
Query Optimization and Execution for Multi-Dimensional OLAP

Ahmad Taleb

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fullfilment of the Requirements

for the Degree of Doctor of Philosophy (Computer Science) at

Concordia University

Montreal, Quebec, Canada

April, 2011

c© Ahmad Taleb, 2011

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ahmad Taleb

Entitled: Query Optimization and Execution for Multi-Dimensional OLAP

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

signed by the examining committee:

A. Agarwal Chair

D. Lemire External Examiner

L. Wang External to Program

T. Fancott Examiner

V. Haarslev Examiner

T. Eavis Thesis Supervisor

Approved By

Chair of Department or Graduate Program Director

Spring 2011

Dean of Faculty

ii

ABSTRACT

Query Optimization and Execution for Multi-Dimensional OLAP

Ahmad Taleb

Online Analytical Processing (OLAP) is a database paradigm that supports the

rich analysis of multi-dimensional data. While current OLAP tools are primarily

constructed as extensions to conventional relational databases, the unique modeling

and processing requirements of OLAP systems often make for a relatively awkward

fit with RDBM systems in general, and their embedded string-based query languages

in particular. In this thesis, we discuss the design, implementation, and evaluation

of a robust multi-dimensional OLAP server. In fact, we focus on several distinct but

related themes. To begin, we investigate the integration of an open source embedded

storage engine with our own OLAP-specific indexing and access methods. We then

present a comprehensive OLAP query algebra that ultimately allows developers to

create expressive OLAP queries in native client languages such as Java. By utilizing

a formal algebraic model, we are able to support an intuitive Object Oriented query

API, as well as a powerful query optimization and execution engine. The thesis

describes both the optimization methodology and the related algorithms for the

efficient execution of the associated query plans. The end result of our research is a

comprehensive OLAP DBMS prototype that clearly demonstrates new opportunities

for improving the accessibility, functionality, and performance of current OLAP database

management systems.

iii

ACKNOWLEDGEMENTS

It is really an honour and a privilege to express my gratitude and indebtedness to

my supervisor, Todd Eavis for his priceless support, encouragement and inspiration.

His rich experience, wealth of knowledge, and critical and creative thinking has given

me direction and insight in pursuing this research.

Special thanks are extended to my uncle Dr. Nasser Taleb for his kindness, support

and encouragement. He does not realize how much I have learned from him. I am

really glad that I have an uncle like him in my life.

Also, I would like to take this opportunity to personally thank all of my colleagues

and friends who have been so supportive and giving of their time especially Yassine

Chakir, Yasser Mahmood, Ahmad Al-Tamimi, Nour Eddine Caidi, Mohamad Solihat,

Lami Abu Sharikh and Waqas.

Finally, I treasure the invaluable support and encouragement of my dear mother and

father. I also owe my loving thanks to my wife and my children. They have endured

a lot from my research and traveling. If not for their support, understanding and

encouragement it would not be possible to complete this research.

iv

Table of Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Research overview . 3

1.2 Thesis Structure . 6

2 Basic Background Material 7

2.1 Introduction . 7

2.2 Defining OLAP . 8

2.2.1 OLAP: A Functional Definition 8

2.3 The Data Warehouse and Data Cube 11

2.3.1 Data Warehouse Architecture 11

2.3.2 The Data Cube . 13

2.4 Background . 14

2.4.1 Sidera ROLAP Architecture 15

2.4.2 Sidera Backend Architecture 16

2.4.2.1 Cube Indexing . 16

2.4.2.2 Hierarchical Attribute Representation 18

2.4.2.3 Caching . 19

v

2.4.2.4 Backend Query Engine Model 22

2.5 Berkeley DB . 23

2.5.1 Architecture of Berkeley DB 25

2.5.2 Berkeley DB databases and environments 26

2.6 XML DOM . 28

2.7 Conclusions . 29

3 Efficient OLAP Storage Engine 30

3.1 Introduction . 30

3.2 Related Work . 32

3.3 Motivation . 38

3.4 Encoding Dimension Tables and the Fact Table 41

3.4.1 Encoding Dimension Tables 43

3.4.2 Encoding the Fact Table . 47

3.4.3 Dimension Table Storage . 50

3.4.3.1 Hierarchical Attributes 51

3.4.3.2 Non-Hierarchical Attributes 54

3.5 Cube Indexing Integration . 58

3.5.1 Berkeley R-tree Model . 60

3.6 Integration of Berkeley DB with other Sidera Components 67

3.7 Backend Processing Logic . 70

3.7.1 The Query Resolution Algorithms 70

3.7.2 Query Transformations . 72

3.7.3 Query Processing . 74

3.7.4 Post Processing . 77

3.8 Experimental Results . 77

3.8.1 The Test Environment . 78

vi

3.8.2 Non-hierarchical Attributes: FastBit Bitmap versus Berkeley

DB B-tree . 80

3.8.3 Single Node Experimental Evaluation 81

3.8.3.1 Index Construction 83

3.8.3.2 OLAP Query Resolution 85

3.8.4 Parallel Experimental Evaluation 90

3.9 Review of Research Objectives . 92

3.10 Final Thoughts . 94

3.11 Conclusions . 95

4 OLAP Query Language 97

4.1 Introduction . 97

4.2 Related Work . 100

4.3 Motivation . 104

4.4 Preliminary Material . 104

4.4.1 Sidera OLAP Model . 105

4.4.2 Object Oriented OLAP Query 110

4.5 OLAP Algebra . 113

4.5.1 OLAP Algebra Operations . 115

4.5.1.1 SELECTION Operator 115

4.5.1.2 PROJECTION Operator 117

4.5.1.3 Set operations on Data Cubes 119

4.5.1.4 CHANGE LEVEL Operator 121

4.5.1.5 CHANGE BASE Operator 122

4.5.1.6 PIVOT Operation 124

4.5.1.7 DRILL ACROSS Operator 124

4.5.2 Algebra Simplifications . 127

vii

4.6 OLAP Grammar . 127

4.7 OLAP Algebraic laws for Improving OLAP Expression Trees 131

4.7.1 Laws involving SELECTION 136

4.7.1.1 Better Joins . 137

4.7.1.2 Combining conditions 140

4.7.1.3 Pushing laws . 141

4.7.1.4 Pulling laws . 143

4.7.2 Laws involving PROJECTION 145

4.7.2.1 Decomposition Law 148

4.7.3 Laws for CHANGE LEVEL and CHANGE BASE 149

4.7.3.1 Removal Law . 149

4.7.3.2 Pushing and Pulling Laws 150

4.7.3.3 Merging Law . 151

4.7.4 Commutative, Associative and Trivial Laws 153

4.8 OLAP Metadata Storage . 154

4.8.1 OLAP Metadata Grammar 155

4.8.1.1 Simple OLAP Schema 160

4.9 Review of Research Objectives . 161

4.10 Conclusion . 163

5 Multi-Dimensional OLAP Query Processor 165

5.1 Introduction . 165

5.2 Related Work . 170

5.3 Motivation . 174

5.4 Parsing OLAP XML Queries . 175

5.4.1 DOM Parsing . 176

5.4.2 Sidera Parser: DOM graph to Parse Tree 177

viii

5.5 The Pre-processor: Semantic checking 179

5.6 From Parse Trees to Logical Query Plans 182

5.6.1 Conversion to Initial OLAP Logical Query Plan 183

5.7 Improving the OLAP Logical Query Plan 186

5.8 OLAP Physical Query Plan Generation 193

5.8.1 Estimating Sizes of intermediate Cubes 195

5.8.1.1 Estimating the Size of a PROJECTION 196

5.8.1.2 Estimating the Size of a SELECTION 198

5.8.1.3 Estimating the Size of UNION, INTERSECTION, DIFFERENCE199

5.8.1.4 Estimating the Size of a CHANGE LEVEL 200

5.8.1.5 Reducing the Cost of the Logical Query Plan 201

5.8.2 Choosing an order for binary operators 203

5.8.3 Implementations for OLAP algebraic operators 207

5.8.3.1 Choosing a SELECTION Method 207

5.8.3.2 Choosing a PROJECTION Method 210

5.8.3.3 Choosing Binary Operations Methods 211

5.8.3.4 Choosing a Method for CHANGE LEVEL and CHANGE BASE212

5.8.4 Pipelining OLAP operations 212

5.8.4.1 Pipelining SELECTION 213

5.8.4.2 Pipelining PROJECTION 213

5.8.4.3 Pipelining Binary Operations 215

5.8.4.4 Pipelining CHANGE LEVEL 217

5.8.5 Physical Query Plan Notation 217

5.8.5.1 Access method . 217

5.8.5.2 Physical Operators for SELECTION 218

5.8.5.3 Physical Operators for PROJECTION 219

5.8.5.4 Physical Operators for Binary Operations 220

ix

5.8.5.5 Physical Operator for CHANGE LEVEL 221

5.8.5.6 Additional Physical Operators (Get realValues) . . . 221

5.8.5.7 Final Physical Query Plan 222

5.9 OLAP Query Execution . 224

5.9.1 In-memory Hash Table Representation 226

5.9.2 Index Based SELECTION Algorithm 229

5.9.2.1 Cost of the SELECTION operation 236

5.9.3 Algorithms for the PROJECTION operator 238

5.9.4 Hash Table Based Algorithms for Binary Operations 243

5.9.4.1 UNION . 244

5.9.4.2 INTERSECTION . 245

5.9.4.3 DIFFERENCE . 245

5.9.4.4 DRILL ACROSS . 245

5.9.4.5 Cost of Binary operations 246

5.9.5 Algorithms for CHANGE LEVEL Operation 246

5.10 The Sidera Server . 251

5.11 Result Sets . 257

5.12 Review of Research Objectives . 259

5.13 Conclusions . 262

6 Experimental Results 264

6.1 Introduction . 264

6.2 The Test Environment . 265

6.3 Current Query Processor Implementation 269

6.4 Single Node Experimental Evaluation 271

6.4.1 Query Engine with and without LAW 5 271

x

6.4.2 Sidera Query Engine with and without LAW 2, LAW 4 and

LAW 13 . 273

6.4.3 Index scan Versus Sequential cube scan 277

6.4.4 Query Compilation Time versus Query execution Time 278

6.4.5 Validating the Cost Model . 279

6.4.6 Scalability . 281

6.5 The Sidera OLAP Query Engine versus Query Engines 285

6.5.1 Sidera Query Engine versus MySQL 286

6.5.1.1 Dimension Count . 287

6.5.1.2 Fact Table Size . 289

6.5.2 Sidera Engine versus Microsoft SQL Analysis Service 290

6.5.2.1 Dimension Count . 291

6.5.2.2 Fact Table Size . 292

6.5.2.3 Sidera Engine versus MOLAP SQL Analysis Services 294

6.6 Parallel Query Engine Resolution . 296

6.7 Conclusions . 299

7 Conclusions and Future Work 300

7.1 Summary . 300

7.2 Future Work . 302

7.3 Final Thoughts . 304

Bibliography 305

A Twelve SQL Queries 316

B Sixteen SQL Queries 319

xi

List of Tables

6.1 Dimension Tables. 267

6.2 Estimated cost (Block I/O and processing time) versus actual time. . 281

xii

List of Figures

1.1 The Parallel ROLAP Server Architecture. 4

2.1 Pivot Operation . 10

2.2 Slicing and Dicing a three-dimensional cube. 10

2.3 Roll-up and Drill-down on a simple three dimensional cube. 11

2.4 Data Warehouse Architecture . 12

2.5 Two views of the base cuboid of a three dimensional cube. (a) MOLAP

model and (b) ROLAP model. 14

2.6 The Parallel ROLAP Server Architecture. 16

2.7 (a) Hilbert packing and (b) physical file on disk. 18

2.8 The hMap data structure of mapGraph. 20

2.9 The xMap data structure. 20

2.10 Components on each of the local processing node 23

2.11 Berkeley DB Subsystems . 27

3.1 A simple Star Schema. 42

3.2 User-supplied (native) data values for the data warehouse. 44

3.3 Encoding Employee dimension. 45

3.4 Product Mapping Table (Linear dimension). 46

3.5 Customer Mapping Table (Linear dimension). 47

3.6 Encoded Fact Table/base view (Sales/ABC). 48

xiii

3.7 Lattice of 3-dimensional cube(ABC). 49

3.8 Product-Employee (AB) data cuboid. 50

3.9 Recno Berkeley DB databases for (a) the Type attribute in dimension

Product and (b) the Province attribute in dimension Customer. . . . 52

3.10 Enhanced mapGraph for Product dimension. 54

3.11 Employee Bitmap indexes (Age and FirstName). 55

3.12 Usage of Bitmap Indexes. 57

3.13 Three-dimensional indexed cube (Sales) on local disk. 59

3.14 Berkeley Btree index that has references to all indexed group-bys stored

in one Berkeley DB physical file . 61

3.15 Hilbert R-tree indexing of the three-dimensional cube (Sales) before

and after the integration of the Berkeley DB with our server. 63

3.16 Blocks occupied in the Berkeley DB physical file for the R-tree index

for group-by BC. 65

3.17 Hilbert R-tree index physical files. 65

3.18 The physical structure of the indexed cube for three-dimensional cube

(Sales). 66

3.19 The indexed cube for the three-dimensional cube (Sales) without using

Berkeley DB. 66

3.20 Block diagram of the software architecture on each local processing

nodes. 69

3.21 Hilbert R-tree Search. 75

3.22 Sample SQL queries. 82

3.23 Comparison of the running time of three different sets of queries for

Berkeley Btree versus FastBit bitmap. 82

3.24 Index Construction using Sidera DBMS supported by Berkeley versus

Sidera Hilbert R-tree index of the three cube sizes. 84

xiv

3.25 Index Construction using Sidera DBMS supported by Berkeley versus

Sidera Hilbert R-tree index, as a function of dimension count. 85

3.26 Comparison of Berkeley supported Sidera Query Engine versus Sidera

Query Engine for three different query counts. 87

3.27 Berkeley Database Hit Rate for three query counts. 88

3.28 Comparison of Berkeley supported Sidera DBMS versus the old Sidera

DBMS for the three different cube sizes. 89

3.29 Comparison of Berkeley supported Sidera DBMS versus the old Sidera

DBMS, as a function of dimension count. 89

3.30 Comparison of answering OLAP hierarchical queries in Berkeley supported

Sidera DBMS versus Sidera DBMS for three cube sizes. 91

3.31 Parallel wall clock time for index construction. 92

3.32 (a) MySQL Basic Architecture (b) MySQL Architecture after adding

our OLAP storage engine (OLAPStorage). 95

4.1 (a) Sidera Conceptual Cube Model and (b) Simple Symmetric hierarchies

for Customer and Time. 106

4.2 (a) Simple Object Oriented OLAP model grammar.(b) Simple Object

Oriented OLAP model. 108

4.3 OLAP query written in SQL. 112

4.4 OLAP query written in MDX. 112

4.5 Basic OLAP query written in OOP Java. 114

4.6 (a) The three dimensional cube SOLD. (b) The result of the SELECTION(Time.Month

= Jan)SOLD query. 117

4.7 The result of PROJECTION operator. 119

4.8 Two Cubes(C1 and C2) share common feature and measure attributes. 120

xv

4.9 (a) C1 INTERSECTION C2 (b) C1 UNION C2 (c) C1 DIFFERENCE

C2. 121

4.10 Result of a change level operation. 123

4.11 Result of the CHANGE BASE operation. 123

4.12 Pivot Operation: (a) the original view. (b) the result of the PIVOT

operation. 124

4.13 Two cubes (C1 and C2) with different measure attributes. 126

4.14 Two cubes (C1 and C2) with different measure attributes. 126

4.15 Core operations of the OLAP algebra. 128

4.16 PROJECTION elements. 129

4.17 SELECTION elements. 130

4.18 Set Operations. 131

4.19 Change Level, Change Base and Pivot operations. 132

4.20 Drill Across operation. 132

4.21 The XML format for the OLAP query illustrated in Figure 4.5. . . . 133

4.22 (a) Translation of SQL to an intial relational algebra expression. (b)

The effect of applying some relational algebra laws. 134

4.23 Initial OLAP algebra tree. 136

4.24 Two-dimensional cube with the most detailed level values. 138

4.25 Initial SELECTION expression tree. 139

4.26 After applying LAW 1 the initial tree of Figure 4.25. 140

4.27 SELECTION pushing laws. 142

4.28 (a) Initial OLAP expression tree and (b) its equivalent after applying

the SELECTION pushing laws. 144

4.29 (a) Initial OLAP expression tree. (b) Improving the initial expression

by pulling SELECTION up and then pushing it down the tree. 145

xvi

4.30 (a) Initial OLAP expression tree.(b) Improving the initial expression

by introducing new PROJECTION. 147

4.31 (a) Initial OLAP expression tree. (b) Improving the initial expression

by decomposing the PROJECTION. 149

4.32 (a) Initial OLAP expression tree. (b) Result of pulling up CHANGE LEVEL(K).151

4.33 (a) Initial OLAP expression tree. (b) Result of merging two CHANGE LEVELs.153

4.34 Commutative and Associative rules. 154

4.35 DATABASE Element. 156

4.36 Cube Schema. 156

4.37 Dimension Schema. 157

4.38 Hierarchy Element. 158

4.39 Simple Hierarchy Schema. 159

4.40 Multiple and Parallel Hierarchies. 160

4.41 Sample OLAP Schema. 162

5.1 The major parts of the query processor. 167

5.2 Sidera Backend Query Processor. 168

5.3 Query Compilation and Execution Steps. 169

5.4 OLAP XML query to parse tree . 176

5.5 XML DOM graph/tree . 178

5.6 Parse Tree. 180

5.7 Initial OLAP Algebra. 185

5.8 Translation of the parse tree of Figure 5.6 to an initial OLAP algebra

tree . 186

5.9 The effect of query rewriting. 189

5.10 Cube Sale Schema. 190

5.11 Complex OLAP query in a simple string form. 191

xvii

5.12 Initial OLAP Logical Query Plan of Complex Query in Figure 5.11. . 192

5.13 A preferred OLAP logical query plan showing the effects of our OLAP

query optimizer on Figure 5.12 . 194

5.14 Notation for the size of cubes and dimension tables. 196

5.15 Cube Sale statistics. 202

5.16 Logical query plan for an OLAP query defined by our OLAP grammar. 203

5.17 Two candidates (a) and (b) for the preferred Logical query plan in

Figure 5.16. 204

5.18 Three ways to union four cubes. 205

5.19 (a) Initial plan tree with cost (5400). (b) Optimized plan tree with

cost (2850). 206

5.20 Execution of a pipelined SELECTION. 214

5.21 (a) Execution of a pipelined PROJECTION. (b) Block PROJECTION

result until the PROJECTION process terminates. 215

5.22 A physical plan for the logical query plan of Figure 5.9. 223

5.23 OLAP physical query plan for OLAP logical plan of Figure 5.10. . . . 225

5.24 Example of is block intersect() function. 235

5.25 Hash Table Array stores the result of the PROJECTION operation. . 244

5.26 Result of PROJECTION. (b) Result of CHANGE LEVEL. 251

5.27 A block diagram of the software architecture on each Sidera Backend

processing node. 254

5.28 The Sidera frontend. 254

5.29 The Sidera Backend Node. 258

5.30 Result Set DTD Grammar. 259

5.31 Result sent from the frontend to the client side as an XML message. . 260

xviii

6.1 Query running time with and without LAW 5 as the number of records

in the data cube increases. 273

6.2 Query running time with and without LAW 5 as the number of dimensions

increases in the data cube. 274

6.3 Query response time with and without LAW 2, LAW 4 and LAW 13

as the size of the fact table varies. 275

6.4 Query response time with and without LAW 2, LAW 4 and LAW 13

as the size of the number of dimension varies. 275

6.5 Comparison of number of blocks retrieved for the query engine before

and after the use of LAW 2, LAW 4 and LAW 13 for the same queries. 276

6.6 Sequential Scan versus Hilbert R-Tree index Scan. 278

6.7 Query compilation time compared to Query execution time for different

query groups (group i is answered from i -dimensional cuboids). . . . 280

6.8 Initial and preferred OLAP query plan and its equivalent in SQL. . . 282

6.9 Four Possible physical plans. 283

6.10 Execution time for sixteen OLAP queries as a function of the data

cube size. 285

6.11 Comparison of resolving OLAP queries using our OLAP query engine

against MySQL Query Engine. 288

6.12 Comparison of the Sidera query engine with MySQL server. 289

6.13 Sidera Query Engine against MySQL Engine as the number of records

increases. 290

6.14 Comparison of our query engine versus Microsoft SQL Analysis Services.292

6.15 Comparison of the Sidera engine versus Microsoft Analysis Services for

three different cube sizes. 293

6.16 Running time in the Sidera Server versus the MOLAP SQL server. . . 294

6.17 Sidera Engine versus Microsoft Analysis Services (MOLAP storage). . 295

xix

6.18 Sidera Engine (fully materialized cube) versus Microsoft Analysis Services

(MOLAP storage). 296

6.19 Parallel clock time for distributed query resolution. 298

6.20 Parallel speedup. 298

xx

Chapter 1

Introduction

Data warehousing and Online Analytical Processing (OLAP) are two of the most im-

portant components of contemporary Decision Support Systems (DSS). Collectively,

they allow organizations to make effective decisions regarding both their current and

future state. That being said, current OLAP tools are primarily constructed as exten-

sions to conventional relational database management systems. As a result, they can

be constrained by both conceptual and architectural elements primarily designed for

transaction processing systems. Our primary focus in the current research is therefore

the design of a robust infrastructure that specifically targets OLAP storage, querying,

and processing requirements.

Commercially, a number of vendors have offered more OLAP-oriented products

in recent years. Both Microsoft Analysis Services [66, 55] and Oracle OLAP [89],

for example, offer partial solutions in this context. While ultimately linked to their

flagship relational database management systems, which store warehouse data as a

series of standard tables, these products also provide options for the storage of OLAP

cubes, a data model often associated with OLAP query processing. Still, indexing

and access options are somewhat limited and are designed primarily for environments

1

2

where resource requirements (particularly memory) are relatively modest. Given that

data warehouses are at least partly defined by their sheer size, these “small scale”

solutions are not ideally suited to the needs of contemporary — or future — decision

support environments.

In addition, all current warehouse/OLAP systems utilize query mechanisms that

were designed decades ago. Specifically, they rely upon a combination of string based

query languages such as SQL and MDX, along with various proprietary extensions.

These languages (and their APIs) have little in common with the safe, flexible Ob-

ject Oriented languages commonly used in today’s development environments. Not

only do these languages make client side programming less effective (e.g., no com-

pile time type checking, no semantic verification, no ability to re-factor code, plus

the requirement to interleave distinct programming models), but they also make it

very difficult for the DBMS server to effectively exploit OLAP-specific constructs at

query resolution time. In other words, the requirement to work with existing query

languages and APIs largely prevents the backend server from effectively optimizing

user queries to take full advantage of either OLAP conceptual structures (e.g., con-

cept hierarchies and aggregation paths) or physical layer extensions (e.g., enhanced

indexing or sorting opportunities).

For these reasons, we are currently investigating the design, implementation, and

evaluation of an OLAP-aware multidimensional storage and query engine. In short,

the server is designed to efficiently resolve OLAP queries written in native OOP

languages such as Java. While the DBMS interface is intended to be clean and

intuitive, the infrastructure required to provide this functionality is quite complex.

To this end, we propose a comprehensive multi-dimensional OLAP algebra, as well as

3

an associated language grammar, that can be used to support the language libraries

visible to the client side programmer (We note that the client libraries themselves

are the subject of a related PhD thesis). The DBMS backend natively supports the

OLAP algebra and is able to optimize initial query plans and execute them efficiently.

Given the complexity of the query resolution process, we have chosen to ground

our conceptual work by integrating the core research themes into a working OLAP

prototype. Known as Sidera, the current system [38] was designed from the ground

up as a high performance parallel OLAP server and consists of a set of (largely

uncoordinated) components that provide various OLAP-specific services (e.g., data

structure generation, indexing, querying). Figure 1.1 shows the parallel Sidera system

model. While providing basic functionality, the existing Sidera server only supports

trivial range queries that have been hard-coded in a proprietary syntax. In the

remainder of this thesis we will discuss how Sidera has been extended in order to

provide (i) a comprehensive OLAP algebra that will eventually support a full range of

OLAP queries (ii) a robust OLAP query grammar that provides a concrete foundation

for client side languages (iii) a reliable and efficient OLAP storage engine that can

be exploited by the query resolution engine (iv) an execution environment that takes

full advantage of the first three elements of this list.

1.1 Research overview

The current research is essentially divided into three stages. In the first stage, we

explore the design of a robust OLAP storage engine that supports the processing

workload typically found in multi-Terabyte OLAP environments. In particular, we

seek to provide reliable and efficient disk storage, with all of the functionality one

4

Disk

Local ROLAP
Server

Instance
Disk

Parallel Service Layer

Local ROLAP
Server

Instance
Disk

Service APIService API

Frontend

End User End User

User API User API

Query Distribution
Result Collection

Disk

Local ROLAP
Server

Instance
Disk

Disk

Server
Backend

External Interface
Query Reception
Interpretation

Data Format Translation
User Sessions
Meta data

Figure 1.1: The Parallel ROLAP Server Architecture.

would expect in a contemporary DBMS (e.g., optimized block layout, caching, lock-

ing). To do so, we have integrated the open source Berkeley DB libraries into the

existing Sidera code base. In addition, we have incorporated bitmap indexing facil-

ities into Sidera in order to provide significant performance improvements for query

processing that relies on arbitrary attribute restrictions. Experimental evaluation

demonstrates that not only does the new storage engine provided a dramatically sim-

plified representation of the OLAP data store, but that even view construction and

access times have improved by 15 - 25%.

In the second stage, we have focused on a comprehensive multi-dimensional OLAP

algebra and associated XML-based query grammar. Similar in scope to the relational

algebra that has supported relational database management systems for the past 30+

years, the OLAP algebra consists of a small set of core operations that collectively

5

define the processing logic found in OLAP environments. In addition, the query

grammar is extensively supplemented with various meta data elements that allow for

a very expressive representation of the basic operations. Taken together, the algebra

and augmented grammar can support intuitive queries that more directly map to the

object oriented conceptual model typically associated with the OLAP domain.

In the third stage, we extend the Sidera server to exploit both the storage and

query facilities presented above. In particular, we discuss the primary properties of

the OLAP operations and present an extensive series of laws for manipulating the

initial user queries that arrive from the client side. Specifically, we borrow from

existing relational database theory to identify parsing and optimization mechanisms

that allow the server to transform initial — often naive — query plans into ones that

utilize fewer computational and physical resources and, thus, are likely to execute

much more quickly. In conjunction with the plan optimization strategies, we provide

an extensive treatment of physical execution plans and algorithms that allow the

server to actually carry out the logic of the derived plans. To support the choices

that we have made, we provide an extensive experimental evaluation that addresses

the value of the optimization and execution strategies. In addition, we compare the

latest version of Sidera with a pair of enterprise database management systems often

used in data warehouse settings (MySQL and Microsoft Analysis Services). The

results suggest that even when the test scenarios are ideally suited to the commercial

systems, the methods utilized by the Sidera server show great potential in practical

warehouse settings.

6

1.2 Thesis Structure

The thesis is organized as follows. Chapter 2 provides basic background mate-

rial needed to understand Online Analytical Processing (OLAP), the Sidera DBMS,

Berkeley DB, and the XML parsing used in the storage engine. The succeeding chap-

ters present the core contributions of the thesis. Chapter 3 describes the integration of

the Berkeley DB and the FastBit components into our OLAP server. It also presents

a series of experimental results that highlight the various performance advantages of

our OLAP storage engine.

Chapter 4 describes the comprehensive multi-dimensional OLAP algebra and

grammar, as well as the metadata components. An extensive treatment of OLAP

operations and their logical manipulation is provided. Chapter 5 discusses the design

of the DBMS query compilation framework. Specifically, we look at the two primary

components: (i) the query compiler that parses and optimizes initial query plans

using the laws defined in the previous chapter and (ii) the OLAP query execution

engine that translates the query plan into a physical result set. A set of execution

algorithms is also presented for each of the primary OLAP operations. In addition,

we discuss the integration of the new storage and query components into Sidera’s

parallel execution environment.

Chapter 6 provides an extensive set of experimental results that assesses the via-

bility of our storage, optimization and execution strategy. Finally, in Chapter 7, we

offer final conclusions and briefly describe possible future work.

Chapter 2

Basic Background Material

2.1 Introduction

Enterprise systems are becoming increasingly more complex. Organizations today

utilize a mixture of older, centralized systems and newer, distributed systems. A

wide variety of technologies is provided by an even larger number of vendors. Faced

with this environment, IT departments have started to develop new concepts and

tools both for managing information technologies, and processing the wealth of data

and information generated by them.

In this chapter, we examine the current trends, technologies, and terminology

relevant to an understanding of Online Analytical Processing or OLAP[23, 25, 31].

Section 2.2 defines On-line Analytical Processing. In Section 2.3, we discuss the data

warehouse and the data cube. In Section 2.4, we briefly describe the Sidera parallel

ROLAP backend architecture, and its software framework. In Section 2.5, we provide

an overview of the Berkeley DB model. We present the DOM parsing in Section 2.6,

while Section 2.7 concludes the chapter with brief summary

7

8

2.2 Defining OLAP

The term OLAP was not coined until 1992. In that year E. F. Codd, who first

introduced the relational data model in 1970, presented a report entitled “Providing

OLAP (on-line analytical processing) to user-analysts: An IT mandate”[25]. In this

paper Codd indicated the twelve elements required of any OLAP application. The

following five points are perhaps the most important themes taken from his report:

1. Multidimensional conceptual view. The primary focus is the relationship

between dimensions, rather than the presentation of transactional records.

2. Transparency. The end user should not have to be concerned about the details

of data access or conversions.

3. Accessibility. OLAP should present the user with a single logical schema of

the data, as opposed to a complex physical model.

4. Flexible reporting. The DBMS must be capable of presenting data to be syn-

thesized, or information resulting from animation of the data model, according

to any possible orientation.

5. Unlimited dimensional and aggregation levels. A serious tool should

support at least 15 dimensions.

2.2.1 OLAP: A Functional Definition

While commercial OLAP systems may provide many functions, there is a minimal

set that can and should be defined by any OLAP application. These functions are

listed below, while graphical models are shown in Figures 2.1, 2.2, and 2.3.

9

• Pivot. This OLAP operation allows users to re-organize the axes of the cube.

Pivot deals with presentation. Figure 2.1 provides a simple example of how the

pivot operation works in practice.

• Slice. This is an operation whereby we select a subset of a multi-dimensional

array (or cube) corresponding to a single value for one dimension member. This

operation allows the user to focus in on values of interest. Figure 2.2 shows the

process for a single value of the “color dimension”.

• Dice. The dice operation is a slice on more than two dimensions of a data cube

(or more than two consecutive slices). The user can draw attention to mean-

ingful blocks of aggregated data. In Figure 2.2, we show a multi-dimensional

subcube of a larger cube space.

• Roll-up. This is a specific analytical technique whereby the user navigates

among levels of data ranging from the most detailed (down) to the most sum-

marized (up) along a concept hierarchy. Figure 2.3 illustrates how the “color

dimension”, originally listed at the most detailed level, is aggregated in order

to provide a break down by summer and winter colors.

• Drill down. This is a specific analytical technique whereby the user navi-

gates among levels of data ranging from the most summarized (up) to the most

detailed (down) along a concept hierarchy. Figure 2.3 shows how the “item

dimension” is broken down to its item number.

10

Month

P
ro

du
ct

Original View Pivot View

Region

M
on

th

Product
Region

Figure 2.1: Pivot Operation

Original View

Item Name

 skirt dress shirts pant all

Co
lor

all

 w
hit

e

 p

as
te

l

 d
ar

k

all

large

medium

small

 skirt dress shirts pant all

medium

small

large

all

Item Name

Size darkCo
lor

Slice

 skirt dress shirts

Item Name

 p

as
te

l

 d
ar

k

Co
lor

Dice

Size

Sizemedium

small

Figure 2.2: Slicing and Dicing a three-dimensional cube.

11

Original View

Item Name

 skirt dress shirts pant all

Co
lor

all

 w

hit
e

 p

as
tel

da
rk

all

large

medium

small

 skirt dress shirts pant all

medium

small

large

all

Item Name

Size Co
lor

Roll-up on color

Size

Summer

Winter

 item1 item2 item3 item4 item5 item6 iitem7 item8 iitem9 item10

all

large

medium

small

Size

all

 w

hit
e

 p

as
tel

da
rk

Co
lor

Drill down on item

Item Number

Figure 2.3: Roll-up and Drill-down on a simple three dimensional cube.

2.3 The Data Warehouse and Data Cube

We note that the concept of the data warehouse begins with the physical separation

of a company’s operational and decision support environments. In other words, a

data warehouse is a distinct corporate database management system (DBMS) that is

designed to facilitate super fast queries times, as well as the analysis of multidimen-

sional data. The data warehouse is the central data repository for virtually all OLAP

systems.

2.3.1 Data Warehouse Architecture

Data warehouses can be seen as a three-tier architecture [23, 53]. The canonical data

warehouse architecture is shown in Figure 2.4. The possible data sources are shown

on the left. Information is extracted from various legacy systems and operational

12

Other Sources

Operational
DBs

Data Sources

Extract

Transform

Load

Refresh

Data
Warehouse

Metadata
Monitor

&
Integrator

Data Marts

Data Storage

OLAP Server

Serve

Analysis

Query

Reports

Data mining

OLAP Engine Front-End Tools

Figure 2.4: Data Warehouse Architecture

sources, consolidated, summarized, and loaded into the data warehouse. Strictly

speaking, this first step is outside the scope of the warehouse proper. Several data

marts are shown in the second stage; each one is a small warehouse designed for a

specific department. At this stage, we have the actual data warehouse, which contains

the “decision support” data and associated software. We can refer to this component

as the first tier. The second tier contains the OLAP server/engine that allows the

users to access and analyze data in the warehouse. In practice, there are many forms

of OLAP servers; they are used for the same aims but they differ in their internal

data representations. Finally, the third tier includes the front end tools that provide

a graphical interface for the top managers and decision makers.

13

2.3.2 The Data Cube

The data cube is a multidimensional data model that supports OLAP processing.

It can be described as a data abstraction that allows one to view aggregated data

from a number of perspectives. A data cube consists of dimensions and measures.

Dimensions are also known as attributes. Attributes can be of two types. Feature

attributes represent entities, such as employee and product. Measure attributes refer

to the items of interest. The measure attributes are aggregated according to the

feature attributes.

For a d-dimensional space, {A1, A2, . . . , Ad} we have O(2d) attribute combinations.

We often refer to this collection of views as the power set. In OLAP, views are also

known as cuboids or group-bys. Each view represents a distinct combination of feature

attributes, and can be seen as presenting an aggregation of the measure attribute.

The data cube consists of the base cuboid plus (2d)-1 cuboids. Since the base

cuboid contains all the feature attributes, it can be used to compute all the coarser

cuboids by aggregating across one or more of its dimensions. The data cube can be

described as “full” if it contains all 2d possible views, or “partial” if only a subset of

views has been constructed.

The group-bys can be pre-computed and stored to disk to improve real time query

performance. If the data is physically stored as a multi-dimensional array, we have

what is called a MOLAP design. MOLAP provides implicit indexing along the axes

of the multi-dimensional array but performance sometimes deteriorates as the space

— and the associated cube array — becomes more sparse (high dimensionality/high

cardinality). Relational OLAP, or ROLAP, stores group-bys (view/cuboids) as dis-

tinct tables and tends to scale well since only those records that actually exist are

14

4

3

2

1

Customer

1 2 3 4 5

Product

1

2

3

4

Location

45

97

9

14 611 72

(a)

Product Key Customer Key Loaction Key Measuer Attribute(s)

1 1 1 14
1 2 1 9
1 3 1 97
1 4 1 45
3 1 1 611
4 1 1 72

Product-Customer-Location Base cuboids

(b)

Figure 2.5: Two views of the base cuboid of a three dimensional cube. (a) MOLAP
model and (b) ROLAP model.

materialized and stored. However, it requires explicit multidimensional indexing in

order to be used effectively.

Figure 2.5 shows the construction of the base cuboid of a three dimensional cube

(Product, Customer, Location). Figure 2.5(a) presents the MOLAP model, while

Figure 2.5(b) depicts the ROLAP case.

2.4 Background

In this section, we present a simple architectural overview of the current Sidera sys-

tem. In particular, we look at the backend architecture that performs the query

resolution.

15

2.4.1 Sidera ROLAP Architecture

Contemporary data warehouses have grown enormously in size, with the largest now

pushing into the multi-terabyte range. For these massive data sets, multi-CPU sys-

tems offer great potential. The Sidera server was designed from the ground up as a

high performance parallel OLAP server.

Figure 2.6 provides a simple illustration of the hardware/ software architecture

for the query engine. Here, the Sidera frontend node represents the server’s public

interface. Its core function is to receive user requests and to pass them along to back-

end nodes for resolution. The frontend node does not participate in query resolution,

other than to collect the final result from the backed instances and return it to the

user.

Queries are distributed to each of the p nodes in parallel, allowing each of the

processing nodes to participate equally in every query. Load balancing errors due to

set partitioning are typically less than 2%. In effect, each backend node serves as

an independent ROLAP server that is fully responsible for storage, indexing, query

planning, I/O, buffering, and meta data management. Note that a Parallel Service

API provides functionality (sorting, aggregation, communication, etc.) that allows

local servers (backend nodes) to operate independently.

Sidera provides cube generation algorithms that are fully parallelized and are

load balanced and communication efficient on both shared disk and shared nothing

cluster architectures. Methods for both full cube (all 2d views) and partial cube (<

2d) materialization are supported [30, 80, 83]. After running the cube generation

algorithm, each backend node houses a portion of each of the O (2d) cuboids in the

full or partial cube.

16

Disk

Local ROLAP
Server

Instance
Disk

Parallel Service Layer

Local ROLAP
Server

Instance
Disk

Service APIService API

Frontend

End User End User

User API User API

Query Distribution
Result Collection

Disk

Local ROLAP
Server

Instance
Disk

Disk

Server
Backend

External Interface
Query Reception
Interpretation

Data Format Translation
User Sessions
Meta data

Figure 2.6: The Parallel ROLAP Server Architecture.

2.4.2 Sidera Backend Architecture

Recall that each backend node operates independently to answer a query from the

cuboids that are housed in each of the nodes. In this section, we will describe the

backend architecture in terms of the constituent components on the local nodes. In

particular, we will discuss the indexing of the cube, as well as the hierarchical data

structures and caching framework used to support hierarchical queries. Finally, we

describe the software architecture utilized on each processing node.

2.4.2.1 Cube Indexing

As mentioned in the previous section, each node contains a fragment of each of the

O(2d) cuboids in order to improve the query response time. However, it is important

to remember that high dimension group-bys (cuboids) may still be very large, As such,

17

indexing is critical. In Sidera’s case, explicit multi-dimensional indexing is provided

by a forest of parallelized R-trees. The R-tree [50] indexes are packed using a Hilbert

space filling curve [99] so that arbitrary k-attribute range queries more closely map

to the physical ordering of records on disk. For each cuboid fragment on a node, the

basic process is as follows:

1. Sort the data based upon the Hilbert sort order [99]. Associate each of the

n points (records) with m pages of size n/M. Write the base level to disk as

(cuboid name.hil).

2. Associate each of the m leaf node pages with an ID that will be used as a file

offset by parent bounding boxes.

3. Construct the remainder of the R-tree index by recursively packing the bounding

boxes of lower levels until the root node is reached.

The end result is a Hilbert-packed R-tree for each cuboid fragment in the system.

The Hilbert packed R-tree is stored on disk as two physical files: a .hil file that houses

the data in Hilbert sort order, and a .ind file that houses the R-tree metadata and

the bounding boxes that represent the index tree.

Figure 2.7 illustrates the structure of a small Hibert packed R-tree, with n =

18 and M = 3. In Figure 2.7(a), we see the data points (B3-B8) organized via

the Hilbert curve. Boxes that represent the index (B0-B3) are then constructed as

described above. In Figure 2.7(b) we see the physical files (.hil and .ind) that are

used to store the Hilbert packed R-tree for a given group-by (cuboid). As you can

see in Figure 2.7(b), each index block contains the IDs of the blocks that are accessed

from it. B0 contains the IDs of B1 and B2 that, in turn contain the IDs of the data

18

Figure 2.7: (a) Hilbert packing and (b) physical file on disk.

blocks B3, B4, B5, B6, B7, and B8. However, Blocks (B3 . . . B8) hold the Hilbert

ordered records.

2.4.2.2 Hierarchical Attribute Representation

One of the most important research problems in the area of Decision Support Systems

is the efficient manipulation of hierarchical dimensions stored in the data warehouse,

thereby improving the efficiency of querying multidimensional data [105, 107, 74, 34,

84, 69, 60, 90, 76, 64, 63, 21, 57, 101]. However, little research effort has focused upon

the manipulation of simple and complex hierarchies in ROLAP at query run-time.

Sidera supports the hierarchal queries by building mapGraph [39], a suite of al-

gorithms and data structures for the manipulation of attribute hierarchies in “real

time”. mapGraph builds upon the notion of hierarchy linearity [115, 75]. We say that

19

a hierarchy is linear if for all direct descendants A(j) of A(i) there are |A(j)|+1 values,

x1 < x2 . . . < x|A(j)| in the range 1 . . . |A(i)| such that

A(j)[k] =

xk+1∑

l=xk

A(i)[l]

where the array index notation [] indicates a specific value within a given hierarchy

level. Informally, we can say that if a hierarchy is linear, there is a contiguous range

of values R(j) on A(j) that may be aggregated into a contiguous range R(i) on A(i).

Sidera uses a sorting technique to establish linearity for each dimension hierarchy,

with data subsequently being stored at the finest level of granularity. It then uses a

compact, in-memory data structure called mapGraph to support efficient real time

transformations between arbitrary levels of the dimension hierarchy [39]. While a

number of commercial products and several research papers do support hierarchical

processing for simple hierarchies — those that can be represented as a balanced tree

— mapGraph is unique in that it can enforce linearity on unbalanced hierarchies

(optional nodes), as well as hierarchies defined by many-to-many parent/child rela-

tionships. The end result is that users may intuitively manipulate complex cubes

at arbitrary granularity levels and can invoke drill down and roll up operations at

will. Figure 2.8 provides an illustration of the hMap structure that is used for the

simplest hierarchy forms, while Figure 2.9 provides the structure that is used for the

unbalanced hierarchy forms.

2.4.2.3 Caching

While the parallel indexing facilities provided by the Sidera server support effective

disk-to-memory transfer characteristics, optimal query response time relies to a great

20

attribute 1 (Product #)

level 1 (Type)

attribute 2 (gender)

level 2 (Category)

2

5

7

11

9

7

11

Figure 2.8: The hMap data structure of mapGraph.

1 2

6 16

1 2

12 16

1 2

14 16

1 2

8 12

1 2

10 12

1 32

2 4 6

Legend

base attribute max

vector index

Figure 2.9: The xMap data structure.

21

extent on an effective caching framework. Given the sizable memory capacity of our

parallel ROLAP server, it is expected that a significant proportion of user queries will

be answered in whole or in part from a hot cache. Sidera provides a natively multi-

dimensional, hierarchy-aware caching model. Specifically, resolved partial queries are

cached on each node of the parallel machine. For a new k-attribute range query, with

ranges {R1, R2, . . . , Rk}, the cache mechanism must determine if, for each attribute

Ai, the range Ri of the user query is a subset of the range on Ai of the cached query.

If, for all k attributes, subset ranges are found, the cached query is used in place

of disk retrieval. At present, the Cache Manager does not process partial matches.

That is, it does not answer queries partly from the cache and partly from disk. This,

however, is the subject of ongoing research. Specifically, the logic required for this

form of decision making will eventually be integrated into the query optimizer.

The Cache Manager is used in conjunction with the mapGraph to perform trans-

lations between hierarchy levels. For a k-attribute user query, an arbitrary number

of attributes can be re-mapped simultaneously. Note that queries are cached in their

preliminary state — that is, they are cached in their base attribute form before final

transformations have been applied. This permits hierarchies to be mapped to arbi-

trary levels — caching at levels above the base would prevent the cache from answering

queries at finer levels of granularity. It is important to note that the cache forms the

basis of the core Five Form query model. Specifically, all OLAP servers should be

able to support at least five basic OLAP-specific queries: roll-up, drill-down, slice,

dice, and pivot. The query engine transparently manipulates the cache contents to

further refine previous user queries. A drill down, for example, is produced merely

by translating hierarchy levels within the current cache.

22

2.4.2.4 Backend Query Engine Model

The software architecture on each processing node forms a clean modular design. Fig-

ure 2.10 illustrates how the cube indexing, hierarchy, caching, and view components

fit into the larger framework. The first three have already been discussed. The View

Manager maintains meta-data about the format and sort orders of views physically

stored on disk. It is used when queries cannot be resolved from the Cache.

Algorithm 1 provides a high level description of Sidera’s query resolution logic.

At startup, each local node initializes the mapGraph hierarchy manager with meta

data that describes the dimension hierarchies and then initializes the View Manager

by scanning the local cube fragment. Because partial data cubes (subset of 2d) are

often constructed in practice, the View Manager can then be used to identify the

cheapest surrogate view that can resolve the user query. The frontend broadcasts the

queries to each processing node (backend) so that a partial result can be computed.

The main backend thread will then invoke the query engine module to process the

received query from the frontend.

The query interface is designed to be transparent, so that the user need not be

aware of physical storage properties. For this reason, before query resolution takes

place, the user’s query must be transformed, taking into account the dimensions’

hierarchical specifications, the existence of the cheapest surrogate group-by, and the

attribute sort orders. An initial result is obtained either from the cache or, if neces-

sary, from disk. If obtained from the cache, relevant records will be retrieved via the

Cache Manager. Otherwise, disk access is required. In this case, raw data is received

from the Hilbert R-tree indexes and eventually inserted into the Cache.

23

View Manager

Hierarchy
Manager

Multi-dimensional
Caching

Query Transformation

Hilbert
R-tree Indexing

Query Resolution

Parallel
Service

API

I/O Subsystem

Figure 2.10: Components on each of the local processing node

Once the initial result set has been resolved against the base level data, post pro-

cessing must be performed in order to produce the final result. The initial results

must be translated back into the level of detail required by the user. This function is

again performed in conjunction with the mapGraph Hierarchy Manager. A Parallel

Sample Sort [104] is performed to order records as per the user request and to permit

efficient merging and aggregation. Note that the sorting subsystem is heavily opti-

mized to minimize the movement of multi-value records. If surrogates or hierarchies

have been specified, some form of additional aggregation will also be required. At

this point, each processing node has part of the final result as per the user request.

Finally, if results are required on the front end, then we collect partial result from

each node with an MPI Gather operation.

2.5 Berkeley DB

Some applications require only the simple file system read/write services. Others

need all the power and flexibility that relational, hierarchical, and/or object databases

24

Algorithm 1 Backend node server

1: Initialize the main backend server
2: Initialize the mapGraph Hierarchy Manager (hM) with the dimension hierarchy

meta data
3: Initialize the View Manager (vM) with meta data about the physically stored

cube
4: While server is running do

1. receive a set M of user-defined query (uQ) parameters

2. transform query using the mapGraph Hierarchy and View Managers

3. check the Cache Manager (cM) for a match on uQ

4. if a valid match is found in the local Cache Manager then
6: get initial result I from the Cache Manager

5. else {otherwise, go to disk to answer the query}
8: get initial result I by accessing the disk to answer the query(uQ)
9: add I to the Cache Manager

6. end if

7. perform OLAP post processing on the initial result I.

8. if results required on front end then
12: collect R with MPI Allgather

9. end if

25

offer. Berekely DB falls between the low level file system and the high-level relational,

hierarchical, and object-oriented engines. Berkeley has an advantage over full DBMS

systems in that it it does not add the complexity and processing overhead required

to support full database query languages.

Berkeley DB is a general-purpose library written in the C programming language

that can be used as a fast, cost-effective data management layer for application de-

velopers. Because it is an embedded library, it can be compiled and linked directly

into the target application. Berkeley DB is available on all main commercial or open

source operating systems. Berkeley DB provides a simple function-call API for data

access and management in C, C++, and Java, as well as a wide variety of popular

scripting languages.

2.5.1 Architecture of Berkeley DB

It is important to remember that Berkeley DB is not a full relational, hierarchical, or

object-oriented database management system. However, there are five major subsys-

tems in Berkeley DB that can be used to implement high-level database functionality

without the need for significant query processing overhead or memory resources.

The five main subsystems that are provided by Berkeley DB are, as follows:

1. Access Methods. The access subsystem provides several different ways of

organizing data. This includes methods for inserting, deleting, and updating

entries in the database. Berkeley DB offers four access methods: Btree, Hash,

Queue, and Recno. The Btree stores data in a balanced tree structure [14], while

the Hash access method implements the extended linear hashing algorithm [71].

The Queue access method stores fixed length records sequentially, with logical

26

record numbers as keys. Finally, the Recno access method includes both fixed

and variable length records with logical record numbers as keys. When the

database is created, the developer can select the appropriate access method for

the application. Berkeley DB uses a default access method if none is selected.

2. Buffer Pool. Berkeley DB offers a shared memory cache used to store the

most frequently accessed data. The cached data can then accessed and shared

among the processes using the database files.

3. Transactions. Berkeley’s transaction subsystem ensures that the data doesn’t

get corrupted if a group of database recordes changes from one state to another.

We can think of transaction in terms of the ACIDity property [94].

4. Locking. the locking subsystem uses the two phase locking [91] mechanism to

provide concurrent access and isolation in the database.

5. Logging. The ACIDity property is supported by a write-ahead logging imple-

mentation [91].

Figure 2.11 shows the relationships between the subsystems in Berkeley DB. As

depicted in Figure 2.11, an application invokes the access methods and the transaction

APIs to perform Berkeley DB operations. The access methods and transaction sub-

systems in turn make calls into the Memory Pool, Locking and Logging subsystems

on behalf of the application.

2.5.2 Berkeley DB databases and environments

In this section, we briefly review some of the important concepts that one must

understand when building a Berkeley DB application. A Berkeley database contains

27

Figure 2.11: Berkeley DB Subsystems

records which consist of key/value pairs. Because of this pairing of keys and data,

we may think of a Berkeley database as a two column relation. Keys and data

may be arbitrarily complex. A Berkeley database contains a single collection of data

organized according to a chosen access method at database creation time (Hash, Btree,

Recno, or Queue). A database in Berkeley would normally be referred to as a table

in most database systems. Consequently, a standard Berkeley database application

uses multiple Berkeley database files. However, Berkeley DB also offers a mechanism

called an environment that can efficiently manage and coordinate multiple databases.

A Berkeley database environment is essentially equivalent to a database in relational

database systems. Finally, a Berkeley handle is a reference to the physical Berkeley

implementation. For example, to use a Berkeley database, you have to obtain a

database handle.

A Berkeley DB environment is important when dealing with multiple, related

databases. It can be used to efficiently pack hundred of databases into a single

file, thereby significantly simplifying the design of the application. Moreover, since

28

Berkeley is just a library that can be linked into the application space, there is no

external server to control threads and manage tables. Instead, Berkeley environments

serve as a common place where various control and management functions can be

staged.

2.6 XML DOM

As mentioned in Chapter 1, OLAP queries will be received by the Sidera server in

XML-based format. In this short section, we briefly review the key concepts rele-

vant to the process of parsing the XML OLAP query. XML is an extensible markup

language and can essentially be described as a text based notational mechanism for

representing arbitrary, self-describing data elements. Because it is text based, it may

be shared across a wide variety of computing platforms. The XML DOM (Docu-

ment Object Model) defines a standard way for accessing and manipulating XML

documents [32]. According to DOM, everything in the XML document is a node.

DOM nodes include the document node, element node, attribute node, text node,

and comment node. The XML DOM presents the XML data as a tree structure often

referred to as a node tree. The terms “parent”, “children”, and “siblings” are used to

describe the relationships between the nodes in the node-tree. The tree itself starts

at the root node and moves downward towards the text nodes at the leaf level.

A DOM parser is used to create the DOM node tree (this will be discussed in

Chapter 5). In other words, the parser can be used to read the XML document and

convert it into nodes that can be accessed and manipulated with programming lan-

guages such as Java, C++, etc. By using an XML DTD (Document Type Definition)

— essentially an XML schema — we can formally define what elements, attributes,

29

and entities are legal in the XML document. Therefore, the DOM parser not only

converts the XML to a DOM node tree, but it also verifies if the received XML

matches the XML DTD.

2.7 Conclusions

Both the size and complexity of data analysis has grown enormously in recent years.

Typically a data warehouse is used to support the process of data analysis since the

warehouse represents a large, consistent repository for enterprise-wide corporate in-

formation. In turn, OLAP systems allow users to manipulate the data contained

in the data warehouse. In this chapter, we have examined the concepts of Online

Analytical Processing and the data cube. OLAP operations were illustrated along

with explanations on how these operations are performed so as to provide mean-

ingful measures of summarized multi-dimensional data. We also examined the data

warehouse architecture as a three tiered model. We then presented the architectural

model for the Sidera platform, a robust parallel OLAP server designed for cluster

applications. The server consists of a publicly accessible frontend and a collection of

identical backend servers.

We then discussed the architecture of the open source Berkeley embedded database.

Specifically, we showed the five major subsystems in Berkeley DB that can be used

to implement high-level database functionality. Finally, we presented the XML DOM

parser that is used to parse the XML OLAP query on the frontend server. The DOM

parser will be further discussed in Chapter 5.

Chapter 3

Efficient OLAP Storage Engine

3.1 Introduction

One of the more important problems in the area of Decision Support Systems is the

efficient access and querying of multi-dimensional data stored in the data warehouse

[105, 107, 74, 34, 84, 69, 60, 90, 76, 64, 63, 21, 57, 101]. Somewhat surprisingly,

perhaps, relatively little research has been published on this topic. It is true that

a number of data structures and indexing methods have been developed for OLAP-

oriented multi-dimensional data. However, to our knowledge, no attempt has been

made to integrate such concepts into viable DBMS systems.

We begin by noting that the Sidera server[38] is intended to be an OLAP DBMS.

In fact, the first subject that one must focus on in the implementation of an OLAP

DBMS is the OLAP storage engine that is responsible for how the data of the data

warehouse is stored effectively on disk, as well as quickly accessed. The existing

storage engine of the Sidera server employs several components (indexing, hierarchy

manager, caching, etc.) that are used to answer multi-dimensional OLAP queries in

a very efficient manner. Specifically, for a d -dimensional fact table that is associated

with d dimensions, the current Sidera storage engine creates the R-tree indexed data

30

31

cube as a (2*2d) separate standard disk files. As was illustrated in Section 2.4, two

separate files (with .ind and .hil suffixes) represent the R-tree indexing for a group-

by in a d-dimensional cube. These simple files are not databases in any sense and

cannot efficiently support DBMS/OLAP queries. Moreover, they are underpowered

because of a lack of reliability (transactions, concurrency and recovery) and are at

a performance disadvantage relative to a true database system. However, as was

discussed in Section 2.4, Berkeley DB combines the power of a relational storage

engine (scalability, reliability, transactions, etc.) with the simplicity of a file system-

based data storage. Therefore, Berkeley DB has the potential to improve the existing

storage engine in the Sidera server.

In this chapter, we describe in detail the integration of Berkeley DB functionality

into the Sidera server [38]. In addition, we discuss the storage of dimension tables.

Recall that while the Sidera storage engine stores a cube by means of the R-tree

indexing method, it does not currently maintain the data for the dimension tables.

In general, therefore, our approach is to merge our existing code base that is used

to implement the backend Sidera server with the embedded Berkeley DB discussed

in Section 2.5. Dimensions tables are then encoded into a compact integer format.

Specifically, non-hierarchical attributes are stored as a set of FastBit bitmap indexes,

while hierarchical attributes are stored as Berkeley DB databases. Ultimately, the

integrated architecture is a very efficient OLAP storage engine that will allow us

to explore query resolution and optimization research that would be difficult, if not

impossible, to evaluate in a simulated DBMS environment.

This chapter is organized as follows. In Section 3.2, we will discuss previous

work. Section 3.3 will present the primary motivation of our work. In Section 3.4,

32

we discuss how the native data of the data warehouse is represented in our server. A

detailed description on how the data of the dimension tables are stored on disk and

accessed is provided in Section 3.5. A detailed description on how we integrate the

existing Sidera Cube Indexing and Access components with Berkeley DB is provided

in Section 3.5. In Section 3.6, we describe the integration of the Berkeley code base

into other Sidera server components. In Section 3.7, we illustrate the structure of

the query engine following the integration process. Extensive experimental results

are provided in Section 3.8. Section 3.9 is a review of chapter objectives with final

thought about our storage engine provided in Section 3.10. The chapter’s conclusions

are provided in Section 3.11.

3.2 Related Work

The multidimensional data from data warehouses or data marts are presented to

business users by OLAP servers. In practice, there are many forms of OLAP servers

(e.g. MOLAP, ROLAP and HOLAP). They are used for the same aims; however,

they differ in their internal data representations (Relational, Multidimensional, etc.).

As was illustrated in Section 2.3, central to OLAP is the data cube that consists

of the base group-by plus (2d)-1 group-bys. While the cube can be defined as a

logical data model, it often forms the basis of a physical model as well. Specifically

the group-bys (views) can be pre-computed and stored to disk to improve real time

query performance. Therefore, the first issue that one must address with the design

and implementation of an OLAP server is how to deal with the very large amounts

of historical data found in fact tables, cuboids and dimension tables. Specifically,

we must look at the best indexes, representations and data structures that support

33

the efficient manipulation of the data in the data warehouse. In this section, we will

review the academic literature that has been developed for the storage, representation,

indexing and accessing of data in the data warehouse (fact tables, dimension tables,

cubes, hierarchies, etc.). Moreover, we will also discuss some of the existing OLAP

storage engines used in commercial OLAP servers [3, 66, 55, 102, 78, 2, 1] and identify

the benefits provided by them, as well as their weaknesses.

A number of data structures and indexing methods [10, 18, 19, 42, 54, 67, 65, 72,

106, 111] have been developed for OLAP-oriented multi-dimensional data. A number

of papers [65, 111, 67, 72, 106] have studied the reduction of cube size in ROLAP

by exploiting the fact that a large amount of the data in the cube is redundant. For

example, Key [65], BU-BST [111] and QC-Tables [67] eliminate redundancy from the

cube by removing redundant tuples. They don’t focus on how the data is finally

stored on disk, however, but simply on what tuples are to be removed.

Sismanis et al. [106] propose a non-relational tree-based cube structure (called

DWARF) that eliminates prefix and suffix redundancies to create a cube data struc-

ture that is both compressed and searchable along attribute hierarchies. In other

words, the DWARF cube supports the representation of dimension hierarchies while

removing redundancy from cube data. QC-Trees [72] accomplishes much of the same

redundancy-reduction of DWARF. However, DWARF [106] and QC-trees exploit com-

plex tree-based models that are not straight-forward and not supported by any widely

used product. Moreover, they suggest storing the entire cube as a monolithic rela-

tion of fixed sized tuples, which is far from compact. In particular, a large number

of NULL values for records that are associated with cuboids with a low number of

dimensions would be introduced since they store the non-redundant data in a single

34

relation. The CURE cube [79] accomplishes much the same objectives as [106, 72]

but with a more compact table storage and simpler structures. It supports the repre-

sentation of dimension hierarchies and relatively compact table storage. Specifically,

instead of storing the non-redundant data in one single relation, they exploit appro-

priate data representations that store tuples, according to the cuboid (group-by) they

belong to. That being said, the ROLAP storage techniques in [106, 72, 10] lack the

multi-dimensional indexing schemes that are essential in ROLAP servers in order to

accelerate selective queries.

Apart from the structures that were developed for the compact representation of

the data cube in the ROLAP environment[106, 72, 10], a significant number of publi-

cations [49, 98, 97, 44] focused on indexing methods that speed access to data in the

data warehouse (fact tables, cuboids and dimension tables). In [49], the authors use a

group of B-trees to index the multi-dimensional data of the data cube. Roussopoulos

et al. [97] propose a data cube indexing scheme called cube tree. The cube tree is

based upon the concept of a packed R-tree [98]. A complete study of general purpose

multi-dimensional indexing techniques is provided in [44]. In essence, although many

of these methods make use of relatively intuitive designs, in practice only a couple

of these methods have found their way into practical/commercial systems. A signif-

icant amount of academic research has been focused on the R-tree and its variants

[98, 50, 15] (there is some commercial support for R-tree indexing in DBMS systems

such as Oracle). Guttman is the first to have described the structure of the R-tree as

a true multi-dimensional extension of the B-tree [50]. In [103], the authors propose

the R+-tree, a variation of the R-tree, that does not allow for overlapping between

bounding boxes at the same level of the tree index. Another variation of the R-tree

35

described in [15] is called the R*-tree reduces overlapping during node splitting by

using object re-insertion technique.

Space filling curves are another popular approach that supports multi-dimensional

indexing. In short, these curves convert the multi-dimensional space into a single

dimension. The single dimension can then be indexed by a “regular” index like a

B-tree. The analysis of the most common space filling curves — Hilbert, Peano,

row-wise and Gray, described by Jagadish [59] — identified the Hilbert curve as the

most effective for multi-dimensional queries. Roussopoulos and Leifker [98] described

how the R-tree can be created based on the lowX packing mechanism. Kamel and

Faloutsos [62] presented an improved technique that utilized the Hilbert curve as a

pre-packing mechanism for the R-tree. In practice, the Hilbert curve has generally

been shown to be the most effective curve [62] because it ensures that points that are

close to one another in the original space are close to one another on the final curve.

Commercially, various OLAP servers [3, 89, 102, 78, 2, 1] offer their own pro-

prietary OLAP storage engine. These OLAP products work specifically with cubes.

In other words, they pre-aggregate group-bys for performance reasons. Most of the

current OLAP servers offer two different storage models — Relational-based storage

(ROLAP) and array-based multidimensional storage(MOLAP).

Mondrian is an open source OLAP server, written in Java[78]. Mondrian is a pure

ROLAP server that works with an external RDBMS. It uses a RDBMS instead of

developing a new optimized storage engine to store and manage the multi-dimensional

OLAP data. In other words, Mondarian does not require a storage engine of its own.

Instead, it accesses and reads the data in the RDBMS and stores that data in its own

cache.

36

SAS (Statistical Analysis System) OLAP server is a multidimensional data store

designed to provide quick access to pre-aggregated data [102]. It supports ROLAP,

MOLAP and HOLAP data storage modes. SAS OLAP server has its own OLAP

storage engine that manages the storage of the data on disk and optimizes the ac-

cess to that data. Moreover, SAS OLAP storage engine provides many optimization

techniques such as compression, indexing, sorting and buffering for Base SAS Tables.

Microsoft SQL server, a complete database management system, provides the

Microsoft Analysis Services and includes a number of OLAP and data warehousing

capabilities [1, 66, 55]. Microsoft Analysis Services (MAS) supports MOLAP, ROLAP

and HOLAP storage modes. In the MOLAP storage mode, a copy of the data source

(fact table and aggregations) is stored in an optimized multi-dimensional structure

to speed up the query process. Moreover, queries can be answered without accessing

the source data because a copy of it resides in the multidimensional structure. In

ROLAP storage mode, the fact data and aggregations are stored as a set of indexed

tables/views in the relational database. Because no copy of the source data is created,

queries are resolved from the indexed source data. In ROLAP, query processing is

slower than MOLAP; however, it can save storage space and can scale to very large

data warehouses. In the HOLAP storage mode, it tries to combine the best of the

two storage models, ROLAP and MOLAP, and uses the MOLAP storage mode for

those queries that can be resolved from the data of the aggregations that are stored

in multidimensional structures. It uses the ROLAP storage when data is needed from

the source data to perform an operation such as drill-down.

Microsoft Analysis Services provides many types of indexes (Clustered, Non-

clustered, Unique, Index with included columns, Full-text, Spatial, Filtered and XML)

37

in order to optimize performance. All these indexes (except the spatial index) are

not designed to natively index a multi-dimensional space. In other words, they do

not take a multidimensional space and divide it into index-able regions or partitions.

However, with the spatial indexing, the multi-dimensional space is converted into a

single dimension that is then indexed using the B-tree index structure. Note that

MAS supports the MDX and SQL query languages for querying OLAP cubes and

dimensions.

SAP Business Intelligence (SAP BI) is another OLAP server that provides data

warehousing functionalities [3]. SAP BI supports ROLAP and MOLAP storage. In

the case of the ROLAP storage mode, the data of cuboids is stored in a Datastore or

an InfoCube. A DataStore stores the data in flat database tables, while an InfoCube

stores the data as a set of relational tables according to the star schema (fact table

surrounded by dimension tables). In a MOLAP storage case, however, the multi-

dimensional data are physically stored in arrays in the form of compressed files on

the Microsoft Analysis server. In MOLAP mode, SAP BI provides the SAP MOLAP

Bridge that is an interface between a SAP BI application and the MOLAP data stored

in Microsoft Analysis services.

Oracle database includes a multi-dimensional OLAP analytical server called Or-

acle OLAP [89]. OLAP data can be stored in either MOLAP multidimensional

structures known as “Analytic Workspaces” or in relational tables (ROLAP). In the

ROLAP storage mode, cubes and dimensions do not contain any data themselves.

Instead, they refer to existing oracle relational tables by only adding additional meta-

data (hierarchies, feature attributes, measures, etc.) to existing relational tables. In

the MOLAP storage mode, cubes and dimensions are fully loaded. In other words,

38

the data for cubes and dimensions are computed and stored at load time.

Finally, Oracle Essbase is a MOLAP server that stores aggregated cubes using two

proprietary storage structures called Block Storage Option (Essbase BSO or later

referred to as Essbase Analytics) and Aggregate Storage Option (Essbase ASO or

more recently, Enterprise Analytics) to physically model the cube [2]. First, Essbase

BSO minimizes storage requirement by representing the data of the hypercube as

a set of blocks, where each block contains a multi-dimensional array composed of

“dense” dimensions, while blocks are created for sparse dimensions when required.

While BSO is very compact for aggregate data in small applications, it does not scale

well for large applications. Therefore, Essbase ASO is provided as a storage option

for large applications.

3.3 Motivation

Though the academic research efforts described in the previous section have attempted

to model OLAP-oriented multi-dimensional data, they have been only a partial suc-

cess because no attempt has been made to integrate such methods and concepts into

viable OLAP DBMS systems. Commercially, the existing OLAP storage engines de-

scribed in the previous section store OLAP databases as a set of related tables and

generally offer limited indexing options with respect to the optimization required to

support complex OLAP queries. In addition, they also have their own OLAP string-

based query languages (MDX and OLAP DML) that add complexity and processing

overhead to the DBMS.

Recall that the existing Sidera server described in Section 2.4 has attempted

to support very large fact tables by the use of several components (cube indexing,

39

caching, hierarchy, etc) that support OLAP multidimensional queries. The end result

is an R-tree indexed cube that actually consists of 2 * 2d separate file objects (i.e.,

standard disk files). This means that two separate files (with .ind and .hil suffixes)

represent the R-tree indexing for a group-by in a d-dimensional cube. These sim-

ple files are not databases in any sense and cannot efficiently support DBMS/OLAP

queries. In other words, the indexed cube is stored in a set of low-level simple files —

for example, a ten-dimensional indexed cube is represented in 2048 files — that do

not offer the integrity, concurrency and performance advantages of database systems.

However, as discussed in Section 2.4, Berkeley DB provides various storage services of

relational engines. It can be used to store any kind of data in any format in one single

physical Berkeley DB file (Berkeley environment). Moreover, Berkeley DB combines

the benefits of relational database systems and file system data storage. Therefore,

Berkeley DB allows us to improve the existing storage engine of our Sidera server.

For example, the indexed cube can be stored in one physical Berkeley DB file that

can be easily managed, accessed and maintained.

With respect to dimension data, we note that such tables might have hierarchical

(e.g., the Province attribute in dimension Location) and non-hierarchical attributes

(e.g., Age attribute in dimension Customer). The existing Sidera server does not

describe how the data of dimension tables are stored and accessed efficiently on disk.

However, Sidera provides an efficient hierarchy manager (mapGraph) that is built

upon the notion of linearity to support hierarchical attribute levels. Therefore, we

need to provide a mechanism to store and access the data of dimension tables in order

to support mapGraph, as well as non-hierarchical attributes.

For the above reasons there is clearly an opportunity for further improvement of

40

the existing backend Sidera OLAP storage engine. Given the above, the following

objectives have been identified with respect to the design and implementation of a

reliable and efficient OLAP storage engine for the current Sidera environment.

1. Provide simpler, more intuitive representation of a materialized data cube.

2. Support fast indexed cube creation. Currently, a large number of files (2 * 2d)

need to be opened to store the R-tree indexes for a d-dimensional cube. This

introduces significant disk thrashing that affects the cube creation time.

3. Provide an efficient encoded form of the data warehouse. The encoded form of

the data warehouse not only dramatically decreases storage requirements (for

example, customer 64-character/byte string might be mapped to a byte integer)

but it significantly improves performance for key operations such as conditional

checks.

4. Support fast hierarchy manager (mapGraph) creation. When queries are being

processed, the dimension hierarchies are required to be read in order to create

an in-memory structure in the fastest way. In the current server, the dimension

hierarchies are stored as a set of disk files, one for each hierarchical attributes.

5. Ensure an efficient and fast storage for non-hierarchical attributes. Recall the

current server answers only very simple queries that do not require data for

non-hierarchical attributes (e.g. Age in dimension Customer). However, it

is necessary to provide an efficient way to store and access non-hierarchical

attributes in order to boost the run-time performance for real OLAP queries

and reports.

41

6. Support locking/concurrency, file system caching, data redundancy and other

core DBMS functionality. While not directly utilized at the present time, these

database functionalities are very important if Sidera is going to function as a

realistic OLAP DBMS.

7. Provide efficient query execution for complex hierarchical OLAP queries.

8. Provide an infrastructure that permits the exploration of new research themes

(e.g., OLAP query optimization). The OLAP storage engine is the first compo-

nent in the implementation of an OLAP DBMS. Our goal in this chapter is to

provide an efficient storage engine for the current Sidera server so that we can

focus on additional research issues for our server (e.g., query optimization and

execution).

3.4 Encoding Dimension Tables and the Fact Ta-

ble

In this section, we shall describe how the native data for dimension tables and fact

table(s) are encoded in our Sidera server. Specifically, our approach is to convert the

native data warehouse into a more compact integer format. Figure 3.1 shows a sim-

ple de-normalized Star Schema that forms the basis of the relational data warehouse

that is supported by our ROLAP Sidera server. It consists of a single, very large fact

table (Sales) housing the measurement records (Total Sales) associated with a given

organizational process. Sales consists of three feature attributes (ProductNumber,

EmployeeNumber and CustomerNumber) and one measure attribute (Total Sales).

Each foreign key (FK) in the fact table (Sales) has a corresponding record in a di-

mension table. For example, ProductNumber in the fact table is a primary key in

42

Figure 3.1: A simple Star Schema.

the dimension Product. The primary key of the fact table is a composite primary

key that consists of three foreign keys (ProductNumber, EmployeeNumber and Cus-

tomerNumber). Note that the fact table that is supported with our server contains

only one measure attribute (e.g. Total Sales in Figure 3.1) that can be aggregated

with the sum aggregation function.

Each dimension simply contains a list of descriptive fields. In addition to this, two

dimensions, Product and Customer, have hierarchies that are distinctly defined on

them. Product has a three level hierarchy (ProductNumber → Type → Cateogry).

The base level is ProductNumber attribute, which can be interpreted as the finest level

of granularity on that dimension. The secondary attribute is Product Type, while

the tertiary attribute is Product Category. Also, Customer has a four level hierarchy

(CustomerNumber → City → Province → Country), where CustomerNumber is the

base level, City is the secondary level attribute, Province is the tertiary level attribute,

43

and Country is the attribute at level four. In this case, the primary is the most detail

specific level while the fourth level is the least detailed. Dimension Employee does

not have any hierarchy.

Figure 3.2 illustrates the native form of the data for the schema of Figure 3.1. We

can read the first record of the fact table and derive that the total number of sales of

product number (UJ67) that employee number (E105D1) sold to customer number

(CR51) is 500. Our objective in this section is to show how to convert the data of

the data warehouse from its native form (manifested in the data of Figure 3.2) to

a more useful integer form that enables us to more effectively optimize and execute

complex OLAP queries. Note that the fact table and dimension tables of Figure 3.2

have few records; however, in a real system the fact tables could have 100 million

records or more. Note as well that the OLAP system requires metadata that describes

the structure of the available dimensions, hierarchies, measures, facts, cubes, etc.

Metadata storage concerning OLAP environment will be covered in Section 4.8.

3.4.1 Encoding Dimension Tables

Before generating the cube of a star schema (fact table surrounded with dimension

tables) that is supported by our server, all dimension tables must be encoded. Encod-

ing of a non-hierarchal dimension — a dimension that doesn’t contain any hierarchy

— is accomplished by a linear pass through the native data set, while encoding of

hierarchical dimension is achieved by enforcing hierarchy linearity [115, 75] on the

dimension. The result of this encoding process is a set of mapping tables, one for

each dimension table, which are physically stored on local disk.

Encoding a non-hierarchical dimension (called dimensionName) is a very simple

process. We change the schema of dimensionName by adding a new column called

44

Figure 3.2: User-supplied (native) data values for the data warehouse.

45

Figure 3.3: Encoding Employee dimension.

dimensionNameID, and then we make a linear pass through the native data set and

give a consecutive integer value to dimensionNameID from 1 to n, with n equivalent

to the cardinality C of the dimension (dimensionName) primary key. Figure 3.3 shows

the mapping dimension table for a non-hierarchical dimension (Employee); the schema

of the encoded Employee dimension is (EmployeeID, EmployeeNumber, FirstName,

Age). Note that the maximum value of EmployeeID (5) equals the cardinality of the

primary key in dimension Employee (EmployeeNumber).

Recall that the Sidera server enforces hierarchy linearity in order to encode the

hierarchical dimension tables in the data warehouse. In Section 2.4, we described in

detail how the Sidera server hierarchy manager component (mapGraph) builds upon

the notion of dimension hierarchy linearity [115, 75]. We encode a hierarchical di-

mension table (for example called dim) by building a mapping table that is sorted

by Ak, Ak − 1, . . . , A1, where A1 is the base attribute in the hierarchical dimension.

For each hierarchical attribute level Att in dim, we change the schema of dim by

adding a new column called AttID. Finally, the values of AttID are created as con-

secutive integer IDs. Specifically, we associate the consecutive distinct values for each

column Att with consecutive integer IDs. Figure 3.4 illustrates the mapping table

for the product dimension with the three-level hierarchy (ProductNumber → Type

46

Figure 3.4: Product Mapping Table (Linear dimension).

→ Category). The schema of the linear hierarchy dimension Product is (ProductID,

ProductNumber, TypeID, Type, CategoryID, Category, Year). The Product map-

ping table consists of 11 records, with 11 equivalents to the cardinality of the primary

attribute (ProductNumber). We can see in Figure 3.4 that the Product dimension

contains only one non-hierarchical attribute called Year. Figure 3.5 shows the result

of encoding the Customer’s dimension. We can see how the distinct values of each

hierarchical attribute are associated with integer values. For example, 1 is country

Canada and 2 is province Quebec. The new schema is (CustomerID, CustomerNum-

ber, CityID, City, ProvinceID, Province, CountryID, Country, Name, Age). Age in

dimension Customer is known as the non-hierarchical attribute. In this chapter, we

mention only the encoding of the simple symmetric hierarchy (e.g. dimension Cus-

tomer); however, other types of hierarchies such as ragged and multiple hierarchies

can be easily supported and are discussed in the Sidera mapGraph paper [39].

47

Figure 3.5: Customer Mapping Table (Linear dimension).

3.4.2 Encoding the Fact Table

Fact table encoding is accomplished by encoding its feature attributes. Encoding a

feature attribute is to convert it from its native form to an integer form. Each feature

attribute (FK) in the fact table is associated with the primary key in a dimension

table. Also, the records of the mapping dimension table have consecutive integer

numbers, 1, 2, . . ., n, one for each primary key value. We thus encode each feature

attribute Att, which relates the fact with a dimension dim, by replacing its native

value with the encoded attribute dimID value taken from dimension dim. In addition,

each feature attribute name Att that relates dimension dim becomes dimID.

Figure 3.6 illustrates the encoded fact table (Sales) of Figure 3.2. The encoded

fact table now has three feature attributes (ProductID, EmployeeID, CustomerID)

and one measure attribute (Total Sales). The values of feature attributes are integer

values taken from the mapping dimension tables of Figure 3.3, 3.4 and 3.5. We

can see for example that the first record of the encoded fact table is (9, 1, 6, 500)

which corresponds to ProductNumber CR51, EmployeeNumber E105D1, and Cus-

tomerNumber CR51. The encoded fact table is physically stored on disk. Data in the

48

Figure 3.6: Encoded Fact Table/base view (Sales/ABC).

fact table is stored only for the most detailed encoded values (Primary key encoded

values).

As was illustrated in Chapter 2, Sidera server stores a large number of pre-

computed aggregate cuboids (2d cuboids for d-dimensional cube). The data in the

cuboids is physically stored only for the most detailed level. The basic encoded fact

table can be considered to be the base cuboid. Since the base cuboid contains all

dimensions, it can be used to compute all cuboids in the cube. For example, we con-

sider the encoded fact table of Figure 3.6 to be the base cuboid of the 3-dimesnional

cube of Figure 3.2 . Sidera uses the base cuboid to compute other cuboids that can be

queried more efficiently at run time. The data in the cube is physically stored for the

most detailed encoded values (e.g. ProductID, CustomerID, etc.). For convenience,

we typically refer to the dimensions with letter names. For example, Product = A,

Employee = B and Customer = C for the base cuboid of Figure 3.6. So a Product-

Employee-Customer data cube might be labelled as ABC. Using ABC as the base

cuboid, then, the space in the Sidera server contains 23 = 8 cuboids/views: ABC,

49

Figure 3.7: Lattice of 3-dimensional cube(ABC).

AB, AC, BC, A, B, C and All.

The relationship between views is captured by the data cube lattice that defines

the parent child relationship between views in the cube space. Figure 3.7 provides

the lattice of 3-dimensional cube (ABC). Note that the lattice begins with the base

cuboid/view that contains the full complement of three dimensions (ABC). ABC has

higher granularity than its children (AB, BC and AC). In other words, ABC has

more detailed information than its children. Note that in our server, all nodes of

the lattice (full cube) are physically materialized and stored to disk for the most

detailed encoded integer values. However, partial cubes (i.e., not all cuboids) can be

materialized and stored.

Note that the top of the lattice (ABC) corresponds to the encoded fact table of

Figure 3.6. Sidera uses the base cuboid (e.g. ABC in our example) to compute all

other cuboids in the lattice. For example, the base cuboid of Figure 3.6 (ABC or

Product-Employee-Customer) can be used to compute the child view AB (Product-

Employee cuboid). Figure 3.8 illustrates the data of view AB. It shows the same

50

Figure 3.8: Product-Employee (AB) data cuboid.

fact measurement as its parent view (ABC) but this time aggregated on just A (Pro-

ductID) and B(EmployeeID) (i.e., lower granularity). For example, consider the first

two records of view ABC. Here, the measures of these two records are aggregated

(Total Sales = 500+100 = 600) in view AB because of the duplication in A and B.

3.4.3 Dimension Table Storage

Having seen the representation of dimension tables, we must now consider how these

dimension tables are physically stored and represented on disk. As was mentioned,

the data cube (views in the lattice) is generated by our server by creating all views

in the lattice rooted at the base cuboid (For example, the encoded fact table in

Figure 3.6). Therefore, the basic cuboid (encoded fact table) and other views have no

descriptive dimension information available; this makes the report of an OLAP query

executed against the cube alone very hard to read. Also, OLAP query constraints

are often specified on the attributes of the dimensions (e.g., All customers who are

older than 30). Thus, we require joins between a very large fact table and dimension

51

tables in cases involving OLAP reports or query constraints. For these reasons, it

is not sufficient just to spread the records of the dimension tables among different

disk blocks. Instead, we need better organization of dimension tables so that we can

minimize join operations between the fact table (cuboids) and dimension tables in

order to improve performance.

3.4.3.1 Hierarchical Attributes

For each sub-attribute in the hierarchy, we now create a Berkeley DB database with

the Recno access method. The Recno access method is backed with a flat-text file

that provides fast sequential read access. Therefore, this access method supports

very fast creation of the mapGraph at run time. As was illustrated in Chapter 2,

the entry of a Berkeley DB database is of the form (key, data). Therefore, for all

hierarchical attributes (i.e., Type in dimension Product) other than the base attribute

(e.g. ProductNumber in dimension Product), we create a Berkeley DB database that

associates the key with the data. The key is the encoded attribute value (i.e. values

of attribute TypeID in dimension Product), while the data have two values: a native

attribute representation (e.g. values of attribute Type from dimension Product) and

an integer value that represents the corresponding maximum encoded value in the

primary attribute. Figure 3.9 illustrates how the hierarchical attributes “Type” of

dimension Product and “Province” of dimension Customer are stored as two Berkeley

DB databases. Moreover, it is possible to encapsulate multiple databases, one for each

sub-attribute level, in a single Berkeley DB file on disk. In other words, we use one

Berkeley DB physical file to encapsulate the hierarchy data in a dimension.

Recall that the Sidera hierarchy manager (mapGraph) exploits the notion of hi-

erarchy linearity. Figure 2.8 provides an illustration of the hierarchy manager that

52

Figure 3.9: Recno Berkeley DB databases for (a) the Type attribute in dimension
Product and (b) the Province attribute in dimension Customer.

allows us to map between arbitrary levels of encoded data (integer) values of a dimen-

sion hierarchy. The existing Sidera in-memory data structure mapGraph supports the

following range translations: (i) mapping from an encoded base level attribute value

(integer value) Ai(1) to the corresponding encoded sub-attribute value Ai(j), j ≥ 2;

(e.g. In the Product dimension ProductID = 6 corresponds TypeID = 3) (ii) mapping

from a sub-attribute Ai(j) encoded value (integer) to the corresponding range(s) on

the base attribute Ai(1) (e.g. In the Customer Dimension ProvinceID =3 corresponds

to CustomerID = 6 and 7). However, OLAP query constraints are often specified on

the native values of the attributes. Also, it is difficult or even impossible for the user

to read an OLAP report with encoded integer values. Therefore, we have to enhance

the current mapGraph to provide O(1) conversion of native, user-supplied values to

encoded system-specific values (integer values) and vice versa. For each sub-attribute

Att, we create an in-memory hash table that associates each native representation

Att(nat) with encoded value(s) Att(en). We also add the native values for all en-

coded values. This allows us to convert from encoded value to native value in O(1).

In practice, the size of the mapGraph would likely be no more than a few dozen

53

kilobytes for large data cube problems because the collective size of a d-attribute

mapGraph depends on the cardinalities of non-base levels exclusively, which are very

small compared to the base level (e.g. the Product hierarchy might have 10,000

different products for the base level, however only two categories (HouseHold and

Automotive) for the category level).

Figure 3.10 illustrates the enhanced mapGraph structure for the dimension hier-

archy Product of Figure 2.8. Now in Figure 3.10, we add two hash tables, one for

each hierarchical attribute level other than the base level (Type, category). For a

sub-attribute (Aj), j ≥ 2, the associated map is made up of the maximum encoded

value from the range on (A1), corresponding to the current encoded value of (Aj). We

add the native values of (Aj) in order to convert any encoded value of (Aj) to its na-

tive value. For example, we can use the Category Hash Table to retrieve the encoded

value (2) of Automative category in O(1). Then, we can use the map associated with

Category to find all ProductIDs (1 → 7) that are Automative. Finally, the native

value of the encoded value 2 of Type attribute is Engine and it corresponds to the

base level (ProductID) range 3 → 5. In the next chapter, we will describe how our

Sidera server uses the enhanced mapGraph to efficiently answer hierarchical OLAP

queries.

At run time, when hierarchies are processed, they are read from the Berkeley

DB databases into main memory and used to create the enhanced mapGraph (e.g.

Figure 3.10 contains the hierarchy of dimension Product). Specifically, for each sub-

attribute in the hierarchy, we read all records from its corresponding Berkeley DB

sequentially and insert them into the mapGraph. Note that the enhanced mapGraph

supports the translation from encoded sub-attributes and native values to encoded

54

Figure 3.10: Enhanced mapGraph for Product dimension.

base level values and vice versa. However, it supports the translation of encoded and

native values between non-base hierarchical levels. Finally, the enhanced mapGraph

can be used to minimize the join between the cube and dimension tables when hier-

archical attributes are involved in the OLAP analysis. In other words, hierarchical

OLAP queries can be resolved by accessing the data of the appropriate cuboid/view

in the cube space and the data of the enhanced mapGraph.

3.4.3.2 Non-Hierarchical Attributes

As noted, the enhanced mapGraph is very useful when hierarchical attribute levels

are involved in the OLAP analysis. However, we need also to represent and organize

non-hierarchical attributes because they are also very useful in the OLAP analysis

(e.g. what are the total sales for all customers who are older than 25?). Recall that

the data in the cube in our Sidera server is physically stored for the most detailed

level of encoded integer values (e.g. ProductID in Figure 3.8). If a non-hierarchical

attribute is involved in the restriction of an OLAP query or in an OLAP report, then

55

Figure 3.11: Employee Bitmap indexes (Age and FirstName).

joins between the appropriate cuboid/view and dimension tables are required. Since

records of an encoded dimension table have integer numbers, then a bitmap index

data structure for each non-hierarchical attribute allows us to easily find those records

(record numbers) containing specific values on a given attribute in the dimension. In

practice, for each non-hierarchical attribute we provide one bit string for each distinct

value on the dimension (i.e., the cardinality). For k -non-hierarchical attributes, with

each attribute having m distinct values, we would therefore have (k*m) bit strings. In

practice, a compression technique (typically Run Length Encoding) is used to make

the bitmap indexes reasonably space efficient.

The encoded dimension of Figure 3.3 (Employee) consists of two non-hierarchical

attributes, Age and FirstName. The current dimension has five records (i.e. five

employees), numbered 1 through 5. Figure 3.11(a) illustrates the bitmap index for

the first attribute Age. The bitmap consists of five bit strings, each of length 5. Also,

because there are four different values for the FirstName attribute, the bitmap index

for this attribute has four bit strings as shown in Figure 3.11(b). In each string, the

1’s indicates the encoded values for the primary key.

The advantage of bitmap indexes for non-hierarchical attributes is that they al-

low us to identify the most detailed encoded integer values (e.g. EmployeeID) with

56

specified values in several non-hierarchical attributes without retrieving any records

from the specified dimension. To identify the records holding a random subset of

the values from a given non-hierarchical attribute, we can do a binary OR on the

bit-strings from that attribute. Also, to identify the partial matches on a group of

non-hierarchical attributes in a given dimension, we can simply perform a binary

AND on the OR maps from each attribute. Figure 3.11 illustrates how to identify

those employees (EmployeeID) with Age > 25 and FirstName = John. These binary

operations (AND and OR) can be done quite quickly since binary operations are

natively supported by the CPU.

Recall that the cube in our server contains the most detailed values from dimension

tables as feature attributes (EmployeeID, ProductID, etc.). As such, bitmap indexes

allow us to eliminate joins between the cube and dimension tables whenever non-

hierarchical attributes are involved within the OLAP analysis. For example, consider

the encoded fact table shown in Figure 3.6 and the bitmap indexes of Figure 3.11.

Assume that the user asks the following query: what are the total sales of all employees

who are older than 25 and their first name is John? Since Age and FirstName are

non-hierarchical attributes, then we use their bitmap indexes to answer the query’s

condition (Age > 30 and firstName = john). EmployeeID 3 satisfies the condition

(See Figure 3.11). Subsequently, we access the fact table and aggregate the total sales

where EmployeeID = 3. The final result of this query is (Total Sales = 210).

FastBit is used to create a very efficient compressed bitmap index. Fastbit uses

the Word-Aligned Hybrid compression mechanism to compress the bitmap indexes

[41]. This compression scheme produces a FastBit compressed index that is up to 10

times faster than the compressed bitmap index (run-length encoding) implementation

57

Figure 3.12: Usage of Bitmap Indexes.

from popular commercial database management (DBMS) product (e.g., Microsoft

and Oracle). FastBit compressed bitmap indexes for each non-hierarchical attribute

also provide very efficient searching and retrieval operations compared with B+ tree

and B* tree. Given FastBit’s performance and its open source licence, we chose

to integrate the FastBit library with our ROLAP Sidera Server. This integration

allows us to create a set of compressed bitmap indexes for non-hierarchical attributes

(e.g., Age from dimension Employee, Year from dimension Product). In other words,

after the integration of the FastBit component with our server, all non-hierarchical

attributes are represented as FastBit compressed bitmap indexes that are created and

stored on the local disk.

58

3.5 Cube Indexing Integration

As was discussed in Subsection 3.4.2, Sidera uses the encoded fact table (i.e. see

Figure 3.6) to generate the full cube as 2d views in a d-dimensional space. Recall

that the data in the cube is physically stored only for the most detailed levels (e.g.,

CustomerID, ProductID). Moreover, the Sidera indexing component described in Sec-

tion 2.4 illustrates how the full cube can be materialized for a d-dimensional space

as 2*(2d) physical files. In other words, the indexed R-tree for each cuboid is stored

on disk as two physical files: .hil file that houses the data in Hilbert sort order, and

.ind file that houses the R-tree index metadata and the bounding boxes that repre-

sent the index tree. For example, consider the 3-dimensional cube called (Sales) that

was depicted in the cube lattice of Figure 3.7. The indexed cube is stored on disk

as 16 physical files that are illustrated in Figure 3.13. Recall that A refers to the

dimension Product, B to the dimension Employee and C to the dimension Customer.

ABC represents the view Product-Employee-Customer (e.g. the encoded fact table

of Figure 3.6), while BC represents the view Employee-Customer, etc. As previously

noted, the number of physical files that represent the indexed cube in our server

grows exponentially as the number of dimensions increase. In addition, these files

(.hil and .ind file in Figure 3.13) are not databases and are not particularly efficient

for OLAP queries. With the benefits Berkeley DB can provide we can have a simpler,

easy-to-manage and more intuitive representation of an indexed materialized cube.

We will now look at the integration of the embedded Berkeley DB into the Sidera

indexing component (discussed in Section 2.4). While Berkeley provides four access

methods (BTree, Hash, Recno and Queue) that perform very well in the context of

the primary index, it is not sufficient in its current form to efficiently support the

59

Figure 3.13: Three-dimensional indexed cube (Sales) on local disk.

multi-dimensional queries that are executed by the Sidera sever. Specifically, while

Berkeley “understands” the notion of index/data combinations, it has no mechanism

to directly support multi-dimensional R-trees.

We have described the Sidera cube indexing component and the concepts of Berke-

ley DB and environments in Section 2.4 and 2.5 respectively. The integration process

consists of combining the source code written in C++ for the cube indexing with

the code of Berkeley DB. Then we compile the source code with support for the

C++ API. Finally, we install the compiled code that contains the compiled Berke-

ley DB and the compiled code that supports the building of R-tree cube. After

this integration, Berkeley DB can be used to create a Berkeley DB database with

the Hilbert R-tree access method. Moreover, the data in the R-tree Berkeley DB

database is stored and retrieved by using the C++ APIs that are provided by the

60

Berkeley DB. In other words, one can write a C++ application that creates and ma-

nipulates the Berkeley DB database R-tree by using the same set of Berkeley DB

C++ APIs. However, we add one database type called DB RTREE as would be used

for a standard B-tree to the existing database types in the Berkeley DB (DB BTREE,

DB HASH, DB QUEUE, DB RECNO, or DB UNKNOWN). Finally, after the inte-

gration of Berkeley DB with our code, the developer must be aware that there is a

new database type called DB RTREE that can be used with the original Berkeley

C++ APIs in order to create and manipulate a Berkeley DB database with the R-tree

access method.

3.5.1 Berkeley R-tree Model

As described in Section 2.5, Berkeley supports the storage of many databases (i.e.Berkeley

Database Objects) in one physical file. Internally, this physical file contains one

master database supported by the BTree access method that has references to all

the databases that are stored in the same file. Keys in this primary BTree are the

database names that are stored in the physical file, and the data of the primary BTree

consists of the meta-data page number for each database name.

After the integration of the source code (Berkeley and Sidera), instead of building

the indexed cube as 2*2d physical files, we build the indexed cube as O(2d) Berkeley

database objects for a d-dimensional fact table, one Berkeley database with the R-tree

access method for each materialized group-by. In addition, these Berkeley databases

are stored in one physical file and are associated with the same Berkeley environment.

Specifically, the Berkeley DB physical file contains a master database that has refer-

ences to all Hilbert R-tree indexed group-bys (stored as Berkeley databases) in the

same file. Keys in the master database are the indexed group-by name, and the data

61

Figure 3.14: Berkeley Btree index that has references to all indexed group-bys stored
in one Berkeley DB physical file

contains two values: the indexed cuboid page meta-data number and the size in terms

of the number of blocks occupied by this indexed cuboid. Consider the 3-dimensional

cube (Sales) represented in the lattice cube of Figure 3.6. The names of the group-bys

in the cube are: ABC, AB, AC, BC, A, B and C. Recall that Product = A, Employee

= B and Customer = C. So for example, AB is the Product-Employee view. For sim-

plicity, we ignore the “All” view. Figure 3.14 illustrates the master BTree that has

references to all indexed group-bys that will be stored in one Berkeley DB physical

file. For example, we can see in Figure 3.14 that the metadata of the indexed view

ABC is stored at block number 11 and this indexed view needs 13 blocks to be stored.

Algorithm 2 describes how the Hilbert R-tree indexed cube is stored as Berkeley

databases in one physical Berkeley DB file. To begin, we create and open a Berkeley

DB environment handle (i.e. dbenv) that encapsulates one or more Berkeley database

objects, one for each indexed cuboid in the cube. Then, for each group-by X in the

cube, we create the Hilbert R-tree indexed view as a Berkeley DB database with the

62

Algorithm 2 Hilbert R-tree Indexed Cube

Input: A set S of group-bys and a cube name called C.
Output: Hilbert R-tree indexed group-bys stored as Berkeley database objects in

one physical file.
1: Create and initialize a Berkeley environment dbenv.
2: For each group-by named X in S

• Create a database handle db.

• Associate the database handle db with the Berkeley environment dbenv.

• Open the database using the handle db. This database handle db represents
the Hilbert R-tree index for X.

db.open(NULL, C, X, DB-RTREE, DB-CREATE, 644);

• Close the database handle db.

3: Close the Berkeley environment handle dbenv.

database type DB RTREE in the open method (i.e. db.open()). Note that the original

open method in the Berkeley DB opens the database associated with a Berkeley DB

physical file that supports the following access methods: Btree, Hash, Queue and

Recno. Also, after open is called, we can read or write from or to the Berkeley DB

database by using the putting and the getting methods (get(), put(), etc.). However,

using the Berkeley DB open method with the database type (DB RTREE) and a

view X means that if the Berkeley DB database (X) doesn’t exist then we first create

it and store in it the Hilbert R-tree index corresponding to group-by X. In the open

method, the name of the physical file that will be used to back one or more Berkeley

DB R-tree databases will be the name of the cube (e.g., C).

In Section 2.4, we explained how the Hilbert R-tree indexed group-by is created

and stored as two physical files: the .ind file houses the R-tree index of the group-by

and the .hil file stores the data of the group-by in Hilbert sorted order (See Figure 2.7).

63

Figure 3.15: Hilbert R-tree indexing of the three-dimensional cube (Sales) before and
after the integration of the Berkeley DB with our server.

When we open a Berkeley DB database handle with a database type equivalent to

DB RTREE, a Hilbert R-tree indexed group-by is created and stored in one Berkeley

DB physical file that has the same name as the cube. Figure 3.15 illustrates that the

index of the three-dimensional cube (Sales) — that is represented as eight cuboids

in the data cube lattice of Figure 3.6 — is stored on disk in one single Berkeley

database file called Sales, instead of the sixteen standard non-database files shown in

Figure 3.13. The physical file Sales in Figure 3.13 encapsulates a Berkeley DB internal

Btree and eight R-tree indexed cuboids (ABC, AB, etc.). Note that Figure 3.14

illustrates the structure of this internal Btree that has references to all indexed group-

bys that are stored in the same file. Recall that letter names refer to dimensions (e.g.

A refers to dimension Product).

As was discussed above, the internal master database (BTree) is used to store

references to all indexed group-bys that are stored in one physical file. For example

in Figure 3.14, the metadata block of the group-by BC is stored at block number

32, while its size is 9 blocks. The metadata block of a given group-by contains the

structure of its R-tree index. In other words, it contains the group-by name, the

64

number of index blocks, the number of data blocks, the block number of the root,

the block number of the first data block and the size of each block. Moreover, the

construction mechanism of the Hilbert R-tree index itself (after the integration of

Berkeley DB with Sidera) follows the same mechanism that is used with the Sidera

server. However, many R-tree indexes are stored in the same file. Therefore, we use

the Hilbert R-tree index for a group-by implies that for an m-block index, the index

block ID values will run from block i, . . ., Block (i + m - 1), where i is the block

number of the root in the R-tree index (e.g. block 32 stores the root of the indexed

group-by BC), with the IDs strictly increasing in value in a top-to-bottom/left-to-

right fashion. Furthermore, the blocks of the data set are also stored in consecutive

blocks in the physical file. Figure 3.16 illustrates the structure of the Hilbert R-tree

for the group-by BC. We can see in the metadata that the root block is at block 33

(B33) and there are 3 indexes (B33, B34 and B35). Also, the data blocks are stored

in consecutive blocks (26, 27, 28, 29, 30 and 31). Figure 3.17 shows how this indexed

group-by is stored in two physical files before the integration. Note that it is not

necessary to have in the metadata of Figure 3.17 the first data block number and the

root number.

Finally, in Figure 3.18 we see how we store the Hilbert R-tree index in one physical

Berkeley DB file for the three-dimensional cube (Sales in Figure 3.6) that has eight

group-bys (ABC, AB, AC, etc.) represented in the cube lattice. Specifically, this

figure illustrates the index cube as a set of blocks. We have some block numbers (0,

1, 36, 37 and 60) that represent the internal Berkeley Btree master database. Note

that this Btree is shown in Figure 3.14. Moreover, for each indexed group-by, the

following blocks are required: one block to store the metadata, consecutive blocks to

65

Figure 3.16: Blocks occupied in the Berkeley DB physical file for the R-tree index for
group-by BC.

Figure 3.17: Hilbert R-tree index physical files.

store the data blocks in their Hilbert ordered form, and consecutive blocks to store

the Hilbert R-tree index. For example, the metadata for the indexed group-by (ABC)

is at block number 11, blocks (2, 3, 4, . . ., 10) are used to house the data set, and

block 12 to block 15 store the index blocks. Finally, Figure 3.18 illustrates that the

indexed cube of the 3-dimensional cube (Sales) is stored in one physical Berkeley DB

file called (Sales) that consist of 66 blocks/pages. Moreover, without the integration

of the Berkeley DB into our server, Figure 3.19 shows how this indexed cube is stored

on disk as 14 non-database, standard disk files (we ignore the “All” group-by). For

example, the R-tree index for group-by AC is stored in two files: AC.ind and AC.hil.

AC.ind consists of the metadata block (block 0 in the file) and three index blocks

(block 1, 2 and 3 in the file). AC.hil consists of six blocks (block 0 to 5) that house

the data set for the group-by AC in Hilbert order form.

66

Figure 3.18: The physical structure of the indexed cube for three-dimensional cube
(Sales).

Figure 3.19: The indexed cube for the three-dimensional cube (Sales) without using
Berkeley DB.

67

3.6 Integration of Berkeley DB with other Sidera

Components

Taken collectively, the software architecture on each backend node forms a clean

modular design. In Section 2.4, we discussed how the various components of the

Sidera backend node fit together into larger framework. In addition, we showed the

main subsystems of Berkeley DB and the relationships between them. In Section 3.4,

we explained how hierarchical and non-hierarchical attributes are stored as Berkeley

DB Recno databases and as a set of FastBit compressed bitmap indexes respectively.

Moreover, in Section 3.5, we explained how the cube indexing is integrated with

Berkeley DB. Our purpose in this section is therefore to describe the integration of

the other components in the Sidera backend node (hierarchy manager, cache, etc.).

mapGraph in the Sidera OLAP server is used to provide advanced functionality

that would not be available within a standard database system. In particular, it

is used to support efficient real-time transformation between arbitrary levels of the

dimension hierarchy [39]. While Berkeley DB is used to store the indexed cube as

Berkeley databases in one Berkeley physical file, supporting drill down and roll up

operations rely to a great extent on the integration of the mapGraph with Berkeley

DB. Therefore, we have integrated the code implementation of the hierarchy manager

with Berkeley DB to support the hierarchical OLAP queries. After the integration,

the mapGraph is initialized with hierarchy meta data that describes the multi-level

dimension hierarchies. As was discussed in section 3.4, the data of each hierarchical

attribute is stored in a Berkeley DB database with the Recno access method. When

hierarchies are processed, the mapGraph is built in the main memory by reading all

68

Berkeley DB databases that contain the data of the dimension hierarchies. The inte-

gration of the cube indexing and hierarchy manager components with Berkeley DB

provides an effective indexing mechanism for the cube model, and supports the cube

operations (Roll-up, Drill-down) that are particularly common in practical applica-

tions.

In addition to the hierarchy manager, the OLAP caching mechanism must be

integrated with Berkeley DB. Note that in this context, the term “caching” has

nothing to do with the Berkeley caching component that stores recently accessed

disk blocks. In the current case, we are referring to Sidera’s own multi-dimensional

cache that stores recently accessed cube queries. After the integration, our OLAP

server has two caches — Berekeley DB caching and Sidera multidimensional caching

— that store recently accessed disk blocks and recently resolved OLAP queries.

Finally, we have integrated the Sidera’s View Manager component with Berkeley

DB. The View Manager maintains meta-data of the indexed group-bys that are stored

in the Berkeley physical file. In short, the ViewManager is used to select the database

object that will most efficiently answer the pending query. The View Manager is

initialized by scanning the primary master Btree database that contains references to

all indexed group-bys.

Figure 3.20(a) illustrates how the Hierarchy, Caching, View, and Cube Indexing

components sit on top of FastBit and Berkeley DB. Figure 3.20(b) provides a slightly

more detailed representation of the same information. In Figure 3.20, we see the

software on each processing node of the Sidera server (Backend server). We note that

we have not integrated all of the Berkeley subsystems at this time. In particular,

given the primarily read only nature of OLAP DBMSs, the transaction and locking

69

Figure 3.20: Block diagram of the software architecture on each local processing
nodes.

70

mechanisms are not as crucial (though they may be added at a later date).

3.7 Backend Processing Logic

Figure 3.20 shows the software model on each of the p nodes of the backend in the

Sidera server. As previously noted, each backend node executes exactly the same

application code. In this section, we discuss the processing logic on the backend

server instances.

3.7.1 The Query Resolution Algorithms

The initial query engine in the Sidera backend server, described in Section 2.4, was

designed for querying multi-dimensional data in the presence of hierarchies. It wasn’t

particularly robust, however, since it was little more than a standalone simulation.

Algorithm 3 provides the updated algorithm of the backend server instances after

the integration of Sidera backend codes with Berkeley DB. We stress that the ini-

tial query engine in Sidera pre-dates the work in this proposal. Our purpose in this

section is therefore to describe the query engine after the integration of our backend

server components with Berkeley DB. The original Sidera query engine answers very

simple OLAP range queries that have been hard-coded. Specifically, non-hierarchical

attributes are not supported as well as hierarchical native values. Therefore, Al-

gorithm 3 doesn’t need to use the FastBit components that are used to store the

non-hierarchical attributes in a set of compressed bitmap indexes (They are used by

the query engine discussed in the following chapters).

To begin, the local instance first initializes the mapGraph hierarchy manager with

meta data describing the multi-level dimension hierarchies (identical on each node),

71

Algorithm 3 Sidera Backend Query resolution after the integration

1: Initialize the main backend server
2: Initialize the mapGraph Hierarchy Manager (hM) with the dimension hierarchy

meta data
3: Initialize the View Manager (vM) with meta data about the physically stored

cube
4: while server is running do
5: receive a set M of user-defined query (uQ) parameters
6: invoke tranformQuery(uQ, hM, vM)
7: check the Cache Manager (cM) for a match on uQ
8: if a valid match is found in the local Cache Manager (cM) then
9: get initial result I from the Cache Manager

10: else {otherwise, go to disk to answer the query}
11: Check the cache Manager (cM) for a match on the surrogate view V that

was selected to resolve the user query.
12: if a valid match is found in the local Cache Manager (cM) then
13: get initial result I by invoking processQuery(uQ, db)
14: else
15: Create a Berkeley database (db) and associate it to dbenv.
16: Open the Berkeley database (V) that contains the Hilbert R-tree index for

group-by V.
17: get initial result I form disk, I = processQuery(uQ, db)
18: Add db and V to the cache Manager cM
19: end if
20: end if
21: final result R = perform OLAP post processing on the initial result I.
22: if results required on front end then
23: collect R with MPI Allgather
24: end if
25: end while

72

initializes the View Manager by reading the master Berkeley database to get the for-

mat and the sort orders of the indexed views stored physically on disk, and then initial-

izes the Berkeley environment that contains references to all the Berkeley databases

sharing the environment and shared memory segments for caching databases and

caching control information.

Before query resolution actually takes place, the raw query is transformed, taking

into account the hierarchical specifications. An initial result is then obtained either

from the OLAP Sidera cache or, if necessary, from disk. If obtained from the cache,

the cached attributes are re-ordered to match the order of the user query. If disk

access is required, we first have to check if the surrogate target — the view V that

can satisfy the actual user request — is found in the local cache. If V is found, this

means that a Berkeley database that represents the Hilbert R-tree index for group-by

V was opened and cached in the Berkeley Cache Manager, in which case the Berkeley

database will be utilized. Otherwise, we open a Berkeley database that represents the

Hilbert R-tree index for group-by V to answer the user query. Then, initial data is

retrieved via the Hilbert R-tree Berkeley database and is added to the Sidera OLAP

cache. Query-specific post processing is then performed. Finally, because Sidera is

a fully parallelized query engine, the partial results may need to be collected and

merged before presentation to the end user. We use a standard Gather operation

from the MPI libraries (Message Passing Interface).

3.7.2 Query Transformations

Algorithm 3 utilizes a function called transformQuery to convert the user query into

a hierarchy-aware form that can be utilized by the query engine. This algorithm is

described in Algorithm 4. The primary function is to create new range and hierarchy

73

Algorithm 4 Query Transformation Algorithm

Input: A user-defined query uQ containing dimension set M , a hierarchy manager
hM , and a view manager vM .

Output: Optimized query format.
1: retrieve the actual view V from the view Manager, where V contains dimension

set T , M ⊆ T .
2: create a new attribute range array newR of size |T |.
3: create a new hierarchy range array newH of size |T |.

{populate newR and newH}
4: for each attribute i in V do
5: if uQ contains V [i] then
6: low = the range minimum for V [i]
7: high = the range maximum for V [i]
8: l = hierarchy level for V [i]
9: if l does not represent the base level then

10: set newR.low = hM.getBaseLow(V [i], l, low)
11: set newR.high = hM.getBaseHigh(V [i], l, high)
12: end if
13: else
14: set high/low wildcards
15: end if
16: end for
17: update the current user query uQ with newR, newH , and V .

74

arrays. The range array provides the new high/low values for each of the Ai attributes

in the user query. These are specified in terms of the base attribute. The hierarchy

array will continue to reflect the hierarchy level requested by the user but will be

updated with wildcards to indicate full range matching on peripheral attributes. By

peripheral, we mean dimensions that were not part of the user query but that may

be part of the surrogate view selected to actually resolve the user query.

3.7.3 Query Processing

The Berkeley database object that represents the Hilbert R-tree index for the surro-

gate has been opened after the query transformation. Note that the Berkeley database

object is initialized by reading the database metadata that gives the full structure of

the R-tree (e.g. number of index blocks, number of leaf blocks, number of levels, etc).

If cached results are not available, the processQuery() function is used to retrieve

the initial data that comes from the disk via the Berkeley database Hilbert R-tree

index. This process is described in Algorithm 5. Note that the core algorithm for

query processing is the Linear Breadth First Search strategy [96] that is used in the

Sidera Server. Our purpose here is therefore to describe how the query is processed

after storing the indexed cube (indexed group-bys) in one Berkeley physical file.

Algorithm 5 describes the search strategy that is used to manipulate a Hilbert

R-tree index. The algorithm traverses the node in the R-tree based on the BFS

technique that visits the node in the tree level by level in a left to right fashion.

Queries are answered as follows. For a level i of the tree, the algorithm identifies at

level i-1 the j nodes(block numbers) that intersect the user query. It places these block

numbers into a list W. Using the block numbers in W, the algorithm traverses the

blocks at level i-1 and replace W with a new list W. This procedure is repeated until

75

Figure 3.21: Hilbert R-tree Search.

the leaf level has been reached. At this point, the algorithm identifies and returns

the d-dimensional records encapsulated by the user query uQ.

Figure 3.21 illustrates the corresponding graphical depiction for the query process-

ing algorithm. Suppose that the current OLAP query is resolved from group-by BC,

one of the group-bys of the three-dimensional cube (Sales) mentioned in Figure 3.18.

Therefore, Figure 3.21 shows how we search the Hilbert R-tree index for the group-by

BC discussed in Figure 3.14. Note how the selected data blocks consist of a strictly

increasing set of block numbers (30, 31). These blocks are used to identify records

matching the current user query.

76

Algorithm 5 Linear Breadth First Search Query Processing

Input: A Berkeley database metadata and a user query uQ.
Output: Fully resolved query.
1: Initialize pageList with page/block number of the root index block.
2: while not at the leaf level do
3: childList = new empty list
4: for each page/block number in the page list do
5: for each block number b at level i do
6: if b is found in the pageList then
7: using b as a block offset in the physical file that contains all
8: the indexed group-bys, read the relevant disk block B into
9: memory.

10: end if
11: for each child block j of B that intersects uQ do
12: add j to the childList
13: end for
14: end for
15: pageList = childList
16: end for
17: end while
18: for each block number i in the current page list do
19: using i as an offset, read the relevant disk block B into memory.
20: Process B for records matching uQ.
21: end for

77

3.7.4 Post Processing

Once the initial result set has been constructed in Algorithm 3, post processing must

be performed in order to produce the final result. This process is described in Al-

gorithm 6. Note that the post processing routines are completely oblivious to the

source of the initial result (cache or disk).

The translateHierarchyValues() function is used to map base level values in the

initial result set into their appropriate counterpart at the destination level of the

hierarchy (as defined by the user query). The system uses the Hierarchy Manager

(mapGraph), and hierarchy array (constructed in Algorithm 4 for this purpose). A

Parallel Sample Sort is performed to order records as per the user request and to

permit efficient merging and aggregation. Note that the sorting subsystem is heavily

optimized to minimize the movement of multi-value records. If surrogates or hierar-

chies have been specified, some form of additional aggregation will also be required.

This is the purpose of the orderAndAggregate() function. At this point, the result is

ready for its return to the user.

3.8 Experimental Results

In the previous sections, we described the integration of the backend Sidera compo-

nents with Berkeley DB. In this section, our focus turns to the effectiveness of the

integration. Specifically, we provide experimental testing that has shown very good

results, with building of the indexed cube and the query processing superior to the old

Sidera server. Recall that the existing query engine doesn’t support non-hierarchical

attributes; however, we provide some tests to demonstrate the advantage of using

FastBit versus the standard Btree index. In the first section, we discuss the test

78

Algorithm 6 ROLAP Post Processing Algorithm

Input: user query uQ, initial result I, hierarchy manager hM
Output: final result R
1: set the user-specified view U from uQ
2: set the actual view V from uQ
3: if uQ contains hierarchies then
4: invoke translateHierarchyValues(uQ, hM, I)
5: end if
6: do parallel sample sort

{permute intermediate results as per user request}
7: if a surrogate was used or a hierarchy is required (or both) then
8: R = orderAndAggregate(I);
9: else

10: R = arrangeSortedRecords(I);
11: end if
12: return R;

environment as it relates to the hardware, software, and data that we use in our eval-

uation. We will then look at a sequence of tests in order to highlight the importance

of our integration with respect to the old Sidera server.

3.8.1 The Test Environment

To begin, we note that all evaluations are conducted with the Sidera engine running

on (1) a single Linux workstation and (2) a 17-node Linux cluster (frontend + 16

backend servers). Though Sidera is a fully parallelized system, we have used a single

node test environment for some experiments because the components on each node of

the parallel machine are designed to work independently. In terms of the primary test

platform, it is a Linux-based workstation running a standard copy of the 2.6.x kernel,

with 1 GB of main memory and a pair of 3.2 GHz dual CPU boards. Disks are 160 GB

drives at 7200 RPM. All software components of the backend Sidera architecture have

been implemented using C++, STL (the Standard Template Library), and the MPI

79

communication functions (even though we run some of the tests on a single node,

MPI libraries are utilized for the parallel testing). The Berkeley DB components,

which are implemented in the C languages, are integrated into Sidera components.

We compiled and installed the source code of the Berkeley DB core (db4.7.25) in each

one of the nodes in the parallel machine.

Data sets are generated using a custom data generator developed specifically for

the Sidera environment. We note that while our data generator provides a mechanism

for generating skewed data distributions, we have not used them in this case since our

primary goal is to measure the efficiency of the new architecture versus the original

components.

Instead, values are randomly generated and uniformly distributed. With respect

to the data sets, we first generate a multi-dimensional Fact Table (the dimension count

varies with the particular test), with cardinalities arbitrarily chosen in the range 2-

10000. Depending on the test involved, row counts typically vary from 100,000 to

10,000,000 records. The primary fact tables are then used to compute fully material-

ized data cubes containing hundreds of additional views or cuboids. For example, a

10-dimensional input set of 1,000,000 records produced a data cube of 1024 views and

approximately 120 million total records. Once the cubes are materialized, we index

the tables using the R-tree mechanism provided by the Sidera engine. The indexed

cube is created in Berkeley DB as well in order to provide a comparative system.

Because individual millisecond-scale queries cannot be accurately timed, we use

the standard approach of timing queries in batch mode (Note that only 15 queries are

used to check the viability of the FastBit bitmap index versus Btree index). In our

case, an automated query generator constructs batches of 1000 range queries against

80

several kinds of hierarchies that are supported by Sidera server (e.g. Symmetric Strict

Hierarchies, Ragged Strict Hierarchies, etc.), in which high/low ranges are randomly

generated for each of k dimensions, randomly selected from the d -dimensional space,

k < d. Sort orders are also randomly determined. We note that this form of query

generation actually overestimates query response time since users typically query low-

dimensional views that can be easily visualized. In the succeeding tests, five batches

of queries are generated and the average run-time is computed for each plotted point.

Finally, when necessary, we use the “drop caches” option available in the newer Linux

kernels to delete the OS page cache between runs.

3.8.2 Non-hierarchical Attributes: FastBit Bitmap versus Berke-
ley DB B-tree

To demonstrate the superiority of the FastBit Bitmap index implementation for non

hierarchical attributes versus the popular Btree indexing technique implemented in

Berkeley DB, we constructed and queried non-hierarchical attributes using both im-

plementations. Here, in this test, we create a dimension (called Customer) with five

non-hierarchical attributes (called Age, FirstName, LastName, Balance and Nation-

ality) and 1,000,000 records (the cardinality of the primary key called CustomerID

in the dimension Customer). We note that the primary key (CustomerID) dimen-

sion has specific integer numbers, 1, 2, . . ., 1,000,000. Moreover, the cardinalities of

non-hierarchical attributes are arbitrarily chosen in the range 100 - 1000.

We constructed 3 sets of queries against the Customer dimension, each set contain-

ing five queries. These queries are executed using the two indexing methods (FastBit

bitmap and Berkeley Btree) that are used for non-hierarchical attributes (e.g. Age,

81

Salary, etc.) in our server. Before discussing the results of this test, we present in Fig-

ure 3.22 the SQL format of two sample queries from each set. In Figure 3.22, we can

see that the first set (Set 1) contains only look-up queries on a single non-hierarchical

attribute. The second set (Set 2) includes partial queries, while the third set (Set 3)

consists of range queries with one or more attributes.

Figure 3.23 shows a comparison of the running time using the two indexing im-

plementations for three different sets of queries. For the first set (Set 1) of queries

(look-up on one attribute), the running time is very close to the optimal indexing

scheme (Btree). However, when we move to the more complex queries such as queries

in Set 2 and Set 3 (partial and range queries on more than on attribute), there is a

factor of two to three increase in running time for the Berkeley DB Btree indexing

method. This is due to the efficient bitwise logical (AND and OR) operations di-

rectly supported on the compressed FastBit bitmap indexes. For a high number of

non-hierarchical attributes, the performance of Btrees is poor.

Finally, in this test, we note that the size of the Berkeley DB Btree indexes is four

times greater than the size of the compressed FastBit bitmap indexes. Specifically,

the size of the Berkeley DB Btree indexes is 13.8 MB, while the size of the FastBit in-

dexes is 3.5 MB for the five non-hierarchical attributes mentioned above in dimension

Customer that has 1,000,000 records.

3.8.3 Single Node Experimental Evaluation

In this section, we have used a single node test environment. We will look at a

sequence of tests that highlight the importance of the integration of the Sidera codes

with Berkeley DB in terms of the index cube construction and query resolution. In

the following two sections, we compare the index construction for the cube in a single

82

Figure 3.22: Sample SQL queries.

0.388

1.125

1.35

0.412

0.54
0.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Set_1 (Look-up one attribute) Set_2 (Partial two or more

attributes)

Set_3 (Range two or more

attributes)

T
im

e
in

 S
ec

o
n

d
s

Berkeley Btree FastBit Bitmap

Figure 3.23: Comparison of the running time of three different sets of queries for
Berkeley Btree versus FastBit bitmap.

83

backend node before and after the integration of the codes in Berkeley DB. Then, we

highlight the execution of batches of 1000 queries in the indexed cube that is stored

in Berkeley DB.

3.8.3.1 Index Construction

In this section, we compare the index construction of the cube after the integration of

the Sidera codes with Berkeley DB against the current index construction that is used

in the Sidera server. We look at the impact of both Fact table size and dimension

count in creating the Hilbert indexed cube in Berkeley DB.

3.8.3.1.1 Fact Table Size In this section, we compare our implementation (in-

tegrating Berkeley libraries into our Sidera DBMS) against the current index con-

struction used in the current Sidera server. The full cube (2d) was generated from

input sets (Fact Table) ranging in size from 10,000 records to 1,000,000 records, and

includes 9 dimensions. The comparison will evaluate the construction of the Hilbert

R-tree in Sidera DBMS after the integration against the construction of the Hilbert

R-tree in the current Sidera server [38] on the same views/group-bys generated from

the fact table. Figure 3.24 shows the running time for index cube construction using

Berkeley DB after the integration of the Sidera access method (Hilbert R-tree) versus

the Hilbert R-tree index used in Sidera server. As noted, the indexed cube in Berkeley

is represented only in one single physical file; however, it is represented in 2 * the

number of views in the current Sidera Sever. The running time for index construction

in Sidera DBMS supported by Berkeley is much better than the current technique

in Sidera Server. On average, the integration of Berkeley into our server reduces the

index cube construction time by 40% - 60%. The primary reason for this reduction is

84

103
838

10201

163

2028

23928

0

5000

10000

15000

20000

25000

1
0

,0
0

0

1
0

0
,0

0
0

1
0

0
0

0
0

0

Ti
m

e
in

 S
ec

on
ds

Fact Table Size

Berkeley DB Hilbert R-tree

Figure 3.24: Index Construction using Sidera DBMS supported by Berkeley versus
Sidera Hilbert R-tree index of the three cube sizes.

the need for only one physical file to store the index cube in the Berkeley supported

Sidera DBMS. Consequently, the Berkeley DB file uses much more sequential storage

for the indexed cube. In other words, everything is written in one stream on the

disk. However, storing the indexed cube as 2*2d physical files produces a significant

amount of disk thrashing.

3.8.3.1.2 Dimension Count In addition to the impact of the data set size, we

also look at the impact of an increase in dimension count on index cube construction.

Recall that with d dimensions, the full cube generates (2d) views/cuboids. For the

current test, the data set size is constant at one million records. Figure 3.25 illus-

trates the running time for index cube construction of both Sidera DBMS after the

integration of Berkeley DB and our current R-tree index in the Sidera server as the

85

332
2068

10201

764

4781

23928

0

5000

10000

15000

20000

25000

30000

5 7 9

Ti
m

e
in

 S
ec

on
d

Dimension Count

Sidera with Berkeley DB Sidera index

Figure 3.25: Index Construction using Sidera DBMS supported by Berkeley versus
Sidera Hilbert R-tree index, as a function of dimension count.

dimension count increases to a maximum of nine, a number indicative of the maxi-

mum number one might expect to see in many practical environments. Perhaps not

surprisingly, we observe that the running time when using Berkeley DB to create the

indexed cube reduces by 40% to 60% due to the fact that we are storing the index

cube in one physical file. Again, the indexed cube is written in one stream to one

Berkeley physical file; however, the number of physical files that are used to store

the indexed cube in Sidera increased exponentially as the number of dimensions is

increased.

3.8.3.2 OLAP Query Resolution

Throughout this section we will look at a series of OLAP query tests, each intended

to highlight the importance of the integration of the Berkeley components into our

OLAP Sidera sever. Specifically, we will present the comparison between the existing

86

Sidera query engine and the Sidera query engine that is supported by the Berkeley

DB project. Note that both engines answer only very simple OLAP range queries

that have been hard-coded specifically to test our engine. Moreover, these queries

are against the data in the encoded integer form. We will present some experimental

evaluations that highlight the importance of the integration of the Berkeley DB into

our OLAP server.

3.8.3.2.1 Query Count In this case, we create a cube from an input set of 1

million records, 9 non-hierarchical dimensions, and mixed cardinalities 100-10000,

with the full cube representing over 200 million records and 12 Gigabytes of total

data. We generate the Hilbert R-tree indexed cube in the Berkeley supported Sidera

DBMS in one physical file and in the old Sidera server in 1024 files (2 files per view).

We then use our query generator to generate batches of non-hierarchical queries. By

non-hierarchical queries, we mean those queries whose ranges have been restricted to

the base attribute.

Figure 3.26 shows the total response time for non-hierarchical queries in the Berke-

ley supported Sidera query engine versus the Sidera query engine. Results are shown

for 100, 500, and 1000 non-hierarchical OLAP queries. The graph shows the improve-

ment that we gain from the integration of the Berkeley DB into our Sidera server. In

all three cases, the integration of the Berkeley code into our Sidera DBMS reduces

the OLAP query resolution time by 15% - 20%.

The reduction in response time is due to a number of factors. First, in the Berkeley

supported Sidera DBMS, we cache each opened Berkeley Database object, so we don’t

have to re-open it again if a query needs to be answered from the cached Berkeley

database object. Figure 3.27 shows the average Berkeley database hit rate as the

87

23

112

240

26

132

280

0

50

100

150

200

250

300

100 500 1000

T
im

e
in

 S
ec

on
d

s

Query Count

Berkeley Query Engine Sidera Query Engine

Figure 3.26: Comparison of Berkeley supported Sidera Query Engine versus Sidera
Query Engine for three different query counts.

number of queries increase from 100 to 1000. Second, in order to answer a query in

the Sidera server we have to open two files that represent an indexed view; however

in the integrated Sidera server we begin by opening just one file that contains the

indexed cube and then simply seek to the appropriate position.

3.8.3.2.2 Fact Table Size In this section, we compare our integration of the

Berkeley DB libraries into Sidera OLAP server against the existing Sidera server. In

this case, we create a fact table with 9 non-hierarchical dimensions. As always, we

employ batches of 1000 queries. The direct comparison will, of course, evaluate the

execution of the same query batches in Berkeley supported Sidera DBMS against the

old Sidera DBMS. Figure 3.28 shows the running time for data sets ranging in size

from 10,000 records to 1,000,000 records. Our integration scheme improves the Sidera

OLAP query resolution by 15%-20% as the number of records increases in the fact

88

50

330

715

0

100

200

300

400

500

600

700

800

100 500 1000

B
er

k
el

ey
 D

B
 H

it
 C

o
u

n
t

Query Count

Figure 3.27: Berkeley Database Hit Rate for three query counts.

table.

3.8.3.2.3 Dimension Count In addition to the impact of the data set size, we

also look at the impact of an increase in dimension count on query resolution. Recall

that with the Sidera indexing, for each group-by in the cube we need two physical files.

However we store all the indexed views in one Berkeley physical file. For the current

test, we again generate 1000 non-hierarchical queries, this time holding the data set

size constant at one million records. Figure 3.28 illustrates the performance of both

our approach (integration Berkeley DB codes into our Sidera server) and the current

Sidera engine as the dimension count increases to a maximum of nine. Figure 3.29

shows that our new approach again decreases the running time by 15%-25%.

3.8.3.2.4 Hierarchy Manager Recall that symmetric strict hierarchies, ragged

strict hierarchies, and non-strict hierarchies are supported by the mapGraph [39]. It

89

5

44

240

7

51

280

0

50

100

150

200

250

300

10,000 100,000 1,000,000

T
im

e
in

 S
ec

on
ds

Fact Table Size

Berkeley DB Sidera Engine

Figure 3.28: Comparison of Berkeley supported Sidera DBMS versus the old Sidera
DBMS for the three different cube sizes.

�� ��� ������ ���
���

������������������

� � �T
im

e
 in

 S
e

co
n

d
s

Dimension Count

	
��� ���� ������� ���
�� 	
������� ���
��

Figure 3.29: Comparison of Berkeley supported Sidera DBMS versus the old Sidera
DBMS, as a function of dimension count.

90

is important to compare the performance of the Berkeley supported Sidera DBMS

against the current Sidera engine in resolving hierarchical OLAP queries. In this case,

we create 9 dimension hierarchies made up of a mixture of symmetric strict, ragged

strict and non-strict forms. As always, we employ batches of 1000 OLAP queries, this

time in hierarchical form only. The direct comparison will evaluate the resolution of

OLAP hierarchical queries in Sidera Query engine against the Berkeley supported

Sidera server on the same query batches.

Figure 3.30 shows the running time for data sets ranging in size from 10,000

records to 1,000,000 records. There are two points that must be made with respect

to a direct interpretation of the results. First, answering OLAP hierarchical queries

in the Berkeley supported Sidera query engine is faster than the old Sidera query

engine by an average of 15%. Second, the total overhead is less than 25% relative to

the non-hierarchical case described in the previous section. It is important to place

these results into context. The integration of the graph manager with Berkeley DB

allows it to answer hierarchical OLAP queries with a modest overhead compared to

the non hierarchical case. We note that this overhead is more than acceptable given

the power and flexibility that the graph manager provides.

3.8.4 Parallel Experimental Evaluation

In this section, we have used a 1, 4, 8, and 16 node test environment. We will look

at a test that highlights the importance of our integration in terms of the index cube

construction. The full cube (2d) was generated from an input set (Fact Table) of

1,000,000 records, and 10 dimensions. The comparison will evaluate the construction

of the Hilbert R-tree in Sidera DBMS after the integration against the construction

of the Hilbert R-tree in the current Sidera server [38].

91

��� ��
���

��� ��
���

���	��	��������������������

	���� 	����� 	������

T
im

e
 in

 S
e

co
n

d
s

Fact Table Size

��� �������� ������ ����������� ������

Figure 3.30: Comparison of answering OLAP hierarchical queries in Berkeley sup-
ported Sidera DBMS versus Sidera DBMS for three cube sizes.

Figure 3.31 shows the parallel wall clock time observed for index construction

in the Berkeley supported Sidera server and the old Sidera server as a function of

the number of processors used. The running time for index construction in Sidera

DBMS supported by Berkeley is much better than the current technique in Sidera

Server. On average, the integration of Berkeley into our server reduces the index

cube construction time by 40% - 60%. Note that this ratio is the same as that

seen on one node. This underscores the fact that each Sidera backend DBMS can

be viewed as a mostly independent DBMS process. From one to 16 processors, our

Berkeley supported Sidera OLAP server achieves close to optimal speedup of 14.9 on

16 processors.

92

3350

790

378
204

5100

1202

661.84
345

0

1000

2000

3000

4000

5000

1 4 8 16

P
ar

al
le

l
W

al
l

C
lo

ck
 T

im
e

 i
n

 S
e

co
n

d
s

Number of Nodes

Berkeley supported Sidera Server Sidera Server

Figure 3.31: Parallel wall clock time for index construction.

3.9 Review of Research Objectives

In section 3.3, we identified a number of objectives of our research. We now review

those goals to confirm that they have in fact been accomplished.

1. Provide simpler, more intuitive representation of a materialized data

cube. Specifically, we require a single, cohesive data repository. We described

the integration of the Berkeley DB components into Sidera sever. After the

integration, hundreds of files that represent the Hilbert R-tree indexed cube

in Sidera Server are efficiently packed into one single Berkeley DB database

file. Not only is this far easier for the DBMS to manage, it also simplifies

supplementary operations such as archiving and replication.

2. Support fast indexed cube creation. By storing the Hilbert indexed cube

(O(2d) indexed group-bys) in one Berkeley physical file, and using the Berkeley

93

environment that serves as a shared repository of control information, we are

able to reduce the time to create the Hilbert R-tree indexed cube in the Berkeley-

supported Sidera server by a factor of 15%.

3. Provide an efficient encoded form of the data warehouse. Specifically,

we maintain the notion of attribute linearity in the hierarchy. This ensures

that the base level has consecutive integer values. In addition, for each non-

hierarchical attribute in a dimension, we ensure that the primary key of the

dimension is an integer with a consecutive integer form. Finally, the fact table

contains the integer-values of the primary keys for all dimensions that surround

it. This compact integer format of the data decrease storage requirements of

the materialized cube and also improves performance for key operations such

as conditional checks.

4. Support fast hierarchy manager (mapGraph) creation. We mentioned

in Section 3.4 how hierarchical attributes are stored in their linear form in

Berkeley DB databases by using the simplest and the fastest access method

available in Berkeley DB (Recno access method). This access method allows

very fast creation of the hierarchy manager at run-time, as it is ideally suited

to sequential read environments.

5. Ensure efficient and fast storage for non-hierarchical attributes. By

storing non-hierarchical attributes as a set of compressed FastBit bitmap in-

dexes, we are able to transform queries with restrictions on these attributes

to values of the base attribute level (record number). This result is improved

performance relative to the most popular indexing method (Btree).

94

6. Support locking/concurrency, file system caching, data redundancy

and other core DBMS functionality. Though we are not directly untilizing

all of these features at the present time, they will greatly increase the functional-

ity of the system in the future. For example, we can provide a far more flexible

storage architecture that includes concurrency, thread management, caching,

durability, etc.

7. Provide efficient query execution for complex hierarchical OLAP queries.

The Berkeley supported Sidera server reduces the running time for hierarchical

OLAP queries relative than the old Sidera server. It does this by the integration

of Berkeley functionalities with the Sidera server.

8. Provide an infrastructure that permits the exploration of new re-

search themes (e.g., OLAP query optimization). We have chosen to

merge our existing Sidera code base with the open source Berkeley project and

the FastBit bitmap indexes in order to provide a very efficient OLAP storage

engine. This OLAP storage engine allows us to focus on new research ideas such

as OLAP query languages (subject of Chapter 4) and OLAP query optimization

and execution (will be discussed in Chapter 5).

3.10 Final Thoughts

Recall that the Sidera server is designed to be an OLAP DBMS. In this chapter we

have described an efficient and reliable storage engine that is used specifically for our

Sidera target platform. However, the same principles and methods could be applied to

integrate our storage engine into other DBMS systems like PostgreSQL or MySQL.

Specifically, we could use our storage engine model — with or without Berkeley

95

Figure 3.32: (a) MySQL Basic Architecture (b) MySQL Architecture after adding
our OLAP storage engine (OLAPStorage).

DB components — to add R-tree and bitmap data warehouse storage (cube and

dimensions) to these other DBMSs. For example, MySQL supports numerous storage

engines such as MyISAM, InnoDB, Archive, MEMORY, etc. [81]. Figure 3.32(a)

illustrates the basic architecture of MySQL. Our storage engine can be added to

MySQL server as a pluggable engine. Figure 3.32(b) illustrates the architecture of

MySQL after adding our storage engine, which we refer to as OLAPStorage. We

note, of course, that in order to take full advantage of the new storage subsytem, the

DBMS query engine might also have to be extended.

3.11 Conclusions

In this chapter, we have described the integration of Berkeley DB components into

the Sidera DBMS. This integration significantly enhances the existing Sidera storage

engine. Specifically, Sidera now stores the Hilbert R-tree index in one Berkeley DB

physical file. We have discussed in detail how this integration would be performed

in a practical environment. In addition, we have described how dimension tables

and fact tables are encoded into a more compact integer format. Furthermore, we

96

have explained how the storage of non-hierarchical attributes as a set of compressed

FastBit bitmap indexes can be used to enhance OLAP analysis. We also described

how the data of hierarchical attributes are stored and accessed in order to allow the

efficient creation of the Sidera mapGraph at run time.

Experimentally, our results support the integration approach that we have taken.

Test results demonstrate that the running time to build the indexed cube in the

Berkeley supported Sidera server is better than the old Sidera server. Also, we pro-

vide evidence that our Berkeley integrated Sidera server has the potential to signifi-

cantly boost run-time query performance. Finally, we demonstrate that the FastBit

bitmap indexing method offers tangible performance advantages for non-hierarchical

attributes relative to the widely used Btree indexing technique. In summary, our

work in this chapter demonstrates how one would construct a reliable and efficient

storage engine for a contemporary OLAP server.

Chapter 4

OLAP Query Language

4.1 Introduction

In the previous chapter, we focused on the construction of a reliable and efficient

OLAP storage engine. Specifically, we integrated the Berkeley DB functionality into

the current Sidera OLAP environment [38] in order to enable and enhance its efficiency

when resolving basic OLAP queries. Our research elaborated on an existing OLAP

architecture that resolves only simple OLAP queries that have been hard-coded in

a proprietary syntax. The general theme of this doctoral research is to enhance

the Sidera server to efficiently handle sophisticated and arbitrarily complex OLAP

queries. In this chapter, we describe a comprehensive OLAP algebra and grammar

that will be used to efficiently express, and subsequently optimize, OLAP client query

requests.

We begin by noting that the new Sidera server provides an Object-Oriented model

for the OLAP environment. This means that the user can logically assume that ev-

erything in the OLAP storage is simply an object (e.g., cube, hierarchy, dimension).

Moreover, one can assume that the entire data repository — which might be Ter-

aBytes in size — exists entirely in the memory of the local machine as a series of

97

98

one or more such cube objects (e.g., cube, dimensions, hierarchy). Not surprisingly,

a query language that supports this genre of transparent model must be relatively

sophisticated. In fact, Sidera provides “native language” query facilities. In other

words, native OOP languages (e.g., Java) will directly support interaction with the

backend OLAP database server without the need to embed an intermediate, non-

OOP language such as SQL or MDX. The new Sidera server provides a pre-processor

that essentially translates standard OOP source code into an OLAP query grammar

that has been developed specifically for OLAP analysis. Our work in this context is

listed below:

1. A comprehensive multi-dimensional OLAP algebra supporting fundamental query

operations for cube-specific operations.

2. An OLAP query grammar that presents the developer with an Object-Oriented

representation of the primary OLAP structural elements.

3. OLAP Algebraic Laws that allow rewriting of OLAP queries using our multi-

dimensional OLAP algebra.

4. OLAP Metadata that provides the necessary information to answer an OLAP

query.

5. An OLAP query compiler that parses and optimizes an OLAP query.

6. An OLAP query execution engine that executes the optimized OLAP query.

7. A new Result Set format that specifies how the results of OLAP queries are

returned to the end-user.

99

The first four themes mentioned above are the focus of this chapter while the last

three topics will be explained in the following chapter. In terms of the former, we

note at this point that we have developed a comprehensive multi-dimensional OLAP

algebra. The comprehensive OLAP algebra reduces the complexity of using existing

relational algebras to write OLAP queries (via SQL or MDX) and also subsequently

allows for the optimization (OLAP algebraic laws) of OLAP queries written in native

OOP languages such as Java. Closely associated with the algebra, we have devel-

oped robust Document Type Definition (DTD) encoded OLAP query grammar that

provides a concrete foundation for client language queries. The grammar, in turn,

is the basis of a native language query interface that eliminates the reliance on an

intermediate, string-based embedded language.

This chapter is organized as follows. In Section 4.2, we present an overview of

related work, while Section 4.3 discusses the primary motivation of our research. In

Section 4.4, we briefly explain some preliminary materials including the Sidera OLAP

conceptual model and the different types of OLAP queries that an end user might

write. In Section 4.5, we define fundamental query operations against a cube-specific

OLAP Algebra. In Section 4.6, we explain the Document Type Definition OLAP

query grammar, which defines the proper format of the OLAP queries that can be

handled by our server. Section 4.7 discusses the algebraic laws for our OLAP algebra.

In Section 4.8, we describe the XML DTD that defines the proper format of the

schema (Metadata) of the OLAP environment (cube, dimensions, hierarchies, etc.).

Section 4.9 reviews this chapter’s objectives and a final conclusion is provided in

Section 4.10.

100

4.2 Related Work

For more than 30 years, Structured Query Language (SQL) has been the de-facto

standard for data access within the relational DBMS world. Because of its rela-

tive age, however, numerous attempts have been made to modernize database access

mechanisms. Two themes in particular are noteworthy in the current context. In the

first case, Object Relational Mapping (ORM) frameworks have been used to define

type-safe mappings between the DBMS and the native objects of the client applica-

tions. With respect to the Java language, industry standards such as JDO (Java Data

Objects) [61], as well as the open source Hibernate framework [13] have emerged. In

all cases, however, it is important to note that while the ORM frameworks do provide

transparent persistence for individual objects, additional string-based query languages

such as JDOQL (JDO), or HQL (Hibernate) are required in order to execute joins,

complex selections, sub-queries, etc. The result is a development environment that

often seems as complex as the model it was meant to replace.

More recently, Safe Query Objects (SQO) [28] have been introduced. Rather than

explicit mappings, safe queries are defined by a class containing, in its simplest form,

a filter and execute method. Within the filter method, the developer encodes query

logic (e.g., selection criteria) using the syntax of the native language. The compiler

checks the validity of query types, relative to the objects defined in the filter. The

execute method is then rewritten as a JDO call to the remote database. The approach

is quite elegant, though it can be difficult to accurately model completely arbitrary

SQL statements.

In contrast to the ORM models, a second approach extends the development lan-

guages themselves. The Ruby language [8], for example, employs ActiveRecords to

101

dynamically examine method invocations against the database schema. HaskellDB

[7], on the other hand, “decomposes” queries into a series of distinct algebraic opera-

tions (e.g., restrict, project). Microsoft’s LINQ extensions (C# and VisualBasic) [20]

are also quite interesting in that they essentially integrate the mapping facilities of

the ORM frameworks into the language itself (via the ubiquitous SELECT-FROM-

WHERE format). It should be noted that none of previous languages are in any way

OLAP-aware. Therefore, concepts such as cubes, dimensions, aggregation hierarchies,

granularity levels, and drill down relationships map poorly at best to those languages

that are based upon the standard logical model of relational systems.

In terms of OLAP and BI specific design themes, most contemporary research

builds in some way upon the OLAP data cube operator [47]. In addition to various

algorithms for cube construction, including those with direct support for dimension

hierarchies [107, 79], researchers have identified a number of new OLAP operators

[12, 29], each designed to minimize in some way the relative difficulty of implementing

core operations in “raw SQL”. There has also been considerable interest in the design

of supporting algebras [93, 51, 95]. The primary focus of this work has been to define

an API that would ultimately lead to transparent, intuitive support for the underlying

data cube. In a more general sense, these algebras have identified the core elements

of the OLAP conceptual data model.

Commercially, a somewhat orthogonal pursuit in the OLAP context has been the

design of domain- specific query languages and/or extensions. SQL, for example, has

been updated to include the CUBE, ROLLUP, and WINDOW clauses [77], though

vendor support for these operations in DBMS platforms is inconsistent at best [58].

In addition to SQL, many commercial applications support Microsoft’s MDX query

102

language [73]. While syntactically reminiscent of SQL, MDX provides direct support

for both multi-level dimension hierarchies and a crosstab data model.

Oracle has traditionally used something called OLAP DML (Data Manipulation

Language)[86] to improve aggregation performance in the data warehouse. It provides

several extensions to the standard SQL GROUP BY clause to make query reporting

faster and easier. Two new keywords have been defined (i) CUBE and (ii) ROLLUP.

CUBE can be used as an efficient replacement for a collection of individual group-

by statements, each specifying a subset of attributes. ROLLUP calculates aggregate

functions such as SUM, COUNT, MAX, MIN and AVG at increasing levels of aggre-

gation, from the most detailed up to a simple total.

MDX and Oracle’s DML are the most widely used OLAP query languages. How-

ever, they are essentially embedded string based languages with irregular structures.

The integration of these string-based languages into application level source code is

typically associated with one or more of the following limitations:

• Comprehensive compile-time type checking is often impossible. All parsing is

performed at run-time by a possibly remote, often overloaded server.

• Developers must merge two fundamentally incompatible programming models

(i.e., procedural OOP versus a non-procedural DBMS query language).

• There are few possibilities for the kind of code re-use afforded by OOP concepts

(e.g., inheritance and polymorphism).

• The use of embedded query strings (i.e., JDBC/SQL) severely limits the de-

veloper’s ability to efficiently re-factor source code in response to changes in

schema design.

103

Finally, we note that query languages such as SQL and MDX are typically en-

capsulated within a programmatic API that exposes methods for connection config-

uration, query transfer, and result handling. While relational systems utilize mature

standards (e.g., JDBC, ODBC), a little work has focused on API for OLAP (e.g.,

OLAP4J). A recent attempt to do so was the ill-fated JOLAP specification, JSR-69

[6], an industry-backed initiative to define an enterprize-ready, Java-oriented meta

data and query framework based upon the Common Warehouse Meta-model [5]. JO-

LAP proved to be exceedingly complex and, consequently, no viable JOLAP-aware

applications were ever developed. At present, the most widely supported API is

arguably XML for Analysis (XMLA) [4], a low-level XML/SOAP mechanism run-

ning across HTTP. In practice, XMLA is effectively just a wrapper for MDX, though

XMLA result sets are structured in an OLAP-aware format. Recently, OLAP4J

(OLAP for Java) was proposed as an open Java API for OLAP server [85]. It is like

JDBC in relational databased, but for accessing multi-dimensional data. OLAP4J al-

lows one to get MDX support for free. OLAP4J-compliant OLAP server includes SQL

Server Analysis Service and SAP Business Information Warehouse. Moreover, it can

associated with Mondrian in order to get olap4j compliance out of any common re-

lational database management system such as MySQL. However, OLAP4J is a fairly

simple OOP wrapper and does not support any kind of optimizations (or perhaps

even complex queries). In other words, its performance will be tied to performance

of the XMLA servlet.

104

4.3 Motivation

As per the previous section, one may note that past research efforts have attempted

to either represent OLAP queries in non-OLAP aware languages (e.g., SQL) and/or

as embedded string-based OLAP query languages (such as Oracle DML). In the re-

mainder of this chapter, we propose a comprehensive OLAP algebra and grammar,

a set of OLAP algebraic laws, and OLAP metadata storage elements designed to

achieve the following goals:

1. Support the creation of a native client-side OOP OLAP query language.

2. Reduce the complexity of directly utilizing the relational algebra in the OLAP

context (i.e. SQL or MDX) via the application of a comprehensive multidimen-

sional OLAP algebra.

3. Provide the developer with an Object Oriented representation of the primary

OLAP structural elements, as well as providing the foundation for a concrete

OLAP client query language.

4. Support query optimization and execution by means of applying new formally

defined multi-dimensional OLAP algebraic laws.

5. Provide the format of the OLAP metadata.

4.4 Preliminary Material

In this section, we provide a brief description of the Object Oriented OLAP schema

that is used to model the OLAP environment. We also show a simple object-oriented

query that a client might write in Java.

105

4.4.1 Sidera OLAP Model

One of the great burdens associated with enterprize ORM projects is the design of

accurate data models. Even when a model can be formally identified, it is often the

case that the conceptual view of the data divers widely even between departments

of the same organization. In the OLAP context, however, the conceptual view of

the data has reached a level of maturity whereby virtually all analytical applications

essentially support the same high level view of the data.

Briefly, we consider analytical environments to consist of one or more data cubes.

Each cube is composed of a series of d dimensions (sometimes called feature at-

tributes) and one or more measures. The dimensions can be visualized as delimiting

a d-dimensional hyper-cube, with each axis identifying the members of the parent

dimension (e.g., the days of the year). Cell values, in turn, represent the aggregated

measure (e.g., sum) of the associated members. Figure 4.1(a) provides an illustration

of a very simple three dimensional cube named Order. This cube has three feature

attributes (Number, Month and Type) which relate the cube itself with three distinct

dimensions: Customer, Time and Product. Furthermore, it also possesses one mea-

sure attribute (Quantity Ordered). We can see, for example, that 55 units of Interior

Product were ordered by customer number C1 during the month of June (assuming

a Count measure).

Beyond the basic cube, however, the conceptual OLAP model relies extensively

on aggregation hierarchies provided by the dimensions themselves. In fact, hierarchy

traversal is one of the more common and important elements of analytical queries.

In practice, there are many variations on the form of OLAP hierarchies [74, 34] (e.g.,

106

Figure 4.1: (a) Sidera Conceptual Cube Model and (b) Simple Symmetric hierarchies
for Customer and Time.

107

symmetric, ragged, non-strict). Figure 4.1(b) illustrates two simple dimension hier-

archies (Customer and Time). These hierarchies might be used to identify intuitive

groupings. For example, customer C1 and C2 reside in the province of Quebec, while

C3 resides in Ontario. Moreover, we note in Figure 4.1(b) that each customer number

(e.g., C1) has a specific age. Age is a descriptive attribute in dimension Customer

which is a non-hierarchical attribute that is not part of any given hierarchy. In other

words, attribute Age depends on the primary key of dimension Customer (we assume

here that customer number is the primary key). For example, in Figure 4.1(b) we can

see that for a customer number there is only one value for age (e.g., customer C5 is

15 years old).

In our case, we exploit the fact that there is a single, fairly well understood

conceptual model that we can expose to users — this can be applied in virtually all

OLAP cases. In this sense, our OLAP server (Sidera) provides the programmers with

an OLAP conceptual model for the data model. The idea is that programmers will

only have to understand the environment at this conceptual level of abstraction. In

other words, the programmers do not have to know the details of the physical or

even logical schema is required since we are building a system that is fully optimized

for the conceptual cube model. That being said, the new Sidera server provides an

Object Oriented Model for the OLAP conceptual environment. From a developer’s

perspective, everything in the server is considered as an object (e.g., cube, dimension,

measure, hierarchy, group-by, etc.) that is housed in the local memory.

Figure 4.2(a) provides a simple example of a grammar for the OLAP environment.

We can see how one can recursively construct a high level cube from constituent

objects. We note that there are many more classes in the full object oriented model. In

108

Figure 4.2: (a) Simple Object Oriented OLAP model grammar.(b) Simple Object
Oriented OLAP model.

Figure 4.2(b), we see a concrete instantiation of the model. In an object oriented way,

we create a cube called sales that contains two dimensions (Customer and Product)

and two measures (TotalSales and ItemCount). We can also see the schema for

dimension Customer.

We now give a formal definition of our OLAP conceptual model as follows:

Cube: An N -dimensional cube C is constructed as <D, F, M, BasicCube> where:

• D is a set of dimension tables Di of C, where D = {D1, D2, ..., DN}, where 1 ≤

i ≤ N.

• F is a set of feature attributes Fi of C, F = {F1, F2, . . . , FN}, where 1 ≤ i ≤ N.

• M is a list of measure attributes Mj of C, M = {M1, M2, . . . , Mk}, where j ≤

k.

• BasicCube is a set of cells that describes the facts (measure attributes) at the

particular level of detail which is specified by F .

109

Dimension Tables: A dimension table (Di) is a relation table. The schema of

Di is written as schema(Di) = <ColumnList, Key, Hierarchy> where:

• ColumnList is a set of dimension attributes Di.Aj of Di,ColumnList = {D1.A1,

. . . , D1.An}, where n is the number of attributes in dimension Di.

• Key is an attribute Di.Ak of ColumnList, where Di.Ak is the deepest level of

detail for dimension Di, where 1 ≤ k ≤ n.

• Hierarchy is a set of hierarchies Di.Hj of Di, Hierarchy ={Di.H1,Di.H2, . . . ,

Di.Hz}, where j ≤ z and z is the number of hierarchies associated with dimen-

sion Di. Each hierarchy Di.Hj is of the form Di.Hj = {Hj , Di.Ar → . . . →

Di.Al}, where Di.Ar is the root hierarchal attribute level while Di.Al is the leaf

level in hierarchy Hj of dimension Di.

Feature Attributes: A feature attribute Fi refers to a specific attribute Aj in

dimension Dk, where i,k ⊆ [1,N]. It is of the form Fi ={Dk.Aj}, Fi is an attribute

in the ColumnList of dimension Dk.

Basic Cube: A basic cube is a multidimensional representation for the end user

with a schema of the form schema(BasicCube) = {F, M}. An instance of a BasicCube

is the set of cells/facts/records/tuples that are described by the values of measure

attributes M at the level defined by F . Through the course of this thesis, we will use

the terms cells, facts, records, and tuples interchangeably.

For example, we consider the three-dimensional cube Order of Figure 4.1. In our

model, it can be written as Order=<DOrder, FOrder, MOrder, BasicCubeOrder>.

Below, we list the details of dimension tables DOrder={Customer, Time, Product}

with the following schema as an example:

110

• schema(Customer) = <{Customer.Province, Customer.Country, Customer.Number,

Customer.Age}, Customer.Number, Customer.Hier>. The dimension Customer

consists of four attributes, one key (Customer.Number), and one hierarchy

called Customer.Hier = {Hier, Customer.Country → Customer.Province →

Customer.Number}. The details of other dimensions can be defined in the same

manner.

FOrder can be written as FOrder = { Time.Month, Product.Type, Customer.Number},

while the list of measure attributes can be expressed as MOrder = {Quantity Ordered}.

The schema of the BasicCubeOrder is written as schema(BasicCubeOrder) = {Time.Month,

Product.Type, Customer.Number, Quantity Ordered}. An example of a cell/fact in the

BasicCubeOrder is the cell {May, Engine, C1, 82} from Figure 4.1.

4.4.2 Object Oriented OLAP Query

Given the relational model of the underlying DBMS, BI querying typically relies

upon non-procedural SQL or one of its proprietary derivatives. Unlike transactional

databases, however, which are often cleanly modeled by a set-based representation,

the nature of BI/OLAP environments argues against the use of such languages. In

particular, concepts such as cubes, dimensions, aggregation hierarchies, granularity

levels, and drill down relationships map poorly at best to the standard logical model

of relational systems. Moreover, the difficulty of integrating non-procedural queries

languages into application level source code can be significant. Larger development

projects typically encounter any of several associated limitations (as was discussed in

Section 4.2).

111

Given the above, Sidera provides a clean integration between the server’s Object-

Oriented OLAP (OOP) conceptual model (discussed in the previous subsection) and

the OLAP client query language. In other words, the OLAP client queries can be

specified in any Object Oriented Language such as Java or C#, with the programmer

assuming that all OLAP data (cubes, dimensions, etc.) is stored in the local memory

as a series of one or more cube objects.

The new Sidera server provides a source code re-writing mechanism that interprets

the client’s OOP OLAP query specification and decomposes it into the core operations

of our comprehensive OLAP algebra. These operations are given concrete form within

our OLAP query grammar and are then transparently delivered at run-time to the

backend analytics server for processing. Note that the pre-processing work conducted

on the client-side of the Sidera server — For example, defining Java libraries, parsing

source code and generating XML versions of users’ queries — is being performed by

another grad student in our research group. The processing described in this thesis

begins once the user’s query is received on the backend Sidera server.

In terms of the client side compilation process, the pre-processor of the Sidera

server takes as input the original source file and then, using the parse tree constructed

from this source, converts the relevant source elements into an XML decomposition

of the OlapQuery. Throughout this process, various DOM utilities and services are

exploited in order to generate and verify the XML. Finally, once the source has

been transformed, it is run through a standard Java compiler and converted into

an executable class file. We note that, in practice, this translation step would be

integrated into a build task (ANT, makefile, IDE script, etc.) and would be completely

transparent to the programmer. At run-time, the Object-Oriented OLAP query will

112

Figure 4.3: OLAP query written in SQL.

Figure 4.4: OLAP query written in MDX.

be sent to the Sidera server in an XML format where it must be parsed, optimized

and processed. The result is returned to the end-user in an XML format.

Figure 4.3 and Figure 4.4 illustrate equivalent OLAP queries that are written in

the string-based query languages SQL and MDX respectively. These queries are writ-

ten against the data warehouse that corresponds to the conceptual model illustrated

in Figure 4.1. For example, the data warehouse consists of a fact table (Order) that

represents the view of Figure 4.1(a) and three dimension tables (Product, Customer

and Time) outlined in Figure 4.1(b). In Figure 4.3 and Figure 4.4, both OLAP queries

compute the total quantity ordered by customers whose age is greater than 40 (e.g.,

113

Customer C1 and C3 from Figure 4.1) where the year is 2007 and the month is be-

tween May and October. The result is then grouped by product type and customer

province. While functional, the insertion of these queries into application level source

code has one or more limitations, as was discussed in Section 4.2. Moreover, the joins

between the fact table (e.g., Order) and dimension tables (Product, Customer and

Time) must be specified.

Figure 4.5 illustrates how the string-based queries of Figure 4.3 and Figure 4.4 can

be encoded and written in a very intuitive Object-Oriented manner (e.g., Java) by

the client/programmer. Specifically, the user assumes that the basic cube Order, and

its associated dimensions (Customer, Product and Time) of Figure 4.1, are housed

in the local memory. Moreover, all OOP features such as inheritance, polymorphism,

class encapsulation, etc. can be directly applied to this query. Once defined, the

Sidera client side pre-processor converts the query of Figure 4.5 into a new query

that corresponds to our OLAP query grammar (to be discussed in Section 4.6). It

then re-writes the client’s query in an XML format. At run-time, it is this XML-based

query that will be sent to the new Sidera server for processing. Note that Figure 4.21

illustrates the XML format of the OO query of Figure 4.5. One important point to

understand is that while the Java version may be slightly more verbose in this very

simple example, it extends to complex queries very cleanly. In contrast, MDX can

become almost unreadable as the complexity of the query grows.

4.5 OLAP Algebra

Given the complexity of directly utilizing the relational algebra in the OLAP context

(via SQL or MDX), we define fundamental query operations against a cube-specific

114

Figure 4.5: Basic OLAP query written in OOP Java.

OLAP algebra. In other words, we describe simple semantics representing a compre-

hensive multi-dimensional OLAP algebra that can directly exploit the clean Object-

Oriented conceptual model discussed in the previous section. Moreover, since our

Object-Oriented OLAP queries are written at a very high level against the concep-

tual model, our OLAP query processor (to be explained in Chapter 5) must do a lot of

additional processing to supply missing details. Thus, an OLAP query is translated

internally into an OLAP algebra expression that ultimately makes alternative forms

of an OLAP query easier to create, explore, manipulate and optimize (e.g., push and

pull operations, replace operations). Specifically, when an OLAP query is submitted

to our OLAP DBMS (Sidera server), its query optimizer tries to find the most efficient

equivalent OLAP algebra expression before evaluating it. This process can be quite

effective, in part because the inner, lower-level operations of our OLAP Sidera DBMS

115

are very similar to the OLAP algebra operations defined by the algebra. In the pages

that follow, we will introduce and describe the operations of this algebra. We note

that while our algebraic model is the most comprehensive such model of which we

are aware, we draw extensively upon previous research in the area [93, 12, 29, 51, 95].

Briefly, our OLAP algebra is not newly defined algebra; however, the idea that we are

providing a comprehensive algebra that represents all common OLAP operations (not

just one or two) and we are providing optimization laws and execution algorithms

that show how and why an OLAP algebra is a good idea in practice.

4.5.1 OLAP Algebra Operations

Our OLAP algebra consists of OLAP operators and atomic operands. The OLAP

algebra allows the building of OLAP expressions (referred to as an OLAP query) by

applying OLAP operators to atomic operands and/or other OLAP expressions. All

operands and the results of OLAP expressions are themselves cubes. Below, we list

and describe the OLAP operators of our comprehensive OLAP algebra. We note

at the outset that the language of OLAP algebras has yet to be standardized, it is

nevertheless the case that a core set of operations has been consistently identified in

the literature [95].

4.5.1.1 SELECTION Operator

The selection operator identifies one or more cells from within the full d-dimensional

search space and is a core OLAP operation. Its application produces what is com-

monly referred to as “slicing and dicing”. This operator is applied to a data cube and

produces a subset of the same data cube. The dimension members in the resulting

cube are those that satisfy some conditions C that involve the dimension members

116

of the cube. We denote this operation as: SELECTION(C)(Cube). The schema of

the resulting cube is the same as that of the original schema, and C is a conditional

expression including operands that are either constants or feature attributes of the

input cube. From the user’s perspective, the query is executed against the physical

data cube such that the selection criteria will be iteratively evaluated against each and

every cell. If the selection test evaluates to true, the cell is included in the result; if

not, then it is ignored. We note that this operator (selection) is the most important

operation that has been defined in the multidimensional algebras presented in the

literature [95, 93, 51, 68, 52, 43]. However, our SELECTION operator represents a

comprehensive definition among those founds in the literature [95, 93, 51, 68, 52, 43].

Let C =< D, F, M, BasicCube > be an N -dimensional cube with N dimensions D

={D1, . . .,DN}, F is the set of feature attributes, M is the set of measure attributes

and BasicCube is the core basic data cube of cube C. Note that we will use the

symbol C in the formal definitions of other OLAP algebraic operators.

More formally, we can define the SELECTION operator as SELECTION(Di.Aj

Op Cte)C, where:

• Di.Aj is an attribute in dimension Di (domain(Di.Aj) is the domain of attribute

Aj in dimension Di),

• Op is a conditional operator such as {<, >, =, . . ., etc.}, and

• Cte is one or more values in domain(Di.Aj).

The result of SELECTION (Di.Aj Op Cte)C is a cube C1<D, F, M, BasicCube1>,

where sets D, F, and M are equivalent to those in the input cube C and schema(BasicCube1)

= schema(BasicCube), but cells of BasicCube1 are only those cells that satisfy the

117

(a) (b)

Figure 4.6: (a) The three dimensional cube SOLD. (b) The result of the SELEC-
TION(Time.Month = Jan)SOLD query.

restriction (Di.Aj Op Cte). Note that the SELECTION operator can have one or

more conditions that are connected via AND and OR logical operators.

Let the three dimensional cube SOLD be as illustrated in Figure 4.6(a). SOLD is

composed of three dimensions (Product, Time and Location), three feature attributes

(e.g., Location.City, Time.Month, etc.) and one measure attribute (Units Sold)). We

can see, for example, that 77 units of Product FH12 were sold in the Ottawa location

during the month of January (assuming a Count measure). Given this, the value of

the OLAP expression SELECTION(Time.Month = Jan)SOLD is depicted in

Figure 4.6(b).

4.5.1.2 PROJECTION Operator

This operator is used for the identification of presentation attributes, including both

the measure attribute(s) and dimension members. It is used to extract, from a source

118

cube, a new cube that has only some of the original dimension members and mea-

sure attribute(s). The schema of the output cube is the set of dimension members

and measure attribute(s) specified with the PROJECTION operator. This operation

has been drawn extensivenly upon previous research in the area (multidimensional

algebras) [95, 93, 51, 68, 52, 43]. However, in our case, it is defined at a very high

OLAP conceptual level that allows us to combine the power of all projections found

in the literature [95, 93, 51, 68, 52, 43]. Formally, the PROJECTION operation can

be written as:

PROJECTION (Di.Aj, y) C,

where Di.Aj is a list of dimension attributes, and y ⊂ M. The resulting cube is

C1<D1, F1, M1, BasicCube1>, where:

• D1 is a set of dimensions that are mentioned within the PROJECTION.

• F1 = list of dimension attributes Di.Aj .

• M1 = y.

• Schema(BasciCube1) = <F1, M1>. Note that the measure(s) (M1) values of

BasicCube1 are aggregated at the level of the attribute(s) in F1.

Again consider the three dimensional cube SOLD of Figure 4.6(a). We can project

this cube onto a new cube with two dimension attributes (Product.Number and

Time.Month) and one measure Units Sold with the following OLAP algebra expres-

sion: PROJECTION(Time.Month, Product.Number, Units Sold)(SOLD).

The resulting cube is depicted in Figure 4.7. Note how the measure values (Units Sold)

of product FH12 are re-calculated accordingly. For example, the total sales for

Jan/FH12 = 35 + 25 + 42 = 102.

119

Figure 4.7: The result of PROJECTION operator.

4.5.1.3 Set operations on Data Cubes

OLAP set operations (UNION, INTERSECTION and DIFFERENCE) can be applied

to data cubes. We consider only Union, Difference and Intersection because they are

the most relevant ones in the literature [95, 93, 51, 68, 52, 43]. They are defined as

follows on arbitrary data cubes C1 and C2:

• C1 UNION C2 is the union of two cubes sharing common dimensional axes.

If two cells from C1 and C2 have the same feature attribute values, then we

can add their measure attribute values (measure attributes are assumed to be

numeric).

• C1 INTERSECTION C2 is the intersection of two cubes sharing common di-

mensional axes. If two cells are intersected, then we subtract the larger measure

attribute values from the smaller.

• C1 DIFFERENCE C2 is the difference of two cubes sharing common dimen-

sional axes. When two cells have the same feature attribute values, then the

cell value of C1 will be included in the output if its measure value is greater

120

Figure 4.8: Two Cubes(C1 and C2) share common feature and measure attributes.

than that of C2.

Let C1<D, F, M, BasicCube1> and C2<D, F, M, BasicCube2> be two cubes

sharing common dimensions, feature attributes and measure attributes. In other

words, they have common schemas but they might have different cell values. More

formally, we can define set operators as:

• C = C1 UNION C2

• C = C1 INTERSECTION C2

• C = C1 DIFFERENCE C2

In the above formal definitions, the resulting cubes have the same schema (<D, F,

M>) as any one of the source cubes but the value of the cells are calculated according

to the operation being performed(UNION, INTERSTCION or DIFFRENCE). Note

that C1 and C2 can sometimes be the results of other OLAP algebra expressions.

Suppose we have two cubes C1 and C2 as in Figure 4.8. Note that both cubes have

the same schema (same dimensions, feature attributes, and measure attribute). The

intersection, union, and difference of C1 and C2 are denoted as C1 INTERSECTION

121

Figure 4.9: (a) C1 INTERSECTION C2 (b) C1 UNION C2 (c) C1 DIFFERENCE
C2.

C2, C1 UNION C2, and C1 DIFFERENCE C2 respectively. The result cubes are

shown in Figure 4.9(a), 4.9(b), 4.9(c) respectively.

4.5.1.4 CHANGE LEVEL Operator

This operator is an analytical operator whereby the user navigates among levels of

data ranging from the most detailed (down) to the most summarized (up) or vice-versa

amongst a concept hierarchy [95, 93, 51, 68, 52, 43]. It is considered as a modification

of the granularity of aggregation. We typically refer to these processes as “roll-up”

and “drill down.” We are provinding a comprehensive definition of the roll-up and

drill-down operations since in the literature these two operations are defined as two

distinct operations. However, we provide only one operation (CHANGE LEVEL) in

a very high conceptual level.

Consider the N -dimensional cube C = <D, F, M, BasicCube> outlined in Sec-

tion 4.4. Formally, we denote the change level operator as:

CHANGE LEVEL(Di.Aj → Di.Ak) C,

122

such as Di ∈ D, Di.Aj is a feature attribute that relates cube C with dimension

Di and Di.Ak is a hierarchical attribute level in dimension Di. The resulting cube

of this operation is another cube C1 = <D, F1, M, BasicCube1>. Note that the

result cube C1 has the same set of dimensions and measure attributes as in the

source cube C. However, they have different (i) feature attributes (C1 has a new

set of feature attributes) F1 = F - Di.Aj + Di.Ak, and (ii) cells in the basic cube

(BasicCube is not equal BasicCube1). Moreover, this operator can be used to change

the levels of more than one feature attributes at the same time. It can be expressed

as CHANGE LEVEL(Di.Aj → Di.Ak, Dr.As → Dr.At, . . .) C, where i,r =[1 . . . N].

Consider the three dimensional cube SOLD of Figure 4.6(a). Figure 4.10 illus-

trates how the “Product” dimension, originally listed at a more detailed level number,

is aggregated in order to provide a break down by Brake and Engine product types.

Figure 4.10 is the result of the following OLAP expression: CHANGE LEVEL (Prod-

uct.Number → Product.Type)(SOLD). In this expression, Product.Number is a feature

attribute in the source cube SOLD and Product.Type is a hierarchical attribute level

in dimension Product. Note how attribute Product.Type in Figure 4.10 becomes a

feature attribute instead of the attribute Product.Number.

4.5.1.5 CHANGE BASE Operator

This operator represents the addition or deletion of one or more dimensions from

the current result cube (C)[95, 93, 51, 68, 52, 43]. Aggregated cell values must be

re-calculated accordingly. Using cube C = <D, F, M, BasicCube> of the previous

section, this operated is formally denoted as follow:

CHANGE BASE(Di.Aj → Action)C,

123

Figure 4.10: Result of a change level operation.

Figure 4.11: Result of the CHANGE BASE operation.

where Action can be Remove (to remove a dimension from cube C) or Add (to add

a dimension to cube C) and Di.Aj is a feature attribute that relates cube C with

dimension Di in the case of Remove and is an attribute in dimension Di in the case

of Add. In other words, a dimension Di is deleted by removing the feature attribute

that relates the cube with Di; however, the addition of a dimension Di occurs by

adding an attribute from Di to the cube. The resulting cube is another cube C1 =

<D1, F1, M, BasicCube1> that has different dimensions, feature attributes and basic

cube relative to that of the source cube C.

Again, we consider the SOLD cube of figure 4.6(a). The result of the following ex-

pression CHANGE BASE(Time.Month→Remove, Location.City→Remove)(SOLD) is

depicted in Figure 4.11.

124

Figure 4.12: Pivot Operation: (a) the original view. (b) the result of the PIVOT
operation.

4.5.1.6 PIVOT Operation

This OLAP operation allows users to re-organize the axes of the cube. In other

words, Pivot deals with presentation only. No recalculation of cell values is required.

most of previous publications in the multidimensional algebras have not discussed

this operation [95, 93, 51, 68, 52, 43]. Utilizing the cube C of the previous section, a

formal definition of this operator is defined as follow:

PIVOT (Di.Aj → Dk.Al) C,

where Di.Aj and Dk.Al are feature attributes in cube C. This operator re-organizes

the axes of cube C so that Dk.Al is viewed instead of Di.Aj and vice versa. The

result cube is equivalent to the source cube. Figure 4.12(b) provides a simple ex-

ample of how the pivot operation works on the original two-dimensional view called

Purchase in Figure 4.12(a). The expression is written as PIVOT(Product.Number →

Time.Month)Purchase.

4.5.1.7 DRILL ACROSS Operator

The DRILL ACROSS is the integration of two independent cubes in order to compare

their measure attributes, each possessing common dimensional axes [95, 93, 52, 43].

125

In effect, this is a cube “join” (possibly a self join) that changes or extends the

subject of analysis. This operation has received little attention in the literature. We

are providing a very comprehensive defintion of this operation (DRILL ACROSS)

with respect to those definitions discussed in in the publications [95, 93, 52, 43]. In

other words, our operator combines the power of all drill across operations discussed

previously. Consider two cubes C1 = <D1, F1, M1, BasicCube1> and C2 = <D1,

F1, M2, BasicCube2> having the same set of dimensions and feature attributes but

with different sets of measure attributes (M1 and M2). The formal definition of the

drill across operation is denoted as:

C1(M1) DRILL ACROSS C2(M2).

The result of this operation is another cube C = <D1, F1, M, BasicCube>, where

M is the union of sets M1 and M2 and BasicCube contains the union of BasicCube1

and BasicCube2 with the new set of measure attributes M.

Consider the two cubes (C1 and C2) of Figure 4.13, with both cubes having the

same feature attributes (Product Number and Time Month). The measure attribute

in C1 is the total number of units sold during each month for each product number.

However, the measure attribute in C2 is the ordered quantity during each month for

each product. The drill across result is found with the following OLAP operation:

C1(Units Sold) DRILL ACROSS C2(Quantity Ordered)

The above expression produces the result shown in Figure 4.14. Note that the

result of this operation is another cube that has the same feature attributes, and

includes a direct comparison of the measure attribute(s).

126

Figure 4.13: Two cubes (C1 and C2) with different measure attributes.

Figure 4.14: Two cubes (C1 and C2) with different measure attributes.

127

4.5.2 Algebra Simplifications

It is important at this stage to point out that while logical data warehouse mod-

els typically require explicit joins between fact (measure) and dimension tables to

provide OLAP reports with descriptive dimension information and to resolve query

constraints that are often specified on the attributes of the dimensions — there is

no such requirement with our algebra since our OLAP server implicitly knows when

and how to do the joins. Finally, and perhaps most importantly, we note that the

OLAP algebra is primarily read only, in that database updates are performed via

distinct ETL processes. Therefore, there is no requirement for database services such

as concurrency and locking.

4.6 OLAP Grammar

We encapsulate the operations of the OLAP algebra defined in Section 4.5 in a formal

OLAP schema encoded in Document Type Definition (DTD). In turn, the DTD makes

it easy to code, control and validate the associated XML document, particularly in

a collaborative academic setting. We note that it would also be possible to utilize

the more powerful XML schema mechanism [114]. Specifically, XML schemas allows

control over the content of a document as well as its structure. They support a set of

built-in data types (integer, date, Boolean, etc.), the ability to create new data types,

and provide control over elements and attributes (e.g., the exact number of times an

element appears), inheritance, etc.

The DTD is defined recursively and can handle very complex OLAP queries.

In short, it indicates the proper format of the OLAP queries that are handled by

our backend server. The DTD is made up of elements of the form <!ELEMENT

128

Figure 4.15: Core operations of the OLAP algebra.

name(components)>. The components can be other elements that may in turn be

augmented with cardinality expressions indicating the number of occurrences of the

element (e.g., * element may occur 0 or more times)[113].

Figure 4.15 defines the core structure of an OLAP query received by the back-

end server. Each query is associated with a single cube (though references to other

cubes are possible), as well as one Operation List and zero or one Function Lists.

We do not consider cube functions extensively in our current research. However, for

the sake of completeness, we may informally define a cube function as one that is

logically associated with a result set, rather than a specific cell or dimension mem-

ber. The common top10 function would be a simple example. The Operations List

contains the algebraic elements of the query, and each operation may occur exactly

zero or one times in a single query. The one exception is PROJECTION, which must

exist in every OLAP query (we assume that no defaults are available for the display

attributes). Many OLAP queries can in fact, be expressed with nothing more than a

129

Figure 4.16: PROJECTION elements.

projection. Figure 4.16 illustrates that a PROJECTION is defined as a listing of one

or more measures and zero or more dimension attributes.

Figure 4.17 demonstrates that a SELECTION is defined as a listing of one or more

dimensions, each associated with an expression. The expressions of the dimensions are

connected via logical operators (AND and OR). In effect, the expression represents a

query restriction on the associated dimension. Simple expressions may be combined

to form compound expressions (via logical AND and OR) and can be recursively

defined. In other words, as with any meaningful programming language, conditional

restrictions can be almost arbitrarily complex.

In Figure 4.18, we illustrate the simplicity of the set operation specifications.

Set operations are simply represented as nested data queries, defined relative to the

current query. Figure 4.19 illustrates three operations. First, the CHANGE LEVEL

is defined as a listing of one more dimensions, each associated with a target level.

In effect, the target level represents a hierarchy level (attribute) on the associated

dimension. Second, the CHANGE BASE operation is expressed as a list of one or

more dimension attributes. A specification is necessary in this operation for each

130

Figure 4.17: SELECTION elements.

131

Figure 4.18: Set Operations.

dimension attribute either to be added or removed to/from the current data query

result. Third, the PIVOT is defined as a listing of pairs of dimensions. Each pair of

dimensions represents both the old dimension in the current data query result and

the new dimension that will replace the old dimension in the new presentation.

Finally, in Figure 4.20, we illustrate the DRILL ACROSS operation. DRILL ACROSS

is defined as a nested data query with zero or one comparison facts, defined relative

to the current data query.

As previously noted, at run time the Object Oriented OLAP user query will be

sent to the server in an XML format. Figure 4.21 illustrates the XML format for

the OOP OLAP query in Figure 4.5. Note that this XML OLAP query corresponds

direcly to our OLAP query grammar.

4.7 OLAP Algebraic laws for Improving OLAP

Expression Trees

In this section, we describe a number of laws for our comprehensive OLAP algebra.

To illustrate the motivation for this process, first recall that a query in traditional

relational databases, written in SQL, is translated internally into an initial relational

algebra expression that can be then transformed into equivalent, but more efficient

132

Figure 4.19: Change Level, Change Base and Pivot operations.

Figure 4.20: Drill Across operation.

133

Figure 4.21: The XML format for the OLAP query illustrated in Figure 4.5.

134

Figure 4.22: (a) Translation of SQL to an intial relational algebra expression. (b)
The effect of applying some relational algebra laws.

ones by applying various relational algebraic rules. For example, the most common

relational algebraic laws are (1) pushing the selection (σ) as far as possible, (2) com-

bining selection (σ) with Cartesian product (X) to produce joins (∞), (3) introducing

new projections (Π) when necessary, etc. In Figure 4.22(a), we can see how the SQL

is transformed into an initial tree of relational algebra operations. Figure 4.22(b)

improves the initial expression by applying common relational algebraic rules in some

meaningful way. Specifically, we split the two parts of the selection (starname =

name) and (birthdate LIKE ’%1960’). The first condition involves attributes from

both sides of the product, but they are equated, so the product and selection can be

combined to produce an equijoin. The latter condition is pushed down the tree.

135

As noted, however, we are working in an OLAP environment, so we will be trying

to apply similar logic to operations that are part of our OLAP algebra. Specifically,

a number of OLAP-specific laws will be discussed. These laws can be used to turn an

OLAP algebra expression tree into a more efficient, but logically equivalent, expression

tree.

Figure 4.23 illustrates an initial OLAP algebra tree equivalent to the user’s query

outlined in Figure 4.21. The initial tree consists of operators from our OLAP al-

gebra (i.e., SELECTION and PROJECTION). As was discussed in Chapter 3, the

Sidera server stores cube data only for the most detailed encoded integer value (e.g.,

ProductID, CustomerID). Therefore, common OLAP analysis, such as the applica-

tion of OLAP query constraints (e.g., condition Customer.Age>40 in Figure 4.23) or

descriptive OLAP reports (e.g., Customer.Province mentioned within the PROJEC-

TION operator in Figure 4.23), could not be performed from the fact table alone

since it is the dimension tables that store descriptive attributes. In other words,

we generally require joins between the cube and the dimension tables because (i)

the query constraints are often specified on the attributes of the dimensions and (ii)

descriptive attributes make OLAP reports easier to read. Moreover, we note that

whenever descriptive dimension attributes are utilized by OLAP algebra operators,

inner joins are required between the fact table and dimension tables. For example,

the fact table of cube Order must be joined with the Customer and Time dimension

tables to resolve the query constraints in Figure 4.23 and with Product and Customer

for the PROJECTION operator.

Before digging in to the details, we briefly note the following objectives of our

OLAP algebra laws:

136

Figure 4.23: Initial OLAP algebra tree.

• Re-write OLAP operations in the expression tree against the schema of the cube

and dimension tables that are stored in the OLAP server.

• Re-order OLAP operations in order to improve the expression tree.

• Eliminate (or reduce) joins between the cube and dimension tables. In other

words, our server does not perform traditional relational sort or hash-based

joins. Instead, it uses the structures (mapGraph) and indexes (FastBit bitmap)

to perform better joins between the dimension tables and the cube.

4.7.1 Laws involving SELECTION

As noted, SELECTION is the core OLAP operation and is commonly referred to as

“slicing and dicing”. For convenience, we will use Cond1 and Cond2 to represent

query restrictions. Moreover, we use C to refer to a view/cuboid.

137

4.7.1.1 Better Joins

A selection result depends on inner/natural joins between the cube and dimension

tables in order to exclude cube rows that don’t satisfy the query restriction speci-

fied on the descriptive attributes of the dimension. For example, in Figure 4.23, the

Order fact table/cuboid must be joined with dimensions (Customer and Time) to

get those rows in the fact table satisfying the conditions (Customer.Age > 40 AND

Time.Year=2007 AND Time.Month IN RANGE (May, October)). In order to per-

form better joins between the cube and dimension tables, we change the restriction

of the selection operation so that it can be performed on the relevant cuboid/view

alone.

Let the 2-dimensional cube C = <D, F, M, BasicCube>, where D={Dim1, Dim2},

F={Dim1.Dim1ID, Dim2.Dim2ID}. Note that Dim1ID and Dim2ID are the most

detailed encoded values of dimensions Dim1 and Dim2 (e.g., ProductID in dimension

Product). Therefore, in order to have better joins between the dimension tables

(mentioned within the SELECTION operation) and the cube, we apply the following

law:

LAW 1:

SELECTION (Dim1(C1) AND/OR Dim2(C2)) (C) =

SELECTION (Dim1ID = x AND/OR Dim2ID = y)(C)

Where x and y are two sets of Dim1IDs and Dim2IDs that satisfy the conditions C1

and C2 associated with dimensions Dim1 and Dim2.

Justification: Suppose a cell c is in the result of the left expression. Then there

must be a record r that satisfies the restriction on dimension Dim1 and a record

138

Figure 4.24: Two-dimensional cube with the most detailed level values.

s that satisfies the restriction on dimension Dim2. Moreover, r and s must agree

with c on every attribute that each record shares with cell c (Dim1ID and Dim2ID).

When we evaluate the expression on the right, x is a set of Dim1IDs satisfying the

restriction associated with Dim1, while y is a set of Dim2IDs satisfying the restriction

on dimension Dim2. Dim1ID of record r must be in set x and Dim2ID of record s

must be in set y. Thus a cell c1 is in the result of the right expression. Consequently,

Dim1ID and Dim2ID of cell c1 must agree with one value from set x (Dim1ID of

record r) and one value from set y (Dim2ID of record s). Therefore, we can say that

c and c1 is the same cell.

We use the same logic if the logical operator between dimension conditions is an

OR operator. Figure 4.24 provides an illustration of a very simple two dimensional

view (called Sales) with the most detailed value stored for each dimension in the cube.

Suppose that the schema of this view is (ProductID, EmployeeID, Measure(s)). Fea-

ture attributes (EmployeeID and ProductID) allow connections to dimension tables

Employee and Product in Figures 3.3 and 3.4 respectively. Consider an initial selec-

tion expression depicted in Figure 4.25 and specified as:

139

Figure 4.25: Initial SELECTION expression tree.

SELECTION (Product.Type = Brakes AND Employee.Age > 30) Sales

Using LAW 1, it can be written as:

SELECTION (ProductID = x AND EmployeeID = y) Sales

such that x = {1,2} (ProductID 1 and 2 have attribute Type equals Brakes) and

y={2,3}(EmployeeID 2 and 3 have age greater than 30). Figure 4.26 shows the result-

ing expression tree after applying LAW 1 to the initial expression tree of Figure 4.25.

In Figure 4.25, the view (Sales) must be joined with the Product and Employee di-

mension tables. However, in Figure 4.26, we access each dimension (Product and

Employee) to get the most detailed level values that satisfy the condition associated

with it, then the view Sales can be accessed alone to answer the query. In other

words, the relevant view is accessed to return those rows that intersect with the sets

of the dimension’s detailed values satisfying the query restriction. Therefore, using

this law, the R-tree index of the appropriate view can be used efficiently to answer the

query. Without this law, we can’t gain any benefit from the existence of the R-tree

index. Finally, this law (LAW 1) is supported direcly by the in-memory hierarchy

manager and FastBit bitmap indexes. However, it can be used by any OLAP server

that supports the star schema storage.

140

Figure 4.26: After applying LAW 1 the initial tree of Figure 4.25.

4.7.1.2 Combining conditions

When we have two or more consecutive SELECTION operators, we can replace them

by only one SELECTION operator and connect their conditions with the AND op-

erator(s). Thus, our second law for SELECTION is the combining law:

LAW 2:

SELECTION (Cond1) (SELECTION(Cond2) C) =

SELECTION (Cond1 AND Cond2)(C)

Justification: Suppose that a cell c is in the result of the left expression. Then

the result of SELECTION(Cond2)C is a sub-cube C1 that contains cell c that satisfies

cond2. We apply SELECTION(Cond1) to C1. The result is a sub-cube of the left

expression that contains c that satisfies also Cond2. When we evaluate the right

condition, cell c will again be in the result since c satisfies Cond1 and Cond2.

Since our OLAP server provides a very efficient multi-dimensional indexing scheme

(i.e., the Hilbert R-tree index), this rule allows the SELECTION operation to benefit

from this multi-dimensional indexing. Instead of accessing the appropriate R-tree

index view to answer the first condition and then using the result cube to answer the

141

second condition, the multi-dimensional index view can be efficiently used to answer

both conditions simultaneously.

In addition to the above law, two SELECTION operators can be combined into

only one SELECTION if there is a UNION operator between them. Moreover, the

conditions of both SELECTIONs are connected with the OR operator. This law is

written as follow:

LAW 3:

(SELECTION(Cond1)C) UNION (SELECTION(Cond2)C) =

SELECTION (Cond1 OR Cond2)(C)

Finally, LAW 2 and LAW 3 are very useful in any OLAP server that provides

multidimensional indexing schemes (e.g., R-tree).

4.7.1.3 Pushing laws

Selection is a very important operation from the point of view of OLAP query opti-

mization. In particular, Selection tends to reduce the size of the cubes. One of the

most important objectives is to move the selection down the tree as far as it will go

without changing what the OLAP expression tree actually does. In addition, pushing

SELECTION down the tree makes it possible to be efficiently resolve the query from

the apropriate multi-dimensional index view. The next family of laws allows us to

push the SELECTION through other OLAP operators. Thus, we refer to this set of

laws as the pushing laws. Figure 4.27 illustrates how the SELECTION can be pushed

below other OLAP operators.

LAW 4:

142

Figure 4.27: SELECTION pushing laws.

1. For a UNION, SELECTION must be pushed to both arguments of the UNION.

p1 in Figure 4.27 illustrates this rule.

2. For a DIFFERENCE, SELECTION must be pushed to the first argument of

the operator or to both arguments. For example, p2 in Figure 4.27 shows how

we might push SELECTION to both arguments.

3. For an INTERECTION, SELECTION can be pushed to one of the arguments

or both. p3 is an example of how we might push SELECTION to the first

argument.

4. For CHANGE LEVEL and CHANGE BASE, SELECTION is pushed down

to the argument. p4 provides an example of pushing SELECTION under

CHANGE BASE.

5. For a DRILL ACROSS, SELECTION must be pushed to both arguments. p5

in Figure 4.27 shows this rule.

143

We shall provide a justification of one of the above variations as an example (p1,

pushing the SELECTION under UNION) . Justifications for the remaining cases are

straightforward.

Justification: Suppose that a cell c is in the result of SELECTION(Cond) (C1

UNION C2). Then the result of (C1 UNION C2) has a cell c that satisfies the condi-

tion parameter of the SELECTION operator. In addition, c can be a cell found only

in C1, C2, or the result of two cells from both cubes C1 and C2. When we evaluate

the right expression, SELECTION(Cond)C1 UNION SELECTION(Cond)C2, c will

again be in the result of the right expression, because c matches the condition and

can be found from C1, C2, or the result of the union.

For example, consider the two cuboids/views C1(Product.Number, Time.Month,

Units Sold) and C2(Product.Number, Time.Month, Units Sold) of Figure 4.8. Fig-

ure 4.28(a) illustrates an intial OLAP expression tree. Using LAW 4, we can push

the SELECTION operator to both arguments as depicted in Figure 4.28(b). It is an

improvement to push the SELECTION to both arguments since we reduce the size

of both C1 and C2 before the intersection. Moreover, if C1 and C2 are stored on disk

in our server, then we can efficiently retrieve those cells from C1 and C2 satisfying

the condition (e.g., Time.Month = Jan) by utilizing the R-tree index of C1 and C2.

4.7.1.4 Pulling laws

Pushing a selection down an OLAP expression tree is one of the most important steps

performed by the query optimizer. However, we have found that in some situations

it is essential to pull the SELECTION up the expression tree as far as it will go, and

then push it down all possible branches. Consider two views/cuboids (C1 and C2) of

Figure 4.8. We assume that we have the following OLAP algebra expression:

144

Figure 4.28: (a) Initial OLAP expression tree and (b) its equivalent after applying
the SELECTION pushing laws.

(PROJECTION(Product.Number, Time.Month, Units Sold)

(SELECTION(Time.Month = Dec)C2))INTERSECTION

PROJECTION(Product.Number, Time.Month, Units Sold)C1)

The OLAP expression tree of the above OLAP algebra expression is shown in

Figure 4.29(a). In this OLAP algebra tree, there is no way to push the SELECTION

down the tree because it is already as far as it would go. However rule p3 in Figure 4.27

can be applied from right to left, to bring the SELECTION(Time.Month = Dec) above

the INTERSECTION. Since C1 and C2 have the same schemas, then we may push

the SELECTION to both arguments (C1 and C2). We can pull the SELECTION

above the INTERSECTION and then push down if, and only if, the output of the

INTERSECTION contains all attributes that are mentioned within the SELECTION.

For example, because Time.Month is in the output schema of Figure 4.29(a), then we

can pull the SELECTION operator up and then down. Figure 4.29(b) illustrates the

expression tree resulting from pulling up and then down the SELECTION operator.

145

Figure 4.29: (a) Initial OLAP expression tree. (b) Improving the initial expression
by pulling SELECTION up and then pushing it down the tree.

This mechanism of pulling up and then pushing down the SELECTION operator is

advantageous because the size of the view C1 is reduced in the intersection. Moreover,

if C1 is stored in our server, then its R-tree index can be efficiently used to find those

rows satisfying the condition (Time.Month=Dec). However, without this condition

all cells in C1 must be accessed and read into the main memory.

In addition to the INTERSECTION operator, we can use the first rule (p1)

in Figure 4.27 to pull up the SELECTION(s) that can be combined with the OR

operator(s)(LAW 3) and then push them down to both arguments. Again, it is im-

portant to mention here that this technique — pull up and then down the SELEC-

TION — can be used only if all attributes mentioned within the SELECTION(s) are

in the output schema of the binary operation.

4.7.2 Laws involving PROJECTION

Recall that an OLAP query must always contain a projection because we assume

that no default display attributes (output attributes) are available for the projection.

146

In other words, the PROJECTION operation determines the schema of the resulting

cube query. Therefore, the guiding principle for PROJECTION laws is that we may

introduce a new PROJECTION in the expression tree somewhere below an existing

PROJECTION. If we do so, the new PROJECTION only eliminates attributes from

the cube that are never used by any of the OLAP operators above. Therefore, we can

introduce a new PROJECTION below a SELECTION in the expression tree. This

is illustrated in the following law:

LAW 5:

PROJECTION (L,M)(SELECTION (Cond) C) =

PROJECTION (L,M)(SELECTION (Cond)PROJECTION (L1,M)C)

where L1 is the list of dimension attributes of cube C that are either used within the

condition (Cond) of the SELECTION operator or are input attributes of L, L is the

list of output dimension attributes and M is the list of output measure attributes.

To illustrate the importance of this law, consider the three-dimensional view of

Figure 4.6(a). Figure 4.30 illustrates the application of the law. Assume that the user

wants to see the total Units Sold in all cities during the month of January (Jan). The

initial expression tree is depicted in Figure 4.30(a) to answer the user’s OLAP query.

By applying this law, a new PROJECTION is introduced below the SELECTION

to eliminate attribute (Product.Number), since the only required attributes/axes are

Time.Month and Location.City. Figure 4.30(b) illustrates the resulting expression

tree.

Since the new PROJECTION contains all attributes required to answer the cur-

rent query, therefore it allows us to select the appropriate view from the input cube

147

Figure 4.30: (a) Initial OLAP expression tree.(b) Improving the initial expression by
introducing new PROJECTION.

(i.e., materialized cube), or it reduces the size of the input cube (i.e., in-memory input

view). In other words, this law is an improvement because it allows the query engine

to select the best view (smaller than the base view) from the input cube or it reduces

the size of the input view. This law is very useful in OLAP servers that provide cube

materialization (pre-computed views are stored on disk). Instead of re-writing the

whole query, we can just utilize this simple law to pick the best view to answer the

query.

Because CHANGE LEVEL and CHANGE BASE are relevant to an existing result

set, PROJECTION must be pushed below these operators. Thus, below are the

pushing rules for the PROJECTION operator.

LAW 6:

1. PROJECTION (L)(CHANGE LEVEL(M) C) =

CHANGE LEVEL(M)(PROJECTION (L) C).

2. PROJECTION (L)(CHANGE BASE(M) C) =

148

CHANGE BASE(M)(PROJECTION (L) C).

We note that a new PROJECTION cannot be introduced below the binary op-

erations (UNION, INTERSECTION, DIFFERENCE, and DRILL ACROSS) of our

OLAP algebra.

4.7.2.1 Decomposition Law

Recall that Sidera stores the cube only for the most detailed dimension values (e.g.,

ProductID, EmployeeID). As was noted above, PROJECTION results depend on

inner/natural joins between the cube and dimension tables to produce descriptive

OLAP reports, since in our server it is the dimension tables that store descriptive

attributes. Below is the decomposition law for PROJECTION:

LAW 7:

PROJECTION (L, M) C =

CHANGE LEVEL(L1→L) PROJECTION (L1, M)C

where L is a list of hierarchical attributes, L1 is the list of feature attributes in C

that link the cube C with its corresponding dimensions mentioned in L, and M is one

or more measure attributes in C. This law should produce an improved query plan

since it defers the joins between the cube and the dimension tables to a later step of

the query execution. Using this law, the PROJECTION can be answered from the

appropriate view (e.g., C) without joining with dimension tables, while the joins will

be required for the CHANGE LEVEL operation that can be defered to the later step

of the query. In our server (Sidera), the mapGraph structure can be used to translate

between the base level data (i.e., the most detailed) in the cube and the hierarchy

level listed in the initial query.

149

Figure 4.31: (a) Initial OLAP expression tree. (b) Improving the initial expression
by decomposing the PROJECTION.

Consider the two dimensional cuboids in cube Sales of Figure 4.24 and its sur-

rounding dimension tables (Employee and Product) of Figure 3.3 and 3.4. Fig-

ure 4.31(a) illustrates the intial OLAP expression tree with only one PROJECTION

operation that needs to be joined with dimenion tables. Using LAW 7, the resulting

expression tree is depicted in Figure 4.31(b).

4.7.3 Laws for CHANGE LEVEL and CHANGE BASE

As noted, the CHANGE LEVEL and CHANGE BASE operators are relevant to an

existing result set. Therefore, they must be above the PROJECTION operator that

defines the schema of the output cube result (LAW 6).

4.7.3.1 Removal Law

The CHANGE BASE operator can be removed from an OLAP expression tree by the

following “removal” law:

LAW 8:

150

CHANGE BASE(L1→Add, L2→Remove) PROJECTION (L, M)C =

PROJECTION (K, M)C.

where L, L1 and L2 are lists of attributes such that all attributes that are removed

by the CHANGE BASE operator (L2) must be in the input cube that is itself the

result of the PROJECTION operator (L2 ⊂ L). K is a list of attributes that are in L,

L1 and not in L2 (K = L ∪ L1 /∈ L2). This law is considered to be an improvement

because only one PROJECTION will be executed instead of one PROJECTION and

one CHANGE BASE.

4.7.3.2 Pushing and Pulling Laws

LAW 9: If the CHANGE LEVEL operator changes the result data from the most

summarized (up) to the most detailed (down) along a concept hierarchy (Drill Down),

then we pull the operator (CHANGE LEVEL) up the tree until it reaches another

CHANGE LEVEL. In general, this law reduces the size of intermediate results be-

cause it pulls up the drill down operation that increases the size of the result cube. In

addition, application of this law means that the root of the resulting expression tree

will be a CHANGE LEVEL operator. As a concrete example, consider the OLAP

expression tree of Figure 4.32(a) (e.g., CHANGE LEVEL(K) corresponds to a drill

down operation). The resulting expression tree, after applying LAW 9, is depicted in

Figure 4.32(b). The second tree is an improvement over the first one because after

pulling the CHANGE LEVEL operation up, we reduce the size of intermediate results.

For example, in Figure 4.32(a) the size of the intermediate results (e.g., R) before the

UNION is bigger than that of Figure 4.32(b) (e.g., R1) because CHANGE LEVEL

in the former changes the result data from the most summarized level to the most

detailed level.

151

Figure 4.32: (a) Initial OLAP expression tree. (b) Result of pulling up
CHANGE LEVEL(K).

LAW 10: If the CHANGE LEVEL operator navigates among levels of data

ranging from the most detailed (down) to the most summarized (up) (Roll UP), then

we push it down the tree until it reaches a PROJECTION operator. In general,

pushing this type of CHANGE LEVEL (Roll-up) operator reduces the size of inter-

mediate results because the result of the roll up operation changes from the most

detailed level to the most summarized (e.g., 12 month values is one year value). Note

that the CHANGE LEVEL can be pushed below the UNION, INTERSECTION and

DRILL ACROSS but not below the DIFFERENCE operator.

Finally, if a CHANGE LEVEL involves both operations (a drill down and roll

up) of an existing result set, then it is important to estimate the size of intermediate

results before deciding whether to pull it up or push it down.

4.7.3.3 Merging Law

We refer to the next law concerning the CHANGE LEVEL operator as the merging

law, as it merges two or more consecutive CHANGE LEVELs into one.

152

LAW 11:

CHANGE LEVEL(LI→LO) CHANGE LEVEL(MI→MO)C =

CHANGE LEVEL(KI→KO)C

where LI, LO, MI, MO, KI and KO are lists of hierarchical attributes. Recall that

CHANGE LEVEL is applied to an existing result cube to change one or more at-

tribute level values. Therefore, all attributes mentioned in MI must be in the result

view C. The parameters of the CHANGE LEVELs are merged as follows:

• KI = LI ∪ MI, all attributes in MI and LI. however if some attributes in MI

and LI belong to the same hierarchy, then we select only attributes from LI to

be in KI.

• KO = LO ∪ MO, all attributes in LO and MO. However, if they have some

attributes that belong to the same hierarchy, then we select those attributes

from LO.

For example, consider the two-dimensional view (Sales) of Figure 4.24 and its

surrounding dimensions(Employee and Product). Figure 4.33(a) illustrates the ini-

tial expression tree with two consecutive CHANGE LEVELs. For example, LI =

Product.Type, LO = Product.Category, MI = Product.ProductID and MO = Prod-

uct.Type. Figure 4.33 illustrates the result expression tree produced by using LAW 11.

In this example, KI = MI and KO = LO because (LI and MI) and (LO and MO) have

attributes that belong to the same hierarchy (Product). The above law is likely to

improve the performance if the CHANGE LEVELs involve attributes from the same

hierarchy because it reduces the number of translations between hierarchical levels.

153

Figure 4.33: (a) Initial OLAP expression tree. (b) Result of merging two
CHANGE LEVELs.

4.7.4 Commutative, Associative and Trivial Laws

Several of our OLAP algebraic operators are both associative and commutative [27].

Our associative and commutative laws are illustrated in Figure 4.34 (LAW 12).

Note that, strictly speaking, this is not a new law; it is merely a property of existing

laws. There are many trivial laws for our OLAP algebra. However, we will specifically

mention two of them that will be used by our query compiler (discussed in the next

chapter).

LAW 13:

C1 INTERSECTION C1 = C1

C1 INTERSECTION C1 = C2

such that C2 has the same dimension members as C1. However the values of its

measure attributes are double the values of measure attributes in C1.

154

Figure 4.34: Commutative and Associative rules.

Finally, it should be possible for OLAP servers that store the data warehouse in the

standard star schema format and provide multi-dimensional indexing schems and cube

materialization to utilize some of our algebraic laws mentioned in this section. For

example, LAW 2 is used to gain benefits from multi-dimensional indexing. LAW 11

can be used to minimize the translations between hierarchical levels. If the result is

cached in the main memory, then the change base (with the remove action) and the

change level can be answered from the cache direcly. However, LAW 8 is important

in case of the add action. LAW 8 and LAW 9 are very important since the minimize

the size of intermediate cube results.

4.8 OLAP Metadata Storage

Metadata describes the structure and constraints of the OLAP environment. It should

include the structure of the available cubes, dimensions, hierarchies, measure at-

tributes, etc. Moreover, it is important to emphasize that OLAP queries rely exten-

sively on metadata (even more than relational databases) about the OLAP environ-

ment. For example, hierarchy information is crucial for answering even the simplest

155

queries. Metadata must also be available to the query processor (Query Compiler and

Query Execution Engine) that optimizes and executes the query. Therefore, it may

also include information about the size of each cuboid/relation, existence of indexes,

attributes cardinalities, etc.

In this section, we shall describe an XML DTD that defines the format of the

schema used in our OLAP environment. A description of the native XML metadata

storage mechanism is also provided. At the end of this section, we will give a concrete

example that shows how an actual data cube is represented natively in XML.

4.8.1 OLAP Metadata Grammar

Our OLAP schema grammar (encoded as an XML DTD) defines the proper format

of the OLAP metadata. It is defined recursively and made up of standard DTD

elements. Figure 4.35 shows that a database houses one or more cubes. Typically, a

database would represent all the cubes of a given organization or department. The

dimensions specified at this level are shared by all cubes in the database. These

“global” dimensions are commonly referred to as conformed dimensions.

A cube is the basic schema element. There may be many cubes in the database.

Figure 4.36 demonstrates that each cube is made up of a cube name, one fact and one

or more dimensions. A fact is a set of feature and measure attributes. Each feature

attribute must be linked to a specific dimension. The kind of measurement operation

must also be specified. Here, we define just three (sum, average, and count), but

others can be added in the future.

Figure 4.37 depicts the schema of a dimension. Dimensions are made up of a set

of descriptive attributes and one or more hierarchies. They must also provide a key

that the fact table can reference. In some cases, dimensions simply hold a reference

156

Figure 4.35: DATABASE Element.

Figure 4.36: Cube Schema.

157

Figure 4.37: Dimension Schema.

to a shared dimension defined elsewhere. Attributes in a dimension require a storage

type (e.g., int, float, string, or date).

In Figure 4.37, we can also see that a dimension can have one or more hierarchies.

Hierarchies are the most complex part of the schema, and consist of both simple

and composite forms (we note that although the entire schema file can be written

by hand, we expect that UML modeling tools will typically be used to make the

design process easier). All hierarchies are essentially graphs. Each has the same basic

structure: a series of parent/child relationships. The distinctions between hierarchy

forms[74] are actually established by the attributes of each hierarchy level. Figure 4.38

demonstrates the basic hierarchy form. Here, a dimension hierarchy is defined by its

name and type. A hierarchy type can be simple, multiple, or parallel.

Figure 4.39 shows that a simple hierarchy is defined as a DRILL DOWN element.

158

Figure 4.38: Hierarchy Element.

Also, simple hierarchies can be further sub-divided into three basic types: Symmetric,

Asymmetric, or Generalized. Note that it is possible for simple hierarchies to be

either strict (one-to-many relationships between parent and child nodes) or non-strict

(many-to-many relationships between parent and child nodes).

A DRILL DOWN pathway consists of a possibly nested series of parent/child

relationships. Drill down relationships can be strict or non strict[74, 34](i.e., one-to-

many versus many-to-many). A node has many characteristics: Node Name, Type,

and Mandatory. Each node must have at least one name; however, multiple node

names can be used in generalized hierarchies. The node type can be a root (top

of hierarchy), base (detailed data level), or intermediate level. Finally, by default a

node is mandatory, implying that the hierarchy graph is complete. If a node is not

mandatory, this indicates that a level is in (i) a asymmetric/unbalanced hierarchy

or (2) a ragged generalized hierarchy. Figure 4.39 illustrates the schema of a simple

hierarchy as described above.

Figure 4.40 defines the structure of multiple hierarchies and parallel hierarchies[74,

34]. Multiple hierarchies are defined if we have two or more SIMPLE hierarchies that

share a common criterion of analysis. In an exclusive multiple hierarchy there are no

shared intermediate nodes. Finally, we define the parallel hierarchies that have two

159

Figure 4.39: Simple Hierarchy Schema.

160

Figure 4.40: Multiple and Parallel Hierarchies.

or more SIMPLE hierarchies that have distinct criteria of analysis. This generally

means that each hierarchy has a unique root. In an independent hierarchy, all nodes

other than the base level are unique.

4.8.1.1 Simple OLAP Schema

Because data will be sent to/from the server in XML format, our meta-data storage

is done natively in XML. Figure 4.41 illustrates the XML format of a simple OLAP

environment that corresponds to our OLAP Metadata Grammar defined above. We

can see in Figure 4.41 that we have one database (Concordia University) that has only

one cube called Sales and a “global conformed” dimension called Time. Cube Sales

consists of a measure attribute (Total Sales) of type sum and two features attributes

(CustomerID and DateID) that relate cube Sales with two dimensions (Customer

and Time).

The schema of each dimension is also included. For example, Dimension Customer

has five attributes of mixed types (e.g., Age and City are attributes of type Int

and String respectively) and a generalized hierarchy called distribution. The Time

dimension has five attributes of type Int (Day, Month, Year, Week, and Quarter)

and a multiple hierarchy called (Date). Specifically, The Date hierarchy includes two

161

simple symmetric hierarchies which are: (i) Year (root) → Quarter (intermediate)

→ Month (intermediate) → Day(base) and (i) Year (root) → Week (intermediate)

→ Day (base). Note that the Time dimension is a global conformed dimension and

would not actually be defined as part of any cube, it is defined as a part of the

database. The Customer dimension, however, is a local dimension for cube Sales.

Finally, since we are already using Berkeley DB tools, we employ the Berkeley DB

XML product engine to store the metadata. This allows us to use standard XML

tools such as XPath and XQuery to easily manipulate the data of the OLAP schema.

4.9 Review of Research Objectives

In Section 4.4, we identified a number of research objectives for this chapter. We now

review those goals to confirm that they have in fact been accomplished.

1. Support the creation of a native client-side OOP OLAP query lan-

guage. This is accomplished by means of the definition of a new multi-

dimensional OLAP query algebra and grammar. The grammar, in turn, is

the foundation of a native language query interface that eliminates the reliance

on an intermediate, string based embedded language.

2. Reduce the complexity caused by directly utilizing the relational al-

gebra in the OLAP context (via SQL or MDX). We propose a com-

prehensive multidimensional OLAP algebra that contains a set of cube-specific

OLAP operations. In other words, it is a pure OLAP-aware algebra that directly

exploits Sidera’s conceptual model.

3. Provide the developer with an Object Oriented representation of the

162

Figure 4.41: Sample OLAP Schema.

163

primary OLAP structural elements as well as providing the founda-

tion for a concrete OLAP client query language. We define a DTD-

encoded multidimensional OLAP grammar developed specifically for BI anal-

ysis. Specifically, Sidera provides a pre-processor mechanism that translates

standard OOP source code representing the user’s OLAP query into an XML-

based OLAP query that matches the format of our OLAP query grammar.

4. Support query optimization and execution by means of applying new

multi-dimensional OLAP algebraic laws. By providing various OLAP

laws for our OLAP algebra, we allow the query engine to turn an initial expres-

sion tree representing a user-defined query into a more efficient, but equivalent,

OLAP expression tree. We will see in the next chapter how these laws will be

used to support query optimization and execution.

5. Provide the format of the OLAP metadata. We discuss DTD-encoded

OLAP metadata that defines the format of the schema for our OLAP environ-

ment. Moreover, the metadata is stored in Berkeley DB XML where we can

easily use standard XML tools such as XQuery and XPath to manipulate that

storage.

4.10 Conclusion

In this chapter, we have described a comprehensive multi-dimensional OLAP algebra.

Our algebra — represents all common OLAP operations — reduces the complexity

of using existing relational algebras to write OLAP queries (via SQL or MDX) and

also subsequently allows for the optimization of OLAP queries written in native OOP

languages such as Java. Moreover, we are providing optimization laws and execution

164

algorithms that show how and why an OLAP algebra is a good idea in practice.

In association with the algebra, we have developed a robust DTD-encoded OLAP

query grammar that provides a concrete foundation for client language queries. The

grammar, in turn, is the basis of a native language query interface that eliminates the

reliance on an intermediate, string-based embedded language. Finally, the storage of

the schema is done natively in XML.

In summary, our comprehensive OLAP query algebra (operations and laws), gram-

mar and metadata storage are essential components in the process of resolving OLAP

queries written in native OOP languages. In the next chapter, we will see how these

components, as well as the storage engine discussed in Chapter 3, are integrated with

the query compiler and execution engine to form a pure OLAP DBMS.

Chapter 5

Multi-Dimensional OLAP Query
Processor

5.1 Introduction

In this chapter, we describe an OLAP query processor that efficiently parses and exe-

cutes the OLAP queries discussed in the previous chapter. The parsing and execution

of these OLAP query is of course contingent upon the data storage engine — com-

posed of Sidera, the Berkeley DB and FastBit components — presented in Chapter

3. Recall that the new Sidera server provides a “native language” query facility that

enables one to support native, client-side OOP querying without the need to embed

an intermediate, non-OOP language such as SQL or MDX. Sidera provides persistent

transparency via a source code re-writing mechanism that interprets the developer’s

OOP query specification and decomposes it into the core operations of our OLAP al-

gebra (as previously mentioned in Chapter 4). These operations are given a concrete

form within the OLAP grammar and then transparently delivered at run-time to the

backend analytics server for processing. In this chapter, we focus on an OLAP query

processor that includes a set of components for the efficient resolution of user-specified

OLAP queries.

165

166

The basic process functions as follows. The user defines their query in a completely

object-oriented manner. From here, the query is then compiled on the client’s side,

while the native compiler verifies its syntax. Then, the query is parsed and converted

into a second query that corresponds to our robust OLAP query grammar (discussed

in Chapter 4). After that, the query is written in an XML format and sent to the

backend server. There, we must be able to interpret and execute the query efficiently.

Figure 5.1 illustrates the major steps that must be taken in order to resolve the OLAP

queries effectively. We note at the outset that the work conducted on the client-side

of the Sidera server — for example, the Java Library API and source code parsing

— is being performed by another student. Our focus in this chapter, therefore, is

related to the components of the OLAP query processor (i.e. the query compiler and

execution) which are both found in the backend server. Moreover, in this chapter,

we discuss how the aforementioned XML OLAP query is interpreted and executed

on the backend server in an efficient manner. Figure 5.2 describes our OLAP query

processor in terms of the basic steps that must be taken inside the backend server in

order to parse, optimize and execute a query. The components of the query processor

are:

1. OLAP Query Parser: builds a tree structure from the received XML OLAP

query.

2. OLAP Query Translator: turns the parse tree into an OLAP expression tree

composed of our OLAP algebraic operators.

3. OLAP Query Optimizer: transforms the OLAP expression tree of step 2

into the best physical query plan to be executed against the actual data.

167

Figure 5.1: The major parts of the query processor.

4. OLAP Query-Execution Engine: takes a query-evaluation plan, executes

the given plan and finally returns the answers to the user.

Note that the OLAP query compilation component in Figure 5.1 corresponds to

the first three components of Figure 5.2 (Parser, Translator and Optimizer).

Figure 5.3 illustrates the major steps that must be taken on the backend sever in

order to compile and execute the received XML OLAP queries. Essentially, the figure

itself provides a direct mapping to the steps performed by the server. The following

list gives the main ideas that we shall cover in this chapter.

1. Parsing XML OLAP query: A parse tree, representing the users OLAP

query and its structure, is constructed.

168

Figure 5.2: Sidera Backend Query Processor.

2. Pre-processor: The query is checked to make sure it is semantically valid.

3. Logical Query Plan. The valid parse tree is transformed into an initial logical

query plan (OLAP algebra expression tree).

4. Query rewriter: The initial logical plan is transformed into an equivalent plan

by applying OLAP algebraic laws (discussed in Section 4.7) to it. The resulting

logical query plan is expected to take less time to execute.

5. Physical plan generation: The preferred logical query plan in step 4 is turned

into a physical query plan by selecting an implementation for each OLAP al-

gebraic operator and deciding how results are passed from one operation to

another. It also includes information about how the required dimensions and

cubes are accessed. In addition to this, it indicates the order in which OLAP

operations may be performed.

169

Figure 5.3: Query Compilation and Execution Steps.

6. OLAP Query Execution: The algorithms that retrieve the data from the

Sidera OLAP data storage are executed.

7. Result Set: OLAP queries essentially extract a sub-cube from the original

space. The result of the query will be combined into a XML based package and

returned to the client side.

The chapter is organized in detailed sections. Within Section 5.2, we present

related techniques in the area of OLAP query optimization and execution. Section 5.3

discusses the motivation for our work. A description on how we parse the XML

OLAP query is provided in Section 5.4. In Section 5.5, we discuss the pre-processing

component that checks the semantics of the received OLAP query. We will consider

how the parse tree is converted into an initial logical query plan of OLAP algebra

170

operations in Section 5.6. Then, Section 5.7 will illustrate how the various laws of

Section 4.7 can be applied in order to improve the initial logical query plan. In

Section 5.8, we will discuss how the preferred logical query plan is turned into a

physical query plan. Section 5.9 describes the Sidera query engine, which has the

responsibility for executing each step in the physical query plan. In Section 5.10,

we discuss the structure of the Sidera server. In Section 5.11, we will describe the

structure for the result of the OLAP query. Finally, Section 5.12 is a review of the

chapter’s objectives, with final conclusions provided in Section 5.13.

5.2 Related Work

A query processor (query compilation and execution) is an essential component in any

database management system (DBMS). Specifically, query compilation transforms

user queries into a sequence of database operations, while query execution executes

those given operations. In other words, query compilation itself uses a query optimizer

that can be used to transform a user query into a “query plan” that takes as little

time as possible, while query execution refers to the algorithms that manipulate the

data of the database. In traditional databases, the query optimizer optimizes a user

query using two approaches; (1) rule-based or syntax-based enumeration and; (2)

cost-based enumeration [40].

In the first approach, the query optimizer transforms the user query into an initial

logical plan of relational algebra where one can apply many different relational alge-

braic re-writing rules with the objective of producing the optimized relational algebra

expression plan. For example, since a selection reduces the size of the intermediate

relation results, an important rule is to push the selection down as much as possible

171

in a logical query plan. In the second approach, the query optimizer must turn the

optimized logical relational algebra plan into a physical query plan. This is accom-

plished by considering many different physical plans from the preferred logical query

and estimating the cost of each physical plan. Here, the traditional optimizer must

maintain statistics about the database. The estimated cost of a physical plan depends

on many factors such as the number and composition of records in a given table or

index, the estimated size of intermediate results sizes, access methods, pipelining and

materialization of intermediate results, etc. The physical plan with the least esti-

mated cost is then passed to the query-engine execution, where it must be executed

as a sequence of operations. The traditional query-engine defines the principal meth-

ods for execution of these operations (based on relational algebra operations). These

methods are based on various strategies such as scanning, hashing, sorting and in-

dexing. All of the widely used commercial database management systems (such as

Oracle, Microsoft SQL, etc.) offer this form of traditional query optimization and

execution for their database engines.

In the OLAP context, most of the existing research on the OLAP query processor

focuses on the optimization of complex OLAP queries [9, 45, 16, 22, 17, 24, 70, 26,

46, 92, 109, 82, 100]. The existing publications in this area are divided as follows:

1. Materialized views: OLAP query optimization in most of the existing pub-

lications is based on the materialized views of the fact table [109, 92, 46, 26,

70, 24, 9]. Specifically, the OLAP query optimizer determines the best views

to answer the current OLAP query and then re-write the query against the

selected views.

2. Index schemes : Indexes (such as bitmap, join indexes, etc.) are used to

172

optimize complex OLAP queries [22, 87, 88].

3. Parallel algorithms and Data partitioning: Parallel processing and hori-

zontal and vertical data partitions are also applied to optimize OLAP queries

[16, 22, 100].

4. OLAP-aware query optimization: This technique rewrites OLAP queries

using a multidimensional algebra [17, 45].

Note that the majority of the commercial database products such as Oracle and

Microsoft focus on the first three techniques (1, 2, and 3) in order to optimize OLAP

queries.

In [24], Chaudhuri et al. consider only a limited form of OLAP queries (Select-

Project-Join SPJ queries). They enhance the traditional query optimizer used in

commercial database systems by re-writing the query against the most appropriate

materialized views. Their approach works as follows: a) determine the appropri-

ate views for a given query; b) utilize these given views in order to rewrite many

alternatives and; c) chose the preferred alternative with the smallest estimated cost.

Levy et al. in [70] proves that the complexity of determining the minimal rewriting

query of SPJ queries is a NP-complete problem. They focus on how to substitute the

selected views in order to obtain this given query. The algorithms presented in [2,4]

focus only on the syntax of the query.

Srivastava et al. [109] discussed the rewriting of SPJG (Select-Project-Join-Group-

by) queries into corresponding queries aided by the use of materialized views. Their

algorithms were aware of both syntax and semantics when it came to rewriting queries.

They did not provide an approach to selecting one rewrite amongst multiple rewrites,

173

nor did they provide experimental results. In [9], the authors improve efficiency for

query optimization processes. In short, their algorithm minimizes the number of

alternative rewrites considered.

Finally, in [82], the authors improve the syntactic query rewrites by making use

of metadata in order to determine the best view to answer a query. By the end of

this process, the query can be rewritten by means of using the selected view and then

finally applying the traditional query optimization. It is important to note that the

studies in [109, 92, 46, 26, 70, 24, 9, 82] are not OLAP-aware query optimizations, as

they are built and erected on top of traditional relational query optimizations.

In contrast to the above non-OLAP aware query optimization techniques, Bella-

treche et al. in [17, 45] propose a pure OLAP optimization technique that rewrites

OLAP queries by means of using a multidimensional OLAP algebra. Specifically,

they define a multidimensional algebra that represents the core of their optimization.

They provide a set of re-writing rules (similar to those on relational algebra) for each

OLAP operator in their algebra. Also, they define a cost based model to measure

the cost of a given plan. Optimization is achieved by re-writing the OLAP query

using a set of multi-dimensional re-writing rules (similar to the rule base enumeration

in relational database) in order to produce the best logical plan. In addition, their

optimization algorithm takes into consideration the cubes on screen output format.

That being said, their technique does not utilize materialized views, nor do the au-

thors report any experimental results. Moreover, no algorithms were provided for

OLAP operations. Finally, they did not take the physical definition of the algebraic

operators into account.

The query optimization discussed in this chapter is based upon the same concepts

174

in [17, 45]. However, algorithms for each OLAP algebraic operators in our OLAP

algebra are provided. Also, a final OLAP physical plan of the optimized OLAP

logical query plan is constructed. Experimental results are reported to demonstrate

the efficiency of our work. To the best of our knowledge, in an OLAP environment,

no pure OLAP query processor — compiler and execution — has yet to be proposed

to answer native OOP OLAP queries. When we say “pure,” we are implying that

all server components are directly related to the OLAP environment (OLAP query

optimization, OLAP execution, cubes, multi-dimensional indexes, etc.).

5.3 Motivation

In fact, the Sidera server is intended to be a pure OLAP DBMS. Having discussed

the Sidera OLAP storage manager and query language, it is now necessary to present

the associated OLAP query processor. Construction of an OLAP query processor

is a complex task, involving not only OLAP query execution — the algorithms that

manipulate the data in the OLAP data storage — but also the OLAP query compi-

lation process that parses and optimizes a given OLAP query . In the remainder of

this chapter, we present an OLAP query processor component for the Sidera server

designed to achieve the following objectives:

1. Parse the received OOP OLAP query written in XML format such that an

internal parse tree is created if the query is syntactically and semantically valid.

2. Provide an initial OLAP logical query plan that can be easily optimize later.

Specifically, we convert the parse tree into an initial logical query plan composed

of our OLAP algebraic operators.

175

3. Produce an improved OLAP logical query plan (i.e., one that requires less time

to execute).

4. Pick the OLAP physical query plan with the smallest estimated cost. We con-

sider many OLAP physical plans constructed from the OLAP logical plan. We

propose a multidimensional cost model that allows us to evaluate and estimate

the cost of each OLAP physical plan. Using our multidimensional cost model,

we choose the plan with the least estimated cost and pass it to the query exe-

cution component.

5. Provide efficient algorithms for implementation of the operations of our OLAP

algebra.

6. Allow for simple manipulation of the cube results. Our OLAP server exposes

the result in a logical, read-only multi-dimensional array.

In the remainder of this chapter, we present the details of our new OLAP query

processor that supports the efficient execution of native OOP OLAP queries. At the

conclusion of this chapter, we will review this list of objectives and check the degree

to which these objectives have been reached.

5.4 Parsing OLAP XML Queries

In Section 4.3, we saw an example of what the user’s Java OOP OLAP query might

look like. Our research actually commences once the OLAP query is translated to

the XML format and sent to the Sidera server. Specifically, the received XML OLAP

query must first be parsed to produce the initial tree. In this section, we discuss

parsing of Object Oriented OLAP queries written in XML format. In fact, we present

176

Figure 5.4: OLAP XML query to parse tree

two levels of parsing, as sketched in Figure 5.4. First, a DOM parser is used to produce

the DOM tree [32]. Second, the Sidera parser is used to traverse the DOM tree and

produce a parse tree.

5.4.1 DOM Parsing

The DOM parser parses the XML OLAP query into tags and verifies that it matches

our newly developed OLAP query grammar. It inserts tags into a DOM graph/tree.

The XML DOM module actually parses the OLAP XML query for us. It verifies

that the XML query is syntactically correct and subsequently creates an internal tree

representation. Because our server (Sidera) is written in C/C++, we use the Xerces-

C++ XML DOM parser to create the DOM graph/tree. Xerces-C++ is a validating

XML parser, written in a portable subset of C++ [112].

Recall that Figure 4.5 provides a simple Object Oriented OLAP query that can

be written by the client. Also, Figure 4.21 illustrates the XML format that is received

on the Sidera backend server for the OOP OLAP query in Figure 4.5. Note that this

XML OLAP query corresponds to the OLAP query grammar described in Chapter 4.

Specifically, one can see the projection attributes (product type, customer province

177

and Quantity Ordered) and the user’s query restriction (i.e., Selection).

The DOM parser verifies that the syntax of the OLAP query corresponds to our

DTD-encoded OLAP query grammar. If the syntax of the OLAP query does in

fact match the query grammar, then a DOM graph/tree that represents the received

OLAP query is created by the DOM parser. An example of the tree corresponding

to Figure 4.21 is shown in Figure 5.5.

Figure 5.5 illustrates the DOM graph/tree that is produced by the DOM parser.

The root node <QUERY> holds one <DATA QUERY> node. The <DATA QUERY>

node holds two nodes, <CUBE NAME> and <OPERATION LIST>. The element

node <CUBE NAME> holds a text node with the value Order. The <OPERATION LIST>

node holds two nodes which are <SELECTION> and <PROJECTION>. We can see

the display attributes and the measure(s) that are defined under the <PROJECTION>

element. The <SELECTION> node has one <DIMENSION LIST> that holds

one <COMPOUND DIMENSION>. The <COMPOUND DIMENSION> has two

<DIMENSION LIST> nodes that are connected with an AND operator. A dimen-

sion restriction is specified under each <DIMENSION LIST>. Due to the space lim-

itation, Figure 5.5 shows only the condition on dimension Customer from the XML

query in Figure 4.21. The restriction on dimension Time should be added under

<DIMENSION LIST>.

5.4.2 Sidera Parser: DOM graph to Parse Tree

After the DOM tree has been built, the DOM parser verifies that the received OLAP

XML query has valid syntax corresponding to our OLAP query grammar. The Sidera

parser is used to traverse the DOM graph/tree and to determine the type and the

meaning of each node. In other words, it is used to convert the XML DOM graph/tree

178

Figure 5.5: XML DOM graph/tree

179

to an internal parse tree representing the structure of the query. The purpose of this

process is to convert the XML OLAP query into a very simple and minimized parse

tree that represents the structure of the query in a compact but expressive form.

Our parser converts the DOM graph into an internal parse tree by removing all

extraneous DOM nodes that are not needed to execute and optimize the query. For

example, the DOM graph of Figure 5.5 is converted into the internal parse tree of

Figure 5.6. Working down the tree in Figure 5.6, we can see that this parse tree is

equivalent to the OLAP query represented in XML format. Specifically, it is exe-

cuted against cube Order and consists of two OLAP operations (selection and pro-

jection). The projection operation consists of dimension attributes: Product.Type,

and Customer.Province as well as one measure attribute: Quantity Ordered.

The selection operation within this parse tree consists of conditions on dimensions

Customer (i.e., Age > 40) and Time (Year = 2007 AND Month IN RANGE May

October). Note that this parse tree is produced from top to bottom and essentially

consists of the operation list and the details of each operation.

5.5 The Pre-processor: Semantic checking

The tasks of the parser in the previous section are to take an XML OLAP query, to

convert it to a parse tree and to check if it is syntactically valid. Even if the query is

syntactically valid, however, it may violate one or more semantic rules on the use of

names, expressions, etc. The pre-processor is responsible for semantic checking. In

short, it must check the OLAP query against the OLAP schema definition as follows:

1. Cube name. Every cube mentioned under the <cube name> element must be

a cube in the OLAP schema against which the query is executed. For example,

180

Figure 5.6: Parse Tree.

181

there would be a semantic error within the parse tree of Figure 5.6 if the cube

name Order does not exist in the OLAP schema.

2. Dimension uses. Every dimension name mentioned under any OLAP oper-

ations such as selection, projection, etc. must be a dimension in the schema

of the cube mentioned under the cube name. For instance in Figure 5.6, the

Order cube must have Product, Customer, and Time dimensions; otherwise a

semantic error would be produced.

3. Attribute uses. Every attribute that is mentioned under the dimension

must be an attribute of that dimension. Likewise every attribute under the

<measure name> must be defined as a measure attribute in the cube specified

under <cube name>. For example, in Figure 5.6, Type must be an attribute

of dimension Product in cube Order and Quantity Ordered must be defined as

a measure attribute in cube Order.

4. Compatibility. UNION, INTERSECT, and DIFFERENCE operations are

applied between two OLAP queries. The results of two OLAP queries generated

by any of the three above mentioned operations must be compatible. They

must have the same number of attributes (features and measures), while each

corresponding pair of attributes should have the same domain.

5. Hierarchy uses. Every dimension name that is used under the change level

operation must have at least one hierarchy. One must also be certain that the

target level is a valid level of the hierarchy.

6. Types. All attributes that are mentioned in the condition of the selection

operation must be of a type compatible to their use. For instance, Age in

182

Figure 5.6 is used in the > (Greater Than) comparison. Since the attribute

Age is of type integer, we must ensure that the other operand is also a numeric

type.

7. Operation uses. Each operation can appear at most once under the <data query>

element. The projection should exist under any <data query> because it de-

termines the schema of the output result. The CHANGE LEVEL and the

CHANGE BASE cannot be used within the <data query> due to the fact that

they are applied to a result set.

Semantic checking relies extensively on the schema of the OLAP environment.

In section 4.8, we explained in detail how the schema of the OLAP environment is

natively written in XML. If all semantic tests are passed, then the parse tree is said

to be valid and is sent to the logical query plan generator.

5.6 From Parse Trees to Logical Query Plans

In Section 5.4, we constructed the parse tree for an OLAP query. In this and the fol-

lowing section, we will explain how to turn this tree into a more efficient logical query

plan. There are two steps, as sketched in Figure 5.3. The first step is to convert the

parse tree into an initial OLAP algebra expression and the second step is to optimize

this initial OLAP algebra expression prior to query execution. In this section, we

will explain how the user’s native OOP OLAP query, that is now represented in an

internal parse tree, is translated into an OLAP algebra expression. We note that the

primary advantage of using an OLAP algebra is that it makes alternative forms of an

OLAP query easier to explore and optimize (e.g., push operations, pull up, etc.).

183

We note at the outset that due to the enormous effort required to implement a

complete DBMS query optimization engine, the following sections focus primarily on

the theoretical framework for this mechanism within an OLAP setting. In Chapter 6

(i.e., Experimental Results) we will explicitly clarify those components of the engine

that have been physically implemented in the current system.

5.6.1 Conversion to Initial OLAP Logical Query Plan

We shall now describe basic rules for transforming the OLAP parse tree outlined in

the previous section into an initial OLAP logical query plan. The first point to note

is that the order of operations (<selection>, <change level>, etc.) in the parse tree

under the <data query> element plays an important role in creating the initial OLAP

logical query plan. Recall that the pre-processor of Section 5.5 ensures that a valid

parse tree must have under any <data query> element one Projection and/or one or

more distinct OLAP operations (still taking into consideration that change level and

change base cannot be used within the same line of operation). If we have an OLAP

data query that has no binary operations (such as drill across, union, intersection

or difference), then we may replace the parse tree expression by an OLAP algebra

expression that consists of the following (working from the bottom upwards):

1. The bottom of the tree is the cube mentioned under the <cube name> element.

2. One must read the OLAP operation(s) under <data query> from right to left

and push its equivalent OLAP algebra operator into the logical parse tree.

Note that we read from right to left to ensure that the projection operation

that determines the schema of the result is on the top of the logical query plan.

184

For example, if we have an OLAP data query that consists of <projection>,

<selection> and <change level> — specifically expressed in this order — then we

may replace the parse tree expression by an OLAP algebra expression consisting of,

from bottom to top:

1. Cube name mentioned under the <cube name> element.

2. CHANGE LEVEL(LI → LO), where LI and LO are two lists of feature at-

tributes specified under the <change level> operation.

3. SELECTION(C), where C is the query restriction defined under the <selection>

element. If we consider the parse tree of Figure 5.6, then C is equivalent

to [Customer (Age > 40) AND Time (Year = 2007 AND Month

IN RANGE May, October)].

4. PROJECTION(L), where L is the list of feature and measure attributes men-

tioned under the <attribute list> and the <measure list> elements. For ex-

ample, L is (Quantity Ordered, Product.Type, Customer.Age) in Fig-

ure 5.6.

If we have an OLAP query that has binary operations (e.g., union, intersect), then

we have to first apply the above rules for the unary operations (selection, projection,

change level etc.). The result is considered to be the current OLAP algebraic expres-

sion tree. From here, one should read the binary operations from left to right and place

them in the OLAP algebraic expression tree relative to the current OLAP algebraic

expression tree. For example, if a parse tree expression has the OLAP operations

<projection>, <union>(DataQuery1), <selection>, <intersection>(DataQuery2),

185

Figure 5.7: Initial OLAP Algebra.

and <change level> (in this order) under <data query>, then we may replace them

by an initial OLAP algebra expression depicted in Figure 5.7, as follows:

1. Cube name mentioned in the <cube name>

2. CHANGE LEVEL(L)

3. SELECTION(condition(s))

4. PROJECTION(attribute(s))

5. The combination of the above four elements (called R) is considered as an

argument to UNION. R1 = R UNION DataQuery1.

6. R1 INTERSECT DataQuery1, where R1 is the result of step 5.

Let us consider the OLAP parse tree of Figure 5.6. The bottom of the tree is the

cube Order. We begin by taking the selection of the condition in the sub-tree rooted

186

Figure 5.8: Translation of the parse tree of Figure 5.6 to an initial OLAP algebra tree

at <selection>, and projecting it into the <projection>, product type, customer

province and Quantity ordered. The resulting algebraic representation is found

in Figure 5.8. It is important to recognize that while an OLAP data query physically

requires explicit joins between group-by (measure) and dimension tables in order to

exclude cube rows for the cube content, there is no such requirement at this logical

level.

5.7 Improving the OLAP Logical Query Plan

In Section 5.6, we explained how to convert our OLAP query into an initial OLAP

algebra logical query plan. The next step, as sketched in Figure 5.3, is to rewrite

the initial logical plan using the OLAP algebraic laws outlined in Section 4.7. In

this section, our intent is to apply some of these algebraic laws to produce a better

logical query plan. We note that in Chapter 6 we will provide experimental results

that demonstrate the value obtained by enhancing the initial plan.

The following are the algebraic laws most commonly used in our OLAP query

optimizer to improve OLAP logical query plans:

187

• As was discussed in Section 4.7, LAW 4 (Pushing law) states that a selection

should be pushed down the expression tree as far as it can go. However, we

saw in Section 4.7 (LAW 2) that in some situations it is necessary to first pull

the selection up and then down. If we have two or more consecutive selections,

we may then replace them by only one selection with the conjunction AND

linking both conditions together (LAW 2). LAW 2 and LAW 4 are the most

important rules for efficient query processing since they tend to reduce the size

of intermediate cube results.

• A selection result depends on inner/natural joins between the cube and dimen-

sion tables in order to exclude cube rows that don’t satisfy the query restriction.

We use LAW 1 to eliminate the inner joins between cubes and dimension tables.

This strategy significantly reduces cube processing time.

• Similarly, PROJECTION must be pushed down the tree in the case of CHANGE LEVEL

or CHANGE BASE (LAW 6).

• We apply LAW 8 if we have a CHANGE BASE(x)(PROJECTION(L) C). This

rule allows us to reduce the number of OLAP operations in the OLAP expression

tree.

• We introduce a new PROJECTION if a PROJECTION follows a SELECTION

(LAW 5). Introducing a new PROJECTION reduces the size of cubes because

it eliminates dimension members from the cube and aggregates the resulting

cube if necessary.

• We use LAW 7 to defer joins between cube(s) and dimension tables. We project

onto the feature attributes that are stored in the cube instead of accessing

188

dimension tables to project onto the required dimension attributes.

• We can replace several consecutive CHANGE LEVEL operators by one CHANGE LEVEL

(LAW 11).

• We apply either LAW 9 (pulling up the CHANGE LEVEL) or LAW 10 (push-

ing down the CHANGE LEVEL) in order to reduce the size of intermediate

results.

• Finally, we apply LAW 13 (trivial laws) if necessary.

Let us consider the query of Figure 5.8. The effect of applying our algebraic

transformation laws is shown in Figure 5.9. The laws are applied as follows:

• We use LAW 1 to eliminate the inner join between Order and dimension tables

(Customer and Time). The resulting selection operation can be written as:

SELECTION(Customer.CustomerID = x AND Time.TimeID = y) where x is

all CustomerIDs that have (Age > 40) and y is all TimeIDs in 2007 (Year) and

between May and October (Month).

• We introduce a new PROJECTION below the SELECTION (LAW 5). The new

projection is defined as: PROJECTION(Customer.CustomerID, Time.TimeID,

Product.ProductID, Quantity Ordered).

• Finally, we use LAW 7 to split PROJECTION(Product.Type, Customer.Province,

Quantity Ordered) into CHANGE LEVEL(Product.ProductID→ Prod-

uct.Type, Customer.CustomerID⇒ Customer.Province) and PROJEC-

TION(Product.ProductID, Customer.CustomerID, Quantity Ordered).

189

Figure 5.9: The effect of query rewriting.

The above query consists of only PROJECTION and SELECTION. However, the

same mechanism can, of course, be applied to more complex queries. As a concrete

example we consider the OLAP query of Figure 5.11 against the cube (Sale) that is

depicted in Figure 5.10. The cube Sale is a four dimensional cube with two mea-

sure attributes (Quantity Ordered and Units Sold) and four feature attributes. The

data in the Sale cube stores the most specific details of each given dimension (e.g.,

ProductID, TimeID). The hierarchy in each dimension is indicated in bold. For ex-

ample, Product has a hierarchy: ProductID (Base level) → ProductNumber → Type

→ Category(Root level). Moreover, the primary keys are underlined. The query in

Figure 5.11 can be translated to English as (i) the total units sold grouped by the

product category, store city, month, and year in year 2007, (ii) intersect the result in

(i) with the total units sold in store located in the Monteral city, (iii) perform the

union of (ii) with the total units sold in January and for all customers who are 40

190

Figure 5.10: Cube Sale Schema.

years old. Finally, return the drill across of the total units sold in (iii) against the

total Quantity ordered grouped by product category, store city, month, and year. In

Figure 5.11, the query is represented in a simple string format for illustrative purpose.

We turn the query of Figure 5.11 into an initial logical query plan by applying the

rules that were discussed in Section 5.6. The resulting OLAP initial logical algebra

is shown in Figure 5.12.

Now consider the query plan in Figure 5.12. Figure 5.13 illustrates the effect of

our OLAP logical query optimizer. Laws are applied as follows:

• We use LAW 4 to push the SELECTION below the CHANGE LEVEL opera-

tion.

• We pull up the two selections under the INTERSECTION operation.

• We use LAW 2 to combine the two SELECTIONS into one SELECTION with

the conjunction of the arguments (Time.Year = 2007 AND Store.City = Mon-

treal).

191

Figure 5.11: Complex OLAP query in a simple string form.

• We use LAW 4 to push the SELECTION down the tree because all attributes

that are mentioned within the SELECTIONs are in the output of the INTER-

SECTION (Time.Year and Store.City).

• We use LAW 1 in order to eliminate the join between the Sale cube and the

dimension tables (Customer, Product, etc.).

• We use LAW 6 to push the PROJECTION down the tree.

• We use LAW 8 to combine the CHANGE BASE and the PROJECTION.

• We introduce a new PROJECTION by using LAW 5.

• LAW 7 is used to split and replace the PROJECTION into PROJECTION and

CHANGE LEVEL.

192

Figure 5.12: Initial OLAP Logical Query Plan of Complex Query in Figure 5.11.

193

• we replace many CHANGE LEVELs into only one CHANGE LEVEL (LAW 11).

• Because the CHANGE LEVEL involves only the Roll Up operation, then in

this example we use LAW 10 to push this operation down the tree.

• Finally, we use the trivial law (LAW 13) between the INTERSECTION of two

equivalent result cubes.

5.8 OLAP Physical Query Plan Generation

After the preferred OLAP logical query plan has been constructed, we must next

transform it into a physical plan. The process is as follows: (i) we transform the

logical query plan into several physical plans and (ii) estimate the cost of each. The

physical plan with the least estimated cost is selected and passed to the query engine

to be executed. We note that, in practice, we need not physically materialize each

of the alternative plans. Rather we at each stage of the process, we choose from a

number of possible alternatives.

The cost of each physical plan is affected by the following factors:

1. Sizes of intermediate cube results.

2. Order and grouping of commutative and associative OLAP operations: UNION,

INTERSECTION, and DRILL ACROSS.

3. An implementation for each OLAP algebraic operator in the preferred OLAP

logical plan.

4. How the required dimensions and cubes are accessed, for example, whether there

is a scan access or an index access.

194

Figure 5.13: A preferred OLAP logical query plan showing the effects of our OLAP
query optimizer on Figure 5.12

195

5. The introduction of physical operators (e.g., sorting, mapping) that are not

explicitly defined in the logical OLAP query plan.

6. How results are passed from one operation to another.

The estimations of the physical plans are based on data parameters — see Fig-

ure 5.14 — in the cubes and dimension tables. As previously alluded to in Chapter

4, our OLAP algebra is implicitly read only. User-defined modifications cannot be di-

rectly conducted within the given database as database updates can only be performed

via distinct ETL processes. Therefore, these parameters are precisely computed from

the data itself. The goal of the query optimizer (Query rewriter and Physical plan

generation) is to minimize the response time for a given query. The above mentioned

points are used by the query optimizer to heuristically construct a good physical plan

from the preferred logical query plan (discussed in the previous section). However, as

it is the case with any heuristic approach, it is possible that the cost model does not

result in the absolute best query plan. In fact, this is no different than the case with

relational DBMS optimizers. In this section, we utilize the points mentioned above

in order to choose one physical plan to be executed by our query engine. In practice,

there is relatively little difference between the various “good” plans. The goal then is

to avoid the obviously “bad” plans.

5.8.1 Estimating Sizes of intermediate Cubes

The cost of the physical plan is influenced by the size of the intermediate cubes in

the query plan. We present a number of simple rules to estimate the number of

cells that exist in an intermediate cube result. Ultimately, the size of each operation

is the estimated number of cells in its output cube. Note that the size estimation

196

Figure 5.14: Notation for the size of cubes and dimension tables.

is used to help select a physical plan and not to return the exact plan size. It

is important to mention here that this is similar to what is done when optimizing

relational queries. In our case, however, we are optimizing multi-dimensional OLAP

queries. As noted, the preferred OLAP logical query plan discussed in Section 5.7 does

not have a CHANGE BASE operator as it is replaced with other OLAP operators

(LAW 8). Thus, we do not need to give an estimation of the result of this operation.

5.8.1.1 Estimating the Size of a PROJECTION

The projection is the identification of presentation attributes, including both the mea-

sure attribute(s) and dimension members. Since the aggregated values in the result of

the PROJECTION must be re-calculated as required, we must estimate the number

of cells in the output. In the extreme case, the size (number of cells) of outputCube

= PROJECTION(Dim(s).Attribute(s), Measure(s)) C could be 1 if all cells are dupli-

cated (the output cells have the same dimension member values) or as large as the size

of cube C (if no duplicate in dimension members’ values exists). Another way to get

197

the maximum number of cells that could exist in the result of PROJECTION is the

CP(outputCube) (i.e., the cardinality product of the result cube). That number could

be greater than the number of cells in the input cube C. Consequently, we estimate

the number of cells in outputCube by taking the smaller between (i) NC(outputCube)

= NC(C)/2, and (ii) NC(outputCube) = RC(C) * CP(outputCube). Recall that NC

is the number of cells in the cube, RC is the ratio of actual cell in the cube and CP

is the cardinality product in the cube.

To illustrate the extreme cases of the PROJECTION operation, consider a three

dimensional cube (CUBE) with three feature attributes (A,B,C) and only one measure

attribute (M). Suppose that CUBE(A,B,C,M) has three cells which are: (5,2,3,200),

(5,2,8,150), (5,2,9,100), then the result of (PROJECTION(A,B,M)CUBE) is only one

cell which is (5,2,450). However the result of PROJECTION(A,C,M) is three cells

which are (5,3,200), (5,8,150),(5,9,100).

Suppose that Sale(Product.Type, Time.Month, Location.Province, Store.Name ,

Units Sold) is a four dimensional cube. Let V(Product, Type) = 5, V(Time, Month)=

6, V(Location, Province)= 4, and V(Store, Name) = 8. Also, let NC(Sale) = 384

cells. Then RC(Sale) = NC(Sale) /CP(Sale) = 384/5*6*4*8 = 0.4 (or 40%). Assume

that we want to estimate the result of outputSale, such that

outputSale = PROJECTION(Product.Type, Time.Month,Units Sold)Sale,

then we take the smaller of the following two estimates:

• NC(outputSale) = NC(Sale)/2 = 384/2= 192 cells

• NC(outputSale) = RC(Sale) * CP(outputSale) = 0.4*5*6 = 12 cells

Our best estimate for the number of cells in outputSale is 12.

198

5.8.1.2 Estimating the Size of a SELECTION

When we have a selection operation, then the number of cells in the result is re-

duced. As was illustrated in the previous section, SELECTION in the logical query

plan involves only an equality comparison between a feature attribute(s) and a set

of constant(s) (e.g., Product.ProductID = x, where x is all ProductIDs satisfying

the user’s restriction on dimension Product). For illustrative purposes, we consider

the kind of a SELECTION where one feature attribute equals a set of values. Let

selectionCube = SELECTION(D.F = x) C, where D.F is a feature attribute of cube

C and x is a set of constants. If a value (v) of feature attribute (D.F) equals any

value in x then the condition is satisfied and v will be in the result of the query. |x|

is the number of constants in a set x. The logic behind the SELECTION estimate is:

V(D,F) values of attribute F in dimension D, there are NC(C) cells. Here, with |x|

values for attribute F in dimension D, there are NC(C)*|x|/V(D,F) cells. Then our

estimate of NC(selectionCube) is: NC(selectionCube) = NC(C) * |x|/ V(D, F).

Several equality comparisons in the SELECTION operation are connected via

logical operators (AND or OR). If several conditions in the selection are connected

via AND(s), then we can treat them as a cascade of simple selection conditions. Let

selectionCube = SELECTION(D1.F1 = x AND D2.F2 = y)C, then our estimate of

the number of cells in selectionCube is: NC(selectionCube) = NC(C) * |x|/V(D1,F1)

* |y|/V(D2, F2). When the SELECTION operator involves an OR, let selectionCube

= SELECTION(D1.F1 = x OR D2.F2 = y) C. Here, we can simply estimate the size

of the result as the sum of cells that satisfy D1.F1=x and those that satisfy D2.F2=y.

That sum could be greater than the number of cells in cube C. If so, then we take

the number of cells in cube C as an estimation of NC(selectionCube).

199

Consider the four dimensional cube (Sale) mentioned in the previous sub-section

with all parameters. Assume that selectionCube = SELECTION(Location.Province=

x AND Time.Month =y) Sale, where x is a set of constants with 3 different values(e.g.,

Quebec, Ontario, and Alberta), and y is a set of constants with 4 different values (e.g.,

March, April, July, and October). Our best estimate of NC(selectionCube) is:

NC(selectionCube) = NC(Sale) * |x|/V(Location, Province) * |y|/V(Time, Month)

= 384 * 3/4 * 4/6 = 192 cells.

5.8.1.3 Estimating the Size of UNION, INTERSECTION, DIFFERENCE

We have developed reasonable estimating techniques for the PROJECTION and the

SELECTION operations. In this sub-section, we shall give some techniques for the

estimation of the set operations: (UNION, INTERSECTION, and DIFFERENCE).

These operations are called binary operations because they need two arguments that

are themselves cubes.

UNION The number of cells in the result of UNION can be as large as the

number of cells in both cubes or as small as the larger number of cells of the two

cubes. One reasonable approach would to choose the average of the larger cube

plus the average of both. Suppose we have two cubes C1 and C2, where NC(C1) >

NC(C2), then the number of cells of resultUnion =C1 UNION C2 is:

NC(resultUnion) = (NC(C1)+NC(C2))/2 + NC(C1)/2 = NC(C1) + NC(C2)/2

INTERSECTION At the extremes, the result of INTERSECTION can have

zero cells or can possess the number of cells in the smaller of the two arguments of

INTERSECTION. We suggest taking the average of the extremes, which is half of

200

the smaller. Consider two cubes, C1 and C2, the number of cells in resultIntersection

= C1 INTERSECTION C2 is:

NC(resultIntersection) = NC(C2)/2

DIFFERENCE If no cells of the first argument appear in the second argument,

then the number of cells of the result equals the number of cells of the first argument.

If all cells of the first argument appear in the second argument, then the number of

cells is equal to the number of cells of the first argument minus the number of cells of

the second. So for resultDifference = C1 DIFFERENCE C2, the number of cells of

the resultDifference is between NC(C1) and NC(C1) - NC(C2). Therefore, we suggest

as an estimate the following:

NC(resultDifference) = NC(C1)/2 + (NC(C1) - NC(C2))/2 = NC(C1) - NC(C2)/2.

5.8.1.4 Estimating the Size of a CHANGE LEVEL

As noted, we typically refer to this operation as the “roll-up” and the “drill down”

analytical technique. Cells of the CHANGE LEVEL operation must be re-calculated

accordingly. Again, we don’t know the number of cells of the result, so we must

produce an estimate. In the extremes, the number of cells of resultChangeLevel =

CHANGE LEVEL(D.a1 → D.a2)C could be the same as the number of cells of C

(non-duplicate cells in the result) or as small as 1 (all cells in the result are the

same). Another upper limit on the number of cells of resultChangeLevel that could

exist is CP(resultChangeLevel), which could be smaller than the number of cells in

C (NC(C)). We have to consider three possible estimates:

1. Roll-up: Take the smaller of NC(C)/2 or CP(resultChangeLevel)*RC(C).

201

2. Drill-Down: Take the larger of NC(C)/2 or CP(resultChangeLevel)*RC(C).

3. Roll-up and Drill-Down: Take the average of the two numbers (i)NC(C) and

(ii)CP(resultChangeLevel)*RC(C). The result equals (NC(C)/2 + (CP (re-

sultChangeLevel) *RC(C))) / 2.

Consider the Sale cube discussed in sub-section 5.8.1.1, and assume that we have

the following CHANGE LEVEL operation:

resultChangeLevel = CHANGE LEVEL(Product.Type → Product.Category,

Time.Month → Time.Day)Sale.

Let V(Product,Category) = 2, and V(Time,Day)=16. CHANGE LEVEL in this ex-

ample consists of an OLAP roll-up operation from Product.Type to Product.Category

and an OLAP drill-down operation from Time.Month to Time.Day. Our estimate

of NC(resultChangeLevel) is the average of the following two numbers because the

CHANGE LEVEL involves Roll-up and Drill-down operations:

1. NC(C)/2= 384/2 = 192 cells

2. CP(resultChangeLevel) * RC(C) = 2 * 16 * 4 * 8 * 0.4 = 164 cells.

Our best estimate of NC(resultChangeLevel) is (192+164)/2 = 178 cells.

5.8.1.5 Reducing the Cost of the Logical Query Plan

We have already discussed in Section 5.7, how several OLAP algebraic laws (i.e.,

LAW 4 pushing SELECTION) can be applied to improve the cost of an OLAP logical

query plan, independent of the cost estimation discussed in this section. When the

preferred logical query plan is being generated, it may be possible to apply certain

202

Figure 5.15: Cube Sale statistics.

transformations and measure the cost (of intermediate results) before and after. At

this step, the cost of the logical query plan is the sum of all intermediate estimated

cube result sizes (number of cells).

An example will illustrate the process. We use the same data cubes and dimensions

of sub-section 5.8.1.1. Let the statistics for the cube Sale and dimensions Product,

Customer, Time, and Store be as outlined in Figure 5.15. Consider the initial OLAP

logical query plan of Figure 5.16. To generate the preferred logical query plan, we

apply the rules mentioned in Section 5.7 to the initial logical query plan. However,

we are not sure whether using LAW 9 or LAW 10 reduces the total cost (in terms

of intermediate results sizes) of the logical plan. So we transform the initial OLAP

logical query plan into the two logical query plans shown in Figure 5.17; they produce

the same result but they differ in whether we pull or push the CHANGE LEVEL

operator.

We already explained how to estimate the size of the results of the SELECTION,

PROJECTION, DIFFERENCE, etc. in the previous sections. We compare the two

plans from Figure 5.17 by adding the estimated sizes for all the intermediate nodes

(cube results). For plan 5.17(a), the estimated cost is 7200 + 1200 + 600 + 600 +

300 = 9900, while for plan 5.17(b) the estimated cost is 7200 + 1200 + 600 + 600

203

Figure 5.16: Logical query plan for an OLAP query defined by our OLAP grammar.

+ 300 + 300 = 10200. Thus, we conclude that pulling the CHANGE LEVEL is a

better plan in this case. However, we would come to the opposite conclusion if the

result of (V(Time, Month) * V(Product, Type) * RC(Sale)) is less than 150.

5.8.2 Choosing an order for binary operators

In this section, we consider a very important issue in our OLAP cost-based physical

plan selection: ordering and grouping of similar binary operations on three or more

cubes (such as DRILL ACROSS, UNION and INTERSETCION). We discuss in detail

how to determine an efficient processing order for evaluating the UNION of more than

two cubes and also give examples showing how the good choice of the UNION order

is important in terms of costs. Similar arguments can be applied to other associative

and commutative binary operations in our OLAP algebra such as DRILL ACROSS

and INTERSECTION. For simplicity, we will assume that the left argument of the

binary operator will be the one that possesses the least number of cells. The UNION’s

associativity and commutativity gives us many equivalent evaluation plans. Note that

204

Figure 5.17: Two candidates (a) and (b) for the preferred Logical query plan in
Figure 5.16.

205

Figure 5.18: Three ways to union four cubes.

there are n! ways to order n elements. If a UNION is applied to n arguments (cubes),

then the total number of possible ways to order and group the expression is n!*(n-1).

For example, Figure 5.18 shows three of the (4!*3) possible ways to order the union

of four cubes: C1, C2, C3, and C4. Note that a similar analysis is used with respect

to the ordering of join operation in a relational query plan.

In our OLAP query optimizer, we have chosen to use a relatively simple heuristic

to choose an order for the UNION of many cubes. Specifically, we use a “greedy

algorithm” heuristic for UNION ordering. A greedy algorithm always makes the best

choice at a specific moment rather than explicitly seeking a global optimum (i.e.,

dynamic programming techniques) [48, 33]. The greedy choice is between all possible

unions at any given point in time. It works as follows:

• Select two cubes whose estimated UNION size is smallest. The union of these

cubes becomes the current plan.

• Select a cube (C), not yet in the current plan, where the union of C with the

current plan has the smallest estimated size. The new current plan has the old

plan as its left argument and the selected cube (C) as its right argument.

206

Figure 5.19: (a) Initial plan tree with cost (5400). (b) Optimized plan tree with cost
(2850).

Consider the UNION of four data cubes (C1, C2, C3, and C4). The sizes (number

of cells) of cubes are: NC(C1) = 2000, NC(C2) = 800, NC(C3) = 1200, NC(C4) =

600. The greedy algorithm begins by finding the pair of cubes that have the smallest

estimated union size. As was illustrated, the estimated number of cells of the UNION

operation is the size of the larger cube plus half the smaller. Therefore, we have

currentPlan = C4 UNION C2, with the number of cells equal to (600 + 800/2) =

1100 cells. We now consider whether to UNION C1 or C3 with the currentPlan. We

select C3 because it leads to a smaller estimated cost. Thus, the new currentPlan is

(C4 UNION C2) UNION C3. The size of the currentPlan is 1100 + 1200/2 = 1750.

Finally, there is no choice; we must union the currentPlan with C1. The final plan is

((C4 UNION C2) UNION C3) UNION C1, with a cost of 1750 + 1100 = 2850, the

sum of the number of cells of the intermediate cube results.

Conversely, let us assume that the initial plan is ((C1 UNION C2) UNION C3)

UNION C4. Here, the cost becomes (2000 + 800/2) + 2400 + 1200/2 = 2400 +

3000 = 5400. The optimized cost is 2 times smaller than the cost of the initial plan.

Figure 5.19 describes the initial and the optimized plan trees.

207

5.8.3 Implementations for OLAP algebraic operators

In addition to all the steps mentioned in Section 5.7 and 5.8, the server must also

select an algorithm for each OLAP operator in the OLAP logical plan in order to

turn the preferred logical plan into a physical plan. In Chapter 3, we discussed the

construction of an efficient OLAP storage engine that has various data structures

and indexing components that allow for efficient and reliable execution of OLAP

queries. We note that the algorithm for each OLAP operator (e.g., SELECTION,

PROJECTION) depends on the functionality developed in Chapter 3. In this section,

we discuss the selection of algorithms for OLAP operators defined in our OLAP

algebra (SELECTION, PROJECTION, etc.). We note that the size of intermediate

results could be more than the size of the main memory; however, we will assume

that we have enough memory to store the intermediate query results. Extensions to

external memory are expected to be undertaken in the future.

5.8.3.1 Choosing a SELECTION Method

The selection is the driving operation behind most analytical queries. Therefore, one

of the important steps in choosing a physical plan is to select an implementation

for each selection operator. As was illustrated, SELECTION in the preferred logical

OLAP query plan is of the form: SELECTION(Dim.DimID = x AND Dim1.Dim1ID

= y OR Dim2.Dim2ID ...)C. SELECTION is defined as a listing of dimensions re-

lated via AND and OR, where each dimension is associated with a condition. For

simplicity, we consider the SELECTION with only one dimension (i.e., Dim) like SE-

LECTION(Dim.DimID = x), such that x is a set of DimIDs that satisfy the user’s

query condition (UC) associated with one dimension called Dim (Note that DimID

208

is the most detailed level of dimension Dim). The user’s query condition associated

with dimension Dim is of the form “Dim (A OP c)”, where A can be a hierarchical

or non-hierarchical attribute of dimension Dim, OP can be any comparison operator

defined by our OLAP query grammar (e.g., <, >, =, IN LIST), and c is a constant or

set of constants. UC is a compound condition of one or more simple conditions against

dimension Dim (connected via logical operators AND and OR). As was discussed in

Section 4.7, we would like to eliminate the inner/natural joins between the cube and

dimension tables that would ordinarily be required to exclude cube rows that do not

satisfy the query restriction. The implementation of SELECTION is divided into the

following three steps.

First, we need to find all dimension members (DimIDs) satisfying the query restric-

tion called UC (defined by the user). For simplicity, we consider the query condition

UC =Dim (A OP c).

1. If A is a hierarchical attribute level in dimension Dim, then we retrieve all

DimIDs (most detailed integer values) that satisfy the comparison UC(AOP C),

using the enhanced hierarchy manager (mapGraph) discussed in Sub-section 3.4.3.

2. If A is a non-hierarchical attribute level, then we retrieve all DimIDs that

satisfy UC, using the FastBit compressed bitmap index created for each non-

hierarchical attribute level in the dimension.

If UC is the AND/OR of simple conditions, then we use mapGraph and/or FastBit

bitmap indexes to identify the set of DimIDs that satisfy UC. Using the mapGraph

and the bitmap indexes ensure that the resulting DimIDs that satisfy the query

condition (UC) associated with dimension Dim are sorted. This result is organized

as an ordered set of contiguous ranges that is stored in a main-memory sorted array.

209

Given a DimID value v, we can directly apply a binary search within the sorted array

to verify the existence of that given value. We can use similar techniques to find

and store the dimension IDs for other user’s dimension conditions mentioned in the

SELECTION operator. An example of this will be provided shortly.

Second, the SELECTION at this step has the most detailed dimension values that

satisfy the user’s conditions on those given dimensions (e.g., SELECTION(Dim.DimID

= x AND Dim1.Dim1ID = y OR ...) V, such that x and y are all DimIDs and Dim1IDs

that satisfy the user’s conditions on dimensions Dim and Dim1 respectively). We ac-

cess the Berkeley database Hilbert R-tree index of view V, and use the Linear Breadth

First (LBF) Search algorithm to efficiently answer the SELECTION operator. We

stress that the initial LBF pre-dates the work in this research and answers very simple

range queries. However we will soon see how the initial Sidera LBF is enhanced to

answer complex range queries.

Finally, if no indexes are available for dimension tables and views, then we can

answer the SELECTION operation by sequentially scanning dimension tables and

views to find those rows that match the condition.

Consider the two dimensional view (Sales) of Figure 4.24 with the associated

dimensions (Employee and Product) of Figures 3.3 and 3.4 respectively. Assume

that we want to list the total sales for Product category (Automotive), and for

all employees whose ages are greater than 25. The query restriction is: SELEC-

TION(Product(Category =“Automative”) AND (Employee(Age > 25))Sales. Fur-

ther, suppose that view Sales is indexed using the packed Hilbert R-tree index. More-

over, Figure 3.10 illustrates the mapGraph that represents hierarchical attribute levels

of the Product dimension, while Figure 3.11(a) illustrates a simple bitmap index for

210

the non-hierarchical attribute level (Age) of dimension Employee. Recall that the

bitmap index for a non-hierarchical attribute level is compressed and implemented

by means of using the FastBit implementation. The following are the steps for im-

plementing the SELECTION operation:

1. Use the mapGraph to return all ProductIDs that have category = Automotive.

This returns ProductID={1, 2, . . ., 7}. Keep the result in memory and store it as

a set of contiguous ranges in a sorted array called ProductArray. ProductArray

= {(1, . . . 7)} and has only one contiguous range.

2. Use the bitmap index for attribute (Age) to find all employeeIDs that are older

than 25. The result is EmployeeID 2 and 3. Again, store this result as a sorted

set of contiguous ranges in the EmployeeArray={(2, 3)}.

3. Use Linear Breadth First Search to find all records (cells) that intersect with

ProductArray and EmployeeArray. There are 5 cells (records) that satisfy the

user’s condition and the schema of the output is the same as the schema of the

input view (Sales). The output schema is (ProductID, EmployeeID, Units Sold)

and the result cells are: {(1, 1, 80), (1, 2, 41), (3, 1, 10), (3, 2, 28), (7, 1, 15)}.

5.8.3.2 Choosing a PROJECTION Method

Choosing a method to implement a PROJECTION operator depends on its position

in the preferred logical query plan. The following are the options for implementing

the PROJECTION operation:

1. If a PROJECTION(L,M)C is followed by a SELECTION, we can use Sidera’s

viewManager (outlined in Section 2.8) to obtain the best view from cube C —

211

the view itself must possess all attributes (L,M) that are mentioned within the

PROJECTION operator — and then send it to the SELECTION operator.

2. If the dimension attributes L of (PROJECTION(L,M)V) are equivalent to the

feature attributes of the view V, we scan all cells of V one at a time and pipeline

them to the parent operation.

3. If the feature attributes of view V are greater in number than the dimension at-

tributes L of PROJECTION(L,M)V, then the PROJECTION operator (PRO-

JECTION(L, M)V) partitions the input cells (records) of view V into one or

more groups. Each group consists of all cells that have the same values of

dimension members (L). For each group G, we produce one cell that has the

dimension member values for G and the aggregations of M. Therefore, in this

case, the PROJECTION operator in our OLAP algebra is applied to cubes as a

whole rather than one cell (record) at a time as in the SELECTION operation

or the previous two cases (1 and 2).

We will see in the next section how algorithms can be applied to implement the

PROJECTION for each given case.

5.8.3.3 Choosing Binary Operations Methods

We assume that we have enough memory to house any argument associated with our

OLAP operators. Therefore, our approach for implementing the binary operators is

to have the left argument in main memory. Then, one can read the right argument

one cell at a time in order to perform the operation. We will describe the algorithms

for binary operations in the next section.

212

5.8.3.4 Choosing a Method for CHANGE LEVEL and CHANGE BASE

Each one of these operations — CHANGE LEVEL and CHANGE BASE — are only

relevant as a query against an existing set. Therefore, we assume that the inputs of

these operations are result cubes that are housed in main memory. Recall that we

don’t consider an algorithm for CHANGE BASE because of the use of LAW 8. For

the CHANGE LEVEL operator, we read the input cells of this operation one cell at a

time, and then change the values for those attributes mentioned within this operation.

Specifically, we use the Sidera mapGraph to change between arbitrary hierarchical

level values. The resulting cell is stored in an in-memory hash table structure that

supports efficient searching and insertion. In the next section, we will discuss an

algorithm that implements the CHANGE LEVEL operation.

5.8.4 Pipelining OLAP operations

There is an additional but important step needed in order to transform the preferred

OLAP logical query plan into a complete OLAP physical plan. We must decide how

to execute the entire OLAP expression tree. For each operation we have to choose

one of the following alternatives:

• Materialization: The cube result (cells) of each intermediate OLAP operation

is materialized (stored on disk) until it is needed by another operation.

• Pipelining: The intermediate cells (cube result) produced by one OLAP oper-

ation are passed to parent operations, even as an operation is being executed,

without storing those cells on a disk.

213

The Pipelined evaluation is more rapid and cheaper than materialization due to the

fact that one does not need to store intermediate results on disk while several oper-

ations can be evaluated simultaneously by passing on the results of one operation to

the next. In this section, we discuss where and how we can use pipelining or materi-

alization with our OLAP operators (SELECTION, UNION, etc.). Note that this is a

theoritical presentation. In other words, physical materialization and pipelining are

not yet implemented in the Sidera engine.

5.8.4.1 Pipelining SELECTION

Since SELECTION is one cell at a time, the SELECTION operator is a very good

candidate for pipelining. We use the appropriate R-tree index view to return a set (S)

of block numbers, one for each data block that intersects with the query restriction

(Cond) mentioned within the SELECTION. We implement SELECTION(Cond)C in

a pipelined fashion as depicted in Figure 5.20. The process is as follows:

1. For each block number in set S, read its corresponding data block b into the

main memory.

2. For each cell c in b, check:

3. If c satisfies condition (Cond), then pass c directly to the parent operation and,

if not, ignore it.

5.8.4.2 Pipelining PROJECTION

We shall discuss the following two different cases of the PROJECTION operator,

(assuming outputCube = PROJECTION(L,M)inputCube)

214

Figure 5.20: Execution of a pipelined SELECTION.

1. If the feature attributes (L) of the outputCube are the same as the feature

attributes of the inputCube, then we process PROJECTION by reading one

cell (record) at a time, beginning with the inputCube and pipelining it to the

parent OLAP operation by dropping the unnecessary measure attributes of the

inputCube. In this case, we do not need the entire inputCube to be in the main

memory to process the PROJECTION.

2. If the inputCube has more feature attributes than the dimension attributes L

mentioned in PROJECTION, then we cannot produce the result of the PRO-

JECTION until the last cell of the inputCube is seen because the duplicate

output cells (cells with the same values of dimension attributes) must be re-

calculated. The result of the PROJECTION is kept in a main memory data

structure and is ready to be used in any other OLAP operator in the expression

plan.

Figure 5.21(a) illustrates the pipelined PROJECTION process, while Figure 5.21(b)

shows how the result of PROJECTION is blocked until the last cell of the input cube

is seen.

215

Figure 5.21: (a) Execution of a pipelined PROJECTION. (b) Block PROJECTION
result until the PROJECTION process terminates.

5.8.4.3 Pipelining Binary Operations

The results of our OLAP binary operations (UNION, INTERSECTION, DIFFER-

ENCE and DRILL ACROSS) can be pipelined. We assume that the left argument

(cube) of any binary operation is organized in main memory as a hash table called

hT (to be explained in Section 5.9). We implement a binary operation in a pipelined

fashion as follows:

1. Read one cell (r) at a time from the right cube argument.

2. Execute the binary operation between the left argument and r.

3. If possible, pipeline a result cell, and if not, block the result and store it in a

hash table data structure.

It is very important to recognize that pipelining a cell to the parent operation,

even as the binary operation is being executed, depends on the current operation

216

(UNION, DIFFERENCE, etc.). We shall consider each one of the binary operations

in turn.

UNION and DRILL ACROSS: The results of UNION and DRILL ACROSS

operations can be pipelined. For example, the pipelined UNION operation is per-

formed as follows:

1. If no search key in the hash table hT that contains the left cube argument equals

the feature attribute values of r (r is a cell from the right cube argument), then

we pipeline r to the parent OLAP operation.

2. If the values of feature attributes of r equal the search key of an entry e of the

hash table hT, then we pipeline the cell that is the result of the UNION between

two cells (r, e). Also, we remove the entry e from the hash table hT.

Finally, when the last cell of the right argument is seen, we pass all cells of the hash

table hT to the parent operation. We can use a similar pipelined technique with the

DRILL ACROSS operation. But instead of executing UNION in step 2, we have to

perform the DRILL ACROSS operation.

INTERSECTION: If feature attribute values of r equal the search key of an

entry e of the hash table hT, then we pipeline the cell that is the result of the

INTERSECTION between the two cells (r, e).

DIFFERENCE: If the hash table hT contains an entry e where its search key

equals the feature attribute values of r, then we remove e from the hash table and

pipeline the result cell that is the DIFFERENCE between the two cells (e and r) to

the next OLAP operation. After the last cell of the right argument is received, we

pass all remaining cells in the hash table to the parent OLAP operation.

217

5.8.4.4 Pipelining CHANGE LEVEL

We can pipeline the output of a CHANGE LEVEL to other OLAP operations when

all cells of the input argument (cube) have been read into the main memory and

contributed to the result of the operation. The result of the operation is organized

in the main memory as a hash table. After the operation is terminated, we pass the

result to the next OLAP operation in the expression plan.

5.8.5 Physical Query Plan Notation

In this section, we describe the notation for our OLAP physical query plan. The

final physical query plan must have details concerning access methods (R-tree index,

bitmap index, etc.), pipelining or the materialization of intermediate results, and one

or more physical algorithms for OLAP algebra operators. In the final OLAP physical

query plan, each edge in the preferred OLAP logical query plan has to be marked to

indicate that the intermediate result is materialized or pipelined. For simplicity, we

insert the word Blocking close to the edge between the result that must be materialized

and its parent operation. The Pipelining keyword is used otherwise.

5.8.5.1 Access method

Below are the access methods that will be used in our physical query plan:

1. BerkeleyRtreeAccess(C, F): here C is the best Hilbert R-tree index view/cuboid

selected by Sidera’s view manager to answer the current OLAP data query. F is

a condition of the form Dim.DimID = x, where x is a set of DimIDs satisfying

the user’s condition(s) on dimension Dim. Cells of C satisfying condition F

are returned by using the Linear Breadth First Search strategy of the R-tree

indexed cuboid C that is stored as a Berkeley DB database.

218

2. CubeAccess(C, N): Sequentially reads all data blocks holding cells of view/cuboid

C. For each cell, if the value of N is present, one should drop all unnecessary

measure attribute(s) N from the measure attributes of the input cube C.

3. Dimension-scan (D, R): sequentially read the blocks containing the records of

dimension D one by one to find dimension IDs satisfying the condition R.

4. Cube-scan(C, F): Sequentially read the blocks of view C one by one to answer

the condition F.

5. mapGraphAccess(D, R): R is a condition on dimension D. We use mapGraph to

answer the condition on dimension D if hierarchical attribute levels of dimension

D are involved in R.

6. bitMapAccess(D,R): R is a condition on dimension D. Here condition R has non-

hierarchical attribute(s), so we use the bitmap index to answer the condition.

5.8.5.2 Physical Operators for SELECTION

In Sub-section 5.8.3.1, we explained how the SELECTION operation is resolved.

Specifically, we first use the hierarchy manager and the bitmap index manager to

convert the user’s condition to a condition that is in turn answered by accessing the

appropriate R-tree index view/cuboid. Consider SELECTION(D(Cond)) C. Cond is

a user’s condition of the form A OP c, where A is an attribute of dimension D, OP is

a comparison operator (IN LIST, >, <, etc), and c is a constant or list of constants.

C is the index cuboid/view that returns cells satisfying the user’s condition Cond.

We simply replace SELECTION(D(Cond)) C, by the following physical operators:

219

• If (A is a non-hierarchical attribute of dimension D) THEN F = bitMapAc-

cess(D, A OP c) ELSE F = mapGraph(D, A OP c)

• BerkeleyRtreeAccess (C, F). Here F is a set of dimension IDs satisfying the

user’s condition on dimension D, C is the Hilbert R-tree index cuboid needed

to answer the query.

5.8.5.3 Physical Operators for PROJECTION

PROJECTION in our logical query plan appears in several different positions. In the

previous section, we discussed several methods used to implement the PROJECTION.

We will discuss several implementations. Consider PROJECTION(L,M) C, where L

is the list of dimension attributes, M is the list of measure attributes and C is the

input cube. We have to take into consideration two cases:

1. If C were not stored on a disk, but a cuboid/view that was produced by another

OLAP operation, such as SELECTION, then if the feature attributes of C are

the same as the dimension attributes (L) of PROJECTION, then we use the

operator in step a, and if not, we move to step b:

a. dropUseless Measure(N), N is the list of undesired measures. In other words,

N is the list of all measure attributes of the input cube C without those

measure attributes that are mentioned in list M.

b. hashTable PROJECTION(L,M).

2. If C is an index cube stored as one Berkeley DB physical database file that

encapsulates the R-tree indexes of all cuboids in cube C, then the first operator

that must be used is BV = viewManager Projection(D,M, C), where BV is

220

the most efficient indexed cuboid/group-by from cube C to answer the current

OLAP data query and D is the list of dimensions that are mentioned in L.

Consequently, we have to consider three cases:

a. If the parent operation is a SELECTION, then we just send to it the ap-

propriate view to answer the PROJECTION. This allows us to use the

Hilbert R-tree index cube to answer the SELECTION.

b. If the parent operation is not a SELECTION and if the feature attributes

of BV are equivalent to the dimension attributes L of the PROJECTION,

then in addition to viewManager Projection, we need one more physical

operator — CubeAccess(BV, N) — to resolve the PROECTION operation.

In other words, all cells in the input view contribute to the result of the

PROJECTION.

c. If the number of feature attributes of BV are greater than the number of

dimension attributes (L) of PROJECTION, then we need one more op-

erator (hashTable PROJECTION(L,M)) in addition to those operators of

the previous step. Since the number of output attributes doesn’t equal

the number of input attributes in the input view, the output cells must be

re-calculated accordingly.

5.8.5.4 Physical Operators for Binary Operations

OLAP binary operations are replaced by an appropriate physical operator. These

physical operators indicate:

1. Current operation being performed (e.g., UNION, INTERSECTION).

221

2. The data structure that supports the execution of the operation, e.g., hash

table.

We assume that the hash table supports the execution of our binary operators. We

use the following notation for the OLAP binary operation: hashTable OPERATOR,

where OPERATOR can be any OLAP binary operator like UNION, DRILL ACROSS,

DIFFERENCE or INTERSECTION.

5.8.5.5 Physical Operator for CHANGE LEVEL

The algorithm for implementing the CHANGE LEVEL operator builds upon Sidera’s

hierarchy manager (mapGraph) and an in-memory hash table data structure. Con-

sider CHANGE LEVEL(Dim.DimID → Dim.AttLevel)C, where C is the input cuboid,

Dim.DimID is a feature attribute in cuboid C and Dim.AttLevel is a hierarchical at-

tribute level in dimension Dim. We replace the logical operator by the following

physical operator:

mapGraph HashTable CHANGE LEVEL(Dim.DimID → Dim.AttLevel).

Recall that in Section 3.4, we explain that each hierarchical attribute level has encoded

values (integer values for user-supplied values); therefore, we use this physical operator

in order to change the base level (Dim.DimID) attribute encoded (integer) values to

the corresponding encoded values at attribute level Dim.AttLevel.

5.8.5.6 Additional Physical Operators (Get realValues)

As discussed in our OLAP query grammar, the PROJECTION operation must ex-

ist in any OLAP data query. PROJECTION identifies the presentation attributes

that are returned to the user, including both dimension attributes (L) and measure

222

attribute(s). The result at the top of the physical query plan has only linear val-

ues (integer values) for the presentation attributes (e.g., Product Category 2 means

Automotive). As was discussed, the result of each OLAP operator, excluding SE-

LECTION, is stored into a hash table structure in the main memory. In the next

section, we will explain how our hash function ensures that the entries are sorted

according to the list of attributes of the search key. Therefore, we can say that the

result of the OLAP operations is sorted.

Finally, we have to use an additional physical operator that converts the linear

values for each dimension attribute (mentioned within the PROJECTION) to their

real values. The hierarchy manager mapGraph contains multiple hash tables, one

for each hierarchical attribute level. The hash table is simply used to provide O(1)

conversion of system-specific integer values to real values. For example, Figure 3.10

illustrates two hash tables for the hierarchical attributes Type and Category. As an

example, we can use the Type hash table to convert integer value 2 to Engine. Thus,

at the top of the physical query, we use the following operator:

• Get realValues(L), where L is the list of attributes that the user will see in

the result. This operator replaces the linear values of the result with their real

values.

5.8.5.7 Final Physical Query Plan

In this section, we illustrate the conversion of two preferred logical query plans to

their final physical query plans. Figure 5.22 illustrates the OLAP physical query plan

for the preferred logical query plan developed in Figure 5.9. In the OLAP physical

plan of Figure 5.22, we use the view manager to get the best cuboid/view (BV) to

answer the current OLAP data query. We use the hierarchy manager and the bitmap

223

Figure 5.22: A physical plan for the logical query plan of Figure 5.9.

index manager to convert the user’s conditions into a set of sorted arrays (A1 and

A2). We use a linear breadth first search for the materialized indexed cuboid (BV)

in order to retrieve all cells that satisfy the user’s condition. After this, we project

it onto the required feature attributes (Product.ProductID, Customer.CustomerID,

Quantity Ordered) and then use the hierarchy manager to implement the change level.

Finally, the real values are obtained by using the physical operator (Get realValues).

The plan also illustrates the pipelined and materialized intermediate results.

A more realistic OLAP physical query plan that covers most of our OLAP physical

operators is shown in Figure 5.23. This plan is developed for the preferred OLAP

logical query plan of Figure 5.13. We assume that the four dimensional cube Sale

mentioned in Figure 5.10 has 3 materialized index cuboids/views. The following are

their feature and measure attributes:

224

• View1: (Product.ProductID, Customer.CustomerID, Store.StoreID, Time.TimeID,

Units Sold, Quantity Ordered)

• View2: (Product.ProductID, Store.StoreID, Time.TimeID, Units Sold, Quan-

tity Ordered)

• View3: (Product.ProductID, Store.StoreID, Customer.CustomerID, Units Sold,

Quantity Ordered)

Notice in Figure 5.23, View2 and View1 are selected by the view manager. We

see how the dropUseless Measure operation is used to drop the unnecessary measure

attribute (Quantity Ordered). It is very important to notice the different implementa-

tions of the PROJECTION operator in the physical tree (cubeAccess, hashTable Projection,

and dropUseless Measure). Pipelining and blocking results are also mentioned in the

physical plan. We can also see how the binary physical operations (hashTabe UNION

and hashTable DRILL ACROSS) are performed between two cube results.

5.9 OLAP Query Execution

The result of query compilation is an OLAP physical query plan (e.g., Figure 5.23)

that defines an efficient execution plan for the received OLAP query. As mentioned

in the previous section, this physical query plan is represented as a tree that implies

the order of physical operations. Specifically, the cube data must flow up the physical

query plan tree. We order the execution of all nodes of the physical plan tree in a

bottom-up, left-to-right manner. In other words, we order the nodes of the tree in

such that a pre-order traversal traverses the entire physical query tree. Following the

pre-order traversal, our OLAP query optimizer can generate a sequence of function

225

Figure 5.23: OLAP physical query plan for OLAP logical plan of Figure 5.10.

226

calls —one for each physical operation in the physical plan— and pass them to the

OLAP query engine for execution.

In this section, we look at the algorithms that are used to access the data of the

OLAP storage. Recall that Berkeley databases are used in our server to store the

indexed cube in one physical file. Moreover, we shall cover the algorithms applied in

the execution of our OLAP algebraic operators (SELECTION, PROJECTION, etc.)

against the indexed cube (stored in the Berkeley DB) and associated dimension tables

(e.g., FastBit bitmap indexes for non hierarchical attributes). We assume that we have

enough memory to hold the result of any OLAP operator and any extra data structure

(i.e., Bitmap index for an attribute). Note that extensions to external memory are

expected in the future. Finally, for each physical operator in the OLAP physical

query plan, we determine the appropriate algorithm(s) that can be used to answer

them (e.g., algorithm x implements the physical operator BerkeleyRtreeAccess()).

5.9.1 In-memory Hash Table Representation

As was discussed in the previous section, some of our OLAP physical operators require

an in-memory hash table data structure for efficient searching and inserting. In

practice, the entry of a hash table is of the form (k,v), where k represents the search

key of the hash table and v its associated value [56]. In our case, the value of the

search key k is the value(s) of the feature attributes that will be in the result of a

given OLAP operator, while v is the value of the measure attributes. In general, a

hash table consists of an array of size N, and a hash function h that maps values of

a given type (string, array of integers, etc.) to integers between [0, N-1].

In our case, for each physical operator that needs an internal hash table to be

executed, we create a hash table (hT) of size N, where N is equivalent to the cardinality

227

product of the result of the OLAP operator, and a hash function h that maps the

values for one or more feature attributes to a specific integer between 0 and N-

1. Algorithm 7 shows an implementation of our hash function. The input of the

algorithm consists of a list of feature attributes fA, an array of cardinality products

(aCP) and an array (aV) that possesses the values of the feature attributes to be

mapped to an integer between [0, N-1]. Let the list of feature attributes be of the

form fA = {f1, f2, . . ., fi, . . ., fn}, where n is the number of feature attributes in the

result of a given OLAP physical operator. We can thus say that aCP can be written

as {CPf1, CPf2, . . ., CPfn}, where the value of CPfi represents the cardinality

product of all subsequent feature attributes {fi+1, fi+2, . . ., fn}. Note that CPfn

equals 1. aV has n values {aV1, aV2, . . . , aVn}, one value for each feature attribute

fi in fA. It is crucial for one to maintain the exact sequential order of the numerical

values in aV as they each represent a specific feature attribute. Algorithm 7 returns

the hash key for the values of the feature attributes (aV). Our hash function ensures

O(1) processor running time for searching, inserting and deleting entries from the hash

table. Moreover, the example below will illustrate how our hash function ensures that

the entries of the hash table are sorted according to the list of attributes in fA.

Consider the parameters for the Sale cube and dimensions: Product, Customer,

Time and Store in Figure 5.10. Let the following OLAP physical operator be deter-

mined via the support of the hash table:

hashTable PROJECTION(Customer.CustomerID, Store.StoreID,

Product.ProductID, Units Sold)Sale

We first create a hash table array hA of size 5 * 12 * 50 = 3000 (Cardinality product

of the output cube CP(CustomerID, StoreID, ProductID)). Let us assume that we

228

Algorithm 7 Hash Function algorithm

Input: List of Feature attributes fA{d1.d1ID, d2.d2ID, . . .,dn.dnID} where n is
the number of feature attributes of the result, a list of cardinality products
aCP{CP1(d2.d2ID, d3.d3ID, . . ., dn.dnID), CP2(d3.d3ID, d4.d4ID, . . ., dn.dnID),
. . ., CPn(1)}, and the values of the feature attributes is v(d1ID, d2ID, . . ., dnID)

Output: an integer x between 0 and N-1, where N is the cardinality product for
attributes in fA.

1: Initialize x to 0
2: for each feature attribute in array fA stored at index i do
3: x = x + (v[i]-1) * CP[i]
4: end for
5: return x

need to find the hash value of the following set of feature attributes (CustomerID,

StoreID, ProductID) (3, 10, 5). The input of Algorithm 7 is:

• fA = {Customer.CustomerID, Store.StoreID, Product.ProductID}

• Array aCP of cardinality products. aCP = {600, 50, 1}, 600 is the cardinality

product of (StoreID, ProductID), while 50 is the cardinality product of Produc-

tID.

• Array aV is the values of the feature attributes in fA, aV= {3, 10, 5}. In this

case, 3 is the value of CustomerID, 10 is the value of StoreID and finally 5 is

the value of ProductID.

Using the hash function outlined in Algorithm 7, the hash value of key (3,10,5)

is: (3-1) * 600 + (10-1) *50 + 5-1 = 1200 + 450 + 4 = 1654 < 3000. This means

that key(3,10,5) is stored in the array hA at the index of 1654. Moreover, consider

the key (5, 12, 50), where the hash value is: (5 - 1) * 600 + (12 - 1) * 50 + 49 =

2999. Key (5,12,50) is stored at the very last index of the array hA. As mentioned,

our hash function ensures the sorting of the entries according to their attributes in

229

the key. Therefore, for the above example, key(1,1,1) is mapped at position 0, (1,1,2)

is mapped at 1, (1,1,3) is mapped at 3, . . ., (5, 12, 50) is mapped at position 2999

(last entry in the array).

Our hash table works well for attributes with small cardinalities. That being

said, it is not fully scalable because the size of its array increases as the cardinalities

of attributes increase and we also have to reserve memory space for non-existent

values. However, our hash table is very useful after the execution of the SELECTION

operation (i.e., the most important operator) as this likely reduces the size of the input

cube by a large factor, as well as the cardinalities of feature attributes. In the future,

we could extend our engine to use a more scalable balanced search tree — such as a

red-black tree or AVL tree — as an internal data structure for result cubes with large

cardinalities [11]. The balanced tree could also give fast lookup, insert, and remove (

e.g., O(log n)) and would be sufficient for our purposes. In addition, the cube results

could be sorted in the balanced search tree structure (i.e., working the tree could

produce sorted key sets).

5.9.2 Index Based SELECTION Algorithm

Algorithm 8 is an algorithm applied to answer the SELECTION operator efficiently.

Before we access the indexed cuboid/group-by to return the cube cells that satisfy the

query restriction, we transform the user’s query constraints that are specified on the

attributes of the dimensions into the most detail-oriented level. Algorithm 8 utilizes

a function called transformSELECTION() to convert the user’s query restriction

into a most detail-oriented value that can be utilized by our OLAP query engine. This

algorithm is described in Algorithm 9. After this process, we open the Berkeley DB

database object that represents the appropriate Hilbert R-tree index for the group-by

230

(e.g., called V) to answer the selection operator. Finally, a processSelection() is

applied which uses the Hilbert R-tree index for view V to answer the transformed

user’s condition and return the result. This process is described in Algorithm 10.

Algorithm 8 SELECTION Algorithm

Input: A user-defined OLAP selection condition dC, a hierarchy manager
(mapGraph) containing the hierarchical attributes data, a cube C, an appro-
priate view V to answer the SELECTION operator, and a bitmap index manger
biM that contains the bitmap indexes for the needed non-hierarchical attributes.

Output: Fully resolved SELECTION (I with all detailed level values satisfying dC).
1: create a new array OP of size n, where n is the number of logical operators

(AND and OR) that are used to form compound conditions, each associated with
a dimension.

2: Use dC to get those logical operators and store them in OP .
3: Invoke transformSELECTION(dC, mapGraph, biM)
4: Open the Berkeley database object called db that contains the Hilbert R-tree

index for group-by V .
db.open(NULL, C, V , DB-RTREE, DB RDONLY, 644);

5: get result I from disk, I = processSelection(dC, db, OP)

The primary focus of Algorithm 9 is to replace the user’s query restrictions that

are specified within the SELECTION operator into other restrictions (dC) that can

be solved against the indexed data stored in the physical cube. As was illustrated,

a SELECTION(Dim.A OP c) View is translated into a SELECTION(Dim.DimID =

x)View where x is a set of DimIDs satisfying the condition (Dim.A op c).

Algorithm 10 is used to retrieve the data from the disk via the Berkeley database

Hilbert R-tree index. Note that the core algorithm is the Linear Breadth First search

strategy that was used in the old Sidera server [36]. However, our purpose here is to

describe how to use the indexed cube that is stored in the Berkeley database (Chapter

231

Algorithm 9 SELECTION Transformation Algorithm

Input: A user-defined OLAP selection condition dC, a hierarchy manager
mapGraph, OP array of logical operator, and a bitmap index manager biM .

Output: The user’s condition in the most detail-oriented form (primary key form).
1: for each dimension condition Ci in dC do
2: for each expression ej in Ci do
3: if attribute (A) involved in ej is a hierarchical attribute level then
4: arrayj = mapGraph.getBaseID(A, ej)
5: else
6: arrayj = biM .getBaseID(A, ej)
7: end if
8: if Logical operator between ej and ej−1 equals AND then
9: arrayj = setIntersection(arrayj, arrayj−1)

10: else
11: arrayj = setUnion(arrayj , arrayj−1)
12: end if
13: end for
14: create a new range array newR of size |arrayj|
15: store integer values in arrayj as a sorted set of contiguous ranges
16: Remove the current SELECTION condition Ci and replace it with Di.DiID =

newR such that newR has all IDs that satisfy condition Ci associated with
Di.

17: end for

232

3) to answer the transformed query constraints (dC) attached to the SELECTION

operator.

In Chapter 3, we discussed the general LBFS strategy that was used to answer

simple OLAP query restrictions that had been defined in a proprietary syntax. More

specifically, OLAP queries that have been answered in the old Sidera server are of

the form:

Dim.DimID Dim1.Dim1ID(1 10, 20 25) C

where Dim.DimID and Dim1.Dim1ID are two feature attributes. The current Sidera

engine selects the best Hilbert R-tree index from cube C in order to return all cells that

have Dim.DimID between 1 and 10, and Dim1.Dim1ID between 20 and 25. As such,

the query restriction that was answered by the original LBF outlined in Algorithm 3

from Chapter 3 consists of one contiguous range for each feature attribute specified in

the query’s restriction (i.e., Dim.DimID). Algorithm 10 uses the same search strategy

as was discussed in Algorithm 3. However, the SELECTION operator condition can

have many contiguous ranges for each feature attribute that is specified within the

operator. For example, the SELECTION operator may have the following form:

SELECTION(Dim.DimID = x and Dim1.Dim1ID =y) C, where x = 1, 2, 3, 8, 9, 10

and y=10, 11, 12, 13, 20, 21, 25, 26. We can see that the SELECTION operator has

a set of contiguous ranges on each dimension (Dim and Dim1).

Algorithm 10 enhances the original LBF algorithm by adding two functions —

is block intersect() and is record intersect() — that can be used to return all

cells which satisfy the SELECTION restriction. These two functions are invoked

from Algorithm 10 to verify the intersection between the selection condition (set of

contiguous ranges on each dimension within the SELECTION) and an R-tree index

233

Algorithm 10 Linear Breadth First Search SELECTION Processing

Input: A Berkeley DB database object (db) that contains the appropriate Hilbert R-
tree index group-by, OP array of logical operator, and a SELECTION condition
dC.

Output: Fully resolved SELECTION condition dC.
1: Initialize pageList with page/block number of the root index block
2: while not at the leaf level do
3: childList = new empty list
4: for each page/block number in the page list do
5: for each index block number b at level i do
6: if b is found in the pageList then
7: Using b as an offset to read the relevant index disk block B into memory
8: end if
9: for each child block j of B do

10: if (is block intersect(j, dC, OP)) then
11: Add the number of block j to childList
12: end if
13: end for
14: end for
15: PageList = childList
16: end for
17: end while
18: for each block number i in the current page list do
19: Using i as an offset, read the relevant data disk block B into memory
20: for each record r in block B do
21: if (is record intersect(r, dC, OP)) then
22: Add r to result
23: end if
24: end for
25: end for
26: return result

234

block, and subsequently, the intersection with data records.

Algorithm 11 R-tree index block intersects with a complex condition

Input: An index block b, an array called OP of logical operator between the dimen-
sion conditions, and the selection condition dC as a set of sorted arrays.

Output: True if b intersects with dC, false otherwise
1: create an array result R of size n, where n equals the number of sorted arrays
2: for each feature attribute Dim.DimID in dC do
3: Low = the range minimum from block b for attribute Dim.DimID
4: High = the range maximum from block b for attribute Dim.DimID
5: tmpArray = sorted set of contiguous range for attribute Dim.DimID
6: if (BinarySearch(tmpArray, Low, High)) then
7: if (OP has only OR logical operator) then
8: Return True
9: else

10: R[i] = True
11: end if
12: else
13: if (OP has only AND operators) then
14: return False
15: else
16: R[i] = False
17: end if
18: end if
19: i = i + 1
20: end for
21: return the Boolean result of applying OP to R (array of Boolean values)

Algorithm 11 implements the is block intersect() function. It is used to verify

if an index block b intersects with the selection condition dC. The algorithm works

as follows. First, we need all ranges (low/high) from block b for all feature attributes

mentioned in dC. Recall that for each feature attribute (Dim.DimID) in dC, we have

a set of contiguous ranges obtained from Algorithm 9 stored in a sorted memory

235

Figure 5.24: Example of is block intersect() function.

array. Then, a binary search is performed for a set of contiguous ranges and returned

in the affirmative if it has one value in common with its corresponding range from

the index block b. Algorithm 11 is also aware of the logical operators between simple

conditions (such as Dim.DimID = x AND Dim1.Dim1.ID). Figure 5.24 illustrates

how this function works. For example, let block b represent an indexed block for two

feature attributes (A and B) with two (low/high) ranges r1=[10, . . ., 20] and r2=[40,

. . ., 60], and a condition of the form SELECTION(A = x AND B = y), such that

x has three contiguous ranges x1=[2, . . ., 8], x2=[15, . . ., 30] and x3=[50, . . ., 100],

while y has two contiguous ranges y1=[50, 50] and y2 = [100, . . ., 200]. Here, we

can say that b intersects the condition because ranges r1 and x2 have common values

(such as 16, 17 etc.) and also r2 and y1 have one value (50) in common.

Algorithm 10 uses the is record intersect() to check if a data record r matches

the selection condition. Algorithm 11 can be used to implement this function; however

the binary search returns affirmatively if a set of contiguous ranges has only one value

in common with its corresponding value v from record r. An example to illustrate

this function can be where r is a record (cell) with two values of the feature attributes

(A = 4 and B = 10) and one measure value. We can say that r does not intersect the

above mentioned SELECTION condition because B=10 is neither in y1 nor in y2.

236

5.9.2.1 Cost of the SELECTION operation

We must be able to estimate the cost of each OLAP physical operator that we use in

the physical OLAP query plan. It is well-understood that it is slower to retrieve data

from a disk than do anything with the data once it is in the main memory. Therefore,

we use the number of disk I/O to estimate the cost of an OLAP operation. However,

we shall also mention the processor running time when the amount of process time is

proportional to a specific variable (i.e., n2).

The input argument for the SELECTION operator is a Hilbert packed R-tree

indexed group-by stored as a Berkeley DB database object on disk. Also, the SE-

LECTION requires the data of non-hierarchical and hierarchical attributes in order

to convert the user’s query restriction to the most detail-oriented level form restric-

tion. At run-time, the enhanced mapGraph hierarchy manager is used to represent

the data of hierarchical attributes. In addition, we create another in-memory index

manager called the Bitmap Index Manager to represent the data of each required

non-hierarchical attribute in the SELECTION operator. We also assume that we

have enough memory to store those two managers (mapGraph and indexManager).

The result of the SELECTION is left in memory unless it is required to be returned to

the disk. It is important to mention that the sorted arrays that are used to store the

set of contiguous ranges are left in memory as well, until the SELECTION operation

terminates. Recall that the sorted arrays represent the query restriction in the most

detailed level form.

Theorem 1. The cost of the SELECTION operator is bounded as the cost of se-
quentially scanning B(V) and D(V), where V is the appropriate packed R-tree index
to answer the SELECTION, B(V) is the number of index blocks, and D(V) is the
number of disk blocks. Cost = B(V) + D(V) I/O.

Proof. SELECTION uses the Linear BFS strategy to retrieve records that satisfy

237

its condition. LBFS uses a top-to-bottom/left-to-right search pattern for the packed
R-tree indexed cube. As was discussed in Section 2.4, the indexed cube is stored
physically on disk per consecutive disk IDs, using the same top-to-bottom/left-to-
right fashion. Also, the data blocks follow this ordering. The worst case is to scan
sequentially all index blocks and data blocks. Number of Disk I/O is B(V) + D(V)
blocks.

We note, however, there is also a large amount of processor time that may affect

our assumption that only the disk I/O time is significant. If the condition of the

SELECTION has k distinct feature attributes, then k sorted arrays are used to store

IDs that satisfy the user’s condition, where the larger sorted array has n IDs. We

also assume that D(V) has m records (cells).

Theorem 2. The worst case processor running time of the SELECTION operator
has a bound of O(m * log(n)).

Proof. In the worst case, we scan sequentially all index blocks and data blocks of view
V. For each index block b, we perform a binary search to check if it intersects the
selection condition that is stored as a set of sorted arrays. The worst case processor
running time for the index scan is k * log(n) * B(V). Also, in the worst case, for
each record (cell) of V we have to perform a binary search to check if it intersects the
selection condition. The worst case running time for the data scan is k * log(n) * m.
Finally, the worst case processor running time is k * log(n) * B(V) + k * log(n) * m
which can be written as k * log(n) * (B(v) + m). This result can be re-written as
k * log(n) * (O(m)) because m, number of records, dominates the number of index
blocks. Finally, since k represents a small number of feature attributes, the worst
case running time can be bounded as O(m * log(n)) in practice.

The cost of the SELECTION algorithm can be determined by the sums of (a) the

disk I/O and (b) the processor running time, as follows:

1. The worst case number of disk I/O is B(V) + D(V) disk I/O.

2. The worst case processor running time is O(m * log(n)).

238

In practice, we observe that for most queries the number of disk I/O dominates

the processor running time. However, the processor time still has some effect on the

total execution time.

Finally, note that Algorithm 9 is used as an implementation of the two physical

operations (bitMapAccess and mapGraphAccess) in the final physical plan, while

Algorithm 10 implements the physical operation (BerkeleyRtreeAccess).

5.9.3 Algorithms for the PROJECTION operator

In this subsection, we discuss three algorithms for the PROJECTION operator de-

pending on its position in the preferred logical query plan. Choosing an algorithm

for the PROJECTION operator depends on:

1. A PROJECTION followed by a SELECTION: if a PROJECTION op-

erator in the logical query plan is followed by a SELECTION operator and

the input cube of the PROJECTION is physically materialized (Hilbert R-tree

index exists), then the implementation of the PROJECTION utilizes Sidera’s

view manager. In this implementation, we use Sidera’s view manager to select

the most cost effective materialized index cuboid/group-by that will be passed

to the parent OLAP SELECTION operator. This algorithm requires no disk

I/O for the PROJECTION since the view manager is found in the main mem-

ory. Algorithm 12 is used to implement the PROJECTION operator of this

case. In other words, the query optimizer invokes Algorithm 12 as an execution

of the physical operation viewManager PROJECTION() in the final phys-

ical plan.

Consider the Sale cube in Figure 5.10. We suppose that there are only two

239

indexed materialized cuboids for the Sale cube (i)Sale1(Customer, Store, Time,

Product), and (ii) Sale1(Customer, Store, Time). Consider the following OLAP

query:

SELECTION(Customer.CustomerID = x)

PROJECTION(Customer.CustomerID, Store.StoreID, Units Sold)Sale.

The implementation of the above PROJECTION operator is performed by using

the view manager to move the best view to the SELECTION operator in order

to answer the query. In this case, for example, Sale1 is selected and passed to

the SELECTION operator.

2. If the output attributes (L) of PROJECTION(L,M)V are equivalent

to the feature attributes of view V: Here, all cells of V will be in the output

of the PROJECTION. In this case, we read one cell at a time and pipeline it to

the parent operation by simply dropping the unnecessary measure attributes of

V. No disk I/O is required if view V is a result of another operator. However, a

sequential scan of the data set of view V (D(V)I/O) is required if view V is on

disk. The implementation of this PROJECTION is described in Algorithm 13.

Note that this algorithm is considered as the implementation of two physical

operations: dropUseless Measure(M) and cubeAccess.

Consider a three dimensional view schema V(Product.ProductID, Customer.CustomerID,

Store.StoreID, Units Sold, Quantity Ordered), with the following cells {(1, 2,

5, 200, 250),(2, 3, 4, 300, 100),(1, 2, 3, 100, 200)}. The result of PROJEC-

TION(Product.ProductID, Customer.CustomerID, Store.StoreID, Units Sold)

is {(1, 2, 5, 200),(2, 3, 4, 300),(1, 2, 3, 100)}.

240

3. If the feature attributes of view V are greater in number than the list

(L) of dimension attributes of PROJECTION(L,M)V, then we create

an in-memory hash table data structure that allows for efficient searching for a

key value; however, extensions to more scalable data structures such as balanced

search trees (i.e., AVL tree), are expected to be used in the future. The search

key for the hash table is the list (L) of dimension attributes, while accumulated

(i.e., sum function) values for each measure attribute in M are associated with

their dimensions’ members (search keys). Algorithm 14 illustrates the imple-

mentation of the PROJECTION operation that requires an internal hash table

data structure. Algorithm 14 is used as an implementation of the physical op-

erator hashTable PROJECTION(L,M)V in the final physical plan. If the

input cube of the PROJECTION is a stored indexed view, then instead of read-

ing one cell at a time in Algorithm 14, we can read one data block at a time

and then process each cell in turn. For each cell (record) r, we use the hash

table in order to decide whether:

a. No search key equals the values of the dimensions’ attributes of r; therefore,

we insert r into the hash table as a new entry.

b. A search key (k) equals the values of the dimensions’ attributes of r. Thus,

we use the values of the measure attributes of r to accumulate the values

of the measure attributes associated with key k. Recall that our OLAP

server supports only measure attributes that can be aggregated with the

sum function. The hash table in Algorithm 14 is implemented as an array

of size N, where N is the cardinality product of the cube result and the hash

function that was explained in subsection 5.9.1. For each cell c(fV, aM),

241

where fV is the list of values of the feature attributes and aM is the list of

values of the measure attributes of c, the algorithm invokes the function

hash function() to retreive the hash value hv of the key fV. From this

point, it uses the function get(fV) to verify if the hash table array entry

at position hv has a valid entry. If this is true, one can just update the

values of the measure attributes of the entry at position hv with the values

of the measure attributes of aM. From this, if the hash table array does

not have an entry with hv, then one must use the put function to insert a

new entry (fV, aM) in the hash table array at position hv.

Algorithm 12 View Manager Algorithm

Input: A set of feature and measure attributes (L) within the PROJECTION oper-
ator, a cube C and the View Manager vM .

Output: Best view that can answer the PROJECTION operation with attributes L.
1: Retrieve the actual view V from the view manager (vM), where V contains the

set of attributes T , such that L ⊂ T .
2: return V .

Algorithm 13 Drop the useless measure attribute(s) from view V

Input: Useless measure attribute(s) M and a view/group-by C.
Output: All cells of view V without attribute(s) M .
1: for each cell c(fA, MA) in view V , where mA is the list of measure attributes in

V do
2: rc = c(fA, mA - M), (cell c without the measure attribute(s) M)
3: return rc
4: end for

242

Algorithm 14 Hash Table Projection algorithm

Input: A view V (fA, mA), where fA and mA are lists of feature and measure at-
tributes in V , a list of feature attributes L and measure attributes M that are
specified within the PROJECTION, and an array CF that contains the cardinal-
ities of all feature attributes in L.

Output: An Array A containing the result of PROJECTION(L, M)V
1: Create an empty Array A with size N . N is the cardinality product of the feature

attributes (L). Array A store entries as (L, M)
2: Create an empty integer array C of size |L|, where |L| is the number of feature

attributes specified in the PROJECTION
3: Create an empty integer array aM of size |M |, where |M | is the number of distinct

measure attributes mentioned in the PROJECTION
4: Create an empty integer array tmpM of size |M |
5: Create an empty integer array fV of size |L|
6: C[|L|] = 1
7: for i = |L| - 1 to 1 do
8: C[i] = C[i+1] * CF [i]
9: end for

10: for each cell c of view V do
11: fV = feature attributes values of cell c
12: hv = hash function(L, C, fV)
13: aM = measure attribute values of cell c
14: tmpM = A[hv].get(fV)
15: if (tmpM is null) then
16: A[hv].put(fV, aM)
17: else
18: for i = 0 to —M— do
19: tmpM [i] = tmpM [i] + aM [i]
20: end for
21: A[hv].put(fV , tmpM)
22: end if
23: end for
24: return A.entries()

243

To illustrate how Algorithm 14 functions, consider the view from step (2) out-

lined above, where V(Product, ProductID) = 2 and V(Customer, CustomerID) =

3, V(Store,StoreID) = 8. Figure 5.25 shows a hash table array of size 6 (cardinal-

ity product of (ProductID,CustomerID)) which represents the output of PROJEC-

TION(Product.ProductID, Customer.CustomerID, Units Sold, Quantity Ordered).

We can derive from this figure that the hash value of key (1,2), where 1 and 2 are

ProductID and CustomerID values respectively, is 1, while the hash value of key (2,3)

is 5. Also, we notice that the values of the measure attributes (Units Sold, Quan-

tity Ordered) associated with key (1,2) are calculated from the following two cells of

the input view: (1, 2, 5, 200, 250) and (1,2,3, 100,200). The number of disk I/Os

required for the PROJECTION that is described in Algorithm 14 is D(V) I/O. As

was illustrated, the data blocks are stored sequentially in linear ordering. Thus, the

worst case I/O running performance is equivalent to the time required to sequentially

scan all data blocks in cube V. The worst case processor running time is O(n), where

n is the total number of cells of the input cube V. As was discussed above, the worst

case running time to search our hash table with n elements is O(n). Note that the

worst case processor running time would be O(n log(n)) if the AVL balanced search

tree is used instead of the hash table.

5.9.4 Hash Table Based Algorithms for Binary Operations

In this section, we discuss the algorithms for the binary operations: UNION, IN-

TERSECTION, DIFFERENCE and DRILL ACROSS. Previously, we showed in our

OLAP query grammar that these operations require two operands that are themselves

the results of two OLAP operations (such as PROJECTION, CHANGE LEVEL,

etc.). Also, these operations require one of the operands (result cube) to be in the

244

Figure 5.25: Hash Table Array stores the result of the PROJECTION operation.

main memory. As in the previous section, a hash table data structure is used to

allow for the efficient searching and inserting of cube cells. In our implementation,

we assume that the left operand called C1(L,M), where L is a list of feature attributes

and M is a list of measure attributes, is stored in a hash table data structure where

the search key value is the combined values of the feature attributes of L and the

associated data value is the combined values of the measure attributes (M).

5.9.4.1 UNION

We read the right operand cube called C2(L,M) from the main memory one cell

(record/cell/tuple) r at a time. We see if the values of the feature attributes of r

are present in the hash table, and if not, we insert r into the hash table. If r is

in the hash table, use the values of the measure attributes of r to accumulate the

required measure attributes. The result of this operation will be the values (L,M) of

all search keys and their associated data in the hash table after the last cell of the

right argument has been seen.

245

5.9.4.2 INTERSECTION

For each cell (record) r of the right operand, we search the hash table to see if the

values of the feature attributes of r are found in an entry k of the hash table. If so,

cell (r or k) with the smaller values of the measure attributes is stored as the output

of this operation, and if not, we ignore r.

5.9.4.3 DIFFERENCE

Again, we read each cell (record) r of the right operand. We verify if the hash table

has an entry e where its search key value equals the values of the feature attributes

of r. If so, remove e from the hash table if its measure attribute (M) values are less

than or equal to those of r(M). Furthermore, we can also subtract the values of the

measure attributes of e from the values of the measure attributes of r. If r is not

present in the hash table we are not required to do anything. Finally, after reading

all cells of the right operand, the output of the difference operation is the content of

the hash table (search keys + data).

5.9.4.4 DRILL ACROSS

The measure attributes of both operands are different, as such, the data of the hash

table contains two different sets of measure attributes. For each cell r of the right

operand, we see if a search key of value k in the hash table is equal to the values of

the feature attributes of r. If so, we update the hash table so that the bucket of k now

contains its measure values and the measure values of r. If r is not in the hash table,

then we insert r as a new entry into it. After the operation has been performed, the

result is the content of the hash table.

246

5.9.4.5 Cost of Binary operations

No disk I/O is required for the binary operations since both operands (C1 and C2)

are found in the main memory. However, if we allow both operands (C1 and C2) to

be on the disk, then the number of disk I/O required is D(C1) + D(C2) I/O. In other

words, the time performance in terms of disk I/O is equivalent to the sequential scan

of the data blocks of C1 added to the sequential scan of the data blocks of C2.

The worst case processor running time for each one of the above binary operations

is bounded as O(n), where n is the number of cells of the right operand. The worst

case running time to find a key in the hash table of m search keys is O(1). For

each of the n records of the right operand, we must verify the hash table for equality.

Therefore, the worst case running time is O(1) * O(n) = O(n). However, if we use the

AVL balanced tree as our internal structure in order to support the binary operations,

the worst processor running time would be O(n * log(n)).

We shall not give an algorithm for each binary operation. Rather, we provide

a representative example by presenting an algorithm that implements the UNION

operation. Algorithm 15 defines the method. The input of this algorithm is a hash

table array (A) that contains cells of the right argument view. This algorithm is

executed by our OLAP query engine when a hashTable UNION() physical operation

is required. Other binary operations can be implemented in the same manner.

5.9.5 Algorithms for CHANGE LEVEL Operation

Each one of these operations — CHANGE LEVEL and CHANGE BASE — is only

relevant as a query against an existing set. Therefore, we assume that the input of

these operations is a result cube that is housed in the main memory. Applying the

247

Algorithm 15 Hash Table UNION implementation

Input: A right view RV (fA, MA), a hash table array A of size N (N is the cardi-
nality product of feature attributes fA) which contains all cells of the left view
LV , and an array (CF) of cardinalities of all feature attributes fA.

Output: A hash table array A that has the result of (LV UNION RV)
1: Create an empty integer array C of size |fA|, where |fA| is the number of feature

attributes in the result of the operation (UNION)
2: Create an empty integer array aM of size |MA|, where |MA| is the number of

distinct measure attributes of the result
3: Create an empty integer array tmpM of size |MA|
4: Create an empty integer array fV of size |fA|
5: C[|fA|] = 1
6: for i = |fA| -1 to 1 do
7: C[i] = C[i + 1] * CF [i]
8: end for
9: for each cell c of view RV do

10: fV = feature attributes values of cell c
11: hv = hash function(fA, C, fV)
12: aM = measure attribute values of cell c
13: tmpM = A[hv].get(fV)
14: if (tmpM is null) then
15: A[hv].put(fV , aM)
16: else
17: for i=0 to |MA| do
18: tmpM [i] = tmpM [i] + aM [i]
19: end for
20: A[hv].put(fV , tmpM)
21: end if
22: end for
23: return A.entries()

248

merging laws (LAW 11) ensures that the CHANGE LEVEL operator in the preferred

OLAP query plan has a CHANGE LEVEL(s) that corresponds to a Roll-Up oper-

ation (see Figure 5.23). This changes from the most detailed level values to other

attribute level values. The implementation of this CHANGE LEVEL (Roll-Up) is ac-

complished by using the enhanced Sidera mapGraph outlined in Section 3.4, and an

in-memory hash table structure. First, the enhanced mapGraph is used to perform

the following translation: (i) mapping from the most detailed encoded level value

(base level attribute) to the corresponding sub-attribute linear encoded value and;

(ii) mapping from a level encoded value to its real value. Second, the in-memory

hash table is used to store the result in sorted order according to the order of the

output dimension attributes.

Algorithm 16 provides the implementation of the CHANGE LEVEL operation.

We start by initializing some arrays that support the algorithm. Then, for each cell in

the input cube, we use the mapGraph method (mapGraph.get encoding value())

to retrieve the encoded value for each output hierarchy level attribute. Finally, we

use a function called Get RealValues() to convert the cube result from its encoded

values to its real values.

Algorithm 17 provides the implementation of the Get RealValues() function. In

this algorithm, we use the mapGraph hash table function (mapGraph.get RealValue)

that allows us to translate from the encoding level value to its real value. Specifically,

we use the hash table associated with each hierarchical attribute level to convert in

O(1) time an encoded/linear integer value on that level to its real value.

For example, consider the two dimensional cube (Sales) of Figure 4.24 and the

hierarchy manager of the Product dimension in Figure 3.10. The following OLAP

249

Algorithm 16 CHANGE LEVEL Algorithm

Input: An input cube R(fA, MA), An array (CF) contains the cardinalities of at-
tributes in the result of the CHANGE LEVEL, Sidera’s enhanced hierarchy man-
ager (mapGraph), a list oA that include the output attributes of the operation
(CHANGE LEVEL), and two lists of attributes LI and LO mentioned within the
CHANGE LEVEL as (LI → LO).

Output: The result of CHANGE LEVEL in a hash table structure
1: Create an empty hash table array A with size N , where N is the cardinality

product of the output cube (N =
∏

1≤i≤n

(CFi)), where n is the number of attributes

in oA. Entry of A is of the form (oA, MA).
2: Create two empty integer arrays rA and C of size n.
3: Create two empty integer arrays aM and tmpM of size m, where m is the number

of measure attributes the input cube R.
4: Create an empty integer array fV of size k, where k is the number of feature

attributes in R.
5: C[n] = 1
6: for i = n - 1 to 1 do
7: C[i] = C[i + 1] ∗ CF [i]
8: end for
9: for each cell c in view R do

10: fV = feature attributes values of cell c
11: aM = measure attribute values of cell c
12: for i = 1 to n do
13: if oA[i] equals to fA[j], j= 1, . . ., k then
14: rA[i] = fV [j]
15: else
16: rA[i] = mapGraph.get encoding value(fA[j], fV [j], oA[i])
17: end if
18: end for
19: hv = hash function(oA, C, rA)
20: tmpM = A[hv].get(rA)
21: if (tmpM is null) then
22: A[hv].put(rA, aM)
23: else
24: for i = 0 to m do
25: tmpM [i] = tmpM [i] + aM [i]
26: end for
27: A[hv].put(rA, tmpM)
28: end if
29: end for
30: result = Get RealValues(A, oA, mapGraph)
31: return result

250

Algorithm 17 Get RealValues implementation

Input: A hierarchy manager (mapGraph), a hash table array (A) that contains the
cube result in encoding/linear integer form, and oA list of output attributes

Output: Array that contains the result in real/native forms
1: Create an empty array oR of size m, where m is the number of attributes in oA.
2: Create an empty array resA to store the result in its real form.
3: for each entry e(Attribute, Measure) j of A.entries() do
4: for i = 1 to m do
5: oR[i] = mapGraph.get RealValue(e.Attribute[i], oA[i])
6: end for
7: resA[j] = (oR, e.Measure)
8: end for
9: return resA

expression query, referred to as the preferred logical query plan, allows us to display

the total units sold grouped by product category:

CHANGE LEVEL(Product.ProductID → Product.Category)

(PROJECTION(Product.ProductID, Units Sold)) sale.

The result of PROJECTION(Product.ProductID, Units Sold))sale is shown in Fig-

ure 5.26(a) as a one dimensional cube. For example, we can see the total units

sold for product 1 is 128. In addition, the CHANGE LEVEL is answered by using

the enhanced mapGraph of Figure 3.10. For example, ProductID 1, . . ., 7 corre-

sponds to product category 1(Automotive), while ProductID 8, . . ., 11 corresponds

to product category 2 (HouseHold). Figure 5.26(b) illustrates the result of the above

CHANGE LEVEL operation. Finally, we can use the Category hash table (see Fig-

ure 3.10) to convert the linear values 1 and 2 of the product category to Automotive

and HouseHold respectively.

No disk I/O is required because the hierarchy manager is found in the main

memory and the input cube as well. Although the original Sidera hierarchy manager

251

Figure 5.26: Result of PROJECTION. (b) Result of CHANGE LEVEL.

supports various types of hierarchies such as ragged, simple, multiple, etc., we only

consider in our research at this time the simple symmetric form of dimension hierarchy.

Therefore, the worst case processor running time of the CHANGE LEVEL in our

logical query plan depends on the analysis of the enhanced hierarchy manager that

represents the simple symmetric hierarchy [74, 34]. In other words, the worst processor

running time is bounded as [n * O(log(V(Dim.A))], where n is the number of the base

level that has to be transformed to the destination level attribute (A) in the dimension

(Dim) and V (dim.A) is the cardinality of the attribute A in the hierarchy dimension

(dim).

Finally, it is important to mention that using Algorithm 16 without invoking

the method (Get RealValues) can be used as an implementation for any map-

Graph HashTable CHANGE LEVEL() physical operation in our physical plan.

Algorithm 17 is an implementation for the physical operation (Get RealValues) in

our OLAP physical query plan.

5.10 The Sidera Server

As was mentioned in Section 2.4, the Sidera server is a high performance parallel

ROLAP server. Figure 2.6 provided a simple depiction of the server architecture.

252

Note that the front end in Figure 2.6 is used to receive user queries that have a

simple syntax specific to the Sidera server, to pass them along to the backend nodes

for resolution, to collect the final result from the backend servers and to return it

to the end-user. In turn, the Sidera backend nodes are fully responsible for query

resolution and operate mostly independently. In Chapter 3, we described an efficient

OLAP storage manager for the Sidera server. In other words, we explained how the

data of the data warehouse (fact table, dimensions and cubes) is efficiently stored on

disk and accessed quickly. Figure 3.20 illustrated how different Sidera components

sit on top of Berkeley DB and FastBit in order to provide an efficient OLAP storage

engine for the existing Sidera server. Note that the Query Processor component of

Figure 3.20 is used to answer simple OLAP queries that have been hard-coded in a

proprietary format.

In this chapter, we described a pure OLAP query processor (Compiler and Execu-

tion) for the Sidera server, which can be used to answer very complex OLAP queries

received in XML format. Thus, we replace the old and very simple query processor

with the new OLAP query processor. Figure 5.27 shows the new software model on

each backend Sidera server after the integration of the new OLAP query processor.

Since the new Sidera server needs the data of dimension tables in order to resolve

real-world OLAP queries, the additional data is supported by the integration of new

components (See Figure 5.27) into the backend Sidera server. In other words, the

Bitmap Index Manager that represents the compressed bitmap indexes for the re-

quired non-hierarchical attributes are integrated on each backend node. Also, we can

see the dimension table representation component that is responsible for encoding

and indexing dimension tables (refer to Chapter 3).

253

Though our research in this thesis focuses on the components of the backend

nodes, a brief description of how the query is executed in the parallel Sidera server

will be presented in this section. In short, the new Sidera server is used to answer

very complex user queries that first arrive in XML format on the front end node. The

frontend node broadcasts the received XML OLAP query to the backend nodes. Each

backend node operates independently to efficiently answer a portion of the received

OLAP query from the OLAP storage data that is housed locally. Finally, a parallel

service layer combines the local results and returns them to the user.

Front end processing proceeds as per Algorithm 18. Figure 5.28 provides an illus-

tration of the frontend architecture and processing logic. For simplicity, we assume

that the function of the frontend server is to receive only one OOP OLAP query

in XML format at a time. However, from a practical perspective, the Sidera front

end should receive several OLAP user queries at the same time. For this reason,

the query is directly broadcasted to each of the backend Sidera processors, thereby

avoiding unnecessary bottlenecks on the frontend.

Algorithm 18 Front End Sidera Server

1: receive an OLAP user query Q in XML format
2: verify if Q matches our DTD-encoding OLAP query grammar
3: if ill-formed syntax then
4: error message to the user
5: end if
6: broadcast Q to Sidera backend nodes
7: receive results into local buffers
8: create an XML-format R for the result of Q
9: send R to the user

254

Figure 5.27: A block diagram of the software architecture on each Sidera Backend
processing node.

Figure 5.28: The Sidera frontend.

255

Algorithm 19 provides a high level description of the processing loop on the back-

end server instances. A corresponding graphical depiction is provided in Figure 5.29.

Specifically, it describes the query compiler and query engine modules used to process

the user’s OLAP query. To begin, each backend node receives the same OLAP query

(uQ) from the front end. Then, the DOM parser creates the DOM tree (dT) for uQ

if it matches our DTD-encoding OLAP query grammar, and if not, an error message

is returned to the frontend node. Additionally, the Sidera parser turns the DOM tree

dT into an internal parse tree (pT). The pre-processor component of our OLAP query

compiler must be used at this step (step 9) to make sure that the received query is

semantically valid. Specifically, it checks pT against the OLAP schema definition.

Once this step is completed, the parse tree pT is converted into an OLAP expression

tree (initial OLAP logical query plan) for our OLAP algebra (lQ). A preferred log-

ical query plan (pLQ) is then constructed for the initial logical query plan (lQ) by

applying several of the re-writing OLAP laws and techniques mentioned in Section

4.9. Next, pLQ must be turned into the most efficient physical plan (qP). Finally,

the last step of the query compiler is to generate a sequence of n function calls (fC),

one for each physical operation in qP .

After the query has been compiled, our OLAP query execution engine then exe-

cutes the sequence of function calls by invoking the appropriate algorithms defined

in Section 5.9 to answer the query. For example, if a function call is equivalent to

the bitMapAccess() physical operation, then Algorithm 9 is invoked to answer this

function call. In the previous section, we mentioned for each physical operation in

our physical query plan its corresponding algorithm. After the execution of all func-

tions, a Parallel Sample Sort is performed across the parallel machine to produce

256

Algorithm 19 Sidera Backend Query Resolution

1: Receive the user’s OLAP query (uQ) written in XML format from the frontend
2: DOM Parser verifies if uQ matches our OLAP query grammar
3: if the syntax of uQ is not valid then
4: Return error message
5: else
6: DOM parser creates a DOM tree (dT) for uQ
7: end if
8: Sidera Parser creates a parse tree (pT) for dT
9: Sidera Pre-Processor checks the semantic of pT

10: if the semantic of pT is not valid then
11: Return error message
12: end if
13: The initial logical query plan generator turns pT into an initial OLAP algebraic

expression tree (lQ).
14: The OLAP Query Optimizer must turn the initial OLAP logical plan (lQ) into

the preferred logical query plan (pLQ).
15: The OLAP Query Optimizer transforms pLQ into an OLAP physical query plan

(qP).
16: The OLAP Query Optimizer generates a sequence of function calls (fC), one for

each physical operation in qP . fC has n function calls {f1, f2, . . . , fn}.
17: Initialize the mapGraph Hierarchy Manager (hM) with the dimension hierarchy

metadata.
18: Initialize the View Manager (vM) with the meta data about the physically stored

views.
19: Initialize the bitmap index manager (bI) with the compressed bitmap indexes for

all non-hierarchical attributes mentioned within the restriction of uQ.
20: for each function call fi in fC where i = 1, . . ., n - 1 do
21: Ri = Invoke the appropriate algorithm(s) that implements fi.
22: Pass the result Ri to the parent function fi+1

23: end for
24: Do a parallel sort of Rn−1 across all backend Sidera nodes. Each backend node

now contains a sorted result sR.
25: Invoke the function fn (Get realValues(L)), result R = Get RealValues(L)

sR, where L is the list of dimension attributes in the output of the uQ.
26: Return result R to the frontend (collect R with MPI Allgather()).

257

a distributed data set result that is now fully sorted across the backend nodes. At

the conclusion of this phase, each node houses a segment of the final result in in-

teger form. Moreover, the n records of the final result are partitioned across the p

nodes of the network such that for records {i, j}, 1 < i < j < n, and with locations

{i(m), j(n)}, 1 < m < n < p, we are guaranteed m < n. The last step of our query

engine processing cycle is to invoke the Get RealValues() function in order to con-

vert the partial results on each backend from their encoded form (integer values) to

their native form. Finally, because Sidera is a fully parallelized OLAP query engine,

the partial results are returned to the frontend buffers. We use a standard Gather op-

eration from the MPI libraries (Message Passing Interface). Note that the numbered

sequence in Figure 5.29 indicates the processing cycle for an OLAP query. There

are no numbers between the OLAP query execution component and the components

(such as hierarchy manager, view manager, etc.) since these can be accessed any

time during the execution of the physical plan. However, Number (8) indicates the

execution of the function at the root of the physical plan (Get RealValues()) after

the parallel sample sort.

5.11 Result Sets

Eventually, after the query has been resolved, the final query results are collected

and merged into one result buffer on the frontend node. Note that the Sidera client

side transforms the query result received from the frontend into a multi-dimensional

object that can be directly accessed. Therefore, the frontend must construct the query

result set in a way that allows the client side to efficiently transform the result into a

multi-dimensional array object. The frontend node packages the result into an XML

258

Figure 5.29: The Sidera Backend Node.

message. A DTD called OlapResultSet is used to define the format of the query result.

A partial listing of the DTD is provided in Figure 5.30. In short, the OlapResultSet is

structured as a combination of metadata and cell data. The metadata consists of the

relevant dimensions, along with those dimension members actually included in the

query result. The cell data, on the other hand, is listed in a compressed row format

that maps cell values to the corresponding axis coordinates.

Figure 5.31 provides a partial representation of a simple result set. Note how each

customer member is associated with a monotonically increasing Member ID, starting

from zero. In the Raw Data section of file, we can see how each cell value is associated

with the coordinates of three dimensions. The first row, for example, houses the values

<0, 1, 2, 345.24>. Assuming that Customer is the first dimension in the meta data

list, this implies that the cell value 345.24 is associated with Customer[0] = Joe.

259

Figure 5.30: Result Set DTD Grammar.

We note that regardless of the storage format of the server (ROLAP, MOLAP, or

otherwise), this XML is trivial to produce with a simple linear pass through the result.

Once the XML result is received at the client side, it is immediately transformed into

a multidimensional object.

5.12 Review of Research Objectives

In this section, we review the objectives that were identified in Section 5.3. In other

words, we now check if those goals have in fact been achieved.

1. Parse the received OOP OLAP query written in XML format such

that an internal parse tree is created if the query is syntactically and

semantically valid. This goal is achieved by using two levels of parsing. First,

a DOM parser was used to parse the received XML document, to check its syntax

260

Figure 5.31: Result sent from the frontend to the client side as an XML message.

against our query grammar and to create the corresponding DOM graph/tree.

Second, the Sidera parser was utilized to translate the DOM graph/tree into an

internal parse tree and to check if the received query is semantically valid.

2. Provide an initial OLAP logical query plan that can be easily opti-

mized later. The user’s OOP OLAP query is translated internally into an

OLAP algebra expression tree that consists of our OLAP algebraic operators.

As outlined in Section 5.6, the main advantage of using a comprehensive OLAP

algebra is that it makes alternative forms of an OLAP query easier to explore,

manipulate, and subsequently optimize.

3. Produce an OLAP logical query plan that requires less time to exe-

cute. This goal is achieved by applying the OLAP algebraic laws outlined in

261

Section 5.7 to the initial OLAP logical query plan in order to produce a better

plan. Note that “better” means it is likely to require less time to execute and

possibly use less memory if intermediate results are smaller. Experimentally,

we will validate this goal in the next chapter. Specifically, we will compare the

execution running time of OLAP queries before and after applying some of our

OLAP algebraic laws.

4. Pick the OLAP physical query plan with the least estimated cost. We

propose an OLAP cost model (similar to those used in relational database) in

order to estimate the cost of a physical plan. The cost is estimated in terms

of the number of disk I/Os and, if necessary, the processor running time. We

expect that the physical query plan with the least estimated cost should require

the least actual execution time and should be selected by our optimizer. In the

next chapter, experiments will be conducted to validate the correctness of our

OLAP cost model.

5. Efficient algorithms for implementation of the operations of our OLAP

algebra. In Section 5.9, we proposed a number of algorithms for efficient imple-

mentation of the operations of our OLAP algebra. In other words, we defined

how we should execute each of the individual steps of an OLAP logical query

plan (e.g., SELECTION, PROJECTION). These algorithms are divided into

index-based (i.e., SELECTION) and sequential-based (e.g., PROJECTION)

methods. Moreover, we proposed in-memory data structures (such as hash ta-

bles, Bitmap Index Manager, etc.) that support efficient execution of OLAP

operations.

262

6. Allow for the simple manipulation of the cube results. The frontend

node packages the result into an XML message and returns it to the client side.

This XML document can be efficiently translated into multi-dimensional OLAP

cube results that can be directly and easily accessed by the end-users.

5.13 Conclusions

In this chapter, we have presented a pure OLAP query processor component for

compiling and resolving Object-Oriented OLAP queries in the Sidera server. The

processor is divided into two main components: an OLAP query compiler and an

OLAP query execution engine.

For query compilation purposes, we use a process similar to that of traditional

relational database systems in that we use two main approaches to optimize queries

(rule-based and cost-based). In our OLAP environment, an internal OLAP parse tree

representing the user’s OLAP query is created. The query compiler employs an OLAP

optimizer that is based upon two mechanisms (i) OLAP multi-dimensional rules and

(ii) an OLAP cost model. We have showed that our multi-dimensional rules-based

engine (Section 4.9) can be applied to multidimensional databases by rewriting each

OLAP query to obtain an efficient OLAP logical query plan. Again, these techniques

are similar to the basic approaches taken in traditional DBMS systems; however, here

they are specific to OLAP environments (cubes, views, hierarchies, cells, measures,

etc.). The output of the OLAP query compiler is a set of OLAP physical operations

that can be resolved by the OLAP query execution engine.

For query execution, we have defined a number of algorithms for execution of the

operations of our OLAP algebra. These algorithms build upon the efficient OLAP

263

Sidera data storage and data structures (e.g., hierarchy manager) previously described

in Chapter 3. Moreover, the query engine uses an in-memory hash table structure

that allows efficient implementation of these algorithms. In the next chapter, we will

discuss various experimental results that support the design decisions that we have

made.

In addition, we have described in Section 5.10 how several components fit together

to support the high performance parallel ROLAP server. The front end Sidera server

receives and broadcasts a user’s OLAP query, collects results from Sidera backend

nodes, and subsequently returns the final result to the end user in an XML document.

In turn, each backend node compiles and executes the received OLAP query on the

portion of data that is housed on its disk and returns the results to the front end.

We have illustrated how the final query result is returned to the end-user in XML

format. This XML is constructed in a way that allows the client side to efficiently

transform the result into a multi-dimensional array object that can be directly and

easily accessed.

In summary, our OLAP query processor complements the efficient OLAP stor-

age engine (Chapter 3) and the OLAP query grammar and algebra (Chapter 4) by

providing the final piece that the Sidera DBMS requires in order to support high

performance OLAP DBMS within the ROLAP environment.

Chapter 6

Experimental Results

6.1 Introduction

The end result of the previous three chapters is a comprehensive OLAP DBMS server

that can be used to answer complex native-OOP OLAP queries in a very efficient

way. Specifically, we developed a multi-dimensional algebra that is used by our OLAP

query optimizer to optimize OLAP queries that match our robust OLAP grammar.

In the current chapter, our focus is to check the effectiveness of our new methods

and data structures. We provide experiments that demonstrate the importance of

the application of our algebraic laws. Moreover, we show experimental results that

assess the ability of our OLAP query engine to efficiently resolve native-OOP OLAP

queries in a responsive manner. We will present a series of tests; each is designed to

explore a particular feature of our OLAP query processor. In addition, we provide

direct comparisons with commercial DBMS servers to highlight the viability of our

prototype. Finally, we discuss parallel query resolution time in the Sidera server.

The chapter is organized as follows. In Section 6.2, we discuss the test environ-

ment as it relates to the hardware, software, and data that we use in our evaluation.

Section 6.3 describes the current query processor components that have actually been

264

265

implemented. In Section 6.4, we will look at a sequence of tests in order to highlight

the importance of our query compiler and execution engine with respect to the reso-

lution of OLAP queries. In Section 6.5, we compare our query engine against two well

known enterprise database servers: (1) MySQL — currently the world’s most pop-

ular open source relational database management system — and (2) Microsoft SQL

Analysis services — currently the world’s most popular commercial OLAP system.

In Section 6.6, we will look at parallel query resolution as the number of processors

increases. Section 6.7 is the conclusion of this chapter.

6.2 The Test Environment

In terms of the test platforms, the majority of these tests were conducted on a Linux-

based workstation running a standard copy of the 2.6.x kernel, with 1GB of main

memory and a pair of 3.2 GHz dual CPU boards. Disks are 160 GB drives running at

7200 RPM. Moreover, one additional but important test focuses on the comparison

between Microsoft SQL server (Microsoft Analysis Services) and our OLAP server

(Sidera). Since Microsoft SQL server 2008 can be installed on a windows-based ma-

chine only, we therefore use a dual-boot, user managed machine (windows and Linux),

with one GB of main memory and a pair of 2.6 GHZ dual CPU processors. In the

experiments that follow, we make sure that all comparisons are conducted on the

same hardware resources.

All software components of our server have been implemented using C++, STL

(the Standard Template Library) and the MPI communication libraries. In addition

to the integration of the source codes of the Berkeley DB and the FastBit core with

the Sidera server components (mapGraph, ViewManager, cube indexing, etc.), our

266

OLAP query processor (except the optimizer) was fully implemented in C++ and

replaced the old Sidera query processor.

In terms of dimensions, we create six dimensions as depicted in Table 6.1. The

underlined attributes in Table 6.1 are the primary keys (e.g., CustID, ProdID). The

table shows simple metadata for each dimension as follows:

1. The dimension name (e.g., Customer, Product).

2. The dimension attributes (e.g., CustID, Region, Age)

3. The number of records.

4. The dimension’s hierarchy (i.e., CustID is the base attribute).

Data for each dimension was generated using an open source data generator called

Spawner [108]. It is a tool for generating suitable test data for populating databases.

Specifically, the schemas were defined and then Spawner was utilized to generate the

appropriate number of records for each dimension. Moreover, we supply Spawner with

text files (i.e., a country file that contains the name of all countries) to ensure that

the data of dimensions makes sense (e.g., Quebec is a province in Canada and not in

USA). All dimensions were encoded and physically stored on disk. As was discussed in

Section 3.4, a number of extra attributes must be added to the encoded dimension (one

for each hierarchical attribute level). We use the following conventions for naming

those extra attributes: (i) the name of the encoded primary key (i.e. the name of

the most detailed encoded level) is constructed as the first letter of the dimension

name, “ ”, and ID (for example, in dimension Customer the name of the encoded

primary key is C ID, while P ID is used in dimension Product), and (ii) the name

267

Dimension
Name

Attributes Number
of
Records

Hierarchy Description

Customer (CustID, Name, Age,
Country, Region)

One Mil-
lion

CustID → Region → Coun-
try

Product (ProdID, Quantity,
ProdDesc, Category,
Type)

200,000 ProdID → Type → Cate-
gory

Time (Day, DayName, Day-
OfWeek, Year, Quar-
ter, Month)

3650 Day → Month → Quarter
→ Year

Store (StoreID, StoreName,
StoreState, StoreCity,
StoreCountry)

655 StoreID → StoreCity →
StoreState → StoreCountry

Vendor (VendorNumber,
VendorName, Phone,
CountryName, State-
Name, City)

416 VendorNumber → City →
StateName → Country-
Name

Employee (SIN, FirstName,
LastName, Phone,
Email)

300 No Hierarchy

Table 6.1: Dimension Tables.

of the encoded hierarchical sub-attribute is the attribute name concatenated with

“ID” (e.g., RegionID, CountryID). Hierarchical attributes were stored in Berkeley

DB databases with the Recno access method (e.g., the Region attribute in dimension

Customer). Finally, FastBit was used to create compressed bitmap indexes, one

for each non-hierarchical attribute (e.g., Age in dimension Customer, Quantity in

dimension Product).

Regarding the fact table, we generate a six-dimensional fact table (the dimension

count varies with some tests), with cardinalities chosen to be equivalent to the cardi-

nalities of the corresponding dimensions (1000000, 200000, 3650, etc.) in Table 6.1.

Data sets are generated using a custom data generator developed specifically for our

268

OLAP environment. The distributions of data sets are not skewed. Data values are

randomly generated and uniformly distributed. We note that while skewed data is

important in the cube generation, it has little impact on query resolution evaluation.

Depending on the test involved, row counts typically vary from 100,000 records to

10,000,000 records. The primary fact table is then used to compute a fully material-

ized data cube containing hundreds of additional views or cuboids. Once the cube is

materialized, we index the views using the R-tree mechanism provided by the Sidera

server and store the index cube in Berkeley DB. The schema of the fact table (feature

attributes and measure attributes) along with the schemas of its associated dimen-

sions (dimension name, hierarchies, etc.) is stored in Berkeley DB XML. Note that

the format of the schema matches the grammar defined in Section 4.8.

In terms of OLAP queries, there is no standard business oriented ad-hoc OLAP

query generator (something similar to TPC-H that is used for OLTP systems) that

can be used to evaluate the performance of a database server [110]. We must therefore

develop our own query framework. As illustrated in Figure 5.28, our OLAP server

receives the user’s OOP query in XML format where it must be parsed, optimized and

executed. To carry out the experiments, we require batches of OLAP queries written

in XML format. Moreover, each of these OLAP queries must be translated by hand

into the appropriate SQL syntax and MDX-syntax so that they can be executed on

MySQL server and the SQL Server DBMS in order to conduct the comparison with

those database servers. Because of the complexity of constructing OLAP queries

in XML format and the labour-intensive nature of translating them into SQL and

MDX syntax, and finally, the fact that no standard set of OLAP queries exists, we

are limited in terms of the size of the query batches that we use. Specifically, we

269

rely on batches of 10 to 20 OLAP queries per test. Appendix A and B illustrate

the SQL-syntax of OLAP queries used to evaluate our OLAP server. We note that

these OLAP queries are divided into queries on low-dimensional views (less than four

dimensions) that can be easily visualized and high-dimensional views (views with

more than 3 dimensions). Recall that our OLAP server supports the simplest (and

most common) data warehouse schema (star schema); therefore, queries that are used

in our experimental results are of the form of star queries. In the star query, one table

(fact table or view) serves as the central table and all other tables (dimensions) are

joined to this table. Finally, we note that the “drop caches” option available in the

newer Linux kernels was used to delete the OS page cache between the executions of

each query.

6.3 Current Query Processor Implementation

Before digging in to the details of the experimental results, it is useful to first pro-

vide an overview of the components (compiler elements and execution elements) that

have actually been implemented for the OLAP query processor that was discussed

in Chapter 5. The following is the list of query processor elements that are fully

implemented at the current time:

1. XML Query Parser: We have used the Xerces-C++ to create the DOM/-

graph and check the syntax of the received OLAP XML query. Moreover, we

can convert this DOM graph into an internal parse tree.

2. Pre-processor: The semantic checking element is fully implemented and used

to make sure that the received queries are semantically valid.

270

3. Initial Logical Plan: Our current query compiler is able to convert the vali-

dated query into an initial logical plan of OLAP logical operators.

4. SELECTION Algorithms: This operation was fully implemented in our

server. In other words, we have implemented Algorithms 8, 9, 10 and 11

which, as a group, can be used to process arbitrary OLAP query restrictions.

5. PROJECTION Algorithms: This operation is also fully implemented in

our engine. Specifically, we have implemented Algorithms 12, 13 and 14 that

provide different implementations of this operation, depending upon its location

in the query.

6. INTERSECTION Algorithm: This operation is fully implemented.

7. CHANGE LEVEL Algorithm: Algorithm 16 and 17 were also implemented

to change the base encoded level values to sub-attribute native values.

For the query compiler, our logical (Section 5.7) and physical query (Section 5.8)

optimizations are not yet fully implemented due to the extensive implementation effort

required to produce a robust query optimizer. In the subsequent sections, we manually

provide various tests to check the effectiveness of our query optimization policies. For

example, we provide the engine with optimized and non-optimized queries. Moreover,

in order to check our cost model, we create several physical plans that are sent to the

engine and subsequently report their running times.

For query execution, future projects will include implementation for other binary

operations such as DRILL ACROSS, UNION, and DIFFERENCE. Also, we will even-

tually require implementation of the balanced search tree (instead of the hash table)

271

that can support larger intermediate cubes. Finally, the query result set is currently

returned as a simple array; however, this should be as an XML message in the future.

6.4 Single Node Experimental Evaluation

Though Sidera (our OLAP server) is a fully parallelized system, we have used a

single node test environment in this and the next section for two reasons. First,

the components on each node — see Figure 5.29 (OLAP query optimizer, execution

engine, mapGraph, bitmap index manager, etc.) — of the parallel server are designed

to work independently. Second, it is far more convenient to conduct single node

tests against the commercial DBMS (such as MySQL DBMS and Microsoft Analysis

server). We will now look at a series of results that show the importance of our

multi-dimensional OLAP query processor (optimization and execution) in terms of

query resolution. Specifically, we discuss the running time of OLAP queries before

and after using our OLAP techniques (OLAP algebraic laws and physical plan).

6.4.1 Query Engine with and without LAW 5

Since the base cuboid of a cube contains all dimensions, it can be used to answer any

OLAP query against the cube. Recall that the purpose of LAW 5 is to select the best

view to answer the current OLAP query. In the absence of LAW 5, our OLAP query

engine utilizes the base cuboid to answer a given OLAP query. In this section, we

discuss the performance of our OLAP query engine with and without LAW 5 as the

number of records in the fact table increases and also as the number of dimensions

changes.

Figure 6.1 illustrates the performance of our query engine as the number of records

272

in the fact table varies from (100K, 1M and 10M records) with the same set of

dimensions (6 dimensions). In terms of OLAP queries, we create 16 OLAP queries

in XML format which match our OLAP query grammar. Appendix B illustrates the

SQL-syntax of those 16 OLAP queries used in this section. In Figure 6.1, we can

observe that the running time increases dramatically as the size of the data cube

increases. Again, this is because the base cuboid is by far the largest view amongst

the cuboids in the cube. Using LAW 5, the same views are selected to answer the

query at each fact table size; however, they have different sizes because the size of

the base cuboid (fact table) varies. We can see the importance of LAW 5 when the

number of records increases in the fact table. For example, the running time without

this law increases by a factor 1 to 3 when the number of records is less than 1 million

records; however, this factor increases to 10 when the number of records is 10 million.

Figure 6.2 illustrates the performance of the query engine (with and without

LAW 5) as the number of dimensions that surround the fact table increases. Fig-

ure 6.2 shows the running time of 12 OLAP queries in XML format for three data

cube density levels. All data cubes have the same number of records in the base

cuboid (1 Million records), but they differ in the number of dimensions (4, 6 and 8).

In terms of OLAP queries, SQL queries in Appendix A illustrate the equivalence of

the OLAP queries used in this test. Note that only four dimensions and the fact table

are involved in those queries (Customer, Product, Time and Store). In Figure 6.2,

using LAW 5 in our server ensures that the running time of the same set of queries

remains the same as the number of dimensions increases in the cube. This is due

to the fact that the same views are selected for the same queries. However, in the

absence of LAW 5, we can observe that the resolution time for the same set of queries

273

6.29 11.01
22.36

8.18

29.77

218

0

50

100

150

200

250

100 K 1 M 10 M

Ti
m

e
in

 S
ec

on
ds

Fact Table (Number of Records)

Sidera Query

Engine With

LAW_5

Sidera Query

Engine

Without

LAW_5

Figure 6.1: Query running time with and without LAW 5 as the number of records
in the data cube increases.

is increased as the number of dimensions in the cube is increased, because the number

of dimensions in the base cuboid is increased. Moreover, the running time without

LAW 5 is increased by a factor of 10% to 20% as the number of dimensions increases;

however, it is very likely to be the same when using LAW 5.

6.4.2 Sidera Query Engine with and without LAW 2, LAW 4

and LAW 13

In this test, we create four different OLAP queries that can be optimized by the

following algebraic laws: Law 4, LAW 2 and LAW 13. In other words, each query has

the INTERESECTION operator between two OLAP queries, which can be optimized

in four steps. First, our optimizer uses LAW 4 to pull the SELECTION up. Second, if

necessary, LAW 2 is utilized to combine many conditions by using the AND operator.

274

8.21 8.73 8.52

16.59

18.03

22.52

0

5

10

15

20

25

4 6 8

Ti
m

e
in

 S
ec

on
ds

Dimension Count

Sidera Query

Engine With

LAW_5

Sidera Query

Engine

Without

LAW_5

Figure 6.2: Query running time with and without LAW 5 as the number of dimensions
increases in the data cube.

Third, LAW 4 is used again to push the SELECTION down to both arguments of the

INTERSECTION. Finally, LAW 13 is used to replace the intersection of two identical

queries with only one of them. In this test, the OLAP queries were divided into two

groups: (i) those containing four attributes or less, and (ii) those drawn from the

complete 6-dimensional space.

Figure 6.3 provides the test results. Here, we present the total response time of

four OLAP queries before and after applying: LAW 2, LAW 4 and LAW 13. Note

that in this test, a fact table with 6 dimensions is used to create the indexed cube

(64 index views) as 64 Berkeley DB database objects that are stored in one Berkeley

DB physical file on disk. Results of Figure 6.3 are shown for two indexed cubes that

are created from initial fact tables of one million and ten million records.

275

4.74
16.23

24.75

179.55

0

20

40

60

80

100

120

140

160

180

200

1M 10M

T
im

e
in

 s
ec

o
n

d
s

Fact Table

With

LAW_2,

LAW_4

and

LAW_13

Without

LAW_2,

LAW_4

and

LAW_13

Figure 6.3: Query response time with and without LAW 2, LAW 4 and LAW 13 as
the size of the fact table varies.

15.18 16.23

135.8

179.55

0

20

40

60

80

100

120

140

160

180

200

4 6

T
im

e
in

 s
ec

on
ds

Dimension Count

With

LAW_2,

LAW_4

and

LAW_13

Without

LAW_2,

LAW_4

and

LAW_13

Figure 6.4: Query response time with and without LAW 2, LAW 4 and LAW 13 as
the size of the number of dimension varies.

276

295379

553325

29949
59907

0

100000

200000

300000

400000

500000

600000

4 6

Pa
ge

s/
Bl

oc
ks

 r
et

ri
ev

ed

Number of Dimensions

Without

LAW_2,

LAW_4

and

LAW_13

With

LAW_2,

LAW_4

and

LAW_13

Figure 6.5: Comparison of number of blocks retrieved for the query engine before and
after the use of LAW 2, LAW 4 and LAW 13 for the same queries.

Figure 6.4 illustrates the significance of our laws when the number of dimensions

increases from four to 6. In this test, the indexed data cubes are created from ten

million records with four and six dimensions respectively. We can see in this figure

also how the running time of four OLAP queries decreases with the use of these laws.

Figure 6.5 presents a comparison of the number of blocks retrieved before and after

using the optimization laws (LAW 2, LAW 4 and LAW 13). The graph suggests that

our engine without these optimization laws results in more than ten times as many

block retrievals on both dense and sparse views.

We can see in Figure 6.3 and 6.4 that the running time is 5 to 15 times faster if

our engine utilizes LAW 2, LAW 4 and LAW 13 to optimize queries. This improve-

ment is due to three main factors (i) the intersection of two identical data queries is

replaced by only one (LAW 13), (ii) LAW 2 changes a large query (in terms of the

number of records in the result) to a smaller one because the conjunction of multiple

277

conditions requires less disk I/O (see Figure 6.5) and (iii) finally, pushing down the

new SELECTION with the conjunction of all conditions. We note the improvement

factor increases as the number of dimensions and records in the fact table increases.

6.4.3 Index scan Versus Sequential cube scan

In this test, we compare the running time of queries when we sequentially scan the

cube against the Berkeley DB R-tree index scan. Figure 6.6 illustrates the perfor-

mance of our query engine for R-tree indexing and sequential scans for two data cube

density levels (4 and 6 dimensions). Each data cube is generated from a fact table of

10 Million records. In terms of OLAP queries, we use 12 OLAP queries (equivalent

to those queries in Appendix A) to compare index versus sequential cube scan in

the case of a four-dimensional cube. However, 13 OLAP queries equivalent to the

following SQL queries — 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 14, 15 and 16 — in Appendix B

are used in the 6-dimensional cube test result. We can see in Figure 6.6 that the

running time for indexed view access is four times faster than sequential view access.

We note that there is a point where no index can improve upon a sequential scan,

as the result of a query increases sharply relative to the view size. In our server this

happens when the result of the query exceeded 20% to 25% of the records in the view

that is used to answer the query. However the penalty associated with pathologically

large queries is small because of the indexing model (Linear BFS) that is used in our

server. Therefore, we can conclude that sequential scans are not important in our

OLAP server. This is important as it minimizes the complexity of query execution

planning.

278

19.55
25.96

75.96

99.71

0

20

40

60

80

100

120

4 6

Ti
m

e
 in

 S
e

co
n

d
s

Dimension Count

Hilbert R-tree Index Scan Squen!al Scan

Figure 6.6: Sequential Scan versus Hilbert R-Tree index Scan.

6.4.4 Query Compilation Time versus Query execution Time

In almost all cases, the cost of query compilation (parser and optimizer) is significantly

less than the cost of executing a query plan. To demonstrate the efficiency of our

OLAP query compiler, we compare the compilation time with the execution time of

a set of mixed OLAP queries. We illustrate that the compilation time (Parsing and

Optimizing) in our server is a fraction of that of the execution time. Recall that our

query compiler is not yet fully implemented. Consequently, we cannot report the final

query optimization time because we are still implementing some of the query optimizer

components. Therefore, in this section we compare the compilation time without the

optimization time against the execution time. Currently, for each received OLAP

query in XML format, the following times can be reported as part of the compilation

time:

• Time to create the parse tree and to check its syntax.

279

• Time to check the semantic meaning of the query.

• Time to create the initial OLAP logical query plan.

For this test, we create a six-dimensional indexed full cube. In other words,

64 Berkeley DB R-tree database objects are created and stored on disk. The base

view/cuboid or fact table has ten million records and it is surrounded with the six

dimensions shown in Table 6.1. We create twelve different OLAP queries. These

OLAP queries were divided into six groups. Each group contains a different number of

dimensions from the 6-dimensional space. For example, group 1 includes those queries

containing one attribute, while group 6 comprises those containing 6 attributes. The

OLAP queries that were used for the test of this section are considered to be small

OLAP queries. Specifically, the result set of each query doesn’t exceed 1% of all of

the records in the data set (these records are stored between 5% and 10% of the data

blocks). Figure 6.7 shows the compilation time and the execution time for each query.

We can observe that the compilation time in our server is less 1.6% of the execution

time. We should note here that the compiler requires more time with the use of the

optimizer; however, the optimization time is expected to be small compared to the

execution because of the way our optimizer works (greedy algorithms to choose order,

simple heuristics, etc.).

6.4.5 Validating the Cost Model

To demonstrate the accuracy of our OLAP multi-dimensional cost model, we compare

the estimated cost in terms of disk I/O and CPU running time of several OLAP

physical query plans against their actual execution time. We create a six-dimensional

fact table (i.e., called Fact-Sales) with 10 Million records and surrounded with the six

280

0.022 0.029 0.032 0.039 0.049 0.048

0.79

1.27

2.12
2.28

3.52

3.02

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

Ti
m

e
 (S

e
co

n
d

s)

Query Group

Compila on Time Execu on Time

Figure 6.7: Query compilation time compared to Query execution time for different
query groups (group i is answered from i -dimensional cuboids).

dimensions of Table 6.1. Moreover, the R-tree index cube (Called Sales) is created

and stored in Berkeley DB. In this test, we report on one OLAP query, illustrated in

SQL-syntax in Figure 6.8, which runs against the indexed cube (Sales) and dimension

tables stored in our server. Figure 6.8 illustrates the initial OLAP logical query plan

with the preferred logical query plan. Recall that our physical query model is not yet

implemented. We restrict our work in this test to only one query because it is very

time consuming to convert the XML OLAP query into a set of physical queries and

then execute and report the running time of all of them.

Since our query optimizer is not yet implemented, we manually use the methods

and theories that were described in Section 5.7 and 5.8 in order to convert the initial

logical query of Figure 6.8 into four physical query plans that are depicted in Fig-

ure 6.9. These physical query plans generate the same result but they differ on how

each plan is executed. For example, in plan-1 a dimension scan is performed to find

281

Plan-1 Plan-2 Plan-3 Plan-4
Estimated Block
I/O

89689 91689 85690 127145

Estimated CPU
running Time

511767 511767 511767 50082027

Actual Execu-
tion Time

13.15 13.36 10.8 28.23

Table 6.2: Estimated cost (Block I/O and processing time) versus actual time.

all product IDs with category equal to Household, while a bitmap scan is used to

get all customer IDs with age equals 30. On the other hands, Plan-4 uses sequential

scans for the appropriate view and dimension tables (Product and Customer) to re-

solve the query. In Table 6.2, we can see the estimated cost and the actual execution

time for each physical plan. We observe that dimension Customer and Product have

6000 and 4000 blocks respectively. Moreover, the appropriate view that is utilized

to answer the query is the two dimensional view (Customer-Product) that contains

9999739 cells. In addition, the number of disk blocks and index blocks is 117644 and

2355 respectively. Our estimate for the SELECTION result for this query is 83332

cells. We observe that the actual number of cells for the SELECTION result when

running this query is 72038 cells.

To summarize, at present our server does not physically compute these four plans;

however, we instruct the system to use the appropriate algorithms for each plan in

order to report its actual execution time. Our optimizer, when fully implemented,

will of course pick Plan-3 because it has the least estimated cost.

6.4.6 Scalability

In production environments, it is quite likely that OLAP users will be accessing

systems that are larger than the ones that can be conveniently tested in academic

282

Figure 6.8: Initial and preferred OLAP query plan and its equivalent in SQL.

283

Figure 6.9: Four Possible physical plans.

284

settings. As a result, it is important to provide some understanding of performance

as core parameters grow. Our scalability assessment begins with a look at perfor-

mance patterns as the number of records increases from 100K to ten million. We use

a six-dimensional fact table and define the dimensions as per the dimensions men-

tioned in Table 6.1. In this test, we create 16 OLAP XML queries equivalent to

those SQL-based queries defined in Appendix B. That being said, these queries can

be answered from different indexed views from the 6-dimensional space (64 indexed

views). Specifically, ten of them can be answered from views with 3 dimensions or

less, while views with more than 3 dimensions were used to answer six of them. We

note in this test that the result sets of 14 queries did not exceed 10% of the original

data blocks in the views, while two unusually large queries (more than 25% of the

data blocks are involved) were also included.

Figure 6.10 shows the execution time as a function of data cube size. As can

be seen in the figure, an increase of a factor of ten in the number of records in the

fact table is associated with an exponential increase in execution time. The result in

Figure 6.10 is expected because of the high cardinalities of the dimensions. In other

words, we observe that the sizes of views with more than one dimension increase by

roughly the same factor as the fact table/base cuboid (10 in our case). Observe that

the running time doubles as the number of records in the fact table increases by a

factor of ten.

In practice, the sizes (number of records) of lower dimensionality views in different

cubes would be almost the same as the number of records in the base view increases.

Consequently, our OLAP server is very scalable in that an increase in the number

of records in the fact table (base view) is associated with nearly the same execution

285

6.29

11.01

22.36

0

5

10

15

20

25

100K 1M 10M

Ti
m

e
 (S

e
co

n
d

s)

Fact Table (Record Count)

Figure 6.10: Execution time for sixteen OLAP queries as a function of the data cube
size.

time. If the data is skewed, then view sizes would grow more slowly and thus the

increase in time would be sub-linear.

6.5 The Sidera OLAP Query Engine versus Query

Engines

As discussed, our main goal is to have a very efficient OLAP server to answer an-

alytical OLAP queries in a very responsive way. Consequently, we provide several

tests in this section to evaluate our query engine against two enterprise query en-

gines. First, we evaluate our engine against the open source MySQL database server.

Second, a comparison against the Microsoft SQL Server 2008 OLAP component (Mi-

crosoft Analysis Services MAS) will be discussed. Here, we build a 6-dimensional

fact table with ten million records. Dimensions are described in Table 6.1. In terms

of the queries, we first generate small batches of OLAP queries in XML format by

hand. Then, each of these Sidera OLAP queries is translated into the appropriate

286

SQL syntax and MDX syntax so that they can be executed on the MySQL server

and Microsoft Analysis Services. Because of the labour-intensive nature of this task,

we cannot use batches of large numbers of queries, instead relying on batches of 12

to 20 queries.

6.5.1 Sidera Query Engine versus MySQL

Here in this test, we first installed the open source MySQL 5.1 DBMS server on

our Linux-based workstation. We build a 4-dimensional fact table with ten million

records. Dimensions are the first four dimensions in Table 6.1 (Customer, Product,

Time and Store). The fact table is called sales and is connected with its associated

dimensions with a foreign key attribute (feature attribute). Each dimension is stored

as a relation in MySQL with consecutive integer values as a primary key. A B-tree

index for each dimension is created on the primary key. Each primary key in a given

dimension is represented in the fact table as a foreign key/feature attribute. The

foreign keys are concatenated to create one composite key that forms the primary

key of the fact table. Then, a B-tree index is created for the primary key in the fact

table. In the fact table, we consider only one measure that is aggregated with the

sum function (i.e., Total Sales in the fact table sales).

Note that in this test we do not materialize any aggregate group-bys. In other

words, all tests are conducted simply against the fact table/base view and its associ-

ated dimension tables in order to allow a fair comparison of the results. In terms of

the queries, we constructed a batch of twelve OLAP queries that match our OLAP

query grammar defined in Section 4.6. These OLAP queries are divided into four

groups G = Gi where i = 1, 2, 3, 4, such that Gi contains queries that can be an-

swered from the fact table and |i| dimensions. Note that all groups have an equal

287

number of queries (3 queries each). Then, each of these OLAP queries is translated

by hand into the appropriate SQL syntax so that they can be executed on the MySQL

Server DBMS. Appendix A shows these twelve queries in SQL-syntax based. We note

in this test that query 2, 4 and 9 are unusually large queries because their result sets

exceed 20% of the original records in the fact table.

Figure 6.11 illustrates the test results. Here, we present the total response time for

the twelve OLAP queries — divided into four groups — executed by our OLAP query

engine versus their equivalent in SQL-syntax answered by the MySQL query engine.

We can clearly see the difference between our engine’s capabilities and MySQL’s

capabilities to resolve complex analytical queries (Appendix A). This large differ-

ence is due to many different factors. First, MySQL doesn’t have an OLAP-aware

multi-dimensional indexing mechanism such as Hilbert Packed R-tree. The composite

primary key is useful when the key combination uniquely defines the record but it

is not ideal for multidimensional query environments. Second, MySQL doesn’t have

hash or merge join techniques which are frequently used for these kinds of analytical

queries (star queries). Finally, the MySQL query optimizer has very limited plan

choices because of the limited indexing techniques available.

6.5.1.1 Dimension Count

In addition to the previous experiment, we also compare our OLAP query engine

against the MySQL query engine when the number of dimensions increases. For the

current test, the fact table holds a constant number of ten million records, while

its associated dimension tables vary from four (first four dimensions from Table 6.1)

and six (six dimensions from Table 6.1). In terms of queries, the twelve queries

of the previous section are resolved against both dimensional fact tables (four and

288

1 2 3 4 5 6 7 8 9 10 11 12

Sidera OLAP Query Engine 1.8 17.6 1.7 16.6 6.27 1.54 1.7 1.57 9.57 1.69 2.08 4.76

MySQL Query Engine 6.5 196 230 192 38.41 4.91 14 4.36 217 36 38.05 69.17

0

50

100

150

200

250

Ti
m

e
in

 S
ec

on
ds

Query #

Sidera OLAP Query Engine MySQL Query Engine

G1
G3

G4

G2

Figure 6.11: Comparison of resolving OLAP queries using our OLAP query engine
against MySQL Query Engine.

six). Moreover, we use five and six dimensional queries — query 3, 8 and 16 — from

Appendix B which are resolved only from the six-dimensional fact table. In the Sidera

server, the indexed base view and its associated dimension tables are used to answer

those queries. The same data from the fact table and dimension tables are stored in

MySQL.

Figure 6.12 illustrates the high performance of the Sidera query engine compared

to the MySQL database server as the number of dimensions increases. In other

words, the running time of answering multi-dimensional queries using the Sidera

server is 10 to 15 times faster than the MySQL server. This result is due to many

reasons. First, the data clustering favours the first dimension in the B-tree index on

the composite key (primary key) of the fact table; however, in our server, we use a

multi-dimensional indexing scheme (Hilbert R-tree) that is ideal for multi-dimensional

queries. Second, in the Sidera server, the Sidera hierarchy manager (mapGraph) and

289

66.88 92.61

1046

1250

0

200

400

600

800

1000

1200

1400

4 6

Ti
m

e
 in

 S
e

co
n

d
s

Dimension Count

Sidera Query engine MySQL Engine

Figure 6.12: Comparison of the Sidera query engine with MySQL server.

bitmap index manager are very efficient at resolving the user’s query restrictions;

however, in MySQL all records of the appropriate dimension tables must be read and

tested for a match with the user’s query.

6.5.1.2 Fact Table Size

In this test, we create four-dimensional fact tables of different number of records that

vary from 100K to 10M records. Moreover, each fact table is surrounded with the

first 4 dimension tables in Table 6.1. In the Sidera server, we create the R-tree index

for the base view in order to have a fair comparison. The same data are loaded

into MySQL relational tables, where each contains a B-tree index for its associated

primary key. In terms of queries, we create 12 OLAP-XML queries equivalent to

those queries defined in Appendix A. Figure 6.13 shows the performance of our query

engine as the number of records in the fact table (base view) increases. Using our

server, the running time is 10 to 15 times faster than MySQL on schemas of equivalent

six. This result is again due the factors mentioned above.

290

5.77 16.59
66.8871.48

230.61

1046

0

200

400

600

800

1000

1200

100000 1,000,000 10,000,000

Ti
m

e
 In

 s
e

co
n

d
s

Number of Records in the Fact Table

Sidera Server MySQL Server

Figure 6.13: Sidera Query Engine against MySQL Engine as the number of records
increases.

6.5.2 Sidera Engine versus Microsoft SQL Analysis Service

In this test, we first installed Microsoft SQL server 2008 on the Windows’s partition

of test system. Dimension tables (Table 6.1) are created in SQL server as a set of

relational tables and populated with the same data available in the Sidera server.

Moreover, the fact table is also created as a relational table with a composite primary

key. Each attribute in this composite key connects the fact table with a corresponding

dimension. We then use the Microsoft SQL Analysis services component available in

SQL server 2008 to create the cube that represents the fact table and dimension tables

stored in the related relational tables. The cube is created in SQL Analysis services

(SSAS) by defining the source fact table and its surrounding dimensions data. Feature

attributes are the composite key, while only one measure attribute (Total Sales) of

type sum is used. Hierarchies and non-hierarchical attributes are also defined for

dimensions in the cube. SSAS allows us to choose the storage partition of the cube

291

(ROLAP, MOLAP or HOLAP). Because our server is a ROLAP server, we initially

choose the ROLAP data storage engine to conduct the comparison against our server.

However a MOLAP test will be presented in the following section.

We installed the necessary software (FastBit, Berkeley DB) along with the Sidera

code on the Linux-partition of the test system. We make sure that the same dimen-

sions and fact table data are used to compare our engine against SSAS. Note that in

this test we do not materialize any aggregate group-bys to be used with our server.

In other words, all tests are conducted simply against the fact table/base view and

its associated dimension tables in order to allow a fair comparison of the results. In

terms of queries, we translate the queries outlined in Appendix A into MDX-based

queries to be resolved against a 4-dimensional cube. For the 6-dimensional cube, we

translate three extra queries (3, 8, 16) from Appendix B into MDX format. As such

the queries involve a variable number of dimensions (one to six). We note in this test

that query 2, 4 and 9 in Appendix A are unusually large queries because more than

20% of the original data blocks were accessed.

6.5.2.1 Dimension Count

In this test, we evaluate our OLAP query engine against the SSAS query engine when

the number of dimensions in the cube increases. Again, the SSAS ROLAP storage

engine is used. For the current test, the fact table holds ten million records, while its

associated dimension tables vary from four (first four dimensions from Table 6.1) to

six (six dimensions from Table 6.1). Figure 6.14 presents the total response time for

OLAP queries executed by our query engine versus equivalent MDX-based queries

answered by Microsoft SQL Analysis Services as the dimension count increases from

four to six. Recall that 12 queries (equivalent to queries in Appendix A) were used

292

46.96 50.66

249.42

361.68

0

50

100

150

200

250

300

350

400

4 6

Ti
m

e
 in

 S
e

co
n

d
s

Dimension Count

Sidera Engine SQL Analysis Services

Figure 6.14: Comparison of our query engine versus Microsoft SQL Analysis Services.

in the case of four dimensions, while 15 queries were used in case of six dimensions.

Figure 6.14 illustrates that our engine is 5 to 7 times faster than the SQL Analysis

services engine. Again, there are a number of contributing factors. Our storage

engine provides a very efficient multi-dimensional indexing scheme (Hilbert R-tree)

for the cube which is not available in the Microsoft product. Moreover, the in-

memory structures (hierarchy manager (mapGraph) and bitmap index manager) are

very efficient at answering complex query from the main memory without reading all

records of the dimension tables. Finally, SQL server has a complex query compilation

step that includes the translation of the MDX-based query into SQL format that, in

turn, must be parsed, optimized and executed.

6.5.2.2 Fact Table Size

In addition to the impact of the number of dimensions, we also look at the impact

of an increase in the number of records in the fact table. In this case, we create a

fact table with four dimensions (first four dimensions in Table 6.1). The number of

293

10.82 16.36

46.96
27.73

49.7

249.4

0

50

100

150

200

250

100,000 1,000,000 10,000,000

Ti
m

e
 in

 S
e

co
n

d
s

Fact Table Size

Sidera Engine Microso! Analysis Services

Figure 6.15: Comparison of the Sidera engine versus Microsoft Analysis Services for
three different cube sizes.

records varies from 100,000 to 10,000,000. We use batches of 12 MDX queries and

12 OLAP XML queries, equivalent to those queries in Appendix A, to be answered

from Microsoft SQL server and our engine respectively.

Figure 6.15 provides the test results. Here, we present the total response time for

equivalent queries answered by our engine and Micrososft Analysis services. Observe

that our OLAP query engine is 3 to 6 times faster than the engine of Microsoft Anal-

ysis Services. This result is expected since our engine provides very efficient methods

to store and access the cube (Hilbert R-tree index in Berkeley DB) and dimension

tables (bitmap indexes). Specifically, we can match the condition of the query from

in-memory data structures (mapGraph and bitmap manager) and only use the R-tree

index for the fact table to return those records satisfying the query condition. More-

over, the SQL server query compilation adds some processing overhead because, as

previously noted, the MDX query is internally translated into SQL format that must

then be parsed and optimized.

294

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 in

 S
e

co
n

d
s

Query #

Sidera Engine SQL Analysis Services (MOLAP)

Figure 6.16: Running time in the Sidera Server versus the MOLAP SQL server.

6.5.2.3 Sidera Engine versus MOLAP SQL Analysis Services

In this section, we examine the performance of our engine compared with SQL Anal-

ysis service when the MOLAP data partition is used for the cube. Here, we create

a six-dimensional fact table with 10,000,000 records. In terms of queries, we use

15 queries equivalent to those queries in Appendix A and query 3, 8 and 16 from

Appendix B.

Figure 6.16 illustrates the test results. Here, we present the response time for

each one of the 15 queries executed by our OLAP query engine versus SQL Analysis

Services when it uses the MOLAP storage mode for data partitioning. We can see

in Figure 6.17 that SQL Analysis Services using MOLAP storage is 4-5 times faster

than our engine.

At first glance, this may appear to be disappointing result. However, we note the

295

10.376

50.66

0

10

20

30

40

50

60

SQL Analysis Services (MOLAP

Storage)

Sidera Engine

T
im

e
in

 S
ec

o
n

d
s

10 Million Fact Table

Query Running Time

Figure 6.17: Sidera Engine versus Microsoft Analysis Services (MOLAP storage).

following:

1. MOLAP is ideally suited to small databases (i.e., those that fit entirely in

memory as in the case here). It is well understood, both from academic and

industrial testing, that MOLAP does not scale well. Our ROLAP system how-

ever is explicitly designed to scale to very large datasets. Unfortunately, some

of the original Sidera components cannot support larger datasets at the present

time, so we cannot do a more realistic MOLAP/ROLAP comparison.

2. Sidera’s caching framework (a separate project) is currently not integrated with

the server. Eventually, this caching module will provide many MOLAP-like

benefits for in-memory data.

3. Microsoft’s DBMS software obviously benefits from years of optimization and

performance tuning. We are quite limited in this sense.

4. Most importantly, this test restricts Sidera to using a fact table only. In other

296

10.376

14.65

0

2

4

6

8

10

12

14

16

SQL Analysis Services (MOLAP

Storage)

Sidera Engine with full

materialized cube

Ti
m

e
 in

 S
e

co
n

d
s

Query Running Time

Figure 6.18: Sidera Engine (fully materialized cube) versus Microsoft Analysis Ser-
vices (MOLAP storage).

words, it is not using any of the additional summary views that Sidera is specifi-

cally designed to produce. This severely handicaps Sidera’s performance in this

kind of test.

Given the fourth point listed above, we conducted a second test in which Sidera

was permitted to generate a fully materialized data cube (note that even partial

materialization can produce similar results). Figure 6.18 shows the results of this

comparison. Here, we see that while the Microsoft MOLAP system still comes out

on top, the difference is now less than 30%. Given that the first three points listed

above still hold, we can conclude that Sidera can effectively compete with state of

the art OLAP solutions, even in environments ideally suited to MOLAP.

6.6 Parallel Query Engine Resolution

Recall that our compilation and execution components in the Sidera server (Storage

engine, query processor, etc.) are designed to work independently on each node.

297

In Section 5.10, we explained how several components mentioned in this thesis are

integrated into the larger Sidera parallel server framework. In this section, we will

show the parallel wall clock time for distributed query resolution as a function of the

number of processors. In this test, we create a six-dimensional fact table surrounded

by the 6 dimension tables described in Table 6.1. Moreover, the fact table contains 10

million records. The indexed cube is generated and striped equally to each processor.

Note that the Sidera server uses the combination of Hilbert ordering with round-robin

striping that almost perfectly balances the query results over the parallel machine.

The same dimensional queries in Appendix B were used in this test. However, we

changed the conditions in queries (2, 4, 6 and 16) so that they require more blocks to

be accessed in order to answer those queries. For example, we replace the condition

(Age = 30) with (Age < 30) in query 2.

Figure 6.19 illustrates parallel time for distributed query resolution as a function of

the number of processors used, while Figure 6.20 presents the corresponding speedup.

For example, on 16 processors, a speedup of 10.12 is achieved. We note that the

speedup values are quite good compared to the ideal speedup. The difference between

our observed speedup and the best speedup is due to a couple of factors. Perhaps not

surprisingly, it doesn’t arise from the workload of the query compiler on each backend

node. Specifically, at present the query compilation time is insignificantly relative to

the query execution time. Instead, the difference in the speed up values arises from:

1. The dimension table processing that is used to build the mapGraph and bitmap

index manager. Specifically, in order to match the query condition each backend

node must do exactly the same processing on the same data in order to convert

the query condition to a form that can be answered directly from the appropriate

298

99.89

57

30.3

18.66

9.89

0

20

40

60

80

100

120

1 2 4 8 16

Pa
ra

lle
l T

im
e

in
 S

ec
on

ds

Processors

Figure 6.19: Parallel clock time for distributed query resolution.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

P
a

ra
ll

e
l

S
p

p
e

d
u

p

Processors

Ideal Speedup

Observed Speedup

Figure 6.20: Parallel speedup.

299

view. In other words, each backend node has a copy of the smaller dimension

tables. So each backend node must do similar dimension processing.

2. The Parallel Sample Sort used to order the query results. Specifically, this

mechanism cannot guarantee that the records in the intermediate processing

steps are perfectly balanced across the nodes.

The above points suggest that these speedup results might be further improved by

finding a better way to minimize the dimension processing and by the use of a more

balanced sort code.

6.7 Conclusions

In this chapter, we have provided experimental results that assess the significance

and viability of our storage engine, query optimization and execution models. Exper-

imentally, our results support the design decisions that we have made. Test results

demonstrate the query running time with and without using algebraic laws to optimize

the query. Specifically, we described the improvement when our engine uses several

of the core laws. Moreover, we show that at present the query compilation time is

likely to add very little overhead to the total query response time. We also validate

the accuracy of the cost model that is used to select the physical plan. Scalability, in

terms of record size, is also assessed. In addition, experimental results relative to two

enterprise database products (MySQL and SQL server) were conducted and showed

very high performance in query resolution. Finally, we looked at the speedup of our

parallel engine. Experimentally, the end result of our research is a very efficient OLAP

server that has the potential to significantly boost run-time OLAP query performance

for the large problem domains typically found in enterprise environments.

Chapter 7

Conclusions and Future Work

7.1 Summary

In this thesis we have discussed the design, implementation, and evaluation of an

OLAP DBMS that can efficiently resolve queries written in native client side pro-

gramming languages. Basically, we are trying to demonstrate that it is possible

to provide MOLAP performance with ROLAP scalability. Given that Sidera is ulti-

mately designed as a scalable parallel system, our focus in this research was to provide

performance. For this we decided to create an OOP conceptual model, comprehensive

OLAP algebra and grammar that would allow us to control query processing from

end to end (client programs right to the backend disks). This allowed us to exploit the

right data structures and indexes, optimize query planning and provide efficient exe-

cution of those plans. Moreover, we have discussed an efficient OLAP storage engine

that is responsible on how data is efficiently stored and accessed quickly. Specifically,

we have focused on the following three issues in order to have the potential to provide

MOLAP-style performance with ROLAP-style scalability.

1. OLAP Storage Management. We have demonstrated how the primary com-

ponents of the data warehouse — fact and dimension tables — are efficiently

300

301

stored on disk in order to facilitate rapid access. Additionally, we discussed how

this data is encoded into a more compact integer format. In terms of the phys-

ical architecture, we described the integration of the Berkeley DB components

into our OLAP server so as to significantly enhance storage layer functionality.

Specifically, this integration allows us to store the hundreds of files comprising

the R-tree indexed cube into a more intuitive and easy to manage Berkeley DB

environment. Moreover, we have suggested storing non-hierarchical attributes

as a set of compressed FastBit bitmap indexes that, in turn, can be exploited by

the query optimizer to provide more timely OLAP analysis. We also discussed

how hierarchical attributes are stored and accessed via the runtime hierarchy

manager. Finally, we discussed DTD-encoded OLAP metadata that defines the

format of the schema for our OLAP environment. Schema storage is done na-

tively in Berkeley XML DB, allowing us to utilize standard XML tools such

as XQuery and XPath. Justification for our Berkeley DB integration, as well

as hierarchical and non-hierarchical storage techniques, was provided by way of

analysis and experimentation.

2. OLAP Query Language. We have described a comprehensive OLAP query

algebra (operations and laws) and grammar that can be used to enhance the pro-

cess of resolving OLAP queries. Ultimately, the algebra reduces the complexity

of writing OLAP queries relative to the relational algebra. In the current case,

the comprehensive OLAP algebra allows for the optimization of OLAP queries

written in native OOP languages. To that end, we have also described a robust

DTD-encoded OLAP grammar that provides the concrete foundation for client

language queries, thereby potentially eliminating the reliance on intermediate,

302

string-based embedded languages. Finally, a set of algebraic laws were defined

that would allow an OLAP query optimizer to convert algebraic expressions

into equivalent, but more efficient, plans.

3. OLAP Query Processing. We have discussed how OLAP queries can be

executed efficiently. Specifically, we have defined two main components for

processing OLAP queries: an OLAP query compiler and an OLAP query exe-

cution engine. The query compiler uses a process similar to that of traditional

relational database systems in order to parse and optimize OLAP queries. In

short, an internal parse tree representing the OLAP query is first created. We

then apply an optimization process that relies upon two mechanisms: (i) OLAP

multi-dimensional rules and (ii) an OLAP cost model. In terms of query ex-

ecution, a number of algorithms have been defined for the execution of the

operations of our OLAP algebra. We also have described how several DBMS

components (e.g., storage, query language, and processing) fit together to sup-

port the larger functionality of the parallel server (i.e., Sidera). Finally, we have

described how the result of the query is returned in an XML format that can

be directly and easily accessed on the client side. Extensive testing of the new

OLAP query processor demonstrated the significance and viability of our query

optimization engine, in terms of functionality and query execution time.

7.2 Future Work

The research described in this thesis represents a foundation for the development

of a pure OLAP DBMS for the large problem domains typically found in enterprise

environments. Below we identify a number of possible projects or research themes

303

that would significantly extend the functionality of the current research:

1. Integration of additional Sidera components. The Sidera project provides

several independent components that can be integrated into the current server

in order to provide a more complete OLAP DBMS server. In particular, the new

R3-cache, a natively multi-dimensional caching framework designed specifically

to support sophisticated warehouse/OLAP environments, offers opportunities

to further optimize query response time [37]. Also, the integration of Sidera’s R-

tree compression methods into the server would dramatically reduce the storage

footprint for the underlying data cubes [35].

2. Full Implementation of our Query Optimizer. Recall that our query

optimizer (logical and physical) is not yet fully implemented. Various optimiza-

tions — discussed purely in a theoretical context in this thesis — could have a

significant impact upon the performance of the current prototype.

3. Support for additional hierarchical forms. At present, the server can

be used to model only simple symmetric dimension hierarchies. However, in

the real world we find several additional types of hierarchies (e.g., Asymmetric

hierarchies, Non-Strict hierarchies, Parallel hierarchies, Multiple Hierarchies).

It would be important to extend our mapGraph (hierarchy manager) to deal

with these kinds of dimension hierarchies.

4. Support additional measure attributes. At present, our storage engine

supports only the distributive form of measure attribute that can be aggre-

gated with the “sum” function. However, in practical settings we find several

304

additional types of measure attributes such as Algebraic (e.g. average, stan-

dard deviation, variance) and Holistic (e.g. mean and rank) forms. It would

be important to extend our storage engine to deal with these kinds of measure

attributes.

5. External memory algorithms. Recall that our current query processor as-

sumes that there is enough main memory to store intermediate query results

and any additional data structures. In practice, this assumption may not be

true for extremely large data sets. To properly support such large initial data

sets, it will be necessary to extend the current query engine algorithms into

external memory. Although conceptually straightforward, the “systems” work

required would be quite significant.

7.3 Final Thoughts

The research presented in this thesis describes a number of the core elements one

would require if implementing a robust, high performance OLAP-specific data man-

agement system. We have discussed the motivation, design, implementation, and

evaluation of our research and have emphasized their application to practical query

environments. Given the significance of the problem domain, both from a commer-

cial and academic perspective, we believe that our research represents a meaningful

contribution to the OLAP literature.

Bibliography

[1] Microsoft analysis services. http://www.microsoft.com/sqlserver/2008/en/us/analysis-

services.aspx.

[2] Oracle essbase. http://www.oracle.com/us/solutions/ent-performance-

bi/business-intelligence/essbase/index.html.

[3] Sap. http://www.sap.com/services/education/catalog/netweaver/bi.epx.

[4] Xml for analysis specification v1.1, 2002. http://www.xmla.org/index.htm.

[5] Cwm, common warehouse metamodel, 2003. http://www.cwmforum.org/.

[6] Jsr-69 javatm olap interface (jolap), jsr-69 (jolap) expert group, 2003.

http://jcp.org/aboutJava/communityprocess/first/jsr069/index.html.

[7] Haskelldb, 2010. http://www.haskell.org/haskellDB/.

[8] Ruby programming language, 2010. http://www.ruby-lang.org/en/.

[9] F.N. Afrati, C. Li, and J.D. Ullman. Generating efficient plans for queries using

views. SIGMOD, pages 319–330, 2001.

[10] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakr-

ishnan, and S. Sarawagi. On the computation of multidimensional aggregates.

Proceedings of the 22nd International VLDB Conference, pages 506–521, 1996.

305

306

[11] Alfred V. Aho and Jeffrey D. Ullman. Data Structures and Algorithms. Addison-

Wesley, 1983.

[12] M. O. Akinde and M. H. Bohlen. Efficient computation of subqueries in complex

olap. In International conference on Data Engineering (ICDE), pages 163–174,

2003.

[13] C. Bauer and G. King. Java persistence with hibernate. Manning Publications

Co., Green-wich, CT, USA, 2006.

[14] R. Bayer. Binary b-trees for virtual memory. Proceeddings of 1971 ACM-

SIGFIDET Workshop on Data Description, Access and Control, 1971.

[15] N. Beckmann, H. Kriegel, R. Schneider, , and B. Seeger. The r-tree: an efficient

and robust method for points and rectangles. ACM SIGMOD, 1990.

[16] L. Bellatreche, M. Schneider, H. Lorinquer, and M. Mohania. Bringing to-

gether partitioning, materialized views and indexes to optimize performance of

relational data warehouses. DAWAK, pages 15–25, 2004.

[17] Ladjel Bellatreche, Arnaud Giacometti, Dominique Laurent, Patrick Marcel,

and Hassina Mouloudi. Olap query optimization: A framework forcombining

rule-based and cost-based approaches. EDA, 2005.

[18] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg

cubes. Proceedings of the 1999 ACM SIGMOD Conference, pages 359–370,

1999.

[19] J. A. Blackard. The forest covertype dataset. ftp://ftp.ics.uci.edu/pub/machine-

learning-databases/covtype.

[20] J. A. Blakeley, V. Rao, I. Kunen, A. Prout, M. Henaire, and C. Kleinerman.

.net database programmability and extensibility in microsoft sql server. In ACM

307

SIGMOD International conference on Management of Data, pages 1087–1098,

2007. New York, NY, USA.

[21] L. Cabibbo and R. Torlone. Querying multidimensional databases. Proceedings

of the 6th DBLP Workshop, pages 253–269, 1997.

[22] S. Chaudhuri. Index selection for databases: A hardness study and a principled

heuristic solution. IEEE Transactions on Knowledge and Data Engineering,

16(11):1919–1323, 2004.

[23] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP

technology. ACM SIGMOD Record, 26:65–74, 1997.

[24] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing

queries with materialized views. in ICDE, pages 190–200, 1995.

[25] E. Codd, S. Codd, and C. Salley. Providing OLAP (on-line analytical pro-

cessing) to user-analysts: An IT mandate. Technical report, E.F. Codd and

Associates, 1992.

[26] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggregate queries using views.

in PODS, pages 155–166, 1999.

[27] http://www.mathsisfun.com/associative-commutative-distributive.html.

[28] W. R. Cook and S. Rai. Safe query objects: statically typed objects as re-

motely executable queries. In International conference on Software Engineering

(ICSE), pages 97–106, 2005.

[29] C. Cunningham, G. Graefe, and C. A. Galindo-Legaria. Pivot and unpivot:

Optimization and execution strategies in an rdbms. In International conference

on Very Large Data Bases (VLDB), pages 998–1009, 2004.

308

[30] F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Parallelizing the

datacube. International Conference on Database Theory, 2001.

[31] B. Dinter, C. Sapia, G. Hofling, and M. Blaschka. The OLAP market: State

of the art and research issues. ACM First International Workshop on Data

Warehousing and OLAP, pages 22–27, 1998.

[32] http://www.w3schools.com/Dom/dom parser.asp/.

[33] http://en.wikipedia.org/wiki/Dynamic programming.

[34] E.Zimanyi E. Malinowski. Hierarchies in a conceptual model: From conceptual

modeling to logical representation. Data & KNowledge Engineering, 2005.

[35] T. Eavis and D. Cueva. A hilbert space compression architecture for data

warehouse environments. 22nd International Conference on Data Warehousing

and Knowledge Discovery (DaWaK 07), 2007.

[36] T. Eavis and D. Cueva. The lbf r-tree: Efficient multidimensional indexing

with graceful degradation. 22nd International Database Engineering and Ap-

plications Symposium (IDEAS 07), 2007.

[37] T. Eavis and R. Sayeed. High performance analytics with the r3-cache. Data

Warehousing and Knowledge Discovery (DaWak), 2009.

[38] Todd Eavis, George Dimitrov, Ivan Dimitrov, David Cueva, Alex Lopez, and

Ahmad Taleb. Sidera: A cluster-based server for online analytical process-

ing. International Conference on Grid computing, high-performAnce, and Dis-

tributed Applications (GADA), 2007.

[39] Todd Eavis and Ahmad Taleb. Mapgraph: efficient methods for complex olap

hierarchies. Conference on Information and Knowledge Management, pages

465–474, 2007.

309

[40] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of DATABASE SYS-

TEMS/Fouth Edition. Pearson/Addison Wesley, 2006.

[41] Fastbit. https://sdm.lbl.gov/fastbit/.

[42] Y. Feng, D. Agrawal, A. Abbadi, and A. Metwally. Range cube: Efficient cube

computation by exploiting data correlation. ICDE, 2004.

[43] E. Franconi and A. Kamble. The gmd data model and algebra for multidimen-

sional information. In: Proc. of the 16th Int. Conf. on Advanced Information

Systems Engineering (CAiSE 2004)., 3084:446–462, 2004.

[44] V. Gaede and O. Gunther. Multidimensional access methods. ACM Computing

Surveys, 30(2):170–231, 1998.

[45] Arnaud Giacometti, Dominique Laurent, Patrick Marcel, and Hassina

Mouloudi. A new way of optimizing olap queries. BDA, pages 513–534, 2004.

[46] J. Goldstein and Per-Ake Larson. Optimizing queries using materialized views:

A practical, scalable solution. in SIGMOD, pages 331–342, 2001.

[47] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational

aggregation operator generalizing group-by, cross-tab, and sub-total. In Inter-

national conference on Data Engineering (ICDE),Washington, DC, USA, pages

152–159, 1996. IEEE Computer Society.

[48] http://en.wikipedia.org/wiki/Greedy algorithm.

[49] H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index selection for

OLAP. Proceeding of the 13th International Conference on Data Engineering,

pages 208–219, 1997.

[50] A. Guttman. R-trees: A dynamic index structure for spatial searching. Pro-

ceedings of the 1984 ACM SIGMOD Conference, pages 47–57, 1984.

310

[51] M. Gyssens and L. V. S. Lakshmanan. A foundation for multi-dimensional

databases. In International conference on Very Large Data Bases (VLDB),

pages 106–115, 1997. Morgan Kaufmann Publishers Inc.

[52] M.S. Hacid and U. Sattler. Modeling multidimensional database:a formal ob-

jectcentered approach. In: Proc. of the 6th European Conference on Information

Systems (ECIS 1998), 1998.

[53] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan

Kaufmann Publishers, 2000.

[54] J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg cubes

with complex measures. In SIGMOD, 2001.

[55] Sivakumar Harinth and Stephen Quinn. Professional sql server analysis services

2005 with mdx. Microsoft Business Inteligence Platform, 2005.

[56] http://en.wikipedia.org/wiki/Hash table.

[57] C. Hurtado, A. Mendelzon, and A Vaisman. Maintaining data cubes under

dimension updates. Proceedings of the IEEE Interantional Conference on Data

Engineering, 1999.

[58] D. Kossmann J.-P. Dittrich and A. Kreutz. Bridging the gap between olap

and sql. In International conference on Very Large Data Bases (VLDB), pages

1031–1042, 2005.

[59] H. Jagadish. Linear clustering of objects with multiple attributes. ACM SIG-

MOD International Conference on Management of Data, pages 332–342, 1990.

[60] H. V. Jagadish, Laks V. S. Lakshmanan, and Divesh Srivastava. What can

hierarchies do for data warehouses? The VLDB Journal, pages 530–541, 1999.

311

[61] Jsr 243: Java data objects 2.0 - an extension to the jdo specification, 2003.

http://java.sun.com/products/jdo/.

[62] I. Kamel and C. Faloutsos. On packing r-trees. Proceedings of the Second

International Conference on Information and Knowledge Management, pages

490–499, 1993.

[63] Ralph Kimball and J. Caserta. The Data Warehouse ETL Toolkit. John Wiley

and Sons, 2004.

[64] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit. John Wiley and

Sons, 2002.

[65] N. Kotsis and D. R. McGregor. Elimination of redundant views in multidimen-

sional aggregates. In DaWak 2000.

[66] Teo Lachev. Applied microsoft analysis services. Microsoft Business Inteligence

Platform, 2005.

[67] L.V.S. Lakshmanan, J. Pei, and J. Han. Quotient cube: How to summarize the

semantics of a data cube. VLDB 2002.

[68] W. Lehner. Modelling large scale olap scenarios. In International conference

on Extending Database Technology (EDBT 1998), pages 153–167, 1998.

[69] H. Lenz and A. Shoshani. Summarizability in OLAP and statistical data bases.

Proceedings of the Ninth International Conference on Scientific and Statistical

Database Management, pages 132–143, 1997.

[70] A.Y. Levy, A.O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries

using views. in PODS, pages 95–104, 1995.

[71] Witold Litwin. Linear hashing: A new tool for file and table addressing. Proc.

6th Conference on Very Large Databases, pages 212–223, 1980.

312

[72] J. Pei L.V.S. Lakshmanan and Y. Zhao. Qctrees: An efficient summary struc-

ture for semantic olap. SIGMOD 2003.

[73] R. Zare M. Whitehorn and M. Pasumansky. Fast track to mdx. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2005.

[74] E. Malinowski and E.Zimanyi. Olap hierarchies: A conceptual perspective.

Advanced Information Systems Engineering, 16th International Conference,

CAiSE, 2004.

[75] Volker Markl and Rudolf Bayer. Processing relational olap queries with ub-trees

and multidimensional hierarchical clustering. DMDW, 2000.

[76] Analysis Services: MDX, 2006. http://msdn.microsoft.com.

[77] J. Melton. Advanced sql 1999: Understanding object-relational, and other

advanced features. Elsevier Science Inc., New York, NY, USA, 2002.

[78] Mondrian. http://www.mondrian.pentaho.org.

[79] K. Morfonios and Y. Ioannidis. Cure for cubes: cubing using a rolap engine.

In International conference on Very Large Data Bases (VLDB), pages 379–390,

2006. VLDB Endowment.

[80] S. Muto and M. Kitsuregawa. A dynamic load balancing strategy for parallel

datacube computation. ACM 2nd Annual Workshop on Data Warehousing and

OLAP, pages 67–72, 1999.

[81] Mysql. http://www.mysql.com/.

[82] Thomas P. Nadeau and Toby J. Teorey. Olap query optimization in the presence

of materialized views. HICCS, 2003.

313

[83] R. Ng, A. Wagner, and Y. Yin. Iceberg-cube computation with PC clusters.

Proceedings of 2001 ACM SIGMOD Conference on Management of Data, pages

25–36, 2001.

[84] T. Niemi, J. Nummenmaa, and P. Thanish. Logical multidimensional database

design for ragged and unbalanced aggregation hierarchies. International Work-

shop on Design and Management of Data Warehouses, DMDW 2001, pages

1–8, 2001.

[85] Olap4j. http://www.olap4j.org/.

[86] Olapdml. http://oracle.com/.

[87] P. ONeil and G. Graefe. Multi-table joins through bitmapped join indices.

SIGMOD, pages 8–11, 1995.

[88] P. ONeil and D. Quass. Improved query performance with variant indexes. in

ACM SIGMOD, pages 38–49, 1997.

[89] Oracle olap. http://www.oracle.com/technology/products/bi/olap/index.html.

[90] T. Pedersen, C. Jensen, and C. Dyreson. A foundation for capturing and query-

ing complex multidimensonal data. Information Systems Journal, 26(5):383–

423, 2001.

[91] Nathan Goodman Philip A. Bernstein, Vassos Hadzilacos. Concurrency control

and recovery in database systems. Addison Wesley Publishing Company, 1987.

[92] JR. Pottinger and A. Levy. A scalable algorithm for answering queries using

views. VLDB, pages 484–495, 2000.

[93] A. Gupta R. Agrawal and S. Sarawagi. Modeling multidimensional databases.

In International conference on Data Engineering (ICDE), pages 232–243, 1997.

IEEE Computer Society.

314

[94] Andreas Reuter and Theo Haerder. Principles of transaction-oriented database

recovery. ACM Computing Surveys (ACSUR), 1983.

[95] O. Romero and A. Abello. On the need of a reference algebra for olap. In Inter-

national conference on Data warehousing and Knowledge Discovery (DaWak),

pages 99–110, 2007.

[96] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex

elimination on graphs. SIAM Journal on Computing, pages 266–283, 1976.

[97] N. Roussopoulos, Y. Kotidis, and M. Roussopolis. Cubetree: Organization of

the bulk incremental updates on the data cube. Proceedings of the 1997 ACM

SIGMOD Conference, pages 89–99, 1997.

[98] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases

using packed r-trees. ACM SIGMOD Conference, pages 17–31, 1985.

[99] Hans Sagan. Space-filling curves. Springer-Verlag, 1994.

[100] A. Sanjay, V. R. Narasayya, and B. Yang. Integrating vertical and horizontal

partitioning into automated physical database design. Proceedings of the ACM

SIGMOD International Conference on Management of Data, pages 359–370,

2004.

[101] S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube. Technical

Report RJ10026, IBM Almaden Research Center, San Jose, California, 1996.

[102] Sas olap server. http://www.sas.com/technologies/dw/storage/mddb/index.html.

[103] T. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree - a dynamic index

for multidimensional objects. VLDB, pages 507–518, 1987.

[104] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of Parallel

and Distributed Computing, 14:361–372, 1990.

315

[105] A. Shukla, P. Deshpande, J. Naughton, and K. Ramasamy. Storage estimation

for multidimensional aggregates in the presence of hierarchies. Proceedings of

the 22nd VLDB Conference, pages 522–531, 1996.

[106] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Dwarf: shrink-

ing the PetaCube. Proceedings of the 2002 ACM SIGMOD Conference, pages

464–475, 2002.

[107] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Hierarchical

dwarfs for the rollup cube. DOLAP 03: Proceedings of the 6th ACM interna-

tional workshop on Data warehousing and OLAP, pages 17–24, 2003.

[108] Spawner. http://sourceforge.net/projects/spawner/.

[109] D. Srivastava, S. Dar, H.V. Jagadish, and A.Y. Levy. Answering queries with

aggregation using views. VLDB, pages 318–329, 1996.

[110] Tpc-h. http://www.tpc.org/tpch/.

[111] W.Wang, H.Lu, J.Feng, and J.Xu Yu. Condensed cube: An effective approach

to reducing data cube size. ICDE 2002.

[112] http://xerces.apache.org/xerces-c/.

[113] http://www.w3schools.com/Xml/xml dtd.asp/.

[114] http://www.w3schools.com/schema/schema intro.asp.

[115] Chendong Zou, Betty Salzberg, and Rivka Ladin. Back to the future: Dynamic

hierarchical clustering. ICDE, 1998.

Appendix A

Twelve SQL Queries

This appendix illustrates the syntax of 12 SQL queries that are used in our experi-

mental tests. They are as follows:

1. SELECT c.Region, SUM(s.Tolal Sales)

FROM customer as c , sales as s

WHERE s.C ID = c.C ID and c.Age = 50 and c.Region = ‘Quebec’

GROUP BY c.Region

2. SELECT t.Month, SUM(s.Tolal Sales)

FROM time as t, sales as s

WHERE s.T ID = t.t ID and t.Year = 2005 and DayName =‘Monday’ and

t.Quarter =‘Q1’

GROUP BY t.Month

3. SELECT p.Type, SUM(s.Tolal Sales)

FROM product as p, sales as s

WHERE s.P ID = p.P ID and p.ProdDesc = ‘Urna’ and p.Category =‘Auto-

motive’ and p.Quantity=200

GROUP BY p.Type

4. SELECT s.StoreCity, t.Month, SUM(ss.Tolal Sales)

316

317

FROM time as t , store as s, sales as ss

WHERE t.T ID = ss.T ID and ss.S ID = s.S ID and ((t.year=2005 and t.DayName

= ‘Monday’) and (t.Quarter=‘Q1’ or t.Quarter=‘Q2’)) and s.StoreState=‘Ontario’

GROUP BY s.StoreCity, t.Month

5. SELECT c.Region, p.Category, SUM(ss.Tolal Sales)

FROM customer as c, product as p, sales as ss

WHERE ss.C ID = c.C ID and ss.P ID = p.P ID and c.Age = 40 and c.Country

= ‘Canada’ and p.Quantity=200 and p.Category=‘Automotive’

GROUP BY c.Region, p.Category

6. SELECT c.country, t.Month, SUm(ss.Tolal Sales)

FROM customer as c , time as t, sales as ss

WHERE ss.C ID = c.C ID and ss.T ID = t.T ID and (((t.year=2005 and

t.DayName=‘Monday’) and (t.Month=‘May’ or t.Month=‘June’)) and (c.Age

= 40 and c.Region = ‘Quebec’))

GROUP BY t.Month,c.country

7. SELECT c.Region, p.Type, s.StoreCity, SUM(ss.Tolal Sales)

FROM customer as c, product as p , store as s, sales as ss

WHERE ss.C ID = c.C ID and ss.S ID = s.S ID and ss.P ID = p.P ID and

c.Region = ‘Ontario’ and s.StoreState= ‘Ontario’ and p.Category = ‘Household’

GROUP BY c.Region, p.Type, s.StoreCity

8. SELECT s.StoreCity, t.Month, SUM(ss.Tolal Sales)

FROM time as t,customer as c , store as s, sales as ss

WHERE t.T ID = ss.T ID and ss.C ID = c.C ID and ss.S ID = s.S ID and

(t.year=2005 and t.DayName=‘Monday’) and (c.Age = 40 and c.Region =

‘Quebec’) and s.StoreState = ‘Ontario’

GROUP BY s.StoreCity, t.Month

318

9. SELECT t.Quarter, p.Type, s.StoreCity, SUM(ss.Tolal Sales)

FROM time as t, product as p , store as s, sales as ss

WHERE t.T ID = ss.T ID and ss.S ID = s.S ID and ss.P ID = p.P ID and

t.Year = 2005 and t.Quarter = ‘Q1’ and s.StoreState= ‘Ontario’ and p.Category

=‘Household’

GROUP BY t.Quarter,p.Type, s.StoreCity

10. SELECT t.Quarter,c.Region, p.Type, s.StoreCity, SUM(ss.Tolal Sales)

FROM time as t,customer as c, product as p , store as s, sales as ss

WHERE t.T ID = ss.T ID and ss.C ID = c.C ID and ss.S ID = s.S ID and

ss.P ID = p.P ID and c.Region = ‘Ontario’ and s.StoreState= ‘Ontario’ and

p.Category = ‘Household’

GROUP BY c.Region, p.Type, s.StoreCity, t.Quarter

11. SELECT p.Type, s.StoreState, SUM(ss.Tolal Sales) FROM time as t,customer

as c, product as p , store as s, sales as ss

WHERE t.T ID = ss.T ID and ss.C ID = c.C ID and ss.S ID = s.S ID and

ss.P ID = p.P ID and c.Region = ‘Ontario’ and t.Quarter= ‘Q1’ and p.Category

= ‘Household’

GROUP BY p.Type, s.StoreState

12. SELECT t.Quarter, SUM(ss.Tolal Sales)

FROM time as t,customer as c, product as p , store as s, sales as ss

WHERE t.T ID = ss.T ID and ss.C ID = c.C ID and ss.S ID = s.S ID and

ss.P ID = p.P ID and c.Age = 40 and t.year =2005 and s.StoreState= ‘Ontario’

and p.Type = ‘Engine’

GROUP BY t.Quarter

Appendix B

Sixteen SQL Queries

This appendix illustrates the syntax of 16 SQL queries that are used in our experi-

mental tests. They are as follows:

1. SELECT c.country, p.Type, t.Month, v.CountryName, Sum(ss.Tolal Sales)

FROM customer as c, product as p , time as t, salessix as ss, vendor v

WHERE v.V ID=ss.V ID and ss.C ID = c.C ID and ss.T ID = t.T ID and

ss.P ID = p.P ID and c.Age = 40 and c.Region = ‘Quebec’

GROUP BY c.country, p.Type, t.Month, v.CountryName

2. SELECT c.Region, p.Type, sum(ss.Tolal Sales)

FROM customer as c, product as p , salessix as ss, employee as e

WHERE e.E ID = ss.E ID and ss.C ID = c.C ID and ss.P ID = p.P ID and

c.Age = 30 and c.Region = ‘Quebec’ and e.FirstName = ‘Thor’

GROUP BY c.Region, p.Type

3. SELECT t.Quarter,c.Region, p.Type, s.StoreCity,v.CountryName, sum(ss.Tolal Sales)

FROM time as t,customer as c, product as p , store as s, salessix as ss, vendor

as v

WHERE v.V ID= ss.V ID and t.T ID = ss.T ID and ss.C ID = c.C ID and

ss.S ID = s.S ID and ss.P ID = p.P ID and c.Region = ‘Ontario’ and s.StoreState=

319

320

‘Ontario’ and p.Category = ‘Household’

GROUP BY c.Region, p.Type, s.StoreCity, t.Quarter,v.CountryName

4. SELECT c.country, p.Type, t.Quarter, SUm(ss.Tolal Sales)

FROM employee as e, customer as c, product as p , time as t, salessix as ss

WHERE e.E ID = ss.E ID and ss.C ID = c.C ID and ss.T ID = t.T ID

and ss.P ID = p.P ID and (((t.year = 2005 or DayName = ‘Monday’) and

(t.Month=‘June’ or t.Month=‘May’)) AND (c.Age = 40 and c.Region = ‘Que-

bec’)) and e.LastName = ‘Vinson’

GROUP BY c.country, t.Quarter

5. SELECT c.country, t.Year, v.City , sum(ss.Tolal Sales)

FROM vendor as v, customer as c , time as t, salessix as ss

WHERE ss.v ID = v.V ID and ss.C ID = c.C ID and ss.T ID = t.T ID and

t.Quarter=‘Q2’and (c.Age = 40 and c.Region = ‘Ontario’)

GROUP BY c.country, t.Year,v.City

6. SELECT p.Type, SUM(ss.Tolal Sales)

FROM employee as e, product as p , salessix as ss, vendor as v

WHERE v.V ID= ss.V ID and e.E ID = ss.E ID and ss.P ID = p.P ID and

e.LastName = ‘Moore’ and v.StateName = ‘Quebec’

GROUP BY p.Type

7. SELECT v.StateName,t.Month, sum(ss.Tolal Sales)

FROM vendor as v, time as t, salessix as ss WHERE ss.V ID = v.V ID

ss.T ID = t.T ID and v.CountryName = ‘Australia’

GROUP BY v.StateName, t.Month;

8. SELECT t.Quarter,c.Region, p.Type, s.StoreCity,v.CountryName, SUM(ss.Tolal Sales)

FROM employee as e, time as t,customer as c, product as p , store as s, salessix

as ss, vendor as v

321

WHERE v.V ID= ss.V ID and e.E ID = ss.E IDand t.T ID = ss.T ID and

ss.C ID = c.C ID and ss.S ID = s.S ID and ss.P ID = p.P ID and c.Region =

‘Ontario’ and s.StoreState= ‘Ontario’ and e.LastName = ‘Moore’

GROUP BY c.Region, p.Type, s.StoreCity, t.Quarter,v.CountryName

9. SELECT t.Quarter, SUM(ss.Tolal Sales)

FROM time as t, salessix as ss

WHERE ss.T ID = t.T ID and t.Year=‘2004’ and t.DayName = ‘Monday’

GROUP BY (t.Quarter);

10. SELECT p.Category,v.CountryName, sum(ss.Tolal Sales)

FROM vendor as v, product as p, salessix as ss

WHERE ss.V ID=v.V ID and ss.P ID = p.P ID and v.VendorName = ‘Inter-

national’ and p.Quantity=200

GROUP BY v.CountryName, p.Category

11. SELECT s.StoreCity, v.CountryName, SUM(ss.Tolal Sales)

FROM time as t , store as s, salessix as ss, vendor as v

WHERE t.T ID = ss.T ID and v.V ID=ss.V ID and ss.S ID = s.S ID and

(t.year=2005 and t.DayName=‘Monday’) and s.StoreState=‘Ontario’

GROUP BY s.StoreCity,v.CountryName

12. SELECT c.Region, SUm(ss.Tolal Sales)

FROM customer as c , salessix as ss

WHERE ss.C ID = c.C ID and c.Age = 50 and c.Country = ‘Canada’

GROUP BY c.Region

13. SELECT s.StoreCity,v.StateName, sum(ss.Tolal Sales)

FROM vendor as v, salessix as ss,store as s

WHERE v.V ID = ss.V ID and s.S ID = ss.S ID and v.CountryName =

322

‘Canada’ and s.StoreState = ‘Quebec’

GROUP BY v.StateName, s.StoreCity

14. SELECT s.StoreCity,t.Quarter, SUM(ss.Tolal Sales)

FROM employee as e, time as t, store as s, salessix as ss

WHERE e.E ID = ss.E ID and t.T ID = ss.T ID and ss.S ID = s.S ID and

e.LastName = ‘Moore‘and s.StoreState=‘Quebec’

GROUP BY s.StoreCity, t.Quarter

15. SELECT t.Quarter,c.Region, p.Type, s.StoreCity, SUM(ss.Tolal Sales)

FROM time as t,customer as c, product as p , store as s, salessix as ss

WHERE t.T ID = ss.T ID and ss.C ID = c.C ID and ss.S ID = s.S ID and

ss.P ID = p.P ID and c.Region = ‘Ontario’ and s.StoreState= ‘Ontario’ and

p.Category = ‘Household’

GROUP BY c.Region, p.Type, s.StoreCity, t.Quarter

16. SELECT v.City, p.Type, s.StoreCity, SUM(ss.Tolal Sales)

FROM employee as e, customer as c, time as t,product as p , store as s, salessix

as ss, vendor as v

WHERE t.T ID = ss.T ID and v.V ID= ss.V ID and e.E ID = ss.E ID and

ss.C ID = c.C ID and ss.S ID = s.S ID and ss.P ID = p.P ID and e.LastName

= ‘Moore’ and c.Region = ‘Ontario’ and c.Age=60 and t.Year = 2007 and

t.DayName=‘Monday’

GROUP BY v.City, p.Type, s.StoreCity

