
Benedikt kämpgen

 Flexible Integration and Efficient Analysis
of Multidimensional Datasets from the Web

Fl
ex

ib
le

 In
te

gr
at

io
n

an
d

E
ffi

ci
en

t A
na

ly
sis

 o
f

M
ul

tid
im

en
sio

na
l D

at
as

et
s f

ro
m

 th
e

W
eb

Be
ne

di
kt

 k
äm

pg
en

Benedikt Kämpgen

FlexiBle integration and eFFicient analysis
oF MultidiMensional datasets FroM the WeB

Flexible integration and efficient analysis
of Multidimensional datasets from the Web

by

Benedikt Kämpgen

dissertation, Karlsruher institut für technologie (Kit)
Fakultät für Wirtschaftswissenschaften, 2015

tag der mündlichen Prüfung: 25. Februar 2015
referenten: Prof. dr. rudi studer, Prof. dr. axel Polleres

Print on Demand 2015

ISBN 978-3-7315-0379-8
DOI 10.5445/KSP/1000047013

This document – excluding the cover – is licensed under the
Creative Commons Attribution-Share Alike 3.0 DE License

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):

http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

Flexible Integration and Efficient
Analysis of Multidimensional

Datasets from the Web

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

bei der Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte
DISSERTATION

von

Dipl.-Inform. Benedikt Kämpgen

Tag der mündlichen Prüfung: 25. Februar 2015
Referent: Prof. Dr. Rudi Studer

Korreferent: Prof. Dr. Axel Polleres
Karlsruhe August 2, 2015

Abstract

Numeric data such as statistics and from sensors are increasingly published on the Web
and – if brought together for comparisons and calculations – can answer important
questions in science, industry, and politics. For instance, natural scientists compare
rainfall values from sensors with hydrological estimations documented in a semantic
wiki; financial analysts evaluate companies based on comparisons between KPIs from
balance sheets filed with the SEC and daily stock market values from Yahoo! Finance;
and citizens want to explore the GDP per Capita of different countries, independent
from information sources such as Eurostat, the IMF, and the World Bank.

However, the integration of datasets for analysis is difficult. First, heterogeneities re-
main a problem since publishers use different dimensions to describe numeric data,
several identifiers for common entities, as well as differing levels of detail, units, and
formulas. Second, aggregation and filtering operations, a varying selectivity of queries,
and chains of joins over a growing number of possibly large datasets together with
background information from the Web render analytical queries more complex than
typical data analysis settings.

The broad acceptance of the RDF Data Cube Vocabulary (QB) for publishing multidi-
mensional datasets and of Online Analytical Processing (OLAP) interfaces for intuitive
and interactive knowledge discovery call for a uniform view – the Global Cube – over
available numeric data for exploratory analysis. This work presents four complemen-
tary contributions to query the global cube:

1. A mapping between the common model of data cubes and QB to use existing
OLAP engines for efficient queries over datasets from the Web.

2. An algorithm to evaluate OLAP operations over data cubes using SPARQL queries
over QB datasets for more flexible data integration based on RDF stores.

3. A method to optimise analytical query processing via materialised aggregate
views in RDF, including an evaluation with a realistic benchmark.

4. A method to declaratively describe complex relationships between datasets for
flexibly increasing the number of answers from the global cube.

The contributions are applied to three scenarios in the areas of water resources manage-
ment, company performance analysis, and Open Government Data exploration.

Acknowledgements

During these years working on my thesis at AIFB I always had the certainty of being
able to talk to and to get help from several people. Without listing everybody by name,
I wish to thank these important persons in my life.

I am very grateful to my supervisor Rudi Studer for always having an open ear and
nourishing a working atmosphere that is inspiring and challenging without pressure;

to Andreas Harth for teaching me a lot about scientific and technical work, and for
endless fruitful and constructive discussions;

to Basil Ell for his friendliness and openness about work, life, and everything;

to Roland Stühmer and Andreas Kämpgen for providing fresh views on my thesis;

to Axel Polleres for his interest and advise;

to Denny Vrandečić, Markus Krötzsch and many more for creating and maintaining the
best knowledge management tool ever, Semantic MediaWiki;

to Daniel Herzig, Günter Ladwig, Andreas Wagner, Martin Junghans, Elena Simperl,
Achim Rettinger, and all my other former and current colleagues at the Rudiverse for
encouragement and support as well as diversity and diversion;

to Andreas Kleinberg, Alikali Fofana, Mark Menninger, Thomas Knäulein, Felix Steeger,
and all my other friends, who stayed in touch;

to David Riepl, Yury Katkov, Karsten Hoffmeyer, Daniel Sommer, Seán O’Riain, and
all other people I worked with on papers, events and projects for being fun and help at
the same time;

to the BMBF, the DFG, and the European Union for making projects possible such as
SMART, ACTIVE, PlanetData, SFB, Software Campus, and LD-Cubes;

to my family Christiane, Eckhart, Florian, Andreas, Gisela, Christel, Anni, Mathias,
and several more for their encouragement and for always being there for me;

and in particular, to my wife Stefanie for her self-sacrificing support and love.

Thank you very much.

Contents

Abstract . i

Acknowledgements . iii

List of Figures . ix

List of Tables . xiii

List of Listings . xv

1 Introduction . 1
1.1 Numeric Data from the Web . 1
1.2 Overall Research Problem and Approach 3
1.3 Research Questions and Contributions 8
1.4 Design Science Method . 11
1.5 Previous Publications . 13
1.6 Organisation of this Thesis . 15

2 Scenarios . 17
2.1 Sharing Research Data for Water Resources Management (SMART) . . 17
2.2 Integrating Finance Data for Company Performance Analysis (XBRL) . 21
2.3 Exploring Governmental Statistics from the Web (OGD) 24
2.4 Requirements Analysis . 26

3 Basic Definitions . 31
3.1 Multidimensional Data Model . 31
3.2 Online Analytical Processing . 40
3.3 Statistical Linked Data . 51

4 State of the Art . 61
4.1 Traditional Integration and Analysis Approaches 62
4.2 Semantic Integration and Analysis Approaches 64
4.3 High-Performance Integration and Analysis Approaches 67

Contents

5 Mapping Data Cubes and Statistical Linked Data 71
5.1 Introduction . 71
5.2 Approach: MDM-QB Mapping . 74
5.3 Evaluation . 88
5.4 Discussions and Lessons Learned . 95
5.5 Related Work . 101
5.6 Conclusions . 107

6 Executing OLAP Operations Using SPARQL 109
6.1 Introduction . 109
6.2 Approach: OLAP-to-SPARQL Algorithm 112
6.3 Evaluation . 124
6.4 Discussions and Lessons Learned . 129
6.5 Related Work . 131
6.6 Conclusions . 135

7 Query Optimisation using Materialised RDF Aggregate Views 139
7.1 Introduction . 139
7.2 Approach: RDF Aggregate Views . 141
7.3 Evaluation . 149
7.4 Discussions and Lessons Learned . 152
7.5 Related Work . 154
7.6 Conclusions . 157

8 Building the Global Cube with Complex Dataset Relationships 161
8.1 Introduction . 161
8.2 Approach: Global Cube and Conversion and Merging Correspondences 164
8.3 Evaluation . 169
8.4 Analysis of the Global Cube . 172
8.5 Related Work . 174
8.6 Conclusions . 177

9 Application and Discussion of Contributions 179
9.1 Overview . 179
9.2 SMART Approach . 185
9.3 XBRL Approach . 196
9.4 OGD Approach . 212
9.5 Discussion of Contributions . 222

10 Conclusions . 229
10.1 Summary of Results . 229
10.2 Significance of Results . 233

vi

10.3 Open Questions . 235

Contents

Appendix . 237

A Overview of Additional Information Provided on the Web 237

Bibliography . 239

Index . 255

vii

List of Figures

1.1 Illustration of overall research problem (left and right sides of figure) and
single research questions each answered by an artifact as a contribution in
the present work (middle of figure, numbered from 1 to 4). 9

3.1 Illustration of a common multidimensional data model. 33
3.2 Example star schema for Population Data Cube; represented in UML class

diagram using classes to define attributes of fact and dimension tables. . . . 39
3.3 Illustration of common single-cube OLAP operations; for each operation,

input is a cube and possibly multidimensional elements, output is a modi-
fied cube (adapted from [RMA+11]). 43

3.4 Schema of pivot table as generated by a typical MDX query; this pivot table
displays six levels of different dimensions on columns and rows. 49

3.5 Example pivot table with Employment Rate values per gender (Female,
Male, Total) in columns and per location and time in rows. 50

3.6 Illustration of most important classes of The RDF Data Cube Vocabulary
with properties (or property chains) between instances of concepts; adapted
from “Outline of the vocabulary” in specification. 54

4.1 Integration and analysis approaches over datasets from the Web, categorised
by flexibility (x-axis) and efficiency (y-axis). 61

5.1 Illustration of contribution of the MDM-QB Mapping. 71
5.2 Example of a multi-cube consisting of two implicitly overlapping data cubes. 84
5.3 UML class diagram of common multidimensional data model. 86
5.4 Architecture of Cube-to-ROLAP Prototype. 89
5.5 Screenshot of Web interface of Cube-to-ROLAP Prototype after issuing a

query over a multi-cube of two cubes. 92

6.1 Illustration of contribution of the OLAP-to-SPARQL Algorithm. 109
6.2 Pivot table requested in our COST query. 111
6.3 Data flow for OLAP queries over Statistical Linked Data using SPARQL

engine. 112

List of Figures

7.1 Illustration of RDF Aggregate Views; pre-aggregated values are stored in
the SPARQL engine; look-up of aggregated values is expected to be faster
than on-demand computation. 139

7.2 Illustration of data cube lattice of SSB data cube. 145
7.3 RDF graph illustrating RDF Aggregate View rolling up to year level with

observation instance. 147

8.1 Illustration of contribution of Complex Correspondences between statis-
tical datasets; conversion and merging relationships between datasets are
declaratively described and increase the size of the global cube. 161

8.2 Overview of integration system using conversion and merging correspon-
dences. 170

9.1 Architecture of OLAP4LD applications. 180
9.2 Diagram illustrating scenario and architecture of SMART Knowledge Base. 186
9.3 Illustration of IWRM ontology as graph with concepts and common prop-

erties between instances of concepts. 187
9.4 Screenshot of line chart from Dropedia with overview of water discharge

records in m3/h of Shorea Spring over years from SMART-DB. 192
9.5 Description of expert analysis about Shorea Spring 10-year average dis-

charge in Dropedia; discharge values are estimated to remain constant based
on measured value for earlier years. 192

9.6 Pivot table showing average and count of water discharge records in Shorea
Spring for specific years from both Dropedia and SMART-DB. 193

9.7 Flow diagram illustrating architecture of Financial Information Observa-
tion System (FIOS). 198

9.8 Illustration of modelling of finance data in FIOS; most importantly, equiv-
alence relationships exist between Total Asset fact from the SEC (top left),
opening stock quote from Yahoo! Finance (top right), and Mastercard in
DBpedia (bottom center). 200

9.9 Example screenshot in FIOS of multi-company KPI analysis of adjusted
closing price for Mastercard (top line), Visa (middle line), and Comscore
(bottom line) in industry SERVICES-BUSINESS SERVICES, NEC (SIC). . 205

9.10 Illustration of integrating SEC and Yahoo! Finance data; screenshot from
FIOS of example cross-data-sources KPI analysis of Earnings per Share
from balance sheets (bottom line) versus price per share (top line) for MAS-
TERCARD INC from stock quotes. 206

9.11 Illustration of integrating different taxonomies; example screenshot of cross-
taxonomy analysis of Total Assets for Mastercard in FIOS. 207

9.12 Linked Data browser view on total asset in 2011 for Mastercard. 207
9.13 OLAP Interface query on Total Assets over time for Mastercard. 208
9.14 OLAP Interface query on Total Assets over time for Business Services SIC. 209
9.15 Architecture of the Linked Data Cubes Explorer. 214

x

List of Figures

9.16 First step in three-step interface of LDCX; URIs for Real GDP Growth Rate
and Employment Growth are inserted as a comma-separated list. 215

9.17 Third step in three-step interface of LDCX; measures are to be displayed in
the columns, years in the rows of the pivot table. 215

9.18 Query result in three-step interface of LDCX; real GDP growth rate and
employment growth are displayed in pivot table as a basis for correlation
analysis (left and right column, column names are concatenations of dataset
URI and used aggregation function). 216

9.19 Elapsed query time in ms per query processing step for queries on datasets
ordered by increasing number of triples; loading and validating dataset
(bottom part of every bar) and generating query plan (middle part of bars)
are always shown; executing query plan (top part of bar) often is too small
to be displayed. 219

10.1 Overview of presented integration and analysis approaches over Statistical
Linked Data filling gap of combined flexibility and efficiency; black circles
refer to approaches that directly apply our contributions and are evaluated in
our experiments, grey circles refer to promising approaches made possible
with our contributions. 230

xi

List of Tables

1.1 Example multidimensional dataset with employment growth values. 2

2.1 Example decision matrix to select best water management strategy in an
area; normalised indicator values for reference IWRM scenario, business-as-
usual (BAU) scenario, and full implementation (FI) scenario in Wadi Shueib
in 2025 [Rie13, average values from Table 3.28]; the higher a numeric value
in the table, the better the performance of an IWRM scenario regarding one
specific indicator. 18

2.2 Overview of general requirements derived from the SMART, XBRL, and
OGD scenarios; with “X” we indicate requirements supported by a scenario. 27

3.1 Complementary requirements of OLTP systems and OLAP systems [KSS12,
p. 7]. 42

5.1 Performance evaluation for each experiment (Exp.) with number of datasets
(# DS), number of triples (# T), and evaluation time for each step corre-
sponding to the system architecture. 95

5.2 Preliminary mapping of OLAP and RDF query languages. 98

6.1 For every experiment, number of integrated datasets #DS, triples #T, ob-
servations #O, look-ups #LU, and average elapsed query times in sec for
loading and validating datasets (L&V), executing (MD) a certain number of
metadata queries (#MD), generating the logical query plan (LQP), generat-
ing the physical query plan (PQP), executing the physical query plan (EQP),
and total elapsed query time (T). 128

7.1 Overview of analytical query approaches investigated to support an empiri-
cal argument in favour of a specialised OLAP engine over Statistical Linked
Data. 140

7.2 Example pivot table showing the revenue (in USD) for product brands from
product category MFGR#12 and of suppliers from AMERICA. 142

7.3 Overview of approaches tested with Star Schema Benchmark (SSB), includ-
ing their main characteristics. 150

7.4 Overview of SSB queries and their performance-relevant features. 152

List of Tables

7.5 SSB evaluation results with single and total elapsed query time (s). 153

8.1 Overview of data cubes available as Statistical Linked Data in the OGD sce-
nario (in rows) with their dimensions (in columns) and dimension members
(in cells). 162

9.1 Example objects and their URIs from certain data sources in SMART. 189
9.2 Example mappings between things/entities, data sources and URIs in XBRL

approach. 199
9.3 Requirements coverage analysis with “X” indicating research contributions

(in columns) applicable to fulfil requirements (in rows). 222

xiv

List of Listings

1 Basic MDX query. 49
2 MDX query for Employment Rate example. 50

3 Example multi-cube MDX query for employment fear metric and GDP growth
rate for Germany over time in UNEMPLOY query. 91

4 Compound measure to query for employment fear metric in UNEMPLOY
query. 94

5 SPARQL query for employment fear metric and GDP growth rate for Ger-
many over time in UNEMPLOY query. 99

6 Example MDX query for cost of goods sold of specific segments of all com-
panies from single cube. 115

7 Example nested set of OLAP operations for single-cube query for cost of
goods sold of specific segments of all companies. 116

8 Example SPARQL query for single-cube query for cost of goods sold of spe-
cific segments of all companies. 118

9 Pseudocode of OLAP-to-SPARQL Algorithm. 118
10 MDX query for employment fear metric and GDP growth rate for Germany

over time in UNEMPLOY query, including drill-across over two cubes. . . . 121
11 Nested set of analytical operations for employment fear metric and GDP

growth rate for Germany over time in UNEMPLOY query, including drill-
across over two cubes. 122

12 SPARQL query for employment fear metric and GDP growth rate for Ger-
many over time in UNEMPLOY query, including drill-across over two cubes. 123

13 MDX query for cost of goods sold of specific companies over periods of time
in single-cube COST query. 125

14 Nested set of OLAP operations for cost of goods sold of specific companies
over periods of time in single-cube COST query. 125

15 SPARQL query for cost of goods sold of specific companies over periods of
time in single-cube COST query. 126

16 SPARQL query for Q2.1 in SSB benchmark. 143
17 SPARQL INSERT query to generate RDF Aggregate View for Q2.1 in SSB

benchmark. 148

List of Listings

18 SPARQL SELECT query for Q2.1 in SSB benchmark, considering the RDF
Aggregate View. 148

19 SPARQL CONSTRUCT query to evaluate MIO2EUR over GDP Components
data cube. 166

20 Example SPARQL query template to query for metadata of data cubes, used
by OLAP4LD. 183

xvi

1 Introduction

For many important questions in science, industry, and politics, numeric data such as
statistics and from sensors are available from the Web that – if integrated – provide
relevant information for the answers.

For instance, natural scientists compare rainfall values from sensors with hydrologi-
cal estimations documented in a semantic wiki. Financial analysts evaluate companies
based on comparisons between Key Performance Indicators (KPI) from quarterly bal-
ance sheets and daily stock market values from a finance platform. Also, citizens want
to explore the GDP per Capita of different countries, independent from sources such as
Eurostat, the International Monetary Fund (IMF), and the World Bank.

However, the integration of datasets for analysis is difficult due to heterogeneities and
the size of potentially interesting data. The work presents methods to increase flexibil-
ity and efficiency when using numeric datasets from the Web. In the remainder of this
introduction chapter, the integration and analysis of multidimensional datasets from the
Web is exemplified. Challenges are described, the overall research problem and ap-
proach are stated. Four research questions give rise to four contributions presented in
later chapters. Descriptions of how research has been conducted, of previous publica-
tions supporting the contributions, and of how the thesis is organised then follow.

1.1 Numeric Data from the Web

Take as a concrete example the task to confirm or oppose Okun’s law that proposes
a relationship between employment and a country’s Gross Domestic Product (GDP):
“real GDP growth and change in unemployment are negatively correlated” [BJL14].

The relevant numbers (or values) are described by relations with several independent,
mostly categorical attributes (so-called dimensions) and few dependent, mostly numeric
attributes (so-called measures) [GCB+97]. See Table 1.1 for Employment Growth num-
bers from a relation employmentgrowthdataset(Time, Geo, Sex, Em-
ployment Growth), available on the Web from Eurostat1 with attributes for the
dimensions and measures.

1http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=tps00180&lang=en, last accessed 2015-06-13.

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=tps00180&lang=en

1 Introduction

Table 1.1: Example multidimensional dataset with employment growth values.

Time Geo Sex Employment Growth
2006 AT F 2.0
2007 AT F 1.8
2006 AT M 1.5
2007 AT M 1.8
2006 UK F 1.1
2007 UK F 0.5
...

Every entity in such a multidimensional dataset is a numeric fact and contains inde-
pendent dimension values for the period in time (Time), the country (Geo), the gender
of the group of inhabitants (Sex) as well as a dependent measure value (Employment
Growth). To confirm or oppose Okun’s law, one needs to integrate this dataset with a
dataset describing the real GDP growth rate and to compute the correlation. In many
cases, however, a suitable dataset is not available for the specific task. Thus, different
datasets published at different locations on the Web need to be integrated for analytical
queries.

Integration means building a unified view that allows to query over several datasets
from the Web as if they would reside in a single database. The present work investigates
methods such as equivalence mappings and joining operations to build and query the
unified view over a large set of multidimensional datasets from the Web.

Analysis is often done in an ad-hoc fashion of “overview first, zoom and filter, then
details-on-demand” [Shn96] and allows the Extract-Visualize-Analyse loop [GCB+97]
in an interactive search for interesting patterns in datasets. Therefore, operations to se-
lect (filter) and to sum-up (aggregation) numeric values need to be executed efficiently.
This work presents methods such as materialisation and reuse of existing OLAP sys-
tems to allow domain experts – people with knowledge in a specific domain such as
hydrology but without background in computer science – for exploratory analysis of
integrated datasets.

Often, data analysis is done for selecting, understanding, and pre-processing of datasets.
On top of analytical query results, automatic analysis methods can be applied, e.g.,
multi-criteria decision analyses and time series analyses. For example, to assess Okun’s
law, one can use existing mathematical methods to evaluate whether the Real GDP
Growth Rate and the Employment Growth are correlated (e.g., using the Pearson Cor-
relation Coefficient).

Similar tasks are needed in various domains. Three examples are given in the following:
Natural scientists are interested in assessing planning alternatives in water resources

2

1.2 Overall Research Problem and Approach

management according to indicators such as for quantifying the efforts in treating waste
water. Necessary information come from datasets such as the monthly volume rate
of water flow at a specific spring from sensors2 and estimated in scientific analyses
documented in a semantic wiki3. For instance, scientists would filter for a set of springs
and aggregate to average annual discharge values as a basis for strategic decisions.

Also, business analysts are interested in a holistic view on companies such as Rayonier
Inc. Analysts compare key performance indicators (KPI) such as the total asset in
XBRL balance sheets from the SEC4 with opening stock quotes from Yahoo! Finance5.
Also, background information about companies such as from Wikipedia6 and Freebase7

are relevant. For instance, analysts would filter for companies with more than 1,000
employees and compare their average annual revenues and stock values.

As another example, given that organisations such as Eurostat, the International Mone-
tary Fund (IMF), and the World Bank make available government data, citizens can get
confirmed statistics such as the Gross Domestic Product (GDP) per Capita of European
countries by several organisations8. For instance, citizens would filter for specific indi-
cators such as the GDP Growth Rate, an Unemployment Fear metric, and the GDP per
Capita and aggregate from a regional to a national level.

The following section shows that making use of these datasets on the Web is not an
easy task for natural scientists, business analysts, and citizens. From such difficulties,
an overall research problem can then be formulated.

1.2 Overall Research Problem and Approach

The integration of multidimensional datasets from the Web for analytical queries is
difficult due to heterogeneity and size, as described in the following.

2Retrievable from http://www2.ufz.de/smarthydro/smartquery?location=AM0528&analysis object=Q, last
accessed on 2014-06-23.

3Retrievable from http://dropedia.iwrm-smart2.org/index.php/Shorea Spring 10-year average discharge,
last accessed on 2014-06-23.

4Retrievable from
http://www.sec.gov/Archives/edgar/data/52827/000119312510238973/0001193125-10-238973-xbrl.zip,
last accessed on 2014-10-16.

5Retrievable from http:
//ichart.yahoo.com/table.csv?s=RYN&a=00&b=01&c=2010&d=11&e=31&f=2010&g=d&ignore=.csv,
last accessed on 2014-10-16.

6http://en.wikipedia.org/wiki/Rayonier, last accessed on 2014-10-17.
7http://www.freebase.com/m/089vkv, last accessed on 2014-10-17.
8Retrievable from http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama aux gph&lang=en, last
accessed on 2014-10-16.

3

http://www2.ufz.de/smarthydro/smartquery?location=AM0528&analysis_object=Q
http://dropedia.iwrm-smart2.org/index.php/Shorea_Spring_10-year_average_discharge
http://www.sec.gov/Archives/edgar/data/52827/000119312510238973/0001193125-10-238973-xbrl.zip
http://ichart.yahoo.com/table.csv?s=RYN&a=00&b=01&c=2010&d=11&e=31&f=2010&g=d&ignore=.csv
http://ichart.yahoo.com/table.csv?s=RYN&a=00&b=01&c=2010&d=11&e=31&f=2010&g=d&ignore=.csv
http://en.wikipedia.org/wiki/Rayonier
http://www.freebase.com/m/089vkv
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_aux_gph&lang=en

1 Introduction

1.2.1 Heterogeneity of Datasets

The Web fosters free exchange of information on the basis of generic standards such as
HTTP and URIs. Even if using similar protocols and publishing mechanisms, the same
information may be represented differently for reasons such as varying technical envi-
ronments, instantiations of data models, policies, technical background of staff, as well
as priorities in making complete, high-quality, and self-descriptive information avail-
able. Consequently, multidimensional datasets found on the Web are heterogeneous
and difficult to integrate, as exemplified in the following.

Data is published in different formats and models: For instance, sensor data from
a water spring may be described in XML whereas research literature consists of semi-
structured text. Balance sheets are described in a specific XML schema (XBRL) whereas
stock market values come in CSV and background information in HTML. European
statistics may be published in an XML profile (SDMX) but also using other common
formats such as PC-Axis, Excel, SAS, Stata, SPSS, and the Google Dataset Publishing
Language that each only can be consumed by specific tools.

Publishers use different identifiers for the same entities to contextualise their data-
sets: For instance, sensor data may be described with a “Geo” information versus other
data with a “Location” information. Similarly, different values for the same entity
are used such as “UK” and “United Kingdom”. Also, there are no unique company
identifiers across different reporting sources, and relationships between companies are
obscure.

Numeric values carry a long information trail about the origin, the collection, and
the context needed for understanding: For instance in the natural sciences, single
values or entire datasets may be generated from different analyses by researchers and
contain micro-data directly from a sensor or estimated data from a simulation. Val-
ues and datasets may also be produced by independently developed and executed data
transformation workflows such as a conversion to RDF after a lookup on a CSV file and
a web crawl from an RDFa-embedding website. Besides such provenance information,
values and datasets may exhibit varying quality such as with respect to reliability and
accuracy.

Datasets provide information on different levels of detail: For instance, a Regional
GDP dataset9 may first need to be aggregated from a regional level (NUTS 2) with
regions such as “Shropshire and Staffordshire” to a country level (NUTS 0) with coun-
tries such as the “UK” to be compared with a dataset that serves the population only on
a country level.

Every domain or community uses specific contexts to communicate the meaning
of values: For instance, units of measurements such as “Million Euro” versus “Euro”,

9http://estatwrap.ontologycentral.com/id/tgs00004, last accessed on 2014-10-18.

4

http://estatwrap.ontologycentral.com/id/tgs00004

1.2 Overall Research Problem and Approach

different currencies, and varying definitions of units cannot be directly compared. If the
context is only informally communicated and implicitly known, there is the risk of mis-
understandings and misinterpretations. For instance, it makes a difference whether the
“Mean Discharge” of water from a spring is measured on a monthly or yearly basis.

Indicators may be compound and calculation procedures may only be implicitly
described, hidden in code or in textual descriptions: For instance, natural science
groups differently simulate, compute, or estimate indicators such as the “Waste Water
Recharge Ratio”. Similarly, relationships between financial concepts are only textually
described and semantics are limited, e.g., between “SalesRevenueNet” and “Revenues”
in the U.S. Generally Accepted Accounting Principles (US-GAAP). Financial ratios are
computed to assess the performance of companies. Platforms return different values
for important governmental statistics such as the GDP Per Capita. Also, within one
institution, the same governmental statistic can be available several times; for instance,
the GDP Per Capita may be stated in one dataset or calculated from several datasets
describing components of the Nominal GDP and the number of inhabitants.

1.2.2 Large Size and Number of Datasets

An Open Data trend can be observed in different domains. More and more platforms
such as FigShare10, DataCite11 and Pangaea12 help scientists to not only publish their
analysis results but also the raw (or also pre-processed) data for citations, reproduction,
and further analysis. As another example, the G8 Open Data Charter encourages the
publication of governmental statistics for transparency and innovation13. The increas-
ing size and number of datasets lead to various data management problems.

Single datasets are large: For instance, natural scientists may have access to sensor
data from decades. Also, public bodies are collecting millions of values within few
years as a by-product from their daily tasks that are made available through Open Data
platforms such as data.gov.uk.

The number of datasets is large: Financial analysts have access to quarterly and
yearly balance sheets for more than 8,000 companies since 2009 from the U.S. Se-
curities and Exchange Commission (SEC) as well as daily stock market values from
Yahoo! Finance. Eurostat in total makes available more than 5,000 datasets with Euro-
pean statistics14. The World Bank publishes more than 8,000 datasets15.

10http://figshare.com/, last accessed 2014-11-23.
11http://www.datacite.org/, last accessed 2014-11-23.
12http://pangaea.de/, last accessed 2014-11-23.
13https:

//www.gov.uk/government/publications/open-data-charter/g8-open-data-charter-and-technical-annex,
last accessed on 2014-10-17.

14Depending on the modelling, according to http://eurostat.linked-statistics.org/, accessed 2014-10-17.
15Depending on the modelling, according to http://worldbank.270a.info/, last accessed on 2014-10-17.

5

http://figshare.com/
http://www.datacite.org/
http://pangaea.de/
https://www.gov.uk/government/publications/open-data-charter/g8-open-data-charter-and-technical-annex
https://www.gov.uk/government/publications/open-data-charter/g8-open-data-charter-and-technical-annex
http://eurostat.linked-statistics.org/
http://worldbank.270a.info/

1 Introduction

Efficient query execution over an increasing size and number of datasets also is a prob-
lem since analytical queries involve a lot of values and require complex operations:

Possibly complex filter criteria with varying selectivity may be evaluated: For in-
stance, natural scientists may be interested in certain water springs only. Financial
analysts may want to specifically ask for companies with more than 1,000 employees.
And citizens may be interested in values of a certain country such as the UK and a
certain time period such as 2010. Complexity increases if several filter conditions are
combined and are related to external background information.

Collections of values are aggregated with possibly complex aggregation functions
or formulas: For example, queries may require a reduction of dimensionality (slice,
e.g., average total assets over the last ten years), and an aggregation to a higher level
(roll-up, e.g., from values of single companies such as Mastercard to average values of
an industry such as “Service Business, NEC” from the Standard Industrial Classifica-
tion, SIC).

Also, indicators may need to be computed from more granular figures, for instance, the
“Waste Water Recharge Ratio” in the natural sciences, financial ratios of KPIs in com-
pany assessments, and the GDP Per Capita from the Nominal GDP and the population
in Open Government Data analysis.

1.2.3 Overall Research Problem

Motivated by the challenges of heterogeneities between and large sizes and numbers of
datasets from the Web, the overall research problem investigated in this thesis is:

Overall Research Problem: How can we flexibly integrate and efficiently analyse mul-
tidimensional datasets from the Web?

This research investigates approaches to integrate and analyse heterogeneous datasets
in large numbers and sizes from the Web. Flexibility is improved if less manual work is
needed to consider new data sources in an ad-hoc fashion, if interoperability is increased
to reuse existing approaches and systems, and if solutions are applicable to different
domains and heterogeneity challenges. Efficiency is improved if query processing time
decreases, including the time for domain experts to identify, extract, transform, and
load relevant data.

Traditional integration and analysis approaches are visualisation techniques, spread-
sheets, relational database management systems, and knowledge discovery tools. They
do not focus on the integration of datasets from the Web but knowledge discovery over

6

a single pre-processed, multidimensional dataset of limited size. Current research ei-
ther focusses on building semantic or high-performance integration and analysis sys-
tems. Semantic integration and analysis systems [Har10, HHU+11, KD08] consider

1.2 Overall Research Problem and Approach

the heterogeneity of datasets but their interfaces and backends focus on metadata in-
stead of large amounts of multidimensional datasets from the Web. Examples of high-
performance systems are OLAP and Data Warehousing systems [VTBL13], NoSQL
approaches [CHH+13], and real-time integration systems [DCSW09]; they allow effi-
cient analytical query processing but for data integration of multidimensional datasets
from the Web those approaches require continuous manual work such as for designing,
implementing, and maintaining extract-transform-load (ETL) pipelines.

1.2.4 Overall Approach

This work builds on two assumptions. First, data providers increasingly publish nu-
meric datasets as Statistical Linked Data using Semantic Web technologies. Second,
domain experts are capable and willing to do exploratory knowledge discovery using
Online Analytical Processing (OLAP). In the following, reasons for the two assump-
tions are given.

Statistical Linked Data: Statistical Linked Data is referred to as multidimensional
datasets – together with related background information – published using best prac-
tices (Linked Data) and using a widely-adopted and standardised vocabulary for mul-
tidimensional datasets (RDF Data Cube Vocabulary). Statistical Linked Data already
provide an abundance of available datasets and background information16.

This thesis assumes that data providers increasingly publish multidimensional datasets
as Statistical Linked Data [KC13]. Reasons are for example: Statistical Linked Data

• are easy to publish and sufficiently generic for a wide range of different use cases;

• fulfil the need of organisations in- and outside of the public sector to publish
collected and aggregated numeric data in a standardised, machine-readable way
on the Web;

• simplify the development of applications such as data ETL pipelines consuming
datasets on the Web through standard access mechanisms (HTTP) and the use of
a schema-flexible, graph-based data model (RDF);

• and support automatic processing and integration via self-descriptive datasets and
well-defined ontologies based on logics.

16For an overview of datasets see http://wiki.planet-data.eu/web/Datasets, last accessed on 2014-10-17.

7

http://wiki.planet-data.eu/web/Datasets

1 Introduction

Online Analytical Processing (OLAP): Most interaction paradigms over Web data
such as follow-your-nose browsers, faceted-search interfaces, and query builders [Har10,
HHU+11, KD08] do not allow users to explore large amounts of numerical data. OLAP
uses a conceptual model of Data Cubes close to the way of thinking of analysts [MLT09]
and provides operations to view statistics from different angles and granularities, to fil-
ter for specific entities, and to compare aggregated measures [CCS93, CD97, PMT08].

This thesis assumes that domain experts are capable and willing to do exploratory
knowledge discovery using Online Analytical Processing (OLAP) for several reasons.
For example, OLAP provides

• intuitive and exploratory user interfaces over multidimensional datasets with pivot
tables via OLAP clients;

• a formal definition of filter and aggregation operations over data cubes that can be
optimised for efficient query processing over datasets stored in a data warehouse;

• and existing implementations of clients and engines that can be reused.

Given the two assumptions, hypotheses can be formulated that lead to research ques-
tions as described in the next section.

1.3 Research Questions and Contributions

This section describes four research questions and four contributions.

Figure 1.1 illustrates the overall research problem investigated in the present work.
There are heterogeneous multidimensional datasets published in large numbers and
sizes on the Web and available as Statistical Linked Data (right side of figure). Domain
experts use familiar OLAP tools to issue queries over a unified view – the so-called
global cube – over all multidimensional datasets from the Web (left side of figure).

From this setting, hypotheses can be formulated leading to one of four research ques-
tions illustrated in Figure 1.1 (middle of figure, numbered from 1 to 4) and described
in the following.

One hypothesis states that the functionalities of OLAP engines can be utilised. Since
widely-used for decision making in industry, many OLAP engines are developed. Each
of the existing OLAP engines translate analytical queries from domain experts to queries
over datasets stored in database management systems. Engines provide performance
optimisation such as caching and capabilities for data integration. Thus, the following
research question is formulated:
Research Question 1. How can we use existing OLAP engines for efficient query pro-
cessing over heterogeneous multidimensional datasets from the Web?

8

1.3 Research Questions and Contributions

Experts

Dataset 1

OLAP

Client

Integration and Analysis System Datasets

Dataset 2

Dataset 3

Metadata query

Analytical query
HTTP/GET

HTTP/GET
HTTP/GET

RDF/XML/CSV

...

RDF/QB
Part of

Global Cube
HTML+JavaScript

OLAP

Engine

MDM-QB

MappingDataCube

OLAP-to

SPARQL

SPARQL

query

RDF/QB

RDF

Aggregate

Views

Complex

Correspondences

RDF
RDF

1

2

3

4

SPARQL

Engine

Statistical

Linked Data

Figure 1.1: Illustration of overall research problem (left and right sides of figure) and single
research questions each answered by an artifact as a contribution in the present work
(middle of figure, numbered from 1 to 4).

This question cannot be easily answered for several reasons: Related work from re-
search and industry focusses on functionality of single engines and on automatic mul-
tidimensional modelling but not on interoperability between OLAP systems. There are
no standardised formats for sharing of data between OLAP engines. There is a seman-
tic gap between the conceptual and logical level of data models for multidimensional
datasets. Also, querying of multiple datasets from the Web leads to difficulties such as
how to identify and load necessary data as well as how to bring measures from different
datasets together.

Another hypothesis states that flexibility can be increased if existing Linked Data query
engines are used for query processing. Due to the flexible schema of RDF, such engines
are assumed to require less up-front effort to prepare both numeric data and arbitrary
background information for analysis than relational database management systems. Ex-
ample background information possibly useful to consider in an analysis include the
number of employees of a company and the language spoken in a country. SPARQL
1.1, the most current version of the RDF query language, is assumed sufficiently ex-
pressive for analytical queries and allows to query for arbitrary background information
to be displayed in analysis interfaces. The respective research question is:
Research Question 2. How can we use existing SPARQL engines for query processing
and flexible integration of multidimensional datasets from the Web?

However, this question is not easy to answer. Related work concentrates on analyti-
cal query processing using relational database management systems but not on queries
over schema-flexible RDF data from the Web. OLAP queries as issued by domain ex-
perts cannot directly be translated to SPARQL queries over Statistical Linked Data.
For example, meaningful aggregation functions and multi-level hierarchies need to be

9

1 Introduction

considered. Also, it is unknown how measures from several datasets with no explicit
overlaps can be brought together.

Even if analytical operations such as filter, aggregation, and integration can be issued
over statistics as schema-flexible RDF data using SPARQL, existing engines are as-
sumed to be less efficient than relational database management systems and to require
optimisations such as materialisation. It is assumed that an empirical argument can be
given in favour of creating a specialised OLAP engine over Statistical Linked Data.
Thus, the following research question is formulated:
Research Question 3. How can we optimise analytical query processing over multidi-
mensional datasets from the Web using aggregate views?

However, related work mainly provides answers to views over RDF data when metadata
but no numeric data is queried. Furthermore, it is unknown how to select, compute, and
store materialised views for aggregated statistics in RDF. So far, few benchmarks are
available to argue for the case of RDF in analytics scenarios.

The power of RDF lies not only in the flexible schema, but also in the self-descriptive
data with well-specified semantics. Standard Semantic Web ontologies allow to de-
scribe implicit relationships between datasets as a basis for automatic integration. One
hypothesis of the present work states that multidimensional datasets from the Web can
be integrated to one unified view, the global cube. Furthermore, if heterogeneities be-
tween datasets are reduced, it is expected that the same statistic can be confirmed by
different datasets and sources. Thus, the last research question to be addressed is:
Research Question 4. How can we increase the number of answers from the global
cube in case of complex relationships between multidimensional datasets from the Web?

However, related work concentrates on relational settings with few sources that are not
distributed on the Web. Research results on semi-automatic matching of ontologies
cannot be applied to the integration of numeric datasets. Also, relationships between
different datasets are often buried in informal descriptions, and the routines to resolve
semantic conflicts are provided in code or external background information. If aligned,
datasets and data sources may contain contradicting information and lead to a global
cube too large in size for efficient analytical queries.

For each of the four research questions the work provides a contribution in the form of
a viable artifact according to the guidelines of design science [HMPR04] (the research
approach will be described in the next section). As illustrated in Figure 1.1 (middle of
figure, numbered from 1 to 4) this work presents the following contributions:

1. The MDM-QB Mapping (Chapter 5) describes how datasets from Statistical Lin-
ked Data relate to the common conceptual model of data cubes (Multidimen-
sional Data Model, MDM) used in existing OLAP engines for integration and
query processing.

10

1.4 Design Science Method

2. The OLAP-to-SPARQL Algorithm (Chapter 6) describes how to transform ana-
lytical OLAP queries to SPARQL queries over Statistical Linked Data, including
multi-cube queries over several datasets.

3. RDF Aggregate Views (Chapter 7) suggest how to model and store pre-aggregated
numeric values for more efficient query execution. Performance is compared
with the traditional relational approach.

4. Complex Correspondences (Chapter 8) propose a syntax and semantics for con-
version and merging relationships between datasets and increase the number of
possible answers from the global cube.

The next section explains the scientific method used to answer the research questions.

1.4 Design Science Method

According to Simon [Sim96, p. 111], an important group of artificial things can be cre-
ated with a computer. The intellectual activity of an engineer in building such artifacts
using a computer is comparable with the intellectual activity of a physicians in creating
a diagnosis and prescribing a remedy for a sick patient. In contrast, Design Science
is concerned with how such artificial things created with a computer ought to be, with
devising artifacts to attain goals.

The four research questions of this thesis are investigated along design science research
guidelines [HMPR04] as described in the following:

Guideline 1: Design as an Artifact. This thesis designs artifacts to allow domain
experts to flexibly integrate and efficiently analyse multidimensional datasets from the
Web. Artifacts from this thesis are a mapping between a logical and a conceptual data
model (MDM-QB Mapping), an algorithm for translating between query languages
(OLAP-to-SPARQL), a data model for pre-aggregated numeric values (RDF Aggre-
gate Views), and a syntax and semantics for complex relationships between datasets
(Complex Correspondences).

Guideline 2: Problem Relevance. In this thesis, the challenges of integration and
analysis of datasets from the Web for domain experts are illustrated by three concrete
scenarios from different domains (natural sciences, financial data analysis, politics).
For each scenario, user requirements are derived that only can be fulfilled if challenges
in heterogeneities and amount of numeric datasets are solved. The four research ques-
tions investigate flexible and efficient solutions.

Guideline 3: Design Evaluation. Every artifact is separately evaluated in experiments
on the capability to solve challenges of heterogeneity as well as size and number of

11

1 Introduction

datasets from the Web. For that, the artifacts are implemented and executed in con-
trolled environments with given datasets and workloads. In an overall evaluation, the
applicability of the artifacts is shown along three detailed scenarios from different do-
mains.

Guideline 4: Research Contributions. This work investigates the advantages and dif-
ficulties of applying Semantic Web standards – primarily used for sharing of metadata
– for flexible integration and efficient analysis of numeric datasets from the Web. Four
complementary artifacts are presented that can be used individually or combined to
increase flexibility in building and efficiency in querying the global cube.

Guideline 5: Research Rigor. Artifacts in the present work are described such that
they can be re-implemented with a computer, and such that experiments can be re-
peated to reproduce the results. The MDM-QB Mapping is described using set notation
and a well-specified query language (SPARQL). The OLAP-to-SPARQL Algorithm is
described in pseudo-code and implemented in an Open Source Java software. The def-
inition of RDF Aggregate Views is based on Semantic Web standards, is implemented,
and compared with the relational pendant. The syntax and semantics of Complex Cor-
respondences are described using relations and the programming language Datalog.

In performance experiments, the queries, the data, as well as the software and hardware
environments are described. Implementations are published as Open Source, datasets
as Open Data.

Guideline 6: Design as a Search Process. Assuming datasets published as Linked
Data, and analysis conducted by domain experts via OLAP, there are different ap-
proaches to solve challenges of heterogeneity and size of data. Since flexibility and
efficiency are contradictory goals, a compromise needs to be found for every concrete
scenario. The four contributions presented in this work investigate different directions
for achieving a good compromise. The MDM-QB Mapping provides the foundations
for metadata, the OLAP-to-SPARQL Algorithm for analytical queries over Statistical
Linked Data. Whereas RDF Aggregate Views increase efficiency but require manage-
ment effort, Complex Correspondences increase flexibility but are costly to evaluate.
Three scenarios from different domains can benefit from these contributions.

Guideline 7: Communication of Research. The problem of integration and analysis
of datasets from the Web is illustrated for both technology- and management-oriented
readers in three scenarios. The four artifacts presented in this work are formally de-
scribed and evaluated for people with respective background in data modelling and
integration as well as query processing and optimisation. The artifacts are separately
applied and discussed along three scenarios to convince practitioners of further imple-
mentations and deployments.

12

1.5 Previous Publications

1.5 Previous Publications

The overall research problem (Chapter 1) has been discussed in a doctoral consortium
paper [Kä11]:

Benedikt Kämpgen. DC Proposal: Online Analytical Processing of Statistical
Linked Data. In 11th International Semantic Web Conference (ISWC) Doctoral
Consortium, 2011.

The contributions of this work have been peer-reviewed and published as follows.

The MDM-QB Mapping (Chapter 5) has been published in a research paper [KH11]:

Benedikt Kämpgen and Andreas Harth. Transforming Statistical Linked Data
for Use in OLAP Systems. In 7th International Conference on Semantic Systems
(I-SEMANTICS), 2011.

The OLAP-to-SPARQL Algorithm (Chapter 6), including a formal description of the
MDM-QB Mapping (Chapter 5), has been published as a revised selected paper from
the ESWC Workshop on Interacting with Linked Data [KOH12]:

Benedikt Kämpgen and Seán O’Riain and Andreas Harth. Interacting with Sta-
tistical Linked Data via OLAP Operations. In 9th Extended Semantic Web Con-
ference (ESWC) Satellite Events, 2012.

RDF Aggregate Views (Chapter 7), including a thorough evaluation and extension of
the OLAP-to-SPARQL Algorithm (Chapter 6) for query processing over large datasets
with multi-level hierarchies, have been published as a research paper [KH13]:

Benedikt Kämpgen and Andreas Harth. No Size Fits All – Running the Star
Schema Benchmark with SPARQL and RDF Aggregate Views. In 10th Ex-
tended Semantic Web Conference (ESWC), 2013.

Complex Correspondences (Chapter 8), including a formal definition of the global cube
and an extension to the OLAP-to-SPARQL Algorithm (Chapter 6) for evaluating the
Drill-Across operation, have been published as a research paper [KSH14]:

13

1 Introduction

Benedikt Kämpgen and Steffen Stadtmüller and Andreas Harth. Querying the
Global Cube: Integration of Multidimensional Datasets from the Web. In 19th
International Conference on Knowledge Engineering and Knowledge Manage-
ment (EKAW), 2014.

The contributions of the thesis have been implemented in an Open Source Java soft-
ware, OLAP4LD17. Benefits of using the RDF Data Cube Vocabulary for represent-
ing statistics have been identified in a W3C Working Group Note about use cases and
lessons of the RDF Data Cube Vocabulary [KC13].

Applications of OLAP4LD in three scenarios (Chapter 9) have been peer-reviewed and
published as follows.

The SMART Knowledge Base (Section 9.2) has been discussed in Deliverable 203 of
the SMART research project [KRH+13] and published in a workshop co-located with
the ESWC [KRK14]:

Benedikt Kämpgen and David Riepl and Jochen Klinger. SMART Research us-
ing Linked Data – Sharing Research Data for Integrated Water Resources Man-
agement in the Lower Jordan Valley. In ESWC Workshop on Semantic Publish-
ing (SePublica), 2014.

The Financial Information Observation System (Section 9.3) has been presented and
nominated as best In-Use paper at the ESWC [KWO+14]:

Benedikt Kämpgen and Tobias Weller and Seán O’Riain and Craig Weber and
Andreas Harth. Accepting the XBRL Challenge with Linked Data for Financial
Data Integration. In 11th Extended Semantic Web Conference (ESWC), 2014.

The Linked Data Cubes Explorer (Section 9.4) has been published as a demo paper at
the ESWC 2014 [KH14]:

Benedikt Kämpgen and Andreas Harth. OLAP4LD – A Framework for Building
Analysis Applications over Governmental Statistics. In 11th Extended Semantic
Web Conference (ESWC) Satellite Events, 2014.

17http://www.linked-data-cubes.org/index.php/OLAP4LD, last accessed on 2015-05-02.

14

http://www.linked-data-cubes.org/index.php/OLAP4LD

1.6 Organisation of this Thesis

1.6 Organisation of this Thesis

The remainder of the present work is structured as follows:

The next chapter (Chapter 2) introduces three scenarios from different domains (natu-
ral sciences, finance, politics) to illustrate the overall research problem of this thesis.
Each of the scenarios exhibits specific user requirements. From the specific user re-
quirements and concrete examples of heterogeneity and size of numeric data in the
scenarios, general requirements are derived that can only be solved with flexible and
efficient approaches.

Chapter 3 gives definitions needed for the understanding of this work. Statistical Linked
Data, the common conceptual model of data cubes, as well as analytical queries over
data cubes are formally introduced.

Chapter 4 gives an overview of the state of the art. The limitations of traditional inte-
gration and analysis systems as well as existing implementations of high-performance
and semantic approaches are described.

Four core chapters (Chapter 5 to Chapter 8) each investigate one of the research ques-
tions. Assuming the overall setting that publishers of datasets use Statistical Linked
Data and that domain experts are familiar with OLAP, each core chapter presents an
approach to increase flexibility and efficiency in querying a unified view of all avail-
able datasets, the global cube:

• MDM-QB Mapping (Chapter 5): allows for efficient dataset integration and
query execution using existing OLAP engines.

• OLAP-to-SPARQL Algorithm (Chapter 6): allows for flexible dataset integration
and query execution using existing SPARQL engines.

• RDF Aggregate Views (Chapter 7): allows for analytical query optimisation over
RDF using materialised aggregate views.

• Complex Correspondences (Chapter 8): allows for describing complex mappings
between datasets to increase the number of answers from the global cube.

Chapter 9 describes in an overall evaluation how the contributions of the present work
can be applied in the three scenarios to fulfil the user requirements. The chapter also
discusses how the contributions fulfil the general requirements to data integration and
analysis.

Chapter 10 gives a summary of the results and describes open questions.

Further guide to the reader. The Index contains important terms used throughout
the thesis, including possible abbreviations and acronyms. If a term is defined that is
relevant for later parts of the thesis, the term is made italic and added to the index. A

15

1 Introduction

relevant term previously defined in an earlier part of the thesis and extended in a chapter
is made italic and also added to the index.

For several parts of the work, additional information is made openly available on the
Web. The Appendix A gives short descriptions and links of the available information.

For readability reasons, in the remainder of the thesis “we” refers to the author.

16

2 Scenarios

In this chapter, we present three scenarios from different domains motivating the inte-
gration and analysis of multidimensional datasets from the Web.

The SMART scenario (Section 2.1) is about domain experts from the natural sciences
that investigate water scarcity in the Middle East. The XBRL scenario (Section 2.2)
involves business analysts that perform company assessments based on financial data.
The Open Government Data (OGD) scenario (Section 2.3) is concerned with citizens
and politicians interested in statistical indicators about European countries. For each of
the scenarios, specific user requirements are described.

We then derive domain-independent, general requirements (Section 2.4) of integration
and analysis over datasets from the Web. In later core chapters we investigate ap-
proaches to increase flexibility and efficiency in dataset integration and analysis. In a
later overall evaluation chapter (Chapter 9), we describe how the specific user require-
ments and the general requirements are solved by our contributions.

2.1 Sharing Research Data for Water Resources
Management (SMART)

Numerous regions of the world face immense pressure and competition on their nat-
ural freshwater resources1. As a critical example, in the region of the Lower Jordan
River in the Middle East, a steadily increasing population has access only to constantly
decreasing natural freshwater resources.

Decision makers such as politicians have to choose among many alternative strategies
of how to improve the situation in the Lower Jordan valley.

Different from other water resources management methods, Integrated Water Resources
Management (IWRM) considers social, economical and ecological objectives simulta-
neously when deciding on long-term strategies in a study area [AdAB00]. Scientists
and decision makers from Israel, Jordan, Palestine and Germany in the SMART project
try to establish IWRM approaches for Sustainable Management of Available Water

1http://politics.slashdot.org/story/13/02/13/1731237/nasa-huge-freshwater-loss-in-the-middle-east, last
accessed on 2014-09-23.

http://politics.slashdot.org/story/13/02/13/1731237/nasa-huge-freshwater-loss-in-the-middle-east

2 Scenarios

Resources with Innovative Technologies (SMART) for countries bordering the Lower
Jordan2.

For instance, the Jordanian Water Strategy [Rie13, see Table 3.14] has as social ob-
jective to “decrease the leakages from sewer pipes in As Salt, Fuheis and Mahis”, as
economical objective to “improve meter reading and billing accuracy to reduce admin-
istrative losses”, and as ecological objective the “implementation of Protection Zones
for the springs Azraq, Baqourria, Hazzir and Shorea”.

Table 2.1 illustrates how in IWRM the best possible water management strategy in an
area is selected. In this decision matrix a set of alternative water management strate-
gies to improve the situation in the Lower Jordan valley (IWRM scenarios: reference,
business-as-usual, and full implementation) are compared regarding multiple, partly
conflicting evaluation criteria (indicators: e.g., the “Waste Water Recharge Ratio”) cov-
ering social, economical and ecological objectives. For each IWRM scenario and indi-
cator a value is estimated from analyses and simulations; the higher a value, the better
the performance of an IWRM scenario.

Table 2.1: Example decision matrix to select best water management strategy in an area; nor-
malised indicator values for reference IWRM scenario, business-as-usual (BAU) sce-
nario, and full implementation (FI) scenario in Wadi Shueib in 2025 [Rie13, average
values from Table 3.28]; the higher a numeric value in the table, the better the perfor-
mance of an IWRM scenario regarding one specific indicator.

Objective Indicator IWRM Scenario
Reference BAU FI

Social Waste Water Treatment Ratio 0.00 0.08 0.23
Social Waste Water Recharge Ratio 0.30 0.26 0.87
Social Available Groundwater 0.04 0.12 0.41
Social Available Surface Water 0.28 0.42 0.21
Social Available Reclaimed Water 0.02 0.09 0.73
Economical Municipal Shortage 0.17 0.20 0.75
Economical Agriculture Shortage 0.38 0.56 0.60
Economical Municipal Supply Requirement 0.21 0.15 0.30
Economical Unit Cost 0.38 0.28 0.05
Ecological Environmental Water Stress 0.08 0.05 0.01

In the following, we describe the typical steps in an IWRM decision process, including
how a decision matrix is created and how the final decision is made.

Problem formulation. After initialising a decision process, decision makers define so-
cial economical, and ecological IWRM objectives that are to be optimised in a specific
region, e.g., to “increase volume of captured and treated waste water”.
2http://www.iwrm-smart2.org/, last accessed on 2014-06-16.

18

http://www.iwrm-smart2.org/

2.1 Sharing Research Data for Water Resources Management (SMART)

Domain modelling. Domain experts from social, economical and ecological sciences
define indicators to evaluate the grade of reaching an IWRM objective within a water
strategy, e.g., “Waste Water Recharge Ratio”, the ratio of untreated waste water to
natural groundwater recharge. Also, IWRM scenarios are selected. Every scenario is a
description of a development pathway towards a future state of a study area at a defined
planning horizon such as 2025. IWRM scenarios should be consistent and plausible
(internal factors, e.g., climate change) and propose implementable actions (external
factors, e.g., building a new well).

Model execution. Based on the assumptions in the domain model, experts create anal-
yses to estimate indicator values for IWRM scenarios.

For instance, the untreated waste water is estimated from inflow volumes of waste water
treatment plants and pumped sewage of cesspits; the natural groundwater recharge is
estimated from the average volume of generated waste water by one inhabitant per
month times the total population in a catchment (an area with certain water resources
and consumers).

Various data sources such as publications (e.g., the official Water Strategy of Jordan),
encyclopaedias (e.g., BMBF Water Glossary, Agricultural and Farm Systems docu-
mentation of the Food and Agriculture Organization) and basic indicator values (e.g.,
sensor records) are relevant. Also, in IWRM analyses, indicators are often calculated
or estimated based on sensor data and the simulation of complex domain models.

Multi-criteria decision analysis (MCDA). Finally, the decision makers fill a decision
matrix such as shown in Table 2.1 with values provided by the domain experts. Deter-
mining the preferable IWRM scenario from a decision matrix is a multi-criteria decision
analysis problem (MCDA). The typical MCDA approach is to ask decision makers to
assign weights to criteria (indicators) and to rank the decision alternatives (IWRM sce-
narios) with respect to the values and weights. Possible methods to compute this rank
include the Analytical Hierarchy Process (AHP) [Saa80]. The highest ranked IWRM
scenario is selected.

However, IWRM processes are collaborative and knowledge intensive: Data in the
IWRM domain is complex, often having many dimensions or leaving a long prove-
nance trail from sensors over analyses to reports; is available from distributed sources
such as research publications, dataset catalogues, and official documents; is heteroge-
neous since coming from social, economical and ecological domains; and may contain
unstructured information such as maps and free text.

To handle this information complexity, applied IWRM projects and case studies usually
use multi-thematic information systems to share data between their interdisciplinary
modelling tools. Although these systems are capable of providing raw data on the
one hand and highly aggregated model outputs on the other hand, they fail to support
collaborating scientists. As a consequence, IWRM researchers often only collaborate
informally and within small groups using email and spreadsheets. Assumptions or

19

2 Scenarios

research data between such groups are rarely shared or aligned, so that research results
are not comparable.

Therefore, in the SMART project, information technology is used to make more trans-
parent the decision process for third-parties and to define operational guidelines for
scientists contributing to IWRM processes.

First, the web-based Knowledge Management System Dropedia3 is based on wiki tech-
nology and aims at fostering collaboration among stakeholders in the SMART project.
Dropedia is open for reading by the entire IWRM community; all SMART project
members also have write access. In Dropedia, decision makers can explicitly estab-
lish decision processes and transparently decide upon and share “IWRM objectives”,
“IWRM indicators” and “IWRM scenarios”. Scientists can share and discuss informa-
tion about assumptions and preliminary research data.

Second, to archive and share climate sensor data, the SMART project provides stake-
holders Web-based access to an Oracle database (SMART-DB). SMART-DB contains
large amounts of measurements, e.g., daily precipitation data of 70 climate stations
since 1980 and borehole characteristics for more than 3000 wells in Jordan. Additional
sensor data can be imported by project members in a Web form.

To implement and simulate domain models, scientists create or import indicator val-
ues from documents or SMART-DB to the Water Evaluation And Planning software
(WEAP). To solve a decision process, decision makers create Excel sheets with IWRM
decision matrices and import them to a multi-criteria analysis tool EWRE-AHP that
is based on the Analytical Hierarchy Process (AHP) [Saa80] and computes the most
promising strategy.

The SMART scenario leads to the following user requirements: Domain experts need
to be able to identify, integrate and re-use research data from expert analyses such as
the calculation or estimation of a single value, a literature study, and complex domain
assumptions (SMART User Requirement). However, there are challenges:

Heterogeneity of Datasets. There is limited interoperability between Dropedia, WEAP,
SMART-DB, and EWRE-AHP.

Information is represented according to different data models. For instance, sensor data
from SMART-DB is available from a Web-API in HTML or XML whereas research
descriptions from Dropedia mostly are semi-structured text.

3Dropedia has been presented in a dissertation in the natural sciences [Rie13]; high-level information about
Dropedia can be found at http://semantic-mediawiki.org/wiki/Dropedia last accessed 2014-11-04;
throughout the SMART project, Dropedia was reachable at http://dropedia.iwrm-smart2.org/, last accessed
2014-08-27.

20

http://semantic-mediawiki.org/wiki/Dropedia
http://dropedia.iwrm-smart2.org/

2.2 Integrating Finance Data for Company Performance Analysis (XBRL)

Also, data sources and tools use different identifiers. For instance, the Web-API refers
to a “location” dimension whereas Dropedia uses a dimension “geo”. Similarly, “anal-
ysis objects” describing indicator values use abbreviations such as “Q” for “Water Dis-
charge”.

The relational database of SMART-DB does not store all information necessary for
understanding; datasets may have been generated from different analyses by researchers
and may contain micro-data directly from a sensor or estimated data from a simulation.
Another important information for interpretation that easily is taken for granted and not
explicitly shared are scientific units such as volume rate of water flow in m3/h.

Large Size and Number of Datasets. To use information across tools, domain experts
often need additional efforts such as manual copy-pasting of tables with tools such as
Microsoft Excel. However, processing large amounts of sensor data from the SMART-
DB is error-prone and costly with spreadsheets.

For instance, natural scientists need to select sensor data from certain springs and during
certain time frames for their analyses. Also, scientists are interested in average values
of annual water discharge of springs and the number of climate values available in the
SMART-DB.

The estimation and simulation of indicator values such as the “Waste Water Recharge
Ratio” from datasets in Dropedia and SMART-DB requires a lot of manual effort by
scientists.

In a later overall evaluation chapter (Chapter 9), we show how to overcome these chal-
lenges to fulfil the SMART user requirement.

2.2 Integrating Finance Data for Company
Performance Analysis (XBRL)

Analysts play a crucial role in the functioning of equity markets. Besides the actual
analysis, e.g., comparing key performance indicators (KPIs) such as the Gross Profit
Margin between companies, analysts spend a disproportionate amount of time with
data curation, i.e., identifying, gathering and preparing data [DdAF+10] and pursue
to minimise time spent on tedious data pre-processing tasks. The Extensible Business
Reporting Language (XBRL)4 is an XML format for financial information that is more
amenable to automatic processing than traditional financial information representations
such as PDF, HTML and text documents. Still, XBRL does not solve the problem
of data integration – e.g., of company background information, balance sheets, stock
quotes – for a holistic view on companies [OCH12]:

4http://www.xbrl.org/Specification/XBRL-2.1/REC-2003-12-31/XBRL-2.1-REC-2003-12-31+corrected-
errata-2013-02-20.html, last accessed on 2014-10-20.

21

http://www.xbrl.org/Specification/XBRL-2.1/REC-2003-12-31/XBRL-2.1-REC-2003-12-31+corrected-errata-2013-02-20.html
http://www.xbrl.org/Specification/XBRL-2.1/REC-2003-12-31/XBRL-2.1-REC-2003-12-31+corrected-errata-2013-02-20.html

2 Scenarios

• XBRL uses an XML syntax that is difficult to understand and process, e.g., due
to an extension with link bases for referencing across documents [CTG12].

• Automatically deriving information from XBRL is difficult since formal seman-
tics are limited [WTB11, Spi10]. Relationships between financial concepts, such
as “SalesRevenueNet” and “Revenues” in the United States Generally Accepted
Accounting Principles (US-GAAP), are only textually described.

• Financial information from different XBRL documents often cannot be compared
since accounting and regulatory organisations across countries and branches do
not align their taxonomies of financial concepts; new versions, e.g., of US-GAAP,
lack backward compatibility; and XBRL allows publishers to define their own
concepts.

• Gathering information about a company is difficult since there are no unique
company identifiers across different reporting sources5, and relationships be-
tween companies are obscure.

• There is no globally accepted schema for finance data and other finance-related
Open Data such as stock quotes (e.g., CSV) and background information (e.g.,
HTML) are published using different data models.

The financial data analysis scenario introduced in this section is inspired by the XBRL
Challenge organised by XBRL US. In this challenge, solutions are sought to provide
benefit around financial data analysis using XBRL from the U.S. Securities and Ex-
change Commission (SEC) that since 2009 requires more than 8,000 U.S. companies
traded on the stock market to file financial statement information such as quarterly and
yearly balance sheets in the XBRL format to the SEC Edgar Database6.

A quarterly balance sheet for example would disclose that Rayonier Inc. had a sales
revenue net of 377,515,000 USD from 2010-07-01 to 2010-09-307.

In our scenario, an investor wants to assess companies based on XBRL and other avail-
able financial data sources. The investor would find several analyses useful:

• Background information analysis, e.g., looking at company information from dif-
ferent sources such as the address, the founding date and the industry.

• Multi-company KPI analysis, e.g., comparing KPIs for several companies over
time such as the stock market price within the same industry.

5http://sunlightfoundation.com/sixdegrees/, last accessed 2015-01-31.
6http://sec.gov/rules/final/2009/33-9002.pdf, last accessed 2014-11-07.
7Retrievable from
http://www.sec.gov/Archives/edgar/data/52827/000119312510238973/0001193125-10-238973-xbrl.zip,
last accessed on 2014-10-16.

22

http://sunlightfoundation.com/sixdegrees/
http://sec.gov/rules/final/2009/33-9002.pdf
http://www.sec.gov/Archives/edgar/data/52827/000119312510238973/0001193125-10-238973-xbrl.zip

2.2 Integrating Finance Data for Company Performance Analysis (XBRL)

• Cross-data-sources KPI analysis, e.g., comparing values from heterogeneous da-
tasets such as the Earnings per Share from yearly balance sheets with prices per
share from electronic stock quotes as well as Total Assets published using the
US-GAAP version 2009 and version 2011.

The XBRL scenario leads to the following user requirements: to answer above analy-
sis queries, business analysts need to integrate data across sources (XBRL User Re-
quirement 1); to understand and trust data, analysts need to be able to explore data
in a fashion of “overview first, zoom-in, details on demand” [Shn96] (XBRL User
Requirement 2); finally, since analysts are non-tech-savy, have little time and cannot
use complex query languages, they need to create their own analyses with Excel-like
functionality (XBRL User Requirement 3). However, there are challenges:

Heterogeneity of Datasets. As mentioned above, XBRL does not solve the problem
of heterogeneities between financial information; yearly and quarterly balance sheets
from the SEC Edgar Database with varying taxonomy versions of US-GAAP, company
and industry background information from Wikipedia/DBpedia, and daily stock quotes
from the Yahoo! Finance Web API are all published with different schemas.

When extracting data, additional contextual information about values and datasets (pro-
venance) is important for understanding, since datasets may be produced by indepen-
dently developed and executed data transformation workflows such as when created
by a conversion to RDF after a lookup on a CSV file and crawled from an RDFa-
embedding website [FKaGO+12]. Also, a lot of information is only implicitly de-
scribed, e.g., in footnotes attached to single financial facts. Also, different currencies
need to be considered.

Large Size and Number of Datasets. Efficient query processing is difficult due to
large numbers and sizes of datasets; for instance, the SEC would publish balance sheets
for over 8,000 US companies; assuming any company publishes four quarterly and one
yearly balance sheet since 2009, there are more than 200,000 XBRL instance docu-
ments available for analysis. Also, new stock market values are published at least once
a day for any traded company.

Query processing. Those challenges arise from complicated queries. For instance,
analysts might filter for companies from cities with more than 100,000 inhabitants or
filter for companies that have a CEO who is younger than 20 years old. Such metadata
may for instance come from background information such as Wikipedia.

Also, queries may require a reduction of dimensionality (e.g., average total assets over
the last ten years), and a roll-up from company to an industry classification such as the
Standard Industrial Classification (SIC).

In a later overall evaluation chapter (Chapter 9), we show how to overcome these chal-
lenges to fulfil the XBRL user requirements.

23

2 Scenarios

2.3 Exploring Governmental Statistics
from the Web (OGD)

According to the G8 Open Data Charter and Technical Annex8 statistics in Open Gov-
ernment Data (OGD) provide information of high value for improving transparency
and encourage innovative re-use of data.

Driven by efforts such as the Share-PSI 2.0 project on Shared Standards for Open
Data and Public Sector Information9 and the Government Linked Data Working Group
(GLD)10 of the World Wide Web Consortium (W3C), more and more governmental
statistics are made available on the Web in machine-readable formats such as the Sta-
tistical Data and Metadata Exchange format (SDMX).

For instance, Eurostat11 publishes on behalf of the European Commission more than
5,000 datasets with indicators about European countries. Example datasets include the
Eurostat GDP Growth Dataset with the growth rate of the gross domestic product of
all European countries per year12.

Another example is the Cumulated German General Social Survey (ALLBUS) con-
ducted by the Leibniz-Institute for the Social Sciences (GESIS) that on behalf of the
German federal state North Rhine-Westphalia provides information about “attitudes,
behaviour and social structure in Germany”13; among others, we can retrieve the Un-
employment Fear Survey Dataset where German employees were asked about their fear
of becoming unemployed in the last few years.

Given the Open Data policy of governments and intergovernmental organisations, citi-
zens can find important statistical indicators in several datasets on the Web. For exam-
ple, one can find the Gross Domestic Product of countries per year from Eurostat, the
World Bank and the International Monetary Fund. Integrating such multidimensional
datasets will allow for more complete answers and detailed comparisons of indicators.
For example, the GDP of a country from one and the population from another dataset
enable analysts to compute the GDP per Capita and to cross-check these derived values
with values from other publishers.

Even if available on the Web in machine-readable formats, integration is difficult [TC05]
since datasets

8https:
//www.gov.uk/government/publications/open-data-charter/g8-open-data-charter-and-technical-annex, last
accessed 2014-11-23.

9http://www.w3.org/2013/share-psi/, last accessed on 2014-06-08.
10http://www.w3.org/2011/gld/, last accessed on 2014-06-08.
11http://ec.europa.eu/eurostat, last accessed on 2015-06-13
12http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=tec00115&lang=en, last visited 2015-06-13.
13http://www.gesis.org/en/allbus, last accessed 2014-10-29.

24

https://www.gov.uk/government/publications/open-data-charter/g8-open-data-charter-and-technical-annex
https://www.gov.uk/government/publications/open-data-charter/g8-open-data-charter-and-technical-annex
http://www.w3.org/2013/share-psi/
http://www.w3.org/2011/gld/
http://ec.europa.eu/eurostat
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=tec00115&lang=en
http://www.gesis.org/en/allbus

2.3 Exploring Governmental Statistics from the Web (OGD)

• describe their indicators with different dimensions, e.g., “geo-location”, “time”
or “gender”,

• use different names for the same dimensions, e.g., “geo” and “location” or di-
mension values, e.g., “DE” and “Germany”,

• provide different levels of detail, e.g., regional or national level,

• contextualise values differently, e.g., units of measurement such as “Million Euro”
and “Euro”, and data collection characteristics such as “sampling”,

• and publish datasets derived from other datasets, e.g., “GDP per Capita” com-
puted via “Nominal GDP” divided by “Population”.

For the OGD scenario we can derive the following user requirements: In front-ends
such as Microsoft Excel, pivot tables have proved intuitive to build and easy to under-
stand when exploring numeric datasets. Citizens need to explore any of the govern-
mental statistics published on the Web in pivot tables (OGD User Requirement 1);
and citizens want to have confirmed important statistical indicators by as many datasets
from the Web as possible (OGD User Requirement 2).

However, there are heterogeneity and scalability challenges:

Heterogeneity of Datasets. As mentioned above, even if published in a machine-
readable and widely-used format, heterogeneities remain a problem. For instance, Eu-
rostat datasets exhibit varying number of dimensions such as geo, time, gender and
age for the population dataset, which makes combined visualisations, such as in two-
dimensional line diagrams, and comparisons difficult.

Eurostat statistics are published using an XML format (SDMX); other statistics such
as from the World Bank are published differently, e.g., using HTML web tables, Ex-
cel, CSV, and JSON14. Also, proprietary formats only understandable by certain tools
are in use, for instance, PC-Axis, SAS, Stata, SPSS, and the Google Dataset Publish-
ing Language. One cannot easily ensure that all relevant data is found and properly
modelled.

As an example for datasets with different levels of detail, the Regional GDP dataset
from Eurostat15 first needs to be aggregated from a regional level (so-called NUTS 2)
with regions such as “Shropshire and Staffordshire” to a country level (NUTS 0) with
countries such as the “UK” to be combined with the population per country.

Similarly, datasets may have different data quality such as with respect to reliability
and accuracy. For instance, Eurostat attaches an “estimated” attribute to values with
lower reliability. Also, units are relevant when values are described in “Million Euro”
or “Euro” as well as complexer units such as “Euro per Inhabitant”.

14http://data.worldbank.org/, last accessed on 2014-06-03
15http://estatwrap.ontologycentral.com/id/tgs00004, last accessed on 2014-10-18.

25

http://data.worldbank.org/
http://estatwrap.ontologycentral.com/id/tgs00004

2 Scenarios

Large Size and Number of Datasets. Efficient query processing is difficult due to the
amount of data as described in the following:

There is a large number of datasets available, e.g., 5,000 from Eurostat16 and 8,301
from the World Bank17. The size and number of datasets not only depends on the origi-
nal publisher of numeric data but also on the modelling of third parties re-publishing the
data18. For instance, OECD Linked Data publishes 123 datasets with 26,243 observa-
tions on average. The International Monetary Fund (IMF) contains 4 datasets each with
806,992 facts on average. As another example of a large dataset, the Open Data plat-
form data.gov.uk publishes in their Combined On-line Information System (COINS)
five financial datasets from across the public sector in the UK with in total 4.9 million
rows of data19.

Similarly, efficient query processing is difficult since citizens may issue complex queries.
On the one hand, citizens may be interested in values of a certain country such as the
UK and a certain time period such as 2010. On the other hand, aggregated overall
values may be needed as an overview20.

Also, citizens interested in important statistical indicators may find several answers. For
instance, for the GDP Per Capita for the UK in 2010, Wolfram Alpha returns 29,52021

whereas Eurostat returns 27,800 Euros per Inhabitant22. Similarly, within the same
institution, indicators may be available in different ways; for instance, the GDP Per
Capita can be computed from the nominal GDP divided by the population.

In a later overall evaluation chapter (Chapter 9), we show how to overcome these chal-
lenges to fulfil the OGD user requirements.

2.4 Requirements Analysis

For each of the scenarios we have derived specific user requirements. User require-
ments only can be fulfilled if challenges due to heterogeneities between and large num-
ber and sizes of datasets from the Web are solved.
16Depending on the modelling, according to http://eurostat.linked-statistics.org/, last accessed on

2014-10-17.
17Based on a SPARQL query for datasets over http://worldbank.270a.info/.html, last accessed on

2014-06-06.
18For instance, the following estimations are based on SPARQL queries for datasets over

http://oecd.270a.info/.html and http://imf.270a.info/.html, last accessed on 2014-06-06.
19http://data.gov.uk/resources/coins, last accessed on 2014-10-17.
20As an example, see use case on “Publishing hierarchically structured data from StatsWales and Open Data

Communities” [KC13]
21http://www.wolframalpha.com/input/?i=+gdp+per+capita+in+uk+in+2010+in+eur, changing over time,

last accessed 2014-11-23.
22http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama aux gph&lang=en, last accessed

2014-11-23.

26

http://eurostat.linked-statistics.org/
http://worldbank.270a.info/.html
http://oecd.270a.info/.html
http://imf.270a.info/.html
http://data.gov.uk/resources/coins
http://www.wolframalpha.com/input/?i=+gdp+per+capita+in+uk+in+2010+in+eur
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_aux_gph&lang=en

2.4 Requirements Analysis

In this section, we derive general requirements from these specific data integration and
query processing challenges. Table 2.2 shows an overview of general requirements;
we indicate with “X” that a general requirement is supported by a scenario. Every
requirement is supported by at least two scenarios.

Table 2.2: Overview of general requirements derived from the SMART, XBRL, and OGD sce-
narios; with “X” we indicate requirements supported by a scenario.

General Requirement Scenario

SM
A

R
T

X
B

R
L

O
G

D

Flexibility
R1: Integrate different data formats and models X X X
R2: Consider different identifiers for the same entities X X X
R3: Store provenance trail of datasets X X X
R4: Integrate datasets of different levels of detail X X X
R5: Consider datasets with different units of measurements X X X
R6: Merge datasets for compound measures X X X
Efficiency
R7: Scale to large datasets X X
R8: Scale to large number of datasets X X
R9: Efficiently filter for values with varying selectivity X X X
R10: Efficiently execute aggregation functions and formulas X X X

General Requirement 1 to Requirement 6 (R1 – R6) are concerned with the flexibility
of approaches to cope with heterogeneity of multidimensional datasets from the Web.

R1: Integrate different data formats and models. All three scenarios require the
integration of different data formats and models. Examples include Web APIs, XML
profiles, and semi-structured descriptions of publications in a semantic wiki.

R2: Consider different identifiers for the same entities. All three scenarios give
examples of identical things referred to by different identifiers. Examples include iden-
tifiers for locations, companies, and countries.

R3: Store provenance trail of datasets. All scenarios would benefit from the capa-
bility to attach provenance information to single numeric values and entire datasets.
Provenance information for instance describes tools used in natural science analyses,
data transformation pipelines generating financial facts, and the reliability of statistical
indicators.

R4: Integrate datasets of different levels of detail. All three scenarios give examples
of datasets with different levels of detail that need to be compared. The hierarchy

27

2 Scenarios

from single days, over months, to years is a common example. For instance, micro
sensor data capture the climate on a specific day, whereas many estimations only are
given on a yearly basis. Other examples include a point in time versus a period in
time as distinguished for financial facts and regional- versus country-level statistical
indicators23.

R5: Consider datasets with different units of measurements. All three scenarios
require the consideration of different units of measurements. In SMART, there are
scientific units; in XBRL, there are currencies; in OGD, there are units such as “Euro
per Inhabitant”. Not only units of measurements but also other contextual information
such as whether an indicator is measured on a monthly or yearly basis are important.

R6: Merge datasets for compound measures. In all three scenarios, the computation
of compound indicators and formulas is useful. Indicators such as the “Waste Wa-
ter Recharge Ratio” in the natural sciences, financial ratios such as the “Earnings per
Share”, and statistical indicators such as the GDP per Capita all require measures from
different datasets and the calculation of formulas.

General Requirement 7 to Requirement 10 (R7 – R10) are concerned with the efficiency
of approaches to cope with size and number of multidimensional datasets from the Web
as well as complex analytical operations.

R7: Scale to large datasets. The SMART and OGD scenarios give examples of large
datasets. For instance, the relational database in SMART-DB contains datasets with
daily precipitation data of 70 climate stations since 1980 and borehole characteristics
for more than 3,000 wells in Jordan. Large Open Government datasets are published by
the International Monetary Fund (IMF), and the Combined On-line Information System
(COINS). Although not large in comparison to data warehouses with Gigabytes of data
in industry, datasets of 100MB and larger take more than 100sec to download from the
Web24.

R8: Scale to large number of datasets. Whereas every balance sheet or daily stock
market table in the XBRL scenario is small, with 200,000 balance sheets and daily stock
market values, the number of datasets is large. In the SMART project, the number of
available datasets interesting to scientists is limited but the OGD scenario contains more
than 5,000 datasets from Eurostat.

A number of more than 1,000 datasets certainly creates a bottleneck in the analysis
since assuming 500ms per HTTP look-up on the respective URI of each dataset, only
resolving all URIs – without downloading – takes more than 8min.

23For more examples see the Master thesis by Dominik Siegele [Sie12], co-supervised by the author,
available at http://www.aifb.kit.edu/images/4/4b/Masterarbeit Dominik Siegele.pdf, last accessed
2014-12-17.

24Based on 6.7Mbps global average connection speed, estimated at http://techcrunch.com/2012/08/09/
akamai-global-average-broadband-speeds-up-by-25-u-s-up-29-to-6-7-mbps/, last accessed 2014-11-16.

28

http://www.aifb.kit.edu/images/4/4b/Masterarbeit_Dominik_Siegele.pdf
http://techcrunch.com/2012/08/09/akamai-global-average-broadband-speeds-up-by-25-u-s-up-29-to-6-7-mbps/
http://techcrunch.com/2012/08/09/akamai-global-average-broadband-speeds-up-by-25-u-s-up-29-to-6-7-mbps/

2.4 Requirements Analysis

The modelling of datasets determines the size or the number of datasets. For instance,
in the SMART scenario, we re-publish one dataset per location (6,517 locations25) and
per indicator (132 indicators26) instead of publishing all data in one single dataset.

R9: Efficiently filter for values with varying selectivity. All three scenarios give
examples of different filter criteria applied to datasets in queries. In SMART, natural
scientists are interested in sensor data from a certain spring as well as from all springs
in a certain region. Financial analysts of XBRL may want to specifically ask for com-
panies with more than 1,000 employees. And citizens may be interested in values of a
certain country and time period such as the UK in 2010.

R10: Efficiently execute aggregation functions and formulas. All three scenarios
give examples of aggregations along multi-level hierarchies and the execution of for-
mulas. If climate sensor data is aggregated to an average per year, many single obser-
vations are aggregated. Similarly, if a financial ratio is computed for an industry, values
for each single company in the industry are aggregated.

Also, if a formula such as for converting “Million Euro” to “Euro” in the OGD scenario
is executed over a large or many small datasets, the formula has to be executed many
times.

Each of the research questions in the forthcoming chapters investigate approaches to
increase flexibility in data integration and efficiency in query processing. Afterwards,
in Chapter 9 we discuss how well the contributions fulfil the general requirements.

25According to Linked Data wrapper of SMART-DB, http://smartdbwrap.appspot.com/locationlist.html, last
accessed on 2014-10-22.

26According to Linked Data wrapper of SMART-DB,
http://smartdbwrap.appspot.com/analysisobjectlist.html, last accessed on 2014-10-22.

29

http://smartdbwrap.appspot.com/locationlist.html
http://smartdbwrap.appspot.com/analysisobjectlist.html

3 Basic Definitions

Whereas the next chapter (Chapter 4), describes related work with similar research
goals, this chapter defines common data structures, data models, query languages, con-
cepts, and methods required for understanding the contributions in this thesis.

In Section 3.1, we introduce a common data model of data cubes that we use as a
basic conceptualisation for the integration and analysis of multidimensional datasets.
In Section 3.3, we define Statistical Linked Data that we use as a main data source
for and representation formalism of multidimensional datasets from the Web. In Sec-
tion 3.2, we define analytical queries as nested set of operations from an algebra over
data cubes.

3.1 Multidimensional Data Model

In this section, we first explain the difficulties of modelling numeric data. Second, we
introduce a formal definition of a common data model to describe multidimensional
datasets conceptually. Third, we describe the star schema, a common way to repre-
sent and store multidimensional datasets in a relational database for efficient analytical
queries.

3.1.1 Modelling Numeric Data

Modelling numeric data is challenging for the following reasons:

• Numeric data can be aggregated (also called statistics, or macro data) or raw such
as from sensors (also called micro data).

• Representing statistics requires more complex modelling as discussed by Martin
Fowler [Fow96]: Recording a statistic simply as an attribute to an object – for
instance a person weighs 185 – fails to represent important concepts such as the
measurement period and unit.

3 Basic Definitions

• Instead, a statistic is modelled as a first-class object, an observation. The object
describes an observation of a value, e.g., a numeric value (e.g., 185) in the case
of a measurement and a categorical value (e.g., ”blood group A”) in the case of a
categorical observation.

• To allow correct interpretation of the value, the observation needs to be further
described by ”dimensions” such as the specific phenomenon, e.g., ”weight”, the
time the observation was made, e.g., ”January 2013” or a location where the
observation was made, e.g., ”New York”.

• To further improve interpretation of the value, attributes such as presentational
information, e.g., a series title “Combined Online Information System (COINS)
Results 2013” or critical information for understanding the data, e.g., the unit of
measure ”pounds” are given to observations.

• Given additional background information, e.g., arithmetical and comparative op-
erations, humans and machines can appropriately visualise such observations or
perform conversions between different quantities.

Therefore, we model numeric data as multidimensional datasets1 as per Definition 1.
Definition 1 (Multidimensional Dataset). We define a multidimensional dataset as a
relation with n independent attributes (mostly categorical, dimensions) and a certain
number of dependent attributes (mostly numeric, measures) [GCB+97]. The measure
attributes are functionally dependent on the dimension attributes. Therefore, for every
set of values for the dimension attributes there is only one value for each measure
attribute.

An example relation with three attributes2 denoting dimensions and one attribute de-
noting a measure was given in Chapter 1 employmentgrowthdataset(Time,
Geo, Sex, Employment Growth) in Table 1.1.

However, one relation cannot capture all metadata relevant for the integration and anal-
ysis of multidimensional datasets. Therefore, in the next section, we introduce an elab-
orate conceptual model.

3.1.1.1 Data Cubes, Dimensions, Measures

In the following, we define a conceptual model for multidimensional datasets, a com-
mon multidimensional data model (MDM). The MDM serves an intuitive, semantically
rich and platform independent abstraction of a multidimensional dataset [PMT08].

A formally defined abstraction of multidimensional datasets allows 1) to define logical
representations of multidimensional datasets for storage, e.g., in a relational database

1If not stated otherwise, we also use the term dataset for denoting multidimensional datasets.
2We use attribute and “variable” interchangeably.

32

3.1 Multidimensional Data Model

and 2) to define operations to filter, aggregate, and integrate datasets within an analy-
sis.

Although there is no standard MDM [PJD01, LMTS06, GGV12], all models have cer-
tain Multidimensional Elements in common. We intuitively define an MDM as per
Definition 2, illustrate a common MDM in Figure 3.1, and then formally define each
single element.
Definition 2 (Multidimensional Data Model). A multidimensional data model treats
data as n-dimensional data cubes. The independent attributes of a data cube are called
dimensions, the dependent attributes measures. The possible values of dimensions are
referred to as members. Members are grouped along hierarchies of one or more levels.
The higher the level in the hierarchy, the less granular the members. Facts are the
single data points in a cube. Facts have a value for every dimension and measure of
the cube.

Figure 3.1: Illustration of a common multidimensional data model.

We use simple set notation as syntax and set theory as semantics [HKR09, p. 363ff] to
formally define for each multidimensional element in an MDM the set of all possible
instances as follows:

Member defines the set of members as Member = {(nameM) ∈ String}. Let V =
2Member, V ∈ V . There is a special-type member ALL.

Level defines the set of levels as Level = {(nameL,V,depth) ∈ String×V× Integer}.
Let L= 2Level , L ∈ L, ROLLUPMEMBER⊆Member×Member, ROLLUPLE-
V EL ⊆ Level×Level, depth indicates the distance from the (implicit) ALL level
(having depth 0) within a rolluplevel(L) relation, rollupmember(L)= {(v1,v2)∈

33

3 Basic Definitions

V1 ×V2| l1 = (”l1”,V1,depth1), l2 = (”l2”,V2,depth2) ∈ L, v1 is more specific
than v2 }, rolluplevel(L) = {(l1, l2) ∈ L×L| l1 is more specific than l2 }.

There is a special-type level ALL.

Given rollupmember(L) and v ∈ V , the parent (sometimes parents) of a mem-
ber is given by rollupmember(L)(v). Given rolluplevel(L) and l ∈ L, the next
higher level is given by rolluplevel(L)(l). Rollupmember and rolluplevel are not
transitive.

Hierarchy defines the set of hierarchies as Hierarchy = {(nameH,L,rolluplevel(L),
rollupmember(L)) ∈ String×L×ROLLUPLEV EL×ROLLUPMEMBER}.

LetH= 2Hierarchy.

The rolluplevel relation defines an ordering of levels by which the depth of a
level can be computed. The ALL level has depth 0.

The lowest levels define the maximum depth of a hierarchy. Let maxdepth be the
maximum depth.

rollupmember(L) is a rollup relation with a partial order on the members in L.
Hereby, members in a lower level roll up to members of the next higher level.

Dimension defines the set of dimensions as Dimension = {(nameD,H) ∈ String×
H}. Let D = 2Dimension. Let dom : Dimension→ V return all members of a
dimension.

Measure defines the set of measures as Measure = {(nameMS,calc) ∈ String×Cal-
culationExpression}

To reduce conceptual differences between dimensions and measures, and to sim-
plify querying, every measure implicitly is a member of a special-type level
“Measures” in a hierarchy “Measures” of a dimension “Measures”.

Let M = 2Measure. Let dom : Measure→ 2String return all possible values of a
measure.

Similar as defined by Köppen et al. [KSS12], a calculation expression defines
how a measure value is computed and consists of aggregation functions such
as SUM and possibly algebraic functions between measures such as GDP per
Capita = Nominal GDP / Population. The latter allows to define com-
pound measures built by combining several measures [DPS14].

The standard aggregation functions for numeric values are SUM, AVG, COUNT,
and for nominal values COUNT. Every aggregation function has as input a set
of numeric values and output a numeric value. For instance, SUM is defined as
follows: SUM : 2Decimal → Decimal.

34

3.1 Multidimensional Data Model

Fact defines the set of possible statistical facts as Fact = {(nameF,C,E) ∈ String×
2Dimension×Member×2Measure×String}, c∈C = ({(d1,c1), . . . ,(d|D|,c|D|)},{(m1, t1),
...,(m j, t j)}), j ≤ |M| with ci ∈Member∪ALL and ti ∈ T with T a numeric do-
main including the special null value in case of cube sparsity. Also, (∀(d1,c1),(d2,
c2) ∈C,c1 6= c2)d1 6= d2 and (∀(m1, t1),(m2, t2) ∈ E, t1 6= t2)m1 6= m2; thus each
fact has for each dimension and measure at maximum one member and value,
respectively. Let F = 2Fact .

DataCubeSchema defines the set of data cube schemas as {(nameCS,D,M)∈ String
×D×M}.

DataCube defines the set of data cubes as DataCube = {(nameDC,cs,F) ∈ String×
DataCubeSchema×F|cs = (cs,D,M)}, with (∀ f act1 = (” f act1”,C1,E1), f a-
ct2=(” f act2”,C2,E2)∈F, f act1 6= f act2)C1 6=C2,{d|∃(d,m)∈C1}=D,(∀(d,
m) ∈C1) m ∈ dom(d).

There are several assumptions to data cubes:

• The measure value is fully dependent on the dimension members, thus, any two
facts of a data cube need to have a different member on one of their dimensions.

• Any fact needs to have a member for each dimension mentioned in the schema.

• Each member needs to be contained in a level of a hierarchy of the dimension. A
data cube may be sparse and not containing facts for each possible combination
of dimension members.

• If not said otherwise, we assume the explicitly given facts of a data cube to be
base facts. Base Facts have members only on the lowest level of each dimension.

• Implicitly, a data cube contains aggregate facts, facts with members on higher
levels for dimensions that can be computed by aggregating lower-level facts, e.g.,
facts describing Male and Female can be aggregated to ALL, meaning the total
of Male and Female [GCB+97].

• Similarly according to Gómez et al. [GGV12], we assume that the rolluplevel(L)
relation of a hierarchy forms a directed acyclic graph (DAG), i.e. every level has
a unique parent level. As a consequence, every hierarchy has a unique bottom
level BOT TOM and a unique top level ALL.

Two data cubes may overlap if they have shared dimensions, i.e., use the same (part of
their) dimensions, hierarchies, levels, and members. In the literature shared dimensions
are often also referred to as conformed dimensions [KR02].

In the following section we give a concrete example of an MDM with multidimensional
elements from one concrete multidimensional dataset.

35

3 Basic Definitions

3.1.1.2 Example Multidimensional Data Model

As an example dataset we use “Population on 1 January by age and sex” published by
Eurostat3. The example MDM contains members, e.g., Germany and single years,
including the special-type member ALL:

Member = {DE, ES, ..., 2004, ..., ALL}
DE = ("DE")
2004 = ("2004")
...

The model contains levels such as for single days in which members are grouped. Also,
there are special-type ALL levels with the ALL member. Additionally, there is a mea-
sure level containing the members for measures:

Level = {timeLevelDay, ..., geoLevelNUTS0, ..., sexLevel, ...,
ageLevel, measuresLevel}

timeLevelDay = ("timeLevelDay", {2004-01-01, 2004-01-02, ...}, 3)
timeLevelMonth = ("timeLevelMonth", {2004-01, 2004-02, ...}, 2)
timeLevelYear = ("timeLevelYear", {2004 , 2005, ..., 2013}, 1)
timeLevelAll = ("timeLevelAll", {ALL}, 0)
geoLevelNUTS0 = ("geoLevelNUTS0", {DE, ES, ...}, 1)
measuresLevel = ("measuresLevel", {populationMeasSUM,

populationMeasAVG, populationMeasCOUNT})

Hierarchies such as for time give an order to levels, e.g., single days to months to years.
A hierarchy also defines roll-up relations between levels and members. For instance,
there is a hierarchy from day to months to years to the ALL level.

Hierarchy = {timeHierarchy, geoHierarchy, sexHierarchy,
ageHierarchy, measuresHierarchy}

timeHierarchy = ("timeHierarchy", timeL, rolluplevel(timeL),
rollupmember(timeL)

timeL = {timeLevelDay, timeLevelMonth, timeLevelYear, timeLevelAll}
geoHierarchy = ("geoHierarchy", geoL, rolluplevel(geoL),

rollupmember(geoL)
geoL = {geoLevelNUTS2, geoLevelNUTS1, geoLevelNUTS0, geoLevelAll}
rolluplevel(timeL) = {(timeLevelDay, timeLevelMonth),

(timeLevelMonth, timeLevelYear), (timeLevelYear,
timeLevelAll)...}

rollupmember(timeL) = {(2004-01-01, 2004-01), (2004-01, 2004),
(2004, ALL)...}

The model contains dimensions such as for time, geo, and age.

Dimension = {timeDim, geoDim, ageDim, sexDim, measuresDim}

Also, measures are defined by the model.

3http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo pjan&lang=en, accessed 2014-06-16.

36

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo_pjan&lang=en

3.1 Multidimensional Data Model

Measure = {populationMeasSUM, populationMeasAVG,
populationMeasCOUNT}

populationMeasSUM = ("populationMeasSUM", SUM)

The values in the dataset can be aggregated by different measures and aggregation func-
tions. As default aggregation functions for numbers we have SUM, AVG and COUNT,
for nominal values, COUNT.

Also, the model contains facts that describe numeric values. Facts can refer to micro
data that is not aggregated such as fact1where AVG and SUM contain the same value
since COUNT is 1. Similarly, facts can refer to macro data such as fact2 where the
age dimension is aggregated to the ALL level and member. Macro data typically is not
explicitly encoded in a dataset but only implicitly given and can be made explicit by
aggregation.

Fact = {fact1, fact2, fact3...}
fact1 = (fact1, fact1C, fact1E)
fact1C = {(timeDim, 2013), (geoDim, DE), (sexDim, F), (ageDim, Y18)}
fact1E = {(populationMeasSUM, "390,156"), (populationMeasAVG,

"390,156"), (populationMeasCOUNT, "1")}
fact2 = (fact2, fact2C, fact2E)
fact2C = {(timeDim, 2013), (geoDim, DE), (sexDim, F), (ageDim, ALL)}
fact2E = {(populationMeasSUM, "41,673,725"), (populationMeasAVG,

"467,835"), (populationMeasCOUNT, "44")}

The model defines a cube schema with time, geo, sex, and age as dimensions and also
a dimension for measures. Also, this schema defines the measures.

DataCubeSchema = {populationCubeSchema}
populationCubeSchema = (populationCubeSchema, {timeDim, geoDim,

ageDim, measuresDim}, {populationMeasSUM, populationMeasAVG,
populationMeasCOUNT})

Finally, the model contains the population cube. The cube contains any number of facts
and also can be sparse.

DataCube = {populationCube}
populationCube = ("populationCube", populationCubeSchema, {fact1,

fact2, fact3...})

3.1.1.3 Summarisability

Summarisability, the possibility to correctly compute aggregate facts with a lower gran-
ularity from facts with higher granularity is important for performance optimizations
based on pre-aggregation and ensures results understandable to analysts [MLT09].

According to Lenz and Shoshani [LS97] summarisability is given if

37

3 Basic Definitions

• dimension members only belong to one parent member (disjointness),

• members belong to exactly one parent member and every member on a higher
level has at least one child member (completeness),

• and aggregation functions are meaningful (meaningful aggregation function).

Disjointness is given in case of strict dimension hierarchies [RTZ11] where every mem-
ber at the child level relates to no more than one member of its parent level.

Completeness is given in case of symmetric dimension hierarchies [MZ06] where every
higher-level member (parent) has a child member.

Whether an aggregation function is meaningful depends on the dimensions used for
aggregation and the semantics of the measure. For the dimensions we distinguish time
dimensions from dimensions that do not describe a time aspect. Assuming the stan-
dard aggregation functions MIN, MAX, AVG, SUM, and COUNT, only the following
aggregation functions are not meaningful [LS97]:

• SUM, if a fact aggregates over a time dimension and uses a measure quantifying
the stock of something at a certain point in time (e.g., a bank account balance).

• SUM, if a fact aggregates over any dimension and uses a measure computing a
ratio at a certain point in time (e.g., a price per item).

3.1.2 Representation in a Star Schema

According to Vassiliadis [VS99], we can distinguish three different perspectives in
modelling data for databases: the conceptual perspective, dealing with the high level,
abstract representation of the world, the physical perspective, dealing with the details of
the representation and processing of data in the hardware, and the logical perspective,
acting as an intermediate between the two aforementioned extremes, trying to balance a
storage-independent paradigm and a natural representation of the information in terms
of computer-processable concepts.

After having explained modelling of data cubes on the conceptual perspective, we next
present the modelling in the logical perspective in a relational database.

The most common form is the star schema [CD97]. Advantages of the star schema
are: an intuitive transformation from data cubes to a star schema; the possible applica-
tion in any of the widely-used relational databases; a good compromise between ease
of maintenance by normalisation (separation of fact and dimension tables) and effi-
ciency by reducing the number of joins needed for queries (denormalised dimension
tables). Also, industry-relevant data such as from accounting and customer relation-
ship management often resemble star schemas [SBC+07] and research has focused on
optimising analytical queries over relational data approaches [MKIK07].

38

3.1 Multidimensional Data Model

In a star schema, the database contains one fact table for each data cube and one di-
mension table for each dimension of the data cube.

The fact table has an attribute with a foreign key for each of the dimensions of the data
cube. Also, the fact table has an attribute for each measure of the data cube. Typically,
those attributes are numeric such as for describing the population. The primary key of
the fact table consists of the combination of foreign keys.

Besides a generated primary key, every dimension table has an attribute for each of the
levels of the dimension. Tables of shared dimensions are used by several data cubes.

See Figure 3.2 for an example star schema for the population data cube represented
as a UML Class Diagram. Usually, a UML class diagram is used in object-oriented
programming, e.g., using the language Java. Classes define the attributes and methods
of any objects constructed from the class. In Figure 3.2, we instead use classes to define
the attributes of the fact and dimension tables.

populationCubeT

+timeID

+geoID

+sexID

+ageID

+populationMeas

timeDimT

+timeID

+timeLevelYear

+timeLevelMonth

+timeLevelDay

*
1

geoDimT

+geoID

+geoLevelNUTS0

+geoLevelNUTS1

+geoLevelNUTS2

*

1

sexDimT

+sexID

+sexLevel

+sexLevelTotal

*

1

ageDimT

+ageID

+ageLevel

+ageLevelGroup

*

1

Figure 3.2: Example star schema for Population Data Cube; represented in UML class diagram
using classes to define attributes of fact and dimension tables.

Assumptions taken for multidimensional datasets also hold for the relational represen-
tation: Most importantly, in the fact table, the attributes for measures are functionally
dependent on the values of the dimensions. That means, in a fact table for every unique

39

3 Basic Definitions

combination of dimension members, there is only one row in the fact table serving the
measure values.

Also, a fact table usually contains measure values on a specific level of granularity
(mostly lowest) of each dimension table. That means, no redundancy is contained;
consequently, no aggregate facts are logically and physically stored in the fact table
and will be computed by the aggregation of lower level facts.

Aggregate facts are often pre-computed [CD97, ABD+99] to speed up query process-
ing. Typically, aggregate facts are logically and physically stored in aggregate tables,
new fact tables aggregating the original fact table on one or more selected dimensions.
Aggregate tables reuse dimension tables of dimensions that are not aggregated and
introduce new shrunken dimension tables for aggregated dimensions. Storing aggre-
gate facts in the original fact table of the data cube complicates querying and is error
prone since special type ALL members and null values need to be distinguished in SQL
queries. Also, query processing becomes slower due to a larger number of facts that
need to be scanned.

According to Mazón et al. [MLT09] a data cube is close to the way of thinking of human
analysts and, therefore, it helps users to understand data; also processing (querying) a
data cube can be well optimised since the clear structure allows designers to predict
decision makers’ intentions. In the next section, we will present a way to query data
cubes modelled using our MDM.

In our work the star schema is relevant because many existing OLAP engines assume
data to follow this schema for analytical queries.

3.2 Online Analytical Processing

We define Online Analytical Processing (OLAP) as per Definition 3 as a way to analyse
multidimensional datasets .
Definition 3 (OLAP). In Online Analytical Processing (OLAP), domain experts issue
analytical queries over data cubes according to an MDM (Definition 2) using OLAP
operations Projection, Slice, Dice, Roll-Up, and Drill-Across from an OLAP algebra.

OLAP fulfils static and dynamic requirements for data analysis [WB97]: The static
aspect of analysis – an object for analysis and a collection of variables – is provided
by facts and dimensions. The dynamic aspect of analysis – analytical activities such
as forecasting, comparing, ranking, aggregation, and filtering – are provided by OLAP
operations.

OLAP [CCS93] also is a useful way to issue analytical queries for the following rea-
sons: 1) OLAP supports the information seeking mantra of “overview first, zoom and
filter, then details-on-demand” [PMT08]. 2) Users do not need to learn a complicated

40

3.2 Online Analytical Processing

query language since OLAP clients provide intuitive user interactions over so-called
pivot tables; for instance, an aggregation can be issued by removing a dimension from
a pivot table. 3) There are OLAP systems available for reuse. 4) On top of OLAP, more
complex analyses are possible; for instance, OLAP can be used as a way to select and
pre-process data to be inserted into machine learning algorithms.

OLAP queries are complex to evaluate; for efficient query execution, data cubes are
stored and accessed from data warehouses, e.g., relational databases with star schemas,
to be executed efficiently [HRU96] with OLAP systems.

The typical architecture of an OLAP system consists of an ETL pipeline that extracts,
transforms and loads (ETL) data from the data sources into a data warehouse, e.g.,
a relational or multidimensional database. OLAP clients allow users to build OLAP
queries and display multidimensional results in pivot tables. OLAP engines transform
OLAP queries into queries to the data warehouse, and deploy mechanisms for fast
data cube computation and selection, under the additional complexity that data in the
original data sources as well as the typical query workload may change dynamically
[MKIK07, GCB+97].

In the following, we give more details about the OLAP operations and the components
of OLAP systems, including a definition of a pivot table and a description of a quasi-
standard query language for OLAP queries, MDX.

3.2.1 OLAP Operations

In this section we define analytical queries over multidimensional datasets as used in
this thesis.

In the previous section, we have defined multidimensional datasets as data cubes in a
multidimensional data model and described how they are typically stored in relational
databases using a star schema. Typically, a more abstract query formalism is helpful
to allow humans to issue queries directly [BJK+12] or machines to optimise query
execution [Cha98].

We distinguish metadata queries and analytical OLAP queries over data cubes. Whereas
metadata queries return multidimensional objects such as the cube schema, the dimen-
sions, and the measures, OLAP queries on a certain data cube return facts, possibly
represented as tuples from a relation describing the data in a dataset.

Analytical queries (OLAP queries) substantially differ from transaction processing que-
ries (also known as OLTP queries) [BPZ11, SBC+07]. Therefore, systems to execute
analytical queries and systems to execute transaction processing queries fulfil comple-
mentary requirements as summarised in Table 3.1 [KSS12, p. 7]:

41

3 Basic Definitions

Table 3.1: Complementary requirements of OLTP systems and OLAP systems [KSS12, p. 7].

Requirement OLTP system OLAP system
Data sources mostly one many (e.g., all company

data)
Data volume MB to GB GB to TB to PB
Data characteristic current, detailed, primary

data
historical, summarised,
derived, integrated

Query types read, write, update, delete read, periodical inserts, no
updates and deletes

Query characteristics simple, short, atomic complex, ad-hoc, aggre-
gating, ordering, filtering

In the following, we describe differences between an OLAP algebra over data cubes and
relational algebra, define an OLAP query as a nested set of operations from the OLAP
algebra and describe a common query language, MDX, for issuing OLAP queries.

Whereas a query in SQL, the declarative query language for relational database man-
agement systems (RDBMS), is a nested set of relational algebra operations, an OLAP
query (e.g., described in a language such as MDX) is a nested set of OLAP operations
from an OLAP algebra.

Both relational and OLAP algebra allows us to form expressions of arbitrary complexity
by applying operations to the result of other operations. Algebraic expressions can be
represented in an expression tree or a special syntax.

A query asked by a user may have many equivalent expressions. A query optimiser
creates an expression that can be evaluated efficiently.

The relational algebra [GMUW08] includes: set operations, operations to remove parts
of a relation (selection, projection), operations that combine tuples of two relations
(cartesian product, join), renaming operations to change the relation schema such as
names of attributes and the name of relations.

OLAP operations include: set operations (union, intersection, difference), operations
to remove parts of a data cube (projection, dice, slice, roll-up), operations that combine
facts of two cubes (drill-across).

In the following, we show how to issue OLAP queries (also called analytical queries or
ad-hoc decision support queries) over data cubes. We define common OLAP operations
on single data cubes [RA07b, PMT08, PGSJ09, RMA+11].

Figure 3.3 illustrates the effect of common OLAP operations, with inputs and outputs.
For instance, in the illustration, Projection has a cube and the cube’s first measure as
input, and has as output the input cube with the second measure removed.

42

3.2 Online Analytical Processing

Figure 3.3: Illustration of common single-cube OLAP operations; for each operation, input is
a cube and possibly multidimensional elements, output is a modified cube (adapted
from [RMA+11]).

Intuitively, projection has as input a cube and a set of ”projected” measures and has as
output the input cube with any measure removed that is not ”projected”. Accordingly,
slice allows for removing dimensions, dice for filtering of certain facts, and roll-up to
aggregate facts to a higher level.

In the following, we give a more formal definition for each these common single-cube
operations. Also, we define the drill-across operation over multiple data cubes.

We use simple set notation as syntax and set theory as semantics [HKR09, p. 363ff]
to define operations. For instance, projection is defined as a function with input an
instance of a data cube and a set of measures and with output an instance of a data
cube.

Projection is defined as Pro jection : DataCube× 2Measure → DataCube and selects
measures from the input cube; all non-selected measures are removed from the
cube. Pro jection(c,PM)= c′ with c=(”c”,(”cs”,D,M),F), c′=(”c′”,(”cs′”,D′,
M′),F ′), D′ = D, M′ = M\PM.

Dice is defined as Dice : DataCube×Dimension×2Member→DataCube and allows to
filter for facts with certain dimension member combinations (so called positions).
Since facts are filtered, we assume no change for the schema of the resulting cube.

Slice is defined as Slice : DataCube× 2Dimension → DataCube and removes dimen-
sions from the input cube, i.e., aggregates all facts over those dimensions and

43

3 Basic Definitions

removes those dimensions. Slice(c,SD) = c′ with c = (”c”,(”cs”,D,M),F),
c′ = (”c′”,(”cs′”,D′,M′),F ′), D′ = D\SD, M′ = M.

Roll-Up is defined as Roll−U p : DataCube×Dimension× Level → DataCube and
allows to create a cube that contains instance data on a higher aggregation level.

The chosen level needs to be set higher than the current level of the data cube
since there is no way to compute more granular from less granular values. Setting
a lower level, i.e., doing a Drill−Down we do not consider in our algebra. By
retaining cubes at lower granularities after a roll-up, a drill-down can be achieved
by doing a roll-up on the respective detailed cube. Since there is only a change
of data in the cube, we assume no change for the schema of the resulting cube.

Drill-Across is defined as Drill−Across : DataCube×DataCube→ DataCube and
allows to combine instance data from two cubes into a new cube, as follows:
Drill−Across(c1,c2)= c′ with c1 =(”c1”,(”cs1”,D1,M1),F1), c2 =(”c2”,(”cs2”,
D2,M2),F2), c′ = (”c′”,(”cs′”,D′,M′)), D′ = D1∪D2, M′ = M1∪M2.

Drill-across returns a cube with the union of all dimensions and measures and
computes a join of facts on the dimensions. Typically, for drill-across, it is as-
sumed that both input cubes contain the same dimensions and different measures
[KR02]. Then, drill-across allows to compare measures from two or more cubes.

Every OLAP operations has as input a Data Cube (two in case of Drill-Across) and re-
turns a Data Cube; thus, operations can be nested, e.g., Dice(Projection(...)).
An OLAP query is thus a nested set of OLAP operations.

Whereas Projection, Dice, Slice, and Roll-Up operate over single data cubes, Drill-
Across allows for the combination of multiple data cubes. Other multi-cube operations
such as Union and Intersection of two cubes (requires identical dimensions and mea-
sures) could be defined accordingly, but were not required by our scenarios.

3.2.1.1 OLAP Operations over Example MDM and Star Schema

In the following we give a concrete example of operations issued over the population
dataset modelled using our MDM. To make the semantics of OLAP operations explicit,
we explain how to execute the operations using SQL over a star schema.

We assume no redundant facts stored for the data cube, i.e., contained facts all have
the same granularity level such as years and all higher level facts can be computed
by aggregation. Otherwise, queries would need to consider aggregate facts to ensure
summarisability [CD97].

A special operation used in the queries is group by. Group by partitions a table into
groups according to grouping values. Every group must then be aggregated by an
aggregation function and given an aggregate value [GCB+97].

44

3.2 Online Analytical Processing

In the following, we execute OLAP operations over the population data cube defined in
Section 3.1. For multi-cube queries (Drill-Across), we also assume a second data cube
with the “Regional gross domestic product (million PPS) by NUTS 2 regions” pub-
lished by Eurostat4. Thus, we assume an MDM with DataCube = {population-
Cube, gdpCube}.

With Projection, the grouping values are not changed:

Projection(populationCube, {populationMeasSUM})
1 SELECT timeLevelYear geoLevelNUTS0 sexLevel ageLevel

SUM(populationMeas) as populationMeasSUM
2 FROM populationCubeT, timeDimT, geoDimT, sexDimT, ageDimT
3 WHERE
4 populationCubeT.timeID = timeDimT.timeID
5 AND populationCubeT.geoID = geoDimT.geoID
6 AND populationCubeT.sexID = sexDimT.sexID
7 AND populationCubeT.ageID = ageDimT.ageID
8 GROUP BY timeLevelYear geoLevelNUTS0 sexLevel ageLevel

In the SQL, the fact table (populationCubeT) is joined with the dimension tables
and the projected measures selected.

Similarly, with Dice, the grouping values are not changed. The level to do the dicing on
is determined by the members in the first position, DE.level = geoLevelNUTS0
in this case:

Dice(populationCube, geoDim, {DE, ES})})
1 SELECT timeLevelYear geoLevelNUTS0 sexLevel ageLevel

SUM(populationMeas) as populationMeasSUM AVG(populationMeas) as
populationMeasAVG COUNT(populationMeas) as populationMeasCOUNT

2 FROM populationCubeT, timeDimT, geoDimT, sexDimT, ageDimT
3 WHERE
4 populationCubeT.timeID = timeDimT.timeID
5 AND populationCubeT.geoID = geoDimT.geoID
6 AND populationCubeT.sexID = sexDimT.sexID
7 AND populationCubeT.ageID = ageDimT.ageID
8 AND (geoLevelNUTS0 = "DE" OR geoLevelNUTS0 = "ES")
9 GROUP BY timeLevelYear geoLevelNUTS0 sexLevel ageLevel

Slice removes the grouping value of the respective dimension:

Slice(populationCube,{ageDim})
1 SELECT timeLevelYear geoLevelNUTS0 sexLevel SUM(populationMeas) as

populationMeasSUM AVG(populationMeas) as populationMeasAVG
COUNT(populationMeas) as populationMeasCOUNT

2 FROM populationCubeT, timeDimT, geoDimT, sexDimT
3 WHERE
4 populationCubeT.timeID = timeDimT.timeID

4http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=tgs00004&lang=en, last accessed on 2015-06-13.

45

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=tgs00004&lang=en

3 Basic Definitions

5 AND populationCubeT.geoID = geoDimT.geoID
6 AND populationCubeT.sexID = sexDimT.sexID
7 GROUP BY timeLevelYear geoLevelNUTS0 sexLevel

Roll-Up changes the grouping value of the respective dimension to another level:

Roll-Up(populationCube, sexDim, sexLevelTotal)

1 SELECT timeLevelYear geoLevelNUTS0 sexLevelTotal ageLevel
SUM(populationMeas) as populationMeasSUM AVG(populationMeas) as
populationMeasAVG COUNT(populationMeas) as populationMeasCOUNT

2 FROM populationCubeT, timeDimT, geoDimT, sexDimT, ageDimT
3 WHERE
4 populationCubeT.timeID = timeDimT.timeID
5 AND populationCubeT.geoID = geoDimT.geoID
6 AND populationCubeT.sexID = sexDimT.sexID
7 AND populationCubeT.ageID = ageDimT.ageID
8 GROUP BY timeLevelYear geoLevelNUTS0 sexLevelTotal ageLevel

To evaluate Drill-Across, the union of dimensions of the single cubes constitute the
grouping values. Drill-Across brings together the measures of the two cubes and allows
direct comparison. Here, we query over our population and GDP cubes.

Drill-Across(populationCube, gdpCube)

1 SELECT timeLevelYear geoLevelNUTS0 sexLevelTotal ageLevel unitLevel
SUM(populationMeas) as populationMeasSUM AVG(populationMeas) as
populationMeasAVG COUNT(populationMeas) as populationMeasCOUNT
SUM(gdpMeas) as gdpMeasSUM AVG(gdpMeas) as gdpMeasAVG
COUNT(gdpMeas) as gdpMeasCOUNT

2 FROM populationCubeT, gdpCubeT, timeDimT, geoDimT, sexDimT,
ageDimT, unitDimT

3 WHERE
4 populationCubeT.timeID = timeDimT.timeID
5 AND gdpCubeT.timeID = timeDimT.timeID
6 AND populationCubeT.geoID = geoDimT.geoID
7 AND gdpCubeT.geoID = geoDimT.geoID
8 AND populationCubeT.sexID = sexDimT.sexID
9 AND gdpCubeT.sexID = sexDimT.sexID

10 AND populationCubeT.ageID = ageDimT.ageID
11 AND gdpCubeT.ageID = ageDimT.ageID
12 AND populationCubeT.unitID = unitDimT.unitID
13 AND gdpCubeT.unitID = unitDimT.unitID
14 GROUP BY timeLevelYear geoLevelNUTS0 sexLevelTotal ageLevel

unitLevel

To result in a non-empty data cube, the standard definition of drill-across [KR02] re-
quires that the two input data cubes share all dimensions. However, gdpCube does not
have the dimensions sexDim and ageDim and populationCube does not have
the dimension unitDim. Thus, the resulting cube in our example will be empty, i.e.,
the fact table would be empty (empty cube). Also, whereas the GDP is available on a
regional level, the population is only available on a country level.

46

3.2 Online Analytical Processing

OLAP operations can be nested to create data cubes that share all dimensions, and are
on the same level of detail. For instance, the following nested set of OLAP operations
can result in a non-empty data cube, given that populationCube and gdpCube
contain information about the same years and countries. We use a function-type syntax
to denote the iterative application of OLAP operations:

1 Drill-Across(
2 Slice(populationCube, {sexDim, ageDim}),
3 Roll-Up(Slice(gdpCube, {unitDim}), geoDim, geoLevelNUTS0)
4)

The sex and age dimension are removed from the population cube. The unit dimension
is removed from the GDP cube and the cube is aggregated to a country level. The
resulting cubes share all dimensions and levels and are joined with drill-across.

The respective SQL query is shown in the following:

1 SELECT timeLevelYear geoLevelNUTS0 SUM(populationMeas) as
populationMeasSUM AVG(populationMeas) as populationMeasAVG
COUNT(populationMeas) as populationMeasCOUNT SUM(gdpMeas) as
gdpMeasSUM AVG(gdpMeas) as gdpMeasAVG COUNT(gdpMeas) as
gdpMeasCOUNT

2 FROM populationCubeT, gdpCubeT, timeDimT, geoDimT
3 WHERE
4 populationCubeT.timeID = timeDimT.timeID
5 AND gdpCubeT.timeID = timeDimT.timeID
6 AND populationCubeT.geoID = geoDimT.geoID
7 AND gdpCubeT.geoID = geoDimT.geoID
8 GROUP BY timeLevelYear geoLevelNUTS0

Next, we describe main components of systems that provide OLAP functionalities,
including an OLAP language and result format (pivot tables).

3.2.2 OLAP Systems

OLAP systems feature a client-server architecture with one or more OLAP clients ac-
cessing a designated OLAP engine [CCS93, CD97]. An OLAP engine allows explo-
ration of datasets accessible from a Data Warehouse.

A data warehouse is concerned with providing efficient access to heterogeneous datasets
in a unified schema. The data is modelled and stored for efficient analytical queries,
e.g., using the star schema [CD97]. Extract-Transform-Load (ETL) pipelines extract,
transform, and load datasets.

A typical ETL system consists of wrappers and mediators [CDL+01]. A wrapper ac-
cesses a source, extracts the relevant data, and presents such data in a specific format.
The mediator collects, cleans, and combines data produced by different wrappers to a
unified schema.

47

3 Basic Definitions

OLAP engines (also called OLAP servers) translate OLAP queries into a target query
language of a data warehouse storing the multidimensional data, e.g., the star schema in
a relational database management system. OLAP engines include Palo OLAP Server5

and Mondrian6.

OLAP clients use a common language for querying an MDM and visualise results in
pivot tables. OLAP clients include JPivot7, Palo Client8, and Saiku9.

Also, there are programming libraries to build own OLAP servers (e.g., the Open Java
API for OLAP olap4j10) and OLAP clients (e.g., xmla4js11).

OLAP clients communicate OLAP queries via a common OLAP query language such
as MDX. In the following, we introduce MDX as a declarative OLAP query language
to display data from a data cube in pivot tables.

Multidimensional Expressions (MDX) is the most widely used OLAP query language,
adopted by OLAP engines such as Microsoft SQL Server12 and Mondrian, program-
ming libraries such as olap4j, and protocols such as XML for Analysis13 (XMLA).

XMLA is an XML API for the communication between OLAP engines and clients over
the Web based on the Simple Object Access Protocol (SOAP). XMLA supports MDX
as a query language and our MDM. XMLA is widely adopted in industry [PBAP08].
OLAP engines such as Palo OLAP Server and Mondrian provide XMLA interfaces and
OLAP clients such as JPivot and Palo Client connect to XMLA interfaces.

In contrast to an SQL query that returns a relational table, an MDX query returns parts
of a data cube to be displayed in a pivot table [GCB+97].

We define pivot tables as per Definition 4 and as illustrated in Figure 3.4.
Definition 4 (Pivot Table). Pivot tables display data from a data cube in a compact,
two-dimensional, tabular form where both the number of rows and columns are vari-
able depending on the multidimensional dataset represented in the cube [CGLG04].
The metadata of a pivot table describes a queried data cube, lists of member combina-
tions (positions) from a fixed set of levels from different dimensions to be displayed on

5http://en.wikipedia.org/wiki/Palo %28OLAP database%29, last accessed on 2014-11-18.
6http://mondrian.pentaho.com/, last accessed 2014-11-18.
7http://jpivot.sourceforge.net/, last accessed on 2014-06-25.
8http://www.palo.net/, last accessed on 2014-06-25.
9http://www.analytical-labs.com/, last accessed 2014-11-05.
10http://www.olap4j.org/, last accessed 2014-11-05.
11https://github.com/rpbouman/xmla4js, last accessed 2014-11-23.
12For an introduction to MDX, see

http://msdn.microsoft.com/en-us/library/aa216770%28v=sql.80%29.aspxand the reference at
http://technet.microsoft.com/en-us/library/ms145506.aspx, accessed 2014-10-23.

13http://en.wikipedia.org/wiki/XML for Analysis, last accessed 2014-11-18.

48

http://en.wikipedia.org/wiki/Palo_%28OLAP_database%29
http://mondrian.pentaho.com/
http://jpivot.sourceforge.net/
http://www.palo.net/
http://www.analytical-labs.com/
http://www.olap4j.org/
https://github.com/rpbouman/xmla4js
http://msdn.microsoft.com/en-us/library/aa216770%28v=sql.80%29.aspx
http://technet.microsoft.com/en-us/library/ms145506.aspx
http://en.wikipedia.org/wiki/XML_for_Analysis

3.2 Online Analytical Processing

rows and columns, and member combinations from a fixed set of levels as filter condi-
tions about which facts to summarise in the pivot table. The cells in a pivot table are
populated with measure values of facts in the cube.

Levels

Cells

Positions

Members

v1 v2 ...

...

m1

...

...

Figure 3.4: Schema of pivot table as generated by a typical MDX query; this pivot table displays
six levels of different dimensions on columns and rows.

Pivot tables are provided in spreadsheet programs such as Microsoft Excel and also
provide an intuitive interface for issuing OLAP (MDX) queries.

The Basic MDX Query14 is given in Listing 1.

Listing 1: Basic MDX query.

1 SELECT
2 [<column_axis_specification>] ON COLUMNS,
3 [<row_axis_specification>] ON ROWS
4 FROM [<cube_specification>]
5 [WHERE [<slicer_specification>]]

In an MDX query, the cube specification in the FROM clause describes the queried data
cube, the axis specifications describe the columns and rows, and the slicer specification
describes the member combinations as filter conditions. An MDX query requests the
summarised values to be displayed in the cells of the pivot table.
14http://msdn.microsoft.com/en-us/library/aa216770%28v=sql.80%29.aspx

49

http://msdn.microsoft.com/en-us/library/aa216770%28v=sql.80%29.aspx

3 Basic Definitions

As a concrete MDX query example, see Listing 2. Here, from a Eurostat dataset “Em-
ployment Rate”15, we create a pivot table with all members of the dimension sex on
columns (Female, Male, Total) and all possible member combinations (retrieved with
built-in function CrossJoin) of dimensions location and time on rows (e.g., position
AT, 2010). The built-in function Members returns all members of a dimension or level.
In the WHERE clause, the measure is selected.

Listing 2: MDX query for Employment Rate example.

1 SELECT
2 {Members([sex])} ON COLUMNS,
3 CrossJoin({Members([location])}, {Members([time])}) ON ROWS
4 FROM [Employment Rate]
5 WHERE { [Measures].[obsValue] }

Results of MDX queries fill the cells of the pivot table. The possible result of our
example query is illustrated in Figure 3.5, showing that 69.6% of women in Austria in
2010 were employed.

Figure 3.5: Example pivot table with Employment Rate values per gender (Female, Male, Total)
in columns and per location and time in rows.

Query processing in OLAP engines often follows the iterator model [Gra93]. A query
represented as a nested set of OLAP operations describes a logical operator query plan.

15http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=tsdec420&lang=en, last accessed 2015-06-13.

50

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=tsdec420&lang=en

3.3 Statistical Linked Data

This means that the single-cube operations projection, dice, slice, and roll-up and the
multi-cube operation drill-across are logical query operators.

Query optimisation is concerned with restructuring a logical query plan so that equal
results are requested but with fewer expected costs in data processing. Logical oper-
ator query plans logically describe in which order operations are executed but do not
describe how the operations are executed over concrete physical data.

Therefore, a logical query plan is transformed into a physical operator query plan. A
physical query plan consists of iterators. Whereas logical operators are only concerned
with data manipulation, an iterator may also implement operations that do not change
the data such as an iterator for loading or indexing of the data [Gra93]. An iterator
contains a method next() to request the next result; this method will in turn issue
the next() method of input iterators, and return (possibly modified) results. Results
between iterators can be pipelined or transferred via temporary data structures such as
tables.

3.3 Statistical Linked Data

We define Statistical Linked Data (SLD) as the main data source of multidimensional
datasets as per Definition 5.
Definition 5 (Statistical Linked Data). Statistical Linked Data are RDF data with mul-
tidimensional datasets properly modelled and published as Linked Data according to
the RDF Data Cube Vocabulary.

In the following, we explain Linked Data and the RDF Data Cube Vocabulary.

3.3.1 Linked Data

Linked Data (LD) is data published according to the Linked Data principles16, a set
of best practices widely-adopted within the Semantic Web community. The main tech-
nological building blocks are Web standards HTTP and URI. The Hypertext Transfer
Protocol (HTTP) is the basic protocol for transfer of data on the Web. Uniform Re-
source Identifiers (URIs) allow to identify things based on the Web.

Applied to statistics, Linked Data recommends the following:

1. HTTP URIs are used to identify things such as datasets, dimensions, statistical
indicators, countries, and companies.

16http://www.w3.org/DesignIssues/LinkedData.html, last accessed on 2014-10-23.

51

http://www.w3.org/DesignIssues/LinkedData.html

3 Basic Definitions

2. HTTP URIs are resolvable and provide useful, machine-readable information
based on Semantic Web technologies.

3. Useful information links to other things by reusing HTTP URIs such as used by
others for dimensions, indicators, countries, and companies.

More concretely, for resolvable HTTP URIs, Linked Data distinguishes between non-
information HTTP URIs that refer to a thing in the real world and information HTTP
URIs that provide information in a human- or machine-readable form about a thing.
Resolveable URIs identify things and – if looked-up via HTTP – provide useful infor-
mation. The client application can request different serialisations of the same informa-
tion, among them human-readable or machine-readable formats. The webserver returns
the data in the format or directs to the appropriate information HTTP URIs17.

In this work, we often abbreviate URIs with well-known prefixes as listed by prefix.cc18.
We slightly abuse the W3C CURIE syntax for expressing compact URIs.

Whereas for the human, mostly HTML is returned, Linked Data recommends to return
information represented using the Resource Description Framework19 (RDF). Data for-
mats for RDF include RDF/XML, Turtle, and JSON-LD.

An RDF document contains an RDF graph made of RDF triples as defined in Defini-
tion 6.
Definition 6 (RDF Graph with Terms and Triples). The set of terms in an RDF graph
consists of the set of HTTP URIs I, the set of blank nodes B and the set of literals L. A
triple (s, p,o) ∈ T = (I ∪B)×I × (I ∪B∪L) is called an RDF triple, where s is the
subject, p is the predicate and o is the object.

In the following, we show two example RDF triples in Turtle format describing that
eurostat-pjan:ds20 is a dataset and has a certain label:

eurostat-pjan:ds rdf:type qb:DataSet.

eurostat-pjan:ds rdfs:label "GDP and main components -
Current prices".

SPARQL21 is the standard query language for RDF data. We can distinguish SPARQL
SELECT queries that return results in a tabular representation, SPARQL CONSTRUCT
queries that return results as RDF, and SPARQL ASK queries that return a Boolean result
whether the query was matched in the underlying dataset or not. SPARQL queries use
graph patterns, sets of triples that each also can contain variables such as ?dataset

17Two common implementations are “fragment identifiers” and “HTTP Status Code 303 See Other”,
https://en.wikipedia.org/wiki/HTTPRange-14, last accessed 2014-10-30.

18http://prefix.cc/; last visited on 2014-04-03.
19http://www.w3.org/TR/ld-glossary/#resource-description-framework-rdf, last accessed on 2014-10-23.
20http://estatwrap.ontologycentral.com/id/demo pjan#ds, last accessed 2014-11-06.
21http://www.w3.org/TR/sparql11-overview/, last accessed 2015-01-30.

52

https://en.wikipedia.org/wiki/HTTPRange-14
http://prefix.cc/
http://www.w3.org/TR/ld-glossary/#resource-description-framework-rdf
http://estatwrap.ontologycentral.com/id/demo_pjan#ds
http://www.w3.org/TR/sparql11-overview/

3.3 Statistical Linked Data

to denote placeholders to which terms of triples from an RDF graph need to bind to
find a match in SPARQL query processing. For instance, only the first triple of the
example above would bind to the following graph pattern: {?dataset rdf:type
qb:DataSet. }. The new version SPARQL 1.1 includes functionalities such as
aggregation functions and subqueries.

We refer to SPARQL engines as systems that provide SPARQL query capabilities over
specific RDF graphs. This includes triple stores with SPARQL endpoints such as Open
Virtuoso22 and Sesame23 as well as Linked Data query systems such as qcrumb.com24

that directly allow queries over RDF graphs without permanently storing the data.

In Linked Data, RDF vocabularies and ontologies provide URIs that can be reused
in RDF graphs to describe certain domains. Special RDF vocabularies [PHDU13] that
most other vocabularies are based on include the Web Ontology Language (OWL)25 and
RDF Schema (RDFS)26. They introduce classes (rdfs:Class, owl:Class) and
properties (rdf:Property, owl:ObjectProperty, owl:DatatypeProper-
ty) with logic-based semantics that allow to infer implicit triples, and that SPARQL
engines may consider in query processing. For instance, RDFS allows for defining
sub-classes (rdfs:subClassOf) and sub-properties (rdfs:subPropertyOf);
OWL allows for setting two things equivalent (owl:sameAs). The following triple
states that Germany defined by Eurostat, eurostat-geo:DE27, is equal to Germany
defined by Gesis, allbus-geo:0028:

eurostat-geo:DE owl:sameAs allbus-geo:00.

In this work, we assume that multidimensional datasets are originally published using
Linked Data or are re-published using a Linked Data wrapper. Examples of Linked
Data Wrappers include DBpedia29 that extracts structured information from Wikipedia
and publishes the data as Linked Open Data30.

In the next section, we present a Linked Data vocabulary that we use in the thesis for
representing multidimensional datasets.

22http://sourceforge.net/projects/virtuoso/files/virtuoso/, last accessed 2014-11-17.
23http://sourceforge.net/projects/sesame/files/Sesame%202/, last accessed on 2014-11-17.
24http://qcrumb.com/, last accessed on 2014-10-23.
25http://www.w3.org/TR/2012/REC-owl2-overview-20121211/, last accessed on 2014-06-29.
26http://www.w3.org/TR/rdf-schema/, last accessed on 2014-06-29.
27http://estatwrap.ontologycentral.com/dic/geo#DE, last accessed 2014-11-06.
28http://lod.gesis.org/lodpilot/ALLBUS/geo.rdf#00, last accessed 2014-11-06.
29http://dbpedia.org/About, last accessed 2014-11-11.
30Referred to as Linked Open Data since published with an open licence.

53

http://sourceforge.net/projects/virtuoso/files/virtuoso/
http://sourceforge.net/projects/sesame/files/Sesame%202/
http://qcrumb.com/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/rdf-schema/
http://estatwrap.ontologycentral.com/dic/geo#DE
http://lod.gesis.org/lodpilot/ALLBUS/geo.rdf#00
http://dbpedia.org/About

3 Basic Definitions

3.3.2 The RDF Data Cube Vocabulary

The RDF Data Cube Vocabulary (QB)31, is a widely-used source of URIs to describe
multidimensional datasets. We have contributed to the recommendation of QB by the
W3C with a description of use cases and lessons for the vocabulary [KC13]. See Fig-
ure 3.6 for an overview of QB with the most important classes and properties.

Figure 3.6: Illustration of most important classes of The RDF Data Cube Vocabulary with prop-
erties (or property chains) between instances of concepts; adapted from “Outline of
the vocabulary” in specification.

QB allows to describe datasets (instances of qb:DataSet) with observations (in-
stances of qb:Observation). Every dataset has a certain structure (instance of
qb:DataStructureDefinition) that – using a chain of properties qb:compo-
nent before qb:measure or qb:dimension – defines measures (instances of
qb:MeasureProperty) and dimensions (qb:DimensionProperty). Every ob-
servation in the dataset has a value for each of the measures and dimensions. The val-
ues of the measures are functionally dependent on the values of the dimensions and
for every possible combination of dimension values, only one fact can be contained
in the dataset. Dimension values only can come from a specific list (e.g., instances
of skos:Concept in a skos:ConceptScheme linked from the dimension via
qb:codeList). The following triples describe an example observation as a blank
node, an instance with an only locally known name, of 390,156 inhabitants of 18-year-
old female persons in 2013 in Germany in the population dataset of Eurostat:

1 _:obs1 a qb:Observation;
2 qb:dataSet eurostat-pjan:ds;
3 estatwrap:age eurostat-age:Y18;
4 estatwrap:sex eurostat-sex:F;

31http://www.w3.org/TR/vocab-data-cube/, last accessed on 2014-10-23.

54

http://www.w3.org/TR/vocab-data-cube/

3.3 Statistical Linked Data

5 estatwrap:geo eurostat-geo:DE;
6 dcterms:date "2013";
7 sdmx-measure:obsValue "390156".

The following SPARQL query returns the number of observations in the population
dataset:

1 SELECT count(?obs)
2 WHERE {
3 ?obs qb:dataSet eurostat-pjan:ds.
4 }

A QB dataset serves all necessary information about a multidimensional dataset. The
QB dataset URI gives the name of the relation defined by the multidimensional dataset.
The QB data structure definition defines the independent and dependent attributes of
the relation. The QB observations describes the entities in the relation.

QB specifies SPARQL ASK queries as QB integrity constraints that when applied to
an RDF graph return true if the graph contains one or more data cubes that are not
well-formed according to the specification.

We have chosen QB among several other vocabularies available to publish raw or ag-
gregated multidimensional datasets. For instance, there are various other OWL ontolo-
gies available for representing multidimensional datasets [NN09]. Also, various light-
weight ontologies, Linked Data vocabularies, have been presented such as SCOVO
[HHR+09] and SCOVOLink [VLH+10].

3.3.2.1 Reasons for Choosing QB for Modelling Multidimensional Datasets

Our reasons for using QB for modelling multidimensional datasets are as follows:

1) In contrast to other vocabularies, QB is widely-adopted, an important factor
for data integration use cases. For instance, see the PlanetData wiki for a collection
of data sources using QB32.

There are already several statistical datasets published in QB format, e.g., financial
reports from the U.S. Security and Exchange Commission33 and spendings by the UK
district council Lichfield34.

Also, as a pre-condition for recommendation by the W3C, several implementations of
QB have been identified35. OLAP2DataCube and CSV2DataCube support publishers
to transform common representations of statistics to QB [RPM+13, SMDMM+12].

32http://wiki.planet-data.eu/web/Datasets, last accessed on 2014-10-23.
33http://edgarwrap.ontologycentral.com/, last accessed 2014-11-11.
34http://spending.lichfielddc.gov.uk/download, last accessed 2014-11-23.
35http://www.w3.org/2011/gld/wiki/Data Cube Implementations, last accessed 2014-11-11.

55

http://wiki.planet-data.eu/web/Datasets
http://edgarwrap.ontologycentral.com/
http://spending.lichfielddc.gov.uk/download
http://www.w3.org/2011/gld/wiki/Data_Cube_Implementations

3 Basic Definitions

An earlier version of QB [CFG+10] existed for some time and proved applicable in
several deployments. QB is based on the Statistical Data and Metadata Exchange
(SDMX)36 which is applied in many contexts. QB has shown flexible to represent dif-
ferent kinds of multidimensional datasets, e.g., sensor data, finance data, and statistics
[KC13].

2) QB promises benefits in various use cases [KC13]. Statistics can more easily be
disseminated since registries directly get their metadata from the published datasets in-
stead of from separately created and maintained documents. A standard representation
such as Linked Data and QB makes it easier to work with the data, to annotate the
data and to consume the data with third-party tools. Various data formats such as for
Microsoft Excel spreadsheets can be translated to a machine-readable format so that
search engines can make better use of the data. Data can automatically be aggregated
to higher levels and stored so that queries may be answered by fast look-ups. Publishers
may internally only manage the canonical data model using QB and provide the data
in other formats on-the-fly. This way, a publisher can meet the needs of many data
consumers in a uniform way.

Other benefits include:

• Since the data is self-describing, contains links to related information and the use
of well-defined ontologies, Linked Data allows for easier automatic interpretation
of data.

• Existing Linked Data tools such as crawlers can be used for extract-transform-
load pipelines.

• SPARQL 1.1 allows expressive queries after loading of RDF into a triple store.

• Other information can be added, e.g., licence information; all in a uniform repre-
sentation using RDF and using different vocabularies.

Etcheverry and Vaisman [EV12a] specifically explain the benefits of having a data
structure definition of multidimensional datasets:

• to assist in the integration process of different data sets;

• to provide a self-contained description of the contents of the data set, which al-
lows for example to implement client applications and operators;

• and to verify that the dataset instances match the expected structure.

3) QB fulfils requirements for sharing of data cubes [HBH03].

• The format has to support a conceptual model of data cubes. In Chapter 5, we
show a formal mapping between our MDM and QB.

36http://sdmx.org/, last accessed 2014-11-23.

56

http://sdmx.org/

3.3 Statistical Linked Data

• The conceptual distinction between the description of “schema, master or dimen-
sion data” and “transaction or fact data” has to be supported. QB distinguishes
qb:DataStructureDefinitionwith qb:DimensionProperty for the
schema and qb:DataSetwith qb:Observation for fact data that in Linked
Data also can be provided at different locations.

• The format has to be transportable over a network, primarily over the Internet. As
natively supported by Linked Data, datasets are shared using HTTP and URIs.

• To achieve a high level of flexibility and reuse, the format has to support linking
and inclusion concepts. Other formats such as XCube [HBH03] at most highlight
the development of standardised reference dimensions and allow the linkage of
schema, dimension and fact data; beyond that, Linked Data and QB allow reuse
and linking of any URI available on the Web.

• The format should be extensible to be able to adapt to different data models or to
introduce new concepts. Etcheverry and Vaisman [EV12b, EV12a] show possible
extensions of QB.

• The format must be easily convertible to and from various data sources and for-
mats. RDF/XML representations of QB data allow XSLT transformations. In
several case studies we have shown that QB can be used to represent heteroge-
neous data sources and formats, e.g., SDMX, XBRL, sensor data [KC13]. Con-
verting QB data to other RDF schemas, and from there to other data formats, is
also possible using SPARQL 1.1 CONSTRUCT or SELECT queries.

• The format must allow Online Analytical Processing (OLAP) and reduce the
amount of data to be transferred over the network. Etcheverry and Vaisman
[EV12b, EV12a] have shown how to merge locally stored datasets and Web-
distributed datasets that are represented with an extension of QB using OLAP
operations. In Chapter 6, we show how to translate OLAP operations to SPARQL
queries over QB datasets.

4) QB allows to ground the semantics of statistics and still is easy to use. Since
QB does not directly support all necessary components of complex multidimensional
models, e.g., complex OLAP hierarchies and aggregation functions [EV12a], QB has
proven to be a suitable compromise between expressivity and simplicity for publishing
statistics as Linked Data.

The Statistical Core Vocabulary (SCOVO)37 [HHR+09] was a first attempt to cater for
the specificities of multidimensional datasets when publishing as Linked Data. The
main drawback of SCOVO is that only svc:dimension is used and different dimen-
sions and measures are not distinguished; thus, SCOVO provides only limited capabil-
ities to ground the semantics of statistics. Vrandečić et al. [VLH+10] and Cyganiak et
al. [CFG+10] recommend to extend SCOVO.
37http://purl.org/NET/scovo, last accessed 2014-11-11.

57

http://purl.org/NET/scovo

3 Basic Definitions

QB intends to be easier to handle and better able to capture the semantics of the sta-
tistical Linked Data than SCOVO. Also, datasets using SCOVO vocabulary can be re-
expressed in the QB vocabulary. QB intends to be generally suitable to model many
different kinds of numeric datasets.

Most importantly, QB distinguishes not only dimension values but also dimension types
and therefore fulfils the requirements that Vrandečić et al. [VLH+10] state for ground-
ing statistics to their described entities.

5) QB is an OWL ontology and as such has a formal domain model that helps
with automatic data integration. Other works specifically aim at sharing descriptions
between systems. The Common Warehouse Metamodel (CWM)38 is a standard by the
Object Management Group (OMG) for data warehousing. CWM is an XML-based
exchange standard for ETL transformations and data warehouse metadata.

However, CWM – but also other interfaces and protocols to share multidimensional
datasets such as XML for Analysis and OLE DB – lack a solid theoretical background
making it more difficult to use such formalism as a basis for integration [VS99].

Sharing multidimensional datasets often is done using XML [PBAP08]. XML allows
to define a schema (XML Schema). There are data modification and query languages
for XML such as XSLT and XQuery. There are XML schemas for representing specific
information, e.g., XBRL for financial reports, SDMX for statistics, DDI39 for research
studies. Financial reports contain financial facts for a company, for a valid period and
for a financial concept such as Total Assets. Statistics contain (aggregated) macro data,
e.g., about countries, in a specific year, for a specific group of people. In research
studies micro data is collected, e.g., answers by a specific type of person, on a date, to
a certain question in questionnaires.

The integration of data across different standards is still an open issue. XML schemas
are concerned with defining a syntactically valid XML document representing some
specific type of information. Yet, XML schemas do not describe domain models; with-
out formal domain models, it is difficult to derive semantic relationships between ele-
ments from different XML schemas [KFvHH01].

A domain model for instance includes a top-down inheritance of attributes from su-
perclasses to subclasses. Assume employee is a subclass of a class person. Then any
employee inherits all attributes that are defined for the class person. Also, the bottom-up
inheritance of instances from subclasses to superclasses. Then the class person inherits
all instances that are elements of the class employee. Another example of a domain
model element are logical axioms such as equivalance axioms.

38http://www.omg.org/spec/CWM/, last accessed 2014-11-11.
39http://www.ddialliance.org/, last accessed 2014-11-23.

58

http://www.omg.org/spec/CWM/
http://www.ddialliance.org/

3.3 Statistical Linked Data

Often, the domain model for an XML schema is represented in a semi-formal way
using UML documents and free text. In contrast, schemas described as an OWL or
RDFS ontology such as QB have a formal domain model based on logics.

We regard Statistical Linked Data, Linked Data using QB, as the primary source of
multidimensional datasets in this work.

59

4 State of the Art

Chapter 5 to Chapter 8 include descriptions of specific related work related to the single
research questions. In this chapter we give an overview of designed and implemented
systems that can provide a solution to our overall research problem:

Overall Research Problem: How can we flexibly integrate and efficiently analyse mul-
tidimensional datasets from the Web?

We argue that most systems are either flexible to integrate heterogeneous datasets or
efficient to do so on Web-scale. In Figure 4.1, we categorise integration and analysis
approaches over datasets from the Web and identify a gap of combined approaches.

Figure 4.1: Integration and analysis approaches over datasets from the Web, categorised by flex-
ibility (x-axis) and efficiency (y-axis).

4 State of the Art

Traditional approaches fulfil specific requirements in data pre-processing and analysis
and are not designed to integrate heterogeneous datasets of large sizes and numbers
from the Web.

Semantic approaches make use of Semantic Web technologies or other schema-flexible
methods and have focussed so far on semi-structured metadata instead of large amounts
of numeric values from multidimensional datasets.

High-performance approaches focus more on scalability and still require manual effort
for designing and maintaining of ETL pipelines to pre-process, integrate, and load het-
erogeneous data. In the following, we describe example systems for each category.

4.1 Traditional Integration and
Analysis Approaches

Traditional approaches are often used to pre-process and analyse multidimensional
datasets. With respect to the integration of datasets from the Web, they do not fo-
cus on flexibility and efficiency but knowledge discovery over a single pre-processed,
multidimensional dataset of limited size.

4.1.1 Visualisations

Effective visualisations for specific domains, e.g., healthcare, exist [KKEM10, p. 32].
Visualising domain-independent multidimensional data, e.g., using parallel coordinates1

easily becomes confusing to analyse. Therefore, most visualisations are limited to a cer-
tain number of dimensions to display at the same time. An example is the Gapminder
system [KKEM10, p. 32] that allows to visualise up to five dimensional and measure-
ment attributes (x- and y-axis; color, size of circles; movement over time). Usually,
such systems require cleaned data.

4.1.2 Spreadsheets

Microsoft Excel with its capability to create Pivot tables is one of the most widely-
used spreadsheet programs. Spreadsheets are intuitive to create and work with small
datasets. If datasets grow, come from different sources and may dynamically change,
the manual effort in maintaining spreadsheets increases. The ease of adapting spread-
sheets to one’s needs such as adding nested tables, colours and formulas increases the
risks of copy-paste errors and inconsistencies. As an example, the Economist spread

1http://en.wikipedia.org/wiki/Parallel coordinates, last accessed 2015-01-30.

62

http://en.wikipedia.org/wiki/Parallel_coordinates

4.1 Traditional Integration and Analysis Approaches

false information about countries in an article about their economic vulnerability that
incurred from errors in spreadsheets2.

The Anzo tool by Cambridge Semantics3 allows to connect tabular data in Microsoft
Excel spreadsheets to RDF ontologies in a triple store. Their focus lies more on user-
friendly data acquisition and less on exploratory analyses of numeric datasets. Dexter4

is a spreadsheet tool based on Datalog and JavaScript for the integration of small tabular
datasets on the Web.

4.1.3 Relational Database Management Systems

Transaction processing queries and analytical queries substantially differ and put com-
plementary requirements on backends [BPZ11, SBC+07]. Originally developed for
transaction processing tasks, traditional RDBMS are no perfect fit to analytical queries
[SBC+07]. Also, few domain experts such as from the natural sciences, are sufficiently
familiar with RDBMS and SQL to quickly insert and ad-hoc query data from systems
such as Microsoft SQL Server and Oracle MySQL; domain experts prefer more abstract
representations [BJK+12].

4.1.4 Data Mining Tools

Data Mining and Knowledge discovery tools can be used for finding interesting pat-
terns in multidimensional datasets. Example systems include RapidMiner, Weka, and
R; they focus on allowing users to run machine learning algorithms such as for classi-
fication, recommendation and clustering over multidimensional datasets. Those tools
typically assume datasets to be locally available, to be pre-processed, and to fit in mem-
ory. Therefore, such tools have difficulties if datasets are available from different data
sources, if datasets are heterogeneous, and if the number and size of datasets are con-
siderably large.

Our contributions in the integration and analysis of datasets from the Web can be ap-
plied for the data selection, pre-processing, and transformation steps in data mining
processes. Thus, data mining tools could be used on top of our approach.

2See Economist 2013: “This spreadsheet is different”, http://www.economist.com/news/finance-and-
economics/21586569-error-apology-and-revision-spreadsheet-different, last accessed 2014-10-24.

3http://www.cambridgesemantics.com/products/anzo-express, last accessed 2015-01-31.
4http://dexter.stanford.edu/main/, last accessed 2015-01-31.

63

http://www.economist.com/news/finance-and-economics/21586569-error-apology-and-revision-spreadsheet-different
http://www.economist.com/news/finance-and-economics/21586569-error-apology-and-revision-spreadsheet-different
http://www.cambridgesemantics.com/products/anzo-express
http://dexter.stanford.edu/main/

4 State of the Art

4.2 Semantic Integration and
Analysis Approaches

Semantic approaches are well-suited to automatically integrate and make sense of data
published on the Web. They often use Semantic Web concepts or technologies. With
respect to exploration and analysis of many large numeric datasets from the Web, they
lack efficiency.

4.2.1 Web Integration Systems

Web integration systems aim at providing uniform access to data sources published on
the Web. The most common format to increase interoperability between systems and to
explicitly share datasets is XML. For instance, the Google Dataset Explorer allows to
describe datasets using the XML-based Google Dataset Publishing Language (DSPL)
and provides interactive and intuitive visualisations such as line or bar charts. Such
systems may be limited in integrating and using datasets that are published according
to domain- or application-dependent specifications such as DSPL for the Google Public
Data Explorer, SDMX for European statistics, and XBRL for financial reports. Some
XML integration systems use mechanisms to access data over the Web that are not
based on light-weight, basic Web standards such as HTTP URI and HTTP GET. Simi-
larly, XML-based solutions do not necessarily use a formal domain model and typically
are less efficient than relational or in-memory approaches [PBAP08].

Other systems do not need to rely on data made available in a machine-processable for-
mat such as XML. Examples include Google Base, Needlebase, and Google Squared
that automatically retrieve (e.g., scrape) semi-structured data from the Web, e.g., from
HTML tables and the Deep Web behind HTML forms. Systems such as PAYGO
[MJC+07] and RUBIX [ALS+12] run elaborate algorithms based on machine learning,
natural language processing, pattern matching, and probabilistic methods to identify,
extract and match datasets; they do not focus on providing interactive exploration of
large numeric datasets.

4.2.2 Semantic Web Analysis Systems

Some integration systems such as the Semantic Web Search Engine (SWSE) [HHU+11],
intend to integrate and make explorable all structured data published on the Semantic
Web. They implement algorithms such as entity consolidation [HHU+11] to automati-
cally pre-process and integrate data on Web-scale.

64

4.2 Semantic Integration and Analysis Approaches

For instance, Humboldt [KD08] combines browsing, faceted-search, and query-building
capabilities for more powerful Linked Data exploration. The interfaces used by seman-
tic systems such as follow-your-nose browsers, faceted-search interfaces, and query
builders [Har10, HHU+11, KD08] over RDF data are designed more for analysing
metadata and less for aggregations and complex measures over large amounts of numer-
ical data in an exploratory fashion of overview first and details on demand [DR11].

The SPARQL Package for R by Willem Robert van Hage and Tomi Kauppinen5 is an
example tool to analyse numeric datasets from Linked Data with the statistics software
R and is suitable for users familiar with R, SPARQL, and RDF.

A common tool for pre-processing Linked Data before an analysis is the RDF extension
to OpenRefine, RDF Refine6.

A more user-friendly approach is pursued by the RapidMiner Linked Open Data Exten-
sion7 by Heiko Paulheim et al. that provides scripts for accessing of Linked Data from
within the Data Mining Tool RapidMiner. Results from such scripts can be pipelined to
Machine Learning algorithms in a visual interface.

Explain-a-LOD [Pau12] explains statistics based on correlations with information found
in Linked Data. Such work show that Linked Data is a useful additional data source for
knowledge discovery tasks. So far, it is unclear how such approaches can scale with
additional datasets from Statistical Linked Data; for instance, Explain-a-LOD only uses
DBpedia as a data source.

4.2.3 Semantic Data Warehouses

Since ontologies and Semantic Web technologies improve interoperability between in-
formation systems, they promise Situational Business Intelligence [ADE+13, LHM09]:
allowing users to ask ad-hoc analytical queries to new data sources.

Besides difficulties in reconciling and integrating data sources, Pardillo et al. [PM11]
discuss further shortcomings of current data warehouse design approaches which on-
tologies can contribute to overcome: incompleteness in multidimensional models; un-
clear characteristics of measures; missing semantic-aware summarisability checks; se-
mantically-traceable models; reasoning on OLAP queries; asserting suitable visualiza-
tions; and security constraint validation [PM11].

Semantic Data Warehouses use ontologies, e.g., are based on Semantic Web technolo-
gies to formally describe the domain of data to be analysed [NN10, NN09, NB12,
NBP+09].

5http://linkedscience.org/tools/sparql-package-for-r/, last accessed on 2014-10-26.
6http://refine.deri.ie/, last accessed 2014-11-23.
7http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension/, accessed 2014-10-26.

65

http://linkedscience.org/tools/sparql-package-for-r/
http://refine.deri.ie/
http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension/

4 State of the Art

DrillBeyond [ETBL12] is a system that allows users to query a local database automat-
ically enhanced with external data. If a query is posed to the system, parts of the query
that the local database cannot fulfil are tried to be taken from Open Data. The system
is not designed for efficiency: OLAP-style analyses are not possible and much time is
taken for pre-fetching and matching of datasets from Open Data.

Semantic Cockpit [NSL11] uses multidimensional modelling enriched with the explicit
representation of and reasoning with external knowledge, such as domain knowledge
represented in ontologies, semantics of derived measures and scores, and previous in-
sights represented as so-called judgement rules. It remains unclear how such ontologi-
cal semantics and rules are to be evaluated efficiently.

The SODA system [BJK+12] allows key-word search over data warehouses. Synonyms
of multidimensional elements are loaded from DBpedia.

The Information Workbench [HSS11] uses Semantic Web technologies and provides
typical Business Intelligence functionalities such as ETL of arbitrary data sources and
flexible reports. Data is converted to RDF and stored in a centralised SPARQL en-
gine. Follow-your-nose browsing, query builders and faceted search are possible. Since
conceptually the data is not modelled as an MDM, OLAP interfaces and typical Data
Warehouse optimisations are not directly applicable.

Ontology repositories such as BioPortal8 and data catalogues such as data.gov.uk based
on the CKAN9 software store large amounts of data. Such work focus on search and
reuse of ontologies and datasets instead of integration and analysis thereof.

Triple stores such as Open Virtuoso and Sesame allow to store RDF data, but neither
are designed for OLAP analyses nor – similar to RDBMS – analytical query processing
over large amounts of numeric data.

Wolfram Alpha10 is a web-based front-end to a well-maintained knowledge base. Much
manual effort is presumably put in formally representing and integrating common knowl-
edge using the mathematical software Mathematica. Keyword search over the knowl-
edge base and automatic execution of mathematical formulas allow user-friendly ac-
cess to well-structured information from several integrated data sources. There is little
known about the effort needed to integrate additional data sources and in optimising
query processing over the knowledge base.

Current Semantic Data Warehouses show the potential of combining integration ap-
proaches based on Semantic Web technologies and exploration and analysis approaches
from the area of Business Intelligence [ADE+13, LHM09]. More work has to be done
to evaluate both flexibility and efficiency of such systems. Two examples of current

8http://bioportal.bioontology.org/, last accessed 2014-11-23.
9http://ckan.org/, last accessed 2014-11-23.
10http://www.wolframalpha.com/, last accessed 2014-11-23.

66

http://bioportal.bioontology.org/
http://ckan.org/
http://www.wolframalpha.com/

4.3 High-Performance Integration and Analysis Approaches

EU research projects are CUBIST11 and OpenCube12 that at the time of writing of this
thesis have not demonstrated own solutions to the problem.

Our contributions in the integration and analysis of datasets from the Web uses Seman-
tic Web standards as a basis, as well as established methods such as entity consolida-
tion.

4.3 High-Performance Integration and
Analysis Approaches

High-performance approaches are well-suited to allow efficient analytical queries over
structured and semi-structured data sources. They make use of recent developments in
software and hardware to efficiently execute low-level data processing operations. With
respect to the pre-processing and integration of numeric datasets from the Web, they do
not focus on flexibility.

4.3.1 ROLAP and MOLAP Systems

Since transaction processing and analytical queries put complementary requirements
to databases, OLAP systems optimise analytical query processing over data extracted,
transformed and loaded from heterogeneous data sources into a Data Warehouse.

For instance, systems such as SAP NetWeaver Business Intelligence and Mondrian
OLAP Server rely on RDBMS and star schemas (ROLAP) or multidimensional ar-
rays (MOLAP) and specific optimisations such as materialisation to efficiently execute
analytical queries.

An example is Tableau, a widely-used OLAP and Data Analysis platform based on
the Polaris system [STH02]. Polaris uses an algebra for translating user interactions to
queries. The algebra uses “fields” as operands and “concatenate”, “cross”, “nest” as
operations on axes and layers of pivot tables or other visualisations. Query processing
conceptually is done by several SQL queries for selecting, partitioning and transforming
the records to be visualised. In the implementation, an OLAP server and the MDX
query language are used. Polaris also allows for roll-up and drill-down along dimension
hierarchies. Polaris is more concerned with providing an intuitive and useful graphical
user interface than on data integration and query optimisation.

11http://www.cubist-project.eu/, last accessed on 2014-10-31.
12http://opencube-project.eu/, last accessed on 2014-10-31.

67

http://www.cubist-project.eu/
http://opencube-project.eu/

4 State of the Art

Analytical (OLAP) queries can also be optimised with in-memory [VTBL13], column-
oriented [AM08], and multi-core parallel [HS13] storage and processing techniques.
SAP HANA [BPZ11] and MonetDB13 are example systems.

When using OLAP systems for integrating heterogeneous datasets, most effort is put
into design and maintenance of ETL pipelines, e.g., using SAP ETL software, Pentaho
Data Integration14, and Kapow Software [DCSW09]. If data at the sources change,
the ETL process as well as the database schema often have to be modified. With
tabular schemas that explicitly need to be maintained separately from the data, tradi-
tional OLAP systems also are less flexible in storing arbitrary provenance information
[FKaGO+12].

4.3.2 NoSQL Systems

As an alternative to traditional relational databases, NoSQL (not only SQL) data man-
agement systems focus on scalability. NoSQL systems include document databases
such as CouchDB, key-value stores such as Cassandra, and query engines such as Hive
[CHH+13] based on the programming paradigm MapReduce for efficient parallel data
processing.

Being able to spread processing tasks and data over a cluster of commodity machines
such systems scale well with simple queries and loading of data. NoSQL systems are
less suited for analytical queries that involve several joins, touch a lot of data (as in
aggregation operations) or contain complex filters [CHH+13].

Abelló et al. [AFR11] have shown that the three most common low-level operations
to building Data Cubes – full database scan, index access, and range index scan – can
be implemented with MapReduce over a distributed database (Apache HBase). Here,
MapReduce is used as an scalable ETL tool to generate data cubes in OLAP engines.

Another group of database systems not focusing on relational data and SQL queries
are Graph databases such as Neo4j15. They allow to store schema-flexible graph data
and efficient execution of graph analysis queries such as path traversals. Integration,
filtering, and aggregation of numeric data is not the focus of these systems.

NoSQL systems work on semi-structured and schema-flexible data, but do not make use
of more formal descriptions of data sources, e.g., based on Semantic Web technologies.
Although NoSQL systems also can provide access to unstructured data and languages
such as Pig Latin allow to write MapReduce programs in a high-level language with
User Defined Functions (UDF) in common programming languages, the generation and

13https://www.monetdb.org/Home, last accessed 2015-01-23.
14http://community.pentaho.com/projects/data-integration/, last accessed 2015-01-23.
15http://neo4j.com/, last accessed 2014-11-23.

68

https://www.monetdb.org/Home
http://community.pentaho.com/projects/data-integration/
http://neo4j.com/

4.3 High-Performance Integration and Analysis Approaches

maintenance of ETL processes remain a costly, mostly manual, and error-prone process,
similar as for OLAP systems.

4.3.3 Real-Time Data Warehouses

There are several research efforts in making data warehouses more automated, data-
driven, and faster with respect to new or changing data sources. The goals are to link
the business processes and objectives with the ETL design process and to consume data
from a wider variety of data sources in near real-time [DCSW09].

Active data warehouses pro-actively react to changes in the data by taking appropriate
actions such as triggering email alerts or creating reports. The respective logic for
example is described using Event-Condition-Action rules [VS09].

Near real-time data warehouses allow fast loading over continuously changing data
sources.

RiTE [TPL08] is a main-memory-based middleware system that allows data producers
and consumers to coordinate. Based on an intermediary, in-memory store, data pro-
ducer can make data available immediately via INSERT-like statements and – if user
requirements such as for freshness allows – with bulk-load speed.

In-memory databases such as SAP HANA [BPZ11] and the Hybrid OLTP&OLAP High
Performance DBMS HyPer16 allow high speed of both OLAP and OLTP queries over
up-to-date transaction data.

The management of ETL processes can be improved with data transformation models
[FKaGO+12]. Such models ground ETL processes with prospective and retrospective
provenance descriptions to their domain. For instance, business processes and objec-
tives are uniquely specified to allow for partly automating design, development and
maintenance of ETL processes [DCSW09].

Reducing the time to create, execute, and update ETL processes in case of changes to
the data sources is difficult due to the wide range of possible data sources and transfor-
mations. Only semi-automatic approaches combined with more or less formal descrip-
tions such as using the Business Process Model and Notation (BPMN) and Semantic
Web technologies seem applicable [FKaGO+12].

A variety of systems can be used to provide access to continuously changing data
sources (without necessarily permanent storage in a data warehouse): Linked Data-
Fu [SSHS13] presents a rule-based language and engine for reading and writing of data
on the Web, SPADE [GAW+08] provides an abstract language to execute processing
operations over streams of data, and ETALIS [AF11] presents a language and engine
for processing of complex events. It is unclear how well such solutions allow for the

16http://hyper-db.de/, last accessed 2014-12-11.

69

http://hyper-db.de/

4 State of the Art

continuous development of data warehouses, for instance, if dimensions, members, and
measures evolve (“slowly changing dimensions”) or new facts are added to datasets.

In this thesis, our scenarios do not require the integration of quickly (e.g., several times a
day) changing data sources. Instead, we are more concerned with integrating statistical
datasets and background information. Our contributions in the integration and analysis
of datasets from the Web make use of high-performance approaches such as optimised
ROLAP systems.

In summary, traditional, semantic, and high-performance approaches are flexible or
efficient, but seldomly show both characteristics. This work intends to fulfil this “gap
of combined approaches” illustrated in Figure 4.1. For that, semantic data access and
processing methods are combined with optimisation methods such as materialisation
from ROLAP and MOLAP systems.

70

5 Mapping Data Cubes and
Statistical Linked Data

In this chapter, we investigate the following research question:
Research Question 1. How can we use existing OLAP engines for efficient query pro-
cessing over heterogeneous multidimensional datasets from the Web?

Figure 5.1 illustrates the contribution given in this chapter. We map between the Mul-
tidimensional Data Model (MDM) and the RDF Data Cube Vocabulary for efficient
analytical query processing using existing OLAP engines.

Experts

Dataset 1

OLAP

Client

Integration and Analysis System Datasets

Dataset 2

Dataset 3

Metadata query

Analytical query
HTTP/GET

HTTP/GET
HTTP/GET

RDF/XML/CSV

...

RDF/QB
Part of

Global Cube
HTML+JavaScript

OLAP

Engine

MDM-QB

MappingDataCube

1

Statistical

Linked Data

Figure 5.1: Illustration of contribution of the MDM-QB Mapping.

5.1 Introduction

Assuming domain experts familiar with OLAP interfaces and pivot tables, and datasets
distributed over servers and heterogeneously published as Statistical Linked Data, flex-
ible integration and efficient query processing approaches are necessary.

For instance, the Open Government Data (OGD) scenario motivates three example
queries that citizens may want to pose over governmental statistics. In the follow-
ing, we describe those three queries that require efficient data integration and query
processing over datasets published as Statistical Linked Data:

Unemployment Fear and GDP Growth (UNEMPLOY). The GESIS LOD Pilot
Application1 publishes ALLBUS as Statistical Linked Data. This Linked Data source
1http://multiweb.gesis.org/gesis-lod-pilot/, last accessed 2014-11-06.

http://multiweb.gesis.org/gesis-lod-pilot/

5 Mapping Data Cubes and Statistical Linked Data

under the namespaces allbus2 and gesis3 includes the Unemployment Fear Survey
dataset (allbus:ZA4570v590.rdf#ds).

Eurostat datasets are available as Linked Data from the Eurostat Linked Data Wrapper
(Estatwrap)4. For instance, Estatwrap offers under the eurostat namespace5 the
Eurostat GDP Growth Dataset (eurostat:id/tsieb020#ds).

Citizens may want to integrate and make comparable the ”Unemployment Fear” and
the ”GDP Growth Rate” over time for Germany to get insights about the correlation
between GDP and employees perceived situation.

Number of Death by Illness and of Hospitals (HEALTH). The World Health Or-
ganisation (WHO) publishes in its Global Health Observatory Data Repository various
datasets on important health topics. Among others there is a dataset reporting about
mortality and burden of disease for different countries, i.e., describing the number of
people dying from a certain illness in specific countries6. On the website gho.aksw.org,
the WHO Mortality Dataset is available as Linked Data reusing QB7. Consider WHO
Mortality Dataset in conjunction with the number of hospitals as provided by Eurostat
in a Number of Hospitals Dataset. For all European countries citizens may want to
compare the difference between people dying from a cause treated at hospitals and the
number of hospitals to identify a possible correlation.

Comparing EU 2020 Indicators (EU2020). Estatwrap also publishes datasets with
EU 2020 indicators, i.e., datasets containing several Eurostat metrics, such as the em-
ployment rate, the gross domestic expenditure on R&D, the energy intensity of the
economy, and greenhouse gas emissions. Citizens may want to aggregate such indica-
tors by average for all countries and to show the aggregated numbers per year, so that
they can spot trends.

Existing OLAP engines need data modelled as data cubes. Therefore, a mapping be-
tween our Multidimensional Data Model (MDM) and Statistical Linked Data is neces-
sary. Then, we can expect the following advantages:

• We can reuse existing OLAP engines such as SAP NetWeaver Business Intelli-
gence8.

• We can easily switch OLAP engines, as long as engines use a well-defined logical
representation for data cubes such as the star schema or multidimensional arrays.

2http://lod.gesis.org/lodpilot/ALLBUS/, last accessed 2014-11-06.
3http://lod.gesis.org/lodpilot/ALLBUS/vocab.rdf#, last accessed 2014-12-17.
4http://estatwrap.ontologycentral.com/table of contents.html; last visited on 2014-04-03.
5http://estatwrap.ontologycentral.com/, last accessed 2014-11-06.
6http://apps.who.int/ghodata/; last visited on 2014-04-03.
7http://gho.aksw.org/; last visited on 2014-04-03.
8Allows basic exchange of metadata using XML,
http://help.sap.com/saphelp nw70ehp2/helpdata/de/60/2edd3b8f1b127de10000000a114084/content.htm,
last accessed 2014-11-05.

72

http://lod.gesis.org/lodpilot/ALLBUS/
http://lod.gesis.org/lodpilot/ALLBUS/vocab.rdf#
http://estatwrap.ontologycentral.com/table_of_contents.html
http://estatwrap.ontologycentral.com/
http://apps.who.int/ghodata/
http://gho.aksw.org/
http://help.sap.com/saphelp_nw70ehp2/helpdata/de/60/2edd3b8f1b127de10000000a114084/content.htm

5.1 Introduction

• We can make use of built-in performance optimisations such as caching.

• We can make use of data integration capabilities of OLAP engines such as “vir-
tual data cubes” from several single cubes.

There are three issues:

Non-standardised formats for sharing of data cubes: According to Rizzi et al.
[RALT06], interoperability between data warehouses is still an open problem. The
industry standards such as CWM are not expressive enough to capture the complex
semantics such as summarisability represented by conceptual models.

Existing OLAP engines do not have standardised interfaces to load schema and data
of cubes and the few formats for serialisation and sharing of data cubes are not widely
adopted [HBH03]. Since common OLAP engines require their data in different formats
to execute OLAP queries, it is unclear which representation is useful to load multidi-
mensional datasets.

Semantic Gap between the conceptual and logical level of multidimensional data
models: The semantic gap refers to the difference between the conceptual level of mul-
tidimensional datasets (data cubes and common elements such as dimensions) as well
as queries to such datasets and the logical level of representing, storing and accessing
the datasets [PMT08]. There are different ways to represent, store and access multidi-
mensional datasets and automatically building and evolving data warehouses has long
been a topic of research [RALT06]. It is unclear how to overcome the semantic gap if
multidimensional datasets are published as Linked Data.

Linked Data specific problems for preprocessing Statistical Linked Data: OLAP
engines are common; however, one does not know how to apply them for flexible inte-
gration and querying of Statistical Linked Data.

Also, it is unknown how to ensure – given an analytical query – that all necessary data
have been loaded from Linked Data and are properly modelled. Also, data quality may
be varying. For example, Eurostat would only give predictions for certain values and
large datasets may be truncated9.

Other issues are how to deal with missing information such as aggregation functions,
how to ensure meaningful aggregations, and how to represent commonalities between
several datasets to compare values. Similarly, permanent availability is not guaran-
teed.

Several heterogeneous vocabularies are used in Linked Data. Still, there is no common
agreement on how to make important aspects of statistical data self-descriptive, e.g.,
mathematical aggregation functions [VLH+10].

9As is the case for the Eurostat Linked Data Wrapper due to timeouts of the Google App Engine.

73

5 Mapping Data Cubes and Statistical Linked Data

As an overall contribution, in this chapter, we show how to transform Statistical Linked
Data for use in existing OLAP engines. More specifically, our contribution are as fol-
lows:

• Based on the arguments in the basics chapter (Section 3.3.2.1), we select the
widely-used RDF Data Cube Vocabulary as a format for sharing of data cubes. To
reduce the semantic gap, we present a mapping between a common multidimen-
sional data model of cubes and Linked Data sources using the RDF Data Cube
Vocabulary, including a definition of relevant, correctly modelled, and meaning-
fully aggregated data for a multidimensional dataset (Section 5.2.2).

• We show how to deal with Linked Data specific problems and present an auto-
matic deployment of the common multidimensional data model from Statistical
Linked Data to data warehouses, considering implicit overlaps between multidi-
mensional datasets for integration (Section 5.2.3).

• We evaluate the mapping with example queries motivated by our Open Govern-
ment Data scenario; we use the star schema for ROLAP as a typical logical rep-
resentation and describe a prototypical system reusing a common ROLAP engine
for query processing and data integration (Section 5.3).

In Section 5.4 we discuss our results and present lessons learned. In Section 5.5, we
describe related work, after which, in Section 5.6, we conclude.

5.2 Approach: MDM-QB Mapping

Our approach consists of two parts: an offline extract-transform-load (ETL) part that
creates a data warehouse for an existing OLAP engine based on datasets URIs; and a
runtime part where – after population of the data warehouse with relevant data – ad-hoc
OLAP queries can be issued to the OLAP engine. We now give an overview of the
approach:

1. Dataset Selection: The domain expert defines the datasets to be integrated. For
that, URIs of datasets refer to specific datasets in Linked Data sources.

2. Dataset Extraction: For information found on the Web via the dataset URIs, the
multidimensional data model is automatically created.

3. Data Warehouse Creation: From the conceptual data model, a logical represen-
tation for use in an existing OLAP engine is created.

4. Query Processing: An OLAP client issues analytical queries to the OLAP en-
gine which executes such queries over the logical representation.

74

5.2 Approach: MDM-QB Mapping

For that, we define relevant data in Section 5.2.1 and a mapping between the common
MDM and Statistical Linked Data in Section 5.2.2. We use an object-oriented repre-
sentation as well as implicit overlaps between datasets in Linked Data that we present
in Section 5.2.3.

5.2.1 Relevant RDF Data Describing
Multidimensional Datasets

In this section, we define relevant data as a specific RDF graph to be queried with a
SPARQL engine.

Based on the notion that in Linked Data, RDF may be stored in a distributed manner,
Definition 7 defines relevant data for multidimensional datasets.
Definition 7 (Relevant Data for Multidimensional Datasets). All necessary information
about a dataset can be found by resolving URIs of entities related to the dataset. Related
entities are all instances of QB-defined concepts that can be reached from the dataset
URI via QB-defined properties.

For instance, from the dataset URI, the instance of qb:DataStructureDefini-
tion can be reached via qb:structure. Similarly, instances of qb:Component-
Property (dimensions / measures) and skos:Concept (members) can be reached.

Then, all relevant data can be found using Linked Data crawlers that – starting from a
seed list of URIs – use a depth-first or breadth-first crawling strategy for RDF data. One
crawler that we use in this work is LDSpider10 [IUBH10]. A more direct approach of
loading relevant data, a directed crawling strategy, starts with resolving and loading the
URIs of qb:DataSets interesting to the user, then in turn resolves and loads instances
of QB concepts in the order they can be reached from the dataset URI.

Crawling may include further information, e.g., rdfs:seeAlso links from relevant
entities and information encoded in the Vocabulary of Interlinked Datasets (VoiD)11.
For instance, VoiD descriptions may state that the relevant data can be retrieved from a
certain SPARQL endpoint.

Assuming that the number of related instances of QB concepts starting from a QB
dataset is limited and that links such as rdfs:seeAlso for further information are
not crawled without restriction (e.g., only from instances of QB concepts), the directed
crawling strategy should terminate after finite steps.

10http://code.google.com/p/ldspider/, last accessed 2014-11-04.
11http://rdfs.org/ns/void#, last accessed on 2014-06-21.

75

http://code.google.com/p/ldspider/
http://rdfs.org/ns/void#

5 Mapping Data Cubes and Statistical Linked Data

5.2.2 Mapping the Multidimensional Data Model and
Statistical Linked Data (MDM-QB Mapping)

In this section, we describe a mapping between Statistical Linked Data and our common
multidimensional data model (MDM).

This MDM-QB Mapping [KH11, KOH12] will serve as a basis for transforming RDF
terms reusing QB to multidimensional elements in an MDM.

We use classes and properties defined by the RDF Data Cube Vocabulary (QB) and
other standard vocabularies for publishing statistical Linked Data, e.g., SKOS12 and
XKOS13. XKOS is an extension to SKOS allowing for the representation of classifica-
tion hierarchies; an earlier version was named SKOSCLASS14.

We describe the mapping using SPARQL graph patterns. Every match over an RDF
graph (Definition 6) describes a multidimensional element of the MDM. The bindings
(terms and triples) of graph patterns describe the properties of the multidimensional
element.

Given an RDF graph from Statistical Linked Data, we define the set of all instances of
multidimensional elements of the multidimensional data model described in the graph.
For that, we use simple set notation and basic SPARQL graph patterns as syntax and set
theory as semantics [HKR09, p. 363ff]. Several graph patterns are separated by “.”.
Given a multidimensional element x, id(x) ∈ (I ∪B∪L) returns its RDF identifier. For
conjunctions we use “,” and for disjunctions “;”.

In the following list, for each multidimensional element, the set of all instances is de-
fined according to the RDF graph. For instance, the first definition states that the set
of all data cubes is defined as a set of tuples each with three elements: the name of
the cube as a String (?nameDC), the data cube schema (cs), and the set of all facts in
the cube (F). The name of the cube is given by the URI of the respective instance of
qb:DataSet. The data cube schema is defined by the URI linked from the dataset
URI via qb:structure. And the facts are defined by instances linked to the dataset
URI via qb:dataSet.

DataCube is defined by DataCube= {(?nameDC,cs,F)∈ String×DataCubeSchema
×F|cs=(”cs”,D,M), ?nameDC a qb:DataSet. ?nameDC qb:stru-
cture id(cs), ∀(?obs∈F) ?obs qb:dataSet ?nameDC} ∪MultiCube.

The set of data cubes also includes all pre-defined multi-cubes.

12http://www.w3.org/2004/02/skos/, last accessed 2014-11-20.
13http://purl.org/linked-data/xkos# and http://rdf-vocabulary.ddialliance.org/xkos, accessed 2014-06-21.
14http://www.w3.org/2011/gld/wiki/ISO Extensions to SKOS, last accessed on 2014-06-21.

76

http://www.w3.org/2004/02/skos/
http://purl.org/linked-data/xkos#
http://rdf-vocabulary.ddialliance.org/xkos
http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS

5.2 Approach: MDM-QB Mapping

DataCubeSchema is defined by {(?nameCS,D,M) ∈ (I ∪B)×D×M| ?nameCS
a qb:DataStructureDefinition,D= {d| ?nameCS qb:component
?comp. ?comp qb:dimension id(d)},M = {m| ?nameCS qb:co-
mponent ?comp. ?comp qb:measure id(m)}}.

Fact is defined by {(?nameF,C,E) ∈ (I ∪B)×2Dimension×Member×2Measure×Literal

| ?nameF a qb:Observation,C = {(d,m)| ?nameF id(d) id(m)},
E = {(m, t)| ?nameF id(m) id(t)}}.

Measure is defined by {(?nameMS,?calc) ∈ (I ∪B)× (I ∪B∪L)| ?comp qb:-
measure ?nameMS. ?comp qb4o:aggregateFunction ?calc;
?calc ∈ {SUM,AV G,COUNT}} with calc : 2Fact →L.

Dimension is defined by {(?nameD,H) ∈ (I ∪B)×H| ?nameD a qb:Dimen-
sionProperty,H = {h| ?nameD qb:codeList id(h)}∪{h=?nameD|
?nameD rdfs:range ?range. FILTER(?range !=
skos:Concept)}}∪{(”Measures”,Measures)}.

Hierarchy is defined by {(?nameH,L,rolluplevel(L),rollupmember(L))
∈ (I ∪B)×L×ROLLUPLEV EL×ROLLUPMEMBER|Hierarchies Regular∪
Hierarchies Without Codelist∪Hierarchies XKOS∪Hierarchies Measure Di-
mension} with

Hierarchies Regular = {(?nameH,L,rolluplevel(L),rollupmember(L))| ?dim
qb:codeList ?nameH,L = {l =?nameH|(6∃ l) id(l) skos:inScheme
?nameH. id(l) a xkos:ClassificationLevel}},rolluplevel(L)=
{},rollupmember(L) = {}},

Hierarchies Without Codelist ={(?nameH,L,rolluplevel(L),rollupmember(L))
|(6∃ l) ?dsd qb:component ?comp. ?comp qb:dimension ?name-
H. ?nameH qb:codeList ?codelist,L= {?nameH},rolluplevel(L)=
{},rollupmember(L) = {}},

Hierarchies XKOS= {(?nameH,L,rolluplevel(L),rollupmember(L))|?name-
H a skos:ConceptScheme),L= {l| id(l) skos:inScheme ?name-
H. id(l) a xkos:ClassificationLevel},rolluplevel(L)= {(l1, l2)∈
L×L| id(l1) xkos:depth ?x. id(l2) xkos:depth ?y. FILTE -
R(?x = ?y+1)},rollupmember(L) = {(v1,v2) ∈V1×V2|(l1,V1),(l2,V2) ∈ L,
id(v1) skos:broader id(v2); id(v2) skos:narrower id(v1)}},

Hierarchies Measure Dimension = {(”Measures”,measureL,rolluplevel(mea-
sureL),rollupmember(measureL)}.

Level is defined by {(?nameL,V,?depth) ∈ (I ∪B)×V ×L|Levels Degenerated
∪Levels topConcept ∪Levels XKOS∪Levels Measure Dimension} with

Levels Degenerated = {(?nameL,V,?depth)|(6∃ l) ?dsd qb:component
?comp. ?comp qb:dimension ?nameL. ?nameL rdfs:range

77

5 Mapping Data Cubes and Statistical Linked Data

?range. FILTER(?range != skos:Concept),V = {v| ?obs qb:-
dataSet qb:structure ?dsd. ?obs ?nameL id(v),?depth= 1}},

Levels topConcept = {(?nameL,V,?depth)| ?dsd qb:component ?comp.
?comp qb:dimension ?dim. ?dim qb:codeList ?nameL.,
V = {v| ?nameL skos:hasTopConcept id(v),?depth = 1}},

Levels XKOS = {(?nameL,V,?depth)| ?dsd qb:component ?comp.
?comp qb:dimension ?dim. ?dim qb:codeList ?nameH. ?na-
meL skos:inScheme ?nameH.?nameL a xkos:Classification-
Level,V = {v| id(v) skos:member ?nameL}, ?nameL xkos:depth
?depth },

Levels Measure Dimension = {(?nameL,V,?depth)|?nameL = Measures,V =
Measure,?depth = 1}.

Member is defined by {(?nameM) ∈ (I ∪L)}.

In the following, we explain the mapping along an example.

5.2.2.1 Example Multidimensional Data Model

We use MDM-QB Mapping to represent the MDM as defined from the dataset URIs
of the Real GDP Growth Rate from Estatwrap15 and the Unemployment Fear from
ALLBUS16.

DataCube = {eurostat:id/tec00115#ds, allbus:ZA4570v590#ds,
eurostat:id/tec00115#ds;allbus:ZA4570v590#ds}

Any cube in an MDM is uniquely identified by an instance of qb:DataSet related by
the property qb:structure to an instance of qb:DataStructureDefinition.
In our example, also one multi-cube, identified by a semi-colon-separated list of dataset
URIs is contained and is later described.

We do not distinguish machine-readable and human-readable names in our mapping.
The rdfs:label of the dataset can be used as a human-readable name of a data
cube. The property rdfs:comment can be used for a description of a data cube. Both
properties can generally be used to name and describe multidimensional elements.

DataCubeSchema = {eurostat:dsd/tec00115#dsd,allbus:za4570-
dsd.rdf#dsd,eurostat:dsd/tec00115#dsd;allbus:za4570dsd.rdf-
#dsd}
15http://estatwrap.ontologycentral.com/id/tec00115#ds, last accessed on 2014-06-18.
16http://lod.gesis.org/lodpilot/ALLBUS/ZA4570v590.rdf#ds, last accessed on 2014-06-18.

78

http://estatwrap.ontologycentral.com/id/tec00115#ds
http://lod.gesis.org/lodpilot/ALLBUS/ZA4570v590.rdf#ds

5.2 Approach: MDM-QB Mapping

The data cube schema of a cube is given by the data structure definition of the QB
dataset. Also the multi-cube gets defined a data cube schema.

A Cube contains Facts representing the actual statistical data. In QB, a Fact is an
instance of qb:Observation. Such facts are connected to their respective cube via
the property qb:dataSet.

Fact = { :tec00115 obs1, :tec00115 obs2, ..., :ZA4570v590-
obs1, :ZA4570v590 obs2,...}

Since RDF provides a flexible schema, additional information can be attached. In QB,
such information can be taken from the resources representing the Member values of
Dimensions. Also, a sub-property of qb:ComponentProperty, qb:Attribute-
Property, can be used. All kinds of metadata can be added to interpret an observa-
tion, e.g., the unit of measurement, qualitative information such as whether the value
has been estimated. Such metadata can both be simply represented as human-readable
literal values of data-type string and as URIs reused from existing vocabularies and
datasets.

The following shows an example fact for Austria, in 2006, with percentage change from
previous period as unit, and different measure values about the GDP growth: an average
and sum of 3.7, and a count of 1.

:tec00115 obs1 = (" :tec00115 obs1", {(estatwrap:geo, euro-
stat:dic/geo#AT), (dcterms:date, 2006), (estatwrap:unit,
eurostat:dic/unit#PCH PRE)}, {((sdmx-measure:obsValue, euro-
stat:id/tec00115#ds, SUM), 3.7), ((sdmx-measure:obsValue,
eurostat:id/tec00115#ds, AVG), 3.7),((sdmx-measure:obsVal-
ue, eurostat:id/tec00115#ds, COUNT), 1)})

For each predefined Dimension a Fact has a Member. Members form the possible val-
ues of a Dimension. In QB, these Dimension Members can be given explicitly via
qb:codeList by instances of skos:ConceptScheme, or implicitly by the Mem-
bers used by actual Facts in the data. Additionally, the rdfs:range of a qb:Com-
ponentProperty can state the type of the Members.

Member = {eurostat:dic/geo#DE, ..., 2010, ..., PCH PRE,
...,allbus:geo.rdf#00,..., allbus:variable.rdf#v590 1,...}

Measure = {(sdmx-measure:obsValue, eurostat:id/tec00115#ds,
SUM),(sdmx-measure:obsValue, eurostat:id/tec00115#ds, AVG),
(sdmx-measure:obsValue, eurostat:id/tec00115#ds, COUNT),
(sdmx-measure:obsValue, allbus:ZA4570v590#ds, SUM), (sdmx-
-measure:obsValue, allbus:ZA4570v590#ds, AVG), (sdmx-meas-
ure:obsValue, allbus:ZA4570v590#ds, COUNT)}

79

5 Mapping Data Cubes and Statistical Linked Data

In QB, Dimensions and Measures are predefined by the data structure definition of the
dataset and represented as instances of qb:ComponentProperty.

In QB, for Measures, another subproperty of qb:ComponentProperty, qb:Mea-
sureProperty, is available. QB does not describe how to model aggregation func-
tions.

We consider the explicit representation of aggregation functions using the QB4OLAP
ontology17.

However, few publishers explicitly represent aggregation functions. If aggregation
information is not given via qb4o:aggregateFunction – as is the case in our
example datasets – we create one Dimension and a Measure for each aggregation
function possibly correct, e.g. SUM, AVG, MIN, MAX, COUNT, and DISTINCT-
COUNT for numerical measures (for dimensions with range xsd:decimal) as well
as COUNT and DISTINCT-COUNT for nominal measures (e.g., xsd:string and
xsd:date).

Dimension = {estatwrap:geo, dcterms:date, estatwrap:unit,
gesis:geo, gesis:variable}

Every dimension has a hierarchy for every code list (possibly skos:ConceptScheme,
skos:Collection, and qb:HierarchicalCodeList, each with rdfs:range
skos:Concept) and for every range that is not skos:Concept.

In the latter case, we simply use the dimension name as hierarchy name. The dimension-
hierarchy-level combination labelled “Measures” is added manually.

Members of a Dimension are grouped along one or more Hierarchies of one or more
Levels of granularity. In QB, Hierarchies of Levels depend on the actual Members of
the Dimension. For instance, if we have xsd:date as range, we can have the natural
hierarchy of year, month, day.

Or, Members of type dbpedia:Country might be put into categories such as Fed-
eral Countries and Alpine Countries. Also, countries could be classified according to
their official language.

Hierarchy = {estatwrap:geo, dcterms:date, eurostat:dsd/tec-
00115#cl unit,allbus:geo.rdf#list,allbus:variable.rdf#list}

There are different ways to define the levels, rolluplevel and rollupmember for a hi-
erarchy. In case the hierarchy is a skos:ConceptScheme levels may be attached
as instances of xkos:ClassificationLevel. In all other cases, simply the hi-
erarchy itself is the level. In case no code list is defined, the dimension name is used

17http://purl.org/qb4olap/cubes and qb4o:aggregateFunction, e.g., qb4o:Sum, last accessed on
2014-06-18.

80

http://purl.org/qb4olap/cubes

5.2 Approach: MDM-QB Mapping

as a hierarchy name. The vocabulary XKOS allows to explicitly represent hierarchy
levels.

Level = {estatwrap:geo, dcterms:date, eurostat:dsd/tec001-
15#cl unit, allbus:geo.rdf#list, allbus:variable.rdf#list}

In case no levels are defined, the hierarchy has exactly one level with the same name as
the hierarchy.

Member = {eurostat:dic/geo#DE, ..., 2010, ..., eurostat:d-
ic/unit#PCH PRE, ..., allbus:geo.rdf#00, ..., allbus:variab-
le.rdf#v590 1, ...}

Members can be resources or literal values. For instance, the data structure definition
of the GDP Growth Cube contains as qb:DimensionProperty dcterms:date
with a literal of type xsd:date such as ”2008”. As another example, estatwrap:-
geo has a code list with resources as Members that represent countries.

In the following, we go into more details of three aspects of our mapping: 1) integrity
constraints to check correct modelling of cubes, 2) the possible integration of datasets
via shared dimensions and multi-cubes as well as 3) meaningful aggregations (sum-
marisability).

5.2.2.2 Ensuring Correct Modelling of Data Cubes

The QB specification defines 21 QB integrity constraints18 (IC-1 to IC-21) as SPARQL
ASK queries. By evaluating the queries over RDF graphs with QB datasets, one can
check whether datasets are correctly modelled. In the following, we describe the con-
straints put to the mapped MDM due to the integrity constraints:

• According to IC-1, every fact can only be contained in one data cube.

• According to IC-2, every data cube has exactly one data cube schema.

• According to IC-3, every data cube schema contains at least one measure.

• According to IC-11, every fact has a value for each dimension declared in its data
cube schema.

• According to IC-12, no two different facts in a data cube may have the same
value for all dimensions.

• According to IC-14, each fact must have a value for every declared measure.

• According to IC-4 and IC-5, every dimension has at least one hierarchy.

18http://www.w3.org/TR/vocab-data-cube/#wf-rules, last accessed on 2014-06-20.

81

http://www.w3.org/TR/vocab-data-cube/#wf-rules

5 Mapping Data Cubes and Statistical Linked Data

• According to IC-19, IC-20, and IC-21, every value of a dimension d on every fact
must be in dom(d) which is defined as the union of all members in all hierarchies
and levels of the dimension.

Some parts of QB we do not represent in our MDM:

In our MDM, we do not represent instances of qb:AttributeProperty (IC-6,
IC-13). qb:AttributeProperty only allow to give additional information to
instances of qb:Observation, qb:DataSet and qb:Slice, but not to single
members as sometimes done with dimension attributes in multidimensional data mod-
els [PJD01]. In Chapter 6, we present the OLAP-to-SPARQL algorithm which allows
analytical queries directly over the RDF and therefore allows to consider RDF terms
such as the number of inhabitants of a city in queries.

In our MDM, we do not represent instances of qb:Slice (IC-7, IC-8, IC-9, IC-10,
IC-18). In Chapter 7, we present RDF Aggregate Views, i.e., instances of qb:Slice
that are used to store pre-aggregated facts of a data cube.

5.2.2.3 Integrating Datasets in Multi-Cubes

Whereas our MDM only considers single data cubes, our mapping considers multi-
cubes for querying over several data cubes. For instance, in our scenario we intend to
integrate and make comparable metrics about Unemployment Fear and GDP Growth
from the respective cubes.

For queries over two data cubes simultaneously, it is possible to define a unified schema,
a multi-cube. Given a specific set of data cubes, we define a multi-cube as per Defini-
tion 8.
Definition 8 (Multi-Cube). A multi-cube is a virtual data cube [SDN00] formed from a
specific set of data cubes by taking the union of dimensions and measures of the single
data cubes. If a multi-cube is queried, an OLAP engine will automatically compute a
join of facts on selected dimensions.

In our mapping, we define one multi-cube consisting of all cubes in the MDM that share
dimensions and members.

For example, the Unemployment Fear Cube and the GDP Growth Cube together make a
multi-cube with the URI eurostat:id/tec00115#ds;allbus:ZA4570v590-
#ds (we denote multi-cubes with a semi-colon-separated list of single dataset URIs)
and the following dimensions:

Dimension = {estatwrap:geo, dcterms:date, estatwrap:unit,
gesis:geo, gesis:variable}

For a query over a multi-cube to return non-empty results, the data cubes defining
the multi-cube need to overlap, i.e., need to have shared dimensions. Dimensions are

82

5.2 Approach: MDM-QB Mapping

shared in multidimensional datasets published reusing QB if they are used by several
data cubes.

Shared members are members used by several cubes in shared dimensions. For in-
stance, both cubes use the same time dimension dcterms:date with literal values
denoting the same time points, e.g., 2004 and 2005.

A more formal definition of shared dimensions and members can be given as follows:
A dimension :dimension is shared between the data cube :ds1 and :ds2 if the
following graph patterns hold:

:ds1 qb:structure/qb:component/qb:dimension :dimension.
:ds2 qb:structure/qb:component/qb:dimension :dimension.

Similarly, hierarchies and levels can be shared using QB.

A member :mem is shared if in addition to those graph patterns there are observations in
:ds1 and :ds2 that exhibit this member :mem as values for the sharing dimension.

The equivalence of literal values is identified by string matching and could be extended
with canonical representations of literal values, e.g., in case of decimal ”1.0” versus
integer ”1”.

However, dimensions and members also may be shared implicitly, i.e., equivalence
statements such as by owl:sameAs and owl:equivalentProperty can be given
in RDF.

We note that not only equivalence statements such as owl:equivalentProperty
and owl:sameAs, but also other statements indicating shared identifiers, e.g., rdfs:-
subPropertyOf, could be used.

For instance, the Unemployment Fear survey dataset and GDP Growth dataset both
have geo dimensions and members denoting Germany that can be linked. If the Un-
employment Fear survey dataset and GDP Growth dataset share the dimension for geo
and the member representing Germany as well as the time dimension and members, the
multi-cube defined by the two datasets exhibits more overlap. See Figure 5.2 for an
illustration. Only after considering the equivalence of “geo” and “location” as well as
“Germany” and “DE”, the number of answers given (No.) can be compared with the
GDP Growth Rate (GDP).

To compare metrics from separate cubes – different from Dimensions and Members –
we assume that measures denote different metrics, even though they may be described
by the same property or linked by owl:sameAs. Therefore, measures are not directly
corresponding to qb:MeasureProperty but are uniquely identified by 1) the cube
using the measure, 2) the aggregation function (differently said, the component initial-
ising the measure, possibly defining an ordering and an aggregation function and 3)
the measure property. When defining the Drill-Across operation in Chapter 6, we will
cover the more general case where data cubes may use the same metric.

83

5 Mapping Data Cubes and Statistical Linked Data

Figure 5.2: Example of a multi-cube consisting of two implicitly overlapping data cubes.

In the following, we explain how we evaluate implicitly shared dimensions and mem-
bers. OWL semantics19 require all statements involving identifiers of shared dimensions
and members to be duplicated for all equivalent terms (we call it equivalence duplica-
tion strategy); however, according to Hogan et al. [HHU+11], this duplication possibly
results in an addition of triples quadratic with respect to the size of groups with equiv-
alent entities. Also, in entity-centric systems such as query engines the duplication
would confuse users by presenting duplicate results.

Therefore, we apply entity consolidation [HHU+11], the use of canonical values for
consolidated entities of shared dimensions and members.

For that, to integrate implicitly shared dimensions and members, we first query for all
equivalence statements (e.g., owl:sameAs) in the relevant data and implement the
reflexive, symmetric and transitive properties of instance equivalence [HHD04].

For that, we compute an equivalence list.

In their algorithm “equivs” Hogan et al. [HHD04] create a list of lists with equivalent
URIs (equivalence class). We create an associative array from the URI to an integer

19See “Table 4. The Semantics of Equality” at http://www.w3.org/TR/owl2-profiles/, last accessed on
2014-06-29.

84

http://www.w3.org/TR/owl2-profiles/

5.2 Approach: MDM-QB Mapping

as unique identifier for every equivalence class. For every equivalence statement, we
check whether the URIs are in different equivalence classes. If so, we add every URI of
the second equivalence class to the first and merge the equivalence classes. The unique
integer for each equivalence class we use as canonical identifier for entities.

Different from Hogan et al. [HHD04] we do entity consolidation not on the RDF but
on the results of SPARQL queries over the RDF. This is equivalent since every single
SPARQL result represents a multidimensional element. After replacement of canonical
values and removal of duplicate results, for each distinct canonical value, a dimension
or member is created.

For instance, from the set of dimensions of the multi-cube the duplicate geo dimension
gesis:geo is removed:

Dimension = {estatwrap:geo, dcterms:date, estatwrap:unit,
gesis:variable}

In metadata queries such as for a list of dimensions, canonical values need to be used
to uniquely identify the elements. This is no restriction to our approach, since first
queries will ask for all multidimensional elements, from which the user would pick.
However, while evaluating those metadata queries over Linked Data using SPARQL
(according to the MDM-QB Mapping), the canonical values are not used by all datasets
and queries would return no results. Therefore, we modify the metadata SPARQL
queries to consider all possible URIs in the equivalence class of a canonical value using
a FILTER clause and OR conditions over variables for shared dimensions and members.
In results from those metadata SPARQL queries, identifiers have to be replaced by
canonical values and duplicates have to be removed.

5.2.2.4 Ensuring Summarisability

For summarisability we require from a QB dataset:

• Disjointness: Every member on a lower level has no more than one member on
a higher level pointing to it with skos:narrower; this means, as defined for
the MDM, we assume the rolluplevel relation of a hierarchy to form a directed
acyclic graph, as well as strictness of the rollupmember relations [RTZ11].

• Completeness: Every member on a higher level points to at least one member on
a lower level with skos:narrower. Therefore, we assume symmetric hierar-
chies [MZ06].

• Meaningful Aggregation Function: A meaningful aggregation function is se-
lected by the analyst.

We define a lean dataset in Definition 9 as to correctly model a QB dataset and to fulfil
our assumptions for summarisability.

85

5 Mapping Data Cubes and Statistical Linked Data

Definition 9 (Lean Dataset). A lean dataset is modelled correctly according to the
Integrity Constraints of the RDF Data Cube Vocabulary. The dimension hierarchies
of a lean dataset fulfil disjointness and completeness. Also, a meaningful aggregation
function is selected by the analyst or automatically selected. Finally, a lean dataset
does not exhibit redundant observations, i.e., either observations are stored only on a
higher level such as per years or only on the lowest level of each dimension. Higher-
level aggregate facts can then be computed from aggregating the given facts [CD97].

An aggregation of facts from different granularities would result in incorrect numbers,
e.g., a SUM over gender male, female, and total.

In summary, the mapping of datasets using QB to an MDM is not as straightforward
as the name suggests. Aggregation functions and multi-level hierarchies are common
in MDMs, but QB does not have a direct pendant and alternative vocabularies such as
qb4o and xkos need to be used. In particular, the integration of datasets in multi-
cubes, and summarisability require specific handling.

5.2.3 A Logical Representation of the Multidimensional Data
Model to Populate OLAP Systems

In this section, we describe how our MDM can be deployed on existing OLAP engines
for query processing and integration.

For that, we show how to represent the MDM using objects of classes defined in a UML
class diagram in Figure 5.3. The class diagram resembles an object-oriented represen-
tation of our MDM (Section 3.1). Every multidimensional element is considered an
object in the UML class diagram. Other authors also use UML for modelling multidi-
mensional datasets [PMT08].

Figure 5.3: UML class diagram of common multidimensional data model.

86

5.2 Approach: MDM-QB Mapping

5.2.3.1 Representation of an Example Multidimensional Data Model

Along an example, we describe how the class diagram resembles our MDM:

The central class is the cube (DataCube in our MDM). The multidimensional data
model, represented as a class diagram, describes one or more cubes which are the-
matically related. In the class diagram, DataCubeSchema and DataCube from
our MDM are not distinguished since every cube has an individual, implicitly known
schema. As in our MDM, a cube contains facts representing the actual statistical data.
For each predefined dimension, a fact will have a member.

As an example fact, 1,126 participants have answered ”No Unemployment Fear” ac-
cording to the Unemployment Fear survey in 1980 in Germany. As another example,
in Germany 2004 there was a 1.2% change of the Real GDP Growth on previous years
according to Eurostat statistics.

As also possible in our MDM, dimensions can be shared by several cubes in multi-cubes
(Multicube). For example, the Unemployment Fear Cube and the GDP Growth Cube
share the geo and time Dimensions. Whereas both cubes share the location and time
dimension, only the Unemployment Fear Cube has a ”variable” Dimension denoting
the kind of answer.

A cube defines one or more Measures. Every Measure is regarded as a separate
Dimension. For instance, the Unemployment Fear Cube has as Measure the number of
participants for which a mean (AVG) results in a meaningful aggregation.

Every Dimension has one or more Hierarchies which in turn have one or more
Levels with an Ordering and a Type, e.g., Boolean, Decimal, Integer, String,
Date, Time, and Timestamp. For instance, year would be Integer and job role would be
String. For instance, the time dimension may have a typical hierarchy of day, month
and year levels; whereas day has type Date, month and year may be of type Integer,
also.

The datasets in our scenario do not make hierarchies and levels explicit. Thus, every
dimension has exactly one hierarchy and level with the same name as the dimension.

Slightly different from our MDM, members form the possible values of a dimension
and Member Value represent the actual values of a member on a level of a hierarchy.
For instance, the time dimension may have a member ”2010-01-01”. For any level of
its dimension, a member has a Member Value. For instance, the member ”2010-01-01”
may have as day ”1”, as month ”January” and as year ”2010”.

Similar to dimensions, members can be shared by several dimensions. For example, the
Unemployment Fear Cube and the GDP Growth Cube share the geo dimension member
for Germany.

87

5 Mapping Data Cubes and Statistical Linked Data

5.2.3.2 Automatically Populating a Data Warehouse

In the following, we show how the logical representation (as objects and classes) can
automatically be deployed on existing OLAP engines.

For instance, ROLAP engines use the star schema in an RDBMS to represent the MDM.
There, we have a Fact table for facts that for each fact contains a row, for each measure
and dimension contains a column, and for each dimension joins to a dimension table
with the members and values. To transform our logical representation to a star schema
the following steps are done:

1. For each Cube, create a Fact table with as many columns as Dimensions and
Measures.

2. For each Dimension, create a Dimension table with one column for the primary
key and as many additional columns as Levels in Hierarchies. Note, shared di-
mensions are represented by the same dimension table. The type information
from the level is used for typing the column.

3. For each Member in a Dimension, add a new row to the Dimension table.

4. For each Fact, add a new row in the Fact table. For the Members, add a foreign
key to join with the primary key of the Dimension table.

When preparing a lean dataset for ROLAP, summarisability is ensured and every single
fact can be stored in the fact table.

If a multi-cube is queried, the OLAP engine evaluates drill-across as a join of all fact
tables on the shared dimensions to create a new fact table reusing the existing dimension
tables [SDN00].

Since conceptually, there is no difference in representing the data in an in-memory
multidimensional array or in an RDBMS, we argue that common OLAP systems can
be used by our approach.

5.3 Evaluation

We describe the Cube-to-ROLAP Prototype, an implementation of the MDM-QB Map-
ping in an extract-transform-load pipeline that automatically prepares Statistical Linked
Data using QB. We evaluate the mapping by using the prototype for our example
queries. In the following, we will describe our implementation and then the application
to the scenarios.

88

5.3 Evaluation

5.3.1 Implementation

Figure 5.4 shows the architecture of our system consisting of two parts: an ETL pipeline
that creates a data warehouse based on datasets given by their URIs; and an OLAP
engine, to that any number of OLAP queries can be issued after the ETL process has
been finished. Running an experiment with the system includes the following steps,
also indicated with numbers in Figure 5.4.

Figure 5.4: Architecture of Cube-to-ROLAP Prototype.

89

5 Mapping Data Cubes and Statistical Linked Data

1) Dataset Selection: After the user specifies the dataset URIs, the relevant data
about these datasets from Linked Data are retrieved (see bottom of figure).

2) Dataset Extraction: The mapping from Linked Data sources to our logical rep-
resentation, we have implemented in a web application cube object create.php written
in the programming language PHP 5.3.0. The pipeline has a semi-colon-separated list
of dataset URIs as input.

Our system issues SPARQL queries for metadata about multidimensional elements over
the relevant data as defined by the dataset URIs.

For extraction and loading of data, our system uses qcrumb20 which allows to specify
the location of the files in the FROM clause to issue SPARQL queries to the entire RDF
graph as defined by the files’ content. SPARQL results are represented in JSON format
and parsed to an associative array.

According to our definition of Relevant Data for a Multidimensional Dataset, we create
the set of location URIs for qcrumb incrementally. First, we only ask for the information
URIs of the specified datasets. Then, after the data structure definition is known, its RD-
F/XML information URI is also added to the FROM CLAUSE of SPARQL queries.

Also, we manually added URIs providing information that is not contained in either
dataset or data structure definition URIs but required for the mapping in the specific
experiments. For instance, since only the members for Germany of the Employment
Fear and GDP Growth datasets were linked but not the geo dimensions, we manu-
ally created a file with owl:sameAs triples21 with the respective links and manu-
ally added it as a default URI to consider with qcrumb queries. The links between
Germany eurostat:dic/geo#DE and allbus:geo.rdf#00 from Eurostat and
ALLBUS already are given by allbus22.

For any queried dataset, we also added the query location URIs of instances of skos:-
ConceptScheme and qb:DimensionProperty to the SPARQL FROM clause.

While querying for dimensions and members, owl:sameAs links between entities are
queried and entity consolidation is done. Hereby we might miss possible equivalence
statements since for performance reasons we did not consider data sources specified by
the object position of owl:sameAs triples nor data sources defined by member URIs.
In our scenario, this was sufficient to retrieve all relevant equivalence links.

3) Data Warehouse Creation: As a representative OLAP engine, we use Mondrian,
which uses XML for representing multidimensional elements and a star schema on an
RDBMS (we use MySQL) as a data warehouse for the data about Dimensions and
Facts.
20http://qcrumb.com/; last accessed on 2014-06-24.
21http://people.aifb.kit.edu/bka/Public/cube additionalRDF.rdf, last accessed on 2014-06-30.
22http://lod.gesis.org/lodpilot/ALLBUS/geo.rdf, last accessed on 2014-06-30.

90

http://qcrumb.com/
http://people.aifb.kit.edu/bka/Public/cube_additionalRDF.rdf
http://lod.gesis.org/lodpilot/ALLBUS/geo.rdf

5.3 Evaluation

We have selected Mondrian, since it 1) is a widely-used Open Source OLAP engine (has
been downloaded 82,243 times in 2013 according to the code repository SourceForge)
and 2) has been used for several other work for evaluation [EV12a, DP08, NN09].

Each multidimensional element is logically represented (serialised) in either XML meta-
data or relational tables. For instance, from all observations, each represented in an
array describing the observation values, we create an SQL INSERT query to populate
the Fact table.

Every dimension, we represent as a ”shared dimension” in Mondrian. Then, we repre-
sent the multi-cube consisting of all single Cubes. Multi-cubes can directly be described
as “Virtual Cubes” in Mondrian23.

Mondrian supports Multidimensional Expressions (MDX) to issue OLAP queries. Any
number of MDX queries can be issued to the data in the warehouse.

Listing 3 shows an example multi-cube MDX query24. Here, a multi-cube of the
two datasets “Unemployment Fear” and “GDP Growth” (separated by a semi-colon)
is queried to retrieve the percentage of negative answers by survey participants and the
average Real GDP growth rate given for Germany at every available point in time.

Listing 3: Example multi-cube MDX query for employment fear metric and GDP growth rate
for Germany over time in UNEMPLOY query.

1 SELECT
2 {[Measures].[Percentage_of_Nos],

[Measures].[obsValue_Unemployment_Fear_sum],
[Measures].[obsValue_Real_GDP_growth_rate_avg]}

3 ON COLUMNS,
4 {Members([Date])} ON ROWS
5 FROM [Unemployment_Fear;GDP_Growth]
6 WHERE {[Federal_State].[Germany]}

4) Query Processing: OLAP clients provide an interface for users to issue queries to
the OLAP engine. For the interface between OLAP clients and OLAP engine, we use
XMLA. Since Mondrian natively supports XMLA, we can use any OLAP client imple-
menting XMLA. As OLAP client, we created a JavaScript website, cube access.html,
based on xmla4js, that allows to connect via XMLA to an OLAP engine, to issue an
MDX query and to display the results as a pivot table.

Figure 5.5 shows how our system is controlled from the JavaScript-based website. The
website consists of four areas: In the ”RDF Cube Dataset” area the user specifies a
semi-colon-separated list of dataset URIs. Such URIs, the user typically finds on the

23http://mondrian.pentaho.com/documentation/schema.php#Virtual cubes; last visited on 2014-04-03.
24We have simplified the names. Our system uses URIs to identify multidimensional elements.

91

respective human-readable websites. For instance, Estatwrap, provides a table of con-

http://mondrian.pentaho.com/documentation/schema.php#Virtual_cubes

5 Mapping Data Cubes and Statistical Linked Data

tents for all datasets25. After clicking on ”Make accessible dataset...”, the system runs
the ETL pipeline to create the data warehouse and the ”XMLA/A Connection” area
shows information about the connected OLAP engine. In ”MDX Statement” a query
in the MDX language can be inserted and issued with ”Execute Statement...”. Finally,
”Resultset” shows the requested pivot table. For instance, in 1980 more than 90% from
1,214 interviewees answered “No Fear of Unemployment”.

Figure 5.5: Screenshot of Web interface of Cube-to-ROLAP Prototype after issuing a query over
a multi-cube of two cubes.

5.3.2 Application and Testing

We first describe our setup and then the experiments. We run our experiments on
a Microsoft Windows 7 64-bit workstation with Intel(R) Core(TM) i5 CPU, M520,
2.40GHz, and 4 GB RAM. Our system runs Apache web server, Apache Tomcat, and
Mondrian OLAP Server (v3.2.1).
25http://estatwrap.ontologycentral.com/table of contents.html, last accessed 2014-04-03; for a dataset URI

”#ds” has to be appended to the provided links.

92

http://estatwrap.ontologycentral.com/table_of_contents.html

5.3 Evaluation

With our evaluation, we intend to evaluate the following hypothesis: We can automati-
cally transform Statistical Linked Data into a representation that can be used by existing
OLAP engines for efficient query processing and integration.

We do an analytical evaluation. We run a performance analysis and describe experi-
ments on a realistic workload motivated by the OGD scenario. We now describe how
we run the three queries introduced earlier.

Unemployment Fear and GDP Growth (UNEMPLOY). The Unemployment Fear
Survey Dataset published as Linked Data is distributed over several files for the actual
data, the data structure definition, and the Member Values. The actual data of the survey
dataset consists of 30 instances of qb:Observation. In total we are querying 1,547
triples.

The Eurostat GDP Growth Dataset26 contains 320 observations. At the time of con-
ducting the experiments, QB was not correctly used: Observations in the dataset did
not fulfil the data structure definition they follow. We have made our system robust to
this error so that such dimensions are ignored. Here, we are querying 18,721 triples.
The large number of triples is mainly due to loading the code lists such as for the geo
dimension with 13,481 triples27.

The ALLBUS and the Eurostat datasets are partly linked. ALLBUS links its values of
the geo dimension28 to values of the geo dimension of Eurostat. What is missing, how-
ever, is a link between both dimensions. Both dimensions describe a location where
metrics have been taken from. For this experiment, we have created an RDF file con-
taining the missing link and added it to the queried resources29. For the time Dimension,
both datasets use the same property so that the links are automatically given.

We have run both datasets through our system. In total, the program ran for 273sec.
Split up, the SPARQL queries on the datasets took 234sec; it took 27sec to create the
MDM; and it took 12sec to serialise the data model for XMLA. Our system creates
dimensions for Federal State (geo), Variable, Date, and a cube with a measure for the
observation value for each dataset. One Cube contains measures aggregating the survey
answers, e.g., by sum, the other Cube contains aggregated measures about the GDP
Growth. Both Cubes share the Federal State (geo) and the Date dimensions. A multi-
cube is created consisting of both Cubes.

Afterwards, we have run an MDX query that asks for the percentage of people saying
that they had no fear of becoming unemployed. Calculating the percentage is an exam-
ple of a compound measure. The MDX we have already shown in Listing 3. Listing 4
specifies the percentage calculation. We need this complex measure because the fear

26http://estatwrap.ontologycentral.com/id/tsieb020#ds; apparently in Eurostat was replaced by dataset with
ID “tec00115” after conducting these experiments.

27http://estatwrap.ontologycentral.com/dic/geo, last retrieved on 2014-05-06.
28http://lod.gesis.org/lodpilot/ALLBUS/geo.rdf; last visited on 2014-04-03.
29http://people.aifb.kit.edu/bka/Public/cube additionalRDF.rdf; last visited on 2014-04-03.

93

http://estatwrap.ontologycentral.com/id/tsieb020#ds
http://estatwrap.ontologycentral.com/dic/geo
http://lod.gesis.org/lodpilot/ALLBUS/geo.rdf
http://people.aifb.kit.edu/bka/Public/cube_additionalRDF.rdf

5 Mapping Data Cubes and Statistical Linked Data

of unemployment dataset defines a Dimension gesis:variable that indicates the
type of answer given by survey participants. The possible answers are “no fear”, “fear
to need to switch job”, and “fear to become unemployed”. The percentage of “no fear”
among all answers is requested, which means to divide the sum of negative answers by
the number of all answers given.

Listing 4: Compound measure to query for employment fear metric in UNEMPLOY query.

1 WITH MEMBER [Measures].[Percentage of Nos] AS
2 ’([Measures].[obsValue Unemployment Fear sum],[variable].[Nein])/
3 ([Measures].[obsValue Unemployment Fear sum],[variable].[All

variables])’

The MDX took 0.073sec to run. The result shows a table with 16 rows and three
columns of aggregated measures. Each row indicates a year. The first column contains
the percentage, the second column the sum of Unemployment answers, and the third
column the GDP growth. Unfortunately, only for 2006 and 2008 both metrics are avail-
able, making the table very sparse. Yet, we have successfully integrated both datasets
using an OLAP engine.

Number of Death by Illness and of Hospitals (HEALTH). Integrating the mortality
metric from the WHO Mortality Dataset with the number of hospitals from Eurostat
promises useful information. However, the published Statistical Linked Data is not
sufficiently self-descriptive to be automatically mapped to our MDM. For instance, dif-
ferent from the vocabulary’s guidelines, observations are not linked to a qb:DataSet
from where an application can find a qb:DataStructureDefinition as a de-
scription.

Comparing EU 2020 Indicators (EU2020). We integrate four different EU 2020 In-
dicator Datasets from Eurostat as published from Estatwrap (EU2020a): Employment
rate by gender, age group 20-64; Gross domestic expenditure on R&D; Greenhouse
gas emissions, base year 1990; and Energy intensity of the economy. Altogether these
datasets contain 1,247 observations. Our ETL pipeline finished in 654sec on 24,636
triples that are related to these datasets. Afterwards, we ran a query to retrieve the
metrics for all created measures showing their numbers over time and aggregating by
average for all countries. To get a better impression about scalability of our system, we
have run a fourth experiment (EU2020b) with the same datasets plus another four, e.g.,
the population at-risk-of-poverty or exclusion. Altogether, these datasets include 2,682
observations.

In comparison to EU2020a, EU2020b involves twice as many datasets and twice as
many observations; the SPARQL queries took 2.5 times as long as with four datasets.
Creating the MDM took 3 times and serialising it (XML/SQL) took 2.7 times as long.
Also, the same MDX query issued on these eight datasets took 2.9 times as long.

We manually checked that returned numbers resembled the content of integrated datasets.

94

5.4 Discussions and Lessons Learned

In correspondence to our architecture, we measured the time for each step in an ex-
periment. The scenarios are Unemployment Fear and GDP Growth (UNEMPLOY),
Number of Death by Illness and of Hospitals (HEALTH), and Comparing four and
eight EU 2020 Indicators (EU2020a and EU2020b). Table 5.1 summarises the results
from our experiments.

In the table, we show the query execution time, including time for preparing the data, in
relation to the number of triples in integrated datasets. Also, we investigate the relative
time for the steps necessary to access and query the Linked Data sources. The steps
correspond to the steps (1–4) in our architecture (Figure 5.4).

Table 5.1 describes the time it takes for Linked Data Wrappers to extract and convert
the original data sources to RDF (column “SPARQL”), for transforming retrieved data
into the representation of our MDM (column “MDM”), including consolidation, for
deploying the representation in the ROLAP engine (column “XML/SQL”, and for query
processing in the ROLAP engine (column “MDX”).

Table 5.1: Performance evaluation for each experiment (Exp.) with number of datasets (# DS),
number of triples (# T), and evaluation time for each step corresponding to the system
architecture.

Exp. # DS # T SPARQL
(sec)

MDM
(sec)

XML/
SQL (sec)

MDX
(sec)

Total
(sec)

UNEMPLOY 2 20,268 234 27 12 0.073 273
HEALTH n/a n/a n/a n/a n/a n/a n/a
EU2020a 4 24,636 580 36 38 0.161 654
EU2020b 8 35,482 1,417 116 105 0.473 1,638

In summary, we successfully integrated and queried several datasets. Since conceptu-
ally, there is no difference in representing the data in an in-memory multidimensional
array or in an star schema, our evaluation more generally confirms the fact that common
OLAP systems can be used. According to the results, the bottleneck lies in retrieving
the data from the data sources and to run SPARQL queries on them to fill the star
schema. Before analysis, few missing information such as equivalence links and com-
pound measures need to be added by human analysts. Experiments indicate a linear
increase of query execution time with increasing number of triples.

5.4 Discussions and Lessons Learned

In this section we discuss the results of the experiments from the previous section and
give lessons learned.

95

5 Mapping Data Cubes and Statistical Linked Data

We discuss the automatic transformation of Statistical Linked Data to our MDM, the
advantages and disadvantages of reusing existing OLAP engines, and possible optimi-
sations of data integration and query processing.

5.4.1 Automatic Transformation of Statistical Linked Data to
Common Multidimensional Data Model

We were interested in the following problems:

• Despite Linked Data specific problems for preprocessing Statistical Linked Data,
can we automatically gather all relevant data about a multidimensional dataset?

• Although there are no standardised formats for sharing of data cubes, can we
automatically create an MDM from Linked Data reusing QB?

• Despite the semantic gap between the conceptual and logical level of multidimen-
sional data models, can we integrate multidimensional datasets from the Web for
analytical queries?

In our evaluation, we successfully 1) loaded relevant data using qcrumb.com, 2) popu-
lated an MDM from datasets published using QB, and 3) integrated real-world multidi-
mensional datasets.

We executed different types of OLAP queries. In particular, in query UNEMPLOY (as
shown in Listing 3), we filter for the Member Germany of the geo Dimension. In query
EU2020 a/b we aggregate with AVG the datasets by the geo dimension and thus show
how to reduce the dimensionality of a dataset. In all queries, we successfully showed
how dimensions and members can be shared to compare different Measures in one pivot
table.

The QB vocabulary seems to provide a suitable trade-off between convenience to pub-
lish and expressivity to make statistics self-descriptive. For instance, links between
statistical datasets can be used to describe overlaps.

However, as apparent from the WHO mortality dataset relevant for the HEALTH query,
the vocabulary is not always used correctly. For instance, with no qb:DataStruc-
tureDefinition given, a fully automatic transformation is not possible. Publishers
possibly do not yet recognise the benefits of self-descriptive statistics in applications.

Still, our mapping could successfully be applied to analyse Statistical Linked Data with
few manual efforts in pre-processing and querying as we describe in the following:

For instance, we showed that the directed crawling approach for relevant data is appli-
cable as long as the data is sufficiently self-descriptive, provides the necessary links,
and is correctly modelled according to the QB integrity constraints.

96

5.4 Discussions and Lessons Learned

Since aggregation functions were not used by publishers, we automatically generated
measures for each possible aggregation function. Additionally, MDX allowed us to
manually create the compound measure that describes the employment fear metric and
was not represented in the data.

Multi-level hierarchies are not used by publishers. For summarisability, we assume one
hierarchy and level for each dimension, a meaningful aggregation functions, and facts
with members on the lowest level (lean dataset).

We automatically created multi-cubes from all relevant datasets for each query and
thereby successfully integrated Unemployment Fear and GDP Growth as well as several
EU indicator datasets. To pre-process and integrate heterogeneous data to one global
dataset, we evaluated OWL semantics with entity consolidation and made use of the
possibility in Mondrian to define and query over “shared dimensions” and “virtual”
multi-cubes.

We only had to manually add a link between the geo dimensions, since links between
Germany members already were existing.

Multi-cubes are important to our goal to allow queries over all available datasets. In this
chapter, we have shown how to build multi-cubes using RDBMS and OLAP engines.
Also, we used equivalence mappings between datasets in Linked Data. In Chapter 6,
we use the drill-across operation to build multi-cubes from data cubes represented in
RDF. In Chapter 8, we use the drill-across operation to formally define a generalisation
of multi-cubes, the Global Cube.

5.4.2 Advantages and Disadvantages of
Reusing Existing OLAP Engines

The approach of using an existing OLAP engine for query processing and integration
has the following advantages and disadvantages:

The advantages expected in the introduction were fulfilled:

• We used an existing OLAP engine, Mondrian, for query processing, including
queries over several single cubes in multi-cubes and over compound measures.

• Mondrian could be replaced by other OLAP engines, in particular, by other RO-
LAP engines.

• Performance optimisations can be reused, e.g., Mondrian caches results of earlier
queries. As long as the original data source does not change, after the Data
Warehouse is populated, any number of queries can be efficiently processed by
the OLAP engine.

97

5 Mapping Data Cubes and Statistical Linked Data

• No SPARQL 1.1 with aggregation functions are needed, since metadata queries
do not require aggregation functions and analytical queries are executed by the
OLAP engine.

However, also disadvantages can be identified:

• An OLAP engine is required. Since there is no common interface to share data
between existing OLAP engines, the system most probable needs to be adapted
for other existing OLAP engines.

• Data queried from the OLAP engine has to comply to the MDM. Other informa-
tion represented in RDF cannot be queried unless the star schema is modified.

• We were not able to test all common OLAP operations in our experiments. For
instance, the vocabulary recommends ways to model Hierarchies and Levels.
However, these possibilities are not used by publishers.

• Since the OLAP engine is used for query processing, we cannot further optimise
OLAP queries over Statistical Linked Data.

• If data sources change, the entire ETL pipeline must be repeated to propagate the
changes. Also Linked Data-specific optimisations are more difficult to organise
such as gathering of all relevant data and incremental updates.

Our mapping is implemented as an ETL pipeline to store the RDF in a data warehouse
for use by common OLAP systems. Another direction is to have OLAP operations
directly on the RDF for which we would need a mapping of query languages used for
OLAP and RDF. This possibility is investigated in more detail in the next chapter; in
the remainder of this section, we describe first ideas.

SQL and RDBMS are often used as the underlying technology to store and query data
cubes (ROLAP). Since RDF in a broader sense represent relations, we believe that
SPARQL can be used to run queries over multidimensional datasets. We will not focus
on the differences between SQL and SPARQL, here, but try to give an impression of
how a basic analytical query with SQL corresponds to a query over RDF. Figure 5.2
illustrates a possible mapping between OLAP and SPARQL. A complete mapping in
the form of an algorithm is presented and evaluated in Chapter 6.

Table 5.2: Preliminary mapping of OLAP and RDF query languages.

OLAP SPARQL
Selection Query for data with certain Dimensions.
Projection Query for aggregated Measures.
Drill-Down/Roll-Up Querying more/less fine grained values of Members.
Slice/Dice Filtering on Facts with certain Members.

98

5.4 Discussions and Lessons Learned

One can issue basic OLAP operations on cubes described by our MDM. OLAP allows
to select dimensions, hierarchies, and levels to query for data from a cube. OLAP also
allows to select Measures to aggregate. For instance, we can query a multi-cube of
two datasets to retrieve the percentage of no answers by survey participants and the
average Real GDP growth rate given for Germany at every available point in time.
Listing 5 shows a SPARQL query that queries for such information from Estatwrap.
Here, projection is done to select and aggregate the percentage and the growth rate.
However, from the ”Unemployment Fear and GDP Growth” implementation, we have
seen that the percentage of negative answers forms a compound measure calculated
from several metrics on different levels of detail (see Listing 4), which would not be as
easy as indicated in this example, and may require SPARQL subqueries.

Listing 5: SPARQL query for employment fear metric and GDP growth rate for Germany over
time in UNEMPLOY query.

1 SELECT ?time ?geo avg(?nos) avg(?grorate)
2 WHERE {
3 ?s qb:dataset <http://estatwrap.ontologycentral.com/id/tsieb020#ds>

.
4 ?s dcterms:date ?time .
5 ?s eus:geo ?g .
6 ?g rdfs:label ?geo FILTER(?geo = "Germany") .
7 ?s eus:nos ?nos .
8 ?s eus:growthrate ?grorate
9 }

10 ORDER BY ?geo

Drill-down or roll-up lead to more granular or less granular results. For instance, if we
drill-down the geopolitical entity from country to city, each country is split up in its
cities resulting in more fine grained information regarding the projected metrics.

In SPARQL, one would instead of directly query for the label of the member, use a
query pattern that groups the Members and then query for the label of the grouping re-
source. However, this will lead to slow queries, since different from the star schema rep-
resentation where every member exactly has one value for each level, in RDF, queries
always assume members to have any number of level values.

Slice (and dice) fix dimensions on one member (several members) and denote subsets
of the data. In our example, we use this functionality to filter for information about
Germany. In SPARQL terms, a slice corresponds to filter patterns.

5.4.3 Possible Optimisations of Data Integration and
Query Processing

For every approach presented in this theses, we are interested in the improvements
in flexibility and efficiency. In the approach presented in this chapter, we argue for

99

5 Mapping Data Cubes and Statistical Linked Data

an increased flexibility since links between dimensions and members can be added
for increasing the overlap between published multidimensional datasets. Efficiency
is increased by using existing OLAP engines that deploy optimisations such as the
efficient star schema on a relational database.

After the MDM has been successfully serialised into a data warehouse, the actual OLAP
operations only take an instant. The performance of our mapping is assessed best by
the time it takes to create the MDM and to serialise it.

Evaluation times for transforming retrieved data into the representation of our multidi-
mensional data model (including consolidation) and for deploying the representation in
the ROLAP engine take similar amount of time.

Our system terminated at every experiment. Only the HEALTH query could not be
executed successfully since relevant data has not been properly published as Linked
Data.

Since Eurostat datasets share their dimensions and members (use the same URIs), no
explicit consolidation has to be done. Only for the UNEMPLOY query owl:sameAs
links between Dimensions and Members had to be added, and possibly result in a
slightly higher evaluation time for representing the MDM (27s versus 12s).

The performance can be improved: for instance, instead of querying for all Dimensions
and Members and to then resolve equivalence relationships in a reflexive, symmet-
ric and transitive closure table to find unique Dimensions and Members, entity con-
solidation [HHU+11] could be done directly on the RDF. Hogan et al. [HHU+11]
present two algorithms that, depending on the number of equivalence statements, per-
form faster or slower. Currently, we only consider owl:sameAs links, other reasoning
engines would be capable of also considering other forms of equivalent statements, e.g.,
owl:equivalentProperty and rdfs:subPropertyOf.

So far we built the entire MDM as described by the Linked Data about the input
datasets; instead, modelling could be more directed by user queries as sometimes is
done in Web Warehousing [RALT06].

The bottleneck of our system are the SPARQL queries; per run of the ETL pipeline,
there are #ds+6∗#dim+4 SPARQL queries issued, with #ds as the number of datasets
and #dim as the number of dimensions. For example, we do not consider distributed
storage of the actual data and its metadata and always issue the queries to the entire set
of triples related to the datasets.

Note, in our experiments, SPARQL query times do not only consist of the time for
retrieving the RDF files from the servers and executing the queries, but also includes
the time that Linked Data wrappers may need to produce RDF from the original data
sources. For instance, Estatwrap needs to retrieve SDMX files from the Eurostat web-
site and to transform SDMX to RDF. Thus, possible bottlenecks may depend on the
concrete scenario.

100

5.5 Related Work

Also, we do not distinguish between URIs that provide useful information about meta-
data such as Cubes and Dimensions and the actual data in the form of Facts. Since the
data usually is larger than the metadata, leaving it out for metadata queries may lead to
faster execution.

Experiments indicate a linear increase of query execution time with increasing num-
ber of triples, but our datasets have not had very large numbers of observations and
dimensions.

Once data is serialised for the OLAP engine, we expect queries to be fast as indicated
in the results.

At least regarding an increasing number of observations, we do not expect an overly
negative impact on the performance of representing the MDM and serialising the MDM
in XML and SQL, since single Facts from observations represented in arrays are di-
rectly used to create an SQL INSERT query to populate the Fact table.

With increasing number of Dimensions or Measures, our logical representation needs
to store more multidimensional elements and needs more memory for the objects but
compared to facts, the number over dimensions is not expected to be overly large.

There is the question whether a more direct mapping between Linked Data and the
OLAP engines representation would lead to better performance. We assume that in
most cases, an in-memory representation of multidimensional elements from which a
serialisation for OLAP engines is created, performs best.

For instance, a transformation directly on the RDF files, e.g., using XSLT, 1) would not
be applicable to RDF formats other than RDF/XML and 2) since the same RDF can be
represented by different XML documents, only would be on a syntactic level, would be
more complex, and would be less robust to changes in modelling.

Checking for the right modelling of datasets with integrity constraints also requires
additional execution time.

The efficiency of the given approach can be further optimised by 1) more efficient
loading such as parallel threads for loading the triple store and 2) by using more scalable
data warehouse backends such as an in-memory and column-oriented database.

5.5 Related Work

We distinguish related work about semi-automatic multidimensional modelling from
Web data and about logically representing formalised MDM for integration and queries.

101

5 Mapping Data Cubes and Statistical Linked Data

5.5.1 Semi-Automatic Multidimensional Modelling
from Web Data

We focus on Linked Data using QB. Other work tries to do automatic multidimensional
modelling from other data sources.

Modelling from Ontologies: Several work recommends the use of ontologies for Data
Warehouse design.

An overview of challenges in Data Warehouse Modelling and Design, e.g., the Seman-
tic Gap, Web Warehousing and effective Conceptual Modelling using Ontologies, is
given by Rizzi et al. [RALT06].

There is recent work on creating Multidimensional Models from ontologies [RA07a,
NN10, PM11, NB12]; For instance, Romero et al. [RA07a] propose a semi-automatic
method to find multidimensional concepts from heterogeneous data sources sharing a
common ontology in three steps: 1) identifying facts, 2) identifying dimension keys
and 3) identifying dimension hierarchies.

Nebot et al. [NB12] describe how to semi-automatically derive an MDM from Se-
mantic Web data. In their architecture, they describe a Fact Extractor and a Dimensions
Extractor that produce data for a Cube Generator. The Cube Generator populates a Data
Warehouse and OLAP engine similar to our ETL pipeline. Analysts then can use an
OLAP engine to analyse the data. The Dimension Extractor allows to automatically de-
rive useful dimension hierarchies. For that the authors measure the quality of dimension
hierarchies. Data sources need to be represented in domain-specific OWL ontologies
for which the authors define an OWL ontology for MD schema specification. Users can
then map domain-specific OWL ontologies from the Semantic Web to this OWL ontol-
ogy using DL constructs. The authors use MySQL to store the semantic annotations,
and the Business Intelligence (BI) tool of Microsoft SQL Server 2008 to instantiate the
MD schema designed by the user, create cubes, and allow OLAP queries. However,
the authors only evaluate the semi-automatic multidimensional modelling according to
performance and quality, but do not give details about query processing performance;
also, no integration of several datasets is done.

Also, methods to help designers with multidimensional modelling to reduce the seman-
tic gap have been developed: Lujanmora et al. [LMTS06] proposes UML for multidi-
mensional modelling.

The work closest related to our approach is by Niinimäki and Niemi [NN09]. They
present an own RDF/OWL ontology as a representation for an MDM. Their system
follows steps that are similar to ours:

1. They assume raw data available on the Web.

102

5.5 Related Work

2. The raw data is converted to RDF using an OWL ontology describing the MDM.
For that, “ontology maps” are assumed to be available that describe transforma-
tions (often based on XSLT) from an XML document to an RDF document.

3. An OLAP cube is constructed by posing queries to the RDF files. Queries can be
generated automatically since the RDF is conforming to a known ontology.

4. OLAP cube is deployed to the OLAP engine Mondrian.

5. User can analyse data using a typical OLAP client.

There are two main differences between their [NN09] and our work:

No Linked Data principles for accessing data but XML files with raw data down-
loadable from the Web. We assume available Linked Data using QB, whereas the
authors assume existence of ontology maps to automatically transform XML to domain-
specific ontologies reusing an OLAP model. Also in our case, often raw data will first
be transformed to QB for which manually transformation scripts need to be created.
We represent our MDM – apart from the facts – as an object-oriented data structure
whereas they directly use SPARQL query results to deploy the populated OLAP model
on the server. For the facts, we similarly create SQL queries directly from the SPARQL
results. The main reasons for us to have an intermediate representation of multidi-
mensional elements are 1) that for some elements there is no direct correspondence in
QB, e.g., for aggregation functions and 2) that we consolidate shared Dimensions and
Members for integration.

As for the evaluation, the conversion of a data source to RDF as well takes most of the
time. This is similar to our approach where SPARQL queries also may include the time
for wrappers to produce RDF from original data sources. Another bottleneck in their
work lies in converting query results to SQL insert/replace statements. In the case of
facts, we are doing the same, directly from the SPARQL results.

The work does not consider integration of datasets. Also, the authors do not focus
on the problem of semantic heterogeneity in datasources to be integrated in an MDM.
They put much focus on their ontology, which directly models an MDM. Our approach
is based on a vocabulary that already has been adopted by different parties and we focus
on mapping the statistical data to a meaningful MDM.

Etcheverry and Vaisman [EV12a] argue for the use of ontologies available on the Web
and consider Statistical Linked Data as a possible data source. They investigate whether
it is possible to use web data to enhance local OLAP analysis. They emphasise the
importance of situational Business Intelligence that allows ad-hoc analytical queries
to Web data without the burden of incorporating data sources and data requirements
into existing Data Warehouses. They introduce Open Cubes [EV12b], also called

103

5 Mapping Data Cubes and Statistical Linked Data

QB4OLAP30, a vocabulary specified using RDFS that allows to represent multidimen-
sional datasets. The vocabulary builds on QB and adds aggregation functions and ex-
plicit multi-level hierarchies, but is not adopted by publishers. The authors assume that
subsets of web cubes contain relevant data with which to enhance local cubes.

Similar to our work, they sketch a mapping from a Web cube to the multidimensional
data model that can be deployed on OLAP engines such as Mondrian.

They built a similar pipeline to transform web cubes into a star schema.

Different from our work, the authors do not explain where the Web Cube descriptions
can automatically be found on the Web; instead, our approach and experiments use QB
datasets with resolvable URIs. Most importantly, Etcheverry and Vaisman [EV12a] do
not go into details of integrating datasets.

It remains unclear how dimensions represented using URIs in a Web cube can be
aligned with dimensions represented with application-specific identifiers of a local
OLAP cube. Also, no descriptions are added how data integration is done in the OLAP
engine.

Although the authors introduce explicit aggregation functions for measures, they also
add them to operators. In their algorithm, they ask for the aggregation function of each
measure. Thus, they also assume meaningful aggregation functions to be pre-defined
and – similar to our work – do not further investigate the summarisability problem.

Modelling from Graphs: Several work try to execute OLAP queries over graph data.
Inoue et al. [IAK13] try to allow users to analyse general RDF graphs from Linked
Open Data using OLAP. For that the authors present a framework with which to extract
Linked Open Data and to semi-automatically model the data as data cubes. Their ap-
proach does not require the RDF data to comply to a specific vocabulary such as QB.
Instead, users are required to manually select facts and measures of a data cube. From
this input, the system automatically identifies possible dimensions from cardinalities of
relationships between facts and attributes. Also, dimension hierarchies are identified
from concept hierarchies.

In Graph OLAP [CYZ+08], a set of graphs, e.g., a graph of conferences with papers
of authors is defined by so-called info dimensions, e.g., year, and topology dimensions,
e.g., affiliation of authors. In I-OLAP, OLAP operations are executed over info di-
mensions to result in similarly-structured graphs, e.g., the graph of conferences with
papers of authors in a specific year. In contrast, in T-OLAP, OLAP operations change
the topology of graphs, e.g., transform of a graph of authors to a graph of institutions
affiliated to the authors.

In Graph Cube [ZLXH11], OLAP queries over a multidimensional network, e.g., a so-
cial network, result in cuboids. Cuboids are aggregate networks corresponding to a

30http://publishing-multidimensional-data.googlecode.com/git/index.html, last visited on 2014-04-06.

104

http://publishing-multidimensional-data.googlecode.com/git/index.html

5.5 Related Work

specific aggregation of the multidimensional network. Beyond cuboid queries, cross-
cuboid queries are defined that allow to ask about the network structure between differ-
ent cuboids, e.g., the difference between the network of users and the network aggre-
gated to single locations.

Beheshti et al. [BBNA12] define GOLAP, a graph data model for OLAP on RDF graphs
and present an extension to SPARQL for OLAP over RDF. This extension also allows
to define compound measures.

Although multidimensional modelling from graphs can be applied to QB data [MCG11],
we see this line of work as complementary to our work since it addresses the follow-
ing problem: More and more Linked Open Data comprising multidimensional data is
published, yet, few techniques have been investigated of how to make sense of that
graph-structured data. For this line of work, multidimensional modelling from graphs
is a promising technique.

Instead, our work is more concerned with the following problem: Nowadays, when
distributed datasets are to be analysed, often Excel Pivot, ROLAP or MOLAP methods
are applied, with a lot of manual effort. We propose to use Linked Data as the com-
mon data representation and exchange method to improve data integration capabilities
without loosing intuition and efficiency of data analyses.

5.5.2 Representing Formalised Multidimensional Data Models

There are several ways to logically (formally) represent multidimensional datasets so
that they can be easily and correctly used for integration and queries. We use an object-
oriented representation of the MDM based on our MDM-QB mapping.

Pardillo et al. [PMT08] try to solve the semantic gap with a model-driven architecture
and the definition of OLAP operations over an abstract model that is independent of a
logical implementation. We instead use our abstract model to populate a data warehouse
and for query processing use existing OLAP engines.

Integration of datasets: Kimball [KR02, p. 79] was the first to recommend having
shared (conformed) dimensions of coexisting data warehouses that adhere to a standard;
common dimensions of data warehouses would be collected and communicated using a
so-called data warehouse bus matrix. Kimball requires shared dimensions to have iden-
tical schema and data. Similarly, we require that members can only be shared if also
the respective dimension, hierarchy, and level are shared. Whereas Kimball requires a
dimension to be shared up-front during design time, we consider the case where dimen-
sions are mapped on-demand. In those cases, two cubes may originally use the same
dimension with different members that only later are brought together in one shared
dimension. For instance, whereas one data cube may only include European countries
for the geo dimension, another data cube may describe Non-European countries. Based

105

5 Mapping Data Cubes and Statistical Linked Data

on shared dimensions and members, we define multi-cubes and allow drill-across over
several cubes using OLAP engines.

Whereas in our work we apply equivalence statements for defining shared dimensions
and members, other work tries to automatically learn such statements. For instance,
RUBIX [ALS+12] maps instances of cell values to instances and column headers to
type information from Linked Data for the integration of tabular data. Zapilko and
Mathiak [ZM14] find matching object properties from Statistical Linked Data by their
links to individuals of semantically similar code lists. The authors also argue that tra-
ditional ontology matching approaches are not effective in identifying matching object
properties. Ermilov et al. [EAS13] propose the collaborative mapping of tabular data
using a semantic wiki where users can map table columns.

Hümmer and Bauer [HBH03] present an XML schema to share Data Cubes and to act as
a basis for integration. XCube is an approach to define a standard logical representation
of multidimensional datasets to be shared over the Web.

According to XCube, there is not much work on creating an XML standard for sharing
MDMs. Previous work is focusing on the metadata or on queries for specific data but
not on sharing the entire Data Cubes.

XCube contains formats to share Cubes, Dimensions and Facts. Also, collections of
Data Cubes can be represented. However, the multi-cubes mentioned in this work do
not align with our definition of a multi-cube which is to refer to integrated Data Cubes
consisting of data from several Data Cubes.

Regarding integration, they mention the use of standardized reference dimensions as a
promising tool for integrating data from various sources. They also refer to keys that
can be given to Dimensions for unique identification. However, they do not further
describe the possibility to integrate several Data Cubes published using XCube. Also,
they do not consider heterogeneity or semantic conflicts.

In our work, we do not only share the metadata of a Cube and split up queries to
single Data Warehouses in a federated way, but collect both metadata and data to create
a multi-cube from single cubes based on Shared Dimensions and Members. We show
how to store the multi-cube in a Data Warehouse for use by an existing OLAP engine. In
later chapters, we extend the notion of multi-cubes to the Global Cube over all available
datasets.

Summarisability: Although the use of formal domain models promise benefits in
solving summarisability issues, in our mapping between QB and our logical represen-
tation of an MDM, we simplify the problem and automatically create measures for all
possibly correct aggregations functions such as COUNT and AVG.

Automatically checking summarisability is a complex problem and often requires back-
ground information such as dimension constraints [HGM05]. For instance, Niemi and

106

5.6 Conclusions

Niinimäki [NN10] automatically conclude summarisability from OLAP queries by de-
scribing measure units, measure types, dimension types, and aggregation functions in
an OLAP ontology. Similar to our work, they assume complete and disjoint hierarchies
and the OLAP ontology populated with the respective information.

Similarly, Prat et al. [PMA12] define an OWL-DL ontology that also allows to auto-
matically derive summarisability. Again, the respective domain knowledge has to be
(manually) formalised using that ontology.

QB also is an OWL-DL ontology which however does not cover the possibility to ex-
plicitly describe measure types as required to infer summarisability [LS97]. One reason
for that is that QB tries to be simple to use; although with qb4o:aggregateFunc-
tion there is a way to directly add correct aggregation functions to measures, this
extension of QB is not used by publishers.

5.6 Conclusions

Along example queries motivated by the Open Government Data scenario, in this chap-
ter, we have presented an approach, the MDM-QB Mapping, to map statistics published
on the Web to our MDM that can be automatically deployed on an existing OLAP en-
gine for efficient analytical query processing.

The mapping between the RDF Data Cube Vocabulary and our MDM includes a defini-
tion of relevant data possibly distributed over several sources, requirements for mean-
ingful aggregations, and the possibility to integrate several datasets into multi-cubes.

Reusing existing OLAP engines allows efficient query processing, also over multi-
cubes. Flexibility is increased, since dimensions and members also can be implicitly
shared via equivalent statements. We expect that the flexibility can be further increased
by reusing existing SPARQL engines for query processing, which we investigate in the
next chapter.

Also, we define relevant RDF data describing multidimensional datasets and lean datasets
that ensure summarisability.

We have implemented the mapping in a system and evaluated it with the example
queries; results indicate that an automatic and scalable transformation into an MDM
and efficient query execution over Statistical Linked Data are possible.

Published datasets do not use all features, e.g., no multi-level hierarchies. Also some
datasets are not self-descriptive enough to be automatically analysed. We believe that
more datasets – also including multi-level hierarchies – are published and in Chap-
ter 6 and Chapter 7 investigate query processing over multi-level hierarchies and larger
datasets using existing SPARQL engines.

107

5 Mapping Data Cubes and Statistical Linked Data

In future work, it would be interesting to investigate whether summarisable aggregation
functions of measures and compound measures also can automatically be identified
from ontological information [NN10, PM11] in Statistical Linked Data.

For instance, mathematical functions could be explicitly stated with the statistical data,
for which there are various ways [VLH+10].

In case datasets exhibit modelling errors – as in our real-world examples – a more
robust interpretation or an automatic repair are needed. Also, it would be interesting
to evaluate the possibility to relax the limitations of lean datasets; for instance, the
population dataset of Eurostat contains both facts for single genders and total values.

Current Statistical Linked Data is published in a batch mode. In the future, with statisti-
cal data generated and published in near real-time, relevant data about multidimensional
datasets for a query dynamically change and require the consideration of update-time
intervals [HKS+13] and published deltas of datasets. This issue also holds if a feder-
ated query approach such as over SPARQL endpoints is used; SPARQL endpoints often
are populated in a batch mode, provide limited querying capabilities (e.g., max query
execution time, max results, limited to SPARQL 1.0). Also, SPARQL endpoints do not
provide continuous “streaming” data and need a polling-strategy in case query results
are to be cached for faster repeated queries.

108

6 Executing OLAP Operations
Using SPARQL

In this chapter, we investigate the following research question:
Research Question 2. How can we use existing SPARQL engines for query processing
and flexible integration of multidimensional datasets from the Web?

Figure 6.1 illustrates the contribution given in this chapter. We present an OLAP-to-
SPARQL Algorithm that translates OLAP to SPARQL queries over Statistical Linked
Data for more flexible query processing using SPARQL engines in comparison to using
an existing OLAP engine with a fixed star schema.

Experts

Dataset 1

OLAP

Client

Integration and Analysis System Datasets

Dataset 2

Dataset 3

Metadata query

Analytical query
HTTP/GET

HTTP/GET
HTTP/GET

RDF/XML/CSV

...

RDF/QB
Part of

Global Cube
HTML+JavaScript

OLAP-to

SPARQL

SPARQL

query

RDF/QB

2

SPARQL

Engine
Statistical

Linked Data

Figure 6.1: Illustration of contribution of the OLAP-to-SPARQL Algorithm.

6.1 Introduction

The fact that in the approach presented in the previous chapter OLAP queries are ex-
ecuted not on the RDF directly but by a traditional OLAP engine after automatically
populating a data warehouse results in the following drawbacks:

1. Although our ETL pipeline showed capable of automatically creating a quasi-
standard logical representation (ROLAP) for data warehouses, our approach re-
quires an OLAP engine to execute OLAP queries. Also, our logical representa-
tion does not allow to store other information than previously defined.

2. Since the OLAP engine is used in a black-box fashion we cannot further optimise
OLAP queries over Linked Data sources.

6 Executing OLAP Operations Using SPARQL

3. For the same reason, if Linked Data sources are updated, e.g., if a single new
statistic is added, the entire ETL process is repeated to have the changes propa-
gated.

4. Integration of additional data sources is difficult, since the MDM has a fixed
schema that does not allow to easily attach background information.

To reduce the processing effort of managing the OLAP engine and to have OLAP op-
erations directly over the RDF, we would need a mapping of query languages used for
OLAP and RDF. We need to investigate the following problems:

• SPARQL is an expressive query language on RDF and with the new version
SPARQL 1.1 supports aggregate and subqueries; yet, it is unclear whether SPAR-
QL expressivity is sufficient for analytical queries and whether the evaluation of
analytical queries with SPARQL engines is sufficiently efficient.

• Since RDF is a more flexible data model than the relational data model, the per-
formance of SPARQL engines over QB may be different from the performance
of OLAP engines such as RDBMS over a Star Schema.

For example, in the XBRL scenario, a business analyst may want to assess companies.
The Edgar Linked Data Wrapper (Edgarwrap)1 provides access to XBRL filings from
the SEC as Linked Data reusing QB. For instance, one can find the quarterly balance
sheet of Rayonier Inc.2 disclosing a sales revenue net of 377,515,000 USD from 2010-
07-01 to 2010-09-30.

Assuming we have access to a data cube edgar:SecCubeGrossProfitMargin
with financial facts from Edgarwrap. All facts are fully dependent on the following
dimensions: the disclosing company (Issuer), the date a disclosure started (Dtstart) and
ended (Dtend) to be valid, and additional meta information (Segment). Also, every fact
discloses Cost Of Goods Sold (edgar:CostOfGoodsSold) and Sales Revenue Net
(edgar:Sales) as measures with unit USD. Then, an analyst may ask the following
analytical query.

Cost of Goods Sold for selected companies (COST). In the XBRL scenario, a busi-
ness analyst may want to compare the number of disclosures of Cost of Goods Sold for
certain companies. He requests a pivot table with issuers RAYONIER INC and WEY-
ERHAEUSER CO on the columns, and the possible periods for which disclosures are
valid on the rows, and in the cells showing the number of disclosed cost of goods sold,
or – if only one – the actual number. Figure 6.2 shows the requested pivot table.

The analyst may want 1) to have access to background information to increase the trust
in presented data, e.g., data transformations executed over the data [FKaGO+12] and

1http://edgarwrap.ontologycentral.com/, last accessed 2014-12-10.
2http://edgarwrap.ontologycentral.com/archive/52827/0001193125-10-238973#ds, last accessed
2014-11-24.

110

http://edgarwrap.ontologycentral.com/
http://edgarwrap.ontologycentral.com/archive/52827/0001193125-10-238973#ds

6.1 Introduction

Figure 6.2: Pivot table requested in our COST query.

2) to consider background information in queries, e.g., filter for companies from cities
with more than 100,000 inhabitants.

As another example, in the OGD scenario, a citizen may want to compare values from
Estatwrap datasets. For example, two example queries were introduced in Chapter 5
and require the integration of several data cubes:

Unemployment Fear and GDP Growth (UNEMPLOY): Citizens want to compare
the indicator about unemployment fear from dataset allbus:ZA4570v590.rdf#ds
with the “GDP Growth” from dataset eurostat:id/tec00115#ds over time for
Germany to get insights about the relation between GDP and employees’ perceived
situation.

Comparing EU 2020 - Indicators (EU2020): Here, citizens want to aggregate and
compare important metrics about European countries by average for all countries and
to show the aggregated numbers per year, so that trends of important indicators for
European countries become visible.

In this chapter, we are looking for a way to execute OLAP queries over one or more
datasets directly using a SPARQL engine.

More concretely, we 1) simplify the ETL pipeline to crawling all relevant RDF 2) allow
flexible integration of background information, and 3) generate and query multi-cubes
using the drill-across operation. We approach the following problem as illustrated in
Figure 6.3:

On the front-end (left of figure), given a common OLAP client capable of running
OLAP operations on data cubes. At the backend, a SPARQL engine such as a triple
store with data crawled from Linked Data and accessible via a SPARQL endpoint.
The problem is to design a mediator [CDL+01] (combined OLAP engine and Triple
Store in middle of figure) to collect, clean, and combine data from different Linked

111

6 Executing OLAP Operations Using SPARQL

Figure 6.3: Data flow for OLAP queries over Statistical Linked Data using SPARQL engine.

Data sources (e.g., wrappers), so as to meet an information need of the integration and
analysis system specified as an OLAP query.

As an overall contribution, in this chapter, we show how to map OLAP queries to
SPARQL queries. More specifically, our contribution are as follows:

• We show how to transform an OLAP query to a SPARQL query which generates
all required facts from the data cube (Section 6.2.1). For that, we define OLAP
queries over Statistical Linked Data as nested sets of OLAP operations.

• We extend this definition for queries over several data cubes with the drill-across
operation to generate multi-cubes (Section 6.2.2). The evaluation of drill-across
considers implicitly shared dimensions and members and is compared with re-
sults from the previous chapter using an OLAP engine.

The result is an OLAP-to-SPARQL algorithm that we evaluate in Section 6.3 both
with the COST query motivated by the XBRL scenario and with the UNEMPLOY
and EU2020 queries introduced in Chapter 5 motivated by the OGD scenario.

In Section 6.4, we discuss the results and describe some lessons learned, after which,
in Section 6.5 we describe related work. In Section 6.6, we conclude.

6.2 Approach: OLAP-to-SPARQL Algorithm

In this section, we present the OLAP-to-SPARQL Algorithm to execute OLAP queries
using SPARQL over Statistical Linked Data, as previously illustrated in Figure 6.3.

Given a data cube (cs,F) with data cube schema cs = (?x,D,M) as well as facts on the
lowest level of each dimension (?obs,C,E) ∈ F , we define a materialised data cube as
per Definition 10.
Definition 10 (Materialised Data Cube). Adopting the concept of Gray et al. [GCB+97],
we can fully materialise a data cube represented in QB and compute all facts (nameF,C,
E) ∈ String×2Dimension×Member×2Measure×String as follows: We extract a relational ta-
ble containing attributes for measures M = {M1, ...,M|M|} and dimensions D= {D1, . . . ,
DN}. The relation contains an entity with measure values for each possible combina-
tion of dimension members from the data cube. We compute 2N aggregations of each

112

6.2 Approach: OLAP-to-SPARQL Algorithm

measure value by the measure’s aggregation function over all possible grouping values,
i.e., subsets of dimensions gv ∈ 2D, with a standard GROUP BY. Then, we merge all
aggregation results with a standard UNION, substituting the special ALL value in the
aggregation columns for each aggregated dimensions ad ∈ 2D\gv.

Subqueries and aggregation functions in SPARQL 1.1 make it easily possible to apply
the relational concept of Gray et al. [GCB+97] to a data cube represented as Linked
Data reusing QB.

According to the definition, if the number of possible members of a dimension is
card(Di), then ∏(card(Di)+ 1) is the number of facts in the materialised data cube.
Also, the number of required aggregation queries (subqueries) growth exponentially
with the number of dimensions. The definition shows that the potential size of a data
cube with many dimensions from Statistical Linked Data is too large to pre-compute
and store. The SPARQL query would have an exponential number of subqueries and
would take a long time to execute. Also, the query would compute all possible facts
from a data cube, although OLAP queries may require only a small subset. Instead, it
is our goal to compute on-demand all requested facts from a data cube.

Therefore, in the following, we first show how to evaluate single-cube OLAP queries
and compute the requested facts directly without subqueries and without fully mate-
rialising the cube (Section 6.2.1). Then, we show how to evaluate multi-cube OLAP
queries (Section 6.2.2).

6.2.1 A Mediator for Evaluating Single-Cube OLAP Queries
Using SPARQL

In this section, we describe an approach to translate OLAP queries over single data
cubes to one SPARQL query over Statistical Linked Data. For that, we define a data
structure with which to represent OLAP queries. For query processing, we explain how
to translate a nested set of OLAP operations to a subcube query and how a subcube
query can be evaluated with SPARQL over RDF reusing QB.

In this case, multiple datasets can be queried together if they are described in multi-
cubes using the same qb:DataStructureDefinition. Similar as for the map-
ping of QB datasets to an MDM and preparation for an OLAP engine in Chapter 5, we
assume for OLAP-to-SPARQL a lean dataset and do not need to consider redundant
observations for summarisability.

For interpreting a set of OLAP operations and evaluating the OLAP query with SPARQL
on QB, we use and slightly adapt the syntax and semantics of subcube queries [LHG04].

Given a data cube c= (nameDC,cs,F)∈DataCube, with cs= (?x,D,M)∈DataCube-
Schema, F ∈ 2Fact , D = {D1,D2, . . .DN} ⊆ Dimension an ordered list of dimensions

113

6 Executing OLAP Operations Using SPARQL

with a set of levels Li = {l1, l2, . . .} ⊆ Level, including the special-type ALL level; with
each level li having memberno(li) members; M ⊆Measure an ordered list of measures.
Then we represent an OLAP query over this cube as a subcube query as per Defini-
tion 11.
Definition 11 (Subcube Query). A tuple Q = (c,SlicesRollups,Dices,Pro jections),
with SlicesRollups ⊆ Level a level for each dimension (for roll-ups), including the
special-type level ALL (for slices), with Dices ∈ 2V member combinations, as positions
(for dice) and with Pro jections⊆M a set of selected measures from the data cube (for
projection). For simplicity reasons we assume the same, fixed, ordering of dimensions
in the cube and in the subcube query tuple. A subcube query returns a set of facts from
a materialised data cube as per Definition 10.

As example, we use the data cube SecCubeGrossProfitMargin motivated by our XBRL
scenario. Given an MDM with one data cube that only exhibits hierarchies with one
level, we can use an abbreviated syntax of a subcube query Q = (q1, ...,qN ,m), with
qi ∈ {? ,ALL,x}, m ∈ 2M to illustrate the OLAP-to-SPARQL Algorithm [KOH12]. The
subcube query tuple contains for each dimension a tuple element qi, Dimension(qi) =
Di ∈ D, Hierarchy(qi) = Hi ∈ Hierarchy, Level(qi) = Li ∈ Level. The element “?”
marks a dimension as inquired and refers to the bottom level BOT TOM; the ALL marks
a dimensions as aggregated and refers to the unique top level ALL; and the x ∈ V
aggregates over a fixed set of members of a dimension. Also, for any queried measure
the subcube query tuple contains an mi ∈ m. For each dimension a granularity in the
form of a hierarchy and level is specified.

As examples, we describe three distinguishable subcube queries:

• Full-cube query (? ,? ,? , ...,M) returns the facts on the highest granularity, i.e.,
the lowest level of each dimension, inside a data cube.

• Point query (a1, ...,a|D|,M) with ai ∈ V, |ai|= 1,Dimension(ai) = Di returns one
specific fact from a data cube.

• Fully-aggregated query (ALL, . . . ,ALL,M) returns one single fact aggregated
over all facts (over all dimensions, with no grouping value).

As a pre-processing step before interpretation using SPARQL, in the following, we de-
scribe how any nested set of OLAP operations can be translated to one specific subcube
query. For that, we show how to evaluate each OLAP operation in terms of subcube
queries.

Given a data cube as input to an OLAP operation, we use the full-cube query tuple
(? ,? ,? , ...,M) as an initial subcube query. Then, we translate any nested set of OLAP
operations without Drill-Across over this data cube by going through the OLAP oper-
ations and modifying in turn the subcube query tuple as defined for each operation as
follows:

114

6.2 Approach: OLAP-to-SPARQL Algorithm

Projection. We evaluate Pro jection(c,PM) = c′,(c,PM)∈DataCube×2Measure with
PM the selected measures, and M the measures of cube c by removing every
non-selected measure nsm ∈M\PM from the subcube query tuple.

Dice. We evaluate Dice(c,dd,DM) = c′,(c,dd,DM) ∈ DataCube×Dimension×
2Member → DataCube with dd the diced dimension and DM the set of selected
members as follows:

In a subcube query, dimensions can either be inquired or aggregated. Any fixed
dimension also is aggregated.

Therefore, we retrieve all diced members for the respective dimension from DM.

If the dimension is aggregated, we set the tuple element of the dimension to the
specific set of members3; if the diced dimension is inquired, we do not change
the subcube query since fixing the dimension would also aggregate over the di-
mension (according to the subcube query definition).

Slice. We evaluate Slice(c,SD)= c′,(c,SD)∈DataCube×2Dimension with SD the sliced
dimensions by setting the value of every sliced dimension d ∈ SD to ALL.

Roll-Up. We evaluate Roll−U p(c,rd,rl) = c′,(c,rd,rl) ∈ DataCube×Dimension×
Level with rd the rolled-up dimension, rl the selected level by setting the respec-
tive level rl of dimension rd.

As an example, consider the OLAP query described by the MDX query in Listing 6
on our edgar:SecCubeGrossProfitMargin cube for the cost of goods sold
(edgar:CostOfGoodsSold) for each member of the dimension edgar:issuer4

and each date until when each disclosure is valid (edgar:dtend), aggregating over
the valid start dates and over two specific segments (edgar:segment).

Listing 6: Example MDX query for cost of goods sold of specific segments of all companies
from single cube.

1 SELECT
2 Members(edgar:issuer) ON COLUMNS,
3 Members(edgar:dtend) ON ROWS
4 FROM [edgar:SecCubeGrossProfitMargin]
5 WHERE {(edgar:CostOfGoodsSold,

edgar:segmentAHealthCareInsuranceCompany),
(edgar:CostOfGoodsSold,
edgar:segmentAResidentialRealEstateDeveloper)}

3For instance, we can search the nested set of OLAP operations for any slice of the dimension.
4The MDX-built-in Members function returns all members of a dimension or level; since in our example
only single-level hierarchies are used, it is not necessary to specify the level such as
edgar:issuerRootLevel and edgar:dtendRootLevel.

115

6 Executing OLAP Operations Using SPARQL

A purely syntactic translation from MDX to SPARQL is not possible since additional
metadata about multidimensional elements is needed to interpret the query. For in-
stance, the aggregation function of the measure is not described in the query, MDX
does not distinguish between dimensions and measures, and built-in functions such as
Members need specific treatment depending on whether the input is a dimension, hi-
erarchy, or level.

In the following we describe the process from parsing MDX to a nested set of OLAP
operations, over translating the set of OLAP operations to a intermediary representation
(subcube query), to translating a subcube query to a SPARQL query.

The MDX string can be parsed and translated to the metadata (queried data cube, posi-
tions to display on rows and columns, positions to filter facts) of a pivot table.

The metadata in turn can be translated to a nested set of OLAP operations from the
OLAP algebra (Section 3.2.1) as follows:

Every data cube defined by the dataset URI in the FROM clause is queried; for the
chosen measures or if no measure is chosen the first measure, Projection removes
not selected measures; for every possible member combination on axes, Dice removes
filtered dimension members; Slice removes every dimension not mentioned in either
column or row axis (i.e., aggregates over with aggregation function of measures); and
for any higher level selected on columns or rows axes, Roll-Up aggregates dimen-
sions to higher levels.

The nested set of OLAP operations from our example is described in Listing 7. In
all our queries, we use prefixes to make URIs more readable. We use a function-like
syntax to describe that cubes are modified along OLAP operations parametrised with
elements from the MDM to eventually result in a cube to be displayed to the user in a
pivot table.

Listing 7: Example nested set of OLAP operations for single-cube query for cost of goods sold
of specific segments of all companies.

1 Slice(
2 Dice(
3 Projection(
4 edgar:SecCubeGrossProfitMargin,
5 {edgar:CostOfGoodsSold}),
6 edgar:segment,
7 {edgar:segmentAHealthCareInsuranceCompany,
8 edgar:segmentAResidentialRealEstateDeveloper}),
9 {edgar:dtstart, edgar:segment})

The logical OLAP query plan is then transformed to a subcube query with dimensions
Issuer, Dtstart, Dtend, Segment, e.g., by a Visitor pattern:

116

6.2 Approach: OLAP-to-SPARQL Algorithm

(?, ALL, ?, {edgar:segmentAHealthCareInsuranceCompany,
edgar:segmentAResidentialRealEstateDeveloper},

{edgar:CostOfGoodsSold})

Next, we describe a simplified OLAP-to-SPARQL Algorithm of how to evaluate such
an OLAP query using a SPARQL query on QB. In this approach, since QB provides
different ways to specify OLAP hierarchies, and since dimensions in our scenario are
flat, we simplify the problem of translating a subcube query to SPARQL and assume
a queried data cube with only one hierarchy and level per dimension; a Roll-Up has a
similar effect to a Slice operation and can be added to our method by a group-by not
on the members of the lowest level of a dimension but on members of a higher level,
specified via their ROLLUPMEMBER and ROLLUPLEV EL relations. Afterwards,
the complete OLAP-to-SPARQL Algorithm considering multi-level hierarchies will be
easier to understand.

An OLAP query Q = (q1, . . . ,qN ,m), m ∈ 2M over c ∈ DataCube represented using
abbreviated syntax of a subcube query tuple as per Definition 11 can be translated into
a SPARQL query using the following steps:

1. We initialise the SPARQL query using the URI of the data cube. We query for
all instance data from the data cube, i.e., observations linking to datasets which
link to the data structure definition.

2. For each inquired dimension, we query for the observations showing property-
value pairs. We use OPTIONAL graph patterns for dimensions for cases of cube
sparsity, and require all members – including literal members using skos:Con-
cept and skos:notation5 – to be explicitly added to a level.

To display inquired dimensions in the result and correctly aggregating the mea-
sures, we GROUP BY each inquired dimension and leave out all aggregated (or
fixed) dimension variables.

3. For each fixed dimension, we filter for those observations that exhibit for each
dimension one of the listed members.

4. For each selected measure, we incorporate it in the SPARQL query by selecting
additional variables for each measure and by aggregating the variables using the
aggregation function of that measure. We use OPTIONAL graph patterns for
cases of cube sparsity.

We transform our example from above to the SPARQL query in Listing 8. UDF repre-
sents the aggregation function necessary in our COST query; if the input set of literals
only contains one literal, UDF returns the literal itself, otherwise UDF returns a literal

5See https://groups.google.com/d/msg/publishing-statistical-data/mQOynmcMXJQ/95w3JQwfUK4J for a
discussion of this approach, last accessed 2014-11-12.

117

https://groups.google.com/d/msg/publishing-statistical-data/mQOynmcMXJQ/95w3JQwfUK4J

6 Executing OLAP Operations Using SPARQL

describing the number of values. UDF is an algebraic aggregation function in that it
can be computed by distributive functions COUNT and SUM [GCB+97].

Listing 8: Example SPARQL query for single-cube query for cost of goods sold of specific seg-
ments of all companies.

1 select ?dimMem0 ?dimMem1 UDF(?measureValues0) where {
2 ?obs qb:dataSet ?ds.
3 ?ds qb:structure edgar:SecCubeGrossProfitMargin.
4

5 ?dimMem0 skos:member edgar:issuerRootLevel.
6 OPTIONAL { ?obs edgar:issuer ?dimMem0. }
7

8 ?values1 skos:member edgar:dtendRootLevel.
9 ?values1 skos:notation ?dimMem1.

10 OPTIONAL { ?obs edgar:dtend ?dimMem1. }
11

12 ?obs edgar:segment ?slicerMem0.
13 Filter(?slicerMem0 = edgar:segmentAHealthCareInsuranceCompany
14 OR ?slicerMem0 = edgar:segmentAResidentialRealEstateDeveloper)
15

16 OPTIONAL { ?obs egar:CostOfGoodsSold ?measureValue0. }
17 } group by ?dimMem0 ?dimMem1

Given an MDM with Member, Level, Hierarchy, Dimension, Measure, DataCube-
Schema, Fact, and DataCube as multidimensional elements, we define OLAP Engine
⊆ OLAP Query × Target Query, with OLAP Query as per Definition 11, Target Query
a query in a target query language such as SQL and SPARQL.

In the following pseudocode algorithm we now present the complete OLAP-to-SPARQL
Algorithm [KH13] for an OLAP engine that transforms a subcube query as per Defini-
tion 11 into a SPARQL query. The algorithm separately creates the WHERE, SELECT
and GROUP BY clause. In the pseudocode we allow direct access to parts of a multidi-
mensional element, e.g., dimension.Hierarchies returns the hierarchies of a dimension.
Also, we disregard translating multidimensional elements to URI representations and
variables, more efficient filters, complex measures, and ordering:

Listing 9: Pseudocode of OLAP-to-SPARQL Algorithm.
1 Algorithm 1: OLAP-to-SPARQL
2 Input: Subcube query (cube, SlicesRollups, Dices, Projections)
3 Output: SPARQL query string
4 begin
5 // Evaluating cube
6 whereClause = "?obs qb:dataSet " + cube.nameDC.
7

8 // Evaluating SlicesRollups
9 for level ∈ SlicesRollups AND level != ALL {

10 levelHeight = level.hierarchy.maxdepth - level.depth
11 dimension = level.hierarchy.dimension
12 dimVar = makeUriToParameter(dimension)
13 hashMap.put(dimension, levelHeight)
14 for i = 0 to levelHeight - 1 {
15 rollUpsPath += dimVar + i + ". " + dimVar + i + " skos:narrower "

118

6.2 Approach: OLAP-to-SPARQL Algorithm

16 }
17 whereClause += "?obs " + dimension.nameD + rollUpsPath + dimVar +

levelHeight + ". "
18 whereClause += dimVar + levelHeight + " skos:member " + level.nameL
19 selectClause, groupByClause += " "+ dimVar + levelHeight
20 }
21 // Evaluating Dices
22 for member ∈ Dices.positions.get(0) {
23 dicesLevelHeight = member.level.hierarchy.maxdepth - member.level.depth
24 slicesRollupsLevelHeight = hashMap.get(dimension)
25 // If necessary, add new patterns
26 if (diceslevelHeight > slicesRollupsLevelHeight) {
27 dimension = member.level.hierarchy.dimension
28 dimVar = makeUriToParameter(dimension)
29 for i = slicesRollupsLevelHeight to dicesLevelHeight - 1 {
30 dicesPath += dimVar + i + ". " + dimVar + i + " skos:narrower "
31 }
32 whereClause += "?obs " + dimension.nameD + dicesPath + dimVar +

dicesLevelHeight + ". "
33 }
34 }
35 whereClause += " Filter("
36 for position ∈ Dices {
37 for member ∈ position {
38 dimVar = makeUriToParameter(member.level.hierarchy.dimension)
39 memberFilterAnd += "AND " + dimVar + diceslevelHeight + " = " +

member.nameM
40 }
41 memberFilterOr += "OR " + memberFilterAnd
42 }
43 whereClause += memberFilterOr + ") "
44

45 // Evaluating Projections
46 for measure ∈ Projections {
47 if (measure.iscompound) {
48 selectClause += measure.calc.aggregation + "(" + measure.calc.algebraic

+ ") "
49 } else {
50 measVar = makeUriToParameter(measure)
51 selectClause += measure.calc.aggregation + "(" + measVar + ") "
52 whereClause += " ?obs " + measure.uri + " " + measVar + " ."
53 }
54 }
55 return selectClause + whereClause + groupByClause

We query for all observations of the cube (line 6). Then, for each level of non-sliced
dimensions, we create a property path starting with the variable ?obs for the fact and
ending with a dimension variable at the respective level (line 9 to 19). The level height
determines the length of the property path and is computed from the highest depth in a
hierarchy (maxdepth) minus the depth of the level (10). Each level height we store in
a map in order to later check whether graph patterns need to be added for dices (13).
Then, we add the variables to the select and group by clause (19). Now, we add graph
patterns for dices (22 to 43). Dices is a set of positions with each position describ-
ing a possible combination of members for each diced dimension (22). Diced dimen-
sions and levels are fixed for each position; therefore, we only use the first position for
adding graph patterns (22). We assume furthermore that measures are only contained
in Pro jections but not in SlicesRollups and Dices. We only need to add graph patterns

119

6 Executing OLAP Operations Using SPARQL

if the height of the diced level is larger than the level mentioned for the same dimension
in SlicesRollups (26). Then, from the positions in Dices, we filter for one (OR, 36) of
all possible combinations (AND, 37) of members for each diced dimension. Finally,
for each measure in Pro jections, if it is compound, we use the respective aggregation
and algebraic function of the measure to compute the compound (48), otherwise, we
add a variable with the aggregation function to the SELECT clause and graph patterns
to the WHERE clause (51,52).

In the next section, we extend OLAP-to-SPARQL for the drill-across operation and
multi-cube OLAP queries.

6.2.2 Drill-Across with Shared Dimension
Mappings in Linked Data

Integration of datasets can be done by describing multi-cubes [SDN00], i.e., cubes with
shared dimensions and members from several single cubes. Query engines then allow
to query over a multi-cube, however, there is little known about how query engines
organise the integration internally. Also, there is no standard of how to define multi-
cubes.

In this section, we show how to create and query multi-cubes in Statistical Linked Data
with the drill-across operation.

We describe the data of a cube ds ∈ DataCube as a relation ds(D1, D2, ...,
Dn, M) with dimension(ds) the set of dimensions used by a cube and M the un-
specific measure sdmx-measure:obsValue. For each dimension and measure, the
relation contains an attribute. As entities, the relation contains all possible dimension-
member combinations on a specific level of detail, possibly with M an empty value
such as “null” or “”. We use Functional Datalog [Gen10, See Chapter Basic Concepts]
for describing rules about relations.

We extend the approach of direct querying of single data cubes (with the projection,
dice, slice, and roll-up operations) with the integration of several data cubes through
drill-across.

Definition 12 defines drill-across, the basic operation for integrating cubes. Drill-across
brings together measures from several cubes, has as input two data cubes, computes the
join of facts on their dimensions and members, and returns a new data cube with the
union of all dimensions and the union of measures [SDN00, ASS03].

Definition 12 (Drill-Across). Given two data cubes ds1(D11, D12, ..., D1n,
M1) and ds2(D21, D22, ..., D2n, M2), we define Drill − Across : Data-
Cube×DataCube→DataCube [GGV12] with Drill-Across(ds1, ds2)=ds3
as follows: If dimension(ds1) != dimension(ds2) then ds3(D31, ...,

120

6.2 Approach: OLAP-to-SPARQL Algorithm

D3n, M3), with dimension(ds3) = dimension(ds1)∪dimension(ds2)
empty, i.e., its relation contains no tuples (empty cube); else then D1i = D2i, 1
<= i <= n and the following rule holds: ds3(D1, ..., Dn, M) :- ds1(D1,
..., Dn, M1), ds2(D1, ..., Dn, M2), M = f(M1, M2), with f(M1,
M2) defined as follows: If (M1 != null AND M2 == null) then M1; else if
(M1 == null AND M2 != null) then M2; else if (M1 == M2) then M1; else
“Integrity Constraint Violation”.

As stated in other work [SDN00, KR02], drill-across requires as input two data cubes
with all dimensions shared and for the resulting cube computes an OUTER JOIN of
facts on the dimensions, i.e., measures can have empty values such as “null” or “”.
Such strict definition is cleaner than other relaxed ones [ASS03, GGV12] where facts
from one cube may be joined with several facts from another cube; in our case this
aggregation can be achieved by preceding Slice and Roll-Up operations.

Existing work assumes different measures of input cubes so that drill-across brings to-
gether measures for comparisons. However, in Statistical Linked Data, datasets often
exhibit same measures such as sdmx-measure:obsValue. Therefore, we con-
sider the more general case where the same measure may be used by the input data
cubes; in case two facts from the two cubes have identical dimension-member combi-
nations and different values for the measures, the resulting cube violates the constraint
to not have different measure values for the same dimension-member combination
(IC-12 in QB specification; can also be denoted by ‘‘integrity constraint
violation’’ :- ds(D1, ..., Dn, M1), ds(D1, ..., Dn, M2),
M1 != M2). Use-case-specific conflict resolution is then possible.

In an MDX query, Drill-Across can be issued by a special-character-separated6 list of
dataset URIs mentioned in the FROM clause.

For instance, Listing 10 shows an example MDX query issuing a Drill-Across, for the
Unemplyoment Fear and GDP Growth (UNEMPLOY) query (adapted from our multi-
cube MDX query in Listing 3 in the previous chapter).

Listing 10: MDX query for employment fear metric and GDP growth rate for Germany over time
in UNEMPLOY query, including drill-across over two cubes.

1 SELECT
2 {[sdmx-measure:obsValue eurostat:id/tec00115#ds qb4o:avg],

[sdmx-measure:obsValue allbus:ZA4570v590.rdf#ds qb4o:avg]} ON
COLUMNS,

3 CrossJoin(Members([dcterms:date]), Members([estatwrap:geo])) ON ROWS
4 FROM [eurostat:id/tec00115#ds;allbus:ZA4570v590.rdf#ds]
5 WHERE {[eurostat:dic/geo#DE]}

6In our implementation, we used a comma, for better readability in this section, we use “+” or “;”.

121

6 Executing OLAP Operations Using SPARQL

Here, a multi-cube is created via Drill-Across over the data cubes Unemployment Fear
and GDP Growth.

Similar as for the MDX-query without issuing Drill-Across in the previous section
(Listing 6), the MDX string can be parsed and translated to metadata (columns, rows,
filters) of a pivot table. The metadata in turn can be translated to a nested set of OLAP
operations.

Whereas in the simple case all operations are executed over a single cube, we interpret
a Drill-Across query in MDX as follows: Every dataset URI in the FROM clause de-
scribes a queried data cube; all single-cube operations in the MDX query are separately
issued over the data cubes. The resulting data cubes are integrated with a nested set of
Drill-Across operations.

Similar as for the simple case, we use a function-like syntax to describe that cubes
are modified along OLAP operations parametrised with elements from the MDM to
eventually result in a cube to be displayed to the user in a pivot table.

In our example, the unit and variable dimensions are sliced and the average of measures
over all years for Germany requested. We can use a nested set of analytical operations
as in Listing 11 to describe the query in terms of the two available cubes.

Listing 11: Nested set of analytical operations for employment fear metric and GDP growth rate
for Germany over time in UNEMPLOY query, including drill-across over two cubes.

1 Drill-Across(
2 Slice(
3 Dice(
4 Projection(
5 eurostat:id/tec00115#ds,
6 {sdmx-measure:obsValue qb4o:avg}),
7 estatwrap:geo,
8 {eurostat:dic/geo#DE}),
9 {estatwrap:unit, gesis:variable}),

10 Slice(
11 Dice(
12 Projection(
13 allbus:ZA4570v590.rdf#ds,
14 {sdmx-measure:obsValue qb4o:avg}),
15 estatwrap:geo,
16 {eurostat:dic/geo#DE}),
17 {estatwrap:unit, gesis:variable})
18)

This query only returns results if Unemployment Fear and GDP Growth data cubes
exhibit a dimension estatwrap:geo and a member eurostat:dic/geo#DE.
However, GDP Growth and Unemployment Fear cubes use different geo dimensions
(estatwrap:geo and gesis:geo) and different members representing Germany
(eurostat:dic/geo#DE and allbus:geo.rdf#00) that only implicitly may

122

6.2 Approach: OLAP-to-SPARQL Algorithm

be mapped, e.g., via owl:sameAs. In the following, we describe how to evaluate
Drill-Across using SPARQL, also in case of implicitly shared dimensions and mea-
sures.

To execute the analytical query given in Listing 11, we need to evaluate the query plan
of a nested set of OLAP operations over QB datasets.

As shown in Section 6.2.1, every sub-query-plan of OLAP operations not including
the Drill-Across operation we can translate to a subcube query. Using the OLAP-to-
SPARQL algorithm in Listing 9, we can translate the subcube query to a SPARQL
query.

Similarly, if several of such sub-query-plans are brought together using a nested set of
Drill-Across operations, we can evaluate the Drill-Across operation using SPARQL.

Given two subcube queries Q1 = (c1,SlicesRollups1,Dices1,Pro jections1) and Q2 =
(c2,SlicesRollups2,Dices2,Pro jections2), we evaluate Drill-Across over the two re-
sulting data cubes as follows:

First, we check whether the resulting data cubes from the subcube queries share all
dimensions: for every level l1 ∈ SlicesRollups1, l1 6= ALL there is a level in l2 ∈ Slices-
Rollups2, l2 6= ALL with l1 = l2. Be Dnew the set of dimensions of these common levels
and Mnew = Pro jections1 ∪ Pro jections2. If not, we return an empty cube without
tuples.

If the input cubes share all their dimensions, we can evaluate Drill-Across over the RDF
describing the two input cubes using SPARQL. See Listing 12 for an example SPARQL
query for our previous OLAP query in Listing 11.

Listing 12: SPARQL query for employment fear metric and GDP growth rate for Germany over
time in UNEMPLOY query, including drill-across over two cubes.

1 select ?geo0 ?date0 f(avg(?obsValue1), avg(?obsValue2))
2 where {
3 OPTIONAL { ?obs1 qb:dataSet eurostat:id/tec00115#ds;
4 estatwrap:geo ?geo0;
5 dcterms:date ?date0;
6 sdmx-measure:obsValue ?obsValue1 .
7 FILTER (?geo0 = eurostat:dic/geo#DE) }
8 OPTIONAL { ?obs2 qb:dataSet allbus:ZA4570v590.rdf#ds;
9 estatwrap:geo ?geo0;

10 dcterms:date ?date0;
11 sdmx-measure:obsValue ?obsValue2 .
12 FILTER (?geo0 = eurostat:dic/geo#DE)
13 }} group by ?geo0 ?date0

For each of the two input cubes, we query for observations linked via qb:dataSet
to the respective QB dataset URI (line 3 and 8); the observations from both datasets we
join on the values of their dimension properties (4,5 and 9,10) and bind the values of

123

6 Executing OLAP Operations Using SPARQL

their measures to separate variables (6,11) and combine them with f(M1, M2) with
f resolving possible integrity constraint violations (1)7. Various optimisations such as
materialisation [SDN00] are possible but not the topic of this chapter. The integration
of more than two data cubes is possible by chaining Drill-Across operations.

Drill-Across requires data cubes to share dimensions and members.

For instance, since the datasets for GDP Growth and for Unemployment Fear both
use dcterms:date and literal values for years such as 2006, drill-across over the
time dimension can directly be done. However, the GDP Growth and Unemploy-
ment Fear cubes use different geo dimensions, estatwrap:geo and gesis:geo,
as well as different members representing Germany, eurostat:dic/geo#DE and
allbus:geo.rdf#00.

To allow the implicit definition of shared dimensions and members, we assume that the
standard OWL semantics hold. OWL axioms can either be loaded from existing Linked
Data or manually added to the system.

After stating eurostat:dic/geo#DE owl:sameAs allbus:geo.rdf#00 as
well as estatwrap:geo owl:sameAs gesis:geo, the query from Listing 11
will bring together GDP Growth and Unemployment Fear for Germany.

6.3 Evaluation

In this section, we first demonstrate in a small experiment the correctness and appli-
cability of our OLAP-to-SPARQL algorithm for our COST query; then to evaluate the
Drill-Across extension to our algorithm and to investigate possible performance bottle-
necks, we repeat our experiments for UNEMPLOY and EU2020 (Chapter 5).

6.3.1 Evaluating the OLAP-to-SPARQL Algorithm

For this experiment, we used a Linked Data crawler (LDSpider) to collect relevant data
for multidimensional datasets (Definition 7) about balance sheets of financial compa-
nies such as RAYONIER INC from Edgarwrap and loaded the data into an Open Vir-
tuoso triple store with a SPARQL endpoint. Using SPARQL INSERT queries, we de-
fined the multi-cube edgar:SecCubeGrossProfitMargin with financial facts
that disclose Cost Of Goods Sold (edgar:CostOfGoodsSold) or Sales Revenue
Net (edgar:Sales). In total, we loaded around 148,426 triples into the SPARQL
engine.

7In this example, no conflict resolution would be done but the values of the two cubes displayed to the user,
e.g., using the concat function.

124

6.3 Evaluation

The data cube edgar:SecCubeGrossProfitMargin contained 17,448 disclo-
sures that either disclose Cost Of Goods Sold or Sales Revenue Net. The values of
the measures fully depend on one of 625 different issuers (dimension edgar:issuer),
the date a disclosure started (27 members of dimension edgar:dtstart) and ended (20
members of edgar:dtend) to be valid, and additional information (21,227 members of
edgar:segment). The two measures (edgar:CostOfGoodsSold and edgar:Sales) have
the unit USD and an aggregation function that returns the number of disclosures, or –
if only one – the actual number. If fully materialised according to Definition 10, the
cube contains 626 ·28 ·21 ·21,228 = 7,813,772,064 facts. To compute all of its facts,
24 = 16 SPARQL subqueries would be needed.

The OLAP-to-SPARQL algorithm for this experiment we implemented in a Java pro-
gram8. The MDM-QB Mapping, we implemented with SPARQL queries for every
metadata query method over the pre-filled Open Virtuoso triple store.

We manually created the MDX query shown in Listing 13 for our XBRL scenario and
sent it to our program, the resulting facts are visualised using a pivot table. Multidi-
mensional elements are described in the MDX query using their unique URIs9.

Listing 13: MDX query for cost of goods sold of specific companies over periods of time in
single-cube COST query.

1 SELECT
2 {edgar:cik1417907idConcept , edgar:cik106535idConcept }} ON COLUMNS,
3 CrossJoin(Members(edgar:dtstart), Members(edgar:dtend)) ON ROWS
4 FROM [edgar:SecCubeGrossProfitMargin]
5 WHERE {edgar:CostOfGoodsSold}

The MDX-built-in Members functions over each dimension select in our one-level
hierarchies the members on the lowest level of the dimensions10. The MDX-built-in
CrossJoin function returns the cross product of two sets, in our case all possible
combinations of start and end dates. The MDX query can be represented as a nested set
of OLAP operations as illustrated in Listing 14.

This nested set of OLAP operations can be represented as an OLAP subcube query
(Definition 11) with dimensions Issuer, Dtstart, Dtend, Segment: (?, ?, ?, ALL,
{CostOfGoodsSold}).

Listing 14: Nested set of OLAP operations for cost of goods sold of specific companies over
periods of time in single-cube COST query.

8See executeOlapQuery(Cube cube, List<Level> slicesrollups,
List<Position> dices, List<Measure> projections) at https://github.com/bkaempgen/
olap4ld/blob/master/OLAP4LD-trunk/src/org/olap4j/driver/olap4ld/linkeddata/OpenVirtuosoEngine.java,
accessed on 2015-05-02.

9URIs need to be translated to an MDX-compliant format that does not use reserved MDX-specific
characters, which is why we use a prefixed notation of URIs.

10Therefore, we do not need to ask for the members on the root levels edgar:dtstartRootLevel and
edgar:dtendRootLevel.

125

https://github.com/bkaempgen/olap4ld/blob/master/OLAP4LD-trunk/src/org/olap4j/driver/olap4ld/linkeddata/OpenVirtuosoEngine.java
https://github.com/bkaempgen/olap4ld/blob/master/OLAP4LD-trunk/src/org/olap4j/driver/olap4ld/linkeddata/OpenVirtuosoEngine.java

6 Executing OLAP Operations Using SPARQL

1 Slice(
2 Projection(
3 edgar:SecCubeGrossProfitMargin,
4 {edgar:CostOfGoodsSold}),
5 {edgar:segment})

Based on the OLAP-to-SPARQL algorithm, the subcube query can be translated to the
SPARQL query in Listing 15.

Listing 15: SPARQL query for cost of goods sold of specific companies over periods of time in
single-cube COST query.

1 select ?dimMem0 ?dimMem1 ?dimMem2
count(xsd:decimal(?measureValue0))
sum(xsd:decimal(?measureValue0))

2 where {
3 ?obs qb:dataSet ?ds.
4 ?ds qb:structure edgar:SecCubeGrossProfitMargin.
5

6 ?dimMem0 skos:member edgar:issuerRootLevel.
7 OPTIONAL {?obs edgar:issuer ?dimMem0. }
8

9 ?values1 skos:member edgar:dtstartRootLevel.
10 ?values1 skos:notation ?dimMem1.
11 OPTIONAL {?obs edgar:dtstart ?dimMem1. }
12

13 ?values2 skos:member edgar:dtendRootLevel.
14 ?values2 skos:notation ?dimMem2.
15 OPTIONAL {?obs edgar:dtend ?dimMem2. }
16

17 OPTIONAL {?obs edgar:CostOfGoodsSold ?measureValue0. }
18 } group by ?dimMem0 ?dimMem1 ?dimMem2

UDF, our default aggregation function is algebraic, therefore, we had to compute the
SUM and COUNT for the measure which would then be used by the compound UDF
measure.

In this experiment, we used the simplified OLAP-to-SPARQL Algorithm designed for
QB datasets with single-level hierarchies, before the standardisation of QB, and before
the definition of QB Integrity Constraints for well-formed cubes.

According to QB integrity constraints IC-11 (“all dimensions required”) and IC-14 (“all
measures present”) all dimensions and measures in an observation are required and the
OPTIONAL clauses (introduced for cases of cube sparsity) can be removed.

Also, a well-formed cube does not need to follow our proposal to explicitly represent
levels using xkos:ClassificationLevel. Since we assume a lean dataset with
all observations with members on the lowest level of each dimension, summarisability
for the OLAP-to-SPARQL algorithm is ensured, and the explicit selection of specific
levels can be removed in cases of single-level hierarchies.

126

6.3 Evaluation

The complete OLAP-to-SPARQL algorithm would thus result in a SPARQL query with
fewer graph patterns and can be expected to run faster than this SPARQL query used in
our experiment.

The result from the SPARQL query is the requested subset of all possible facts from a
data cube. The pivot table determines what dimensions to display on its columns and
rows.

We run the SPARQL query after a reboot of the triple store. The query took 18sec
and returned 58 tuples to be filled into the requested pivot table. The number of
7,813,772,064 potential tuples in the cube does not have a strong influence on the
query since the cube is very sparse, for instance, the triple store contains observations
only for a fraction of segment members.

6.3.2 Evaluating Drill-Across

In this section, to evaluate the Drill-Across extension to our OLAP-to-SPARQL algo-
rithm and to investigate possible performance bottlenecks, we repeat our experiments
from Chapter 5.

We implemented all operations, including the Drill-Across operation, in a Java pro-
gram11. The program uses a directed crawling strategy to load and validate all data
cubes into a Sesame Repository (v2.7.10) as embedded triple store. Due to lack of
space, in the further descriptions we assume all available data cubes loaded12.

Drill-Across is implemented as a nested loop join directly over the results of the OLAP-
to-SPARQL Algorithm. We evaluate OWL semantics with the equivalence duplication
strategy and repeatedly execute SPARQL INSERT queries implementing entailment
rules of equality13 to materialise implicit triples from equivalence statements.

Setup: Just as for the experiments in Chapter 5, we created MDX queries for the
scenario UNEMPLOY as well as MDX queries over four and eight EU2020 Indi-
cator datasets (EU2020a and EU2020b) that surely overlap, e.g., the energy depen-
dence, productivity, and intensity. Also, we manually created a file with owl:sameAs
triples14 to denote the :geo dimensions as shared and manually added the URI as a de-
fault data source to our directed crawling strategy. Since both dimensions also exhibit
different hierarchies and levels, we manually added an owl:sameAs link between

11See iterators at https:
//github.com/bkaempgen/olap4ld/tree/master/OLAP4LD-trunk/src/org/olap4j/driver/olap4ld/linkeddata,
last accessed 2015-05-02.

12Additional information can be found in the respective section of the evaluation website of the published
paper [KSH14]: http://www.linked-data-cubes.org/index.php/Global Cube Evaluation EKAW14, last
accessed 2014-11-11.

13http://semanticweb.org/OWLLD/#Rules, last accessed 2014-11-18.
14http://people.aifb.kit.edu/bka/Public/cube additionalRDF.rdf, last accessed on 2014-06-21.

127

https://github.com/bkaempgen/olap4ld/tree/master/OLAP4LD-trunk/src/org/olap4j/driver/olap4ld/linkeddata
https://github.com/bkaempgen/olap4ld/tree/master/OLAP4LD-trunk/src/org/olap4j/driver/olap4ld/linkeddata
http://www.linked-data-cubes.org/index.php/Global_Cube_Evaluation_EKAW14
http://semanticweb.org/OWLLD/#Rules
http://people.aifb.kit.edu/bka/Public/cube_additionalRDF.rdf

6 Executing OLAP Operations Using SPARQL

ramon:NUTSRegion and allbus:geo.rdf#list. The links between Germany
eurostat:dic/geo#DE and allbus:geo.rdf#00 from Eurostat and Gesis are
already given when resolving allbus:geo.rdf#0015.

For EU2020a/b, we selected four and eight EU 2020 Indicator datasets that surely over-
lap, e.g., the energy dependence, productivity, and intensity.

The two queries from our scenario we executed five times on an Ubuntu 12.04 work-
station with Intel(R) Core(TM) i5 CPU, M520, 2.40GHz, 8 GB RAM, 64-bit on a JVM
(v6) with 512M initial and 1524M maximum memory allocation.

Results: Table 6.1 gives an overview of experiment results. We compare query results
from previous experiments executing our MDM-QB Mapping for Drill-Across with
the OLAP engine Mondrian over MySQL (UNEMPLOY 1, EU2020a 1, EU2020b 1,
see Chapter 5) and from executing our OLAP-to-SPARQL algorithm including Drill-
Across (UNEMPLOY 2, EU2020a 2, EU2020b 2). The experiments are comparable
since we used the same machine.

We successfully integrated the GDP Growth from Eurostat16 and the Unemployment
Fear from ALLBUS and found overlaps for Germany in 2004 and 2006. Mappings
between implicitly shared dimensions and members were considered. Also, for the
EU2020 a/b queries, we successfully integrated four and eight datasets.

Table 6.1: For every experiment, number of integrated datasets #DS, triples #T, observations
#O, look-ups #LU, and average elapsed query times in sec for loading and validat-
ing datasets (L&V), executing (MD) a certain number of metadata queries (#MD),
generating the logical query plan (LQP), generating the physical query plan (PQP),
executing the physical query plan (EQP), and total elapsed query time (T).

Experiment #DS #T #O #LU L&V MD #MD LQP PQP EQP T
UNEMPLOY 1 2 20,268 350 22 273 - - - - 0.073 273
UNEMPLOY 2 2 3,897 362 12 11 5 41 3 3 0.036 22
EU2020a 1 4 24,636 1,247 26 654 - - - - 0.161 654
EU2020a 2 4 19,714 2,212 12 18 15 67 3 3 0.094 39
EU2020b 1 8 35,482 2,682 34 1,638 - - - - 0.473 1,638
EU2020b 2 8 38,069 3,992 20 47 40 103 6 10 0.151 103

From the total elapsed query times (T), we see that our OLAP-to-SPARQL approach
(UNEMPLOY 2 with 22s, EU2020a 2 with 39s, and EU2020b 2 with 103s) is 10 to
17 times more efficient than the MDM-QB approach with Mondrian OLAP engine
(UNEMPLOY 2 with 273s, EU2020a 2 with 654s, and EU2020b 2 with 1,638s). Also,

15http://lod.gesis.org/lodpilot/ALLBUS/geo.rdf, last accessed on 2014-06-30.
16Apparently, dataset http://estatwrap.ontologycentral.com/id/tsieb020#ds in Eurostat was replaced by

dataset tec00115 after conducting these experiments.

128

http://lod.gesis.org/lodpilot/ALLBUS/geo.rdf
http://estatwrap.ontologycentral.com/id/tsieb020#ds

6.4 Discussions and Lessons Learned

we see that for both approaches an increase from 4 to 8 datasets leads to 2.5 times larger
total elapsed query times.

Total elapsed query times mainly is improved since loading and validating datasets
takes much less time than with our previous implementation (Chapter 5) which results
from three aspects: 1) from a switch from qcrumb.com to Sesame as a SPARQL en-
gine. In comparison with downloading data to Sesame, qcrumb.com took more time for
downloading required data before answering a SPARQL query; 2) from downloading
fewer triples by using the directed crawling strategy with fewer hard-coded URIs to
download; and 3) from the time included for populating the data warehouse. In both
implementations, L&V includes the time for reasoning.

Disregarding the benefit of a more efficient loading process, we are interested in elapsed
query times for query processing. Once the data is loaded in the data warehouse, query
processing with the ROLAP engine in our previous implementation is very fast. For
our new approach with a SPARQL engine, most time is spent in executing several
queries for multidimensional elements (MD) and in generating the logical and physical
query plans (LQP+PQP). Our experiments with 2, 4, and 8 datasets indicate that MD,
LQP, PQP and EQP increase linearly. LQP includes the time for interpreting the query
language (MDX) and building a nested set of OLAP operations. PQP includes the time
to run the OLAP-to-SPARQL Algorithm. Executing the SPARQL queries and Drill-
Across operations (EQP) only takes a fraction and is similar to processing time in the
OLAP engine (Chapter 5).

6.4 Discussions and Lessons Learned

In our small experiment, we showed the applicability of our mapping between OLAP
and SPARQL queries for single-level hierarchies and without considering Drill-Across.

Our approach focuses on OLAP queries that can be composed by common OLAP op-
erations and can be represented as a subcube query. Our mapping allows translating of
a subcube query to a SPARQL query to be run on the RDF without storage of interme-
diate results, so that updates to the RDF are propagated directly to OLAP clients.

We correctly aggregate data on one specific granularity, defined by the mentioned in-
quired and fixed dimensions. Dimensions that are not mentioned will be automatically
handled as having an ALL value [GCB+97], representing all possible values of the di-
mension. The aggregation results in correct calculations, since we assume a lean dataset
that only contains facts with members on the lowest level of each dimension.

The SPARQL query created by our approach shows sufficiently fast in our small ex-
periment (and will be even faster with a reduced set of graph patterns in SPARQL

129

6 Executing OLAP Operations Using SPARQL

queries created by the most current version of the algorithm) but may not scale for
larger datasets for the following reasons:

• data from the data cube is queried on demand, and no materialisation is done.
Every OLAP query is evaluated using a SPARQL query without caching and
reusing of previous results.

• only the <slicer specification> is currently considered for the Dice
operation in our translation from MDX to subcube queries; dimensions in the
<column axis specification> and <row axis specification>
are translated as inquired dimensions and all possible member combinations cal-
culated, even though only specific combinations might be required, as in the case
of the two issuers RAYONIER INC and WEYERHAEUSER CO.

• OLAP clients and pivot tables require multidimensional data, i.e., data cubes con-
taining facts linking to specific members of dimensions, but our SPARQL query
returns relational tuples. Using the unique identifiers of dimensions, members,
and measures, query result tuples need to be joined with the multidimensional
data points as required by the OLAP client for filling the pivot table. Since no
materialization is done, only few extra space is required for a hashmap to fill the
pivot table with the SPARQL result set.

Etcheverry and Vaisman [EV12a] present another possible approach; to use SPARQL
CONSTRUCT queries to first materialise data cubes resulting from OLAP operations
as RDF. Populating the pivot table could then be done by simple SPARQL SELECT
queries on this resulting multidimensional view. However, the authors have not evalu-
ated the applicability and performance of this approach to answer OLAP queries.

We believe17 that there are more possibilities (e.g., based on heuristics, probabilistic
metrics or machine learning algorithms) to find meaningful hierarchies in statistical
Linked Data. In our work, we assume hierarchies to be strict and symmetric in order to
ensure summarisability.

Repeating the experiments from Chapter 5 for evaluating the MDM-QB Mapping, we
successfully evaluated the OLAP-to-SPARQL extension for Drill-Across. Our imple-
mentation was slightly different from the evaluation of the MDM-QB Mapping (Chap-
ter 5):

• we used a directed crawling for all relevant data that lead to faster loading;

• we executed integrity constraints to check for the right modelling of QB datasets;

17See Master thesis by Siegele [Sie12], co-supervised by the author, available at
http://www.aifb.kit.edu/images/4/4b/Masterarbeit Dominik Siegele.pdf, last accessed 2014-12-17.

130

http://www.aifb.kit.edu/images/4/4b/Masterarbeit_Dominik_Siegele.pdf

6.5 Related Work

• and we used the equivalence duplication strategy instead of entity consolida-
tion since it can be implemented directly with a SPARQL engine without pre-
processing of data;

We showed how to generate and query multi-cubes using the drill-across operation over
Statistical Linked Data. In Chapter 8 we will use the drill-across operation to generalise
the notion of multi-cubes to the Global Cube for integrating available datasets on the
Web.

6.5 Related Work

As related work we distinguish approaches to OLAP query processing, in particular
Drill-Across query processing, and approaches of more expressive queries over en-
riched data cubes.

6.5.1 Analytical Query Processing

Providing uniform access to distributed data sources over the Web can be provided
either in a federated or a Data Warehouse architecture [GMP+12, PBAP08]. Though
potentially faster since query processing is distributed on several machines and less
data is transferred over the network, federated query processing requires considerably
more logic from data sources than a Data Warehouse architecture. Although Linked
Data publishers sometimes also provide SPARQL endpoints and SPARQL 1.1 now
supports querying simultaneously over several endpoints, our experiences show that
publishing resolvable URIs providing RDF is simpler, more reliable, and more widely-
used. Therefore, in this work, we assume data from relevant URIs loaded into a Data
Warehouse for efficient integration and querying.

Query processing often is done by the conventional pull-based iterator model with
pipelining of temporary tables [Gra93] on top of which query optimisers are imple-
mented [KBZ86].

OLAP query processing in general has long been a topic of research [VS99]. Similar as
for the modelling of data on different abstraction levels, we can distinguish three query
processing levels [dACCG+13]: The Conceptual Level of OLAP algebras over data
cubes that is independent from a logical representation; the Logical Level of queries
over a specific logical representation of data cubes, e.g., SQL over Star Schemas in
relational databases; and the Physical Level that is concerned with efficient execution
of low-level executions such as index lookup or sorting over the data stored given a
specific hardware and software.

131

6 Executing OLAP Operations Using SPARQL

On the conceptual level, related work defines OLAP algebras and tries to bridge the se-
mantic gap between the conceptual model and logical representations [RA07b, GGV12,
PMT08, CRB+06, AGS97, Vas98, PJD01]. Though sometimes lower-level operations
are introduced [AGS97, Vas98], the most common operations from an OLAP algebra
are projection, dice, slice and roll-up.

On the logical level, query processing mainly depends on the type of data structure on
which to perform the computations and in which to store the results. Data structures
can roughly be grouped into ROLAP using relational tables and star (or similar such
as snowflake) schemas and MOLAP using multidimensional arrays for directly storing
and querying of data cubes [VS99, CD97, GCB+97].

The CUBE operator [GCB+97] computes all possible facts in a data cube that can be
navigated via roll-up of a multidimensional dataset. Dimension hierarchies and drill-
across are not considered.

The execution of OLAP operations mainly is concerned with the computation of the
data cube and with storing parts of the results of that computation to efficiently return
the results, to require few disk or memory space, and to remain easy to update if data
sources change [MKIK07].

In this chapter, we have mainly discussed the conceptual (OLAP operations) and logical
(SPARQL queries) levels of querying Statistical Linked Data. Our approach of evalu-
ating analytical queries using SPARQL over RDF is less concerned about the physical
level and relies on the efficiency of SPARQL engines such as triple stores. In the next
chapter, we present an approach to optimise analytical query processing with triple
stores purely on the logical level.

Other work recognise the reduced initial processing and update costs of using triple
stores and other dedicated query engines for query processing [NBP+09] but do not
present approaches for executing OLAP queries directly over such Semantic Data Ware-
houses.

Approaches regarding OLAP query processing using SPARQL over RDF seem to have
concentrated so far on multidimensional modelling from ontologies [NBP+09, DP08,
NN09, NB12, EV12a].

Etcheverry and Vaisman [EV12a] present an algorithm to translate OLAP operations
such as Roll-Up and Slice to SPARQL CONSTRUCT queries. Since results are cubes,
one can nest operations. Different from our work, OLAP operations are executed for
preprocessing of cubes from the Web that are then exported to a data warehouse for
query processing. Thus, their approach is a mixture of our approach of using existing
OLAP engines and of using existing SPARQL engines for query processing. However,
the authors leave out the important Drill-Across operator.

132

6.5 Related Work

In our work we use the graph-based RDF data model for querying and storing of mul-
tidimensional data reusing QB. Both schema information and actual data is accessed
using Linked Data principles and managed using SPARQL on a triple store.

Linked Data Query processing refers to complementary research about the specificities
of queries over Linked Data sources. We can distinguish the bottom-up approach where
data sources are defined by resolvable URIs in the given SPARQL query [HBF09] from
the top-down approach where index structures summarising the content of data sources
are available to the query system [HHK+10].

Our work is the first to evaluate drill-across over Statistical Linked Data. According to
Kimball [KR02] drill-across is the act of requesting data from two or more fact tables
sharing all their dimensions. Kimball recommends to use multipass SQL to query each
data cube separately and then to join the query results based on common dimension
attributes. We have adopted this definition, as have several authors [RA07b, SDN00,
KR02].

Other authors [ASS03, GGV12] allow drill-across over cubes whose dimensions may
not be fully shared but for instance have different granularity, e.g., monthly versus
yearly numbers, and for which one dimension can be defined as the association of sev-
eral ones for which a mapping is needed, e.g., latitude/longitude versus point geometry.
Riazati et al. [RTZ08] further relax restrictions on drill-across operations with a “loss
ratio” to quantify the dissimilarity between dimension attributes and to combine het-
erogeneous pivot tables. Different from these approaches, we keep a strict Drill-Across
definition but also cover the more general case in Statistical Linked Data where the
same measures are used by input cubes.

Compound measures such as the unemployment fear metric “Percentage of Nos” for the
UNEMPLOY query requires Drill-Across over measures of several data cubes. Com-
posite Subset Measures [CRB+06] are one way to model and evaluate such more com-
plex queries.

Although there may be more efficient querying approaches such as special indexing,
materialised views, and caching, to the best of our knowledge, this is the first work on
executing OLAP queries over data cubes represented as RDF using SPARQL.

6.5.2 More Expressive Queries over Enriched Data Cubes

Several related work consider enrichments of Data Cubes that could also be applied to
our approach to make use of additional information provided by RDF data sources.

Entity-centric object databases [PGSJ09] allow the enrichment of data cubes with exter-
nal data for extended OLAP queries, however, have so far not been applied to Linked
Data. The authors define an extended OLAP query language SumQL++ that allows
to query over object databases and multidimensional databases simultaneously. The

133

6 Executing OLAP Operations Using SPARQL

SumQL++ query is translated to several queries to the respective object databases and a
(MDX or SQL) query to the multidimensional database. The results are then integrated
and returned to the user. Different from their work, we directly execute multidimen-
sional queries using SPARQL over RDF.

The work [PGSJ09], also fits well with the idea of Linked Data extended OLAP query-
ing since it argues for typed links between multidimensional databases and object-
oriented databases (including equivalence links).

Summarisability is ensured by requiring a complete hierarchy and by not allowing
grouping by data from external data sources.

The extension of members of the MDM with attributes from external data is made possi-
ble. For instance, the members of the dimension “hospital” are “enriched” – sometimes
called “decorated” – with the name of the city and the mayor.

Also Yin and Pedersen [YP04] motivate the problem of integrating data from the Web
in OLAP systems. The authors present a federated approach to enrich data cubes with
virtual dimensions built from external data, which means that XML data can also be
used in filter operations. To issue such queries, the authors define an XML-extended
Multidimensional SQL which supports referencing external XML data.

For instance, Members of a level ”Nation” in a Data Cube are linked to nations in an
XML document providing additional information such as the population which then
can be used to filter for certain nations. For that, a user needs to define links between
dimension values such as from the level nation to nodes in an XML document.

The authors [YP04] also describe the problem of query optimisation when having log-
ical operators for enrichment. Retrieving XML values will become the bottleneck for
processing, i.e., if external XML data is large, then, in comparison, the loading takes
much more time than other tasks. In those cases, it will be best to execute some of
the operators on the single datasets in order to do it in parallel and to avoid transmit-
ting large amounts of data between operators. Thus, the authors plan to push-down
operators to single datasets.

Different from our work, they store and query data cubes in the traditional way using
SQL but enrich dimensions with data retrieved in XML from the Web. Instead, we
represent and query both data cubes and metadata using RDF and SPARQL.

Diamantini and Potena [DP08] enrich an MDM with a domain ontology represented
using OWL as well as a mathematical ontology represented in an XML standards for
mathemtical descriptions (MathML). Their goal is to provide analysts with useful back-
ground information and to possibly allow novel types of analyses, e.g., drill-down into
single compound measures. A formal description of formulas of a measure also may
help to derive new formulas with the help of symbolic mathematical reasoners.

134

6.6 Conclusions

In other work, the authors [DP10, DP11] describe products and relationships among
products as well as explain the meaning of financial and economic concepts with a
domain ontology. The mathematical ontology describes formulas for indicators. The
work is about further grounding the semantics of multidimensional datasets and about
extending the logical representation of an MDM. The authors use Mondrian for deploy-
ing the extended MDM and for allowing users to issue analytical queries directly to an
OLAP engine.

Mazón et al. [MTSP07] also motivate the use of external data to enhance Data Cubes;
they propose the use of semantic relations such as hypernymy (”is-a-kind-of”, general-
ization, e.g., cake is kind of baked goods) and meronymy (”is-a-part-of”, aggregation,
e.g., wheel is a part of car) between concepts provided by WordNet to enrich Dimension
Hierarchies.

If the multidimensional data is represented and directly queried in RDF using SPARQL,
linking of provenance information can be done easily since the W3C-recommended
PROV Ontology18 can be reused. Similarly, data transformations executed over numeric
data can be represented in RDF, referred by multidimensional datasets, and visualised
in a browsable visualisation interface to foster trust in the data [FKaGO+12].

Not only the multidimensional data, but also analyses over data cubes can be repre-
sented in RDF and used for recommending promising steps in new analyses to business
users [FTC11].

Although we so far only translate the common analytical operations, our approach could
be extended with operations allowing filtering over enrichments (decorations) described
in RDF. Also, OLAP client interfaces can be extended to display additional information
related to analysed data cubes.

6.6 Conclusions

We presented an approach to map OLAP queries to SPARQL queries over lean QB
datasets. For that, more concretely, we defined projection, slice, dice, and roll-up op-
erations on single data cubes as well as drill-across over multiple data cubes in RDF
reusing QB, interpret OLAP queries as nested sets of OLAP operations, and evaluate
such operations using SPARQL. Both metadata and OLAP queries are directly evalu-
ated by a SPARQL engine; therefore, if the RDF is modified or updated, changes are
propagated directly to OLAP clients.

We evaluated the OLAP-to-SPARQL algorithm. First, we implemented a simplified
version for a small experiment over one cube with single-level dimension hierarchies.

18http://www.w3.org/TR/prov-o/, last accessed 2015-01-30.

135

http://www.w3.org/TR/prov-o/

6 Executing OLAP Operations Using SPARQL

Second, we repeated the experiments from the OLAP engines chapter with an im-
plementation of the complete OLAP-to-SPARQL algorithm extended with the Drill-
Across operation for multi-cube queries.

Experiments indicate that we can interpret any analytical (MDX) query as a nested set
of OLAP operations; that the set can be transformed to a subcube query which in turn
can be transformed to one single SPARQL query.

Our approach to evaluate OLAP queries using SPARQL engines allows OLAP clients
1) to display background information about multidimensional elements, e.g., formulas
of compound measures [DP08] and 2) to issue more expressive queries over data cubes
enriched with background information, e.g., to filter for hospitals of cities with a certain
mayor [PGSJ09].

Flexibility is increased, since links between implicitly shared dimensions and members
can be added based on logics and any background information can be attached using
the flexible RDF data model.

Although we so far only translate the common analytical operations, our approach
could be extended with operations allowing filtering over enrichments described in
RDF. Also, OLAP client interfaces can be extended to display additional information
related to analysed data cubes.

Our OLAP-to-SPARQL mapping may not result in the most efficient SPARQL query
and requires additional efforts in populating requested pivot tables but correctly calcu-
lates required tuples from data cubes without inefficient full materialisation and with-
out the need for explicitly introducing the non-relational ALL member and using sub-
queries.

Current datasets available in Statistical Linked Data do not exhibit multi-level hierar-
chies. Also, the size of existing datasets is limited. In the next chapter, we investigate
the benefit of materialisation for query optimisation over a SPARQL engine and use a
benchmark with a realistic dataset of arbitrary size and multi-level hierarchies.

In future work, it would be interesting to automatically find and to allow queries over
non-strict and non-symmetric hierarchies in Statistical Linked Data19. Also, an opera-
tion for adding compound measures to a cube would be a useful extension.

Instead of loading all relevant data into a SPARQL engine (in a data warehousing fash-
ion), one could investigate at least two other options: The first option is to only load the
data structure definitions, and then to load the actual numeric facts only if requested by
a query; however, currently most observations are directly provided with the URI of the
respective dataset so that a costly filter would need to be executed over the triples.

19For examples, see Master thesis by Siegele [Sie12], co-supervised by the author, available at
http://www.aifb.kit.edu/images/4/4b/Masterarbeit Dominik Siegele.pdf, last accessed 2014-12-17.

136

http://www.aifb.kit.edu/images/4/4b/Masterarbeit_Dominik_Siegele.pdf

6.6 Conclusions

Other options are federated Linked Data query processing techniques [MVC+12] and
traversal-based Linked Data query processing [LT10]; SPARQL queries could still be
generated by the OLAP-to-SPARQL Algorithm but the query is directly executed over
the sources (a similar approach was followed by using qcrumb.com in the previous
chapter); such an approach may be more flexible in adding new data sources (e.g.,
SPARQL endpoints) and allows access to the most current data without permanently
storing possibly unnecessary data; however, a data warehousing approach is typically
more reliable and more efficient than a federated query processing approach. For in-
stance, in a data warehouse, we can optimise query processing with materialisation as
investigated in the next chapter.

137

7 Query Optimisation
using Materialised RDF
Aggregate Views

In this chapter, we investigate the following research question:
Research Question 3. How can we optimise analytical query processing over multidi-
mensional datasets from the Web using aggregate views?

Figure 7.1 illustrates the contribution given in this chapter. We extend the approach
presented in Chapter 6 on the OLAP-to-SPARQL Algorithm and pre-aggregate and
store certain values from a Data Cube as RDF Aggregate Views for more efficient query
processing in the SPARQL engine in comparison to the case where all aggregation are
computed on-demand.

Experts

Dataset 1

OLAP

Client

Integration and Analysis System Datasets

Dataset 2

Dataset 3

Metadata query

Analytical query
HTTP/GET

HTTP/GET
HTTP/GET

RDF/XML/CSV

...

RDF/QB
Part of

Global Cube
HTML+JavaScript

OLAP-to

SPARQL

SPARQL

query

RDF/QB

RDF

Aggregate

Views

RDF

3

SPARQL

Engine

Statistical

Linked Data

Figure 7.1: Illustration of RDF Aggregate Views; pre-aggregated values are stored in the
SPARQL engine; look-up of aggregated values is expected to be faster than on-
demand computation.

7.1 Introduction

We can automatically collect Statistical Linked Data reusing the RDF Data Cube Vo-
cabulary (QB) and use existing OLAP engines for efficient query processing. Instead
of storing the data in a relational database and using a ROLAP engine we can also use

7 Query Optimisation using Materialised RDF Aggregate Views

an RDF store and transform OLAP into SPARQL queries. This allows for more flexible
data integration.

Yet, there is little work on evaluating and optimising analytical queries on RDF data
[Erl10, Erl12]. We expect that, similar to general-purpose relational databases, a “one
size fits all” [SBC+07] SPARQL engine will not scale for analytical queries. In this
chapter, we investigate this hypothesis.

Similarly, Nebot et al. [NBP+09] argue for a system that only at query time extracts
data from the sources, executes validation and integrity constraint checks, and evaluates
the query. The advantage is that only the data that is relevant to the query are extracted,
transformed and validated. The authors expect that a triple store can be used for inter-
mediary storage and processing, but also that a dedicated query engine performs better
in this dynamic scenario.

In this chapter we give an empirical argument in favour of creating a specialised OLAP
engine for analytical queries over Statistical Linked Data. For that, we optimise query
processing using existing SPARQL engines with materialised aggregate views. More
specifically, contributions of this chapter are centred around four analytical query ap-
proaches listed in Table 7.1.

Table 7.1: Overview of analytical query approaches investigated to support an empirical argu-
ment in favour of a specialised OLAP engine over Statistical Linked Data.

No Materialisation Materialisation
Relational data / SQL RDBMS / ROLAP ROLAP-M
Graph data / SPARQL OLAP4LD-SSB/-QB

(Chapter 6)
OLAP4LD-QB-M

The four approaches are investigated as follows:

• We compare the performance of traditional relational approaches (RDBMS / RO-
LAP) and of using a SPARQL engine and an RDF representation closely re-
sembling the tabular structure (OLAP4LD-SSB). We compare those approaches
with our approach using the OLAP-to-SPARQL Algorithm described in the pre-
vious chapter (Chapter 6) reusing a standard vocabulary for describing statistics
(OLAP4LD-QB). We use a credible benchmark with multi-level dimension hier-
archies.

• We measure the performance gain of the common ROLAP query optimisation
approach to define aggregate views, i.e., certain parts of the data cube after ag-
gregation, and to materialise those views in tables since they do not fit in mem-
ory [MKIK07, GM95] (ROLAP-M). We apply precomputation to our approach,
represent materialised views in RDF (OLAP4LD-QB-M) and evaluate their per-
formance gain.

140

7.2 Approach: RDF Aggregate Views

In Section 7.2, we describe realistic data and queries of an OLAP benchmark and
present our optimisation approach of using RDF Aggregate Views. In Section 7.3,
we compare the approach with RDF Aggregate Views, the pure OLAP-to-SPARQL
Algorithm approach (Chapter 6), and a ROLAP system. In Section 7.4, we discuss
the results, after which we describe related work in Section 7.5 and conclude in Sec-
tion 7.6.

7.2 Approach: RDF Aggregate Views

Before applying materialised aggregate views to RDF, we introduce realistic data and
queries from the Star Schema Benchmark (SSB) [OOC09]. In Section 7.3, we will use
the data and queries from the benchmark for a performance evaluation.

7.2.1 Star Schema Benchmark Data and Queries

SSB describes a data cube of lineorders. Any lineorder (fact) has a value (member)
for six dimensions: the time of ordering (dates), the served customer, the product part,
the supplier, the ordered quantity and granted discount. Depending on the member for
each dimension, a lineorder exhibits a value for several measures. Every measure has a
calculation expression over facts, composed of an aggregation function with which to
aggregate a measure over several facts and possibly an algebraic function with which
to compute the measure from other measures (compound measure).

For instance, sum profit is computed with aggregation function SUM and algebraic
function lo revenue minus lo supplycost over aggregated facts; sum revenue is com-
puted with SUM and lo extendedprice multiplied by lo discount.

Dimensions exhibit hierarchies of levels that group members and relate them to higher-
level members, e.g., dates can be grouped starting from the lowest dateLevel over year-
monthLevel to yearLevel. Since a week can be spread over two months or years, there
is a separate hierarchy where dates can be grouped by weeknuminyear, e.g., “199322”.
Customers and suppliers can be grouped into cities, nations, and regions and parts into
brands, categories and manufacturers. Any hierarchy implicitly has a special-type ALL
member, which groups all members into one special-type ALL level.

In the following bullet point list, we describe the SSB data cube on Scale 1 (with
6,000,000 lineorders) as Statistical Linked Data and how the RDF data can be mapped
to our MDM using the MDM-QB Mapping (Chapter 5).

Member All 3,094 dates, 30,280 customer, 201,030 part and 2,280 supplier members
from each level are represented as URIs. Any member, e.g., rdfh:category-
MFGR-35, links to members on the next lower level via skos:narrower,

141

7 Query Optimisation using Materialised RDF Aggregate Views

Table 7.2: Example pivot table showing the revenue (in USD) for product brands from product
category MFGR#12 and of suppliers from AMERICA.

Year\Brand MFGR#121 MFGR#1210 . . . MFGR#129
1992 667,692,830 568,030,008 . . . 614,832,897
.
1998 381,464,693 335,711,347 . . . 319,373,807

Filter: partCategory = “categoryMFGR#12”
AND supplierRegion = “AMERICA”

Level Every level is represented as a URI, e.g., rdfh:lo orderdateDateLevel,
has a xkos:depth within its hierarchy and links to a set of members via
skos:member.

Hierarchy Each dimension has one (or two for dates) hierarchies. Every hierarchy is
represented as a URI, e.g., rdfh:lo orderdateCodeList. Levels with a
depth link to the hierarchy via skos:inScheme.

Dimension Every dimension such as dates is represented as an object property, e.g.,
rdfh:lo orderdate and defines its hierarchy via qb:codeList. The sim-
ple dimensions rdfh:lo quantity, rdfh:lo discount are represented
as datatype properties.

Measures Every measure such as the sum of revenues is represented as a datatype
property, e.g., rdfh:lo revenue. The component specification of a measure
defines the calculation expression, e.g.,"sum(rdfh:lo revenue - rdfh:-
lo supplycost)", via qb4o:hasAggregateFunction, as proposed by
Etcheverry and Vaismann [EV12b]. Since there is no recommended way to repre-
sent more complex functions, for formulas, we use String Literals using measure
URIs as variables.

DataCubeSchema The data cube schema of the SSB data cube is represented as an
instance rdfh-inst:dsd of qb:DataStructureDefinition and de-
fines the dimensions and measures of the data cube.

Fact Every possible lineorder can be represented as a qb:Observation. Any ob-
servation links for each dimension property to the URI of a member or a Lit-

142

e.g., rdfh:brand1MFGR-3527. 51 quantity and 11 discount members we en-
code as RDF Literal values. Also, we define URIs representing the special-type
ALL member for each dimension, e.g., customer rdfh:lo custkeyAllAll.
Those ALL members are needed later for representing materialised aggregate
views.

7.2 Approach: RDF Aggregate Views

eral value (quantity, discount), and for each measure property to a Literal value.
Whereas base facts with each dimension on the lowest level are given by the SSB
dataset, aggregated facts on higher levels of dimensions of the cube need to be
computed.

DataCube The SSB data cube is identified by the dataset rdfh-inst:ds. The data-
set defines the schema rdfh-inst:dsd and has attached via qb:dataSet all
base facts.

In the following, we explain how our OLAP-to-SPARQL Algorithm (Chapter 6) can be
applied to SSB.

SSB provides a workload of 13 queries on the data cube. Each query is originally
provided in SQL. For instance, Q2.1 computes per year the revenues (in USD) for
product brands from product category MFGR#12 and of suppliers from AMERICA.
Results from this query usually are shown in pivot tables such as in Table 7.2.

All queries of SSB can be formalised as subcube queries over single data cubes with
multi-level hierarchies as per Definition 11, e.g., Q2.1 as follows with abbreviated
names: (rdfh-inst:ds, {yearLevel, ALL, brand1Level, ALL, ALL, ALL}, {category-
Level = categoryMFGR-12, s regionLevel = s regionAMERICA}, {lo revenue}). Q2.1
slices dimensions customer, supplier, discount, quantity, rolls up dates to years and part
to product brands, dices for a specific product part category and supplier region and
projects the revenues.

Listing 16 shows the relevant parts of the SPARQL query for Q2.1 created by our
OLAP-to-SPARQL Algorithm (Chapter 6).

Listing 16: SPARQL query for Q2.1 in SSB benchmark.

1 SELECT ?rdfh_lo_orderdate ?rdfh_lo_partkey1 sum(?rdfh_lo_revenue)
as ?lo_revenue

2 WHERE {
3 ?obs qb:dataSet rdfh-inst:ds; rdfh:lo_orderdate ?rdfh_lo_orderdate0.
4 ?rdfh_lo_orderdate1 skos:narrower ?rdfh_lo_orderdate0.
5 ?rdfh_lo_orderdate2 skos:narrower ?rdfh_lo_orderdate1.
6 ?rdfh_lo_orderdate skos:narrower ?rdfh_lo_orderdate2.
7 rdfh:lo_orderdateYearLevel skos:member ?rdfh_lo_orderdate.
8 ?obs rdfh:lo_partkey ?rdfh_lo_partkey0.
9 ?rdfh_lo_partkey1 skos:narrower ?rdfh_lo_partkey0.

10 ?rdfh_lo_partkey skos:narrower ?rdfh_lo_partkey1.
11 rdfh:lo_partkeyCategoryLevel skos:member ?rdfh_lo_partkey.
12 ?obs rdfh:lo_suppkey ?rdfh_lo_suppkey0.
13 ?rdfh_lo_suppkey1 skos:narrower ?rdfh_lo_suppkey0.
14 ?rdfh_lo_suppkey2 skos:narrower ?rdfh_lo_suppkey1.
15 ?rdfh_lo_suppkey skos:narrower ?rdfh_lo_suppkey2.
16 rdfh:lo_suppkeyRegionLevel skos:member ?rdfh_lo_suppkey.
17 ?obs rdfh:lo_revenue ?rdfh_lo_revenue.
18 FILTER(?rdfh_lo_partkey = rdfh:lo_partkeyCategoryMFGR-12 AND

?rdfh_lo_suppkey = rdfh:lo_suppkeyRegionAMERICA).

143

7 Query Optimisation using Materialised RDF Aggregate Views

19 } GROUP BY ?rdfh_lo_orderdate ?rdfh_lo_partkey1 ORDER BY
?rdfh_lo_orderdate ?rdfh_lo_partkey1

Here, Dices, {categoryLevel = categoryMFGR-12, s regionLevel = s regionAMERI-
CA}, is translated into one position with one member for part category level and one
member for supplier region level. The SPARQL query queries for all facts within
the data cube (line 3), adds skos:narrower paths up to yearLevel, categoryLevel and
s regionLevel (3 to 16), selects lo revenue as measure (17), filters for members of part
category and of supplier region (18) and groups by yearLevel and brand1Level (19).
We assume all RDF data stored in a default graph.

More information about the benchmark we provide on a benchmark website [KH12].

In the next section, we apply materialisation to optimise query processing.

7.2.2 RDF Aggregate Views

We apply a common optimisation technique to the OLAP engine implementing our
OLAP-to-SPARQL Algorithm (Chapter 6): data cube materialisation, i.e., pre-aggrega-
ting of certain facts from the entire data cube and storing them for reuse [ABD+99].

For that, we define aggregate views over our MDM (in Definition 13) and select, com-
pute and represent views using RDF and SPARQL.

Just as Harinarayan et al. [HRU96], we assume that the cost of answering an OLAP
query is proportional to the number of facts that need to be scanned, e.g., for validating
a filter or calculating an aggregation. So far, any OLAP query to the SSB data cube
needs to scan the 6,000,000 base facts.

Intuitively, we 1) specify views as certain kinds of queries (slice queries) over a data
cube; 2) we pre-compute the facts from these slices and store them as RDF; and 3) we
use views not by query rewriting [Gen10, see Query Folding Chapter] but by running a
query over the pre-computed facts in RDF. The expectation is that the number of facts in
those slices are smaller than in the full data cube and that fewer expensive aggregations
need to be computed to answer a query.
Definition 13 (Aggregate View). We define an aggregate view in a data cube c as a
specific subcube query Q = (c, SlicesRollups, Dices, Projections)
with SlicesRollups ⊆L1×L2× . . .×Ld, Dices the empty set, and Project-
ions a set of measures.

Thus, any fact within an aggregate view gives a value for each of its measures for a
certain combination of level members. A view may be sparse and not contain facts
for each possible combination of members. The maximum number of facts within a
view is given by ∏memberno(li), li ∈ Li, with memberno() the number of members
in a level. The number of views in the data cube is given by ∏|Li|. The facts from

144

7.2 Approach: RDF Aggregate Views

an aggregate view can be generated by executing the OLAP query using an OLAP
engine.

The SSB data cube contains 6 ∗ 5 ∗ 5 ∗ 5 ∗ 2 ∗ 2 = 3,000 views with dates having six
levels since the two hierarchies of dates contain the same lowest and ALL level. The
advantage of aggregate views as per Definition 13 is that the entire set of views of a data
cube with multi-level hierarchies can be represented as a data cube lattice [HRU96];
Figure 7.2 shows an illustration of the lattice of the SSB cube. Any view is represented
by the level of each dimension, omitting any ALL levels. The single view on the lowest
level corresponds to the OLAP query that contains all base facts, i.e., the view returns
all non-aggregated facts from the SSB dataset. The view contains maximum 2,555 ∗
30,000 ∗ 200,000 ∗ 2,000 ∗ 51 ∗ 11 ≥ 1.7 ∗ 1019 facts, however, SSB provides a sparse
data cube with 6,000,000 facts. From this lowest view one can reach higher views via
roll-up operations on dimensions, e.g., the next higher view on the right side rolls up to
the ALL level of quantity. The single view on the highest level in Figure 7.2 corresponds
to the OLAP query that returns one single fact grouping by the special-type level ALL
with the single member ALL for each dimension.

Figure 7.2: Illustration of data cube lattice of SSB data cube.

The higher the view on a path in the lattice, the fewer facts it contains, since higher
levels group lower-level members into groups of fewer members.

The type of aggregation function determines whether facts can be further aggregated
from pre-aggregated facts [GCB+97]. For distributive aggregation functions such as

145

7 Query Optimisation using Materialised RDF Aggregate Views

COUNT and SUM as well as algebraic aggregation functions such as AVG this is the
case, whereas for holistic aggregation functions such as MEDIAN, aggregation always
has to be done starting from the most granular level of detail.

Since SSB only uses distributive aggregation functions such as SUM and algebraic for-
mulas over measures1, e.g., SUM(sum profit) and sum profit = rdfh:lo -
revenue - rdfh:lo supplycost, we do not run into summarisability prob-
lems [GCB+97] and a view or query can be computed from any view on a lower level
that can be reached via a roll-up path; for instance, the view grouping by quantity on
the right upper corner of Figure 7.2 can be computed from the view grouping discount
and quantity, s region and quantity, their collective child view grouping by s region,
discount, and quantity, the lowest level view with all the base facts, as well as from any
other reachable lower level view not displayed.

Summing up for each dimension the number of members on the lowest level, the num-
bers of members on each level per hierarchy, and the special-type member ALL, we
can calculate the maximum number of facts in the entire data cube: 3,095 ∗ 30,281 ∗
201,031∗2,281∗52∗12> 2.6∗1019. Since computing all views materialises the entire
data cube and thus 1) takes too much time and 2) requires too much hard disk space,
we are concerned with deciding which views to materialise.

We now describe how we select and compute views as well as how we use views in
query processing. Intuitively, for each query in our workload, we 1) select the closest
view, i.e., the smallest view from which to compute the results; 2) we compute the view
using SPARQL CONSTRUCT queries and store the results in RDF as a slice of the
original SSB lineorder cube; and 3) in query processing, we automatically select the
right slice to answer a query using the metadata of the slice. In most scenarios, we
would not know the workload to optimise beforehand; since our goal is to evaluate the
ideal performance gain of materialised aggregate views, we assume the exact workload
to be known.

We define for a given OLAP query Q = (c, SlicesRollups, Dices, Pro-
jections) as per Definition 11 a single closest view in the lattice from which we
can create the results by only scanning the facts in the view [HRU96]: We create a
view (c, SlicesRollups’, Dices’, Projections’) on the same cube
that contains in SlicesRollups’ for each dimension the lowest level mentioned
in SlicesRollups and Dices, contains an empty set for Dices’ and M’ = M.
The following term describes the closest view for Q2.1, the other views are trans-
lated, accordingly: ({yearLevel, ALL, brand1Level, s regionLevel,
ALL, ALL}, /0,{lo revenue}). The view contains maximum 35,000 facts and as
such is considerably smaller than the SSB dataset with 6,000,000 facts. Q2.2 and Q2.3
can use the same view as Q2.1 and Q3.3 can use the same view as Q3.2, resulting in less

1Without changing the results, the function SUM(rdfh:lo extendedprice *
rdfh:lo discount) is not a holistic function as we erroneously stated in previous work [KH13].

146

7.2 Approach: RDF Aggregate Views

time and less space for creating the views. Though some views can contain as many
facts as there are base facts in the data cube, they often do not due to sparsity, e.g., Q4.3
contains 4,178,699 actual from 8,750,000 possible facts. For views may still be large,
in ROLAP, views typically are stored in aggregate tables.

Similarly, we represent views as RDF Aggregate Views reusing QB and store the triples
together with the other data in the same triple store. See Figure 7.3 for an illustration
of this approach for Q2.1 which we explain in the following:

Figure 7.3: RDF graph illustrating RDF Aggregate View rolling up to year level with observation
instance.

In ROLAP, additional metadata describe the table used for storing each aggregate view.
With RDF Aggregate Views, we assume all metadata about aggregate views to be rep-
resented as RDF. Therefore, we have the problem of linking the original dataset to its
materialised aggregate views. For dimensions on the ALL level, aggregate views only
contain facts that fix those dimensions to the ALL member, e.g., Q2.1 fixes customer.
Therefore, we can represent RDF aggregate views as instances of qb:Slice.

See rdfh-inst:query4-aggview as an example RDF aggregate view in Fig-
ure 7.3. A qb:SliceKey describes the structure of a slice, i.e., the sliced dimensions
(sliced dimensions in slice key not illustrated in Figure 7.3). A slice explicitly states
to what member a sliced dimension is fixed, e.g., rdfh:lo custkey to ALL. In
addition to base facts, e.g., fact1 with member date19921231 in the date level, facts
are created that aggregate on the specific levels of the view. For instance, the view of
Q2.1 contains via qb:observation a fact2 that rolls-up to the higher-level-member
year1992 in the year level of the dates hierarchy. The higher-level-member is connected
to the lower-level-member in a skos:narrower path. Also, fact2 rolls-up to the
special-type ALL member of customer (rdfh:lo custkeyAllAll). The datatype
property xkos:depth states for each level the depth of a level starting with 0 from
the (implicit) ALL level.

147

7 Query Optimisation using Materialised RDF Aggregate Views

After materialisation of RDF Aggregate Views, a dataset is not a lean dataset anymore
since the dataset explicitly contains facts on different levels of granularity. Therefore,
when issuing queries over the entire data cube, one needs to consider summarisability
and to avoid aggregating over facts several times.

Different from our assumption in the relational representation (star schema) to have for
each view a new aggregate table, QB does not consider different graphs. Therefore,
resulting triples are stored in the default graph.

Listing 17 shows the relevant parts of a SPARQL INSERT query on the SSB data that
populates the RDF Aggregate View for Q2.1.

Listing 17: SPARQL INSERT query to generate RDF Aggregate View for Q2.1 in SSB bench-
mark.

1 INSERT {
2 rdfh-inst:query4-aggview qb:observation _:obs.
3 _:obs rdfh:lo_orderdate ?d_year; rdfh:lo_custkey

rdfh:lo_custkeyAllAll; rdfh:lo_partkey ?p_brand1;
rdfh:lo_suppkey ?s_region; rdfh:lo_quantity
rdfh:lo_quantityAllAll; rdfh:lo_discount
rdfh:lo_discountAllAll; rdfh:lo_revenue ?lo_revenue.}

4 WHERE {{
5 SELECT ?d_year ?p_brand1 ?s_region sum(?rdfh_lo_revenue) as

?lo_revenue WHERE {
6 ?obs qb:dataSet rdfh-inst:ds.
7 ?obs rdfh:lo_orderdate ?d_date.
8 ?d_yearmonthnum skos:narrower ?d_date.
9 ?d_yearmonth skos:narrower ?d_yearmonthnum.

10 ?d_year skos:narrower ?d_yearmonth.
11 rdfh:lo_orderdateYearLevel skos:member ?d_year.
12 ?obs rdfh:lo_partkey ?p_part.
13 ?p_brand1 skos:narrower ?p_part.
14 rdfh:lo_partkeyBrand1Level skos:member ?p_brand1.
15 ?obs rdfh:lo_suppkey ?s_supplier.
16 ?s_city skos:narrower ?s_supplier.
17 ?s_nation skos:narrower ?s_city.
18 ?s_region skos:narrower ?s_nation.
19 rdfh:lo_suppkeyRegionLevel skos:member ?s_region.
20 ?obs rdfh:lo_revenue ?rdfh_lo_revenue.
21 } GROUP BY ?d_year ?p_brand1 ?s_region
22 }}

Here, we first create a SELECT query using our OLAP-to-SPARQL algorithm on the
OLAP query (line 5), then this SELECT query is made a subquery of an INSERT
query. Observations roll-up to members of specific levels and fix sliced dimensions (3).
Resulting triples are stored in the default graph. We can adapt our OLAP-to-SPARQL
Algorithm to consider RDF Aggregate Views and not only the base facts from the SSB
dataset to execute an OLAP query. Listing 18 shows the SPARQL query for Q2.1.

148

7.3 Evaluation

Listing 18: SPARQL SELECT query for Q2.1 in SSB benchmark, considering the RDF Aggre-
gate View.

1 SELECT ?d_year ?p_brand1 sum(?rdfh_lo_revenue) as ?lo_revenue
2 WHERE {
3 rdfh-inst:ds qb:slice ?slice.
4 ?slice qb:observation ?obs;
5 rdfh:lo_custkey rdfh:lo_custkeyAllAll;
6 rdfh:lo_quantity rdfh:lo_quantityAllAll;
7 rdfh:lo_discount rdfh:lo_discountAllAll.
8 ?obs rdfh:lo_orderdate ?d_year.
9 rdfh:lo_orderdateYearLevel skos:member ?d_year.

10 ?obs rdfh:lo_partkey ?p_brand1.
11 ?p_category skos:narrower ?p_brand1.
12 rdfh:lo_partkeyCategoryLevel skos:member ?p_category.
13 ?obs rdfh:lo_suppkey ?s_region.
14 rdfh:lo_suppkeyRegionLevel skos:member ?s_region.
15 ?obs rdfh:lo_revenue ?rdfh_lo_revenue.
16 FILTER(?p_category = rdfh:lo_partkeyCategoryMFGR-12 AND ?s_region =

rdfh:lo_suppkeyRegionAMERICA).
17 } GROUP BY ?d_year ?p_brand1 ORDER BY ?d_year ?p_brand1

Here, we query for observations from slices of rdfh-inst:ds that fix customer, quantity
and discount to the ALL member, as indicated in SlicesRollups of Q2.1 (lines 3 to
7). In comparison to the OLAP SPARQL query of Q2.1 without views (Listing 16), we
have a reduced set of graph patterns for rolled-up dimensions (skos:narrower paths) (8
to 14).

With aggregate facts together with base facts stored in the data cube, the dataset is not
lean and we have to distinguish between facts from views slicing the same dimensions
but rolling-up to different levels. Therefore, we require for each dimension and member
the correct level (9, 12, 14). Finally, we add filters on diced dimensions (16).

Different from aggregate tables in ROLAP where the respective aggregate table has to
be known, in QB slices are stored in the same graph, aggregate facts are stored in the
same dataset, and the query first needs to select the right slice.

7.3 Evaluation

We give an overview of tested approaches and the reasons for their selection, then
explain the design of the tests. More information about the benchmark and experiments,
including required and generated data, we provide on a benchmark website [KH12].

149

7 Query Optimisation using Materialised RDF Aggregate Views

7.3.1 Design of Experiments

Table 7.3 shows an overview of tested approaches, including their main characteristics
such as the data format, metadata, query language, backend, time for pre-processing,
and size in terms of rows or triples.

Table 7.3: Overview of approaches tested with Star Schema Benchmark (SSB), including their
main characteristics.

Name Data Format Metadata Q. Lang. Engine/Database Pre-proc. (s) Rows / Triples
RDBMS Relational - SQL MySQL 22 6,234,555
ROLAP-M Relational XML SQL MySQL, Mondrian 4,507 14,975,472
OLAP4LD-SSB Graph-based - SPARQL Open Virtuoso 5,352 108,021,078
OLAP4LD-QB Graph-based RDF/QB SPARQL Open Virtuoso 5,744 116,832,479
OLAP4LD-QB-M Graph-based RDF/QB SPARQL Open Virtuoso 26,032 190,060,632

RDBMS and ROLAP-M represent the traditional approaches with a widely-used Open-
Source relational database (MySQL 5.1 v5.1.63) and SQL. ROLAP-M uses aggregate
tables for optimising queries. The other tests represent graph-based approaches with a
widely-used Open-Source triple store (Open Virtuoso v06.01.3127) and SPARQL 1.1
for aggregate and sub-queries. Whereas OLAP4LD-SSB represents SSB data without
using a standard vocabulary, OLAP4LD-QB uses QB which allows us to materialise
parts of the data cube as RDF Aggregate Views in OLAP4LD-QB-M.

We use the Star Schema Benchmark [OOC09], since SSB 1) refines the decision support
benchmark TPC-H by deriving a pure star schema from the schema layout to evaluate
analytical query engines [BPZ11], and 2) can be regarded as a realistic data source since
statistics published as Linked Data are typically highly structured [Erl10, DKSU11].
We run each approach on a Debian Linux 6.0.6, 2x Intel(R) Xeon(R) CPU E5-2670 @
2.60GHz with 16 cores, 128GB RAM and 900GB RAID10 on 15k SAS disks for local
data storage. We assume unlimited amount of space but configure the databases to only
use an amount of memory clearly below 100% of the space the data files surmount to
(400MB for relational approaches, < 650MB for graph-based approaches), since stor-
ing all multidimensional data in main memory is often too costly. For each approach we
1) translate the SSB data cube at Scale 1 with 6,000,000 lineorders into the respective
data format for storage in the database, 2) simulate an OLAP engine translating the SSB
OLAP queries into the respective query language of the database 3) before each test,
shut-down all other applications not needed and run the test once to populate the disk
cache (warm-up), and 4) document the elapsed query time of each query in turn. We
do not consider data refreshes. For running the SSB benchmark and collecting the data
about elapsed query times, we used the Business Intelligence Benchmark (BIBM)2.
BIBM also ensured identical results for the approaches through qualification files. We
now describe for each approach how we stored SSB data in the database and translated
SSB OLAP queries to the database query language.
2http://sourceforge.net/projects/bibm/, last accessed 2014-09-27.

150

http://sourceforge.net/projects/bibm/

7.3 Evaluation

7.3.2 Description of Tested Approaches

RDBMS. We created a schema file for dimension and fact tables and populated the
database with an SSB data generator. We set up column data types as recommended by
SSB and primary keys for dimension tables in a standard star schema fashion3.

Loading of 6,234,555 rows of data took 22s. The SQL queries of SSB could be reused
with minor MySQL-syntax-specific modifications. We switched off query cache so that
MySQL after a warm-up would not read all queries from cache. Note, we have com-
pared those SQL queries with SQL queries created by the widely-used Open-Source
ROLAP engine Mondrian (v3.4.1). Mondrian stores data cube metadata in XML and
would for example deliberately query for more data than requested by the query to
cache the results for later use; however, SSB minimises overlap between queries, e.g.,
Q1.1 uses discounts between 1 and 3, Q2.1 between 4 and 6. Since the performance
gain of using Mondrian-created SQL queries instead of the original SSB SQL queries
showed small, we only include a Mondrian test in the benchmark website (ROLAP).

ROLAP-M. We created aggregate tables without indices and without keys for (shrunken)
dimension tables for the closest view to each query using SQL INSERT queries on the
original tables from RDBMS. We did not use shrunken dimension tables, since no higher
levels of aggregated tables were required. Also, we did not store aggregate facts in ex-
isting fact tables of data cubes but used new tables. Both decisions ensure most efficient
queries.

Pre-processing time included 22s for preparing approach RDBMS with 6,234,555 rows
and 4,485s for creating the aggregate tables with in total 8,740,917 additional rows. For
each OLAP query we created an SQL query using the closest aggregate table. Similarly,
Mondrian would choose the aggregate table with the smallest number of rows and create
an SQL query with comparable performance.

OLAP4LD-SSB. With BIBM we translated the SSB tabular data into RDF/TTL files
using a vocabulary that strongly resembles the SSB tabular structure: A lineorder row
is represented as a URI which links for each dimension via an object property, e.g.,
rdfh:lo orderdate, to a URI representing a row from the respective dimension
table, e.g., rdfh:lo orderdate19931201. From this URI, datatype properties
link to Literal values for members, e.g., month “199312”. Quantity and discount are
directly given using datatype properties from a lineorder. Each measure is attached to
the lineorder URI using a datatype property. Translation took 48sec, bulk loading of
108,021,078 triples 5,304sec. For each SSB OLAP query, we tried to build the most
efficient SPARQL-pendant to the original SSB SQL queries, e.g., reducing the number
of joins.

3Different from as stated in the paper, we have not used indices for each foreign key in the fact table.
Therefore, without affecting the overall results, query performance may have even be better without
switching to a more scalable RDBMS.

151

7 Query Optimisation using Materialised RDF Aggregate Views

Table 7.4: Overview of SSB queries and their performance-relevant features.

Feature Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3
Filter factor .019 .00065 .000075 .008 .0016 .0002 .034 .0014 .000055 .00000076 .016 .0046 .000091
View factor .00064 .0073 .0032 .0058 .0058 .0058 .0007 .0728 .0728 .5522 .0007 .0036 .6964
RDBMS joins 1 1 1 3 3 3 3 3 3 3 4 4 4
SSB joins 5 5 6 8 7 7 9 9 7 8 10 12 12
QB joins 8 6 6 15 13 14 16 16 16 12 22 22 22
QB-M joins 9 9 9 12 11 11 13 13 11 12 13 14 14

OLAP4LD-QB. We created RDF metadata for the SSB data cube as a basis for our
OLAP-to-SPARQL Algorithm and via a small script over the RDF file storing the SSB
data cube for adding links from each lineorder of OLAP4LD-SSB to rdfh-inst:ds.
Using SPARQL INSERT queries for each dimension, we grouped dimension members
into levels of hierarchies, and added them to the triple store. Creating the OLAP4LD-
SSB data and adding links took 48sec and 38sec, the INSERT queries 14sec; compress-
ing and bulk loading of 116,832,479 triples took 60sec and 5,584sec. Simulating our
OLAP-to-SPARQL algorithm, we manually translated the SSB queries to SPARQL.

OLAP4LD-QB-M. For each SSB query, we created a closest RDF Aggregate View us-
ing a SPARQL INSERT query. Setting up OLAP4LD-QB took 5,744sec, the SPARQL
INSERT queries 20,288sec for another 73,228,153 triples. We created SPARQL queries
that use the closest views.

7.4 Discussions and Lessons Learned

In this section, we evaluate 1) the scalability of our OLAP-to-SPARQL Algorithm for
single-cube queries and 2) the performance gain of RDF Aggregate Views. Table 7.4
lists performance-relevant SSB query features.

Filter factor measures the ratio of fact instances that are filtered and aggregated. Filter
factors are computed by multiplying the filter factors of each dice, e.g., for Q2.1 the
filter factor is 1/25 for part times and 1/5 for supplier.

View factor measures the ratio of fact instances that are contained in a view in relation
to the 6M base facts. For example, from the filter factor and view factor, we see that
query flight 4 (Q4.1, Q4.2, Q4.3) iteratively drills-down to more granular levels (up to
4,178,699 facts) but filters for fewer and more specific lineorders.

With RDBMS joins we describe the number of joins between tables in the SQL repre-
sentation of a query. Note, ROLAP-M does not need joins. With SSB, QB and QB-M
joins we state the number of graph pattern joins, pairs of graph patterns mentioning the
same variable.

152

7.4 Discussions and Lessons Learned

Table 7.5: SSB evaluation results with single and total elapsed query time (s).

Approach Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3 Total
RDBMS 1.6 1.1 1.1 16.1 15.7 15.4 10.4 7.8 7.6 3.1 11.0 5.3 5.0 101
ROLAP-M 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.6 0.1 0.1 0.8 2
OLAP4LD-SSB 22.5 0.8 0.2 16.1 0.9 0.2 28.5 2.1 1.0 0.4 N/A 36.8 9.6 119
OLAP4LD-QB 46.1 1.3 0.2 55.0 49.4 31.1 145.7 12.5 1.8 87.2 175.3 544.5 24.9 1,175
OLAP4LD-QB-M 19.9 10.2 10.2 366.3 356.7 356.3 468.5 467.6 4.6 4.6 0.1 0.4 55.4 2,121

Table 7.5 lists the elapsed query times (s) which we now discuss. ROLAP-M overall is
50 times faster than RDBMS for not requiring any joins and a reduced number of facts to
scan for aggregation. Whereas RDBMS has to first scan 6M rows and then to aggregate,
ROLAP-M only has to scan the view and to aggregate from there. Affirmatively, the
views of Q3.4 and Q4.3 with very low selectivity show smaller benefits. However,
preparing ROLAP-M takes 200 times longer than RDBMS.

Comparing OLAP4LD-SSB and RDBMS, we see that the SPARQL engine is as fast as
the relational alternative for some of the queries (e.g., Q1.2, Q2.1), slower for other
queries (e.g., Q1.1, Q3.1, Q4.2), and even faster for others (Q2.2, Q3.3). Over all
queries, OLAP4LD-SSB is only slightly worse, however, Q4.1 for no known reason
does not successfully complete.

Differences can be explained by the number of joins; for instance, whereas RDBMS
requires for Q3.1 and Q4.2 three and four joins, OLAP4LD-SSB requires nine and
twelve joins, respectively.

If the number of joins is dless divergent, differences can be explained by the filter factor
and the fact that after filtering facts still need to be aggregated. In general, the smaller
the filter factor, the better the graph database seems in comparison to the relational
database, for instance Q2.2, Q2.3 and Q3.3. For low-selective queries, the SPARQL
engine performs worse, e.g., Q1.1, Q3.1, Q4.2. This aligns with our expectations that
a SPARQL engine is more optimised for high-selectivity metadata queries without ag-
gregations. OLAP4LD-SSB requires 243 times as much time for loading.

OLAP4LD-QB reusing QB requires up to twice as many joins than OLAP4LD-SSB
(Q2.3), since hierarchies are explicitly represented through skos:narrower paths from
higher-level to lower-level members, and consequently is 10 times slower. Both ap-
proaches require similar pre-processing time. Yet, only OLAP4LD-QB can represent
hierarchies and be optimised using RDF Aggregate Views.

Although OLAP4LD-QB-M overall leads to 1.8 times slower queries and performs con-
siderably worse for query flights 2 and 3 (Q2/3), it succeeds in optimising query flight
4 (Q4.1, Q4.2, Q4.3). Similar to ROLAP-M, the performance gain of RDF Aggregate
Views can be explained by a reduced number of joins such as for Q4.1 and Q4.2. How-
ever, for query flights 2 and 3 (Q2.1 to Q2.3, and Q3.1 to Q3.3), OLAP4LD-QB-M

153

7 Query Optimisation using Materialised RDF Aggregate Views

performs worse, since RDF aggregate views – different from ROLAP-M with sepa-
rately created aggregate tables – are stored in the same graph and do not reduce the
number of facts scanned for a query. Thus, whereas OLAP4LD-QB needs to scan for
6M facts, OLAP4LD-QB-M also needs to scan over facts from the aggregate views,
in total 14.98M facts. Also, we first need to select the right view before querying the
facts from the view. Queries need to compensate for the increased effort in first select-
ing the view, then scanning more facts by a reduced number of joins and aggregation
operations, in which Q2.1 to Q3.2 apparently do not succeed.

Therefore, to a much wider extend than for aggregate tables in the relational scenario,
the usefulness of RDF Aggregate Views depends on the dataset and the queries. In case
of regular queries that aggregate a dataset to a high level, pre-materialisation is worth
the additional time for the computation of views and the additional data in the store.
For instance, the RDF Aggregate View for Q4.1 aggregates all dimensions to a high
level, requires 901s for pre-computation, adds at maximum 4,375 observations to the
triple store, and reduces average elapsed query time from 175.3s to 0.1s for Q4.1.

7.5 Related Work

In this section, we describe related work on 1) evaluating and optimising analytical
query execution on RDF data, and 2) materialising aggregate views over RDF data.

7.5.1 Analytical Query Optimisation and Evaluation

In general, query processing over Data Cubes requires specific optimisations, e.g., Hari-
narayan et al. [HRU96] present the lattice framework to model dependencies among
Data Cube views and state that we can assume the cost of answering a query to be
proportional to the number of rows examined.

The computation and selection of views to materialise for more efficient query pro-
cessing is a common analytical query optimisation method [MKIK07]. The simplest
method is Algorithm 2D [GCB+97] that computes each group-by directly from the
original fact table and then takes the union of all partial results for the data cube. The
simplest selection methods is the Greedy Algorithm [HRU96] that given a limit k of the
number of views that can be stored next to the most detailed view (the original dataset)
and the storage cost (size) of each view, with a greedy heuristic in turn selects k views
to materialise. In each step the choice of a view u given the previous choices of other
views S depends on the benefit B(u,S) that quantifies the reduction in costs for comput-
ing u and every other view in the cube. The cost to compute a view u1 from u2 is given
by the storage cost (size) of u2.

154

7.5 Related Work

For data cube computation, other common optimisation methods include executing
OLAP queries using join indexes and index-only tables or to place tuples that aggre-
gate together (i.e., tuples with the same values in the grouping attributes) in adjacent
in-memory positions, so that all group-bys can be computed with as few full data scans
as possible. For data cube selection, other methods include data compression and ma-
terialised views that aim to balance the trade-off between the amount of resources con-
sumed by the data cube (such resources usually include storage space and time for
incremental maintenance) and query response time. The problem of selecting the op-
timum subset of a cube is NP-complete, hence, all methods search for near-optimum
solutions using appropriate heuristics [MKIK07, SBC+07].

In our approach using the OLAP-to-SPARQL Algorithm we have chosen QB datasets
as a logical representation, SPARQL as a query language for computation, and mate-
rialised closest views from the data cube lattice that promise the largest performance
gain. We compare analytical queries on RDF with common alternatives with realis-
tic data and queries, according to Erling [Erl10] a prerequisite for successful RDF use
cases and targeted optimisations [Erl12]. Most notably, the Berlin SPARQL Benchmark
BI Use Case allows quantifying analytical query capabilities of RDF stores, but, so far,
no work compares the RDF performance with the industry-standard of relational star
schemas.

Although it has been criticised that many benchmarks do not resemble RDF datasets
publishing metadata, e.g., DBpedia/Wikipedia [DKSU11], we argue that multidimen-
sional datasets published in RDF exhibit a high degree of structure and therefore bench-
marks such as the Star Schema Benchmark can be used to evaluate systems for analyt-
ical queries.

Whereas most convenient in terms of loading and querying of data, RDF stores and
SPARQL engines are not the fastest solution for analytical queries over Linked Data.

DipLODocus [WPWCM11] uses a hybrid storage model for RDF data where parts
of the data are stored in a highly structured form into compact lists of literal values.
However, the hybrid storage puts a higher overhead in loading of new datasets than
common SPARQL engines. Still, separating data (observations) and metadata (data
structure definition) seems a good idea; for example, one could store the observations
(with a fixed structure) in a relational database for efficient query processing and all
relevant metadata (including background information about entities mentioned in the
observations) in a triple store for flexible enrichments with additional information.

Also using the Star Schema Benchmark, Abadi et al. [AM08] have shown that column-
oriented databases are faster than row-stores since they only need to access attributes
from a cube that are needed in the query. Other possible optimisation methods are in-
memory execution such as in SAP HANA [VTBL13], MapReduce [KUBM12] as well
as parallel computing approaches [HS13].

155

7 Query Optimisation using Materialised RDF Aggregate Views

Also Hagedorn and Sattler [HS13] point out that MapReduce may help with efficiently
scanning large datasets but requires higher effort for programming of query processing
tasks such as joins. However, CameLOD, the system that Hagedorn and Sattler propose,
requires large memory and multi-core processors.

SQL and SPARQL engines equally benefit from such optimisation approaches of low-
level data-processing tasks. We focus on the inherent differences between the relational
and RDF representation of multidimensional datasets; therefore, we have concentrated
on the widely-used Data Warehouse optimisation method of data cube selection and
computation and compared the performance gain in a common SQL database versus in
a SPARQL engine.

7.5.2 Views over RDF Datasets

Recent work [KH11, EV12b, EV12a] discusses approaches to represent multidimen-
sional datasets in RDF, however, no approach deals with the computation and selection
of data cube slices and dices in RDF, in particular, considering the special-type ALL
members and levels for uniquely identifying all possible facts of a data cube.

Etcheverry and Vaisman [EV12c] give an overview of approaches to specify and use
views over RDF datasets, not only for query answering using views as in our case,
but also for data integration and to apply security policies. Mentioned approaches
SPARQL++, Networked Graphs and vSPARQL are using sub-queries or extensions
to the SPARQL query language to define views. Such work is broader and would not
provide a more efficient way to execute analytical queries; we define aggregate views
as specific parts of a data cube and materialise them as slices represented in RDF.

Several authors also discuss materialised views over RDF data. Castillo and Leser
[CL10] have presented work on automatically selecting and materialising views from
a workload of SPARQL queries. In the evaluation, they use a dataset with 10M triples
and disregard queries that exhibit a high selectivity. Also, Goasdoué et al. [GKLM11]
have discussed the creation and selection of RDF views. Their evaluation is done on
a 35M triple dataset. In contrast to these approaches, our approach considers more
complex views based on aggregation functions and hierarchies, materialises views as
RDF reusing QB in a triple store and evaluates the applicability for high- and low-
selectivity queries on a > 100M triple dataset.

Although we have evaluated RDF Aggregate Views only on a single cube, the RDF
representation is sufficiently generic to materialise parts of a multi-cube. The main
difference is that the view would not only pre-compute slices and roll-ups (aggrega-
tions), but also drill-across (joins between two datasets). Shukla et al. [SDN00] present
specific algorithms and cost models for the selection of materialised views for more
efficient query processing over multi-cubes.

156

7.6 Conclusions

7.6 Conclusions

The results in this chapter can clarify two hypotheses related to our research question
on how to optimise analytical query processing:

Hypothesis 1: SPARQL engines storing statistics as schema-flexible RDF data are
even less suited for analytical queries than relational databases and require opti-
misations such as materialisation.

A comparison of the relational and the RDF representation of multidimensional datasets
indicate that the number of joins needed in queries strongly affect the performance of
queries. Similarly, the differences between performance gain in the relational and RDF
representation can mostly be explained by the number of joins as well as the number of
items to be scanned; whereas in the relational representation we use separate aggregate
tables, we store materialised RDF Aggregate Views in the same graph as the original
dataset.

For both SPARQL engines and relational databases the query complexity – the filter fac-
tor and considered dimensions – make a difference; low-selectivity queries take longer
which can be explained by the higher effort for the aggregation function summarising
the results.

Although with MySQL and Open Virtuoso (v6) we have not used high-end SQL or
SPARQL engines, our experiments give useful insights about how two widely-used
Open Source databases from the relational and the RDF world compare.

First, analytical SPARQL query processing is not per se more difficult than analyti-
cal SQL query processing. Query performance strongly depends on how the data is
structured. If the structure is very similar to the relational representation (as in the
OLAP4LD-SSB case), the SPARQL engine is similarly fast.

However, to make the data self-descriptive the structure may be more complicated,
for instance, if dimension hierarchies are explicitly represented. As a result, mixed
star-shaped and path queries require more joins and query processing in the SPARQL
engine becomes much slower. Thus, there is an efficiency versus flexibility trade-off.

Our experiments were repeated at the database vendor OpenLink with the column-
oriented database MonetDB as well as newer commercial versions of the SQL and
SPARQL Virtuoso database4. The experiments confirm that whereas an efficient query
plan over relational data in a star schema is easy to find, it is difficult for the SPARQL
engine since the schema is much more flexible (also called schema-less) than in the
relational representation and since every join logically requires a self-join on a quads
table (including the graph). For instance, in a SPARQL query involving the nation of a

4http://www.openlinksw.com/dataspace/oerling/weblog/Orri%20Erling%27s%20Blog/1732, last accessed
on 2014-09-27

157

http://www.openlinksw.com/dataspace/oerling/weblog/Orri%20Erling%27s%20Blog/1732

7 Query Optimisation using Materialised RDF Aggregate Views

supplier, whereas in the relational representation, the supplier is represented by one row
with exactly one nation, in the RDF representation, it is unknown that suppliers never
have more than one nation. According to the experiments of OpenLink, switching from
a strict star schema on a relational database to a flexible schema on a SPARQL engine,
thus leads to an increase in query processing time by at least 2.75.

In summary, we state that a SPARQL engine is less suited for analytical scenarios where
more complex data such as hierarchies and semi-structured background information is
queried. Instead, an RDBMS more efficiently executes analytical queries, but requires
a pre-defined schema that is more difficult to extend with semi-structured background
information.

Hypothesis 2: By using materialisation, we can speed up performance of SPARQL
engines so that they compete with relational databases.

Per definition, datasets contain facts on a specific granularity. Any higher level of aggre-
gation first needs to be computed. By also storing pre-aggregated facts with the dataset,
no aggregation but only lookups of values need to be done, for which we expected the
SPARQL engine to do well.

However, experiments show that not only the performance gain is much less in compar-
ison to the one achieved by materialisation by aggregate tables. Also, the performance
gain in comparison to no-materialisation is limited.

The limited performance gain can be explained by two aspects: First, our aggregate
tables do not contain foreign keys to Shrunken Dimension Tables. This way, queries
on aggregate tables do not require joins and are very fast, but on the other hand can-
not be used for further aggregation. Second, different from the relational world where
data and metadata are strictly separated (e.g., the schema of a table or the table name),
RDF allows to represent and query data and metadata in the same way. In the rela-
tional database, aggregate tables are separated from the dataset table and their names
known. Instead, RDF Aggregate Views are stored in the same graph and provide self-
descriptive links to the original dataset. Consequently, the right view within the graph
is automatically selected in the SPARQL query which further complicates the execu-
tion.

Rewriting the SPARQL query may have been possible. For instance, we could have
split the query in two, one for selecting the view and another for querying the data
in the view. Or, we could have used SPARQL subqueries. However, written in the
declarative language SPARQL, we expected the query to be sufficiently optimised by
the SPARQL engine.

5http://www.openlinksw.com/dataspace/vdb/weblog/vdb%27s%20BLOG%20%5B136%5D/1735, last
accessed on 2014-09-27.

158

http://www.openlinksw.com/dataspace/vdb/weblog/vdb%27s%20BLOG%20%5B136%5D/1735

7.6 Conclusions

Thus, we cannot generally confirm our hypothesis; if views are stored in the same
graph and data is made self-descriptive, performance of queries is only optimised if the
number of joins is considerably reduced.

As a summary, we can give an empirical argument in favour of creating a specialised
OLAP engine for analytical queries on RDF. Although a triple store has shown almost
as fast as a relational database, OLAP scenarios such as motivated by the Star Schema
Benchmark used in our evaluation require results in seconds rather than minutes. Ma-
terialised views with aggregate tables overall reach 50 times faster queries. Queries by
our OLAP-to-SPARQL approach on data reusing the RDF Data Cube Vocabulary (QB)
overall are 10 times slower than queries on data without reusing QB, for a large num-
ber of joins are required for rolling-up on dimensions; yet, only QB metadata allows
to explicitly represent dimension hierarchies and to materialise parts of the data cube.
RDF Aggregate Views show the capability to optimise query execution, yet, overall
still take six times longer for preprocessing and not nearly reach the performance gain
of aggregate tables in ROLAP. The reason seems that the reduced number of joins for
queries on RDF Aggregate Views often cannot compensate for the increased number of
facts that are stored in the triple store and need to be scanned for query execution. We
conclude that the query optimisation problem intensifies in many OLAP scenarios on
Statistical Linked Data and that OLAP-to-SPARQL engines are promising that deploy
specific optimisation methods such as management of RDF Aggregate Views [MG14]
and cardinality estimations on star-shaped RDF data [NM11].

In future work, one could investigate the effect of schema-flexible background in-
formation to analytical queries. We expect that not only the size, but also the semi-
structuredness of background information has a negative impact on the performance.

In particular, strategies to manage views over Statistical Linked Data are interesting. In
Chapter 5 and Chapter 6, we used multi-cubes and the drill-across operation to query
over several datasets simultaneously. In the next chapter, we formalise a unified view
over multidimensional datasets available on the Web, the global cube. It would be
interesting to investigate the applicability of RDF Aggregate Views to optimise queries
over multi-cubes and the global cube.

Finally, a comparative analysis of materialisation and other optimisation strategies such
as column-oriented, in-memory, and parallelised storage is possible future work.

159

8 Building the Global Cube with
Complex Dataset Relationships

In this chapter, we investigate the following research question:
Research Question 4. How can we increase the number of answers from the global
cube in case of complex relationships between multidimensional datasets from the Web?

Figure 8.1 illustrates the contribution given in this chapter. We present complex rela-
tionships (correspondences) between statistical datasets as a way to more flexibly solve
semantic conflicts and to increase the number of answers in queries over the global
cube.

Experts

Dataset 1

OLAP

Client

Integration and Analysis System Datasets

Dataset 2

Dataset 3

Metadata query

Analytical query
HTTP/GET

HTTP/GET
HTTP/GET

RDF/XML/CSV

...

RDF/QB
Part of

Global Cube
HTML+JavaScript

OLAP-to

SPARQL

SPARQL

query

RDF/QB

Complex

Correspondences

RDF
4

SPARQL

Engine

Statistical

Linked Data

Figure 8.1: Illustration of contribution of Complex Correspondences between statistical datasets;
conversion and merging relationships between datasets are declaratively described
and increase the size of the global cube.

8.1 Introduction

Towards providing uniform access to governmental statistics, many datasets are also
made available – directly or by third-parties – as Statistical Linked Data. Also, analyt-
ical operations over QB datasets have been defined [EV12a] and indicators from two
datasets can be compared in visualisations [CAR13].

However, defining a unified schema over such datasets is still challenging since related
work has so far concentrated on relational settings [CDL+01] with few sources that

8 Building the Global Cube with Complex Dataset Relationships

are centrally integrated. Also, relationships between different datasets are often buried
in informal descriptions, and the routines to resolve semantic conflicts are provided in
code or external background information [SSR94].

Let us assume that all datasets described in our Open Government Data scenario are
available as Statistical Linked Data and that we can apply the MDM-QB Mapping
(Chapter 5) and query over them using the OLAP-to-SPARQL Algorithm (Chapter 6).

Table 8.1 gives an overview of such datasets. The table shows in the rows all datasets
and in the columns all their dimensions. The cells give example values for a dimension,
“-” if the dimension is not and “. . . ” if the dimension may be used.

Table 8.1: Overview of data cubes available as Statistical Linked Data in the OGD scenario (in
rows) with their dimensions (in columns) and dimension members (in cells).

Cube \Dimension estat-
wrap-
:geo

estat-
wrap-
:unit

dcterms:
date

gesis:
geo

gesis:
variable

estat-
wrap-
:indic na

estat-
wrap-
:sex

estat-
wrap-
:age

eurostat:id/
tec00115#ds
(GDP Growth)

:DE. . . :PCH PRE. . .2001. . . - - - - -

allbus:
ZA4570v590.rdf#ds
(Unemploy. Fear)

- - 2004. . . :00. . . :v590 1. . .- - -

eurostat:id/
tsdcc310#ds. . .
(EU 2020 Indicator)

:DE. 2001. . . - -

eurostat:id/
nama aux gph#ds
(GDP Per Capita)

:DE. . . :EUR HAB. . .2001. . . - - :NGDPH. . . - -

eurostat:id/
nama gdp c#ds
(GDP Components)

:DE. . . :MIO EUR. . .2001. . . - - :B1G,
:D21 M-
D31

- -

eurostat:id/
demo pjan#ds (Popu-
lation)

:DE. . . - 2001. . . - - - :F. . . :Y18. . .

We use URIs as unique identifiers for datasets, dimensions, and dimension values from
different data sources such as Eurostat (eurostat) and ALLBUS (allbus). For
readability reasons, we describe URIs with namespaces1, slightly abusing the W3C
CURIE syntax for expressing compact URIs. Relative URIs such as :DE and :00 are
defined by the data source in the respective context.

Since most publishers – also of the available data cubes in the OGD scenario – fol-
low the practice of using an unspecific measure sdmx-measure:obsValue and a
dimension indicating the measured variable, e.g., estatwrap:indic na and ge-
sis:variable, and since cubes with multiple measures can be transformed to this
form by introducing a new measure dimension, for the remainder of this paper we as-
sume data cubes to have only one general measure, sdmx-measure:obsValue.

1Use http://prefix.cc/ to look up prefix definition; last accessed 2014-11-18.

162

http://prefix.cc/

8.1 Introduction

Every multidimensional element is published by a data source identified by the names-
pace. The eurostat namespace2 makes available thousands of data cubes with in-
dicators about European countries from Eurostat. Data cubes include the GDP Growth
cube with the growth rate of the gross domestic product of all European countries per
year, with the unit “percentage change on previous period” (:PCH PRE) and for the
geo dimension denoting Germany as :DE. Also, Eurostat provides citizens with EU
2020 Indicators, e.g., the energy dependence, productivity, and intensity as well as the
greenhouse gas emission. Table 8.1 gives an example of one of those datasets; every
EU 2020 Indicator cube exhibits the geo and time dimension and can contain other di-
mensions from the same data source. The GDP Components cube provides granular
values from which other indicators can be computed. For instance, the Nominal GDP
data cube (GDP at market prices) can be computed from adding the “total gross value
added” (estatwrap:indic na of :B1G) and “taxes less subsidies on products”
(:D21 M D31); similarly, the Nominal GDP divided by the Population should result in
the GDP Per Capita.

The allbus namespace3 provides the Unemployment Fear data cube. The measure
describes the number of answers for a given question. The allbus:variable di-
mension denotes the type of answers given “no fear”, “yes, of becoming unemployed”,
“yes, of having to change employer”4. The gesis:geo dimension describes the par-
ticipants’ country, e.g., Germany is denoted via :00.

Given a unified view over available data cubes in Statistical Linked Data, citizens may
want to pose the following query:

GDP per Capita from Different Sources (GDP CAP): Citizens request the GDP per
Capita for all countries and years. To increase their trust in Open Government Data,
citizens would like to have confirmed those values by as many data sources as possible.
Data sources include cubes from different institutions but also cubes derived from other
cubes. A useful solution would allow efficient querying over a large – and flexibly to
extend – number of datasets that provide the GDP per Capita. For that, we present the
following contributions:

• Based on a formal definition of the global cube, we describe how to derive previ-
ously unknown values in the global cube using conversion [SSR94] and merging
correspondences [CDL+01] (Section 8.2).

• We investigate the applicability of our approach for integrating government statis-
tics (Section 8.3) and analyse the complexity of materialising the global cube
(Section 8.4).

We describe related work in Section 8.5, and conclude with Section 8.6.

2http://estatwrap.ontologycentral.com/, last accessed 2014-11-06.
3http://lod.gesis.org/lodpilot/ALLBUS/, last accessed 2014-11-06.
4allbus:variable.rdf#v590 1 to allbus:variable.rdf#v590 3

163

http://estatwrap.ontologycentral.com/
http://lod.gesis.org/lodpilot/ALLBUS/

8 Building the Global Cube with Complex Dataset Relationships

8.2 Approach: Global Cube and Conversion and
Merging Correspondences

In the previous chapters, we used multi-cubes to query over pre-selected data cubes
simultaneously and defined the drill-across operation as a way to create multi-cubes.
Our overall goal of this thesis is a unified schema to query over all multidimensional
datasets available and relevant for a specific use case. This unified schema we call
global cube.

We describe the data of a cube ds∈DataCube as a relation ds(D1, D2, ...,
Dn, M) with dimension(ds) the set of dimensions used by a cube and M the
unspecific measure sdmx-measure:obsValue. The relation contains all possi-
ble dimension-member combinations on a specific level of detail, possibly with M an
empty value such as “null” or “” We use functional datalog for describing rules about
relations.

Based on drill-across defined in Chapter 6, Definition 14 defines the global cube.
Definition 14 (Global Cube). Given the set of all available cubes {ds1, ..., dsn}
with dimension the set of all dimensions of these available data cubes, we define
the global cube globalcube(D1, ..., Dn, M) with dimension(global-
cube) = dimension. The global cube is defined in terms of the available cubes;
for cube dsi(Di1, ..., Dik, Mi), the following holds: globalcube(all,
..., Di1, ..., Dik, all ..., Mi) :- dsi(Di1, ..., Dik, Mi).
We denote with all the ALL member [KH13] aggregating over all possible values in
the dimension. Thus, dimensions not used in available cubes are regarded as sliced
with respect to the global cube. An OLAP query Q over the global cube with S sliced
dimensions then can be answered by: Q(globalcube) =
Drill-Acrossds∈DataCube,dimension\S⊆dimension(ds) Q(ds). Since Drill-Across is com-
mutative, the query result over the global cube does not depend on the order of Drill-
Across operations.

Similar as for drill-across, we require the global cube not to violate IC-12 in QB specifi-
cation: ‘‘integrity constraint violation’’ :- globalcube(D1,
..., Dn, M1), globalcube(D1, ..., Dn, M2), M1 != M2.

Whereas multi-cubes (Definition 8, Chapter 5) are “virtual” data cubes over a pre-
selected and limited set of overlapping data cubes, the global cube is formally defined
over all multidimensional datasets available and relevant for a specific use case such as
Open Government Data.

For instance, our UNEMPLOY query for Unemployment Fear and GDP Growth (intro-
duced in Chapter 5) can be directly issued over the global cube as the following nested
set of OLAP operations:

164

8.2 Approach: Global Cube and Conversion and Merging Correspondences

1 Slice(
2 Dice(
3 Projection(
4 globalcube,
5 {sdmx-measure:obsValue qb4o:avg}),
6 estatwrap:geo,
7 { eurostat:dic/geo#DE }),
8 {estatwrap:unit, gesis:variable...})

Here, all dimensions such as the unit and variable are sliced and the average of mea-
sures over all years for Germany requested. Assuming the global cube is defined from
the Unemployment Fear and GDP Growth data cubes, we execute the slice and dice op-
erations over each cube separately, and join the results using drill-across. The rewritten
OLAP query is then equal to the nested set of analytical operations for the UNEMPLOY
query (Listing 11).

In Chapter 6, we presented one possibility to reduce heterogeneities between data cubes
to increase the number of answers returned for queries over the global cube: Slicing of
dimensions and equivalence mappings between shared dimensions and members. In
the following, we present another possibility: converting and merging of data cubes.

A conversion correspondence according to Definition 15 describes relationships be-
tween two cubes in terms of their dimension-member combinations (inputmember,
outputmember ∈ 2Dimension×Member), i.e., how facts with certain members on di-
mensions in an inputcube can be converted to facts with other members on such
dimensions in an outputcube. The actual conversion is described using a conver-
sion function f ∈ Function that describes how the value of the measure of the
outputcube can be computed by the value of the measure of the inputcube and
that may be implemented in any programming language [SSR94].
Definition 15 (Conversion Correspondence). We define a conversion correspondence
adapted from correspondences over relational data [CDL+01] and conversion func-
tions [SSR94] as follows: ConversionCorrespondence = {(inputmembers,
outputmembers, f) ∈ 2Dimension×Member×2Dimension×Member× Function }
with Function: String → String. Given two data cubes ds1(D11, ...,
D1n, M1) and ds2(D21, ..., D2n, M2) with D1i = D2i, 1 <= i <=
n. A conversion correspondence cc between the cubes, cc(ds1) = ds2, holds
if the following rule holds: ds2(D21, ..., D2n, M2) :- ds1(D11, ...,
D1n, M1), inputmember ∈ inputmembers hold for ds1, output-
member ∈ outputmembers hold for ds2, (∀ D1i ∈ dimension(d-
s1)\inputmembers) D2i = D1i, M2 = f(M1).

We define a convert-cube operation with Convert-Cube: DataCube × Con-
versionCorrespondence → DataCube to denote the application of a conver-
sion correspondence to an input data cube to result in a new derived cube with the same

165

8 Building the Global Cube with Complex Dataset Relationships

structure as the input cube: Convert-Cube(ds1, cc) = ds2 <=> cc(ds1)
= ds2.

For instance, the relationship between the member “Million Euro” and “Euro” in Euro-
stat can be described with the following correspondence: MIO2EUR = ({(estat-
wrap:unit, eurostat:dic/unit#MIO EUR)}, {(estatwrap:unit,
eurostat:dic/unit#EUR)}, " f (x)= 1,000,000·x") The application of MIO-
2EUR over the GDP Components data cube is denoted by Convert-Cube(estat-
wrap:id/nama gdp c#ds, MIO2EUR) and returns a new data cube containing
values with unit “Euro”. To allow the consecutive application of conversion correspon-
dences to a data cube in a nested set of convert-cube operations, each convert-cube
operation we evaluate using a SPARQL 1.1 CONSTRUCT query generating the RDF
of the derived cube to which in turn another convert-cube operation can be applied.
Listing 19 shows the SPARQL query for our example.

Listing 19: SPARQL CONSTRUCT query to evaluate MIO2EUR over GDP Components data
cube.

1 CONSTRUCT {
2 ds12c44:ds qb:structure ?dsd .
3 _:outputobs qb:dataSet ds12c44:ds;
4 estatwrap:unit eurostat:dic/unit#EUR;
5 gesis:geo ?gesisgeo;
6 estatwrap:geo ?estatwrapgeo;
7 estatwrap:indic_na ?estatwrapindicna;
8 dcterms:date ?dctermsdate;
9 sdmx-measure:obsValue ?outputvalue1 .

10 } where { {
11 select ?dsd ((1000000 * ?inputvalue1) as ?outputvalue1)

?estatwrapgeo ?gesisgeo ?dctermsdate ?estatwrapindicna
?inputvalue1

12 where {
13 estatwrap:id/nama_gdp_c#ds qb:structure ?dsd .
14 ?inputobs qb:dataSet estatwrap:id/nama_gdp_c#ds;
15 estatwrap:unit eurostat:dic/unit#MIO_EUR;
16 gesis:geo ?gesisgeo;
17 estatwrap:geo ?estatwrapgeo;
18 estatwrap:indic_na ?estatwrapindicna;
19 dcterms:date ?dctermsdate;
20 sdmx-measure:obsValue ?inputvalue1 .
21 } } }

The SPARQL CONSTRUCT query can be divided by graph patterns in the body (line
13 to 20 in Listing 19) that provide bindings for graph patterns in the head (line 2 to 9)
that in turn define the constructed triples. Since in our implementation no functions are
possible in graph patterns (see 1000000 * ?inputvalue1), we surround body
graph patterns with a SPARQL SELECT query. The query generates for every fact
in the input cube with unit eurostat:dic/unit#MIO EUR a new fact with unit
eurostat:dic/unit#EUR in an output cube with the same structure (dimensions

166

8.2 Approach: Global Cube and Conversion and Merging Correspondences

and measures); the value of the (generic) measure is 1,000,000 times the value of the
input cube’s measure. Along this example, we explain how a cube and a conversion
correspondence as input to a convert-cube operation can be translated to the respective
SPARQL CONSTRUCT query. The body graph patterns are created in the following
steps:

1. Dataset Triples: We bind the data structure definition and observations from the
dataset URI of the input cube (line 13 and 14).

2. Inputmembers Triples: For each dimension-member combination in input-
members, we add a respective graph pattern (15).

3. Dimensions Triples: For each dimension from the input cube which is not con-
tained in inputmembers, we bind from the observation the value for the di-
mension URI to a variable (e.g., ?gesisgeo) derived from the dimension URI
to refer back to it in the head graph patterns later (16 to 19). Since the data
cubes share their geo dimensions, there are graph patterns for gesis:geo and
estatwrap:geo.

4. Measures Triples: For each measure in inputcube, we bind from the obser-
vation the value to a variable that is unique per measure for referral in other parts
of the rule (20).

5. Function Triples: For each measure in inputcube, we bind a variable for
the derived dataset’s measure with an expression for function f with the input
variable of f replaced by the respective measure variable (11).

Similarly, we create the graph patterns in the head:

1. Dataset Triples: We create a URI for the derived output dataset from a combi-
nation of the input dataset URI and the name of the conversion correspondence
(in our example ds12c44:ds (line 3) comes from an internally used function
createuri(estatwrap:id/nama gdp c#ds, MIO2EUR)); we add the
data structure definition of the input dataset to the output dataset (line 1); we add
new observations to the output dataset using a blank node5 (line 2)

2. Outputmembers Triples: For each dimension-member combination in output-
members, we add a respective graph pattern (line 4).

3. Dimension Triples: For each dimension from the input cube which is not con-
tained in outputmembers, we add to the new observation the dimension val-
ues of the observation in the body (line 5 to 8).

4. Measure Triples: For each measure in inputcube, we assign to the respective
measure in the derived observation the variable describing the converted value
from the body (9).

5We could also use a function over ?inputobs to create a new URI for each derived observation.

167

8 Building the Global Cube with Complex Dataset Relationships

The Dimension Triples make sure that the derived data cube has the same dimensions as
the input cube and copy all dimension values not touched by the conversion correspon-
dence. For that, contrary to the so-called open-world assumption (OWA)6 in Linked
Data, we have to assume all dimensions stated by the data structure definition of the
input dataset to be known.

Otherwise, according to the open-world assumption one could not be sure that some-
where on the Web additional dimensions are given to a dataset. However, all dimen-
sions have to be known to complete a conversion. A closed world assumption for the
data structure definitions of data cubes is particularly important in the case of multi-
cube operations such as drill-across and the extension to convert-cube, merge-cubes.
Otherwise, with possibly additional dimensions on which to check equality, two ob-
servations from separate cubes could never be joined. A closed-world behaviour could
also be achieved with scoped negation in rules [PFH06].

The SPARQL query is evaluated over the RDF representing the data cube to gener-
ate the derived cube. To answer a query over the global cube, we need to take into
account all derived data cubes, including those derived by nested convert-cube oper-
ations. Given an OLAP query with nested convert-cube operations, any convert-cube
operation is evaluated using one evaluation of the respective SPARQL CONSTRUCT
query over the input data cube’s RDF. Iteratively, the RDF of the input data cube may
first need to be derived by the evaluation of another convert-cube operation. In the next
section, we will describe an analysis of the number of derived data cubes in the global
cube.

We can extend conversion correspondences to merging correspondences to combine
values from two cubes. A merging correspondence according to Definition 16 describes
how facts with certain members on dimensions in two data cubes can be merged to facts
in a third data cube with members on such dimensions and with the same structure as
the first input cube.
Definition 16 (Merging Correspondence). We define MergingCorrespondence
= {(inputmembers1, inputmembers2, outputmembers, f) ∈
2Dimension×Member×2Dimension×Member×2Dimension×Member× Function }with Func-
tion: String × String → String. Given three data cubes ds1(D11,
D12 ..., D1n, M1), ds2(D21, ..., D2n, M2), and ds3(D31, ...,
D3n, M3). A merging correspondence mc between the three cubes, mc(ds1, ds2)
= ds3 holds if the following rule holds: ds3(D31, ..., D3n, M3) :- ds-
1(D11, ..., D1n, M1), ds2(D21, ..., D2n, M2), inputmember1
∈ inputmembers1 hold for ds1, inputmember2 ∈ inputmembers2
hold for ds2, outputmember ∈ outputmembers hold for ds3,
(∀ D2i ∈ dimension(ds2) \ inputmembers2) D2i = D1i, (∀ D1i
∈ dimension(ds1) \ inputmembers1) D3i = D1i, M3 = f(M1, M2).

6See explanation at http://www.w3.org/TR/owl2-primer/, last accessed 2014-12-11.

168

http://www.w3.org/TR/owl2-primer/

8.3 Evaluation

We define a merge-cubes operation with Merge-Cubes: DataCube × Data-
Cube × MergingCorrespondence → DataCube to denote the application
of a merging correspondence to two input data cubes to result in a derived cube.

The following example computes the Nominal Gross Domestic Product (NGDP) from
the sum of two GDP component indicators:

COMPUTE GDP = ({(estatwrap:indic na, eurostat:dic/indic na#-
B1G)},{(estatwrap:indic na,eurostat:dic/indic na#D21 M D31)},
{(estatwrap:indic na,eurostat:dic/indic na#NGDP)}," f (x1,x2) =
x1 + x2").

And the following example computes the GDP per Capita in Euro per Inhabitant from
the Nominal GDP and the Population:

COMP GDP CAP = ({(estatwrap:indic na,eurostat:dic/indic na#-
NGDP),(estatwrap:unit, eurostat:dic/unit#EUR)} ,{(estatwrap-
:sex, eurostat:dic/sex#T),(estatwrap:age, eurostat:dic/age-
#TOTAL)}, {(estatwrap:indic na,eurostat:dic/indic na#NGDPH),
(estatwrap:unit, eurostat:dic/unit#EUR HAB)}," f (x1,x2)= x1/x2").

Here, from the second input cube only facts are selected that contain measures for
all genders and age groups, assuming they describe the population. The algorithm to
evaluate convert-cube using a SPARQL CONSTRUCT query can be extended to the
merge-cubes operation.

In the next section, we evaluate the applicability of conversion and merging correspon-
dences to integrate governmental statistics.

8.3 Evaluation

Figure 8.2 illustrates how a client issues the GDP CAP query (using the query language
MDX) to the designed integration system over a global cube defined by data cubes
GDP Per Capita, GDP Components and Population. The integration engine 1) loads
and validates available data cubes defined by QB datasets (Base-Cube), 2) translates
the query over the global cube to a logical operator query plan over the available as
well as all derived data cubes, 3) transforms the logical to a physical operator query
plan with iterators that 4) are then executed. Here, MIO2EUR converts “Million Euro”
to “Euro”, COMP GDP computes the Nominal GDP, and COMP GDP CAP computes the
GDP Per Capita which in the global cube is brought together with values from the GDP
Per Capita data cube.

We implemented all operations, including the drill-across, convert-cube, and merge-
cubes operations, in a Java program as logical operators and physical iterators. The

169

8 Building the Global Cube with Complex Dataset Relationships

Figure 8.2: Overview of integration system using conversion and merging correspondences.

Given a query and a set of available datasets, the logical query plan is automatically
generated per Definition 14 of the global cube, and by automatically applying map-
pings between shared dimensions and members as well as conversion and merging
correspondences.

Drill-Across is implemented as a nested loop join directly over the results of the OLAP-
to-SPARQL Algorithm. We evaluate OWL semantics with the equivalence duplication
strategy and repeatedly execute SPARQL INSERT queries implementing entailment
rules of equality8 to materialise implicit triples from equivalence statements.

7Additional information can be found on the evaluation website of the respective paper [KSH14],
http://www.linked-data-cubes.org/index.php/Global Cube Evaluation EKAW14, last accessed 2014-31-10.

8http://semanticweb.org/OWLLD/#Rules, last accessed 2014-11-18.

170

program uses a directed crawling strategy to load and validate all data cubes into a
Sesame Repository (v2.7.10) as embedded triple store. Due to lack of space, in the
further descriptions we assume all available data cubes loaded7.

http://www.linked-data-cubes.org/index.php/Global_Cube_Evaluation_EKAW14
http://semanticweb.org/OWLLD/#Rules

8.3 Evaluation

Every SPARQL query defined by a convert-cube and merge-cubes operation is evalu-
ated once and the result is loaded in the triple store for usage by consecutive opera-
tions.

Setup: We created a ConversionCorrespondence for MIO2EUR and MergingCorre-
spondences for COMPUTE GDP, and COMP GDP CAP.

To show the applicability of the convert-cube and merge-cubes operations, we execute
the logical query plan as illustrated in Figure 8.2 for comparing GDP per Capita from
different datasets. In this case, we assume that we know that only two (derived) data
cubes serve the requested values: the GDP Per Capita data cube and the GDP per Capita
as derived from the Nominal GDP and the number of inhabitants. Consequently, no
time is spent for metadata queries and generating the logical query plan. In the next
section, we will give an estimation of the number of derived datasets to query from the
global cube in case the logical query plan is not given.

The GDP CAP query we executed five times on an Ubuntu 12.04 workstation with
Intel(R) Core(TM) i5 CPU, M520, 2.40GHz, 8 GB RAM, 64-bit on a JVM (v6) with
512M initial and 1524M maximum memory allocation.

Results: We successfully executed the GDP CAP query, the resulting cube allows us
to compare the computed and the given GDP per Capita from Eurostat. By the small
divergence between the computed and the given values, we presume that the computa-
tions are correct; for instance, for UK in 2010, the Nominal GDP per Capita is directly
given as 27,800 and computed as 27,704 Euro per Inhabitant.

On average, the query takes 246sec. We load 1,015,044 triples that do not only come
from 10 lookups to the three integrated datasets, but also from loading derived datasets
to the embedded triple store. Similarly, in total, the engine loads or creates 126,351
observations. A long time of 119sec for the 10 look-ups, loading, and validating results
from the fact that integrated datasets per se are larger than the datasets we have loaded
in previous experiments, e.g., the Population data cube is described by more than 22MB
of RDF/XML.

Generating the physical operator query plan in 16sec on average is fast, but executing
the query plan in 111sec on average takes as long as loading and validating. This
is because different from the pipelining strategy of the Drill-Across iterator to directly
process the results of a previous iterator, for convert-cube and merge-cubes the physical
query plan involves materialising data cubes as derived cubes and storing them in the
embedded triple store for the next iterator. From 111sec needed for processing the
physical query plan, on average 91sec (82%) was spent on generating and storing the
derived data cubes.

Although we only integrated three datasets and only computed three derived data cubes,
with more than 4min, the elapsed query time takes too long for an exploratory analysis.
Nevertheless, our experiment shows that we can materialise and query any derived data

171

8 Building the Global Cube with Complex Dataset Relationships

cube. Since in many cases datasets will not often change (e.g., one new GDP per Capita
value per year), an offline computation of all derived data cubes, i.e., building the global
cube, is possible. The time will mainly depend on the number of derived data cubes.
Therefore, in the next section, we give an estimation.

8.4 Analysis of the Global Cube

In this section, we want to estimate the difficulty to materialise the global cube for
efficient query processing. The size of the global cube mainly depends on the number
of derived data cubes.

Given a set of data cubes and conversion and merging correspondences, an algorithm
to generate all derived data cubes to answer a query over the global cube may not
terminate since correspondences can be infinitely nested.

If we forbid that the same correspondence is applied repeatedly, we can give an upper
bound estimation of the number of (derived) cubes based on ds datasets and mc merging
and conversion correspondences: noderivedds(ds,mc).

For that, we define a recursive function noc(d p,ds,mc) that distinguishes the depth d p
of a nested set of correspondence applications with noc(0,ds,mc)=ds, noc(d p,ds,mc)=
mc2∗noc(d p−1,ds,mc−1)2+2∗mc2∗∑0<=i<d p−1 noc(d p−1,ds,mc−1)∗noc(i,ds,
mc−1). In the recursion, since the merge-cubes operation is not commutative, we need
to consider the ordering of inputs to the merging, i.e., the consecutive application of
merging correspondences in the left, right and both inputs. Then, noderivedds(ds,mc)=
noc(0,ds,mc)+noc(1,ds,mc)+ . . .+noc(mc,ds,mc).

As an example, for our GDP CAP query we assume the GDP Per Capita, the GDP
Components, and the Population as data cubes, MIO2EUR as conversion, and COMP GDP
and COMP GDP CAP as merging correspondences. The maximum number of (de-
rived) cubes is given by: noderivedds(3,3) = noc(0,3,3)+noc(1,3,3)+noc(2,3,3)+
noc(3,3,3) = 3+81+13,608+3,003,480 = 3,017,172.

However, most derived data cubes are empty, e.g., MIO2EUR(GDP Per Capita)
since GDP Per Capita does not contain values with unit “Million Euro”. Therefore, if
we require in a nested application of correspondences that outputmembers of the
first correspondence fit inputmembers of the second correspondence, the number of
derived datasets in many cases is reduced as we show in the following for our exam-
ple.

To generate all possible derived data cubes in our GDP CAP query, we use a functional
Datalog program (using XSB Prolog notation), where we define the datasets using re-
lation dataset(Ds), dimensions using dimension(Ds, Dim) and dimension-
member combinations using dimensionmember(Ds, Dim, Mem); also, we de-

172

8.4 Analysis of the Global Cube

fine every conversion and merging correspondence using four rules for 1) generating
the dataset, 2) copying over the dimensions, 3) copying over the dimension-members,
and 4) setting the new dimension member. For instance, rule 1) for MIO2EUR is as
follows:

dataset(mio2eur(X)) :- dataset(X), dimension(X,unit), (\+
dimensionmember(X,unit,Z); dimensionmember(X,unit,mioeur)).

Here, MIO2EUR only is applied over data cubes that have a dimension unit and that
either have Million Euro or no specific unit specified.

Executing the program in XSB Prolog, we get a small number of 54 derived datasets, in-
cluding a computation of the GDP per Capita via comp gdp per cap(comp gdp-
(mio2eur(gdpcomponents),mio2eur(gdpcomponents)),population),
to evaluate using SPARQL. The execution takes milliseconds on commodity hardware,
since the program only contains 14 atoms and 12 rules; the facts do not need to be rep-
resented in the program since 1) the actual conversion and merging is done separately
and 2) we find matches between datasets to convert or merge only by looking at the
definition of correspondences, i.e., output- and inputmembers.

Lemma 1 allows to have cycles in the definition of input-/outputmembers, e.g., conver-
sion correspondences MIO2EUR and EUR2MIO.
Lemma 1. We can design an algorithm that after a finite number of steps terminates
with the application of conversion and merging correspondences when no new facts
can be added to the global cube.

Sketch of Proof According to Definition 12 of Drill-Across and Definition 14 of the
global cube, an “Integrity Constraint Violation” is returned for a measure if two input
cubes during the computation of the global cube contain different measure values for
identical dimension-member combinations.

Only different dimension-member combinations can provide new facts, all other data
cubes either provide facts with the same measure value or an “Integrity Constraint Vi-
olation”. If dimension-member combinations are limited, so are derived cubes that
provide new facts to the global cube.

The number of dimension-member combinations is limited: Considering ds datasets as
special combinations and the order of combining combinations, cc conversion and mc
merging correspondences provide at max (ds+ cc+mc)! combinations of dimension-
member combinations.

In our example, this would result in (3+1+2)!= 720 possible combinations.

Assuming one derived data cube per combination and three derived datasets per four
minutes as estimated by our experiment in the previous section, the materialisation of

173

8 Building the Global Cube with Complex Dataset Relationships

all derived data cubes in this example will require 16h. Considering that our example
with three datasets, one conversion, and two merging correspondences is rather small,
we can expect that building the global cube will easily become a difficult problem.

8.5 Related Work

We distinguish approaches for 1) automatically integrating data warehouses and datasets,
and 2) for overcoming heterogeneities.

8.5.1 Data Warehouse Integration

Many integration systems build on XML. Perez et al. [PBAP08] distinguish tree inte-
gration architectures: the mediator-based federated, the XML-database federated, and
wrapper-based architecture. The mediator-based federated architecture requires per in-
tegrated data warehouse a mediator that translates queries over the global to the local
schema. Maintaining the mediators has shown error prone and costly. The XML-
database federated architecture requires less effort in maintaining mediators but has
the disadvantage that XML databases do not compute aggregations as efficiently as
relational database management systems [PBAP08]. The wrapper-based architecture
(distributed data warehouse architecture) uses a Collection Server to store data from
distributed sources wrapped to XML. Our approach is a mixture: We rely on wrap-
pers [CDL+01] such as Estatwrap publishing original data sources as Statistical Linked
Data; the main integration work is done by mediators [CDL+01] such as our imple-
mented Java program that crawl the necessary data, store the data in a triple store,
evaluate declarative relationships between data sources to build the global cube, and ex-
ecute SPARQL queries. Relationships can be provided directly with Linked Data, e.g.,
equivalence mappings, or additionally by experts, e.g., Complex Correspondences.

Conceptually, we distinguish the global-as-view (GAV , also known as source-based
integration) approach of data integration where the global schema is represented in
terms of the data sources and the local-as-view (LAV) approach that requires sources to
be defined as views over the global schema [CDL+01, CCGL02, Gen10]. We use the
GAV approach and define the global cube in terms of single data cubes using the drill-
across operation. With GAV, queries over the global schema can easily be translated to
queries over the data sources [CCGL02].

For finding relationships between multidimensional datasets, common ontology match-
ing approaches are less suitable [ZM14]. Torlone [Tor08] automatically matches het-
erogeneous dimensions by checking requirements of shared dimensions such as co-
herence and soundness; similar to our work, they use joins and materialisation ap-
proaches.

174

8.5 Related Work

We integrate data cubes from the Web and focus on more complex mappings that ex-
plicitly need to be given by experts.

8.5.2 Resolving Semantic Conflicts

Different from materialised aggregate views for performance optimisation, in this chap-
ter, we have defined the global cube as an integrated view over available datasets in
Statistical Linked Data.

Tseng and Chen [TC05] define a classification scheme of the semantic conflicts be-
tween local cubes:

• Cube-to-cube conflicts (same conceptual modelling but different logical mod-
elling)

• Dimension-to-dimension conflicts (dimension schema conflicts, dimension mem-
ber conflicts, naming conflicts)

• Measure-to-measure conflicts (measure naming conflicts, inconsistent measures,
measure scaling conflicts)

Their definitions of conflicts is difficult to understand since the authors do not properly
define terms for relationships between multidimensional elements, e.g., ”semantically-
related”, ”mismatched” and ”semantic discrepancies”. Instead, our work uses well-
defined RDF vocabularies based on OWL and RDFS to describe equivalence relation-
ships between shared Dimensions and Members.

Tseng and Chen distinguish the ”global schema approach”, the ”federated approach”
and the ”multi-database query language approach”. Their approach is a ”global schema
approach”; they extend the idea of XCube to integrate multiple data cubes. Seman-
tic conflicts are resolved using XQuery/XSLT. In their solution, the cubes are adapted
to one new global schema with dimensions having canonical identifiers. However,
XQuery/XSLT scripts need to be created manually. Mapping from MDX directly to
XQuery/XSLT is open work.

Different from this approach to overcome heterogeneities, we allow solving of semantic
conflicts with abstract conversion and merging relationships.

Bischof and Polleres [BP13] introduce “attribute equations” that are closely related
to our work. Attribute equations describe arithmetic relationships between datatype
properties. The work includes an RDF representations of such equations using a new
property definedByEquation. The authors consider variants of equations for all
possible directions to convert one or more values of datatype properties to the value of
another datatype property. They adapt an existing query rewriting algorithm to reformu-
late a SPARQL query with certain datatype properties according to attribute equations.

175

8 Building the Global Cube with Complex Dataset Relationships

For that, UNION graph patterns are added for each possible way to compute the value of
a datatype property from other datatype property values. To avoid infinite expansion of
equations when transforming the SPARQL query, the algorithm ensures that equations
are not applied recursively. Similar to our work, Bischof and Polleres [BP13] have a
notion of semantic conflict. In their definition, an RDF graph is not coherent if attribute
equations lead to different values for the same datatype property of an instance. Our
definition leads to an integrity constraint violation when the global cube contains differ-
ent values for the same dimension-member combination. Whereas attribute equations
require very specific datatype properties such as populationRateMale, complex
correspondences from the present work describe relationships between multidimen-
sional datasets; therefore, every dimension of a dataset can be considered when con-
verting and merging values. Since materialising derived data cubes is costly, a query
rewriting approach may be promising but – due to the structure of observations – would
be more complex than for attribute equations.

Other work tries to automatically derive new from existing data. Ambite and Kapoor
[AK07] presents Shim Services providing operations for accessing remote data, inte-
grating heterogeneous data, and deriving new data. Workflows of operations are auto-
matically created based on semantic descriptions of operators. Subsumption reasoning
is included to match inputs of services to outputs of other services. To avoid the in-
finite execution of operations, a limit is defined to the depth of nested operations of
the same type. Bressan and Goh [BG97] present a context mediation network based
on Datalog and constraints. The authors give examples of possible query optimisations
based on semantic descriptions. For instance, a data source may not be processed if
requested data is not expected to be contained in the source. Whereas in such work,
data sources provide data as relational tables, we deal with a higher abstraction as data
cubes, and with the specificities of Linked Data sources with resolvable URIs. Also, we
demonstrate the problem of efficiently integrating available datasets in a global cube.

Wilkinson and Simitsis [WS11] propose flows of hypercube operators as a conceptual
model from which ETL processes can be generated. The Linked Data-Fu language
[SSHS13] uses N3 rules for describing complex data processing interactions on the
Web. A rule engine could possibly improve our query processing approach, e.g., by
bulk-loading, crawling and query processing in parallel threads and if backtracking
from a query is supported. However, N3 does not support functions such as needed in
our conversion and merging correspondences. Also, we provide an abstraction layer
specific to multidimensional datasets published as Linked Data. Etcheverry and Vais-
man [EV12a] map analytical operations to SPARQL over RDF but do not define multi-
cube operations and mappings.

Siegel et al. [SSR94] introduce the notion of semantic values – numeric values accom-
panied by metadata for interpreting the value, e.g., the unit – and propose conversion
functions to facilitate the exchange of distributed datasets by heterogeneous information
systems. Calvanese et al. [CDL+01] describe a rule-based approach to automatically

176

8.6 Conclusions

find the matching between two relational schemas. We extend their approaches to data
cubes published as Linked Data.

Diamantini et al. [DPS13] suggest to uniquely define indicators (measures) as for-
mulas, aggregation functions, semantics (mathematical meaning) of the formula, and
recursive references to other indicators. They use mathematical standards for describ-
ing the semantics of operations (MathML, OpenMath) and use Prolog to reason about
indicators, e.g., for equality or consistency of indicators. In contrast, we focus on het-
erogeneities occurring in terms of dimensions and members, and allow conversions and
combinations.

8.6 Conclusions

As the number of statistical datasets published as Linked Data is growing, citizens
and analysts can benefit from methods to integrate national indicators, despite hetero-
geneities of data sources. In this chapter, we have shown that we can provide a unified
view, the global cube, over multidimensional datasets available as Statistical Linked
Data. Furthermore, we can increase the number of answers from the global cube with
conversion and merging mappings between datasets.

Complex Correspondences describe rules of how data cubes can be derived from other
data cubes. Complex correspondences are evaluated using two new types of OLAP
operations: convert-cube and merge-cubes. We use rules to define both the semantics of
correspondences and the semantics of the operations. For query processing, all derived
data cubes can be materialised to build the global cube. Depending on the number of
correspondences and the evaluation method of rules, the number of derived data cubes
is very large.

We conducted an experiment of querying the GDP Per Capita motivated by our Open
Government Data scenario. The experiment used a manually generated query plan and
showed that even with few derived data cubes, query processing takes a lot of time.
Offline computation of derived data cubes from data cubes that are seldom updated
may be a possibility. The experiment showed that complex correspondences can reduce
heterogeneities between datasets. Important statistical indicators can be confirmed by
several datasets for increased trust in the data.

There is several interesting future work.

Many datasets do not sufficiently describe their meaning for integrating with other data
sources. For instance, the name of a dataset still often contains important information
about the meaning of the content, such as is the case for the population dataset that
would distinguish between different genders and age groups but would not express the

177

8 Building the Global Cube with Complex Dataset Relationships

unit ”Euro per Inhabitant” or the indicator ”population”. When integrating underspec-
ified datasets, their facts will appear to describe the same things with different values;
in this case, the global cube cannot be built since integrity constraints are violated.
Besides helping publishers, one possibility would be to allow for generating new di-
mensions and members in datasets. Then, correspondences can be added by domain
experts to uniquely define the meaning of datasets. For instance, a new dimension such
as “variable” with value “population” could be added or a specific measure “popula-
tion” could be given.

Currently, correspondences are manually created by the application designer. It is an
open question how to more easily generate and possibly maintain correspondences and
to feed those relationships to the system. For that, an RDF representation to be shared in
Statistical Linked Data such as presented for attribute equations [BP13] may be useful.
Also, publishers may provide correspondences. For instance, XBRL allows “Calcula-
tion Linkbases” that describe simple part-of relationships between financial concepts
and can automatically be extracted.

In future work, it would be interesting to represent and execute all OLAP operations
with (possibly recursive) rules. For instance Mohapatra and Genesereth [MG12] show
how aggregation functions can be added to Datalog. Then, rule engines could be used
to fully materialise the global cube for efficient lookups.

Finally, querying over the global cube in case of many datasets and many correspon-
dences will require specific performance optimisations, e.g., specific cost models of
aggregate views over multi-cube structures [SDN00].

In summary, complex mappings between multidimensional datasets are a promising
step towards reliable and reusable numeric values. For instance, in our experiments,
we noticed a difference between the GDP Per Capita for the UK in 2010 in Euro per
inhabitant of 27,800 in Eurostat9 and of 29,520 in Wolfram Alpha10. There are often
differences between numeric values from different institutions, e.g., due to different
dates of exchange rates and different data collection characteristics such as “sampling”.
Complex correspondences introduce one way to identify and to make aware of such
differences.

9http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama aux gph&lang=en, last accessed
2015-06-13.

10http://www.wolframalpha.com/input/?i=+gdp+per+capita+in+uk+in+2010+in+eur, changing over time,
last accessed 2014-11-23.

178

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_aux_gph&lang=en
http://www.wolframalpha.com/input/?i=+gdp+per+capita+in+uk+in+2010+in+eur

9 Application and Discussion
of Contributions

In this overall evaluation chapter, we apply and discuss the contributions of this the-
sis along our three scenarios. For that, in Section 9.1, we first give an overview of
our proposed solution and describe the design and implementation of OLAP4LD, an
OLAP engine to build flexible and efficient integration and analysis applications over
Statistical Linked Data. Then, we describe applications of OLAP4LD to our scenar-
ios. In Section 9.2, we present the SMART Knowledge Base (SKB) improving our
SMART scenario. In Section 9.3, we present the Financial Information Observation
System (FIOS) fulfilling the user requirements of our XBRL scenario. In Section 9.4,
we present the Linked Data Cubes Explorer (LDCX) allowing exploration of govern-
mental statistics in our OGD scenario.

For each of the approaches, we explain the modelling and mapping of data cubes, as
well as the query processing and query optimisation over those data cubes.

9.1 Overview

We developed an OLAP Engine for Statistical Linked Data (OLAP4LD) to apply our
contributions. OLAP4LD is used in our scenarios to fulfil the user requirements.

In this section, first, we describe the general architecture of integration and analysis ap-
plications based on OLAP4LD (Section 9.1.1). Second, we explain the implementation
of OLAP4LD (Section 9.1.2).

9.1.1 Design of OLAP4LD

OLAP4LD is a framework for building analysis applications over statistics published
as Linked Data. Our approach makes use of OLAP clients and the Multidimensional
Expression Language (MDX) for query building and of Statistical Linked Data for the
representation and extraction of multidimensional datasets from the Web.

9 Application and Discussion of Contributions

Figure 9.1 illustrates the main components of an analysis application based on OLAP-
4LD. Any OLAP client can provide a GUI for the domain expert (top of figure) to issue
metadata and analytical queries. Metadata queries return multidimensional elements
such as cubes, dimensions, and measures which are used to form analytical queries.
Analytical queries are described in MDX and return data from the global cube to be
displayed in rows, columns, and cells of a pivot table. OLAP4LD translates queries to
the global cube to queries over Statistical Linked Data (bottom of figure).

OLAP4LD application developers can make use of a common abstraction of datasets as
data cubes according to our Multidimensional Data Model (MDM), the quasi-standard
analytical query language MDX, and existing OLAP clients.

OLAP4LD

Linked Data Cubes Component

HTTP HTTP

Linked Data

reusing QB

olap4j Driver Component

LogicalOlap-

QueryPlan List<Node[]>

Restrictions

List<Node[]>

getCubes(...) ResultSet
MDX ResultSet

CellSet

olap4j Client

Metadata Queries Analytical Queries

get... Metadata object

Linked Data

reusing QB

Linked Data

reusing QB

...

Figure 9.1: Architecture of OLAP4LD applications.

OLAP4LD consists of two components. The Driver Component translates queries from
an OLAP client to queries more suitable for processing over Statistical Linked Data in
the Linked Data Cubes Component. For instance, analytical queries in MDX are in-
terpreted as nested set of OLAP operations (so-called logical OLAP operator query
plans, LogicalOlapQueryPlan). Vice-versa, the driver component translates re-
sults from Statistical Linked Data to representations understandable by the client (re-

180

9.1 Overview

sults from SPARQL queries, Node[], to tabular or multidimensional results, Result-
Set or CellSet).

The available data cubes forming the global cube are input to the system as a set of QB
dataset URIs. For instance as a special-character-separated list in a metadata query for
cubes or in the FROM clause of an MDX query.

Metadata and analytical queries can be executed in different ways over Statistical Linked
Data. Query processing can be done with an existing OLAP engine over relations or
in-memory, and directly with an RDF store. Aggregated values from the data cube
may be computed on demand or views selected and maintained. Similarly, data pre-
processing and integration can be done differently, e.g., a database may be pre-filled
with all relevant data in advance or populated dynamically. The quality of data can
be ensured in a pre-processing step or on the filled database. Also, there are various
ways in which information can be provided, e.g., packed in data dumps or queryable
from several SPARQL endpoints; using different vocabularies (e.g., DCAT to describe
data catalogues, VoiD to describe metadata of datasets) and various RDF representa-
tions (e.g., RDFa, Turtle). Last but not least, mappings of heterogeneous datasets can
be available from different sources, e.g., directly in Linked Data and from built-in (on-
tology) matching algorithms.

Therefore, for executing metadata and analytical queries, an OLAP4LD application
has to implement a Linked Data Cubes Engine. Developers can build new or extend
existing engines and concentrate on the challenges of query execution and integration
over Statistical Linked Data.

Linked Data Cubes Engines apply the contributions of this thesis:

Based on the MDM-QB Mapping (Chapter 5), relevant data is accessed by a SPARQL
engine according to the directed crawling strategy, and metadata queries are executed.
For that, any instance of qb:DataSet is mapped to a data cube. Similarly, other
resources represented in QB are mapped to multidimensional elements.

Based on the OLAP-to-SPARQL Algorithm (Chapter 6), analytical queries in the form
of a nested set of OLAP operations are translated to SPARQL queries. Also, equiva-
lence mappings are evaluated according to OWL semantics.

RDF Aggregate Views (Chapter 7) can be used to optimise query execution and Com-
plex Correspondences (Chapter 8) to describe complex mappings between data cubes
and to increase the number of answers from the global cube.

9.1.2 Implementation of OLAP4LD

We have published an implementation of OLAP4LD as an Open Source software for
building analysis applications over statistics published as Linked Data.

181

9 Application and Discussion of Contributions

The OLAP4LD source code as well as example data is hosted on GitHub1. In the
following, we describe the implementation specific aspects of OLAP4LD as illustrated
in Figure 9.1. A more detailed documentation about OLAP4LD can be found on the
project website of the “Linked Data Cubes” project2.

OLAP4LD implements the Open Java API for OLAP olap4j3, a programming library
and standard interface between OLAP front-ends and backends; therefore, any OLAP
clients supporting olap4j such a Saiku and JPivot can be used as a GUI to OLAP4LD.

9.1.2.1 Metadata Query Execution in OLAP4LD

In the following, we first describe the details of Metadata Queries over OLAP4LD,
i.e., queries for metadata elements from our common Multidimensional Data Model
(MDM).

Clients access metadata from OLAP4LD with methods such as getCubes(...) and
getMeasures(...). Every olap4j driver exposes metadata in two different ways4:
metadata objects (e.g., Cube) with methods to query for further metadata objects from
a Java object (e.g., getHierarchies(...)) and methods of classes implementing
the OlapDatabaseMetaData interface returning JDBC schema result sets (e.g.,
getCubes(...)). Objects of ResultSet contain all metadata about a multidi-
mensional element, e.g., the name of a cube5.

The Linked Data Cubes Component of OLAP4LD exposes metadata as follows: as
SPARQL SELECT query results parsed by the NxParser library6 to lists of arrays of
RDF terms (List<Node[]>) from an instance of a LinkedDataCubesEngine
interface. The metadata methods are adopted from the OlapDatabaseMetaData
interface of olap4j; also, the schema of returned result sets, i.e., the name and types of
columns, is adopted from the olap4j result set schema7.

The metadata methods of OLAP4LD have as input an object of class Restrictions.
Restrictions are adopted from the metadata signature of olap4j metadata methods and
define filter criteria over metadata queries. For instance, by setting the cubeName of
the getCubes(...) metadata query, one can query for a specific cube.

1https://github.com/bkaempgen/olap4ld, last accessed on 2015-05-02.
2http://www.linked-data-cubes.org/index.php/OLAP4LD, last accessed on 2014-11-05.
3http://www.olap4j.org/, last accessed 2014-11-05.
4http://www.olap4j.org/olap4j fs.html#Metadata, last accessed on 2014-11-05.
5For the columns returned by each rowset of a specific type of multidimensional element see the olap4j
specification http://www.olap4j.org/olap4j fs.html#
The OlapDatabaseMetaData interface and methods which return schema rowsets, last accessed
2014-11-05.

6http://code.google.com/p/nxparser/, parses RDF and SPARQL results in the Nx format, last accessed
2014-12-15.

7http://www.linked-data-cubes.org/index.php/Olap4ld Metadata, last accessed 2014-11-05.

182

https://github.com/bkaempgen/olap4ld
http://www.linked-data-cubes.org/index.php/OLAP4LD
http://www.olap4j.org/
http://www.olap4j.org/olap4j_fs.html#Metadata
http://www.olap4j.org/olap4j_fs.html#The_OlapDatabaseMetaData_interface_and_methods_which_return_schema_rowsets
http://www.olap4j.org/olap4j_fs.html#The_OlapDatabaseMetaData_interface_and_methods_which_return_schema_rowsets
http://code.google.com/p/nxparser/
http://www.linked-data-cubes.org/index.php/Olap4ld_Metadata

9.1 Overview

Therefore, the olap4j Driver Component has to translate olap4j metadata queries to
metadata queries on an interface LinkedDataCubesEngine. Vice-versa, the olap4j
Driver Component translates List<Node[]> to ResultSet or Metadata objects
understandable by the client.

See the following list for common queries for multidimensional elements from datasets,
adopted from olap4j. For instance, the first metadata query type, getCubes(...),
has as input a string for the name of a data cube (nameDC) – possibly containing
wildcards – and as output a set of Data Cubes whose names match the string.

GetCubes is defined as GetCubes : nameDC ∈ String→ 2DataCube

GetMeasures is defined as GetMeasures : nameDC ∈ String× nameMS ∈ String→
2Measure

GetDimensions is defined as GetDimensions : nameDC∈ String×nameD∈ String→
2Dimension

GetHierarchies is defined as GetHierarchies : nameDC∈ String×nameD×nameH ∈
String→ 2Hierarchy

GetLevels is defined as GetLevels : nameDC ∈ String×nameD ∈ String×nameH ∈
String×nameL ∈ String→ 2Level

GetMembers is defined as GetMembers : nameDC ∈ String×nameD ∈ String×na-
meH ∈ String×nameL ∈ String×nameM ∈ String→ 2Member

We have implemented two example Linked Data Cubes Engines. One, the Embed-
dedSesameEngine, uses an embedded Sesame triple store for query processing. The
other, the OpenVirtuosoEngine, can access the SPARQL endpoint of a pre-filled Open
Virtuoso triple stores for query processing.

Our Linked Data Cubes Engines implement our MDM-QB Mapping using SPARQL
templates. For instance, see Listing 20 for the SPARQL query template for data cubes8.

Listing 20: Example SPARQL query template to query for metadata of data cubes, used by
OLAP4LD.

1 SELECT DISTINCT ?CATALOG_NAME ?SCHEMA_NAME ?CUBE_NAME ?CUBE_TYPE
?CUBE_CAPTION ?DESCRIPTION

2 {{{STANDARDFROM}}}
3 WHERE {
4 ?CUBE_NAME a qb:DataSet.
5 OPTIONAL {?CUBE_NAME rdfs:label ?CUBE_CAPTION FILTER (

lang(?CUBE_CAPTION) = "en")}.
6 OPTIONAL {?CUBE_NAME rdfs:comment ?DESCRIPTION FILTER (

lang(?DESCRIPTION) = "en")}
7 BIND(’{{{TABLE_CAT}}}’ as ?CATALOG_NAME).

8Also available at https://github.com/bkaempgen/olap4ld/blob/master/OLAP4LD-trunk/query templates/
sesame getCubes regular.txt, last accessed on 2014-11-13.

183

https://github.com/bkaempgen/olap4ld/blob/master/OLAP4LD-trunk/query_templates/sesame_getCubes_regular.txt
https://github.com/bkaempgen/olap4ld/blob/master/OLAP4LD-trunk/query_templates/sesame_getCubes_regular.txt

9 Application and Discussion of Contributions

8 BIND(’{{{TABLE_SCHEM}}}’ as ?SCHEMA_NAME).
9 BIND(’CUBE’ as ?CUBE_TYPE).

10 {{{FILTERS}}}
11 } ORDER BY ?CATALOG_NAME ?SCHEMA_NAME ?CUBE_NAME ?CUBE_TYPE

?CUBE_CAPTION ?DESCRIPTION

The olap4j-specifically-required properties for cubes such as a catalog, schema, cube
type are hard-coded. For additional information about cubes such as a human-readable
caption and a description pendants from common Linked Data vocabularies, e.g., rd-
fs:label and rdfs:comment are selected. The template is parameterised with
{{{FILTERS}}} that allow to lookup cubes with certain properties.

For each multidimensional element, there may be several SPARQL templates for differ-
ent ways of modelling, e.g., there are different ways to model hierarchies and measures
can either define their own aggregation functions or SUM, AVG, and COUNT are used
by default.

Where our MDM requires elements not represented in QB, the SPARQL 1.1 BIND
function is used to generate such elements using SPARQL. For instance, our MDM
uses a special-type Measure Dimension that contains as members all the measures.

9.1.2.2 Analytical Query Execution in OLAP4LD

After having described metadata queries, we describe in more detail the implementation
of analytical queries9.

Analytical queries in olap4j are called Statements and use the MDX query language.
MDX statements contain identifiers for multidimensional elements. While validating
an MDX query for correct syntax and parsing, the olap4j Driver Component issues
metadata queries to retrieve the multidimensional elements mentioned in the query.
From the retrieved information, the driver component derives the metadata for a pivot
table schema to be populated with summarised values.

More concretely, the olap4j Driver Component initiates a query optimiser by translat-
ing the MDX query to a nested set of OLAP operations and sends this logical OLAP
operator query plan10 to the Linked Data Cubes Engine for execution. Vice-versa, the
olap4j Driver Component translates the results from the Linked Data Cubes Engine as
instances of List<Node[]> to tabular structures (ResultSet or CellSet).

The Linked Data Cubes Component receives analytical queries as logical OLAP oper-
ator query plans (data structure LogicalOlapQueryPlan).

9Also documented at http://www.linked-data-cubes.org/index.php/Olap4ld - Olap4j Driver Component,
last accessed 2014-11-07.

10http://www.linked-data-cubes.org/index.php/Olap4ld Query Optimizer, last accessed on 2014-11-05.

184

http://www.linked-data-cubes.org/index.php/Olap4ld_-_Olap4j_Driver_Component
http://www.linked-data-cubes.org/index.php/Olap4ld_Query_Optimizer

9.2 SMART Approach

For query execution, a Linked Data Cubes Engine such as EmbeddedSesameEngine
implements every operation from our OLAP algebra as an operator that can be executed
according to the iterator model; a logical OLAP operator query plan is transformed into
a physical OLAP operator query plan (optimisations to the logical query plan can be
applied if needed). The physical query plan consists of iterators and is executed to
return the answers of the OLAP query. For instance, the OLAP-to-SPARQL Algorithm
(Chapter 6) is implemented as an iterator; the OLAP-to-SPARQL iterator assumes data
available from an input iterator via a SPARQL engine. Other iterators implement the
directed crawling strategy and execute the Convert-Cube and Merge-Cubes operations
(Chapter 8).

9.2 SMART Approach

In the SMART Scenario (Section 2.1), innovative tools such as the knowledge man-
agement system Dropedia and the Web-based sensor database SMART-DB are used to
improve decision making for Integrated Water Resources Management (IWRM) in the
Lower Jordan Valley.

In this scenario the following user requirement exists: Domain experts need to be able to
identify, integrate and re-use research data from expert analyses such as the calculation
or estimation of a single value, a literature study, and a complex model application.

In the following section, we present our approach, the SMART Knowledge Base (SKB),
with the following contributions:

• We formalise the IWRM knowledge and decision support domain in an OWL on-
tology, reusing the RDF Data Cube Vocabulary for numeric values from sensors
as well as research analyses.

• We use a semantic wiki and Linked Data wrapper to allow easy sharing of re-
search data via forms and application-specific data imports.

• We use Linked Data to represent, extract, integrate, and load community-created
research and sensor data into a knowledge base for browsing and expressive
queries.

• We present consumption tools on top of the knowledge base that allow scien-
tists to explore the numeric data. Applications also make use of formal OWL
semantics in Linked Data.

After explaining SKB in detail in the following section, we apply the approach to our
scenario in Section 9.2.2. Then, we reflect on the solution (Section 9.2.3), describe
related work (Section 9.2.4) and conclude (Section 9.2.5).

185

9 Application and Discussion of Contributions

9.2.1 SMART Knowledge Base (SKB)

As illustrated in Figure 9.2, the components of the SMART Knowledge Base (SKB)
roughly can be divided into IWRM relevant data sources and data consumption tools.
To execute necessary steps in IWRM decision processes, decision makers and domain
experts utilise consumption tools. Consumption tools access data via a SMART triple
store that is filled in advance or on-demand with data from the data sources.

Figure 9.2: Diagram illustrating scenario and architecture of SMART Knowledge Base.

Main IWRM relevant data sources are an IWRM ontology, the knowledge management
system Dropedia and the SMART-DB for climate sensor data. Data consumption tools
using data from the data sources include the water system knowledge browser, the
IWRM process builder, and the SMART Data Explorer.

In the following, we explain the modelling and mapping of data cubes, as well as the
query processing and query optimisation over those data cubes in SKB.

Modelling of data cubes. The IWRM domain is described in an ontology that we
describe in the following: See Figure 9.3 for an illustration of the IWRM ontology as
graph with concepts and common properties between instances of those concepts.

The illustration only contains the most important concepts and properties of the IWRM
ontology. The IWRM ontology is implemented in Dropedia, the collaborative knowl-
edge management system of SMART. As a semantic wiki, Dropedia publishes and
supports browsing of the ontology under the iwrm namespace11.

The IWRM ontology models decision processes (iwrm:Process) around catchments
(iwrm:Catchment, areas with certain water resources and consumers). An IWRM
process has social, economical, and ecological objectives (iwrm:Objective).

Most importantly, the IWRM ontology models data cubes of type iwrm:Analysis
with facts of type iwrm:Observation. For that, the RDF Data Cube Vocabulary
is used. Every data cube has as dimensions the location (iwrm:has location),

11http://dropedia.iwrm-smart2.org/index.php/Special:URIResolver/, last accessed 2014-08-27.

186

http://dropedia.iwrm-smart2.org/index.php/Special:URIResolver/

9.2 SMART Approach

Figure 9.3: Illustration of IWRM ontology as graph with concepts and common properties be-
tween instances of concepts.

the valid time (consisting of a hierarchy of day, month, and year), the unit, the IWRM
scenario, and the indicator. Every fact in a data cube contains a value for each of the
dimensions as well as a numeric value for the measure iwrm:has obsValue.

The ontology is capable of storing micro- and macro-data. For instance, an amount
of 125 in m3/h of monthly discharged water at Shorea Spring on October 1st 1983 in
a Status Quo IWRM scenario can be represented. Also, an estimated average annual
value of 143.8 in m3/h of monthly dicharged water at Shorea Spring for 2010 can be
represented.

Thus, every analysis data cube quantifies for a certain catchment (via iwrm:has c-
atchment), how well a certain objective is reached by an IWRM scenario according
to an indicator (via iwrm:has objective.

If populated, the links between individuals in the ontology can be browsed in a follow-
your-nose fashion similar to common Web browsing. Also, the link identifiers provide
the schema for querying the data using SPARQL.

In the following, we describe how the IWRM ontology can be populated, i.e., how
concrete instances of concepts in the ontology can be created.

Dropedia is used to populate the IWRM ontology with semi-structured information
about IWRM processes, objectives, catchments and other locations, IWRM scenarios,
indicators, and units. Also, IWRM analyses such as from research publications and
experiments can be described and structured information in the form of estimated and
simulated observations added. For every observation in an analysis, a value for the
location, the valid time, the unit, the IWRM scenario, and the indicator can be given.

187

9 Application and Discussion of Contributions

Dropedia is based on the Open Source semantic wiki software, Semantic MediaWiki12,
which combines ease of use and collaboration functionalities of the well-known Me-
diaWiki software with flexible support to capture and use structured information via
Semantic Web technologies. Users can fill in forms for important IWRM concepts such
as catchments, scenarios, and indicators. The data is then automatically made available
as Linked Data, e.g., about dropedia:Wadi Shueib under the dropedia names-
pace13. Structured information can be queried directly within Dropedia and visualised,
e.g., as tables.

Also, forms are available to add single numeric facts to analyses; for that “subobjects”14

are used. Subobjects allow to instantiate and describe new objects (instances) within
wiki pages without creating a separate wiki page for each object.

We manually import15 ontologies such as the RDF Data Cube Vocabulary to Dropedia
so that URIs are reused in the RDF export and less integration work has to be done when
querying over numeric values in Dropedia and other data sources such as SMART-
DB.

SMART-DB is used to automatically populate the IWRM ontology with sensor data.
Sensor data are inserted to SMART-DB via application-specific input forms that SMART
partner use if they want to share sensor data with other partners.

We create a wrapper that publishes SMART-DB data as Statistical Linked Data. SMART-
DB-WRAP re-publishes sensor data from SMART-DB in the smart-db namespace16.
For that, SMART-DB-WRAP is based on a Google App Engine and on-the-fly trans-
lates data from SMART-DB into an RDF representation using the IWRM ontology. For
that, a Web interface, HYDROSMART, serving sensor data from SMART-DB as XML
was developed by SMART project partner “Helmholtz-Zentrum für Umweltforschung
GmbH” (UFZ).

Besides a list of locations, e.g., “AM0530” (“Baqqouria Spring” in Dropedia) and a list
of indicators, e.g., “Q” (“Mean Discharge”), SMART-DB-WRAP publishes for each
location and indicator a data cube with respective observations. Such data cubes are
modelled according to analyses in the IWRM ontology and have as dimensions the
location, the valid time, the unit, the IWRM scenario, and the indicator.

Table 9.1 shows example objects and their URIs identifying those entities in Linked
Data (abusing CURIE syntax).

12http://semantic-mediawiki.org/, last accessed on 2014-10-22.
13http://dropedia.iwrm-smart2.org/index.php/Special:URIResolver/, last accessed 2014-08-27.
14http://semantic-mediawiki.org/wiki/Help:Adding subobjects, last accessed 2014-11-17.
15https://semantic-mediawiki.org/wiki/Help:Import vocabulary, last accessed 2014-11-04.
16http://smartdbwrap.appspot.com/, last accessed 2014-08-27.
17http://www2.ufz.de/smarthydro/smartquery?location data=AM0528, last accessed 2014-11-04.

188

http://semantic-mediawiki.org/
http://dropedia.iwrm-smart2.org/index.php/Special:URIResolver/
http://semantic-mediawiki.org/wiki/Help:Adding_subobjects
https://semantic-mediawiki.org/wiki/Help:Import_vocabulary
http://smartdbwrap.appspot.com/
http://www2.ufz.de/smarthydro/smartquery?location_data=AM0528

9.2 SMART Approach

Table 9.1: Example objects and their URIs from certain data sources in SMART.

Object URI
Wadi Shueib as referred to in Dropedia dropedia:Wadi Shueib
Shorea Spring as referred to in Dropedia dropedia:Shorea Spring
Shorea Spring as referred to in SMART-DB17 smart-db:/id/location/AM0528
Average Discharge in Dropedia dropedia:Annual Average Discharge
Average Discharge from SMART-DB smart-db:/id/analysisobject/Q
Dataset of locations from SMART-DB smart-db:/id/location/ds
Dataset of indicators from SMART-DB smart-db:/id/analysisobject/ds
Dataset of Mean Discharge for Shorea Spring from
SMART-DB

smart-db:/id/locationdataset/AM0528/Q

All instances of iwrm:Observation from datasets in Dropedia and SMART-DB
are integrated in one single multi-cube dropedia:SMART-DB-DSD with location,
IWRM scenario, date, indicator (analysis object) and unit as dimensions and AVG and
COUNT of smart:obsValue as measures.

Mapping of data cubes. There is the challenge that SMART-DB and Dropedia use
different identifiers for the same objects, e.g., “AM0530” vs. “Baqqouria Spring” and
“Q” vs. “Mean Discharge”. Integration allows queries over both data sources simulta-
neously considering identical elements. For every location described in Dropedia, we
insert the respective identifier from SMART-DB via forms. From an Excel sheet pro-
vided by project partner UFZ, we manually copy identifiers from SMART-DB. Tem-
plates in Dropedia then create equivalence mappings – owl:sameAs links – between
location URIs in Dropedia and location URIs in SMART-DB.

Query processing over data cubes. For query processing, we automatically and reg-
ularly fill a triple store with up-to-date relevant data for multidimensional datasets
from the data sources using LDSpider. LDSpider starts with a seed list of locations
in Dropedia. Via above mentioned owl:sameAs links, LDSpider reaches the same
locations in SMART-DB. Crawled data is then inserted in the triple store. We selected
the Open Virtuoso triple store that not only provides a SPARQL 1.1 endpoint for expres-
sive queries (e.g., aggregations), but also is able to evaluate our equivalence mappings
(owl:sameAs links). Then, queries for one identifier also returns answers for every
other possible identifier; thus, Dropedia and SMART-DB are integrated. The goal is
not to permanently duplicate information from SMART-DB and other data sources, but
to provide unified access and analysis capabilities over selected data.

The following data consumption tools access data from the triple store.

The Water System Knowledge Browser is implemented as a set of pages in Dropedia
with which users get overviews of the knowledge base and can visit catchments, water
resources, demand sites and many other aspects of the water domain in the Lower
Jordan Valley. The SPARK extension18 allows for embedding SPARQL queries to the

18http://www.mediawiki.org/wiki/Extension:Spark, last accessed 2014-11-04.

189

http://www.mediawiki.org/wiki/Extension:Spark

9 Application and Discussion of Contributions

triple store in Dropedia pages; SPARQL queries are issued upon a visit to a respective
page and results are shown in tables and diagrams using JavaScript, e.g., the number of
analyses for a specific catchment.

The IWRM Process Builder allows to find existing IWRM decision processes in the
Lower Jordan Valley on regional and local scales; in every IWRM decision process,
decision makers define objectives for an IWRM problem, scientists create a domain
model, e.g., define locations, indicators and IWRM scenarios, and further investigate
the model in analyses.

The SMART Data Explorer provides an exploratory interface to analyse numeric data
from the dropedia:SMART-DB-DSD multi-cube. The SMART Data Explorer uses
the OLAP client Saiku19 as a front-end embedded into a Dropedia page. Saiku allows
domain experts to issue OLAP operations such as slice and dice in an intuitive interface.
The SMART Data Explorer uses OLAP4LD as a backend. OLAP4LD translates OLAP
queries from Saiku to SPARQL queries to the SMART triple store.

For that, we use our Linked Data Cubes Engine for the Open Virtuoso triple store
(OpenVirtuosoEngine20). The engine implements the MDM-QB Mapping using
SPARQL templates and the OLAP-to-SPARQL Algorithm. Excel or CSV exports of
indicator values from Saiku can be imported to other tools such as WEAP.

Query optimisation. No specific query optimisation methods are applied.

In the next section, we apply the SMART Knowledge Base to a concrete IWRM deci-
sion process.

9.2.2 An IWRM Process for Wadi Shueib in Jordan

In this section, we analyse the possible benefit of using the SMART approach for an
IWRM process in Wadi Shueib, Jordan [Rie13]. From a SMART Knowledge Base start
page21, data sources and consumption tools can be visited. Also, information about the
implementation and case study are given.

The SMART Triple Store is based on Open Virtuoso version 06.01.3127 and runs on an
AMD Athlon(tm) 64 Processor 3000+ with 2G memory with Ubuntu Linux. Crawling
on average takes less than 60min. At the time of writing, 6 IWRM processes, 7 objec-
tives, 22 indicators, 22 IWRM scenarios and 27 analyses are described in Dropedia.

19http://www.analytical-labs.com/, last accessed 2014-11-05.
20https://github.com/bkaempgen/olap4ld/blob/master/OLAP4LD-trunk/src/org/olap4j/driver/olap4ld/

linkeddata/OpenVirtuosoEngine.java, last accessed on 2014-10-22.
21http://dropedia.iwrm-smart2.org/index.php/SMART Knowledge Base, last accessed 2014-08-27.

190

http://www.analytical-labs.com/
https://github.com/bkaempgen/olap4ld/blob/master/OLAP4LD-trunk/src/org/olap4j/driver/olap4ld/linkeddata/OpenVirtuosoEngine.java
https://github.com/bkaempgen/olap4ld/blob/master/OLAP4LD-trunk/src/org/olap4j/driver/olap4ld/linkeddata/OpenVirtuosoEngine.java
http://dropedia.iwrm-smart2.org/index.php/SMART_Knowledge_Base

9.2 SMART Approach

Problem formulation: In the case study [Rie13], the “Wadi Shueib IWRM Decision
Process” (dropedia:Wadi Shueib IWRM Analysis) is motivated by the Na-
tional Water Strategy of Jordan22. The water strategy defines objectives, e.g., dropedi-
a:Increase volume of captured and treated wastewater.

Domain modelling: Basic provenance information such as the analysis area (drope-
dia:Wadi Shueib) and the authors of the process are given. The analysis area al-
ready is further described, e.g., by the exact geo-spatial and political origin, important
buildings within the area, and synonymous area names. The domain expert selects
indicators from discussions with other domain experts. For instance, to evaluate the
increased volume of captured and treated waste water, the “Municipal Waste Water
Treatment Ratio” relates the assumed volume of total waste water produced with the
amount of municipal waste water treated in centralised and decentralised treatment fa-
cilities.

Also, the domain expert defines or reuses IWRM scenarios, e.g., “Wadi Shueib Busi-
ness as Usual (BAU)”, the water strategy implementation according to the current plans
of the Jordanian national water strategy. This scenario includes the reduction of physi-
cal and administrative supply network losses and a sewer rehabilitation and connection
program in As-Salt. Whereas in the BAU scenario, further implementation of the water
strategy either is regarded as not feasible until 2025 or is hampered by slow political
decision making, the “Full Implementation (FI)” scenario assumes that all obstacles are
overcome and the full range of stated implementation approaches is realised.

Model execution: Based on the assumptions in the domain model, the domain ex-
pert selects suitable analyses or creates own analyses leading to the computation of
required indicators for the given planning IWRM scenarios. To find expert analyses
the domain expert can use the keyword search functionality of Dropedia. Also, analy-
ses are linked to knowledge objects and can be browsed in the dropedia:Water -
System Knowledge Browser and the dropedia:IWRM Process Builder.
SMART-DB identifies Shorea Spring with “AM0528” and provides for example water
discharge numbers from 1973 to 2006; see Figure 9.4 for a screenshot. The particularly
high discharge value of around 687m3/h in 1992 indicates an incorrect sensor record in
the SMART-DB.

In addition, based on data records from SMART-DB of Shorea Spring from 1995 to
2005 the domain expert computes an overall average annual discharge as an estimation
for future years; see Figure 9.5 for a screenshot of the values documented in Drope-
dia.

The domain expert uses the SMART Data Explorer to explore, compare and analyse
numeric assumptions from other analyses. For instance, the decision maker can ask
for the average annual discharge for Shorea Spring over time, see Figure 9.6. A pivot

22http://www.joriew.eu/uploads/private/joriew org jordan national water strategy.pdf, last accessed
2014-11-17.

191

http://www.joriew.eu/uploads/private/joriew_org_jordan_national_water_strategy.pdf

9 Application and Discussion of Contributions

Figure 9.4: Screenshot of line chart from Dropedia with overview of water discharge records in
m3/h of Shorea Spring over years from SMART-DB.

Figure 9.5: Description of expert analysis about Shorea Spring 10-year average discharge in
Dropedia; discharge values are estimated to remain constant based on measured
value for earlier years.

table is queried with the average value and the number of values (on columns) for
specific years (on rows; first ten year steps, then yearly). Besides filtering for specific
years, values are filtered for location Shorea Spring and analysis object water discharge
(filter); we see that for some years there are more values than for others.

Also, we see that Dropedia and SMART-DB data are integrated: On the one hand val-
ues for 1973 and 1983, for instance, are taken from SMART-DB. Such values we saw
in the overview of actual sensor values from SMART-DB in Figure 9.4. On the other
hand, the values for 2005 and 2010, for instance, have their origin in Dropedia. Such
values are documented in Dropedia as displayed in Figure 9.5 (the value for 2005 is
contained in an aggregation). Having values represented as observations is not suffi-
cient for integration in this case since both “Shorea Spring” and “Mean Discharge” are
identified differently in SMART-DB and Dropedia. For that, equivalence mappings are
manually added and automatically resolved by the SMART Data Explorer.

192

9.2 SMART Approach

Loading time for Saiku may take several minutes due to queries with a large number of
results to be displayed in the interface.

Figure 9.6: Pivot table showing average and count of water discharge records in Shorea Spring
for specific years from both Dropedia and SMART-DB.

Multi-criteria decision analysis: A tabular overview of all estimated indicator val-
ues for IWRM scenarios can be given on the analysis page. Provenance information
about any single observation can be browsed by clicking on the value in the table. The
decision maker exports such data directly from Dropedia or with the SMART Data
Explorer. Table 2.1 from the SMART Scenario section illustrated the decision matrix
for the Wadi Shueib Process comparing different IWRM scenarios projected to 2025.
Indicator values are normalised between 0 and 1; a higher score means a better perfor-
mance. The FI-alternative shows the best performance for most of the indicators; only
regarding surface water, cost effectiveness (unit cost of supply in Jordanian dinar per
cubic meter), and environmental water stress (through fluctuations) other scenarios are
evaluated higher. Given weights for indicators, the multi-criteria decision analysis tool
EWRE-AHP will recommend one IWRM scenario for Wadi Shueib over the other.

9.2.3 Discussions and Lessons Learned

In this section, we discuss the results from applying the SMART approach to the Wadi
Shueib IWRM process.

Although only few tasks from the IWRM process for Wadi Shueib were repeated using
the SMART Knowledge Base (SKB) and although the problem and IWRM scenario

193

9 Application and Discussion of Contributions

definitions as well as the modelling and simulation tasks can be arbitrarily complex,
SKB has shown potential to support researchers and decision makers in sharing relevant
IWRM information (SMART User Requirement) as follows:

The IWRM ontology allows to represent both numeric values from sensors as well as
research analyses. Users can share numeric values with the entire IWRM community
for citations via forms and database import GUIs. Values also can be discussed with
respect to objectives, indicators, and scenarios in the IWRM Process Builder. Applica-
tions such as the SMART Data Explorer can be developed on top of published informa-
tion for innovative usages; interoperability between Dropedia and the SMART-DB was
demonstrated in visualisations showing data from both sources.

The SKB approach benefits from Semantic Web concepts through semantics, e.g.,
equivalence statements using owl:sameAs and extensibility, e.g., new data sources
can easily be added to the SMART Knowledge Base by adding new links that LDSpi-
der would follow. If data loaded to the triple store reuse the same vocabularies such as
our IWRM ontology or the RDF Data Cube Vocabulary, data may show up in existing
visualisations without additional effort.

In particular, we see potential regarding the ongoing “Open Data” trend. More and more
institutions such as FigShare, DataCite and Pangaea help scientists to not only publish
their analysis results but also the raw (or pre-processed) data for citations, reproduction
and further analysis. If also published as Linked Data – for instance using a wrapper
approach as for SMART-DB-WRAP – interoperability of the data contained in such
silos can be improved.

Two main areas of possible improvements were identified:

Usability and Training. It proved a challenge to make scientists and decision makers
share research-relevant data. There may be many reasons for this behaviour, yet, it is
clear that stakeholders are especially reluctant if interfaces to data sharing platforms
are not familiar and if there is no clear personal benefit. The flexibility of a semantic
wiki and an embedded OLAP client do not reach the usability of commercial products,
in particular, Microsoft Excel and widely-used E-Mail clients. SKB intends to provide
benefits directly to research data providers, e.g., by visualisations and integration with
SMART-DB data; yet, most benefit will be achieved if there is a culture of two-way
sharing and reusing of research data.

To support this aim, regular tutorials with specific cross-group analysis objectives seem
necessary. SMART members will get familiar with and continuously insert new infor-
mation to SKB. Also the benefits of operational guidelines and a way to make transpar-
ent SMART research results for IWRM will become clearer.

Complex Modelling. An initial working hypothesis stated that Semantic Web ontolo-
gies allow semi-automated IWRM analysis. The water simulation tool WEAP provides
a complex model of inter-dependent indicators in a system of water resources, demand

194

9.2 SMART Approach

sites and operational network elements connected by flow vectors of various types.
WEAP provides algorithms to compute indicators. However, ontologies such as OWL,
RDFS and Linked Data vocabularies have difficulties to represent and do reasoning
over such mathematical relationships [VLH+10].

Although we were able to represent and share measurements of environmental indica-
tors using the RDF Data Cube Vocabulary, estimating indicators still requires mostly
manual effort, e.g., copy-paste from publications and spread sheet-processing in Ex-
cel. A more automatic computation of indicators will require to formalise relationships
between (collections of) measurements. For instance, from assumed volumes of waste
water produced in single municipalities, a total waste water discharge assumption for
an area could automatically be aggregated and be re-used for a Municipal Waste Water
Treatment Ratio computation. Conversion Correspondences (Chapter 8) may be a pos-
sible solution to represent and use such relationships between datasets; however, so far
we do not know from where to retrieve such relationships

9.2.4 Related Work

The German-Vietnamese water-related information system for the Mekong Delta (WIS-
DOM) project provides a web-based information system [GWK+10]. The system is
based on PostgreSQL for geographical data management. Services are provided via
representational state transfer (REST) and as such identify and allow access to re-
sources similar to the Linked Data principles. However, it is not clear whether this
setup of using REST services also improves interoperability between systems for ef-
ficient integration of WISDOM data sources with third-party data sources. Different
from the WISDOM information system, the SKB concept focuses on data integration
and making available data for third-party usage.

In research and industry, wikis are widely perceived as potent knowledge management
instruments. And also in hydrology, some organizations have recently started initiatives
of which probably the most visible examples are the UNDP-initiated WaterWiki23 and
the IWAWaterwiki24. Different from Dropedia, such platforms do not generate self-
descriptive RDF to build applications on top of structured information.

The CUAHSI Water Data Center25 provides data services to communities that require
access to various sources of water data to perform research. Their software stack pro-
vides tools to publish hydrologic datasets with web services as well as a metadata cat-
alog to discover and client tools to analyse published datasets. They allow tagging of

23http://waterwiki.net, last retrieved on 2014-03-14
24http://www.iwawaterwiki.org, last retrieved on 2014-03-14
25http://wdc.cuahsi.org/, last retrieved on 2014-04-16

195

http://waterwiki.net
http://www.iwawaterwiki.org
http://wdc.cuahsi.org/

9 Application and Discussion of Contributions

variables with the CUAHSI HIS Ontology describing concepts such as chemical, bio-
logical and physical variables. They do not use RDF and as such are limited to data
complying to a fixed relational model for observation data.

The Semantic Ecology and Environmental Portal26 integrates water data from different
authoritative sources using Linked Data to enable pollution detection and monitoring.
Their interface is able to display both geo-spatial and measurement data, but does not
support collaboration on analyses as possible in Dropedia.

Wiljes and Cimiano [WC12] use Linked Data to publish research results in the natural
sciences. To make scientists less reluctant to share research data, a scientific data cu-
rator helps with the Linked Data publication process. In our work, we first allow users
to make research data available as Linked Data without any Linked Data specificities
(through Dropedia and SMART-DB). Second, we have a stronger publishing argument
since we describe possible applications (Dropedia/SPARK, SMART Data Explorer) on
top of published data.

9.2.5 Conclusions

We have presented the SMART Knowledge Base (SKB) approach for Integrated Water
Resources Management (IWRM) in the Lower Jordan Valley.

SKB formalises the IWRM decision process using an OWL ontology, integrates re-
search data from a semantic wiki with climate sensor records from a relational database,
and allows exploring and analysing IWRM data using browsing and OLAP.

We have applied the knowledge base in an IWRM decision process for the Wadi Shueib
region in Jordan. IWRM processes can be arbitrarily complex, but for simple tasks
SKB showed capable to improve interoperability between systems to help researchers
and decision makers in sharing and consuming IWRM-relevant information, including
numeric values such as from sensors and intermediary research.

Lessons learned promise to easily connect further data sources available on the Web
using Linked Data, but demand a more systematic training of potential users for quan-
tifiable improvements in the domain, and a more formal representation of indicators
and IWRM scenarios for semi-automatic IWRM analysis.

9.3 XBRL Approach

After previously having introduced the XBRL scenario (Section 2.2), we present an
approach that based on Linked Data fulfils the following user requirements:

26http://tw.rpi.edu/web/project/SemantEco, last retrieved on 2014-04-16

196

http://tw.rpi.edu/web/project/SemantEco

9.3 XBRL Approach

• User Requirement 1: Business analysts need to integrate data across sources.

• User Requirement 2: Analysts need to analyse data in a fashion of “overview
first, zoom-in, details on demand”.

• User Requirement 3: Analysts need to create their own analyses with Excel-like
functionality.

Literature has proposed the use of Semantic Web technologies, but has not evaluated
the benefit in financial case studies [WTB11, GG10, BRLD10].

We present a solution that uses Linked Data to identify, gather and integrate financial
data and we apply interfaces for analysing such integrated financial Linked Data in a re-
alistic scenario. In the next section, we present this Financial Information Observation
System (FIOS) with the following contributions (Section 9.3.1):

1. For standardised data access, FIOS models XBRL and non-XBRL as Linked
Data using the RDF Data Cube Vocabulary and other standard vocabularies.

2. FIOS integrates financial data using entity consolidation for background infor-
mation, multi-company KPI, and cross-data-sources KPI analysis.

3. For intuitive and exploratory analyses, FIOS provides SPARQL templates with
visualisations, a Linked Data browser and a self-serve OLAP interface on top of
a triple store.

For evaluation, we describe a case study implementing and applying FIOS for financial
analysis (Section 9.3.2) and derive lessons learned (Section 9.3.3). We describe related
work in Section 9.3.4 and conclude in Section 9.3.5.

9.3.1 Financial Information Observation System (FIOS)

In this section, we describe our Linked-Data-based XBRL approach. As illustrated in
Figure 9.7, the architecture of the Financial Information Observation System (FIOS) is
separated into two types of components, the offline ETL and online analysis compo-
nents.

The offline ETL components make financial information available as Linked Data and
crawl, pre-process, and load such data to an RDF triple store. The online analysis
components provide three different interfaces over financial data in the triple store.

In the following, we explain the modelling and mapping of data cubes, as well as the
query processing and query optimisation over those data cubes done in the ETL or
analysis components of FIOS.

197

9 Application and Discussion of Contributions

Crawler

Wrapper 1
Normaliser/

Loader

SEC Edgar

Wrapper 2 Yahoo! Finance

Triple Store

HTML templates

Linked Data browser

OLAP Interface

Users Analysis Components ETL Components Data Sources

Consolidation

RDF

RDF

XBRL

...

CSV

RDFRDF
RDF

Input: SPARQL queries

Output: SPARQL results

Input: HTTP GET/Ajax

Output: HTML+JavaScript

DBpedia

RDF

Wikipedia

HTML

Figure 9.7: Flow diagram illustrating architecture of Financial Information Observation System
(FIOS).

9.3.1.1 Modelling of Data Cubes

FIOS uses the Linked Data principles to identify and retrieve relevant information
spread across different web servers as described in the following.

Identification of relevant finance data from the Web. We uniquely name things/en-
tities with URIs: XBRL balance sheets from the SEC Edgar Database, including their
taxonomies, and daily stock quotes from the Yahoo! Finance Web API; companies
and industries listed by the SEC, Yahoo! Finance and Wikipedia/DBpedia. The SEC
uniquely identifies the companies using a Central Index Key (CIK, e.g., Mastercard has
“1141391”); Yahoo! Finance uses Ticker symbols (e.g., “MA” for Mastercard); and
Wikipedia uses their own non-standardised identifiers that are typically based on the
name of the company, e.g., “Mastercard”.

If looked up, URIs provide useful information in RDF either by originating from Linked
Data providers or created by wrappers around data sources not publishing Linked Data.
Wrappers mint (introduce, create) new URIs and internally transform available in-
formation about such entities in the data source to RDF. Since the actual URIs are
application-specific, in the following, we simply abbreviate URIs from our selected
data sources using intuitive namespaces (abusing CURIE syntax): edgar for entities
from the SEC Edgar Database, yahoo for Yahoo! Finance Web API and dbpedia
for Wikipedia. Table 9.2 shows example mappings between things/entities, data sources
with useful information about these entities and URI identifying those entities in Linked
Data.

For a holistic view on selected companies from the SEC Edgar Database, FIOS defines
as relevant data: data from resolving the URIs of the companies and of entities linked

27http:
//www.sec.gov/Archives/edgar/data/1141391/000119312511207804/0001193125-11-207804-xbrl.zip,
last accessed 2014-11-07.

28http:
//ichart.yahoo.com/table.csv?s=MA&a=11&b=01&c=2010&d=11&e=01&f=2010&g=d&ignore=.csv,
last accessed 2014-11-07.

198

http://www.sec.gov/Archives/edgar/data/1141391/000119312511207804/0001193125-11-207804-xbrl.zip
http://www.sec.gov/Archives/edgar/data/1141391/000119312511207804/0001193125-11-207804-xbrl.zip
http://ichart.yahoo.com/table.csv?s=MA&a=11&b=01&c=2010&d=11&e=01&f=2010&g=d&ignore=.csv
http://ichart.yahoo.com/table.csv?s=MA&a=11&b=01&c=2010&d=11&e=01&f=2010&g=d&ignore=.csv

9.3 XBRL Approach

Table 9.2: Example mappings between things/entities, data sources and URIs in XBRL ap-
proach.

Entity Original data source URI
Company Mastercard Mastercard from DBpedia dbpedia:Mastercard
Company Mastercard SEC Edgar company Mas-

tercard with CIK 1141391
edgar:cik/1141391#id

Company Mastercard Yahoo! Finance company
Mastercard with Ticker MA

yahoo:ticker/MA#id

Balance sheet XBRL document from SEC
Edgar27

edgar:archive/1141391/
0001193125-11-207804#ds

Stock Quotes table Stock Quotes table from
Yahoo! Finance Web API28

yahoo:archive/MA/
2010-12-01#ds

The RDF Data Cube Vocabulary is used to model financial data as data cubes as de-
scribed in the following.

Modelling of finance data. To allow FIOS to use the retrieved information, we model
financial data reusing existing Linked Data vocabularies and link entities from different
sources.

Whereas there are well-adopted vocabularies for all kinds of metadata, e.g., SKOS,
FOAF, and the DBpedia ontology, there is no standard way to represent XBRL data as
Linked Data [GG10, BRLD10, WTB11]. XBRL distinguishes instance and taxonomy
documents. An XBRL instance document (also called “filing”) contains financial facts
with a numeric value and a unit such as USD. A fact has a context, e.g., describing the
issuing company such as Mastercard, the time period of a financial fact (often, a quarter
of a year or full fiscal year) and so-called segment information, e.g., allowing to specify
subgroups of financial facts, e.g., that facts are published for subsidiary members. Most
importantly, a fact specifies a certain disclosed financial concept such as “Total Assets”.
Financial concepts are taken from XBRL taxonomy documents. XBRL taxonomies can
be standardised, e.g., the US-GAAP, and their concepts used across many instance
documents. Also, companies may create their own taxonomies and financial concepts.
Within taxonomies, concepts may be given additional information, e.g., labels, and may
have relations to other concepts, e.g., “part of” relationships.

We model every XBRL instance and taxonomy as a multidimensional dataset, i.e.,
collection of facts with independent dimension variables and dependent measure vari-
ables, using the RDF Data Cube Vocabulary (QB) as follows: for any XBRL instance
with taxonomy a multidimensional dataset (qb:DataSet) and data structure defini-
tion (qb:DataStructureDefinition) are created. For any single financial fact

199

from the companies, as well as starting from QB datasets the relevant data for each
multidimensional dataset (Definition 7).

9 Application and Discussion of Contributions

within an XBRL instance, an observation (qb:Observation) is created with di-
mensions issuer, time period (edgar:dtstart, edgar:dtend), the financial con-
cept (edgar:subject), segment information (edgar:segment), and one decimal
measure with a unit.

Similarly, stock quotes from Yahoo! Finance can be modelled using QB: every daily
collection of values is a dataset, every stock quote contains as dimensions the company
(yahoo:issuer), the date the value is valid and the stock quote type such as price at
stock market opening (Open).

9.3.1.2 Mapping of Data Cubes

We use QB for the following reason: Given datasets contain observations with certain
companies, certain financial concepts and certain periods in time, financial data integra-
tion boils down to identifying and consolidating equivalent dimensions and dimension
values in multidimensional datasets.

See Figure 9.8 for an illustration of the linking between different entities or properties.
Here, the fact of an XBRL instance document disclosing Total Assets (edgar:vocab/-
us-gapp-2009-01-31#Assets) and an Opening stock quote are linked via equiv-
alent dimensions, e.g., dcterms:date / ical:dtstart and edgar:issuer /
yahoo:issuer, and via equivalent dimension members, e.g., Mastercard edgar:-
cik/1141391#id / yahoo:ticker/MA#id.

Figure 9.8: Illustration of modelling of finance data in FIOS; most importantly, equivalence rela-
tionships exist between Total Asset fact from the SEC (top left), opening stock quote
from Yahoo! Finance (top right), and Mastercard in DBpedia (bottom center).

200

9.3 XBRL Approach

Whereas time periods can easily be matched by comparing canonical representations
of time, for linking between different URI for companies and financial concepts across
data sources, mappings need to be available. Entities or properties in RDF can ex-
plicitly be stated as equivalent via owl:sameAs or owl:equivalentProperty
relationships between their URIs.

To model finance related metadata, e.g., about companies and industries, we use widely-
adopted Linked Data vocabularies, e.g., FOAF and the DBpedia ontology. The industry
of a company can be represented using SKOS classification hierarchies, e.g., the SEC
provides for companies the Standard Industrial Classification (SIC) hierarchy, e.g., SIC
concept “SERVICES-BUSINESS SERVICES, NEC” skos:narrower “MASTER-
CARD INC”.

If XBRL balance sheets from the SEC and stock quotes from Yahoo! Finance are mod-
elled as data cubes, and their dimensions and dimension values are mapped, their ob-
servations can be integrated in a multi-cube “FIOS 2.0 Data Cube for SEC/YHOF”.

9.3.1.3 Query Processing Over Data Cubes

For query processing, FIOS pre-processes and stores data in a triple store as described
in the following.

Consolidation, normalisation, loading and validation of finance data. FIOS allows
to pre-process and store acquired data for fast access as well as to check its quality.

Entity consolidation in FIOS – making explicit and merging all available information
about an entity, so as access to that information is available independently from a spe-
cific distribution across sources – results in simpler queries and is only different from
Hogan et al. [HHU+11] in that we also consider equivalent relationships between pred-
icates such as dimensions of datasets.

Queries on our consolidated data are complicated by the fact that all entities described
by FIOS use distributed namespaces. Resources from FIOS thus link to external servers
with non-preprocessed data, confusing the user or complicating the application. There-
fore, we mint resolvable URIs for all entities, including URIs in the predicate position,
in an own FIOS namespace fios. For provenance reasons, we create owl:sameAs
and owl:equivalentProperty links from FIOS entities to the original entities.

After pre-processing, data is loaded into a triple store that supports SPARQL 1.1 for
analytical aggregate queries and is indexed for performance.

We use SPARQL queries for quality checks, e.g., validating QB integrity constraints
or XBRL-specific integrity constraints such as defined between financial concepts in
XBRL calculation relationships.

201

9 Application and Discussion of Contributions

Given relevant finance data pre-processed and loaded to a triple store by the ETL com-
ponents, the online analysis components can provide three different interfaces over the
triple store.

Analysis of integrated financial Linked Data. Semantic Search engines are too gen-
eral for financial analysis (e.g., [HHU+11]) and data analysis tools such as the SPARQL
Package for R29 are too complicated for domain experts. FIOS uses three different
kinds of interfaces for views on financial Linked Data.

SPARQL Templates with Visualisations, i.e., webpages that show results of SPARQL
1.1 queries on the triple store in visualisations, give a general overview of data in FIOS,
e.g., number of datasets. Also, we create domain-specific reports about companies that
require data integration. Templates can be parameterised with input by the analyst, e.g.,
a company identifier.

A Linked Data Browser, i.e., webpages of things/entities in RDF that show all ingoing
and outgoing triples of a resource and support follow-your-nose browsing from resource
to resource, provides a more detailed view on any RDF data in FIOS.

An OLAP Interface, i.e., an intuitive and explorative data analysis method allows ana-
lysts to create own visualisations on multidimensional datasets. Since (parameterised)
SPARQL templates have a fixed structure and Linked Data browsing does not aggre-
gate triples, we use our OLAP-to-SPARQL Algorithm (Chapter 6) to evaluate OLAP
operations using SPARQL over RDF about QB datasets.

9.3.1.4 Query Optimisation

No specific query optimisation methods are applied.

In the next section, we apply FIOS to our financial data analysis scenario.

9.3.2 Accepting the XBRL Challenge

We successfully submitted implementations of FIOS to the XBRL Challenge 201230

and 201331. For evaluation, we first describe the most current implementation of FIOS,
then a case study applying FIOS to the company performance analysis scenario.

29http://linkedscience.org/tools/sparql-package-for-r/, last accessed on 2014-10-26.
30See http://xbrl.us/research/appdev/Pages/275.aspx, including screencast at http://youtu.be/e3XTh54O 5E,

last accessed 2014-11-07.
31See http://xbrl.us/research/appdev/Pages/423.aspx, including screencast at

http://www.youtube.com/watch?v=zLqsQ-YHMvk, last accessed 2014-11-07.

202

http://linkedscience.org/tools/sparql-package-for-r/
http://xbrl.us/research/appdev/Pages/275.aspx
http://youtu.be/e3XTh54O_5E
http://xbrl.us/research/appdev/Pages/423.aspx
http://www.youtube.com/watch?v=zLqsQ-YHMvk

9.3 XBRL Approach

From a FIOS start page32, analysts get information about the ETL process and an
overview of available entities: publishing companies (fios:issuer / 64 differ-
ent values), valid time periods (ical:dtstart / 234, ical:dtend / 223, and
dcterms:date / 5,937) financial concepts (subject / 3,781), and specific infor-
mation (segment / 58,395). From linked histograms, one sees that most observations
are from the time period between 2008 and 2013. Also, it becomes visible that FIOS
contains an evenly spread number of observations for each company. Also, analysts
get a good understanding of what financial concepts are published very often, e.g.,
us-gaap-2009:Revenues. Both FIOS ETL and analysis components run on a
Virtual Machine with QEMU Virtual CPU version 0.12.3 with 2673.330 CPU MHz
and 1GB memory and are described in the following:

ETL components. For the edgar33 and yahoo34 namespaces, we use the SEC Edgar
Wrapper (Edgarwrap) and the (Yahoofinancewrap35) that publish Statistical Linked
Data (implemented with the Google App Engine platform). Some information, e.g.,
XBRL calculation linkbases and footnotes currently are not considered, however, could
be extracted and published as Linked Data to provide additional interesting information
[OCB+13, BHH+11].

Yahoo companies link to Edgar companies using a Ticker-to-CIK mapping provided by
the Yahoo! Finance API. Edgar companies link to DBpedia companies via Freebase.
Datasets from SEC and Yahoo! Finance are linked by manually stating the equivalence
of dimensions, such as the company, the valid time period and the financial concept.
In cases where structures of datasets are less similar, approaches for data warehouse
integration could be applied [TC05].

We created a Java program fios-etl36 containing separate components for crawling data,
applying consolidation and normalisation algorithms to the collected data, and loading
the data into a triple store. As crawler, we used the Open Source software LDSpider
(Stable Version 1.1e).

For each run, fios-etl automatically fills a seed list with pre-selected companies and new
balance sheets from where LDSpider starts to crawl. We selected company URIs from
several industries, e.g., “finance, insurance and real estate” companies such as Visa and
Mastercard. New balance sheet URIs are taken from an SEC RSS feed.

32http://fios.linked-data-cubes.org/FIOS 2 0/Queries/, last accessed 2014-11-07.
33http://edgarwrap.ontologycentral.com/, last accessed 2014-11-07.
34http://yahoofinancewrap.appspot.com/, last accessed 2014-11-17.
35Developed within a Master thesis by Tobias Weller [Wel13], co-supervised by the author, available at

http://www.aifb.kit.edu/images/4/4b/Masterarbeit Dominik Siegele.pdf, last accessed 2014-12-17.
36https://code.google.com/p/fios-etl/, mainly developed by Tobias Weller, last accessed 2014-11-07.

203

http://fios.linked-data-cubes.org/FIOS_2_0/Queries/
http://edgarwrap.ontologycentral.com/
http://yahoofinancewrap.appspot.com/
http://www.aifb.kit.edu/images/4/4b/Masterarbeit_Dominik_Siegele.pdf
https://code.google.com/p/fios-etl/

9 Application and Discussion of Contributions

owl:sameAs links to Mastercard in Edgarwrap. From there, further owl:sameAs
links to Mastercard in DBpedia and links to SEC balance sheets would be followed.

We setup LDSpider to crawl with breadth-first strategy and a depth of the traversal
of 3, with a maximum number of 10 URIs crawled per round per pay-level domain.
Consolidation and normalisation algorithms we implemented as described for FIOS.
Experiments with differently-sized datasets show that consolidation time increases ex-
ponentially with the number of equivalence statements, normalisation time increases
linearly with the number of triples. Data was then bulk-loaded to an OpenLink Virtu-
oso Server v06.01.3127 running in Apache/2.2.14.

For our case study, we run fios-etl daily during the XBRL Challenge 2013 submission
time from 15 Feb 2013 to 27 Feb 2013 GMT. On average crawling, pre-processing and
loading took 25min; loading can be done offline and could further be accelerated using
differential loading. In total, we crawled 1,238,041 triples.

Furthermore, we execute a SPARQL CONSTRUCT query within fios-etl to link ob-
servations from several integrated datasets (datasets with the same structure) to a new
integrated multidimensional dataset “FIOS 2.0 Data Cube for SEC/YHOF” contain-
ing both observations from balance sheets and stock quote tables. This pre-processing
of creating a new dataset results in a multi-cube allowing to query over values from
balance sheets and stock quotes.

Moreover, we created integrity constraints using SPARQL ASK queries that can be
manually run, e.g., evaluating whether Earnings per Share for a company in fact is
computed by the ratio of net income and outstanding shares. Since we have not found
an automatic way of retrieving and validating integrity constraints, we have only im-
plemented few checks.

Analysis components. The SPARQL Templates with Visualisations for overviews and
domain-specific reports we implemented using the JavaScript library SPARK37. For
some templates, especially the company template, users may need to wait several min-
utes before all results are displayed, due to large number of separately issued SPARQL
queries. As Linked Data Browser we deployed the Open Source software Pubby. For
the OLAP Interface we use the Open Source OLAP client Saiku and our OLAP engine
OLAP4LD. The OLAP Interface shows long loading times due to a large number of
multidimensional elements such as financial concepts (3,781) that need to be loaded in
memory and displayed to the user.

In the remainder of this section, we show how FIOS fulfils the three user requirements
of our XBRL scenario.

37http://km.aifb.kit.edu/sites/spark/, last accessed 2014-11-07.

204

For example, LDSpider would start crawling at the URI of Mastercard in Yahoo! Fi-
nance Wrapper that provides links to stock quote datasets from 1990-01-01 to today and

http://km.aifb.kit.edu/sites/spark/

9.3 XBRL Approach

9.3.2.1 Integrating Data Across Sources (XBRL User Requirement 1)

In the following, we describe four exemplary analyses integrating entities across data
sources.

1) Background information analysis: The FIOS start page provides a link to analyse
companies in a SPARK company template. After inserting the CIK for a company in
the parameterised template, e.g., “1141391” for MASTERCARD INC, the user is pre-
sented with information from various sources, e.g., address and number of employees
from Wikipedia, and various overviews of available KPIs from SEC Edgar Database
and Yahoo! Finance Web API. Note, since companies from SEC, Yahoo! Finance
and DBpedia are explicitly stated as equivalent in RDF and consolidated, we have one
identifier for MASTERCARD INC that summarises all information from those data
sources; queries do not need to consider equivalent links and thus are easier to write.

2) Multi-company KPI analysis: On the SPARK company template for a company,
an overview of “Adjusted Closing Price” over time is given that interactively can be
extended with companies from the same industry via the SIC classification as provided
by SEC Edgar.

See Figure 9.9 for the adjusted closing price for MASTERCARD INC and other com-
panies in SERVICES-BUSINESS SERVICES, NEC (SIC) industry. We see that MAS-
TERCARD INC stock quotes always have been higher than VISA INC and COM-
SCORE INC stock quotes and at the beginning of 2013 were at an all-time-high with
over 500 USD per share.

Figure 9.9: Example screenshot in FIOS of multi-company KPI analysis of adjusted closing
price for Mastercard (top line), Visa (middle line), and Comscore (bottom line) in
industry SERVICES-BUSINESS SERVICES, NEC (SIC).

3) Cross-data-sources KPI analysis: On the SPARK company template we also show
an analysis taking into account “Earnings per Share” from SEC balance sheets and the
“Opening Price per Share” from Yahoo! Finance stock market data. Earnings per Share

205

9 Application and Discussion of Contributions

is considered the single most important variable in determining a share’s price, thus an
analyst may be interested to check for an obvious correlation for a company.

In Figure 9.10, we return for each reporting end date the maximum Earnings per Share
as published in quarterly or yearly balance sheets from the SEC together with the max-
imum opening stock market price of values between the valid start and end data of
the Earnings per Share financial ratio for MASTERCARD INC from Yahoo! Finance.
Since numbers are not normalised and SPARK visualisations would not allow several
separate y-axes, it is difficult to see correlations in the figure; however, the visualisation
illustrates the successful integration of values from SEC and Yahoo! Finance. An-
other interesting analysis is the % rate of increase (decrease) for comparable periods,
however, the SPARQL query and visualisations were not easily doable since the Edgar
Wrapper does not explicitly represent the sequence of balance sheets.

Figure 9.10: Illustration of integrating SEC and Yahoo! Finance data; screenshot from FIOS of
example cross-data-sources KPI analysis of Earnings per Share from balance sheets
(bottom line) versus price per share (top line) for MASTERCARD INC from stock
quotes.

Since balance sheets and stock quote tables are integrated, it suffices to ask for spe-
cific values for the financial concept dimension fios:subject to query for financial
concepts across the SEC Edgar Database and Yahoo! Finance.

As illustrated in Figure 9.11 for MASTERCARD INC, we can also query across differ-
ent taxonomy versions: If we browse from the SPARK company template to a “Balance
Sheet” template and click on “Total Assets”, the company’s Total Assets KPI over time
is shown in a diagram from 2009 to 2012 although balance sheets from 2011 use a dif-
ferent US-GAAP taxonomy version. For that, Total Assets from US-GAAP-2009 and
US-GAAP-2011 are stated as equivalent (either by consolidation or by adding UNION
graph patterns to SPARQL queries). We see that MASTERCARD INC only twice has
reduced its number of assets, at the end of 2009 (from 7.4B USD to 7.3B USD) and the
end of 2010 (from 8.8B USD to 8.5B USD), for instance indicating reduced profits and
a re-organisation.

206

9.3 XBRL Approach

Figure 9.11: Illustration of integrating different taxonomies; example screenshot of cross-
taxonomy analysis of Total Assets for Mastercard in FIOS.

9.3.2.2 Overview First, Zoom, Details on Demand
(XBRL User Requirement 2)

We demonstrate the capability of FIOS to show the same data using our three different
interfaces. As an example, we again visit from the SPARK company template the assets
over time for MASTERCARD INC as displayed in Figure 9.11.

From the top of the SPARK company template, via “Pubby Link to Data”, we can
then start browsing all information related to MASTERCARD INC in the Linked Data
Browser Pubby. For instance, we can browse to the balance sheets and there find the
single observations visualised in the line chart. For instance, see Figure 9.12 for a
screenshot of an observation found in Pubby with the total asset on 2011-12-31.

Figure 9.12: Linked Data browser view on total asset in 2011 for Mastercard.

From the SPARK company template, we can also visit the OLAP Interface, Saiku, to
create the same report as shown in the total asset line chart. For that, we create a
pivot table with the issuer dimension filtered by Mastercard on columns, date dimen-
sion on rows and filtered on subject dimension with us-gaap-2009:Assets and
us-gaap-2011:Assets on columns, as can be seen in Figure 9.13. The last row in
the pivot table shows the value also displayed in the Pubby example in Figure 9.12.

207

9 Application and Discussion of Contributions

Figure 9.13: OLAP Interface query on Total Assets over time for Mastercard.

Although the three provided interfaces are connected through their underlying data,
switching from one interface to another is difficult due to technical problems: SPARK
tables did not allow to show browseable links; SPARK diagrams often contained ag-
gregated or densely-displayed facts that are difficult to select for browsing; single facts
often were modelled as blank nodes in QB and thus are not directly referenceable; and
to browse a URI from FIOS, Pubby required adding “pubby” and converting “#” to
“%23”. One can think of implementations with a more seamless interlinking of inter-
faces.

9.3.2.3 Intuitively Create Own Reports and Analyses
(XBRL User Requirement 3)

We show that a user can create a typical report on integrated financial data with intuitive
OLAP operations: requesting a pivot table showing the Total Assets over time, similarly
as for the total asset line and pivot charts, but this time aggregated to the industry level
of Mastercard as visible in Figure 9.14.

208

9.3 XBRL Approach

Figure 9.14: OLAP Interface query on Total Assets over time for Business Services SIC.

Projection: By drag & drop of a measure to Columns, Rows or Filter fields in the
pivot table, a user can select a certain measure. Since our data cube only contains one
measure, projection is not necessary.

Dice: A user can filter for certain facts by clicking on the magnifier symbol of a di-
mension on the Columns or Rows fields. In our case, the user filters for certain subjects
(us-gaap-2009:Assets and us-gaap-2011:Assets) as well as certain com-
panies (Mastercard).

Slice: Any dimension that a user does not drag & drop to either Columns or Row fields
gets sliced, i.e., removed and aggregated over. Since QB does not provide means to de-
scribe aggregation functions, FIOS uses the AVERAGE function as default; for numeric
values the average returns an easy-to-understand and meaningful measurement.

Roll-Up: Any dimension listed on the left side can exhibit a hierarchy of several levels.
For instance, for the issuer dimension, either Company or SIC Level can be selected.
SIC Level groups companies by their SIC industry classification. In our example, we
rolled-up to SIC Level and filtered for the SIC of Mastercard, “SERVICES-BUSINESS
SERVICES, NEC”.

209

9 Application and Discussion of Contributions

Drill-Across: Although not required in our example, an analyst may request a pivot
table containing both observations from balance sheets and stock quote tables. The
Saiku interface only allows to select one dataset per pivot table; an explicit Drill-Across
can only be issued directly by using MDX and special-character-separated lists of data
cubes. Instead, the multi-cube “FIOS 2.0 Data Cube for SEC/YHOF” pre-defined and
created for FIOS contains both observations from balance sheets and stock quote ta-
bles.

9.3.3 Discussions and Lessons Learned

FIOS benefits from Semantic Web technologies in various ways: for instance, exist-
ing vocabularies such as QB and SKOS (based on OWL and RDFS) allow for intuitive
modelling and integration of balance sheets from the SEC Edgar Database, stock quotes
from the Yahoo! Finance Web API as well as company metadata from Wikipedia/DB-
pedia; the Linked Data principles ensure access to data in a standard and modular way.
Since the schema of RDF is flexible, new data can easily be added by allowing the
crawler to reach further entities. SPARQL can be used for quality checks and is suffi-
ciently expressive for background information, multi-company and cross-data-sources
analyses. Formal semantics such as explicit equivalence statements simplify access via
entity consolidation. Three interfaces with different purposes use the same backend:
any data that is added to the triple store can directly be visualised in SPARQL tem-
plates, browsed using the Linked Data Browser and queried using the OLAP Interface.
Consequently, we argue that Semantic Web technologies allow a continuous integra-
tion of new data. With more heterogeneous datasets and frequent addition and updates
of data sources, FIOS will develop its full potential if research resolves the following
challenges:

Design interfaces and visualisations sufficiently specific to provide added value
and generic to have new data immediately considered. If new information such as
from text or structured databases, e.g., subsidiary relationships, product classifications,
and organisational structures, are continuously added to FIOS, specialists are needed to
adapt or create new SPARQL templates; the Linked Data Browser provides data only on
a triple level; and the OLAP Interface requires integrated QB datasets such as in multi-
cubes. Ideally, new data sources seamlessly and without much effort result in extended
visualisations, e.g., providing more detailed provenance information, adding new data
points or allowing additional interaction capabilities such as roll-up and drill-across.

Increase coverage and quality of information by continuously integrating sources.
Integrity constraint checks need to be manually extracted and run. There may still
be errors in the data, e.g., companies that share CIKs or ticker symbols because of a
merger. Debreceny et al. [DdAF+10] have shown that some information may be de-
rived only in a best-guess fashion. New data sources promise to reduce data quality

210

9.3 XBRL Approach

issues if integrated to one well-interlinked model. Then, the same KPIs can be cal-
culated in different ways to identify differences between data sources, e.g., DBpedia
“Operating Income” and the last yearly balance sheet net income loss. FIOS would
need to consider uncertainty, to draw declarative knowledge from experts or other data
sources, and to describe both static and dynamic relationships between financial data.
One possible solution may be Complex Correspondences (Chapter 8).

Improve query processing performance. Although currently no issue in FIOS, pre-
processing and integration will take too long for continuously updated and larger data
sources. FIOS’ current performance bottlenecks are large numbers of separately is-
sued SPARQL queries and large numbers of multidimensional elements to load into the
OLAP user interface. In more complex data integration and analysis scenarios opti-
misations such as parallelisation will be required. For instance, analytical queries that
scan a large number of observations, contain filters of varying selectivity and compute
aggregation functions on schema-flexible and heterogeneous data require specific data
processing optimisations such as possible with RDF Aggregate Views(Chapter 7).

9.3.4 Related Work

We distinguish other financial data integration and analysis applications and related
work about modelling XBRL data using Semantic Web technologies.

The Rhizomik Semantic XBRL demo [GG10] ties RDF representations of XBRL close
to the original XML data which make mixing with other data sources difficult. The
Business Intelligence Cross-lingual XBRL (BIXL) demonstrator [OCB+13] focuses
on retrieving facts from unstructured text in filings as well as a multi-lingual interface,
however does not consider data integration of XBRL balance sheets with stock quotes.
Midas [BHH+11] implements a pipeline similar to FIOS without using Semantic Web
technologies. Their main focus lies in extracting and linking of information about enti-
ties such as company and key people from semi-structured XML documents. However,
it is unclear to what extent information from SEC and FDIC sources were integrated
and what efforts would be needed to add new data sources such as Wikipedia.

Although judges saw potential, FIOS did not win the XBRL Challenge. Other sub-
missions, in particular the winners – Calcbench and Sector3 – were more robust (e.g.,
FIOS is limited to certain browsers), provide keyword search or filtering for companies
(e.g., “revenue higher than”), include a larger number of companies and filings (also
non-balance-sheets), exhibit short update intervals with new filings (10-15min) and of-
ten provide MS Excel exports for further processing and analysis (Saiku also provides
that, but this feature was not used).

In summary, although important for a holistic view on companies, current systems do
not focus on integration of different data sources: whereas multi-company KPI anal-
ysis with an Excel export often is possible, background information, such as from

211

9 Application and Discussion of Contributions

Wikipedia, rarely is embedded in the interfaces. Calcbench shows the actual stock
quote of a company, yet, no other system allows for comparison of balance sheet KPIs
with other numbers such as stock quotes over time. If systems find correspondences be-
tween companies or financial concepts, it is unclear whether the matching is hard-coded
or flexibly represented with a formalism such as equivalence statements.

Several recent papers have proposed Semantic Web technologies as a suitable way to
manage and model XBRL data. Wenger et al. [WTB11] consider the interoperability
problems of different taxonomy versions, but apart from proposing the criteria they
do not evaluate their approach. Bao et al. [BRLD10] try to fully keep the semantics
of XBRL in an RDF/OWL representation; however, the authors do not describe the
benefits of their representation in realistic case studies as done with FIOS. Similar to
our work, Spies [Spi10] suggests to use RDF for modelling and data warehouses to
analyse XBRL data. However, these works did not implement their solutions and did
not demonstrate the benefits of using Semantic Web technologies in realistic use cases.
Our FIOS tool shows the applicability and usefulness of modelling XBRL filings and
taxonomies using the RDF Data Cube vocabulary.

9.3.5 Conclusions

We have described the Financial Information Observation System (FIOS) that mod-
els XBRL data using the RDF Data Cube Vocabulary; consolidates financial data for
background, multi-company, and cross-data-sources KPI analysis; and provides intu-
itive and exploratory analysis interfaces. The benefit of Semantic Web technologies
are a flexible schema, standard access, expressive queries and formal semantics. Main
challenges to scaling-up those benefits in continuous integration scenarios are to design
interfaces sufficiently specific to provide added value and generic to have new data im-
mediately considered; to increase coverage and data quality with added data sources;
and to optimise analytical operations on flexible schemas and heterogeneous data. In
future work we are interested to investigate such challenges and to apply the FIOS
approach to other domains such as medical decision support.

9.4 OGD Approach

After previously having introduced the Open Government Data (OGD) scenario (Sec-
tion 2.3), we present a Linked-Data-based approach that partly fulfils the following user
requirements:

• User Requirement 1: Citizens need to explore any of the Governmental Statistics
datasets published on the Web in pivot tables.

212

9.4 OGD Approach

• User Requirement 2: Citizens want to have confirmed important statistical indi-
cators by as many datasets from the Web as possible.

Current approaches [SMDMM+12, Hoe13, MML+13] do not allow OLAP-like anal-
yses on general datasets. In the next section, we present the Linked Data Cubes Ex-
plorer (LDCX) based on OLAP4LD and allowing the exploration of governmental
statistics.

LDCX loads relevant data about datasets to an embedded triple store with SPARQL
endpoint using our directed crawling strategy, validates the modelling, and executes
metadata and analytical queries over the SPARQL engine.

In Section 9.4.2, for evaluation and demonstration, we present a user and performance
study of LDCX. After describing related work in Section 9.4.3, we conclude in Sec-
tion 9.4.4.

9.4.1 Linked Data Cubes Explorer (LDCX)

As illustrated in Figure 9.15, the Linked Data Cubes Explorer (LDCX) consists of sev-
eral components: an HTML webpage using the JavaScript library xmla4js to connect
via XMLA to an OLAP engine and to issue MDX queries (top of figure); a mediator
olap4j-xmlaserver38 to provide an XMLA interface for any olap4j-based OLAP engine
such as OLAP4LD; and OLAP4LD to answer metadata and OLAP queries over Statis-
tical Linked Data (bottom of figure).

In the following, we explain the modelling and mapping of data cubes, as well as the
query processing and query optimisation over those data cubes in LDCX.

Modelling of data cubes. LDCX gets as input a comma-separated list of QB data-
set URIs. Every single dataset is considered a data cube according to the MDM-QB
Mapping. Implicitly, all selected data cubes form the global cube. Queries over the
global cube will be interpreted as a nested set of Drill-Across operations generating a
multi-cube according to the OLAP-to-SPARQL Algorithm.

Mapping of data cubes. Explicitly shared dimensions and dimension members such
as between different datasets of Eurostat do not require additional mappings and are
directly integrated in the global cube.

For implicitly shared dimensions and members LDCX finds equivalence owl:sameAs
links directly in the RDF graphs of resolved URIs while loading the data cubes, e.g.,
when loading allbus:geo.rdf#00, LDCX finds mappings between Germany in
Eurostat and Gesis.
38Part of olap4j technology stack, https://github.com/olap4j/olap4j-xmlaserver, last accessed 2014-11-07.

213

https://github.com/olap4j/olap4j-xmlaserver

9 Application and Discussion of Contributions

Figure 9.15: Architecture of the Linked Data Cubes Explorer.

Complex mappings between data cubes would allow LDCX to automatically increase
the size of the global cube by computing conversions such as from “Million Euro”
to “Euro” and compound measures such as the GDP Per Capita. So far, there is no
RDF representation for such conversion and merging correspondences (Chapter 8); if
a representation is adopted by publishers, LDCX will be able to find such mappings
while loading the data.

Complex Correspondences – though implemented in OLAP4LD – are not activated in
LDCX since even with a small number of correspondences, the global cube cannot be
built sufficiently fast for ad-hoc and interactive analysis.

Query processing over data cubes. Along our Okun’s law example from the intro-
duction, we explain how the three step interface allows for exploring datasets: 1) A
user selects one or more comma-separated URIs of qb:DataSets. With “Explore Data-
set. . . ”, metadata queries are issued to populate the user interface; Figure 9.16 shows a
screenshot of how the URIs of the datasets for real GDP growth rate and employment
growth are inserted as a comma-separated list.

2) The user selects measures to be displayed in the pivot table cells; in our case for each
dataset the average measure is chosen. 3) The user selects dimensions to add member
combinations to rows and columns of the pivot table and clicks “Update Table. . . ”.

214

9.4 OGD Approach

Figure 9.16: First step in three-step interface of LDCX; URIs for Real GDP Growth Rate and
Employment Growth are inserted as a comma-separated list.

LDCX automatically queries every dimension on the most granular level since multi-
level hierarchies are rarely used and users can still slice dimensions to view datasets on
a higher aggregation level. In our example, as shown in a screenshot in Figure 9.17, the
measures are to be shown in the columns and the dates (years) in the rows.

Figure 9.17: Third step in three-step interface of LDCX; measures are to be displayed in the
columns, years in the rows of the pivot table.

The results of our example query are depicted in Figure 9.18. On top of the values
in the pivot table, the correlation between the real GDP growth rate and employment
growth can be computed to confirm or oppose Okun’s law.

215

9 Application and Discussion of Contributions

Figure 9.18: Query result in three-step interface of LDCX; real GDP growth rate and employ-
ment growth are displayed in pivot table as a basis for correlation analysis (left and
right column, column names are concatenations of dataset URI and used aggrega-
tion function).

For LDCX we use our Linked Data Cubes Engine for OLAP4LD that uses an embedded
Sesame triple store for query processing. EmbeddedSesameEngine39 implements the
MDM-QB Mapping.

To evaluate analytical queries, for a given MDX query created by the interface, LDCX
implements our OLAP-to-SPARQL Algorithm, including drill-across operations to join
the results.

Before executing a metadata or analytical query with SPARQL, the EmbeddedSe-
sameEngine executes our directed crawling strategy and automatically loads rel-
evant data for multidimensional datasets into an embedded Sesame RDF store. For
that, EmbeddedSesameEngine first resolves all queried dataset URIs, then in turn
asks SPARQL queries to its store for additional URIs to resolve and load; Embedded-
SesameEngine resolves all instances of concepts defined in the QB specification in the
order they can be reached from the dataset URI, from qb:DataStructureDefini-
tions over qb:ComponentProperty to single qb:Concepts. Since there is no
standard way to publish QB observations, the engine assumes that the observations are
represented as blank nodes and stored at the location of the dataset URI.

This directed crawling has the advantage that necessary data is found quickly and not
all information has to be given in one location, but can be distributed and reused,
e.g., the range for the ical:dtstart dimension is provided by its URI. Embedded-
SesameEngine ensures that the entire QB dataset is loaded and well-formed according
to the QB specification by executing SPARQL ASK queries for integrity constraints
defined by the specification.

39https://github.com/bkaempgen/olap4ld/blob/master/OLAP4LD-trunk/src/org/olap4j/driver/olap4ld/
linkeddata/EmbeddedSesameEngine.java, last accessed on 2014-10-22.

216

https://github.com/bkaempgen/olap4ld/blob/master/OLAP4LD-trunk/src/org/olap4j/driver/olap4ld/linkeddata/EmbeddedSesameEngine.java
https://github.com/bkaempgen/olap4ld/blob/master/OLAP4LD-trunk/src/org/olap4j/driver/olap4ld/linkeddata/EmbeddedSesameEngine.java

9.4 OGD Approach

Those SPARQL ASK queries and implicitly shared dimensions and members require
the SPARQL engine to evaluate OWL semantics. For that, EmbeddedSesameEngine
uses the equivalence duplication strategy and materialises implicit information with
repeatedly executed SPARQL INSERT queries.

Query optimisation. Some integrity constraints require to go through all observations,
e.g., when checking that no two observations in the same qb:DataSet may have
the same value for all dimensions (IC-12). Therefore, EmbeddedSesame allows to set
a maximum number of triples for which those more complex integrity constraints are
checked.

Also, LDCX currently loads anew the relevant data of queried data cubes for every
query. This is because we expect that in theory data changes frequently in the original
source and because we do not want to fill the repository with data that may not be
needed anymore. Since historic data often does not change and different users possibly
issue similar queries, heuristics-based performance optimisations would be possible.

9.4.2 Exploring Governmental Statistics

A demonstration system of LDCX is available online40. To show that we successfully
applied LDCX, we first describe a user study to evaluate the usability and usefulness
of LDCX. Then we describe a performance evaluation to gain an understanding of
possible performance bottlenecks of LDCX.

To confirm the usefulness of LDCX, we have put LDCX online and have asked 20
business engineering students at the Karlsruhe Institute of Technology (KIT) to fill in
an online questionnaire41 that is adapted from the Computer System Usability Ques-
tionnaire (CSUQ) [Lew95]. With part 1 – a set of tasks that students had to solve using
the system – we want to investigate whether participants can successfully use LDCX
for data analysis and ensure that participants use all functionality of LDCX. With part 2
– a set of statements for which students had to indicate how much they like the system
(from strongly agree to strongly disagree, 1 to 7) – we intend to assess the usability of
LDCX and identify potential usability issues.

To increase the probability of students participating in the study, we have only used
11 questions – out of 19 from the original CSUQ – most relevant to our system. For
instance, the expected results from the question “The interface of this system is pleas-
ant.” for LDCX are already covered by other questions, e.g., “I feel comfortable using
this system.” and “I like using the interface of this system.”. Also the question “The
information is effective in helping me complete my work.” does not fit the evaluation’s

40http://ldcx.linked-data-cubes.org/projects/ldcx/, last accessed 2014-11-07.
41https://docs.google.com/forms/d/1J721 e eCCHjghLny1ZPoeb4X5g2h3RAetK7te Vw6I/viewform, last

accessed on 2014-11-07.

217

http://ldcx.linked-data-cubes.org/projects/ldcx/
https://docs.google.com/forms/d/1J721_e_eCCHjghLny1ZPoeb4X5g2h3RAetK7te_Vw6I/viewform

9 Application and Discussion of Contributions

context of having students complete tasks that they would not normally execute. Hav-
ing a reduced amount of questions and participants not experienced or familiar with
the type of tasks is a limitation to our evaluation; still, as a tool targeting citizens for
exploring Governmental Statistics, we expect the results to give an impression of the
usability and usefulness of LDCX.

Eight students have taken part in the evaluation. According to the results of the first
part of the evaluation, overall, students were able to fulfil the tasks. For instance, one
task was to answer the following question: “What was the average GDP per capita in
PPS for Germany?”. All students were able to understand the three-step interface and
the visualisation as pivot tables (Task 1, 2, 3, 4, 8); selecting datasets (Task 5, 8, 9,
10); projection (Task 1, 7); and slice (Task 5, 6, 7). For Task 8, 10, 11, two students
missed to further drill-down to specific stock market and balance sheet values which
probably was because the respective dimensions were not labelled intuitively. For the
more complex Task 10 and 11, three students did not wait long enough for the answers.
Only one participant could name the failed integrity constraint in Task 9, all others only
noticed the general error message. This was expected since those students were not
familiar with the RDF Data Cube Vocabulary.

The second part of the user study evaluation gave a more detailed idea of how usable
the students found LDCX: We computed an overall CSUQ score by averaging over all
answers. An overall score of 2.5 shows that students were satisfied with LDCX. Stu-
dents mentioned that they understood the three-step interface within minutes and found
the system easy to use. Worst scores are given in questions related to error messages
(Feedback 6) and performance of the system (Feedback 3 and 10). Also, apparently,
the search for datasets can be improved: students sometimes chose the wrong dataset
(Task 9) and complained about the copy-paste of URIs needed to select a dataset.

Since performance of OLAP systems is crucial, we investigated possible bottlenecks of
LDCX in a performance evaluation. We logged elapsed query times in ms per query
processing step for a specific workload and computed the average over 5 runs of the
same query after a warm-up.

As query processing steps we selected all steps related to our research contributions
implemented in OLAP4LD. Therefore, the time to issue queries and to process the
results in xmla4js and olap4j-xmlaserver we do not investigate.

More concretely, we are interested in the time 1) for loading and validating a dataset
(load URIs, run normalisation, run integrity constraints), 2) generating a logical query
plan (parse MDX, transform MDX parse tree and run metadata queries after loading
dataset) and 3) executing the logical query plan and returning the results in the Linked
Data Cubes Engine (generating and executing physical query plan, caching results).

218

9.4 OGD Approach

The workload includes 1) all datasets from the user study to consider differently sized
(from around 100 to 10,000 triples and 10 to 1000 observations) and distributed (static42

or dynamically created files) datasets and 2) for each dataset a slice and drill down
query testing the performance of the system regarding different aggregation levels. For
every slice query, a pivot table was queried that shows the first dimension on the rows,
all measures on the columns, and slices all other dimensions; for every drill down
query, a pivot table was queried that uses a crossjoin of all dimensions on the rows and
all measures on the columns. More details about the workload can be found on our
evaluation page43. We run the experiments from a Java test case issuing XMLA queries
directly on the LDCX XMLA server deployed on a VM in an OpenNebula framework
with QEMU Virtual CPU version 0.9.1; 1x CPU with 2266.808 MHz; 32 KB cache
size; and 4GB Memory. Figure 9.19 shows the results.

Figure 9.19: Elapsed query time in ms per query processing step for queries on datasets ordered
by increasing number of triples; loading and validating dataset (bottom part of every
bar) and generating query plan (middle part of bars) are always shown; executing
query plan (top part of bar) often is too small to be displayed.

As expected, we see that dynamically generated datasets (Yahoo, Smart) take much
longer to load and validate than static datasets (Ssb, Eurostat, Edgar). For the static
datasets loading and validating increases with the size of the dataset. Because of a large
number of metadata queries, for larger datasets LDCX needs more time to generate the
query plan. Those many metadata queries to the Linked Data Cubes Engine are needed
to search for the multidimensional element of an identifier in the MDX query. To over-
come this bottleneck, we could include path information in identifiers to faster retrieve

42RDF files uploaded to Google Code source repository of OLAP4LD at
olap4ld.googlecode.com/git/OLAP4LD-trunk/tests/, last accessed 2014-11-07.

43http://www.linked-data-cubes.org/index.php/LDCX Evaluation for ESWC 2014 Demo, last accessed on
2014-11-13.

219

olap4ld.googlecode.com/git/OLAP4LD-trunk/tests/
http://www.linked-data-cubes.org/index.php/LDCX_Evaluation_for_ESWC_2014_Demo

9 Application and Discussion of Contributions

an element from the multidimensional model. Executing the query plan requires an
OLAP query to the Linked Data Cubes Engine which takes longer for larger datasets
(Eurostat, Edgar). We note that aggregated slice queries take less time for executing
the query plan which may be because they require to transmit and cache fewer results.
Also, we note that slice queries always take more time for loading and validating the
dataset, although both slice and drill down query load the same QB dataset. The server
(Google Code repository) from where the datasets are loaded seems to return results
faster if asked in short intervals repeatedly for the same data. The Edgar slice query
takes more than 20,000ms, mainly for loading; to make the other bars more visible in
the diagram, we have fixed the y-axis to 8,000ms.

At the time of conducting the user study and performance evaluation, the drill-across
operator was not available in LDCX. However, we demonstrated its usefulness for com-
paring values between datasets in a demonstration session at ESWC44. Since not all
equivalence links can be found in Statistical Linked Data, we manually added such links
to LDCX via a hard-coded list of file URIs and via direct insertion of owl:sameAs
triples.

We allowed visitors to validate and explore governmental statistics with the Linked
Data Cubes Explorer (LDCX). We showed how changes in modelling are propagated
to LDCX by live modifying a QB dataset published via the platform Pastebin45.

Also, we showed common modelling errors in existing QB datasets such as missing
dimension rdfs:range or qb:codeList, no resolvable URIs, no data structure
definition, and errors in the data structure definition.

In summary, according to the user study, the system seems usable and robust; improve-
ments are possible regarding the performance, error messages and selection of datasets.
The performance evaluation indicate that the main bottlenecks of LDCX lie in loading
the dataset and in many metadata queries needed to identify elements in queries.

The Linked Data Cubes Explorer (LDCX) can partly fulfil our user requirements. The
three-step-interface allows citizens to explore any of the Governmental Statistics datasets
published on the Web (OGD User Requirement 1); LDCX accepts as input several
datasets from which a Multi-Cube is generated using Drill-Across and values from sev-
eral cubes can be compared (OGD User Requirement 2). The requirement is only
partly fulfilled since the computation of compound measures and the consideration of
conversion and merging relationships between datasets is not activated in LDCX since
building and querying the global cube takes too long for exploratory analysis.

44See paper [KH14] and website describing demo at
http://www.linked-data-cubes.org/index.php/OLAP4LD Demo at ESWC 2014, last accessed
2014-10-28.

45http://pastebin.com/raw.php?i=839G2u72#ds, last accessed on 2014-11-05.

220

http://www.linked-data-cubes.org/index.php/OLAP4LD_Demo_at_ESWC_2014
http://pastebin.com/raw.php?i=839G2u72#ds

9.4 OGD Approach

9.4.3 Related Work

The most common format to share datasets is XML. Other representations such as
the Google Dataset Publishing Language, SDMX and XBRL require specific tools or
focus on specific domains and provide few possibilities to link, and less-widely adopted
mechanisms to access data over the Web.

Applications are available that, similar to LDCX, try to hide most RDF-specificities
from the user to analyse a QB dataset. In the stats.270a.info analysis platform [CAR13]
users can select two datasets from a fixed set for integration on the time and location
dimension and for finding correlations in a scatter plot. McCusker et al. [MML+13]
present qb.js to analyse the effect of tobacco policies on consumption. Though present-
ing useful systems to analyse QB datasets in specific data integration scenarios, it is
unclear how well such approaches can be applied to more general use cases. Other sys-
tems provide more general analyses: Salas et al. [SMDMM+12] present CubeViz that
offers faceted-browsing and visualizations of QB datasets but no OLAP analysis and
integration of datasets via Drill-Across. The authors mention that in a use case around
Open Government data in Brazil before the data could be analysed with CubeViz, data
pre-processing took a lot of effort, e.g., modelling the data as cubes.

Hoefler [Hoe13] present the CODE Visual Analytics Wizard that automatically sug-
gests appropriate chart types for QB datasets. LDCX automatically loads and checks
the modelling of datasets and allows exploration of general datasets in pivot tables.
Although the interface of LDCX is not as nice as of other systems, we argue that
OLAP4LD reduces the costs of building analysis applications since OLAP clients,
SPARQL engines as backends of Linked Data Cubes Engines, and existing Statistical
Linked Data sources are separated and can be reused.

9.4.4 Conclusions

We applied OLAP4LD for the Linked Data Cubes Explorer (LDCX) that – different
from current tools for analysing QB datasets – automatically starts an ETL process to
load and validate necessary data for a query and allows users to explore arbitrary QB
datasets in pivot tables via OLAP operations. According to a user study with eight
participants, the system is robust and usable, improvements are possible regarding per-
formance, error messages and selection of datasets. A performance evaluation revealed
bottlenecks in loading the dataset and in querying for metadata elements.

Drill-across was not included in the evaluation; in general, from our experiences with
LDCX we believe that users – for reasons of usability and intuition – do not want
to manually select the right datasets in which to explore the facts. For future work,
more potential we see if LDCX automatically builds and allows users to explore the
global cube, a multi-cube generated from a large portion of all datasets available as

221

9 Application and Discussion of Contributions

Statistical Linked Data. For flexible and efficient building and querying, Conversion
Correspondences and RDF Aggregate Views may be necessary.

9.5 Discussion of Contributions

In this section, we discuss whether our contributions can help to fulfil the general re-
quirements derived from our scenarios.

Table 9.3 shows an overview of general requirements where “X” indicates a contri-
bution helping to fulfil a requirement. Every requirement is covered by at least two
contributions.

Table 9.3: Requirements coverage analysis with “X” indicating research contributions (in
columns) applicable to fulfil requirements (in rows).

Requirement Contribution

M
D

M
-Q

B
M

ap
pi

ng

O
L

A
P-

to
-S

PA
R

Q
L

A
lg

or
ith

m

R
D

F
A

gg
re

ga
te

V
ie

w
s

C
om

pl
ex

C
or

re
sp

on
de

nc
es

Flexibility
R1: Integrate different data formats and models X X
R2: Consider different identifiers for the same entities X X
R3: Store provenance trail of datasets X X
R4: Integrate datasets of different levels of detail X X X
R5: Consider datasets with different units of measurements X X X
R6: Merge datasets for compound measures X X
Efficiency
R7: Scale to large datasets X X X
R8: Scale to large number of datasets X X
R9: Efficiently filter for values with varying selectivity X X
R10: Efficiently execute aggregation functions and formulas X X X

222

9.5 Discussion of Contributions

In the following, we give more detail on how solving Requirement R1 to R6 can be
supported by our contributions.

R1: Integrate different data formats and models. The MDM-QB Mapping and
OLAP-to-SPARQL Algorithm help to integrate different data formats and models.

In every scenario, we were able to develop or use Linked Data wrappers to make
datasets available to our systems as Statistical Linked Data. We used the MDM-QB
Mapping to automatically map Statistical Linked Data to data cubes, multi-cubes, and
the global cube.

As part of the MDM-QB Mapping, we also applied our definition of relevant data and
implemented the directed crawling strategy. Correct modelling of data cubes was eval-
uated in the Financial Information Observation System (FIOS) and the Linked Data
Cubes Explorer (LDCX).

The OLAP-to-SPARQL Algorithm was successfully applied in each of the scenario to
allow queries over datasets originally represented in different data formats and models.
For the SMART Knowledge Base (SKB) and FIOS, the Open Virtuoso triple store, for
LDCX an embedded Sesame triple store were queried using SPARQL.

R2: Consider different identifiers for the same entities. The MDM-QB Mapping
and OLAP-to-SPARQL Algorithm were helpful to integrate datasets that used different
identifiers for identical dimensions and dimension values. Our solution proposes to
use OWL semantics to evaluate mappings between dimensions and dimension values
in Statistical Linked Data.

We used different ways to evaluate OWL equivalence semantics. In SKB, we used the
reasoning capabilities of Open Virtuoso. In FIOS, we used entity consolidation. In
LDCX, we used the equivalence duplication strategy with SPARQL INSERT queries
over the Sesame triple store.

Equivalence statements such as owl:sameAs links were already published as Linked
Data or manually added as RDF to the respective system.

R3: Store provenance trail of datasets. The OLAP-to-SPARQL Algorithm and RDF
Aggregate Views execute OLAP queries using SPARQL engines and as such do not
require a fixed schema such as a star schema in an RDBMS. Therefore, such approaches
allow for storing arbitrary provenance information with the datasets.

Provenance information typically is modelled with triples outgoing from a QB dataset
or observation URI. For instance, the publisher and the licence are typically stored
with the dataset URI. Provenance information can be captured in different ways, e.g.,
directly from ETL tools generating datasets (Freitas et al. describe a possibility to track
provenance within Java programs [FKaGO+12]).

Provenance information also can be attached to entities to which datasets and obser-
vations refer. For instance, the triple store for SKB would not only contain numeric

223

9 Application and Discussion of Contributions

data but also background information about locations, indicators, and scenarios added
to Dropedia. Although not tried for SKB, background information such as the formula
for an indicator could directly be displayed in the OLAP client (Diamantini and Potena
show background information in pivot tables [DP10]).

In FIOS, we allow business analysts to first explore datasets using an OLAP inter-
face and second to zoom into single datasets with a Linked Data browser. Also, FIOS
presents background information from Wikipedia and Freebase. The directed crawling
and the interface of LDCX could be extended to also load and visualise other Linked
Data sources, e.g., reachable via rdfs:seeAlso.

R4: Integrate datasets of different levels of detail. The MDM-QB Mapping, OLAP-
to-SPARQL Algorithm and RDF Aggregate Views allow for integrating datasets of
different granularity.

Numeric data can be put on a lower granularity with the slice operation reducing the
dimensionality of a data cube, and the roll-up operation aggregating facts along multi-
level hierarchies. The MDM-QB Mapping ensures summarisability of lean datasets
with no redundant facts and meaningful chosen aggregation functions.

For instance, in LDCX measures from several data cubes with different dimensions
(e.g., the Unemployment and GDP Growth data cubes) can be compared if non-shared
dimensions are sliced.

R5: Consider datasets with different units of measurements. The MDM-QB Map-
ping, OLAP-to-SPARQL Algorithm and Complex Correspondences support querying
of datasets with different units of measurements.

Units of measurements can be modelled as dimensions of data cubes such as estat-
wrap:unit with members such as eurostat:dic/unit#EUR.

Aggregating over values with different units seldom makes sense and our approach
assumes users to choose meaningful aggregation functions. Using the MDM-QB Map-
ping and the OLAP-to-SPARQL Algorithm, data cubes can be fixed to a certain unit
via the Dice operation.

Although not applied in the scenarios, Conversion Correspondences would allow for a
more formal specification of units as a basis for integration. For instance, there may
be many scientific units in hydrology and many different currencies in financial data
analysis scenarios.

In SKB, for instance, conversion correspondences could be described in Dropedia using
forms and from there retrieved by OLAP4LD.

R6: Merge datasets for compound measures. Conversion and Merging Correspon-
dences allow for resolving more complex semantic conflicts than different identifiers

224

9.5 Discussion of Contributions

for identical dimensions and dimension values. Whereas Convert-Cube allows to trans-
form single dimension values such as units, Merge-Cubes allows to combine facts from
heterogeneous datasets.

Although not applied to the scenarios, the MDM-QB Mapping provides the possibil-
ity for compound measures using MDX and given an OLAP engine capable of such
functionality (an example we have shown in the evaluation of the MDM-QB Mapping
where we computed the “Percentage of Nos”).

Increasing the size of the global cube using Complex Correspondences seems promis-
ing in the scenarios but due to a focus on exploratory analysis was not applied; for
instance, indicators could be automatically computed in SKB, and the number of an-
swers for the GDP Per Capita increased for LDCX but the pre-computation of the global
cube would take a lot of time.

Similar as for conversion correspondences, in SKB, merging correspondences could be
described in Dropedia using forms and from there retrieved by OLAP4LD.

Next, we discuss our contributions with respect to Requirement 7 to Requirement 10
on efficiency of approaches.

R7: Scale to large datasets. The MDM-QB Mapping allows for reusing existing
OLAP engines that are developed for queries over large data warehouses. For in-
stance, OLAP engines over relational databases and star schemas perform well with
large datasets as we have shown in the Star Schema Benchmark.

Furthermore, RDF Aggregate Views are introduced for optimising queries over single
large datasets.

Although materialised views were not used in the scenarios, query optimisations will
be important in the future, especially if a materialised global cube is to be queried.

For instance, we were not able to explore the GDP per Capita from the World Bank46

and the International Monetary Fund47. Both datasets contain values about the GDP
or the population and could be used to compute the GDP per Capita. However, the
World Bank dataset would link to a file with 2GB of RDF data (in Turtle format) with
all observation URIs, the IMF dataset would link to a file with 240MB of RDF data
(in Turtle) with the observation URIs. After loading such large files one still needs to
resolve every single observation. With 1,285,448 observations in the IMF dataset alone
and assuming 500ms per look-up, it will take more than a week to load all observations
to a triple store. One remedy would be to provide data dumps in RDF that can be
reached via properties, e.g., based on the VoiD vocabulary.

Larger datasets would further exacerbate bottlenecks of LDCX such as integrity con-
straint checks that require to go through many observations and the repeated loading of

46http://worldbank.270a.info/dataset/GDPPCKN, last accessed on 2014-08-18.
47http://imf.270a.info/dataset/PGI, last accessed 2014-11-18.

225

http://worldbank.270a.info/dataset/GDPPCKN
http://imf.270a.info/dataset/PGI

9 Application and Discussion of Contributions

data cubes into the triple store. Also, we expect the equivalence duplication strategy to
become a bottleneck if many mappings are available.

R8: Scale to large number of datasets. The MDM-QB Mapping and the OLAP-to-
SPARQL Algorithm allow queries over several datasets. For SKB, we created a multi-
cube “SMART-DB-DSD” with more than 100 data cubes from 27 analyses datasets in
Dropedia, and from sensor datasets with 132 indicators and 6,517 locations. For FIOS,
we created a multi-cube “FIOS 2.0 Data Cube for SEC/YHOF” with more than 100
data cubes from daily stock quote tables and quarterly and yearly balance sheets since
2009. Assuming sufficient amount of memory for the embedded Sesame triple store
and time for downloading the data, in LDCX, multi-cubes with as many data cubes as
available and relevant for a use case can be queried.

R9: Efficiently filter for values with varying selectivity. The MDM-QB Mapping
allows for reusing existing OLAP engines that are able to efficiently execute the Dice
operation. RDF Aggregate Views contain smaller number of facts than the original
dataset and therefore allow for more efficient execution of filter operations.

In our scenarios, we did not use existing OLAP engines and RDF Aggregate Views
but applied our OLAP-to-SPARQL Algorithm over a SPARQL engine that executed
filtering sufficiently fast.

R10: Efficiently execute aggregation functions and formulas. Similar as for the filter
operation in R9, the MDM-QB Mapping allows for reusing existing OLAP engines that
are able to efficiently execute the Slice and Roll-Up operations. RDF Aggregate Views
pre-compute aggregated facts and contain smaller number of facts than the original
dataset and therefore allow for more efficient execution of aggregation operations.

Also, similar as for the filter operation, we did not use existing OLAP engines and RDF
Aggregate Views in our scenarios but applied our OLAP-to-SPARQL Algorithm over
a SPARQL engine that showed sufficiently fast with respect to aggregations.

In summary, we demonstrated that our contributions are useful to fulfil the general
requirements in our scenarios. Statistical Linked Data showed useful for data integra-
tion and analysis scenarios. Standard and modular access mechanisms as well as stan-
dard vocabularies helped coordinating the publication of different data sources. The
schema-flexibility of RDF proved useful to crawl and load data. SPARQL 1.1 allowed
sufficiently expressive queries such as for integrity constraint checks to ensure that data
is correctly modelled. Formal semantics provide various ways to evaluate implicit in-
formation such as the equivalence between identifiers. Also, OLAP analysis showed a
useful interaction paradigm over multidimensional datasets from the Web. Given one
global cube for exploration, our experiences suggest that domain experts can express
their information need and issue queries for pivot tables. We have developed an OLAP
engine, OLAP4LD, to implement our approaches and to help developers building inte-
gration and analysis applications. We have applied OLAP4LD in three scenarios and

226

9.5 Discussion of Contributions

have shown how the contributions can fulfil ten requirements about flexibility and effi-
ciency. The MDM-QB Mapping and OLAP-to-SPARQL Algorithm were used in each
of the scenarios to execute metadata and OLAP queries over Statistical Linked Data.
RDF Aggregate Views were not necessary in the scenarios, but materialised aggregate
views are promising in case new and larger datasets are added continuously. Though
complex correspondences were not collected in the scenarios, automatically deriving
implicit numeric values such as compound measures is promising in every scenario for
further increasing the usefulness of the integration and analysis systems.

In summary, our contributions allow to successfully overcome overall requirements
identified in three different scenarios. Various approaches combining our contributions
can be used that find a suitable compromise between efficiency and flexibility. Three
approaches have been implemented and the developed systems (SKB, FIOS, LDCX)
demonstrate how to fulfil user requirements in the scenarios.

227

10 Conclusions

The overall goal of this work was to investigate approaches for flexible integration and
efficient analytical queries over multidimensional datasets from the Web, as required
by domain experts such as natural scientists, business analysts, and citizens interested
in politics.

We summarise our results in the first section. Then, we reflect on the significance of
the results in Section 10.2 and describe open questions in Section 10.3.

10.1 Summary of Results

In this work, we have presented complementary methods for flexibly building a unified
view over multidimensional datasets from the Web and for efficiently querying over
this global cube in different domains.

Our approach assumes publishers of datasets to use Linked Data and the RDF Data
Cube Vocabulary and domain experts to be familiar with OLAP analysis. We provide
the following contributions:

• The MDM-QB Mapping (Chapter 5) enables to build and query multi-cubes con-
sisting of several QB datasets with existing OLAP engines.

• The OLAP-to-SPARQL Algorithm (Chapter 6) supports drill-across for building
a multi-cube directly using a SPARQL engine.

• RDF Aggregate Views (Chapter 7) apply materialised aggregate views to analyt-
ical queries using a SPARQL engine.

• Complex Correspondences (Chapter 8) allow for deriving data cubes from exist-
ing ones and enable to increase the number of answers from the global cube.

When we described the State of the Art at the beginning of this thesis, we identified a
gap of flexible and efficient approaches. In the previous overall evaluation chapter we
showed that our approach of OLAP over Statistical Linked Data and our contributions
can be applied to build flexible and efficient systems for three different scenarios.

10 Conclusions

Figure 10.1 zooms into the former gap (right upper quadrant in Figure 4.1) and gives
an overview of approaches possible through our contributions. Since flexibility and ef-
ficiency put contradictory requirements to approaches, a compromise has to be found
in specific scenarios. In the following, we describe how our contributions can be used
separately or in combination to reach a suitable trade-off between flexibility and effi-
ciency.

Figure 10.1: Overview of presented integration and analysis approaches over Statistical Linked
Data filling gap of combined flexibility and efficiency; black circles refer to ap-
proaches that directly apply our contributions and are evaluated in our experiments,
grey circles refer to promising approaches made possible with our contributions.

In our descriptions of approaches, we start with the approach prioritising efficiency in
the flexibility-efficiency trade-off (left upper corner of Figure 10.1). Every approach
suggests a specific trade-off that – given specific requirements – may be appropriate for
a concrete scenario.

OLAP engine with materialisation. In this approach, the MDM-QB Mapping allows
to use an existing OLAP engine for dataset integration and efficient query processing;
furthermore, materialised aggregate views are used for query optimisation.

Flexibility is increased since based on the MDM-QB Mapping, relevant data for mul-
tidimensional datasets is automatically found in Statistical Linked Data. If datasets
do not contain redundancies and a meaningful aggregation function is selected (lean
QB dataset), this approach performs a correct evaluation of OLAP queries. Also,
multi-cubes are automatically created from all available data cubes and equivalence
statements between different identifiers of entities in data cubes are considered (Chap-
ter 5).

230

10.1 Summary of Results

Experiments with the ROLAP engine Mondrian, the RDBMS MySQL, and aggregate
tables show that this approach enables efficient queries over large datasets (Chapter 7)
for the following reason: aggregate tables reduce the complexity of queries and the
number of facts to be processed in a query. Similarly, we can expect efficient analytical
queries over a materialised global cube from many single cubes.

OLAP engine. Here, an OLAP engine but no materialisation is used for dataset inte-
gration and query processing. Flexibility is increased since no selection, computation,
and maintenance of materialised aggregate views are needed. Our experiments show
that efficiency is decreased since no materialisation is done (Chapter 7).

SPARQL engine with materialisation. In this approach, the MDM-QB Mapping en-
ables executing metadata queries over Statistical Linked Data, the OLAP-to-SPARQL
Algorithm translates OLAP to SPARQL queries over an existing SPARQL engine, and
RDF Aggregate Views optimise query processing via materialisation.

In comparison to OLAP engines using a fixed schema (e.g., star schema) to store
the multidimensional data model, this approach is more flexible since both numeric
data and background information are accessed via a SPARQL engine. The OLAP-to-
SPARQL Algorithm also allows for querying over multi-cubes from all available data
cubes and for considering equivalence statements between different identifiers of enti-
ties in data cubes (Chapter 6).

Experiments with the SPARQL engine Open Virtuoso show that RDF Aggregate Views
can lead to more efficient query processing in SPARQL engines. However, experiments
also show that analytical query optimisation in SPARQL engines over schema-flexible
RDF is more difficult than analytical query optimisation in the relational setting. For
instance, whereas in an RDBMS aggregate views usually are stored in separate tables,
RDF typically is stored and queried in one graph of self-descriptive RDF. Also, the
flexible schema of RDF allows fewer assumptions about the data (Chapter 7).

SPARQL engine. Here, a SPARQL engine but no materialisation is used for dataset
integration and query processing. Similar to the OLAP engine approach without ma-
terialisation, flexibility is increased since no selection, computation, and maintenance
of materialised aggregate views are needed. Our experiments show that certain queries
may be slower if no materialisation is done (Chapter 7).

OLAP engine with materialisation and complex mappings. In this approach we
combine the MDM-QB Mapping with materialisation and complex mappings for in-
tegration and analytical queries using an existing OLAP engine. Aggregate views are
materialised. Also, Complex Correspondences are directly described over the data in
the data warehouse [CDL+01, SSR94] (Chapter 8).

Although not evaluated in scenarios (therefore, grey circle), our experiments with com-
puting the GDP Per Capita have shown that materialisation and the evaluation of com-

231

10 Conclusions

plex correspondences can be combined to find a good compromise between efficiency
and flexibility.

Flexibility is increased since heterogeneities between datasets can be resolved. Het-
erogeneities would be described on a logical level using Datalog and can automatically
be used in query processing, e.g., query rewriting techniques. We believe that existing
approaches to query rewriting [Gen10, see Query Folding Chapter] and complex cor-
respondences [CDL+01, SSR94] can be applied on top of the MDM-QB Mapping; the
abstract representation of mappings would be transformed to the logical representation
used by the OLAP engine (e.g., star schema).

Efficiency is decreased due to the evaluation of Complex Correspondences but can be
optimised with offline computation, materialisation techniques, and query rewriting.

SPARQL engine with materialisation and complex mappings. Here, all our contri-
butions are combined in one approach. The MDM-QB Mapping allows for executing
metadata, the OLAP-to-SPARQL Algorithm allows for executing OLAP queries over
Statistical Linked Data using an existing SPARQL engine. Also, RDF Aggregate Views
optimise query processing via materialisation and Complex Correspondences provide
descriptions of how to resolve semantic conflicts between data cubes.

Flexibility is further increased since not only simple (equivalence statements) and com-
plex (Conversion and Merging Correspondences) mappings between data cubes can
be described (Chapter 8), but also the SPARQL engine approach allows to store both
numeric data and background information in the same backend (Chapter 6).

Our experiments comparing analytical queries with existing OLAP and SPARQL en-
gines indicate that a SPARQL engine is more difficult to optimise than the relational
pendant when using an existing OLAP engine (Chapter 7) as in the previous approach.

Although not evaluated in experiments (therefore, grey circle), we believe that RDF
Aggregate Views can be applied on top of Conversion Correspondences; for instance,
the global cube could be materialised using RDF Aggregate Views. Existing selection
and maintenance methods may be applied in this case [SDN00].

SPARQL engine with complex mappings. Here, based on the MDM-QB Mapping
and the OLAP-to-SPARQL Algorithm, Complex Correspondences are evaluated using
a SPARQL engine.

In comparison to the previous approach, flexibility is increased and efficiency is de-
creased since complex mappings are evaluated but no materialisation of pre-aggregated
facts is done (Chapter 8).

In summary, there is a compromise between flexibility and efficiency: Using the OLAP-
to-SPARQL Algorithm over SPARQL engines offers more flexibility but may be slower
than optimised OLAP engines. Using RDF Aggregate Views may allow to speed up

232

10.2 Significance of Results

query processing but is less flexible since aggregate views need to be maintained. De-
scribing Complex Correspondences between datasets allows to flexibly resolve seman-
tic conflicts but will largely increase the size of the Global Cube and thus reduce query
performance. We believe that for specific scenarios, contributions can be combined
leading to an appropriate trade-off between flexibility and efficiency.

10.2 Significance of Results

Before we describe the significance, we want to clarify three aspects of our work:

Despite the name of the RDF Data Cube Vocabulary, the mapping between Statistical
Linked Data and the multidimensional data model of data cubes is not straightforward:
for instance, we must identify all relevant data for datasets distributed over several
URIs and we must ensure correct modelling with integrity constraint checks (directed
crawling strategy); we assume datasets without redundancy for correct aggregations
(lean dataset); and we allow different modelling of hierarchies. Most importantly, the
MDM-QB Mapping defines multi-cubes of cubes with implicitly shared dimensions
and dimension members. Based on this definition, the OLAP-to-SPARQL Algorithm
allows to explicitly generate multi-cubes with Drill-Across; in turn, the global cube is
defined as a nested set of drill-across operations over all available data cubes.

Since we reuse existing RDBMS, OLAP engines, and SPARQL engines to execute
queries and assume efficient physical query plans generated, our contributions are broa-
dly applicable. Our focus in this work was on modular and interoperable methods
based on (Web) standards and widely-used query engines. For instance, relevant data
is identified according to Linked Data principles. Also, the MDM-QB Mapping, the
OLAP-to-SPARQL Algorithm, RDF Aggregate Views, and Complex Correspondences
are defined using RDF and SPARQL. Although our scenarios provided limited amount
of data, experiments indicate that query performance time – at least if complex cor-
respondences between datasets are not considered – does not overly increase with the
expected increase in size and number of datasets available in Statistical Linked Data. To
increase query performance further, our OLAP and SPARQL engines can be replaced
with engines providing SQL or SPARQL interfaces that deploy in-memory, column-
oriented, multi-core, or NoSQL technology.

Our work does not pursue innovative user interfaces and does not report about inter-
esting findings from actual analyses by domain experts but instead investigates data
integration and analytical query processing approaches over both numeric and arbi-
trary background information. For example, whereas a star schema is fixed to a pre-
specified multidimensional data model, a SPARQL engine allows for querying over
schema-flexible RDF data. Therefore, our approaches minimise assumptions concern-
ing queried data. Flexible interfaces and visualisations are interesting research areas

233

10 Conclusions

beyond the scope of this work; FIOS with its three different interfaces on financial data
over a single backend and other examples such as a provenance browser [FKaGO+12]
sufficiently demonstrate the usefulness of a unified RDF representation. Also, the sys-
tems presented to potential users in scenarios were prototypes. We believe that with
more focus on usability and robustness (for instance, the FIOS system could only be
used with a specific browser), adoption and real-world analysis findings are possible.

We give three examples of where our work has proved relevant:

First, with this work we contributed to the effort in providing easier – since more ho-
mogeneous – access over statistics made openly available on the Web. Our experiences
from using the RDF Data Cube Vocabulary (QB) for the SMART Research project, for
the XBRL Challenge, and for consuming Open Government Data have supported the
standardisation of QB by the World Wide Web Consortium (W3C)1. Also, our con-
tributions are among the first to propose analytical query processing over QB datasets
(MDM-QB Mapping, OLAP-to-SPARQL), to investigate a possible query optimisation
method (RDF Aggregate Views), and to describe semantic mappings (equivalence state-
ments for implicitly shared dimensions and members, Complex Correspondences).

Second, our contributions helped quantifying the advantages and disadvantages of using
RDF for data analytics. For example, database vendor OpenLink repeated our exper-
iments and confirms that the more flexible schema in SPARQL engines leads to diffi-
culties in finding an efficient query plan2. The application of our contributions in three
different domains give guidance on finding an appropriate trade-off between flexibility
and efficiency in other scenarios.

Third, we have contributed to a discussion on the right conceptual model for domain
experts dealing with multidimensional datasets from the Web. For instance, the Linked
Open Data Extension of the widely-used Data Mining tool RapidMiner3 uses OLAP4LD
to query multidimensional datasets from the Web and to load results into algorithms
such as for correlation analysis.

1See use cases and lessons in Working Group Note [KC13], edited by the author in collaboration with other
researchers participating in W3C Government Linked Data Working Group.

2For more information see comments by Orri Erling made in ESWC 2013 Panel “Semantic Technologies
for Big Data Analytics” about our work,
http://www.openlinksw.com/dataspace/oerling/weblog/Orri%20Erling%27s%20Blog/1730, last accessed
on 2014-10-29

3See “Accessing RDF Data Cubes” in RapidMiner Linked Open Data Extension, Manual, Version 1.5,
09/19/14, http://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/research/
RapidMinerLODExtension/RapidMinerLODExtensionManual.pdf, last accessed 2014-10-29.

234

http://www.openlinksw.com/dataspace/oerling/weblog/Orri%20Erling%27s%20Blog/1730
http://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/research/RapidMinerLODExtension/RapidMinerLODExtensionManual.pdf
http://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/research/RapidMinerLODExtension/RapidMinerLODExtensionManual.pdf

10.3 Open Questions

10.3 Open Questions

We see three main areas of future work about building and querying the Global Cube:

First, we envision a version of OLAP4LD that allows exploratory analysis of the global
cube, that means all currently available datasets modelled using the RDF Data Cube
Vocabulary. We expect that interesting queries will only be possible if more mappings
are manually or automatically generated. Mappings include equivalence statements
such as between companies from the SEC, Yahoo! Finance, and other data sources, as
well as conversion and merging correspondences such as for computing the Earnings
per Share, the Altman Z-score, and other interesting financial ratios. To evaluate such
mappings over all available statistical datasets – especially if integrated with schema-
flexible, and semi-structured background information – will not be possible without
specific optimisations. One possibility are parallel computations using many machines.
Another way to optimise performance may be to only load data structure definitions of
cubes and to then load the actual numeric facts if requested by a query.

Second, it would be interesting to design analysis interfaces and backends that can
cope with a continuous stream of new facts from datasets, of new datasets from data
sources, and possibly also of new data sources. Such a system would need to be suf-
ficiently specific to provide added value to domain experts and generic to have new
information immediately considered. For example new data could allow views on an
additional granularity level. Regarding efficiency, a polling mechanism may not suffice
to immediately consider new facts from datasets. Regarding flexibility, new datasets,
and especially new data sources, will continuously exhibit new, heterogeneous schemas
that – to be considered in interfaces – need to be integrated. If information is provided
and consumed in real-time decision makers can immediately learn about micro-data
changes such as from climate sensors and financial transactions. Also, coverage and
quality of information steadily improve; for instance, if the same statistical values are
computed from different data sources, reliability is increased.

Third, having access to the Global Cube of statistical datasets and an abundance of
semi-structured background information will allow for holistic analyses of domain
models in decision support. Models range from Okun’s law, over the water resources
situation in the lower Jordan Valley, to possible macro-economic explanations for the
financial crisis. Inputs to the system are hypothetical values from experts and what-if-
analyses from background information. Then, different domain models can be simu-
lated based on the Global Cube and predictions and even suggestions computed. Con-
version and merging correspondences will not suffice to formalise complex models, but
mathematical formalisations and uncertainties have to be considered. Self-improving,
intelligent approaches would automatically learn to identify the appropriate models for
specific, ad-hoc problems.

235

10 Conclusions

Further investigation of such open questions about building the global cube, considering
a continuous stream of facts, evolving interfaces, and simulating complex domain mod-
els could eventually change the way many experts do their daily work. Natural scientists
can define water management objectives and indicators and get immediate feedback on
their assumptions without manual acquisition of relevant micro and macro data; busi-
ness analysts have all finance-relevant information about companies at their fingertips
without tedious data pre-processing tasks; and citizens and politicians can directly sup-
port claims by referring to datasets on the Web; datasets that in turn can transparently
be confirmed or opposed by anyone publishing numeric data on the Web.

236

A Overview of Additional
Information Provided on the Web

For several parts of the work, we make additional information openly available on the
Web. Here, we give an overview of such additional information, including short de-
scriptions and links.

• We published OLAP4LD as Open Source. Links to the source code and the doc-
umentation about OLAP4LD we maintain on the Linked Data Cubes website1.

• Experiments for the evaluation of the Drill-Across operation in Chapter 6 as well
as Convert-Cube and Merge-Cubes operations in Chapter 15 we provide on a
page on the Linked Data Cubes website2.

• More information about the Star Schema Benchmark and experiments for evalu-
ating RDF Aggregate Views in Chapter 7, including required and generated data,
we provide on a benchmark website3.

• Background information to our user study and performance evaluation of the
Linked Data Cubes Explorer we provide on a page on the Linked Data Cubes
website4.

• A demo of the Linked Data Cubes Explorer we make available at a website5.

1http://www.linked-data-cubes.org/index.php/OLAP4LD, last accessed 2014-11-13.
2http://www.linked-data-cubes.org/index.php/Global Cube Evaluation EKAW14, last accessed on
2014-11-13.

3http://people.aifb.kit.edu/bka/ssb-benchmark/, last accessed on 2014-11-13.
4http://www.linked-data-cubes.org/index.php/LDCX Evaluation for ESWC 2014 Demo, last accessed on
2014-11-13.

5http://ldcx.linked-data-cubes.org/projects/ldcx/, last accessed 2014-11-13.

http://www.linked-data-cubes.org/index.php/OLAP4LD
http://www.linked-data-cubes.org/index.php/Global_Cube_Evaluation_EKAW14
http://people.aifb.kit.edu/bka/ssb-benchmark/
http://www.linked-data-cubes.org/index.php/LDCX_Evaluation_for_ESWC_2014_Demo
http://ldcx.linked-data-cubes.org/projects/ldcx/

Bibliography

[ABD+99] Jens Albrecht, Andreas Bauer, O. Deyerling, Holger Günzel, Wolf-
gang Hümmer, Wolfgang Lehner, and Lutz Schlesinger. Manage-
ment of Multidimensional Aggregates for Efficient Online Analytical
Processing. In International Database Engineering and Applications
Symposium, IDEAS, 1999.

[AdAB00] Anil Agarwal, Marian S. delos Angeles, and Ramesh Bhatia. Inte-
grated Water Resources Management. Technical report, Global Water
Partnership, Technical Advisory Committee (TAC), 2000.

[ADE+13] Alberto Abelló, Jérôme Darmont, Lorena Etcheverry, Matteo Gol-
farelli, Jose-Norberto Mazón, Felix Naumann, Torben Pedersen, Ste-
fano Bach Rizzi, Juan Trujillo, Panos Vassiliadis, and Gottfried
Vossen. Fusion Cubes: Towards Self-Service Business Intelligence.
International Journal of Data Warehousing and Mining, 9(2), 2013.

[AF11] Darko Anicic and Paul Fodor. EP-SPARQL: A Unified Language for
Event Processing and Stream Reasoning. In World Wide Web Confer-
ence (WWW), 2011.

[AFR11] Alberto Abelló, Jaume Ferrarons, and Oscar Romero. Building Cubes
with MapReduce. In ACM 14th International Workshop on Data Ware-
housing and OLAP (DOLAP), 2011.

[AGS97] Rakesh Agrawal, Ashish Gupta, and Sunita Sarawagi. Modeling Mul-
tidimensional Databases. In 13th International Conference on Data
Engineering, 1997.

[AK07] José Luis Ambite and Dipsy Kapoor. Automatically Composing Data
Workflows with Relational Descriptions and Shim Services. In Inter-
national Semantic Web Conference (ISWC), 2007.

[ALS+12] Ahmad Assaf, Eldad Louw, Aline Senart, Corentin Follenfant,
Raphaël Troncy, and David Trastour. RUBIX: A Framework for Im-
proving Data Integration with Linked Data. In 1st International Work-
shop on Open Data (WOD), 2012.

Bibliography

[AM08] Daniel J. Abadi and Samuel R. Madden. Column-Stores vs . Row-
Stores: How Different Are They Really? In ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), 2008.

[ASS03] Alberto Abelló, José Samos, and Fèlix Saltor. Implementing Opera-
tions to Navigate Semantic Star Schemas. In ACM International Work-
shop on Data Warehousing and OLAP (DOLAP), 2003.

[BBNA12] Seyed-Mehdi-Reza Beheshti, Boualem Benatallah, Hamid R. Mota-
hari Nezhad, and Mohammad Allahbakhsh. A Framework and a Lan-
guage for On-Line Analytical Processing on Graphs. In 13th Interna-
tional Conference on Web Information Systems Engineering (WISE),
2012.

[BG97] Stephane Bressan and Cheng Goh. Semantic Integration of Disparate
Information Sources over the Internet Using Constraint Propagation.
Technical Report 02142, Massachusetts Institute of Technology, 1997.

[BHH+11] Douglas Burdick, Mauricio A. Hernández, Howard Ho, Georgia
Koutrika, Rajasekar Krishnamurthy, Lucian Popa, Ioana Stanoi, Shiv-
akumar Vaithyanathan, and Sanjiv R. Das. Extracting, Linking and
Integrating Data from Public Sources: A Financial Case Study. IEEE
Data Engineering Bulletin, 2011.

[BJK+12] Lukas Blunschi, Claudio Jossen, Donald Kossmann, Magdalini Mori,
and Kurt Stockinger. SODA: Generating SQL for Business Users.
VLDB Endowment, 5(10), 2012.

[BJL14] Laurence Ball, Joao Tovar Jalles, and Prakash Loungani. Do Fore-
casters Believe in Okun’s Law? An Assessment of Unemployment
and Output Forecasts. Technical report, International Monetary Fund,
2014.

[BP13] Stefan Bischof and Axel Polleres. RDFS with Attribute Equations
via SPARQL Rewriting. In 10th Extended Semantic Web Conference
(ESWC), 2013.

[BPZ11] Anja Bog, Hasso Plattner, and Alexander Zeier. A mixed transaction
processing and operational reporting benchmark. Information Systems
Frontiers, 13(3), 2011.

[BRLD10] Jie Bao, Graham Rong, Xian Li, and Li Ding. Representing Financial
Reports on the Semantic Web: A Faithful Translation from XBRL to
OWL. In International Conference on Semantic Web Rules, 2010.

[CAR13] Sarven Capadisli, Sören Auer, and Reinhard Riedl. Linked Statistical
Data Analysis. In Second International Workshop on Semantic Statis-
tics (SemStats), 2013.

240

Bibliography

[CCGL02] Andrea Cal, Diego Calvanese, Giuseppe De Giacomo, and Maurizio
Lenzerini. Data Integration Under Integrity Constraints. Information
Systems, 29(2), 2002.

[CCS93] Edgar Frank Codd, S.B. Codd, and C.T. Salley. Providing OLAP to
User-Analysts: An IT Mandate. Technical report, E.F. Codd Asso-
ciates, 1993.

[CD97] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Ware-
housing and OLAP Technology. ACM SIGMOD Record, 26(1), 1997.

[CDL+01] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele
Nardi, and Riccardo Rosati. Data Integration in Data Warehousing. In-
ternational Journal of Cooperative Information Systems, 10(3), 2001.

[CFG+10] Richard Cyganiak, Simon Field, Arofan Gregory, Wolfgang Halb, and
Jeni Tennison. Semantic Statistics: Bringing Together SDMX and
SCOVO. In WWW Workshop on Linked Data on the Web (LDOW),
2010.

[CGLG04] Conor Cunningham, César A. Galindo-Legaria, and Goetz Graefe.
PIVOT and UNPIVOT: optimization and execution strategies in an
RDBMS. In 30th International Conference on Very Large Data Bases
(VLDB), 2004.

[Cha98] Surajit Chaudhuri. An Overview of Query Optimization in Relational
Systems. In 17th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 1998.

[CHH+13] Philippe Cudr, Albert Haque, Andreas Harth, Felix Leif Keppmann,
Daniel P Miranker, Juan F Sequeda, and Marcin Wylot. NoSQL
Databases for RDF: An Empirical Evaluation. In International Se-
mantic Web Conference (ISWC), 2013.

[CL10] Roger Castillo and Ulf Leser. Selecting Materialized Views for RDF
Data. In 10th International Conference on Current Trends in Web
Engineering, 2010.

[CRB+06] Lei Chen, Raghu Ramakrishnan, Paul Barford, Bee-Chung Chen, and
Vinod Yegneswaran. Composite Subset Measures. In 32nd Interna-
tional Conference on Very Large Data Bases (VLDB), 2006.

[CTG12] Héctor Carretié, Beatriz Torvisco, and Roberto Garcı́a. Using Seman-
tic Web Technologies to Facilitate XBRL-based Financial Data Com-
parability. In International Workshop on Finance and Economics on
the Semantic Web, 2012.

241

Bibliography

[CYZ+08] Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and Philip S. Yu.
Graph OLAP: Towards Online Analytical Processing on Graphs. In
8th IEEE International Conference on Data Mining (ICDM), 2008.

[dACCG+13] Cristina Dutra de Aguiar Ciferri, Ricardo Rodrigues Ciferri, Leti-
cia I. Gómez, Markus Schneider, Alejandro A. Vaisman, and Esteban
Zimányi. Cube Algebra: A Generic User-Centric Model and Query
Language for OLAP Cubes. International Journal of Data Warehous-
ing and Mining, 9(2), 2013.

[DCSW09] Umeshwar Dayal, Malu Castellanos, Alkis Simitsis, and Kevin
Wilkinson. Data Integration Flows for Business Intelligence. In
12th International Conference on Extending Database Technology Ad-
vances in Database Technology (EDBT), 2009.

[DdAF+10] Roger Debreceny, d’Eri Alessandro, Carsten Felden, Stephanie
Farewell, and Maciej Piechocki. Feeding the Information Value Chain:
Deriving Analytical Ratios from XBRL filings to the SEC. Technical
report, School of Accountancy Shidler College of Business, Hawaii,
2010.

[DKSU11] Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Oc-
tavian Udrea. Apples and Oranges: a Comparison of RDF Bench-
marks and Real RDF Datasets. In ACM International Conference on
Management of Data (SIGMOD), 2011.

[DP08] Claudia Diamantini and Domenico Potena. Semantic Enrichment of
Strategic Datacubes. In 11th ACM International Workshop on Data
Warehousing and OLAP (DOLAP), 2008.

[DP10] Claudia Diamantini and Domenico Potena. Exploring Strategic In-
dexes by Semantic OLAP Operators. In Management of the Intercon-
nected World. Physica Verlag Heidelberg, 2010.

[DP11] Claudia Diamantini and Domenico Potena. Thinking Structurally
Helps Business Intelligence Design. In Information Technology and
Innovation Trends in Organizations. Physica Verlag Heidelberg, 2011.

[DPS13] Claudia Diamantini, Domenico Potena, and Emanuele Storti. A Logic-
Based Formalization of KPIs for Virtual Enterprises. In Advanced
Information Systems Engineering Workshops, 2013.

[DPS14] Claudia Diamantini, Domenico Potena, and Emanuele Storti. Data
Mart Reconciliation in Virtual Innovation Factories. In Advanced In-
formation Systems Engineering Workshops, 2014.

[DR11] Aba-sah Dadzie and Matthew Rowe. Approaches to Visualising
Linked Data: A Survey. Semantic Web, 2(2), 2011.

242

Bibliography

[EAS13] Ivan Ermilov, Sören Auer, and Claus Stadler. User-driven Semantic
Mapping of Tabular Data. In 9th International Conference on Seman-
tic Systems (I-SEMANTICS), 2013.

[Erl10] Orri Erling. Directions and Challenges for Semdata. In Workshop on
Semantic Data Management at VLDB (SemData@VLDB), 2010.

[Erl12] Orri Erling. Virtuoso, a Hybrid RDBMS/Graph Column Store. IEEE
Data Engineering Bulletin, 35(1), 2012.

[ETBL12] Julian Eberius, Maik Thiele, Katrin Braunschweig, and Wolfgang
Lehner. DrillBeyond: Enabling Business Analysts to Explore the Web
of Open Data. VLDB Endowment, 5(12), 2012.

[EV12a] Lorena Etcheverry and Alejandro A. Vaisman. Enhancing OLAP
Analysis with Web Cubes. In 9th Extended Semantic Web Conference
(ESWC), 2012.

[EV12b] Lorena Etcheverry and Alejandro A. Vaisman. QB4OLAP: A Vocabu-
lary for OLAP Cubes on the Semantic Web. In International Workshop
on Consuming Linked Data (COLD), 2012.

[EV12c] Lorena Etcheverry and Alejandro A. Vaisman. Views over RDF
Datasets: A State-of-the-Art and Open Challenges. The Computing
Research Repository (CoRR), Nov 2012.

[FKaGO+12] André Freitas, Benedikt Kämpgen, Jo ao Gabriel Oliveira, Seán
O’Riain, and Edward Curry. Representing Interoperable Provenance
Descriptions for ETL Workflows. In 3rd International Workshop on
Semantic Web in Provenance Management at ESWC, 2012.

[Fow96] Martin Fowler. Analysis Patterns: Reusable Object Models. Addison-
Wesley, Menlo Park, California (USA), 1996.

[FTC11] Corentin Follenfant, David Trastour, and Olivier Corby. A Model for
Assisting Business Users along Analytical Processes. In 2nd Work-
shop on Semantic Personalized Information Management: Retrieval
and Recommendation, 2011.

[GAW+08] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and
MyungCheol Doo. SPADE: The System S Declarative Stream Pro-
cessing Engine. In ACM International Conference on Management of
Data (SIGMOD), 2008.

[GCB+97] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don
Reichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data
Cube: A Relational Aggregation Operator Generalizing Group-By,

243

Bibliography

Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery,
1(1), 1997.

[Gen10] Michael R. Genesereth. Data Integration: The Relational Logic
Approach. Morgan & Claypool Publishers, San Rafael, California
(USA), 2010.

[GG10] Roberto Garcı́a and Rosa Gil. Triplificating and linking XBRL fi-
nancial data. In 6th International Conference on Semantic Systems
(I-SEMANTICS), 2010.

[GGV12] Leticia I. Gómez, Silvia A. Gómez, and Alejandro A. Vaisman. A
Generic Data Model and Query Language for Spatiotemporal OLAP
Cube Analysis. In 15th International Conference on Extending
Database Technology (EDBT), 2012.

[GKLM11] François Goasdoué, Konstantinos Karanasos, Julien Leblay, and Ioana
Manolescu. View Selection in Semantic Web Databases. VLDB En-
dowment, 5(2), 2011.

[GM95] Ashish Gupta and Inderpal Singh Mumick. Maintenance of Materi-
alized Views: Problems, Techniques, and Applications. IEEE Data
Engineering Bulletin, 18(3), 1995.

[GMP+12] Matteo Golfarelli, Federica Mandreoli, Wilma Penzo, Stefano Rizzi,
and Elisa Turricchia. OLAP query reformulation in peer-to-peer data
warehousing. Information Systems, 37(5), 2012.

[GMUW08] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database Systems: The Complete Book. Prentice Hall, Upper Sad-
dle River, NJ, USA, 2 edition, 2008.

[Gra93] Goetz Graefe. Query Evaluation Techniques for Large Databases.
ACM Computing Surveys (CSUR), 25(2), 1993.

[GWK+10] Steffen Gebhardt, Thilo Wehrmann, Verena Klinger, Ingo Schettler,
Juliane Huth, Claudia Künzer, and Stefan Dech. Improving Data
Management and Dissemination in Web Based Information Systems
by Semantic Enrichment of Descriptive Data Aspects. Computers &
Geosciences, 36(10), 2010.

[Har10] Andreas Harth. VisiNav: A system for visual search and navigation on
web data. Web Semantics: Science, Services and Agents on the World
Wide Web, 8(4), 2010.

[HBF09] Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing
SPARQL Queries over the Web of Linked Data. In 8th International
Semantic Web Conference (ISWC), 2009.

244

Bibliography

[HBH03] Wolfgang Hümmer, Andreas Bauer, and Gunnar Harde. XCube –
XML for Data Warehouses. In 6th ACM International Workshop on
Data Warehousing and OLAP (DOLAP), 2003.

[HGM05] Carlos A. Hurtado, Claudio Gutierrez, and Alberto O. Mendelzon.
Capturing Summarizability with Integrity Constraints in OLAP. ACM
Transactions on Database Systems (TODS), 30(3), 2005.

[HHD04] Aidan Hogan, Andreas Harth, and Stefan Decker. Performing Object
Consolidation on the Semantic Web Data Graph. In Workshop at 16th
International World Wide Web Conference (WWW), 2004.

[HHK+10] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-
Uwe Sattler, and Jürgen Umbrich. Data Summaries for On-Demand
Queries over Linked Data. In 19th International Conference on World
Wide Web (WWW), 2010.

[HHR+09] Michael Hausenblas, Wolfgang Halb, Yves Raimond, Lee Feigen-
baum, and Danny Ayers. SCOVO: Using Statistics on the Web of
Data. In 6th European Semantic Web Conference (ESWC), 2009.

[HHU+11] Aidan Hogan, Andreas Harth, Jürgen Umbrich, Sheila Kinsella, Axel
Polleres, and Stefan Decker. Searching and browsing Linked Data
with SWSE: The Semantic Web Search Engine. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 9(4), 2011.

[HKR09] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations
of Semantic Web Technologies. Chapman & Hall/CRC, London, 2009.

[HKS+13] Andreas Harth, Craig A. Knoblock, Steffen Stadtmüller, Rudi Studer,
and Pedro Szekely. On-the-fly Integration of Static and Dynamic
Linked Data. In ISWC Workshop on Consuming Linked Data (COLD),
2013.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. De-
sign Science in Information Systems Research. MIS Quarterly, 28(1),
2004.

[Hoe13] Patrick Hoefler. Linked Data Interfaces for Non-expert Users. In 10th
Extended Semantic Web Conference (ESWC), 2013.

[HRU96] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Imple-
menting Data Cubes Efficiently. In ACM International Conference on
Management of Data (SIGMOD), 1996.

[HS13] Stefan Hagedorn and Kai-Uwe Sattler. Efficient Parallel Processing
of Analytical Queries on Linked Data. In On the Move to Meaningful
Internet Systems Conferences (OTM), 2013.

245

Bibliography

[HSS11] Peter Haase, Michael Schmidt, and Andreas Schwarte. The Informa-
tion Workbench as a Self-Service Platform for Linked Data Appli-
cations. In 2nd International Workshop on Consuming Linked Data
(COLD), 2011.

[IAK13] Hiroyuki Inoue, Toshiyuki Amagasa, and Hiroyuki Kitagawa. An ETL
Framework for Online Analytical Processing of Linked Open Data. In
14th International Conference on Web-Age Information Management
(WAIM), 2013.

[IUBH10] Robert Isele, Jürgen Umbrich, Christian Bizer, and Andreas Harth.
LDspider: An Open-Source Crawling Framework for the Web of
Linked Data. In 9th International Semantic Web Conference (ISWC)
Posters and Demos, 2010.

[KBZ86] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. Optimization of
Nonrecursive Queries. 12th International Conference on Very Large
Data Bases (VLDB), 1986.

[KC13] Benedikt Kämpgen and Richard Cyganiak. Use Cases and Lessons for
the Data Cube Vocabulary. Working Group Note – http://www.w3.org/
TR/2013/NOTE-vocab-data-cube-use-cases-20130801/, W3C, USA,
Aug 2013.

[KD08] Georgi Kobilarov and Ian Dickinson. Humboldt: Exploring Linked
Data. In WWW Workshop about Linked Data on the Web (LDOW),
2008.

[KFvHH01] Michel Klein, Dieter Fensel, Frank van Harmelen, and Ian Horrocks.
The relation between ontologies and schema-languages. Linköping
Electronic Articles in Computer and Information Science, 6(4), 2001.

[KH11] Benedikt Kämpgen and Andreas Harth. Transforming Statistical
Linked Data for Use in OLAP Systems. In 7th International Con-
ference on Semantic Systems (I-SEMANTICS), 2011.

[KH12] Benedikt Kämpgen and Andreas Harth. Benchmark Document
for No Size Fits All – Running the Star Schema Benchmark with
SPARQL and RDF Aggregate Views – http://people.aifb.kit.edu/bka/
ssb-benchmark/, 2012.

[KH13] Benedikt Kämpgen and Andreas Harth. No Size Fits All – Running the
Star Schema Benchmark with SPARQL and RDF Aggregate Views. In
10th Extended Semantic Web Conference (ESWC), 2013.

[KH14] Benedikt Kämpgen and Andreas Harth. OLAP4LD - A Framework
for Building Analysis Applications over Governmental Statistics. In
11th ESWC 2014 (ESWC2014), May 2014.

246

http://www.w3.org/TR/2013/NOTE-vocab-data-cube-use-cases-20130801/
http://www.w3.org/TR/2013/NOTE-vocab-data-cube-use-cases-20130801/
http://people.aifb.kit.edu/bka/ssb-benchmark/
http://people.aifb.kit.edu/bka/ssb-benchmark/

Bibliography

[KKEM10] Daniel Keim, Jörn Kohlhammer, Geoffrey Ellis, and Florian Mans-
mann. Mastering the Information Age – Solving Problems with Visual
Analytics. Eurographics Association, Goslar, Germany, 2010.

[KOH12] Benedikt Kämpgen, Seán O’Riain, and Andreas Harth. Interacting
with Statistical Linked Data via OLAP Operations. In 9th Extended
Semantic Web Conference (ESWC) Satellite Events, 2012.

[KR02] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The
Complete Guide to Dimensional Modelling. Wiley, New York, USA,
2002.

[KRH+13] Benedikt Kämpgen, David Riepl, Bernd Herrmann, Denny Vrandecic,
and Andreas Harth. Allowing Exchange, Integration and Analysis of
IWRM Data via the Semantic Web. Deliverable 203 (D203), Insti-
tute of Applied Geoscience, Karlsruhe Institute of Technology (KIT),
2013.

[KRK14] Benedikt Kämpgen, David Riepl, and Jochen Klinger. SMART Re-
search using Linked Data - Sharing Research Data for Integrated Water
Resources Management in the Lower Jordan Valley. In ESWC Work-
shop on Semantic Publishing (SePublica), 2014.

[KSH14] Benedikt Kämpgen, Steffen Stadtmüller, and Andreas Harth. Query-
ing the Global Cube: Integration of Multidimensional Datasets from
the Web. In 19th International Conference on Knowledge Engineering
and Knowledge Management (EKAW), 2014.

[KSS12] Veit Köppen, Gunter Saake, and Kai-Uwe Sattler. Data Warehouse
Technologien. Verlagsgruppe Hüthig-Jehle-Rehm, Heidelberg, Ger-
many, 2012.

[KUBM12] Spyros Kotoulas, Jacopo Urbani, Peter Boncz, and Peter Mika. Ro-
bust Runtime Optimization and Skew-Resistant Execution of Analyt-
ical SPARQL Queries on Pig. In 11th International Semantic Web
Conference (ISWC), 2012.

[KWO+14] Benedikt Kämpgen, Tobias Weller, Seán O’Riain, Craig Weber, and
Andreas Harth. Accepting the XBRL Challenge with Linked Data for
Financial Data Integration. In 11th Extended Semantic Web Confer-
ence (ESWC), 2014.

[Kä11] Benedikt Kämpgen. DC Proposal: Online Analytical Processing of
Statistical Linked Data. In 11th International Semantic Web Confer-
ence (ISWC) Doctoral Consortium, 2011.

247

Bibliography

[Lew95] James R. Lewis. IBM Computer Usability Satisfaction Question-
naires: Psychometric Evaluation and Instructions for Use. Human-
Computer Interaction, 7(1), 1995.

[LHG04] Xiaolei Li, Jiawei Han, and Hector Gonzalez. High-Dimensional
OLAP: A Minimal Cubing Approach. In 30th International Confer-
ence on Very Large Data Bases (VLDB), 2004.

[LHM09] Alexander Löser, Fabian Hueske, and Volker Markl. Situational Busi-
ness Intelligence. In 2nd Workshop on Business Intelligence for the
Real-Time Enterprise (BIRTE), 2009.

[LMTS06] Sergio Luján-Mora, Juan Trujillo, and Il-Yeol Song. A UML profile
for multidimensional modeling in data warehouses. Data & Knowl-
edge Engineering, 59(3), 2006.

[LS97] Hans-Joachim Lenz and Arie Shoshani. Summarizability in OLAP
and Statistical Data Bases. In 9th International Conference on Scien-
tific and Statistical Database Management (SSDBM), 1997.

[LT10] Günter Ladwig and Thanh Tran. Linked Data Query Processing Strate-
gies. In International Semantic Web Conference (ISWC), 2010.

[MCG11] Adriana Matei, Kuo-Ming Chao, and Nick Godwin. OLAP for Mul-
tidimensional Semantic Web Databases. In Workshop on Business In-
telligence for the Real-Time Enterprise (BIRTE), 2011.

[MG12] Abhijeet Mohapatra and Michael Genesereth. Aggregation in Datalog
Under Set Semantics. Technical report, Stanford, 2012.

[MG14] Abhijeet Mohapatra and Michael Genesereth. Incremental Mainte-
nance of Aggregate Views. In 8th International Symposium on Foun-
dations of Information and Knowledge Systems (FoIKS), 2014.

[MJC+07] Jayant Madhavan, Shawn R. Jeffery, Shirley Cohen, Xin Luna Dong,
David Ko, Cong Yu, and Alon Halevy. Web-scale Data Integration:
You can only afford to Pay As You Go. In 3rd Conference on Innova-
tive Data Systems Research (CIDR), 2007.

[MKIK07] Konstantinos Morfonios, Stratis Konakas, Yannis Ioannidis, and Niko-
laos Kotsis. ROLAP Implementations of the Data Cube. ACM Com-
puting Surveys (CSUR), 39(4), 2007.

[MLT09] Jose-Norberto Mazón, Jens Lechtenbörger, and Juan Trujillo. A sur-
vey on summarizability issues in multidimensional modeling. Data &
Knowledge Engineering, 68(12), 2009.

248

Bibliography

[MML+13] James P. McCusker, Deborah L. McGuinness, Jeongmin Lee, Chavon
Thomas, Paul Courtney, Zaria Tatalovich, Noshir Contractor, Glen
Morgan, and Abdul Shaikh. Towards Next Generation Health Data
Exploration: A Data Cube-Based Investigation into Population Statis-
tics for Tobacco. In 46th Hawaii International Conference on System
Sciences (HICSS), 2013.

[MTSP07] Jose-Norberto Mazón, Juan Trujillo, Manuel Serrano, and Mario Pi-
attini. Improving the Development of Data Warehouses by Enrich-
ing Dimension Hierarchies with WordNet. In VLDB Conference on
Ontologies-based Databases and Information Iystems (ODBIS), 2007.

[MVC+12] Gabriela Montoya, Maria-Esther Vidal, Oscar Corcho, Edna Ruck-
haus, and Carlos Buil-Aranda. Benchmarking Federated SPARQL
Query Engines: Are Existing Testbeds Enough? In International Se-
mantic Web Conference (ISWC), 2012.

[MZ06] Elzbieta Malinowski and Esteban Zimányi. Hierarchies in a multi-
dimensional model: From conceptual modeling to logical representa-
tion. Data & Knowledge Engineering, 59(2), 2006.

[NB12] Victoria Nebot and Rafael Berlanga. Building data warehouses with
semantic web data. Decision Support Systems, 52(4), 2012.

[NBP+09] Victoria Nebot, Rafael Berlanga, Juan Manuel Pérez, Marı́a José
Aramburu, and Torben Bach Pedersen. Multidimensional Integrated
Ontologies: A Framework for Designing Semantic Data Warehouses.
Data Semantics XIII, 5530, 2009.

[NM11] Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate
cardinality estimation for RDF queries with multiple joins. In 27th
International Conference on Data Engineering (ICDE), 2011.

[NN09] Marko Niinimäki and Tapio Niemi. An ETL Process for OLAP Using
RDF/OWL Ontologies. Data Semantics XIII, 5530, 2009.

[NN10] Tapio Niemi and Marko Niinimäki. Ontologies and summarizability
in OLAP. In ACM Symposium on Applied Computing (SAC), 2010.

[NSL11] Bernd Neumayr, Michael Schrefl, and Konrad Linner. Semantic Cock-
pit: An Ontology-Driven, Interactive Business Intelligence Tool for
Comparative Data Analysis. In Workshops on Advances in Concep-
tual Modeling. Recent Developments and New Directions, 2011.

[OCB+13] Seán O’Riain, Barry Coughlan, Paul Buitelaar, Thierry Declerk, Uli
Krieger, and Susan Marie-Thomas. Cross-Lingual Querying and Com-
parison of Linked Financial and Business Data. In Extended Semantic
Web Conference (ESWC) Satellite Events, 2013.

249

Bibliography

[OCH12] Seán O’Riain, Edward Curry, and Andreas Harth. XBRL and open
data for global financial ecosystems: A linked data approach. Interna-
tional Journal of Accounting Information Systems, 13(2), 2012.

[OOC09] Pat O’Neil, Betty O’Neil, and Xuedong Chen. Star Schema Bench-
mark – Revision 3. Technical report, UMass, Boston (USA), June
2009.

[Pau12] Heiko Paulheim. Generating Possible Interpretations for Statistics
from Linked Open Data. In 9th Extended Semantic Web Conference
(ESWC), 2012.

[PBAP08] Juan Manuel Pérez, Rafael Berlanga, Marı́a José Aramburu, and Tor-
ben Bach Pedersen. Integrating Data Warehouses with Web Data:
A Survey. IEEE Transactions on Knowledge and Data Engineering,
20(7), 2008.

[PFH06] Axel Polleres, Cristina Feier, and Andreas Harth. Rules with Contex-
tually Scoped Negation. In 3rd European Semantic Web Conference
(ESWC), 2006.

[PGSJ09] Torben Bach Pedersen, Junmin Gu, Arie Shoshani, and Christian S.
Jensen. Object-extended OLAP querying. Data & Knowledge Engi-
neering, 68(5), 2009.

[PHDU13] Axel Polleres, Aidan Hogan, Renaud Delbru, and Jürgen Umbrich.
RDFS and OWL Reasoning for Linked Data. In Reasoning Web. Se-
mantic Technologies for Intelligent Data Access. Springer Berlin Hei-
delberg, 2013.

[PJD01] Torben Bach Pedersen, Christian S. Jensen, and Curtis E. Dyreson.
A foundation for capturing and querying complex multidimensional
data. Information Systems, 26(5), 2001.

[PM11] Jesús Pardillo and Jose-Norberto Mazón. Using Ontologies for the
Design of Data Warehouses. International Journal of Database Man-
agement Systems (IJDMS), 3(2), 2011.

[PMA12] Nicolas Prat, Imen Megdiche, and Jacky Akoka. Multidimensional
Models Meet the Semantic Web: Defining and Reasoning on OWL-
DL Ontologies for OLAP. In 15th International Workshop on Data
Warehousing and OLAP (DOLAP), 2012.

[PMT08] Jesús Pardillo, Jose-Norberto Mazón, and Juan Trujillo. Bridging the
Semantic Gap in OLAP Models: Platform-independent Queries. In
11th ACM International Workshop on Data Warehousing and OLAP
(DOLAP), 2008.

250

Bibliography

[RA07a] Oscar Romero and Alberto Abelló. Automating Multidimensional De-
sign from Ontologies. In 10th ACM International Workshop on Data
Warehousing and OLAP (DOLAP). ACM Press, 2007.

[RA07b] Oscar Romero and Alberto Abelló. On the Need of a Reference Alge-
bra for OLAP. In 9th International Conference on Data Warehousing
and Knowledge Discovery (DaWaK), 2007.

[RALT06] Stefano Rizzi, A Abelló, J Lechtenbörger, and Juan Trujillo. Research
in Data Warehouse Modeling and Design: Dead or Alive? In 9th ACM
International Workshop on Data Warehousing and OLAP (DOLAP),
2006.

[Rie13] David Riepl. Knowledge-Based Decision Support for Integrated Water
Resources Management with an application for Wadi Shueib, Jordan.
KIT Scientific Publishing, Karlsruhe, Karlsruhe (Germany), 2013.

[RMA+11] Oscar Romero, Patrick Marcel, Alberto Abelló, Verónika Peralta, and
Ladjel Bellatreche. Describing Analytical Sessions Using a Multidi-
mensional Algebra. In 13th International Conference on Data Ware-
housing and Knowledge Discovery (DaWaK), 2011.

[RPM+13] Lı́via Ruback, Marcia Pesce, Sofia Manso, Sérgio Ortiga, Percy
E. Rivera Salas, and Marco A. Casanova. A Mediator for Statistical
Linked Data. 28th Annual ACM Symposium on Applied Computing
(SAC), 2013.

[RTZ08] Dariush Riazati, James A. Thom, and Xiuzhen Zhang. Drill Across
& Visualization of Cubes with Non-Conformed Dimensions. In 19th
Australian Database Conference (ADC), 2008.

[RTZ11] Dariush Riazati, James A. Thom, and Xiuzhen Zhang. Enforcing
Strictness in Integration of Dimensions: Beyond Instance Matching.
In 14th ACM International Workshop on Data Warehousing and OLAP
(DOLAP), 2011.

[Saa80] Thomas L. Saaty. The Analytic Hierarchy Process: Planning, Priority
Setting, Resource Allocation. McGraw-Hill, New York (USA), 1980.

[SBC+07] Michael Stonebraker, Chuck Bear, Ugur Cetintemel, Mitch Cherniack,
Tingjian Ge, Nabil Hachem, Stavros Harizopoulos, John Lifter, Jennie
Rogers, and Stan Zdonik. One Size Fits All? – Part 2: Benchmarking
Results. In 3rd International Conference on Innovative Data Systems
Research (CIDR), 2007.

[SDN00] Amit Shukla, Prasad Deshpande, and Jeffrey Naughton. Materialized
View Selection for Multi-cube Data Models. In 7th International Con-
ference on Extending Database Technology (EDBT), 2000.

251

Bibliography

[Shn96] Ben Shneiderman. The Eyes Have It: A Task by Data Type Taxon-
omy for Information Visualizations. In IEEE Symposium on Visual
Languages (VL), 1996.

[Sie12] Dominik Siegele. Constructing OLAP hierarchies from Statistical
Linked Data. Master’s thesis (Master Abschlussarbeit), Institute
AIFB, Karlsruhe Institute of Technology (KIT), Germany, February
2012.

[Sim96] Herbert A. Simon. The Sciences of the Artificial. MIT Press, MA
(USA), 1996.

[SMDMM+12] Percy E. Rivera Salas, Fernando Maia Da Mota, Michael Martin,
Sören Auer, Karin Breitman, and Marco A. Casanova. Publishing Sta-
tistical Data on the Web. In 6th IEEE International Conference on
Semantic Computing, 2012.

[Spi10] Marcus Spies. An ontology modelling perspective on business report-
ing. Information Systems, 35(4), 2010.

[SSHS13] Steffen Stadtmüller, Sebastian Speiser, Andreas Harth, and Rudi
Studer. Data-Fu : A Language and an Interpreter for Interaction with
Read / Write Linked Data. In 22nd International Conference on World
Wide Web (WWW), 2013.

[SSR94] Michael Siegel, Edward Sciore, and Arnon Rosenthal. Using Seman-
tic Values to Facilitate Interoperability Among Heterogeneous Infor-
mation Systems. ACM Transactions on Database Systems (TODS),
19(2), 1994.

[STH02] Chris Stolte, Diane Tang, and Pat Hanrahan. Query, Analysis, and
Visualization of Hierarchically Structured Data using Polaris. In 8th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), 2002.

[TC05] F. Tseng and C. Chen. Integrating heterogeneous data warehouses
using XML technologies. Journal of Information Science, 31(3), 2005.

[Tor08] Riccardo Torlone. Two approaches to the integration of heterogeneous
data warehouses. Distributed and Parallel Databases, 23(1), 2008.

[TPL08] Christian Thomsen, Torben Bach Pedersen, and Wolfgang Lehner.
RiTE: Providing On-Demand Data for Right-Time Data Warehousing.
In 24th IEEE International Conference on Data Engineering (ICDE),
2008.

252

Bibliography

[Vas98] Panos Vassiliadis. Modeling Multidimensional Databases, Cubes and
Cube Operations. In 10th International Conference on Scientific and
Statistical Database Management (SSDBM), 1998.

[VLH+10] Denny Vrandečić, Christoph Lange, Michael Hausenblas, Jie Bao, and
Li Ding. Semantics of Governmental Statistics Data. In Web Science
Conference (WebSci), 2010.

[VS99] Panos Vassiliadis and Timos Sellis. A Survey of Logical Models for
OLAP Databases. ACM SIGMOD Record, 28(4), 1999.

[VS09] Panos Vassiliadis and Alkis Simitsis. Near Real Time ETL. In New
Trends in Data Warehousing and Data Analysis. Springer, 2009.

[VTBL13] Elena Vasilyeva, Maik Thiele, Christof Bornhövd, and Wolfgang
Lehner. Leveraging Flexible Data Management with Graph Databases.
1st International Workshop on Graph Data Management Experiences
and Systems (GRADES), 2013.

[WB97] Ming-Chuan Wu and Alejandro P. Buchmann. Research Issues in
Data Warehousing. In Datenbanksysteme in Büro, Technik und Wis-
senschaft. Springer, 1997.

[WC12] Cord Wiljes and Philipp Cimiano. Linked Data for the Natural Sci-
ences: Two Use Cases in Chemistry and Biology. In ESWC Workshop
on Semantic Publishing (SePublica), 2012.

[Wel13] Tobias Weller. Linking SEC XBRL Data With Yahoo! Finance Data
for Online Analytical Processing. Bachelor’s thesis (Bachelor Ab-
schlussarbeit), Institute AIFB, Karlsruhe Institute of Technology, Ger-
many, May 2013.

[WPWCM11] Marcin Wylot, Jigé Pont, Mariusz Wisniewski, and Philippe Cudré-
Mauroux. dipLODocus – Short and Long-Tail RDF Analytics for
Massive Webs of Data. In 10th International Semantic Web Confer-
ence (ISWC), 2011.

[WS11] Kevin Wilkinson and Alkis Simitsis. Designing Integration Flows
Using Hypercubes. In 14th International Conference on Extending
Database Technology (EDBT/ICDT), 2011.

[WTB11] Mitchell Wenger, Manoj Thomas, and Jeffrey S. Babb. An Ontolog-
ical Approach to XBRL Financial Statement Reporting. In AMCIS
Proceedings – All Submissions, 2011.

[YP04] Xuepeng Yin and Torben Bach Pedersen. Evaluating XML-extended
OLAP Queries Based on a Physical Algebra. 7th ACM International
Workshop on Data Warehousing and OLAP (DOLAP), 2004.

253

Bibliography

[ZLXH11] Peixiang Zhao, Xiaolei Li, Dong Xin, and Jiawei Han. Graph Cube:
On Warehousing and OLAP Multidimensional Networks. In ACM
International Conference on Management of Data (SIGMOD), 2011.

[ZM14] Benjamin Zapilko and Brigitte Mathiak. Object Property Matching
Utilizing the Overlap between Imported Ontologies. In 11th Extended
Semantic Web Conference (ESWC), 2014.

254

Index

A
aggregate table 40, 147
aggregate value44
aggregate view 144
aggregation function 34
ALLBUS . 24
allbus namespace 72
analysis . 2
analytical query 42
Anzo . 63
artifact . 11

B
background information analysis 22
binding . 53
BioPortal . 66
blank node . 54

C
calculation expression34
Cassandra . 68
CKAN . 66
closest view146
Complex Correspondences 222
compound measures 34
conformed dimension 35
conversion correspondence 165
convert-cube 165
COST query 110
CouchDB . 68
cross-data-sources KPI analysis . 23
CrossJoin . 125
Cube-to-ROLAP Prototype 88
CUBIST . 67

Cumulated German General
Social Survey 24

D
data cube . 33
data cube lattice 145
data warehouse 47
data warehouse bus matrix 105
data.gov.uk 66
dataset . 32
Dataset Publishing Language . . . 64
DBpedia . 53
decision matrix 18
Design Science 11
Dexter . 63
dice . 43
dimension . 33
dimension attributes 82
dimension table 39
directed crawling strategy 75
domain expert 2
drill-across 44, 120
DrillBeyond 66
Driver Component 180
Dropedia 20, 185
DSPL . 64

E
Edgar Linked Data Wrapper . . . 110
Edgarwrap 110
EmbeddedSesameEngine183
empty cube 46, 121
entity consolidation 84
equivalence duplication strategy .84

INDEX

equivalence statement 83
Estatwrap . 72
ETALIS . 69
ETL . 41, 47
EU 2020 Indicator Dataset . . 72, 94
EU2020 query 72, 111
Eurostat . 24
Eurostat GDP Growth Dataset . . 24
Eurostat Linked Data Wrapper . . 72
eurostat namespace 72
EWRE-AHP 20
Explain-a-LOD65
Extensible Business
Reporting Language 21
Extract-Transform-Load47

F
fact . 33

aggregate fact 35
base fact 35

fact table . 39
Financial Information
Observation System 197
FIOS . 197
full-cube query 114
fully-aggregated query 114

G
Gapminder .62
GAV . 174
GDP CAP query 163
general requirement27
GESIS . 24
gesis namespace 72
GLD . 24
global cube 8, 164
global-as-view 174
Google Base 64
Google Dataset Explorer 64
Google Squared 64
graph pattern 52
group by . 44
grouping value 44, 113

H
HEALTH query 72
hierarchy . 33
Hive . 68
Humboldt .65
HyPer . 69

I
Information Workbench 66
Integrated Water
Resources Management 17
integration . 2
iterator . 51
iterator model 50
IWRM . 17

J
JPivot . 48

K
Kapow Software68
key performance indicator 21
KPI . 21

L
LAV . 174
LD see Linked Data
LDCX . 213
LDSpider 75, 189
lean dataset85, 113
Leibniz-Institute for the
Social Sciences 24
level . 33
Linked Data51
Linked Data Cubes Component 180
Linked Data Cubes Engine 181
Linked Data Cubes Explorer . . . 213
Linked Data principles 51
Linked Data wrapper 53
Linked Data-Fu 69
Linked Open Data 53
local-as-view 174
logical operator query plan 50

256

INDEX

M
MapReduce 68
materialised data cube 112
MDM . 32
MDM-QB Mapping 76, 222
MDX . 48
measure . 33
mediator . 47
member . 33
merge-cubes 169
merging correspondence 168
metadata query 41
Microsoft Excel 62
Microsoft SQL Server 63
Mondrian . 48
Mondrian OLAP Server 67
MonetDB . 68
multi-company KPI analysis 22
multi-cube 82, 120, 156
multidimensional data model . . . 32
multidimensional dataset 32
Multidimensional Element 33
Multidimensional Expressions . . 48

N
Needlebase 64
Neo4j . 68
nested set of OLAP operations . . 44
NoSQL . 68
numeric data 31

O
OGD . 24
OGD scenario 25
OLAP . 40
OLAP client 48
OLAP engine 48, 118, 144
OLAP Engine for
Statistical Linked Data 179
OLAP operation 42
OLAP query 41, 42
OLAP server 48
OLAP-to-SPARQL Algorithm . 112

olap4j .48, 182
OLAP4LD179
Online Analytical Processing . . . 40
ontology . 53
Open Government Data 24
Open Virtuoso 53, 66
open-world assumption 168
OpenCube . 67
OpenVirtuosoEngine 183
Oracle MySQL 63
overlapping data cubes 35, 82
OWA .168
OWL . 53, 84

P
Palo Client . 48
Palo OLAP Server 48
PAYGO . 64
Pentaho Data Integration 68
physical operator query plan 51
Pig Latin . 68
pivot table . 48
point query 114
position . 43
projection .43
PROV Ontology 135

Q
QB . 54
QB integrity constraint 55, 81
qcrumb . 90

R
R . 63
RapidMiner 63
RapidMiner Linked Open
Data Extension 65
RDBMS . 42
RDF . 52
RDF Aggregate Views147, 222
RDF Refine 65
RDF Schema 53
relational database

257

INDEX

management system 42
relevant data for
multidimensional datasets 75
resolvable URI 52
Resource Description
Framework 52
RiTE . 69
roll-up . 43
RUBIX . 64

S
Saiku . 48
SAP ETL . 68
SAP HANA 68, 69
SAP NetWeaver Business
Intelligence 67
SDMX . 24, 56
SEC . 22
Semantic Cockpit66
Semantic Web Search Engine . . . 64
Sesame 53, 66
shared dimension 35, 82
shrunken dimension table 40
SIC . 6, 23
SKB . 186
SLD . . . see Statistical Linked Data
slice . 43
SMART . 18
SMART Knowledge Base 186
SMART scenario 20
SMART-DB 20, 185
SODA system 66
SPADE . 69
SPARQL . 52

SPARQL ASK query 52
SPARQL CONSTRUCT . . . 52
SPARQL SELECT 52

SPARQL engine 53
SPARQL Package for R 65
SQL . 42
SSB . 141
Standard
Industrial Classification 23

star schema 38, 47
Star Schema Benchmark 141
Statistical Data and
Metadata Exchange 24
Statistical Linked Data 51
strict hierarchy 38
subcube query 113
summarisability 37
SWSE . 64
symmetric hierarchy 38

T
Tableau . 67
The RDF Data Cube Vocabulary 54
triple store see SPARQL engine

U
U.S. Securities and
Exchange Commission 22
UML Class Diagram 39
UNEMPLOY query 71, 111
Unemployment Fear Survey
Dataset . 24
user requirement 26

V
vocabulary . 53

W
W3C . 24
Water Evaluation And Planning . 20
WEAP . 20
Web Ontology Language . see OWL
Weka . 63
well-formed cube 55
WHO Mortality Dataset 72, 94
Wikipedia . 53
Wolfram Alpha 66
World Wide Web Consortium . . . 24
wrapper . 47

X
XBRL 21, 199

instance document 199

258

INDEX

XBRL scenario 23

XBRL taxonomy documents . . .199

XML for Analysis 48

XMLA . 48

xmla4js . 48

Y
Yahoo Finance Wrapper203
Yahoofinancewrap 203

259

If numeric data from the Web are brought together, natural scientists can compare
sensor measurements with hydrological estimations, financial analysts can evaluate
companies based on balance sheets and daily stock market values, and citizens can ex-
plore the GDP per Capita independently from several data sources. However, hetero-
geneities between datasets such as varying dimensions and different identifiers for the
same entities remain a problem. Also, RDF graphs from the Web describing numerous
and large datasets as well as arbitrary background information render analytical queries
more complex than typical data analysis settings. This work presents methods to query
a uniform view - the Global Cube - of available datasets from the Web. Contributions
build on standard Linked Data vocabularies, existing OLAP and SPARQL engines,
materialisation of aggregate views, and explicit mathematical relationships between

datasets. Resulting approaches are applied to three different scenarios.

9 783731 503798

ISBN 978-3-7315-0379-8

Fl
ex

ib
le

 In
te

gr
at

io
n

an
d

E
ffi

ci
en

t A
na

ly
sis

 o
f

M
ul

tid
im

en
sio

na
l D

at
as

et
s f

ro
m

 th
e

W
eb

Be
ne

di
kt

 K
äm

pg
en

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Numeric Data from the Web
	Overall Research Problem and Approach
	Research Questions and Contributions
	Design Science Method
	Previous Publications
	Organisation of this Thesis

	Scenarios
	Sharing Research Data for Water Resources Management (SMART)
	Integrating Finance Data for Company Performance Analysis (XBRL)
	Exploring Governmental Statistics from the Web (OGD)
	Requirements Analysis

	Basic Definitions
	Multidimensional Data Model
	Online Analytical Processing
	Statistical Linked Data

	State of the Art
	Traditional Integration and Analysis Approaches
	Semantic Integration and Analysis Approaches
	High-Performance Integration and Analysis Approaches

	Mapping Data Cubes and Statistical Linked Data
	Introduction
	Approach: MDM-QB Mapping
	Evaluation
	Discussions and Lessons Learned
	Related Work
	Conclusions

	Executing OLAP Operations Using SPARQL
	Introduction
	Approach: OLAP-to-SPARQL Algorithm
	Evaluation
	Discussions and Lessons Learned
	Related Work
	Conclusions

	Query Optimisation using Materialised RDF Aggregate Views
	Introduction
	Approach: RDF Aggregate Views
	Evaluation
	Discussions and Lessons Learned
	Related Work
	Conclusions

	Building the Global Cube with Complex Dataset Relationships
	Introduction
	Approach: Global Cube and Conversion and Merging Correspondences
	Evaluation
	Analysis of the Global Cube
	Related Work
	Conclusions

	Application and Discussion of Contributions
	Overview
	SMART Approach
	XBRL Approach
	OGD Approach
	Discussion of Contributions

	Conclusions
	Summary of Results
	Significance of Results
	Open Questions

	Appendix
	Overview of Additional Information Provided on the Web
	Bibliography
	Index

