35 research outputs found

    Attribute Value Reordering For Efficient Hybrid OLAP

    Get PDF
    The normalization of a data cube is the ordering of the attribute values. For large multidimensional arrays where dense and sparse chunks are stored differently, proper normalization can lead to improved storage efficiency. We show that it is NP-hard to compute an optimal normalization even for 1x3 chunks, although we find an exact algorithm for 1x2 chunks. When dimensions are nearly statistically independent, we show that dimension-wise attribute frequency sorting is an optimal normalization and takes time O(d n log(n)) for data cubes of size n^d. When dimensions are not independent, we propose and evaluate several heuristics. The hybrid OLAP (HOLAP) storage mechanism is already 19%-30% more efficient than ROLAP, but normalization can improve it further by 9%-13% for a total gain of 29%-44% over ROLAP

    CubiST++: Evaluating Ad-Hoc CUBE Queries Using Statistics Trees

    Get PDF
    We report on a new, efficient encoding for the data cube, which results in a drastic speed-up of OLAP queries that aggregate along any combination of dimensions over numerical and categorical attributes. We are focusing on a class of queries called cube queries, which return aggregated values rather than sets of tuples. Our approach, termed CubiST++ (Cubing with Statistics Trees Plus Families), represents a drastic departure from existing relational (ROLAP) and multi-dimensional (MOLAP) approaches in that it does not use the view lattice to compute and materialize new views from existing views in some heuristic fashion. Instead, CubiST++ encodes all possible aggregate views in the leaves of a new data structure called statistics tree (ST) during a one-time scan of the detailed data. In order to optimize the queries involving constraints on hierarchy levels of the underlying dimensions, we select and materialize a family of candidate trees, which represent superviews over the different hierarchical levels of the dimensions. Given a query, our query evaluation algorithm selects the smallest tree in the family, which can provide the answer. Extensive evaluations of our prototype implementation have demonstrated its superior run-time performance and scalability when compared with existing MOLAP and ROLAP systems

    CubiST: A New Algorithm for Improving the Performance of Ad-hoc OLAP Queries

    Get PDF
    Being able to efficiently answer arbitrary OLAP queries that aggregate along any combination of dimensions over numerical and categorical attributes has been a continued, major concern in data warehousing. In this paper, we introduce a new data structure, called Statistics Tree (ST), together with an efficient algorithm called CubiST, for evaluating ad-hoc OLAP queries on top of a relational data warehouse. We are focusing on a class of queries called cube queries, which generalize the data cube operator. CubiST represents a drastic departure from existing relational (ROLAP) and multi-dimensional (MOLAP) approaches in that it does not use the familiar view lattice to compute and materialize new views from existing views in some heuristic fashion. CubiST is the first OLAP algorithm that needs only one scan over the detailed data set and can efficiently answer any cube query without additional I/O when the ST fits into memory. We have implemented CubiST and our experiments have demonstrated significant improvements in performance and scalability over existing ROLAP/MOLAP approaches

    A Framework for Real-time Analysis in OLAP Systems

    Get PDF
    OLAP systems are designed to quickly answer multi-dimensional queries against large data warehouse systems. Constructing data cubes and their associated indexes is time consuming and computationally expensive, and for this reason, data cubes are only refreshed periodically. Increasingly, organizations are demanding for both historical and predictive analysis based on the most current data. This trend has also placed the requirement on OLAP systems to merge updates at a much faster rate than before. In this thesis, we proposes a framework for OLAP systems that enables updates to be merged with data cubes in soft real-time. We apply a strategy of local partitioning of the data cube, and maintain a ``hot'' partition for each materialized view to merge update data. We augment this strategy by applying multi-core processing using the OpenMP library to accelerate data cube construction and query resolution. Experiments using a data cube with 10,000,000 tuples and an update set of 100,000 tuples show that our framework achieves a 99% performance improvement updating the data cube, a 76% performance increase when constructing a new data cube, and a 72% performance increase when resolving a range query against a data cube with 1,000,000 tuples

    Flexible Integration and Efficient Analysis of Multidimensional Datasets from the Web

    Get PDF
    If numeric data from the Web are brought together, natural scientists can compare climate measurements with estimations, financial analysts can evaluate companies based on balance sheets and daily stock market values, and citizens can explore the GDP per capita from several data sources. However, heterogeneities and size of data remain a problem. This work presents methods to query a uniform view - the Global Cube - of available datasets from the Web and builds on Linked Data query approaches

    Query Optimization and Execution for Multi-Dimensional OLAP

    Get PDF
    Online Analytical Processing (OLAP) is a database paradigm that supports the rich analysis of multi-dimensional data. While current OLAP tools are primarily constructed as extensions to conventional relational databases, the unique modeling and processing requirements of OLAP systems often make for a relatively awkward fit with RDBM systems in general, and their embedded string-based query languages in particular. In this thesis, we discuss the design, implementation, and evaluation of a robust multi-dimensional OLAP server. In fact, we focus on several distinct but related themes. To begin, we investigate the integration of an open source embedded storage engine with our own OLAP-specific indexing and access methods. We then present a comprehensive OLAP query algebra that ultimately allows developers to create expressive OLAP queries in native client languages such as Java. By utilizing a formal algebraic model, we are able to support an intuitive Object Oriented query API, as well as a powerful query optimization and execution engine. The thesis describes both the optimization methodology and the related algorithms for the efficient execution of the associated query plans. The end result of our research is a comprehensive OLAP DBMS prototype that clearly demonstrates new opportunities for improving the accessibility, functionality, and performance of current OLAP database management systems

    Business intelligence to support NOVA IMS academic services BI system

    Get PDF
    Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceKimball argues that Business Intelligence is one of the most important assets of any organization, allowing it to store, explore and add value to the organization’s data which will ultimately help in the decision making process. Nowadays, some organizations and, in this specific case, some schools are not yet transforming data into their full potential and business intelligence is one of the most known tools to help schools in this issue, seen as some of them are still using out-dated information systems, and do not yet apply business intelligence techniques to their increasing amounts of data so as to turn it into useful information and knowledge. In the present report, I intend to analyse the current NOVA IMS academic services data and the rationales behind the need to work with this data, so as to propose a solution that will ultimately help the school board or the academic services to make better-supported decisions. In order to do so, it was developed a Data Warehouse that will clean and transform the source database. Another important step to help the academic services is to present a series of reports to discover information in the decision making process

    Analytical study and computational modeling of statistical methods for data mining

    Get PDF
    Today, there is tremendous increase of the information available on electronic form. Day by day it is increasing massively. There are enough opportunities for research to retrieve knowledge from the data available in this information. Data mining and app

    Flexible Integration and Efficient Analysis of Multidimensional Datasets from the Web

    Get PDF
    If numeric data from the Web are brought together, natural scientists can compare climate measurements with estimations, financial analysts can evaluate companies based on balance sheets and daily stock market values, and citizens can explore the GDP per capita from several data sources. However, heterogeneities and size of data remain a problem. This work presents methods to query a uniform view - the Global Cube - of available datasets from the Web and builds on Linked Data query approaches

    Maintenance-cost view-selection in large data warehouse systems: algorithms, implementations and evaluations.

    Get PDF
    Choi Chi Hon.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 120-126).Abstracts in English and Chinese.Abstract --- p.iAbstract (Chinese) --- p.iiAcknowledgement --- p.iiiContents --- p.ivList of Figures --- p.viiiList of Tables --- p.xChapter 1 --- Introduction --- p.1Chapter 1.1 --- Maintenance Cost View Selection Problem --- p.2Chapter 1.2 --- Previous Research Works --- p.3Chapter 1.3 --- Major Contributions --- p.4Chapter 1.4 --- Thesis Organization --- p.6Chapter 2 --- Literature Review --- p.7Chapter 2.1 --- Data Warehouse and OLAP Systems --- p.8Chapter 2.1.1 --- What Is Data Warehouse? --- p.8Chapter 2.1.2 --- What Is OLAP? --- p.10Chapter 2.1.3 --- Difference Between Operational Database Systems and OLAP --- p.10Chapter 2.1.4 --- Data Warehouse Architecture --- p.12Chapter 2.1.5 --- Multidimensional Data Model --- p.13Chapter 2.1.6 --- Star Schema and Snowflake Schema --- p.15Chapter 2.1.7 --- Data Cube --- p.17Chapter 2.1.8 --- ROLAP and MOLAP --- p.19Chapter 2.1.9 --- Query Optimization --- p.20Chapter 2.2 --- Materialized View --- p.22Chapter 2.2.1 --- What Is A Materialized View --- p.23Chapter 2.2.2 --- The Role of Materialized View in OLAP --- p.23Chapter 2.2.3 --- The Challenges in Exploiting Materialized View --- p.24Chapter 2.2.4 --- What Is View Maintenance --- p.25Chapter 2.3 --- View Selection --- p.27Chapter 2.3.1 --- Selection Strategy --- p.27Chapter 2.4 --- Summary --- p.32Chapter 3 --- Problem Definition --- p.33Chapter 3.1 --- View Selection Under Constraint --- p.33Chapter 3.2 --- The Lattice Framework for Maintenance Cost View Selection Prob- lem --- p.35Chapter 3.3 --- The Difficulties of Maintenance Cost View Selection Problem --- p.39Chapter 3.4 --- Summary --- p.41Chapter 4 --- What Difference Heuristics Make --- p.43Chapter 4.1 --- Motivation --- p.44Chapter 4.2 --- Example --- p.46Chapter 4.3 --- Existing Algorithms --- p.49Chapter 4.3.1 --- A*-Heuristic --- p.51Chapter 4.3.2 --- Inverted-Tree Greedy --- p.52Chapter 4.3.3 --- Two-Phase Greedy --- p.54Chapter 4.3.4 --- Integrated Greedy --- p.57Chapter 4.4 --- A Performance Study --- p.60Chapter 4.5 --- Summary --- p.68Chapter 5 --- Materialized View Selection as Constrained Evolutionary Opti- mization --- p.71Chapter 5.1 --- Motivation --- p.72Chapter 5.2 --- Evolutionary Algorithms --- p.73Chapter 5.2.1 --- Constraint Handling: Penalty v.s. Stochastic Ranking --- p.74Chapter 5.2.2 --- The New Stochastic Ranking Evolutionary Algorithm --- p.78Chapter 5.3 --- Experimental Studies --- p.81Chapter 5.3.1 --- Experimental Setup --- p.82Chapter 5.3.2 --- Experimental Results --- p.82Chapter 5.4 --- Summary --- p.89Chapter 6 --- Dynamic Materialized View Management Based On Predicates --- p.90Chapter 6.1 --- Motivation --- p.91Chapter 6.2 --- Examples --- p.93Chapter 6.3 --- Related Work: Static Prepartitioning-Based Materialized View Management --- p.96Chapter 6.4 --- A New Dynamic Predicate-based Partitioning Approach --- p.99Chapter 6.4.1 --- System Overview --- p.102Chapter 6.4.2 --- Partition Advisor --- p.103Chapter 6.4.3 --- View Manager --- p.104Chapter 6.5 --- A Performance Study --- p.108Chapter 6.5.1 --- Performance Metrics --- p.110Chapter 6.5.2 --- Feasibility Studies --- p.110Chapter 6.5.3 --- Query Locality --- p.112Chapter 6.5.4 --- The Effectiveness of Disk Size --- p.115Chapter 6.5.5 --- Scalability --- p.115Chapter 6.6 --- Summary --- p.116Chapter 7 --- Conclusions and Future Work --- p.118Bibliography --- p.12
    corecore