
Maintenance-Cost View-Selection in Large Data
Warehouse Systems: Algorithms,
Implementations and Evaluations

Choi Chi Hon

A Dissertation Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Systems Engineering and Engineering Management

© T h e Chinese University of Hong Kong

June 2003 “

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)

intending to use a part or whole of the materials in the thesis in a proposed publication

must seek copyright release from the Dean of the Graduate School.

广 充 系 J ； 幽 ;

rf n m m)||
" ~UNIVERSfTY " 笼 I

^̂ JKLIBRARY SYSTEMy^

]

. ! (

J ‘

-小

Abstract

In order to efficiently support a large number of online analytical processing

(OLAP) queries, a data warehouse always precomputes some of the O L A P queries

and stores them as materialized views. Maintenance cost view selection problem

is how to select a set of materialized views to minimize the total processing cost for

O L A P queries under some constraints, such as the maintenance cost. This prob-

lem has recently been received significant attention. Several greedy/heuristic al-

gorithms were proposed. However, the quality of the greedy/heuristic algorithms

has not been well analyzed. In this thesis, the greedy/heuristic algorithms have

been reexamined in various settings to provide readers with insights on the quality

of these heuristic algorithms.

Besides, a new evolutionary algorithm is proposed for the maintenance cost

view selection problem. Constraints are incorporated into the algorithm through

a stochastic ranking procedure without penalty functions. The experimental re-

sults show that the stochastic ranking can deal with constraints effectively. The

algorithm can find a near-optimal solution and scale with the problem size well.

As time passes, new queries may not be answered by the existing material-

ized views, a set of new views are selected to be materialized, and may replace

the existing materialized views. This is known as dynamic view management

problem. A dynamic predicate-based partitioning approach is proposed. It can

support different kinds of O L A P queries in an existing relational database sys-

tem. Encouraging results are obtained which indicate that the approach is highly

feasible.

摘要

爲了可以有效而快捷地支援大量的連線分析處理查詢，數據食庫通

常都會預先計算一些這類的連線分析處理查詢並把視圖實物化，稱之爲物

化視圖。其中一個最重要的問題是如何在特定的條件之下，例如：維護的

費用，選取一系列的物化視圖去把處理連線分析處理查詢視圖的費用減至

最低。近來這個問題已經引起高度的關注。有很多貪心 /啓發式算法被提

出，可是他們的素質未被很好地分析。在此，我們會在不同的設定環境下

重新測試這些貪心 /啓發式算法，從而令用户可以深入了解到這些貪心 /

啓發式算法的素質。

與此同時，针對這個問題我們還提出一個全新的有限制的演化式算

法。限制的條件將透過隨機排列過程融合到我們的演化式算法中’當中並

不包含懲罰函數。實驗結果顯示我們的演化式算法可以接近最佳解，另外

也可以處理按比例增大的問題 °

除此之外，我們亦研究動態視圖管理問題。隨著時間過去，現有的物

化視圖未必可以回答新的查詢，我們必須另外再物化一些視圖和更新舊的

物化視圖。我們提出一個以謂詞爲主的動態分割方案，它可以支援廣泛的

連線分析處理查詢。我們的硏究重點侧重於關係數據庫系統中作關係連線

分析處理。實驗的結果説明了我們方法是高度可行的。

Acknowledgement

I would like to give my sincerest thanks to my supervisor, Professor Jeffrey

Xu Yu, not only for his valuable advice, but also for his patient teaching, encour-

agement and support. He understands my strengths, weaknesses and personality,

and leads me to the threshold of my own mind. His enlightenment is important

and useful for my future. It is really difficult for him to supervise me, an amateur

researcher. Without his help, this work can hardly be finished.

Besides, special thanks must be given to Gabriel and Paul for their fruitful

suggestions and comments. They brought me lots of supports when I am in

adversity, and lots of joys in my life.

Moreover, I would like to thank my best friends including Holmes Su, Wailp,

KunChuiig, Silvia, ChingFung, XiaoLei, GouGang and LiuZheng. They have

shared their valuable time to play and chat with me, and gave me valuable sug-

gestions. I would also like to thank Phyllis for supporting me technically.

Last but not least, I would like to thank Charles Chen and my family for

their enduring supports and encouragements. Their loves and supports have made

my life wonderful. M y hearty thank is to Charles for his physically and mentally

supports. During these two years, I did not spend enough time with them. After

this work, it is high time for me to pay them back. I wish I can use the knowledge

and experiences gained throughout these two years to serve them.

q �

The Chinese University of Hong Kong Choi Chi Hon

June 2003

Contents

Abstract i

Abstract (Chinese) ii

Acknowledgement iii

Contents iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Maintenance Cost View Selection Problem 2

1.2 Previous Research Works 3

1.3 Major Contributions 4

1.4 Thesis Organization 6

2 Literature Review 7

2.1 Data Warehouse and O L A P Systems 8

2.1.1 What Is Data Warehouse? 8

2.1.2 What Is O L A P ? 10

2.1.3 Difference Between Operational Database Systems and O L A P 10

2.1.4 Data Warehouse Architecture 12

iv

Contents v

2.1.5 Multidimensional Data Model 13

2.1.6 Star Schema and Snowflake Schema 15

2.1.7 Data Cube 17

2.1.8 R O L A P and M O L A P 19

2.1.9 Query Optimization 20

2.2 Materialized View 22

2.2.1 What Is A Materialized View 23

2.2.2 The Role of Materialized View in O L A P 23

2.2.3 The Challenges in Exploiting Materialized View 24

2.2.4 What Is View Maintenance 25

2.3 View Selection 27

2.3.1 Selection Strategy 27

2.4 Summary 32

3 Problem Definition 33

3.1 View Selection Under Constraint 33

3.2 The Lattice Framework for Maintenance Cost View Selection Prob-

lem 35

3.3 The Difficulties of Maintenance Cost View Selection Problem . . . 39

3.4 Summary 41

4 What Difference Heuristics Make 43

4.1 Motivation 44

4.2 Example 46

4.3 Existing Algorithms 49

4.3.1 A*-Heuristic 51

Contents vi

4.3.2 Inverted-Tree Greedy 52

4.3.3 Two-Phase Greedy 54

4.3.4 Integrated Greedy 57

4.4 A Performance Study 60

4.5 Summary 68

5 Materialized View Selection as Constrained Evolutionary Opti-

mization 71

5.1 Motivation 72

5.2 Evolutionary Algorithms 73

5.2.1 Constraint Handling: Penalty v.s. Stochastic Ranking . . . 74

5.2.2 The New Stochastic Ranking Evolutionary Algorithm ... 78

5.3 Experimental Studies 81

5.3.1 Experimental Setup 82

5.3.2 Experimental Results 82

5.4 Summary 89

6 Dynamic Materialized View Management Based On Predicates 90

6.1 Motivation 91

6.2 Examples 93

6.3 Related Work: Static Prepartitioning-Based Materialized View

Management 96

6.4 A New Dynamic Predicate-based Partitioning Approach 99

6.4.1 System Overview 102

6.4.2 Partition Advisor 103

6.4.3 View Manager 104

Contents vii

6.5 A Performance Study 108

6.5.1 Performance Metrics 110

6.5.2 Feasibility Studies 110

6.5.3 Query Locality 112

6.5.4 The Effectiveness of Disk Size 115

6.5.5 Scalability 115

6.6 Summary 116

7 Conclusions and Future Work 118

Bibliography 120

List of Figures

2.1 Data warehouse architecture [8] 12

2.2 Multidimensional data [8] 14

2.3 A star schema [8] 16

2.4 A snowflake schema [8] 16

2.5 Data cube lattice 18

3.1 A simple direct product example 37

3.2 An example of view maintenance 40

4.1 An example 45

4.2 Another example (all update frequencies are 0.125.) 48

4.3 The binary search tree To of candidate solutions for Figure 4.1 . . 52

4.4 A bipartite graph example for Figure 4.1 56

4.5 The impacts of query frequencies 63

4.6 The impacts of the maintenance cost constraint 69

4.7 Scalability 70

5.1 An example of view maintenance 74

5.2 Feasibility of the solutions by varying the Pf value 85

viii

List of Figures ix

5.3 Optimality of solutions with different maintenance cost constraint 86

5.4 Four algorithms 88

5.5 Scalability of algorithm by varying the number of vertices 88

6.1 A star schema 93

6.2 The chunked file for Table 6.1 97

6.3 A system overview 101

6.4 The TPC-H schema 109

6.5 Static prepartitioning v.s. dynamic predicate-based partitioning . 112

6.6 Testing different data access locality patterns 113

6.7 Testing different hierarchical access locality patterns 114

6.8 A comparison of SFF and SPF on varying the disk size 116

6.9 Effect of varying the disk size 117

List of Tables

2.1 Comparison between OLTP and O L A P system [39] 11

3.1 Disk space v.s. maintenance cost 41

4.1 An example for Figure 4.1 47

4.2 Performance for Figure 4.2 with constraint: Cmin 49

4.3 Performance for Figure 4.2 with constraint^ 0.96 x Cmin 50

4.4 Performance for Figure 4.2 with constraints 0.9 x Cmin 50

4.5 System parameters 61

5.1 Notations and definitions of the system parameters used in exper-

iments 83

6.1 Assumed Query 1 result 94

6.2 A materialized view by partition Table 6.1 using the two predicates

Pi and p2 100

X

Chapter 1

Introduction

Business landscape of the financial services is quickly evolving, and markets are

much more competitive and dynamic than ever. Businesses in every segment of

the industry realize that their corporate and customer databases are gold mines

of information that could give them a critical edge by helping them to manage

investment, map market development, identify new customer prospects, antici-

pate demands on banking services, and predict consumer preferences and habits.

Data warehouse and online analytical processing (OLAP) have been successfully

deployed in many industries such as manufacturing, retailing, financial services,

transportation, telecommunications and health-care. They enable executives,

managers and analysts to make better and faster decisions. The amount of po-

tential data that needs to be maintained tends to be hundreds of gigabytes or

terabytes in size. As O L A P queries in such a large warehouse involve hundreds

of complex aggregate queries over a huge volume of data, it is not feasible to

compute these queries by scanning the data sets from scratch each time, as the

processing time is too long. Therefore, minimizing O L A P query processing time

1

1.1 Maintenance Cost View Selection Problem 2

becomes critical since executives, managers and analysts need to make decisions

in a short time.

In this chapter, the research problem for this thesis will be identified. A

brief background and description of previous research work is given in Section 1.2.

The purpose and significance contribution of this research will be established in

Section 1.3. Finally, the thesis organization will be described in Section 1.4.

1.1 Maintenance Cost View Selection Problem

Precomputing O L A P queries has been widely used as a common technique in

data warehouses, that is the selection of a set of views to materialize under certain

resource constraints for the purpose of minimizing the total query processing cost.

Most research work on the view selection problem is under disk space constraint

Disk space constraint represents that only a limited amount of disk space can be

used to store the materialized views. The disk space view selection problem is

to select a set of interrelated views that minimizes the total query response time

under a given disk space constraint. However, in real applications, the constraint

is the maintenance time incurred in keeping the materialized views up-to-date

at a data warehouse. The maintenance cost view selection problem is to select a

set of views to materialize in order to minimize the query response time under a

constraint of maintenance time. For the disk space constraint problem, the benefit

of a view that has been chosen will remain unchanged in the subsequence view

selection process. It has the monotonic property and therefore greedy algorithms

are applicable. However, for the maintenance cost view selection problem, the

monotonic property does not hold. Besides, the maintenance cost view selection

1.2 Previous Research Works 3

problem for a large multidimensional data warehouse in a dynamic changing

environment has not been well studied.

1.2 Previous Research Works

Usually, according to the query statistics on a daily-basis, the most frequently ac-

cessed O L A P queries are selected as materialized views during night to effectively

utilize the computation and storage resources. The materialized views are used

to accelerate the O L A P queries in the following day. This kind of view selection

are known as static view selection problem. Recent works [4, 63, 70’ 73’ 78] on the

static view selection problem for data warehouse provide various frameworks and

heuristics for selection of views in order to optimize the sum of query response

time and view maintenance time without any resource constraint. [40] provides

a greedy algorithm to select views to materialize in order to minimize the total

query response time under disk space constraint or under a limited number of

views. [33, 34] present approximation algorithms to select a set of views that

minimizes the total query response time under a given space constraint. [36] ini-

tializes the maintenance cost view selection problem in terms of time constraint.

They propose two heuristic algorithms which are exponential in nature and are

not scalable.

However, ad-hoc queries evolve continuously over time in daytime. Some of

the new incoming queries can be answered by the existing materialized views in

the data warehouse while others may not. These new queries make static mate-

rialized views quickly become outdated. In other words, the static materialized

views cannot fully support the dynamic nature of the decision support analysis.

1.3 Major Contributions 4

Hence, dynamic materialized views management is highly desirable to fully sat-

isfy users' ad-hoc queries, The dynamic view selection problem is to modify or

replace the existing materialized views to answer continuously incoming ah-hoc

queries during daytime.

74] designs a dynamic data warehouse and proposes incremental algorithm

to support incoming queries. [21] proposes a chunk-based scheme to support the

dynamic queries. [45] introduces a dynamic view management system, Dynamat,

which stores multidimensional range fragments. More details will be given in

Chapter 2.

1.3 Major Contributions

In this thesis, the maintenance cost view selection problem on the static view

selection issue has been considered as well as on the dynamic view selection issue.

The static view selection has recently been received significant attention.

36] proposes two heuristic algorithms: A*-heuristic and inverted-tree greedy, in

which they state that the greedy algorithm that select views base on query benefit

per unit maintenance cost can deliver an arbitrarily bad solution. In contrast,

Liang et al. [51] design two algorithms: two-phase greedy and integrated greedy,

which are on the basis of query benefit per unit maintenance cost. Liang et al.

claim that the two algorithms are able to find feasible solutions in polynomial

time, however, they do not provide any analytical and performance studies. To

deal with the maintenance cost view selection problem, algorithms that provide a

near optimal solution in polynomial are highly desirable. However, the arguments

presented in [36，51] are not consistent. The algorithms cannot be used without

1.3 Major Contributions 5

any systematic study on the quality. One of the contribution of this thesis is to

investigate four above-mentioned heuristic algorithms in various settings. The

valuable finding provides a view on how to use the heuristic algorithms and to

design new algorithms.

The maintenance cost view selection problem is a NP-hard problem. The

search space for possible materialized views may grow exponentially. Through

studying the heuristic algorithms, a new constrained evolutionary algorithm is

proposed instead of using any penalty functions. The evolutionary algorithm use a

novel stochastic ranking procedure. It is the first time to adopt the the stochastic

ranking technique to this specific problem. The extensive experimental studies

show that the feasible solution can be easily found by the stochastic ranking

approach. In addition, the new constrained evolutionary algorithm explores the

search space better than the other existing algorithms. It scales well with the

problem size.

Another major contribution of this thesis is that a dynamic predicate-based

partitioning approach is proposed for the dynamic view management problem.

The main advantage of this approach is that it is able to fully utilize the power

of existing popular relational database systems and can support different kinds

of complex O L A P queries. Extensive performance studies are conducted using

TPC-H benchmark data on IBM DB2 and encouraging results are obtained which

indicate that the approach is highly feasible.

1.4 Thesis Organization 6

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 reviews the concept

of data warehouses, O L A P systems and previous research work related to view

selection problem. Chapter 3 formalizes the research problem. Chapter 4 dis-

cusses four existing heuristic algorithms and reports their performance. The new

constrained evolutionary algorithm as well as the experimental results will be

presented in Chapter 5. Chapter 6 considers the dynamic maintenance cost view

selection problem and proposes a new dynamic predicate-based partitioning ap-

proach. Finally, Chapter 7 concludes this thesis.

Chapter 2

Literature Review

Today's markets are much more competitive and dynamic than ever. Business

enterprises prosper or fail according to the sophistication and speed of their in-

formation systems, and their ability to analyze and synthesize information using

those systems. Data warehousing and O L A P provide tools for business executives

to systematically organize, understand and use their data to make strategic deci-

sions. In this chapter, basic concepts, general architecture and previous research

works on data warehouses and O L A P systems will be given as the background of

the research problem in this thesis. Section 2.1 introduces data warehouse and

its architecture, as well as the OLAP, ROLAP, M O L A P , data cube and query

optimization. Emphasis are particularly put on the materialized views and view

selection, in which they will be described in Section 2.2 and 2.3. Section 2.4

concludes this chapter.

7

2.1 Data Warehouse and OLAP Systems 8

2.1 Data Warehouse and OLAP Systems

Data warehouse and O L A P systems are essential elements of decision support,

and become a focus in the database industry. In this section, data warehouses

and its architecture, O L A P systems, multidimensional data model and how to

optimize queries will be introduced.

2.1.1 What Is Data Warehouse?

Data warehouse can be defined in many ways. Loosely speaking, a data ware-

house is a copy of transaction data specifically structured for querying and re-

porting [44] (Page 310). Data warehouse systems allow for the integration of a

variety of application systems. According to Inmon on page 31 of the Building

the Data Warehouse [41]: A data warehouse is a "subject-oriented, integrated,

time-varying, non-volatile collection of data that is used primarily in support of

organizational decision making". These data are collected from different sources,

such as marketing, finance and human resources, through the rapid growth of the

World Wide Web on the Internet. Let us take a closer look at these four key

features: subject-oriented, integrated, time-variant, and non-volatile.

• Subject-oriented: A data warehouse is focus on major subjects, such as

products, customers and sales. It typically provides a simple and concise

view around particular subject issues to help a decision maker to model

and analyze the data. This is in contrast to operational systems, which

deal with processes such as customer sales transactions.

• Integrated: Data are stored in a consistent format even they came from

multiple heterogeneous sources. Data cleaning and data integration tech-

2.1 Data Warehouse and OLAP Systems 9

niques are applied to ensure consistency.

• Time-variant: A data warehouse stores huge and long periods of time

historical data, for example, past five to ten years' data. The data implicitly

or explicitly associate with a point in time to provide information from a

historical perspective.

• Non-volatile: The data does not change once it gets into the data ware-

house. A data warehouse usually requires only two operations on data

accessing: initial loading of data and access of data.

The aim of a data warehouse is to support decision-making based on his-

torical, summarized and consolidated data. The target users of data warehouse

are knowledge workers, such as managers and executive analysts, who usually

issue ad hoc and complex queries that require prompt response. The amount of

data maintained in a data warehouse is huge in size, from hundred gigabyes to

several terabytes. Upon such enormous amount of data collected from different

sources, various business decisions need to be made in a few minutes, in order to

cope with the rapid changes in different sectors of the market from time to time.

Such timely manner requests the data warehouse to be able to answer O L A P

queries efficiently, and be able to assist executives or managers to make a better

and faster decisions. Typically, the data warehouse is maintained separately from

the operational databases. This makes data readily accessible to the knowledge

workers without interrupting the online operational systems.

2.1 Data Warehouse and OLAP Systems 10

2.1.2 What Is OLAP?

In order to analyze the trends and make reliable predications, a data warehouse

often collects detailed data from one or multiple sources to support business

analysis. Such analysis involves asking a large number of aggregate queries, and is

called online analytical processing (OLAP). O L A P is computer-based technique

used to analyze trends and perform business analysis using multidimensional

views of business data [5]. Another good definition of the term O L A P is found

in [17] as follows:

OLAP is a category of software technology that enables analysts, managers

and executives to gain insight into data through fast, consistent, interactive access

to a wide variety of possible views of information that has been transformed from

raw data to reflect the real dimensionality of the enterprise as understood by the

user.

2.1.3 Difference Between Operational Database Systems

and OLAP

This section compares the difference between online transaction processing (OLTP)

system and O L A P system. Han and Kamber [39] (page 43) give a comparison

between OLTP and O L A P systems in Table 2.1.

The major features that distinguish between OLTP and O L A P are: (1)

O L T P is a customer-oriented for detail transaction processing; O L A P is market-

oriented and is used for analysis by knowledge workers. (2) OLTP typically adopts

an entity-relationship data model; O L A P usually adopts either a star or snowflake

model (will be discussed in the next section). (3) OLTP focuses mainly on current

2.1 Data Warehouse and OLAP Systems 11

Feature | OLTP | OLAP
Characteristic operational processing information processing

Orientation transaction analysis

User clerk, DBA, knowledge workers

database professional (e.g., manager, executive analyst)

Function day-to-day operations long-term informational

requirements, decision support

D B design E R based, star/snowflake,

application-oriented subject-oriented

Data current; historical;

guaranteed up-to-date accuracy maintained over time

Summarization primitive, highly detailed summarized, consolidated

View detailed, flat relational summarized, multidimensional

Unit of work short, simple transaction complex query

Access read/write mostly read

Focus data in information out

Operations index/hash on lots of scans

primary key

Number of tens millions

records accessed

Number of users thousands hundreds

D B size 100 M B to G B 100 G B to T B

Priority high performance, high flexibility,

high availability end-user autonomy

Metric transaction throughput query throughput,

response time

Table 2.1: Comparison between O L T P and O L A P system [39.

2.1 Data Warehouse and OLAP Systems 12

data; O L A P deals with the historical and consolidated data from heterogeneous

sources.

2.1.4 Data Warehouse Architecture

A data warehouse is constructed by integrating data from multiple heterogeneous

sources to support queries as well as report and help managers to make decision.

7, 8] provide an overview of data warehousing architecture and O L A P technology

(Figure 2.1).

I I I Analysis
I Monitoring & Adminstrating 丨 OLAP ； •
I f] f ^ J Servers 1 二 Z Z Z Z Z Z I I

External sources I ; / / / / A ‘

Q S i czz：：, i i = = = = =
crzZD l̂ f ^ ‘ Metadata ; = 二二 = , (；

； RepositoryL J t | | | | [；K ： |l I I I ~ H

[—^ I—^ I K ； ; Query / Report

—̂—̂——-Extract \ (CT f： ^ ； 'X ！ “ I
： 释 J [J i L ^ O i n n

3 B Q Data Warehouses ； / ! _ �

Q Q Q i ； { f r f ^ i Data Mining
OperationalDBs I 丄 丄 ： I I I I ^ ' v ‘

I s s s d , 丨 因
i Data Marts ！ ！ -

Bottom tier: Middle tier: Top tier:
Data warehouse server OLAP server Front end tools

Figure 2.1: Data warehouse architecture [8

Figure 2.1 illustrates a data warehouse architecture with three tiers: data

warehouse server, O L A P server and front end tools. A data warehouse is often

constructed by integrating data from multiple heterogeneous sources. Data from

2.1 Data Warehouse and OLAP Systems 13

operational databases and external sources are extracted, transformed, loaded

and refresh into data warehouse. Data are refreshed periodically to the data

warehouse to reflect updates at the sources. In the data warehouse, there is

a repository for storing and managing metadata, and tools for monitoring and

administering the data warehousing system. Data in a data warehouse are stored

and managed by an O L A P server, which is implemented either in Relational

O L A P (ROLAP) or Multidimensional O L A P (MOLAP) model. An O L A P server

is a high-capacity, multi-user data manipulation engine specifically designed to

support and operate on multi-dimensional data structures [17]. R O L A P uses a

relational or extended-relational D B M S to store and manage warehouse data. In

contrast, M O L A P systems store their data as sparse arrays, which may consume

more space compare with ROLAP, however, its implementation of operation is

simpler and more efficient. O L A P server will be discussed in detail in the Section

2.1.8. The front end tools including query tools, report writers, analysis tools

and data mining tools.

2.1.5 Multidimensional Data Model

In order to facilitate complex analyses and visualization, the data in a data ware-

house are typically modeled multidimensionally. Data warehouses and O L A P

tools are based on a multidimensional model which view data in the form of data

cube. A multidimensional data model is defined by dimensions and facts. Figure

2.2 shows a multidimensional data. In a multidimensional data warehouse, it

consists of a fact table and a collection of dimension tables [44]. Data cells are

arranged by the dimensions of the data. The dimensions together are typically

organized around an object of analysis which called measure. For example, in

2.1 Data Warehouse and OLAP Systems 14

/ / / / / \ Dimensions: Product, City, Date

/ / / / A -
X / / / / Z Hierarchical summarization paths

P4 , \ / y Company Country Year
ti Z / /
3 P3 / / ,

/ / Category State Quarter

I I A
PI I 10 I 20 I 30 I 40 C2 ^jty Product City Month Week

1 2 3 4 \ /
Date D ^

Figure 2.2: Multidimensional data [8

Figure 2.2, three dimensions: product "PI", Date T and City "Cl" determine

the measure is 10. Each dimension is associated with a dimension table and de-

scribed by a set of attributes. For example, a dimension table for Product may

contain attributes product number, product name, category and unit price. Note

that the attributes of a dimension are hierarchical. In Figure 2.2, the Date is

organized as either a year-quarter-month-day hierarchy or a year-quarter-week-

day hierarchy. Typical O L A P queries contain aggregation of measure over one

or more dimensions. The hierarchy of the dimension can be summarized, that

is, higher-level aggregates (e.g., group by year) may be obtained directly from

lower-level aggregates (e.g., group by quarter). Based on hierarchy characteris-

tic, O L A P tools provide some useful operations, such as: roll-up and drill-down.

It provides a convenient way for users to generate summaries, aggregates, and

hierarchies at each granularity level.

2.1 Data Warehouse and OLAP Systems 15

2.1.6 Star Schema and Snowflake Schema

The entity-relationship (ER) data model and normalization techniques are com-

monly used in the design of relational databases in online transaction processing

environments [8]. E R database schema consists of a set of entities and rela-

tionships among them. However, E R database schema is inappropriate for data

warehouses because querying efficiency is important. The most popular data

model for a data warehouse is multidimensional model which can exist in the

form of star schema, snowflake schema or a fact constellation schema.

Most data warehouses use a star schema to represent the multidimensional

data model. A star schema consists of one central fact table and a single table for

each dimension (See Figure 2.3). Each record in the fact table consists of many

attributes where some of them are dimension attributes. Dimension attributes

are pointers or foreign keys referencing to the dimension tables that provide its

multi-dimensional coordinates. The remaining attributes in the fact table store

the numeric measures for those coordinates. Sometimes a star schema is not

enough to show the complicated data structure, so there is a refinement of star

schema where the dimensional hierarchy is represented explicitly by normalizing

the dimension tables. This representation known as snowflake schema. In a

snowflake schema, tables are further added to the dimension tables to show a

more detailed attributes in the data. A sample of snowflake schema is shown in

Figure 2.4. Fact constellation schema is more sophisticated than star schema and

snowflake schema. It requires multiple fact tables to share dimension tables.

2.1 Data Warehouse and OLAP Systems 16

Product (P_)

•r(0_) / I pInLB
0 _ N o \ / P_Descr
0_Date / P.Category

Fact Table / P_CategoryDescr
Customer (C_) V ^ / 溫 r i c e

C一No • C_No / _ - 乂

C_Name �S J D / r w o �

C.Address / P一No , Date (D_)
C_City / D_Key < DJCey

/ CityName . D_Date
/ Quantity \ D_Month

Salesperson (S _) / TotalPrice \ D_Year
S _ I D \ \ �

S.Name _ _ ^ _
S_City \ CityName
S_Quota State

Country

Figure 2.3: A star schema [8

Product (P_)

Order (O一） / f ^ L
0 _ N o \ / PJDescr Category
0_Date X / P.Category f — | CategoryName

\ Fact Table / P.UnitPrice CategoryDescr
Customer (C_) X t ^ ~ ~ / ？ 鋼

C_No • C_No /

c i L / 巧 。 r Date p一）

C-CiW / ^ e — d S ^ Yeâ
/ Quantity \ D_Month 卜 Month

Salesperson (S_) / TotalPrice \ Year

S-ID K \
S一Name \ , _ _ _
S-City \ CityName State
S_Quota State < ~

Figure 2.4: A snowflake schema [8

2.1 Data Warehouse and OLAP Systems 17

2.1.7 Data Cube

Data cube provides an easy and intuitive way for data analysts to calculate vari-

ous levels of summary information in the database. [27] introduces a popular data

cube operator, the CUBE operator, which calculates all the aggregation for the

detail data set over different combinations. A k-dimension attributes data cube

presents S E L E C T - F R O M - W H E R E - G R O U P B Y aggregation queries. The ag-

gregate queries represented by a data cube can be organized into a lattice. For

example, the data cube in Figure 2.2 can be represented by the lattice in Figure

2.5 which denotes the aggregation: cube by (product, city, date). [40] is the

first one to introduce the construction of lattice corresponding to a data cube.

In Figure 2.5, three dimensions (the abbreviation. P for Product, C for City and

D for Date) generate eight cuboids: PCD, PC, PD, CD, P, C, D and ALL. Each

cuboid is a group by clause, that is group by (product, city, date) ； group

by (product, city)； group by (product, date)； group by (city, date)；

group by (product)； group by (city)； group by (date) and group by ()，

that is no group by clause. There is functional dependence relationship between

cuboids. In other words, a data cube query can be answered by using the result

of others, such as query PC can be answered by the result of query PCD. A

dimension hierarchy can also be represented by a lattice. A lattice can be con-

structed to represent the set of views that can be obtained by grouping on each

combination of elements from the set of dimension hierarchies. It turns out that

a direct product of the lattice called hypercube [40 .

In [50], a multidimensional data model is introduced based on relational

elements. A grouping algebra is presented, cubes are modeled as functions from

dimensions to the measure and are mapped to grouping relations. Furthermore,

2.1 Data Warehouse and OLAP Systems 18

^ ^ (c m

Ulu

Figure 2.5: Data cube lattice

a multidimensional cube algebra is introduced in order to facilitate the data

derivation. In [37], an algebra is defined with classical relational operator, the

expressive power of the algebra is shown through the modeling of the data cube

and monotone roll-up operators. [69] gives approximate answer to C U B E query

by clustering based approaches. Sort-based algorithm and hash-based algorithm

are presented in [80] for datacube computation to explore memory utilization.

They extend the algorithm for single datacube computation to process multiple

datacube simultaneously in [81]. [85] presents a Multi-Way Array based method

for computation. It demonstrates that M O L A P approach performs much better

than R O L A P algorithm. They suggest this approach could be valuable in R O L A P

system. [19] presents an efficient algorithm for computing a cube by. The cost

of creating a materialized view and the cost of processing a query to a data

warehouse would be taken into account when selecting the set of materialized

2.1 Data Warehouse and OLAP Systems 19

views.

2.1.8 ROLAP and MOLAP

The data storage issue is the main concern when implementing an O L A P server.

In this section, Relational O L A P (ROLAP) and Multidimensional O L A P (MO-

LAP) approaches of implementing an O L A P server are introduced.

2.1.8.1 ROLAP

R O L A P servers are the intermediate servers that stand in between a relational

back-end server and client front-end tools. R O L A P systems use relational tables

as their data structure. Since R O L A P uses a relational database, it requires more

processing time and/or disk space to perform some of the tasks that multidimen-

sional databases are designed for. However, R O L A P supports larger user groups,

larger amount of data and is often used when these capacities are crucial, such

as in a large and complex department of an enterprise.

2.1.8.2 MOLAP

M O L A P is O L A P that indexes directly into a multidimensional database. In

general, M O L A P stores data in a multidimensional array in which all possible

combinations of data are reflected, each in a cell that can be accessed directly.

Hence, the users are able to view different aspects of data aggregates such as sales

by time, geography, and product models quickly. For this reason, M O L A P is, for

most users, faster and more user-responsive than ROLAP.

Compared with ROLAP, the advantage of the M O L A P architecture is that

it provides a direct multidimensional view of the data whereas R O L A P architec-

2.1 Data Warehouse and OLAP Systems 20

ture is just a multidimensional interface to relational data [75]. [16] demonstrates

that M O L A P has efficient storage and supports fast data retrieval. M O L A P

systems always need to precompute all possible aggregations, that is why they

are often more preferable than traditional ROLAP. However, M O L A P are more

difficult to update and administer. The disk space consumption of M O L A P ar-

chitecture is possibly much larger especially when data is sparse. In contrast, in

the R O L A P architecture, relational data can be stored more efficiently than mul-

tidimensional data. Besides, R O L A P can be easily integrated into other existing

relational information systems. However, R O L A P may consume larger storage

space for indexing and longer Input/Output time for calculating the derived data

using Structure Query Language (SQL).

In a R O L A P architecture, data are organized in a star or snowflake schema.

On the other hand, M O L A P systems store data in a n-dimensional array. Each

dimension of the array represents the corresponding dimension of the data cube.

The contents of the array are the measures of the corresponding data cube.

2.1.9 Query Optimization

Data warehouses contain large volume of data. To answer queries efficiently

and give prompt user responses, query optimization becomes a critical issue in

the data warehousing environment. There are many ways to improve the query

optimization such as indexing, materializing views, transforming of complex SQL

queries, creating pre-aggregate summary tables, partitioning and parallel query

processing technology.

Since data warehouses store historical data rather than up-to-date informa-

tion, access to data warehouses are mostly read-only operations. Data warehouses

2.1 Data Warehouse and OLAP Systems 21

are typically updated periodically in a batch fashion and during this updating

process, the data warehouses are unable for querying. This is why data ware-

houses require to use more complex indexing structures to speed up the evaluation

of queries. Bitmap indexing is a well known indexing technique [55, 56, 77]. [77

proposes static and dynamic optimization strategies for selections using bitmaps.

In addition to indices on single table, the specialized nature of star schemas makes

join indices especially attractive for O L A P queries. Bitmap join indices (star join

index) [55] on the dimensional attributes are frequently used for efficient joins

between a dimension table and the fact table. [56] presents various bitmap in-

dexes including bit-sliced indexing and projection indexing. It also introduces a

new index type, Groupset indexes, to evaluate the ad-hoc O L A P queries which

involves aggregation and grouping.

The problem of rewriting a query using a set of views is a NP-hard problem.

To evaluate a correlated query, [62] proposes algorithms to recognize the invariant

part of the subquery and to restructure the evaluation plan to reuse the stored

intermediate results. Based on syntactic characterizations of the equivalence of

aggregate queries, [14] proposes an approach to rewrite aggregate queries using

aggregate and non-aggregate views. [59] describes a scalable algorithm, MiniCon,

for finding the maximally-contained rewriting of a conjunctive query using a set

of conjunctive views.

Many researches [32, 49, 64, 68, 86] work on multiple-query optimization.

Multiple-query optimization exploits that queries can share the common data and

reduce the cost [68]. [86] designs three algorithms to optimize multiple related

dimensional queries. Their new query evaluation primitives that allow multiple

star join query plans to share portions of their evaluation. The search space

2.2 Materialized View 22

of multi-query optimization is very large. [49] provides a practical method for

finding and rewriting queries in a finite search space with respect to the views.

10] considers the problem of optimizing queries with aggregates. For single-block

SQL queries, group-by precedes join may cause addition group by operator and

increase execution space. It can be solved by a greedy conservation heuristic.

For view with aggregation, it uses pull-up transformation and group-by above

join. [64] provides an efficient heuristic algorithm and demonstrates that multi-

query optimization is feasible and effective. Relying on a graphical representation

of queries, [83] proposes a matching algorithm to rewrite a user query using

materialized views instead of using base tables. [32] addresses the problem of

query scheduling in multiquery optimization. In order to reduce the cost of query

evaluation, several algorithms are proposed to dynamically cache a set of common

sub-expression and utilize the cache space. [21] proposes a chunk-base scheme

for caching queries which allows queries to partially reuse the results of previous

queries with which they overlap.

2.2 Materialized View

Precomputing O L A P queries - materializing views with aggregate functions — has

been widely used as a common technique in data warehouses [30]. In this section,

the role of materialized views in O L A P will be introduced and some challenges

in exploiting materialized views will be discussed.

2.2 Materialized View 23

2.2.1 What Is A Materialized View

A view is a derived relation defined in terms of base relations. A view thus defines

a function from a set of base tables to a derived table, this function is typically

recomputed every time when the view is referenced. [36

A materialized view is a view which stores the tuples of the view in the

database. Like a physically table, index structures can be built on the materi-

alized views. Consequently, users access to the materialized views can be much

faster than recomputing the query from the fact table.

2.2.2 The Role of Materialized View in OLAP

O L A P systems have been widely used for business data analysis. However, the

ad-hoc O L A P queries always involve computing a lot of complex aggregation

queries. It may take an enormous amount of disk input/output and C P U process-

ing time because aggregate operations need to be performed in order to conduct

statistical analysis against million of records. It becomes very critical on how to

reduce O L A P query processing time due to the decision makers need to make

right decisions in a short time. Precomputing O L A P queries becomes a key to

achieve high performance in data warehouses. O L A P systems speed up querying

and system throughput by materializing a large number of summary tables. A

summary table is a materialized aggregate view. Having materialized views can

significantly speed up query processing.

2.2 Materialized View 24

2.2.3 The Challenges in Exploiting Materialized View

In the chapter 4 of [30], some of the challenges in materialized views independent

of the application in which they are being used have been discussed. The main

issues that we are concerned are: (a) identify the views to materialize, (b) use

the materialized views to answer queries, (c) how to efficiently maintain views,

efficiently update the materialized views during load and refresh, and (d) the

performance trade offs in using views.

The optimization criteria for selecting views to materialize can be (i) the

disk space which is available for storing the views; (ii) the number of views that

allowed be materialized [40]; and (iii) maintenance cost.

The problem of answering queries using views is related to a wide variety

of data management problems, such as query optimization, data integration and

data warehouse design [48, 76]. This problem can be stated as follows: given a

query on a database schema and a set of materialized views on the same database

schema, will it save the computation time if the query is answered by the views

only? [38, 48] give good surveys about different approaches to this problem.

The basic idea of using materialized views is to improve the query optimization.

However, blind applications of materialized views may result in worst execution

plan than if no views were used to answer a query. [9] presents a simple, readily

implementable and comprehensive approach to enable a cost-based decision for

deciding whether or not to use materialized views to answer a query. [72] provides

a semantic approach to solve the problem of answering queries using views in the

presence of grouping and aggregation. It describes the conditions required for a

view to answer a query and a rewriting algorithm to deal with these conditions.

In [58], Park et al. propose a new method for rewriting a given O L A P query

2.2 Materialized View 25

using various kinds of materialized aggregate views. They define the normal forms

of O L A P queries and materialized views based on the lattice of dimension hier-

archies, the semantic information in data warehouses. They present a rewriting

algorithm for O L A P queries that effectively utilizes existing materialized views.

Goldstein and Larson [25] present a fast and scalable algorithm for determining

whether part or all of a query can be computed from materialized views and

describe how it can be incorporated in a transformation-based optimizer. They

consider views composed of selections, joins and a final group-by. [1] presents

three cost models to generate efficient rewriting algorithms by using views to an-

swer a query. [79] designs a framework and an efficient algorithm for materialized

view design. They select a set of materialized views based on the idea of shar-

ing the intermediate common results with the help of Multiple View Processing

Plan to minimize the total query response time and the cost of maintaining the

materialized views.

2.2.4 What Is View Maintenance

After a view is materialized, the materialized views are maintained by a mainte-

nance policy. In general, view maintenance is the process of updating a materi-

alized view in response to the changes of the underlying data. When new data

come, the materialized views in the O L A P systems need to be updated. Usually,

the O L A P warehouses apply the incremental maintenance approach which is to

update the changes of the summary table, the warehouses can either be updated

immediately as soon as a change is received {immediate view maintenance), or

the update can be deferred until a time window {deferred view maintenance).

Immediate view maintenance approach keeps the materialized views up-

2.2 Materialized View 26

dated, however, it is not scalable with respect to the number of views. Besides,

immediate view maintenance approach cannot be applied in some applications

due to local transactions cannot be delayed until materialized views are refreshed

at the remote data warehouse. On the other hand, deferred view maintenance

allows changes from several update transactions to be batched together into a

single propagate and refresh operation. It imposes significant overhead on all

query transactions because a query have to wait for a materialized view to be

refreshed.

Compared with recomputing the view, it is cheaper to compute the changes

to a view in response to the changes of the underlying database. [29’ 31] present

incremental view maintenance algorithms. Mumick et al. [54] propose a method

for maintaining materialized aggregate views, called summary-delta table method,

to efficiently maintain a materialized view. [15] presents algorithms to incremen-

tally refresh a view during deferred maintenance and avoid the state bug. In

order to minimize the batch maintenance time, the authors suggest to split the

deferred maintenance work into propagate and refresh functions. [46] proposes

an efficient algorithm for selecting the optimal strategy to update a set of views

to minimize the down time of the data warehouses. It aims at shrinking the data

warehouses update window for multiple interdependent materialized views.

28] defines the concept of self-maintainable views, claiming these views can

be maintained using only the contents of the views and the database modifica-

tions, but without accessing any of the underlying database. Self-maintainability

is a desirable property for efficiently maintaining large views in applications where

fast response and high availability are important. Given a materialized view, [63

presents an exhaustive approach as well as a heuristic for selecting an additional

2.3 View Selection 27

set of views that may reduce the total maintenance cost. They suggest optimal

trade off between the space and time need for view maintenance under different

scenarios. [61] makes views self maintenanable by defining a set of auxiliary views

to materialize at the data warehouses so that auxiliary views and materialized

views can be maintained without accessing any source data.

2.3 View Selection

In order to minimize the total query processing cost for all possible O L A P queries,

a set of materialized views are selected under some resource constraints. It is

worth noting that it is impractical to maintain materialized views for all O L A P

queries due to the huge disk space consumption and large update cost. Moreover,

since the computation of the view is rather time-consuming, it may not be enough

to precompute all the views within a limited time window, so the administrator

need to select a set of views as materialized views in order to minimize the total

query processing time, and the update time when the fact table is updated also

need to take in account.

2.3.1 Selection Strategy

It is obvious that the more views are materialized, the faster queries can be

answered. Due to limited amount of resources, it is usually impossible to pre-

compute all of the views in the data warehouse. Besides, queries are complex, if

we execute directly from raw data, it may take a long time to run on very large

databases. Thus, it is better to materialize partial views rather than compute all

of views from raw data every time. However, it is difficult to determine which

2.3 View Selection 28

are the best aggregate to be precomputed given a fixed amount of maintenance

time constraint.

Most of the reported studies on materialized view selection consider a disk

space constraint due to the fact that the disk consumption of O L A P queries is

very large [33, 35，40, 70]. The disk space view selection problem is to select a set

of interrelated views that minimizes the total query processing cost under a given

disk space constraint. In their paper, Harinarayan et al. [40] propose algorithms

to select materialized views, in order to minimize the total query processing

cost for datacube or O L A P applications. A lattice framework is used to express

dependencies among views. They consider view selection problem under the disk

space constraint. A linear cost model is proposed. The linear cost model states

that the cost of answering a query using a view, is the number of tuples in the

view. Their greedy algorithm can reach, at least, 63% of the benefit of the optimal

solution to identify set of materialized views in the datacube for minimizing query

processing cost. Gupta et al. [35] extend the results reported in [40] to select a

set of views and indexes in datacubes. They study the precomputation of indexes

and subcubes, and discuss a family of one-step near-optimal algorithms under a

given disk space constraint. Gupta in [33] presents a theoretical formulation of

the general view selection problem in a data warehouse, and generalizes the view

selection problems as AND, OR, and A N D - O R graph problems. Shukla et al.

70] introduce a heuristic algorithm called PBS which achieves the same (0.63 -f)

bound as B P U S (proposed in [40])、and runs several orders of magnitude faster

than PBUS. [2] describes how to compute a set of aggregation views. [22] defines

a cost/benefit model and applies a partition algorithm to select views/indexes to

1/ is the fraction of available space consumed by the largest aggregate.

2.3 View Selection 29

materialize in a warehouse under some storage space constraint. All of the above

works consider the disk space constraint and provide greedy algorithms using the

linear cost model. In [36], Gupta and Mumick present a view selection problem

under a given maintenance cost. This maintenance cost view selection problem

is to select a set of views to materialize under a maintenance cost constraint, in

order to minimize the total query processing cost. Gupta and Mumick intend to

adopt a general cost model. However, in the algorithm design, they also use the

linear cost model. The issues of materialized views techniques, implementations

and applications are discussed in [30]. They propose two algorithms, inverted-tree

greedy and A*-heuristic, to solve this problem. [78] extends [79], and proposes a

method where a Multiple View Processing Plan (MVPP) is constructed and some

sharing common parts are selected to be materialized in order to achieve the best

combination of good query performance and low view maintenance cost. The 0-1

integer programming technique is used to obtain the optimal global processing

plan. In [51], Weifa Liang et al. propose two algorithms: two-phase greedy

and integrated greedy algorithm, to solve the maintenance cost view selection

problem and claim that these two algorithms have polynomial time complexity.

In [47], Lee and Hammer make the first attempt to solve this problem by using

evolutionary algorithm.

Other directions on view selection include filtering [60] and multi-cube [71 .

In [60], Qiu and Ling study two filtering methods, a functional dependency filter

and a size filter. The former removes views with redundant summary information

based on functional dependencies among the dimensional attributes. The latter is

based on the view size to filter out any views that can be either derived from an-

other small materialized view or has almost the same number of tuples as another

2.3 View Selection 30

materialized view from which it can be derived. Useful views are selected by these

two filters. In [71], Shukla et al. analyze the view selection issues in a multi-cube

environment. They study multidimensional query semantics and query benefits

across multiple cubes. Like the other works, they adopt the linear cost model

for simplicity. In [3], Agrawal et al. have looked at the problem of building an

industry-strength tool for automated selection of materialized views and indexes

for SQL workloads. Their solution is implemented as part of a tuning wizard

that ships with Microsoft SQL Server 2000. In [53], Mistry et al. study how to

find an efficient plan for the maintenance of a set of materialized views by ex-

ploiting common subexpressions between different view maintenance expressions.

They study three inter-dependent decisions, transient materialization, permanent

materialization and incremental or recomputation. In [11], Chirkova et al. con-

sider the problem for views and workloads, and study several fundamental results

concerning the view selection problem.

The work related to dynamic view management is summarized below. [74

states the dynamic data warehouse design problem: given a set of old materialized

views in the data warehouse, a set of new queries to be answered by the data

warehouse, and extra space allocated for materialization, select a set of new views

to materialize in the data warehouse that fit in the extra space, allows a complete

rewriting of the new queries over the old materialized views and minimizes the

combined evaluation cost of the new queries and the maintenance cost of the new

views. They formulate this problem as a state space search problem and propose

generic incremental algorithms and heuristics to solve it.

Caching is a common technique for dynamic view management. [44] shows

some typical characteristics of O L A P queries which are suitable for caching. Com-

2.3 View Selection 31

pared with the traditional database, updates in data warehouses are infrequent,

and the cached data for O L A P queries may be valid for a long time. The query

results present temporal and geographical locality well such that O L A P queries

typically access data in a hierarchy repetitively, using operations like group-by,

aggregation, drill-down, and roll-up. In order to speed up the query re-

sponse time for the O L A P decision-making systems, different caching mechanisms

have been proposed [18，21, 42, 45, 66，73]. They can effectively reuse the previous

query results and speed up query processing time of the subsequence queries.

The semantic caching mechanism has been introduced in [18] for client/server

main memory architectures. [21] performs a chunk-based scheme which divides

the multidimensional query space into uniform chunks. When a query is issued,

it checks whether the query can be computed directly from the previous query re-

sults which are stored in the cache or a dedicate disk storage. If some parts of the

queries cannot be computed from the cache, the system will compute the missing

parts using the base table. [20] extends the work on the aggregation in the cache

to improve the caching performance. Dimitris et al. [43] implement a multi-tier

caching system for queries. [42] extends the chunks into the peer-to-peer network

to fully utilize the cache in the client side. A system called DynaMat in [45] is

presented that constantly monitors incoming queries and materialized view se-

lection and refreshes the most beneficial subset of it within a given maintenance

window using different caching strategies.

2.4 Summary 32

2.4 Summary

In this chapter, the architecture of a data warehouse has been introduced and

how the multidimensional data model is used to represent it. For decision sup-

port, data warehouses and O L A P systems collect data from various data sources,

back-end tools extract and transform data to store in O L A P server. R O L A P

and M O L A P are the popular approaches to implement the O L A P server which

support multidimensional data model for fast data retrieval and analysis in front

end tools. Star schema and snowflake schema are common in R O L A P for giving

efficiency of processing queries. Many researchers have pointed out the mate-

rialized views can help achieve query optimization. The problem of answering

queries using views has been received significant attention. It is to find efficient

methods of answering query using a set of previously defined materialized views

over the database, rather than accessing the database relations. Mainly, the ma-

terialized views selection can be under disk space or maintenance cost criteria.

While some of these problems have been partially solved, it provides a number of

open problems for the research community. The research problem in this thesis

will be formalized in Chapter 3

Chapter 3

Problem Definition

In Chapter 2, the view selection problem has been discussed. It is to select a set

of views to materialize in a data warehouse to reduce the query response time

as well as warehouse maintenance cost under some constraints. In this chapter,

the research problem will be formally defined. In Section 3.1 two optimization

criteria for the materialized view selection problem: disk space and maintenance

cost will be introduced. In Section 3.2，a derived-by relation in the lattice and

the search space for this problem will be described, cost functions will also be

formalized. Compared with disk space view selection problem, the difficulties of

maintenance cost view selection problem will be pointed out in Section 3.3.

3.1 View Selection Under Constraint

One of the most important issues in data warehouse design is how to select a

set of materialized views in order to minimize the total query processing time of

O L A P queries under a certain constraint. The constraint can be either disk space

33

3.1 View Selection Under Constraint 34

constraint or maintenance cost constraint. The disk space constraint specifies the

availability of the disk space in a data warehouse, whereas the maintenance cost

constraint specifies how long all materialized views must be updated.

• Disk Space Constraint Handling: The disk space view selection prob-

lem is to select a set of interrelated views that minimizes the total query

processing cost under a given disk space constraint. [33, 35, 40, 70] con-

sider disk space constraint and provide greedy algorithms using the linear

cost model. Most of the greedy algorithms start from an empty set and

select the next view with the maximum benefit per unit space in turn. The

benefit of the views which have been selected will be unchanged in the sub-

sequent view selection processes, it is defined as monotonic property. The

algorithms continue to pick views until the space limit is reached. However,

as disk becomes cheap, the disk space constraint becomes less important

nowadays.

• Maintenance Cost Constraint Handling: In real life applications, the

constraint is more likely to be the maintenance cost incurred in keeping

the materialized views up-to-date in a data warehouse. This maintenance

cost view selection problem is to select a set of views to materialize un-

der a maintenance cost constraint, in order to minimize the total query

processing cost. This problem is more difficult than the disk space view

selection problem, because the total maintenance cost for a set of views

may decrease when more views are added to materialized. This is defined

as non-monotonic property.

3.2 The Lattice Framework for Maintenance Cost View Selection Problem 35

Maintenance cost view selection problem has been proven to be NP-hard

36]. For example, Baralis et al. describe a real store chain application that only

has 4 dimensions, namely, Product (50 attributes), Store (20 attributes), Time

(10 attributes) and Promotion (10 attributes) [4, 44]. However, the number of

possible materialized views is over The search space for possible materialized

views is extremely large.

3.2 The Lattice Framework for Maintenance Cost

View Selection Problem

Like [40], a lattice is denoted with a set of elements (queries and views) L and

a dependence relation」(derived-from, be-computed-from) by (L, ：<). Given

two queries 仏 and qj.仍 is dependent on qj, (qi」q」), if Qi can be answered

using the results of qp The lattice (L, ：̂) is called a dependent lattice. For

elements a and 6 of a dependent lattice (L, j), a《 6 means a ^ b and a ^ 6.

The ancestors and descendents of an element of a lattice (L, are defined as

ancestor [a) = {b \ a < b} and descendant {a) = {b \ b ^ a}, respectively. A

dependent lattice can be represented as a directed acyclic graph in which the

lattice elements are vertices and there is an edge from a to 6, if 6 ^ a and

ic{b、c 八 c — a). There is a path downward from a to 6 if and only lib ^ a.

A Multidimensional Database (MDDB) is a collection of relations, Di, • • • , Dm,

F，where Di is a dimension table and F is a fact table [4, 44]. In most real appli-

cations, an M D D B consists of multiple dimensions, and each of them in turn can

be organized as hierarchies of attributes. Consider the large grocery store chain

example given in [4, 44] again. The store chain has four dimensions, namely,

3.2 The Lattice Framework for Maintenance Cost View Selection Problem 36

Product, Store, Time and Promotion. The Product dimension has more than

50 attributes such as brand, category, diet-type, package type, weight, case size

and a merchandise hierarchy. The Store dimension has more than 20 attributes

including store address, telephone number, manager, description of store services,

and sizes of different departments. It also has a geographic hierarchy. The Time

dimension is characterized by the granularity of day; day in the month, in the

quarter and in the year, holiday, special events, as many as more than 10 at-

tributes. There are different granularity of the time hierarchy, namely, day, week,

month and year. The Promotion dimension contains 10 attributes such as the

promotion type, promotion cost and start/end data.

Suppose that an M D D B has m dimensions and the i-th. dimension has

TLi attributes. Assume that each dimension is characterized as a dimensional

dependent lattice. The dependent lattice for the z-th dimension will have

elements. If queries/views can be issued/made by grouping any or no member of

m dimensions, the total number of elements for the M D D B will be 11『(2"‘ + 1).

As for the store chain example, the total number of O L A P queries is ⑵。+ 1) x

(220 + 1) X (21。+ 1) X (210 + 1) and the number of elements is greater than

Therefore, the dependent lattice (L,」)in question is much more complex than

a hypercube lattice. Here, let (ai,a2,... , am) be an m-tuple where each ai is a

point in the hierarchy of the i-th dimension, the dependence relation can be

defined as (ai, a。,…’ flm)么(^>i，石2’... if and only if ai j bi for all i. This is

called the direct product of the dimensional lattices [40]. A simple direct product

of two dimensional lattices is shown in Figure 3.1.

A direct-product of the dimensional lattice is represented as a directed

acyclic graph G = {V, E), where V is a set of vertices and E CV xV. y(G) is

3.2 The Lattice Framework for Maintenance Cost View Selection Problem 37

/ / A^X \ \

八 八 /W' , : / / < \ � \“ �

_ _ W

Figure 3.1: A simple direct product example.

used for the set of vertices of a graph G. The graph G has the following weights

associated with vertices and edges.

• three weights on a vertex v:

—Ty： initial data scan cost.

—fv'- query frequency.

—Qv'- update frequency.

• two weights on an edge {v,u)

— q u e r y processing cost of u using v.

—'Wmu,v'- updating cost of u using v.

In a general setting, given a query u and a selected materialized view v^ a function

v) is the sum of the query processing costs associated with edges on the

shortest path from v io u plus initial data scan cost of the vertex v, Vy. With

3.2 The Lattice Framework for Maintenance Cost View Selection Problem 38

V), the raw table will be used instead of v, if and only if the view v cannot

answer the query u. In a similar fashion, m{u, v) is the sum of the maintenance

costs associated with the edges on the shortest path from v to u. Here, we attempt

to adopt a more general cost model than the linear cost model [40] which has been

used in most of the existing works. The linear cost model states that the cost of

answering a query, u, using one of its ancestors, v, is the number of rows present

in the table v (ry). Here, as shown in the two functions and m(), a general

query processing cost and maintenance cost model are assumed. First, a query

processing cost can be different from a maintenance cost for a pair of vertices.

The maintenance costs can possibly be much lower than the query processing

costs. Second, a query processing cost may involve other query processing costs

(associated with edges) in addition to the initial table scan costs (associated with

vertices). For example, given two dimensions, Di and D2. Assume that the table

for D1D2 is sorted on Di. The cost of performing aggregate Di using D1D2 is

different from the cost of performing aggregate D2 on D1D2 due to sorting order.

The cost differences need to be addressed as weights associated with edges. Third,

there are multiple paths from a view to a query. The shortest path is selected as

its cost in the settings.

The similar notations and definitions used in [36] is adopted to define the

maintenance cost view selection problem. Given an aforementioned graph G =

{E, V) and a set of queries, Q (C V{G)).

The maintenance cost view selection problem is to select a set of views M

(C V{G)) that minimizes r(G, M), where

r{G,M)= h-q{v,M)
vev{G)

3.3 The Difficulties of Maintenance Cost View Selection Problem 39

under the constraint that U{M) < S, where U(M) is the total maintenance cost:

U{M) = Y,9v'm{v,M)
veM

Here, q{v, M) denotes the minimum cost of answering a query v (e V(G)) in the

presence of the set of materialized views, M, and M) is the minimum cost

of maintaining a materialized view v in the presence of the set of materialized

views, M.

3.3 The Difficulties of Maintenance Cost View

Selection Problem

As mentioned before, maintenance cost is more likely to be the real constraint in

many real applications to keep the materialized views consistent with the data

in data warehouse, rather than disk space constraints. The maintenance cost

view selection problem seems to be very similar to the disk space view selection

problem. However, the maintenance cost view selection problem is more difficult.

For the maintenance cost view selection problem, the maintenance cost of the

views relies on each other. Selection of a view will affect the prior materialized

views. The total maintenance cost for a set of views may decrease when more

views are added to materialize while the space occupied by a set of views always

increases when a new view is selected under the disk space constraint. Figure 3.2

illustrates the difference between the disk space view selection problem and main-

tenance cost view selection problem. Here, for a vertex, Vi, T and u are table size

(rvi) (for the query processing cost) and maintenance cost (wg^ J, respectively.

3.3 The Difficulties of Maintenance Cost View Selection Problem 40

T=1000
Q
u=100

VO O T=100

T=10O VI V2〇T=20

〇T=1
V3

Figure 3.2: An example of view maintenance

For simplicity, the query frequency (/„) and update frequency {gy) are assumed

to be the same for every vertex in this example. Suppose M = {fs, t̂i, 1*2} are

materialized in an order of V3 and vi followed by V2. Table 3.1 shows that the

total disk space used is 31 and the total maintenance cost is 221, because Vi and

V2 need to be computed from the virtual root and V3 is answered by vi. Now

consider materializing vq. The total disk space used is increased to 131, and the

total maintenance cost is decreased to 121, because and V2 now can be updated

by Vq. This non-monotonic property makes maintenance cost view selection very

difficult.

3.4 Summary 41

Materialized View Disk Space Maintenance Cost
V3,VuV2 I 1 + 10 + 20 = 31 I 1 + 110 + 110 = 221

仍，VuV2, vq I 1 + 10 + 20 + 100 ̂ 131 t I 1 + 10 + 10 + 100 = 121 4,

Table 3.1: Disk space v.s. maintenance cost

3.4 Summary

In this chapter, the disk space view selection problem has been compared with

maintenance cost view selection problem, the difficulties of maintenance cost

view selection has been discussed. At the mean time, the maintenance cost view

selection problem is formulated as well as the cost functions is defined.

The research in this thesis focuses on view selection problem under main-

tenance cost constraint. To deal with this NP-hard problem, algorithms that

provide a nearly optimal solution in polynomial time are highly desirable. Some

heuristic algorithms have been proposed to solve this problem, however, the per-

formance of these heuristic algorithms have not been well analyzed. The algo-

rithms cannot be used without any systematic study on the quality. For the

purpose of providing a view on how to use the heuristic algorithm and helping us

to design new heuristic algorithm, four algorithms will be investigated in Chap-

ter 4. Based on the observation, a new evolutionary algorithm is designed to

solve this problem in Chapter 5. At the mean time, a partitioning algorithm

is proposed for dynamic view management problem in Chapter 6. The content

of this thesis is a further development of the works reported in following papers

12，13’ 26’ 82]:

3.4 Summary 42

• Chi-Hon Choi, Jeffrey Xu Yu and Gang Gou. What Difference Heuristics

Make: Maintenance-Cost View-Selection Revisited, In Proceedings of the

3rd International Conference on Web-Age Information Management, pages

247-258, 2002.

• Chi-Hon Choi, Jeffrey Xu Yu and Hongjun Lu, Dynamic Materialized View

Management Base on Predicates, In Proceedings of the 5th Asia Pacific

Web Conference (APWEB), pages 583-594, 2003.

• Gang Gou, Jeffrey Xu Yu, Chi-Hon Choi and Hongjun Lu, An Efficient and

Interactive A*-Algorithm with Pruning Power: Materialized View Selection

Revisited, In Proceedings of the 8th International Conference on Database

Systems for Advanced Applications (DASFAA), pages 231, 2003.

• Jeffrey Xu Yu, Xin Yao, Chi-Hon Choi and Gang Gou, Materialized View

Selection as Constrained Evolutionary Optimization, In IEEE Transactions

on Systems, Mans, and Cybernetics on technologies promoting computa-

tional intelligence, openness and programmability in networks and Internet

services, 2003.

Chapter 4

What Difference Heuristics Make

The maintenance cost view selection problem is more difficult than the view se-

lection problem under a disk space constraint, because a selected view may make

the previously selected views less beneficial, due to the fact that the total mainte-

nance cost for a set of views may decrease when more views are materialized while

the maintenance cost always increase under disk space constraint. The problem

has recently been received significant attention. Several greedy/heuristic algo-

rithms were proposed. However, the quality of the greedy/heuristic algorithms

has not been well analyzed.

In this chapter, Section 4.1 addresses the motivation, and some examples

will be given in Section 4.2. Section 4.3 discusses the strength and weakness of

four existing algorithms: inverted-tree greedy [36], A*-heuristic [36], two-phase

greedy [51] and integrated greedy [51] for solving the maintenance cost view

selection problem. Section 4.4 conducts extensive experiments studies and reports

the results. A short summary is presented in Section 4.5.

43

4.1 Motivation 44

4.1 Motivation

The maintenance cost view selection problem has been proven to be a NP-hard

problem [36]. Gupta and Mumick [36] claim that the greedy algorithms that

select views on the basis of query benefit per unit maintenance cost can deliver an

arbitrarily bad solution due to the non-monotonic property of the maintenance

cost view selection problem. In other words, a selected view may make the

previous selected views less beneficial, because the total maintenance cost for a

set of selected views may decrease when more views are materialized. Gupta and

Mumick propose two algorithms, namely, inverted-tree greedy and A*-heuristic

to solve this intractable problem in O R view graph and A N D - O R view graph,

respectively. In [51], Liang et al. propose two algorithms, two-phase greedy and

integrated greedy, to solve this problem. The two algorithms are designed on the

basis of query benefit per unit maintenance cost. Liang et al. claim that the two

algorithms are able to find feasible solutions in polynomial time. However, they

did not provide any analytical and performance studies.

To deal with the maintenance cost view selection problem, algorithms that

provide a nearly optimal solution in polynomial time are highly desirable. But,

the arguments presented in [36, 51] are not consistent. On the basis of query

benefit per unit maintenance cost, the former indicates that greedy algorithms

can generate an arbitrarily bad solution. The latter argues that greedy algorithms

can possibly generate feasible solutions. The algorithms cannot be used without

any systematic study on the quality.

The purpose of this chapter is to provide readers with insights on the heuris-

tic algorithms in terms of both processing time for the algorithms to find a so-

4.1 Motivation 45

lution and the effectiveness of the algorithms to minimize query processing cost.

Inverted-tree greedy, A*-heuristic, two-phase greedy and integrated greedy algo-

rithms are investigated in various settings for the general case of dependence

lattice. The academic significance of this work is of twofold. First, it provides a

view on how to use the heuristic algorithms. Second, it assists us to design new

heuristic algorithms. Extensive studies show that greedy algorithms perform well

under certain conditions and the existing A*-heuristic [36] cannot always find

optimal solutions.

T=50

o
u=10 q=135

/Ot=15, uF=0.2
/^^\qF=0.00045

u=1, q=15/ \u=7, q=8

T=3, uF=0.205 (7) @ T=8，uF=0.2
qF=0.907 广 qF=0.00136

u=6, q = 4 \ /\x=\，q=6

T=1, uF=0.4, qF=0.091

Figure 4.1: An example

4.2 Example 46

4.2 Example

The main idea of the greedy heuristics proposed in [33，35, 40, 51] is to select

materialized views, in order of query benefit per unit space/time consumed, which

is given below.

QBPU{v, M) = AQJ A Ty (4.1)

Here, M is a set of selected views, is a view to be added, A Q ^ 二 T(G, M) -

r(G, M U {?;}), and AT； = U{M U W) — U{M).

The question is whether it is possible to use such an order for the problem

that does not have the so-called monotonic property. W e address the related

issues below. Let Cmin be the minimum maintenance cost constraint that allows

all views to be selected as materialized views. Some examples are shown in Figure

4.1 and Figure 4.2. Here, the root (+) represents the raw table. T, u, q, uF and

qF are, table size, maintenance cost, query processing cost, update frequency and

query frequency, respectively.

Issue 1 The total maintenance cost may decrease when a new materialized view

is selected. However, a greedy algorithm always selects the greatest query benefit

per time constraint.

Consider an example in Figure 4.1. Initially, Vi has the largest query benefit

per unit time consumed. At the second stage, the greedy heuristic considers all

the remaining views, 仍,•îs} one by one. The result is shown in Table 4.1.

It shows that ATy becomes negative when vq is added to the set of mate-

rialized views, M. However, V3 will be selected because it has the most query

4.2 Example 47

" M I 幻 I AT； I QBPUjv, M) Remaining Constraint

—{例}仰-0.05 -6.171 1.80

~ V 2 0 . 0 7 4 -1.65

~{vi} V3 2.40 0.227 -Q.65

Table 4.1: An example for Figure 4.1

benefit per unit time consumed. But, due to the total maintenance cost will go

beyond Cmin, neither V3 nor V2 will be selected. The resulting set of materialized

views is {vi}. But the optimal solution is {vo,Vi,V2,V3}}

The quality of heuristics varies dramatically in different settings. Consider

another example in Figure 4.2. Table 4.2, Table 4.3 and Table 4.4 show the qual-

ities of the four algorithms, inverted-tree greedy, A*-heuristic, two-phase greedy

and integrated greedy in three cases. In these tables, the column of views gives

the resulting set of materialized views found by the algorithm specified in the col-

umn of Algorithm. Q-cost and M-cost are the total query processing cost and

total maintenance cost, respectively, when the set of views have been material-

ized. These tables show that none of these four algorithms can always outperform

the others.

Issue 2 Given a large maintenance cost constraint, heuristic solutions may not

be able to select all vertices as views.

As noted in Table 4.2, when the maintenance cost constraint is Cmin^ the

optimal solution is to select all views, because the maintenance cost constraint

iNote: most greedy heuristic algorithms use zero as a lower bound of the query benefit per
unit time consumed.

4.2 Example 48

(^ T = 6 7 0

u=67, q=603

qF=0.1615

u=6, q=40X u=6, q=60^\ u=6, q=56

T="^F=0.1296

T=27,qF=0.1406(^f qF=0.1224

— ^ > C J = i ’ � = 9
r ^ � � v v

T=5, qF=0.1171 qF=0.1094
T=7nqF=0.1129

u=1, q=4Nv u=1，q=6 ’ q=1

xir
T=1, qF=0.1065

Figure 4.2: Another example (all update frequencies are 0.125.)

allows to do so. A*-heuristic and the integrated greedy are able to materialize all

views. But the inverted-tree greedy and the two-phase greedy cannot achieve the

optimal.

Issue 3 A greater query benefit per unit time consumed does not necessarily lead

to a minimum total query processing cost. Two sub-issues are: (a) selecting a

view may make the further view selections unsuccessful, and (b) not selecting the

potential best view at one stage may make it unable to be selected again.

Table 4.3 shows an example when the maintenance cost constraint is 0.96 x

4.3 Existing Algorithms 49

Cmin- The integrated greedy might not achieve the optimal, because a potentially

beneficial view might not be selected again if it cannot be selected at the stage

where it must be selected. Suppose the set of materialized views is {t；。，V2, V3, î e}

(Figure 4.2). The selection of Vi fails, because the total maintenance cost will go

beyond Cmin, if Vi is selected. The resulting set of materialized views becomes

{ ^ 0， 1 ^ 6 , V5, V4, yj}- But the optimal solution is {vq, vi,v2,v3} including vi.

Issue 4 A solution provided by A*-heunstic is not always optimal

Refer to Table 4.4, when the maintenance cost constraint is 0.90 x Cmin, A*-

heuristic cannot provide an optimal solution.

Algorithm Views Q-cost M-cost
Optimal {？;0, Vi,V2, V3, V4, V5, Vq, vj} 18.571 11.125

Tnverted-Tree" 115.429 8.375

A*-heuristic {vq, vi, V2, Vs, V4, V5, ve, V7} 18.571 11.125

"Two-Phase — | 如，仍，仍，坤} 31.402 10.000

Integrated {t'o, V2, vs, va： vr} ~18.571 11.125

Table 4.2: Performance for Figure 4.2 with constraint^ Cmiji

4.3 Existing Algorithms

In this section, four algorithms are introduced: inverted-tree greedy [36], A*-

heuristic [36], two-phase greedy [51], and integrated greedy [51 .

4.3 Existing Algorithms 50

Algorithm || Views Q-cost M-cost
"Optimal II {如’外，幻2,仍} 22.314 10.625

一 I n v e r t e d - T r e ^ {i;o} _ 115.429' 8.375

~A*-heuristic — {v0,vuv2,vs} 一 22.314" 10.625

"Two-Phase — {^0,^2,^3,^6} 一 31.402" 10.000

Integrated || 仍 ， 仍 ， 他 ， 2 9 . 8 1 8 10.375

Table 4.3: Performance for Figure 4.2 with constraint^ 0.96 x Cmin

Algorithm Views Q-cost M-cost
Optimal II 31.402 10.000

Inverted-Tree “ 115.423 8.375

A*-heuristic 外,1；2’询} 37.474 10.000

Two-Phase ~[^，t>2，仰} 31.402 lO.OQQ

Integrated || 31.402 10.000

Table 4.4: Performance for Figure 4.2 with constraint: 0.9 x Cmin

Algorithm 1 A*-Heuristics [36: “
Input: A graph G(V, E) and a maintenance cost constraint S.
Output: a set of materialized views.

1： begin
2: Create a tree Tq having just the root A. The label associated with A is {(f), (/>).
3: Create a priority queue (heap) L = {A)
4: repeat
5： Remove x from L, where x has the lowest g{x) + h{x) value in L
6： Let the label of x be {N^, M^}, where N^ = {vi,V2, • • • ’ Vd} for some d <n.
7： if d = n then
8： return Mx
9： end if
10: Add a successor of x, l{x), with a label {Nx U {？;d+i}, M^) to the list L.
11： if {U{M^) < S) then
12: Add to L a successor of x, r(x), with a label {N^ U {叫丄}，M^ U Vd+i)
13： end if
14: until (L is empty);
15： return cjy,
16： end

4.3 Existing Algorithms 51

4.3.1 A*-Heuristic

The A*-heuristic is shown in Algorithm 1. The A*-heuristic uses an inverse topo-

logical order to find a set of materialized views. It defines a binary tree TQ

whose leaf vertices are the candidate solutions of this problem. At each stage

of searching, A*-heuristic evaluates the benefit of remaining downward branches,

and selects the branch of the greatest benefit to go down. A binary search tree is

shown in Figure 4.3. Each vertex in this binary search tree has a label {N^, M^)

(Mx C Nx), where M x is the set of views which have been chosen to materialize

and considered to answer the set of queries N^. The search space is , where

is the set of vertices of the graph G. [36] estimates the benefit of the down-

ward branches by summing up two functions g{x) and h{x). g[x) is the total

query processing cost of the queries on N^ using the selected views in M^. h(x) is

an estimated lower bound on h* (x) which is defined as the remaining query cost

of an optimal solution corresponding to some descendant of x in TQ [36 .

4.3.1.1 Discussions

In Table 4.2 and Table 4.3，A*-heuristic can reach an optimal solution. However,

in Table 4.4，A*-heuristic can only reach a nearly-optimal solution, not the optimal

solution. The reason is that the expected benefit, h(x), is very difficult to estimate

accurately. A*-heuristic delivers an optimal solution only when h(x) < h*(x). The

A*-heuristic may not reach an optimal solution under some critical maintenance

cost constraints. The A*-heuristic can take exponential time, in the worst case,

with respect to the number of vertices in the graph [36 .

4.3 Existing Algorithms 52

({NULL), {NULL})

(W-iN̂LL}) ({oY{0})

({0.1)； (0)) ({OJUÔ

了了K、丁”义(了({0 1.M ({0,1.2}̂ ({0,8},{0,1,2})

({0,1,2,3}, {NULL)̂ ({0,1,2,3), {2))̂ ({0,1,2,3}, {1}) ̂ ({0,1,2,3), {1, ̂ (̂{0,1,2,i, {̂ {{0, U 3), {0,、’2、3),̂Ĵ ĤO, 1,2,3}, {O^uX^

({0,1,2,3), {3}) ({0,1,2,3}, {2,3}) ({0,1,2,3}, {1,3}) ({0,1,2,3), {1,2,3}) ({0,1,2,3), {0,3}) ({0,1,2,3}, {0,2,3}) ({0,1,2,3}, {0,1,3}) ({0,1,2,3}, {0,1,2,3})

Figure 4.3: The binary search tree TQ of candidate solutions for Figure 4.1

4.3.2 Inverted-Tree Greedy

The inverted-tree greedy uses the concept of inverted tree set. Given a vertex

？; in a directed graph, an inverted tree set contains the vertex v and any subset

of vertices reachable from v. The inverted-tree greedy is shown in Algorithm 2,

where B(C, M) is the query benefit associated with a set of vertices C with respect

to M as T (T , M) - T (T , MUC), and EU(C, M) is the effective maintenance cost of

C with respect to M aisU{MuC)-U(M). At each stage, this algorithm considers

all inverted tree sets of views, T, in the given graph G, such that T n M = (J),

and selects the inverted tree set that has the most query benefit per unit effective

maintenance cost.

4.3 Existing Algorithms 53

Algorithm 2 Inverted-Tree Greedy [36]

Input: A graph G{V, E) and a maintenance cost constraint S.
Output: a set of materialized views.

1： begin
2： M ^(f)-Be ^ 0;
3： repeat
4: for each inverted-tree set of views T in G such that T n M = </> do
5: if [EU{T, M) < S) and (B(T, M}/EU(T, M) > Be) then
6: Bc^B{T, M)/EU(T, M); C ^ T;

7： end if
8： end for
9： M ^ MUC\

10： until ([/(M) > 5);
11: return M;
12: end

4.3.2.1 Discussions

The steps for selecting a set of views for the example in Figure 4.2 is given below.

In Table 4.2, the maintenance cost constraint is the minimum cost that allows

all vertices to be selected as materialized views. In the first step, the algorithm

selects vo, because it has the maximum B{T, M)/EU(T, M). In the following

steps, it cannot select any more vertices. As the query benefit per unit effective

maintenance cost does not increase by adding any new vertices.

Below are some observations of the inverted-tree greedy. First, the inverted-

tree greedy does not guarantee a strict maintenance cost constraint, it satisfies

a limit within twice the maintenance cost constraint. Second, the total time

complexity of a stage of the inverted-tree greedy is where V{G)

is the set of vertices of the graph and Av is the number of descendants of a

vertex. In the worst case, it is exponential with respect to |y(G)| as shown in

4.3 Existing Algorithms 54

36]. Third, the extensive experiments show that the inverted-tree greedy always

chooses the first vertex as a part of its solution. The reason is that the algorithm

calculates both the effective maintenance cost and the query benefit per unit

effective maintenance cost. After selecting the first vertex, the query benefit per

unit effective maintenance cost of the first vertex is highest as all other vertices

can be derived from it. Therefore, the algorithm cannot effectively select any

other views. Finally, by adding a new view into the set of views, the query

benefit will increase. However, the query benefit per unit effective maintenance

cost intends to decrease, which possibly makes the further selection of vertices

fail as shown in this example.

Algorithm 3 Two-Phase Greedy [51]
Input: A graph E) and a maintenance cost constraint S.
Output: a set of materialized views.

1： begin
2： Find a set of materialized views, Mi, to minimize the total query processing

cost;

3： if [/(Ml) < S then
4: return Mi；

5： else
6: Find a subset of Mi, denoted as M2, that minimizes the total query pro-

cessing cost and satisfies S.
7： return M2;
8： end if
9： end

4.3.3 Two-Phase Greedy

The two-phase greedy [51] is illustrated in Algorithm 3, the basic idea is that

it selects a subset of the materialized views, Mi, to minimize the total query

4.3 Existing Algorithms 55

processing cost without considering the maintenance cost constraint. If the total

maintenance cost, U(Mi), for all the views in Mi, is less than or equal to the given

cost constraint, S, then, all the views in Mi will be materialized. Otherwise, we

need to further find a subset of Mi, denoted as M2, such that (i) all the views

in M l — M2 can be derived from Mi, and (ii) U{M2) < S and the total query

processing cost is minimized. Item (i) guarantees that all the queries can be

answered using the views in Mi.

In order to make the query cost function to be consistency when comparing

the two-phase greedy with other algorithms, the linear query cost function in [51

is revised as follows.

•) = — ' AT； (4.2)

The function g[v) for obtaining a gain value for a vertex v takes the fol-

lowing factors into consideration. First, adding a new vertex v into M2 incurs

additional maintenance cost for v. However, the newly added vertex v is possible

to reduce maintenance cost for the vertices that have already been selected in

M2, because those vertices may be able to use the vertex v to reduce the main-

tenance cost. Therefore, ATy may be negative. Second, it considers effectiveness

of this selection (vertex t;) for all unselected views. It gives a query benefit for

selecting this vertex v. Third, the weight for a vertex v e Mi is the sum of query

frequencies for all the queries that choose v as its view. The weight gives a good

estimation on the importance of a view v e Mi, and is different from the query

frequency for v itself.

In the first step, two-phase greedy heuristic do not consider maintenance

4.3 Existing Algorithms 56

Views: O ® ®

。 一 C ^ ^ N)

Figure 4.4: A bipartite graph example for Figure 4.1

cost. It reduces the problem to a minimum weighted maximum cardinality match-

ing problem on a weighted bipartite graph, which can be solved in polynomial

time. An example is shown in Figure 4.4. The vertex 7；0 is possible to answer

V2 and V^. The algorithm creates three copies of VQ, each of which has an

edge associated with the corresponding query vertex it can be used to answer.

For every edge (？；̂, qj), there is one weight assigned to it. Then, the problem

of finding Mi is reduced to a minimum weighted maximum cardinality matching

problem on a bipartite graph GB based on G, which can be solved in polynomial

time. Apparently, minimum weighted ensures that the sum of query processing

cost is minimal while the maximum cardinality ensures that the cost of all the

queries is considered as optimization target. In the second step, it further selects

a subset of the set of materialized views, Mi, selected in the first step.

4.3.3.1 Discussions

The two-phase greedy takes + mn叩、time, usually substantially better

than the inverted-tree greedy and A*-heuristic, where m and n are the number

of views and queries in the bipartite graph GB. However, it gives neither quanti-

4.3 Existing Algorithms 57

tative analysis of quality of the solution nor experiment results. As the running

example shows, in Table 4.2, the maintenance cost constraint is the minimum cost

constraint that allows all vertices to be selected as materialized views. However,

two-phase greedy delivers an approximate solution instead of a full set of mate-

rialized views. It is because during the minimum weighted maximum cardinality

matching, it cannot fully select all the views. In addition, during the minimum

weighted maximum cardinality matching, the view cannot match to itself. For

example, in Figure 4.4’ there is no edge from VQ (a view) to t;。(a query). It is

because, if they do so, then the minimum weighted maximum cardinality match-

ing solver will always select a view to answer itself and in result M i will be equal

to N.

4.3.4 Integrated Greedy

The integrated greedy is summarized in Algorithm 4. When no views are selected,

the total query processing cost for all the queries is very large. Then the algorithm

will reduce the query processing cost by materializing views, one-by-one, as long

as the total maintenance cost is bounded within the cost constraint.

Let M be the set of materialized views having been selected, and U(M) be

the total maintenance cost for the views in M. Recall that r(G, M) is the total

query processing cost for answering all the queries. When considering a view

V G V{G) - M to be materialized, the net increase in the maintenance cost is

AT^； = U(M U {?;}) — U[M), and the amount of query processing cost reduction

is T(G, M) - T(G, M U M) by spending AT； unit costs. Thus, each time, it

chooses a view v ^ M to materialize such that the gain benefit g{v) brought by

4.3 Existing Algorithms 58

V is the maximum. The function g[v) is defined as follows.

= 糊 - : g ， M u W) (4.3)

The gain benefit is similar to that used in the inverted-tree greedy in [36 .

In brief, in the integrated greedy (Algorithm 4), it first selects a vertex

'̂o that gives the maximum benefit when there is no view being selected. That

vertex is the first vertex in the set of views, M . Next, in each iteration, it selects

a vertex that will give the maximum benefit in the current iteration. Selection

of a vertex in an iteration is independent from other selections. The integrated

greedy can reach an optimal solution in Tables 4.2 and 4.4. However, it only

reaches a near-optimal solution in Table 4.3. The reason is that it has to give up

the greatest gain benefit vertex, vi, at one stage, i, because the total maintenance

cost exceeds the given cost constraint. But, in the later selections j > i, vi will

never be able to be selected again.

4.3.4.1 Discussions

The integrated greedy is very similar to inverted-tree greedy. The integrated

greedy is reexamined in comparison with the inverted-tree greedy by considering

the following two issues: (a) the inverted-tree greedy needs to consider every

inverted tree sets, and (b) the inverted-tree greedy requires the query benefit per

unit effective maintenance cost for the newly selected views to be greater than

the previously selected view set. The item (a) makes the inverted-tree greedy

to be exponential in the number of vertices, in the worst case. As for the item

(b), because the query benefit per unit effective maintenance costs intends to

4.3 Existing Algorithms 59

Algorithm 4 A Integrated Greedy Heuristics [51 ~
Input: A graph G{V, E) and a maintenance cost constraint S.
Output: a set of materialized views.

1： begin
2： M i- (f)；

3: Let VQ be the first vertex with maximum g(vo);
4: M — {t;o}；

5: AS i - S - [/(M);
6： while AS" > 0 do
7： gain — 0;

8: for each v G V{G) - M do
9: 9{v) = M) - T (G , M U W)) / A T,;

10: if g{v) > gain then
11: gain = g(v、； VQ = V;
12: end if
13： end for
14： if (A5 - AT„J > 0 then
15: A<S = A5"-A7;o;
16： M MU{vo};
17： end if
18： end while
19： return M;
20: end

decrease when more vertices are added into the view set, the inverted-tree greedy

is difficult to select more vertices. Instead, the integrated greedy uses the query

benefit per unit maintenance costs. It attempts to add a vertex that will give

the maximum gain into the view set. So it is weaker than the above item (b).

Besides, the integrated greedy selects views one-by-one, which will significantly

reduce the view selection time.

6.5 A Performance Study 60

4.4 A Performance Study

Some results of the extensive performance study will be presented in this section.

All the algorithms were implemented using C + + language. The maximum-weight

matching solver implemented by Ed Rotherg who implemented H. Gabow's N-

cube weighted matching algorithm [24] is used. It is used to find the minimum

weighted matching by replacing a cost, c, on an edge with Cmax — c, where Cŷ ax

is a maximum value for all costs. All the algorithms used the same function,

M), to compute query processing cost and the same function, m{v, M), to

compute maintenance cost.

For a small dependence lattice (up to 16 elements), five different algorithms

are compared: the optimal, the inverted-tree greedy, the A*-heuristic, the two-

phase greedy, and the integrated greedy. Using a large dependence lattice (up to

256 elements), the scalability of the two-phase greedy and the integrated greedy

is reported. These experiments were done on a Sun Blade/1000 workstation with

a 750MHz UltraSPARC-Ill C P U running Solaris 2.8. The workstation has a

total physical memory of 512M . The notations and definitions, together with the

default values, for all the parameters are summarized in Table 4.5.

Given a dependent lattice (L, —) of size N、a directed acyclic graph E)

is constructed. A vertex, v, has three weights, R们 its update frequency and

query frequency. An edge, from v to u, has two weights: Q{u,v) and U— y These

weights are assigned to the graph G(V, E) as follows. First, N distinctive table

sizes {Ry) are randomly generated. The N table sizes are randomly picked up and

assigned to the vertices on a condition that the table sizes of ancestors of a vertex

are greater than that of the vertex. Query frequencies are assumed to follow a

6.5 A Performance Study 61

Notation Definition (Default Values)
N the number of vertices (16)

T the cost constraint

Oq Zipf distribution factor for query frequency (0.2)

Ou Zipf distribution factor for update frequency (0.0)

Ry table sizes for a vertex v
Q{v,u) query processing cost for a vertex u using v
U{v^u) maintenance cost for a vertex u using v

Table 4.5: System parameters.

Zipf distribution. When the raw table is updated, all materialized views need

to be updated. That is all vertices have the same update frequencies. Query

frequencies are randomly assigned to all vertices. Given an edge from v to u,

{v, u), The maintenance cost of u using v is smaller than the query processing

cost of u using v. Maintenance cost is more related to the table size of u. In this

set of tests,) is a number smaller than the table size of v, {Ry). [/(叫 is

about one 10-th of the table size u, {Ru)- It is important to know that the cost

function q{v, u) {m(v, u)) considers both table sizes and query processing costs

(maintenance costs), associated with edges.

In order to compare the performance of the inverted-tree greedy, A*-heuristic,

two-phase greedy and integrated greedy, an algorithm, called optimal algorithm,

is implemented for finding the optimal solution. To find the optimal set of ma-

terialized views to precompute, the optimal algorithm enumerates all possible

combinations of views, and find a set of views by which the query processing cost

is minimized. Its complexity is 0(2^). W e abbreviate the optimal algorithm as

0，the inverted-tree greedy as V, A*-heuristic as A, two-phase greedy as T and

6.5 A Performance Study 62

integrated greedy as I in the following figures.

Exp-1: The impacts of query frequencies

First, the impacts of query frequencies are investigated. Query frequencies follow

a Zipf distribution. In Figure 4.5, the number of vertices is 16, and the mainte-

nance cost constraint is 0.8 x Cmin, where Cmm is the minimum maintenance cost

constraint for all vertices to be selected as views. Query frequencies are varied by

increasing the Zipf factor from 0.1 to 1.0. The high query frequencies are assigned

to the vertices in three ways: {i) high level (close to the top), (ii) middle level,

and (m) low level, which are shown in Figure 4.5 (a), (b) and (c), respectively.

The assignment of high query frequencies in the graph will affect the set of views

to be materialized. In this testing, the A*-heuristic and integrated greedy reach

an optimal solution in all cases.

• The high query frequencies are assigned to the vertices at the high level

(close to top) (Figure 4.5 (a)): The increase of query processing cost for

the four algorithms is due to the fact that the high level vertices have large

query cost. In contrast, the query processing cost for the inverted-tree

greedy decreases. It is because that it always attempts to select high level

vertices, and they are frequently retrieved.

• The high query frequencies are assigned to the vertices at the low level

(Figure 4.5 (c)): The query processing cost for all algorithms is opposite to

Figure 4.5 (a).

• The high query frequencies are assigned to the vertices at the middle level

(Figure 4.5 (b)): The decrease of query processing cost for the three algo-

6.5 A Performance Study 63

eoo r 1 650 I . . , , , . . . •

550 - 〜•位•〜〜 . 600任-…^“…—日―-•"«-—-•：】

、】 550 - .
—恥 0 . OM - OAI
5S T ~ K ~ "g T ~ M _

V ----G1—- <3 500 - V ----Q—- .
.E 450 - -
B • 450 - -

AOO - . a：
<§ i" 400 - -

350 - „ ^ ^ -

35。•
300 ！ +—-—.-.-.H -̂•―•-< ‘ 300 » < ^ " " " " " .

1

250 ‘ ‘ . ~~‘ • i i 250 • ‘ • . i .
O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 O.I 0.2 0.3 0.4 0.5 O.S 0.7 0.8 0.9 1

Query Zlpf Parameter Query ZIpf Parameter

(a) Query frequency changes (high level) (b) Query frequency changes (middle level)

650 . . ~ . , O.r -M fy . . . T—— ,

600【一-•曰…-o…母…任…-日……-•：】 \ mlSd̂ ejAj
S50 . u.o - \ high/low(lT)崔——._

" H middle之IT〉
500 - — = \

OAI - — O . o \ _

<§ 450 - V - - 塞 \
I 400 - - I 。4 - N :

I 300 ； ： I — 一 一 一 ，

• S 1-,.

250 - - 5： 0.2 - •-•H ic、 -
200 - - ^

O.I - -
ISO -
- ^ ^ i (—.供 K̂- _ IK _ ”...w
1 oo “ ‘ ‘ ‘ ‘—~‘ ‘ ‘ ‘ 1 0 ̂ ‘ ‘ ‘— y—I . • T

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Query 2ipf Parameter Query Zipf Parameter

(c) Query frequency changes (low level) view selection time v.s. query frequency
changes (high/low/middle (0) is over 200.

high/low/middle (V) is over 460.)

Figure 4.5: The impacts of query frequencies

6.5 A Performance Study 64

rithms is due to the fact that the middle level vertices have lower query cost

and high query frequencies. The query processing cost for the two-phase

greedy and inverted-tree greedy increases, because the query frequencies of

the high level vertices increase.

Figure 4.5 (d) illustrates the relationship between view selection time and

Zipf factor. The five algorithms spend longer time while the high query frequen-

cies are assigned to the vertices at the middle level. All algorithms spend the

same amount of time on both high and low cases except for the A*-heuristic. It

is because that, at each search stage, A*-heuristic needs to calculate the g[x) and

h{x) of downward branches. When the high query frequencies are assigned at the

top level, it is faster for A*-heuristic to reach the leaf vertices as the difference

of query cost between vertices is large. However, at the middle level, the differ-

ence of query cost at each vertex becomes small, the A*-heuristic needs longer

time to search other branches. Compared with the top case, A*-heuristic spends

more time in the low level case. The other algorithms, the integrated greedy and

two-phase greedy take nearly constant time.

Exp-2: The impact of the maintenance cost constraint

In this testing, the performance of the four algorithms are investigated by varying

the maintenance cost constraint. The number of vertices is 16 and the Zipf factor

is 0.2. The high query frequencies are assigned at the high level. The minimum

maintenance cost constraint, denoted Cmin, allows all vertices to be selected as

materialized views.

The results are shown in Figure 4.6 (a), (b) and (c), where the maintenance

6.5 A Performance Study 65

cost constraint used is p x Cmin where p varies from 0.7 to 1.0. (Note: when

P < 0.7, none of the algorithms can select any views.) A larger p implies that it

is likely to select more views. When p = 1, it means that all vertices are possibly

selected. In Figure 4.6 (a) and (b), the optimal is chosen as the denominator to

compare. The inverted-tree greedy did not include (V) in these figures, because it

makes the other differences less visible. For reference, the maintenance costs for

the inverted-tree greedy are, as pairs of (p，maintenance cost), (0.70, 1), (0.80,

0.88), (0.90, 0.77) and (1.0, 0.69). The query processing costs for the inverted-

tree greedy are, as pairs of {p, query-processing-cost), (0.70, 1), (0.80, 1.99),

(0.90, 6.42), (1.0, 11.25). The inverted-tree greedy is inferior to all others. The

query processing cost is the reciprocal of the maintenance cost (Figure 4.6 (a)

v.s. Figure 4.6 (b)).

The performance study shows that the maintenance cost constraint is the

most critical factor that affects the quality of the heuristic algorithms. Some

observations are given below.

• Issue 1: As Figure 4.6 (a) and (b) suggested, in a multidimensional data

warehouse environment, Issue 1 has less impacts on greedy algorithms. Ex-

planation is shown as below. When selecting a view v, the total mainte-

nance cost, U{M U {?;}), depends on two factors: update cost, m{v, M),

and update frequency of the vertex v, g^. Recall m(u,v) is the sum of the

maintenance costs associated with the edges on the shortest path from v

to n, so the total maintenance cost will be greater than zero, when a new

vertex is added. On the other hand, since u is derived from v, the update

frequency of v should be greater than or equal to u's update frequency in

a multidimensional data warehouse environment. As a result, AT„ > 0.

6.5 A Performance Study 66

Therefore, Issue 1 is not a real issue in a multidimensional environment.

• Issue 2: The two-phase greedy and the inverted-tree greedy cannot select

all views to materialize, even though the maintenance cost constraint allows

it. Two-phase greedy only gives an approximate solution.

• Issue 3: The greedy algorithms become unstable when the maintenance

cost constraint is over 0.9 x Cmin- The integrated greedy is impossible to

select proper views. The reasons are given in Section 4.1.

• Issue 4: The A*-heuristic cannot always find optimal solutions, in partic-

ular, when it is over 0.9 x Cmin- For instance, when p = 0.95, A*-heuristic

selected {vo,vi,V2, 1̂ 7’ ”9，of a 16 vertex graph. Its main-

tenance cost is 27.25, and its query processing cost is 93.18. But, the opti-

mal solution included {？;0, V4, V5, Ve： vj, Vs, VQ, Vio, vi^vu, Vis, vu, 1/15}.

The maintenance cost and query processing cost for the optimal solution

are, 26.75 and 75.54, respectively. It is because A*-heuristic estimates the

expected benefit, h(x), which might not be accurate. It points out a very

important fact for a greedy algorithm, if it misses selecting a vertex, (v2 in

this case), it will affect the other selections.

Figure 4.6 (c) shows that the view selection time for the five algorithms. Because

the number of vertices is fixed (N = 16), all the view selection time for all

the cases are the same. The inverted-tree greedy consumes more view selection

time than the optimal (the middle). It is because that, for computing the optimal

solution, only all subsets are checked once. Recall that the inverted-tree greedy

needs to check the maximum query benefit per unit effective maintenance costs at

every stage, and check powersets repeatedly. All the other three algorithms: the

6.5 A Performance Study 67

A*-heuristic, the integrated greedy and the two-phase greedy can be efficiently

processed.

Exp-3: Scalability

In this experimental study, all the parameters are fixed except for the number

of vertices. Two sets of results are shown. Figures 4.7 (a), (b) and (c) show

a comparison of the five algorithms: the optimal, the integrated greedy, the

two-phase greedy, the inverted-tree greedy and the A*-heuristic by varying the

number of vertices, N、from 4 to 16. The maintenance cost constraint, Cmin, is the

minimum maintenance cost constraint that allows all vertices to be selected. In

Figure 4.7 (d), (e) and (f), the integrated greedy is compared with the two-phase

greedy by varying the number of vertices, N, from 4 to 256. The maintenance

cost constraint is 0.8 x Cmin-

Figure 4.7 (b) shows the query processing costs. Due to the number of

views to be selected, as shown in the previous testings, the A*-heuristic and

integrated greedy always give an optimal solution. The two-phase greedy gives a

feasible and good approximation. The A*-heuristic, integrated greedy and two-

phase greedy outperform the inverted-tree greedy significantly. Figure 4.7 (c)

shows the view selection time of these algorithms. The optimal algorithm is

exponential to the number of N. The inverted-tree greedy is also exponential

to TV, and takes longer time to reach the solution than the optimal algorithm.

The A*-heuristic is exponential to N in the worst case. When the number of

vertices is over 120’ the view selection time for the integrated greedy increases

exponentially. On the other hand, the view selection time for the two-phase

greedy is small. In addition, the query processing time for the two-phase greedy

6.6 Summary 68

is acceptable when the number of vertices is large. In conclusion, when N < 120,

the integrated greedy is recommended to use. When N〉120, the two-phase

greedy is a reasonable choice in practice.

4.5 Summary

The selection of views to materialize is one of the most important issues in de-

signing a data warehouse. The maintenance cost view selection problem has been

re-examined under a general cost model. Heuristic algorithms can provide opti-

mal or near optimal solutions in a multidimensional data warehouse environment

under certain conditions: the update cost and update frequency of any ancestor

of a vertex is greater than or equal to the update cost and update frequency of

that vertex, respectively.

In the extensive performance studies, the A*-heuristic, integrated greedy

and two-phase greedy significantly outperformed the inverted-tree greedy. The

greedy algorithms are not stable when the maintenance cost constraint is over

90% of the minimum maintenance cost constraint that allows all views to be

selected.

The two-phase greedy and the integrated greedy are scalable. When the

number of vertices in a graph is less than or equal to 120, the integrated greedy

can compute fast and give an optimal solution. When the number of vertices

is greater than 120，the two-phase greedy is recommended to use due to the

efficiency. The two-phase greedy gives a good approximate solution, which is

close to the optimal solution, in the testing for a small number of vertices (16).

6.6 Summary 69

1.04 丨 . . ,~—— 1.9 . .

A Q- I I——
丁 m A -CD-----

• :::: l — :

卜 - - t… /
” ： ： 1 t f \ t -

0.92 - \ I
Y 1.1 y****^

。9。.7 O.ra 0.8 0.85 0.9 0.95 ’。丄”，； ^， ^ " "二 ^ ' 丄 ^ ^

Time Constraint Time Constraint

(a) maintenance cost v.s. cost constraint (0.7- (b) query processing cost v.s. cost constraint
1) (0.7-1)

400 r . —, . , ,

C K3C3C3C3GXEKEM£KE3G}QS3QE3E30E3曰曰曰曰E3SE3QQQGK3(J

350 - 丨A工 _ M _ -

300 - _
I
i 250 - -
CD

g 200

1
ISO - -

I
1 0 0 - -

50 - -

O Jooooo'ooOo0.0o00<>̂ >0<>001<><><><><>̂ ><><><><>1
0.7 0.75 0.8 0.85 0.9 0.95 1

Time Constraint

(c) view-selection time v.s. cost constraint

Figure 4.6: The impacts of the maintenance cost constraint

6.6 Summary 70

30 ？Al 1 600 产 ， 了 ^

V €Sh V 0 /
2 5 - 5 0 0 - Z -

20 - ,2 -w AOO - X .

I 15 - ^ ^ ^ z z - z I … / -

10 - ‘ ^ 200 - y/" .

5 - too - Z-Z .

4 6 8 10 12 14 16 4 e 8 10 12 14 16
Number of Nodes No. of Nodes

(a) maintenance cost v.s. number of vertices � Query processing cost v.s. number of ver-
tices

4 5 � (- 5~ — ^ . . J . . a, 800 (— r- , , • —,
I AT ~ M _ / T Z

400 - V O" / _ ^
/ 700 - ^ -

3 5 0 - / .

8 3 0 0 - / . /

盈 / ^ 500 - Z .

• 25。- / - 售 4。。. /
I 200 - / y i / _
ll 5 0 - / z , - h。。- / -

100 - / - / -
SO - / z , - 1 0 0 - / _

o i _ _ . _ _ _ , _ , _ _ 1 。 1 Z . _ _ , _ _ _
4 6 8 1 0 1 2 I S O 5 0 1 00 1 SO 2 0 0 2 5 0 3 0 0

No. of Nodes Number of Nodes

(c) view-selection time v.s. number of vertices (d) maintenance cost v.s, number of vertices

8OOO p- r— .) 25000 I . ^

7 0 0 0 - / -

/ y 20000 - [_
eooo - Z / - — /

3 5000 - Zy^^ - 1 /
^ / / -f- 15000 - / -

卜 — - I /
i 3 0 0 0 - / / 赛 1 0 0 0 0 - / -

o ^~——‘ ‘ ‘ ‘ ‘ 1 0 U»I» m ‘ >n v r"^ I . .
O SO 1 0 0 1 5 0 200 2 5 0 3 0 0 O 5 0 1 OO 1 5 0 200 2 5 0 3 0 0

No. of Nodes No. of Nodes

(e) query processing cost v.s. number of v e r - , ,
tices (t) view-selection time v.s, number of vertices

Figure 4.7: Scalability

Chapter 5

Materialized View Selection as

Constrained Evolutionary

Optimization

The search space for possible materialized views may be exponentially large for

the maintenance cost view selection problem. A heuristic algorithm often has

to be used to find a near optimal solution. In this chapter, a new constrained

evolutionary algorithm is proposed for the maintenance cost view selection prob-

lem. Constraints are incorporated into the algorithm through a stochastic ranking

procedure. No penalty functions are used.

In this chapter, motivation will be given in Section 5.1. Constraint handling

will be described in Section 5.2.1. The evolutionary algorithm will be introduced

in Section 5.2.2. Extensive performance studies will be reported in Section 5.3.

A short summary will be presented in Section 5.4.

71

5.1 Motivation 72

5.1 Motivation

Computational intelligence plays a significant role in supporting the design of

intelligent systems [6, 87]. Hence, computational intelligence is highly desirable to

assist the design of a data warehouse system as a network service that collects data

from different remote data sources and disseminates high-quality data analysis

to decision makers locally and remotely in an efficient way. Zhang et al. [84

proposed an evolutionary approach to materialized view selection, but they did

not consider any constraints. Lee and Hammer [47] made the first attempt to

solve the maintenance cost view selection problem using evolutionary algorithms.

They tested nine different ways to add a penalty function to the original objective

function. However, their results were less satisfactory. They did not show any

results for problems larger than 20 views, even though they mentioned that they

did try to tackle large problems.

In this chapter, a new constrained evolutionary algorithm is proposed for

the maintenance cost view selection problem. The algorithm does not use any

penalty functions. Instead, a novel stochastic ranking procedure is used. It is

the first time to adopt the technique to this specific problem. The extensive

experimental studies show that feasible solutions can be easily obtained by the

stochastic ranking approach. In addition, the new constrained evolutionary algo-

rithm explores the search space better than the other existing algorithms. It can

scale well with the problem size.

5.2 Evolutionary Algorithms 73

5.2 Evolutionary Algorithms

Evolutionary computation techniques have been received a great attention [52 .

Some evolutionary algorithms were proposed to solve the maintenance cost view

selection problem, because of its robustness. [84] first proposed an evolutionary

approach for materialized views selection problem without considering any con-

straints. [47] made the first attempt to solve the maintenance cost view selection

problem by evolutionary algorithms, but did not show any experimental results

for problems larger than 20 views.

Here, a new evolutionary algorithm is proposed and it fits the maintenance

cost view selection problem well. First, a pool of bit string genomes are generated

randomly. This is the initial population. Each genome represents a candidate

solution to the problem to be solved. The length of this genome is the total

number of vertices in the lattice. 1 and 0 mean that the vertices need to be

materialized or not, respectively. A genome can be formulated as: genome = (xi

工2 工3 . •.工N), where N is the total number of vertices in the lattice. Here, Xi = 1

if view Vi is selected for materialization and = 0 if view Vi is not selected

for materialization. For example, in Figure 5.1 (which has been introduced in

Chapter 3), N is 4. Genome = (0111) means that three views, vi, V2, and V3,

are materialized. During the crossover and mutation processes, good candidates

will survive and poor candidates will die. In the following, penalty methods,

stochastic ranking and the new evolutionary algorithm will be introduced.

5.2 Evolutionary Algorithms 74

T=1000

Q

u=100

VO O T=100

T = 1 0 O V1 V 2〇 T = 2 0

T = 1
V3

Figure 5.1: An example of view maintenance

5.2.1 Constraint Handling: Penalty v.s. Stochastic Rank-

ing

Lee and Hammer in [47] used a genetic algorithm with the penalty method to set

a static penalty coefficient, Tg, to find a near-optimal solution to the maintenance

cost view selection problem. (Hereafter it is called as LEE algorithm.) In brief,

we introduce their penalty-based approaches, and express our concerns.

Let X = {xi,x2, ‘ • • , xm), for ：̂̂ = 0 or 1，and M x = {vi\xi = =

1, 2, • • • , N}, the original maintenance cost view selection problem can be formu-

lated as follows:

Maximize f{x) = B(G, AQ = T{G, 0) - r (G , M^)

subject to : U{Mx) < S

This is a combinatorial optimization problem. The common method for dealing

5.2 Evolutionary Algorithms 75

with constrained optimization problems is to introduce a penalty function to the

objective function to penalize the solutions which violate the constraint. Usually,

the penalty function can be defined as

(l){x) = max{U(Ma：) - S,0}.

Then, the original optimization problem with constraints can be transformed into

an unconstrained one:

Maximize f{x) = B{G, M^) - Vg .

where Vg is the penalty coefficient. The choice of the penalty coefficient Vg is very

important [65]. A too small Vg will result in under-penalization, i.e. infeasible

solutions not being penalized enough. So many infeasible solutions may be found.

A too large Vg will result in over-penalization, some "beneficial" infeasible solu-

tions being penalized too much during the course of evolutionary optimization.

The reason why some infeasible solutions may be beneficial during the course

of evolution is that, when feasible regions in the whole search space are disjoint,

some infeasible regions may act as bridges among feasible regions. If a too large Vg

makes such infeasible solutions inaccessible, then it is difficult for an evolutionary

algorithm to jump from one feasible region to another one which may have better

fitness values. Thus, an overly large Vg may prevent a good feasible solution from

being found. Because of the importance of r̂ , there has been much research work

done on it. However, the setting of Vg is a difficult problem. It is difficult to find

a precise value to realize the right balance between the original objective function

and the penalty function. Even most dynamic setting methods, which start with

5.2 Evolutionary Algorithms 76

a low Tg value and end with a high rg, are not likely to work well for problems

for which the unconstrained global optimum is far away from its constrained one

65]. In [47], the fitness function f(x) has three forms:

Subtract mode(S)

/Or) = B{G,M,)-Pen{x), if B{G, M,) - Pen{x) > 0,

= 0 , if B{G,M^)-Pen{x) <0.

Divide mode(D)

f{x) = B(G,M,)/Pen{x), i/Pen⑷〉1，

= B (G , M ^) , if Pen{x) < 1.

Subtract and Divide mode(SD)

/�=B{G,M,)-Pen(x), if B{G, M,) > Pen(x),

=B{G, M^)/Pen{x), if B(G, M^) < Pen{x) and Pen{x) > 1’

=BiG, M 工 i f B(G, M工)< Pen{x) and Pen{x) < 1.

Their penalty functions^ also have three forms:

Logarithmic penalty {LG) : Pen(x) = logiil + p . {U(M^) - S))

Linear penalty (LN) : Pen{x) = l + p- {U(M^) - S)

Exponential penalty (EX) : Pen(x) = + (/7(i\4) - S)^

Whichever of the three fitness function forms above is used in practice, this can be

considered as a penalty method of a static Vg value. W e note that in the subtract

lEX should really be called "polynomial", but let us use what the authors used.

5.2 Evolutionary Algorithms 77

mode, in fact, r̂ = 1. In the other two modes, D and SD, although no explicit

'Tg values are shown, they are fixed. The unconstrained fitness function f{x) is

composed of B{G, M^) and Pen{x), and this relation does not change in the whole

evolutionary process. As it does in numerical function optimization problems,

such a penalty method does not work very well in combinatorial optimization

problems either. Its experiment results will be reported in Section 5.3.

Since finding an optimal Vg value is difficult and the penalty methods set-

ting a static or dynamic Vg value do not work well for the optimization problem

with constraints, [65] put forward a new constraint handling technique, named

stochastic ranking, to balance the dominance of the objective and penalty func-

tions for constrained numerical optimization. The novel idea of this technique is

the introduction of a probability Pj for rank-based selection. During the course of

ranking, pairs of two adjacent individuals are compared. If they are both feasible

solutions, naturally, they will be compared according to the objective function.

However, when either of them is infeasible, the probability of comparing them ac-

cording to the objective function is Pf, while the probability of comparing them

according to the penalty function will be 1 - Pf. Since Pf is a probability, it

gives an opportunity for both the objective and penalty functions to rank a pair.

When Pf〉1/2, the ranking is biased towards the objective function. When

Pf < 1/2, the ranking is biased towards the penalty function. So Pf can balance

the objective and penalty functions more directly, explicitly and conveniently. By

adjusting P/, we can adjust the balance between the objective function and the

penalty function easily. Moreover, it does not spend any extra computing cost for

setting rg values since it does not use any penalty terms. In practice, it usually

sets Pf < 1/2 to reduce the ratio of infeasible solutions to the whole in the fi-

5.2 Evolutionary Algorithms 78

nal generation. For different optimization problems, we will conduct experiments

using different Pf values.

5.2.2 The New Stochastic Ranking Evolutionary Algo-

rithm

Based on the analysis in the last section, we observe that the stochastic ranking

approach will have better performance for this problem than the LEE method. Al-

though stochastic ranking has been used for constrained numerical optimization

problems and shown good performance using (/i, A) evolution strategy [65，67], it

is unclear whether it is effective for combinatorial optimization problems. This

chapter presents the first attempt towards generalizing this approach to combi-

natorial optimization problems, using a operator sequence, crossover-mutation-

selection, as used in generic algorithms.

The basic framework of the evolutionary algorithm is shown in Algorithm

5. Similar to most evolutionary algorithms, both crossover and mutation are

used. The crossover operator is uniform crossover, as shown in Algorithm 6. It

exchanges the information of two chromosomes to generate two new chromosomes.

The mutation operator is similar to the most usually used one, as shown in

Algorithm 7. The probability that every bit of every gene will be flipped is P^.

The key difference from most evolutionary algorithms is the stochastic ranking

procedure used. The stochastic ranking algorithm is based on [65], but modified

in some places for the specific problem of materialized views selection, which is

shown in Algorithm 8. It is used for ranking the union of new and old individuals.

The ranking procedure is similar to bubble-sort. In every sweep of N, every two

5.2 Evolutionary Algorithms 79

adjacent individuals are compared. If there is no any change of individual's rank

after a sweep, then this bubble-sort-like procedure can be terminated. Note: N

is the number of vertices in the lattice.

It is worth noting that, for dealing with numerical optimization problems,

65] uses a ("，A) evolution strategy, and set the truncation level as fi/X ̂ 1/7,

where /i and A are the number of parents and the number of children, respec-

tively. In this chapter, the materialized view selection problem is treated as a

combinatorial optimization problem using a typical operator-sequence as used in

genetic algorithms. Like most genetic algorithms, A offsprings are generated from

II parents, where X = fi.

Algorithm 5 The Basic Framework of the New Evolutionary Algorithm (denoted
EA)

Parameter: population size P
1： begin
2: Generate the initial population G(0);
3： repeat
4： t = t + l\
5: Gi{t) — UniformCrossover(G(t — 1)); {refer to Algorithm 6.}
6: G2⑴—Mutation(Gi(t)); {refer to Algorithm 7.}

7： S — StochasticRanking(G(t — 1) U G2⑴),which sorts G{t - 1) U G2⑴ to
an ordered individuals sequence S of size 2 x P; {refer to Algorithm 8.}

8: G{t) ^ the anterior P individuals of 5;
9: until (termination condition is satisfied)

10： end

5.2 Evolutionary Algorithms 80

Algorithm 6 UniformCrossover
Input: Generation G
Parameter: crossover probability P �

1： begin
2: Select a pair of individuals of G randomly : gi = 62, • • • , b j ^) , 仍 =

(Ci’C2, . •. ,CN)]
3： sample u G C/(0,1);
4: if {u < Pc) then
5: for every bit i of individual do
6: sample r, either 0 or 1;
7: if (r = 1) then
8: the bit i of gi=bi；

9: the bit i of g2,=Ci;
10： else
11： the bit i of
12： the bit i of 仍’=6“
13： end if
14： end for
15： else
16: g[= gu
17: 92 = 92]
18： end if
19： Repeat the above procedure P/2 times, which will generate P new individuals;
20： end

Algorithm 7 Mutation
Input: Generation G
Parameter: mutation probability P^

1： begin
2: for every individual in G do
3： for every bit in the individual do
4: Mutate the bit with the probability of P^;
5： end for
6： end for
7： end

5.3 Experimental Studies 81

Algorithm 8 Stochastic Ranking ‘

Input: A = 2 X P individuals {Ij\j = 1 , A }

Parameter: balance parameter Pf

Note: the fitness function: f(x) = B{G,M丄 the penalty function:
(f>{x) = max{U{M^) - 5,0}. The N is set to be A as analyzed in [65:.

1： for i = 1 to N do
2： for j = 1 to A - 1 do
3： sample u e U{0,1);
4: if {(f){Ij) = (l){Ij+i) = 0) or (u < Pf) then
5: if f(Ij) < f(lHi) then
6: swap{Ij,Ij+i)；
7： end if
8： else
9: if </)(Ij) > (/>{Ij+i) then

10: swap{Ij,Ij+i)-,
11： end if
12： end if
13： end for
14: if no swap done then
15： break;
16： end if
17： end for

5.3 Experimental Studies

In this section, some results of experimental studies are presented. All the al-

gorithms were implemented using C + + language. These experiments were done

on a Sun Blade/1000 workstation with a 750MHz UltraSPARC-Ill C P U running

Solaris 2.8. The workstation has a total physical memory of 512M.

5.3 Experimental Studies 82

5.3.1 Experimental Setup

In order to evaluate the performance of the new stochastic ranking evolutionary

algorithm (EA) and the best result of the penalty-based algorithm (LEE), an algo-

rithm, optimal algorithm, is implemented for finding the optimal solution. To find

the optimal set of materialized views to precompute, all possible combinations of

views are enumerated to find a set of views by which the query processing cost

is minimized. Its complexity is 0(2^), where N is the number of vertices. For

a small number of lattice (16 vertices), we compare among EA, LEE, A*-heuristic

36] and the optimal algorithm. For a large number of lattice up to 256 vertices,

the scalability of the EA algorithm will be reported. In the following, LEE is the

best result given in [47 .

Table 5.1 summarizes all the parameters together with the default values

used in the following experiments. The maintenance cost constraint is a crucial

condition for the maintenance cost view selection problem. In the experiments,

the minimum maintenance cost constraint, Cmin, is the minimum value which

allows all views to be selected as materialized views.

5.3.2 Experimental Results

5.3.2.1 Feasibility of the Solutions

First, we investigate the feasibility of the solutions of EA by varying the Pf value.

In Figures 5.2 (a) to (d), the number of vertices is 32, The results were averaged

over 30 independent runs of EA algorithm. In Figure 5.2 (a), the y-axis indicates

the percentage of feasible solutions in the final generation. Recall that mainte-

nance cost constraint has a big effect on the results. In this testing, we try to use

5.3 Experimental Studies 83

Notation Definition (Default Values)
N the number of vertices (16)

Qq Zipf distribution factor for query frequency (0.2)

Ou Zipf distribution factor for update frequency (0.0625)

Ry table size for a vertex v
Q{v,u) query processing cost for a vertex u using v
U{v,u) maintenance cost for a vertex u using v
Cmin the minimum maintenance cost constraint that allows all vertices

to be selected as materialized views

Pf probability for stochastic ranking function (0.4)

Pm mutation probability (0.001)

Table 5.1: Notations and definitions of the system parameters used in experi-
ments.

different maintenance cost constraint to see how Pf deals with the maintenance

cost constraint. In Figure 5.2 (a), Cmin(l) and Cmin(0.8) represent the mainte-

nance cost constraint 1 xCmin and O.SxCmin, respectively. When the maintenance

cost constraint is Cmin(l), the percentage of feasible solution is always one hun-

dred. It shows that EA can always find a feasible solution if the maintenance cost

constraint is large enough. When the maintenance cost constraint is Cmin(0.8),

it shows that Pf can alter the percentage of feasible solutions very easily. When

Pf = 0.5，the percentage of feasible solutions drops sharply from 100% to 0%. If

maintenance cost constraint is reduced to 0.5 x Cmin, the EA gets all Os solutions

in the final generation since the maintenance cost constraint is too low to select

any vertices.

In Figure 5.2 (b), (c) and (d), the optimal solution produced by A*-heuristic

is chosen as the denominator to evaluate EA. In these three figures, the mainte-

5.3 Experimental Studies 84

nance cost constraint is 0.8 x Cmin- Figure 5.2 (b) shows the quality of the feasible

solutions. The y-axis represents a ratio of the average query processing cost of the

feasible solutions over the optimal query processing cost. As expected, when Pj

is less than or equal to 0.4, the average query processing cost of feasible solutions

is greater than 1, because the query processing cost of the optimal solution is the

lowest among all the feasible solutions. In contrast, when Pj > 0.4, the average

query processing cost of feasible solutions is equal to 0 as there are no feasible

solutions found. (Figure 5.2 (a) shows that the percentage of feasible solution is

equal to 0 when Pj〉0.4.)

Figure 5.2 (c) shows the quality of the infeasible solutions in the final gen-

eration. Since the infeasible solutions trade off the maintenance cost with a lower

and better overall query processing cost, the average query processing cost of

infeasible solutions is less than 1. Figure 5.2 (d) shows the maintenance cost of

the infeasible solutions from the optimal maintenance cost. It shows that in the

worst case, the average maintenance cost of infeasible solutions will not greater

than 1.3 times of the maintenance cost of the optimal solution.

The above testings demonstrate that Pj gives a convenient way to fine-tune

the algorithm. By varying the Pj value, EA can deal with the maintenance cost

constraint well. As a result, we will choose Pj = 0.4 as the default Pf value in

the subsequent experiments.

5.3.2.2 Optimality of Solutions

In this experimental study, the performance of EA, LEE, A*-heuristic and the

optimal algorithm are investigated under different maintenance cost constraints.

Let the maintenance cost constraint be p x Cmin. In Figure 5.3 (a) and (b), p

5 . 3 E : x p e r i m e n t a l 8 5

c m i n 《 1) 1 — - _ _ - 爪 A ! _ t i - !

1 . - 4 . 0 3 5 《 0 . 8) : I ^ ^ p , - • ： 丨 丨 / / •

• " . 2 . - 1 . 2 - / I ,

- . n -

_ \ : : • 耐 1 一 ,

I s - 〜 - _ 0 . 8 - 一 ,

I ? \ , P T , ,

0 . 4 - 〜 - 0 . 4 - 一 ，

0 . 2 - 〜 - 卿 。 . 2 - 〜 ,

O . I 0 . 2 P 3 0 . 4 P 5 0 . 6 P 7 0 . 8 P 9 1 0 0 」 0 . 2 P 3 o ' p 0 . 5 0 . 6 0 . 7 o . ® P 9 1

(a) P f v . s . p e r c e n t a g e o f f e a s i b l e s o l u t i o n s s y s - I M I q u e r y p r o c e s s i n g c o s t o f

f e a s i b l e s o l u t i o n s

1 —— . 1 . 4 m x - , . _

s s

• s - - _ .. . \ ,

她 她 1 .

湖 s - f \ t e

s g \ 「 . -

- o . , \ . I s - —

- s - O A

_ 0 . 2 . ^ - f

0 / ^ O . N , ,

^ . J m l

o . rt——.——.——.——.——.—— o——.——.——.——.——.——.——.

0 . 1 0 . 2 0 . 3 0 . 4 - o . u O b O . y 0 . 8 0 . 9 1 O . I O . N 0 . 3 O . 4 . o . u 0 . 6 0 . 7 0 . 8 O b 1

v ^ p 畔

(c) P f v . s . a v e r a g e q u e r y p r o c e s s i n g c o s t o f (d) P f v . s . a v e r a g e m a i n t e n a n c e c o s t o f i n f e a -

i n & a s i b l e s o l u t i o n s s i b l e s o l u t i o n s

r ^ i 的 u r e 功 . 2 : F e a s i b i l i t y o i P t ^ h e s o l u U o n s b y v a r y i n g t ; h e P f v a l u e

5.3 Experimental Studies 86

varies from 0.7 to 1. (Note that when p < 0.7, none of the algorithms can select

any views.) A larger p value implies that it is likely to select more views. When

p = 1, it means that all vertices may be selected. The number of vertices is 16 and

32 respectively in Figure 5.3 (a) and (b). W e took the average query processing

costs of EA and LEE over 30 independent runs.

In Figure 5.3 (a), the optimal solution is computed by using exhaustive

search. It shows that A*-heuristic performs in the same way as the optimal. The

EA always gives a near optimal feasible solution that is very close to the optimal.

O n the other hand, the query processing cost of LEE is much higher than the

optimal solution.

Figure 5.3 (b) shows the comparison among EA, LEE and A*-heuristic. It

shows that EA can find near optimal feasible solutions that are very closed to

A*-heuristic. EA outperforms the LEE algorithm significantly.

6000 1 1 , , 25000 1 1 1 , , ,
E A E A ——•—

^ ^ ^ LEE ~ - ~ LEE ~ M _
查 I , \ Optimal — . — g A* —a—

-i 5000 - \ A* ~ ‘ - ^
^ \ S) 20000 \
• 4000 \ S \
S \ 1 15000 - \ -

囊3���- \ A • 1 \
。 \ \ O 10000 - \ -

r � � � :一- \ \ / \ • f V

0.7 0.75 0.8 0.85 0.9 0.95 1 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Constraint Ratio Constraint Ratio

(a) query processing cost v.s. maintenance cost (b) query processing cost v.s. maintenance cost
constraint (16 vertices) constraint (32 vertices)

Figure 5.3: Optimality of solutions with different maintenance cost constraint

5.3 Experimental Studies 87

5.3.2.3 Scalability of the Algorithms

There are several existing algorithms for solving the maintenance cost view selec-

tion problem. Figure 5.4 shows the performance of four algorithms, namely, LEE,

EA，A*-heuristic and inverted-tree [36], when the maintenance cost constraint

is 0.8 X Cmin. Figure 5.4 shows a small-scale problem with the number of vertices

varies from 4 to 16. As shown in Figure 5.4 (a), EA and A*-heuristic performs

the best (the same as the optimal). The inverted-tree greedy is inferior to EA

and A*-heuristic but is superior to LEE. Figure 5.4 (b) shows the view selection

time. The inverted-tree greedy cannot deal with large-scale problems, due to

its view selection time.

The existing algorithms do not perform well when computing a large depen-

dent lattice. Evolutionary algorithms can explore this search space better. Since

A*-heuristic and inverted-tree greedy cannot deal with the lattice up to 256,

EA is compared with LEE by varying the number of vertices, N, from 4 to 256.

The maintenance cost constraint is 0.8 x Cmin- For the number of vertices from

4 to 64，the average query processing cost for both algorithms is taken over 30

independent runs. When the number of vertices is greater than 128, it ran once

due to the longer execution time. In Figure 5.5 (a), EA significantly outperforms

the LEE algorithm in terms of minimizing the query processing cost. However, EA

took a longer time than LEE to find better solutions, according to Figure 5.5 (b).

It is worth noting that EA is much more likely to find feasible solutions as well

while LEE tends to get stuck at a poor solution fairly early.

5.3 Experimental Studies 88

1600 i . . 1000 以, , , . .

• | 1400 - ^ ^ - ^ ^ ^ ^ ^ ^ICverted-Tree H T Z /
茨 r ^ 1。° - / -
M 1200 - /

/ EA 官 /
£ / LEE ~ M _ o i o - / _

1 0 0 0 - / A* - 塞 /

蓬 / Inverted-Tree ~ • ~ — /

IO丨：么
o L ；~——‘ ‘ ‘ 0.001 ̂ ^ ‘ ‘

4 6 8 10 12 14 16 4 6 8 10 12 14 16

No. of Nodes No. of nodes
(a) query processing cost v.s. number of ver-化、• ,丄•丄. ,
tices (b) view selection time v.s. number of vertices

Figure 5.4: Four algorithms

12000 EA ‘ -.-.—-!-. ‘ 25000 . — — 」 — • — — • — — • — —

. LEE — / TH
-g 10000 / /
奶 / 20000 - / -

1 / m /
£ 8000 / - I /

i 15000 - / -
4 6000 - / i ,

I 一 Z _ i — / / .

I - - . J / -

O so 1 oo 150 200 250 300 ° O 50 10O 150 200 250 300

No. of Nodes No. of Nodes

(a) query processing cost v.s. number of ver- x . i , ^
tices (b) view selection time v.s. number of vertices

Figure 5.5: Scalability of algorithm by varying the number of vertices

6.6 Summary 89

5.4 Summary

As a network service, a data warehouse system collects data from different re-

mote data sources and disseminates high-quality data analysis to decision makers

locally and remotely. Computational intelligence plays a significant role in de-

sign of a data warehouse system. In this chapter, a new constrained evolutionary

algorithm is proposed for the maintenance cost view selection problem.

The algorithm is based on a novel constraint handling technique — stochas-

tic ranking. Although stochastic ranking has been used in numerical constrained

optimization, its suitability for combinatorial optimization was unclear. This

chapter demonstrates that a revised stochastic ranking scheme can be applied to

constrained combinatorial optimization problems successfully.

The new evolutionary algorithm has been evaluated against both heuristic

and other evolutionary algorithms. The experiments results show that EA can

provide significantly better solutions than previous algorithms in terms of mini-

mization of query processing cost and feasibility. In comparison with the latest

evolutionary algorithm, i.e. the LEE algorithm [47], EA can avoid premature con-

vergence and keep improving the solution, while the LEE algorithm tends to get

stuck at a poor local optimum fairly early.

Chapter 6

Dynamic Materialized View

Management Based On

Predicates

For the purpose of satisfying different users' profiles and accelerating the subse-

quence O L A P queries in a large data warehouse, dynamic materialized O L A P

view management is highly desirable. Previous work caches data as either chunk

or multidimensional range fragments. The chunk-size or fragment-size need to

be determined beforehand statically, and a prepartitioning technique is used.

The efficiency of these approaches is at the expense of either space consumption

or the restrictions on query types. In this chapter, we focus on R O L A P in an

existing relational database system. A dynamic predicate-based partitioning ap-

proach is proposed, which can support a wide range of O L A P queries. Extensive

performance studies using TPC-H benchmark data on IBM DB2 is conducted.

Encouraging results are obtained which indicate that the approach is highly fea-

90

6.1 Motivation 91

sible.

In this chapter, Section 6.1 gives the motivation and the brief background

of the dynamic view management. Section 6.2 gives some examples. Section

6.3 outlines two static prepartitioning-based view management approaches. In

Section 6.4, the new dynamic predicate-based partitioning approach is introduced.

The performance results are presented in Section 6.5. Section 6.6 concludes this

chapter.

6.1 Motivation

As discussed in Chapter 2, precomputing O L A P queries becomes a key to achieve

high performance in data warehouses. Many works [4, 30, 35, 36，40, 51，70.

study the static view management problem. However, as different users may have

different preferences, they may be interested in similar but different portions of

data from time to time. Therefore, Their query patterns are difficult to predict.

Furthermore, ad-hoc queries, which are not known in advance, make the static

materialized views quickly become outdated. Hence, static materialized views

cannot fully support the dynamic nature of the decision support analysis. In order

to fully satisfy users' ad-hoc queries, dynamic materialized views management is

highly desirable.

The main difference between dynamic view management and static view

management is the view tuning. Static view management precomputes the views

based on historical data, and intends to use those views for certain time intervals,

such as one day. As a result, it cannot handle the case that the major access

patterns drift from the previous access patterns. On the other hand, dynamic view

6.1 Motivation 92

management system selects the beneficial views at the current moment whenever

new queries come in, and fine-tunes the materialized views as much as possible

to serve the future queries.

For dynamic view management, [45] introduces a dynamic view manage-

ment system, which stores multidimensional range fragments. They intend to

answer incoming queries by either using a single cached query or using the base

tables. They restrict the incoming queries as a multidimensional range query, be-

cause there may be up to a large number of combinations that need to be checked

for finding the most efficient way of answering the queries. Consequently, data

across multiple fragments cannot be used. [21] performs a chunk-based scheme

which divides the multidimensional query space into uniform chunks. When a

query is issued, it checks whether the query can be computed directly from the

previous query results which are stored in the cache or a dedicate disk stor-

age. If some parts of the queries cannot be computed from cache, the system

will compute the missing parts using the base table. Both [21, 45] use a static

prepartitioning approach.

As most of the existing popular database applications are built on top of

relational database systems, like IBM DB2, in this chapter, a dynamic view man-

agement system is built on top of relational data warehouse. The main advantage

of this approach is that it is able to fully utilize the power of relational database

systems. W e attempt to release the restrictions imposed on the multidimensional

fragments [45], and intend to answer more general O L A P queries. Different from

21, 45], views/tables are partitioned based on user predicates dynamically. Ezeife

in [23] presents horizontal fragmentation ideas and schema for selecting and ma-

terializing views to reduce query response time and maintenance cost. However,

6.2 Examples 93

Product

Sales ~ ^
Store salesid pname

S id
pid ^ pcategory

sname :
——-Sid

scity Date
did . r ^

sstate
dollarSales dyear

scountry —
dmonth

dday

Figure 6.1: A star schema

Ezeife only considers the static view selection problem. For the dynamic mate-

rialized view management, we further study three issues: (1) predicate selection

for partition, (2) repartitioning and (3) view replacement policies.

6.2 Examples

Figure 6.1 shows a simple 3-dimensional M D D B with a fact table, Sales, and

three dimension tables, Product, Store and Date. In the Sales table, pid, sid

and did are the foreign keys of the corresponding dimension tables. The measure

in the Sales table is dollarSales. Consider a query (Query 1) that requests

to report the detailed measure dollarSales for every combination of product

category (pcategory), store (sid) and date (did) below.

6.2 Examples 94

pcategory sid did dollarSales
biscuit storel 3 2093

beer store2 4 2011

bread — store2 “ 5 2010

biscuit storel 12 1359

milk — storel 1 2356

milk — storel “ 2 3526

bread storel 15 2121

biscuit storel ~ 1 1 2101

bread storel 5 1021

飞eer store2 ~ 3 2 1 6

Table 6.1: Assumed Query 1 result

Query 1 Find dollarSales for every combination o/pcategory, sid and did.

select pcategory, sid, did, dollarSales

from Sales s, Product p

where s.pid = p.pid

Assume Table 6.1 shows the result of Query 1 which forms a temporal 3-

dimensional M D D B with dollarSales as measure. Here, the three dimensions

are pcategory, sid and did. Thus, a datacube with 8 vertices can be con-

structed on top of Table 6.1 to support the 8 group-by O L A P queries: group

by (pcategory, sid, did), (pcategory, sid), (pcategory, did), (sid, did),

(pcategory), (sid), (did), and ().

O L A P queries are those queries for decision making such as answering the

average, minimum and maximum measures at a certain granularity of partition-

ing. With a star-schema, an O L A P query may involve selections based on some

6.2 Examples 95

dimension values and/or joins between the fact table and the dimension tables.

For example, three O L A P queries (Query 2’ Query 3 and Query 4) are shown

below. Like Query 1, the subsequence three O L A P queries need to join the fact

table Sales and the dimension table Product. However, they can be computed

using Table 6.1. In particular, Query 2 uses three attributes, pcategory, sid and

did in its group-by clause. Query 3 and Query 4 use two out of three attributes

involved in Query 2 in their group-by clause. Note: Query 3 and Query 4 use the

same selection clause but different selection conditions.

Query 2 Find the total dollarSales for every pcategory, sid and did where

pcategory is biscuit and did is less than 10.

select pcategory, sid, did, sum (dollarSales)

from Sales s, Product p

where s.pid = p.pid and pcategory = ‘biscuit，and did < 10

group by pcategory, sid, did

Query 3 Find the total dollarSales for every pcategory and did where pcategory

is biscuit and did is less than 8.

select pcategory, did, sum (dollarSales)

from Sales s, Product p

where s.pid 二 p.pid and pcategory = ‘biscuit, and did < 8

group by pcategory, did

Query 4 Find the total dollarSales for every pcategory and did where pcategory

is biscuit and did is greater than or equal to 10.

select pcategory, did, sum (dollarSales)

from Sales s, Product p

6.3 Related Work: Static Prepartitioning-Based Materialized View Management 96

where s.pid = p.pid and pcategory = 'biscuit' and did > 10

group by pcategory, did

It is worth noting that, in this chapter, the derived-from or be-computed-

from relationship is more restrictive than the same relationship defined in [40 .

It is because [40] does not consider the possible conditions in the where clause,

but in this chapter, such conditions are taken into consideration. For example,

based on the group-by attributes only, Query 4 can be computed from the result

of Query 2, because the group-by attributes used in Query 4 is a subset of the

group-by attributes used in Query 2. However, the differences in the selection

conditions imply that Query 4 cannot be computed from the result of Query 2.

The derived-from relationships for the four queries are listed below: Query 2 」

Query 1, Query 3 ：̂ Query 1, Query 4 j Query 1，and Query 3 j Query 2.

The dynamic materialized view management is defined as how to maintain

some results of O L A P queries (known as materialized views) in a limited space,

in order to maximize the possibility to answer other O L A P queries in runtime.

6.3 Related Work: Static Prepartitioning-Based

Materialized View Management

In this section, Two static prepartitioning-based materialized view management

approaches [21, 45] are outlined. Both approaches cache the granularity of data

as either chunk or fragment to support O L A P queries.

In [21], chunked - file is proposed to support O L A P queries. The chunked-f ile

uses multi-dimensional arrays to store chunks, where a chunk, ranging at any level

6.3 Related Work: Static Prepartitioning-Based Materialized View Management 97

/ / ,/. / /I

/ / / , : iXl「；

z . - : - , … ” … 广 丨 , z
-墨-•/ I ' 1' : I X ID

/..A-vI-A-Ti ； i/i4
丨 i''! i 力3

厂 . , , I I \�z
/ -r -/ \ I I [X ®

r " V' Oi/ ‘
y ； I I ；' ； 1 /«
： ‘ • ： I / 3

blacuR beer bread milk
pcat*gory

Figure 6.2: The chunked file for Table 6.1.

in the hierarchy, is proportional to the number of distinct values in the correspond-

ing dimension at that level. For example, assume the result of Query 1 is shown

in Table 6.1. Here, pcategory has 4 possible categorical values, sid has two

categorical values (storel/store2), and did has 9 distinctive numerical values in

the domain [1’ 16]. Accordingly, a chunked file is created with 128 (= 4 X 2 X 16)

chunks, as illustrated in Figure 6.2. For instance, the chunk [0][0][0] stores a mea-

sure for pcategory = 'biscuit', sid = 'storel' and did = 1. In total, there are

72 (= 4 X 2 X 9) non-empty chunks, and 56 chunks without a value. For instance,

there is no measure for pcategory = 'biscuit，，sid = 'storel' and did = 1 (the

chunk [0] [0] [0]). The space consumption of a chunked file can be very large, in

particular, when data is sparse. The chunked-f ile approach can support all the

four queries, Query 1-4，using the chunked file shown in Figure 6.2. For example,

for processing Query 2, chunked-f ile needs to scan the leftmost chunks (Figure

6.3 Related Work: Static Prepartitioning-Based Materialized View Management 98

6.2) where pcategory = 'biscuit, and did < 10. It is worth noting that many

of the chunks are empty.

In [45], a system, called DynaMat, is proposed that dynamically materializes

information at multiple levels of granularity in the form of fragments. However,

DynaMat puts some restrictions on the query patterns. DynaMat can only effi-

ciently support the following three types of multidimensional range queries: (i)

select a full range^ of a dimension, for instance, for all did between 1 and 16; (ii)

a single value, like pcategory = (biscuit，； and (iii) an empty range?.

Assume that the result of Query 1 is shown in Table 6.1. DynaMat can

partition data in three ways, along one of the three dimensions: pcategory, sid

and did, respectively. For example, suppose DynaMat partitions data along the

did dimension, there are totally 16 fragments [1,16]. Each fragment keeps data

with a distinctive did value. DynaMat cannot support those queries that do not

satisfy any of the three types efficiently. For example, DynaMat cannot answer

Query 2 efficiently using any materialized views, even thought they are available,

because one of the selection conditions is did < 10. The condition, did < 10,

makes Query 2 unsatisfied any of the three above-mentioned types, (i), (ii) and

(iii). In a similar fashion, DynaMat cannot support Query 3 and Query 4 using

any materialized views. When Dynamic cannot support O L A P queries using the

materialized views, it has to process the queries using fact table and dimension

tables.

Despite the efficiency of these two approaches, namely chunked-f ile and

DynaMat, as reported in [21，45]. Some observations can be made below.

lA full range means the value is between the minimum value and maximum value of this
dimension.

2 An empty range means the dimension is not in the present in the query

6.4 A New Dynamic Predicate-based Partitioning Approach 99

• The majority of data warehouses are built on top of existing relational

database systems. The chunk-based caching approach, chunked-f ile, is

not directly applicable, and cannot be widely used. The efficiency of chunked-f ile

is at the expense of space consumption. Chunked-f ile may result in a huge

number of empty chunks, in particular, when data is sparse. Consequently,

the query processing cost using a chunked file can be high, because it needs

to access a large number of empty chunks. The high space consumption

is somehow against its goal to maximize the possibility of supporting more

queries using a limited space. In addition, it is difficult for chunked-f ile

to determine the optimal chunk sizes,

• DynaMat partitions data into fragments. Only some types of O L A P queries

can be supported efficiently. The reason that DynaMat cannot support a

wide range of O L A P query types is due to the fact that the cost of finding

a set of fragments to answer an O L A P query can be high itself. In addition,

it is difficult for DynaMat to select a dimension (s) as the basis to partition

data.

6.4 A New Dynamic Predicate-based Partition-

ing Approach

Here, ROLAP-based materialized view management approach is proposed, which

can be easily developed on top of relational database management systems. Un-

like chunked-f ile that uses arrays to store data, relations are used to support

materialized views. The space consumption of relations are much smaller than

that of multidimensional arrays. Unlike DynaMat that selects a dimension to par-

6.4 A New Dynamic Predicate-based Partitioning Approach 100

tition data, predicates used in O L A P queries are used to partition. This approach

can support a wide range of O L A P queries, which are attempt to minimize the

space consumption in a relational database system.

The dynamic predicate-based partitioning approach is illustrated with an

example here. Suppose Query 1 is processed and its result is shown in Table 6.1.

By using two selected predicates from Query 2: pcategory = 'biscuit' (denoted

Pi) and did < 10 (denoted P2), Table 6.1 can be horizontally partitioned into four

materialized views: pi Ap2，，Pi Ap2, Pi 八]P2’ and A -ip2. They are shown

in Table 6.2. Note that each partition will be stored in a table in a commercial

multidimensional database.

Partition pcategory sid did dollar Sales
Ri biscuit storel 3 |

beer store2 4 2011
bread storel 5 1021
bread — store2 5 2010
milk — storel 1 2356
milk storel “ 2 3526

^ biscuit storel 12 1359
biscuit storel 11 2101

bread store2 15 2121

beer store2 ~ l 6 3216

Table 6.2: A materialized view by partition Table 6.1 using the two predicates
PI and P2

Obviously, there is no overlapping between any pair of partitions in Table

6.2. Suppose a user issues Query 4. Since Query 4 can be directly answered by

the third partition in Table 6.2, the query processing cost is to scan 2 tuples. On

6.4 A New Dynamic Predicate-based Partitioning Approach 101

the other hand, chunked-f ile needs to scan 14 chunks along the two leftmost

rows (Figure 6.2). DynaMat cannot efficiently process Query 4 because Query 4

does not satisfy any of the three query types: (i), (ii) or (iii) stated in Section

6.3. Therefore, to process this query, DynaMat needs to scan the fact table Sales

and the dimension table Product in which the overhead is very large.

Query Analyst

Partition Advisor

View Manager

Partition Pool

-…由…-

A Relational Data Warehouse

Figure 6.3: A system overview

6.4 A New Dynamic Predicate-based Partitioning Approach 102

6.4.1 System Overview

The system overview is depicted in Figure 6.3. It is built on a relational database

system (IBM DB2), which consists of four main components: Query Analyst,

Partition Advisor, View Manager and Partition Pool. These components

are described as follows.

• Query Analyst: It parses an incoming query and converts the necessary

information into internal data structures that will be used in other compo-

nents.

• Partition Advisor: It first determines which partition candidates in the

Partition Pool can efficiently answer the query based on the derived-from

relationship. It then chooses the best partition(s) among the set of partition

candidates to answer the query. If there are no qualified partitions, the

query will be answered using the base tables.

• View Manager: It monitors the incoming queries and performs two main

tasks. First, it decides which predicates are the most beneficial to partition

the materialized views. This decision is based on a cost model which esti-

mates the benefit of each predicate. If the predicates used in partitioning

are changed, View Manager will repartition the materialized views. Second,

when the disk space reaches the limit, View Manager uses a replacement

policy to replace partitions in Partition Pool.

• Partition Pool: It is the information repository that stores the material-

ized views which are horizontally partitioned based on the incoming query

predicates.

6.4 A New Dynamic Predicate-based Partitioning Approach 103

In the following, Partition Advisor and View Manager will be discussed

in detail as they are more complicated.

6.4.2 Partition Advisor

A typical O L A P query involves selections which are based on some dimension

values and/or joining the fact table with one or more dimension tables followed

by a group-by operation. Predicate-based partitioning is to horizontally partition

a view into a set of disjoint sub-views such that there are no overlapping between

any sub-views. The predicates for horizontal partition are those predicates ap-

pearing in the where clause. A simple predicate is of the form, A9v, where A is an

attribute, 9 is one of the six operations (=, <, >’ +、<, >), and v is a constant

in the domain of A. For example, in Query 2 here are two simple predicates:

pcategory = 'biscuit' (denoted pi) and did < 10 (denoted p2). The conjunc-

tion of simple predicates is called minterm predicate [57]. Each simple predicate

can occur in a minterm predicate either in its natural form or its negated form.

Recall that it is always possible to transform a Boolean expression into conjunc-

tion normal form. For Query 2, there are four minterm predicates, Mi, M2, M3

and M4, as follows:

M l = Pi A p2 ̂ ^ pcategory = 'biscuit' A did < 10

M2 =，Pi A P2 pcategory + 'biscuit' A did < 10

M 3 = Pi A，P2 pcategory = 'biscuit' A did > 10

M4 =，Pi A I 2 ^ ^ pcategory / 'biscuit' A did > 10

In the system, a materialized view, V̂ , is associated with an O L A P query,

6.4 A New Dynamic Predicate-based Partitioning Approach 104

QVi- For example, the whole Table 6.2 is a materialized view represented by Query

1. This materialized view has four partitions: Ri, R2, R3 and R^, for the cor-

responding four minterms: Mi, M2, M3 and M4 mentioned above. Accordingly,

each partition Ri can be represented using a query 饥•

For an incoming query q, Partition Advisor will first determine the set

of materialized views that can answer q by checking ii q qvi. In other words,

all attributes in q must also be in qy., the selection condition used in q implies

that it is a subset of qy., and the aggregate functions used in the two queries are

the same. Second, Partition Advisor needs to determine a partition Rj in a

materialized view Vi to answer the query q. The partition selection algorithm is

shown in Algorithm 9. In order to eliminate the overhead, Partition Advisor

attempts to select one partition, Ri, to answer a given query. It is because, in

general, the cost of selecting partitions is exponential in terms of the number

of partitions available. When there is no single partition that can answer the

query, there are two ways to solve it as shown in Algorithm 9: (1) use a whole

materialized view to answer the query; (2) use the base tables to answer the query.

As discussed later, when there is a materialized view available for answering the

query, View Manager considers whether need to repartition the materialized view

after processing the query.

6.4.3 View Manager

View Manager maintains the top m predicates that give the highest predicate

benefits for a materialized view, where m is predefined by a data warehouse ad-

ministrator. Note that the number of predicates influences how a materialized

view is partitioned. In general, m predicates can create a maximum of minterm

6.4 A New Dynamic Predicate-based Partitioning Approach 105

Algorithm 9 Partition Selection

Input: q: an incoming user query;
Output: a partition to answer the user query.

1： begin

2: Let bestPartition be the base table(s) that can answer q\
3: for each materialized view Vi in Partition Pool do
4: Let qy. be the corresponding query that represents Vi；
5: if g ：< qvi then
6: if \bestPartition�> then
7: bestPartition — Vf,
8： end if

9: for each partition Rj of Vi do
10: if 5 ^ Qrj and \bestPartition\ > \Rj\ then
11： bestPartition — Rj]
12: end if
13： end for

14： end if

15： end for

16： return bestPartition;

Algorithm 10 Selecting top m predicates for a materialized view V
Input: a query q with k simple predicates {pi’p2’.. • ’Pfc}，a materialized view

V with n simple predicates {pi,p2, ‘ ‘ ‘
Output: m highest predicate benefit (PB(pi)) predicates.

1： begin

2: for i = 1 to /c do
3： for j = 1 to n do
4: if the predicate pi in the query q matches a predicate pj maintained with

the view V then
5: PB{pj)^ fiX\Ri\ + PB{pjy,
6： else

7： create a new predicate benefit PB{pi)；

8: PB{pi)^fiX\Rih
9： end if

10： end for

11: end for

12: return the m highest predicates;

6.4 A New Dynamic Predicate-based Partitioning Approach 106

fragments during the horizontal partitioning process. To reduce the cost of such

huge overhead, the most frequent predicates are selected for horizontal partition-

ing when the number of predicates is large. The process of selecting a predicate,

Pi, depends on two factors: its relative access frequency, /“ and its corresponding

partition size, \Ri\. The predicate benefit of a predicate, denoted PB{pi), is

estimated as follows:

PB{pi) = “ X fi (6.1)

The top m highest benefit predicates are selected using Algorithm 10. Here,

suppose the relative query frequency of an incoming query q is The access

frequency of pi used q is fi = f^.

When a user query is issued, and it cannot be answered using a partition

but a materialized view, F, View Manager will calculate the predicate benefits

to see whether there is any change in the top m predicates associated with

by taking both of the predicates used in q and V into account. If there is any

change in the top m predicates, View Manager will repartition V using the new m

predicates. Otherwise, View Manager will not repartition The repartitioning

algorithm is shown in Algorithm 11.

The query results are stored in Partition Pool as materialized views, when

there is free space. When Partition Pool is full, a replacement policy is adopted

to store the beneficial partitions. In other words, an incoming query result is not

stored in the pool by default, and is stored only if it is beneficial. The commonly

used caching techniques like LRU and FIFO are not suitable for handling O L A P

6.4 A New Dynamic Predicate-based Partitioning Approach 107

Algorithm 11 Repartitioning
Input: a query {qy) and its corresponding materialized view {V)]

1： begin

2: Let L hold the m highest predicates for F;

3: Let V the m highest predicates used in V, (selected by Algorithm 10);

4： if L / L' then
5: remove all existing partitions for V;
6: generate new minterm predicates;
7: delete infeasible minterms;
8: repartition V using the new minterm predicates.
9： end if

queries, because O L A P queries are group-by queries in nature, and the derived-

from relationships cannot be easily managed by LRU and FIFO. Thus, strategies

similar to [45] are used in the system. Two goodness measure, SFF and SPF, are

defined to evaluate which partition can be stored in Partition Pool.

• Small Partition First (SFF): The intuition behind this approach is that

larger partitions are more likely to be hit by a future query. A larger

partition implies fewer number of partitions stored in Partition Pool.

Fewer number of partitions will reduce the overheads used in Partition

Advisor and View Manager. Query frequency does not need to take into

account in this strategy. However, if a larger partition is not a hot access

region，it may waste the space and slow down the whole query response

time as other hot queries have to access the base table. Let Ri denote a

partition. The goodness of Ri is measured by its size below.

Goodness(Ri) = I 丑i

6.5 A Performance Study 108

• Small Penalty First (SPF): In this strategy, query frequency, query pro-

cessing time and partition size are taken into consideration. Let Ri denote

a partition. The goodness of Ri is defined as:

GoodnessW)=仏 ^ 二 ⑷

where JR. is the query frequency of accessing Ri, qcost(Ri) is the cost of

recomputing Ri if it is removed, and \Ri\ is the partition size. Note the

recomputing cost, qcost{Ri) is simply estimated using Algorithm 9 when

Ri is absent.

6.5 A Performance Study

All of the experiments are conducted on a Sun Blade/1000 workstation with

a 750MHz UltraSPARC-Ill C P U running Solaris 2.8. The workstation has a

total physical memory of 512M. W e employ the TPC-H^ benchmark dataset, and

conduct the testing using IBM DB24 version 7.1.

The TPC-H benchmark is a decision support benchmark for ad-hoc queries.

It consists of eight separate and individual tables. The tables and relationships

between columns of these tables are shown in Figure 6.4. Two parts of TPC-H

schema are used in the testing.

• Small-Schema: For testing feasibility, query locality and the effectiveness

of disk size, 9 attributes in the part table are used. The total number of

^http://www.tpc.org
''http://www-3.ibm.com/software/data/iminer/fordata/

http://www.tpc.org
http://www-3.ibm.com/software/data/iminer/fordata/

6.5 A Performance Study 109

S , (PS-丨) 广 s(O-)
I » partkey LIneitem (L_) oderkey

name ~
• suppkey orderkey custkey -

mfgr ~

availqty • p a r t k e y _ _ oderstatus

— supplycost suppkey ^ I p r i c e

— I comment 丨― m b e r °derdate
quantity orderpriority

container nation (N_) extenderprice shippriority

姻丨 price |n 如 。 — — — discount co i ^en t

comment name ^

customer (C_)

supplier (S_) regionkey returntlag | custkey | _ _

suppkey | c 。 m _ n t _ _ 丨 inestatus ~

name shipdate address

address 「0on (R _) _ commitdate . nationkey
regionkey

nationkey receiptdate phone
name

phone shiplnstruct accbal
comment

acctbal shipmode mktsegment

comment comment comment

Figure 6.4: The TPC-H schema.

tuples in the part table is 200,000 and its size is about 35MB, as designed in

TPC-H benchmark. The part table describe the parts made by a particular

manufacturer, its size, brand, type and retailprice.

• Large-Schema: For testing scalability, all the 8 tables are joined with all

attributes in the TPC-H schema. The total number of tuples is 6,000,000

and its size is about 3,350MB.

6.5 A Performance Study 110

6.5.1 Performance Metrics

In order to evaluate the performance of the predicate-based partitioning approach,

two performance metrics are used: average query processing time and cost saving

ratio.

• average query processing time: it is the average query processing costs

over n randomly selected queries.

• Cost Saving Ratio (CSR) [21]: it measures the results as follows.

CSR 二 • wcost{qi) - cost(qi) 乂 1

~ wcost(qi) n

where cost(qi) is the query processing cost using partitions and wcost(qi) is

the query processing cost using non-partitions, that is using the base tables

in the data warehouse.

6.5.2 Feasibility Studies

In this experiment, the feasibility of the predicate-based partitioning approach is

investigated by using the small-schema of 8 dimensions and a measure (retailprice).

Seven different queries templates^ are designed with respect to each vertex in the

datacube. For each query template, at least 10 queries are randomly generated

using the TPC-H qgen program. As a result, 70 different O L A P queries are is-

sued with randomly generated predicates as well as randomly query frequency.

The sequence of these 70 queries are randomly determined.

5No queries access the empty group-by clause vertex in the datacube.

6.5 A Performance Study 111

The predicate-based partitioning approach is compared with an implemen-

tation of chunked-file [21] in the relational database system, IBM DB2. Partition

Pool is assumed to be large enough to store the root vertex (the largest mate-

rialized view) in the datacube. In fact, it is about 21% of the base table. The

assumption is made for the following three reasons. First, all queries can be an-

swered using the largest materialized view. Second, we can focus on feasibility

analysis of the partitioning technique, and ignore the effectiveness of replacement

policies in testing. Third, we can minimize the workload in Partition Advisor,

because there are only a few partitions. When testing the 70 queries one by

one, two highest beneficial predicates are selected to generate minterms (m = 2).

The materialized view will be dynamically divided into 4 partitions based on the

two predicates. The materialized view would be repartitioned dynamically, if

necessary.

The chunked-file approach uses a predetermined chunk size statically. In

this testing, the materialized views are pre-partitioned into k even partitions to

simulate the chunk-based [21] in R O L A P environments. Three k values are tested:

4-chunk, 9-chunk and 25-chunk. The reason why there is no comparison with

DynaMat is that most O L A P queries cannot be efficiently answered by DynaMat

due to the restrictions on the query types.

Figure 6.5 shows that dynamic predicate-based partitioning approach (PP)

outperforms the static pre-partitioning significantly in terms of average query

processing time in a relational database. It is totally not surprised. The reason

is that the dynamic partitioning learns from predicates and attempts to reparti-

tion the materialized views in an eager manner. The incoming queries are most

likely to be answered by a predicate-based partition. Consequently, the query

6.5 A Performance Study 112

processing cost must be reduced.

2.9
•r? • PP —
S 2.8 • 4-chunk • • '-_ ,-
也 ” _ • 9-chunk —
I 2.7 • H g n ^ B 25-cluink — -

I ：：：： •

r .
3 2.2 • lll^H

•
1.9

Query Pattern

Figure 6.5: Static prepartitioning v.s. dynamic predicate-based partitioning

6.5.3 Query Locality

To study the query locality, two sets of experiments are conducted based on data

access locality and hierarchical access locality using the small-schema:

• Data Access Locality: Most users have their own preferences which may

last for a while. That is, they may be interested in one part of data. For

instance, a Hong Kong stock analyst is most likely and often to query the

Hong Kong stocks rather than all stocks in the world. To simulate the data

access locality, a certain percentage of the database is designed as a hot

region such that the queries are most likely to access the designated part of

the database.

-H60: 60% of the queries access 20% of the datacube.

-H70: 70% of the queries access 20% of the datacube.

6.5 A Performance Study 113

-H80: 80% of the queries access 20% of the datacube.

—H90: 90% of the queries access 20% of the datacube.

The rest of queries are uniformly distributed over the database.

• Hierarchical Access Locality: Proximity queries are used to model hi-

erarchical access locality. For instance, users may be primarily interested

in the Hang Seng Index in early morning. Afterwards, they may be inter-

ested in its trend in this week, this month, or this year, based on the time

hierarchy. In this experiment, the degree of hierarchical access locality can

be tuned by varying the mix of random queries and proximity queries.

-Q60: 60% queries are proximity queries and 40% are random generated.

-Q70: 70% queries are proximity queries and 30% are random generated.

-Q80: 80% queries are proximity queries and 20% are random generated.

-Q90: 90% queries are proximity queries and 10% are random generated.

0.52 — . ~ 2.1 ~~, , ___
印 c? rr-i PP ̂ ―

0.5 • • 里 2 . 圓 DW 一 .

。.48 I I • I :

ijliJJ
H60 H70 HBO H90 H60 H70 H80 H90

Query Pattern Query Pattern

(a) Effect of varying the hot region on CSR � E^ct of varying the hot region on query
response time

Figure 6.6: Testing different data access locality patterns

6.5 A Performance Study 114

。.56 ‘ — ‘ — - n . 1.8 r ^ - ~ •

0.54- " . 國 圓 DW — -

： I 丨丨: I I :
0.48 • _ I" 1.2 . j i i i _ -

�46 I r ; : I • 1 1 :
0.44 ——I————LI “ 0.9 [圓 1 1 _ _ • ! L

Q60 Q70 Q80 Q90 Q60 Q70 Q80 Q90

Query Pattern Query Pattern

(a) Effect of varying the proximity on CSR � ^ e c t of varying the proximity on query
response time

Figure 6.7: Testing different hierarchical access locality patterns

Assume that the space available is to hold 10% of the base tables. For each

of the query patterns above, 100 queries are issued, the average query processing

time and C S R are calculated. In the following figures, PP and D W represent

the dynamic predicate-based partitioning approach and the non-partitioning ap-

proach, respectively. Figure 6.6 and 6.7 show that the dynamic predicate-based

partitioning approach exploit the locality very good. Figure 6.6 (a) shows the

performance for query pattern with a designated hot region. Note that CSR

increases with a larger hot region of the database. Figure 6.6 (b) shows the

comparison of average query processing time between predicate-based partition-

ing and non-partitioning. The dynamic predicate-based partitioning approach

can dramatically reduce the average query processing time compared with D W .

Figure 6.7 shows the performance for proximity query pattern. In Figure 6.7

(a), C S R increases sharply as the proximity percentage increases. This is be-

cause more incoming queries can be derived from the partitions. Note that Q90

6.5 A Performance Study 115

reaches the highest CSR, which denotes that the predicate-based partitioning is

favorable for roll-up queries. In Figure 6.7 (b), compared with D W , dynamic

predicate-based partitioning diminishes the average query processing time.

6.5.4 The Effectiveness of Disk Size

In this experiment using the small-schema, the disk size is varied for testing

dynamic predicate-based partitioning approach. The query pattern to be tested

is Q80. By adjusting the disk space used in Partition Pool to be 1%, 5%，10%,

15%, and 20% of the whole datacube, 100 queries with SFF and SPF replacement

policies are tested.

Figure 6.8 (a) shows that CSR increases while the cache size increases. This

is because more partitions can reside on disk. If the disk space is too small to

store the previous results, partitions would not be effectively used to answer the

incoming queries. Most queries have to access the base tables. Therefore, CSR

becomes lower. When the disk space is large, Partition Pool can store more

partitions. Thus, CSR becomes higher with a higher hit ratio. As expected, the

average query processing cost is reduced. Both Figure 6.8 (a) and (b) show that

the replacement policy SPF outperforms SFF.

6.5.5 Scalability

In this experiment using the large-schema, Q80 query pattern is used and the disk

size is varied from 5% to 20% of the data cube, using the large schema (the schema

by joining all tables in the TPC-H schema). Recall Figure 6.8 which shows that

SPF outperforms SFF. Therefore, 100 queries are issued with SPF replacement

6.6 Summary 116

0.75 1 , , , 1 5 ,

。.7 | 1 11:4 r i ‘

: » 1 I };: I

IJIIIII
1% 5% 10% 15% 20% 1% 5% 10% 15。/。 20%

Disk Size (% of cube size) Disk Size (% of cube size)

(a) Effect of varying the disk size on CSR � E^ect of varying the disk size on query pro-
b cessing time

Figure 6.8: A comparison of SFF and SPF on varying the disk size

policy. Figure 6.9 (a) shows that CSR increases as disk size increases due to

the fact that a larger disk size can reside more partitions. Figure 6.9 (b) shows

the difference of the average query processing time between using the predicated-

based partitioning approach and the non-partitioning approach. One could see

that the dynamic predicated-based partitioning approach can dramatically reduce

the average query processing cost.

6.6 Summary

This chapter focuses on ROLAP, and a new dynamic predicate-based partition

materialized view management approach is proposed for caching O L A P queries in

a relational multidimensional database. User predicates is used to partition views

instead of using a predetermined threshold to pre-partition views. Based on the

user predicates, the materialized views are partitioned into horizontal fragments,

6.6 Summary 117

0.5 ‘ ‘ 一 咖 — ~

0.45- 卜 — I -

。4 . !> 24。. 画 •

§ 0.35 • •塁20 0 讓 謹 議 匪 -

：―——lylJJi
5% 10% 15% 20% 5% 10% 15% 20%

Disk Size (% of cube size) Disk Size (% of cube size)

(a) Effect of varying the disk size on CSR (匕）E^ct of varying the disk size on query pro-
cessing time

Figure 6.9: Effect of varying the disk size

which allows fine granularity caching as well as coarse caching. The approach can

dynamically materialize the incoming query results and exploit them for future

reuse. The experimental results show that predicate-based partition exhibit high

query locality, and outperform the pre-partitioning approach in terms of ROLAP.

The system can effectively monitor the incoming query predicates and de-

cide whether or not to repartition the materialized view, so as to serve the future

user queries. The replacement policy is a critical factor for utilizing the disk space

during the materialized view management. Moreover, when dynamic predicate-

based partitioning approach is used, SPF is recommended as an replacement policy

rather than SFF, because the former one always outperforms the latest one in such

situation.

Chapter 7

Conclusions and Future Work

In this thesis, a research problem of maintenance cost view selection problem

have been identified and formalized. First, four existing heuristic algorithms:

A*-heuristic, inverted-tree greedy, two-phase greedy and integrated greedy have

been re-examined to provide readers with insights on the qualities of these heuris-

tic algorithms. Experimental results show that heuristic algorithms can provide

optimal or near optimal solution in a multidimensional data warehouse environ-

ment where the update cost and update frequency of any ancestor of a vertex

must be greater than or equal to the update cost and update frequency of that

vertex, respectively. Compared with the other three greedy algorithms, inverted-

tree greedy reached the highest query processing cost and view selection time.

A*-heuristic cannot guarantee to achieve an optimal solution always and is not

scalable. However, the two-phase greedy and the integrated greedy are scalable.

At the mean time, a new evolutionary algorithm is designed for the mainte-

nance cost view selection problem. A revised stochastic ranking technique is the

first time to be adopted to solve this specific problem and it works very success-

118

119

fill. The new evolutionary algorithm has been evaluated against both heuristic

and the other evolutionary algorithms. The experimental results show that the

algorithm provides a significantly better solutions than the existing algorithms in

terms of minimization of query processing cost and feasibility.

To solve dynamic view management problem, a new dynamic predicate-

based partition materialized view management approach is proposed for caching

O L A P queries in a relational multidimensional database (ROLAP) environment.

Focus on ROLAP, users' predicates are used to partition materialized views

into horizontal fragments which allows fine granularity caching as well as coarse

caching. The approach can dynamically materialize the incoming query results

and exploit them for future reuse. The experimental results show that predicate-

based partition exhibits high query locality.

Since the replacement policy is a critical factor for utilizing the caching

space for dynamic view selection problem. In the future, we would like to design

a feasible replacement policy to improve the performance of the dynamic view

selection problem.

Bibliography

[1] F. N. Afrati, C. Li, and J. D. Ullman. Generating efficient plans for queries using
views. In Proceedings of the 27th ACM SIGMOD international conference on
Management of data, 2001.

[2] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakr-
ishnan, and S. Sarawagi. On the computation of multidimensional aggregates. In
Proceedings of the 22nd International Conference on Very Large Data Bases, pages
506-521, 1996. ‘

[3] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of materi-
alized views and indexes in sql databases. In Proceedings of the 26th International
Conference on Very Large Data Base, pages 496 — 505, 2000.

[4] E. Baralis, S. Paraboschi, and E. Teniente. Materialized views selection in a
multidimensional database. In Proceedings of the 23rd International Conference
on Very Large Data Bases, pages 156-165, 1997.

[5] A. Berson and S. J. Smith. Data warehousing, data mining, and OLAP. McGraw-
Hill, 1997.

[6] J. C. Bezdek. What is computational intelligence? Computational Intelligence
Imitating Life (appearing in [87]), pages 1-12, 1994.

[7] S. Chaudhuri and U. Dayal. Data warehousing and olap for decision support. In
Proceedings of the 23rd ACM SIGMOD International Conference on Management
of Data, 1997.

[8] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap technology.
ACM SIGMOD International Conference on Management of Data, 26(1), 1997.

[9] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries
with materialized views. In Proceedings of the 11th Int. Conference on Data En-
gineering, pages 190-200, 1995.

[10] S. Chaudhuri and K. Shim. An overview of cost-based optimization of queries with
aggregates. Data Engineering Bulletin, 18(3):3-9，1995.

120

Bibliography 121

[11] R. Chirkova, A. Y. Halevy, and D. Suciu. A formal perspective on the view
selection problem. In Proceedings of the 27th International Conference on Very
Large Data Base, pages 59-68，2001.

[12] C.-H. Choi, J. X. Yu, and G. Gou. What difference heuristics make: Maintenance-
cost view-selection revisited. In Proceedings of the 3rd International Conference
on Web-Age Information Management, pages 247-258, 2002.

13] C.-H. Choi, J. X. Yu, and H. Lu. Dynamic materialized view management base
on predicates. In Proceedings of the 5th Asia Pacific Web Conference (APWEB),
pages 583-594, 2003. ‘

14] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggregate queries using views.
In Proceedings of the 13th International Conference on Principles of Database
Systems, pages 155-166, 1999.

[15] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algorithms for
deferred view maintenance. ACM SIGMOD Record, 25(2):469-480, 1996.

[16] G. Colliat. Olap, relational, and multidimensional database systems. A CM SIG-
MOD Record, 25(3):64—69, 1996.

[17] O. Council. Olap and olap server definitions. In
http://www.olapcouncil.org/research/glossaryly.htm, 1997.

[18] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, and M. Tan. Semantic data
caching and replacement. In Proceedings of the 22nd International Conference on
Very Large Data Bases, pages 330—341, 1996.

[19] M. F. de Souza and M. C. Sampaio. Efficient materialization and use of views in
data warehouses. ACM SIGMOD Record, 28(l):78-83, 1999.

20] P. Deshpande and J. F. Naughton. Aggregate aware caching for multi-dimensional
queries. In Processings of the 7th International Conference on Extending Database
Technology, pages 167-182, 2000.

[21] P. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton. Caching mul-
tidimensional queries using chunks. In Proceedings of the 24th ACM SIGMOD
International Conference on Management of Data, pages 259-270, 1998.

[22] C. 1. Ezeife. A uniform approach for selecting views and indexes in a data ware-
house. In Proceedings of the 2nd International Database Engineering and Appli-
cations Symposium (IDEAS '97), page 110, 1997.

[23] C. I. Ezeife. Selecting and materializing horizontally partitioned warehouse views.
Data and Knowledge Engineering, 36(2), January 2001.

[24] H. Gabow. Implementation of Algorithms for Maximum Matching on Nonbipartite
Graphs. PhD thesis, Stanford University, 1973.

http://www.olapcouncil.org/research/glossaryly.htm

Bibliography 122

[25] J. Goldstein and P.-A. Larson. Optimizing queries using materialized views: A
practical, scalable solution. In Proceedings of the 27th ACM SIGMOD Interna-
tional Conference on Management of Data, 2001.

26] G. Gou, J. X. Yu, C.-H. Choi, and H. Lu. An efficient and interactive a*-algorithm
with pruning power: Materialized view selection revisited. In Proceedings of the 8th
International Conference on Database Systems for Advanced Applications (DAS-
FA A), page 231, 2003.

27] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational ag-
gregation operator generalizing group-by, cross-tab, and sub-totals. In Proceedings
of the 12th International Conference on Data Engineering, pages 152—159, 1996.

[28] A. Gupta, H. V. Jagadish, and I. S. Mumick. Data integration using self-
maintainable views. In Proceedings of the 5th Extending Database Technology,
pages 140-144, 1996. ‘

[29] A. Gupta and I. S. Mumick. Maintenance of materialized views: Problems, tech-
niques, and applications. IEEE Data Eng. Bulletin, Special Issue on Materialized
Views and Data Warehouse, 18(2):3-18, 1995.

[30] A. Gupta and I. S. Mumick. Materialized Views: Techniques, Implementations,
and Applications. The MIT Press, 1999.

[31] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incremen-
tally. ACM SIGMOD Record, 22(2):157-166, 1993.

[32] A. Gupta, S. Sudarshan, and S. Vishwanathan. Query scheduling in multi query
optimization. In Proceedings of the 5th International Database Engineering and
Applications Symposium (IDEAS ,01), 2001.

[33] H. Gupta. Selection of views to materialize in a data warehouse. In Proceedings
of the 6th International Conference on Database Theory, pages 98—112, 1997.

[34] H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index selection for
OLAP. In Proceedings of the 13th International Conference on Data Engineering,
pages 208-219, 1997. ‘

[35] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for
OLAP. In Proceedings of the 13th International Conference on Data Engineering,
pages 208-219, 1997. ‘

[36] H. Gupta and I. S. Mumick. Selection of views to materialize under a maintenance
cost constraint. In Proceedings of the 7th International Conference on Database
Theory, pages 453-470, 1999.

[37] M. Gyssens and L. V. S. Lakshmanan. A foundation for multi-dimensional
databases. In Proceedings of 23rd International Conference on Very Large Data
Bases, pages 106-115, 1997.

Bibliography 123

[38] A. Y. Halevy. Theory of answering queries using views. ACM SIGMOD Record
29(4):40-47, 2000. ’

[39] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann, September 2000.

[40] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes
efficiently. In Proceedings of the 22nd ACM SIGMOD International Conference
on Management of Data, pages 205-216, 1996.

[41] W. H. Inmon. Building the Data Warehouse. John Wiley, 2002.

[42] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan. An adaptive peer-
to-peer network for distributed caching of olap results. In Proceedings of the 28th
i4 CM SIGMOD International Conference on Management of Data, pages 25-36
2002. ‘

[43] P. Kalnis and D. Papadias. Proxy-server architectures for OLAP. ACM SIGMOD
Record, 30(2):367-378, 2001.

[44] R. Kimball. The Data Warehouse Toolkit. John Wiley k Sons, 1996.

[45] Y. Kotidis and N. Roussopoulos. Dynamat: A dynamic view management system
for data warehouses. In Proceedings of the 25th ACM SIGMOD International
Conference on Management of Data, pages 371-382, 1999.

[46] W. J. Labio, R. Yemeni, and H. Garcia-Molina. Shrinking the warehouse update
window. ACM SIGMOD Record, 28(2):383—394’ 1999.

[47] M. Lee and J. Hammer. Speeding up materialized view selection in data warehouses
using a randomized algorithm. International Journal of Cooperative Information
Systems, 10(3):327-353, 2001.

[48] A. Levy. Answering queries using views: A survey. The VLDB Journal, 10(4):270
-294, 2001.

[49] A. Y. Levy, A. 0. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using
views. In Proceedings of the IJ^th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 95-104, 1995.

[50] C. Li and X. S. Wang. A data model for supporting on-line analytical processing.
In Processings the 5th International Conference on Information and Knowledge
Management, pages 81-88, 1996.

[51] W. Liang, H. Wang, and M. E. Orlowska. Materialized view selection under the
maintenance time constraint. Data and Knowledge Engineering, 37(2), May 2001.

[52] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained pa-
rameter optimization problems. Evolutionary Computation, 4(l):l-32, 1996.

Bibliography 124

[53] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized view selection
and maintenance using multi-query optimization. In Proceedings of the 27th ACM
SIGMOD International Conference on Management of Data, pages 249-260, 2001.

[54] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data cubes and
summary tables in a warehouse. In Proceedings of the 23rd ACM SIGMOD Inter-
national Conference on Management of Data, pages 100 — 111, 1997.

[55] P. O'Neil and G. Graefe. Multi-table joins through bitmapped join indices. ACM
SIGMOD Record, 24(3):8-ll, 1995.

[56] P. O'Neil and D. Quass. Improved query performance with variant indexes. ACM
SIGMOD Record, 26(2):38-49, 1997.

[57] M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems, Second
Edition. Prentice Hall, 1999.

[58] C.-S. Park, M. H. Kim, and Y.-J. Lee. Rewriting OLAP queries using materialized
views and dimension hierarchies in data warehouses. In Proceedings of the 17th
International Conference on Data Engineering, pages 515-523, 2001.

[59] R. Pottinger and A. Y. Levy. A scalable algorithm for answering queries using
views. In The VLDB Journal, pages 484-495, 2000.

[60] S. G. Qiu and T. W. Ling. View selection in OLAP environment. In Proceedings of
the 11th International Conference on Database and Expert Systems Applications,
pages 447-456, 2000. ‘

61] D. Quass, A. Gupta, 1. S. Mumick, and J. Widom. Making views self-maintainable
for data warehousing. In Proceedings of the Fourth International Conference on
Parallel and Distributed Information Systems, pages 158-169, 1996.

[62] J• Rao and K. A. Ross. Reusing invariants: a new strategy for correlated queries. In
Proceedings of the 24th ACM SIGMOD international conference on Management
of data, pages 37-48, 1998.

[63] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance and
integrity constraint checking: trading space for time. ACM SIGMOD Record,
25(2):447-458, 1996.

[64] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algo-
rithms for multi query optimization. ACM SIGMOD Record, 29(2):249-260, 2000.

[65] T. P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary
optimization. IEEE Transactions on Evolutionary Computation, 4(3):284-294,
September Sept. 2000.

Bibliography 125

[66] P. Scheuermann, J. Shim, and R. Vingralek. Watchman : A data warehouse
intelligent cache manager. In Proceedings of the 22nd International Conference on
Very Large Data Bases, pages 51-62, 1996.

[67] H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, Inc., 1995.

[68] T. K. Sellis. Multiple-query optimization. ACM Transactions on Database Sys-
tems, 13(l):23-52, 1988.

[69] J. Shanmugasundaram, U. M. Fayyad, and P. S. Bradley. Compressed data cubes
for OLAP aggregate query approximation on continuous dimensions. In Proceed-
ings of the 5th Knowledge Discovery and Data Mining, pages 223-232, 1999.

[70] A. Shukla, P. Deshpande, and J. F. Naughton. Materialized view selection for
multidimensional datasets. In Proceedings of the 24th International Conference on
Very Large Data Bases, pages 488-499, 1998.

[71] A. Shukla, P. M. Deshpande, and J. F. Naughton. Materialized view selection for
multi-cube data models. In Proceedings of the 7th International Conference on
Extending Database Technology, pages 269-284, 2000.

[72] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy. Answering queries with
aggregation using views. In Proceedings of the 22nd International Conference on
Very Large Data Bases, pages 318-329, 1996.

[73] D. Theodoratos and T. Sellis. Data warehouse configuration. In Processings of the
23rd International Conference on Very Large Data Bases, pages 318-329, 1997.

[74] D. Theodoratos and T. Sellis. Dynamic data warehouse design. In Proceedings of
the 1st International Conference on Data Warehousing and Knowledge Discovery,
(DaWaK，99), pages 1 - 10, 1999. ，

[75] P. Vassiliadis and T. Sellis. A survey of logical models for olap databases. ACM
SIGMOD Record, 28(4):64-69, 1999.

[76] J. Widom. Research problems in data warehousing. In Proceedings of the 4th
International Conference on Information and Knowledge Management, pages 25-
30, 1995.

[77] M.-C. Wu. Query optimization for selections using bitmaps. ACM SIGMOD
Record, 28(2):227—238, 1999.

[78] J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design in
data warehousing environment. In The VLDB Journal, pages 136—145’ 1997.

[79] J. Yang, K. Karlapalem, and Q. Li. Tackling the challenges of materialized view
design in data warehousing environment. In Proceedings of the 7th International
Workshop on Research Issues in Data Engineering, pages 0-, 1997.

Bibliography 126

[80] J. X. Yu and H. Lu. Hash in place with memory shifting: Datacube computation
revisited. In Proceedings of the 15th International Conference on Data Engineering,
page 254, 1999.

[81] J. X. Yu and H. Lu. Multi-cube computation. In Proceedings of the 7th Interna-
tional Conference on Database Systems for Advanced Applications, pages 126-133,
2001.

[82] J. X. Yu, X. Yao, C.-H. Choi, and G. Gou. Materialized view selection as con-
strained evolutionary optimization. IEEE Transactions on Systems, Mans, and
Cybernetics on technologies promoting computational intelligence, openness and
programmability in networks and Internet services, 2003.

[83] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and M. Urata. Answering
complex sql queries using automatic summary tables. In Proceedings of the 26th
ACM SIGMOD international conference on Management of data, pages 105-116,
2000.

[84] C. Zhang, X. Yao, and J. Yang. An evolutionary approach to materialized view
selection in a data warehouse environment. IEEE Transactions on Systems, Man
and Cybernetics, Part C: Applications and Reviews, 31(3):282—294, Aug. 2001.

[85] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorith for
simultaneous multidimensional aggregations. In Proceedings of the 23rd ACM-
SIGMOD International Conference on Management of Data, pages 159-170, 1997.

[86] Y. Zhao, P. M. Deshpande, J. F. Naughton, and A. Shukla. Simultaneous opti-
mization and evaluation of multiple dimensional queries. In Proceedings of the 24th
ACM SIGMOD international conference on Management of data, pages 271-282,
1998.

[87] J. M. Zurada, R. J. M. II, and C. J. Robinson. Computational Intelligence Imitating
Life. IEEE Press, 1994.

m

CUHK L i b r a r i e s

•aMD771SE

