, pp. 1109-
1116, 2007.

[16] S. Kant, U. Mithun, and P.S.S.B.K. Gupta, "Real time H.264 video encoder
implementation on a programmable DSP processor for videophone applications,"
in Proceedings of International Conference on Consumer Electronics, pp.93-94,
2006.

[17] H.-C. Lin, Y.-J. Wang, K.-T. Cheng, S.-Y. Yeh, W.-N. Chen, C.-Y. Tsai, T.-S.
Chang, and H.-M. Hang, "Algorithms and DSP implementation of H.264/AVC,"
in Proceedings of Asia and South Pacific Conference on Design Automation,
2006.

[18] J. Lahti, J.K. Juntunen, O. Lehtoranta, and T.D. Hamalainen, "Algorithmic
optimization of H.264/AVC encoder," in Proceedings of IEEE International
Symposium on Circuits and Systems, pp.3463-3466 Vol. 4, 2005.

[19] H. Baik, K.-H. Sihn, Y.-i. Kim, S. Bae, N. Han, and H.J. Song, "Analysis and
Parallelization of H.264 decoder on Cell Broadband Engine Architecture," in
Proceedings of IEEE International Symposium on Signal Processing and
Information Technology, pp.791-795, 2007.

[20] T.-Y. Huang, G.-A. Jian, J.-C. Chu, C.-L. Su, and J.-I. Guo, "Joint
algorithm/code-level optimization of H.264 video decoder for mobile multimedia
applications," in Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, pp.2189-2192, 2008.

[21] F. Pan, L.S. Rahardja, K.P. Lim, L.D. Wu, W.S. Wu, C. Zhu, W. Ye, and Z.
Liang, "Fast intra mode decision algorithm for H.264-AVC video coding," in
Proceedings of International Conference on Image Processing, pp.781-784 Vol.2,
2004.

[22] H. Kim and Y. Altunhasak, "Low-complexity macroblock mode selection for
H.264-AVC encoders," in Proceedings of International Conference on Image
Processing, pp.765-768 Vol.2, 2004.

 180

[23] M. Nieto, L. Salgado, and J. Cabrera, "Fast Mode Decision on H.264/AVC Main
Profile Encoding Based on PSNR Predictions," in Proceedings of IEEE
International Conference on Image Processing, pp.49-52, 2006.

[24] S.-N. Ba, Y. Altunbasak, and H. Ates, "Low Complexity Inter-Mode Selection for
H.264," in Proceedings of IEEE International Conference on Image Processing,
pp.1349-1352, 2006.

[25] Y. Li, Y. Qu, and Y. He, "Memory Cache Based Motion Compensation
Architecture for HDTV H.264/AVC Decoder," in Proceedings of IEEE
International Symposium on Circuits and Systems, pp.2906-2909, 2007.

[26] H. Schwarz and T. Wiegand, "R-D Optimized Multi-Layer Encoder Control for
SVC," in Proceedings of IEEE International Conference on Image Processing,
pp.II - 281-284, 2007.

[27] S. Ma, W. Gao, and Y. Lu, "Rate-distortion analysis for H.264/AVC video coding
and its application to rate control," IEEE Transactions on Circuits and Systems
for Video Technology, vol.15, no.12, pp. 1533-1544, 2005.

[28] T.-C. Chen, S.-Y. Chien, Y.-W. Huang, C.-H. Tsai, C.-Y. Chen, T.-W. Chen, and
L.-G. Chen, "Analysis and architecture design of an HDTV720p 30 frames/s
H.264/AVC encoder," IEEE Transactions on Circuits and Systems for Video
Technology, vol.16, no.6, pp. 673-688, 2006.

[29] Y.-W. Huang, T.-C. Chen, C.-H. Tsai, C.-Y. Chen, T.-W. Chen, C.-S. Chen, C.-F.
Shen, S.-Y. Ma, T.-C. Wang, B.-Y. Hsieh, H.-C. Fang, and L.-G. Chen, "A
1.3TOPS H.264/AVC single-chip encoder for HDTV applications," in
Proceedings of IEEE International Solid-State Circuits Conference, pp.128-588
Vol. 1, 2005.

[30] Z. Liu, S. Yang, S. Ming, L. Shen, L. Lingfeng, S. Ishiwata, M. Nakagawa, S.
Goto, and T. Ikenaga, "A 1.41W H.264/AVC Real-Time Encoder SOC for
HDTV1080P," in Proceedings of IEEE Symposium on VLSI Circuits, pp.12-13,
2007.

[31] K. Inata, M. Sasamoto, T. Nonaka, and H. Komi, "System Architecture of
H.264/AVC Codec LSI for Digital HD Camcorder," in Proceedings of
International Conference on Consumer Electronics, pp.1-2, 2008.

[32] L. Agostini, R. Porto, J. Guntzel, I. Saraiva Silva, and S. Bampi, "High
throughput multitransform and multiparallelism IP for H.264/AVC video
compression standard," in Proceedings of IEEE International Symposium on
Circuits and Systems, 2006. ISCAS 2006, pp.4 pp., 2006.

[33] T.-C. Chen, C.-J. Lian, and L.-G. Chen, "Hardware architecture design of an
H.264/AVC video codec," in Proceedings of Asia and South Pacific Conference
on Design Automation, 2006.

 181

[34] S. Lee, S. Park, J. Han, N. Eum, and P. Jongwon, "A 40MHZ dedicated hardware
H.264/AVC video encoder with the reducing memory access scheme," in
Proceedings of IEEE International Symposium on Consumer Electronics, pp.1-4,
2008.

[35] S.C. Chang, C.-C. Cheng, and L.-G. Chen, "System Architecture Design
Methodology for H.264/AVC Encoder," in Proceedings of IEEE International
Symposium on Consumer Electronics, pp.1-5, 2007.

[36] Y.-K. Lin, L. De-Wei, L. Chia-Chun, K. Tzu-Yun, W. Sian-Jin, T. Wei-Cheng, C.
Wei-Cheng, and C. Tian-Sheuan, "A 242mW, 10mm2 1080p H.264/AVC high
profile encoder chip," in Proceedings of 45th ACM/IEEE Design Automation
Conference, pp.78-83, 2008.

[37] Y.-K. Lin, L. De-Wei, L. Chia-Chun, K. Tzu-Yun, W. Sian-Jin, T. Wei-Cheng, C.
Wei-Cheng, and C. Tian-Sheuan, "A 242mW 10mm2 1080p H.264/AVC High-
Profile Encoder Chip," in Proceedings of IEEE International Solid-State Circuits
Conference, pp.314-615, 2008.

[38] Y. Murachi, K. Mizuno, J. Miyakoshi, M. Hamamoto, T. Iinuma, T. Ishihara, Y.
Fang, L. Jangchung, T. Kamino, H. Kawaguchi, and M. Yoshimoto, "A sub 100
mW H.264/AVC MP@L4.1 integer-pel motion estimation processor VLSI for
MBAFF encoding," in Proceedings of IEEE International Symposium on Circuits
and Systems, pp.848-851, 2008.

[39] K. Babionitakis, G. Lentaris, K. Nakos, D. Reisis, N. Vlassopoulos, G. Doumenis,
G. Georgakarakos, and J. Sifnaios, "An Efficient H.264 VLSI Advanced Video
Encoder," in Proceedings of 13th IEEE International Conference on Electronics,
Circuits and Systems, pp.545-548, 2006.

[40] M. Sayed, I. Amer, and W. Badawy, "Towards an H.264/AVC full encoder on
chip: an efficient real-time VBSME ASIC chip," in Proceedings of IEEE
International Symposium on Circuits and Systems, 2006.

[41] C.-Y. Tsai, T.-C. Chen, T.-W. Chen, and L.-G. Chen, "Bandwidth optimized
motion compensation hardware design for H.264/AVC HDTV decoder," in
Proceedings of 48th Midwest Symposium on Circuits and Systems, pp.1199-1202
Vol. 2, 2005.

[42] C.-H. Chang, J.-W. Chen, H.-C. Chang, Y.-C. Yang, J.-S. Wang, and J.-I. Guo,
"A Quality Scalable H.264/AVC Baseline Intra Encoder for High Definition
Video Applicaitons," in Proceedings of IEEE Workshop on Signal Processing
Systems, pp.521-526, 2007.

[43] C.-H. Tsai, Y.-W. Huang, and L.-G. Chen, "Algorithm and architecture
optimization for full-mode encoding of H.264/AVC intra prediction," in
Proceedings of 48th Midwest Symposium on Circuits and Systems, pp.47-50 Vol.
1, 2005.

 182

[44] A. Moffat and A. Turpin, Compression and Coding Algorithms, Vol. Dordrecht,
the Netherlands, Kluwer Academic Publishers, 2002.

[45] D.A. Huffman, "A method for the construction of minimum redundancy codes,"
Proceedings of IRE, vol.40, no.10, pp. 1098-1101, 1952.

[46] C.E. Shannon, "A Mathematical theory of communication," The Bell System
Technical Journal, vol.27, pp. 379-423, 623-656, 1948.

[47] N. Abramson, Information theory and coding, Vol. New York, McGraw-Hill
Book Co., Inc., 1963.

[48] J.J. Rissanen, "Generalized kraft Inequality and arithmetic coding," IBM Journal
of Research and Development, vol.20, no.198, pp. 1976.

[49] R.C. Pasco, Source coding algorithms for fast data compression, in Department
of Electrical Engineering. 1976, Standford University.

[50] G.G. Langdon, "An Introduction to Arithmetic Coding," IBM Journal of Research
and Development, vol.28, pp. 135-149, 1984.

[51] I.H. Witten, R.M. Neal, and J.G. Cleary, "Arithmetic Coding for Data
Compression," Communications of the ACM, vol.30, no.6, pp. 520-540, 1987.

[52] W.B. Pennebaker, J.L. Mitchell, J. G. G. Langdon, and R.B. Arps, "An overview
of the basic principles of the Q-Coder adaptive binary arithmetic coder," IBM
Journal of Research and Development, vol.32, no.6, pp. 717-726, 1988.

[53] J. Mitchell and W. Pennebaker, JPEG: Still Image Data Compression Standard,
Vol. Van Nostrand Reinhold, 1993.

[54] D.S. Taubman and M.W. Marcellin, JPEG2000 image compression fundamentals,
standards and practice, Vol. Kluwer Academic Publishers, 2002.

[55] D. Marpe, G. Blättermann, and T. Wiegand, "Adaptive Codes for H.26L," ITU-T
SG16/Q.6 Doc. VCEG-L13, Eibsee, Germany, 2001.

[56] D. Marpe, G. Blättermann, G. Heising, and T.Wiegand, "Further Results for
CABAC Entropy Coding Scheme," ITU-T SG16/Q.6 Doc. VCEG-M59, Austin,
TX, USA, 2001.

[57] D. Marpe, G. Blättermann, and T. Wiegand, "Improved CABAC," ITU-T
SG16/Q.6 Doc. VCEG-O18, Pattaya, Thailand, 2001.

[58] D. Marpe and H.L. Cycon, "Very low bit-rate video coding using wavelet-based
techniques," IEEE Transaction on Circuits System for Video Technology, vol.9,
no.4, pp. 85-94, 1999.

 183

[59] G. Heising, D. Marpe, H.L. Cycon, and A.P. Petukhov, "Wavelet-Based very low
bit-rate video coding using image warping and overlapped block motion
compensation," IEE Proceedings Vision, Image & Signal Processing, vol.148,
no.2, pp. 93–101, 2001.

[60] J. Teuhola, "A Compression Method for Clustered Bit-Vectors," Information
Processing Letters, vol.7, no.10, pp. 308-311, 1978.

[61] S. Golomb, "Run-length encodings," IEEE Transactions on Information Theory,
vol.12, no.3, pp. 399-401, 1966.

[62] D. Marpe and H.L. Cycon, "Efficient pre-coding techniques forwaveletbased
image compression," in Proceedings of Picture Coding Symposuim pp.45–50,
1997.

[63] M. Mrak, D. Marpe, and T. Wiegand, "A context modeling algorithm and its
application in video compression," in Proceedings of International Conference on
Image Processing, pp.III-845-848 vol.2, 2003.

[64] K. Muller, A. Smolic, M. Kautzner, P. Eisert, and T. Wiegand, "Predictive
compression of dynamic 3D meshes," in Proceedings of IEEE International
Conference on Image Processing, pp.I-621-624, 2005.

[65] V. Sanchez, P. Nasiopoulos, and R. Abugharbieh, "Efficient 4D motion
compensated lossless compression of dynamic volumetric medical image data," in
Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing, pp.549-552, 2008.

[66] L. Zhang, X. Wu, N. Zhang, W. Gao, Q. Wang, and D. Zhao, "Context-based
Arithmetic Coding Reexamined for DCT Video Compression," in Proceedings of
IEEE International Symposium on Circuits and Systems, pp.3147-3150, 2007.

[67] Y. Wu and J.W. Woods, "Scalable Motion Vector Coding Based on CABAC for
MC-EZBC," IEEE Transactions on Circuits and Systems for Video Technology,
vol.17, no.6, pp. 790-795, 2007.

[68] Y. Sehoon and A. Vetro, "RD-Optimized View Synthesis Prediction for
Multiview Video Coding," in Proceedings of IEEE International Conference on
Image Processing, pp.I - 209-212, 2007.

[69] R.C. Kordasiewicz, M.D. Gallant, and S. Shirani, "Encoding of Affine Motion
Vectors," IEEE Transactions on Multimedia, vol.9, no.7, pp. 1346-1356, 2007.

[70] A. Golwelkar and J.W. Woods, "Motion-Compensated Temporal Filtering and
Motion Vector Coding Using Biorthogonal Filters," IEEE Transactions on
Circuits and Systems for Video Technology, vol.17, no.4, pp. 417-428, 2007.

 184

[71] C. Sun, H.-J. Wang, H. Li, T.-H. Kim, and X.-B. Yu, "An Efficient Context
Modeling Algorithm for Motion Vectors in CABAC," in Proceedings of IEEE
International Symposium on Signal Processing and Information Technology,
pp.796-800, 2007.

[72] J.H. Lin and K.K. Parhi, "Parallelization of Context-Based Adaptive Binary
Arithmetic Coders," IEEE Transactions on Signal Processing, vol.54, no.10, pp.
3702-3711, 2006.

[73] D. Levine, W.E. Lynch, and L.-N. Tho, "Observations on error detection in
H.264," in Proceedings of 50th Midwest Symposium on Circuits and Systems,
pp.815-818, 2007.

[74] Y. Li, H. Xiong, L. Song, and S. Yu, "A Context-Based Error Detection Strategy
into H.264/AVC CABAC," in Proceedings of IEEE International Conference on
Multimedia and Expo, pp.689-692, 2006.

[75] Y. Wang and S. Yu, "Joint source-channel decoding for H.264 coded video
stream," IEEE Transactions on Consumer Electronics, vol.51, no.4, pp. 1273-
1276, 2005.

[76] S.B. Jamaa, M. Kieffer, and P. Duhamel, "Controlled Complexity Map Decoding
of CABAC Encoded Data," in Proceedings of IEEE International Conference on
Multimedia and Expo, pp.1441-1444, 2006.

[77] W. Yu and Y. He, "A high performance CABAC decoding architecture," IEEE
Transactions on Consumer Electronics, vol.51, no.4, pp. 1352-1359, 2005.

[78] B. Li, D. Zhang, J. Fang, L. Wang, and M. Zhang, "A high-performance VLSI
architecture for CABAC decoding in H.264/AVC," in Proceedings of 7th
International Conference on ASIC, pp.790-793, 2007.

[79] J.-W. Chen and Y.-L. Lin, "A High-Performance Hardwired CABAC Decoder,"
in Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing, pp.II-37-II-40, 2007.

[80] C.-H. Kim and I.-C. Park, "High speed decoding of context-based adaptive binary
arithmetic codes using most probable symbol prediction," in Proceedings of IEEE
International Symposium on Circuits and Systems, 2006.

[81] Y. Yi and I.C. Park, "High-Speed H.264/AVC CABAC Decoding," IEEE
Transactions on Circuits and Systems for Video Technology, vol.17, no.4, pp.
490-494, 2007.

[82] J.-W. Chen, C.-R. Chang, and Y.-L. Lin, "A hardware accelerator for context-
based adaptive binary arithmetic decoding in H.264/AVC," in Proceedings of
IEEE International Symposium on Circuits and Systems, pp.4525-4528 Vol. 5,
2005.

 185

[83] H. Eeckhaut, M. Christiaens, D. Stroobandt, and V. Nollet, "Optimizing the
critical loop in the H.264/AVC CABAC decoder," in Proceedings of IEEE
International Conference on Field Programmable Technology, pp.113-118, 2006.

[84] B. Shi, W. Zheng, H.-S. Lee, D.-X. Li, and M. Zhang, "Pipelined Architecture
Design of H.264/AVC CABAC Real-Time Decoding," in Proceedings of 4th
IEEE International Conference on Circuits and Systems for Communications,
pp.492-496, 2008.

[85] W. Son and I.-C. Park, "Prediction-based real-time CABAC decoder for high
definition H.264/AVC," in Proceedings of IEEE International Symposium on
Circuits and Systems, pp.33-36, 2008.

[86] L. Li, Y. Song, T. Ikenaga, and S. Goto, "A CABAC Encoding Core with
Dynamic Pipeline for H.264/AVC Main Profile," in Proceedings of IEEE Asia
Pacific Conference on Circuits and Systems, pp.760-763, 2006.

[87] C.-C. Kuo and S.-F. Lei, "Design of a Low Power Architecture for CABAC
Encoder in H.264," in Proceedings of IEEE Asia Pacific Conference on Circuits
and Systems, pp.243-246, 2006.

[88] O. Flordal, D. Wu, and D. Liu, "Accelerating CABAC encoding for multi-
standard media with configurability," in Proceedings of 20th International
Parallel and Distributed Processing Symposium, 2006.

[89] J.-L. Chen, Y.-K. Lin, and T.-S. Chang, "A Low Cost Context Adaptive
Arithmetic Coder for H.264/MPEG-4 AVC Video Coding," in Proceedings of
IEEE International Conference on Acoustics, Speech and Signal Processing,
pp.II-105-108, 2007.

[90] P.-S. Liu, J.-W. Chen, and Y.-L. Lin, "A Hardwired Context-Based Adaptive
Binary Arithmetic Encoder for H. 264 Advanced Video Coding," in Proceedings
of International Symposium on VLSI Design, Automation and Test, pp.1-4, 2007.

[91] C.-C. Lo, Y.-J. Zeng, and M.-D. Shieh, "Design and test of a highthroughput
cabac encoder," in Proceedings of IEEE Region 10 Conference, pp.1-4, 2007.

[92] Y.-J. Chen, C.-H. Tsai, and L.-G. Chen, "Architecture design of area-efficient
SRAM-based multi-symbol arithmetic encoder in H.264/AVC," in Proceedings of
IEEE International Symposium on Circuits and Systems, pp.1-4, 2006.

[93] J.L. Nunez-Yanez, V.A. Chouliaras, D. Alfonso, and F.S. Rovati, "Hardware
assisted rate distortion optimization with embedded CABAC accelerator for the
H.264 advanced video codec," IEEE Transactions on Consumer Electronics,
vol.52, no.2, pp. 590-597, 2006.

 186

[94] R.R. Osorio and J.D. Bruguera, "Arithmetic coding architecture for H.264/AVC
CABAC compression system," in Proceedings of Euromicro Symposium on
Digital System Design, pp.62-69, 2004.

[95] R.R. Osorio and J.D. Bruguera, "High-Throughput Architecture for H.264/AVC
CABAC Compression System," IEEE Transactions on Circuits and Systems for
Video Technology, vol.16, no.11, pp. 1376-1384, 2006.

[96] T.M. Le, X.H. Tian, B.L. Ho, J. Nankoo, and Y. Lian, "System-on-Chip Design
Methodology for a Statistical Coder," in Proceedings of Seventeenth IEEE
International Workshop on Rapid System Prototyping, pp.82-90, 2006.

[97] Reference codec software: JM 12.4, Joint Video Team (JVT) of ISO/IEC MPEG
and ITU-T VCEG, Available from: http://iphome.hhi.de/suehring/tml/

[98] PIN software analysis tool, University of Colorado, Available from:
http://rogue.colorado.edu/pin/

[99] J.L. Nunez-Yanez, V.A. Chouliaras, and D. Alfonso, "Hardware assisted rate
distortion optimization with embedded CABAC accelerator for the H.264
advanced video codec," in Proceedings of International Conference on Consumer
Electronics, pp.95-96, 2006.

[100] M. Li and W. Wu, "A high throughput binary arithmetic coding engine for
H.264/AVC," in Proceedings of 8th International Conference on Solid-State and
Integrated Circuit Technology, pp.1914-1918, 2006.

[101] S. Sudharsanan and A. Cohen, "A hardware architecture for a context-adaptive
binary arithmetic coder," in Proceedings of SPIE Embedded processors for
multimedia and communications II, pp.104-112, 2005.

[102] X.H. Tian, T.M. Le, X. Jiang, and Y. Lian, "A HW CABAC encoder with
efficient context access scheme for H.264/AVC," in Proceedings of IEEE
International Symposium on Circuits and Systems, pp.37-40, 2008.

[103] R.R. Osorio and J.D. Bruguera, "A new architecture for fast arithmetic coding in
H.264 advanced video coder," in Proceedings of 8th Euromicro Conference on
Digital System Design, pp.298-305, 2005.

[104] WISHBONE System-on-a-Chip Interconnection Architecture for Portable IP
Cores, Revision B.3 Specification. Vol. OPENCORES, 2002.

[105] H. Shojania and S. Sudharsanan, "A high performance CABAC encoder," in
Proceedings of 3rd International IEEE-NEWCAS Conference, pp.315-318, 2005.

[106] V.H.S. Ha, W.-S. Shim, and J.-W. Kim, "Real-time MPEG-4 AVC/H.264
CABAC entropy coder," in Proceedings of International Conference on
Consumer Electronics, pp.255-256, 2005.

 187

[107] B.L. Ho, Performance and Complexity Analyses of H.264/AVC CABAC Entropy
Coder, in Department of Electrical and Computer Engineering. 2006, National
University of Singapore: Singapore.

[108] AMBA™ Specification (Rev 2.0), Vol. ARM, 1999.

[109] M. Weber, "Arbiters: Design Ideas and Coding Styles," in Proceedings of SNUG
of Synopsys, Boston, 2002.

[110] ISE Webpack Software, Xilinx, Available from:
www.xilinx.com/ise/logic_design_prod/webpack.htm

[111] ModelSim SE 6.1b, Mentor Graphics, Available from:
http://www.model.com/downloads/default.asp

[112] ChipScope Pro, Xilinx, Available from:
http://www.xilinx.com/ise/optional_prod/cspro.htm

[113] Design Compiler, Synopsys, Available from: www.synopsys.com

[114] Astro, Synopsys, Available from: www.synopsys.com

[115] Power Compiler, Synopsys, Available from: www.synopsys.com

[116] J.M. Rabaey, 2006 Issues in Low Power Design - Minimizing Active Power.
2006

[117] MBISTArchitect, Mentor Graphics, Available from:
http://www.mentor.com/products/silicon-yield/memorytest/mbistarchitect/

[118] MicroBlaze Processor, Xilinx, Available from:
http://www.xilinx.com/products/design_resources/proc_central/microblaze.htm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

