86 research outputs found

    Content-Aware Multimedia Communications

    Get PDF
    The demands for fast, economic and reliable dissemination of multimedia information are steadily growing within our society. While people and economy increasingly rely on communication technologies, engineers still struggle with their growing complexity. Complexity in multimedia communication originates from several sources. The most prominent is the unreliability of packet networks like the Internet. Recent advances in scheduling and error control mechanisms for streaming protocols have shown that the quality and robustness of multimedia delivery can be improved significantly when protocols are aware of the content they deliver. However, the proposed mechanisms require close cooperation between transport systems and application layers which increases the overall system complexity. Current approaches also require expensive metrics and focus on special encoding formats only. A general and efficient model is missing so far. This thesis presents efficient and format-independent solutions to support cross-layer coordination in system architectures. In particular, the first contribution of this work is a generic dependency model that enables transport layers to access content-specific properties of media streams, such as dependencies between data units and their importance. The second contribution is the design of a programming model for streaming communication and its implementation as a middleware architecture. The programming model hides the complexity of protocol stacks behind simple programming abstractions, but exposes cross-layer control and monitoring options to application programmers. For example, our interfaces allow programmers to choose appropriate failure semantics at design time while they can refine error protection and visibility of low-level errors at run-time. Based on some examples we show how our middleware simplifies the integration of stream-based communication into large-scale application architectures. An important result of this work is that despite cross-layer cooperation, neither application nor transport protocol designers experience an increase in complexity. Application programmers can even reuse existing streaming protocols which effectively increases system robustness.Der Bedarf unsere Gesellschaft nach kostengünstiger und zuverlässiger Kommunikation wächst stetig. Während wir uns selbst immer mehr von modernen Kommunikationstechnologien abhängig machen, müssen die Ingenieure dieser Technologien sowohl den Bedarf nach schneller Einführung neuer Produkte befriedigen als auch die wachsende Komplexität der Systeme beherrschen. Gerade die Übertragung multimedialer Inhalte wie Video und Audiodaten ist nicht trivial. Einer der prominentesten Gründe dafür ist die Unzuverlässigkeit heutiger Netzwerke, wie z.B.~dem Internet. Paketverluste und schwankende Laufzeiten können die Darstellungsqualität massiv beeinträchtigen. Wie jüngste Entwicklungen im Bereich der Streaming-Protokolle zeigen, sind jedoch Qualität und Robustheit der Übertragung effizient kontrollierbar, wenn Streamingprotokolle Informationen über den Inhalt der transportierten Daten ausnutzen. Existierende Ansätze, die den Inhalt von Multimediadatenströmen beschreiben, sind allerdings meist auf einzelne Kompressionsverfahren spezialisiert und verwenden berechnungsintensive Metriken. Das reduziert ihren praktischen Nutzen deutlich. Außerdem erfordert der Informationsaustausch eine enge Kooperation zwischen Applikationen und Transportschichten. Da allerdings die Schnittstellen aktueller Systemarchitekturen nicht darauf vorbereitet sind, müssen entweder die Schnittstellen erweitert oder alternative Architekturkonzepte geschaffen werden. Die Gefahr beider Varianten ist jedoch, dass sich die Komplexität eines Systems dadurch weiter erhöhen kann. Das zentrale Ziel dieser Dissertation ist es deshalb, schichtenübergreifende Koordination bei gleichzeitiger Reduzierung der Komplexität zu erreichen. Hier leistet die Arbeit zwei Beträge zum aktuellen Stand der Forschung. Erstens definiert sie ein universelles Modell zur Beschreibung von Inhaltsattributen, wie Wichtigkeiten und Abhängigkeitsbeziehungen innerhalb eines Datenstroms. Transportschichten können dieses Wissen zur effizienten Fehlerkontrolle verwenden. Zweitens beschreibt die Arbeit das Noja Programmiermodell für multimediale Middleware. Noja definiert Abstraktionen zur Übertragung und Kontrolle multimedialer Ströme, die die Koordination von Streamingprotokollen mit Applikationen ermöglichen. Zum Beispiel können Programmierer geeignete Fehlersemantiken und Kommunikationstopologien auswählen und den konkreten Fehlerschutz dann zur Laufzeit verfeinern und kontrolliere

    Convergence Analysis of Mixed Timescale Cross-Layer Stochastic Optimization

    Full text link
    This paper considers a cross-layer optimization problem driven by multi-timescale stochastic exogenous processes in wireless communication networks. Due to the hierarchical information structure in a wireless network, a mixed timescale stochastic iterative algorithm is proposed to track the time-varying optimal solution of the cross-layer optimization problem, where the variables are partitioned into short-term controls updated in a faster timescale, and long-term controls updated in a slower timescale. We focus on establishing a convergence analysis framework for such multi-timescale algorithms, which is difficult due to the timescale separation of the algorithm and the time-varying nature of the exogenous processes. To cope with this challenge, we model the algorithm dynamics using stochastic differential equations (SDEs) and show that the study of the algorithm convergence is equivalent to the study of the stochastic stability of a virtual stochastic dynamic system (VSDS). Leveraging the techniques of Lyapunov stability, we derive a sufficient condition for the algorithm stability and a tracking error bound in terms of the parameters of the multi-timescale exogenous processes. Based on these results, an adaptive compensation algorithm is proposed to enhance the tracking performance. Finally, we illustrate the framework by an application example in wireless heterogeneous network

    Efficient Media Access Control and Distributed Channel-aware Scheduling for Wireless Ad-Hoc Networks

    Get PDF
    We address the problem of channel-aware scheduling for wireless ad-hoc networks, where the channel state information (CSI) are utilized to improve the overall system performance instead of the individual link performance. In our framework, multiple links cooperate to schedule data transmission in a decentralized and opportunistic manner, where channel probing is adopted to resolve collisions in the wireless medium. In the first part of the dissertation, we study this problem under the assumption that we know the channel statistics but not the instant CSI. In this problem, channel probing is followed by a transmission scheduling procedure executed independently within each link in the network. We study this problem for the popular block-fading channel model, where channel dependencies are inevitable between different time instances during the channel probing phase. We use optimal stopping theory to formulate this problem, but at carefully chosen time instances at which effective decisions are made. The problem can then be solved by a new stopping rule problem where the observations are independent between different time instances. We first characterize the system performance assuming the stopping rule problem has infinite stages. We then develop a measure to check how well the problem can be analyzed as an infinite horizon problem, and characterize the achievable system performance if we ignore the finite horizon constraint and design stopping rules based on the infinite horizon analysis. We then analyze the problem using backward induction when the finite horizon constraint cannot be ignored. We develop one recursive approach to solve the problem and show that the computational complexity is linear with respect to network size. We present an improved protocol to reduce the probing costs which requires no additional cost. Based on our analysis on single-channel networks, we extend the problem to ad-hoc networks where the wireless spectrum can be divided into multiple independent sub-channels for better efficiency. We start with a naive multi-channel protocol where the scheduling scheme is working independently within each sub-channel. We show that the naive protocol can only marginally improve the system performance. We then develop a protocol to jointly consider the opportunistic scheduling behavior across multiple sub-channels. We characterize the optimal stopping rule and present several bounds for the network throughputs of the multi-channel protocol. We show that by joint optimization of the scheduling scheme across multiple sub-channels, the proposed protocol improves the system performance considerably in contrast to that of single-channel systems. In the second part of the dissertation, we study this problem under the assumption that neither the instant CSI nor the channel statistics are known. We formulate the channel-aware scheduling problem using multi-armed bandit (MAB). We first present a semi-distributed MAB protocol which serves as the baseline for performance comparison. We then propose two forms of distributed MAB protocols, where each link keeps a local copy of the observations and plays the MAB game independently. In Protocol I the MAB game is only played once within each block, while in Protocol II it can be played multiple times. We show that the proposed distributed protocols can be considered as a generalized MAB procedure and each link is able to update its local copy of the observations for infinitely many times. We analyze the evolution of the local observations and the regrets of the system. For Protocol I, we show by simulation results that the local observations that are held independently at each link converge to the true parameters and the regret is comparable to that of the semi-distributed protocol. For Protocol II, we prove the convergence of the local observations and show an upper bound of the regret

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise

    A Novel Communication Approach For Wireless Mobile Smart Objects

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2007Telsiz ağlar gezgin kullanıcılara nerede olduklarına bağlı olmadan her yerde iletişim kurma ve bilgiye erişim imkanı sağlar. Hiçbir sabit altyapıya gerek duymadan bu imkanı sağlayan tasarsız ağların zaman içinde gelişmesiyle, askeri, ticari ve özel maksatlar için tercih edilir hale gelmiştir. Diğer yandan, bilimsel ve teknolojik gelişmeler ağ elemanlarını daha küçük ve ucuz hale getirdikçe birçok uygulamanın vazgeçilmez parçaları olmuşlardır. Bu ağ elemanları, taşıyıcılara (örneğin gemiler, uçaklar, büyük araçlar, arabalar, insanlar, hayvanlar, vb.) monteli nesneler veya kendi taşıyıcısı olan (aktörler, duyargalar) nesneler olabilir. Fakat bu ağ elemanları ve uygulamalarında bir takım zorluklar yaşanmaktadır. Bu tezde, gezgin tasarsız ve duyarga ağlardaki yaşanan zorlukları ve beklentileri dikkate alarak, gezgin tasarsız ve duyarga ağlar için yeni bir özgün, durumsuz veri akış yaklaşımı ve yönlendirme algoritması önerilmektedir. Durumsuz Ağırlıklı Yönlendirme (DAY, “Stateless Weighted Routing – SWR”) algoritması olarak adlandırdığımız bu algoritma, diğer yöntemlere göre daha az yönlendirme yükü, daha az enerji tüketimi, daha az yol oluşturma gecikmesi sağlamaktadır. Veri, varışa doğru, çoklu yollar üzerinden taşınmaktadır. Çoklu yol oluşturma, güvenirliği sağlamakta, boşluk problemini büyük oranda çözmekte ve en kısa yolu da içeren daha gürbüz yollar oluşmasını sağlamaktadır. DAY aynı zamanda büyük ölçekli ağlarda da uygulanabilir. Bu amaçla, birden fazla veri toplanma düğümü (sink) içeren sürümü olan Çoklu Veri Toplanma Düğümlü- Durumsuz Ağırlıklı Yönlendirme (ÇVTD-DAY - “Multiple Sink-Stateless Weighted Routing - MS-SWR”) yöntemi de büyük ölçekli tasarsız ve duyarga ağları için önerilmiştir. ÇVTD-DAY yöntemi, DAY yönteminde herhangi bir yöntemsel ve algoritmik değişiklik yapmadan birden fazla veri toplanma düğümünün olduğu ağlarda uygulanabilir. Hem DAY, hem ÇVTD-DAY’nin başarımı benzetimler ile ölçüldü. Elde edilen sonuçlar, DAY ‘nin gezgin tasarsız ve duyarga ağlar için istenenleri karşıladığını, karşılaştırılan diğer yöntemlere göre üstün olduğunu ve olası en iyi çözüme yakınlığını, öte yandan ÇVTD-DAY‘nin de büyük ölçekli ağlarda uygulanabilir olduğunu göstermektedir.Wireless networks provide mobile user with ubiquitous communication capability and information access regardless of location. Mobile ad hoc networks, that manage it without a need to infrastructure networks, as evolved in time, become more preferable for military, commercial and special purposes. On the other hand, technological advances made network components smaller and cheaper. These network components involves a wide variety of objects such as objects mounted on crafts/platforms (e.g. ships, aircrafts, trucks, cars, humans, animals), and objects that have their own platforms (e.g. actuators, sensor nodes). However, these network components and their involved applications exhibit some challenges to implement. By considering the challenges and expectations of mobile ad hoc networks and sensor network, we propose a novel stateless data flow approach and routing algorithm namely Stateless Weighted Routing (SWR) for mobile ad hoc and sensor networks. The SWR has low routing overhead providing very low energy consumption, and has low route construction delay than other proposed schemes. Multiple paths to the destination are established for data transmission. Constructing multiple paths provides reliability, eliminates the void problem substantially, and provides more robust routes including the shortest path. The SWR is applicable to large scale networks. We propose the multiple-sink version of the SWR that is namely MS-SWR, to be used in large scale ad hoc and sensor networks with multiple sinks. The MS-SWR can be used with multiple sinks without any functional and algorithmic modification in the SWR protocol. The performance of the SWR and the MS-SWR are evaluated by simulations. The performance of the system shows that the SWR satisfies the requirements of mobile ad hoc networks and outperforms the existing algorithms. The SWR is also tested against a hypothetic routing scheme that finds the shortest available path with no cost in order to compare the performance of the SWR against such an ideal case. Tests also indicate that MS-SWR is scalable for large scale networks.DoktoraPh

    Flexible Application-Layer Multicast in Heterogeneous Networks

    Get PDF
    This work develops a set of peer-to-peer-based protocols and extensions in order to provide Internet-wide group communication. The focus is put to the question how different access technologies can be integrated in order to face the growing traffic load problem. Thereby, protocols are developed that allow autonomous adaptation to the current network situation on the one hand and the integration of WiFi domains where applicable on the other hand
    corecore