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Abstract

The phenomenal growth of digital multimedia apgimas has forced the communications
industry to re-look at the manner in which multinged transmitted and stored. Multimedia
technology will in the future produce such high essive volumes of data traffic that it will

exceed its network capacity, thereby prompting tgrefmcus on higher compression techniques
coupled with error protection mechanisms. Thesbhriggies and mechanisms will provide an
efficient multimedia transmission infrastructureeded to sustain the growth whist minimising

the impact of network capacity.

This dissertation describes a myriad of compresssmhniques for image and videos used
currently, with particular focus on the industryogression towards wavelet compression. The
dissertation then commences through a review okleds and wavelet theory fundamentals for
the use of compression before proceeding to outheeadvanced wavelet coding algorithms
developed for efficient image and video compressidmereafter, evaluations of the wavelet
coders are assessed with recommendations of twergoBZW and SPIHT, for use in the

proposed codec as low-bitrate compression coders.

The dissertation reviews and examines the wiretemssmission medium as the preferred
medium for error protection of the compressed tagsh. The two wireless mediums selected
are the additive white Gaussian noise channeltmdRayleigh multipath fading channel. The
channels are modelled to induce errors in the cesgad bitstreams whereby the proposed

codec can in turn offer protection of the bitstrefamsuccessful transmission.

This dissertation presents a codec offering lowaket compression via the use of the wavelet
coding algorithms of EZW and SPIHT, combined witloe protection incorporating error
detection and correction to determine and processsenduced by the wireless channels. Error
protection is segmented into error detection anor eorrection, with error detection involving
integer arithmetic coding with forbidden symbol amahvolutional coding, and error correction
using automatic repeat request (ARQ) retransmisai@maximum a posterioMAP) metric
sequential decoding. Error detection via arithmetding with forbidden symbol, is able to
identify errors that have been produced by noiggnael impairments and interferences during
the transmission. Error correction is designedotoect, resolve and rectify the identified errors.
The MAP metric sequential decoding concept is Hfadéted, as it involves sequential decoding
that exploits the optimal stack algorithm that uaegeedy tree search and the MAP decoding

metric, which is in turn computed using a complex af a priori anda posteriori statistical



probabilities. ARQ retransmission is used as a Boalror correction mechanism in the event
that the MAP decoding fails; it is invoked and rests a retransmission of the erroneous

bitstream.

The proposed codec is then compared to currerg gystems arithmetic coding and decoding,
convolutional coding with MAP decoding and arithroetoding, convolutional coding with
MAP decoding and arithmetic decoding, through rplétisimulations focusing on image
quality and erasure performances. Results showthleaproposed codec is competitive and its
performance surpasses three systems used in thetwa. The proposed ARQ-MAP scheme
proved better and showed greater improvement wr-&mee decoding than the three systems.
The highly successful coupling of error detectisjng the forbidden symbol and error
correction using MAP metric sequential decodingvwadab immense potential and ability for

error-free compression and transmission of imagdsvaleo.

vi
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CHAPTER 1 - INTRODUCTION

The last decade has produced a massive yet impeegsjection of digital multimedia

applications into the digital world. As data indere multimedia based applications like High
Definition Television (HDTV) [88], videoconferen@n Video on Demand (VoD) [90] and
IPTV [89] evolve at an explosive rate, the necgdsit high bandwidth and increased Quality

of Service (Qo0S) has become the driving force fiicient multimedia deployment.

As new multimedia productivity drives bandwidth derds and a richer experience through
increased QoS is needed, the requirement for roghpoession with efficient error protection
coding has become a mandatory step in data ineensittimedia transmission due to the sheer
volume of data transmitted and the unreliabilitytleé channel due to failures and interferences.
Bandwidth-on-demand schemes premise that netwarkdtwand technologies will never keep
up with the bandwidth demand, thereby necessitatiagievelopment of applications with high

QoS in terms of advancing compression and errdeption.

Although compression and error coding studied iedépntly produce significant
advancements in image and video technology, ihésibtegration of advanced compression
with error protection coding that requires furtirarestigation in order to develop a joint system
that efficiently represents the storage and comoatiain of image and video multimedia. The
key factors to be considered are; the inclusioaradr protection coding to the already reduced
low bit rate compressed sequence, will affect thimmression attained in what way? And will

the image and video quality be retained or cae intproved?
This dissertation aims to present and evaluaténtee-working system of advanced low bitrate

compression with error protection coding whilstgwoing a representation of the multimedia

with improved visual quality and maintaining datéegrity.
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H 1.1 COMPRESSION

Compression permits the representation of a redaceount of information with negligible
quality loss and minimum distortion. It requires thlimination of irrelevant and redundant
information in order to reduce the amount of da¢gessary to encode, store and transmit
information efficiently. There are various typescoimpression approaches: data, audio, image
and video. This dissertation mainly concerns itaéfh multimedia based compression, hamely

image and video compression.

The fundamental components prompting the neednfiaigé compression are irrelevant pixel
information and redundant pixel information [1]. €Be information methods can be
theoretically expressed as redundancy reduction iaetbvancy reduction [1]. Irrelevancy
reduction removes or alters information that predulittle or no difference to the perception of
the image. This type of reduction generally invslvperceptibility to the human eye.
Redundancy reduction removes duplication and re@etwithin images and video. There are

three types of redundancies [1]:

» Spatial redundancy: correlation between neighbguirel values.
e Spectral redundancy: correlation between diffeceitur planes and or spectral bands.
« Temporal redundancy: correlation between adjacaméds in a sequence of images in

video applications.

Compression can be further classified as eithetdss compression or lossy compression. Both
techniques concern the reconstruction fidelity leéd tompressed information, where lossless
compression involves perfect reconstruction withauty information loss and lossy
compression produces an approximated replica obtiggnal information with some form of

information loss.

1.1.1 Lossless Compression

Lossless compression [1] allows the original dathe reconstructed from the compressed data
without any loss of information. Lossless comprssensures that the restored data after
decompression is identical to the original uncoraped data, allowing no approximations or
deviations to occur. Lossless compression is conmyriorown as error-free compression as the

accuracy of the reconstructed image is never istopre
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Lossless image compression is based on redundasdbyction as it reduces interpixel
redundancies and eliminates coding redundanciesder to compress the image. This method
of compression does not involve quantization |k lossy approach, and thus does not reduce
the accuracy of the scheme. It is a reversiblenigcie meaning that the original data can be

reconstituted.

Some error-free lossless coding approaches argbladength coding, Huffman coding [87],
arithmetic coding [52], [55] and Lempel-Ziv-WelchZW) coding [86]. Lossless compression

as compared to lossy compression is able to achievedest amount of compression.

1.1.2 Lossy Compression

Lossy compression [1] produces reconstructed tatag an approximation of the original data.
It can guarantee high compression ratios at theresgof lost information. Lossy compression
can affect the fidelity or quality of the data degmg on the amount of information discarded.
In lossy compression, information is permanentcdrded and cannot be recovered during the
decompression stage. The reconstruction can praghuces which may or may not be tolerable

thereby distorting the image accordingly.

Lossy compression is primarily based on irrelevanegiuction, although it also employs
redundancy reduction. The irrelevancy reductiormtegly focuses on the characteristics of
human visual perception to dispose of irrelevafdrination. Human visual perception relies on
the fact that the human eye is less sensitive fouco(chrominance) than to brightness
(luminance) in an image, thus content that is \Wigueedundant is removed. In addition
redundancy reduction removes the interpixel redoci@éa and coding redundancies. This
scheme uses a quantizer to reduce the psycho vesiaddancies experienced. This operation is

irreversible therefore no recovery of discardedrimfation is possible.

Some key lossy compression techniques are JPE@N@]JPEG 2000 [3] for still image
compression and MPEG [6] below, H.263 [8] , H.2&3, [10] and MPEG4 [7] for video
compression. These schemes can reduce the contgressge content to as little 486 of the
original, although compression less thHEd% can produce significant visual distortion to the
compressed image. However, lossy compression ifbtapof achieving much higher
compression than lossless compression. Thus timged wavelet coding schemes employ a

form of lossy compression as its primary compresggahnique for high compression.
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H 1.2 WAVELETS

This dissertation concerns various aspects of cesspyn that involve the use of wavelets.
Although wavelets are a relatively new concept fapimately 15 years old), it has gained
widespread acceptance in the signal processing caitynand particularly in image

compression. The use of wavelets through the Disék&avelet Transform offers a more natural
description of images than the block-based Discfaterier Transform therefore making

wavelet compression the preferred choice for im@mapression.

The discrete wavelet transform is essentially acateelating transform that reduces the
correlation between the pixels in an image, themgiogucing better compression. The wavelet
transform also offers greater energy compactiontduiés coefficient localization in both the
frequency and time domains. In addition, wavelahgssion involves advanced analytical
mathematical concepts like multiresolution analyfilter banks, wavelet decomposition and
subband coding which facilitates progressive imag@asmission through the use of robust
wavelet based coding schemes like the Embeddedr&er@/avelet (EZW) [28], [29] and Set
Partitioning in Hierarchical Trees (SPIHT) [32] @ogl schemes.

Wavelet image compression describes pixel regidnganying size, shape and location and
performs advanced averaging and differencing ojp@mtusing the wavelet analysis concepts
listed above. Wavelet image compression throughwheelet transform alleviates blocking
artifacts, whilst the inherent multiresolution na&wf wavelet decomposition produces superior
energy compaction, maintaining adequate perceppuality of the reconstructed image. The
wavelet based coding schemes offer substantial angpnents in picture quality at higher

compression ratios than Fourier-based schemes.

Wavelet-based image compression has developedaimowerful, sophisticated compression
technique able to produce superior compressionsratith minimal image degradation. Thus
the progress and advancement of wavelet comprebsi®gained momentum and has resulted

in the leading compression alternative to the eurcempression standards.

1.3 ERROR RESILIENCE

Error resilience refers to coding mechanisms timtaace the capability of the compressed

bitstream to withstand and resolve channel ind@ceats during transmission. As a result, error
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resilient coding is required for the reliable tramssion of images and video over unreliable

channels.

Impaired channels produce losses, delays and inggetom bit errors into the compressed
bitstream during transmission, therefore the prapad error resilience coding tools are
imperative in order to detect and analyse the gramceal and then correct them, producing an
image with minimal visual defects. Wireless chaarek proposed as the transmission medium
of choice for the system as they can produce cafdst error rates, propagation delays and

channel losses which constitute a worst-case scenar

Typical error resilience coding for wireless chdasniavolve error protection in the form of
error detection and error correction. Error detecprecedes error correction and is designed to
permit the detection of bit errors. It determindsetiher the transmitted bitstream is corrupted by
the channel or remains intact. Error detectioririgpker to implement than error correction and
involves additional redundancy in the transmittéttieam at the expense of compression.
Error detection permits either retransmission ofe thitstream or error correction.
Retransmission is inadequate as the compressiotheofsystem is sacrificed, thus error

correction follows.

Error correction involves statistically reconstragtthe originally transmitted bitstream through
accurate mathematical prediction models. Dependimthe errors expected, an error correction
coding scheme is chosen for the desired applicalibare are two types of errors that occur in
the communication channel: random bit errors andgtberrors. Random bits errors tend to
generate isolated bit flips during transmission regltee bit errors are independent of each other.
Burst errors on the other hand are inclined to pecedclumps of bit errors during a single
transmission. Error correcting codes are specificdsigned to attempt to correct both of these

types of errors in order to deliver successful raregilience coding to the system.

The addition of error resilience coding introducedundancy into the system which in turn
diminishes the overall achievable compression efithage. There is a trade-off between the
amount of redundancy added and the compressiornettaThus a balance will need to be

achieved for optimum compression and error regiien
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H 1.4 LAYOUT of DISSERTATION

This dissertation describes wavelet image compragavolving transmission over error prone
channels whilst providing error detection and ociom to corrupted bitstreams producing
visually acceptable images. The dissertation begiith a literature review of theoretical

concepts like wavelet theory before progressingdgelet compression coding techniques and
finally wireless channel models. Once the backgdotireory of the concepts employed are
examined thoroughly, the dissertation then outlithess components involved in the design of

the proposed codec before discussing its validakimugh the results and discussion section.

Chapter 2 provides a general introduction into cbenpression standards for still image and
video compression systems that are currently adailaThe compression techniques and
procedures employed by the various compressiomatea are explored and outlined in detail.
Specific focus is given to the still image compraessstandards of JPEG and JPEG 2000
compression and the difference between the tramsfoaised in either compression techniques.
The video compression standards of MPEG, MPEG463+2and H.264 are discussed with
particular focus given to its compression featuaed the advanced video coding techniques
used. The chapter also includes commonly applietbypeance metrics used to evaluate and
assess the performance of these image processnogpts; namely error rates and Signal-to-
Noise ratios. The chapter concludes with a perfooeaevaluation of the still image

compression and the video compression standardsatimy which standard is superior in

comparison to the each other.

Chapter 3 forms the bulk of the literature reviemneerning wavelet theory, wavelet families
and wavelet coding techniques. Wavelet theory eramihe wavelet transform theorem and its
progression towards multiresolution analysis thfowg mathematical framework. The main
focus is to provide an overview of the developnfeoitn the wavelet theory to wavelet based
image compression. A brief introduction into wavddanilies are given where the selection of a
wavelet family, can be used to accurately descebeimage. A performance comparison
detailing the best wavelet family to be used foag®m compression is described. The final
section of this chapter includes the various wavebenpression coding algorithms developed
thus far. Features and improvements as well asmpeaihces of each algorithm are highlighted
clearly illustrating the progression and developtr@nwavelet coding compression. Particular
focus is given to the wavelet algorithms of EZW @RIHT as the proposed codec employs

these wavelet coders for its final performance watabn. Results of these two wavelet
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compression algorithms against the JPEG and JPBG @ndardised compression algorithms

are also described.

Chapter 4 investigates the use of wireless chanoalsduce errors in wavelet compression in
order to observe error propagation as well as asbeserror correction technique proposed for
the dissertation. The two types of wireless chamimelestigated are the additive white Gaussian
noise (AWGN) and the Rayleigh multipath fading afgls. The chapter discusses the channel
properties, impairments and various fading chareties before theoretical channel models are
simulated. A key property in the modelling of achal is the type of sighal modulation used to
transmit the data. The proposed codec in the déggmr uses binary phase shift keying (BPSK)
modulation, a simple yet effective modulation tdgme that is briefly introduced in this
chapter. The bit error rate performance evaluatadribe wireless channels are presented in the
chapter showing the degradation of the channelo Ateluded is a detailed performance
overview of the EZW and SPIHT compressed imagessitnitted over these corrupt channels
and the resultant decompressed images. These parfoe evaluations are the basis of the

simulated results exhibited by the proposed codélea following chapters.

Chapter 5 is fundamental as it outlines the condpheory behind the subsystems used for the
proposed codec. The bulk of the system model theorglving error coding is extensively
described in this chapter. Error protection is lrokiown into two segments; error detection
and error correction which involves integer arithimecoding with forbidden symbol and
convolutional coding, and automatic repeat requmstsmission with @ximum a posteriori
(MAP) metric sequential decoding respectively. Tdmapter presents the mathematical and
statistical concept of the scheme along with tigerdhm approach showing the potential of the

system as an efficient error coding codec.

Chapter 6 is the primary focus of the dissertatidnich involves the system model and
representation of the proposed codec used to achieverror protection system that detects and
corrects the errors introduced by the corruptibleelss channels. The chapter begins with a
graphical block diagram illustrating the system gasses involved in conception of the
proposed codec. The proposed codec subsystemsveneZW and SPIHT wavelet
compression coding coupled with arithmetic codingthwforbidden symbol detection,
convolutional encoding and ARQ retransmission WtAP metric sequential decoding. The
proposed codec uses either the Gaussian chanRelytgigh fading channel as the transmission
medium. The error correction decoding procedurthefproposed codec is achieved through a
double correction mechanism of MAP metric sequémtécoding with ARQ retransmission.

The finer details of the system including the tygfeimage resolution, wavelet family, the
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number of decomposition levels, modulation, conttohal code rate, constraint length and
channel SNR range are all explicitly defined arstified within this chapter, clearly describing

all the elements involved in the design of the psgal system.

Chapter 7 consolidates and confirms the theoryepitesl in chapter 6, in the form of results and
discussion of the proposed system (arithmetic apdivith forbidden symbol detection,
convolutional coding, and ARQ retransmission witiAR1decoding) in relation to currently
used error coding systems. Current standard systisew$ for comparison include; arithmetic
coding and decoding, convolutional coding and MAPBcatliing and arithmetic coding,
convolutional coding with MAP decoding, all witholarbidden symbol detection. The chapter
illustrates in a methodical fashion its performairtéerms of PSNR and packet erasure rate
(PER) for a test set of images. The performancelsitions were executed and implemented in
the Matlab simulation environment. The results migtd in this chapter clearly outline the

performance of the proposed codec in relationécatbove mentioned current systems.
The final chapter, Chapter 8, concludes the digBernt and summarises the important aspects

involved in design of the proposed codec and itted results. It reviews each chapter before

concluding the dissertation with final remarks @odsible future research.

H 1.5 EXECUTIVE SUMMARY

The aim of this dissertation is to provide errootpction to wavelet compressed images
transmitted over corrupt channels. The dissertatibegrates wavelet compression and error
resilience to produce a low bitrate compressiorecodith superior error decoding. The error
decoding mechanism employed is a two-fold erroect@&n and error correction scheme. The

compression scheme applied involves two highly otuted wavelet based coding algorithms.

The dissertation outlines and compares various émagd video compression standards,
illustrating the progression of wavelet based casgion through the comparison of the JPEG
standard and the highly performing JPEG 2000 stand@he need for wavelet based
compression then focuses on the acclaimed wavelapession coding schemes of EZW,
SPIHT and ECECOW methods amongst others. Two hidbbtructive wireless channels are
proposed for the development of a proposed codechwdan withstand error induction during

transmission of wavelet compressed media.
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The proposed codec is fundamentally designed tectl@nd correct possible errors induced in
the compressed bitstream by channel interferenck as noise or fading. Arithmetic coding
with forbidden symbol detection, convolutional aagli automatic repeat request transmission
protocol andmaximum a posterior{MAP) metric sequential decoding are proposed ras a
alternative method to correct errors. It is fouhdttalthough the introduction of the forbidden
symbol causes additional redundancy in the bitstredss combination with convolutional
coding and MAP metric sequential decoding prodagesnproved error correction mechanism
and with ARQ retransmission strategy providing aitde correction mechanism it is able to
increase image quality of the decompressed imadedaorease overall packet erasures at low
SNR’s.

This innovative error coding scheme for wavelet gmacompression produces superior
performance results. An intensive and rigorous ggarhnce evaluation is conducted on the
proposed codec against currently employed errarection standards including variations of
the arithmetic encoding, convolutional encoding aMdP decoding stages. The proposed
system is able to produce results that are bitammpetitive whilst maintaining efficient error

correction and reduced packet erasures for a @varge of test images.
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CHAPTER 2 - CURRENT COMPRESSION STANDARDS

Image and video compression is presently the cufomus amongst researchers and is being
driven forcefully by the need for international rafardisation of multimedia content.
Standardisation is critical in facilitating bothtenoperability and compatibility among various
imaging systems as well as in deploying image adédovtechnology throughout the world.
However, the pursuit of such technology must bdeaed in a cost-effective manner. These
standards are indicative of the latest technoleggarched and are an excellent benchmark with

regards to the technology evolution and internai@nrrent trends.

H 2.1 STILL IMAGE COMPRESSION

The increase in the use of digitised still imaga#)er through the Internet, digital imaging or
digital photography, has resulted in the need toess such imagery in order to allow for the

economical storage and fast data transfers.

2.1.1 JPEG
JPEG (Joint Photographic Experts Group) [2] isrthme of a joint ISO/CCITT committee that

defined the compression standard for continuous &iifl images. JPEG was intended for the
image compression of photographic still images. GRE extremely popular and has thus

become a widely adopted compression standard planiz in the Internet arena.

The JPEG compression standard has two distincibappes for its image compression [2]: a
Discrete Cosine Transform (DCT) based techniquadiog on the baseline sequential method

for lossy compression and a predictive schemeoksiéss compression.

2.1.1.1 Lossy Baseline Sequential Coding

The lossy baseline sequential coding scheme [l]is[based on the DCT and involves the

following processes as illustrated in the bloclgdsamn in Figure 2-1.
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Source LEVEL FORWARD QUANTIZER ENTROPY | Compressed
Image | | SHIFTING | bt | | ENcoODER Image
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Tahle
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Figure 2-1: Block Diagram of JPEG DCT Baseline Sequential Coding scheme.

The block diagram shows the source image whiclirss divided into 8x8 pixel blocks. Each
8x8 pixel block is then level shifted from unsigriateger to signed integer by subtracting each
pixel value by2"* where2" is the number of gray levels used ani the bit precision of the
image component. Each 8x8 block is then fed intofhrward DCT and a two dimensional
DCT of the block is then computed. These DCT cosdfits are quantized using a defined

gquantization table provided by the standard anddt@&wing quantization equation [1];

Fo (Uv) = Roun

Fuv) (U’V)J, 2.1)

Q(uyv)

whereF(u,v) is the DCT coefficient an@(u,v)is the quantizer step size from the quantization
table. The quantization coefficients are then regrd into a one dimensional sequence using
the zig-zag scanning pattern shown in Figure 2-R The coefficients are automatically
arranged according to increasing spatial frequsndgie. low frequencies before high
frequencies.

l DC Component

T High Frequency
Figure 2-2: Zig-Zag Scanning Pattern [2].
Finally the zig-zag sequence of quantized DCT caiefits are entropy encoded using either

Huffman coding or arithmetic coding. For the baselsequential method, Huffman coding is

specific to the entropy coding stage.

3C



2.1.1.2 Predictive Lossless Coding

The predictive lossless coding scheme [1], [2]risearor-free compression approach that does
not implement the DCT. It eliminates interpixel uedancy by coding only the new information
of the pixel. This new information is the differenbetween the actual value and the predicted
value of the pixel. Hence this scheme utilises edigtor. This system is illustrated in Figure
2-3.

Compressed
PREDICTOR ENTROPY
Image
- - ENCODER )

Source Image

Figure 2-3: Diagram of JPEG Predictive Lossless Coding scheme.

The predictor combines up to three neighbouringptesn(A, B, C) to form a prediction (X) as

shown in Figure 2-4.

Figure 2-4: Diagram of the prediction neighbourhood [2].

The difference between the actual value and thdigiren is then coded using either Huffman

coding or arithmetic coding. Lossless codec’s ndisnmaoduce around 2:1 compression rate.

2.1.1.3 JPEG Features
The JPEG compression standard has a few key fegtlmemake it one of the most popular and
comprehensive continuous tone still image compoessstandards. These features are

highlighted as follows [2]:

e It is state of the art with regard to compressiod amage quality. JPEG lossy
compression usually has a 5:1 compression rateoutitlisible loss for grayscale
images and between 10:1 and 20:1 compression ridteuw visible loss for colour

images. For its lossless compression scheme iteehia 2:1 compression rate.
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* It is not restricted to images of certain dimensjocolour spaces, pixel aspect, and
scene content therefore making it applicable to e of continuous tone digital
source image.

< It has tractable computational complexity i.e.ahgerform on a range of CPU's.

< It utilises sequential, progressive, lossless aadhtchical coding modes of operation.

2.1.2 JPEG 2000

JPEG 2000 [3], [4] is a wavelet based still imagenpression standard using the Embedded
Block Coding with Optimised Truncation (EBCOT) cndischeme. JPEG 2000 provides low
bit rate operation with superior rate distortiorddmage quality as compared to the existing
JPEG standard. It was developed as a new stillensading system catering for different types
of images (binary, grayscale, colour) with diffdrerharacteristics (text, rendered graphics,

natural images etc.).

JPEG 2000 being a wavelet based coding scheme gsnfile Discrete Wavelet Transform
(DWT) instead of the Discrete Cosine Transform usethe JPEG compression standard. The
wavelet transform reduces the amount of informationtained in the picture and thus offers
greater efficiency than the cosine transform. TI@&T2xpresses a signal in terms of frequency
and amplitude at a single instant in time whereasOWT expresses a signal over the complete

time and thus also contributes to the increaseadiafity of the standard.

The fundamental architecture of the JPEG 2000 atanid outlined in Figure 2-5. It involves
image tiling, DC level shifting, discrete waveletrisformations, quantization and finally

entropy coding [4].

Sourcel g R R
DC QUANTIZER ENTROPY Compressed
Image | LEVEL P ENCODER Image
g | sHiFTING _T i::r'__ g 7
| |
TILING FORWARD
DWT

Figure 2-5: Diagram of JPEG 2000 coding scheme.

‘Image tiling’ is first performed on the source igga ‘Tiling’ refers to the partitioning of the
source image into rectangular non-overlapping tdock tiles. Each tile is compressed
independently. All samples of the image tile are IB@I shifted by subtracting the quantity*2
from each sample, whereis the bit precision of the image component. TMgTDis performed

on each tile. The transform coefficients are quaati thereby reducing the coefficients
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precision. The entropy coding stage is achievedneans of Embedded Block Coding with
Optimised Truncation (EBCOT) [5].

2.1.2.1 Embedded Block Coding with Optimised Trunca  tion

EBCOT, created by Taubman [5] is the low level @mr coding framework employed by the
JPEG 2000 standard. It uses the wavelet transforrdecompose the image into various
subbands. Each subband is further partitioned riefitively small blocks called code blocks.
The coefficients in each individual code block, amdependently coded into an embedded
bitstream, thereby implying that each code blockegates a separate bitstream without using

any information from other code blocks.

The actual coding of the bitplane in each codellnto its embedded bitstream involves three
critical passes: the significance propagation p#ss, magnitude refinement pass, and the
cleanup pass. These passes separate the significgmmation from the insignificant

information by identifying the bitplane in code tks that have non-zero or significant
coefficients. This ensures that the coding proaessd only code the bitplanes that have

significant coefficients and can discard the bitelathat have zero or insignificant coefficients.

After the bitplane coding process each embeddstrddtm can then be truncated independently
into different discrete lengths. This truncationinpoas it is known is used to achieve a

maximum target bit rate with minimal rate distontiddence the algorithm is named Embedded
Block Coding with Optimised Truncation. This appbao the JPEG 2000 standard leads to a

highly precise coding structure with refined suppor

2.1.2.2 JPEG 2000 Features

The significant features of this wavelet transfatandard include [3]:

e Superior low bit-rate performance.

e Continuous-tone and bi-level compression — shoolipress and decompress images
with various dynamic range {o 16 bitg for each colour component.

e Lossless and lossy compression.

e Progressive transmission by pixel accuracy andluisn — allows images to be
reconstructed with different resolutions and pieturacy.

 Random code stream access and processing — akkgimns of interest (ROI) in the
image to be randomly accessed and/or decomprestebkss distortion.

* Robustness to bit errors.
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* Open architecture — optimises the system for differmage types and applications.

« Real time coding — compressing and decompressiageswith a single pass.

H 2.2 VIDEO COMPRESSION

Video compression deals with the compression oftaligrideo data. Unlike still image
compression, video compression exploits the cdroglebetween image frames by discarding
redundant information whilst predicting motion. ¥@compression reduces picture redundancy
while allowing video information to be transmitteshd stored in a compact yet efficient
manner. Digital video data rates are very large #mdefore consume a great amount of
bandwidth, storage and computing resources, theisnéed for video compression becomes

imperative.

2.21 MPEG

MPEG (Moving Pictures Expert Group) [6] is an IS8 compression standard developed for
digital audio and video formats. The MPEG1 and MRE&andards are based on motion
compensated block-based transform coding techniguele MPEG4 exploits object-based

compression techniques.

MPEG1 was designed to achieve VHS-quality videoaoregular CDROM. This format is
commonly known as the VideoCD. MPEG2 was desigmetiandle the demands associated
with broadcast and entertainment applications Di&S satellite broadcast, HDTV and DVD
video. The MPEG1 and MPEG2 standards are layered-lix8ed video compression
algorithms. Since these two formats are based milasiconcepts, they have been commonly

referred to as MPEG video.

MPEG video uses block-based coding schemes whigkedithe picture into blocks of 8x8
pixels. A collection of 6 of these blocks (4Y blae¢KLCr block and 1Cb block in the YCrCb
colour space) is called a macroblock (MB). Each &#B be further represented in 3 different
formats when referring to the YCrCb colour spackede are 4:2:0, 4:2:2, 4:4:4 which is
illustrated in Figure 2-6. MPEG video operates loe YCrCb colour space as the human eye is

more sensitive to changes in luminance or Y.
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Figure 2-6: Diagram of the YCrCb macroblock format [6].

Since compression involves the removal of spatiad #gemporal redundancy, the MPEG
compression standard focuses on these two basimitees in its algorithm. The two
techniques are commonly referred to as intrafrgpagis coding and interframe/temporal

coding [6].

Intraframe coding involves DCT-based coding techeg)similar to those applied in the JPEG
compression standard that entailed DCT, quantizatiad entropy coding. This form of coding
removes spatial redundancies, which are redundaticég occur within the frame. Interframe
coding utilises a technique known as block-basetiom@ompensation prediction using motion
estimation. This coding removes temporal redundsn@r redundancies that are present

between frames.

The intraframe compression portion of the MPEG wigeoduces | (Image) frames which are
subsequently used to predict P (Predictor) framed B (Bi-directional) frames in the

interframe section of the standard. P frames capredicted from either | frames or other P
frames immediately preceding it. B frames are eittmgled based on forward prediction from
previous | or P frames or on backward predictiamfrsucceeding | or P frames. This process
forms the block-based motion compensation prediatiomponent of the compression scheme

and is illustrated in Figure 2-7.
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Figure 2-7: Diagram of I, P and B frames in Interframe coding [6].

Since B frames cannot predict future frames, ergeserated within a B frame will not

propagate further within the video sequence.

As mentioned previously the temporal predictionhteque uses motion estimation for

interframe coding. Motion estimation is a concepattrepresents changes between two
consecutive video frames. This process involves &8 in the current frame being compared

to the previous frame. Once a match is found, motiectors are assigned to the MB indicating
how far horizontally and vertically the MB was daped. This offset represented by motion
vectors forms a prediction. Predictions for all MBh the current frame are obtained and a
prediction frame is constructed. The predictiomfeas then subtracted from the current frame
resulting in a residue frame. This residue frameoded using DCT, quantization and entropy

coding before being transmitted.

The combination of the above compression technjgueke MPEG video highly scalable. Its
block based motion estimation scheme supports itmpofunctionalities some of which are:

random access, fast forward (FF) and the fast seV@iR) playback operations.

2.2.2 MPEG4

MPEG4 [7] is a low bit rate multimedia format. MPEGupports a mix of media like
broadcasting, movie and multimedia applicationsistlallowing recorded video images and
sounds to coexist with their computer generatedniwparts. It provides additional
functionalities like bitrate scalability, object 4wl representation and intellectual property

management and protection.
MPEG4 provides a standardised method to represeitd of aural, visual and audiovisual

content. This content is referred to as media ¢bjand can be of natural or synthetic origin.

MPEG4 forms audiovisual scenes composed of primitiedia objects such as [7]:
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« Still images (fixed background)
* Video objects (talking person without background)

« Audio objects (voice associated with that persobamkground music)

It also provides standardised methodology to desaiscene by [7]:

* Placing media objects anywhere within a given coate system.

« Applying transforms to change the geometrical asuatical appearance of a media
object.

« Grouping primitive media objects in order to foromgound media objects.

* Applying streamed data to media objects in ordendalify their attributes.

¢ Changing interactively the user’s viewing and ldtg points anywhere in the scene.

There are various aspects of MPEG4 which definestéwedard, whilst bringing higher levels of
interaction with regards to the content. The vai@spects include the system component,
audio component and the visual component. The Maator in the MPEG4 standard is critical

as it allows coding of natural images and videdwitnthetic or computer generated scenes.

MPEG4's visual component has the following sigraficfeatures [7]:

Efficient compression of textures for texture maygpdn 2D and 3D meshes.

« Content-based coding of images and video allowarstg decoding and reconstruction
of arbitrarily shaped video objects.

* Random access of content within video sequencewsliunctionalities such as pause,
fast forward and fast reverse of stored video.

e Error resilience allows accessing image and videgr @ wide range of storage and

transmission media and includes the operation aigemand video compression

algorithms in error prone environments at low btes.

The basis of the MPEG4 video coding standard idasino that of the MPEG video in that it is
a block based predictive differential video codsupeme and utilises the following techniques

to provide greater compression:
« Division of picture into 8x8 blocks of 16x16 MB'’s.

« Motion compensated prediction.

e Transform coding with DCT.
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¢ Quantization.

* Run length and Huffman coding for variable lengtdes.

In conjunction to these compression methods a nuofomotion prediction techniques are used

to improve coding efficiency and flexibility, theaee listed as follows [7]:

» Standard 8x8 or 16x16 block based motion estimadioth compensation with up to
quarter pel accuracy.

* Global motion compensation for video objects - whis based on global motion
estimation, image warping, motion trajectory codamy texture coding for prediction
errors.

« Global motion compensation based for static ‘spritea static sprite is a large still
image describing panoramic background. Only 8 dlohation parameters describing
camera motion are coded to reconstruct the objdwtse parameters represent the
appropriate affine transform of the sprite trangediin the first frame.

e Quarter pel motion compensation - enhances thesmaof the motion compensation
scheme.

« Shape adaptive DCT - in the area of texture codingproves the coding efficiency of

arbitrary shaped objects.

MPEG4 embraces a multitude of features which atined below. The standard provides

solutions in the form of tools and algorithms f@}: |

« Efficient compression of images and video.

« Efficient compression of textures for texture maygpdn 2D and 3D meshes.

« Efficient compression of implicit 2D meshes.

« Efficient compression of time-varying geometry atres that animate meshes.

« Efficient random access to all types of visual otge

* Extended manipulation functionality for images arko sequences.

« Content based coding of images and video.

« Content based scalability of textures, images aaeov

» Spatial, temporal and quality scalability - Scdlibirefers to the ability to decode a
part of a bitstream and reconstruct images or insgpiences with reduced decoder
complexity and thus reduced quality, reduced spataolution, reduced temporal

resolution and equal temporal and spatial resaidtiat with reduced quality.
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» Error robustness and resilience in error pronerenments — where error resilience

tools can be divided into resynchronization, dataovery and error concealment.

The MPEG4 standard introduces and supports neweptstor object-based user interactivity.
It enables greater reusability and flexibility afntent as well as greater interaction with the
content. More importantly it provides low bit-rateompression to various multimedia

applications.

2.2.3 H.263+
H.263+ [8] is a low bit-rate compression standasvedoped by the ITU-T. This standard

supports video compression for video conferencingl aideo telephony applications. It
combines the features of both the MPEG and H.2&1idsirds. H.263+ allows for the use of five
standardised picture formats [8]: CIF (Common Imtediate Format), QCIF (Quarter-CIF),
sub-QCIF, 4CIF and 16CIF.

As with MPEG, H.263+ supports block-based motiaim@stion and motion compensation. The
block-based approach involves the division of thradge into macroblocks and the motion
estimation and compensation involves motion veatepsesenting the change between frames,

as discussed previously in the MPEG section.

The H.263+ compression standard is an extensias pfedecessors H.261 and H.263 in that it
includes several additional features and modednfiproving efficiency and picture quality.

These are listed as follows [8]:

* Unrestricted motion vector mode — motion vectora ceference pixels outside the
picture boundary.

e Syntax based arithmetic coding — arithmetic codngsed instead of Huffman coding.

e Advanced prediction mode — uses four motion vecpans MB and overlapped block
motion compensation.

* PB frame mode — both P frames and B frames aréettess a single entity and are
coded together.

e Advanced intra coding mode — improves the efficjefar intra MB coding by using
spatial prediction of DCT coefficient values.

« Deblocking filter mode — reduces block artifactsigsas adaptive filter.

e Slice structure — improves error resilience by ginog MB's.
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» Reference picture selection mode — allows for si@le®f a previous frame to generate
a prediction of the current frame.
e Scalability related enhancements — provides SNRabitigy, spatial and temporal

scalability.

H.263+ was aimed particularly at video coding fow Ibit rates. It offers an improvement to the

MPEG standard whilst maintaining its distinct feati

2.2.4 H.264 | MPEG4 part 10 AVC

H.264/MPEG4 part 10 Advanced Video Coding (AVC), [[d]0] is the latest video compression
standard available. It is a joint collaboratiortiod ITU-T Video Coding Experts Group (VCEG)
and the ISO/IEC Moving Picture Experts Group (MPEB)R64/AVC or H.264/MPEG4 has
become a widely used video compression standardhasdbeen implemented in numerous
video applications like, mobile TV, video conferant; IPTV [89], HDTV [88] etc.

H.264/MPEG4 has a similar structure to the previdso compression standards in that it still
encompasses the block-based, motion compensated widmpression characteristics. The
H.264/MPEG4 standard boasts a few new key featim@senhance the performance of the
standard. The features that enhance coding efégiare [9], [10]:

* Variable block-size motion compensation with smatick sizes — Supports motion
compensated block sizes as large as 16x16 withnignmim block size of 4x4.

e Quarter pel motion compensation.

* Multiple reference frames — Up to 16 different refece frames can be used for inter-
picture coding.

* Weighted prediction — Scaling operation by applyangreighting factor to the samples
of motion compensated prediction data.

« In-loop deblocking filter — Reduces blocking artifs by operating on the horizontal
and vertical block edges.

* Integer transform — Previous standards use thel8X8, a new 4x4 integer transform
which is derived from the DCT. It reduces blockargl ringing artifacts.

« Quantization — Uses scalar quantization. One afhtizer step size scaling factors is
selected for each macroblock, where the step Bizesase at a rate @2.5%

* Entropy coding — Two techniques can be applied,t€danAdaptive Variable Length
Coding (CAVLC) and Context Adaptive Binary ArithnieCoding (CABAC).
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H.264/MPEG4 initially supported three profiles: elise, main and extended. A crucial
amendment to the standard was the fidelity rangensions that expanded the interoperability
of the standard and introduced a fourth profilghhiA profile is a set of coding tools that

generates a compliant bitstream. The capabilifiéseoprofiles are listed below [9], [10].

» Baseline profile — Designed for applications thatlaw-cost and using little computing
power. Profile used in videoconferencing and moiiieo.

« Main profile — Intended for broadcast and storagpglieations. Profile used in digital
storage media and television broadcasting.

» Extended profile — Primarily for streaming videb.hhs high compression capability,
robustness and server stream switching. Profild imsstreaming video.

« High profile — Intended for broadcasting, disc atw®, particularly for high definition
television application. Profile used for contenbicibbution, content distribution, studio

editing, post processing.
H.264/MPEG4 demonstrates significant improvememtsterms of picture quality, coding

efficiency, increased error resilience and flexifpil It delivers considerable compression

efficiency at low bitrates.

H 2.3 PERFORMANCE METRICS

Performance is a quality measure used to evaluatewell a system functions. A performance
metric is a quantifiable measure of a process tadsessed. Performance metrics are used to
evaluate and encourage performance improvemengfiictbncy. Quality performance metrics

allow for comparative analysis of varying factorishin the system.

Image quality is a key performance metric when idgalith image and video compression.
Image quality metrics provide a measure of theatation between digital images by exploiting
the differences in the statistical distributionpdfel values in the images. Image compression is
a measure of the amount of insignificant data tizet been discarded from the digital image.
However, there exists a trade off between imagepcession and image quality. As the

compression increases, the image quality conselgudagrades.

There are two quantitative metrics which are congnoised to evaluate the image quality of
compressed images, Mean Square Error (MSE) [91]Reak Signal to Noise Ratio (PSNR)

[91]. MSE measures the image difference betweerd#@w®mpressed image and the original
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image, whereas PSNR is the ratio of the peak sigoaler (258) against the average noise
power (MSE). Essentially PSNR reflects the qualityhe reconstructed image and is a standard
method used to gauge image fidelity. PSNR is mealsur decibels (dB). Their equations are as
follows [91];

MSE:M—lN%‘ZN:[I(x,y)—I'(x,y)]2 ,and (2.2)

y=1 x=1
255

JMSE

PSNR= 20log,, (2.3)

where I(x,y) in (2.2) represents the original image whilgk,y) represents the compressed
image. M and N represent the dimensions of the image and the eub5 in (2.3) is
representative of the maximum pixel value withire ttmage which is generally 255 for

grayscale images.

In addition to the qualitative metrics above, thare two metrics that are used to quantitatively
assess the compression of an image, which are essipn ratio and bit rate. Compression ratio
can be defined as a simple ratio of the numbeiitefdf the original uncompressed image to its
compressed reconstructed version. Bit rate is mefbfas the average number of bits per pixel
for the entire image. Bit rate is extensively usethe dissertation as a measure of compression,
where high bit rates represent low image comprasai@ low bit rates represent high image

compression. The equations are as follows;

Numberof bitsin Original Image
Numberof bitsin Compressedmage

Compressia Ratio= and (2.4)

Numberof bitsin Compressedmage

; (2.5)
Numberof Pixels

Bit Rate=

Two error analysis metrics used to evaluate thestression of the digital images via error
prone channels are, Bit Error Rate (BER) and Sigm&loise Ratio (SNR). Bit error rate can be
broadly referred to as the measure of data intedtits measured empirically as the ratio of the

number of erroneous bits received compared to thgber of bits transmitted for some duration

of time and is given by (2.6);
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BER= Numberof bitsin Error
Numberof bitsTransmittel

(2.6)

Signal-to-noise ratio is a measure of the signaingth relative to the background noise in the
channel. It is used to gauge the quality of thednaission channel. Average SNR per bit in
terms of digital communication is formally reprethbyE,/N,, which is the ratio of energy

per bit €) to spectral noise densiti{) given by (2.7);

average&SNR perbit =% : (2.6)

0

Since B/Ny is independent of modulation schemes, it is ugseithé plots against bit error rate
and helps compare schemé&g/N, is typically expressed logarithmically in decibéiB). An
Ey/No, of zero dB cannot be represented on the logarittemale and is thus an indication that
the signal is unreadable and impossible to intégsdhe noise level severely competes with the
signal. The dissertation refers to SNR in the tesahalysis and must be construed as average
SNR per bit.

H 2.4 PERFORMANCE

2.4.1 still Image Compression Standards

The performance evaluation of the current still gemacompression standards, involve the
assessment of JPEG and JPEG 2000. The compressegsimvere generated using the
VcDemo Image and Video Compression Learning toal gre PSNR values were simulated
using the Matlab simulation engine. The Lena (512}5[85] and Barbara (512x512) [85]

grayscale test images, take from the UniversitySotithern California’s Signal and Image

Processing Institute (USC-SIPI) database were tseevaluate the JPEG and JPEG 2000
standards. The PSNR values were calculated usmdWBE between the JPEG/JPEG 2000
compressed image and the original uncompressedeibafpre finally calculating the PSNR

image quality. Figure 2-8 and Figure 2-9 show theroved PSNR image quality for a given

bitrate for JPEG 2000 and JPEG.
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PSNR vs. Bitrate for Lena Image
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Figure 2-8: Diagram of PSNR vs. Bitrate for JPEG and JPEG 2000 for Lenaimage.

PSNR vs. Bitrate for Barbara Image
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Figure 2-9: Diagram of PSNR vs. Bitrate for JPEG and JPEG 2000 for Barbaraimage.

There is an approximate increase of aroBrbdBon average in compression improvement for
JPEG 2000 over JPEG as the PSNR increases in mptre2-8 and Figure 2-9. This increase
is calculated by taking the absolute differencalosolute change between each data value of
two trends for all bitrates and then calculating #rithmetic mean value of the difference. The
results are graphed in dB’s using the logarithnaigles and thus only an absolute dB value is

needed when stating the amount of change obsertesén the two trends.
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The3.6dBincrease is indicative of the superior performapicEG 2000 against JPEG. These
results show that while DCT based coders perfori atemoderate compression ratios, at
higher compression ratios or low bitrates, the ienggality degrades due to artifacts caused by
the block-based DCT scheme. DWT based coders progréater improvement in picture
quality at higher compression ratios due to the&rlapping basis functions and better energy

compaction.

Figure 2-10 illustrates the effect of ‘blockingitatts’ for JPEG compression at a low bit rate of
0.3bpp This “blockiness” observed in Figure 2-10 is acpgetual measure that results in
implementing DCT coding as it is characteristicalliplock based scheme. The DCT is typically
performed on8x8 blocks where the coefficients in each block angasately quantised. This
process consequently leads to artificial horizoatal vertical borders being created throughout

the image and it is this feature that is commoabognised as “blocking artifacts”.

Figure 2-10: Diagram of JPEG compressed Lena image showing "blocking artifacts".

JPEG 2000 can operate at higher compression ratitteut incurring the characteristic

“blocking aritifacts” seen in JPEG. The DWT is fmbck based, thus the transform results in
the production of a smoother image. This smoothoaasbe quantified as a perceptual metric
known as “blur”. Blur is an artifact of the wavelgdased compression technique highlighted in

the JPEG 2000 image shown in Figure 2-11. This @éwegs compressed at a bit ratdbpp
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Figure 2-11: Diagram of JPEG 2000 compressed Lena image showing "blur artifacts”.

2.4.2 Video compression Standards

Figure 2-12 is the performance results of the curkgdeo compression standards available.
This PSNR result was obtained from the ITU-T stadsladocumentation for H.264/MPEG
AVC [11]. It is evaluated using thEempetdest sequence using CIF (352x288) resolutiatbat
Hz. The Tempetdest sequence has a duratior8dfs and exhibits features that include camera

zoom, spatial detail and fast random motion.

Tempete CIF 15Hz
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Figure 2-12: PSNR vs. Bitrate for H.263, MPEG2, MPEG4 and H.264/AVC [11].

The four codec’s in Figure 2-12 maintain the foliogvprofiles.

MPEG?2 Visual, Main profile (VMP)
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* H.263 High Latency profile (HLP)
e MPEG4 Visual, Advanced Simple profile (ASP)
e« H.264/MPEG4 AVC Main profile (MP)

From the results MPEG2 performs the worst, followsdH.263, MPEG4 and finally with

H.264/MPEG4 AVC achieving superior PSNR performanidee results show that at low bit

rates H.264/MPEG4 significantly outperforms theeothideo standards. Table 2-1 denotes the
average bitrate savings relative to other standdras bitrate savings in terms of compression
efficiency shows H.264/MPEG AVC achieving a gregpercentage than the MPEG4 and
H.263 standards. H.264/MPEG4’s highly flexible roatiprediction and compensation model
and its efficient context based entropy coding swhare the two principal factors that facilitate

this superior rate distortion performance.

Average bit-rate savings relative to:

Coder MPEG-4 ASP | H.263 HLP | MPEG-2

H.264/AVC MP 37.44% 47.58% 63.57%
MPEG-4 ASP - 16.65% 42.95%
H.263 HLP - - 30.61%

Table 2-1: Average bitrate savings for H.263, MPEG2, MPEG4 and H.264/MPEG4 AVC [11].

H 2.5 SUMMARY

This chapter highlights the image and video congioesstandards currently operating within
digital multimedia communication systems. In stitkge compression, the JPEG 2000 standard
exhibits significant image quality, compression amgbroved rate distortion over the JPEG
standard. It was observed that wavelet-based casipre when compared with DCT-based
compression provided substantial improvements étupg quality at lower bitrates due to the

high energy compaction of its wavelet transform.

Four standards were examined within the video cesgon field, the MPEG, H.263+, MPEG4
and H.264/MPEG4 AVC standards. The most recent daran H.264/MPEG4 AVC
demonstrated superior PSNR and bitrate saving qpmeafioce as compared to other standards.
H.264/MPEG4’s numerous improved features make ét @inthe most widely used particularly

efficient standards to date.
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CHAPTER 3- WAVELET COMPRESSION

Wavelet compression has emerged as a powerful @ssipn method that provides significant
improvements in image quality and compression satid/avelet based coding systems

outperform other coding schemes for example; thased on the Discrete Cosine Transform
(DCT) [1], [13], [14].

DCT based coding schemes appear to perform wetioaterate bit rates, whereas at low bit
rates the image quality tends to degrade rapidly tuthe underlying block-based approach
employed. Wavelet based coding schemes have adhiewesuperior image integrity and

quality at lower bit rates due to the exploitatioh the spatial and spectral redundancies
contained within the images and video. Wavelet thas®ling is more robust with regards to
transmission and decoding of errors thereby fatilig the progressive transmission of images

and video. Thus image and video compression startgenefit significantly with the use of
wavelet based coding.

H 3.1 WAVELET THEORY

3.1.1 Fourier Transform

Signals are often represented in the time-domatih avtime-amplitude variation. However, this
representation fails to reveal the frequency cdntdrthe signal. In order to overcome this
problem the Fourier Transform was developed. THiViing equations denote the Fourier
Transform and the Inverse Fourier Transform re$pagt[12], [13];

oo

X(f)= j x(t)e 2™ dt , and (3.1)

x(t)= [ X(fe*"df , (32)

wheref is the frequency component ahi the time component. The information provided by
the integral in (3.1) corresponds to all time ins&s as the integration limits extend from minus
infinity to plus infinity over time. It follows thathe Fourier Transform supplies the frequency

information of the signal however, it does not diggcwhen in time this frequency component
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exists. This is one of the major shortcomings ef Fourier Transform that subsequently led to

the development of the Wavelet Transform.

3.1.2 Wauvelet Transform

Wavelets are functions defined over a finite inéérand having an average value of zero.
Equation (3.3) represents the Wavelet Transformshioavs the functiof(x) as a superposition
of a set of basis function§s,1(x), or wavelets. The parametessand r are the scale and

translation respectively and denote the dimensibtise wavelet [19];

y(sr)= [ FOOo(x)x . (3.3)

These basis functions or wavelets are generated &csingle basic wavelet or the mother

wavelet, Yx) by scaling and translation illustrated in (3.49]f1

W, (x)= %W[ﬁj - (3.9)

S

The concept of scaling and translation of the motteevelet is graphically illustrated in Figure
3-1. The translation parameterdenotes the location of the wavelet as it is stifand thus
corresponds to the time information in the Wav@leinsform. The scale paramesas defined
as|1/frequencyjand corresponds to the frequency information.iSgakfers to the dilation or
contraction of the wavelet and translation referghe shifting of the wavelet. It must be noted
thats cannot equal zero, as division by zero will talace, and equalling zero implies that no

wavelet exists.
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Mother wavelet s=11=0

Translation

Scaling

Figure 3-1: Diagram illustrating scaling and translation.

In wavelet analysis, the scale factor is criticalaavelet algorithms are intended to process data
at different scales or resolutions. Large scaldgwrfrequencies dilate the signal and provides
global information about the signal, whereas smaa#lles or high frequencies compress the

signal and provides detailed information that mayhidden in the signal. Figure 3-2 outlines

this concept.

Low A /\/\ [ \f High
frequencies 77 D frequencies
— 8

(large scale) A (small scale)
with long z with small
=
durations 3 durations
i)
o
Time

Figure 3-2: Diagram of scale and duration [78].

Wavelet analysis ultimately attempts to combineséhievo concepts resulting in short bursts or
small durations of high frequencies (small scat@slong durations of low frequencies (large
scales). This fundamental concept forms the bakimuti-resolution analysis. Figure 3-3

illustrates the merging of the two concepts ingingle continuous waveform.
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Figure 3-3: Diagram depicting high frequencies with short bursts and low frequencies with long duration [12].

3.1.3 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) [1], [13], [1i8 an implementation of the wavelet
transform using a discrete set of wavelet scaled tmanslations. The Discrete Wavelet
Transform exploits the wavelet series expansiorcivimaps a functiof(x) into a sequence of

coefficients resulting in the DWT transform paiogm in (3.5) [1];

1

M
W, (1K) =3 F(x)@,(X) |
T

W,(Jo K)=—==3 f(X)@,0,(x) ,and

(3.5)

forj > jo. M is the number of samples apds the resolution or scale akds the position or
integer translationV(jo,k) denotes the approximation (scaling) coefficiemis \&,(j,k) denotes
the detail (wavelet) coefficients due #y(X) representing the scaling function agg(x)

representing the wavelet function defined in (314)

g, (x)=2""2p(20 x~k) ,and
N - | (3.6)
Wi (x)=2"2(2 x-k) ,

wherek denotes the position or integer translatidhdenotes the width or the scale of the
functions and®’? controls the amplitude of the functions. Theseatiqus are representative of a
one dimensional DWT. A two dimensional DWT has tokowing equations represented by
(3.7) [1I;
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. 1
W(jo.mn)=——= f(XY)Pjomn( XYy) ;and
o\ JO /MN_; ; jomn
(3.7)
WM =S S ) imn( %)
Wlf/ [ N 1 jmn ! 1
VMN T T
forj >jo andi={H, V, D} where the wavelet functions are [1];
. x,y)=21924(21%«-m2°y-n) ,and
Biomn (XY) =212 y-n) .

Yima(xy)=2"2"(2'x-m2 y-n),

for i={H, V, D}. The two dimensional functiof(x,y) can be extended to represent an image
whereM andN are the dimensions of the image ané@ndn are the number of pixel rows and
columns in the image. The indéxdentifies the direction of the wavelet either irontal H,
vertical vV or diagonaD. Wj(jo,m,n)denotes the approximation coefficients at resoft and

W j,k) denotes the horizontal, vertical and diagonal fagiehts at resolution > jo. @iom.{X.Y)
represents the scaling function an/il,—,m,n(x,y) represents the wavelet function in two

dimensional form.

3.1.4 Filter Banks

Filter banks [17], [18], [20] are commonly used ttansform an input signal into a time-
frequency domain representation. A filter bank uaesumber of bandpass filters to isolate
different frequency components in a signal as streguencies are of greater importance than

others. This is illustrated in Figure 3-4.

\ f \ —
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I [ | \ I
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Figure 3-4: Filter Banks [17].

There are two stages involved in the filter bangreeentation, the analysis stage and the
synthesis stage. The analysis stage filters that isignal before downsampling it by the number
of filters used in the bank producing subband diggndhe synthesis stage involves
reconstructing the signal by first upsampling thublmsand signals, then filtering each signal

before adding the signals together. Mrchannel filter bank is depicted in Figure 3-5.
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Figure 3-5: M-channel filter bank with analysis and synthesis stages [17].

3.1.4.1 Quadrature Mirror Filters

A quadrature mirror filter (QMF) [18], [20] is a twchannel filter bank. The analysis and
synthesis structure of a QMF is shown below wheeesignal is downsampled and upsampled
by a factor of 2.

Yo(n)
Hy(2) g2 = > 42 > G,(z)
x(n) y.(n) —m  §(n)
1
H,(2) g2 == > 42 » G,(z)

Figure 3-6: QMF analysis and synthesis stages [18].

The frequency response of the analysis lowpasshagitbass filters represented by(# and

H.(z) respectively is illustrated in Figure 3-7.

Hy(2) H,(z)

I
-

0 T ©

Figure 3-7: Frequency response of analysis lowpass filter Ho(z) and highpass filter Hi(z) [18].

QMF's relates the lowpass filter to the highpa$®rfiby altering the sign whose frequency
response is a “mirror” image of itself [18];
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H,(z)=Hy(~2) or h(n)=(-1)"hy(n) . (3.9)

The two-channel QMF is closely related to the wawélter bank as it utilises discrete filters.

This concept is investigated further in the chapter

3.1.5 Subband Coding

Subband coding [1], [14] involves the signal bemgromposed into a set of band-limited
components called subbands. Each subband is getidratbandpass filtering the input signal.
Essentially the signal is passed through a seriehigh pass filters to analyse the high
frequencies and it is passed through a seriesvwopkiss filters to analyse the low frequencies.
Subband coding also involves upsampling and dowpBaghoperations. Since the bandwidth
of the resulting subbands is smaller than thathef original signal, the subbands can be
downsampled without loss of information. Upsamplisgused in the reconstruction of the
original image. Ultimately subband coding produaesumber of signals which represent the
actual signal but correspond to different frequebapds. This concept is illustrated in Figure
3-8.

Figure 3-8: Diagram illustrating Subband coding [19].

3.1.6 Multi-resolution Analysis

Multi-resolution analysis (MRA) [1], [18], [21], B is a wavelet concept that essentially
analyses signals at different frequencies withed#ht resolutions. The fundamental concept
behind multi-resolution analysis involves the deposition of a signal in terms of scaling and

wavelet functions.
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The scaling function is used to create a seriegppfoximations of the function. In order to
choose an appropriate scaling function, fundameetgirements of multi-resolution analysis

must be obeyed.

Multi-resolution analysis is defined as a nesteglisace of closed subspadgof L*(R), j 22,
whereL(R) is the normed finite vector spages the resolution level is the set of integers

andV, is a sequence of subspaces with the following foaperties [21]:

(1) Nested subspace: The subspaces spanned by thegsfaiction at low scales are
nested within those spanned at higher scaleshieestibspac®; be contained in all

higher sub spaces:

v, 0v,, joz, (3.10)

V., O0---0v,0V,0v,0---0V, . (3.11)

(Ve V0OV, 0O Vsl

Figure 3-9: Nested subspace.

(2) Scale invariance: The scaling function is orthoddadts integer translates i.e. all the

subspacey; are scaled versions of the central space
f(x)0V; if andonlyif f(2x)0V,, . (3.12)
(3) Separation and density: All square integral funddioare included at the finest
resolution (density) and included in the zero fiorcat the coarsest level (separation):
n;V,={0} and O,V, =L*(R) . (3.13)
(4) Shift invariance: There is a functiog(x), called the scaling function, such that it

translates{ ¢(x-n)}, (where n is the integer translation) which forers orthonormal

basis ofV,. Similarly;
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b, (x)=2"2¢(2'x-n) , (3.14)

forms an orthonormal basis fu.

From the above definition and propertigg] Vo, [J V; and there exists constahi@) such that
> Ih(n)P=1, (3.15)
n
which results in the scaling function also knowritesmultiresolution equation given by:

#(x)=> h(nW2p(2x-n) . (3.16)

Once the scaling function is found, the waveletction can then be defined. The following
diagrams represent the scaling functiprand corresponding wavelet functighof the Haar

[25], Daubechies 4 and Daubechies 20 wavelets.
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Daubechies 20 Scaling Function Daubecles 20 Wavelet Functi

Figure 3-10: Diagram of Haar, Daubechies 4 and Daubechies 20 scaling and wavelet functions [23], [24].
3.1.7 Fast Wavelet Transform
The Fast Wavelet Transform (FWT) [1],

[15], [22] ia computationally efficient
implementation of the Discrete Wavelet TransformWD that exploits multiresolution

analysis and Mallat'serringbone algorithnj22] resulting in the following scaling and wavele
multi-resolution refinement equations [1];
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#(x)=> h,(n)W2¢(2x-n) , and

(3.18)
@(x)=>h,(nW2p(2x-n) .

The Mallat algorithm essentially associates therdie wavelet transform in (3.18) to discrete
time filters. The ternhy(n) is referred to as the scaling function coefficgeot the scaling filter
and hy(n) is referred to as the wavelet function coeffictent the wavelet filter. These two

filters are not independent of each other and earelated by the following equation wherés

the filter length or total number of samples [1];
hw(n):(—l)”h¢(L—1—n) : (3.19)

These two filters are consequently known as quadranirror filters (QMF's). By definition a
quadrature mirror filter associates a lowpassrftiienk to a highpass filter bank. This concept is
illustrated in Figure 3-11 whet®y(n) andh,(n) are half band filters whose idealized transform
functions areH, andH .

A

IH ()] |HW(w)]

Low band High band

v

9] n/? T

Figure 3-11: Diagram of the Quadrature Mirror Filters showing lowpass and highpass spectra [1].

As a result the scaling filter is associated witHowpass filter and the wavelet filter is
associated with a highpass filter. The highpagerfiproduces detail information of a signal,

while the lowpass filter associated with the saafinction produces coarse approximations.

To conclude the development of the FWT, the scaling wavelet filters are time reversed
becominghy(-n) and hy(-n) when applied to the discrete wavelet transfornr panoted in
(3.18). The final result is shown in (3.20), whére approximation (scaling function) and detail
(wavelet function) coefficient®Vy(j,k) and W,(j,k) at scalej is computed by convolving the
time-reversed scaling and wavelet filters with #pgroximation and detail coefficients at scale

j+1 and finally downsampling the result by 2 [1];
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W, (].k) =h,(=n)DW,( j +1.n)
W, (J.k)=h,(—n)DW,(j+1n)

n=2k k=0 and
(3.20)

n=2k k=0 *

The filter bank representation and the frequendittisg characteristics of the above FWT

equations are illustrated in Figure 3-12 and Fi@40e3:

Highpas

Ml ) 2 ® Wi, n)
W,(j+1, n) &—

hy(- n) 20 [ @ W(j, n)

Lowpas:

Figure 3-12: Diagram of a One Stage FWT filter bank representation [1].

H@)| 4
Vj+l

A
v

v

Figure 3-13: Diagram of a One Stage frequency splitting characteristic of the FWT filter bank [1].

An increase in the number of decomposition stagehdr increases the frequency resolution of
the signal. Figure 3-14 and Figure 3-15 are reptatige of a two stage or two level filter
banks. This arrangement of wavelet decompositigeldeof a signal resembles a tree structure

and is commonly referred to as a wavelet decompaoditee.

hl//(_ n) 1 21 —@® Ww(\]'l, n)

Wi, n N L 2 e w32, n)
hy(-n) || 21 W,(J-1, n)

h¢(' n) — 21 ® W,;;(J'Z, n)

Figure 3-14: Diagram of a Two Stage FWT filter bank representation [1].
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H(w
H(w)| & v

Y

VJ-l

Y

V2 W2 W1

0 T4 2 Tl

Figure 3-15: Diagram of a Two Stage frequency splitting characteristic of the FWT filter bank [1].

The first stage of the filter bank splits the amigi function into a lowpass approximation
component corresponding to the scaling coefficigw§l-1,n)and a highpass detail component
corresponding to the wavelet coefficieMg/(J-1,n) This is graphically illustrated with the
scaling spac¥; split into the wavelet subspa¥é ; and scaling subspa&g ;. The second stage
of the filter bank splits the half-band subspa&Ge into quarter-band subspacés., andV;.,
which correspond to the coefficieMg/(J-2,n)andW,(J-2,n),respectively.

Computation of the inverse wavelet transform (FYWirrors its forward counterpart thus
instead of downsampling, upsampling is used. Arrathportant observation is that the scaling
and wavelet filterdy(-n) andh,(-n) of the FWT must be a time-reversed version ofitiverse
FWT hence the scaling and wavelet filters lag@) andh,(n). It follows that the FWT filter

bank equation is [1];
W,( j+1,k) = h, (K)DWP( k) +h, (K)DVP( K eo - (3.21)

This concept is graphically depicted in Figure 3-16

21 hy(n)

Wyfj, n) &
ED—‘ We(j+1, n)

Wg(i, n) ® 21 hy(n)

Figure 3-16: Diagram of a One Stage FWT filter bank representation [1].

All the above equations and filter bank structuaess one-dimensional in nature and can easily
be extended to two dimensions thus being ablefaxtdfely represent images. As mentioned

previously a two-dimensional signal (images) candescribed via horizontal, vertical and
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diagonal components where the horizontal and \&@rgomponents correspond to rows and

columns of an image. A two-dimensional filter baiucture has the following arrangement.

Rows
(along m)
Columns o
(along n) dm) |4 2 — WyP(J-1,m,n)
—1 hg-n) ] 24
hs(-m) 1 21 [ ® Wyg/(J3-1,m,n)
W¢(J,m,ni
M) | 120 L e wg-1mn)
L | he(-n) [ 24
hs(-m) 1 20 [ ® Wg(J-1,m,n)

Figure 3-17: Diagram of a Two-Dimensional One Stage FWT filter bank representation [1].

Applying the two-dimensional FWT concept to an imagill result in the image being
subjected to a one-dimensional FWT, first in theizumtal direction (rows) and then the
vertical direction (columns). Essentially the depasition stages of the two-dimensional fast
wavelet transform uses a one-dimensional FWT enigireach iteration. The FWT splits the
image into a series of decomposition levels eadtaioing a number of subbands. Each
subband contains four bands of data labelled LL, HH and HH which describe the
approximations, horizontal details, vertical detadind diagonal details of the original image
respectively. LL (low-low) corresponds to the lovesolution subband, HL (high-low)
corresponds to the high vertical and low horizonmtesolution subband, LH (low-high)
corresponds to the low vertical and high horizomedolution subband and HH (high-high)
corresponds to the high resolution subband. Thesihband at the highest level contains the
most amount of image information and thus can besified as the most important subband.
The other detail subbands can be classified asesdel importance where the degree of
importance decreases as the level decreases. lldwimg concept is graphically illustrated in
Figure 3-18.
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Wg(J-1,mn) | Wg/'(3-1,m,n) LL2| LH2 | wg/'(3-1,m,n)
Image LH: HL,| HH, LH:1
a > »
(a) f(m,n) Wy'(3-1,m,n)| WygP(3-1,m,n) W'(3-1,m,n)| WyP(3-1,m,n)
HL: HH: HL: HH:

Figure 3-18: Diagram of a Two Stage Wavelet Decomposition showing the subband decompositions and the Lena
image decomposition generated in Matlab Wavelet Toolbox [1].

In essence the wavelet transform allows for theateelation of the image information by
filtering the original image into different frequencomponents using a filterbank, where it is
divided further by means of wavelet decompositiaio imultiple lowpass and highpass regions
representing high detail content and low detailteohof the original image. The optimum

number of decomposition levels may vary, as thel&vmprove flexibility, scalability and

compression efficiency with various applications.

H 3.2 WAVELET FAMILIES

A wavelet family can be described as a set of Hasistions that is used to accurately represent
the signal information. As mentioned previouslysibdunctions or wavelets are generated from
the mother wavelet by scaling and translation. Fbarier Transform has a set of two basis
functions, sine and cosine, whereas the wavelesfivam has an infinite set of basis functions
varying in translation and scaling. Each basis fioncis associated with a particular wavelet
family. The difference between the various wavédatilies is exhibited in the smoothness and

the compactness of its basis functions. Some ofrttvee commonly used wavelet families are

[23], [24], [26], [27]:

« Haar Wavelet
+« Daubechies Wavelet

+ Coiflet Wavelet
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* Symlet Wavelet
* Meyer Wavelet
* Morlet Wavelet

« Mexican Hat Wavelet

The various wavelet families may contain a numkfewavelet subclasses. These subclasses
represent the number of vanishing moments of theelea Vanishing moments constitute the
number of coefficients and level of iteration penfied on the wavelet. As the vanishing
moments increase the wavelet becomes smoother and regular in nature. Figure 3-19

illustrates the above mentioned wavelet familiethwome subclasses.

a as 1 [ ] 2 3 o 2 1 (1] 1 2 3

(a) (b) () (d)

1 08
D5 08
D4

05 -D5 e

5 [ 5 & 5 4 2 0 2 4 B B 8§ § 4 2 0 2 4 6 B

(e) 89] (g

Figure 3-19: Diagram of Wavelet Families (a) Haar (b) Daubechies 4 (c) Coiflet 1 (d) Symlet 2 (e) Meyer (f)
Morlet (g) Mexican hat [23], [24].

Given that there are an infinite number of basrefions, the best basis function or wavelet that
accurately approximates a given signal representaieeds to be selected from the various
wavelet families. There are several properties tiage basis functions satisfy thus making the

selection process simpler. These are [23], [24]:

*  Symmetry

* Smoothness

* Orthogonality

* Compact Support
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3.2.1 Haar Wavelet
Selection of a wavelet invariably begins with thaarWavelet [13], [23], [24], [25] as it is the

oldest and simplest wavelet transform. The Haarele\s also known as the Daubechies 1

wavelet. The Haar wavelet properties include thieviong [23], [24]:

e Symmetric scaling function

* Anti-symmetric wavelet function
* One vanishing moment

e Orthogonal

e Compact support

The Haar wavelet provides compact support in thaainishes outside a finite interval. Haar
wavelets are not continuous and therefore notreiffiiable and thus limited in their application.

The Haar wavelet function is illustrated in Fig@&0.

The Haar wavelet transform generally produces hgchrtifacts within the image and is thus
not the best wavelet transform to use with regardmoothing. Majority of Haar’s inaccuracy
lies in the high frequency content of the imageresentative of edges and sharp transitions.
This demonstrates that the Haar wavelet exhibist besults with low frequency content or

areas with uniformity.

3.2.2 Daubechies Wavelet

Daubechies wavelets [13], [23], [24] are the magiytar wavelets. Daubechies wavelets satisfy

a number of properties. These are [24]:

« Regularity

e Continuity

¢ Orthogonality

e Compact Support

The property of orthogonality involves the inneogucts of the Daubechies wavelets equalling
zero. The regularity property is satisfied as thaulechies wavelets can produce linear
functions. Daubechies wavelets are continuous tunat differentiable. Daubechies wavelets
are known for having a high degree of smoothnessth& vanishing moments increase in the
Daubechies wavelet family so does the smoothnesseofunction. This key property can be

seen in the Figure 3-20.
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Figure 3-20: Diagram of the Daubechies wavelet family with increasing vanishing moments [23], [24].

The Daubechies wavelet is a much smoother transtioam the Haar wavelet. The Daubechies
wavelet compression produces a far less lossy inthge the Haar wavelet compression
scheme. It can also be stated that as the vanishimgents increase, the wavelet compressed

image becomes smoother.

3.2.3 Coiflet Wavelet
The Coiflet wavelet transform [13], [23], [24], [R6vas built by Ingrid Daubechies at the

request of R. Coifman. She designed the Coifleteldvto be more symmetric than the
Daubechies wavelet as symmetry helps reduce blgckitifacts in the compressed image. It is
also another orthogonal, compactly supported waligke the Daubechies family of wavelets.
Figure 3-21 depicts the nature of the Coiflet wav&mily with increasing vanishing moments.
A key property that differentiates the Coiflet whatefrom other wavelet families is that the

vanishing moments are equally distributed for lb#hscaling function and the wavelet.

L} 2 4 a & 0 L} & 10 158 a & i 158 20 o B 1b i85 0 2E

coif1 coif2 coif3 coif4 coifs
Figure 3-21: Diagram of Coiflet wavelet family with increasing vanishing moments [23], [24].
As the vanishing moments increase, the compressade becomes less prone to errors. The

Coiflet wavelet family has similar compression @weristics as the Daubechies wavelet

family.
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3.2.4 Symlet Wavelet

Symlet wavelets [1], [13], [23], [24] are maximuiynsmetry wavelets proposed by Daubechies
as a modification to the Daubechies family of wat®l Symlet wavelets are very similar to the
Coiflet wavelets in that they have greater symm#tan the Daubechies wavelets and they are
also an orthogonal, compactly supported wavelefljarihey were designed to have the least
asymmetry and the highest humber of vanishing mdsnfen a given compact support. Figure

3-22 shows the Symlet wavelet family with incregsianishing moments.

o

o s 10 o s 10 o s 10 15

sym6 sym7 sym8
Figure 3-22: Diagram of Symlet wavelet family with increasing vanishing moments [23], [24].

3.2.5 Meyer Wavelet

The Meyer wavelet [13], [23], [24] and scaling ftina is defined in the frequency domain. Its
main characteristic is that it is an infinitely tdgr orthogonal wavelet. It has no compact
support. The Meyer wavelet is symmetric in shape isncapable of perfect reconstruction.
Being a continuous wavelet with no compact supgbiis therefore infinitely differentiable.

Figure 3-23 illustrates the Meyer wavelet.

05¢

=05+

-5 0 5

Figure 3-23: Diagram of the Meyer Wavelet [23], [24].
Compression of images only occurs with discretesfia@ms thus direct compression involving

the Meyer wavelet transform cannot take place. @leaists a good discrete approximation with

FIR (finite impulse response) filters thereby aliogrcompression.
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3.2.6 Morlet Wavelet

The Morlet wavelet [13], [23], [24], [27] is the mbcommonly used continuous wavelet
transform. The Morlet wavelet is a locally periodi@ave obtained by taking a complex sine

wave and localizing it with a Gaussian (bell-shgpatelope. It is described by the following

equation ;

Y(t)= e‘iWote‘tz/2 with Wy = 7T, é =5.336. (3.22)

Clearly the wavelet is complex and will have a raadl imaginary component. Figure 3-24
shows the Morlet wavelet with the solid line repming the real component and the dashed

line representing the imaginary component.

Figure 3-24: Diagram of the Morlet Wavelet [27].

This wavelet has no scaling function and is expliltiis a symmetric continuous function
however, it has no compact support or orthogonapgrties. Its complex nature makes it

sensitive to frequencies leading to an adequate-fisguency analysis.

3.2.7 Mexican Hat Wavelet

The Mexican Hat [1], [13], [23], [24] wavelet gaets name from its distinctive shape which can
be seen in Figure 3-25. It is derived from a fumetihat is proportional to the second derivative

of the Gaussian probability density function antegresented by the following equation [1];

Ww(x)= (% n‘l"‘j(l— x2)e12 (3.23)
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Its most distinguishing feature is its symmetryirgea continuous function it has no compact
support. The Mexican Hat wavelet has no scalingtfan and the analysis is not orthogonal.
The Mexican Hat wavelet is an admissible waveldtjctv implies that the area under the

function equals zero. This admissibility conditisrmathematically defined in (3.24);

[w(x)x=0. @2

0.8
0.6
0.4
0.2
0
-0.2

-8 6 -4 -2 0 2 4 6 8

Figure 3-25: Diagram of the Mexican Hat Wavelet [23], [24].

3.2.8 Wavelet Family Properties

A fundamental issue in successful wavelet compoasisi the choice of the wavelet basis and
hence the choice of wavelet family to be used, ridep to accurately represent the signal
information. Wavelet families have the ability tii@ently represent functions with localized
features thus a basis description that exhibiisieffcy in the form of minimal expansion terms
is able to effectively compress the signal. Thaeefselection of a wavelet family function
which closely matches the signal to be processedfisitmost importance in wavelet
applications such as: compression, signal detectiemoising and interference excision. A
summary of the various wavelet family propertiestdbuting to the selection of the correct

wavelet basis can be viewed in Table 3-1.

68



PROPERTY

Haar

Daubechies

Coiflet

Symlet

M eyer

Morlet

Mexican
Hat

Infinitely Regular

Arbitrary Regular

Compactly Supported

Symmetrical

Asymmetrical

Near Symmetrical

Existence of Scaling

Function

Orthogonal

Continuous Wavelet

Discrete Wavelet

Explicit expression

Table 3-1: Summary of Wavelet family properties [23], [24].

Wavelet families exhibiting discrete wavelet prdjgs were tested and compared using a set of

six grayscale images (215x215) [85]; Lena, Barb&ameraman, Baboon, Goldhill and

Peppers, each at a bit rate@75bpp The PSNR in dB’s for the various wavelet famileee

displayed in Table 3-2. The results were obtaingdguthe Matlab simulation engine using six

wavelet decomposition levels and the SPIHT wavebtghpression coding scheme. This was

achieved in order to determine the wavelet fantibt performs best in terms of PSNR or image

quality. In Table 3-2, the Coiflet 5 wavelet tydigaexhibits the best performance with regards

to PSNR quality across the sample image set. TiNRPQualities of majority of the wavelet

families are similar therefore selection of pat@gcwavelet basis for a specified coder is based

on the wavelet basis exhibiting the highest ové?&INR, which is the Coiflet wavelet family.

LENA | BARBARA | CAMERAMAN | BABOON | GOLDHILL | PEPPERS
HAAR | 30.5356] 28.1284 31.4245 26.0736 29.2732 30.5800
DB 2 31.3139| 28.7962 32.1269 26.2975 29.5812 31.4285
DB 4 31.6725| 29.4289 32.4340 26.4586 29.7242 31.5251
DB 8 28.2765| 29.5819 28.6871 26.4469 29.6070 31.3560
DB 10 28.2490| 29.6464 32.6219 26.4418 29.6222 27.9885
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COIF1 | 31.3909| 28.8330 32.2734 14.1617 29.6038 31.4322
COIF5 | 319057 | 29.8693 32.8994 26.5274 29.7758 31.5617
SYM 2 | 31.3139| 28.7962 32.1269 26.2975 29.5812 31.4285
SYM 8 | 31.8254| 29.7269 28.6536 26.5017  29.7770 31.6265
MEYER | 31.8299| 30.0007 32.6770 26.5244 29.7204 31.344p

Table 3-2: Performance (PSNR in bpp) comparison between discrete wavelet families.

H 3.3 WAVELET IMAGE CODING

Wavelet based image compression has had greatssuaseof recent due to the fact that its
wavelet coding schemes combine excellent compressfiiciency with the possibility of an
embedded representation. In light of this, a fewanant coding schemes have emerged, they

are:

« Embedded Zerotree Wavelet (EZW) Encoding — by Shd@B]

» Set Partitioning in Hierarchical Trees (SPIHT) —38id and Pearlman [32]

e Space Frequency Quantization (SFQ) — by Xiong, Ramdran and Orchard [34]

e Stack-Run Image Coding (SR) — by Tsai, Villasermat &hen [38]

* Embedded Conditional Entropy Coding of Wavelet @oieints (ECECOW) — by Wu
[40]

3.3.1 Embedded Zerotree Wavelet

Embedded Zerotree Wavelet encoding was originalbp@sed by J. Shapiro [28]. From its
distinctive name EZW employs three key conceptshezided coding, zerotree structure and

wavelet transform.

This algorithm was specifically designed to be usedonjunction with wavelet transforms,
hence the word ‘wavelet’ in EZW. Embedded codinglé® known as progressive coding and is
used to compress an image into a bit stream witfeasing accuracy. In other words as more
bits are added to the bit stream, the decoded imdthecontain more detail and thus the
accuracy of the encoding will increase. The zeeottructure is based on subband

decomposition forming a tree-like hierarchical matu

This subband decomposition uses the DWT to decoepbse image into four different

subbands. A DWT coefficient in a lower subband kbave four descendants in the next higher
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subband. Each of those four descendants then hathar four descendants in the next higher
subband and so on. Thus a quad-tree structure emérgm this subband decomposition.
Finally the zerotree concept can be formally defiae a quad-tree of which all nodes are equal

to or smaller than the root. This definition isifitrated in Figure 3-26.

parent offspring descendents

C
T - level 3 Parent
"-\.“
Y \ @
% \
EEI\ laval 2 Offspring
E level 1 Descendents

Figure 3-26: Diagram of the Zerotree structure [31].

The zerotree concept [28], [29] is based on theothgsis that if a wavelet coefficient at a
coarse scale (parent) is insignificant with respecta given threshold T, then all wavelet
coefficients of the same orientation in the samatiaplocation at fine scales (children) are
likely to be insignificant with respect to T [28Essentially this hypothesis implies that the
whole tree need not be encoded and encoding oelydbt of the tree would provide a fair
amount of compression in itself. This parent-chidationship gives rise to the zerotree

structure depicted in Figure 3-26.

Embedded Zerotree Wavelet coding is based on twerehtions of the wavelet transform [28]:

(1) Natural images in general have a low pass spectiimen an image is wavelet
transformed, the energy in the subbands decreaskeascale decreases (low scale
means high resolution), so the wavelet coefficients on average, be smaller in the
higher subbands than in the lower subbands. Thiwslhat progressive encoding is a
very natural choice for compressing wavelet tramséal images, since the higher
subbands only add detail.

(2) Large wavelet coefficients are more important thanall wavelet coefficients.

The two observations are used to encode the waseddticients in decreasing order in several

passes until the target bit rate is achieved.
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3.3.1.1 EZW Algorithm

From the above two observations and the zerotrgmthgsis, the EZW algorithm was
developed. The first aspect of the algorithm inesha simple looping structure where each
wavelet coefficient is compared to a threshold @allhe second aspect of the algorithm then
determines whether the wavelet coefficient is atzee root, isolated root or significant root.
The third aspect of the algorithm involves two gsswith which to code the image; a dominant

pass and a subordinate pass [29].

Merging all three aspects the complete EZW algoriis shown below in Figure 3-27 and

functions as follows. The initial threshold is s@t2°%™*\yhere max is the maximum wavelet
coefficient. In the dominant pass the image is sedrthrough either Raster scanning or Morton
scanning and each wavelet coefficient is compardtd threshold. There are three comparison

cases in the dominant pass [29]:

(1) If the coefficient and its descendants are larigan tthe threshold, the coefficient is then
declared a significant root and does not need todaed by lower thresholds and is
thus set to zero.

(2) If the coefficient and its descendants are smaan the threshold, the coefficient is
then declared a zerotree root.

(3) If the coefficient is smaller than the thresholdt Iblve descendants are larger, the

coefficient is then declared an isolated root.

At the end of the dominant pass all the coeffigethtat are in absolute value larger than the
current threshold are extracted and placed witti@it signs on the subordinate list and marked
to prevent them from being coded again. In the slibate pass, also known as the refinement
pass, each coefficient value in the subordinatedisompared to the current threshold. There

are two comparison cases in the subordinate p8gs [2

(1) If the coefficient value is larger than the thrdghahe current threshold is subtracted
from the coefficient value in the subordinate éistl a1’ is output.

(2) If the coefficient value is smaller than the th@sghthe output is &' .

The subordinate list is then re-sorted in orddnighest to lowest as the larger coefficients carry
more information. The threshold is then decreasethdlf to improve the accuracy so that a
target bit rate can be met. The loop repeats antilinimum threshold is reached, where the

minimum threshold controls the bitrate and if sfiedi to “0” , lossless compression is
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experienced. This minimum threshold represents rgetabit rate achieved by the EZW

algorithm.
BEGIN
Set the initial threshold t@"%*
WHILE the threshold > minimum threshold possibi®
{
Dominant Pass()
Subordinate Pass()
Decrease the threshold by half to improve accyrac
} Figure 3-27: Algorithm of EZW [30].
END

As mentioned above the image is scanned usingreiltiee Raster scanning method or the
Morton scanning method. These scanning methods ysedefined scan order to transmit the
coefficients for coding. Both of these methodsilwstrated in Figure 3-28. A crucial property

of any scanning method is that a child coefficishbuld never be scanned before a parent

coefficient.

= raster scan

i Morton scan

Figure 3-28: Diagram of the Raster and Morton scanning methods [30].

3.3.1.2 Performance of EZW

The EZW algorithm produces excellent results asparad to the JPEG standard, however it is
computationally expensive. Though EZW produces owed performance, it must be noted
that it was the first wavelet coding scheme devatbpvhich left much room for improvement

in wavelet coding. Table 3-3 depicts the PSNR \&tsitrate for thd_ena and Barbara test

images. An increase in bitrate reveals a propaatiortrease in the associated PSNR.
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LENA BARBARA
Bit-Rate (bpp) PSNR(dB) PSNR(dB)
0.25 33.17 26.77
0.5 36.28 30.53
1 39.55 35.14

Table 3-3: PSNR results for EZW [28].

3.3.2 Set Patrtitioning in Hierarchical Trees

An improved variation of the EZW algorithm was deyed by Said and Pearlman known as
Set Partitioning in Hierarchical Trees (SPIHT) [3Rhis algorithm is considered state of the art

with regards to image compression.

SPIHT is a fully embedded progressive wavelet agpdatgorithm that refines the most
significant coefficients. It ensures that the latgeoefficients are transmitted first by using
various tree searching routines. The SPIHT algeritises the partitioning of quad trees to keep
insignificant coefficients together. In the implem®tion of SPIHT, the significant information
is stored in three ordered lists [32], [33]:

(1) List of significant pixels (LSP) — contains coeffints that are significant or greater
than the threshold.

(2) List of insignificant pixels (LIP) — contains coigients that are insignificant or less
than the threshold.

(3) List of insignificant sets (LIS) — contains setscokfficients defined by tree structures
which are insignificant or smaller than the thrddhdhe set excludes the coefficients

corresponding to the tree or all subtree roots.

The following represents the set of coordinates wgi¢h the above lists in the algorithm [32],
[33].

(1) O(i,j) — is the set of coordinates of the offspring’stef wavelet coefficient at location
(i,j). As each node can have four offspring’s (quadyrde size ofO(i,j) is zero or
four.

(2) D(i,j) — is the set of all descendants of the coefficambcation(i,j).

(3) L(i,)) —is the set of all coordinates of the descendaintise coefficient at locatio(,))
except the immediate offspring’s of the coefficiahtocation(i,j).

(4) H—is the set of all root nodes.

74



3.3.2.1 SPIHT Algorithm

The SPIHT algorithm consists of two main passesdde the image, a sorting pass and a
refinement pass. The LIS and LIP entries are caal¢ke sorting pass and the LSP entries are

coded in the refinement pass. Figure 3-29 showsuhme of the algorithm.

BEGIN
Set the threshold to an initial value
Set LIS, LIP, LSP accordingly
WHILE the threshold > minimum threshold possibi®

{

Sorting Pass()

Refinement Pass()

Decrease the threshold to improve accuracy
}

END

Figure 3-29: Algorithm of SPIHT.

The initialization of the threshold is the samegedure as that used in the EZW algorithm. The
list of significant pixels (LSP) is set to emptyz®ro and the roots in the similarity trees oflist
of insignificant pixels (LIP) and insignificant sefLIS) are set t¢d andD respectively. The
sorting pass begins by examining each coordinatdenLIP for significance. There are two

comparison cases in the LIP, they are [33]:

(1) If the coefficient is significant d’ is transmitted, followed by a bit for the signtbé
coefficients to the LSP. The bit‘® for a positive sign and’ for a negative sign.

(2) If the coefficient is not significant'@’ is transmitted.

After the LIP is examined, the LIS sets are thesngined. There are four comparison cases that

make up the LIS component and they are as foll@8F [

(1) If the set at locatiofi,)) is not significant &'’ is transmitted.

(2) If the set at locatiof,)) is significant d1' is transmitted.

(3) If the set is confirmed significant and if it issat of typeD, the offspring coefficients
are then individually checked. If the offspring ffament is significant a‘l’ is
transmitted, followed by a bit representing thensif the coefficient'l’ for a positive
sign and‘'0’ for a negative sign). Next the coefficient is mdv® the LSP. If the

offspring coefficient is not significant'@’ is transmitted.
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(4) If the set is confirmed significant and if it issat of typel, each coordinate i0(i,)) is
appended to the LIS as the root to a set of p&hese new entries in the LIS are

examined during this pass. Thereafter the cooréingtis removed from the LIS.

Once each set in the LIS is processed a refinepast then takes place. The refinement pass
involves examining the coefficients of the LSP arahsmitting then™ most significant bit of
the coefficient at locatior(i,j). The remaining stages of the algorithm involve Hame
procedures described in the EZW algorithm. The SPlélgorithm does not use scan
coefficients like the EZW algorithm however, it &ble to output and code descendants

immediately.

3.3.2.2 Performance of SPIHT

The SPIHT algorithm offers a more efficient andeefive implementation than the EZW
algorithm. The results show an impressive improvenie performance as compared to the
EZW algorithm. SPIHT exhibits great performancetwéss computational complexity making
it one of the most widely used wavelet coding sa®niable 3-4 numerically illustrates the
performance of the SPIHT coder in terms of its PSKRsus bitrate. Focusing particularly at
low bitrate compression, SPIHT exhibits improvedfpenance compared to the EZW coder

for the low bitrate oD.25bpp

LENA BARBARA
Bit-Rate (bpp) PSNR(dB) PSNR(dB)
0.25 34.13 27.57
0.5 37.24 31.39
1 40.45 36.41

Table 3-4: PSNR results for SPTHT [32].

3.3.3 Space Frequency Quantisation

Xiong et al. proposed the Space Frequency QuaintizéEFQ) wavelet coding scheme [34].
This algorithm may be viewed as the rate-distortptimized variant of the EZW algorithm. It

is a joint application of zerotree quantization aedlar quantization. The zerotree quantization
mode exploits spatial grouping of coefficients iret structures and the scalar quantization
mode exploits frequency grouping of coefficientsitbbands hence the name Space Frequency
Quantization.
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3.3.3.1 SFQ Algorithm

Essentially SFQ uses zerotree quantization to ifyeatpruned subset of significant wavelet
coefficients to be scalar quantized while discagdime rest. The algorithm aims to optimally
select spatial regions for applying zerotree guatitn and to optimally select the scalar

quantizer step-size for quantizing the remainingfficients.

The algorithm itself consists of two phases. Thetfiphase is called the “tree pruning
algorithm”, which involves searching for an optim@iuned subtree at a particular quantizer
step-size and rate-distortion slopk, The second phase called “predicting the treeblivas

choosing an optimal quantizer step-size by seagctiinough a finite list of admissible step-

sizes and finding the one that minimizes the ra&dion function shown in (3.15):

D+R, (3.15)

whereD is the distortion and is the bitrate and the optimal rate-distortionpsld is then

searched using a bisectional algorithm in ordeteti@rmine the target bitrafe

3.3.3.2 Performance of SFQ
The SFQ algorithm shows that high performance apdiepends on exploiting both frequency

and spatial compaction of energy of wavelet cogffits. Using a simple intuitive algorithm,
SFQ demonstrates its competitiveness with otherelgavymage coding algorithms like EZW
and SPIHT. However this scheme is computationaliyeasive due to its iterative zerotree
pruning stage. Table 3-5, shows reasonably simélswlts to those produced using the SPIHT
algorithm. This further illustrates the competitiess of the SFQ algorithm with SPIHT.

LENA BARBARA
Bit-Rate (bpp) PSNR(dB) PSNR(dB)
0.25 34.33 27.20
0.5 37.36 31.33
1 40.52 36.96

Table 3-5: PSNR results for SFQ [34].

3.3.4 Stack-Run Image Coding

The Stack-Run (SR) image coding algorithm was damed by Tsai et al. [38]. It is a

conceptually simple algorithm and is computationatiexpensive, yet it remains competitive

with other well established wavelet coding algorigh
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3.3.4.1 SR Algorithm

The Stack-Run coding algorithm partitions the gizat wavelet coefficients into two groups
containing zero valued and non-zero valued or Bagmit coefficients. The algorithm performs
raster scanning within subbands generating stadkram pairs of the form (run, stack) where
run is the number of zero-valued coefficients encawutdefore the next coefficient asthck

is the magnitude and sign of the significant caédfit. This representation is similar to run-

length coding used in the JPEG algorithm.

A symbol set containing four symbol§,{1, +, } were developed to distinguish between the
level values and the runs of zert®. and“l” is used to signify the binary bit valuesGand
1 respectively in encoding of significant coeffidenn the run portion of the stack-run pair.
“+” and“-" is used to represefitandl respectively in the stack portion of the stack-pair.
The {stack} coefficients and {run} coefficients win the pair are independently arithmetically

coded in order to enhance the performance of taigthm.

3.3.4.2 Performance of SR

The SR image coding algorithm is essentially a lmmplexity adaptive arithmetic coder.
Given this low complexity design it still manages rhaintain reasonable performance with
respect to the EZW algorithm. It is slightly inf@riwhen compared to other wavelet coding
schemes however it does boast lower computatioremhead than other coders. The numerical
performance results in Table 3-6 were obtainedHferSR algorithm. Its low bitrate 6f25bpp
achieves a slightly higher outcome than EZW norlesise it is still performs below the famous
SPIHT algorithm.

LENA BARBARA

Bit-Rate (bpp) PSNR(dB) PSNR(dB)
0.25 33.63 27.39
0.5 36.79 30.98

Table 3-6: PSNR performance for SR [38].

3.3.5 Embedded Conditional Entropy Coding of Wavele t Coefficients

A wavelet coding technique called Embedded ConuifioEntropy Coding of Wavelet
Coefficients (ECECOW) was proposed by Xiaolin WQ][4&£CECOW is a scheme for context
modeling and entropy coding of quantized waveladffotients. It differs from the EZW and
SPIHT algorithms as it is not a zerotree-based agkthut rather a sample-by-sample bit plane

coding technique.
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Wu outlined that the zerotree is a high-order canteodel of small wavelet coefficients and

iImposes an artificial structure on the wavelet ioehts. In other words the zerotree only uses
modelling contexts of square shape in the spatmhadn whereas statistically dependent
wavelet coefficients may form arbitrary shaped eagi Thus ECECOW adaptively shapes the

modelling contexts to the statistics of waveletfioents.

3.3.5.1 ECECOW Algorithm

The ECECOW algorithm only focuses on entropy codihguantized wavelet coefficients and
thus does not delve into the wavelet transform wvantgzation processes. The ECECOW
algorithm begins with bit-plane coding the quardizeavelet coefficients into a binary symbol
stream. This bit stream is then compressed by aptae binary arithmetic coder. The
ECECOW algorithm estimates the conditional prolighdf a wavelet coefficient based on past
coded bits and then uses this estimate to driveatilemetic coder. This estimation is called
modelling context and determines the bit rate @& tompression algorithm. In fact this
statistical context modelling in the form of probdyp estimation lies at the heart of this

compression scheme.

Wavelet coefficients of similar magnitudes statisfliy cluster in frequency subbands and
spatial locations. Large wavelet coefficients iffegent frequency subbands tend to register at
the same spatial locations. Using these obsensaild®ECOW models a coefficientby its
neighbours in the current subband and by the dyati@responding coefficientsin the parent
subband.

LL ! LH py! LH
i PW p Pé
_________ i_____P_S__.I NN
HL | HH N
| Wec E
_________ bS]
HL HH

Figure 3-30: ECECOW Context Modelling [40]

78



Figure 3-30 illustrates the different orientatiooisthe modelling contexts used in different
subbands. Thus the modelling contexts used in the subbands exhibit predominantly
horizontal sample structures and the HL subbandsbixpredominantly vertical sample

structures.

Once this adaptive context selection based on subbdentations is completed, quantization of
the modelling event takes place. This context dmatibn helps reduce the number of
conditioning states for the entropy coding stade &€ssence of context quantization is to merge

different conditioning states that have similar bgirprobability distributions.

3.3.5.2 Performance of ECECOW

The excellent performance of ECECOW is solely dubigh order adaptive context modelling.
ECECOW is embedded like the EZW and SPIHT algomtlamd yet still manages to maintain
higher coding efficiency than these two wavelet e@ad ECECOW exhibits superior

compression performance thus demonstrating thefiteera# using high order statistics in

wavelet coefficient coding. This algorithm presem@tsconvincing argument that context
modelling and conditional entropy coding of wavadetfficients are extremely important and
particularly effective in wavelet coding. Table 3i&picts the PSNR results for the ECECOW
algorithm. The results indicate that this particukgorithm achieves impressive PSNR

performance as compared to other wavelet coders.

LENA BARBARA

Bit-Rate (bpp) PSNR(dB) PSNR(dB)
0.25 34.81 28.85
0.5 37.92 32.69
1 40.85 37.65

Table 3-7: PSNR performance for ECECOW [40].

H 3.4 PERFORMANCE

3.4.1 Various Wavelet Coding Schemes

The above wavelet coding schemes were compareztrrstof its PSNR versus bitrate (image
quality versus compression) with the standardisadpzession techniques of JPEG and JPEG
2000. This comparison was demonstrated using tHerpeance values of PSNR and bitrate in
Table 3-3 to Table 3-7 which use thena (512x512) andBarbara (512x512) grayscale test
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images. The results were generated using the Mathablation engine. Both the graphs show
the ECECOW wavelet coding scheme producing therbéstdistortion characteristics of all the
coders. The SFQ, SPIHT and JPEG 2000 schemesvallsivailar rate-distortion graphs.

PSNR vs. Bitrate for Lena Image
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Figure 3-31: PSNR vs. Bitrate for Lena Image.
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Figure 3-32: PSNR vs. Bitrate for Barbara Image.

3.4.2 EZW and SPIHT

The main focus of the performance consideratiorceors the EZW and SPIHT wavelet coders,
as these wavelet coding schemes are used in tippgd coder scheme discussed later. The

ECECOW coder will not be included as the algorititself incorporates adaptive binary
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arithmetic coding as its wavelet compression tegpi Arithmetic coding is used as a joint
error detection and entropy coding stage for theele coding schemes which is discussed in
Chapter 5. An adaptive binary arithmetic coderisaaly utilised in the ECECOW algorithm as
an entropy coding stage and wavelet coding algoritthus manipulation of the current
adaptive binary arithmetic coder for error detettiwill not succeed as it will change the
composition of the algorithm producing unstableultss Thus only the EZW and SPIHT

wavelet coding algorithms will employed for the posed coder.

Performance results of the two wavelet compresesaters against standardised compression
schemes of JPEG and JPEG 2000 are demonstratedcoffigressed images are generated
using the VcDemo Image and Video Compression Lagriiool and its PSNR calculations are

simulated using the Matlab simulation engine. TB&R values are calculated using the MSE
of the compressed images against the original upoessed image for a series of bitrates
ranging from0.05bppto 3bpp

The two wavelet coders and the two standard schevees systematically evaluated using a
sample set of three grayscale test imagesa, Barbaraand Cameraman each having a
resolution of 256x256. The use of these variousiteages present a range of challenges such
as reproduction of fine detail and textures, edged sharp transitions and uniform regions
when compressed by the wavelet algorithms, progidan comprehensive performance

evaluation of these algorithms.

Both the EZW and SPIHT coders outperform the DC3eblaJPEG standard, with SPIHT
performing fairly well across all test images. Than be seen in Figure 3-33 to Figure 3-35.
Both these schemes are on par with the performahtiee standardised JPEG 2000 scheme.
This is due to JPEG 2000 being based on the Embeétieck Coding with Optimised
Truncation (EBCOT) wavelet coding scheme, simitathte embedded structure of the SPIHT

scheme.

The results are obtained by calculating the diffeeebetween PSNR values at a given bitrate
for the two sets of data and then finding the ma&enoss the values. There is an ove2a8idB
improvement in image quality for the EZW algorittand a5dB improvement is seen for the
SPIHT algorithm forLena Barbara and Cameramanin Figure 3-33 to Figure 3-35 when
compared to the JPEG standard.

When compared to the JPEG 2000 standard thergdB anprovement in image quality for the

SPIHT scheme, however the EZW does not performelsamd has an image quality that is
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1.2dBless than that of JPEG 2000 fagng BarbaraandCameramarnn Figure 3-33 to Figure
3-35.

EZW performs better than JPEG at low bit ratest agaserves all significant coefficients at
each scale by testing the zero tree hypotheseslffdhe coefficients. The EZW algorithm
overcomes the “blocking artifacts” problem as #@nisfers the entire image before coding. The
SPIHT algorithm achieves higher compression perémree than EZW due to its improved
zerotree searching routine. This is because SP¢E dot scan coefficients in a predetermined
order like the EZW which uses Raster scanningsdens through lists and encodes significant

descendants immediately thus improving rate efiicye

PSNR vs. Bitrate for Lena Image

PSNR (dB)

f EZW
0l —+—SPIHT ||
—5— JPEG
u —«— JPEG 2000
15 Il Il Il Il T
0 0.5 1 15 2 2.5 3
Bitrate (bpp)

Figure 3-33: Diagram of PSNR vs. Bitrate for EZW, SPIHT, JPEG and JPEG 2000 for Lena Image.
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PSNR vs. Bitrate for Barbara Image
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Figure 3-34: Diagram of PSNR vs. Bitrate for EZW, SPIHT, JPEG and JPEG 2000 for Barbara Image.

PSNR vs. Bitrate for Cameraman Image
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Figure 3-35: Diagram of PSNR vs. Bitrate for EZW, SPIHT, JPEG and JPEG 2000 for Cameraman Image.
The image quality (PSNR) for the three test images visually depicted in Figure 3-36 to
Figure 3-38. The images illustrate the image qu&tit SPIHT coding at various bitrates. As the

bitrate decreases or compression increases, thgeiouzality becomes more degraded causing

blurring of the image.
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Figure 3-36: Lena image for SPIHT coding for bitrates of 0.05bpp, 0.2bpp and 0.5bpp with PSNR of 23.1dB,
28dB and 32.7dB respectively.

Figure 3-37: Barbara image for JPEG 2000 for bitrates of 0.05bpp, 0.2bpp and 0.5bpp with PSNR of 20.74B,
23.7dB and 29.2dB respectively.

Figure 3-38: Cameraman image for JPEG for bitrates of 0.05bpp, 0.2bpp and 0.56pp with PSNR of 16.9d8B,
22.3dB and 28.4dB respectively.

3.5 SUMMARY

This chapter introduced the concept of wavelets isdassociated transforms. The theory
behind multiresolution analysis, filter banks antsand coding provided the basis for the Fast
Wavelet Transform, which replaced the Discrete Wi&v@ransform as a computationally
efficient substitute.
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The various wavelet families were evaluated anddbiflet 5 wavelet provided the best results.
However, any of the recommended wavelet familiesuldostill provide fairly good

performance with the exception of the Haar wavieletily.

A number of wavelet coding schemes were presenteldexaluated. These wavelet coders
outperformed the DCT- based JPEG standard verifyiagmpact wavelet-based coders have in
image compression. The EZW algorithm, which wasdtiginal wavelet coder, surpassed the
JPEG scheme. The ECECOW and SPIHT coder’'s perfarenarceeded expectation as they
showed superior rate-distortion. SPIHT performeidyfavell when measured against JPEG
2000, which is based on EBCOT, a similar embedttedtsire to SPIHT.
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CHAPTER 4- WIRELESS CHANNELS

The rapid growth in interactive multimedia has te=iiin the spectacular progress of wireless
communication systems. However, there still exigtnyn obstacles in efficient multimedia
communication over wireless channels, some of whiehhigh error rates and stringent delay
constraints caused by severe wireless channel toamglias well as limited bandwidth

availability and complex time-varying wireless chahenvironments.

Some of the critical wireless channel impairmemizegienced are: path loss, multipath fading,
interference and noise disturbances. These impate@nsequently affect the transmission of
image and video over a wireless channels. Thuahlelimultimedia transmission has become

essential due to the challenges posed by the higijgng wireless channel conditions.

4.1 ADDITIVE WHITE GAUSSIAN NOISE CHANNEL MODEL

The most prevalent problem in any communicationesyds noise. Noise corrupts the signal in
an additive fashion and can be described by a Gausandom process. It is generally modelled
using the additive white Gaussian noise (AWGN) clehrjl], [47], [79], [80]. Noise can be
produced by either: thermal noise, atmosphericenoisrandom interference. White Gaussian
noise is noise with its power spectral densityriigted over all frequencies and having an
amplitude described by the Gaussian probabilitysieriunction (PDF). The Gaussian PDF is
given by [1], [80];

p(z)=——2— A5

, 4.1
Py (4.1)

where i/ is the meang is the standard deviation ard is the variance of the signal A
graphical representation of this function is degicin Figure 4-1 wherp(z) at the peak equals

1 at a mean ok=x. The Gaussian PDF is normally described as belpeth and is
2m?

commonly referred to as the “bell shaped curveit aghibits symmetric features.
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Gaussian PDF
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Figure 4-1: Diagram of Gaussian probability density function [1].

The following diagram represents the volume undéwadimensional plot of the Gaussian

PDF with a mean dd and a variance df, which is essentially a three-dimensional plot.
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Figure 4-2: Diagram of 2D Gaussian probability density function.

Due to its simple mathematical tractability in btlle spatial and frequency domains, Gaussian
noise models are perhaps the most frequently usddbdtion. The additive white Gaussian
noise channel model is one where there existseadiaddition of zero mean white Gaussian

noise to the transmitted signal. This concept itheraatically defined in equation (4.2) [48];

r(t)=s(t)+n(t), (4.2)

wherer(t) denotes the received signa(f) is the transmitted signal amdt) is the zero mean
white Gaussian noise with a two sided power spedgasity ofN/2. The AWGN channel is

crucial in defining the noise added to the trangditignal but is inadequate in characterising
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signal transmissions over channels whose transmmissiary with time. Therefore the model

cannot account for fading, frequency selectivityeiference, nonlinearity or dispersion.

H 4.2 MULTIPATH FADING CHANNELS

The multipath phenomenon occurs when a signales@t the receiver via multiple propagation
paths with various delays due to obstacles an@atidins. The multipath channel [43], [45],
[46], [47] can be described as having a dominam&-tf-sight component with or without non-
line-of-sight components (Rician channel modelhaving only non-line-of-sight components
(Rayleigh channel model) where line-of-sight is thieect connection between the transmitter
and receiver. Non-line-of-sight is the path detewdi after reflections. This concept is

illustrated in Figure 4-3.

Non-Line-of-Sight - -~ r
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, . v ,
TransmltterA Receiver
a2y \\\ /’/
Non-Line-of-Sight ~~-_

Figure 4-3: Diagram of Multipath Non-Line-of-Sight and Line-of-Sight paths.

There are three types of mechanisms that affeagbkigropagation; reflection, diffraction and

scattering [43].

» Reflection occurs when a propagating radio waveinggs on a smooth surface with
very large dimensions compared to the RF (radigueacy) signal wavelength);

« Diffraction occurs when the radio path between thensmitter and receiver is
obstructed by a dense body with large dimensionsdmparison toA, causing
secondary waves to be formed behind the obstrubtily. Diffraction accounts for RF

energy travelling from transmitter to receiver with a line-of-sight path between the
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two. It is often termedhadowingas the diffracted field can reach the receivemeve
when shadowed by an impenetrable obstruction.

» Scattering occurs when a radio wave impinges dreeia large rough surface or any
surface whose dimensions are in the ordet of less, causing the reflected energy to

spread out (scatter) in all directions.
The effect of the multipath channel can cause dltbns in the received signal’s amplitude,

phase and angle of arrival giving rise to the ideenultipath fading. The delay of the reflected

path is known as delay spread.

H 4.3 PATH LOSS

Path loss [43] is the attenuation of a signal gsapagates from a transmitter to receiver. Path
loss may be due to reflection, refraction, scattgriree-space loss, distance between antennas,
terrain etc. Path loss can also be modelled usiaddg-distance path loss equation given by
(4.3) [43];

P.(d)=PR(d,)+10ylog(d/d,) , (4.3)

where P_ is the path loss in dB'q] is the distance between the transmitter and receiv
metresd, is the reference distand®,(do) is the mean path loss apis the path loss exponent.
The value of the path loss expongn{43] depends on the frequency, antenna height and
propagation environments and can range betweerd Bali is equal to 2 for free space, and
equal to 4 for lossy environments and specularecgfin from the earth’s surface. When
obstructions are present like buildings or irreguéarain the path loss is generally between 2
and 4, in other instances like indoor environmdngflection, refraction, scattering) the path
loss can reach values between 4 and 6. A tunnelatiags a strong wave-guide and the path
loss value can drop to below 2. Essentially pa#is lmvolves the signal power decaying as a
function of distance, as the signal propagatesutiitdree space in outdoor environments or

indoor environments.

H 4.4 SHADOWING

Shadowing is caused by the presence of obstacletheinpropagation path of a signal.

Shadowing occurs if the transmitted signal is alzséd or absorbed due to the environment.
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This then causes the attenuation of the signdieatdceiver. Shadowing is commonly referred
to as log-normal shadowing as it is modelled bpgrormal distribution of the mean signal
power. The shadowing component is included in gilewing log-distance path loss equation
[43];

R(d)=PR(d,)+10ylog(d/d,)+ X, , (4.4)
where X, is the shadowing component with is modelled asm@® zmean Gaussian random
variable with a standard deviatiangiven in dB’s. The standard deviation is dependenthe

environment of the receive antenna. Typically urbagas experience a standard deviation of
about6dBto 8dB, while rural areas have betweBddBto 12dB

H 4.5 FADING CHANNELS

The fluctuations in the received signal's amplitugdhase and angle, can be characterised by
two main manifestations: large-scale fading andlisscale fading. These two broader types of
fading give rise to further specific types of sibdagradations. This is outlined in Figure 4-4

showing the breakdown of the fading manifestatims its associated degradations.

Fading
Manifestations
Large Scale Small Scale
Fading Fading
Signal Time variance
dispersion of the channel

Degradations

’ Frequency
selective
fading

O @E®

Figure 4-4: Diagram of Fading manifestations and associated degradations [45].

4.5.1 Large Scale Fading Channels

Large-scale fading [43] represents the averageabigower attenuation and path loss due to

motion over large areas. Large-scale fading loasegenerally a result of large physical objects
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between the transmitter and receiver, like prontinemain contours specifically hills, forests,

buildings etc. The receiver can be characterizdubay) “shadowed” by these obstructions.

4.5.2 Small Scale Fading Channels

Small-scale fading [43], [49] refers to the sigeifint changes in the signal amplitude and phase
as a result of small changes in spatial positionintpe transmitter and receiver. These changes
may be caused by mobility of the transmitter orereer, or obstructions in the path of the
signal. There are two manifestations of small-s€atitng, signal dispersion and time variance

of the channel.

Signal dispersion involves the time spreading @& $ignal. This may occur due to multiple
scatterers at different delays. The signal disparsnanifestation is based on the multipath
delay spread theory. Delay spread is defined aktbest of the delays among various reflected

and scattered propagation paths in the channel.

Time variant channels involve the mobility of tmartsmitter and receiver or obstructions in the
path of the signal resulting in propagation pathargjes ultimately producing fading
impairments. These changes may include variatiorthé relative delays of the signals from
multiple scatterers. Time variant channel manitestas based on the Doppler spread. Doppler

spread is defined as the largest of the frequehifis ©f various paths.

Both of the fading manifestations, signal dispersamd time variance of the channel can be
characterized in the time and frequency domain Hey tarious degradation types. Signal
dispersion produces frequency-selective fadingfltdading, whereas the time variant channel

manifestation produces fast and slow fading.

4.5.3 Flat Fading Channels

Flat-fading [43], [44], [46], [48], [49] occurs whethe channel frequency response is flat or
constant as well as linear in phase over the wsigieal bandwidth. In flat-fading channels the
bandwidth of the signal is less than the channékerence bandwidth, where the coherence
bandwidth is defined as the range of frequenciebadwidth which the channel can be
considered flat or non-distorting. This descriptisrexpressed in the frequency domain context
of flat-fading channels and can also be describatieé time domain context. The time domain
context involves delay spread where the delay gpigéess than the symbol duration. Figure

4-5 depicts the time and frequency domain flatrfgdiignal representations.
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Figure 4-5: Diagram of Flat fading channel in the time and frequency domains [43].

The signal dispersion of a fading channel is edeiato the signal spreading of a filter. In
Figure 4-5 the filter represents a flat fading atelrwheres(t) is the transmitted signah(t,7)
represents the flat fading channel (wideband fibtenarrow impulse response) arft) denotes
the received signal in the time domain cakes the duration of the transmitted signal and
represents the delay spread. In the frequency doifgas the carrier frequency wit8(f), H(f)
and R(f) denoting the transmitted signal, the flat fadingarmnel and the received signal
respectively. As discussed above the delay speeleds than the symbol duration or transmitted

signal duration and given ki< Ts. The flat fading channel yields an output fredistortion.

4.5.4 Frequency-Selective Fading Channels

Frequency-selective fading [43], [44], [46], [48}49] has a reciprocal relationship to flat fading
channels. Hence frequency-selective fading arisenwhe signal bandwidth is greater than the
channel’'s coherence bandwidth. This results inedsifit frequency components of the
transmitted signal undergoing different degreefading. Its time domain characteristics show

the delay spread exceeding its symbol durationieguster-symbol interference (ISI).
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Figure 4-6: Diagram of Frequency-selective fading channel in the time and frequency domains [46].

Discussion concerning the symbols used in thddlding diagram holds true for this frequency-
selective fading diagram with the exception offilier. The filter in frequency-selective fading
is a narrowband filter or a wide impulse resporgeasenting a frequency selective channel. In
frequency selective fading the delay spread excteglsymbol duration or transmitted signal
duration and this is illustrated with> T, The output of a frequency selective filter sugfer

significantly from the distortion as seen in Figdr6.

45,5 Fast Fading Channels

Fast fading [43], [44], [49] takes place when tHemnel response changes faster than the
symbol duration of the transmitted signal. In otlvards the coherence time of the channel is
less than the transmitted signal duration, wheeecttherence time refers to the time duration
over which the channel response can be consid¢abte sThe frequency domain employs the
Doppler spread [43], [49] which is the reciprocéicoherence time. In the frequency domain
interpretation of the signal distortion due to festing is greater when the signal bandwidth is
less than the Doppler spread. Essentially the &equ shift due to the Doppler spread has
significant impact on the signal spectrum. In addiffast fading occurs at low data rates and

can also occur jointly with the flat fading and frequency-selective fading channel.

4.5.6 Slow Fading Channels

The slow fading channel [43], [44], [49] has a peotal nature to the fast fading channel. Thus
when the channel response changes at a much stateethan the transmitting signal slow
fading is experienced. The channel can be assutatid ar stable for several symbol durations.
Therefore the signal duration is less than the ot time. In terms of its frequency domain
characterisation the Doppler spread is much leas the signal bandwidth. The slow fading

channel may also be used in conjunction with tgeaidispersion degradations.
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H 4.6 RAYLEIGH MULTIPATH FADING CHANNEL MODEL

The Rayleigh multipath fading channel [1], [43],6]4[49] is a good approximation of a

realistic channel where in a wireless communicasioenario a receiver is in relative motion to
a transmitter with no line-of-sight path betweearnth Rayleigh fading generally represents the
worst fading case scenario due to a no line-oftspglth. The signals arriving at the receiver
represent multiple independent random variablel wiéan and variance constraints typical of
a Gaussian process. The Rayleigh fading channebearharacterized mathematically by the

following equation;
r(t)=s(t)h(t)+n(t), (4.5)

wherer(t) is the received signad(t) denotes the transmitted signiaft) is representative of the
Rayleigh multipath fading channel andt) corresponds to additive Gaussian noise. The
Rayleigh multipath fading channédi(t) is modelled as a zero-mean complex Gaussian random

process where it has the following form;

h(t)=x(t)+ jy(t) ,

wr Z(i);w‘)yf : @6
where x(t) and y(t) represent real Gaussian random processes whicltstatienary and
statistically independent. The amplitudé) can be statistically described by the Rayleigh
probability distribution function ang(t) is uniformly distributed over the intervad,@7). The
fading amplitudez(t) and the fading phasgt) can be further represented in terms of the zero-

mean Gaussian process and is indicated in theafimigpequations;

14=x*+y? ,and

4.7)
e arctar(iJ ,
X

The Rayleigh multipath fading channel is charaztati by a Rayleigh probability density
function. The Rayleigh PDF is commonly associateth whe envelope of a narrowband
Gaussian process. It is the most widely used Higidn function and its PDF is given in (4.8)
[43], [80];
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p(z) = ie_[;”ZJ forz=0, (4.8)

0.2

0 forz < 0,

where z is the envelope amplitude ardf is the variance in the distribution. A graphical

interpretation of the PDF is shown in Figure 4-7evdp(z) at the peak equd$07at z=g, the
0.2

standard deviation. The Rayleigh probability dgnsinction envelope is displaced from the

origin and is skewed to the right unlike the synmoat nature of the Gaussian PDF.

Rayleigh PDF

p(2)

Figure 4-7: Diagram of Rayleigh probability density function [1].

Rayleigh multipath fading is a result of construetiand destructive interference between
several versions of the signal via several patliseateceiver leading to attenuation of the signal
power or amplitude. Therefore deep nulls can beseapced in the received signal due to

significant destructive interference resultingittid or no signal received.

Rayleigh multipath fading channel is a good, simplathematically tractable channel model to
implement in order to characterise a real wireldssnnel environment. Fading has been the
primary cause of performance degradation and tlumsadds great attention when trying to

model efficient communication systems.

H 4.7 PERFORMANCE

This performance chapter evaluates the wavelet msawn coding schemes of EZW and

SPIHT transmitted across two degrading channels; GNVand Rayleigh fading. The
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performance looks at the visual impact the chahaslon the wavelet compressed images for a
range of SNR’s. The performance evaluation is usedetermine an acceptable average SNR

band that will produce visually acceptable wavetehpressed images.

The two channel models AWGN and Rayleigh fadingusattion parameters require the use of
binary phase-shift keying (BPSK) [80] also known2aBSK, modulation to illustrate its error
performance in this chapter. BPSK is the simpleshfof PSK as it uses two phases separated
by 180. The BPSK constellation can be seen in the Figu8e The BPSK modulation is the

most robust modulation with regard to errors thueking it suitable for use in the proposed

coder.
Q
A
HOH Hl”
° o~ »|
-1 1

Figure 4-8: Diagram of BPSK constellation.

Occasionally the communication channel can intredaa arbitrary phase shift making it
difficult for the demodulator to distinguish thenstellation point; -1 or 1. The signal can then
be differentially encoded prior to BPSK modulatisnorder to account for the phase shift.
Matlab is able to model a channel that introdudeasp shifting by using differential BPSK
(DBPSK) modulation [80] which is easier than diffetially encoding BPSK signals.
Essentially DBPSK eliminates the ambiguity conaegniwhether the demodulated data is
inverted or not. It is more suitable to implemeBRESK modulation for the channel instead of
BPSK modulation; this is in the event that the aldmegins phase shifting and DBPSK is able
to process the signal in during demodulation adoés not require coherent demodulation as
BPSK. However the use of DBPSK modulation comethatexpense, as BPSK modulation is
able to produce adB advantage over DBPSK modulation. DBPSK modulaitioimplemented
for the proposed wireless channel results as aephhit was specifically observed for the
Rayleigh fading channel. Therefore in order to rf@mconsistency throughout the proposed
results, DBPSK is implemented for both channelseliminate the noisy phase reference
induced with the Rayleigh fading channel. Impleraéioh of DBPSK over differentially
encoding BPSK signals is beyond the scope of tissedation, and DBPSK is used in order to

model the channel for simulation results to indcicannel errors.
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The channels were modelled using the Matlab sinmiagngine using the pre-coded channel
model tools for the AWGN and Rayleigh fading chdan&he Rayleigh channel model uses a
sampling period ofL00,000Hzor 0.1 seconds and a Doppler shift B80Hz The simulation

results for the EZW and SPIHT algorithms were asoerated using the Matlab simulation

engine using theena[85] sample image as a visual impact guide.

4.7.1 Theoretical AWGN Channel

The error performance of the AWGN channel using BRfnodulation is illustrated in Figure
4-9 below. The bit error rate (BER) decreases \aithincrease in the Signal-to-Noise-Ratio
(SNR) for the DBPSK modulated signals demonstraitirag less channel errors are produced at
higher SNR values. The graph shows the typicalatiglecay of the channel modelled by
equation (4.9):

BERywen = ¥, €I SNR), (4.9)

whereerfc is the complementary error functioBNRis the average Signal-to-Noise-Ratio in
dB’s equalling /Ny andBERs the bit error rate. It can be seen that the ANWhannel is a
simple tractable model that is generally used bsrehmark for other fading channels, as the
model does not account for fading, frequency seiégt interference, nonlinearity or
dispersion. This is because the AWGN channel'sivedesignal is a form of the transmitted

signal with some proportion of Gaussian white naidded to it.

BER vs. SNR for DBPSK AWGN CHANNEL

BER

SNR (dB)

Figure 4-9: Diagram of BER vs. SNR for DBPSK AWGN channel.
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4.7.2 Theoretical Rayleigh Multipath Fading Channel

The error performance of the Rayleigh multipathifgdchannel is depicted in Figure 4-10.

DBPSK modulation was used for the fading channedretthe signal decay can be described by

| SNR
BERravieicn = %(]—_ 1+ SNRJ’ (4.10)

where SNRis the average Signal-to-Noise-Ratio in dB’s &R is the bit error rate. The
average SNR is defined in (4.11) in terms of ttérfg variances”:

the following equation:

SNR= 02(5) (4.11)
I\IO

As compared to the AWGN channel the bit error ratéar higher in the Rayleigh multipath
fading channel, this is attributable to the AWGNachel having no fading properties. The
Rayleigh multipath fading model represents a “waase” scenario in signal fading as the

received signal strength can experience deep fades.

o BER vs. SNR for DBPSK RAYLEIGH MULTIPATH FADING CHANNEL
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Figure 4-10: Diagram of BER vs. SNR for DBPSK Rayleigh Multipath Fading channel for fading variance ¢°=0.5,

4.7.3 EZW and SPIHT over AWGN Channel

Figure 4-11 and Figure 4-13 show the impact chaaffects have on compressed bit streams

employing EZW and SPIHT wavelet coding, transmitéedoss an AWGN channel. Both the
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schemes track the theoretical AWGN DBPSK channetiehdrajectory. These results are

determined prior to compression decoding and shHwmvchannel degradation. These results
confirm the channels affect on the compressedéésts as each models the theoretical channel
trajectory. Images of the channels degradatiormage quality are displayed over a range of

SNR’s to illustrate which average SNR produces pied#e visual results.

From Figure 4-11 and Figure 4-13, both the wavatbiemes produce minimal errors at higher
SNR'’s. This is due to the BER value equalling zeten the SNR is high signifying that no

errors were generated at an average SNR for afigpeseimple set. Since the scale is
logarithmic, a BER of zero cannot be plotted therefthe results end abruptly. Figure 4-11
depicts the EZW DBPSK demodulated data that haerngotdie AWGN channel effects.

BER vs. SNR for EZW over AWGN Channel

77777777777777777777777777777777777777777777

AWGN DBPSK
—%— EZW DBPSK

SNR (dB)

Figure 4-11: BER vs. SNR for EZW (DBPSK) over AWGN channel.

Once the demodulated data at an average SNRIBf8dB and10dBis decoded by the EZW
wavelet coding scheme, the compresdamha images (256x256) [85] in Figure 4-12 is
produced. The transmitted bitstream is free ofrer(BER of zero) foL.enaat an average SNR
of 10dB with a PSNR image quality d26.23dBat a bitrate of0.3bpp This is sufficiently
excellent performance in terms of image qualitye Tihage is still visually clear, indicating the
modest noise effect of the channel at the appldB.SAt an average SNR &dB the channel

exhibits degradation causing errors in the decosgaeimage.
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Figure 4-12: EZW (DBPSK) compressed image transmitted over AWGN channel for SNR of 5dB, 8dB and 10dB
with BER of 0.0219, 0.0009 and 0.

Figure 4-13 shows the BER vs. SNR for the SPIHTeseh The same channel conditions used
in the EZW scheme were applied to the SPIHT schdmexhibited similar bit error rate
distortion as the EZW wavelet coding scheme buttgrevisual distortion across the SNR

range.

AWGN DBPSK f
——%— SPIHT DBPSK

T S A

Ly

10 cccbzccimczsimszoizssoissozzoozzsoz-zsc=q

10°

SNR (dB)

Figure 4-13: BER vs. SNR for SPIHT (DBPSK) over AWGN channel.

Figure 4-14 is representative of the SPIHT compéenaimages (256x256) [85] via the
AWGN channel. The BER is zero at an SNR16MB producing a PSNR image quality of
29.85dBat a bitrate 0D.43bpp This image quality metric is higher than thatdarced by the
EZW scheme however, at lower average SNR’s thealiguality is more degraded than the
EZW scheme. The compression (bitrate) is the sardelse number of errors (BER) produced
are the similar however, more catastrophic errogssaen in SPIHT images than EZW. This is

due to the greater inter-pixel correlation foundhie SPIHT algorithm than the less-correlated
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pixels in the EZW algorithm. This higher inter-pixa®rrelation combined with the destructive
channel effects cause greater error propagatiothendecompression stage of the SPIHT
algorithm which thereby produces greater visualgendistortion.

Figure 4-14: SPTHT (DBPSK) compressed image transmitted over AWGN channel for SNR of 5dB, 8dB and 10dB
with BER of 0.0206, 0.0009 and 0.

The results indicate that irrespective of the cledimduced errors to the compressed bitstreams,
the EZW and SPIHT algorithms are robust enougheoothpress the picture to produce a
visually acceptable image at medium SNR values.s@hesults provide analysis into the
channel errors produced and the effective errdtigmse integrated into the wavelet coding

schemes.

4.7.4 EZW and SPIHT over Rayleigh Multipath Fading  Channel

The Rayleigh fading channel used for the channelehis a frequency-selective fading channel
with a sampling period dd.1i seconds. The Rayleigh fading channel as mentipnedously

is based on the Doppler spread. The rate at whierchannel fades is affected by the relative
motion of the transmitter and receiver as in molgitenmunication. This motion causes
Doppler shifts as the receive antenna which isatian, experiences shifts in frequency that is
dependent on the angle of arrival of the incomigga as well as the speed of motion. The rate
at which the channel fades is affected by the Dmpphifts. The Rayleigh multipath fading
channels used in the following figures applied aximam Doppler shift of 130Hz which
created faster more aggressive fading. A fadingamae ¢’=0.5 was used to simulate the

average SNR range.

Once again both the EZW and SPIHT wavelet schemassrhitted across the Rayleigh
multipath fading channel followed the same trajactas the theoretical Rayleigh multipath
fading channel model, highlighting the BER perfonta of the channels under wavelet
compression. The BER is considerably higher for 8MR’s as compared to the AWGN
channel thus a wider SNR range is needed to proiduage with acceptable image quality and
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minimal distortion. This is due to the Rayleigh tipdth fading channel representing a “worst

case” scenario by exhibiting all the fading projgsrassociated with the channel.

Figure 4-15 is the performance of BER vs. SNR f@ EZW (DBPSK) scheme transmitted
across the Rayleigh multipath fading channel. Theyl®lgh channel exhibits erroneous
properties in terms of fading, interference, diitgrsonlinearity etc. throughout the range of
SNR averages. It is one of the most aggressivety prone channels, thus the EZW decoder is
not able to produce a bitstream free of errors eveslatively high SNR’s. The Rayleigh fading

channel produces significant errors throughoubitrate spectrum.

. BER vs. SNR for EZW (DBPSK) over Rayleigh Multipath Fading Channel
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Figure 4-15: BER vs. SNR for EZW (DBPSK) over Rayleigh multipath fading channel for fading variance o?=0.5.

Figure 4-16 is théenaimages subjected to EZW wavelet coding, DBPSK rfaithn as well

as the Rayleigh fading channel. The transmittediesece free of channel errors or degradation
occurs at an average SNR 35dB and produces an image with an image quality PSNR o
26.23dBat a bitrate 00.4bpp This image has the same image quality as the AVBGNccurs

at a SNR of3.5 times higher than the AWGN channel. This indicates extent of the image
degradation involved in the Rayleigh channel aspamed to a noisy AWGN channel. The
image quality of d0dBimage in the Rayleigh fading channel is signifibamisually distorted

as compared to tHEDdBimage produced by the AWGN channel in Figure 4-12.
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Figure 4-16: EZW (DBPSK) compressed image transmitted across Rayleigh multipath fading channel for SNR of
10dB, 20dB and 3548 with BER of 0.0454, 0.0053 and O for fading variance o°=0.5,

Figure 4-17 is the SPIHT wavelet coding algorithaobjected to the fading effects of the
Rayleigh fading channel. The SPIHT algorithm decayshe same manner as the EZW
algorithm. Figure 4-17 illustrates the behaviouthe channel on the transmitted signal and the

degree of degradation.

o BER. SNR for SPIHT(BPSK) over Rayleigh Multipath Fading Channel
Ve ——————————a
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Figure 4-17: BER vs. SNR for SPIHT (DBPSK) over Rayleigh multipath fading channel for fading variance 0?=0.5.

Figure 4-18 is the SPIHT compressed image aftengogiansmitted through the Rayleigh
multipath fading channel. Although the BER curvelef SPIHT algorithm behaves similarly to
the EZW BER curve, the decoded images at low SNR@ally degraded. A BER of zero is
seen for an average SNR 85dB having a PSNR image quality @7.53dBat a bitrate of

0.43bpp This which is higher than the EZW compressed enmgFigure 4-16 and is more
sharp whereas the EZW compressed image tendskamoce blurry. At lower SNR’s greater
visual destruction is noticed. This is due to epmpagation of the inter-pixel correlation found
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in SPIHT than the EZW algorithm. The channel erpmeduced by the Rayleigh channel have
caused irreversible error propagation in the deddmtestream at0dBand20dB

Figure 4-18: SPTHT (DBPSK) compressed image transmitted across Rayleigh multipath fading channel for SNR of
10dB, 20dB and 35dB with BER of 0.0444, 0.0044 and O for fading variance ¢°=0.5.

Due to the impairments experienced in wireless el namely fading, noise, interference,
dispersion, nonlinearity, multipath transmissiort, eéimages compressed by the EZW and
SPIHT wavelet coding schemes are easily affectethbge severe wireless channel conditions
in the form of channel errors at lower SNR’s. Tihewe performance results are an indication
that these wavelet coding schemes are highly stisteepto channel errors and error

propagation.

H 4.8 SUMMARY

This chapter investigated the various types of obkbEn that are involved in wireless
communication, focusing specifically on the additiwhite Gaussian noise (AWGN) channel
and the Rayleigh multipath fading channel. The tlannels represent the best and worst case
scenarios respectively thereby providing a comprsive view of the channel impairments

experienced through these channels.

A thorough performance evaluation of these charamedstheir effects on the EZW and SPIHT
wavelet coding schemes was presented. The EZW #&iHTSdemonstrated similar rate
distortion when transmitted via the AWGN and Ragtefading channels. The image quality in
terms of PSNR was typically high for the AWGN chahhowever, the image quality in the
Rayleigh fading channel dropped significantly whibth the wavelet coding schemes. The
SPIHT compressed images was totally degraded atShR’'s due to the catastrophic error

propagation caused by the channel impairments.
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CHAPTER S - ERROR PROTECTION

Error protection is a method of providing relialolata transmission over unreliable erroneous
channels. Error protection is a dual error detectind error correction approach that is a vital
addition in the prevention of transmission errorghin images and video. Error resilient
multimedia communication exploits error detectiard ecorrection in order to maintain the
integrity of transmitted data and ensures thatdh® remains intact when transferred from

source to destination across noisy channels.

Robust wavelet image compression is achieved tir@ugoncatenated system involving both
error detection and correction. An error resilietael involving arithmetic coding (AC) with
forbidden symbol (FS), convolutional coding (CCYtwmaximum a posteriofMAP) metric
sequential decoding and automatic repeat requédjAs used in the reliable transmission of
images over noisy corrupt channels. Error detedi@achieved through arithmetic coding with
forbidden symbol whilst error correction exploitsncatenated convolutional coding and MAP
sequential decoding with ARQ based packet retragson for uncorrected packets. This new
method of error detection and correction will paevicontinuous error protection throughout the

compression and decompression stages.

5.1 ERROR DETECTION USING ARITHMETIC CODING WITH FORBIDDEN
SYMBOL

Error detection is the ability to detect and coeferrors that have been produced by noise or
channel impairments during transmission. It is usedetermine whether the transmitted data
has been corrupted. Error detection is the inpia@cedure within error protection and thus

precedes error correction.

The error detection mechanism used in the propese@c exploits arithmetic coding with
forbidden symbol. This technique was proposed bydBet al [51] and is able to provide

effective error detection within wavelet based imagmpression.

5.1.1 Arithmetic Coding
Arithmetic coding [1], [52], [53], [54], [55], [56]s a form of entropy coding that produces

nearly optimal data compression. Arithmetic codmg method of statistical lossless coding, as
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it encodes source symbols with any given probgbidistribution and maps it to a code word,
which is the binary equivalent of a real numberhwat probability distribution that lies in the
interval of0 to 1. Arithmetic coding uses a probability source maddetstimate the probability
of a source symbol at each point within the dathiaims able to achieve compression when it
confirms that some source symbols are more likebntothers. In essence the probability
source model provides a probability distribution tbé source symbols and the arithmetic
encoder provides compression by transmitting moobable source symbols in fewer bits than
less probable symbols. Thus a good statisticaleinofdthe source can produce maximum data

compression.

Arithmetic coding uses recursive partitioning ofe tlinterval [0,1) to encode a message
containing source symbols into a real number withim interval [0,1). The partitioning of the
interval is based on the source symbol probabdistribution as the length of the interval
partition is proportional to the probability of tlseurce symbol. The output real number is the

refinement of the interval into a unique result thecurately represents the message.

The arithmetic coding algorithm begins by considgran alphabet A={S S,,..., S} of n
source symbols wherg are the source symbols and each source symba pasbability of
occurrence ={p1, P,---, P} such thaty p=1 [81], [82]. Each symbol with a probabilipy, can
be uniquely represented by its own non-overlappnudpability range along a probability lin@,

to 1. The probability range assignment is represenyg@®d) [82];

[low_rangd S ),high_rang& S ))=[0,p,) fork =1, and
i-1 i-1
[low_range S, ),high_rangd S, )) = {Z Pe: 2, Pt pi) (5.1)
k=1 k=1
i-1 i
:{ Py pkj fork >1,
k=1 k=1

wherek is the K source symbol in the alphabet anig the current source symbol. Assigning
each source symbol its own probability range ersutat each source symbol can be

arithmetically encoded by its range.

Conceptually, the arithmetic coding algorithm opesaas follows, where each source symbol

encoded is regarded as an event [52], [53], [56]:



* Initialise the current interval [L, H) to [0, 1) wheL is the lower bound anid is the upper
bound of the interval.
e For each source symbol in the alphabet:
0 Subdivide the current interval into subintervalsading to the probability of
each source symbol.
0 Select the subinterval corresponding to the cursentce symbol and make it
the new current interval.

» Output enough bits to distinguish the final curnetérval from all other intervals.

The length of the final subinterval is equivalentthe product of the probabilities of the
sequence of source symbols encoded in the mesBagdinal subinterval is not required in the
decoding routine however; a real number within fimal subinterval is used as the final
encoded value for further decoding. As additionghisols are added to the message, the

precision requirements in the final encoded reahlmer used to represent it, increases.

The graphical representation of the arithmetic egdinterval subdivision is illustrated in Figure

5-1 [52], [53], [56]. The interval [L, H) is dividk into nested intervals according to the
probability of the source symbols and a new curietdrval is chosen based on the source
symbol to be encoded.

Initial Interva [ ]
0O L H 1
Decompositio [ : p: = Probability of § ]
Ll Hl

New Interva

L! H)
Decompositio [ o I

LH HH

New Interva

L” H))

Figure 5-1: Diagram of Arithmetic Coding interval subdivision.
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Figure 5-2 and Figure 5-3 [52], are fragments @dfua® code for the encoding and decoding
procedures which help facilitate a deeper undedgtgnof arithmetic coding in its entirety. The
encoding process begins with an initialisation swepere the source symbol probability
distribution is determined and the boundaries @& turrent interval are established. The
encoder then recursively partitions the interva isubintervals. This refines the interval to a

unique real number that represents the message.

BEGIN
Get probabilities for each symbol
SetLOW =0
SetHIGH =1
WHILE there are symbolBO
{
Get symbol
RANGE = HIGH - LOW
HIGH=LOW + RANGE*(Upper bound of symbol)
LOW=LOW + RANGE*(Lower bound of symbol)
}
Output = LOW
END

Figure 5-2: Algorithm of Arithmetic Coding Encoder.

The decoding procedure is the inverse of the engogliocedure whereby the range is expanded
in proportion to the probabilities of the sourcandpls as it is extracted. It begins with the
encoded value and recursively outputs the intersyeabols. The received encoded value is a

binary representation of the floating point numisbich requires exact mathematical precision.

BEGIN
Get encoded number
WHILE there are symbolBO

{

Find SYMBOL whose range straddles the encoded numbe

Output SYMBOL

RANGE = (Upper bound of symbol) — (Lower bound winbol)

New Encoded Number = ((Old Encoded Number) — @olound of symbol))/RANGE
}

END

Figure 5-3: Algorithm of Arithmetic Coding Decoder.
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The encoding algorithm encodes the entire messegelfefore transmission. The same applies
for the decoding process; it only begins decodingeothe encoded value has been received.
Thus the precision of the arithmetic coder detetes as the message length increases, as more
bits in the output real number is used to repregefonsequently, if the encoded output real
number is inaccurate when received at the decaaemcorrect decoded message will result.
Arithmetic coding theoretically requires infinitergeision or else the interval boundaries
converge, impacting on the implementation. Thegeipion inaccuracies initiated the desire to
use integer arithmetic coding where encoded bigstamsmitted once the symbol has been

processed producing a more adaptive model.

5.1.2 Integer Arithmetic Coding

Witten, Neal and Cleary [52] developed integerhanigtic coding in order to overcome the
infinite precision arithmetic employed in pure anitetic coding, as well as produce greater
practical efficiency for arithmetic coding. Infieitprecision arithmetic reduces the current
interval considerably and does not produce an outpti the entire message has been encoded.
Integer arithmetic coding resolves this by firgbleeing the real interval [0, 1) with an integer
interval [0, T) where T =2 P>2 andP is defined as the bit size or bit precision of ihitial
interval. It then attempts to output an encoded asit soon as it is known, followed by
renormalisation through doubling of the lengthha# turrent interval which prevents the current

interval from shrinking too much.

Integer arithmetic coding [52], [53], [56] uses ade initial interval with integer interval
boundaries, where the partitioning and selectiothef current interval is performed for each
symbol encoded. In addition to the interval setectan output bit is generated for each symbol

encoded.

The interval selection and expansion process @ilddtas follows, where interval segments of
271 272 and 3*77 constitute a half, a quarter and three quartemsets of the interval

respectively [56], [58].

1. Initialise the current interval [L, H) to [0, TER whereL is the lower bound and is
the upper bound of the interval.
2. For each source symbol in the alphabet:
a. Expand the current interval into a new interval caiding to the following
conditions [58]:
i. IfH<2"% L andH are doubled.
i. IfL >2"" L andH are doubled after subtracting™2
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ji. 1f L>2"%andH < 3*2"2 L andH are doubled after subtracting?2

Graphically the interval expansion process for getearithmetic coding described above is
illustrated in Figure 5-4 [53], [56]. The currentérval is selected based on the current symbol
encoded and the new interval is determined in @ecwe with the criteria described in the
interval expansion process. The length of the oarrieterval is proportional to the current
symbol occurrence and is used to encode the cusyanibol. The new interval represents the

renormalisation process that occurs in order tegmethe shrinking of the current interval.

Initial Interva [ I I I ]
0 L 2r? 2™ 3Pty oT=2F
Current Interve [ I | ]
Ll H1
New Interva [ | ]
2L 2H’
Current Interve [ | | \
L1l H1l

New Interva | ]
2L" 2H”

Current Interve I | ]
L1l1 H1ll

New Interva [ | ]

2LH! 2H!1l

Figure 5-4: Diagram of Interval Expansion process in Integer Arithmetic Coding.

In addition to the interval expansion process, atpwt bit is required for the encoding and
transmission of each symbol. An output bit of aitBeor 1 is generated based on where the
current interval is situated, relative to the lomatof the quarter, half and three quarter interval

segments. If the current interval is entirely ire thpper half of the interval, & is output.
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Likewise if the current interval lies entirely ime lower half, a0 is output. Afollow-on
procedure [53], [56] is executed if the currenemtl straddles the half interval segment, as it is

impossible to determine which bit the interval esponds to.

The follow-on procedure prevents the current interval from cogimg about the interval
midpoint. It keeps track of the number of times therent interval straddles the midpoint, and
each time attempts to renormalize the length of iterval by expanding it, in order to
determine which region the interval belongs tothé current interval enters either the lower
half or upper half of the interval region after argion, then it can be assumed that the interval
was situated in the opposite interval region presiy. This output bit generation wifbllow-on

procedure is described as follows [53], [56]:

1. If the current interval lies entirely within 12, 3*277),
a. No output bit is generated.
b. A follow count is incremented to keep track of future otgpu
c. Apply interval expansion.
2. If the new current interval lies entirely within,[&™), the lower half,
a. Output a0 bit.
b. Outputfollow bits of1 from previous events.
c. Apply interval expansion.
3. If the new current interval lies entirely within[2 2°), the upper half,
a. Output al bit.
b. Outputfollow bits of 0 from previous events.
c. Apply interval expansion.
4. If the new current interval does not lie entirelithin one of the intervals: [0,2) or
[2P1 327 or [, 2),
a. No output bit is generated.

b. Exit Loop and return.

In order to complete the transmission of outpu,tite encoder Bushedbefore the end of the
transmission sequence. The flushing of the encadesures that the decoder is able to
unambiguously decode the last symbol in the mesdagesolves outputting a few additional

bits to guarantee that the decoded sequence fiishe final range.

The combination of interval expansion, output béngration and flushing of the encoder
fundamentally produces integer arithmetic codingudthe method of integer arithmetic coding

can be conceptually detailed in the fragment otigeecode given in Figure 5-5 [52].
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BEGIN
Initialise the current interval [L, H] to [0, T2].
WHILE there are symbolBO
{
IF (L=2"% & (H < 3*2") THEN
L=2*L
H=2*H
Follow = Follow +1
IFH< 2Z*THEN
Output a bit 0
L=2*L
H=2*H
FOR 1 toFollow DO
Output a bit 1
IFL=2""THEN
Output a bit 1
L=2*(L-27Y)
H=2*(H-2"?
FOR 1 toFollow DO
Output a bit 0
ELSE
Return
}
Flush Encoder

END
Figure 5-5: Algorithm of Integer Arithmetic Coding Encoder.

The integer arithmetic coding decoder recoverssth@ce symbols in a similar manner as the
encoder. The decoder applies interval reduction, ittverse process used at the encoder.
Interval reduction follows the same set of actiamsund the quarter, half and three quarter
interval segments as defined at the encoder. TiHgres that the selection and renormalisation

steps occur in the same way for both the encodedaooder.
The decoder begins by decoding the firsbits in the received bit stream. These bits are

initially stored in a sliding buffer of siz@ bits. The current interval [L, H) is initialised {0,

T=2") exactly as the encoder. The decoder then perfdhmsselection and renormalisation
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procedures before shifting the next transmittedrttd the buffer. The selection of the current
interval is based on the buffer of bits which iediso decode the source symbol that represents

that specific portion of the interval. Thus the olger is the inverse process of the encoder.

Integer arithmetic coding solves many of the pienisand practical issues surrounding pure
arithmetic coding. It has developed into a viabMr@py coding option as the demand for the

entropy coding stage of arithmetic coding increasikdin data compression.

5.1.3 Arithmetic Coding with Forbidden Symbol

Arithmetic coding has gained wide recognition asogtimal entropy coding stage for data
compression. It exhibits excellent compressioncidfficy and superior performance when
compared to other data compression algorithmsthikeHuffman encoder. However, arithmetic
coding is extremely vulnerable to transmissionrsiras a single bit error can cause catastrophic
error propagation and loss of synchronisation. This result in the rest of the bit stream being
decoded erroneously. Ironically, it was this vuaielity that led to the development of error

resilient tools for arithmetic coders.

Boyd et al. [51] developed an effective technique for incogtioig error detection into
arithmetic coding without compromising its performoa. An extra source symbol, the
forbidden symbol is introduced into the source syhmdiphabet and a small probability is
assigned to it. The forbidden symbol is added ¢osthurce symbol set but is never included in
the message to be encoded by the arithmetic codeisaherefore never transmitted. However,
if the forbidden symbol is decoded by the arithmelecoder, this is an indication that an error

has occurred.

The forbidden symbol given By, is assigned a small probability of occurrenceaétuepsilon,
g, specified agpx=¢. Incorporating integer arithmetic coding with faitlen symbol detection
[51], [54], [83], [84] produces the alphabet A3{SS,,..., S, X} where S are the source
symbols anX is the forbidden symbol and each source symbokha®bability of occurrence
pi ={p1, P..., P} and the forbidden symbol has a probability of erence equal te such that
Y (p+€)=T which is equal to 2 Thus the initial interval for integer arithmetioding which
includes the forbidden symbol will span the lenigtim O to T=2".

Graphically the arithmetic coding with forbiddenngyol encoding process is illustrated in

Figure 5-6 [54]. The forbidden symbol is includedthe alphabet distribution but is never
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encoded, thus its interval subdivision is neveeseld as a new interval and therefore never

partitioned.

Initial Interva [
0

L 2F2 2Ft 3P H oT=2F
Current Interve [ | | ]
L’ H’
New Interva [ | X ]
2L’ 2H’
Current Interal [ I | \
LY! HY!
New Interva [ X | ]
2L" 2H"
Current Interve [ I | ]
LYli HlY’
New Interva [ | \
2Llll 2Hl1l

Figure 5-6: Diagram of Interval Expansion process in Integer Arithmetic Coding with Forbidden Symbol.

Arithmetic coders are known for their sensitivityttansmission errors and it is this weakness
that is exploited at the decoder for error detecthen an error occurs in an arithmetically
coded transmitted bit stream, a loss of synchraioizeoccurs at the decoder resulting in the
remainder of the bit stream being decoded erromgod$e introduction of the forbidden

symbol at the encoder can guarantee that whenran @curs, the forbidden symbol will be

decoded by the arithmetic decoder. The forbiddenbsy is never encoded by the arithmetic
coder however, if it is decoded, the encoded lgash and the decoded bit stream are not

identical and thus an error has occurred.
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The introduction of the forbidden symbol in the $&phalphabet introduces an amount of
redundancy [51] based on the probabilityassociated with the forbidden symbol. Increasing
the forbidden symbol probability thereby increafesamount of redundancy embedded in the
code stream. Consequently, the greater the amdurtiondancy added through the forbidden
symbol, the less time it takes to decode the ekowever, the redundancy introduced occurs at
the expense of compression efficiency. This is edow [54] where the bits needed to represent
the symbol subinterval widtl is —log(y). By introducing the forbidden symbol the numbér o
bits needed to represent the symbol subintervadwedthen given by —Igf(T-€)y]. As a result,
the forbidden symbol introduces more bits per syn@neoded and the redundariey, added

due to the forbidden symbol becomes [54];

Ry = (_ Ing[(T - g)y])— (_ log, y) (5.2)
=-log,(T -¢), '

whereT is the full interval,yis the symbol subinterval width ardis the forbidden symbol

interval. Thus the more redundancy added by theidden symbol for error detection, the less

compression the arithmetic coder can perform.

A significant property of arithmetic coding withrimdden symbol error detection technique is
that it is able to provide continuous error detattithroughout the compression and
decompression stages. The advantage of continumrsdetection is that it need not wait for an
entire bitstream to be transmitted before an eraorbe detected, it can determine as each bit is
transmitted whether the bitstream is potentiallyerror. It cannot however, determine exactly

where an error has occurred within the bitstream.

Arithmetic coding with forbidden symbol is a techué that is able to successfully integrate
error detection with compression via entropy codidgwever, there exists a trade off between
compression efficiency and the amount of redundamicgduced by the forbidden symbol. The
optimal point between the two conditions can beldisthed through the manipulation the

forbidden symbol probabilitye.

5.2 ERROR CORRECTION USING MAXIMUM A POSTERIORI (MAP)
METRIC SEQUENTIAL DECODING AND AUTOMATIC REPEAT
REQUEST (ARQ) RETRANSMISSION
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Error correction is designed to correct and rectfyors produced during corrupt data
transmission. It is more complex than error detectas it uses redundant information to
produce an “educated guess” about the original ffata the incorrect data received. When
coupled with error detection, error correction ks ability to effectively identify and correct

errors produced within erroneous transmission.

The error correction scheme employed by the prapasmler makes use of MAP metric
sequential decoding of convolutional codes as waelthe ARQ retransmission protocol. The
MAP metric sequential decoder is used as an emwection tool to obtain the best estimate of
the transmitted bitstream in the presence of erréfe ARQ protocol is an error control
transmission protocol and is used to request fta detransmission if the MAP decoder does

not successfully correct the errors.

5.2.1 Sequential Decoding

Sequential decoding initially proposed by Wozericrf81] was designed to decode
convolutional codes. It attempted to reconstruet ahiginal transmitted sequence by guessing
through various paths of a time-expanding treeasfsjple transmitted sequences. It was later
improved by Fano [62] and became known as the Fdgarithm. Fano developed a metric
called the Fano metric which was incorporated engbquential decoding code tree to obtain the
correct path based on the largest Fano metric adated by the path. Zigangirov [63] and
Jelinek [64] independently proposed faster vaneti@f the Fano algorithm using a Stack
algorithm approach. This new refined algorithm aepld the code tree structure with a stack,

where the branch with the largest Fano metric wéeneled producing the optimal path.

Sequential decoding is essentially a tree seambritim that is able to accurately locate the
correct path within a code tree which correspomulstie encoded message transmitted.
Sequential decoding employs various search stesgdor its path selection namely: breadth-
first, metric-first or depth-first searches [65hd& sequential decoding algorithm proposed relies
explicitly on a metric for directing its search dhgh the code tree. The concept behind
sequential decoding is to search paths on a bianbtinanch basis without having to explore too
many branches. The path selection is based onestealscumulated metric obtained along the
path. The sequential decoder retains a runningiengttat is designed to increase along the
correct path and decrease along false paths. Sgsjudacoding allows both forward and

backward movement through the code tree, wheresg¢lech algorithm may give up a path,

retract back and follow another path.



The sequential decoder in the proposed coder usestréc-first search, where the best path
selection is based on a greedy approach as itédxtaanches with the best accumulated metric.
The decoder is implemented by means of the opt8tadk algorithm as it offers simple yet fast

sequential decoding.

5.2.1.1 Stack Algorithm

The stack algorithm is a metric-first sequentiataténg algorithm implemented for the

proposed decoder [64]. The stack algorithm useack ®r ordered list to store all visited paths
according to its metric values. The metric valuethed paths increase towards the top of the
stack, thus indicating the best path location basethe accumulated metric occurs at the top of

the stack. However, this structure requires souifine paths within the stack at each iteration.

The stack algorithm is based on the code treetsteigvhere the code tree is representative of
all possible paths. The code tree uses nodes, iatsbdoranches and branch metrics to
determine the correct path for sequential decodihg. stack algorithm begins at the root node
and only extends node branches with the highesien€or a code rate &f,, each node in the
tree extends '2branches with each iteration. Each branch is @&ssucwith a metric, where
false branches have a lower metric and correctchies have a higher metric. Each branch
yields a new node which in turn creates more bramemd so the decoding continues. Each new
extended branch adds its branch metric to the emefrprevious branches, thus maintaining a
running metric of the path. This code tree conégjitustrated in Figure 5-7, wheM is the
branch metric and a correct branch has a brancticnegual to0 and an incorrect branch-20.

The correct path is highlighted in Figure 5-7 whire accumulated metric at the final node is

the sum of the branch metrics along the traversdidl p
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BM =0 BM= 0+0+(

BM= 0+0 \"
BM= 0+0+(-20)

BM = -20

Root Node 2 Node 3 Node 4
Node

Figure 5-7: Diagram of a code tree with nodes, branches, metrics and paths.

The stack algorithm is described below; where tath @t the top of the stack is replaced by
extended branches [64], [69]. The stack algorithrdscribed for a code rate of %2, which is the
rate designed for the convolutional coding of tiheppsed coder. This code rate will produce

two branches per node extension. The algorithmiély outlined as follows [65]:

1. Initialise the stack with the root node and setrttegric to zero.
Expand the best path, located at the top of thek ¢ creating two new branches.
Replace the best path with the two newly createddires in the stack along with their
corresponding metric.

4. Sort the paths in the stack according to the matiiih the highest metric at the top and
the lowest at the bottom.

5. Retain the best path at each decoding stage ansfdraits information in terms of
output bits.

6. If the top path reaches maximum depth of the dexgptiee:

a. Stop iterating.

7. Else loop to step 2.

Graphically the stack algorithm can be illustrateterms of the stack structure when applied to
convolutional coding of a rate of %2 in Figure 5Ech path in the stack contains information

about the accumulated metric and the state infeomdbr sequential decoding. Figure 5-8 is
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the state information associated with the convohal codes which is used in the sequential
decoding process. The convolutional codes depetctirrent state, the transition to the next
state and the output bits produced by the tramsibetween states. The solid arrow is

representative of an input liitand the dashed arrow shows an input bit. of

Current State Next State

v - v
00 00«——0Output Bits 00

01 01
1C 1C
11 11

Figure 5-8: Diagram of Convolutional Coding state transition and output bits.

Root Node  Node?2 Node 3 Node 4
00 (0) [0] * 00 (-20) [1] 11 (0) [1] * 01 (-20) [2] 10 (0) [2] * 10 (-20) [3] 01 (0) [3] *
11 (0) [1] 00 (-20) [1] 10 (0) [2] 01 (-20) [2] 01(0) [3] 10(-20) [3]
00 (-20) [1] 00 (-20) [1] 01 (-20) [2] 01(-20) [2]
00 (-20) [1] 00(-20) [1]

Figure 5-9: Diagram of the Stack structure.

Each column in Figure 5-9 above is representatiivbevarious decoding stages for the stack.
The stack algorithm involves two distinct modesogleration: best path expansion and the
sorting of the stack. The stack structure begirth ¥ie root node or node 1 and a single path
with its state information initialized to zero. Tipath at the top of the stack with the highest
metric is extended into two new branches at theé neste. The path with an asterisk is the best
path to be expanded in the stack. The red higldaybtack columns indicate the resorting of the
stack with the highest metric located at the toghef stack. The first two bits in each path
represent the decoded output bits for sequent@ddieg of convolutional codes. The number
within the parenthesis indicates the accumulatetlicngetermined from each output bit. In this
example if a bit is correct the bit metricGsand if a bit is incorrect the bit metrici80. The
square brackets indicate the node at which theipatirrently located, thus new branches point
to different nodes. However, if there exists, tvaal@s in stack with the same metric values, the

node closest to the top of the stack is extendstdnd the stack is then resorted. If this node is
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incorrect it will result in the second node beingdted at the top of the stack which will then be

extended.

At any decoding stage, branches that did not pduoe optimal code path were not extended
within the stack. Thus the sequential decoder lis tabfind the best path without examining too
many branches. The stack algorithm only storesedspaths reducing the computation of the

sequential decoder.

The stack algorithm establishes the best path isadethrough the code tree by retaining the
best path determined at each decoding stage. lticadthe best path chosen by the sequential
decoder is associated with output bits that reptesige corrected bit stream. It is these
sequential decoded output bits that are used tertagt whether the erroneous transmitted bits
have been accurately corrected by the sequent@idée. WWhen compared to the originally
transmitted bit stream, if the output bits are dyaitlentical, then the stack algorithm has
correctly decoded the errors and has performedesstdly. However, the success of the stack
algorithm for sequential decoding can be solelytatted to the choice of metric applied, as it is

of primary importance in the correct design of sdial decoding algorithms.

5.2.2 MAP Decoding Metric

The metric defined in sequential decoding is useditect the best path selection within the
code tree. It minimizes the error probability opkored sequences in sequential decoding. Thus
the choice of metric is key in the performancehaf sequential decoder. Essentially the metric
chosen must measure the correlation between thg amd output sequences in order for its

decoding success. This correlation forms the lEgtse metric derivation.

The sequential decoder is formulated using thesidaksmaximum a posterioriMAP)
estimation [70]. The MAP criterion involves minirmg the probability of the error by
maximising thea posterioriprobability defined below. Its mathematical detiva is based on
the statistical modelling of the transformationtbé bitstream illustrated in the transmission

block diagram in Figure 5-10 .

X (E >CHANNEL ) »/

P(yIx)

Figure 5-10: Diagram of transmission block diagram.
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The a posteriori probability is defined a®(x|y), which is the conditional probability of the
transmitted sequencegiven that the sequengehas been received. The probability of a correct

received sequence is equal to gheosterioriprobability given by;

P: =P(x] y). (5.3)
Thus the probability of an incorrect received semqeehen becomes;

P. =1-P(x] y). (5.4)

This shows that the minimising of the error regsitbe maximising of thex posteriori
probability thus producing the concept which is coonly known as thenaximum a posteriori
estimation. From Bayes theorem #h@osterioriprobability P(x|y), can be further expressed as
[72], [73];

P(x|y)= (5.5)

where, in terms of the transmission sequence geserj P(X) is thea priori probability,P(y) is
the probability of observing a certain sequencehat receiver andP(y|x) is the channel

transition probability depicted in Figure 5-10.

The a priori probability P(x) by definition is a marginal probability that ddbes the
probability of a certain hypothestswhich is known before any dayais observed. If a certain
hypothesis is more probable than othersatlpeiori probability is then higher. In the context of
the MAP estimation tha priori probability is the probability of the binary kitor O in the
transmitted sequence before the effect of errosselially it represents a known probability

determined at the encoder.

P(y|x) is the likelihood function which describes the hmbility of the observed datg,
assuming the hypothesis is correct. The probabilit?(y|x), represents a certain probability
density function (PDF) which accurately describhe tmeasurement of errors within the
received datay. In the context of the MAP estimation exercisedtlis dissertation the
likelihood P(y|x) can be described as the channel transition prhyads it is a function of the

modulation and channel characteristics.
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The channel output probabili§(y) is the marginal distribution of the observed dgtavhich
essentially serves as a normalising constant saththiea posterioriprobability P(y|x), can be
described as a proper PDF integrating to 1. Howd(g) is an analytically intractable integral

and is commonly approximated.

The Bayesian Theorem is more of a general concegptis almost never used directly for
estimation purposes due to its complexity. Howewtecan be optimally approximated thus
producing what is commonly known as tiheximum a posterioiMAP) estimation. The MAP
estimation using the Bayesian approach allows Her éxploitation of thea priori statistical

information for its estimation. The MAP estimatiisgiven by equation (5.6) [71], [74];

Xyap = arg maxP(x| y)

5.6
 argmax” Y DIP(). &0

x P(y)

It can further be described in a simpler form whre MAP estimation is decomposed into
additive logarithmic terms given by equation (&f@reby forming the MAP decoding metric.
To convert from the multiplicative to additive forine monotonicity of the logarithm function
is exploited. Thus the MAP decoding metric is [7[14];

Xuar(iy = |09[P(Xi |y)]

= Zl[log P(y, Ix,,)+logP(x ;)-log P(y, ) (5.7)

where Xwam is the estimated sequencedis the number representation for the sequence
transmitted,j is the individual bit in the sequence aNdis the total length of bits in the
sequencea. The metric of a path can be defined as the suithefindividual metrics of the
branches of which the path consists. Therefore wWbef) is applied to each branch in a code
tree, the MAP decoding branch metric is definefrag

Xuae(i jy =109 P(yi | X(i,j))+ log P(X(i,j))_ log P(yj)' (5.8)

Thus a branch can be extended based on its indiMdAP branch metric.
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The three MAP decoding metric terms in equatioB)(have implicit definitions restricted to
the context described within this dissertation. Tingt term in equation (5.8)pg P(yIX,)
representing the channel transition probability eistirely dependent on the transmission
channels employed in the codec design. The chamassition probabilities describe the
behaviour of the channel and are generally fixethieynature of the channels noise distribution.
In addition the channel transition probability chae further classified into two decoding

methods, hard decision decoding and soft decistaoding.

Hard decision decoding involves the received sidpedihg classified as eitherOaor 1 prior to
decoding [75]. A hard decision involves a simpleigsien threshold between the two binary
signals such that if the received signal is gretitan the threshold the signal is decoded &s a
otherwise &@. Applying this concept to noisy channels, wher ¢hannel transition probability

of an erroneous decision can be quantified by lagled area in Figure 5-11.

o)

-A

Figure 5-11: Diagram of Hard decision decoding with channel transition probabilities [75].

P(0]1)is the probability of a bi® being decoded given that a hitvas sent, can be defined as
the shaded arehandP(1|0) is the probability of a bil being decoded given that a DBitvas
sent, is denoted by the shaded a@edhis shaded area representing an erroneous pligbab

can be mathematically modelled as [71];

P = %erf{\/% ) (5.9)

The above equation is a known bit error rate eqoatihereerfc is the complimentary error
function andS/N is the Signal-to-Noise Ratio defined for the clelnWhen applied to the
channel transition probability above, the hard siea channel transition probability is defined
as [71];

1-p, i X%; =Y,
Py, |m)={p fx %y (5.10)
e il J
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The above decision is taken when the received @ither in errorg) or not (L-ps). The above
decision also models a binary symmetric channelvehio Figure 5-12 where the input with

respect to the output, transitions in exactly #@e manner.

=0 yo=0

X =1 - cy1=1

Figure 5-12: Diagram of Binary Symmetric Channel [70].

The hard decision decoding channel transition gibbagiven in (5.10) is relevant for the two
wireless channels examined, namely the AWGN and Rhagleigh fading channels. Soft
decision decoding of the received bit uses additi@de information to generate a decision
[75]. Unlike the hard decision decoding where amlyor 1 is assigned, soft decision decoding
is more flexible as it assigns confidence levelshe binary bits. These confidence levels
indicate the degree of certainty that the decissonorrect. Hard decision decoding uses two
confidence levels, as the decision can either lbeecoor in error. Confidence levels of three
and greater are termed soft decision decoding. 8eéision decoding side information
constitutes “soft inputs” with associated “soft putls”, where soft inputs are thee priori

probabilities and soft outputs are th@osterioriprobabilities.

For the AWGN and the Rayleigh fading channels, rtlegirresponding channel transition
probabilities for soft decision decoding are givan(5.11) [71] and (5.12) which are based

explicitly on their PDF’s showing the transmittetlareceived sequences.

P(yj |Xi,j)AWGN :W , (5.11)

i T X, _w]
P(Yj |Xi,j) = =2 ¢ fory, 2x;, (5.12)

RAYLEIGH o
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Essentially the channel transition probabilitieg tise statistically detectable structure of the

source to determine the output.

The second term in equation (5.8)g P(x;), is thea priori probability of the binary bit or 0
occurring in the received sequence [74]. @hriori probability is defined aB,, the probability
of occurrence of a bl in the transmitted bitstream Bg the probability of occurrence of a bit

1, given by the following equations;
5.13
1) (513)

The final term in equation (5.8R(y) representing the channel output probability of the

received bity;, can be defined more explicitly as [74];

Ply, )= 2 Ply, 1%, Plx,). (5.14)

iOBy,
whereBy; denotes the subset of all possible sequencesgfhl@l,. This term is complex and
difficult to evaluate as it involves an exhaustbearch which becomes practically infeasible and
is beyond the scope of this dissertation. Thusaaamable approximation is used insterRk ;)
adopts the approximation &f™ which suggests that there a?&' equally likely possible
sequencey,, of lengthN, [73], [74], [71], [72]. The approximation in thegois invalid and
untrue as the arithmetically coded sequengesre of variable length, however, the assumption
is still able to provide satisfactory results foetMAP decoding and can still be used in the

metric.

Incorporating the above approximation into the Mddeoding branch metric in (5.8) the metric

simplifies to [71];
Xune( ) =108 PY; 1%, 5,)+10g Pl ;) +10g 2. (5.15)

The simplified logarithmic MAP metric still maintas its dependence on channel conditions
and error prediction. This metric is applied toredcanch in the code tree through the stack
algorithm so as to direct the metric-first seardthvabsolute accuracy thereby leading to the

overall error correcting capability of the MAP ddamy algorithm.
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5.2.3 ARQ Retransmission

Automatic repeat request (ARQ) [54], [92], [93]7/]9s a communications protocol that is used
as an error control mechanism for efficient datmsgmission. The purpose of ARQ is once
transmission errors are detected in the data patiketpacket is discarded and a request for
retransmission of the data packet is made. The AR{pcol being a communication channel

requires a two-way channel where the ARQ protoeolds the request for retransmission via

the feedback channel.

The ARQ retransmission request makes use of acletdmments and timeouts in its request
protocol. Acknowledgements can either be a postigienowledgement (ACK) or a negative

acknowledgement (NACK), where ACK’s indicate cothgceceived data packets and NACK'’s

indicate erroneous data packets. When an ACK isived the transmitter transmits the next
data packet and when a NACK is received the traitsnbegins a retransmission of the current
data packet. A timeout is when a predefined peoiodime expires between transmission of the
data packet and receiving of the acknowledgmenis prompts a retransmission of the data

packet by the transmitter.

The ARQ retransmission scheme has three retrarismigsotocols:

e Stop and wait ARQ

e Go-back-n ARQ

» Selective repeat ARQ
These protocols attempt to strike a balance betweercomplexity of the protocol and the
throughput of the system, where the stop and wRiDAcheme involves low design complexity
and experiences low data throughput and the sedetpeat ARQ scheme involves high design

complexity with high data throughput.

5.2.3.1 Stop and wait ARQ
The stop and wait ARQ (SW-ARQ) [93], [95], [96],7Pprotocol is the simplest of the three

types of ARQ transmission protocols. In this profothe transmitter sends a data packet to
receiver and waits for a positive or negative agdedgement before the next packet can be

transmitted.

If the receiver receives the data packet free mirer a positive acknowledgement (ACK) is sent
back to the transmitter. The ACK is an indicatorthe transmitter that the transmitted data
packet was unaffected by channel errors and tmsrirdter can then proceed to transmit the

next data packet in the queue. If the data packet affected by channel errors during
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transmission and the errors are detected at tledvegcthe receiver discard the data packet and
sends a negative acknowledgement (NACK) back to tthesmitter. The NACK is a
retransmission request which tells the transmittat the transmitted data packet was erroneous
and a retransmission of the current data packetqsired. The process continues until the
retransmit data packet is accepted by the recéigerof errors and an ACK is sent back to the
transmitter acknowledging receipt of the error-fosga packet. It is graphically illustrated in

Figure 5-14 where an erroneous data packet isnistesl.

Stop and wait ARQ makes use of a timeout in thexetlet either the receiver has not received
the data packet or the transmitter has not recaeiwe8lCK or NACK. The timeout uses a timer
which is set upon transmission of a data packetcandits down from a predefined time. This
predefined time is an estimated amount of time rd@teed between transmission of a data
packet and receiving of an acknowledgement. Iftitne expires, the transmitter automatically
retransmits the data packet. The use of timeoutdoki data packets requires a data packet

sequence number to distinguish between a retrapswiiet and the next packet.

The stop and wait scheme showing acknowledgementgimeouts are graphically displayed

in Figure 5-13 to Figure 5-15. The illustration®wahthe three scenarios that may occur in SW-
ARQ; a lost acknowledgement, an erroneous datagpacla lost data packet. In SW-ARQ each
data packet and acknowledge uses an alternatingeisegl number dd andl to keep track of

current and next data packets during retransmigsrents.

of 1o 1]o 110 |. Frame 0
T ACK1 —
- 0
0 1 0 1 0 110 Frame 1
T ACKO_ ——
— 0 1
///
Timeout L=
- =
0 1 0 1 0 1 0 Frame 1
-_—=- - =1
ACK O P
- 0 1
- —— ’/// p—
0 1 0 1 0 1 0 Frame 0
= -—— =
0 1 0

Figure 5-13: Stop and wait ARQ for lost acknowledgement.
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The primary benefit of SW-ARQ is that it does nequire packet buffering at the transmitter or
receiver unlike the other schemes. However, thtopob becomes inefficient due to the round-

trip delays and idle times the transmitter spendiing for acknowledgements.

—==a

Figure 5-15: Stop and wait ARQ for lost data packet (frame).

5.2.3.2 Go-back-n ARQ

The go-back-n ARQ (GBN-ARQ) [92], [96], [97] pratol was developed as an improvement
to the stop and wait ARQ protocol where the chanaielains busy by transmitting several data

packets continuously whilst waiting for an acknatgement. Go-back-n ARQ attempts to




address the inefficiencies experienced by transomsdelays and acknowledgment waiting

periods. GBN ARQ uses both flow and error contndts protocol.

The go-back-n ARQ protocol makes use of a slidimgdaw which is a transmit flow control
mechanism that allows the transmitter to transn@pecific number of data packets before an
acknowledgment is received or timeout event occlns. sliding window technique is a form of
pipelined communication that utilizes the channeterefficiently. Figure 5-16 is representative
of the sliding window protocol used in go-back-n @RSequence numbers are used in the

sliding window protocol to keep track of receivetidost data packets and acknowledgments.

The sliding window has a window simavhere n is the parameter that determines the nuaibe
successive data packets that is transmitted béfiere is receipt of an acknowledgment. The
data packets are assigned with sequence numbgiagdromO to n-1. The receiver’s buffer is

mapped to the transmitters sliding window in oribekeep track of the data packets received.

The transmitter will attempt to transmit all thetalpackets highlighted in the sliding window
and will set a timer for each data packet it tratsnThe receiver will only accept the first data
packet sequence number in its highlighted slidimgdew before moving on and accepting new
data packets. The sliding window protocol is mdfeative as a cumulative ACK can be sent
indicating acceptance of data packets up to anddimg the ACK’s sequence number. This
concept is highlight in Figure 5-16 where a cumutatacknowledgment ACK 3 is sent
indicating the correct reception of data packets 2. Once an acknowledgment is received the
sliding window slides over three positions and fsramew window. Figure 5-16 also highlights
that if an acknowledgement for an already trangatifiacket is received before the transmission
is complete, the transmitter assumes the data paeeelost and retransmits the data packet and

thus the sliding window does not move until a careecknowledgement is made.
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Figure 5-16: Diagram of sliding window protocol.




The go-back-n ARQ protocol uses the sliding windmatocol for its communication protocol
when no errors are detected within the data pattkalso uses the sliding window protocol as
the basis for the three scenarios; a lost ACK,sa data packet and an erroneous data packet
illustrated in Figure 5-17 to Figure 5-18. Thesee¢hscenarios typically occur for erroneous

channel conditions when channel errors affect tta gacket.

The GBN ARQ protocol transmits the data packets @ontinuous stream. It more efficient as it
can send an accumulated ACK instead of sending@K for each frame. This accumulated
ACK indicates that data packets received prioth® ACK are all correct. In go-back-n ARQ
the transmitter allows for buffering by using afleafspace of packets for the communication
protocol. The buffer allows for transmission afi packets without waiting for
acknowledgements. Once an acknowledgement for dke packet is received, this is an
indication that all transmitted packets up to amduding the last data packet were received free
of errors and a new buffer of data packets canrbated for the next transmission sequence.
The receiver only accepts correct data packets ioorrect sequence, thus no buffering of data
packets is used at the receiver as incorrect datkep that are either erroneous or not in the

correct sequence are immediately discarded.

Go-back-n ARQ for a lost data packet frame giveRigure 5-17, shows the buffer with sliding
window setup. The buffer is three frames wide anthus called a go-back-3 ARQ schema as
represents the buffer/sliding window width. If arfre is lost during transmission, a NACK is
sent from the receiver to the transmitter requgstietransmission of the lost frame. All
subsequent frames received after the lost franéstarded whether they are error-free or not.
In the go-back-n ARQ protocol upon reception of AGK with the lost frame sequence
number, the transmitter goes back and retranshéttost frame immediately and then proceeds
to retransmit all frames following the lost framgam until an acknowledgement is received.

Once an ACK is received the sliding window/buffeswas forwardc frames.

Figure 5-18 illustrates the procedure for receivarg erroneous data packet. If the receiver
detects an error in the data packet a NACK alonj thie sequence number of the data packet
in error is sent back to the transmitter. Once aCKAis received by the transmitter this
indicates a request for retransmission as thewvedalata packet given by the sequence number
is damaged or in error. The transmitter stops affent transmissions and then begins to
retransmit all the data packets from the damagéal pcket onward within the sliding window
buffer.
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Figure 5-17: Go-back-n ARQ for a lost data packet (frame).
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The lost acknowledgement scenario in Figure 5-¥% astimeout function, where if a positive
or negative acknowledgment (ACK/NACK) does not fedhe transmitter within a given
amount of time, known as the round-trip delay,aie$mission occurs. The timeout function is
usually set to an amount of time equivalent tountbtrip, which is the amount of time needed
to transmit the set af data packets in the buffer. If the timer expirefobe an ACK/NACK is
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Frame 2
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____________

Figure 5-18: Go-back-n ARQ for erroneous data packet (frame).
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received the transmitter stops and retransmits fiteenlast acknowledged frame. In the event
that the ACK/NACK is not received and the bufferemptied by the transmitter before the
timer expires, the data packets following the lasknowledged frame in the buffer is
retransmitted again until an acknowledgement igived. The receiver will only accept all
correctly sequenced frames, thus if the frames laready been received during the first
transmission, it will discard the incoming framasdgroceed to only accept frames that are

next in the queue.

Frame 0

—

Frame 1 »

Frame 2

&l
—
___________ ><A’C@’/ -
TIMEOUT

___________

Frame 1

Frame 2 0 1 2

——————— IS

0120120,_4NA012

Figure 5-19: Go-back-n ARQ for a lost acknowledgement.

The above scenarios show why the mechanism is ngowedck-n ARQ as the transmitter goes
back to the lost or damaged data packet and retitmall subsequent frames within the sliding

window.

Go-back-n ARQ is efficient as the channel is keygybduring error-free transmission. Delays
are experienced during transmission of lost or dmuadata packets and acknowledgements.
Another major inefficiency is that when an errocas the transmitter is required to resend the
entire window buffer of data. However, go-back-n@Hs still much more efficient than stop

and wait ARQ as there is a continuous stream & dettoss the channel.

5.2.3.3 Selective repeat ARQ
The selective repeat ARQ (SR-ARQ) [96], [97] comiwation protocol is the most efficient

amongst the three protocols. The selective rep&d As a variation of the go-back-n ARQ
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where the receiver is able to accept data packatsate out of sequence and the transmitter is
able to process retransmission requests for erusndata packets by retransmitting the data
packet in question instead of retransmitting thiér@mvindow of data packets. This allows for

continuous streaming of data packets between tiigiesrand receiver even after frame loss.

To achieve this efficiency, the protocol requiregféring at both the transmitter and receiver.
When an erroneous or lost data packet is detebtedeceiver buffers the correct data packets
until the erroneous packets are received correbtyore storing it in the correct sequential
order. However, the addition of a buffer at theereer introduces greater computational

complexity.

As with the previous ARQ protocols, Figure 5-20Rigure 5-22, graphically illustrates the
procedure for a lost data packet, an erroneouspdateet and a lost acknowledgement taken by
selective repeat ARQ. With a lost data packet, $HAacknowledges correctly received
frames however, if a frame is lost, SR_ARQ is ablerecognise that it is an error, as the
transmitted frame is out of sequence when it asriaethe receiver. The unexpected frame is
buffered and a request for retransmission in threnfof a NACK along with the sequence
number is sent back to the transmitter indicattrag an error has occurred. Any further frames
that are received during the transmission of theCKAare buffered until the lost frame has been
retransmitted and correctly received. As with GBR@ acknowledged frames in SR-ARQ

allow the shift of the sliding window buffer in tlinsmitter.

____________

o1 |2 |of1 |2 |0 |. QK’ DRDEE
ety ACK 1 — 0 1 2 0

Figure 5-20: Selective repeat ARQ for lost data packet (frame).
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The same procedure for a lost data packet alsdeapfdr an erroneous data packet. If the
receiver detects an error in the data packet a NAOKimediately sent back to the transmitter.
The receiver buffers all correct out of sequeneens until the erroneous frames are correctly
received. Once all the correctly received frameg#srcorrect order are received, the receiver

outputs the packet and proceeds to analyse thanexhing packet.
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Figure 5-21: Selective repeat ARQ for erroneous data packet (frame).

Selective repeat ARQ uses the timeout function wadast acknowledgement occurs. Since
each data packet transmission requires an ackngmieot, individual timers for each data
packet are required to determine whether the aclaumgment has been lost. In the lost
acknowledgment scenario, acknowledgements of datzkeps cause its associated timer
functions to terminate however; a lost acknowledgeims not able to terminate its timer and
thus causes its timer function to expire invokingremjuest for retransmission. Once the
transmitter is aware of the lost acknowledgmenbubh the expiration of its timer function, it
assumes there was an error in the transmissioheotlata packet. The transmitter stops all
current transmissions and attempts to transmitutiaEknowledged data packet before resuming
back to its previous transmission position. Theitamd of multiple timers contributes to the
increased complexity but is able to produce greateciency in the selective repeat ARQ

protocol.
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Figure 5-22: Selective repeat ARQ for lost acknowledgment.

Selective repeat ARQ is the most efficient of &k tschemes as the channel is kept busy
throughout the communication process unlike stapaait ARQ and only erroneous frames

are retransmitted unlike go-back-n ARQ which retraits the entire window.

H 5.3 SUMMARY

This chapter introduced error resilience toolsha form of error detection and correction in
order to preserve the integrity of data in its sraission over error prone channels. Error

protection is the term given to error correctioned with error detection.

The error detection component exploits the entropgling stage of arithmetic coding by
introducing a forbidden symbol as an error markée decoding of the forbidden symbol in an
arithmetically coded bitstream is a distinct indiica that the bitstream is erroneous and will
require error correction. Error correction is a tifateted model involving sequential decoding
via the optimal stack algorithm, where the treerdeas greedily directed using the MAP
decoding metric. The MAP decoding metric is intégnahe error correction procedure as it is
solely used to correct and rectify errors produdadng corrupt data transmission. It uses a
complex set of priori anda posterioriprobabilities to compute the metric. Another saluse
error correction is the ARQ based request for nstrassion protocol that is only invoked when
the MAP decoder is unable to correct the errothéntransmitted bitstream. The integration of
the ARQ protocol increases the probability that thransmitted sequence is less likely to
obtain as catastrophic errors as the previous rresfon and thus the MAP decoder will be

more likely to correct the errors.



This chapter provides a detailed description of toenplex subsystems employed by the
proposed codec. It highlights each component andse in the error detection and correction
model subsystems. The mathematical theory is predealong with associated algorithm
descriptions producing a chapter illustrating th#ire overview of the proposed system
components.
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CHAPTER 6 - PROPOSED CODEC

The proposed codec is an integral aspect of treedation as it consolidates the information,
theories and ideas proposed. This chapter showprtggession from the theoretical concepts
outlined in previous chapters to the design modehe proposed system. The design of the
proposed coder involves wavelet based compressitbntlae integration of error resilience in
the form of arithmetic coding with forbidden symlaold MAP metric sequential decoding with
ARQ retransmission. The proposed codec clearlyndsfthe various stages within the design of

the codec where a thorough description and detpikdication of each stage is provided.

H 6.1 SYSTEM DESCRIPTION

The proposed codec system description section qietige complete system that is employed
in the codec design. The proposed codec combinegl@taimage compression with error
detection and correction. The codec by definitian be described by its three distinct sections,
the encoder, the decoder and the retransmissiarese@rotocol. The encoder compresses the
image into a bitstream, the decoder decompresedstiream into the reconstructed image and
the retransmission request protocol requests fobitstream retransmission over than channel.
The system block diagram incorporating the encotieg, decoder and the retransmission
protocol is shown in Figure 6-1.

Wavelet Wavelet

Encoder Decoder

A

No FS Detected

y

Arithmetic Convolutional MAP Arithmetic
Coder > Coder Sequential 1 Decoder

Decoder

FS Detected

ARQ

A

Figure 6-1: System Block Diagram of the Proposed Codec.

The transmission block diagram begins the wavedetpression with the image undergoing
wavelet encoding. The arithmetic coder which forins final entropy coding stage for the

wavelet compression then follows. The entropy cgditage is exploited for error detection by
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incorporating the forbidden symbol into the arithimeoder source symbol probabilities. The
arithmetically encoded stream is then followed iy ¢onvolutional coder, which is included to
support the error correction capabilities of theteyn as it encodes the arithmetically coded

symbols further.

The convolutionally coded bitstream is transmit@doss an error prone wireless channel. The
error prone channel corrupts the compressed imggatimducing random bit errors into the
bitstream. Thus the need for error detection amtection is fundamental in order to reproduce

the original bitstream free of errors and henceodgaress the image.

The MAP decoder at the receiver is then used teecbany errors that may be present in the
convolutionally transmitted stream. Error correatiinvolves the convolutionally coded

bitstream possibly affected by errors, the MAP iesequential decoder and the ARQ
retransmission protocol. The MAP metric sequentiatoder attempts error correction by
decoding the convolutionally encoded bitstream anaducing an “educated guess” of the

original bitstream.

The new corrected bitstream is then decoded byatitbmetic decoder which exploits the

forbidden symbol concept for error detection. Eréhis no occurrence of the forbidden symbol
in the newly corrected bitstream, this is tantantdarihe erroneous bitstream being completely
corrected by the MAP decoder. However, if it isadétd, the MAP error correction has failed to
correct the erroneous packet and if decoded bywéneelet decoder the error will propagate
resulting in a corrupted, visually impaired reconsted image unless a request for

retransmission of the packet is made.

The ARQ retransmission request is a second erroeatimn mechanism employed to “backup”
the MAP decoder in the event of uncorrected or eowered packets. If a forbidden symbol is
detected the ARQ retransmission request sends aivegcknowledgement (NACK) to the
transmitter via the feedback channel indicatingt ttiee received bitstream could not be

corrected and the convolutionally encoded bitstrezauires retransmission.

If a forbidden symbol is not detected two procedudecur; the arithmetically decoded
bitstream proceeds to the wavelet decoder for déurtdecompression and the ARQ
retransmission protocol sends a positive acknovdedgmt (ACK) to the transmitter indicating
that the received bitstream was free of errors #mat the receiver requires the next

convolutionally encoded bitstream.
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The proposed codec concludes the final decompresdiohe bitstream by wavelet decoding
before reconstructing the original image. The imageonstruction exactness is based on the
successful correction of the errors. Thus the imagelf can be used as a benchmark to

corroborate the accuracy of the proposed codec.

H 6.2 DETAILS OF THE SYSTEM CODEC

The system description provides an overall accofitie sequence of events that occurs in the
algorithm. The stage details are explored furthieens each block in Figure 6-1 is broken down

into smaller functional blocks which describe tleatrtal processes of the module.

6.2.1 Wavelet Encoding and Decoding

Wavelet image compression is denoted by the waesledvder illustrated in Figure 6-2, which
applies three key wavelet processes to the image: two-dimensional discrete wavelet

transform, wavelet decomposition and the waveldingpalgorithm.

Wavelet Encoder

j § & 2D 2D Wavelet
7 1 ’ I DWT g Wavelet g Coding
| (Wavelet Family) Decomposition Algorithm
|
|

Figure 6-2: Block Diagram of the Wavelet Encoding Stage.

The two-dimensional DWT block computes the discretevelet transform by means of a
specific wavelet family on the two-dimensional irradhe choice of wavelet family for the
discrete wavelet transform involves substantiabrimfation about the image and the wavelet
family basis function in order to accurately repmsthe image information. There is however,
no gquantitative or explicit manner in which to ceedhe optimum wavelet as there are no rules
determining the superiority of one wavelet overthan The discrete wavelet family chosen for
the DWT is the Coiflet wavelet family; as it exhibithe best performance in terms of PSNR
image quality shown in Table 3-2. Specifically W@eiflet 5 will be used for the DWT in the

codec.

The two-dimensional wavelet decomposition blockfqgrens the multi-level decomposition

required for the image. The optimum number of dgumsition levels is complex to determine
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as it is related to subband coding used by the leteeding schemes to achieve the desired
compression or bit rate. The desired bit rate isies@d through repetitive iterations of the
coding scheme which is directly associated to theber of decomposition levels chosen.
There is a distinct relationship between the li# end the PSNR image quality, where a higher
bit rate yields a higher PSNR and lower bit ratelds a lower PSNR. Thus the number of
decomposition levels chosen affects the bit ratk lsence the PSNR image quality produced.
Therefore through systematic trials the optimum benof decomposition levels will be set to
six, as fewer levels are insufficient for compreasand more levels become inadequate for
PSNR image quality. Nine iterations will be appl@dducing a target bitrate 6f55bppfor the
SPIHT proposed codec design @nh86bppfor EZW proposed codec design.

The wavelet coding algorithm block defines the Welveoding schemes employed for the
wavelet compression of the image. Two wavelet apdinbhemes have been chosen for the
evaluation of the proposed codec, the EZW and ®i1E as motivated in Chapter 3.3. The
EZW and SPIHT algorithms are the core wavelet eimgpdechniques incorporated in the
wavelet encoder depicted in Figure 6-2, specificdiésigned to compress the image into a
bitstream. Both exhibit reasonably comparable cesgion performance with regards to
wavelet coding algorithms, illustrated in Figure83- The EZW and SPIHT wavelet coding
schemes with the addition of the error detectiosh @rrection procedures, will demonstrate the
trade-off between the error resilience provided #ved compression attained by the proposed

codec.

The design of the wavelet encoder will produce Itedeased on the various combinations of
wavelet processes used. It will involve the two-elitsional DWT based on the Coiflet 5
wavelet family, the two-dimensional wavelet decosifion for three decomposition levels, and

the EZW and SPIHT wavelet coding schemes.

The wavelet decoder block in Figure 6-1 controks ithverse of the operations and processes
described thus far. Figure 6-3 graphically depibtsinverse operations that occur in order to
reconstruct the image: the wavelet decoding algarit the two-dimensional wavelet

reconstruction and the two-dimensional inverserdiscwavelet transform.
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Figure 6-3: Block Diagram of the Wavelet Decoding Stage.

6.2.2 Arithmetic Encoding and Decoding

The arithmetic encoder and decoder blocks formimt jentropy coding and error detection
technique for the proposed codec. Entropy codingoismonly used as the final stage of
compression as it achieves greater overall comipres$ the bitstream. Error detection exploits
the arithmetic coder by introducing an amount duredancy in the form of a forbidden symbol.
The arithmetic encoder is used as an entropy coaefiding compression and the arithmetic
decoder is developed for error detection. Thusattithmetic encoder and decoder confirm its
use in the design of the proposed codec as itléstalbprovide additional compression whilst

integrating error detection.

The arithmetic encoder introduces the forbiddenksynmto the symbol alphabet, but it is the
arithmetic decoder that is used as the error datethe addition of the forbidden symbol adds
an amount of redundancy to the arithmetic encodehe compromise of compression. In
addition to compression, forbidden symbol redunglaiche arithmetic encoder also affects the
decoding time or error detection time at the argtimdecoder. This is the time it takes for the
arithmetic decoder to detect or decode the forlidgyenbol in the decompression phase. Hence
the more redundancy introduced, the less compresstours and less time it will take to
decode the error. Thus a precise balance betwempression and error resilience must be
maintained at the arithmetic encoder to ensure maxi usage of both the entropy coding and

error detection techniques.

The procedure as described in Figure 6-1 showsdfthaterror is not detected by the arithmetic
decoder, the decompressed bitstream then procedts tvavelet decoder for further wavelet
decompression. However, if the forbidden symbalasoded, an error has occurred and a signal
is transmitted to the ARQ retransmission protocbiclv begins the bitstream retransmission

sequence.

6.2.3 Convolutional Coding and MAP Metric Sequentia | Decoding

The core error correction procedure presented gnrEi 6-1 uses the convolutional coder and

MAP metric sequential decoder blocks. These twational blocks are coupled when error
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correction is required. Error correction is deswyite correct and rectify errors only once an
error has been detected initially. Error correcimpomplex as it uses redundant information to

estimate the original data from the incorrect dateived.

The convolutional coder is used in the design afrecorrection in conjunction with the MAP

metric sequential decoder, which when combinedbie ¢ correct the erroneous bitstream
generated by the arithmetic encoder. The convalaticcoder recodes the arithmetically
encoded bitstream before it transmits it to the MARetric sequential decoder. The
convolutionally encoded bitstream may be affectgdcbannel errors on transmission. The
convolutional encoder implemented has a code r&t& @and constraint length of 3. The
parameterised generator polynomials ag= G01 and G=111. The convolutional encoder

involves a simple code state design and structunereas an optimum convolutional encoder
design for the proposed coder is beyond the scbifésodissertation as the focus lies mainly on

the MAP metric sequential decoder.

The transmission of the convolutionally encodedstieam involves the transmission of a
packetized bitstream, where each packet is tratesiniine at a time across the channel. Once
the full transmission of the convolutionally encddeacket is complete, the error correction

process begins on this transmitted packet.

The MAP metric sequential decoder uses sequerg@ding by means of the stack algorithm
and amaximum a posterior{MAP) metric to decode the erroneous convolutignahcoded
bitstream illustrated in Figure 6-4. The selectioh sequential decoding as the applied
convolutional decoder is because it is a classieabding method for error control decoding of
convolutional codes. Sequential decoding offeraltarnative to iterative decoding and has now
been incorporated in various maximum-likelihood edéibn systems, like multiple-input
multiple-output (MIMO) and inter-symbol interferenISI) channels as it offers different
performance and complexity tradeoffs as comparemther maximume-likelihood decoders like
the Viterbi decoder. Sequential decoding is adwgeuas in that it uses the error probability to
direct its search instead of performing a fixed banof calculations for its decoding procedure
like other decoders. It is able to backtrack artchoe its path through the code tree depending
on the path metric unlike other decoders whereofiits paths are followed until two paths
converge to a single node, and then the path vki¢hlower metric is discarded. Thus the

sequential decoder appears to offer less compottcmmplexity and greater flexibility.
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The sequential decoder is implemented throughttek @lgorithm that uses the MAP metric to
direct its search path through the codetree. Theksalgorithm is a sub-optimal search that
offers recursive back-tracking based on the nodk teence the path that presents the best
accumulated metric. The MAP metric is a statistioadel for optimum decoding involving the
minimisation of the decoding error probability byaximising thea posterioriprobability. The
stack algorithm, being a depth first search alparituses the MAP probability as a metric to

select the best path from all possible paths withéncodetree.

The MAP metric sequential decoder corrects thenewas convolutionally encoded bitstream
through its probabilistic search model before tnaitting the newly decoded bitstream to the
arithmetic decoder for further decompression. # thrbidden symbol is detected, the ARQ
protocol sends a signal back to the transmittenesting retransmission of the bitstream. If the
forbidden symbol is not detected, the arithmetjcalecoded bitstream is then sent to the
wavelet decoder to reconstruct the image. The intagdity portrayed by the detail revealed
within the image is a reasonable indication of élteuracy produced by the error correction

scheme.

6.2.4 ARQ Retransmission

The automatic repeat request (ARQ) protocol foraretmission was introduced as a failsafe
mechanism in the event the MAP decoder is unableotoect an erroneous bitstream. This
double correction scenario will attempt to provibetter performance results than other
performance systems that do not make use of botR iécoding and ARQ retransmission for

error correction.

The ARQ retransmission strategy chosen is stopraaitlARQ. Although it performs the least

out of the three scenarios given, it is easy tolement, given the already highly complex
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wavelet algorithms, the advanced arithmetic coalith forbidden symbol and highly statistical

and search intensive MAP decoding. If the perforceanf the proposed codec with stop-and-
wait ARQ supersedes the performance of the compayst®ms, then it can be concluded that
the more efficient schemes like go-back-n ARQ aglddive repeat ARQ will produce greater

performance.

6.2.5 The Channel

The channel is representative of the transmissiedium used to transmit the compressed
bitstreams to be decoded. The channel may introshtiederence in the form of additive noise,

attenuation as well as transmission delays. Thaighlannel model is critical in the design of the
proposed codec as it is used to facilitate an eategerror correction scheme to counteract the

errors produced by the channel impairments.

Two wireless channel models proposed for the catecan additive white Gaussian noise
(AWGN) channel and a Rayleigh fading channel. Thefgvence of wireless communication
models for the design of the channel is due tolleaviour and nature of the propagation
channel, as wireless channels are non-stationadlytyically very noisy due to multipath

fading and interference. This is a logical choisedrms of modelling random errors for the

injection into the wavelet compressed bitstream.

The channels will feature varying Signal-to-NoisatiB’s, so that the error correction scheme
can attempt to handle and correct several varyiegreks of erroneous bitstreams. Thus
statistics of average SNR per bit versus performacan be accurately determined. The
modulation and demodulation of the compressedréést also falls under the channel
behaviour. The bitstream will undergo differentibinary-phase-shift-keying (DBPSK)

modulation before Gaussian noise and Rayleigh ¢pdifects it.

The channel in the proposed codec is used as anigyection and propagation medium, and
the error protection is included in the design togate the channel effects from the transmitted

bitstream.

6.2.6 Details of the Image to Bitstream Packetisati  on for Transmission

The encoding process essentially transforms theyémato a compressed bitstream via the
concatenated wavelet encoding and arithmetic cogiragesses. The transmission of the
bitstream to the decoder involves the bitstreanbdopacketised prior to the transmission.
Packetisation of the bitstream allows for the sge#elcoding of the forbidden symbol, faster

error correction and quicker retransmission. Moegpthe decoding time for the forbidden
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symbol is related to the amount of redundancy, thaesuse of packets of data allow for less

redundancy to be added, maintaining faster decoding

The packets of data are individually arithmeticalycoded and then convolutionally encoded,
and do not require the presence of other packetthédecoding process. The use of packets
comes at the expense of compression, as each peflckizstta involves the flushing of the
arithmetic encoder which adds additional bits tohepacketed compressed bitstream. Hence a
trade-off is established between compression antbdieg efficiency. Once again the

compression of the system becomes critical wheerdéttors are involved.

H 6.3 SUMMARY

This is an important chapter as it presents thggdemd analysis of the proposed codec system
employed. The proposed codec forms a hybrid scamdechannel coding system that attempts
wavelet compression with error detection and cdéimac This hybrid scheme of source and
channel coding involves source coding which is essed with compression and channel
coding involving error protection, which can be fpemed sequentially whilst trying to
maintain optimality.

The image is initially compressed into a bitstregacketised and transmitted across an error
prone wireless channel before being decompresdeel.dEcompression involves a series of
error detection and correction techniques befodergoing image reconstruction. The proposed
codec system transmission block diagram is discus$ere each block process is examined in
detail. The proposed codec illustrates the flomhsf processes involved in the design and

typically establishes the nature of the procespgmties employed.
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CHAPTER 7 - PERFORMANCE OF THE PROPOSED
CODEC

This chapter evaluates and analyses the proposkst torough a series of simulations in terms
of its performance metrics using a standard tesigensample set and various control
parameters. The sample set of test images cordrimgtly varying content enabling higher
qualitative performance results in terms of recedeimage quality. The quantification of the
control parameters are characterised by the enapagation phenomenon introduced by the
channel as well as the optimisation of the rattodisn trade-off model.

The proposed codec’s performance is indicativéhefdffectiveness of its wavelet compression
algorithms and its ability to adequately correcbreous data packets through its error coding
schemes. In addition, the results assess the momstems performance when compared to
current compression and error coding standardseisag’ combinations thereof. The proposed
codec’s simulation results are specific in thatimble bandwidth, bit error rates and display
resolution, associated with the wavelet compressiod error coding, determine acceptable
performance criteria. On the basis of these peidooe measures as well as the associated

simulation results, viability of the proposed codeestimated and the overall performance can
be quantified.

H 7.1 EXPERIMENTAL METHOD

The experimental method describes the basic cawfiigun of the evaluation environment and

defines the evaluation parameters when assessthgth® proposed and current standardised
systems. It aims at maintaining consistency throughhe performance results by specifying
the parameters in which the systems should be ss$esneasured and quantified. It is
meaningless to compare evaluation results obtaineer different evaluation environments as
both the proposed codec and the current codecferp@nces are influenced by the evaluation
parameters. Thus the experimental method is drifitaallowing the performance of the

proposed codec to be accurately evaluated asnitpigssible to obtain correct and reproducible

results if any part of the experimental methoddsabearly defined for each performance test.
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The platform used for the simulations is an Intehfftum 4, 1.6 GHz PC with 512MB of RAM,
running the Microsoft Windows XP 2002 ProfessioB&l2 operating system. The simulation

results were generated using the Matlab simularagine.

The test image sample set used are standard imagesging test images that contain a variety
of natural scenery and varying textured detail. yTla@e specifically selected to test the

behaviour of wavelet based image compression tguabgeiand error resilience methods of the
various codec’s. The test image sample set incltitie® images, each using a resolution of

256x256frame size witt8-bit greyscale format.

The evaluation parameters for the simulation tekthe codec’s, use both the Coiflet 5 wavelet
family, six wavelet decomposition levels and ninterations for the simulations. The
performance simulations include two wavelet conmgioes algorithms, the EZW and SPIHT
coding schemes, executed over two wireless chantieés AWGN and Rayleigh fading
channels with a fading variance ¢#=0.5. Performance comparisons between MAP decoding

with ARQ retransmission and systems involving thifving scenarios are evaluated:

« System 1: Arithmetic coding at the encoder andhariitic decoding at the decoder.
Wavelet Arithmetic m Arithmetic Wavelet
Encoder i Coder > Decoder g Decoder

Figure 7-1: System 1 block diagram scenario for performance comparison.

» System 2: Convolutional coding at the encoder a#dPMecoding at the decoder.

Convolutional MAP
Wavelet Wavelet
g Coder Sequential [P
Encoder Decoder

Decoder

Figure 7-2: System 2 block diagram scenario for performance comparison.

e System 3: Arithmetic coding and convolutional cagiat the encoder and MAP

decoding with arithmetic decoding at the decodéi wo forbidden symbol detection.
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Wavelet Wavelet

Encoder Decoder

A

y

Arithmetic Convolutional MAP Arithmetic
Coder H> Coder Sequential [P Decoder

Decoder

Figure 7-3: System 3 block diagram scenario for performance comparison.

Each system does not use ARQ retransmission noesnage of the forbidden symbol error
detection capabilities found in the proposed cdties evaluations of the performance of these
inclusions in the proposed codec against the systdrave are determined. System 1 involving
simple arithmetic coding and decoding is includedhow how a compressed bitstream without
any form of error protection performs against theppsed codec which uses a fully integrated
error protection system. System 2 is included endimulations to illustrate that error correction
without the forbidden symbol error detection medésigndoes not provide adequate correcting
ability as compared to the proposed codec whick aelements to provide a superior system.
System 3 is a combination of arithmetic coding avidP decoding offering additional
compression and error correction but without fodeid symbol detection or ARQ
retransmission. This system is compared to the gmegp codec to illustrate that even the
inclusion of specific elements will still not procks optimal results as two key elements of
forbidden symbol detection and ARQ retransmission gdditional error correction are not

included in the design.

7.2 COMPARISON WITH IMAGE COMPRESSION AND ERROR CODING
STANDARDS

This section compares the proposed codec againgntisystems using the test image sample
set and its defined evaluation parameters. The gsexp system involving MAP metric
sequential decoding system with ARQ retransmissiges the stages illustrated in Figure 6-1.
The systems for comparison involve three systerysteg 1 which involves arithmetic coding
and arithmetic decoding, System 2 which involvesvetutional coding and MAP decoding and
System 3 which involves arithmetic coding and cdational coding with MAP decoding and

arithmetic decoding.
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The arithmetic coding and decoding system does utitive the forbidden symbol error
detection technique nor any other additional ecmrection techniques. The arithmetic coding
behaves as an entropy coding stage in system feryswhich involves arithmetic coding and
decoding stages only is compared to the proposeéelcowhich incorporates both error detection
via the forbidden symbol and dual error correctidmough MAP decoding and ARQ
retransmission. This comparison attempts to tesetror detection and correction capabilities
of the proposed system against the simple entragyng of System 1. The error detecting
capabilities of the proposed system of MAP decodamgl ARQ retransmission uses the
forbidden symbol technique to request for retrassion whereas the comparing system does
not and this will highlight the usefulness of théature in improving overall performance. The
lack of error correction in System 1 against theppsed system will show the need for error
correction for increased performance improvemertierwimpaired error prone channels are

concerned.

System 2 using convolutional coding and MAP decgditithout forbidden symbol detection or
arithmetic coding, when compared against the preposystem will attempt to correct
erroneous bitstreams. System 2 is also free of éetection, but integrates error correction. If
the MAP decoder is unable to completely correcdtstream, the bitstream will remain in error,
whereas the proposed codec has the ability to sédoe a retransmission of the erroneous
packet if detected. A performance comparison batvike systems will indicate that the use of
additional compression via arithmetic coding, emetection due to the forbidden symbol and
additional error correction provided by the ARQaesmission request contributes significantly
to the increase in overall performance of the psegosystem. The proposed system tests the

ability of MAP decoding with ARQ retransmissionas efficient error correcting tool.

The third system, System 3, involves AC, CC, MARI arrithmetic decoding against the
proposed system which includes the exact same sstafj@peration (AC, CC and MAP)
however, it includes forbidden symbol detection &Rl retransmission as an additional error
detection and correction mechanism. This performammnparison is used to illustrate that the
inclusion of ARQ retransmission for additional erroorrection improves the overall
performance of the system, as bitstreams that coolicbe adequately corrected by the MAP
decoder can be either be free of error or re-ctedein the second transmission sequence. Also
the inclusion of the forbidden symbol for error etdion provides additional use of arithmetic

coding other than an entropy coding stage to cosspe.
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7.2.1 Lena

The Lena [85] test image is the most popular im@geessing and image compression standard
test image in use. It contains a mixture of dethit, regions, shading and texture, to be able to
adequately test the compression coding schemés.altdiversely detailed image that offers
varied detail response and is useful to test tlvedkr error capability with regard to fine detail,
flat regions, shading, contrast and texture. Th&x256 grayscale Lena test image used in the

simulation is shown in Figure 7-4.

Figure 7-4: Lena Test Image [85].

The performance simulations executed on the Lemrgéndiffer between wavelet compression
coding schemes, wireless channels and error degeatid correcting methods. Essentially two
performance results are used in the analysis, pac&sure rate (PER) versus average SNR per
bit (E/No) and image quality (PSNR) versus bitrate. PER isl isevaluate the error correcting
performance of the systems against the channealigction of errors. PSNR is used to evaluate
the image quality produced by the systems wavabetpcession algorithms under channel
degradation. Thus the two sets of results produteoad overview of the various systems

performances in comparison with one another.

For the following Lena image performance resulisyutations of all four systems using the
exact same wavelet coding scheme across a spetéimel is generated. These simulations test
the performance of the four systems against eaubr atsing the same wavelet compression
algorithm and the same channel conditions. Essntizese results will determine the best

system in terms of error correction and image typlioduction.
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7.2.1.1 EZW Coding over the AWGN channel.

The simulated performances use the EZW waveletngodigorithm transmitted across an
additive white Gaussian noise channel. The diffegeim the performance simulations for the
three systems against the proposed codec is dtletimclusion of the forbidden symbol in
arithmetic coding for error detection and ARQ resmission for additional error correction.

In order to analyse the proposed codec’s abilitgdequately correct channel induced errors
performance simulations of packet erasure rate JRERsus average SNR (signal-to-noise-
ratio) per bit (5/No) in decibels (dB) were generated. The resultcatdi the AWGN channels
effect as well as the correcting abilities of tigstems. The packet erasure rate is defined as the
number of packets that were not corrected by tlstesy in relation to the total number of

packets transmitted across the channel. It careberitbed by equation (7.1):

_ Numberof Erroneoud?acketsiotCorrected
Total numberof Packet Transmittd

PER

(7.1)

The channels average SNR per bit models the anmfuetrors introduced into the channel
during the transmission process. At lowefNg the number of errors introduced increases
resulting in a higher PER. Figure 7-5 is the peni@mnce simulation for the AWGN channel
using the EZW wavelet coding scheme for the Leri jBiage using20-bit transmission
packets. The four simulations show the proposeg¢ca@dainst the three systems; System 1,
System 2 and System 3. Figure 7-5 illustrates timeber of erroneous packets that could not be
corrected by the systems, for the entire procegsvimg compression and transmission of the
Lena image. In terms of the number of uncorrectedneous packets, the proposed system
performs best as its packet erasure rate is fartlem all other systems throughout the SNR
range. The ARQ based system for majority of the SNBtoduced impeccable error-free

images. A PER of zero constitutes an error-fre@ehgressed image.

The proposed system which is the MAP metric sedalerdecoding with the ARQ
retransmission protocol and forbidden symbol daiador error correction reduces the erasure
rate by approximatel$$5% against the three comparison systems. This remuddi calculated
by (7.2) which is representative of the statistigatcent change formula of two data setg; D

and D. The percentage change betweerafd O is given as:

0 _p,-0,

5 5 (7.2)

1 1
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The 85% overall percentage reduction experienced by threettsystems uses the above
percentage change formula given at eagNEand then a mathematical mean of these
percentage changes is then calculated to give prodmate overall change across the two
trends. Essentially Dwill be the set of PER results of the proposedesysand R is the set of
results for System 1 or System 2 or System 3. Eregntage decrease formula is used for the
PER results due to the linear scale exhibited bByPER results. However, for the PSNR results,
which are to follow in the next section, a loganiib scale is used and the absolute value in dB
for the difference between trends is stated. Thegoeage change between the trends for the
PSNR results is equivalent to the absolute chamgdifference between each value for dB
results.

The proposed system which has an ARQ-MAP decodes additional forbidden symbol error
detection whereas the other three systems do hot fhe results provide an overview of the
impact forbidden symbol detection has on erroraxiion with proposed system versus System
1, System 2 and System 3. The results show thdbtb&lden symbol detection combined with
MAP decoding in the proposed system produces faersar results than simulations without FS
detection. The same can be said for inclusion oQABtransmission in the proposed system, as
System 2 and System 3 do not have a second ern@ction procedure if the MAP metric
decoder fails in any instance. Thus the additioa eécond error correction mechanism ensures

correction of an erroneous bitstream.

PER vs. SNR for EZW over AWGN for Lena
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Figure 7-5: Diagram of PER vs. SNR (Es/No) for EZW over AWGN channel for Lena image for the Proposed
System against System 1, System 2, System 3.

When evaluating the four systems involving comgoes®nd errors, analysis of an images

quality produced by the systems is essential irrdehing the overall effectiveness of the
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system itself. Performance simulations showingithege quality of an image are generated by
PSNR (peak-signal-to-noise-ratio) in decibels (d&ysus bitrate in bits per pixel (bpp)
simulations. Bitrate in the performance simulatide$ines the degree of compression a system
is able to achieve and is formally defined as thmiper of compressed bits in relation to the
total amount of pixels in the image. Bitrates diféecording to either the EZW wavelet coding
or SPIHT wavelet coding and even arithmetic codia@n entropy coding stage as each scheme
produces a different amount of compressed bits arthmetic coding adds additional
compression to the already highly compressed wagelapression schemes. Low bitrates offer

a higher degree of compression and the convetsgeigor high bitrates.

Image quality is commonly defined in terms of PSWNRich demonstrates both the degree of
compression applied and the effect of disruptivanciel characteristics and error propagation
on the image after its has been decoded. EssgrtialPSNR versus bitrate results illustrate the
extent of a channel's destruction on the image ityualuring decompression of an image
showing the error propagation experienced. If titeate for a particular system does not
change, it can be observed the impact a channet¢@madpropagation can have on the ultimate

image produced. This is essentially the findingséhresults attempt to examine.

For the image quality performance simulations thentel characteristics in terms of average
SNR per bit (E/No) was kept constant to observe the wavelet's cosspre effect on the
image. An AWGN channel SNR equal TdB was set to show the channels erroneous nature
and its impact on image quality and error propagatior the set of results, as well as

maintaining consistency whilst evaluating the bénapact on image quality.

The proposed system’s performance can only be medstihrough its error correcting
capability in the presence of channel errors. Tiheseffect of the channels errors7aB will

show a performance difference in compression arrdeciion compared to the other three
systems that includes all other stages of arittoraiding and MAP decoding but without any
forbidden symbol detection or ARQ retransmissiaiategies. If no channel errors (i.e. PER
equal to zero) were present the PSNR image qualityes would be identical for all the
systems as there will be no errors to correct aiitl iv fact only decode the error-free

transmitted bitstreams.

The image quality results are used as a performamtieation for the comparison of the
proposed system against System 1, System 2 anén®yatin terms of error propagation of
uncorrected decoded errors. Thus the greater theo@uof uncorrected errors produced, the

greater the chance of catastrophic error propagatiesulting in visually poor images.
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Therefore it is essential to correct the channersrthrough the use of a precise and efficient

error correcting system.

Figure 7-6 illustrates the simulation results fmage quality for the four systems; the proposed
system, System 1, System 2 and System 3. The mdmystem performs extremely well as it
maintains relatively high image quality for a rargfdow to high bitrates. These results indicate
the success of the proposed system’s error casre¢tichnique, in that it is able to correct
channel errors for various degrees of compressatiosr preventing error propagation and
thereby producing remarkable image quality. A higR&NR or image quality for a given

bitrate is always required in image analysis asighifies the decoder’s robustness to error

propagation.

System 2 is also able to correct most compressioorse (channel errors causing error
propagation). System 1 and System 3 perform relgtipoorly producing lower PSNR results
showing the systems inability to correct channebrsrcontributing to the high degree of error
propagation throughout the bitrates. The additimmethpression produced by the inclusion of
arithmetic coding in System 1 and System 3, whéettgd by channel errors causes irreversible
error propagation producing lower PSNR results. elmv, System 3's MAP metric sequential
decoder is able to improve the image quality of ltkea image as compared to System 1 by
correctly decoding more erroneous packets of datichwdecreases the chance of error
propagation thereby increasing the PSNR qualitgi&3y 2 does not correct the errors with any
success as the proposed system thereby contribigtitige increase in error propagation and

decrease in PSNR quality depicted in Figure 7-6.

Improved PSNR quality is seen by the proposed systhich produces an average I§dB
5dB and12dBincreases in image quality over System 1, Systaand®System 3 respectively.
These results were calculated by first taking thithmetic mean of the two trends being

compared and then calculating the absolute diffardretween the mean dB values.
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PSNR vs. Bitrate for EZW over AWGN for Lena
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Figure 7-6: Diagram of PSNR vs. bitrate for EZW over AWGN channel for Lena image for the Proposed System
against System 1, System 2, System 3.

7.2.1.2 EZW Coding over the Rayleigh Fading channel

The Rayleigh multipath fading channel is a far mereor prone, destructive and aggressive
transmission channel than the AWGN channel anditittsduces more catastrophic errors into
the channel during transmission. The Rayleigh maded is a frequency selective channel with
a fading variance dd.5. The channel exhibits destructive errors evenigit BNR’s (typically

above 8dB’s) due to the inherent erroneous natutteeachannel.

The performance results of the Rayleigh channetatheristics for the associated PER versus
Ey/N, for a 20-bit packet is illustrated in Figure 7-7. A significadifference in erasure
performance is experienced between the proposdadnsyand the three other systems for the
Rayleigh fading channel. This difference can betatted to the Rayleigh fading channel being
an extremely error prone channel, and with a dser@athe channels SNR this has resulted in a
greater number of errors being introduced into ttiiee systems bitstreams as the systems
cannot adequately correct the errors. Hence, ttee thystems simulations are fairly correlated
in terms of errors unlike the proposed system whimtects the erroneous bitstream throughout
the SNR range. The proposed system shows a samiflecrease, of approximately 90%, in
erasure performance for very low/N,. At higher SNR all systems actively produce mirima
packet erasures as the probability of channel iedwerrors are relatively low at high SNR’s

(greater than 8dB’s).
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Figure 7-7: Diagram of PER vs. SNR (Eu/No) for EZW over Rayleigh Fading channel for Lena image for the
Proposed System against System 1, System 2, System 3.

The performance simulations for the Rayleigh fadihgnnel under the same conditions as the
AWGN channel for PSNR versus bitrate is illustratedrigure 7-8. From the simulation results
the proposed system exhibits greater error coomctiapability than the three comparison
systems. The proposed system involving ARQ retrésson with MAP metric sequential
decoding shows improved error coding capabilitesnein the more destructive channel as the
system is able to correct the channel errors mibeetively producing less error propagation in
the decompression stages. Thus the proposed syifitestrates a3dB to 16dB PSNR
improvement in its channel error coding abilityerdby reducing error propagation and

increasing PSNR quality more so than the otheesyst

The results in Figure 7-8 show the error correctiapabilities of System 2 where this system
performs relatively well in terms of image quality the destructive channel. This is validation
that the first stage of error correction using Q@ MAP metric sequential decoding in the

proposed codec works well in correcting channedrerr

The simulations also indicate that both System d &ystem 3 cannot adequately process the
additional compressed information from the inclasad arithmetic coding transmitted via the
corrupt Rayleigh fading channel as the image quadimains poor over all simulated bitrates.
The integration of arithmetic coding adds comp@ssihereby causing catastrophic error
propagation resulting in System 1 and System 3oparhg worse than System 2. System 3
does not use the forbidden symbol technique ansl theeintegrated arithmetic coding as a pure
entropy coding stage only, thereby contributingntmeased compression and thus greater error

propagation.

15¢



Nonetheless, the proposed system including AR@msinission with MAP decoding exploits
the additional arithmetic coding element in its igesfor forbidden symbol error detection
which then requests for a bitstream retransmisgiarthe ARQ protocol if the bitstream is in
error. The improved error correcting performancehaf proposed system showd@dB 3dB

and 13dB PSNR increase in overall image quality performafareSystem 1, System 2 and
System 3. This is significant and verifies that thenbination of both the forbidden symbol and

ARQ retransmission with MAP decoding offers phenoaieorrection when applied together.

PSNR vs. Bitrate for EZW over Rayleigh Fading for Lena
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Figure 7-8: Diagram of PSNR vs. bitrate for EZW over Rayleigh fading channel for Lena image for the Proposed
System against System 1, System 2, System 3.

7.2.1.3 SPIHT Coding over the AWGN channel.

SPIHT wavelet encoding is a higher compression @srcdhan EZW coding, therefore
uncorrected erroneous packets experience greatketparasure due to the error propagation
experienced during decoding. When investigatingrexous channels, the more destructive the

channel, the greater the impact there is of emgpagation on uncorrected packets.

The packet erasure rate for the SPIHT wavelet algorfor the Gaussian channel illustrates the
proposed system’s improved error correcting cajtiesilover System 1, System 2 and System
3. Figure 7-9 is the simulation results generatdtlie PER versus /B, for the AWGN
channel using SPIHT wavelet compression. For theHBRvavelet algorithm, the proposed
system out performs the three systems in termi@htmber of uncorrected data packets. At
high noise ratiosHy/Ny,= 8, 9 10dB’$ the erasure rates of the three compared systeens a
similar however, there is a significant differerfoetween the proposed system and the three

other systems as the proposed system reduces yr@@86compare to the other three systems.



The erasure difference between System 1 and Sy8tmesults in comparison to the results
produced by the these systems in the EZW AWGN sitiaris shows that with the increased
compression provided by SPIHT coding and additiot@inpression due to the arithmetic
coding, error propagation becomes significant eargsults as the decoding processes of the two
systems (System 1 and System 3) propagates ths emuxh more in SPIHT coding than EZW
coding. Thus higher compression, coupled with iaseel channel errors causes greater

catastrophic error propagation resulting in highsere rates.
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Figure 7-9: Diagram of PER vs. SNR (Eu/No) for SPTHT over AWGN channel for Lena image for the Proposed
System against System 1, System 2, System 3.

The SPIHT algorithm offers greater compression vitiproved image quality for a given
bitrate. This is depicted in Figure 7-10 where B&NR values across the spectrum of bitrates
produce a high performance. The SPIHT proposecesystxhibits increased image quality
performance at both low bitrates through to highelbes. The simulation results indicate that the
proposed system responds well in terms of errorecton in conjunction with the SPIHT

compression technique.

System 2 does not sufficiently correct SPIHT corapien and channel induced errors as well
as the proposed system resulting in an underpeirigraystem. System 1 and System 3 produce
lower quality results as compared to System 2 fogsé simulations as the increased
compression offered by arithmetic coding causeatgresrror propagation as even one bit error

within a packet can propagate further when dectéuledring the image quality.

It can be concluded that the increase in compresdimes affect the three systems in its
correcting abilities, but does not decrease th@gsed codec’s efficiency in correcting errors

thereby minimising error propagation. The averay® $er bit for the AWGN channel was set
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to 7dB, a slightly degraded channel consistent with gleo PSNR simulations, which is used to
illustrate the systems correction capabilities urdi@nnel degradation. This result confirms the
SPIHT proposed system’s ability to handle compogsdbgether with channel errors with
greater efficacy, producing less error propagatitan the other three systems. In terms of
PSNR simulations, the critical difference in resutcur with the decompression of attempted
correcting of channel errors. The image qualityedty indicates the decoder’s efficiency in

correcting results to prevent error propagation.
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Figure 7-10: Diagram of PSNR vs. bitrate for SPTHT over AWGN channel for Lena image for the Proposed
System against System 1, System 2, System 3.

7.2.1.4 SPIHT Coding over the Rayleigh Fading chann  el.

SPIHT coding is known to be more efficient than EZ&ding in terms of compression.
However, this increase in compression coupled whth destructive nature of the Rayleigh
fading channel produces greater channel errora fiiven SNR which produces greater erasure

performance if the channel errors are not succigsforrected.

The packet erasure performance (PER) of SPIHT wéaeelding across the Rayleigh channel is
given in Figure 7-11. The proposed system is ablesuccessfully correct channel errors
introduced by the highly destructive Rayleigh npdth fading channel. It is evident from the
erasure performance that the proposed system’s eompecting capability is superior even

when a considerable amount of errors are inducdeblly SPIHT compression and the Rayleigh
fading channel. The addition of the forbidden syhfbo error detection and double correction

offered by both the MAP metric sequential decodet ARQ retransmission strategy produces

excellent erasure results where the results shewS®IHT coder producing almost no packet
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erasures throughout the SNR range. The other Hystems exhibit a higher erasure rate at mid
to low range SNR'’s (typically less than 6dB’s) asnpared to EZW coding. This increased
erasure rate is attributed to the increased comipre®f the SPIHT coding and the increased

channel errors of the Rayleigh fading channel.

System 2 manages to perform slightly better thaste®y 1 and System 3 due to the lack of
additional compression provided by the arithmeticing which appears to contribute more
significantly to increased error propagation anusterasure performance. The erasure rates for
both System 1 and System 3 are particularly highhiie set of simulations, where the proposed
system is able to reduce erasures¥¢a This is due to the arithmetic coding algorithm
introducing slightly greater compression, produciagdecrease in the total amount of
information transmitted. This overall decrease ransmitted information combined with a
highly corruptible Rayleigh channel which introdacedditional errors into the stream,
produces a bitstream of errors which cannot edsélycorrected by System 3 as the small
amount of compressed information is corrupted bdy@tognition. Since no other additional
error correction mechanism is used, unlike the pseg system, System 3 fails to correct the

error bitstream producing higher packet erasurtopeance.
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Figure 7-11: Diagram of PER vs. SNR (Es/No) for SPTHT over Rayleigh Fading channel for Lena image for the
Proposed System against System 1, System 2, System 3.

The simulated results for the SPIHT wavelet codith whe particularly error prone Rayleigh
fading channel represents a worst case scenarionfoye induced errors. Figure 7-12 depicts
this erroneous case for the proposed system arttirine other systems using a channel SNR of
7dB. All systems perform less in terms of image gyaditowing that the error correction has
decreased throughout the bitrate spectrum dueetaththnnel being heavily degraded. Although

the three other systems System 1, System 2 andr8y&perform worse, the proposed system
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still manages to correct errors producing a highlR®f 20dB for the lowest bitrate dd.1bpp
and even higher PSNR values for majority of thenargbitrates (greater th@&n5bpp, which
implies that its error correction and detectionesnh can perform well even with a heavily
degraded channel as compression increases and itiastawd most errors whether it is

compression or channel induced during decompressidrdecoding.

System 1 and System 3 produce inferior resultsysiegh 2 as the integration of arithmetic
coding introduces additional compression therebysice catastrophic error propagation.
Nonetheless all three systems still produce lowelity results in relation to the proposed

system.
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Figure 7-12: Diagram of PSNR vs. bitrate for SPTHT over Rayleigh fading channel for Lena image for the
Proposed System against System 1, System 2, System 3.

7.2.2 Barbara

The Barbara [85] test image is generally an exotlest image to use in the testing of image
processing and image compression as it containgn#icant amount of fine detail. The high
frequency detail is contained in the woman'’s cloghéind the table cloth where texture variation
is found. Unlike the Lena image, the Barbara imegatains a mixture of flat regions, shading
with a great deal of emphasis placed on fine datadl texture. The 256x256 grayscale Barbara

test image used in the simulation is shown in FEg1.3.
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Figure 7-13: Barbara Test Image [85].

The performance simulations for wavelet compressimting schemes, wireless channels and
error decoding methods are executed on the Banvage and the results follow. The two sets
of performance metrics, PER and PSNR are also usehis set of results to evaluate the

systems performances.

In the following Barbara image simulations, perfarmes of the systems using both EZW and
SPIHT compression algorithms are tested against etier on each of the four systems under
both channel conditions. These simulations test gagformance of a system under both
compression coding schemes and under both errombamnel conditions. The Barbara image
being a heavily fine detailed image may prove narallenging for the correction scheme as
error propagation due to compression of fine detamly affect the results more than other
images. Thus this image is included in the setr@ges for testing as it is an excellent image
for compression analysis. Essentially these resuiltsletermine the best compression scheme
in the presence of channel errors and fine detateims of packet erasure performance and

image quality for a specific system.

7.2.2.1 System 1 over the AWGN and Rayleigh fading  channels

SPIHT wavelet coding was designed to be an impreveénto EZW coding and therefore
applies more compression to a bitstream. The setsolts use a slightly higher compression for
SPIHT than for EZW, thus higher compression canseamore erasure. The AWGN and
Rayleigh multipath fading channels when combinethwbmpression can perform differently,
as a combination of channel errors with greaterpession can cause more extreme error

propagation during decoding like those experierfoedsPIHT compared to EZW. The results
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in Figure 7-14 show how the channels with the weilvebding schemes perform against each
other in erasure terms using a packet of 20 bitstlie packet erasure performance. PER
performance is determined by comparing?@bit packet of data before transmission and
channel interferences with the same packet aft@hnagtic decoding which is after

decompression. Thus the results will provide arcleaw on how the system is affected by
errors introduced during transmission, and howfie& decompressed bitstream is eventually

affected in terms of packet errors.

The System 1 simulations involve only arithmeticliog and decoding, an additional entropy
coding stage for compression, which is used to cesgpthe wavelet bitstream further before
transmission over the channel. Since System 1 wegolno error correction and only
compression, the results show the error propagatigerienced in the decompression stages

due to the combined effect of the wavelet compoasaind channel conditions.

The EZW coder under both the channels degrade siitlilar responses and exhibit similar
erasure performances as no correction takes plattha results only show how the EZW coder
is affected with Gaussian and Rayleigh fading. $ame applies to SPIHT coding, where the
results of the channels interference is the sanmeher, a difference in erasure is observed
between the wavelet coders. This implies that audht compression introduced by the
efficiency of the SPIHT coding and the lower bigratsed contributes more significantly to the
error propagation. The SPIHT coder at a bitrat®.@bppperforms worse than the EZW coder
at a bitrate 00.83bppdue to SPIHT coding producing greater compressdios to the lower
bitrate which is the amount of compressed bitstha entire image as per its design. The
addition of arithmetic coding compression to theeatly increased compression of SPIHT
coding produces greater error propagation in tketrbam when exposed to significant channel
errors by both the Gaussian and Rayleigh fadingobla. Thus the increased compression of

the SPIHT algorithm results in a worse erasuregperdnce than the EZW for System 1.
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PER vs. SNR for System 1 for Barbara
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Figure 7-14: Diagram of PER vs. SNR for System 1 for EZW and SPIHT coding over AWGN and Rayleigh Fading
channel for Barbara.

The PSNR versus bitrate simulation shows that actimpression increases or decreases with
either an AWGN or Rayleigh fading channels destomctThe results show how the system is
affected by the errors in terms of error propagmtiothe final image quality produced. Error
propagation is caused when the decoding stage talmwode or uncompress the bitstream
effectively due to the errors affecting the bitatre and changing its bit structure during
transmission. Essentially an increase in comprassiupled with a channel’s destruction can
ultimately cause error propagation that resulta adecoded image that offers low visual quality
due to the decoding of errors. The systems bitatebe changed according to the arithmetic
coding and EZW compression of the system, resultinghore or less compressed bits being
transmitted across the channel. Since System laiffdys additional compression and no error
correction, channel errors and error propagatidhaffiect the system more so than the other

systems.

The image quality results for the Barbara imageleneer than the Lena image owing to the
increased fine detail of the woman'’s clothes whgleasily affected by the EZW and SPIHT
compression schemes and the additional arithmetierc It is essential to allow for each system
to be tested on a range of images to address isswdsas fine detail with compression and
observe how it can impact image quality resultse Gaussian channel performs well in terms
of image quality as it affects the EZW and SPIHTatepression stages less, as less destructive
channel errors are introduced in the transmissseqsience. The Rayleigh fading channel being
more aggressive has a poor image quality influercéhe results. The results also show that
SPIHT being a more efficient algorithm is able toquce better quality results than EZW for

the same channel conditions.
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PSNR vs. Bitrate for System 1 for Barbara
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Figure 7-15: Diagram of PSNR vs. bitrate for System 1 for EZW and SPIHT coding over AWGN and Rayleigh
Fading channel for Barbara.

7.2.2.2 System 2 over the AWGN and Rayleigh fading  channels

System 2 uses convolutional coding and MAP megguential decoding for error correction.
Both the EZW and SPIHT compression schemes hagepasket erasures in System 2 than
System 1, due to the correction of erroneous pacHRéte convolutional coding witmaximum

a posteriori(MAP) metric sequential decoding proves to be ogfitige as an error correcting

scheme as a reduction in erasure performancerns see

In Figure 7-16 System 2 is evaluated and showsithstable to process fine detail and high
texture variation as found in the Barbara test enagth great accuracy and precision as its
erasure rates are lower than those produced wilteBy 1. The systems error correction
employing prediction of the transmitted streamlikedo handle the degradation of the Rayleigh
channel competently. The inclusion of the MAP desoid System 2 shows a higher quality

performance for the Barbara test image.

The EZW AWGN and EZW Rayleigh results outperforne t8PIHT AWGN and SPIHT

Rayleigh results for System 2. The packet erasaselts are shown in Figure 7-14. The
difference in erasures for EZW and SPIHT show thith increased compression and channel
errors the SPIHT scheme cannot perform better thenEZW scheme as this increased
compression can cause greater error propagatieveiiil bit is in error in a packet. However,

the difference between erasure performances of BAd SPIHT compared to that seen in
System 1 is greatly reduced due to the error ctioreinherent in System 2. For comparisons of

EZW and SPIHT for each set of channel simulati@stem 2 reduces the erasures compared



to System 1 byl7% and 15% for EZW AWGN and Rayleigh and0% and56% for SPIHT
AWGN and Rayleigh respectively.

The results show that the channel errors havefgignce in the error correction performance.
This can be seen when observing the erasure redutigh SNR’s versus low SNR’s. At high
SNR'’s where there are negligible errors all fonndations perform the same however, at lower
SNR'’s the error propagation takes effect as highpgression schemes like SPIHT AWGN for
System 2 performs worse as the error correctios doé correct all packets and once decoded,
causes greater error propagation than a schemdesgrcompression like the EZW AWGN for

System 2.

PER vs. SNR for System 2 for Barbara
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Figure 7-16: Diagram of PER vs. SNR for System 2 for EZW and SPIHT coding over AWGN and Rayleigh Fading
channel for Barbara.

The simulation results for the PSNR versus bitfatethe wavelet coding schemes, for both
channels for System 2 is shown in Figure 7-17 tiédl simulations operate on a channel average
SNR of 7dB for both AWGN and Rayleigh fading as it introducésnnel destruction allowing

the results to show how the system performs widnokl errors.

The SPIHT System 2 results in Figure 7-17 perfomnywoorly for various bitrates when

compared to the proposed system in the next chafhé is due to the increased compression
experienced by the SPIHT algorithm causing greater propagation in uncorrected packets.
Since all results are generated by System 2, thergsults between EZW and SPIHT cannot be
attributed to the error correction process perlsayrather to the error propagation of erroneous
packets. Packet erasure as seen in Figure 7-16ntdbéake into account erroneous bits in the
packet thus ifl bit is in error in a packet, the entire packet is @ered as being in error.

Therefore slight difference in erasure rates of #imulations cannot be a sufficient
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representation of the destruction produced in it fmage quality. Hence the PSNR will give

a view of the entire decoded bitstream in error.

In the results the Rayleigh fading channel prodwugtegtly worse results than the Gaussian
channel verifying that the channel is indeed maestrictive. These poor results exhibited by
the SPIHT algorithm, as mentioned above, can beptaialy attributed to the small amount of
compressed information produced by the SPIHT algoricombined with the highly degraded
and destructive Rayleigh fading channel, produaingorrected error and irreversible error
propagation resulting in extremely poor performantke EZW wavelet algorithm behaves
moderately better with the Rayleigh channel, dudga¢oamount of compression produced by the
scheme. The more information (less compressiom),gteater likelihood the errors can be
corrected and less error propagation can then oétaving greater compression by use of
SPIHT coding also causes worse image quality if dhgtem is not used properly in error
correction. Thus a well established system int@ggadrror correction for effective correction is

necessary in any system design. This is provedwatk the proposed system.

PSNR vs. Bitrate for System 2 for Barbara
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Figure 7-17: Diagram of PSNR vs. bitrate for System 2 for EZW and SPIHT coding over AWGN and Rayleigh
Fading channel for Barbara.

7.2.2.3 System 3 over the AWGN and Rayleigh fading  channels

System 3 uses both arithmetic coding and decodiranaentropy coding stage for compression
and convolutional and MAP metric sequential decgdis the error correction mechanism. No
forbidden symbol error detection is included in Hystem or any alternative error correction

procedure if the CC-MAP decoding fails due to exteechannel destruction.



System 3’s erasure results are shown in Figure. 724se results are higher than System 2 and
System 1, as System 3 has more bits and packéssstructure as it combines both arithmetic
coding and convolutional coding which with a codéerof?z results in double the amount of
bits than the other two systems. This can resulfr@ater erroneous packets identified at lower
SNR’s as even & bit uncorrected error in a packet renders that pasmkeheous. As with the
previous erasure results, the EZW wavelet compyessoding technique is able to perform
better than the SPIHT compression technigque fornalke ratios with the same channel
characteristics albeit it's lower compression watlbitrate 0f0.96bppcompared to the SPIHT
bitrate of0.71bpp This can be attributed to the less compressivolhed in the EZW wavelet
coding scheme in terms of producing error propagaitiduced by the wavelet technique over

transmission and decoding stages.

PER vs. SNR for System 3 for Barbara
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Figure 7-18: Diagram of PER vs. SNR for System 3 for EZW and SPIHT coding over AWGN and Rayleigh Fading
channel for Barbara.

The PSNR versus bitrate results are given in Figui®. These results show how the system
reacts with decompression and decoding of errothaditrate changes. SPIHT AWGN for
System 3 performs best, yielding approximatel$d8 performance improvement over EZW
AWGN, EZW Rayleigh and SPIHT Rayleigh respectiveljne SPIHT AWGN system does
well due to the less destruction experienced byGhessian channel. The SPIHT Rayleigh
results perform worst as this drop in signal gyaikt due to the Rayleigh channels erroneous
nature and the decoder’s inability to successfpltgcess and correct the errors produced

thereby causing greater error propagation andsiessessful image quality results.
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PSNR vs. Bitrate for System 3 for Barbara
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Figure 7-19: Diagram of PSNR vs. bitrate for System 3 for EZW and SPIHT coding over AWGN and Rayleigh
Fading channel for Barbara.

7.2.2.4 The Proposed System over the AWGN and Rayle igh fading channels

The proposed system uses arithmetic coding andotational coding at the encoder and MAP
metric sequential decoding, ARQ retransmission quait and arithmetic decoding at the
decoder. This system exploits arithmetic codingefiwor detection by introducing the forbidden
symbol technique, therefore arithmetic can be uasdboth an entropy coding stage for
additional compression and error detection. The MA&ric sequential decoder is the first
option for error correction. If the arithmetic deeo detects a forbidden symbol this is an
indication that the MAP decoded packet has failad the packet is still erroneous. This
forbidden symbol detection then invokes the ARQamgmission strategy which prompts the
transmitter to resend the packet in the hope tmatrétransmitted packet is corrected by the
MAP decoder.

The erasure performance sees a marked improvemghelproposed system, as the results in
Figure 7-20 when compared to other system’s erasarprimarily due to the combination of
the ARQ retransmission protocol and MAP decodiragnhméque specifically. However, the FS
error detection when combined with the MAP decoaled ARQ strategy provides an error
protection mechanism able to withstand highly deégdachannels and high compression
techniques. The erasure results of the other sgstamimpared to the proposed system drops

from an erasure rate 6f8t00.15 an80%reduction in erasure.

As seen with the previous erasure rates, the EZ¥pqeed system performs better than the

SPIHT simulations. At high SNR'’s both the waveletiers perform the same however, at lower
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SNR’s EZW performs better as less compression pexlless information during transmission,
which can be affected less by destructive chanwblieh reduces the error propagation of
uncorrected packets. The proposed system perfoxoeptonally well for the wavelet coding
schemes and channel conditions as compared toréwops simulations of the three other
systems. Particular attention should be given ¢ontiajor decrease in overall erasure for all the
simulation combinations.

PER vs. SNR for the Proposed System for Barbara
0.16 ; : . |

—*— EZW AWGN
—*— EZW RAY

SPIHT AWGN
_| 7% SPIHT RAY

0.14

0.12

0.1 e R L
| |
& 0.08 e
o I I
| |
0.064 S
| |
| |
0.04 N
| |
| |
0.02 .
| |
| |
0 x "
8 9 10

Eb/NO (dB)

Figure 7-20: Diagram of PER vs. SNR for the Proposed System for EZW and SPIHT coding over AWGN and
Rayleigh Fading channel for Barbara.

Simulation results in Figure 7-21 reveal the imggality performance of the proposed system
with forbidden symbol detection. The image qualtagults for the two wavelet algorithms and
channels exhibit very similar image quality outcenwveith minimal quality differences. The
results also show that for the proposed systerhasdbitrate increases (compression decreases)
the image quality increases. This has been higiedylpreviously where less compression
means less information transmitted through an gerone channel, therefore less destruction
can take place in terms of error propagation amdlfimage quality produced in the

decompression stages.

The SPIHT AWGN results for the proposed system Wwighdetection performs best in terms of
image quality produced for lower overall bitrateincreased compression. The EZW AWGN
and Rayleigh fading simulations show similar reggsnshowing the slight difference between
channel conditions for this specific wavelet coddowever, the SPIHT Rayleigh results
perform worst as high compression offered by SPré@ling and high channel destruction
produced by the Rayleigh fading channel producedeerease in overall image quality.

Compared to the previous systems the PSNR valumaimerelatively high showing superior

results.
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PSNR vs. Bitrate for the Proposed System for Barbara
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Figure 7-21: Diagram of PSNR vs. bitrate for the Proposed System for EZW and SPIHT coding over AWGN and
Rayleigh Fading channel for Barbara.

The image quality differences between SPIHT AWGN dRayleigh images are visually

illustrated in Figure 7-22. The AWGN channel isead destructive channel than the Rayleigh
fading channel and produces less error propagatide decompression stages. This is visually
depicted in the images where an even texture in fmethe image, whereas the Rayleigh
channel has more destruction. It can be notedthigaproposed system corrects the errors far
better than other systems as the woman is stilbleiswhereas other systems produce

completely degraded images.

Figure 7-22: (a) Barbara image for SPTHT AWGN channel at a bitrate of 0.77bpp (b) Barbara image for SPTHT
Rayleigh Fading channel at a bitrate of 0.77bpp.

7.2.3 Cameraman

The Cameraman [85] test image is a standard imageegsing and image compression test
image. Unlike the Lena and Barbara images, the Gaman image contains a significant
amount of flat regions and high contrasting shadiés. low frequency detail or flat regions is

contained in the sky and cameraman’s coat whereidansity and high intensity grayscale
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shades are found. The Cameraman image containtareniof flat regions, high contrast
shading, fine detail and texture. The simulations executed on the 256x256 grayscale

Cameraman test image shown in Figure 7-23.

Figure 7-23: Cameraman Test Image [85].

The cameraman image performance results use siondadf all four systems with the EZW
and SPIHT wavelet coding scheme across either @es$tan or Rayleigh fading channel.
These results help determine the best systemnmstef error correction in the form of packet
erasure and image quality production in terms oRRfd PSNR. Images are also used to
illustrate the visual impact produced by error @@gtion and channel degradation in the

system.

7.2.3.1 EZW Coding over the AWGN channel.

The packet erasure rate for the cameraman imagmilar to the previous erasure rates for the
other test images. The proposed system simulatdnewes the best erasure rate as its
correction scheme performs best. As with the Barlbad Lena test image PER simulations, the
proposed system performs best throughout the SNferdal' he associated PER versy$Ngfor

the cameraman test image is illustrated in Figu2d.7

The AWGN channel simulations for the EZW algoritehow the proposed system reducing the
errors by an estimate@i8% It is evident the proposed system’s ARQ-MAP erorrection
combination maintains its error performance leadrdhe variations in the other systems for
Gaussian induced noise with test images having jarityaof flat regions and low frequency

detail. The proposed system maintains a good eragserformance lead against System 1,
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System 2 and System 3. The results validate the A&®@nsmission protocol and the MAP
metric decoder’s capability to correct errors wgtieater accuracy and exactness. It essentially

offers greater decoding abilities and is a preteaeor coding mechanism.

PER vs. SNR for EZW over AWGN for Cameraman
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Figure 7-24: Diagram of PER vs. SNR (Es/No) for EZW over AWGN channel for Cameraman image for the
Proposed System against System 1, System 2, System 3.

The cameraman PSNR simulations depicted in Figub &Bhow similar responses as
previously generated simulations. All simulations generated using a channgINg of 7dBto
introduce channel errors into the transmitted tatsn in order to view how the systems results
are affected by channel conditions. The proposetesy performs well as observed throughout

the set of test images however,

System 3 does not perform as well as System 2 wahémmetic coding is introduced. In the
simulations, System 2 only includes error correctiwhereas System 3 introduces arithmetic
coding which is observed to reduce the image qualitdecrease in performance improvement
is experienced for System 3, which involves the Madeoder with arithmetic coding, as the
system does not exploit forbidden symbol detecéind is used as a pure entropy coding stage
for additional compression. This additional compi@s is causing greater error propagation in
the system resulting in System 3’s image qualitpeéanore poor than System 2. The same can
be said for System 1 which also uses arithmetidngothat is contributing to greater error

propagation as even one bit error in a packet egmrdpagated further during decoding.
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Figure 7-25: Diagram of PSNR vs. bitrate for EZW over AWGN channel for Cameraman image for the Proposed
System against System 1, System 2, System 3.

The images shown in Figure 7-26 attempt to anayskinterpret the performance behaviour of
the different systems in terms of final image qyabroduced after decompression. Figure 7-26
(a) — (d) are the image quality results for therfeystems; the proposed system, System 1,
System 2 and System 3. Visually the proposed systerrects the errors and produces a
visually clear and accurate replica of the origimahge. System 2 has a higher PSNR than
System 1 and System 3, and is more visually defaratl less corrupted and blurry. This is a
result of the Gaussian channel inducing fewer cakarrors. Figure 7-26 (c) and (d) are very
blurry, corrupted and visually indefinable and igesult of uncorrected channel errors and

catastrophic error propagation for System 1 ande8yS.

In image processing, high frequency detail in tbenf of these black and white segments is
catastrophic to the image quality as it signifie®epropagation in the decompression stages.
The image for the proposed system, Figure 7-26igagxtremely defined and far clearer than
System 3 in Figure 7-26 (c), where the black andembegments suggest a greater deviation
from the original image due to induced channelrsrresulting in error propagation producing a
lower quality image. The shows that the inclusioh tike forbidden symbol and ARQ

retransmission protocol for the additional erroteddon and correction of the system produces

a vast improvement in performance and image quality

From the destructed results of System 1 and Sy8tethe cameraman image is still slightly
defined by the dark region. This indicates that foggquency detail in the form of flat regions
and shading found in the cameraman image are féssteal by errors propagation and thus
easier to correct and decode than the high detail é1 the Barbara image. High detail causes

greater catastrophic error propagation than flébum tone regions.
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Figure 7-26: Cameraman image for EZW AWGN for
(a) Proposed System with a PSNR of 28.95dB at a bitrate of 0.82bpp
(b) System 2 with a PSNR of 25.18dB at a bitrate of 0.82bpp
(c) System 3 with a PSNR of 77.94dB at a bitrate of 0.72bpp
(d) System 1 with a PSNR of 77.4dB at a bitrate of 0.62bpp

7.2.3.2 EZW Coding over the Rayleigh Fading channel

The Rayleigh fading channel represents a worst seseario for channel degradation as it is a
more destructive channel than the Gaussian chafirfatling variance 06°=0.5 is used with a
packet length oR0 bits The same systems as highlighted previously anellated using the

Rayleigh fading channel in Figure 7-27.

The Rayleigh fading channel simulations show treppsed system performing better than the
three other methods. A8% erasure reduction of the proposed system overSygstem 1,
System 2 and System 3 was observed for the EZWeRgylsimulations. However, almost
exact performances are seen for the EZW AWGN systewver its Rayleigh channel
counterparts. This is unusual as the erasure Vatue Rayleigh channel should be higher than
the Gaussian channel as it is a less aggressimedrannel. But this could be related to the fact
the cameraman image has less fine detail and iariaind greater areas of flat grayscale

regions which is affected less by the channelg®rro
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Figure 7-27: Diagram of PER vs. SNR (E»/No) for EZW over Rayleigh fading channel for Cameraman image for the
Proposed System against System 1, System 2, System 3.

The image quality results show the competitiveruédbe proposed system’s ARQ-MAP metric
sequential decoder against System 1, System 2 ystdr 3. The System 2 PSNR values at the
lower bitrates (less thal5bpp are not as poor as seen in the other test im&tmsever, the
proposed system is still able to prove its errarexiing performance against System 2 in the
visual image quality results that follow. Systema& with the previous test image results
performs better than System 1 and System 3 durdlaston of arithmetic coding. It has been
noted previously that the introduction of arithmetbding produces additional compression in
the system which in turn causes greater error gatpen during the decoding stages if errors

are not corrected.

The EZW Rayleigh fading channel performances anilai to the Gaussian channel and do not
vary much. It can be noted that as the bitratehefdystems increase, which constitutes less
compression, the error propagation decreases imleébempression stages resulting in better

quality images as seen in the gradual incline ®RBNR values in Figure 7-28.
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Figure 7-28: Diagram of PSNR vs. bitrate for EZW over Rayleigh fading channel for Cameraman image for the
Proposed System against System 1, System 2, System 3.

For PSNR image quality simulations it is alwaysthiesview the images visually as this can
show how slight erasure differences can impactyast an image. Figure 7-29 (a) to (d) show
each system performance at a bitrate betwBrand 1 as per the PSNR-bitrate simulation
above. The proposed system produces a crystal stesge under EZW Rayleigh channel
conditions. Fine details like the cameraman’s cameackground image and gloves are easily
identifiable verifying the error correction capadtyil of the system. System 2 performs
adequately well with subtle areas of destructioi@aarly edges surrounding the cameraman’s
figure. This is commonly known in image processasgyedge detail which is the movement
from low frequency to high frequency detail. Botyst&m 1 and System 3 are affected by the
channel errors and decompression error propagafiom.System 1 image contains areas with
massive black patches. This is considered to be dégtruction and results in the PSNR value

dropping significantly. Areas of either black oritehregions affect the quality drastically.
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Figure 7-29: Cameraman image for EZW Rayleigh fading for
(a) Proposed System with a PSNR of 27.82dB at a bitrate of 0.82bpp
(b) System 1 with a PSNR of 24.68d8 at a bitrate of 0.82bpp
(c) System 2 with a PSNR of 77.04dB at a bitrate of 0.72bpp
(d) System 3 with a PSNR of 8.94dBat a bitrate of 0.626pp

7.2.3.3 SPIHT Coding over the AWGN channel.

The packet erasure simulations determining ther ezaorecting capabilities of the SPIHT
AWGN systems against each other are given in Fige88. The AWGN channel simulations
for the SPIHT algorithm show the proposed systeducing the errors by an estimat@d%
compared to the three systems in terms of totalr gvackets produced. The SPIHT AWGN
algorithm for System 2 offers&8%reduction in erasure packets over System 1 antki®y3.
This is slightly higher for this set of results tharevious test images. It is evident the proposed
system maintains its error performance lead forsSiam induced noise with the cameraman

image having a majority of flat regions and lowginency detail.
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Figure 7-30: Diagram of PER vs. SNR (Es/No) for SPIHT over AWGN channel for Cameraman image for the
Proposed System against System 1, System 2, System 3.

The PSNR quality simulation results for the propbsgstem with MAP metric sequential
decoding with FS detection in comparison with theeo systems with no FS detection or ARQ
retransmission protocol is illustrated in Figur817-As observed with previous test images, the
proposed system performs better than System 1e@y&t and System 3 which unlike the
proposed system offers less error correction dbittgreams and thus exhibits decreased PSNR
results for the Cameraman image. It experiences inigge quality at low bitrates through to
higher bitrates proving that on the whole the pegubsystem which includes FS detection is a
superior system for consistent error correctiomsgthe bitrate spectrum. The proposed system
for SPIHT AWGN coding with FS detection achieve9dB performance increase against the
System 2 without FS detection. System 1 and SyS8t&ithout FS detection achieves the same

poor PSNR values for the bitrate spectrum.

Once again the results show System 2 performingbtian System 1 and System 3 due to the
inclusion of arithmetic coding and decoding in thgstems. Arithmetic coding introduces
additional compression which may cause greater gmopagation during decoding. As one

error bit in a packet can propagate to numerows bits if uncorrected during decoding.
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Figure 7-31: Diagram of PSNR vs. bitrate for SPTHT over AWGN channel for Cameraman image for the Proposed
System against System 1, System 2, System 3.

The visual images produced by the SPIHT AWGN sitiies at a lower bitrate than the EZW
simulation are illustrated in Figure 7-32 (a) t9.(ds discussed previously a lower bitrate
represents greater compression and when combintd ami error prone channel can cause

greater visual distortion as seen in the follonimgges. Although the proposed system’s results
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experience high SPIHT compression, additional amtic coding compression, added
redundancy due to the forbidden symbol inclusioth ardestructive channel, the system is still
able to produce visually worthwhile results and cessful error correction. System 1
experiences extremely catastrophic error propagatiarge areas of black and white regions
represent visual degradation that is beyond repair.

() (d)

Figure 7-32: Cameraman image for SPTHT AWGN for
(a) Proposed System with a PSNR of 27.32dB at a bitrate of 0.58bpp
(b) System 2 with a PSNR of 75.184B at a bitrate of 0.56pp
(c) System 3 with a PSNR of 8.86dB at a bitrate of 0.52bpp
(d) System 1 with a PSNR of 7.97dB at a bitrate of 0.52bpp

7.2.3.4 SPIHT Coding over the Rayleigh Fading chann  el.

The simulations for SPIHT coding with the Rayleiiglding channel can be considered as a
worst case scenario as seen in the Barbara rdeulsystem comparisons of wavelet coders
with channels. SPIHT Rayleigh fading simulationsrfgened the worst in the erasure
simulations producing the highest erasures expegibrper uncorrected packet. Figure 7-34
illustrates the erasure performance for the SPIHWvelet coding algorithm over the highly
error prone Rayleigh fading channel. The proposgstesn performs best however; the

combination of high SPIHT compression having a loitvate of 0.58bppfor the proposed
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system and the aggressive Rayleigh fading chamoelupes an erasure rate higher than the
previous wavelet encoder simulations. Nonetheldss,proposed system’s results prove its
performance is superior to the three systems asethdts for all the wavelet compression and

channel alternatives are illustrated below.

A significant difference in erasures is observetivieen System 1, System 2 and System 3. This
highlights that System 2 which uses no arithmetidittg, produces less erasures in its error
correction than System 3. The proposed system priha by exploiting arithmetic coding for
forbidden symbol error detection and using ARQamsmission as a second error correction
mechanism, impeccable erasure results can be achiébhus the results prove that the
proposed codec which uses each element of the cimopasystems for its design is more

effective when combined together than used indadigiu
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Figure 7-33: Diagram of PER vs. SNR (E»/No) for SPIHT over Rayleigh fading channel for Cameraman image for
the Proposed System against System 1, System 2, System 3.

The Rayleigh channel as discussed above achiegssplerformance improvement than the
Gaussian channel. The PSNR results for proposetemsysicross the Rayleigh channel

illustrated in Figure 7-34 is slightly less highmlike the Gaussian channel results. This is a
result of the highly contrasted Cameraman image velmeh compressed more than the EZW
encoder and transmitted across the extremely eyusnRayleigh channel, the systems fail to
adequately correct the induced channel errors whiopagate throughout the bitstream during
decompression producing degraded image quality.pfbposed SPIHT Rayleigh system has a
PSNR gain ofl5dB 9dB and14dBagainst System 1, System 2 and System 3 resplgctive

The increased compression included in System 1Sgatém 3 due to arithmetic coding reduces

the system ability to produce high quality image&&or propagation becomes evident.
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PSNR vs. Bitrate for SPIHT over Rayleigh Fading for Cameraman
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Figure 7-34: Diagram of PSNR vs. bitrate for SPIHT over Rayleigh fading channel for Cameraman image for the
Proposed System against System 1, System 2, System 3.

The Rayleigh PSNR results are lower and visuallyremimferior when compared to the

predictable image responses of the Gaussian chaAneisual depiction of the systems is

illustrated in Figure 7-35. The proposed systendpees an image that is clear and identifiable
verifying that its error correction scheme is efifez and successful in mitigating channel
errors. System 2 and System 3 without forbiddenb®jrerror detection produces extremely
poor image quality performance showing the systenfailure of the decoders to process and
correct sufficient errors for acceptable resultise Tifference in the SPIHT Rayleigh proposed
system with FS detection results for the Cameraimaige compared to the previous Lena and
Barbara images is due to the high contrast inrtiegge instead of the fine detail experienced for
the previous two images. Errors in images comprkessih fine detail experience more

catastrophic error propagation and degraded imagktythan those with higher contrast.

System 3 performs extremely poorly with visual @egtion due to its decoding and lack of
error correction. The aggressive Rayleigh charmaides errors that that are too humerous to
effectively corrected by the MAP decoder, as theoder uses a statistical predictive analysis of
the channel and metric examination of past bitrerto successfully correct future bit errors. If
the quantity of induced errors is too great anddfrers occur in a succession, the decoder
eventually fails to correct the errors accurateipd the errors propagate throughout the
bitstream producing inferior image quality as sbgrnhe SPIHT AWGN System 3 results. The
System 1 results also perform poorly. Due to thok Iaf error correction in the design of the
system, very little could be avoided however, thisot the case for System 3. Although System
2 performs well showing that the error correctignitself is effective, the MAP decoding fails
as the combination of arithmetic coding and MAP aedrror correction does not improve the

image quality of the image.
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Figure 7-35: Cameraman image for SPIHT Rayleigh for
(a) Proposed System with a PSNR of 23.45dB at a bitrate of 0.58b6pp
(b) System 2 with a PSNR of 74.57dB at a bitrate of 0.5bpp
(c) System 3 with a PSNR of 8.11dBat a bitrate of 0.52bpp
(d) System 1 with a PSNR of 7.84dB at a bitrate of 0.52bpp

7.3 DISCUSSION OF RESULTS OBTAINED AND CONCLUSION

The simulation results show that the proposed Byst&RQ retransmission strategy with the
MAP metric sequential decoding algorithm is extrgmedficient in solving and correcting the
applicable error problems experienced within corsgian and transmission of images. It also
successfully handles the constraints experiencedawelet based compression and corruptible
channels. The superior performance of the errarecting ability of the proposed system using
forbidden symbol detection over System 1, Systeam@ System 3 without forbidden symbol
detection or ARQ retransmission was illustrateduigh two approaches, the first using wavelet
based compression as a corruptible error propagatethod through PSNR simulations and the
second using destructive erroneous channels tacénduors through PER simulations. The
proposed system then illustrated the use of itsiddien symbol error detection technique, MAP
metric sequential decoding and ARQ retransmissianperformance through simulations
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against System 1 which only involves arithmeticaglieg and decoding, System 2 which uses
convolutional encoding and MAP decoding, and Sys?amhich uses both arithmetic encoding,
convolutional encoding and MAP decoding and arittiendecoding without the use of the

forbidden symbol.

The proposed codec’s performance showing the eamwecting ability for wavelet compression
induced errors, were illustrated using the PSNRsu&bitrate simulations. These simulations
try to keep channel characteristics and impairmeatsstant while varying the degree of
compression induced; through manipulation of thteat® in order to view the impact error
propagation has on the final decoded decompressedei. The greater the compression
induced, the less information is transmitted, dndstany errors that occur during transmission
through the channel can propagate as a resulaotimate decoding resulting in a visually poor
image. Therefore it is imperative that the decodingd error correcting ability of the decoder’s
are able to process the channel errors accuratetyder to reduce error propagation in the
PSNR results. The proposed system with FS deteidiaible to achieve higher image quality
through its error detection and correction methmahtthe three systems that use variations of

the proposed system without FS detection and AR@nemission for its PSNR simulations.

The Gaussian channel results show fairly consigierformance for all the wavelet encoders
and decoding schemes. Typically if channel erroes iatroduced into either the proposed
system or System 1, System 2 and System 3 for thesstan channel, the PSNR results will
show huge image quality differences between thpqeed system and the other three systems.
This can be attributed to the error correctionhef proposed system being successful, producing
no error propagation occurrences in the result&NM images. Differences in the three other
systems observed PSNR performances are due tousanmthods experiencing a greater
number of channel errors, which are in turn notoded correctly and consequently results in
error propagation and thus decreased PSNR perfaanafariations between the systems can
also be attributed to the inclusion of the FS daiacin the proposed system versus the
exclusion of the forbidden symbol in the other sgst. The inclusion of the FS can add an
amount of redundancy to the proposed system theénebgasing its compression slightly. This
redundancy introduced by the forbidden symbol rksvéa significance at lower bitrates but

helps the proposed system produce unparallelettsesu

Through all the PSNR simulations the Rayleigh cleamasults exhibit highly poor, inferior,
degraded and erratic performances especially whembined with the SPIHT wavelet
algorithm. In some instances the erratic PSNR hehavs due to the channel errors along with

high contrast and fine detail compression produatatgstrophic error propagation. Other
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instances the combination of SPIHT wavelet compoessoupled with Rayleigh channel errors
produce a transmitted bitstream far too erroneibag,the decoders cannot satisfactorily correct

the error to produce distinct PSNR results.

The proposed system shows a significant improverfeerthe PSNR simulations as compared
to the comparison systems without error detectioaroadditional error correction mechanism
if MAP decoding fails. The improvement in results In the proposed system'’s forbidden
symbol error detection approach and the error ctng technique which employs a statistical
predictive metric approach coupled with a stackaeaf possible correct combinations which
uses the ARQ retransmission strategy as a secood arrection support versus the other
systems that use either arithmetic coding or MABodang or a combination thereof with no
error detection. The search utilised by the MAPodéty method discards irrelevant branches,
converging the search rapidly. The direction ofgbarch is based on a metric that uses channel
characteristics to statistically analyse the ereord predict the correct solution. The forbidden
symbol is then detected in the MAP decoded bitstratit exists then the ARQ retransmission
strategy is invoked providing a second error cdiwec mechanism. The success of this
approach is observed in the PSNR results, whereptbposed system surpasses the other
system; System 1, System 2 and System 3 withooit eetection for the Gaussian channel, and
even so in the highly destructive Rayleigh charoeboth the EZW and SPIHT schemes even
though the SPIHT results are not as successflleaBZW.

As a final point for PSNR results, the proposedeaysoutperforms System 1, System 2 and
System 3 without FS detection and ARQ retransnmsio the PSNR results for both channels
and both wavelet compression algorithms, illustigathe significance between error correction,

error detection and error propagation, producisgaily clear images free of errors.

The proposed ssytem’s performance for the chammuiiced errors approach (erasure rate)
clearly illustrates its overwhelmingly significamhprovement in error correction over the
comparison systems for all erasure rate simulatidhe packet erasure rate versus channel
SNR simulations are generated to present the desoeleor correcting ability visually in the
form of a PER versusyl\, graph. The typical decay of the PER simulatioresusih show for
high B/N,, a low erasure performance and conversely for BN, a high erasure

performance.

Through the test images and PER performances, riiygoged codec outperforms the other
systems in all simulation cases. This exempliffesremarkably accurate and precise execution

of its error correction mechanism as compared & uhconvincing and unsuccessful error
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correction employed by the other systems. The alamnpairments for both decoders are
designed to be consistent as to discard any discosgs that may occur in producing
permissible results. The packet erasure performsngged to specifically demonstrate the error

correcting ability of the decoders in the presesfoehannel errors.

The AWGN channel results for the set of test imagkesw consistently excellent erasure
performance for the entire range of simulationse Hror correction process employed by
proposed system using the AWGN channel generatesrisu results for all channel SNR’s,

which validate the competence, correctness andaffiy of the system. The Gaussian channel
is able to induce sufficient errors to demonstthteproposed MAP decoder’s enhanced ability

to effectively decode and correct the channel spooducing results that are successful.

The Rayleigh multipath fading channel is an extigntdghly error prone channel, and
produces results which are less than the Gaushi&mel's response. The unpredictable nature
of the Rayleigh channel errors causes the erraiection mechanism of the decoders to fail
thereby producing inferior results for System 1 &ys$tem 3. However, the proposed system
with error detection is able to prove that itsistatal error correction processing is in fact eett
than the other systems which use no error detedroretransmission, and is thus a more
appropriate decoding method to employ for reliailege compression and transmission.
Another important point to note, is the PER perfance for highly fine detailed images
transmitted across the Rayleigh channel, producera erratic erasure response than with high
contrast or monotone images. This is due to theeased fine detail compression coupled with
the highly erroneous channel, producing disastestm's that the decoder is not able to correct

with any success.

The erasure simulations are fundamental to theedatson as they provide a definite and
conclusive indication of the performance of thegmsed system'’s error correction in relation to
the other systems. The proposed system with the AR@bcol and MAP metric sequential

decoder throughout the series of erasure rate ations exhibit performances that exceed the
other three systems. For the PER results, the peapoodec shows substantial improvement for
the Gaussian channel for both wavelet compressimmters. For the Rayleigh channel, the
proposed system is still able to exhibit greatlypioved performance for both compression
algorithms however; the improvement is not as geesatthe Gaussian channel but is still
testament to the improved ARQ-MAP decoding errorrazdion. The performance of the

proposed system's ARQ-MAP metric decoding techniguedirectly related to the error

correcting decoding procedure utilised in the dewpdrocess, thus improved performance

suggests an enhanced error correction and detaogchanism being employed. The proposed
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system’s ARQ-MAP decoding versus System 1, System Qystem 3 without FS detection is
essentially the comparison of a predictive metreesdal stack algorithm search against
combinations of the proposed system. The propogsim’s results surpasses the results of
System 1, System 2 and System 3, signifying thatiniclusion of the forbidden symbol for
error detection and the predictive metric whichsupeobabilistic channel properties in MAP
decoding along with the ARQ retransmission is npowerful and accurate in terms of error
correction than these components individually. ddigon to the metric computation, the MAP
decoding process is superior due to the searchithigoapplied. The MAP’s stack algorithm
based search is able to back track immediately twramch with the highest metric. This
combination of a highly complex metric structurelaapid search pattern makes the proposed
MAP metric sequential decoder a powerful tool inoercorrection. The ARQ retransmission
protocol also provides the system with additiongdort in the event the MAP decoder fails for
any reason. This adds to the robustness of the eoroection system. The proposed codec’s
results corroborate and validate the error cowadtchnique designed for wavelet compression

and channel induced errors on transmitted bitstseam

The viability of the error detection mechanism asaa to the error correction mechanism was
shown through the results determined between tbposed system using forbidden symbol
detection and the other system algorithms like &ysii, System 2 and System 3 without
forbidden symbol detection. The arithmetic coding decoding option proved inadequate in all
respects and suggested that the proposed systefam@m®re superior. System 2 that uses no
FS detection did present a greater challenge foerahnation of forbidden symbol error

detection as an improvement for image quality. Riagleigh simulations of the MAP decoding

without FS detection failed and posed no threatht proposed system. The stability of the
proposed coder over the entire bitrate spectruraredsthat the proposed system is a better
option for maintaining error detection and corraaticonsistency in the processing of the

transmitted bitstream.

An additional performance comparison apart from éner correction shown between the
proposed system and the comparison systems in Hie $fmulations, was the degree of
compression achieved between SPIHT wavelet codyjagnat EZW wavelet coding. In all the
PER simulations for the various test images theH$Rbavelet encoder generates results using
a smaller bitrate than the EZW encoder. A smaligate implies greater compression which
results in greater error propagation during decesgion if affected by channel errors during
transmission. Nevertheless, the SPIHT wavelet ezrcisdstill able to surpass the EZW encoder
in terms of PSNR performance. The results confinm $PIHT design in producing improved

compression over the EZW wavelet method for imagaity at higher SNR.
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Finally, the experimental evaluation suggests thatproposed system is competitive with the
arithmetic encoder and decoder, the convolutionebder and MAP decoder and the arithmetic
encoder, convolutional encoder with MAP decoder ariithmetic decoder without FS detection
for all wavelet encoder bitrates and channel SN/ the use of images with medium to high
detail content. The results illustrate the efficarfythe proposed system utilising the ARQ
retransmission and MAP method within the contexteofor correction coding and error

detection techniques. The proposed system achiaa@snum benefit and consistency on less
destructive channels like the Gaussian channeh Elignpression in the form of SPIHT wavelet
coding and high channel degradation like the Rghlehannel, produce poorer results that offer
less information. In conclusion the proposed sy&efRQ retransmission with MAP metric

sequential codec has proved to outperform otheec@sdvithout forbidden symbol detection

and ARQ protocol for a set of complex test images.
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CHAPTER 8 - CONCLUSION

The dissertation presented the theory and litezgpertaining to image and video compression
with emphasis on wavelets. Transmission of wavetghpressed images over wireless error
inducing channels were explored which resulted he proposition of an error protection

mechanism for efficient error-free transmissione®iror protection mechanism entailed error
detection and error correction techniques empldgedan optimal error coding system. The

proposed error-free coding system with the joinvelet compression codec’s and wireless
channels are discussed and results of the systenmsagvarious standard structures are
explored. This chapter outlines in detail the déidns and conclusions attained in the
preceding chapters. This chapter concludes by gingantended future work with associated

recommendations for improvement of the proposeterys

H 8.1 CHAPTER SUMMARIES

8.1.1 Chapter 2 — Current Compression Standards

This chapter highlighted the commonly known imagempression and video compression
standards currently available today. These inclutiedmage compression standards of JPEG
and JPEG 2000 and the video compression standamd®BG, MPEG4, H.263+ and H.264.

Details of the compression techniques coding amdgssing were discussed with particular
emphasis on their compression performances. Thetahalso discussed the performance
metrics used in evaluating compression coding peidaces thus quantifying the performances

exactly.

It was observed that JPEG 2000 produced significenaige quality results against JPEG
compression indicating the success of wavelets m&thod for efficient image compression.
H.264/MPEG4 is an improved coding technique foreeidcompression and thus produced
enhanced compression performance than its predesesEhe performances stressed the

importance of efficient and effective compressiechhiques for images and video.

8.1.2 Chapter 3 — Wavelet Compression

This chapter examined majority of the theoreticahaepts related to wavelets, the wavelet
transform, filter banks, multiresolution analysssbband coding, wavelet families and wavelet

coding techniques. A comparison between Fourigrsttams and Wavelet transforms were
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detailed providing tangible support for the progres towards wavelets as a compression

technique.

In addition the chapter included performances & tavelet families and wavelet coding
techniques where the best performing structure® ween employed in the proposed codec.
Analyses of seven highly varying wavelet familiesres completed, with the Coiflet wavelet
family exhibiting the greatest adaptation to eniltte signal, producing high image quality.
The chapter also reviewed five different waveletling techniques. The EZW and SPIHT
wavelet coders were preferred for the proposed wade they exhibited stable consistent
performance. Performances of the EZW and SPIHT &edagainst JPEG and JPEG 2000
compression standards for still image compressienevexecuted with the wavelet coding

techniques showing their viability and potentialas/elet compression standards.

8.1.3 Chapter 4 — Wireless Channels

This chapter proposed the use of two wireless aflarfor the simulations and results. The two
channels were the additive white Gaussian noise GAWchannel and the multipath Rayleigh
fading channel. The AWGN channel proved to be a &gressive channel than the Rayleigh
channel which is shown to be extremely destructivé erroneous. The AWGN induces fewer
errors whilst the Rayleigh channel being a worsecscenario channel induces far more errors

into the bitstream.

Bit error rate performance evaluations were comgplaising the selected EZW an SPIHT
wavelet algorithms. The wireless channels degradatin the compressed bitstreams were
shown and detailed. The image quality producedderAWGN channel was higher than the
more destructive Rayleigh channel. The chapterafstes to visually depict the channel induced

errors for the wavelet decoders via the reconsttlirhages.

8.1.4 Chapter 5 — Error Protection

This chapter outlined two error resilience mechasisiamely error detection using arithmetic
coding with forbidden symbol detection and errorrection using amaximum a posteriori

(MAP) metric sequential decoder with automatic egpequest (ARQ) retransmission protocol.
The chapter presented the theoretical concept empldy the methods using numerous

mathematical references.

The error detection theory model progressed frdthraetic coding to integer arithmetic coding
to integer arithmetic coding employing forbiddempl detection. The progression highlighted

key features of the algorithm including the formddsymbol redundancy. The error correction
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model produced an extremely critical section in¢hapter as the basis of the proposed system
and its success relies primarily on the executiatiihie model. The error correction employed is
MAP metric sequential decoding which computes ariméhat usesa priori anda posteriori
probabilities in its statistical prediction of tlegrors and ARQ retransmission protocol as a
second error correction mechanism that requeststransmission of the bitstream if MAP
decoding is unsuccessful in correcting the erroadiitstream. The chapter then outlines the use
of a stack algorithm to sequentially decode thersrwhere the probabilistic metric directs the

search.

8.1.5 Chapter 6 — Proposed Codec

This chapter forms the crux of the dissertation nehéhe complete proposed wavelet
compression error coding system is discussed aedepted. Simulations in the following

chapter are executed using the system proposethwlil chapter.

It is described as a hybrid source and channelroetiere the source coding involves wavelet
compression and arithmetic coding and the charogihg includes error correction coding in
the form of MAP metric sequential decoding and ARfransmission. The proposed codec
stages begin with the compression component whithile wavelet encoding followed by
arithmetic coding with the forbidden symbol andritteenvolutional coding. The second stage is

the channel which transmits the arithmetically coesped convolutionally encoded bitstream.

The final stage is complex in that the arithmetiwl aconvolutionally encoded bitstream is
transmitted is decoded via MAP decoding which auatiirally corrects the bitstream if errors
are present or decodes it normally if no errorspaesent. Once decoded the arithmetic decoder
begins decoding the MAP decoded bitstream. Howefviire forbidden symbol is detected, this
invokes the second error correction mechanism ofAfRtransmission which prompts the
transmitter to resend the bitstream again. A secmadsmission attempt is made of the
arithmetically compressed convolutionally encodéstteam. The cycle begins again however,
if the MAP decoded bitstream is error-free thers iarithmetically decoded. This bitstream is
further decoded by the wavelet decoder reprodutiagnitial image. If no error is detected, the
arithmetically encoded bitstream is free of errargl continues to arithmetic decoding and

finally wavelet decoding producing the image.

The chapter consolidates the process describedeabyvillustrating it in a system block

diagram highlighting the flow of communication.
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8.1.6 Chapter 7 — Performance of the Proposed Codec

This chapter evaluates the system proposed in €héptThe evaluation uses a sample set of
three image processing test images for a serisgmilations to demonstrate the performance of
the proposed system’s ARQ retransmission and MARiereequential decoder with arithmetic
coding and forbidden symbol detection. The propasestiem is performance evaluated against
three standardised systems: arithmetic encoding gewbding without forbidden symbol
detection, convolutional encoding and MAP metriccating without forbidden symbol
detection and arithmetic encoding, convolutionatoeing and MAP metric decoding without
forbidden symbol detection. Image quality and emagperformances highlight the proposed
systems retransmission and metric based sequetg@iding technique for efficient error

correction and the forbidden symbol method forog#fit error detection.

The final results indicated the proposed systentaspetitive as an error detection and
correction mechanism and produced comparable sesulkomparison to the other standards.
Through majority of the results, the proposed swystaroved better and showed greater
improvement in error-free decoding than the othégordthms. The highly successful
combination of error detection using the forbiddgmbol and error correction using ARQ
retransmission and MAP metric sequential decodimgaved the potential and ability to be

utilised for efficient error-free compression anghtsmission of images and video.

The Gaussian channel shows consistently improvadtsecompared to the Rayleigh multipath
channel whose results were slightly less. The pegsystem’s ARQ retransmission and MAP
algorithm with forbidden symbol detection showedbioved results for the SPIHT wavelet
encoder simulations using the Gaussian channeinstgthe EZW wavelet encoder whose
results were poorer. The Rayleigh channel produaactlet coder results that were inferior for

the SPIHT algorithm, with the EZW algorithm appegrslightly better.

The proposed system’'s ARQ retransmission and MARrienesequential decoder using
arithmetic coding with forbidden symbol detectiontmerforms its standardised counterparts
across numerous test images, image quality andirerggmulations, and is able to guarantee

and offer efficient error-free transmission of ireagvia erroneous destructive channels.

H 8.2 FINAL REMARKS

The dissertation proposes an efficient system usimgrror detection and correction mechanism

for wavelet based compression transmitted overl@gsechannels. The error detection and

194



correction employs a joint technique of arithmetcling with forbidden symbol, convolutional

coding and MAP metric sequential decoding. The ahaif wavelet compression is suitable for
low bitrate compression requiring a high degrequality and performance integrity. The use of
two different wireless channels, depict variousesiy of errors which is used to prove that the

proposed system is able to control and processrtbes adequately.

The proposed system operates efficiently on bastse containing moderately intense errors.
High compression with moderate intensity errorsdpoes results that are competitive and
outperform the standard codec’'s which are used d¢achimark the proposed systems
performance. However, high compression with higteneity errors, as displayed by the

Rayleigh channel produces results that are infexéooss all the codec’s. The transmission of an
arithmetically encoder bitstream and a convolutignaencoded bitstream appears

disadvantageous as it increases the bitrate afytiem as two bitstreams are transmitted, but it
instead offers reliable image retrieval due to thisor correction scheme as shown in the

results.

In conclusion the proposed system of arithmeticodeg with forbidden symbol detection and
MAP metric sequential decoding, is extensively gs@dl across multiple wavelet compression
algorithms and wireless channels in order to pritnag the technique employed to detect and
correct errors is successful and competitive widsthcommon error coding standards. Thus the
system is able to offer reliable, capable image\adéeo transmission for low bitrate multimedia

environments that demand image integrity and gualit

H 8.3 FUTURE WORK

The wavelet compression and error coding systenpgsed in this dissertation has great
potential to incorporate additional work for impement of the system and its performance.

Recommendations for possible improvements arelddtas follows.

A test set of greyscale images were used in thelations to evaluate the proposed system’s
performance. The proposed system can be extendadltme colour images as well as video.
However, the use of the colour component involvesihtroduction of greater redundancy to
the system and thus an increase in bitrate capafitys colour redundancy requires further
investigation for the proposed systems efficiemhpression and transmission capabilities in the

multimedia domain.
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The dissertation revealed that the ECECOW wavdtgirishm showed superior performance
against all other wavelet codec’s. Although the EZld SPIHT algorithms were chosen as the
compression mechanisms for the proposed system, sifgtem can investigate the
implementation of the ECECOW wavelet coding schewekey observation it that the
ECECOW algorithm integrates arithmetic coding sxabmpression technique unlike the other
algorithms which include the arithmetic coding em#dly for improved compression. Thus it
can be utilised to further include the forbiddemmbyl for error detection in its integrated

arithmetic coder to produce a more efficient edetection algorithm.

Improvements in the proposed systems bitrate caacbemplished through the use of a hybrid
source and channel coder involving the transmissiothe arithmetically encoded bitstream
with the MAP decoder, which can improve the trarssioin bandwidth considerably. The MAP
decoder will no longer use the convolutionally ethexb bitstream to decode the channel errors.
The arithmetically coded bitstream will have to tistially predict the errors of the
arithmetically encoded bitstream and correct ithaitt the convolutionally encoded bitstream.
Thus the system will exhibit a true fusion of saiend channel coding and will improve the

bitrate significantly thereby improving the systepesformance.

The error correction mechanism employed by the Mi&Boder can be improved by moving
away from its currently implemented hard decisi@tatiing to soft decision decoding. Hard
decision decoding uses a simple decision threstwogkamine each received bit and makes a
decision whether it representslaor O bit. Soft decision decoding examines additional side
information in the form of multibit quantisation tife received bit to decide if it represents a
or 0 bit. Thus soft decision decoding is a more flexiblperapch than hard decision decoding
but harder to implement. It will offer increasedagrcorrection performance as it improves the

sensitivity of the decoding metric used in the Mddtoder.

Finally a real-time implementation of the proposgdtem involving transmission and reception
of images and video should be analysed. Furthermvargpous advanced error coding schemes
require investigation, as a thorough performancaluation of the newly proposed system
against more advanced systems will show greatdonpegince. The proposed system has the
potential to become excellent error detection awdrection scheme for wavelet based

compression of images and video.
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