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ABSTRACT

Measurement-Driven Algorithm and
System Design for Wireless and Datacenter

Networks

Varun Gupta

The growing number of mobile devices and data-intensive applications pose unique chal-

lenges for wireless access networks as well as datacenter networks that enable modern cloud-

based services. With the enormous increase in volume and complexity of traffic from ap-

plications such as video streaming and cloud computing, the interconnection networks have

become a major performance bottleneck. In this thesis, we study algorithms and architec-

tures spanning several layers of the networking protocol stack that enable and accelerate

novel applications and that are easily deployable and scalable. The design of these algo-

rithms and architectures is motivated by measurements and observations in real world or

experimental testbeds.

In the first part of this thesis, we address the challenge of wireless content delivery

in crowded areas. We present the AMuSe system, whose objective is to enable scalable

and adaptive WiFi multicast. AMuSe is based on accurate receiver feedback and incurs

a small control overhead. This feedback information can be used by the multicast sender

to optimize multicast service quality, e.g., by dynamically adjusting transmission bitrate.

Specifically, we develop an algorithm for dynamic selection of a subset of the multicast

receivers as feedback nodes which periodically send information about the channel quality

to the multicast sender. Further, we describe the Multicast Dynamic Rate Adaptation

(MuDRA) algorithm that utilizes AMuSe’s feedback to optimally tune the physical layer

multicast rate. MuDRA balances fast adaptation to channel conditions and stability, which

is essential for multimedia applications.

We implemented the AMuSe system on the ORBIT testbed and evaluated its perfor-

mance in large groups with approximately 200 WiFi nodes. Our extensive experiments

demonstrate that AMuSe can provide accurate feedback in a dense multicast environment.



It outperforms several alternatives even in the case of external interference and changing net-

work conditions. Further, our experimental evaluation of MuDRA on the ORBIT testbed

shows that MuDRA outperforms other schemes and supports high throughput multicast

flows to hundreds of nodes while meeting quality requirements. As an example application,

MuDRA can support multiple high quality video streams, where 90% of the nodes report

excellent or very good video quality.

Next, we specifically focus on ensuring high Quality of Experience (QoE) for video

streaming over WiFi multicast. We formulate the problem of joint adaptation of multicast

transmission rate and video rate for ensuring high video QoE as a utility maximization

problem and propose an online control algorithm called DYVR which is based on Lyapunov

optimization techniques. We evaluated the performance of DYVR through analysis, sim-

ulations, and experiments using a testbed composed of Android devices and off the shelf

APs. Our evaluation shows that DYVR can ensure high video rates while guaranteeing a

low but acceptable number of segment losses, buffer underflows, and video rate switches.

We leverage the lessons learnt from AMuSe for WiFi to address the performance is-

sues with LTE evolved Multimedia Broadcast/Multicast Service (eMBMS). We present the

Dynamic Monitoring (DyMo) system which provides low-overhead and real-time feedback

about eMBMS performance. DyMo employs eMBMS for broadcasting instructions which

indicate the reporting rates as a function of the observed Quality of Service (QoS) for

each UE. This simple feedback mechanism collects very limited QoS reports which can be

used for network optimization. We evaluated the performance of DyMo analytically and

via simulations. DyMo infers the optimal eMBMS settings with extremely low overhead,

while meeting strict QoS requirements under different UE mobility patterns and presence

of network component failures.

In the second part of the thesis, we study datacenter networks which are key enablers

of the end-user applications such as video streaming and storage. Datacenter applications

such as distributed file systems, one-to-many virtual machine migrations, and large-scale

data processing involve bulk multicast flows. We propose a hardware and software system

for enabling physical layer optical multicast in datacenter networks using passive optical

splitters. We built a prototype and developed a simulation environment to evaluate the



performance of the system for bulk multicasting. Our evaluation shows that the optical

multicast architecture can achieve higher throughput and lower latency than IP multicast

and peer-to-peer multicast schemes with lower switching energy consumption.

Finally, we study the problem of congestion control in datacenter networks. Quantized

Congestion Control (QCN), a switch-supported standard, utilizes direct multi-bit feedback

from the network for hardware rate limiting. Although QCN has been shown to be fast-

reacting and effective, being a Layer-2 technology limits its adoption in IP-routed Layer

3 datacenters. We address several design challenges to overcome QCN feedback’s Layer-

2 limitation and use it to design window-based congestion control (QCN-CC) and load

balancing (QCN-LB) schemes. Our extensive simulations, based on real world workloads,

demonstrate the advantages of explicit, multi-bit congestion feedback, especially in a typical

environment where intra-datacenter traffic with short Round Trip Times (RTT: tens of µs)

run in conjunction with web-facing traffic with long RTTs (tens of milliseconds).
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The growing number of mobile devices and data-intensive applications pose unique chal-

lenges for wireless access networks as well as datacenter networks that enable modern cloud-

based services. For instance, video is expected to contribute 75% of all the mobile traffic

by 2020 [23] while constituting about 32% of the total cloud traffic [4]. This problem will

only become more pressing as emerging technologies such as Internet of Things (IoT) de-

vices, virtual reality, and distributed machine learning change communication patterns and

impose stricter requirements on throughput and latency.

With the enormous increase in volume, variability, and complexity of traffic from appli-

cations such as video streaming and cloud computing, the wireless and wired interconnection

networks have become a major performance bottleneck. One solution to address these traf-

fic demands is to use more equipment. For example, wireless small-cell technologies enable

deploying more wireless base stations, each with smaller ranges. In datacenters, high port

count switches, 100Gb Ethernet links, or InfiniBand links could be used for high perfor-

mance enterprise networks. However, these approaches are expensive, hard to scale, and

unsuitable for all applications. Thus, novel approaches to scale and manage the networks

of the future must be developed.

In this thesis, we study algorithms and architectures spanning several layers of the

networking protocol stack that enable and accelerate novel applications and that are easily

deployable and scalable. Our focus is on two different domains of wireless networks and

datacenter networks, both of which are critical for the overall performance of end-user
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CHAPTER 1. INTRODUCTION

Figure 1.1: An overview of the wireless and datacenter networks

applications.

First, we focus on wireless networks that form a major source of user demand, and

consider the problem of content delivery in crowded areas through wireless multicast both

for WiFi and cellular networks. Our focus is on 3 key problems associated with multicast:

(i) collecting reliable feedback with low overhead, (ii) enabling dynamic rate adaptation,

and (iii) optimizing video Quality of Experience (QoE). We then turn to datacenter net-

works and study new architectures and algorithms that can enable efficient multicast at the

physical layer using optical switches. Finally, we consider congestion control approaches for

datacenter networks which satisfy the twin goals of ensuring low latencies while maintaining

high throughput with the traffic consisting of a mix of intra-datacenter and inter-datacenter

flows.

1.1 Background

We start by providing background information for each domain. In the following section,

we summarize our contributions.
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1.1.1 Content Delivery Through Wireless Multicast

Recent years have witnessed a rapid growth of mobile devices equipped with WiFi or LTE

interfaces which allow users to access the Internet anywhere and any time. Mobile video

is expected to contribute 75% of all the mobile traffic by 2020 [29]. The popularity of

live video services such as Facebook Live and YouTube TV could severely stress wireless

networks in crowded areas. The growing need to support larger demands for multimedia

content using limited resources in dense areas has prompted the design of several solutions

by both industry and academia.

Many of these solutions are typically based on dense deployments of WiFi Access Points

(APs) [21, 24, 201] or cellular Base Stations (BSs) [87, 124, 201]. These dense deployments

provide dedicated content delivery to each user. Such solutions, besides requiring consider-

able capital and operational expenditure, may not meet user expectations, due to extensive

interference between adjacent APs/BSs.

Wireless multicast is an attractive approach for content delivery to large groups of

users interested in venue specific content (e.g., in sports arenas and entertainment centers).

However, WiFi networks provide limited multicast support where multicast is either handled

through a series of unicast packets or transmission at a low rate (e.g., 6Mbps even for

802.11ac) without a feedback mechanism that guarantees service quality. Similarly, the

evolved Multicast and Broadcast Services (eMBMS) standard [27] for LTE networks does

not specify a mechanism for collecting real-time feedback from receivers which is important

for tuning parameters such as transmission rates and error correction. Due to the limited

ability to collect feedback, deployment of wireless multicast is very challenging.

In crowded areas with tens of thousands of receivers (e.g., [87]), even infrequent feedback

reports by each receiver may result in high signaling overhead. This could translate to

blocking of unicast traffic in cellular networks and high packet losses due to contention in

WiFi. Existing approaches for tuning multicast parameters (e.g., transmission rate) rely on

extensive radio frequency surveys which are not scalable, lead to low throughput, and are

oblivious to environmental changes. Despite recent advances [67, 226], the practicality and
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scalability of wireless multicast has been limited [152]. Thus, there is a need for a multicast

system that dynamically adapts the transmission rates in response to receiver performance.

Further, since a key application for multicast is video streaming, ensuring high Qual-

ity of Experience (QoE) for video streaming is essential. Recent research has shown that

videos which play at lower bitrates or freeze frequently lead to higher abandoment which

translates to lost revenue for video providers, advertisers, and sub-optimal use of network

resources [85]. Existing unicast video streaming techniques rely on segmenting the video in

chunks of fixed duration, encoding each chunk in several bitrates, and transmitting a chunk

whose bitrate matches the estimated throughput in each timeslot. However, applying tech-

niques similar to unicast video streaming for multicast is not straightforward. Besides the

lack of reliable feedback and a rate adaptation mechanism, tuning video rates is challenging

in the presence of multiple receivers with diverse channel qualities.

Thus, our objectives are threefold: (i) to design efficient feedback schemes for wire-

less multicast - both WiFi and cellular, (ii) to develop dynamic multicast rate adaptation

mechanisms, and (iii) to design schemes for optimizing video QoE for multicast.

1.1.2 Optical Multicast for Datacenter Networks

Datacenters are key enablers of user services such as video streaming discussed in the

previous section. Similar to wireless networks, the workload in datacenter networks is

evolving and a large fraction consists of one-to-many traffic patterns. Applications such

as distributed file systems [92], one-to-many virtual machine migrations [65], and large-

scale data processing [61] involve bulk multicast flows. The main barrier in deploying

IP multicast is the requirement of complex configurations on all the switches and routers

of the data center network. Due to this, most datacenters transmit such multicast traffic

through a series of unicast transmissions. These methods are inherently inefficient since they

send multiple copies of the same data. At the same time, datacenter networks are usually

oversubscribed due to the enormous switching cost and cabling complexity associated with

scaling Ethernet network. In such a scenario, these bulk transfers lead to congestion at the

aggregation and core layers.
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Recent solutions [88, 212] have proposes offloading high-volume traffic to an Optical

Circuit Switched (OCS) network using an Optical Space Switch (OSS) for point-to-point

traffic but this approach is ineffective for multicast traffic.. Faster delivery of complex

traffic patterns such as multicast, incast and all-to-all-cast over an OCS substrate requires

leveraging optics’ advanced functionalities. For example, using passive optical splitters for

multicast and time and wavelength multiplexing for incast. A key challenge in implementing

an end-to-end system containing optical modules in data center networks, is the control and

management integration with conventional data center packet-switched networks. Software

Defined Networkin (SDN) along with cross-layer designs [60,133] can overcome this critical

challenge and provide the optical modules functionalities seamlessly to the higher layers.

Therefore, our objective is to design a hardware and software architecture to enable optical

multicast in datacenter networks.

1.1.3 Datacenter Congestion Control

While new physical layer technologies such as optical multicast can provide significant ben-

efits in datacenter networks, improving the performance of existing packet-switched trans-

port networks is critical. Extensive studies show that modern datacenter traffic are typically

composed of a large fraction (as high as 80%) of short (< 10KB) mice flows [56] with the rest

being throughput intensive elephant flows. The mice flows, especially are latency sensitive

and even a small fraction of late arrivals can cause a ripple effect that degrades applica-

tion’s overall performance [80]. Additionally, inter-datacenter or user bound traffic often

traverses through WAN peering links. The switches facing such links typically include a

large buffer to avoid packet losses, which in turn may lead to large delays. Furthermore,

ensuring high throughput over peering links is essential since their cost is negotiated based

on peak utilization (95th percentile).

To meet these requirements, datacenter transports must simultaneously deliver two com-

peting aspects of performance: high throughput and low latency. Congestion control plays

a crucial role in meeting these demands but unfortunately traditional loss-based TCP fails

to achieve optimal performance. QCN (Quantized Congestion Notification) has been de-
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veloped to provide congestion control at the Ethernet layer (L2) for the IEEE 802.1Qau

standard. The QCN feedback signal is a multi-bit indication of congestion sent directly

from the congestion point. Despite the obvious advantages of QCN feedback over Explicit

Congestion Notifications (ECN) [232] or RTT [156], its practicality is limited due to L2

operation and the necessity to make changes to host hardware. Therefore, our objective is

to design easily deployable congestion control algorithms that leverage the benefits of QCN

feedback. .

1.2 Contributions

In this section, we describe the contributions made to each domain.

1.2.1 Adaptive Wireless Multicast

The first part of this thesis focuses on large scale content delivery via wireless multicast

both for WiFi and cellular networks. We address the research challenges associated with

several aspects of wireless multicast as shown in Fig. 1.2(a). For WiFi multicast, we address

challenges related to feedback, rate adaptatation, and video quality optimization as part

of the AMuSe (Adaptive Multicast Services) system [52]. For LTE-eMBMS, our focus is

on efficient large-scale monitoring using light-weight feedback. Below, we describe these

contributions in more detail.

Light-weight feedback mechanism: In Chapter 2 we study approaches for light-weight

feedback for WiFi multicast. First, in order to better understand the performance of existing

schemes, we conducted extensive experiments with over 200 WiFi nodes on the ORBIT

testbed in [50, 51, 101] as shown in Fig. 1.2(b). Our observations show that some nodes,

which we define as abnormal nodes, suffer from low Packet Delivery Ratio (PDR), even when

the AP is transmitting at a low bit-rate and there is no external interference. Furthermore,

this set of abnormal nodes varies across experiments. Further, our evaluations showed that

effects of external interference can be highly localized.

Existing feedback mechanisms are a variation of the Leader-Based feedback scheme
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(a)

1 _ _ 100 _ 100 99 _ _ _ 100 100 99 99 99 99 99 99 99 _ 96

2 _ 100 _ _ 99 _ _ _ 100 100 _ 100 100 _ 100 _ 100 99 _ _

3 100 100 _ 100 100 100 100 _ 99 98 100 100 _ _ 100 99 99 _ 97 _

4 _ 100 _ _ _ _ _ 99 100 _ _ 99 _ _ 99 _ 99 _ 7 98

5 _ 100 100 _ 75 _ _ 99 99 _ _ 100 _ 99 _ _ 99 99 100 _

6 _ 100 82 _ 100 _ 100 99 _ _ _ _ _ _ _ _ 99 99 99 99

7 100 _ _ _ 100 99 99 100 _ _ 80 99 99 100 99 _ 100 31 _ _

8 _ _ 99 _ 100 100 99 _ 99 99 99 100 _ _ 99 99 99 21 99 _

9 _ _ 100 _ 100 99 _ 99 99 99 _ 100 _ _ 99 96 99 98 _ 100

10 99 97 _ 100 100 _ _ 66 _ _ _ 99 _ 98 _ 99 100 _ _ _

11 _ _ _ _ 99 98 _ 99 _ 99 _ _ _ 99 _ 99 99 _ _ 99

12 _ _ 100 99 _ 99 _ _ 97 79 99 _ _ 99 _ 72 _ _ 99 _

13 _ _ _ 99 _ _ _ _ 99 99 0 99 _ 99 _ 99 _ _ 99 _

14 _ _ _ _ _ 99 _ _ _ 99 _ _ _ _ _ 99 99 100 _ 99

15 _ 99 _ _ _ 100 _ _ _ _ _ _ 99 99 _ _ _ _ 99 _

16 _ _ 74 _ _ _ 99 99 _ 88 99 _ _ 99 _ _ _ 99 _ 100

17 _ _ 99 _ _ 99 99 _ 99 99 99 _ _ _ 100 _ 100 99 _ 99

18 _ 100 _ _ 49 _ _ _ 72 99 98 _ _ 99 99 99 _ _ _ 63

19 7 _ 81 _ 99 99 99 _ _ 99 100 _ _ 51 _ _ 100 _ _ _

20 _ _ 99 _ _ _ 99 _ 99 _ 99 _ 99 _ _ _ 99 _ _ 75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PDR 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

AP

-70

30 FB node selected by the AMuSe(PDR) algorithm

(b)

Figure 1.2: (a) A block diagram of the contributions to adaptive wireless multicast for both WiFi

and cellular networks: a light-weight feedback mechanism, multicast dynamic rate adaptation, loss

recovery and Forward Error Correction (FEC), and video rate adaptation, (b) A heatmap of the

average Packet Delivery Ratio (PDR) values for 200 nodes receiving multicast data from a single

Access Point in the ORBIT testbed.

where feedback is provided by a few nodes, typically the nodes with the lowest channel

quality. The above observations provide an intuitive explanation as to why leader-based

feedback protocols may perform poorly since they may not accurately capture the network

performance. Existing schemes cannot provide QoS guarantees or high throughput.

Next, we introduce a low-overhead AMuSe feedback mechanism [50, 101] that does

not require changes to the existing IEEE 802.11 standard and can be implemented as a

light-weight application on any WiFi enabled device with minor or no modifications. The

AMuSe feedback mechanism dynamically divides the network into clusters based on the

adjacency of nodes and maximum cluster size. In each cluster, one node is selected as the

feedback node that updates the Access Point (AP) about its channel quality. We imple-

mented the AMuSe feedback on the ORBIT testbed with more than 200 WiFi nodes as a

distributed protocol with very low control overhead and evaluated its performance. Our re-

sults demonstrate the ability of the AMuSe feedback mechanism to provide feedback about

the performance of wireless multicast. AMuSe feedback leads to lowest number of false
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positives of received packets when compared to leader-based feedback mechanisms.

Dynamic rate adaptation: In Chapter 3, we propose the design and evaluation of the

Multicast Dynamic Rate Adaptation (MuDRA ) algorithm for WiFi. Our experiments on

ORBIT show that when the multicast rate exceeds an optimal rate, called the target-rate,

numerous receivers lose a large number of packets that cannot be recovered. MuDRA [53,99]

addresses this issue and detects when the system operates at the target-rate.

We experimentally demonstrate that MuDRA can swiftly converge to the target rate

while meeting QoS requirements, e.g., ensuring that more than 85% of packets are correctly

received by at least 95% of the 200 nodes in our setup. The losses are recovered using

application-level Forward Error Correction (FEC). MuDRA achieves 6x higher throughput

than current state-of-the-art schemes in diverse conditions. We also show the feasibility of

using AMuSe system, comprising of AMuSe feedback and MuDRA , for streaming video by

emulating video transfers over experimental data. AMuSe can deliver 3 or 4 high definition

H.264 videos (each one of 4Mbps) with over 90% of the nodes receiving video quality

classified as excellent or good based on user perception.

We also present an interactive web-based application that illustrates the performance of

the overall AMuSe system based on experimental traces collected on the ORBIT testbed [102,

103]. Each experimental trace consisted of channel measurements at 150-200 nodes using

several metrics such Link Quality, Packet Delivery Ratio (PDR) etc. The application allows

to compare the performance of AMuSe with other schemes in different scenarios such as dif-

ferent channel conditions and interfering transmissions. For each scenario, the application

shows the dynamic conditions over a period of time on the testbed from the appropriate

experimental traces as well as syntactic scenarios based on manipulating the measured data.

Optimizing Video QoE for Multicast Streaming: In Chapter 4, we address the prob-

lem optimizing QoE of video over WiFi multicast by jointly tuning multicast transmission

and video rates. We formulate the problem of optimizing the QoE as a utility maximization

problem and propose an online algorithm DYVR for solving utility maximization prob-

lem. We derive performance guarantees for the performance of the DYVR algorithm using

the Lyapunov optimization framework [158]. Our analysis shows that DYVR can achieve
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O(W, 1
W ) tradeoff between achieving the utility and satisfying the QoE constraints, where

W is an algorithmic parameter.

Next, we describe an architecture for video streaming over WiFi multicast that can be

easily integrated with existing Adaptive Bit Rate (ABR) services. We implement the ar-

chitecture on a wireless testbed comprised of Android devices and a commercially available

WiFi AP. We evaluate the performance of the DYVR algorithm both through simula-

tions and experiments and compare it against other schemes. Our evaluations show that

DYVR yields close to optimal performance while meeting the QoE constraints under a

variety of conditions.

Dynamic Monitoring of LTE-eMBMS: In Chapter 5, we describe the Dynamic Moni-

toring (DyMo) system for low-overhead monitoring of LTE-eMBMS. The design of DyMo is

based on the lessons learnt from WiFi. DyMo provides accurate QoS reports with low over-

head in dense environments by identifying the maximum SNR threshold so that only a small

number of UEs (User Equipments) with SNR below the threshold suffer from poor service.

DyMo leverages the broadcast capabilities of eMBMS to quickly disseminate stochastic

group instructions to a large number of receivers for adjusting their feedback frequency.

Each instruction is targeted at a sub-group of UEs and the sub-group divisions are further

refined based on the QoS reports.

We develop a Two-step estimation algorithm which can efficiently identify the SNR

Threshold as a one time estimation. We also develop an Iterative estimation algorithm for

estimating the SNR Threshold iteratively, when the distribution changes due to UE mobility

or environmental changes, such as network component failures. Our analysis shows that the

Two-step estimation and Iterative estimation algorithms can infer the SNR Threshold with

a small error and limited number of QoS reports. It is also shown that they outperform

the Order-Statistics estimation method, a well-known statistical method, which relies on

sampling UEs with a fixed probability. For instance, the Two-step estimation requires

only 400 reports when estimating the 1th percentile to limit the error to 0.3% for each

re-estimation. The Iterative estimation algorithm performs even better than the Two-step

estimation and the maximum estimation error can be bounded according to the maximum
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change of SNR Threshold.

We conducted extensive at-scale simulations, based on real eMBMS radio survey mea-

surements from a stadium and an urban area. Our simulations show that both in a stadium-

like and urban area, DyMo detects the eMBMS SNR value of the 0.1% percentile with Root

Mean Square Error (RMSE) of 0.05% with only 5 messages per second in total across the

whole network. This is at least 8 times better than Order-Statistics estimation based meth-

ods. DyMo also infers the optimal SNR Threshold with RMSE of 0.3 dB regardless of

the UE population size, while the error of the best Order-Statistics estimation method is

above 1 dB. DyMo violates the outlier bound (of 0.1%) with RMSE of at most 0.35 while

the best Order-Statistics estimation method incurs RMSE of over 4 times as compared to

DyMo. The simulations also show that after a failure, DyMo converges instantly (i.e., in a

single reporting interval) to the optimal SNR Threshold. Thus, DyMo is able to infer the

maximum MCS while preserving QoS constraints.

1.2.2 Optical Multicast System for Datacenter Networks

In Chapter 6, we present the design and experimental evaluation of an Optical Multicast

System for Data Center Networks - an integrated hardware-software system architecture

that enables native physical layer optical multicast in data center networks. The hardware

architecture is built on a hybrid network, i.e. the Top-of-Rack switches are simultaneously

aggregated by a L2/L3 packet-switched network and an optical circuit-switched network

provided by an Optical Space Switch (OSS) (OSS is a switching substrate that provides

an optical circuit between any idle input and output ports, without optical to electronic

conversion [3,17]). The OSS is also the substrate to connect passive optical splitters to the

optical network. The control plane software runs on the SDN controller and communicates

with the hosts through the packet-switched network. The control plane manages the rout-

ing operations at the electronic and optical switches, connectivity of optical splitters, and

optimally assigns optical splitters to flows using a resource allocation algorithm.

We evaluated the performance of the system through simulations and experiments on a

prototype testbed. Experimental and simulation results show that optical multicast provides
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similar throughput for delivering multicast flows as IP multicast but (i) does not require

applying complex configurations on all the switches/routers of the data center to enable IP

multicast since multicast trees are directly created by the SDN controller, (ii) has superior

energy efficiency since it is built on an OCS network that consumes less energy than an EPS

network, (iii) is future-proof due to the data rate transparency of the system. Compared

to unicast transmissions where the throughput is inversely proportional to the number of

receivers, optical multicast have steady performance irrespective to the multicast group size.

Compared to peer-to-peer multicast, it provides at minimum an order of magnitude higher

throughput for flows with sizes under 250 MB. Adding the optical multicast system to a

data center with a sole non-blocking packet-swtiched network decreases the total energy

consumption by 50% while delivering 20 TB of data containing 15% multicast flows. The

latency also drops by 55%. The improvements are more significant in the case of over-

subscribed EPS networks and larger volumes of multicast flows.

1.2.3 QCN-Based Congestion Control for Datacenter Networks

In Chapter 7, we describe a novel congestion control algorithm QCN-CC which is based on

simple modifications of existing TCP implementations and utilizes QCN feedback messages

at the transport layer, i.e. the TCP layer. QCN-CC is readily deployable without changes

in commodity Network Interface Cards (NICs) and precludes the need of high-performance

hardware or software based timers. We illustrate how to make QCN feedback messages

across the boundary between Layer 2 and Layer 3 domains and our proposed changes can

be readily incorporated in most current commercial switches

We compared the performance of QCN-CC against other state-of-the-art congestion

control mechanisms using simulations based on realistic datacenter workloads. A key as-

pect of these evaluations is including both intra and inter-datacenter traffic which poses

significant challenges for congestion control due to mismtach of flow RTTs by orders of

magnitudes. Our simulations show that QCN-CC significantly reduces the tail latency of

short flows by as much as 6x as compared to TCP, DCTCP, and DCQCN while incurring

no penalty on the overall throughput. QCN-CC can also provide high utilization at WAN
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peering links while minimizing packet drops which is an important performance metric for

datacenter network operators.

1.3 Contributions to Literature

The work about efficient feedback collection for WiFi multicast, described in Chapter 2

was published in the proceedings of IEEE ICNP’13 [50] while an extended journal version

appeared in IEEE/ACM Transactions on Networking [101]. Besides this, a summary of

lessons learnt from the large scale experimentation on the ORBIT testbed were summarized

in an invited paper in the proceedings of GENI Research and Educational Experiment

Workshop’14 (GREE) [51]. A demo of the concepts described in this work was presented

at IEEE LCN’15 [102].

The design and experimental evaluation of MuDRA for dynamic rate adaptation for

WiFi multicast in Chapter 3 appeared in the proceedings of IEEE INFOCOM’16 [99]. A

technical report can be found in [100] and an extended version was submitted to a journal.

A demo of the rate adaptation process was presented at and appeared in the proceedings

of IEEE INFOCOM’16 [103]1.

A demo of the algorithm and the platform described in Chapter 4 was presented and

appeared in the proceedings of IEEE INFOCOM’17 [106].

The description and evaluation of the DyMo system for efficient monitoring of large

scale eMBMS deployments as described in Chapter 5 appeared in IEEE INFOCOM’17 [54].

An extended version with additional results and proofs that could not be included in the

conference version was fast-tracked to IEEE/ACM Transactions on Networking and the

technical report can be found in [55].

The work on wireless multicast described in the thesis was performed as a part of

AMuSe project at Columbia University. The overview of the results spanning the en-

tire project (including the work presented here) appeared in the proceedings of IEEE IC-

1The same demo was presented in the NYC Media Lab Annual Summit’15 and won the second prize

among more than 100 demos.
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CCN’16 [52] as an invited paper.

The concepts of using Software Defined Networking (SDN) and optics for enabling data-

center multicast as explained in Chapter 6 appeared as a poster in the proceedings of ACM

SIGCOMM’14 [181] and in the proceedings of European Conference on Optical Communi-

cation’14 (ECOC) [182]. A paper with details about system design and evaluation appeared

in the journal Optics Express [183].
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CHAPTER 2. LIGHT-WEIGHT FEEDBACK FOR WIRELESS MULTICAST

Chapter 2

LIGHT-WEIGHT FEEDBACK

FOR WIRELESS MULTICAST

2.1 Introduction

Current state of the art techniques using IEEE 802.11 for content delivery leverage either

unicast or multicast data delivery. Commercial products [21,24] rely on unicast for stream-

ing the content to individual users. With standards such as 802.11ac promising total speeds

up to 800 Mbps using multi-user MIMO, it is theoretically possible to serve video streams

to hundreds of users. However, recent studies [107, 164] throw cold water on this promise.

A large number of neighboring APs leads to hidden terminal problems and this coupled

with increased interference sensitivity due to channel bonding, makes the entire approach

highly susceptible to interference. Extrapolating from studies on 802.11n [107,164], it seems

that 802.11ac-based unicast to multiple receivers may not be able to support more than a

hundred users, assuming all of them have 802.11ac capable devices.

On the other hand, WiFi multicast services are rarely used by practical content delivery

applications. Standard WiFi broadcast/multicast frames are transmitted at a fixed and low

bitrate without any feedback. This raises several known reliability and efficiency issues.

While some commercial products [24] are experimenting with WiFi multicast deployments
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Figure 2.1: The AMuSe feedback mechanism (highlighted in red) as a part of the overall AMuSe sys-

tem.

for crowded environments, there remain several challenges to its widespread adoption. In

particular, a recently published IETF Internet Draft highlights several open technical prob-

lems for WiFi multicast [152]. High packet loss due to interference and the hidden node

problem can significantly degrade service quality. On the other hand, transmitting at low

bitrates leads to low network utilization. As described in Section 2.2, there are numerous

studies that propose solutions for overcoming these limitations from two aspects. One aims

to reduce the overhead of feedback information to the multicast sender. The other aims

to improve message reliability based on available feedback information. All the existing

schemes, however, suffer from one or more issues including lack of scalability, inability to

guarantee high service quality, or compliance with existing standards. Further, none of the

schemes have been tested experimentally at scale.

We have been developing the AMuSe (Adaptive Multicast Services) system [52] for

scalable and efficient delivery of multimedia content to a very large number of WiFi nodes

in crowded venues (e.g., sport arenas, lecture halls, and transportation hubs). AMuSe does

not require changes to the IEEE 802.11 protocol or wireless hardware. Therefore, it can be
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Figure 2.2: Feedback node selection by AMuSe. A node with the poorest channel quality in every

neighborhood is selected as a Feedback node. Each feedback node periodically sends updates about

the service quality to the Access Point.

deployed as an overlay network on existing wireless infrastructure. This overlay network is

comprised of AMuSe server on the network side and light-weight application-layer software

on the mobile devices. This makes AMuSe attractive for delivering live video content to

a dense user population that shares common interests (e.g., providing simultaneous video

feeds of multiple camera angles in a sports arena).

The AMuSe system consists of the following components: (i) an efficient feedback mech-

anism, (ii) dynamic rate adaptation algorithm, and (iii) loss recovery and content control.

In this chapter, we focus on design and evaluation of the AMuSe feedback mechanism as

shown in Fig. 2.1. In subsequent chapters, we will describe the other components.

The work on AMuSe project started in collaboration with Bell Labs, Nokia with Yigal

Bejerano and Katherine Guo. Jaime Ferragut, Craig Gutterman, and Thyaga Nandagopal

made numerous important contributions in the design and data analysis of experiments.

2.1.1 AMuSe feedback

We consider the use of WiFi multicast to address the challenge of providing scalable and

efficient delivery of multimedia content to a very large number of WiFi nodes in a small

geographical region (e.g., sport arenas, lecture halls, and transportation hubs). This is an

attractive approach for delivering live video content to a dense user population that shares

17
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common interests (e.g., providing simultaneous video feeds of multiple camera angles in a

sports arena).

The core challenge in providing such a service is collecting limited yet sufficient feedback

from the users for optimizing the network performance. To address this challenge, we

introduce AMuSe (Adaptive Multicast Services), a low-overhead feedback mechanism which

leverages the existing WiFi standards for tuning the network parameters, i.e., optimizing the

network utilization while preserving Quality of Service (QoS) requirements. AMuSe is based

on the following hypothesis, which was reported in [32] and is validated in this chapter.

Main Hypothesis: A cluster of adjacent nodes experience similar channel quality and suffer

from similar interference levels. Hence, a node v with a worse channel condition than its

adjacent neighbors can represent the service quality observed by the nodes in the cluster.

AMuSe dynamically divides the nodes in a network into clusters based on the adjacency

of nodes and maximum cluster size (D m). In each cluster, one node is selected as a Feedback

(FB) node and the FB node updates the AP about its service quality, e.g., channel quality

(an example is shown in Fig. 2.2). The AP, in response, may take several actions such as1:

(i) Rate Adaptation: AMuSe can allow the APs to transmit multicast traffic at the

highest possible bitrate while meeting constraints set by a network operator, i.e. ensuring

high Packet Delivery Ratio (PDR) for a large fraction of the nodes.

(ii) Tuning FEC: We demonstrate in this chapter that ensuring 100% packet deliveries to

all nodes is challenging. In large multicast groups, even a small amount of packet losses

at nodes could lead to large packet retransmissions. In such situations, dynamically tuning

application-level FEC might be a more suitable option. Feedback from AMuSe can be used

to adjust the amount of FEC dynamically.

(iii) Detecting Interference: AMuSe collects detailed packet statistics which can be used

to identify causes of packet loss in the network such as collisions and noise. For instance,

packet losses that occur at the same time at multiple nodes can help pinpoint the location

of the interference.

1The actions of the AP will require changes only at the AP side which is relatively straightforward.
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AMuSe can be implemented as a light-weight application on any WiFi enabled device

with minor or no modifications to the receiver devices and does not require changes to

the existing 802.11 standard. The AMuSe feedback mechanism allows multicast service

operators to balance between the number of FB nodes, the accuracy of the feedback, and

the overall convergence time by controlling AMuSe parameters, such as the cluster radius

D. AMuSe ensures that every node is at most D m away from an FB node with similar

or weaker channel quality. To ensure sparse FB node density, any pair of FB nodes are at

least D m apart which results in low communication overhead. The problem of selecting

FB nodes which meet the above requirements is a variant of the well known Minimal

Independent Dominating Set problem [150]. Although this problem is NP-hard, we prove

that AMuSe can find a solution with a small constant approximation ratio.

2.1.2 Experimental Evaluation

We evaluated AMuSe on the large-scale ORBIT testbed [14] using over 200 WiFi nodes by

implementing AMuSe on the application layer at each device. In all of our experiments,

one node served as the AP and it sent a continuous multicast flow to all the other nodes,

which acted as receivers. We first study the variation of channel quality metrics in different

scenarios, (e.g., varying external interference levels, different transmission bit rates). The

observations from these experiments serve as guiding principles for the design of AMuSe.

We observe that during any experiment, some nodes, which will be defined as abnormal

nodes, suffer from low PDR, even when the AP is transmitting at a low bitrate and there is

no external interference. Furthermore, this set of abnormal nodes varies across experiments.

We collected detailed channel and service statistics from all the nodes. They include

the Link Quality2 (LQ) reported by each node’s WiFi card as representative of its observed

received signal strength (RSS), its PDR, and its distance from the AP. Our preliminary

evaluations show only moderate correlation between the nodes’ LQ and the experienced

2Although LQ is not a standard measurement metric, we observed that the reported LQ by the Atheros

chipsets indicates the RSS in db normalized to a reference value of -110 dBm (thermal noise).
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PDR and a weak correlation between the nodes’ distance from the multicast AP and the

PDR values.

To validate the Main Hypothesis, we consider all the possible clusters with radius 3 and

6 m and calculate the Standard Deviation (STD) of the LQ and PDR values in the clusters

at different bitrate and noise-levels. Our experiments indeed show low LQ and PDR STDs

between the nodes in a cluster. However, as we increase the transmission bitrate or the

noise level, we observe an increase in STD for the PDR values. We also notice that clusters

with a small radius have lower LQ and PDR STDs than larger clusters.

We assess the feedback reports produced by AMuSe when the channel quality is eval-

uated according to the nodes’ LQ, PDR, or a combination of them. These variants are

denoted as AMuSe-LQ, AMuSe-PDR, and AMuSe-Mix respectively. We compare their per-

formance to other feedback node selection schemes; K-Worst [73, 215], which selects the

receivers with the worst channel condition as FB nodes, and Random, which selects a fixed

number of random FB nodes. To evaluate the quality of an FB node selection, we compute

the number of non-FB nodes that experience PDR value strictly lower than their respective

FB node. We refer to these nodes as Poorly Represented Nodes (PRNs). We show that

AMuSe-PDR and AMuSe-Mix produce a negligible number of PRNs and they outperform

the other schemes when evaluated with different multicast bitrates and various noise levels.

AMuSe-LQ and K-Worst have comparable performance, and are significantly better than

the Random scheme.

Furthermore, we assess the performance of AMuSe as a service quality predictor in the

event of environment changes. More specifically, we first select the FB nodes of the different

variants at a given network setting. We then, compute the number of poorly represented

nodes when using the same FB nodes, but after changing the multicast bitrate or the noise-

level. We observe that at low bitrates AMuSe-LQ has slightly less PRNs than AMuSe-PDR,

while AMuSe-PDR has similar performance to K-Worst. We notice a different trend when

operating at a high multicast bitrate, in which AMuSe-PDR outperformed AMuSe-LQ and

K-Worst. In all evaluations AMuSe-Mix was the best variant while Random, suffered from

a very high number of PRNs. We explain these observations and provide additional results
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in Section 2.6.

Our experimental results demonstrate the ability of AMuSe to effectively provide feed-

back about the performance and quality of wireless multicast services. In turn, this feedback

can be used for tuning the network parameters (e.g., rate adaptation, FEC configuration,

and interference classification) to optimize multimedia content delivery.

2.1.3 Chapter Organization

We describe the network settings and our objectives in Sections 2.3 and 2.4 respectively.

We present testbed evaluation of the design of AMuSe in Section 2.5 and the experimental

results of evaluating channel quality metrics in Section 2.6. Finally, the evaluation of the

performance of AMuSe is presented in Section 2.7 for both the static and dynamic cases.

2.2 Related work

Various methods have been proposed for multimedia content dissemination to multiple

receivers. They leverage either unicast or multicast data delivery. This brief overview de-

scribes the most relevant studies Commercial products [21,24] rely on unicast for streaming

content to individual users. This approach requires deployment of numerous APs and it

does not scale to crowded areas. Alternatively, the basic 802.11 multicast mechanism with-

out any node feedback simply sets the transmission bitrate to the lowest rate. Cellular

networks also operate without any node feedback and set the transmission bitrate to a

low value, assuming some nodes are located near the cell edge. Any multicast mechanism

without feedback results in low network utilization.

Many of the schemes to improve multicast services are based on integrating Auto-

matic Repeat Request (ARQ) mechanisms into the protocol architecture [67, 73, 131, 199,

215], adding Forward Error Correction (FEC) packets to the multicast stream [36, 71], or

both [221]. Other studies propose rate adaptation mechanisms for improved network uti-

lization [144].

In all cases, a key requirement is having appropriate feedback from the receivers re-
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garding their observed service quality. These feedback mechanisms can be classified as

follows: (i) Individual Feedback from multicast receivers, (ii) Leader-Based Protocol with

acknowledgements (LBP-ACK), (iii) Pseudo-Broadcast, and (iv) Leader-Based Protocol with

negative acknowledgements (LBP-NACK).

Individual Feedback mechanisms require all receivers to send acknowledgements of re-

ceived packets either at the link layer [98, 196, 199, 214, 215], the application layer [221],

or using periodic updates [36]. With More Reliable Groupcast (MRG) [89, 115] from IEEE

802.11 working group, each receiver transmits a bit-map of correctly received packets. Using

this feedback, the sender determines lost packets and retransmits them to the group. This

approach offers reliability but incurs high feedback overhead with large groups. The other

three approaches reduce this overhead as follows.

The LBP-ACK approach [208, 215] provides scalability by selecting a subset of the

receivers to provide feedback. The Pseudo-Broadcast approach [67, 73, 163], converts the

multicast feed to a unicast flow and sends it to one leader, typically, the receiver with the

weakest channel. The leader acknowledges the reception of the unicast flow. The other

receivers receive packets by listening to the channel in promiscuous mode. The LBP-NACK

approach [131,142,144] improves Pseudo-Broadcast by allowing the other receivers to send

NACKs for lost packets. After receiving the ACK from the leader, the sender can infer

successful transmission to all receivers since an NACK would collide with the leader’s ACK.

With LBP-ACK and Pseudo-Broadcast, the selection of the leader(s) or subset of the

receivers to provide feedback, can compromise service reliability. In Fig. 2.3(a), the leader

v acknowledges a packet on behalf of node u, even though node u suffers from external

interference that prevents correct reception of the packet. In Fig. 2.3(b), the node u might

have an uplink transmission collide with the multicast packet from the AP, but since the

leader correctly receives the multicast packet, the AP thinks the transmission has succeeded.

The LBP-NACK scheme requires changes to the standard and suffers from lack of relia-

bility since a non-leader cannot reply with a NACK if it cannot identify a corrupted packet.

Furthermore, due to the capture effect, the AP may be able to decode the ACK and ignore

NACK messages. A major drawback of the LBP-NACK scheme is lack of fine-grained in-
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Figure 2.3: Unreliable packet delivery by the LBP and the Pseudo-Broadcast approach.

Table 2.1: Multicast: Features of related work

Scalable QoS High Standards Low

Guarantees Util. Compatible Cost

(a) (b) (c) (d) (e)

Unicast x
√

x
√

x

Basic

multicast
√

x x
√ √

Individual

Feedback x
√

x x
√

Pseudo

Broadcast
√

x x
√ √

LBP-NACK
√

x x x
√

AMuSe
√ √ √ √ √

formation about packet losses. Consider an example with 100 nodes in a multicast group,

each with PDR of 99%. The expected fraction of packets for which NACK messages are

received is 1 − .99100, which translates to roughly 63% of the packets. Thus, even in the

case of network performing well, the AP observes poor performance.

Table 2.1 summarizes the main features of existing approaches. In summary, at least

one of the following weaknesses hinders their performance: (i) requirement of feedback from

a large number of receivers, (ii) ignorance of AP to interference-related packet loss, (ii)

low network utilization to compensate for lack of feedback information or due to abnormal

nodes, (iv) requirement of changes to standard WiFi protocol, or (v) expensive deployment

of numerous APs. This motivates our desire for a scalable solution that improves reliability
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of multimedia delivery for WiFi deployments.

2.3 Network Setting

We consider an IEEE 802.11 WLAN and focus on a single AP serving a dense deployment

of WiFi devices or nodes. A multicast server sends data to the AP and the AP transmits

this data using multicast to all the nodes in its transmission range. There could be several

sources of external interference in the network including transmissions from nodes within

the network, adjacent APs, and nodes outside the network.

We follow the model where a node may report its service quality (e.g., channel quality) to

an AP or multicast server. The AP or the multicast server, in response, may decide to adjust

the FEC, adjust the transmission bitrate, retransmit lost packets, or execute a combination

of the above. In practice, the AP and the multicast server are two separate logical entities

and may reside in multiple network layers. Only the AP, however, is responsible for adjusting

the network layer parameters. To simplify presentation, in the rest of the chapter we refer

to AP as a representation of the combination of an AP and a multicast server.

At any given time, each node is associated with a single AP and nodes are assumed

to have a quasi-static mobility pattern. In other words, nodes are free to move from place

to place, but they tend to stay in the same physical locations for several minutes or more.

This is a reasonable assumption for various crowded venues, such as sports arenas or trans-

portation hubs. We assume that mobile devices can estimate their locations (e.g., by using

one of the methods in [155]) with an accuracy of a few meters, and also determine if they

are static3 or mobile.

3We consider a node static, if its movement is restricted to a few meters.
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2.4 Objective

We focus on designing a light-weight feedback mechanism for supporting scalable WiFi

multicast services for a very large number of nodes. This allows APs4 to monitor the network

conditions and to take appropriate actions for improving the multicast service quality while

meeting various service delivery constraints. We rely on the following observation reported

in [32]:

Observation: A cluster of adjacent nodes experience similar channel quality and suffer

from similar interference levels. Hence, a node v with worse channel condition than its

adjacent neighbors can represent the service quality observed by the nodes in the cluster.

Based on this observation, the nodes can be grouped into clusters of adjacent nodes and

a single Feedback (FB) node from each cluster can represent that particular cluster. The

FB node can be used to report the channel quality of the cluster to the AP. Our feedback

mechanism should ensure the following requirements:

(i) The FB nodes should accurately represent the network conditions in their neighbor-

hood. This implies that the channel state experienced by non-FB nodes should not

be significantly worse than the channel state reported by FB nodes.

(ii) The FB nodes should be well distributed throughout the network. In other words,

the distance between the FB and non-FB nodes should be small. This ensures that

the AP is informed about any interference even if it affects a small area.

(iii) The FB nodes should be responsive to changes of the service condition and should

accurately report the impact of environmental changes, such as the multicast bitrate

or external interference.

We now provide a formal definition of our objective. Given any FB node selection

scheme and assume that every non-FB-node is represented by a single FB-node, typically

4To simplify our presentation, we assume that AMuSe is implemented as a software module on the APs.

In practice, AMuSe can be realized as an independent server or even a cloud service.
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the closest FB-node. A non-FB-node is considered a Poorly Represented Node (PRN) if its

PDR is ε > 0 below the PDR of its representing FB-node. We refer to ε as the PRN Gap.

Consequently, our objective can be defined as follows;

Objective: Consider an upper bound on the number of FB nodes or their density5 as well

as a fixed PRN-Gap ε > 0. Design a low-communication FB node selection mechanism that

minimizes the following metrics:

• Number of PRNs in normal operation as well as after environment changes, e.g. bi-

trate or noise level changes.

• Maximum distance between a non-FB-node and its representing FB node.

2.5 The AMuSe Feedback Mechanism

This section provides an overview of the AMuSe feedback mechanism. For any given D we

define two nodes to be D-adjacent if they are separated by a distance of at most D. In order

to find a small set of FB nodes that can provide accurate reports, AMuSe should satisfy

the following requirements.

(i) Each node should be D-adjacent to an FB node.

(ii) An FB node must have similar or weaker channel quality than its D-adjacent nodes.

(iii) Any two FB nodes cannot be D-adjacent.

In order to evaluate the channel quality, various metrics can be considered, including

Received Signal Strength (RSS), Signal-to-Noise Ratio (SNR) and Packet Delivery Ratio

(PDR). We experimentally compare LQ2 and PDR as channel quality metrics in Section 2.6.

2.5.1 The Feedback Node Selection Algorithm

We present a semi-distributed process for FB node selection, where some nodes volunteer

to serve as FB nodes, and the AP selects the best candidates. If node location information

5The FB node density can be enforced by requiring a minimal distance D between any two FB nodes.

26



CHAPTER 2. LIGHT-WEIGHT FEEDBACK FOR WIRELESS MULTICAST

NON-FB-
NODE

VOLUNTEER

Wait for
FBN-LIST

INITIALIZE

D-
adjacent
FB node
of lower
quality?

If timer
inactive,

start timer

Timer
Expired?

Send FBN-
JOIN

Present in
FB list?

Wait for
FBN-List

FB-NODE

yes

no

no

yes

noyes

Figure 2.4: State diagram of the AMuSe FB node selection algorithm at each node. All nodes

initialize in the VOLUNTEER state.

and observed channel quality are known, then the AP can easily select the ideal set of FB

nodes. Yet, this is not feasible in practice for large groups. Hence, we seek to minimize the

number of nodes that send their information to the AP as part of the FB node selection

process, while ensuring that a small set of FB nodes meeting the above requirements is

selected.

The AP periodically (e.g., once every τAP = 500 ms in our experiments) multicasts an

FBN-LIST message with a list of FB nodes (these messages can be sent multiple times for

reliable transmissions and do not incur overhead, since they are 1-2 packets long). Each

entry in the FBN-LIST contains the node ID6, its reported location7, its reported channel

quality, and a measure of the PDR8.

Each node is in one of three states:

• FB-NODE - A node that has been selected as FB node.

• VOLUNTEER - A node that is not aware of any D-adjacent FB node with lower

or similar channel quality and can serve as an FB node.

6Nodes can be assigned temporary virtual IDs to maintain privacy.

7Relying on a user to be truthful about its location/channel quality could lead to denial-of-service attacks.

Yet, we shelve this orthogonal discussion.

8This can be easily changed to report the last acknowledged packet sequence number to support finer

granularity of message reliability.
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• NON-FB-NODE - A node that either is in a transient state or is aware of a D-

adjacent FB node with similar or lower channel quality.

Fig. 2.4 presents the state transition diagram for each node. When a node v joins the

network, it is in the VOLUNTEER state. The node waits for an FBN-LIST message, and

checks if there are any D-adjacent FB nodes in this list with similar or weaker channel

quality. If there are any such nodes, node v switches to the NON-FB-NODE state and

records the list of D-adjacent FB nodes in the FBN-LIST message with similar or weaker

channel quality.

If there are no such nodes, node v starts a random back-off timer for a period chosen in

the interval [0, T ] (our experiments use the maximum receiver back-off timer T = 5 seconds).

The random timer solves the problem of many nodes overwhelming the WiFi channel and

AP with FBN-JOIN messages in the situation of changes in channel condition. During this

countdown, if node v learns of a D-adjacent FB node from a FBN-LIST message, then it

cancels its countdown, and switches to a NON-FB-NODE state. Otherwise, upon expiry

of the timer, it sends a FBN-JOIN message to the AP, and waits to see if its ID appears

on the next FBN-LIST. The FBN-JOIN message contains the node ID, node location, and

the observed channel quality (e.g., the node PDR and LQ). If node v appears on the FBN-

LIST, it switches to the FB-NODE state. If not, it repeats the back-off process again until

it leaves the VOLUNTEER state. At any time, upon receipt of an FBN-LIST message, if

an FB node v does not find itself on the FBN-LIST, it ceases to be in the FB-NODE state.

In this case, the node returns to the VOLUNTEER state and waits for the next FBN-LIST

to either (i) switch to the NON-FB-NODE state due to the existence of a D-adjacent node

of lower quality, or (ii) send the FBN-JOIN message again after the back-off timer expires.

An important property of this FB node selection algorithm is that the FB node selection

is done in a semi-distributed manner, since a node volunteers to serve as an FB node, only

if there is no other FB node in its vicinity with weaker channel quality. Thus, the AP is

only responsible to resolve conflicts when several D-adjacent nodes volunteer simultaneously

and to prune unnecessary FB nodes. Consequently, after receiving FBN-JOIN messages and
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before sending a FBN-LIST message, the AP runs the node pruning algorithm, described

in Section 2.5.3 to decide which nodes are FB nodes.

Each FB node periodically (e.g., once every τFB = 500 ms in our experiments) sends

REPORT messages to update the AP about the channel and service quality experienced by

the node, and thus its representative cluster. If the AP does not receive any message from

one of the FB nodes for a given duration, (for example, 3τFB used in our experiments),

then the AP removes it from the list of FB nodes.

A few aspects of the AMuSe feedback are worth pointing out.

(i) AMuSe does not require the nodes to listen to all the traffic on the network. All they

have to do is listen to the AP on the multicast group address. This conserves energy

at the receivers.

(ii) AMuSe does not require the location information for nodes to be very precise. As

mentioned in Section 2.3, coarse granularity is acceptable, as long as the accuracy is

in the order of few meters, which has been demonstrated by some studies as feasible

and practical [72].

(iii) AMuSe provides variable levels of reliability by fine-tuning the combination of AP

node selection frequency τAP , the receiver reporting frequency, τFB, the maximum

receiver back-off timer T , and the node adjacency distanceD. AMuSe can ensure more

reliable and frequent reports at a cost of more overhead. Instead of a single control,

AMuSe provides multiple control knobs, giving greater flexibility to the operator to

provide different types of service for various multicast streams.

(iv) Fourth, as described above, AMuSe reports can be used for optimizing different as-

pects of WiFi multicast services, such as rate-adaptation, FEC configuration and

interference classification. To this end, the REPORT messages may carry different

information. For instance, in [50] we showed that PDR and LQ information is suffi-

cient for performing rate adaptation, while reporting about received and lost packets

is required for interference classification.
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Figure 2.5: An example of a wireless network a single AP and 4 receivers. All 3 requirements

described in Section 2.5 for an accurate feedback selection are important for this example.

2.5.2 Illustrative Example

Consider the network shown in Fig. 2.5(a) with a single AP and four receivers. Assume that

numbers labeling the nodes denote their IDs and the order in which they join the multicast

service at this AP. There are four different channel quality levels: very good, good, fair

and poor as experienced by node 1, 2, 3, and 4 respectively. Fig. 2.5(b) shows a circle

with radius D around every node, say node v, where each node, u, inside the circle of v is

D-adjacent to node v. Hence, nodes u and v are considered neighbors to one another.

In this example, we demonstrate the importance of all three requirements mentioned at

the beginning of this section on the quality and density of the set of FB nodes. Assume first

that the FB nodes have to meet only requirement (i) and (ii), but not (iii). Under these

guidelines, at the moment each node joins the multicast, it has a weaker channel quality

than all its neighbors, and therefore, it is selected as an FB node. At the end of the process,

the network contains four FB nodes. It is easy to see that this approach does not scale for

large groups.

Now, let us assume that requirement (iii) is enforced. Right after a node joins the

network, the set of FB nodes is optimized. When node 1 joins, it becomes the FB node.

After node 2 joins, node 2 becomes the FB node, while node 1 becomes a non-FB node

because of (iii). After node 3 joins, it becomes an FB node while both node 1 and 2

become non-FB nodes because all three nodes are D-adjacent to one another. After node

4 joins, it becomes an FB node, while node 3 becomes a non-FB node. In addition, node
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2 becomes an FB node again. Notice that node 2 switches state twice, after node 3 and 4

joins respectively. However, after each node joins the multicast group, the set of FB nodes

is optimal.

This example shows that while AMuSe FB node selection algorithm satisfies all three

requirements, it may cause churn as nodes enter and leave the FB-NODE state. We show

next that the selected set of FB nodes is near-optimal when the set of nodes receiving the

multicast do not change.

2.5.3 The Node Pruning Algorithm

As described above, the FB node selection process ensures that every receiver is D-adjacent

to a candidate node with similar or weaker channel condition. The list of candidates at the

AP contains the current FB nodes as well as the nodes in the VOLUNTEER state. Thus,

the AP is responsible to trim unnecessary candidates to select a small set of FB nodes such

that any pair of nodes in the set are not D-adjacent.

The problem of finding the minimum set of FB nodes that meets the three requirements

above is a variant of the minimum dominating set problem, which is a known NP-complete

problem even in the case of unit disk graph [150]. Below we present a heuristic algorithm

that selects a near optimal set of candidates that meet our three requirements.

The heuristic algorithm: The AP creates a list L of the candidates sorted in increasing

order according to their channel quality. Then, it iteratively selects the first candidate v in

L as an FB node and remove v and all its D-adjacent nodes from L. The algorithm ends

when L is empty.

Let F denote the FB nodes selected by the heuristic algorithm and OPT denote the

optimal set of FB nodes among all nodes, our algorithm ensures the following property:

Proposition 1. |F | ≤ 5 · |OPT |. If the channel quality is a monotonic decreasing function

with the distance from the AP then |F | ≤ 3 · |OPT |

For proof see Appendix 2.A.

Stability vs. optimality trade-off: As illustrated in Section 2.5.2, a naive implemen-
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(b) Packet Delivery Ratio

Heatmap, noise = -70 dBm.
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Figure 2.6: Link Quality (LQ) and Packet Delivery Ratio (PDR) heatmaps at the AP for D = 6

meters with transmission bitrate of 12 Mbps and noise level of -70 dBm and -35 dBm. The FB nodes

are highlighted with a thick border in red in the LQ heatmap and in blue in the PDR heatmap.

Empty locations represent nodes that did not produce LQ or PDR reports and they are excluded

from our experiments. Nodes with PDR = 0 are active nodes that reported LQ values but were

unable to decode packets. These nodes are excluded from the FB node selection process. Note that

the minimum threshold below which a node does not become an FB node is configurable.

tation of the heuristic algorithm may cause churn of FB nodes, which obstructs system

stability. Since node pruning is done by the AP, the algorithm can be easily modified to

prevent churn, for instance by giving higher priorities to already selected FB nodes or relax-

ing the distance constraint between FB nodes. In our experiments, we also observed rapid

switching of FB nodes due to minor variations in channel qualities. In this case, ensuring

that the difference between channel quality of a non-FB and FB node is greater than some

value greater than zero before a non-FB node volunteers is an effective solution. Although

striking a proper balance between system stability and optimality of the FB node selection

is a central topic in the design of AMuSe, it is beyond the scope of this thesis.

2.6 Experimental Evaluation of Testbed Environment

We validated AMuSe experimentally using the 400-node ORBIT testbed [14]. We describe

these experiments in this section. We use the Link Quality2 (LQ) metric reported by a

32



CHAPTER 2. LIGHT-WEIGHT FEEDBACK FOR WIRELESS MULTICAST

Table 2.2: Evaluation Parameters

Parameter Definition

LQi Link Quality of node i with the AP.

P veci A vector of the packets received by node

i.

(xi, yi) (row, column) location of node i.

TXAP Broadcast/Multicast transmission rate at

the AP.

node’s WiFi card as representative of its observed RSS. We first consider the following set

of auxiliary hypotheses used to validate our main hypotheses in Section 2.1.1.

H1: There is a correlation between the PDR and LQ values observed by a node.

H2: Clustered nodes experience similar LQ and PDR.

H3: Clustered nodes suffer from similar interference.

2.6.1 The ORBIT Testbed and Experiment Settings

The ORBIT testbed [14] consists of a dynamically configurable grid of 20×20 (400 overall)

nodes each with an 802.11 radio. The grid separation between nodes is 1 meter and in

addition, the testbed provides a noise generator with four noise antennas at the corners of

the grid whose attenuation can be independently controlled, permitting the emulation of a

richer topology. In order to avoid performance artifacts stemming from a mismatch of WiFi

hardware and software, we select the subset of nodes equipped with Atheros 5212/5213 wire-

less cards with ath5k wireless driver. Furthermore, we remove unresponsive nodes (nodes

with hardware issues) in the grid before every experiment. This results in approximately

200 nodes participating in each experiment.

We implemented the AMuSe system as an application layer program for the AP and

the clients, running on all nodes. Each node is identified by its (row, column) location.
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The node at the corner (1, 1) serves as a single multicast AP, configured in master mode,

and it uses channel 40 of 802.11a9 to send a multicast UDP flow with a transmission power

of 1 mW= 0 dBm. The other nodes are the multicast receivers, configured in managed

mode. This means that in practice our experiments consider at most a quarter of the

transmission range of an AP. Each UDP packet is 1400 bytes in payload length and the

payload data contains sequence number for each packet in order to identify missing packets

at the nodes. While we consider a single multicast group in our experiments, AMuSe can

allow for monitoring of several multicast groups individually. If several multicast groups

should be monitored together, then a control multicast group can be setup.

Every node keeps track of the parameters described in Table 2.2, which we process

off-line after each experiment. The received or dropped packets are marked by 1s or 0s

respectively in a boolean vector P veci stored at each node i. The packet delivery ratio

(PDR) value of each node i is calculated from its P veci vector. Note that the throughput

measured at each node is a function of the PDR as well as the bitrate and is different from

the transmission throughput at the AP. The testbed hardware and software allows us to

measure the LQ or RSS values from the user-space. The PDR values can be measured

on any commodity hardware by measuring the received packets. It is possible that some

environments such as iOS do not provide LQ or RSS information to the user-space. In such

cases, AMuSe can rely on PDR measurements alone. As we show later, AMuSe with PDR

measurements alone can provide reliable feedback.

2.6.2 Experiment Description

We now describe the types of experiments conducted to validate our hypotheses presented

earlier in this section.

Different Bitrates: We fix the AP multicast transmission bitrate, denoted by TXAP , to

different values allowed by the card (6, 9, 12, 18, 24, 36, 48, 54 Mbps), each bitrate for a

9We observed that channel 40 at the 5 Ghz band suffers from lower external interference levels on the

ORBIT grid than the channels at 2.4Ghz band.
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duration of 10 seconds. We repeat these experiments 10 times at different times of the day

without any external noise.

Different Noise Levels: We fix the AP multicast transmission bitrate to 12 Mbps and

turn on the noise generator near node (20, 1). The noise generator is configured to provide

AWGN noise for the entire spectrum of channel 40. Starting with −70 dBm (low noise), we

vary noise power in steps of 5 dBm up to −35 dBm (high noise).

Fig. 2.6 presents three sample heatmaps of one run of the experiments, when TXAP = 12

Mbps and external noise of −70 dBm and −35 dBm generated near node (20,1). Each

heatmap shows the active nodes used in the experiment and either the LQ or PDR values

that they experienced, in addition to the FB nodes that the AP has selected with D-

adjacency parameter of 6 meters. Nodes marked with thick red or blue border are FB

nodes selected by the AMuSe scheme. Nodes with PDR = 0 are active nodes that reported

LQ values but unable to decode packets in the experiment run. For example, node (13,11)

with LQ = 20 and PDR = 0 in Fig. 2.6(a) and 2.6(b) for a noise level at −70 dBm. These

nodes are excluded from the FB node selection algorithm.

An interesting observation is that a selected FB node v may have higher PDR (or LQ)

values than an adjacent non-FB node, say u. Such a situation results from the independent-

set property of the selected FB nodes and it may occur if u is D-adjacent to another FB

node with even lower PDR (or LQ) values. For instance, in Fig. 2.6(b) Node (7, 13) with

PDR of 99% was selected as FB node although it has a neighbor, Node (7, 11), with PDR

of 80%. The reason is that Node (7, 11) is 6-adjacent to FB node (10, 8) with PDR of 66%.

2.6.3 Hypotheses Testing

We turn to test our hypotheses based on the information collected from the experiments

described in Section 2.6.2.

H1 - Correlation between PDR and LQ: Fig. 2.7(a)-2.7(e) demonstrate the correlation

between the PDR of a node with respect to its LQ for different transmission bitrates without

external noise, whereas, Fig. 2.7(f) shows the correlation between the PDR of a node with

respect to its distance from the AP at a transmission rate of 48 Mbps. PDR values are
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Mbps.
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(b) PDR vs. LQ, TXAP = 24

Mbps.
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(c) PDR vs. LQ, TXAP = 36

Mbps.
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(d) PDR vs. LQ, TXAP = 48

Mbps.
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Figure 2.7: Experimental results for testing hypothesis H1 and verifying the presence of abnormal

nodes.

close to 100% for almost all nodes for bitrates up to 24 Mbps (Fig. 2.7(a)-2.7(b)). Some

degradation of PDR values is observed for bitrates of 36 Mbps (Fig. 2.7(c)) and even higher

variance of PDR values are seen for 48 Mbps (Fig. 2.7(d)) and above.

Fig. 2.7(d) and Fig. 2.7(e) show that the correlation between the PDR and LQ is not

very strong, suggesting that nodes with the same LQ value may have significantly different

PDR. Fig. 2.7(f) illustrates very weak correlation between the PDR of a node and its

proximity to the AP (with TXAP = 48 Mbps), and some of the nodes adjacent to the AP

suffer from low PDR. For instance, Fig. 2.7(f) shows that one of the nodes with distance

of 5 meters from the AP suffers from PDR of 25%. This observed variation of PDR with

LQ as well as variation of PDR with distance to the AP is consistent with prior work,

e.g., [170], [209], [123] and [97].

36



CHAPTER 2. LIGHT-WEIGHT FEEDBACK FOR WIRELESS MULTICAST

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

0-­‐2	
   2-­‐4	
   4-­‐6	
   6-­‐8	
   8-­‐10	
  

Pe
rc

en
ta

ge
 o

f C
lu

st
er

s 

Link Quality Standard Deviation 

24 Mbps 
36 Mbps 
48 Mbps 
54 Mbps 

(a)

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 

0-5
% 

5-1
0%

 

10
-15

% 

15
-20

% 

20
-25

% 

25
-30

% 

30
-35

% 

35
-40

% 

40
-45

% 

Pe
rc

en
ta

ge
 o

f C
lu

st
er

s 

PDR Standard Deviation 

24 Mbps 
36 Mbps 
48 Mbps 
54 Mbps 

(b)

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

0-2 2-4 4-6 6-8 8-10 

Pe
rc

en
ta

ge
 o

f C
lu

st
er

s 

Link Quality Standard Deviation 

24 Mbps 

36 Mbps 

48 Mbps 

54 Mbps 

(c)

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

0-5
% 

5-1
0%

 

10
-15

% 

15
-20

% 

20
-25

% 

25
-30

% 

30
-35

% 

35
-40

% 

40
-45

% 

Pe
rc

en
ta

ge
 o

f C
lu

st
er

s 

PDR Standard Deviation 

24 Mbps 

36 Mbps 

48 Mbps 

54 Mbps 

(d)

0% 

10% 

20% 

30% 

40% 

50% 

60% 

0-2 2-4 4-6 6-8 8-10 

Pe
rc

en
ta

ge
 o

f C
lu

st
er

s 

Link Quality Standard Deviation 

Noise -35dbm 

Noise -40dbm 

Noise -45dbm 

Noise -55dbm 

Noise -70dbm 

(e)

0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 

0-5
% 

5-1
0%

 

10
-15

% 

15
-20

% 

20
-25

% 

25
-30

% 

30
-35

% 

35
-40

% 

40
-45

% 

Pe
rc

en
ta

ge
 o

f C
lu

st
er

s 

PDR Standard Deviation 

Noise -35dbm 

Noise -40dbm 

Noise -45dbm 

Noise -55dbm 

Noise -70dbm 

(f)

Figure 2.8: Experimental results for testing hypotheses H2–H3: (a) LQ STD: varying TXAP without

noise, cluster size = 3m, (b) PDR STD: varying TXAP without noise, cluster size = 3m, (c) LQ

STD: varying TXAP without noise, cluster size = 6m, (d) PDR STD: varying TXAP without noise,

cluster size = 6m, (e) LQ STD: varying noise, TXAP = 12 Mbps, cluster size = 3m, and (f) PDR

STD: varying noise, TXAP = 12 Mbps, cluster size = 3m.

H2 - Clustered nodes experience similar LQ and PDR: We measure the standard

deviation (STD) of LQ and PDR without noise in each cluster radius of 3 and 6 meters on

the grid, where each cluster contains an FB node and all its neighbors Histograms of the

distribution of the LQ and PDR STD in different clusters are shown in Fig. 2.8(a)-2.8(d).

We measure the same distributions in the presence of various noise levels with a cluster

radius of 3 meters, and plot the results in Fig. 2.8(e) and Fig. 2.8(f). We expect the STD

across clusters to be a good measurement of how similar the PDR and the LQ values are.

Fig. 2.8(a), Fig. 2.8(c), and Fig. 2.8(e) show that the LQ STD is very similar across

all the bitrates regardless of the noise levels. This indicates that although adjacent nodes

experience similar LQ (and similar RSS), the LQ metrics do not capture the effect of external
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Figure 2.9: The impact of clustering: (a) the number of FB nodes for different cluster sizes, (b) CDF

of PDR differences of pairs of nodes within and across clusters for no external noise and bitrate of

54Mbps, and (c) CDF of PDR differences of pairs of nodes within and across clusters for external

noise of −30dBm and bitrate of 12Mbps.

interference and bitrate variation. By comparing Fig. 2.8(a) and Fig. 2.8(c), we see that a

higher percentage of clusters report higher LQ STD for cluster size 6 m than with cluster

size 3 m.

We now consider the distribution of the PDR STD values. Fig. 2.8(b) shows that with

TXAP ≤ 36 Mbps, only very few clusters show significant deviations (> 5%) in PDR. This

is because most nodes have PDR above 99% when TXAP ≤ 36 Mbps as shown in Fig. 2.7.

However, the variability of the PDR becomes evident at higher bitrates. By comparing

Fig. 2.8(b) and Fig. 2.8(d), we observe that a higher percentage of clusters report higher

PDR STD for cluster size 6 m as compared to cluster size 3 m. Further, we see in Fig. 2.8(d)

that at higher bitrates, PDR STD is higher for a significant number of clusters.

As shown in Fig. 2.8(f), interference introduces noticeable deviations (> 5%) in PDR

across nearly two-thirds of the clusters. To understand this, we revisit the heatmaps in

Fig. 2.6(c). It is clear that the PDR values are decreasing for nodes near the bottom-left

corner where the noise generator is located. The nodes which are not able to decode the AP

beacons (at a bitrate of 6 Mbps) disconnect from the AP, are not shown on the heatmap,

and are not included in the variance calculations. The nodes which report a 0 PDR value

are the ones that fail to receive any multicast packet. These nodes are shown in the heatmap

red with a 0 value. At higher noise levels, many more nodes report PDR values of 0. This
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explains the high levels of PDR variance observed in Fig. 2.8(f).

The increase in LQ and PDR STD with the cluster size point to the inherent tradeoff

in FB node selection process using both LQ and PDR as the quality metrics. The system

should ideally operate in a mode where a large fraction of the nodes experience high PDR

and the PDR STD is very low. Increasing the cluster size reduces the number of FB nodes,

however, leads to increased STD of quality metrics in clusters, particularly the PDR STD

at higher bitrates. The average number of FB nodes for different cluster sizes is shown

in Fig. 2.9(a). The FB overhead of AMuSe is directly proportional to the number of FB

nodes. Each FB node, periodically sends an FB message which is roughly 100 bytes long.

The frequency of feedback messages is application-specific e.g., for multicast rate adaptation

application, 1s could be sufficient [99]. This implies that 50 FB nodes will add an overhead

of 40Kbps. In our case, 50 FB nodes correspond to a cluster radius of 3m from Fig. 2.9(a).

The FB overhead is much smaller than the multicast throughput measured at the AP (order

of Mbps even for bitrate of 6Mbps). The above observations serve as a good motivation to

carefully set the parameters for the FB node selection algorithm.

Finally, we demonstrate that clustering is not redundant by comparing the proximity of

channel quality values within and across clusters. Fig. 2.9(b) shows the CDF of the PDR

differences between pairs of nodes inside and across clusters for bitrate of 54Mbps and no

noise for a cluster radius of 3m. We chose bitrate of 54Mbps for ease of exposition. Roughly

60% of the node pairs have PDR differences less than 20% within a cluster while fewer than

50% of pairs have differences less than 20% across clusters. Similarly, Fig. 2.9(c) shows the

CDF of the PDR differences between pairs of nodes inside and across clusters for bitrate

of 12Mbps and external noise of −30dBm for a cluster radius of 3m. In this case also, the

differences are similar. These results show that clustering is effective in grouping nodes

with similar channel qualities.

H3 - Clustered nodes suffer from similar interference: Fig. 2.6 shows that external

noise has a largely local effect near the noise source. Moreoever, Fig. 2.8(f) shows that even

with a small cluster size of 3 meters, the PDR STD can be high due to external interference.

The above two observations validate the need for a well-distributed and non-sparse set of FB
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nodes to report the values of quality metrics in order to reflect the interference experienced

by receivers.

Our experiments also show that increasing TXAP has an impact on all nodes, and that

beyond a certain bitrate, the PDR of many nodes drops below 90%, as shown in Fig. 2.7(d)

and Fig. 2.7(f). Thus, it is critical to assign TXAP appropriate values in order to improve

the multicast service.

2.6.4 Abnormal Nodes

In general, we refer to a node with low PDR as abnormal. Specifically, in our experiments,

a node is abnormal if its PDR is below the abnormal threshold H = 90%. In contrast, a

node is normal if its PDR is at least H = 90%. In this section, we study the number of

abnormal nodes as a function of the TXAP and the link quality (LQ). Fig. 2.7(a)-2.7(d)

show how PDR varies with LQ for each node in a single experiment run with TXAP bitrates

of 6, 24, 36 and 48 Mbps respectively. Results from all values of TXAP (including ones not

shown here) show that the number of abnormal nodes increases with the increase of TXAP .

In Fig. 2.7(a)-2.7(c), PDR values are close to 100% for a large fraction of the nodes for

bitrates up to 36 Mbps. However, Fig. 2.7(a) demonstrates that even in the extreme case of

very low TXAP without any interference some of the nodes (two in this case) are abnormal

and suffer from low PDR.

The set of abnormal nodes remained small when we increase TXAP to higher bitrates

until 36 Mbps, as shown in Fig. 2.7(b) and Fig. 2.7(c). The number of abnormal nodes

increases significantly once TXAP reaches 48 Mbps. Surprisingly, the set of abnormal nodes

is not the same in all experiments.

2.7 Feedback Node Selection

The primary objective of this section is to study the performance of feedback node selection

schemes. We compare AMuSe FB node selection scheme with other schemes and in the

process, validate our main hypothesis from Section 2.1.1. We consider the following schemes
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including the three flavors of AMuSe that select either the LQ, the PDR or a mix as the

metric which is used by the AP for selecting FB nodes.

(i) AMuSe-LQ – AMuSe based on LQ.

(ii) AMuSe-PDR – AMuSe based on PDR.

(iii) AMuSe-Mix – AMuSe based on mix of LQ and PDR.

(iv) K-worst-LQ – K nodes with lowest LQ are FB nodes.

(v) K-worst-PDR – K nodes with lowest PDR are FB nodes.

(vi) K-random – K random nodes as FB nodes.

The AMuSe-Mix scheme relies on lexicographic ordering of PDR and LQ values for

comparing channel quality. For nodes with PDR > 98%, the ordering is based on LQ. For

nodes with PDR ≤ 98%, the ordering is based on PDR. Thus, the channel quality is defined

by the following tuple in lexicographic order: (min(PDR, 98), LQ) The motivation behind

AMuSe-Mix lies in our observation that LQ is weakly correlated with PDR in Section 2.6.

Very high PDR values (> 98%) could result from random packet losses and small PDR

variations above this value are unreliable indicators of difference in channel quality. Thus,

we use AMuSe-Mix to study if LQ can be a better metric to distinguish nodes which have

high PDR values.

Moreover, we study the parameter choices for cluster radius (represented by the adja-

cency parameter, D). When we refer to cluster radius D as a parameter for the Random,

K-worst-LQ, or K-worst-PDR schemes, we select as many FB nodes as AMuSe feedback

schemes have (for a fair comparison).

We study the performance of different feedback nodes selection schemes under two net-

work settings:

• Static Settings: The multicast bitrate and the external interference level are fixed.

• Dynamic Settings: In a dynamic environment of either (i) changing multicast bi-

trate, (ii) changing external interference, or (iii) emulated mobility.
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Figure 2.10: Static settings with bitrate of 48Mbps: (a) the number of Poorly Represented Nodes

(PRN) vs. the cluster radius with fixed PRN-Gap of 1%, (b) PRN for different PRN-Gap and fixed

cluster size of D = 3 m, and (c) maximal distance between an FB and non-FB node for various

cluster radius.

For all our evaluations in both the static as well as the dynamic settings, we collected

detailed packet traces at each node in the testbed for several bitrate and interference con-

ditions. The number of nodes in the experiments was kept similar between 170 to 200 to

avoid any performance mismatch. All the results for varying bitrate conditions were aver-

aged over five runs of 10s at each bitrate. We ensured the appropriate setting of controlled

interference by measuring the interference on a spectrum-analyzer on the testbed. During

our experiments we observed sporadic spikes of uncontrolled interference. For mitigating

their impact, we consider only time instants when there was no uncontrolled noise in our

evaluations.

2.7.1 Static Settings

We first study the performance of different feedback schemes while the multicast bitrate and

the generated external noise level are fixed. This setting allows us to evaluate the various

schemes under normal network operation in stable conditions. We repeat our experiments

with different bitrates and noise levels. We present our results for 3 different cases.

(i) Fixed bitrate of 36 Mbps – The optimal bitrate at which most of the nodes

experience PDR close to 100 and only a few nodes suffer from low PDRs, as shown in

Fig. 2.7(c).
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Figure 2.11: Static settings with external noise: (a) the number of Poorly Represented Nodes (PRN)

vs. the cluster radius with fixed PRN-Gap of 1%, (b) PRN for different PRN-Gap and fixed cluster

size of D = 3 m, and (c) maximal distance between an FB and non-FB node for various cluster

radius.

(ii) Fixed bitrate of 48 Mbps – Above the optimal bitrate many nodes experience low

PDR, as shown in Fig. 2.7(f).

(iii) External Noise – The bitrate is set to 12 Mbps and the receivers suffer from different

interference levels between −70dBm to −35dBm. The interference is concentrated on

one corner of the grid as in Section 2.7.1.

The results of our evaluation are presented in Figs. 2.10-2.11. Figs. 2.10(a) and 2.11(a) show

the number of PRNs as the cluster radius D increases at bitrate 48Mbps without external

noise and at bitrate of 12Mbps wit external noise respectively. We only show the nodes with

minimum PRN-Gap of 1% to avoid counting non-FB nodes with PDRs lower than their

associated FB nodes by a small margin as PRN. Both AMuSe-Mix and AMuSe-PDR yield

close to 0 PRNs since both schemes select nodes with lowest PDR in each cluster. K-

worst-PDR also yields 0 PRNs, since it selects nodes with overall lowest PDR values. The

link quality based schemes AMuSe-LQ and K-worst-LQ have similar performance which

could be explained due to the weak correlation between LQ and PDR. As expected, the

Random feedback selection scheme performs the worst and as the number of feedback nodes

decreases (increase in cluster size), the number of PRNs increases due to fewer feedback

nodes. We omit the results at lower bitrates since they are qualitatively similar but yield

fewer overall PRNs since the vast majority of the nodes experience PDR above 99%. The
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Random scheme yields much higher number of PRNs that increases with the cluster radius.

Figs. 2.10(b) and 2.11(b) present the number of PRNs at different values of PRN-Gap at

bitrate 48Mbps without external noise and at bitrate of 12Mbps wit external noise respec-

tively. The Random, K-worst-LQ, and AMuSe-LQ schemes result in a considerable number

of PRNs. This number is high even for a PRN-Gap of 20% (e.g., Fig. 2.10(b) and 2.11(b)

show that the K-worst-LQ and AMuSe-LQ schemes have between 5 to 10 PRNs with PRN-

Gap of 20%). This means that the PDR value of each one of these nodes is at least 20%

lower than its representative FB node. The situation is even worse for the Random scheme.

We again omit the results at lower bitrates due to very low number of PRNs.

Finally, Figs. 2.10(c) and 2.11(c) show the maximum distance between an FB and non-

FB node as D increases at bitrate 48Mbps without external noise and at bitrate of 12Mbps

wit external noise respectively. As expected, for AMuSe schemes, this distance scales lin-

early with D. The maximum distance between an FB and non-FB node is significantly

higher for the Random scheme and it is about twice for the K-worst-LQ and K-worst-PDR

schemes. This indicates that FB nodes might be concentrated in areas of high losses. Thus,

even though K-worst-PDR scheme leads to low number of PRNs, it does not obtain a well-

distributed set of FB nodes. The distribution of FB nodes could be especially important in

case of rapid network changes.

2.7.2 Dynamic Settings

Next, we emulate a dynamic environment of either: (i) changing AP bitrate, (ii) changing

external interference, (iii) emulating node mobility. The methodology of the dynamic eval-

uations of (i) and (ii) relies on selecting a feedback set at one bitrate or external interference

value and studying the performance of that set at a different value of bitrate or interference.

Since the ORBIT environment is relatively static, we emulate mobility by exchanging posi-

tions of nodes but keeping their channel quality values fixed. The FB nodes are selected at

a particular setting and a fixed percentage of non-FB nodes exchange locations with each

other within a certain radius. The PRNs are then evaluated with the same FB nodes and

clustering as the initial conditions. The dynamic setting helps to evaluate the performance
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(b) Switching from 48 to 54 Mbps
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(c) Increasing noise by 10 dB

Figure 2.12: Dynamic Settings: The number of Poorly Represented Nodes (PRN) vs. the cluster

radius with fixed PRN-Gap of 1%.
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(c) Increasing noise by 10 dB

Figure 2.13: Dynamic Settings: The number of Poorly Represented Nodes (PRN) for different

PRN-Gap and fixed cluster size of D = 3 m.

of the considered schemes under changes in the network.

Obviously, under such dynamic changes, the feedback node selection process may choose

a new set of FB nodes. However, this process may require noticeable convergence time

(depending on several parameters, such as τAP and τFB) of up to a few seconds. During

this time the system may not receive accurate reports about the service quality. Thus, it is

essential that the selected FB nodes continue to provide accurate FB reports in the event

of such changes. For instance, during any interference episode, the AP should receive the

accurate feedback information without delays to take appropriate interference mitigation

actions, such as adding more FEC, reducing bitrate, etc. Similarly, if the AP increases the

multicast bitrate using a rate adaptation algorithm, the FB nodes should provide accurate

state information about the change to the AP. For the dynamic setting we consider the
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following cases: (a) Switching from bitrate of 36 Mbps to 48 Mbps, (b) Switching from

bitrate of 48 Mbps to 54 Mbps, (c) Increasing the noise level by 10 dB, and (d) Emulated

mobility.

Fig. 2.12 presents the number of PRNs vs. the cluster radius (D) for the three cases

where the PRN-Gap is 1%. Fig. 2.12(a) shows the number of PRNs when switching the

bitrate from 36 to 48 Mbps. In this case, the AMuSe-LQ and K-worst-LQ have comparable

performance to the static case with bitrate of 48 Mbps. This is an expected result since LQ

is a measure of the received signal strength and is not affected from changing the bitrate.

However, AMuSe-PDR performs significantly worse than the static case. To understand this

trend, recall that at bitrate of 36 Mbps most of receivers experience PDR close to 100%, as

shown in Fig. 2.7(c). Therefore, when the cluster size is small and large number of receivers

are selected as FB nodes, most of the FB nodes have PDR above 99%. With such high

PDR, a selected FB node may not be affected by increasing the bitrate. Observe that the

number of PRNs decreases by increasing the cluster size. This is not surprising since now

most of the selected FB nodes have PDR below 98%, which indicates that they experience

only moderate channel quality and therefore they are more susceptible to a bitrate increase.

A similar explanation holds true for the K-worst-PDR scheme. AMuSe-Mix outperforms

the other schemes since it considers both the PDR and the LQ of the receivers and uses the

LQ values when the PDR is very high. Like the static setting, the Random scheme suffers

from very high number of PRNs.

Fig. 2.12(b) shows the number of PRNs for bitrate increases from 48 to 54Mbps. In this

case AMuSe-Mix , AMuSe-PDR , and K-worst-PDR outperform the LQ based solutions.

By revisiting Fig. 2.7(f), we see that many receivers suffer from low PDR due to a weak

channel condition at a bitrate of 48 Mbps. Since these nodes are selected as FB nodes,

they provide good lower bound reports of the service quality observed by the nodes in their

clusters. We notice a similar situation in Fig. 2.12(c) when increasing the noise level by

10 dB.

The distribution of PRNs vs the PRN-Gap is shown in Fig. 2.13 for a cluster radius

D = 3 m. The figure supports our observations from Fig. 2.12 and demonstrates that
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Figure 2.14: The number of Poorly Represented Nodes (PRNs) vs. percentage of moved nodes for

(a) fixed bitrate of 36Mbps, (b) fixed bitrate of 48Mbps, and (c) bitrate of 12Mbps and noise of

5dBm.

AMuSe-Mix outperforms the other alternatives in all cases. Since the feedback node set is

not changed when increasing the bitrate or noise level, the maximum distance between an

FB and non-FB node remains the same as shown in Figs. 2.10(c) or 2.11(c).

The results for emulated node mobility are shown in Fig. 2.14. Fig. 2.14(a) shows the

number of PRNs vs. the percentage of moved nodes within a radius of 2m at a fixed bitrate

of 36Mbps. Similar results at bitrate of 48Mbps are in Fig. 2.14(b) and with external noise

in Fig. 2.14(c). The Random scheme yields the largest number of PRNs and is not affected

by increasing number of moved nodes. The AMuSe-Mix, AMuSe-PDR, and K-worst-PDR

schemes perform quite similarly and the PRNs for all of them increase with increase in

the number of moved nodes. The LQ based schemes AMuSe-LQ and K-worst-LQ perform

worse than the PDR based schemes.

We also evaluate the sensitivity of AMuSe to errors in node location estimation by

injecting errors into reported node locations. The errors are picked from a Gaussian distri-

bution with µ = 0, σ = 7 meters. However, we observed only insignificant increases in the

number of PRNs for the AMuSe schemes.

Our experiments on the ORBIT testbed with approximately 200 nodes validate the practi-

cality of AMuSe-Mix as an excellent scheme for reporting the provided quality of an ongoing

WiFi multicast services for both static and dynamic settings. The K-worst-PDR scheme also

peforms quite well but does not yield a well-distributed set of FB nodes. Our evaluation
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shows that a relative small number of FB nodes is sufficient to provide accurate reports.

Yet, the number of required FB nodes will also depend on the application.

2.A Proof of Proposition 1

Proposition 1: |F | ≤ 5 · |OPT |. If the channel quality is a monotonic decreasing function

with the distance from the AP then |F | ≤ 3 · |OPT |

Proof of Proposition 1. We prove the general proposition of |F | ≤ 5 · |OPT |, which is based

on Lemma 3.1 in [150]. The special case of |F | ≤ 3 · |OPT |, where the channel quality is

a monotonic decreasing function with the distance from the AP, can be proved by using

similar arguments and Lemma 3.3 in [150].

Consider a point x in the plane and let Z be an independent set of points in the circle

with radius r around point x. i.e, the distance between any two points in Z is more than

r. Then according to Lemma 3.1 in [150], |Z| ≤ 5.

To prove that AMuSe guarantees approximation ratio of 5, we just need to show that

for any given multicast group there is a mapping from F to OPT such that at most 5 nodes

in F are mapped to the same node in OPT . To this end, we map every FB node v ∈ F to

its nearest node u ∈ OPT , which may be node v itself. Recall that both OPT and F are

dominating independent sets such that each node has an adjacent FB node with distance

at most D and the minimal distance between any pair of FB nodes is at least D. From this

it is implied that any FB node v is either in OPT or it is D-adjacent to at least one node

in OPT .

Now, consider an FB node u ∈ OPT and let W ⊆ F be the set of FB nodes selected

by our scheme that are D-adjacent to u. Since F is an independent set it holds that W is

also an independent set, i.e., the minimal distance between any pair of FB nodes x, y ∈W

is dx,y > D. Observe that all nodes in W are included in a disk with radius D centered at

node u. Thus, according to Lemma 3.1 in [150], it follows that |W | ≤ 5. This leads to the

result that each node in OPT is associated with at most 5 nodes in F .
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Chapter 3

MULTICAST DYNAMIC RATE

ADAPTATION

3.1 Introduction

As described in Chapter 2, improving WiFi multicast performance requires a scheme that

dynamically adapts the transmission rate [152]. Yet, designing such a scheme poses several

challenges, as outlined below.

Multicast Rate Adaptation (RA) - Challenges: A key challenge in designing multi-

cast RA schemes for large groups is to obtain accurate quality reports with low overhead.

Some systems [67,187,221] experimentally demonstrated impressive ability to deliver video

to a few dozen nodes by utilizing Forward Error Correction (FEC) codes and retransmis-

sions. However, most approaches do not scale to very large groups with hundreds of nodes,

due to the following:

(i) Most schemes tune the rate to satisfy the receiver with the worst channel condition. As

shown in [50, 161] in crowded venues, a few unpredictable outliers, referred to as abnormal

nodes, may suffer from low SNR and Packet Delivery Ratio (PDR) even at the lowest rate

and without interference. This results from effects such as multipath and fast fading [172].

Therefore, a multicast scheme cannot provide high rate while ensuring reliable delivery to
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Figure 3.1: The Adaptive Multicast Services (AMuSe) system consisting of the Multicast Dynamic

Rate Adaptation (MuDRA) algorithm and a multicast feedback mechanism.

all users.

(ii) It is impractical to continuously collect status reports from all or most users with-

out hindering performance. Even if feedback is not collected continuously, a swarm of

retransmission requests may be sent following an interference event, (wireless interference

is bursty [32]) thereby causing additional interruptions.

To overcome these challenges, a multicast system should conduct efficient RA based on

only limited reports from the nodes. In the previous chapter we focused on efficient feedback

collection mechanisms for WiFi multicast as part of the AMuSe system. In this chapter, we

present the Multicast Dynamic Rate Adaptation (MuDRA) algorithm. MuDRA leverages

the efficient multicast feedback collection of AMuSe and dynamically adapts the multicast

transmission rate to maximize channel utilization while meeting performance requirements.

Fig. 3.1 shows the overall AMuSe system composed of the MuDRA algorithm and the

AMuSe feedback mechanism where the focus of this chapter is MuDRA .

3.1.1 Our Contributions

We present a multicast rate adaptation algorithm MuDRA which is designed to support

WiFi multicast to hundreds of users in crowded venues. MuDRA can provide high through-

put while ensuring high Quality of Experience (QoE). MuDRA benefits from a large user

population, which allows selecting a small yet sufficient number of Feedback (FB) nodes
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with marginal channel conditions for monitoring the quality. We address several design

challenges related to appropriate configuration of the feedback level.

We note that using MuDRA does not require any modifications to the IEEE 802.11

standard or the mobile devices. MuDRA requires application layer measurements from

mobile devices for multicast rate adaptation decisions. The multicast rate changes can be

supported by most Access Points through changes in the driver-level code or through API

calls.

We implemented MuDRA with the AMuSe system on the ORBIT testbed [14], evaluated

its performance with all the operational IEEE 802.11 nodes (between 150 and 200), and

compared it to other multicast schemes. We use 802.11a to maximize the number of WiFi

devices available1. To the best of our knowledge, this is the largest set of wireless devices

available to the research community. Our key contributions are:

(i) The need for RA: We empirically demonstrate the importance of RA. Our experiments

on ORBIT show that when the multicast rate exceeds an optimal rate, termed as target-

rate, numerous receivers suffer from low PDR and their losses cannot be recovered. We also

observed that even a controlled environment, such as ORBIT, can suffer from significant

interference. These observations constitute the need for a stable and interference agnostic

RA algorithm that does not exceed the target-rate.

(ii) Practical method to detect the target-rate: Pseudo-multicast schemes that rely

on unicast RA [67] may occasionally sample higher rates and retreat to a lower rate after

a few failures. Based on the observation above about the target rate, schemes with such

sampling mechanisms will provide low QoE to many users. To overcome this, we developed

a method to detect when the system operates at the target-rate, termed the target condi-

tion. Although the target condition is sufficient but not necessary, our experiments show

that it is almost always satisfied when transmitting at the target-rate. MuDRA makes RA

decisions based on the target condition and employs a dynamic window based mechanism

to avoid rate changes due to small interference bursts.

1The ORBIT testbed supports only about 30 802.11n enabled devices
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(iii) Extensive experiments with hundreds of receivers: Our experiments demon-

strate that MuDRA swiftly converges to the target-rate, while meeting the Service Level

Agreement (SLA) requirements (e.g., ensuring PDR above 85% to at least 95% of the

nodes). Losses can be recovered by using appropriate application-level FEC methods [31,

71,162,189,210].

MuDRA is experimentally compared to (i) pseudo-multicast with a unicast RA [10], (ii)

fixed rate, and (iii) a rate adaptation mechanism proposed in [50] which we refer to as the

Simple Rate Adaptation (SRA) algorithm. MuDRA achieves 2x higher throughput than

pseudo-multicast while sacrificing PDR only at a few poorly performing nodes. While the

fixed rate and SRA schemes can obtain similar throughput as MuDRA, they do not meet

the SLA requirements. Unlike other schemes, MuDRA preserves high throughput even

in the presence of interference. Additionally, MuDRA can handle significant node churn.

Finally, we devise a live multicast video delivery approach for MuDRA. We show that in

our experimental settings with target rate of 24− 36Mbps, MuDRA can deliver 3 or 4 high

definition H.264 videos (each one of 4Mbps) where over 90% of the nodes receive video

quality that is classified as excellent or good based on user perception.

To summarize, to the best of our knowledge, MuDRA is the first multicast RA algorithm

designed to satisfy the specific needs of multimedia/video distribution in crowded venues.

Moreover, AMuSe in conjunction with MuDRA is the first multicast content delivery system

that has been evaluated at scale. The rest of the chapter is organized as follows. Section 3.3

describes the ORBIT testbed and important observations. Section 3.4 presents the model

and objectives. MuDRA’s design is described in Sections 3.5 and 3.6. The experimental

evaluation is presented in Section 3.7.

The design and experimental evaluation of MuDRA appeared in the proceedings of IEEE

INFOCOM’16 [99]. A technical report can be found in [100] and an extended version was

submitted to a journal. Yigal Bejerano and Craig Gutterman contributed to the design

behind MuDRA. A demo of the rate adaptation process was presented at and appeared in

the proceedings of IEEE INFOCOM’16 [103] with significant contributions from Raphael

Norwitz and Savvas Petridis.
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3.2 Related Work

Multicast rate adaptation approaches are in general closely linked to multicast feedback. In

Chapter 2, we described existing approaches for multicast feedback mechanisms in detail.

In this chapter, we focus on unicast and multicast te adaptation.

Unicast RA: We discuss unicast RA schemes, since they can provide insight into the design

of multicast RA. In Sampling-based algorithms, both ACKs after successful transmissions

and the relation between the rate and the success probability are used for RA after several

consecutive successful or failed transmissions [59, 122, 132]. The schemes in [128, 160, 219]

distinguish between losses due to poor channel conditions and collisions, and update the

rate based on former. Recently, [76,169] propose multi-arm bandit based RA schemes with

a statistical bound on the regret. However, such schemes cannot support multicast, since

multicast packets are not acknowledged. In Measurement-based schemes the receiver reports

the channel quality to the sender which determines the rate [79,110,119,170,173,211]. Most

measurement-based schemes modify the wireless driver on the receiver end and some require

changes to the standard, which we avoid.

Multicast RA: In [48,67,145,188,208] the sender uses feedback from leaders (nodes with

worst channel conditions) for RA. In [144] when the channel conditions are stable, RA is

conducted based on reports of a single leader. When the channel conditions are dynamic,

feedback is collected from all nodes. Medusa [187] combines Pseudo-Multicast with in-

frequent application layer feedback reports from all nodes. The MAC layer feedback sets

backoff parameters while application layer feedback is used for RA and retransmissions of

video packets. Recently, in [50] we considered multicast to a large set of nodes and provided

a rudimentary RA scheme which is not designed to achieve optimal rate, maintain stability,

or respond to interference.
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Figure 3.2: Experimental measurement of the number of abnormal nodes in time, for fixed rates of
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Figure 3.3: The CDF of the PDR values of 170 nodes during normal operation and during a spike

at rate of 36Mbps.

3.3 Testbed and Key Observations

We evaluate MuDRA on the ORBIT testbed [14], which is a dynamically configurable grid

of 20 × 20 (400) 802.11 nodes where the separation between nodes is 1m. It is a good

environment to evaluate MuDRA, since it provides a very large and dense population of

wireless nodes, similar to the anticipated crowded venues.

Experiments: To avoid performance variability due to a mismatch of WiFi hardware and

software, only nodes equipped with Atheros 5212/5213 cards with ath5k driver were selected.

For each experiment we activated all the operational nodes that meet these specifications

(between 150 and 250 nodes). In all the experiments, one corner node served as a single

multicast AP. The other nodes were multicast receivers. The AP used 802.11a to send

a multicast UDP flow, where each packet was 1400 bytes. Most practical applications

such as video streaming include a sequence number to keep track of packet delivery at the

clients. We embed an artificial sequence number for each packet in the UDP payload for

measurement purposes. The AP used the lowest supported transmission power of 1mW =

0dBm to ensure that the channel conditions of some nodes are marginal.
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Technical challenges: While analyzing the performance, we noticed that clients discon-

nect from the AP at high bit-rates, thereby causing performance degradation. We noticed

that in several WiFi driver implementations, the beacon rate is set as the multicast rate.

Increasing the bit-rate also increases the WiFi beacon bit-rate which may not be decoded

at some nodes. A sustained loss of beacons leads to node disconnection. To counter this,

we modified the ath5k driver to send beacons at a fixed minimum bit-rate.

Interference and Stability: We study the time variability of the channel conditions on

the ORBIT testbed by measuring the number of nodes with low PDR (below a threshold of

85%). We call these nodes abnormal nodes (the term will be formally defined in Section 3.4).

The number of abnormal nodes out of 170 nodes for rates of 24 and 36Mbps is shown in

Fig. 3.2. We repeated these experiments several times and observed that even at a low rate,

the channel may suffer from sporadic interference events, which cause a sharp increase in

the number of abnormal nodes. These interference spikes caused by non-WiFi devices are

beyond our control and their duration varies in time.

Fig. 3.3 provides the Cumulative Distribution Function (CDF) of the PDR values with

and without sporadic interference. The figure shows that during a spike, over 15% of the

nodes suffer from PDR around 50%. Further, the location of the nodes affected by the spikes

varies with time and does not follow a known pattern. These experiments show that even in

a seemingly controlled environment, nodes may suffer from sporadic continuous interference,

which may cause multicast rate fluctuations. Users are very sensitive to changes in video

quality [46,78], and therefore, to keep a high QoE we would like to avoid rate changes due

to sporadic interference.

3.4 Network Model and Objective

We consider a WiFi LAN with multiple APs and frequency planning such that the trans-

missions of adjacent APs do not interfere with each other. Thus, for RA we consider a

single AP with n associated users. We assume low mobility (e.g., users watching a sports

event). Although we consider a controlled environment, the network may still suffer from

55



CHAPTER 3. MULTICAST DYNAMIC RATE ADAPTATION

Table 3.1: Notation and parameter values used in experiments.

Symbol Semantics Exp.

Val.

n Number of nodes associated with the

AP.

> 150

X Population threshold - Minimal fraction

of nodes that should experience high

PDR.

95%

Amax The maximal number of allowed abnor-

mal nodes.

8

L PDR threshold - Threshold between ac-

ceptable (normal) and low (abnormal)

PDR.

85%

H Threshold between high PDR and mid-

PDR.

97%

K Expected number of FB nodes, K = α ·

Amax.

30

R Reporting PDR threshold.

At Number of abnormal nodes at time t.

Mt Number of mid-PDR FB nodes at time

t.

Wmin Minimal RA window size (multiples of

reporting intervals).

8

Wmax Maximal RA window size. 32
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sporadic interference, as shown in Section 3.3. The main notation used in the chapter is

summarized in Table 3.1. Specifically, a PDR-Threshold L, is defined such that a node has

high QoE if its PDR is above L. Such a node is called a normal node. Otherwise, it is

considered an abnormal node.

Our objective is to develop a practical and efficient rate control system which satisfies

the following requirements:

(R1) High throughput – Operate at the highest possible rate, i.e., the target rate, while

preserving SLAs.

(R2) Service Level Agreements (SLAs) – Given L (e.g., L = 85%), and a Population-

Threshold X (e.g., X = 95%), the selected rate should guarantee that at least X% of the

nodes experience PDR above L (i.e., are normal nodes). Except for short transition periods,

this provides an upper bound of Amax = dn · (1−X)e on the number of permitted abnormal

nodes.

(R3) Scalability – Support hundreds of nodes.

(R4) Stability – Avoid rate changes due to sporadic channel condition changes.

(R5) Fast Convergence – Converge fast to the target rate after long-lasting changes

(e.g., user mobility or network changes).

(R6) Standard and Technology Compliance – No change to the IEEE 802.11 standard

or operating system of the nodes.

3.5 Multicast Rate Adaptation

The overall multicast rate adaptation process of MuDRA as a part of the AMuSe system

relies on three main components, as illustrated in Fig. 3.1 and discussed below. We first

provide a high level description of each component and then discuss the details in the

following subsections.

(i) Feedback (FB) Node Selection: Selects a small set of FB nodes that provide reports

for making RA decisions. We describe the FB node selection process in Section 3.5.1 and
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Algorithm 1 MuDRA Algorithm

1: rate← lowestRate, window ←Wmin, changeT ime← t, refT ime← t, t := current time

2: while (true) do

3: Get PDR reports from all FB nodes

4: Get Status of each FB node i

5: Calc Ât and M̂t

6: rate, action, changeT ime← GetRate(...)

7: window, refT ime← GetWinSize(...)

8: set multicast rate to rate

9: sleep one reporting interval

calculate the reporting interval duration in Section 3.6.2

The following two components compose the MuDRA Algorithm (Algorithm 1). It col-

lects the PDR values from the FB nodes, updates their status (normal or abnormal), invokes

the GetRate procedure, which calculates the desired rate, and invokes the GetWinSize

procedure, which determines the window size of rate updates (to maintain stability).

(ii) Rate Decision (Procedure 1): Utilizes the limited and infrequent FB reports to

determine the highest possible rate, termed the target-rate, while meeting the requirements

in Section 3.4. The rate decisions (lines 5–15) rely on rate decision rules that are described

in Section 3.5.2. To maintain rate stability, rate change operations are permitted, only if

the conditions for rate change are satisfied for time equal to a window size (determined by

the Stability Preserving Method).

(iii) Stability Preserving Method (Procedure 2): A window based method that main-

tains rate stability in the event of sporadic interference and after an RA decision. It follows

the classical Additive Increase Multiplicative Decrease (AIMD) approach. The duration

of the time window varies according to the network and channel characteristics (e.g., the

typical duration of interference). More details appear in Section 3.5.3.

2Unlike in unicast where each packet is acknowledged, MuDRA’s reporting intervals are long (in the

experiments we consider 2 reports per second).
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Procedure 1 Rate Decision
1: procedure GetRate(rate, window, changeT ime, t)

2: action← Hold

3: if (t− changeT ime) > window then

4: canDecrease← true, canIncrease← true

5: for τ ← 0 to window do

6: if Ât−τ < Amax then

7: canDecrease← false

8: else if Ât−τ + M̂t−τ > Amax − ε then

9: canIncrease← false

10: if canDecrease and rate > ratemin then

11: rate← NextLowerRate

12: action← Decrease, changeT ime← t

13: if canIncrease and rate < ratemax then

14: rate← NextHigherRate

15: action← Increase, changeT ime← t

16: return rate, action, changeT ime

3.5.1 Feedback Node Selection

MuDRA uses a simple and efficient mechanism based on a quasi-distributed FB node selec-

tion process, termed K-Worst [50], where the AP sets the number of FB nodes and their

reporting rates. K nodes with the worst channel conditions are selected as FB nodes (the

node’s channel condition is determined by its PDR). Hence, the selection process ensures

an upper bound on the number of FB messages, regardless of the multicast group size.

This upper bound is required for limiting the interference from FB reports, as explained in

Section 3.6. The process works as follows: At the beginning of each reporting interval the

AP sends a message with a list of K or less FB nodes as well as a reporting PDR threshold

R. R is used for adjusting the set of FB nodes to changes due to mobility or variation of

the channel condition, i.e., interference3. Upon receiving this message, each FB node waits

a short random time for avoiding collisions and then reports its measured PDR to the AP.

3when the system is activated the FB list is empty and R = L.
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Procedure 2 Window Size Determination
1: procedure GetWinSize(Action,window, refT ime, t)

2: if Action = Decrease then

3: window ← min(Wmax, 2 · window), refT ime← t

4: else if Action = Increase then

5: refT ime← t

6: else if (t− refT ime) > thresholdT ime

7: and Action = Hold then

8: window ← max(Wmin, window − 1)

9: refT ime← t

10: return window, refT ime
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Figure 3.4: The PDR distribution of one set of experiments with TXAP rates of 24, 36, and 48Mbps.

Every other node checks if its PDR value is below R and in such situation it volunteers to

serve as an FB node. To avoid a swarm of volunteering messages in the case of sporadic

interference, a non FB node verifies that its PDR values are below R for three consecutive

reporting intervals before volunteering. At the end of a reporting interval, the AP checks

the PDR values of all the FB and volunteering nodes, it selects the K with lowest PDR

values as FB nodes and updates R. If the number of selected FB nodes is K then for keeping

the stability of the FB list, R is set slightly below the highest PDR value of the FB nodes

(e.g., 1% point below) . Otherwise, R is set slightly above the highest PDR value of the

FB nodes (e.g., 0.5% point above). The AP sends a new message and the process repeats.

We note that in a quasi static scenario, the values of R do not have a significant impact on

the feedback or the overhead of feedback. Tuning R is a challenge only in the rare scenario

when a large number of nodes with significantly different PDR values rapidly enter or leave

the multicast system.

60



CHAPTER 3. MULTICAST DYNAMIC RATE ADAPTATION

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

87 88 89 90 91 92 93 94 95 96 97 98 99 100

%
 o

f 
n
o
rm

al
 n

o
d
es

 
 a

t 
h
ig

h
er

 r
at

e

% PDR at the lower rate

L=85%
L=90%

Figure 3.5: The percentage of nodes that remain normal after increasing the TXAP from 36Mbps

to 48Mbps vs. their PDR values at the 36Mbps for different PDR-thresholds (L).

3.5.2 Rate Decision Rules and Procedure

In this subsection, we describe the target condition which is an essential component of the

rate selection rules. Then, we describe the rules and the corresponding Procedure 1.

The Target Condition: At a given time, the FB reports are available only for the current

rate. To detect the target-rate, most RA schemes occasionally sample higher rates. How-

ever, the following experiment shows that this approach may cause undesired disruption

to many receivers. We evaluated the PDR distribution of 160 − 170 nodes for different

multicast transmission rates, denoted as TXAP for 3 different experiment runs on different

days. Fig. 3.4 shows the number of nodes in different PDR ranges for TXAP values of

24, 36, and 48Mbps for one experiment with 168 nodes. When TXAP is at most 36Mbps,

the number of abnormal nodes is very small (at most 5). However, when TXAP exceeds

36Mbps, the PDR of many nodes drops significantly. In this experiment 47 nodes became

abnormal nodes which is more than Amax = 8 (for X = 95%). We observed similar results

in other experiments. Thus, in this case, the target rate is 36Mbps which is the highest rate

above which the SLA requirements will be violated.

A key challenge is to determine if the AP operates at the target-rate, without FB reports

from higher rates. We refer to this assessment as the target condition. Unfortunately, the

target-rate cannot be detected from RF measurements, such as SNR. As shown in [108,174]

different nodes may have different receiver sensitivities, which may result in substantial

PDR gaps between nodes with similar RF measurements. However, large scale multicast

environments enable us to efficiently predict the target condition as described next.
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From Fig. 3.4, we obtain the following important observation.

Observation I : When operating below the target-rate, almost all the nodes have PDR close

to 100%. However, when operating at the target-rate, noticeable number of receivers expe-

rience PDR below 97%. At 36Mbps, 17 nodes had PDR below 97%, which is substantially

more than Amax = 8.

Fig. 3.5 shows the average percentage of nodes that remain normal vs. their initial PDR

when increasing TXAP from 36Mbps to 48Mbps averaged for 3 different sets of experi-

ments. The total number of nodes in these experiments was 168. We derive the following

observation from Fig. 3.5.

Observation II : There is a PDR threshold, H, such that every node with PDR between L

and H becomes abnormal after the rate increase with very high probability. Typically, H

can be a value slightly below 100%. In our experiments on ORBIT, we use H = 97% since

97% is the highest threshold for which this observation holds. We refer to these nodes as

mid-PDR nodes.

Observation II is not surprising. As reported in [174, 194], each receiver has an SNR

band of 2 − 5dB, in which its PDR drops from almost 100% to almost 0%. The SNR of

mid-PDR nodes lies in this band. Increasing the rate requires 2 − 3dB higher SNR at the

nodes. Hence, mid-PDR nodes with SNR in the transition band before the rate increase

will be below or at the lower end of the transition band after the increase, and therefore,

become abnormal nodes.

In summary, Observations I and II imply that it is possible to assess the target condition

by monitoring the nodes close to transitioning from normal to abnormal. Let At and Mt

denote the number of abnormal and mid-PDR nodes at time t, respectively. We obtain the

following empirical property.

Property 1 (Target Condition). Assume that at a given time t, the following condition

holds,

At ≤ Amax and At +Mt > Amax (3.1)

then almost surely, the AP transmits on the target-rate at time t. This is sufficient but not
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a necessary condition.

It is challenging to analytically predict when the target condition is satisfied with the

available FB information and without a model of the receiver sensitivity of all the nodes.

However, our experiments show that the target condition is typically valid when operating

at the target-rate.

Adjusting the Multicast Rate: The SLA requirement (R2) and target condition (3.1)

give us a clear criteria for changing the rate. The FB scheme only gives us estimates of At

and Mt, denoted by Ât and M̂t respectively. For the K-Worst scheme, if K > Amax + ε (ε

is a small constant), then Ât and M̂t are sufficient to verify if (3.1) is satisfied because of

the following property:

Property 2. If K ≥ Amax + ε, then, Ât = min(At, Amax + ε) and Ât + M̂t = min(At +

Mt, Amax + ε), where Ât and M̂t are the known number of abnormal and mid-PDR known

to the AP, and ε is a small constant. In other words, given that K is large enough, the

K-worst scheme provides accurate estimates of abnormal and mid-PDR nodes.

Proof. First consider the claim Ât = min(At, Amax+ ε). Consider the case At ≤ Amax+ ε,

we know that the number of estimated abnormal nodes Ât = At since K ≥ Amax + ε and all

abnormal nodes must belong in the K FB nodes set. Next, if At > Amax + ε then all the FB

nodes chosen are abnormal by the definition of the K-worst feedback scheme which implies

Ât = Amax + ε.

A similar argument can be made for the claim Ât + M̂t = min(At + Mt, Amax + ε). If

At + Mt ≤ Amax + ε, then Ât + M̂t = At + Mt since the K feedback nodes will necessarily

include the At abnormal and Mt mid-PDR nodes. If At + Mt > Amax + ε, then Ât + M̂t

which is upper bounded by Amax + ε.

The objective is to choose minimum K (for minimum FB overhead) that is sufficient

to verify (3.1). In our experiments, we found that for Amax = 8, K > 10 works well

(Section 3.7.1). We now derive the following rate changing rules:

Rule I Ât > Amax: The system violates the SLA requirement (R2) and the rate is reduced.

Rule II Ât + M̂t ≥ Amax − ε: The system satisfies the target condition.
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Figure 3.6: Evolution of the multicast rate over time when the delay between rate changes = 1s (2

reporting intervals).

.

Rule III Ât + M̂t < Amax − ε: The target condition does not hold and the rate can be

increased, under the stability constraints provided in Section 3.5.3.

In our experiments we use ε = 2 to prevent rate oscillations.

The rate change actions in Procedure 1 are based on the these rules. The flags canIncrease

and canDecrease indicate whether the multicast rate should be increased or decreased. Rate

change operations are permitted, only if the time elapsed since the last rate change is larger

than the window size determined by the Stability Preserving Method (line 3). The for-loop

checks whether the rate should be decreased according to Rule I (line 6) or increased ac-

cording to Rule III (line 9) for the window duration. Finally, based on the value of the flags

and the current rate, the algorithm determines the rate change operation and updates the

parameters rate and action, accordingly (lines 10–15).

3.5.3 The Stability Preserving Method

It is desirable to change the rate as soon as Rules I or III are satisfied to minimize QoE

disruption (see (R5) in Section 3.4). However, as we show in Fig. 3.6 such a strategy may

cause severe fluctuations of the transmission rate. These result from two main reasons:

(i) the reporting mechanism not stabilizing after the last rate change, and (ii) interference

causing numerous low PDR reports.

To address this, we introduce in Procedure 2 a window based RA technique which con-

siders the two situations and balances fast convergence with stability. In Procedure 1, the

rate is changed only if the rate change conditions are satisfied over a given time window,
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Figure 3.7: (a) Rate adaptation performance for reporting intervals of 100ms, (b) Fraction of data

sent at various rates with MuDRA for different reporting intervals, and (c) Control overhead for

various reporting intervals.

after the last rate change operation (lines 5-9). To prevent oscillations due to short-term

wireless channel degradation, when the rate is reduced, the window is doubled in Proce-

dure 2 (line 3). The window size is decreased by 1 when a duration thresholdT ime elapses

from the last rate or window size change (line 8). This allows recalibrating the window

after an atypical long interference episode. The window duration varies between Wmin and

Wmax FB reporting periods. In the experiments, Wmin = 8 and Wmax = 32.

3.5.4 Handling Losses

MuDRA can handle mild losses (below 15%) by adding application level FEC [210] to the

multicast streams. The PDR-Threshold in our experiments (L = 85%) was selected to

allow nodes to handle losses in the event of short simultaneous transmission of another

node. In such a situation, the collision probability is below 2/CWmin, where CWmin is the

minimal 802.11 contention window. For 802.11a/g/n CWmin = 16, which implies collision

probability is below 12.5%. Therefore, nodes with high PDR (near 100%) should be able

to compensate for the lost packets. If there is strong interference, other means should be

used. For instance, the multicast content can be divided into high and low priority flows,

augmenting the high priority flow with stronger FEC during the interference period, while

postponing low priority flows.
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Table 3.2: The percentage of PDR loss at nodes (∆PDR(T )) as a function the reporting interval T .

T (ms) 100 200 300 400 500 700 1000

∆PDR% 4.69 1.56 0.94 0.67 0.52 0.36 0.25

3.6 Reporting Interval Duration

MuDRA relies on status reports from the FB nodes. For immediate response to changes

in service quality, the status reports should be sent as frequently as possible, (i.e., minimal

reporting interval). However, this significantly impairs the system performance as described

below.

Impact of Aggressive Reporting: Figs. 3.7(a)-3.7(c) show the impact of different re-

porting intervals on MuDRA. In these experiments, the number of FB nodes (K) is 50 and

the total number of nodes is 158. To focus on RA aspects, we set both Wmin and Wmax

to 5 reporting intervals. Fig. 3.7(a) shows that when the reporting interval is too short,

MuDRA does not converge to the target rate of 24Mbps. Fig. 3.7(b) shows that in the case

of reporting interval of 100ms, more than 50% of the packets are transmitted at the lowest

rate of 6 Mbps. Fig. 3.7(c) shows that the control overhead is significantly larger for short

reporting intervals (shorter than 200ms). The control overhead comprises of unicast FB

data sent by nodes and multicast data sent by AP to manage K FB nodes.

These phenomena result from collisions between feedback reports and multicast mes-

sages. In the event of a collision, FB reports, which are unicast messages, are retransmitted,

while multicast messages are lost. Frequent reporting increases the collision probability, re-

sulting in PDR reduction and causes the classification of many nodes as mid-PDR nodes,

i.e., PDR < Hhigh = 97%. Thus, due to Rule II from Section 3.5.2, the rate is kept close

to the minimal rate.

Appropriate Reporting Interval Duration:

Assume a greedy AP which continuously transmits multicast messages. We now estimate

the PDR reduction, denoted as ∆PDR, for a given reporting interval T and upper bound

K on the number of FB nodes (both normal and abnormal), when the system operates at
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the low rate of 6Mbps.

Packet Transmission Duration: We denote with D and d the transmission duration of

multicast and feedback report message at the rate of 6Mbps, respectively. Since the length

of each multicast packet is 12Kbits, its transmission duration is 12Kbits
6Mbps = 2.0ms. Given

WiFi overhead of about 30%, we assume D = 3ms. The feedback messages are much shorter

and we assume that their transmission duration is d = 1ms.

Number of feedback reports and multicast messages: Consider a time interval U ,

say a minute. The number of feedback reports, denoted as F , is

F = U
T ·K

The number of multicast message B is given by,

B =
U − d · F

D
=
U

D
·
(

1− d ·K
T

)
Collision probably of a multicast packet (∆PDR): Let us first calculate the number

of contention window slots, denoted by S, in which packet may be transmitted from the

view point of the AP during the time interval U . Recall that between any two multicast

transmissions, the AP waits an average of half of the contention window size CWmin/2 = 8.

This leads to

S = CWmin
2 ·B

∆PDR is the fraction of slots in which both the AP and a FB node send a message.

To simplify our estimation, we ignore collisions and retransmission of FB messages4, and

assume that in any slots only one FB node may transmit. Therefore,

∆PDR =
F

S
· B
S

=

[
2

CWmin

]2

· F
B

With proper assignment we get,

∆PDR =

[
2

CWmin

]2

· K ·D
T − d ·K

(3.2)

Equation (3.2) confirms that ∆PDR is reduced by increasing the reporting interval or by

using a higher bit-rate, which reduces D. Table 3.2 provides the ∆PDR values for K = 50

4These are second order effects of already low collision probabilities.
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Figure 3.8: A typical sample of MuDRA’s operation over 300s with 162 nodes: (a) Mid-PDR and

abnormal nodes, (b) Multicast rate and throughput measured at the AP, and (c) Control data sent

and received.
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Figure 3.9: (a) Rate and throughput for the pseudo-multicast scheme, (b) CDF of PDR distribu-

tions of 162 nodes for fixed rate, MuDRA, Pseudo-Multicast, and SRA schemes, and (c) Multicast

throughput vs. the number of feedback nodes (K).

when T varies between 0.1 to 1 second. In our experiments we wanted ∆PDR ≤ 0.5%,

which implies using reporting interval T ≥ 500ms.

3.7 Experimental Evaluation

For evaluating the performance of MuDRA on the ORBIT testbed, we use the parameter

values listed in Table 3.1. In all our evaluations, we consider backlogged multicast traffic.

The performance metrics are described below:

(i) Multicast rate and throughput: The time instants when the target condition is satisfied

are marked separately.

(ii) PDR at nodes: Measured at each node.
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(iii) Number of abnormal and mid-PDR nodes: We monitored all the abnormal and mid-

PDR nodes (not just the FB nodes).

(iv) Control traffic: The feedback overhead (this overhead is very low and is measured in

Kbps).

We compared MuDRA to the following schemes:

(i) Fixed rate scheme: Transmit at a fixed rate of 36Mbps, since it is expected to be the

target rate.

(ii) Pseudo-multicast: Unicast transmissions to the node with the lowest SNR/RSS. The

unicast RA is the driver specific RA algorithm Minstrel [10]. The remaining nodes are

configured in promiscuous mode.

(iii) Simple Rate Adaptation (SRA) algorithm [50]: This scheme also relies on measuring

the number of abnormal nodes for making RA decisions. Yet, it is not designed to achieve

the target rate, maintain stability, or respond to interference.

3.7.1 Performance Comparison

We evaluated the performance of MuDRA in several experiments on different days with

160−170 nodes. Fig. 3.8 shows one instance of such an experiment over 300s with 162 nodes.

Fig. 3.8(a) shows the mid-PDR and abnormal nodes for the duration of one experiment run.

Fig. 3.8(b) shows the rate determined by MuDRA. The AP converges to the target rate

after the initial interference spike in abnormal nodes at 15s. The AP successfully ignored

the interference spikes at time instants of 210, 240, and 280s to maintain a stable rate. The

target-condition is satisfied except during the spikes. The overall control overhead as seen

in Fig. 3.8(c) is approximately 40Kbps. The population of abnormal nodes stays around

2 − 3 for most of the time which implies that more than 160 nodes (> 98%) have a PDR

> 85%. The actual throughput is stable at around 20Mbps which after accounting for 15%

FEC correction implies a goodput of 17Mbps.

Fig. 3.9(a) shows a sample of the throughput and rate performance of the pseudo-

multicast scheme. The throughput achieved is close to 9Mbps. We observe that pseudo-

multicast frequently samples higher rates (up to 54Mbps) leading to packet losses. The
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Table 3.3: Average throughput (Mbps) of pseudo-multicast, MuDRA, and SRA schemes with and

without background traffic.

No Background traffic Background traffic

Fixed rate = 36Mbps 20.42 13.38

Pseudo-Multicast 9.13 5.36

MuDRA 18.75 11.67

SRA 19.30 4.55

average throughput for different schemes over 3 experiments of 300s each (conducted on

different days) with 162 nodes is shown in Table 3.3. MuDRA achieves 2x throughput

than pseudo-multicast scheme. The fixed rate scheme yields approximately 10% higher

throughput than MuDRA. SRA has similar throughput as MuDRA.

Fig. 3.9(b) shows the distribution of average PDR of 162 nodes for the same 3 exper-

iments. In the pseudo-multicast scheme, more than 95% of nodes obtain a PDR close to

100% (we did not consider any retransmissions to nodes listening in promiscuous mode).

MuDRA meets the QoS requirements of 95% nodes with at least 85% PDR. On the other

hand, in SRA and the fixed rate schemes 45% and 70% of the nodes have PDR less than

85%, respectively.

In pseudo-multicast, more reliable transmissions take place at the cost of reduced

throughput, since the AP communicates with the node with the poorest channel qual-

ity in unicast. The significant difference in QoS performance of the fixed rate and SRA

schemes is because the target rate can change due to interference etc. In such a situation,

MuDRA can achieve the new target rate while the fixed rate and SRA schemes lead to

significant losses (we observed that exceeding the target rate even 10% of time may cause

up to 20% losses and less than 5% throughput gain).

Changing number of FB nodes: We varied the number of FB nodes (K) between 1−100

for MuDRA. Fig. 3.9(c) shows the throughput as K changes. For K = 1, MuDRA tunes

to the node with the worst channel quality, and consequently, the throughput is very low.

On the other hand, increasing K from 30 to 90 adds similar amount of FB overhead as
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Figure 3.10: Emulating topology change by turning off FB nodes after 150s results in changing

optimal rate for MuDRA.

decreasing the report interval from 500ms to 200ms in Section 3.6. Thus, the throughput

decreases for a large number of FB nodes. The throughput for K between 10− 50 does not

vary significantly which is aligned with our discussion in Section 3.5 that MuDRA needs

only K > Amax + ε for small ε to evaluate the target rate conditions.

Impact of topology changes: To demonstrate that changes in the network may lead

MuDRA to converge to a different rate, we devised a strategy to emulate network topology

changes on the grid. During an experiment, a number of FB nodes are turned off at a given

time. Since FB nodes have the lowest PDRs, it may lead to changes in the target rate

as a large number of nodes with low PDR disappear from the network. Fig. 3.10 shows

the scenario when 30 FB nodes are turned off after 150s during the experiment. The rate

converges quickly and without oscillations to a new target rate of 54Mbps.

3.7.2 Impact of High Node Churn

We evaluate the performance of MuDRA when emulating severe network changing condi-

tions. In the experiments, each node leaves or joins the network with probability p every

6s. Thus, p = 0.1 implies that a node changes its state with probability of approximately

50% at least once in a minute. Initially, 50% of the nodes are randomly selected to be in

the network.

We conducted 3 experiments consisting of 155 nodes (initially, 77 nodes are in on state).

Fig. 3.11(a) shows the impact of p on the distribution of time duration that the nodes
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Figure 3.11: Performance of MuDRA with high node churn: (a) Distribution of time durations for

which a node is a FB node for different values of probability p of node switching its state on/off

every 6s, (b) Multicast rate and throughput measured at the AP with p = 0.2, (c) Percentage of

data sent at various rates for different values of p.
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Figure 3.12: Performance of MuDRA with 155 nodes where an interfering AP transmits on/off

traffic: (a) Mid-PDR and abnormal FB nodes, (b) Multicast rate and throughput, (c) CDF for PDR

distribution with interference for fixed rate, MuDRA, pseudo-multicast, SRA.

remain as FB nodes. Higher values of p imply higher churn and lead to shorter periods for

which nodes serve as FB nodes. The average number of changes in FB nodes per second is

2, 5, and 10 for p equal to 0, 0.2, and 0.9, respectively. Even with these changes, the average

control overhead is very low (35Kbps) and is not affected by the degree of churn. Fig. 3.11(b)

shows one instance of the RA process with p = 0.2. We see that MuDRA can adapt to

the changing target rate at times 10, 30, and 255s. Fig. 3.11(c) shows the percentage of

data sent at different rates for several values of p averaged over 3 different experiment runs.

MuDRA achieves a similar rate distribution for all values of p. Our experiments show that

MuDRA can achieve the target rate, maintain stability, and adds low overhead, even under

severe network changing conditions.
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Figure 3.13: Multicast throughput with node 1-8 transmitting interfering on/off packet stream with

node churn.

3.7.3 Impact of External Interference

We envision that MuDRA will be deployed in environments where the wireless infrastructure

is centrally controlled. However, in-channel interference can arise from mobile nodes and

other wireless transmissions. In addition to the uncontrolled interference spikes on ORBIT,

we evaluate the impact of interference from a nearby node which transmits at the same

channel as the multicast AP. We consider a scenario with two nodes near the center of

the grid that exchange unicast traffic at a fixed rate of 6Mbps in a periodic on/off pattern

with on and off periods 20s each. The transmission power of the interfering nodes is 0dBm

which is equal to the transmission power of the multicast AP. This helps us evaluate the

performance in the worst case scenario of continuous interference and study the dynamics

of changing interference.

Fig. 3.12(a) shows the mid-PDR and abnormal nodes and Fig. 3.12(b) shows the rate and

throughput for one experiment with 155 nodes. The number of mid-PDR nodes increases

during the interference periods, due to losses from collisions. MuDRA converges to the

target rate of 24Mbps. Notice during interference periods, MuDRA satisfied the target-

condition and that using the stability preserving method, MuDRA manages to preserve a

stable rate. The average throughput of different schemes with on/off background traffic for

3 experiments of 300s each is in Table 3.3. Pseudo-multicast achieves half while SRA has a

third of the throughput of MuDRA. The fixed rate scheme achieves similar throughput as

MuDRA.
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The PDR distribution of nodes is in Fig. 3.12(c). MuDRA satisfies QoS requirements

while maintaining high throughput. Pseudo-multicast scheme has 90% nodes with PDR

more than 90% since it makes backoff decisions from unicast ACKs. SRA yields 55% nodes

with PDR less than 85% as it transmits at low rates. The fixed rate scheme yields 30%

nodes with PDR less than 85%. The fixed rate scheme performs better than SRA since

it maintains a higher rate. We also investigate the combined impact of both interference

and node churn, where every 6s, the probability of a node switching on/off is p = 0.2.

Fig. 3.13 shows the rate and throughput for this case. Similar to results in Section 3.7.2,

the performance of the system is not affected by node churn.

3.7.4 Video multicast

We demonstrate the feasibility of using MuDRA for streaming video. The video is segmented

with segment durations equal to the period of rate changes (1s) and each segment is encoded

at several rates in H.264 format. For each time period, the key (I) frames are transmitted

reliably at the lowest rate 6Mbps (note that transmitting the key frames can be achieved

with 100% reliability even at 12Mbps on the testbed). The non-key (B and P) frames are

transmitted at the rate set by MuDRA.

Let the multicast rate for current time period be R,the expected data throughput at

this rate be D̂R, and the estimated throughput at the minimum rate be D̂min. Let fk be the

fraction of key frame data and fnk be the fraction of non-key frame data. The video server

has to determine the video rate VR at each time t. Let the fraction of transmission time for

key frames Tk = VR·fk
D̂min

and fraction of transmission time for non-key frames Tnk = VR·fnk
D̂R

.

We know that

tk + tnk = 1

The video rate can be calculated by solving linear equations VR = D̂min·D̂R
D̂min·fnk+D̂R·fk

. In

environments where estimates of throughput are inaccurate due to interference, techniques

such as in [202] can be utilized.

Experimental Results: We use raw videos from an online dataset [20] and encode the
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Figure 3.14: Distribution of video quality and PSNR (in brackets) measured at 160 nodes for different

multicast schemes.

videos with H.264 standard. In our data sets, fk is 15−20%. For MuDRA with throughput

19Mbps and FEC correction of 15%, we can support a video rate of 13 − 15 Mbps, which

is sufficient for 3 or 4 HD streams (each 4Mbps) on mobile devices. For each node, we

generated the video streams offline by mapping the video frames to the detailed packet

traces collected on ORBIT from an RA experiment. For a fair comparison, the I frames

were transmitted at 6Mbps for all schemes even though MuDRA can dynamically adjust the

transmission rate to be much higher even for reliable transmissions. In our experiments, we

only considered a single video stream of rate VR. We measured the PSNR of the video at

each node and classified the PSNR in 5 categories based on visual perception5.

Fig. 3.14 shows the video quality and PSNR ranges at the nodes for 3 experiments each

of 300s and with 150 − 160 nodes. With MuDRA, more than 90% of the nodes achieve

excellent or good quality, 5% achieve fair quality, and less than 5% get poor or bad quality.

While the pseudo-multicast scheme results in almost all nodes obtaining excellent quality,

the video throughput for this scheme is significantly lower (8Mbps). SRA and the fixed rate

schemes have more than 50% nodes with poor or bad video quality. The higher thorughput

from MuDRA can allow streaming of several concurrent video streams or streams encoded

at higher rates while ensuring QoS requirements.

5PSNR quantifies the distortion of the received as compared to the original transmitted video.
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Figure 3.15: A screenshot of the web-based application for evaluating performance of AMuSe . The

control panel for selecting the feedback and MuDRA algorithm parameters is on the top. The video

at two selected nodes is shown below. In this example we show one node with poor quality and

one with good quality video. The multicast throughput and other metrics are in the graphs. The

performance of the client nodes is shown on the grid where numbers in each box indicate the PDR

and the color of the box indicates the range of PDR. The nodes highlighted with a red border are

FB nodes and nodes in grey are non-functional due to hardware issues.

3.8 Demonstration Application

To visually evaluate the performance of AMuSe and video delivery over AMuSe , we de-

veloped an interactive web-based application that illustrates the performance of the overall

AMuSe system based on experimental traces collected on the ORBIT testbed. We collected

the traces over several days in different experimental settings with 150-200 nodes. Each ex-

perimental trace consisted of channel measurements at each node using several metrics such

Link Quality, Packet Delivery Ratio (PDR) etc.

The application allows considering different scenarios such as different channel condi-

tions, interfering transmissions etc. For each scenario, the application shows the dynamic

conditions over a period of time on the testbed from the appropriate experimental traces.

The application can be used to compare the performance of several multicast schemes such
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as pseudo-multicast, unicast transmissions in different scenarios that have been measured

on the testbed (e.g. interference, other WiFi flows, etc.) as well as syntactic scenarios based

on manipulating the measured data. We note that the application is flexible and can be

used for testing even more scenarios and algorithms in the future.

The application has three main components: (i) the back-end where the experimental

data is stored and managed, (ii) the front-end which provides the user interface, and (iii)

a video tool for generating video streams. Both the front-end and the back-end are light

weight applications. The front-end is web-based and can operate on any standard browser

while the back-end requires installation of easily available open source libraries. For any

experimental condition, the video tool generates the video stream received by a selected

node. It maps video payload to UDP packets and discarding lost packet, according to the

node’s traces.

The front end is built using Angular [1] which is a JavaScript framework for rendering

dynamic features on web applications. The FB node selection and MuDRA algorithms

are built in the Django framework. The back-end utilizes a Postgres [18] database and

interfaces with Django [6]. The algorithmic parameters can be tuned at any given time on

the front-end. The front-end periodically relays the parameters to Django. Django utilizes

the user input and system state information derived from the back-end to run the required

FB and rate adaptation algorithms. The system state is then relayed to Angular, which

renders the information on user’s screen. Finally, the experiment can be paused at any time

to allow the video tool to generate videos at the nodes for that period of time. The video

tool uses ffmpeg to render and generate the videos and an nginx server [12] to transmit to

the front-end.

The back-end utilizes a Postgres [18] database and interfaces with Django. The database

is populated using the data derived from the experimental traces. The database consists

of parameters several experimental parameters at each node at different times for each

experimental scenario. This allows us to characterize the performance of the testbed with

evolving channel conditions. The statistics about performance at each node are derived from

the detailed packet traces. The feedback algorithms are built in the Django framework. The
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application is very flexible and allows other feedback algorithms to be incorporated as well.

The users can change the feedback algorithms and tune the algorithm specific parameters

at any given time on the front-end.

The front end is built using Angular [1] which is a JavaScript framework designed for

rendering dynamic features on web applications. The front-end periodically relays the user

defined parameters to Django which runs the corresponding FB algorithm and responds

with information (including the state of the nodes and the system) to Angular. Angular in

turn renders the information on user’s screen. The period of rendering at the front-end as

well as calculation of system performance parameters can be changed by the user. Typically,

we use a period of 500ms.

Fig. 3.15 shows a screenshot of the application. The application allows selecting dif-

ferent experiment settings such as AP bit rate, feedback algorithm, number of feedback

nodes on the web interface. This information is used along with data collected from the

experiments to show how the performance at all the nodes on the grid. The feedback nodes

are highlighted with a red border. The rate adaptation and multicast throughput measured

at the AP appears below. The information on the front-end is updated periodically.
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Chapter 4

OPTIMIZING VIDEO QoE FOR

MULTICAST STREAMING

4.1 Introduction

Mobile video is expected to contribute 78% of all the mobile traffic by 2021 [29]. Applications

such as NFL Red Zone, which support live video streaming in crowded venues, are gaining

attention but their uptake has been slow due to performance issues. Research has shown

that videos which play at lower bitrates or freeze frequently lead to high abandoment which

results in revenue loss for video providers and suboptimal use of network resources [85].

Thus, ensuring high Quality of Experience (QoE) is essential for video streaming.

Existing unicast video streaming techniques rely on Adaptive Bitrate (ABR) schemes

to adjust the video playback for a diverse set of user devices and network conditions. Each

video is partitioned into segments, where each segment includes a few seconds long playback.

Each segment is then encoded in a number of different encoding rates (henceforth referred

to as the video rates). When the user plays a video, the video player can download each

segment at a video rate that is appropriate for its connection, thereby switching rates in

response to changes in the available bandwidth.

WiFi multicast could potentially support live (or almost live) streaming in crowded
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Figure 4.1: The multicast video streaming system where the DYVR Algorithm controls both the

video rate and the multicast transmission rate.

venues more efficiently than unicast, since it leverages the shared nature of the wireless

medium.1 However, directly applying techniques similar to unicast ABR streaming for

WiFi multicast is challenging due to the following reasons:

(i) Diverse channel conditions: Due to the diverse channel states at different receivers,

selecting an appropriate video rate is non-trivial.

(ii) Difficulty in bandwidth estimation: A key assumption in several ABR streaming algo-

rithms such as [28,30,113] is that future bandwidth estimates are available. Bandwidth

estimation is challenging even in unicast [234] and is more challenging in multicast.

(iii) Lack of feedback: WiFi multicast does not have a reliable feedback mechanism. While

the 802.11aa standard [179] attempts to resolve this, it is still not widely adopted and

obtaining per-packet feedback (as available in unicast) will remain infeasible in the

foreseeable future. Hence, only periodic, low granularity application layer feedback

can be practically obtained.

(iv) Lack of transmission rate adaptation mechanism: While considerable research effort

has been dedicated to multicast rate adaptation (see Section 7.2), the practicality of

rate adaptation techniques has been limited due to performance issues.

To overcome these challenges, we focus on leveraging WiFi multicast for video stream-

1To enable multicast services, some resources can be provisioned either in the time or frequency domains.
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Table 4.1: Effects of transmission rate (r) and video rate (v) on video QoE.

Low v Optimal v High v

Low r
Under utilization +

Poor video rate
Underflows Underflows

Optimal r Poor video rate High quality Underflows

High r
Packet losses +

Poor video rate
Packet losses

Packet losses+

Underflows

ing.2 In particular, we design and evaluate a system and algorithms for joint adaptation of

the multicast transmission rate and video rate with the objective of optimizing the video

QoE (see Fig. 4.1).

Video QoE is complex and depends on several parameters [70]. Network operators,

video providers, or receivers may be interested in different QoE metrics such as the video

rate, rebuffering events, number of video frames lost or corrupted, and video rate switches.

Ensuring good performance across all QoE metrics is challenging. As an example for the

need for joint adaptation to provide QoE, assume that the receivers start with a small

amount of buffered video. If the transmission and video rate controller detects that the

receivers’ channel conditions are poor, the controller can reduce the transmission rate, video

rate, or both. While reducing the transmission rate will lead to reliable transmissions, it may

also cause buffer underflows. Reducing the video rate may minimize the buffer underflows

but it is undesirable. These tradeoffs are summarized in Table 4.1.

Hence, our objective is to design a system in which the underlying streaming algorithm

adjusts the transmission and video rates based on the desired QoE metrics (segments loss,

buffer underflows, and video rate switches) specified by network operators or receivers.

First, we formulate the QoE optimiztion probelm for wireless video multicast as a util-

ity maximization problem. We present two variants of the DYVR (DYnamic Video and

transmission Rate adaptation) online algorithm which dynamically tune the transmission

and video rates to achieve different performance guarantees for video QoE constraints. We

derive performance guarantees for the algorithms using the Lyapunov optimization frame-

2The concepts and techniques are more generally applicable to other wireless technologies such as LTE.
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work [158]. We show that they can achieve time average utility which is within an additive

term O( 1
W ) of the optimal value and satisfy the QoE constraints with an O(W ) factor, for a

control parameter W . Our simulations in realistic settings derived from experimental traces

show that the DYVR algorithms provide close to optimal performance while satisfying the

QoE constraints.

Then, we present the system architecture for video streaming over WiFi multicast

(shown in Fig. 4.1) that can be integrated with existing ABR services. The architecture

is comprised of 4 main components: a proxy server, WiFi Access Point (AP), an AP con-

troller, and receiver-side software. The proxy server interfaces with existing ABR services

and locally caches the video content that is later tranmitted via mutlicast from a commercial

off-the-shelf WiFi AP. The video rate at the proxy server and the multicast transmission

rate at the AP are controlled by the DYVR Algorithm. The receiver-side software is a light-

weight application that does not require any modifications to the hardware or operating

system.

We implemented the architecture in a testbed composed of Android tablets and a WiFi

AP. We evaluated the performance of the DYVR Algorithm through experiments and com-

pared it to other schemes. Our experiments in different channel conditions and receiver

mobility settings show that DYVR can stream high definition video and satisfy the desired

QoE constraints on segment loss, buffer underflows, and video rate switches. DYVR can

provide almost 2x higher video rate while ensuring 4x fewer segments losses and video rate

switches in poor channel conditions when compared to state of the art unicast video stream-

ing algorithms which have been tuned to optimal settings for a multicast environment. Even

in challenging cases of receiver mobility, when compared to unicast streaming, DYVR can

provide higher video rate while ensuring 2x fewer segment losses.

To summarize, the main contributions of this chapter are: (i) to the best of our knowl-

edge, it presents the first online algorithm (DYVR) for QoE optimization of ABR video

streaming over wireless multicast, and (ii) it presents an architecture and testbed imple-

mentation that allow evaluating the algorithm in realistic environments. The system can

be integrated with existing ABR schemes.
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The research presented in this chapter involved significant contributions from students in

the Wimnet lab. Hannaneh Pasandi, Andy Xu, Bohan Wu, and Rodda John helped in im-

plementing the system and algorithms presented in this chapter. A preliminary description

of the system design and experimental results was presented in a demonstration in IEEE

INFOCOM’17 [106]. The rest of the chapter is organized as follows. We review the related

work in Section 4.2 and present the model in Section 4.3. We present the DYVR algorithm

and its analysis in Section 4.4. The simulation and experimental results are presented in

Sections 4.5 and 4.6, respectively.

4.2 Related Work

ABR-based video streaming, video streaming over wireless (for both unicast and multicast),

and Lyapunov optimization for wireless networks received considerable attention. Below we

review the relevant literature in these areas.

Video Adaptation: There is extensive literature on video rate adaptation techniques

for ABR-based streaming. Most current commercial streaming applications rely on heur-

sitics [28,30] that may work well in practice but do not provide any performance guarantees.

The video rate adaptation algorithms can be classified into rate-based [143, 157, 203] and

buffer-based [113, 195]. The rate-based algorithms usually rely on bandwidth prediction

derived from historical performance or probing. Bandwidth predictions are hard and es-

pecially challenging for wireless multicast enviornments. Buffer-based algorithms instead

use the amount of video in the player buffer to make rate decisions. Recent hybrid ap-

proaches [117, 225] use both the buffer and bandwidth prediction to optimize video QoE.

All these techniques are not directly applicable to multicast, since they do not consider

multiple clients and address the adaptation of both transmission and video rates.

Wireless Video: Addressing the challenges associated with the wireless and mobile video

streaming has been gaining increasing attention. While bandwidth unpredictability over in-

ternet is widely known, this problem is even more severe in wireless networks. It was shown

in [234] that reliable bandwidth predictions of even a few seconds could yield a significant
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improvement in video performance. Related approaches rely on predicting underlying phys-

ical layer resource allocation for cellular networks [223, 227]. However, such methods are

designed for a single receiver and may not be applicable to other physical-layer techniques.

Another class of algorithms assumes that the system state, e.g., bandwidth, evolves as a

Markov process. They leverage Markov Decision Process (MDP) [69, 222] to probabilis-

tically derive the future bandwidth predictions and compute the expected utilities for all

possible adaptation choices at every segment offline. Obtaining a general Markovian model

for wireless networks is difficult. The Markovian approaches can also lead to explosion in

state space due to a large number of receivers and transition probabilities.

Multicast Streaming: MuVi [226] and Medusa [187] make per-packet transmission rate

decisions for maximizing the overall utility derived from the delivery of each packet. How-

ever, the aforementioned schemes do not consider ABR video. DirCast [67] and [45] focus on

adjusting FEC to ensure reliable multicast. While multicast rate adaptation for maximizing

overall throughput has attracted considerable attention, e.g. [99, 101], these techniques do

not address the problem of improving video QoE. There has been considerable effort dedi-

cated to Scalable Video Coding (SVC) techniques for multicast [82,112,126,139]. Although

we do not focus on SVC, we believe that our approach can be extended to QoE optimization

for SVC-based streaming.

Lyapunov Techniques: Utilizing Lyapunov optimization techniques within the context

of wireless networks for rate, congestion, and power control has been extensively studied

(see [91,93] and references therein). For example, EZ-Flow [44] is a buffer based flow control

mechanism for 802.11 wireless mesh networks and BOLA [195] is an online algorithm for

unicast ABR video streaming.

4.3 Model and Problem Formulation

We consider a single-hop wireless multicast network with N multicast receivers. Time is

divided into slots of fixed length with a total of T time slots. For simplicity of presentation,

we assume that a slot length is 1s. The AP can only set the multicast transmission and the

84



CHAPTER 4. OPTIMIZING VIDEO QOE FOR MULTICAST STREAMING

Table 4.2: Nomenclature

N Number of receivers

T Number of time slots

vt Video rate at time t

V Set of possible video rates

rt Multicast rate at time t

R Set of possible multicast rates

q(vt) User perceived quality of vt

χit(r) Indicator of success at r at slot t

pit(r) Probability of success at r at slot t

rit Maximum r for which χit(r) = 1

Bit Buffer at receiver i at slot t

α Desired fraction of lost segments

β Desired fraction of buffer underflows

γ Desired fraction of quality changes

video rates at the beginning of each time slot. At slot t, the video rate and transmission

rate, denoted by vt and rt, can be chosen from discrete sets V and R, respectively. Since

the typical video segments are a few megabits in size and the multicast transmission rates

can be on the order of tens of Mbps, multiple video segments can be transmitted in one

slot. The nomenclature used throughout this section is summarized in table 4.2.

We do not consider the case where each packet can be multicast over several transmission

rates. This is because unlike unicast rate, multicast rate can only be changed slowly with

feedback collected over the time scale of several hundred milliseconds to avoid high feedback

overhead [101].

The number of segments that can be transmitted in a slot t is rt
vt

. The amount of video

in the buffer at receiver i at time t is denoted by Bi
t. The units of the buffer are in seconds.

Channel State: Previous work [109] as well as our experimental observations have shown

that the SNR value at a receiver must be greater than a threshold to decode packets at a

particular rate. As long as the SNR is greater than the threshold, the receiver can decode

almost 100% of the packets. Further, the channel correlation time is generally of the order

of a few seconds. Since packet level retransmissions are infeasible for multicast3, a small

3Per packet loss information could lead to high feedback overhead and may require changes to hardware

85



CHAPTER 4. OPTIMIZING VIDEO QOE FOR MULTICAST STREAMING

amount of losses 5 − 10% can be recovered by application layer Forward Error Correction

(FEC) over the duration of a slot.

Based on the previous observations, we assume a binary channel model for the duration

of a slot. Namely, at any given rate and slot, a receiver receives either successuly receives the

video segments or not. Further, with some abuse of notation we define rit as the maximum

rate for receiver i above which no video segments are received. At transmission rates below

rit, a receiver will successfully receive all video segments. Thus, rit fully describes the state

of a receiver at any time. We assume rit is a stationary random variable.

In case that a segment is lost at a receiver due to transmission rate being higher than rit,

it can be recovered by a segment level retransmission mechanism. Further, for live video,

few segments lost over a long period of time maybe tolerable. For simplification, we assume

that a small number of segments lost are tolerable.

Channel Information: The channel state for the duration of a slot is denoted by an

indicator variable χit(r) which signifies if the transmission at rate r is successful or not. The

probability of a successful transmission at rate r is given by pit(r). We assume that the AP

does not have accurate information about the channel state but can infer pit(r). p
i
t(r) can be

estimated from historical channel performance or other channel metrics such as RSSI and

CSI [109]. In this chapter, we do not focus on the methods to derive pit(r) itself. Instead,

we discuss how even coarse estimates of channel state can improve video QoE.

Buffer Dynamics: The video buffer at each receiver will drain at a constant rate. Thus,

during a single slot, the buffer can drain by at most 1s. The number of segments are added

to the buffer in the slot is χt(rt)
rt
vt

. Setting a value of rt higher than rit or video rate vt > rt

may lead to buffer underflows at receiver i.

Objective: Our objective is to maximize the overall QoE at the receivers. The QoE of the

video depends on a large number of factors with the most important one being the video

rate. We assume that the utility of a video segment at a receiver is given by a concave

function q of video rate vt. Besides the video rate, we consider three other key factors that

or wireless standards.

86



CHAPTER 4. OPTIMIZING VIDEO QOE FOR MULTICAST STREAMING

affect the QoE:

(i) Lost Segments: As described before, a small amount of segments lost are tolerable

and can be recovered by a segment level retransmission mechanism. However, a large

number of lost segments degrades the video watching experiience of the end-user.

(ii) Buffer Underflows: [85] has shown that freezes caused by buffer underflows, i.e., when

the amount of video in a buffer falls to 0, has a large negative impact on user-

engagement.

(iii) Video Rate Switches: While not as disrputive as buffer underflows, frequent and

abrupt video rate switches are undesriable [157].

Thus, for maximzing QoE, the average video rate should be maximized while meeting

some constraints for the 3 QoE factors (number of lost segments, buffer underflows, and

video rate switches). The optimization problem, when the channel indicator variables, χit(r),

are known in advance for all i and t can be formulated as follows:

Problem 1: QoE Optimization with Per-Receiver Constraints (QPRC)

max
1

T

N∑
i=1

T∑
t=1

q(vt)χ
i
t(rt)

subject to Bit =
[
Bit−1 − 1

]
+

+
rt
vt
χit(rt) (4.1a)

1

T

T∑
t=1

(1− χit(rt)) ≤ α ∀i = {1, ..., N} (4.1b)

1

T

T∑
t=1

1Bi
t≤0 ≤ β ∀i = {1, ..., N} (4.1c)

1

T

T∑
t=1

1vt 6=vt−1 ≤ γ (4.1d)

vt ∈ V ∀t = {1, ..., T} (4.1e)

rt ∈ R ∀t = {1, ..., T} (4.1f)

Constraint (4.1a) indicates the time evolution of the buffer at receiver i. Each successful

segment reception adds rt
vt

seconds of video to the buffer and the amount of video consumed

in each slot is fixed and equal to the duration of the timeslot (1s as based on our assumption).

Constraints (4.1b) and (4.1c) are QoE constraints for the number of segments received at
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each receiver and number of rebuffering events, respectively. Constraint (4.1d) specifies a

limit on the number of video rate switches.

The QPRC Problem considers a scenario with segments lost constraints on each receiver.

However, in practice, satisfying strict constraints on each receiver individually may lead to

poor performance. As an example, consider a case with a large number of receivers where one

or two receivers have poor channel quality. In such a case, guaranteeing high quality while

meeting the constraints might unfairly penalize the receivers with good channel quality.

Hence, we consider an alternative formulation as follows:

Problem 2: QoE Optimization with Aggregate-Receiver Constraints (QARC)

max
1

T

N∑
i=1

T∑
t=1

q(vt)χ
i
t(rt)

subject to
1

NT

N∑
i=1

T∑
t=1

(1− χit(rt)) ≤ α (4.2a)

Bit =
[
Bit−1 − 1

]
+

+
rt
vt
χit(rt) (4.2b)

1

NT

N∑
i=1

T∑
t=1

1Bi
t≤0 ≤ β ∀i = {1, ..., N} (4.2c)

1

T

T∑
t=1

1vt 6=vt−1 ≤ γ (4.2d)

vt ∈ V ∀t = {1, ..., T}

rt ∈ R ∀t = {1, ..., T}

The main difference between the QPRC and QARC problems is that the latter considers

a constraint on the average number of segments lost over all receivers. This provides looser

QoE constraints but does not unfairly penalize the performance due to the presence of a

few receivers with poor channel quality.

Finally, we assume that there is a feasible solution for both the QPRC and QARC

problems. This is a practical assumption since for most wireless technologies, setting rt =

rmin = min(r ∈ R) implies χit(rt) = 1, and thus, a solution for both problems can be found

by setting rt = rmin for all slots. Since, χit(r) values are not known in advance, our goal is

to develop optimal online policies for the QPRC and QARC problems.
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4.4 Online Transmission and Video Rate Adaptation

We utilize the Lyapunov framework [158] to develop online algorithms for the QPRC and

QARC problems. The drift-plus-penalty method is the key technique in Lyapunov opti-

mization [158] which stabilizes a queueing network while also optimizing the time-average

of an objective (e.g., utility derived from video segments). To use this framework, a solution

to the QPRC Problem must address the following:

QoE Constraints: To handle the QoE constraints of the QPRC Problem, we represent the

QoE constraints for each receiver as virtual queues. Constraint (4.1b) can be represented

by a virtual queue as follows:

Xi
t+1 =

[
Xi
t − α+ (1− χit(rt))

]
+
.

Similarly, constraints (4.1c) and (4.1d) can be represented by virtual queues Y i
t and Zt such

that:

Y it+1 =
[
Y it − β + 1Bi

t≤0

]
+

Zt+1 =
[
Zt − γ + 1vt 6=vt−1

]
+

The constraints for the QARC Problem can be transformed in a similar way. For details,

see the technical report [105].

For the virtual queues to be stable, we have:

lim
t→∞

t∑
τ=1

(1− χiτ (rτ )) ≤ α

lim
t→∞

t∑
τ=1

1Bi
t≤0 ≤ β

lim
t→∞

t∑
τ=1

1vt 6=vt−1 ≤ γ

Thus, if the virtual queues are stable, the QoE constraints are also satisfied, since the input

of the virtual queues is smaller than the output.

Next, we define conditions on the virtual queues Let Qt be a vector process of queue

lengths for a discrete stochastic queueing network with an arbitrary number of queues.
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Let L(Q) be a non-negative scalar function of the queue lengths, termed as the Lyapunov

function. Define the Lyapunov drift as follows:

∆t (Qt) = E[L(Qt+1)− L(Qt)]

We assume that a reward is accumulated every slot where a reward corresponds to the

utility derived from an action at a slot. Let ft denote the bounded function of the reward

at slot t and f∗ be the target reward. The following lemma specifies conditions for which

the time average of the reward process is close to the target reward.

Lemma 1. Suppose there exist finite constants W > 0, C > 0, and a non-negative function

L (Qt) such that E[L (Qt)] <∞ for every t. If the Lyapunov drift satisfies:

∆ (Qt)−W E[ft] ≤ C −Wf∗,

for every t, then we have:

lim inf
t→∞

1

t

t−1∑
τ=0

E[f(τ)] ≥ f ∗ − C
W
.

Proof. The proof can be obtained by a telescoping sums argument.

The following lemma shows the existence of a randomized stationary policy that meets

the target reward.

Lemma 2. For large T , there exists a stationary policy, referred to as STAT, that is inde-

pendent of the states of the virtual queues which makes i.i.d. control decisions in every slot

and satisfies the virtual queues stability constraints while achieving time-average utility no

smaller than f∗.

Proof. The proof follows from Theorem 4.5 in [158] and is omitted for brevity.

Note that calculating a policy described in Lemma 2 explicitly would require the knowl-

edge of channel performance for each receiver or the χit(rt) indicator variables. However,

instead of calculating this policy explicitly, we will use its existence and characterization

per Lemma 2 to design an online control algorithm using Lyapunov optimization.
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4.4.1 The DYVR Algorithms

We now describe two variants of the DYVR (DYnamic Video and transmission Rate adap-

tation) algorithm for the QPRC and QARC problems. DYVR-M (DYVR-Maximum) for

the QPRC Problem sets the transmission and video rate based on the performance of the

receiver with the largest value of virtual queues. On the other hand, DYVR-A (DYVR-

Average) for the QARC Problem makes decisions based on the average value of virtual

queues at the receivers.

DYVR-M Algorithm: Algorithm 3 shows the outline of the DYVR-M Algorithm. It

maintains per-receiver virtual queues Xi
t and Y i

t and a global virtual queue Zt. For every

slot, the x and y indexes are calculated in lines 2–3. The values of vt ∈ V and rt ∈ R

are chosen such that they maximize the max-weight equation in line 4, where W is an

algorithmic parameter. After the end of the slot, it collects the feedback χit(rt) as shown

in line 8. The feedback is used to refine the estimates of channel for the next slot in line 9.

Finally, the virtual queues are updated as shown in lines 10–12.

DYVR-A Algorithm: Algorithm 4 shows the outline of the DYVR-A Algorithm. The

operation of DYVR-A is similar to DYVR-M . It maintains global virtual queues Xt, Yt,

and Zt. The values of vt ∈ V and rt ∈ R are chosen such that they maximize the max-

weight equation in line 2. The feedback collection process in line 6 is same as DYVR-A and

updating of virtual queues is done in lines 8–10.

4.4.2 Performance Analysis

Here we analyze the performance of the DYVR-M Algorithm. The analysis of DYVR-A is

similar and can be found in the technical report [105]. The following lemma shows that the

utility achieved by DYVR-M is within an additive factor O( 1
W within the optimal, for a

parameter W .

Theorem 1. The overall utility achieved by the DYVR-M Algorithm satisfies:

lim sup
t→∞

1

t

t∑
τ=1

q(vt)χ
i
t(rt) ≥ f∗ −

C

W
,
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Algorithm 3 DYVR-M Algorithm

1: for t← 1 to T do

2: x← arg max
i

Xi
t

3: y ← arg max
i

Y it

4: (vt, rt)← arg max
v,r

[
W
∑N
i=1 q(vt)p

i
t(rt)−

Xx
t (1− pxt (rt)− α)− Y yt

(
1B

y
t ≤0 − β

)
− Zt

(
1vt 6=vt−1 − γ

) ]
5: s.t. v ∈ V, r ∈ R

6: Set transmission rate rt and video rate vt

7: for i← 1 to N do

8: Collect χit(rt) feedback from receiver i

9: Estimate pit+1

10: Xi
t+1 ←

[
Xi
t − α+ (1− χit(rt))

]
+

11: Y it+1 ←
[
Y it − β + 1Bi

t≤0

]
+

12: Zt+1 ←
[
Zt − γ + 1vt 6=vt−1

]
+

where f∗ is the optimal utility achieved by any policy that meets the QoE constraints, W is

an algorithmic parameter, and C is a constant.

Proof. Let Q(t) = (X1(t), · · · , XN (t), Y 1(t), · · · , Y N (t), Z(t)) be the collection of virtual

queues at all receivers. We consider the following Lyapunov function:

L(Qt) =
1

2

[
N∑
i=1

Xi
t
2

+

N∑
i=1

Y it
2

+ Zt
2

]
,

The Lyapunov drift plus penalty for DYVR-M is given as:

∆ (Qt)−W
N∑
i=1

E[q(vt)χ
i
t(rt) | Q(t)] ≤ C −

N∑
i=1

E
[
Wq(vt)χ

i
t(rt)−Xi

t

(
1− χit(rt)− α

)
−

Y it

(
1Bi

t≤0 − β
)
− Zt

(
1vt 6=vt−1 − γ

)
|Q(t)

]
, (4.4)

where,

C =
N(1− α)2 +N(1− β)2 + (1− γ)2

2
.

Let and x be the index at which Xt is maximum, thus x = arg max(Xi
t : i ∈ (1, · · · , N)).

Similarly, define y. Then, (4.4) can be written as:

∆ (Qt)−W
N∑
i=1

E[q(vt)χ
i
t(rt) | Q(t)] ≤ C − E[

N∑
i=1

Wq(vt)χ
i
t(rt)−NXx

t (1− χxt (rt)− α)−

NY yt

(
1B

y
t ≤0 − β

)
− Zt

(
1vt 6=vt−1 − γ

)
|Q(t)]. (4.5)
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Algorithm 4 DYVR-A Algorithm

1: for t← 1 to T do

2: {vt, rt} ← arg max
v,r

[
W
∑N
i=1 q(v)pit(r)−

Xt
(

1
N

∑N
i=1

(
1− pit(r)

)
− α

)
− Yt

(∑N
i=1 1Bi

t≤0 − β
)
− Zt

(
1v 6=vt−1 − γ

) ]
3: s.t. v ∈ V, r ∈ R

4: Set transmission rate rt and video rate vt

5: for i← 1 to N do

6: Collect χit(rt) feedback from receiver i

7: Estimate pit+1

8: Xt+1 ←
[
Xt − α+ 1

N

∑N
i=1(1− χit(rt))

]
+

9: Yt+1 ←
[
Yt − β + 1

N

∑N
i=1 1Bi

t≤0

]
+

10: Zt+1 ←
[
Zt − γ + 1vt 6=vt−1

]
+

If the DYVR-M Algorithm is implemented at all slots upto t, the virtual queue backlogs

(Xi(t), Y i(t), Z(t)) are determined by the history before t only. Thus, given the current

virtual queue backlogs, DYVR-M maximizes the expectation on the right hand side of (4.5)

over all alternative policies, including STAT. Since STAT satisfies time average constraints,

E[Xi
t (1− χxt (rt)− α) |Q(t)] = 0. Similarly for other terms corresponding to the constraints

in (4.5). Thus we can rewrite (4.5) as:

∆ (Qt)−W
N∑
i=1

E[q(vt)χ
i
t(rt) | Q(t)] ≤ C − E[

N∑
i=1

Wq(vSTATt )χit(r
STAT
t )|Q(t)].

The above equation is of the form required in Lemma 1. Then, from Lemma 2, we prove

the desired result.

We can further show that the maximum value virtual queues Xi
t , Y

i
t , Zt grows with a

multiplicative factor O(W ), thus yielding a tradeoff between achieving the optimal utility

and satisfying QoE constraints (see [105] for more details).

4.5 Numerical Evaluations

To evaluate the performance of both the DYVR-M and DYVR-A algorithms at a large

scale which is not feasible experimentally, we performed extensive simulations. The sim-

ulation environment mimics the characteristics of real networks that we observed through
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Figure 4.2: Simulation results for uniform channel conditions with varying channel fading probabili-

ties (a) average utility achieved, (b) percentage of lost segments, (c) percentage of buffer underflows,

and (d) percentage of video rate switches.

10 20 30 40 50

Number of Receivers

0

10

20

30

40

50

U
ti

li
ty

DYVR-M

DYVR-A

Prediction-based

Oracle-based

Oracle-based-window

(a)

10 20 30 40 50

Number of Receivers

0

0.5

1

1.5

2

2.5

3

L
o
st

 S
eg

m
en

ts
 (

%
)

DYVR-M

DYVR-A

Prediction-based

Oracle-based

Oracle-based-window

(b)

10 20 30 40 50

Number of Receivers

0

0.5

1

1.5

2

2.5

3

B
u
ff

e
r 

U
n
d
e
rf

lo
w

s 
(%

)

DYVR-M

DYVR-A

Prediction-based

Oracle-based

Oracle-based-window

(c)

10 20 30 40 50

Number of Receivers

0

10

20

30

40

50

60

70

V
id

e
o

 R
a
te

 S
w

it
c
h

e
s 

(%
)

DYVR-M

DYVR-A

Prediction-based

Oracle-based

Oracle-based-window

(d)

Figure 4.3: Simulation results for fast changing channel conditions with varying number of receivers:

(a) average utility achieved, (b) percentage of lost segments, (c) percentage of buffer underflows, and

(d) percentage of video rate switches.

experimental measurements and of those reported in [99,109,174].

We assume that DYVR-M and DYVR-A can estimate the channel conditions at the

receivers at the beginning of each slot. More specifically, we assume that the probability

distribution of the state of the system is known at the beginning of each slot. DYVR-M and

DYVR-A do not have any knowledge about the long-term channel state.

We compare the performance of DYVR-M and DYVR-A to the following buffer/virtual

queue independent algorithms:

(i) Oracle: The Oracle Algorithm has exact knowledge of the channel conditions for each

time slot up to a maximum window of wnd slots. At the beginning of each slot, it sets the

transmission rate rt to be the maximum rate at which a fixed fraction f of the receivers can

successfully receive segments. The value of f is a fixed parameter for a simulation and is
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generally very high. For a fair comparison, we tune f such that the Oracle Algorithm leads

to similar number of segments lost as DYVR . Further, Oracle sets the video rate as the

average of transmission rates over wnd, vt = 1
wnd

∑t+wnd
τ=t rτ to avoid frequent video rate

switches.

We consider two variants of Oracle with wnd = 1 called Oracle-Based and a large wnd

called Oracle-Based-Window. Oracle-Based provides a loose upper bound on the achievable

utility with more video rate switches and underflows. Oracle-Based-Window provides a

more realistic comparison to DYVR where the number of video rate switches and underflows

are close to DYVR. We choose wnd values for Oracle-Based-Window such that the number

of video rate switches and buffer underflows are close to that of DYVR.

(ii) Prediction-Based: The Prediction-Based Algorithm has the same knowledge of the

channel conditions as the DYVR algorithms. More specifically, it knows pit(r), the proba-

bility of successful reception at each receiver i and at each rate r. At the beginning of each

time slot, it selects rt such that an expected fraction f of receivers will successfully receive

the video segments. Similar to Oracle, we choose f such that the number of segments lost

is close to DYVR and a window-based mechanism to set the video rate vt = 1
wnd

∑t+wnd
τ=t rτ .

We simulate a variety of environments with different channel state distributions, receiver

mobility patterns, and varying number of receivers. We assume that the transmission

and video rate values can be chosen from sets of 8 different values each. The channel

state characteristics of the simulated environments mimic those of real networks obtained

through experimental measurements and existing literature. For our measurements, we

conducted experiments with Nexus 7 tablets and an ASUS WiFi AP in indoor settings

over a 5GHz channel for 802.11a transmissions. We measured the probability of successful

packet reception at the receiver at different locations for different values of transmission

rates for 5 experimental runs of 500s each. We observed that packet losses are bursty, the

amount of losses is stable for the duration of a few seconds for stationary receivers, and

there are atypical events that can lead to high losses for short durations of time. These

observations agree with measurements in existing literature [109, 174]. Accordingly, the

simulation scenarios and the assumptions are as follows:
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(i) Uniform: The maximum transmission rate for which a receiver i can successfully

receive a segment, rit, is chosen uniformly at random at beginning and remains same at all

times. However, for certain randomly chosen slots, the maximum rit drops to a lower value.

This assumption models the channel fading effect we experimentally observed. We assume

that the DYVR and Prediction-Based algorithms only know the probability of these fading

events, while the Oracle Algorithm can predict a fading event in advance.

(ii) Mobility: The state of the system changes slowly over a period of time. We simulate

a condition when the rit value for each receiver change according to a discrete Markov

Chain with 8 states corresponding to 8 channel states . Markov channel models have been

extensively studied before [216, 231]4. We consider a variety of transition probabilities to

simulate the effect of higher mobility.

We developed a custom simulation tool based on the above observations. For various

simulation scenarios, we ran 5 instances each 2,500 slots long.

Fig. 4.2 shows the performance of different algorithms in the Uniform scenario. Each

simulation consisted of 10 receivers. We set the QoE parameters α = β = γ = 0.02.

Fig. 4.2(a) shows the average utility achieved for different algorithms. The utility achieved

by DYVR-A is marginally better than by DYVR-M and the average utility reduces as the

fading probability increases. The utility achieved by both DYVR algorithms is close to that

of of the Oracle-Based-Window Algorithm but higher than the utility of the Prediction-

Based Algorithm.

Figs. 4.2(b), 4.2(c), and 4.2(d) show the average percentage of segments lost, percentage

of slots with buffer underflows, and percentage of slots with video rate switches, respec-

tively. We observe that both DYVR algorithms achieve performance as dictated by QoE

requirements. While DYVR-A achieved marginally higher utility than DYVR-M, it also

leads to marginally higher number of segments lost due to looser constraints on the number

of segments lost.

4While significant effort has been dedicated to modeling mobility (e.g., [33,58] and subsequent literature

consider Markovian mobility models), we use a simplistic mobility model since our focus is on the algorithmic

performance evaluation rather than on mobility patterns.

96



CHAPTER 4. OPTIMIZING VIDEO QOE FOR MULTICAST STREAMING

Since the parameters of Oracle-Based-Window and Prediction-Based algorithms were

tuned to yield performance close to DYVR, they satisfy the QoE requirements. It should be

noted that the parameters of Oracle-Based-Window and Prediction-Based algorithms were

obtained by rigorous trial and error. In practice, these parameters will change in different

environments and it is infeasible to tune these parameters in realistic environments. The

Oracle-Based Algorithm does not result in any segments lost and buffer underflows, due to

knowledge of channel states. However, it results in large number of video rate switches.

Fig. 4.3 shows the performance of different algorithms in the Mobility scenario as a

function of the number of receivers in the system. As expected, the average utility as shown

in Fig. 4.3(a) grows for each algorithm with the number of receivers. Both DYVR-A and

DYVR-M achieve higher utility than Prediction-Based but lower than the Oracle-Based and

Oracle-Based-Window algorithms. Further, the gap between the performance of Oracle,

DYVR, and Prediction-Based algorithms grows larger with increasing number of receivers.

Figs. 4.3(b), 4.3(c), and 4.3(d) show the average number of segments lost, number of

buffer of underflows, and video rate switches, respectively. Even in the challenging mobil-

ity scenario, the DYVR-M and DYVR-A algorithms satisfy the required QoE constrains.

Moreoever, the number of lost segments, buffer underflows, and video rate switches are

less than 2%. The Prediction-Based and Oracle-Based-Window algorithms satisfy the QoE

requirements by design but Oracle-Based results in high number of video rate switches.

In summary, the simulations demonstrate that both the DYVR-A and DYVR-M algo-

rithms can provide close to optimal utility while satisfying the QoE requirements.

4.6 Implementation and Experimental Evaluation

In this section, we describe our wireless multicast video delivery system and the experimental

testbed. We also present the results of experimental evaluations of DYVR algorithms.

4.6.1 System Architecture

The system consists of 4 main components as shown in Fig. 4.4:
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Figure 4.4: The wireless multicast video delivery system (with the DYVR algorithms at its core)

consisting of: (i) Proxy Server (ii) Controller, (iii) WiFi Access Point, and (iv) Receivers.

(i) Proxy Server: The proxy server pre-fetches video segments at all available video

rates from a cloud-based server for streaming to multicast receivers. The pre-fetch module

performs the function of a standard DASH player. The pre-fetching can be based based on

current or predicted demand for a particular video (e.g., for a key highlight in a stadium).

We assume that the bandwidth between the Proxy and the cloud server is unlimited so the

delay in pre-fetching operation is minimal. However, buffering each segment adds delay

which is directly proportional to the segment length. We use a small segment length of 2s

to avoid large delays.

The proxy server also adds application-layer error correction to the video segments and

embeds sequence numbers in each packet. Finally, the video data is transmitted to the

WiFi AP using UDP packets through a video streaming module which adjusts the video

rate based on input from DYVR . We selected UDP due to its compatibility with the

existing media player libraries.

(ii) Controller: The Controller maintains detailed statistics of QoE performance at each

receiver. The Controller collects periodic feedback reports from receivers about the number

of segment losses, video buffer levels, RSSI, Packet Delivery Ratio (PDR). It also estimates

the channel state at the receivers in the next time slot. Both the QoE performance and the

next slot estimate are derived from the feedback reports. The controller is responsible for

adjusting two key parameters determined by the DYVR Algorithm:

- Video Rate: The controller configures the video rate for each segment at the Proxy
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Table 4.3: Commercial OpenWRT or DD-Wrt compatible WiFi APs

Manufacturer/Model Linksys WRT1200AC TP-Link Archer C7 v2 ASUS RT-AC56U

CPU Architecture ARMv7 MIPS-32 ARMv7

WLAN Chipset Marvell 88W8864 Atheros QCA9880 Broadcom BCM4708A0

Driver Support

(Changing multicast rate)
No Yes (non-official) Yes (official)

Customize Firmware OpenWrt DDWrt OpenWrt

Server.

- Transmission Rate: The controller communicates with the AP and sets the transms-

sion rate.

(iii) WiFi AP: The WiFi AP adapts the multicast transmission rate based on instructions

from the controller. We experimented with several popular OpenWRT- and DD-WRT-

compatible off-the-shelf APs to determine the feasibility of rate adaptations. Our observa-

tions are summarized in Table 4.3. We noticed that most popular drivers support multicast

rate change from application layer calls. When the driver does not support the change, (e.g.,

Marvel), the driver can be modified to build a pipeline to support the rate changes. Since

the wireless infrastructure is usually under the control of wireless operators, performing AP

side changes is feasible option for a wide deployment of such a system architecture.

(iv) Receivers: The receivers in a multicast group listen to the UDP video stream packets,

collect and calculate the performance statistics, play the video, and send the statistics back

to the controller. The receiver first strips the sequence numbers from the packets at the

application layer to compute packet delivery statistics. Each packet is passed to the error-

correction decoder. Once the decoder determines that all the sequence numbers within an

error correction block have been received, it decodes the block and forwards it to the media

player at the receiver. The performance statistics are sent to the Controller periodically.
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Figure 4.5: (a) The distribution of video segment sizes at 3 different video rates, and (b) The

concave utility function used in experiments and a standard logarithmic utility function shown for

comparison.

4.6.2 Practical Issues

Feedback: DYVR needs estimates of channel state pit values from all receivers. It also

needs to keep track of the virtual queues Xi
t , Y

i
t , and Zit . The feedback messages from each

receiver are a few Kilobits in size. Since these values need to be estimated at the order of

a video segment duration (seconds), the feedback overhead is not high.

Video Rate Variation: The DYVR algorithms described in Section 4.4 assume that the

size of the segment is equal to the video rate. In practice, the video rate only specifies the

average segment size over a period of time. Fig. 4.5(a) shows the distribution of segment sizes

of a particular video file encoded in several video rates. It is clear that the actual segment

size can be more than 2x higher than the video rate. Since the sizes of individual segments

are known in advance at the Proxy Server, the actual video rates can be incorporated in

DYVR at the beginning of each time slot.

Flow Rate: The multicast flow rate is based on several factors such as the available buffer

at the client and the AP, the transmission rate, and time duration available for multicast in

a slot. Typically, the downlink buffer available for multicast at APs is only a few hundred

kilobytes. Thus, the flow rate should not significantly exceed the multicast throughput. In

our implementation, the Controller sets the flow rate to the transmission rate determined

by the DYVR algorithm. Further, while we assume that receivers have a large amount

of buffer, the Controller pauses the video tranmission if the buffer levels grow beyond 40

segments.

Utility Function: The increase in the video utility with video rates diminishes as the
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Figure 4.6: The implementation of the architecture shown in Fig. 4.4 which was used for experimental

performance evaluation: (i) a laptop acting as the Proxy Server and Controller, (ii) the WiFi Access

Point, and (iii) receivers.

video rates increase. Thus, it is natural to consider a concave utility function for DYVR.

For the limited set of video rates available, we computed a utility function that works well in

practice. Fig. 4.5(b) shows the utility function for different video rates and the logarithmic

utility function for comparison.

Channel State Estimation: The DYVR algorithms rely on evaluating pt(r) values at

the beginning of each time slot. The next slot estimate module in the system calculates

these values using a combination of current RSSI and past history of PDR values. We

collected offline measurement data with the AP transmitting multicast data at a particular

transmission rate for 200s. We used 10 sets of experiments for each transmssion rate to

estimate mappings between RSSI values to PDR values at different transmission rates.

With these mappings, we achieve 90% accuracy in predicting PDR within 5% range for

another set of experimental data. To account for prediction errors due to environmental

changes and noise, we consider an additional online technique that refines PDR estimate at

the current RSSI value. If the PDR values are lower than 80% for 3 subsequent slots, we

lower the estimated PDR for the current RSSI values.

4.6.3 Implementation

We implemented the architecture described in the previous section on a testbed as shown

in Fig. 6.4(b). A preliminary version of this testbed was recently demonstrated in [106].

(i) Proxy-Server and Controller: The Proxy Server and Controller were implemented
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on a standard laptop. For the experimental evaluation described in the following section, we

ignored the live pre-fetching and video encoding mechanisms to avoid complexity. Instead,

the laptop hosted video segments at pre-encoded at different video rates. The laptop was

located in close proximity to the AP to minimize delay in control functions.

(ii) WiFi AP: We used ASUS RT-AC56U as an AP. We installed the open source DD-

WRT firmware on the AP to provide multicast rate changes from the application layer. In

all experiments described in the following section, we utilized broadcast transmissions to

avoid the complexity of multicast group management at the AP.

(iii) Receivers: We used 4 Samsung Galaxy tablets as receivers. We used the Vitamio

media player library as the video player, since it is open source and supports UDP streaming

and native MPEG decoding. This allowed us to include the modules for channel statistics

evaluation within the video player. We observed that implementing complex application-

layer error correction schemes leads to video packets missing their decoding deadlines, which

in turn leads to poor video quality. This issue can be resolved by a native and optimized

implementation of an error correction scheme. However, our focus is on evaluating video

segment level performance. Thus, we considered a segment transmission successful, if 85%

of its packets are received and unsuccessful otherwise. All receivers have the kernel socket

buffers set to large values to avoid packet drops at high transmission rates.

4.6.4 Experimental Evaluation

We evaluated the performance of our system architecture and the DYVR algorithms on the

testbed described in the pervious section. In all our experiments, we used the 5GHz channel

and the 802.11a standard. Our experiments consisted of indoor lab environments and we

focus on the following settings: (a) Near - all receivers are near the AP and randomly placed

in the lab, (b) Far - all receivers are far from the AP and randomly placed, and (c) Mobility

- all receivers are mobile. In all the experiments, we set the constraints on segments lost,

buffer underflows, and video rate switches to 2%.

Fig. 4.7 shows one instance of a trace obtained when the system operates with the

DYVR-A Algorithm with 4 receivers initially near the AP, then slowly move away from the
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Figure 4.7: Experimental trace of an instance of the DYVR-M adaptation process during 250s

consisting of 4 receivers with all 4 receivers moving away from the AP and then back: (a) transmission

rate index, (b) video rate index, (c) buffer at one of the receivers, and (d) average number of segments

lost (cumulative over time).

AP, and finally move back close to the AP. A demo video of the experiment is available

at [104]. Figs. 4.7(a) and 4.7(b) show the evolution of the transmission rate and video

rate over time. The index corresponding to the transmission rate (values between 6Mbps –

54Mbps) reduces for the period of 120s–160s when the receivers move away. While the video

rate index (values between 2.5Mbps – 8.5 Mbps as shown in Fig. 4.5(b)) also reduces for this

period, the algorithm is able to avoid the rapid oscillations that occur in the transmission

rate by utilizing the buffer. DYVR-A is able to maintain non-zero buffer occupancy as

shown in Fig. 4.7(c) with only one underflow even when the receivers start moving away

from the AP. The average number of segments lost at the receivers over time is shown in

Fig. 4.7(d). The average segments lost at the end of experiment is 3% which is close to the

QoE requirements.

Fig. 4.8 shows one instance of a trace obtained when the system operates with the

DYVR-A Algorithm with 4 receivers. Only one receiver is mobile and moves in random

mobility patterns. This case is particularly challenging for multicast due to the varying

mismatch between channel state of receivers. Figs. 4.8(a) and 4.8(b) show the evolution

of the transmission rate and video rate over time. While the transmission rate changes in
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Figure 4.8: Experimental trace of an instance of the DYVR-M adaptation process during 200s

consisting of 4 receivers with a single receiver moving in a random mobility pattern: (a) transmission

rate index, (b) video rate index, (c) buffer at one of the receivers, and (d) average number of segments

lost (cumulative over time).

response to channel conditions, the video rate constantly stays at a high value. The drops in

transmission rate occur in response to buffer underflows and segments lost. For instance, at

60s and 120s, the number of buffer underflows in Fig. 4.8(c) and segments lost in FIg. 4.8(d)

increases which leads to corresponding drops in transmission rates.

We compare the performance of DYVR-M and DYVR-A to the following algorithms:

(i) BBA (Buffer Based Adaptation) [113]: BBA is a solely buffer-based video rate

adaptation algorithm. BBA has been commercially deployed on Netflix and A/B testing has

shown better performance as compared to other approaches. We adapt the BBA Algorithm

for multicast. In our implementation, the video rate switching decisions at each slot are

dictated by the smallest buffer across all clients.

(ii) PBA (Prediction Based Adaptation) [234]: The PBA Algorithm relies on both

bandwidth predictions and buffer conditions to tune the video rate. The bandwidth esti-

mates used in PBA were shown to improve video QoE. We also adapted PBA for wireless

multicast. The video rate switching decisions at each slot are dictated by the smallest

buffer across all clients and the predicted channel state at the receiver with weakest channel

quality.
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Figure 4.9: Experimental results for different algorithms under various experimental scenarios with

4 tablets: (a) average video rate, (b) percentage of segments lost, (c) percentage of buffer underflows,

and (d) percentage of video rate switches.

(iii) History-Based: We use a simple heuristic for video adaptation that sets the video

rate to the maximum rate at which all receivers are expected to successfully receive the

video segment in the next slot. The number of buffer underflows and video rate switches

are expected to be significantly higher with this scheme.

The BBA, PBA, and History-Based algorithms provide a mechanism for tuning only the

video rate. These algorithms provided significantly lower video rate when the transmission

rate is tuned such that the receivery with the weakest channel quality always receives video

segments. To ensure a fair comparison with DYVR-M and DYVR-A, we used the same

channel state estimates for the DYVR algorithms and tuned the transmission rate such that

an expected fraction f of the receivers will successully receive a segment in each slot. We

tuned f such that the average transmission rate achieved for all 3 algorithms is close to the

one achieved by DYVR-M or DYVR-A in various scenarios. Such tuning is hard to achieve

in practice and provides a best-case comparison.

Fig. 4.9 shows the comparison performance of DYVR and other algorithms for different

experimental scenarios. For each approach, we conducted 5 experiments on different days

with each experiment’s duration about 250s. The average video rate index is shown in

Fig. 4.9(a). The average number of segments lost, buffer underflows, and video rate switches

are illustrated in Figs. 4.9(b), 4.9(c), and 4.9(d), respectively.
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For the near scenario, all algorithms perform comparably and yield the number of seg-

ments lost, buffer underflows, and video rate switches within the 2% constraint required.

This is because all the schemes are able to transmit at a high transmission rate with-

out incurring any losses. However, for the far case, both DYVR-M and DYVR-A yield

higher video rate than other schemes. The number of segments lost for both DYVR-M and

DYVR-A is less than 1% which is 5x less than other schemes. The number of losses for

PBA, BBA, and History-based algorithms can be reduced by setting the transmission rate

more conservatively. However, this will further reduce the video rate for these schemes.

The DYVR-M Algorithm yields lower video rate than DYVR-A on an average but also

leads to lower buffer underflows and video rate swtiches than DYVR-A. This is due to

strict per-receiver constraints in DYVR-M. The BBA Algorithm satisfies the constraints on

buffer underflows and video rate switches. On the other hand, the PBA Algorithm yields

more than 8% buffer underflows and 50% video rate switches. This is because PBA is more

aggressive in using more optimistic channel estimates to set higher video rates.

For the mobility scenario, both DYVR-M and DYVR-A achieve higher video rate than

other schemes. DYVR-M, DYVR-A, and PBA algorithms lead to almost half the number

of segment losses compared to BBA. The percentages of buffer underflows and video rate

switches for DYVR-M and DYVR-A are comparable to PBA. In this case, PBA better

leverages the channel estimates and leads to higher video rate than BBA while ensuring

lower segments lost, buffer underflows, and video rate switches. Similar to the previous

case, the DYVR-M Algorithm yields slightly lower video rate than DYVR-A on an average

but also leads to lower buffer underflows and video rate swtiches than DYVR-A.

In summary, DYVR-M and DYVR-A are able to stream high quality video while meeting

the QoE constraints in diverse conditions. DYVR-M and DYVR-A can provide higher video

rate than other video rate adaptation approaches even when they have been tuned offline

for optimal performance.
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Chapter 5

DYNAMIC MONITORING OF

LARGE SCALE LTE-eMBMS

5.1 Introduction

So far we focused on WiFi multicast in Chapter 2 and 3. In this chapter, we consider LTE

cellular networks. Analogous to WiFi, unicast video streaming over LTE to a large user

population in crowded venues requires a dense deployment of Base Stations (BSs) [87,124,

201]. Such deployments require high capital and operational expenditure and may suffer

from extensive interference between adjacent BSs.

LTE-eMBMS (evolved Multimedia Broadcast/Multicast Service) [27, 135] provides an

alternative method for content delivery in crowded venues which is based on broadcasting to

a large population of User Equipment (UEs) (a.k.a. eMBMS receivers). As illustrated in Fig.

5.2, in order to improve the Signal-to-Noise Ratio (SNR) at the receivers, eMBMS utilizes

soft signal combining techniques.1 Thus, a large scale Modulation and Coding Scheme

(MCS) adaptation should be conducted simultaneously for all the BSs based on the Quality

of Service (QoS) at the UEs.

Unfortunately, the eMBMS standard [27] only provides a mechanism for UE QoS report-

1All the BSs in a particular venue transmit identical multicast signals in a time synchronized manner.
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Figure 5.1: An overview of the multicast feedback for LTE-eMBMS.

ing once the communication terminates, thereby making it unsuitable for real-time traffic.

Recently, the Minimization of Drive Tests (MDT) protocol [26] was extended to provide

eMBMS QoS reports periodically from all the UEs or when a UE joins/leaves a BS. How-

ever, in crowded venues with tens of thousands of UEs (e.g., [87]), even infrequent QoS

reports by each UE may result in high signaling overhead and blocking of unicast traffic.2

Due to the limited ability to collect feedback, a deployment of an eMBMS system is very

challenging. In particular, it is hindered by the following limitations:

(i) Extensive and time consuming radio frequency surveys: Such surveys are conducted

before each new eMBMS deployment. Yet, they provide only limited information from

a few monitoring nodes.

(ii) Conservative resource allocation: The eMBMS MCS and Forward Error Correction

(FEC) codes are set conservatively to increase the decoding probability.

(iii) Oblivious to environmental changes: It is impossible to infer QoS degradation due to

environmental changes, such as new obstacles or component failures.

2A BS can only support a limited number of connections while the minimal duration for an LTE connection

is in the order of hundreds of milliseconds.
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Figure 5.2: The DyMo system architecture: It exchanges control information with the Multicast

Coordination Entity (MCE) of BSs which use soft signal combining for eMBMS. The Instruction

Control module uses broadcast to dynamically partition the UEs into groups, each sending QoS

reports at a different rate. The reports are sent to the Feedback Collection module and allow the

QoS Evaluation module to identify an SNR Threshold. It is used by the MCS Control module to

specify the optimal MCS to the MCEs.

Clearly, there is a need to dynamically tune the eMBMS parameters according to the

feedback from UEs. However, a key challenge for eMBMS parameter tuning for large scale

groups is obtaining accurate QoS reports with low overhead. Schemes for efficient feed-

back collection in wireless multicast networks have recently received considerable attention,

particulalty in the context of WiFi networks (e.g., [89, 101, 207, 214]). Yet, WiFi feedback

schemes cannot be easily adapted to eMBMS since unlike WiFi, where a single Access Point

transmits to a node, transmissions from multiple BSs are combined in eMBMS. Efforts for

optimizing eMBMS performance focus on periodically collecting QoS reports from all UEs

(e.g., [64]) but such approaches rely on extensive knowledge of the user population (for more

details, see Section 5.2.2).

In this chapter, we present the Dynamic Monitoring (DyMo) system designed to sup-

port efficient LTE-eMBMS deployments in crowded and dynamic environments by provid-

ing accurate QoS reports with low overhead. DyMo identifies the maximal eMBMS SNR

Threshold such that only a small number of UEs with SNR below the SNR Threshold

may suffer from poor service3. To identify the SNR Threshold accurately, DyMo leverages

3While various metrics can be used for QoS evaluation, we consider the commonly used eMBMS SNR,

referred to as SNR, as a primary metric.
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the broadcast capabilities of eMBMS for fast dissemination of instructions to a large UE

population.

Each instruction is targeted at a sub-group of UEs that satisfies a given condition. It

instructs the UEs in the group to send a QoS report with some probability during a reporting

interval.4 We refer to these instructions as Stochastic Group Instructions. For instance, as

shown in Fig. 5.3, DyMo divides UEs into two groups. UEs with poor or moderate eMBMS

SNR are requested to send a report with a higher rate during the next reporting interval. In

order to improve the accuracy of the SNR Threshold, the QoS reports are analyzed and the

group partitions and instructions are dynamically adapted such that the UEs whose SNR

is around the SNR Threshold report more frequently. The SNR Threshold is then used for

setting the eMBMS parameters, such as the MCS and FEC codes.

From a statistics perspective, DyMo can be viewed as a practical method for realizing

importance sampling [159] in wireless networks. Importance sampling improves the ex-

pectation approximation of a rare event by sampling from a distribution that overweighs

the important region. With limited knowledge of the SNR distribution, DyMo leverages

Stochastic Group Instructions to narrow down the SNR sampling to UEs that suffer from

poor service and consequently obtains accurate estimation of the SNR Threshold. To the

best of our knowledge, this is the first realization of using broadcast instructions for impor-

tance sampling in wireless networks.

The DyMo system architecture is illustrated in Fig. 5.2. It operates on an indepen-

dent server and exchanges control information with several BSs supporting eMBMS. The

Instruction Control module instructs the different groups to send reports at different rates.

The reports are sent via unicast to the Feedback Collection module and allow the QoS Eval-

uation module to identify an accurate SNR Threshold. The SNR Threshold is determined

such that only a predefined number of UEs with SNR below the threshold, termed as out-

liers, may suffer from poor service. The MCS Control module utilizes the SNR Threshold

to configure the eMBMS parameters (e.g., MCS) accordingly. Finally, the QoS Evaluation

4A higher probability results in a higher reporting rate, and therefore, we will use rate and probability

interchangeably.
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Figure 5.3: Operation of DyMo for a sample UE QoS distribution: UEs are partitioned into two

groups based on their SNR and each group is instructed to send QoS reports at a different rate. The

partitioning is dynamically adjusted based on the reports to yield more reports from UEs whose

SNR is around the estimated SNR Threshold.

module continually refines group partitions based on the reports.

We focus on the QoS Evaluation module and develop a Two-step estimation algorithm

which can efficiently identify the SNR Threshold as a one time estimation. We also develop

an Iterative estimation algorithm for estimating the SNR Threshold iteratively, when the

distribution changes due to UE mobility or environmental changes, such as network com-

ponent failures. Our analysis shows that the Two-step estimation and Iterative estimation

algorithms can infer the SNR Threshold with a small error and limited number of QoS

reports. It is also shown that they outperform the Order-Statistics estimation method, a

well-known statistical method, which relies on sampling UEs with a fixed probability. For

instance, the Two-step estimation requires only 400 reports when estimating the 1th per-

centile to limit the error to 0.3% for each re-estimation. The Iterative estimation algorithm

performs even better than the Two-step estimation and the maximum estimation error can

be bounded according to the maximum change of SNR Threshold.

We conduct extensive at-scale simulations, based on real eMBMS radio survey measure-

ments from a stadium and an urban area. It is shown that DyMo accurately infers the SNR

Threshold and optimizes the eMBMS parameters with low overhead under different mobil-

ity patterns and even in the event of component failures. DyMo significantly outperforms

alternative schemes based on the Order-Statistics estimation method which rely on random

or periodic sampling.

Our simulations show that both in a stadium-like and urban area, DyMo detects the
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eMBMS SNR value of the 0.1% percentile with Root Mean Square Error (RMSE) of 0.05%

with only 5 messages per second in total across the whole network. This is at least 8 times

better than Order-Statistics estimation based methods. DyMo also infers the optimal SNR

Threshold with RMSE of 0.3 dB regardless of the UE population size, while the error of the

best Order-Statistics estimation method is above 1 dB. DyMo violates the outlier bound (of

0.1%) with RMSE of at most 0.35 while the best Order-Statistics estimation method incurs

RMSE of over 4 times as compared to DyMo. The simulations also show that after a failure,

DyMo converges instantly (i.e., in a single reporting interval) to the optimal SNR Threshold.

Thus, DyMo is able to infer the maximum MCS while preserving QoS constraints.

To summarize, the main contributions of this chapter are three-fold:

(i) We present the concept of Stochastic Group Instructions for efficient realization of im-

portance sampling in wireless networks.

(ii) We present the system architecture of DyMo and efficient algorithms for SNR Threshold

estimation.

(iii) We show via extensive simulations that DyMo performs well in diverse scenarios.

The principal benefit of DyMo is its ability to infer the system performance based on a low

number of QoS reports. It converges very fast to the optimal eMBMS configuration and

it reacts very fast to changes in the environment. Hence, it eliminates the need for service

planning and extensive field trials. Further, DyMo is compatible with existing LTE-eMBMS

deployments and does not need any knowledge of the UE population.

The description and evaluation of the DyMo system appeared in IEEE INFOCOM’17 [54].

An extended version with additional results and proofs that could not be included in the

conference version was fast-tracked to IEEE/ACM Transactions on Networking and the

technical report can be found in [55]. The design and evaluation of DyMo was based on

significant contributions from co-authors at Bell Labs especially, Yigal Bejerano, Chandru

Raman, and Chun-Nam Yu.

The rest of the chapter is organized as follows. We provide background information

about eMBMS and a brief review of related work in Section 5.2. We introduce the model

and objective in Section 5.3. We present the DyMo system in Section 5.4. The algorithms
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for SNR threshold estimation with their analysis are given in Section 5.5. The numerical

evaluation results appear in Section 5.6 while some details of our analysis are given in the

Appendix.

5.2 Related Work

5.2.1 eMBMS Background

LTE-Advanced networks provide broadcast services by using evolved Multimedia Broad-

cast/Multicast Service (eMBMS) [135]. eMBMS is best suited to simultaneously deliver

common content like video distribution to a large number of users within a contiguous

region of cells. eMBMS video distribution is offered as an unidirectional service without

feedback from the UE nor retransmissions of lost packets. This is enabled by all cells acting

in a coordinated Single Frequency Network (SFN) arrangement, i.e., transmitting identical

signals in a time synchronized manner, called Multicast Broadcast Single Frequency Net-

work (MBSFN). The identical signals combine over the air in a non-coherent manner at

each of the user locations, resulting in an improved Signal-Noise Ratio (SINR). Thus, what

is normally out-of-cell interference in unicast becomes useful signal in eMBMS. For avoiding

further interference from cells not transmitting the same MBSFN signal, the BSs near the

boundary of the MBSFN area are used as a protection tier and they should not include

eMBMS receivers in their coverage areas.

5.2.2 Related Work

Most previous work on eMBMS (e.g., [68, 154, 193, 226]) assumes individual feedback from

all the UEs and proposes various MCS selection or resource allocation techniques. Yet,

extensive QoS reports impose significant overhead on LTE networks, which are already

highly congested in crowded venues [87]. An efficient feedback scheme was proposed in [64]

but it relies on knowledge of path loss (or block error) of the entire UE population to form

the set of feedback nodes.
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Table 5.1: Notation for DyMo model.

Symbol Semantics

m The number of UEs in the venue, also the

number of active eMBMS receiver in static settings.

m(t) The number of active eMBMS receivers at time t.

hv(t) The individual SNR value of UE v

at time interval t.

s(t) The SNR Threshold at time t.

p QoS Threshold - The maximal portion of UEs

with individual SNR value hv(t) < s(t).

r Overhead Threshold - An upper bound on the

average number of reports in a reporting interval.

Recently, [220] proposed a multicast-based anonymous query scheme for inferring the

maximum MCS that satisfies all UEs without sending individual queries. However, the

scheme cannot be implemented in current LTE networks, since it will require UEs to trans-

mit simultaneous beacon messages in response to broadcast queries.

Most of the wireless multicast schemes are designed for WiFi networks and a comprehen-

sive survey of WiFi multicast feedback approaches was described in Chapter 2.2. However,

WiFi multicast solutions cannot easily be applied to LTE-eMBMS systems. First, in WiFi,

each node is associated with an Access Point, and therefore, the Access Point is aware of

every node and can specify the feedback nodes. In LTE, eMBMS UEs could be in the idle

state and the network may not be aware of the number of active UEs. Second, eMBMS is

based on simultaneous transmission from various BSs. Thus, unlike in WiFi where MCS

adaptation is done at each Access Point independently, a common MCS adaptation should

be done at all BSs.
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5.3 Model and Objective

5.3.1 Network Model

We consider an LTE-Advanced network with multiple base stations (BSs) providing eMBMS

service to a very large group of m UEs in a given large venue (e.g., sports arena, transporta-

tion hub).5 Such venues can accommodate tens of thousands of users. The eMBMS service

is managed by a single DyMo server as shown in Fig. 5.2 and all the BSs transmit identical

multicast signals in a time synchronized manner. The multicast flows contain FEC code

that allows the UEs to tolerate some level of losses ` (e.g., up to 5% packet losses).

All UEs can detect and report the eMBMS QoS they experience. More specifically, time

is divided into short reporting intervals, a few seconds each. We assume that the eMBMS

SNR distribution of the UEs does not change during each reporting interval.6 We define

the individual SNR value hv(t), such that at least a given percentage 1−` (e.g., 95%) of the

eMBMS packets received by an UE v during a reporting interval t have an SNR above hv(t).

For a given SNR value, hv(t), there is a one-to-one mapping to an eMBMS MCS such that

a UE can decode all the packets whose SNR is above hv(t) [68,154]. The remaining packets

` can be recovered by appropriate level of FEC assuming ` is not too large. A summary of

the main notations used throughout the chapter are given in Table 5.1.

5.3.2 Objective

We aim to design a scalable efficient eMBMS monitoring and control system for which the

objective is outlined below and that satisfies the following constraints:

(i) QoS Constraint – Given a QoS Threshold p� 1, at most a fraction p of the UEs may

suffer from packet loss of more than `. This implies that, with FEC, a fraction 1− p

5In this chapter, we consider only the UEs subscribing to eMBMS services.

6The SNR of each individual eMBMS packet is a random variable selected from the UE SNR distribution.

We assume that this distribution does not change significantly during the reporting interval.
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of the UEs should receive all of the transmitted data. We refer to the set UEs that

suffer from packet loss after FEC as outliers and the rest are termed normal UEs.

(ii) Overhead Constraint – The average number of UE reports during a reporting interval

should be below a given Overhead Threshold r.

Objective: Accurately identify at any given time t the maximum SNR Threshold, s(t) that

satisfies the QoS and Overhead Constraints.

Namely, the calculated s(t) needs to ensure that a fraction 1− p of the UEs have individual

SNR values hv(t) ≥ s(t).

The network performance can be maximized by using s(t) to calculate the maximum

eMBMS MCS that meets the QoS constraint [68, 154]. This allows reducing the resource

blocks allocated to eMBMS. Alternatively for a service such as video, the video quality can

be enhanced without increasing the bandwidth allocated to the video flow.

5.4 The DyMo System

This section introduces the DyMo system. It first presents the DyMo system architecture,

which is based on the Stochastic Group Instructions concept. Then, it provides an illustra-

tive example of DyMo operations along with some technical aspects of eMBMS parameter

tuning.

5.4.1 System Overview

We now present the DyMo system architecture, shown in Fig. 5.2.

Feedback Collection: This module operates in the DyMo server and in a DyMo Mobile-

Application on each UE. At the beginning of each reporting interval, the Feedback Collection

module broadcasts Stochastic Group Instructions to all the UEs. These instructions specify

the QoS report probability as a function of the observed QoS (i.e., eMBMS SNR). In

response, each UE independently determines whether it should send a QoS report at the

current reporting interval.
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Table 5.2: Example of the DyMo feedback report overhead.

Group

No.

of UEs

Report

Prob.

Avg. reports

per interval

Avg.

per sec

Rate

per min

H 250 20% 50 5 ≈ 100%

L 2250 2% 45 ≈ 5 ≈ 12%

QoS Evaluation: The UE feedback is used to estimate the eMBMS SNR distribution,

as shown in Fig. 5.3. Since the system needs to determine the SNR Threshold, s(t), the

estimation of the low SNR range of the distribution has to be more accurate. To achieve

this goal, the QoS Evaluation module partitions the UEs into two or more groups, according

to their QoS values. This allows DyMo to accurately infer the optimal value of s(t), by

obtaining more reports from UEs with low SNR. We elaborate on the algorithms for s(t)

estimation in Section 5.5.

MCS Control: Since the eMBMS signal is a combination of synchronized multicast trans-

missions from several BSs, the unicast SNR can be used as a lower bound on the eMBMS

SNR. Therefore, the initial eMBMS MCS and FEC are determined from unicast SNR val-

ues reported by the UEs during unicast connections. Then, after each reporting interval,

the QoS Evaluation module infers the SNR Threshold, s(t), and the MCS Control module

determines the desired eMBMS settings, mainly the eMBMS MCS and FEC, according to

commonly used one-to-one mappings [68,154].

5.4.2 Illustrative Example

DyMo operations and the Stochastic Group Instructions concept are demonstrated in the

following example. Consider an eMBMS system that serves 2, 500 UEs with the QoS Con-

straint that at most p = 1% = 25 UEs may suffer from poor service. Assume a reporting

interval of 10 seconds. To infer the SNR Threshold, s(t), that satisfies the constraint, the

UEs are divided into two groups:

• High-Reporting-Rate (H): 10% (250) of UEs that experience poor or moderate service

quality report with probability of 20%, i.e., an expected number of 50 reports per interval.
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• Low-Reporting-Rate (L): 90% (2250) of the UEs that experience good or excellent service

quality report with probability of 2%, implying about 45 reports per interval.

Table 5.2 presents the reporting probability of each UE and the number of QoS reports

per reporting interval by each group. It also shows the number of QoS reports per second

and the reporting rate per minute (i.e., the expected fraction of UEs that send QoS reports

in a minute). Since the QoS Constraint implies that only 25 UEs may suffer from poor

service, these UEs must belong to group H. Although only 10 QoS reports are received at

each second, all the UEs in group H send QoS reports at least once a minute. Thus, the

SNR Threshold can be accurately detected within one minute.

5.4.3 Dynamic eMBMS Parameter Tuning

Besides the MCS, DyMo can leverage the UE feedback and the calculated SNR Threshold,

s(t), for optimizing other eMBMS parameters including FEC, video coding and protection

tier. While this aspect is not the focus of this study, we briefly discuss the challenges and

the solutions for dynamic tuning of the eMBMS parameters.

Once the SNR Threshold s(t) is selected, DyMo tunes the eMBMS parameters accord-

ingly. Every time DyMo changes the eMBMS parameters, the consumption of wireless

resources for the service is affected as well. For instance, when the eMBMS MCS index

is increased, some of the wireless resources allocated for eMBMS are not needed and can

be released. Alternatively, the service provider may prefer to improve the video quality by

instructing the content server to increase the video resolution. Similarly, before the eMBMS

MCS index is lowered, the wireless resources should be increased or the video resolution

should be reduced to match the content bandwidth requirements to the available wireless

resources.

Since the eMBMS signal is a soft combination of the signals from all BSs in the venue, any

change of eMBMS parameters must be synchronized at all the BSs to avoid interruption

of service. The fact that all the clocks of the BSs are synchronized can be used and a

scheme similar to the two phase commit protocol (which is commonly used in distributed

databases [191]) can be used.
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5.5 Algorithms for SNR Threshold Estimation

This section describes the algorithms utilized by DyMo for estimating the SNR Threshold,

s(t), for a given QoS Constraint, p and Overhead Constraint r. In particular, it addresses

the challenges of partitioning the UEs into groups according to their SNR distribution as

well as determining the group boundaries and the reporting rate from the UEs in each

group, such that the overall estimation error of s(t) is minimized. We first consider a static

setting with fixed number of eMBMS receivers, m, where the SNR values of UEs are fixed.

Then, we extend our solution to the case of dynamic environments and UE mobility.

5.5.1 Order Statistics

We first briefly review a known statistical method in quantile estimation, referred to as

Order-Statistics estimation. It provides a baseline for estimating s(t) and is also used by

DyMo for determining the initial SNR distribution in its first iteration assuming a single

group. Let F (x) be a Cumulative Distribution Function (CDF) for a random variable X,

the quantile function F−1(p) is given by, inf{x | F (x) ≥ p}.

Let X1, X2, . . . , Xr be a sample from the distribution F , and Fr its empirical distribution

function. It is well known that the empirical quantile F−1
r (p) converges to the population

quantile F−1(p) at all points p where F−1 is continuous [205]. Moreover, the true quantile,

p̂ = F (F−1
r (p)), of the empirical quantile estimate F−1

r (p) is asymptotically normal [205]

with mean p and variance

Var[p̂] =
p(1− p)

r
(5.1)

For SNR Threshold estimation, F is the SNR distribution of all UEs. A direct way to

estimate the SNR Threshold s(t) is to collect QoS reports from r randomly selected UEs,

and calculate the empirical quantile F−1
r (p) as an estimate.7

7Note that F can have at most m points of discontinuity. Therefore, we assume p is a point of continuity

for F−1 to enable normal approximation. If the assumption does not hold, we can always perturb p by an
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5.5.2 The Two-Step Estimation Algorithm

We now present the Two-step estimation algorithm that uses two groups for estimating the

SNR Threshold, s(t), in a static setting. We assume a fixed number of UEs, m, and a bound

r on the number of expected reports. By leveraging Stochastic Group Instructions, DyMo

is not restricted to collecting reports uniformly from all UEs and can use these instructions

to improve the accuracy of s(t). One way to realize this idea is to perform a two-step

estimation that approximates the shape of the SNR distribution before focusing on the low

quantile tail. The Two-step estimation algorithm works as follows:

Algorithm 1: Two-Step Estimation for the Static Case

1. Select p1 and p2 such that p1p2 = p. Use p1 as the percentile boundary for defining

the two groups.

2. Select number of reports r1 and r2 for each step such that r1 + r2 = r.

3. Instruct all UEs to send QoS reports with probability r1/m and use these reports to

estimate the p1 quantile x̂1 = F−1
r1 (p1).

4. Instruct UEs with SNR value below x̂1 to send reports with probability r2/(p1 ·m) and

calculate the p2 quantile x̂2 =G−1
r2 (p2) as an estimation for s(t) (G is the CDF of the

subpopulation with SNR below x̂1). (Gr2 is the empirical CDF of the subpopulation

with SNR below x̂1).

Upper Bound Analysis of the Two-Step Algorithm: To simplify the notation, we

use r1 and r2 to denote the expected number of reports at each step. From (5.1) we know

that

p̂1 = F (x̂1) and p̂2 = G(x̂2)

are unbiased estimators of p1 and p2 with variance

Var[p̂1] =
p1(1− p1)

r1
and Var[p̂2] =

p2(1− p2)

r2
(5.2)

infinitesimal amount to make it a point of continuity for F−1.
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Our estimate x̂2 has true quantile p̂1p̂2. Assume p̂1 is less than p1 + ε1 and p̂2 is less than

p2 + ε2 with high probability (for example, we can take ε1 and ε2 to be 3 times the standard

deviation for > 99.8% probability). Then, the over-estimation error is bounded by

ε = (p1 + ε1)(p2 + ε2) − p

= p1p2 + ε1p2 + ε2p1 + ε1ε2 − p

≈ ε1p2 + ε2p1

(5.3)

after ignoring the small higher order term ε1ε2. The case for under-estimation is similar.

As shown in the Appendix, the error is minimized by taking,

p1 =p2 =
√
p and r1 =r2 =r/2

so that

ε1 =ε2 =3
√√

p(1−√p)/(r/2)

This leads to proposition 2.

Proposition 2. The distance between p and the quantile of the Two-Step estimator x̂2,

p̂ = F−1(x2), is bounded by

6
√

2

√
p
√
p(1−√p)
r

with probability at least 1− 2(1− Φ(3)) > 99.6%, where Φ is the normal CDF.

We now compare this result against the bound of 3 standard deviations in the Order

Statistics case, which is 3
√
p(1− p)/r. With some simple calculations, it can be easily

shown that if p ≤ 1/49 ≈ 2%, the Two-step estimation has smaller error than the Order-

Statistics estimation method. Essentially the Order-Statistics estimation method has an

error of order
√
p/
√
r, while the Two-step estimation has an error of order p3/4/

√
r. Since

p� 1, the difference can be significant.

Example: We validated the error estimation of the Two-step estimation algorithm and

the Order-Statistics estimation method by numerical analysis. We considered the cases of

p = 1% and p = 0.1% of uniform distribution on [0, 1] using r=400 samples over population
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size of 106. The Two-step estimation algorithm has smaller standard error compared to the

Order-Statistics estimation, as shown in Fig. 5.4. Its accuracy is significantly better for

very small p.

The Two-step estimation algorithm can be generalized to 3 or more telescoping group

sizes, but p will need to be much smaller for these sampling schemes in order to reduce the

number of samples.

5.5.3 The Iterative Estimation Algorithm

We now turn to the dynamic case in which DyMo uses the SNR Threshold estimation

s(t−1) from the previous reporting interval to estimate s(t) at the end of reporting interval

t. Assume that the total number of eMBMS receivers, m, is fixed and it is known initially.

Suppose that DyMo has a current estimate x̂ of the SNR threshold, s(t), and s(t) changes

over time. We assume that the change in SNR of each UE is bounded over a time period.

Formally,

|hv(t1)− hv(t2)| ≤ L|t1 − t2|

where L is a Lipschitz constant for SNR changes. For example, we can assume that the

UEs’ SNR cannot change by more than 5dB during a reporting interval. 8 This implies

that within the interval, only UEs with SNR below x̂ + 5dB affect the estimation of the p

quantile (subject to small estimation error in x̂).

DyMo only needs to monitor UEs with SNR below xL = x̂+L. Denote the true quantile

of xL, defined by F−1(xL), as pL. To apply a process similar to the second step of the Two-

step estimation algorithm by focusing on UEs with SNR below xL, first an estimate of pL is

required. DyMo uses the previous SNR distribution to estimate pL and instructs the UEs

to send reports at a rate q = r/(pL ·m). Let Y be the number of reports received during

the last reporting interval, then Y/m · q can be used as an updated estimator, p̂L, for pL.

This estimator is unbiased and has variance

Var[p̂L] = Var[
Y

m · q
] =

pL
m

1− q
q

(5.4)

8In our simulations, each reporting interval has a duration of 12s.
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Figure 5.4: Estimates of (a) p = 1% and (b) p = 0.1% quantiles for 500 runs for the Order-Statistics

estimation (1-step) method and the Two-step estimation algorithm.

As a result, the Iterative Estimation algorithm works as follows:

Algorithm 2: Iterative Estimation for the Dynamic Case

1. Instruct UEs with SNR below x̂+L to send reports at a rate q. Construct an estimator

p̂L of pL from the number of received reports Y .

2. Set p′ = p/p̂L. Find the p′ quantile x′ = G−1
Y (p′) and report it as the p quantile of the

whole population (G is the CDF of the subpopulation with SNR below x̂+ L).

Upper Bound Analysis of the Iterative Algorithm: Suppose the estimation error of

pL is bounded by ε1, and the estimation error of p′ = p/p̂L is bounded by ε2 with high

probability. Then, the estimation error is

ε = (
p

p̂L
± ε2)pL − p = (

p

pL ± ε1
± ε2)pL − p.

The over-estimation error is bounded by

p

pL − ε1
ε1 + pLε2. (5.5)

If we assume pL − ε1 ≥ p (we know pL ≥ p by the Lipschitz assumption), then the bound

can be simplified to ε1 + pLε2. The same bound also works for the under-estimation error.

If r denotes also the expected number of samples collected, r = pL ·m · q. The standard

deviation of p̂L can be written as:√
pL
m

1− q
q

=

√
p2
L

r
(1− r

pLm
) ≤ pL√

r
.
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If we assume ε1 = 3pL/
√
r, the error of p̂L is less than ε1 with probability at least Φ(3).

Since we assume pL−ε1≥p above, this implies (1−3/
√
r)pL≥p. If r≥100, then p<0.7pL

will satisfy our requirement.

The standard deviation of estimating the p′ = p/p̂L quantile is√
1

Y

p

p̂L
(1− p

p̂L
) ≤ 1

2
√
Y
, (5.6)

by using the fact that x(1−x) ≤ 1/4 for x ∈ [0, 1] and Y is the number of reports received (a

random variable). If the expected number of reports r is reasonably large (≥ 100, say), then

Y can be well approximated by a normal and Y ≥ 0.7r with high probability Φ(3) = 99.8%.

Then, (5.6) is bounded by 2/(3
√
r) ≥ 1/(2

√
0.7r) with high probability (Φ(3) = 99.8%), and

we can set ε2 = 2/
√
r. Substituting these back into (5.5), gives us the following proposition.

Proposition 3. The distance between p and the quantile of the estimator x, p̂ = F−1(x),

is approximately bounded by

5
pL√
r

with probability at least 1 − 2(1 − Φ(3)) > 99.6%, if the expected sample size r ≥ 100 and

p ≤ 0.7pL.

This shows that the error is of order pL/
√
r. We can see that the estimation error can

be smaller compared to the error of order p3/4/
√
r in the static Two-step estimation if pL is

small (i.e., the SNR of individual users does not change much during a reporting interval).

Exponential Smoothing: DyMo applies exponential smoothing by weighing past and

current reports to smooth the estimates of the SNR Threshold, s(t), and take older reports

into account. It estimates the SNR Threshold as

s(t) = αx̂(t) + (1− α)s(t− 1)

where x̂(t) is the new raw SNR Threshold estimate using the Iterative estimation above and

s(t−1) is the SNR Threshold from the previous reporting interval. We set α = 0.5 to allow

some re-use of past reports without letting them have too strong an effect on the estimates

(e.g., samples older than 7 reporting intervals have less than 1% weight). DyMo also uses
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Figure 5.5: (a) The heatmap of SNR distribution of UEs (b) the evolution of the number of active

UEs over time compared to the number estimated by DyMo for a homogeneous environment.

the exponential smoothing method for estimating the SNR distribution while taking into

account QoS reports from previous reporting intervals.

Dynamic and Unknown Number of eMBMS Receivers: If the total number of UEs,

m(t), is unknown or changes dynamically, DyMo can estimate m(t) by requiring UEs above

the threshold x̂+L to send reports. These UEs can send reports at a lower rate, since m(t)

is not expected to change rapidly. Similar to the Two-step estimation algorithm, DyMo

allocates r1 = r2 = r/2 reports to each group. The errors in estimating the total number of

UEs m(t) will contribute to the error ε1 in the estimation of pL in (5.5). The error analysis

in this case is largely similar.

5.6 Performance Evaluation

5.6.1 Methodology

We perform extensive simulations to evaluate the performance of DyMo with various values

of QoS Constraint, p, Overhead Constraint, r, and number of UEs, m. Our evaluation

considers dynamic environments with UE mobility and a changing number of active eM-

BMS receivers denoted by m(t), dynamically selected from the given set of m UEs in the

considered venue. In this chapter, we present a few sets of simulation results, which capture

various levels of variability of the SNR threshold, s(t), over time.

We consider a variant of DyMo where the number of active UEs is unknown and is
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Figure 5.6: (a) The heatmap of UE SNR distribution in a stadium area of 1000 × 1000m2 and (b)

the evolution of the number of active UEs over time compared to the number estimated by DyMo

for a stadium environment.
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Figure 5.7: The heatmap of the SNR distribution of UEs (a) before a failure and (b) after a failure.

estimated from its measurements. We compare the performance of DyMo to four other

schemes. To demonstrate the advantages of DyMo, we augment each scheme with addi-

tional information, which is hard to obtain in practice. The evaluated benchmarks are the

following:

• Optimal – Full knowledge of SNR values of the UEs at any time and consequently

accurate information of the SNR distribution. This is the best possible benchmark although

impractical, due to its high overhead.

• Uniform – Full knowledge of the SNR characteristics at any location while assuming

uniform UE distribution and static eMBMS settings. In practice, this knowledge cannot be

obtained even with rigorous field trial measurements.

• Order-Statistics – It is based estimation of the SNR Threshold using random sampling.

The active UEs send reports with a fixed probability of r/E[m(t)] per second, assuming

that the expected number of active UEs, E[m(t)], is known. We assume that the UEs are
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configured with this reporting rate during initialization. In practice, E[m(t)] is not available.

We also ignore initial configuration overhead in our evaluation. Order-Statistics is the best

possible approach when not using broadcast messages for UE configuration. We consider two

variants of Order-Statistics. The first is Order-Statistics w.o. History which ignores

SNR measurements from earlier reporting intervals. The second variant Order-Statistics

w. History considers the history of reports.

Both DyMo and Order-Statistics w. History perform the same exponential smoothing

process for assigning weights to the measurements from previous reporting intervals with a

smoothing factor of α = 0.5. We use the following metrics to evaluate the performance of

the schemes:

(i) Accuracy – The accuracy of the SNR Threshold estimation, s(t). After calculating s(t)

at each reporting interval, we check the actual SNR Threshold Percentile in the accu-

rate SNR distribution of the considered scheme. This metric provides the percentile

of active UEs with individual SNR values below s(t).

(ii) QoS Constraint violation – The number of outliers above the QoS Constraint p. The

number of outliers of a scheme in a given reporting interval t is defined as the actual

SNR Threshold Percentile of the scheme times the number of active eMBMS receivers,

m(t), at time t.

(iii) Overhead Constraint violation – The number of reports above the Overhead Thresh-

old, r, at each reporting interval.

The total simulation time for each instance is 30mins with 5 reporting intervals per

minute (each is 12s). During each reporting interval, an active UE may send its SNR value

at most once. The accuracy of each SNR report is 0.1dB.

5.6.2 Simulated Environments

We simulated a variety of environments with different SNR distributions and UE mobility

patterns. Although the simulated environments are artificial, their SNR distributions mimic
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those of real eMBMS networks obtained through field trial measurements. To capture the

SNR characteristics of an environment, we divide its geographical area into rectangles of

10m × 10m. For each reporting interval, each UE draws its individual SNR value, hv(t),

from a Gaussian-like distribution which is a characteristic of the rectangle in which its

located. The rectangles have different mean SNR, but the same standard deviation of

roughly 5dB (as observed in real measurements). Thus, the SNR characteristics of each

environment are determined by the mean SNR values of the rectangles at any reporting

interval. To demonstrate the performance of the different schemes, we discuss three types

of environments.

• Homogeneous: In the homogeneous9 setting the mean SNR value of each rectangle is

fixed and it is uniformly selected in the range of 5− 25dB. Fig. 5.5(a) provides an example

of the mean SNR values of such a venue as well as typical UE location distribution. In

such instances, we assume random mobility pattern, in which each UE moves back and

forth between two uniformly selected points. During the simulation, 50% of the UEs are

always active, while the other 50% join and leave at some random time, as illustrated by

Fig. 5.5(b). As we show later in such setting s(t) barely change over time.

• Stadiums: In a stadium, the eMBMS service quality is typically significantly better

inside the stadium than in the surrounding vicinity (e.g., the parking lots). To capture this,

we simulate several stadium-like environments, in which the stadium, in the center of the

venue, has high eMBMS SNR with mean values in the range of 15 − 25dB. On the other

hand, the vicinity has significantly lower SNR with means values of 5− 10dB. An example

of a stadium is shown in Fig. 5.6(a).

We assume a mobility pattern in which, the UEs move from the edges to the inside of

the stadium in 12mins, stay there for 3mins, and then go back to the edges.10 As shown

in Fig. 5.6(b), as the UEs move toward the center, the number of active UEs gradually

9We use the term homogeneous since the term uniform is already used to denote the Uniform scheme.

10While significant effort has been dedicated to modeling mobility (e.g., [175,186] and references therein),

we use a simplistic mobility model since our focus is on the multicast aspects rather than the specific mobility

patterns.
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Figure 5.8: Simulation results from a single simulation instance lasting for 30mins in a component

homogeneous environment with 20, 000 UEs moving side to side between two random points, with

p = 0.1 and r = 5 messages/sec. (a) The actual percentile of the SNR Threshold estimated by

DyMo, (b) the actual percentile of the SNR Threshold estimated by Order-Statistics, (c) the SNR

Threshold estimation, (d) spectral Efficiency of Optimal vs. DyMo, (e) spectral Efficiency of Optimal

vs. Order-Statistics, (f) the number of Outliers by using DyMo, (g) the number of outliers by using

Uniform and Order-Statistics, and (h) the QoS report overhead.

increases from 10% of the UEs to 100%, and then declines again as they move away.

• Failures: Such an environment is similar to the homogeneous setting with a sudden

event of a component failure. In the case of a malfunctioning component, the QoS in some

parts of a venue can degrade significantly. To simulate failures, we consider cases in which

the eMBMS SNR is high with a mean between 15− 25dB. During the simulation, (around

the 10th minute), we mimic a failure by reducing the mean SNR values of some of the

rectangles by over 10dB to the range of 5 − 10dB. The mean SNR values are restored to

their original values after a few minutes. Figs. 5.7(a) and 5.7(b) provide an example of the

mean SNR values of such a venue before and after a failure, respectively. We assume the

same mobility pattern like the homogeneous setting, as shown by Fig. 5.5(b).
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Figure 5.9: Simulation results from a single simulation instance lasting for 30mins in a stadium

environment with 20, 000 UEs moving from the edges to the center and back, with p = 0.1 and r = 5

messages/sec. (a) The actual percentile of the SNR Threshold estimated by DyMo, (b) the actual

percentile of the SNR Threshold estimated by Order-Statistics, (c) the SNR Threshold estimation,

(d) spectral efficiency of Optimal vs. DyMo, (e) spectral efficiency of Optimal vs. Order-Statistics,

(f) the number of Outliers by using DyMo, (g) the number of Outliers by using Uniform and Order-

Statistics, and (h) the QoS report overhead.

5.6.3 Performance over time

We first illustrate the performance of the different schemes over time for three given in-

stances, a homogeneous, a stadium and a failure scenarios, with m = 20, 000 UEs, QoS

Constraint p = 0.1%, and Overhead constraint r = 5 reports/sec, i.e., 60 messages per

reporting interval. The number of permitted outliers depends on the number of active UEs

at the current reporting interval. In the three considered scenarios, it can be at most 20 at

any given time. The key difference between the different instances is the rate at which the

SNR Threshold changes. In the homogeneous environment the SNR Threshold is almost

fixed with very limited variability. In the case of the stadium, the SNR Threshold gradually
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Figure 5.10: Simulation results from a single simulation instance lasting for 30mins in a component

failure environment with 20, 000 UEs moving side to side between two random points, with p = 0.1

and r = 5 messages/sec. (a) The actual percentile of the SNR Threshold estimated by DyMo, (b)

the actual percentile of the SNR Threshold estimated by Order-Statistics, (c) the SNR Threshold

estimation, (d) spectral Efficiency of Optimal vs. DyMo, (e) spectral Efficiency of Optimal vs.

Order-Statistics, (f) the number of Outliers by using DyMo, (g) the number of outliers by using

Uniform and Order-Statistics, and (h) the QoS report overhead.

changes as the UEs change their locations. In the failure scenario, the SNR Threshold is

roughly fixed but it drops instantly by 10dBs for the duration of the failure.

The results of the homogeneous, stadium and failure cases are shown in Figs. 5.8, 5.9 and 5.10,

respectively. Figs. 5.8(a), 5.8(b), 5.9(a), 5.9(b), 5.10(a), and 5.10(b) show the actual SNR

Threshold percentile over time. From Figs. 5.8(a), 5.9(a) and 5.10(a), we observe that

DyMo can accurately infer the SNR Threshold with an estimation error of at most 0.1%.

Fig. 5.10(a) shows slightly higher error of 0.25% at the time of the failure (at the 7th

minute). The Order-Statistics variants suffer from much higher estimation error to the

order of a few percentage points, as shown by Figs. 5.9(b), 5.9(b) and 5.9(b)11. This

11Notice that the pairs (i) Figs. 5.8(a) and 5.8(b), (ii) Figs. 5.9(a) and 5.9(b) as well as (iii)
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Figure 5.11: The Root Mean Square Error (RMSE) of different parameters averaged over 5 different

simulation instances lasting for 30mins each in homogeneous scenario with different SNR character-

istics and UE mobility patterns. (a) SNR Threshold percentile RMSE vs. the total number of UEs

in the system, (b) SNR Threshold percentile RMSE vs. the QoS Constraint p, (c) SNR Threshold

percentile RMSE vs. the number of permitted reports , (d) Overhead RMSE vs. the number of

UEs, (e) Overhead RMSE vs. the QoS constraint p, and (f) Overhead RMSE vs. the number of

permitted reports.

performance gap results in different estimation accuracy of the SNR Threshold for DyMo

and Order-Statistics schemes as illustrated in Figs. 5.8(c), 5.9(c) and 5.10(c), respectively.

These figures show that the performance of DyMo and Optimal is almost identical. Even in

the event of a failure, DyMo reacts immediately and detects the SNR Threshold accurately.

The Order-Statistics variants react quickly to a failure but not as accurately as DyMo. Af-

ter the recovery, both DyMo and Order-Statistics w. History gradually increase their SNR

Threshold estimates, due to the exponential smoothing process.

The SNR Threshold estimation gap directly impacts the number of outliers as well as

Figs. 5.10(a) and 5.10(b) use different scales for the Y axes.
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Figure 5.12: The Root Mean Square Error (RMSE) of different parameters averaged over 5 different

simulation instances lasting for 30mins each in a stadium environment with different SNR character-

istics and UE mobility patterns. (a) SNR Threshold percentile RMSE vs. the total number of UEs

in the system, (b) SNR Threshold percentile RMSE vs. the QoS Constraint p, (c) SNR Threshold

percentile RMSE vs. the number of permitted reports, (d) Overhead RMSE vs. the number of UEs,

(e) Overhead RMSE vs. the QoS constraint p, and (f) Overhead RMSE vs. the number of permitted

reports.

the network utilization, i.e., the spectral efficiency. Figs. 5.8(d) and 5.8(e) show the number

of outliers of DyMo and Order-Statistics variants for the homogeneous environment, respec-

tively12, while Figs. 5.8(f) and 5.8(g) show the spectral efficiency of the schemes. Figs. 5.8(d)

and 5.8(f) reveal that after a short adaptation phase DyMo converges to the optimal per-

formance, i.e., spectral efficiency, while preserving the QoS constraint. Fig. 5.8(f) show

that both Optimal and DyMo fluctuate between two spectral efficiency levels, 0.29 and 0.36

bit/sec/Hz, which results from oscillatation between two MCS levels 3 and 4. Such oscilla-

12Notice that the figure pairs, (i) Figs. 5.8(d) and 5.8(e), (ii) Figs. 5.9(d) and 5.9(e) as well as (iii)

Figs. 5.10(d) and 5.10(e), use different scales for the Y axes.
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Figure 5.13: The Root Mean Square Error (RMSE) of different parameters averaged over 5 different

simulation instances lasting for 30mins each in failure scenario with different SNR characteristics

and UE mobility patterns. (a) SNR Threshold percentile RMSE vs. the total number of UEs in

the system, (b) SNR Threshold percentile RMSE vs. the QoS Constraint p, (c) SNR Threshold

percentile RMSE vs. the number of permitted reports , (d) Overhead RMSE vs. the number of

UEs, (e) Overhead RMSE vs. the QoS constraint p, and (f) Overhead RMSE vs. the number of

permitted reports.

tions can be easily suppressed by enforcing some delay between MCS increase operations.

The Order-Statistics variants over estimate the SNR threshold and suffer from higher num-

ber of outliers, as shown by Fig. 5.8(e). The homogeneous setting represents quasi-static

environments with minor variation of the SNR threshold, s(t). In such settings, the Uni-

form scheme provides a good estimation13 of s(t) and its number of outliers as well as the

obtained spectral efficiency are comparable to DyMo. However, this is not the situation

when s(t) is time varying.

The number of outliers of DyMo and Order-Statistics variants for the stadium envi-

13Assuming rigorous field trial measurements.
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ronment is shown in Figs. 5.9(d) and 5.9(e), respectively, while Figs. 5.10(d) and 5.10(e)

illustrate the number of outliers of DyMo and Order-Statistics variants for the failure sce-

nario, in this order. These figures show that the number of outliers that results from the

Order-Statistics w. History and Order-Statistics w.o. History variants are occasionally over

200 and 800, respectively. Whereas, DyMo ensures that the number of outliers at any time

is comparable to Optimal and in the worst case it exceeds the permitted number by less

than a factor of 2.

Figs. 5.9(f) and 5.9(g) show the spectral efficiency for the stadium environment, whereas

Figs. 5.10(f) and 5.10(g) show the spectral efficiency for the component failure case. The

spectral efficiency for each case is correlated to the SNR Threshold. For the stadium en-

vironment, DyMo has spectral efficiency close to Optimal while Uniform has the lowest

spectral efficiency. In the event of a failure, the spectral efficiency of DyMo follows the

Optimal as expected from the SNR Threshold estimations. Since Order-Statistics variants

typically over estimate the SNR Threshold, they frequently determine MCS and conse-

quently spectral efficiency that exceed the optimal settings. Such inaccuracy leads to a

high number of outliers.

Figs. 5.8(h), 5.9(h) and 5.10(h) indicate only mild violation of the Overhead Constraint

by both the DyMo and Order-Statistics variants. We observe that accurate SNR Threshold

estimation allows DyMo to achieve near optimal spectral efficiency with negligible viola-

tion of the QoS Constraint. The other schemes suffer from sub-optimal spectral efficiency,

excessive number of outliers, or both. Given that the permitted number of outliers is at

most 20, the Order-Statistics w. History and Order-Statistics w.o. History schemes exceed

this value sometimes by a factor of 10 and 40, respectively. Among these two alternatives,

Order-Statistics w. History leads to lower number of outliers. While Uniform provides ac-

curate estimation of s(t) for the homogeneous environment, we observe that it yields a very

conservative eMBMS MCS setting in the stadium example, which causes low network uti-

lization. In the failure scenario, the conservative eMBMS MCS of Uniform is not sufficient

to cope with the low SNR Threshold and it leads to excessive number of outliers.
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5.6.4 Impact of Various Parameters

We now turn to evaluate the quality of the SNR Threshold estimation and the schemes

ability to preserve the QoS and Overhead Constraints under various settings. We use the

same configuration of m = 20, 000 UEs, p = 0.1% and r = 5 reports/sec and we evaluate the

impact of changing the values of one of the parameters. The results for the homogeneous,

stadium and failure scenarios are shown in Figs. 5.11, 5.12 and 5.13, respectively. Each

point in the figures is the average of 5 different simulation instances of 30mins each with

different SNR characteristics and UE mobility patterns. The error bars are small and not

shown. In these examples, we compare DyMo only with Optimal and Order-Statistics w.

History which is the best performing alternative. We omit the Uniform scheme since it

does not adapt to variation of s(t).

First, we consider the impact of changing these parameters on the accuracy of the

SNR Threshold estimation. Figs. 5.11(a), 5.12(a), and 5.13(a) show the Root Mean Square

Error (RMSE) in SNR Threshold percentile estimation vs. m, for homogeneous, stadium

and failure scenarios, respectively. The non-zero values of RMSE in Optimal are due to

quantization of SNR reports. The RMSE in the SNR Threshold estimation of DyMo is

close to that of Optimal regardless of the number of UEs, while Order-Statistics w. History

suffers from order of magnitude higher RMSE.

Figs. 5.11(b), 5.12(b), and 5.13(b) show the RMSE in SNR Threshold estimation as

the QoS Constraint p changes, for homogeneous, stadium and failure scenarios. DyMo

outperforms the alternative schemes as p increases. As p increases, we observe an increasing

quantization error, which impacts the RMSE of all the schemes including the Optimal .

Recall that the SNR distribution is represented by a histogram where each bar has a width

of 0.1dB. As p increases, the number UEs in the bar that contains the p percentile UE

increases as well. Since s(t) should be below the SNR value of this bar, we notice a higher

quantization error.

Figs. 5.11(c), 5.12(c), and 5.13(c) illustrate the SNR Threshold percentile RMSE as the

Overhead Constraint is relaxed, for homogeneous, stadium and failure cases, respectively.
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The SNR Threshold percentile RMSE of DyMo is 0.05% even with Overhead Constraint

of 5 reports/sec, while Optimal RMSE due to quantization is 0.025%. DyMo error slightly

reduces by relaxing the Overhead Constraint (Optimal error stays 0.25%). Even with 10

times higher reporting rate, DyMo significantly outperforms the Order-Statistics alterna-

tives. The RMSE in SNR Threshold percentile for Order-Statistics is in the order of the

required average value of 0.1 even with a permitted overhead of 50 reports/sec, i.e,. 3000

reports per reporting interval. This is a very high overhead on the unicast traffic, since

in LTE networks the number of simultaneously open unicast connections is limited, i.e.,

several hundreds per base station and each connection lasts several hundred msecs even for

sending a short update. Unlike the downlink, uplink resources are not reserved for eMBMS

systems and utilize the unicast resources. The RMSE of number of outliers is qualitatively

similar to the SNR Threshold percentile results.

We also compute the overhead RMSE for different UE population sizes, m, QoS Con-

straint p, and Overhead Constraints r. The results are shown is sub-figures (d), (e) and (f)

of Figs. 5.11, 5.12 and 5.13, respectively. In most cases, the overhead RMSE of DyMo is

between 1 − 4 reports even when the system parameters change. We observe an increase

in the overhead RMSE only in failure scenarios when the permitted overhead is relaxed, as

shown in Fig. 5.13(f). This is expected immediately after a failure because many more UEs

suffer from poor service than DyMo estimated. Thus, as the permitted overhead increases

also the spike in the number of reports during the first reporting interval after the failure

also increases, which results in a gradual increase of the Overhead RMSE14.

Figs. 5.11 and 5.13 show that the Order-Statistics variants experience very low violation

of the Overhead Constraint in the homogeneous and Failure scenarios. This is not surprising,

since in these scenarios the variation in the number of active eMBMS receivers is very small

and this number is roughly E[m(t)] (the expected number of active eMBMS receivers). As

mentioned in Section 5.6.1, this observation is misleading, since we assume that E[m(t)]

is known and we ignore the overhead of configuring the UEs with the proper reporting

14Notice that the RMSE metric is sensitive to sporadic but very high error.
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rate. Obviously, the exact number of active receivers, E[m(t)], is unknown in practice.

Furthermore, Fig. 5.12(f) shows that in scenarios with high variation in the number of active

receivers, m(t), (like the case in the stadium simulations) the violation of the Overhead

Constraint is high and it is amplified as the permitted number of reports, r, increases.

This is due to the static reporting rate of Order-Statistics despite dynamic changes of the

number of active eMBMS receivers. Fig. 5.12(f) confirms that the overhead violation of

Order-Statistics is very sensitive to the estimation of E[m(t)] and its variance.

Given that the number of active eMBMS receivers, m(t), is unknown and may change

significantly over time, Order-Statistics cannot practically preserve the Overhead Constraint

without keeping track of the active UEs and sending individual messages to a subset of the

active UEs. However, keeping track of m(t) requires each UE to report when it starts and

stops receiving eMBMS services, which may incur much higher overhead than permitted.

For instance, in our simulations with m = 20, 000 UEs, even if such switching occurs at most

once (start and stop) by each UE, the total number of reports is 40, 000. When dividing this

number by the simulation duration of 30 minutes (1, 800 sec) we get 22 messages/second,

which is much higher than the permitted overhead.

Summary: Our simulations show that DyMo achieves accurate, close to optimal, estima-

tion of the SNR Threshold even when the number of active eMBMS receivers is unknown. It

can improve the spectral efficiency for eMBMS operation, while adding a very low reporting

overhead. DyMo can predict the SNR Threshold with lower errors than other alternatives

under a wide range of the SNR Threshold requirement p and reporting Overhead Con-

straint r. These observations show that DyMo exceeds the expectations of our analysis in

Section 5.5.

5.7 Conclusion

This chapter presents a Dynamic Monitoring (DyMo) system for large scale monitoring of

eMBMS services, based on the concept of Stochastic Group Instructions. Our extensive

simulations show that DyMo achieves accurate, close to optimal, estimation of the SNR
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Threshold even when the number of active UEs is unknown. It can improve the spectral

efficiency for eMBMS operation while adding a low reporting overhead.

5..1 Analysis of the Two-Step Estimation Algorithm

We now extend the analysis of the Two-step estimation algorithm given in Section 5.5.2.

We show that the optimal settings for minimizing the error ε of Equation (5.3) is obtained

by taking

p1 =p2 =
√
p and r1 =r2 =r/2

Notice that the settings should satisfy the following two constraints:

p = p1 · p2 (5.7)

and

r = r1 + r2 (5.8)

From Equation (5.2) and by taking 3 times the standard deviation, we get that the errors

ε1 and ε2 are

ε1 = 3

√
p1(1− p1)

r1
and ε2 = 3

√
p2(1− p2)

r2

By combining with Equation (5.3), we get

ε = 3

√
p1(1− p1)

r1
p2 + 3

√
p2(1− p2)

r2
p1 (5.9)

By using the two constraints (5.7) and (5.8), we assign p2 = p/p1 and r2 = r − r1. Conse-

quently,

ε = 3

√
p1(1− p1)

r1

p

p1
+ 3

√
(p/p1)(1− p/p1)

r − r1
p1

= 3 p

[√(
1

p1
− 1

)
1

r1
+

√(
p1

p
− 1

)
1

r − r1

] (5.10)
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By taking the partial derivative ∂ε
∂p1

we get,

∂ε

∂p1
= 3 p

−(2 p2
1

√(
1

p1
− 1

)
1

r1

)−1

+

(
2 p

√(
p1

p
− 1

)
1

r − r1

)−1
 (5.11)

For minimizing the error we calculate ∂ε
∂p1

= 0 and get that

p2
1

√(
1

p1
− 1

)
1

r1
= p

√(
p1

p
− 1

)
1

r − r1
(5.12)

By simple mathematical manipulations we get

p4
1

(
1

p1
− 1

)
(r − r1) = p2

(
p1

p
− 1

)
r1 (5.13)

Similarly, from the partial derivative ∂ε
∂r1

we get

∂ε

∂r1
= 3 p

[√(
1

p1
− 1

)
−1

2 r
3/2
1

+

√(
p1

p
− 1

)
1

2 (r − r1)3/2

]
(5.14)

For minimizing the error we calculate ∂ε
∂r1

= 0 and get that√(
1

p1
− 1

)
1

2 r
3/2
1

=

√(
p1

p
− 1

)
1

2 (r − r1)3/2
(5.15)

By simple mathematical manipulations we get(
1

p1
− 1

)
(r − r1)3 =

(
p1

p
− 1

)
r3

1 (5.16)

Noticed that Equations (5.13) and (5.16) together provide two simple conditions to optimize

p1 and r1. By dividing Equation (5.13) by Equation (5.16) we obtain,

(r − r1) =
r1 p

2
1

p
(5.17)

Using Equation (5.17) in Equation (5.16) results that(
1

p1
− 1

) (
r1 p

2
1

p

)3

=

(
p1

p
− 1

)
r3

1(
1

p1
− 1

)
p6

1

p2
=

(
p1

p
− 1

) (5.18)
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From this we get the following relation

p6
1 − p5

1 + p1 p
2 − p3 = 0 (5.19)

The only real solutions are p1 = ±√p. Since p1 must be positive we get that p =
√
p. From

this solution and Equation (5.17), it is implies that the optimal setting is

p1 = p2 =
√
p, and r1 = r2 = r/2

Consequently, the errors of the two steps are

ε1 =ε2 =3
√√

p(1−√p)/(r/2)

From this we obtain Proposition 2 and a bound on the error of,

6
√

2

√
p
√
p(1−√p)
r

This concludes our analysis of the Two-step estimation algorithm.
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Chapter 6

OPTICAL MULTICAST FOR

DATACENTER NETWORKS

In Part I of this thesis, we focused on wireless networks, more specifically, enabling scalable

multicast in wireless networks. In this chapter, we focus on the problem of physical layer

optical multicast in datacenter networks. Similar to wireless networks, the workload in

datacenter networks is evolving and a large fraction consists of one-to-many traffic patterns.

While IP multicast is an attractive option to reduce bandwidth consumption in datacenter

networks, most datacenters rely on sequential unicast transmissions for transmitting one-

to-many traffic [151]. The main challenge in enabling multicast is the the complexity of

configuration at switches and router and lack of scalability [84].

We explore using advanced functionalities of optics for enabling multicast. Optical layer

multicast [176] in the context of transport networks, has been used by researchers to in-

crease the logical connectivity of the network and decrease hop distances at the routing

nodes [178]. It is achieved either by passive splitting or frequency conversion in a pe-

riodically poled lithium niobate (PPLN) [184]. The main challenge in implementing an

end-to-end system containing optical modules in data center networks, is the control and

management integration with conventional data center networks. We address these chal-

lenges and propose a practical hardware-software architecture that enables optical multicast
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and evaluate its performance through simulations and experiments.

Finally, this research was done in collaboration with Lightwave Research Laboratory,

Columbia University with significant contributions from Payman Samadi and Keren Bergman.

The hardware testbed for the evaluations was entirely built by collaborators at Lightwave

Research Laboratory. The work presented in this chapter appeared as a poster in the pro-

ceedings of ACM SIGCOMM’14 [181] and in the proceedings of European Conference on

Optical Communication’14 (ECOC) [182]. A paper with details about system design and

evaluation appeared in the journal Optics Express [183].

6.1 Introduction

Traffic in cloud computing data centers has shifted in recent years from predominantly (80%)

outbound (north-to-south) to mostly (70%) rack-to-rack (east-to-west) pattern [4,127]. This

increase in rack-to-rack traffic that is also the case for High Performance Computing (HPC)

has introduced complex patterns involving several nodes with large flow sizes such as mul-

ticast i.e., transmitting identical data from one-to-many nodes. Many data center applica-

tions that use distributed file systems for storage and MapReduce [81] type of algorithms

to process data, inherently require multicast traffic delivery. Distributed file systems use

state-machine replication as a fundamental approach to build fault tolerant systems. Many

of these systems use Paxos [134] algorithm or its variations to provide strong data consis-

tency guarantees. Paxos-type algorithms entail group communication primitives that are

mainly multicast.

For example, Google File System (GFS) [92] uses Chubby [63] that is a Paxos-based

system. Ceph [217] is also a distributed file system that relies on Paxos. Similar traffic

patterns exist in Hadoop Distributed File System (HDFS) [61] and in the shuffle stage

of the MapReduce algorithm. Parallel database join operation [148] includes multicast

of several hundred megabytes, and the broadcast phase of Orchestra [74] controlled by

Spark [2] involves 300 MB of multicast on 100 iterations [74]. Multicast traffic is also

frequent in other data center applications such as Virtual Machine (VM) provisioning [65]
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and in-cluster software updating [19] where 300–800 MB of data are transmitted among

hundreds of nodes. Additionally, multicast traffic delivery will facilitate one-to-many VM

migrations.

Current data center networks do not natively support multicast traffic delivery. Inter-

net Protocol multicast (IP multicast) [166] is the most established protocol for one-to-many

transmission in electronic networks. Supporting IP multicast requires complex configura-

tions on all the switches and routers of the data center network [151]. Scaling IP multicast

is also a challenge in multi-tier networks with several IP subnets. Due to the scaling and

stability issues with IP multicast [84] and the importance of multicast in data centers, there

is a growing interest in improving the performance of IP multicast. To improve scalabil-

ity, [140] proposes a Software Defined Networking (SDN) [130] solution to manage multicast

groups. LIPSIN [118] and ESM [138] rely on encoding forwarding states in in-packet Bloom

Filters. Datacast [66] introduces an algorithm to calculate multiple edge-disjoint Steiner

trees, and then distributes data among them. Despite these efforts, IP multicast is not

supported in the majority of current data center networks and multicast traffic is transmit-

ted either through sequence of unicast transmissions or through application layer solutions

such as peer-to-peer methods [75]. These methods are inherently inefficient since they send

multiple copies of the same data. Furthermore, such multicast traffic typically suffers from

excessive latency that increases with the number of receivers as well as large connection

overheads.

In conventional data centers, the interconnection network is an Electronic Packet Switch-

ing (EPS) network [34, 96]. Due to the switching cost and cabling complexity, providing

a non-blocking EPS network in data centers is a challenge and networks are often forced

to rely on over-subscription. Optical Circuit Switching (OCS) is data rate transparent and

consumes less switching energy [62]. A hybrid architecture as shown in Fig. 6.1, providing

OCS and EPS along with an SDN control plane to manage the traffic between them, can

deliver a viable co-optimized solution [88,212]. Performing optical switching in data centers

would make an immediate improvement in energy efficiency since it eliminates the optical-

to-electrical conversions at the switches. Moreover, transmitting larger flows by optical links
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Figure 6.1: Optical multicast system network architecture built over a hybrid network, enabling

optical multicast by passive optical splitters and an SDN control plane, (ToR: Top-of-Rack).

decreases the traffic load in the aggregation and core tiers and reduces the total switching

cost by allowing higher over-subscription on the EPS network.

In [181,213], the authors proposed the concept of using optics’ advanced functionalities

for faster delivery of complex traffic patterns such as multicast, incast and all-to-all-cast over

an OCS substrate in data center networks. For example, leveraging passive optical splitters

for multicast and time and wavelength multiplexing for incast. Optical layer multicast [176]

in the context of transport networks, has been used by researchers to increase the logical

connectivity of the network and decrease hop distances at the routing nodes [178]. It is

achieved either by passive splitting or frequency conversion in a periodically poled lithium

niobate (PPLN) [184].

In contrast to transport networks, the main challenge in implementing an end-to-end

system containing optical modules in data center networks, is the control and management

integration with conventional data center EPS networks. Moreover, larger multicast groups

and faster reconfiguration is necessary. SDN along with cross-layer designs [60, 133] can

overcome this critical challenge and provide the optical modules functionalities seamlessly

to the higher layers.

In this chapter, we present the design and experimental evaluation of an Optical Multi-
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cast System for Data Center Networks; an integrated hardware-software system architecture

that enables native physical layer optical multicast in data center networks. We designed

an application-driven control plane architecture to i) receive multicast connection requests

from the application layer, ii) control the routing of the electronic packet switches, optical

circuit switches, and connectivity of optical splitters in the data plane, and iii) optimally

assign optical splitters to the flows with a resource allocation algorithm. The hardware

architecture (Fig. 6.1) is built on a hybrid network, i.e. the Top-of-Rack switches are simul-

taneously aggregated by a L2/L3 EPS network and an OCS network provided by an Optical

Space Switch (OSS) (OSS is a switching substrate that provides an optical circuit between

any idle input and output ports, without optical to electronic conversion [3,17]). The OSS

is also the substrate to connect passive optical splitters to the optical network. The control

plane software runs on the SDN controller and communicates with the hosts through the

EPS network. We built a prototype to experimentally evaluate the performance of the

system and also developed a simulation platform to numerically assess its performance at

scale.

Experimental and numerical results show that optical multicast transmits multicast

flows simultaneously to all the receivers. It provides similar throughput for delivering mul-

ticast flows as IP multicast but i) does not require applying complex configurations on all

the switches/routers of the data center to enable IP multicast since multicast trees are di-

rectly created by the SDN controller, ii) has superior energy efficiency since it is built on an

OCS network that consumes less energy than an EPS network, iii) is future-proof due to the

data rate transparency of the system. In addition, optical multicast can be a compliment

service to IP multicast for bulk traffic delivery in real-life scenarios that the Ethernet net-

work is highly over-subscribed. Compared to unicast transmissions where the throughput is

inversely proportional to the number of receivers, optical multicast have steady performance

irrespective to the multicast group size. Compared to peer-to-peer multicast, it provides

at minimum an order of magnitude higher throughput for flows with sizes under 250 MB.

Also, it results in shorter and fixed connection overhead (OSS reconfiguration time) that is

independent of the number of receivers. Furthermore, the optical multicast architecture is
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designed to enable direct integration with additional optical modules for optical incast and

all-to-all cast functions in data center networks.

Adding the optical multicast system to a data center with a sole non-blocking EPS

network decreases the total energy consumption by 50% while delivering 20 TB of data

containing 15% multicast flows. The latency also drops by 55%. The improvements are more

significant in the case of over-subscribed EPS networks and larger volumes of multicast flows.

We also evaluated the resource allocation algorithm with an optimal and greedy heuristic

solutions. Our numerical results show that the greedy algorithm is a practical and efficient

approach for the control plane. Furthermore, the architecture is designed to enable direct

integration with additional optical modules for optical incast and all-to-all cast functions

in data center networks.

The rest of this chapter is organized as follows. In Section 6.2, we explain the details

of optical multicast, the software and hardware architecture, and the prototype testbed.

Section 6.3 shows the evaluation of different components of the control plane including

the resource allocation algorithm. Section 6.4 is devoted to experimental and numerical

evaluations for multicast traffic delivery as well as the cost and energy efficiency analysis

of the architecture. Section 6.5 presents an end-to-end implementation of Ring Paxos on

the optical multicast prototype. Section 6.6 explains the potential design to address incast

using optical multicast architecture.

6.2 Architecture and implementation

The optical multicast system architecture consists of a 3-layered software component that

runs on an SDN controller, and a hardware component built upon an optical circuit switch-

ing network. Passive optical splitters are connected to the ports of the OSS and a resource

allocation algorithm assigns the splitters to the flows. In this section, we demonstrate the

physical layer optical multicast enabled by passive optical splitters. We present the hard-

ware and software architectures, demonstrate the prototype implementation, and discuss

its scalability.
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Figure 6.2: (a) Intensity profile of an integrated optical splitter [15], that supports 1:8 optical

multicast by dividing the input power, (Pout(i) = Pin

8 ,∀i = 1, . . . , 8), (b) An example of multicast

trees constructed by using passive optical splitters and configuring the OSS ports’ connectivity of

the senders and receivers ToRs.

Table 6.1: Insertion loss and cost of the commodity passive optical splitters [16].

Splitter Size Insertion Loss (dB) Cost ($)

1:4 7.3 14.00

1:8 10.5 18.70

1:16 13.8 36.10

1:32 16.8 62.00

1:64 20.5 132.00

6.2.1 Hardware architecture

Physical Layer Optical Multicast: Physical layer optical multicast is performed by

optical splitters. As illustrated in Fig. 6.2(a), these are passive modules that divide the

input optical signal to several optical signals by splitting the signal power at predetermined

ratios. Optical splitters are manufactured by the Planar Lightwave Circuit (PLC) technol-

ogy [198] and are commercially available up to 1:128 ratio with the footprint of 2 cm2 [16].

These splitters are widely used in Passive Optical Networks (PON) [146] for Fiber-To-The-x

(FTTx) [125] applications. Table 6.1 shows the insertion loss and the cost of commodity

optical splitters.

As shown in Fig. 6.1, the hardware architecture is built on a hybrid network. ToR
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switches are simultaneously aggregated by an optical circuit switching network provided by

an OSS and an electronic packet switching network provided by a L2/L3 EPS. MEMS-based

OSSs provide high port count optical switching substrates without optical to electronic

conversions. Integrated OSS also exist with lower port counts but faster switching speed

[147].

ToRs are connected to the OSS by point-to-point optical links and copper cables provide

connectivity to the electronic packet switch. Integrated optical splitters have fiber connec-

tions and are connected to the ports of the OSS. The controller configures the routing of

the OSS and ToRs via OpenFlow [153]. Optical splitters are passive and do not require any

configuration.

Figure 6.2(b) demonstrates physical layer optical multicast between the racks in a data

center network using passive optical splitters. Multicast trees are created between the

senders and the receivers by configuring the OSS ports. The sender S1, is connected to the

input port of the splitter and receivers R1,. . . ,Rn are connected to the output ports. The

upper bound for the multicast group size is set by the optical link power budget.

6.2.2 Software architecture

Application-driven Networks: Application-driven networking [47,111,116] and SDN are

increasingly used for designing cloud-based data center networks. Big-data applications are

also moving in this direction. For example, in Hadoop [218], NameNode and JobTracker

are the compute and storage controllers that manage the HDFS and MapReduce tasks,

respectively, over the nodes. Global knowledge of application processes and the storage

systems, as well as the central management of the network, can be intelligently used to

improve the performance of big data applications. While designing the software architecture,

we take the application-driven approach, as it seems to be the emerging direction.

Figure 6.3 demonstrates the software architecture consisting of the application, control

plane, and the data plane layers. The network controller (including the resource allocation

component) is in the control plane layer. It receives multicast traffic requests from the

application layer via the northbound API. It configures ToRs, OSS and optical splitters
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Figure 6.3: The 3-layered software architecture performs: i) Configuration of the OSS and ToRs,

and connectivity of the optical splitters in the data plane layer, ii) Receipt of multicast traffic matrix

at the application layer from the central compute and storage controllers, iii) Assignment of optical

splitters to the flows by a resource allocation algorithm.

connectivity in the data plane accordingly through the southbound API.

The central storage and compute controllers provide the traffic matrix of multicast

flows to the network controller. For each flow request, the traffic matrix provides the

flow ID, the sender and receivers servers IDs and the flow size. The resource allocation

algorithm processes the traffic matrix and assigns flows to the optical splitters with the goal

of maximizing the traffic offloaded to the optical multicast system (see Section 6.2.3). The

output of the resource allocation algorithm is a set of configurations corresponding to the

selected flows and the splitters. The network controller sets the configurations to the ToRs

and OSS through the Southbound API. Once the configurations are finished, the network

controller notifies the servers involved in the scheduled flows to begin the transmission

through the northbound API. Upon completing the transmission, the receivers notify the

network controller and it releases the splitters and servers involved in the scheduled flows.

The traffic matrix is updated with flows from the applications and the resource allocation

algorithm selects the next set of flows. Servers can also request for multicast connection via

Northbound API. The network controller aggregates multicast flows between the servers

that share the same rack and inserts them in the traffic matrix.
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6.2.3 Resource allocation algorithm

The objective of the resource allocation algorithm is to maximize the multicast traffic of-

floaded to the optical multicast system under the constraint of limited number of splitters.

Depending upon the reallocation strategy, the resource allocation algorithm allocates flows

to the splitters when a certain number of splitters are available. The reallocation strat-

egy can be myopic (immediate reallocation of free splitters) or far-sighted (wait for a large

number of free splitters before reallocation).

We model the resource allocation problem as an Integer Program. We denote by F the

number of multicast flows and by R the number of racks. Multiple multicast flows can

have the same sender and receiver racks. To simplify presentation, we refer to a flow as an

aggregate of all the flows with the same set of senders and receivers. Each flow i has a size

fi and the number of optical splitters required si (if si > 1, splitters are cascaded). The

binary variable ai indicates if flow i is scheduled in the current computation. rj is 1 if the

rack j is available at the current iteration. The constant mij is 1 if the ith flow requires

rack j as a sender or a receiver. S denotes the number of splitters available and we assume

that all modules have an identical number of ports (our model can be extended to support

different number of ports). The problem can then be formulated as follows:

max
∑
i

ai · fi (6.1)

F∑
i=1

ai ·mij ≤ rj ∀j = 1 · · ·R (6.2)

F∑
i=1

ai · si ≤ S (6.3)

At every iteration, the resource allocation algorithm selects the set flows from the traffic

matrix that maximizes the objective (6.1). Each node has a single optical port and can

serve only one flow at any instant, which is modeled by the constraint (6.2). Finally, the

limit on the number of optical splitters is modeled by (6.3).

Optimal Solution: The Integer Program above, is a variant of the NP complete mul-

tidimensional knapsack problem [90]. The Integer Program can be optimally solved by

152



CHAPTER 6. OPTICAL MULTICAST FOR DATACENTER NETWORKS

branch-and-bound methods. The optimal branch-and-bound methods can be potentially

time consuming and lead to wasted optical resources (In Section 6.3.2, we show that optimal

calculation for a large number of racks and flows can exceed the typical OSS reconfigura-

tion time of 20-30 ms). Thus, we also employ a heuristic to efficiently solve the resource

allocation problem.

Greedy Solution: The greedy algorithm iteratively selects the flows with the maximum

values of traffic,
∑H

j=1 fi ·mij and checks if the flow can be scheduled (optical ports of all

associated racks are free and required number of optical splitters are available). If yes, then

the flow is scheduled and the racks and optical modules are marked as occupied. The greedy

approach is faster but sub-optimal.

6.2.4 Prototype and testbed

Figure 6.4(a) shows the optical multicast system prototype configuration used in the exper-

imental evaluations (see Section 6.4). It consists of 8 racks, each consisting of one server.

Each server is equipped with a dual-port 10G Network Interface Controller (NIC), an Intel

Xeon E5-2430 6-core processor and 24 GB of RAM. A Pica8 P-3920 10G OpenFlow switch

is divided into 8 bridges that operate as 8 separate ToR switches. The EPS network among

the ToRs is provided by a Juniper EX4500 switch. The Juniper EX4500 is a 40-port non-

blocking 10G Ethernet switch that consumes 350 W and has a 2.7 µs latency. 10G Small

Form-factor Pluggable (SFP+) Direct-Attached (DA) cables are used to connect ToRs to

the Juniper switch.

The optical network is an OCS constructed by a Calient S320 OSS. The Calient S320 is

a 320-port MEMS OSS with the connection setup time of 25 ms, 20 ns port-to-port latency,

45 W operation power, and a typical 2.0 dB insertion loss. 18 ports of the Calient switch

are used to connect 8 ToRs and two 1:4 passive optical splitters. 1:4 optical splitters have

7.3 dB insertion loss and are connected to the Calient S320 by single-mode fibers. Optical

to electronic conversions at ToRs are carried out by 10GBASE-ZR SFP+ transceivers and

single-mode fibers provide optical links to the Calient S320. The controller server is also

equipped with a dual-port 10G NIC, two Intel Xeon E5-2403 4-core processors and 24 GB
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Figure 6.4: Optical multicast system prototype: (a) Configuration, and (b) Picture. The prototype

consists of an Ethernet switch, an OSS, 8 ToR emulated by an OpenFlow switch, 8 servers, two 1:4

optical splitters, and an SDN server that runs the control plane software.

of RAM.

We used Floodlight as the southbound API since the majority of commercial ToRs

and OSSs are now OpenFlow enabled. For the OSSs that do not support OpenFlow,

we developed a python-based API that controls the switch using TL1 commands. For

the northbound API, we implemented a fast pub/sub messaging system using open-source

libraries of Redis [185]. Byte size messages are transmitted through the EPS network from

the network controller to the servers. The messaging system is much faster than the REST

API, conventionally used as the northbound API.

6.2.5 Scalability

The scalability of the hardware architecture is determined by i) multicast group size, and

ii) OSS port count. Every 1:2 optical multicast reduces the signal power by 3 dB. A 1:64

optical multicast requires 18 dB (20.5 dB in a manufactured device) link power budget that

can be provided by SFP+ ZR transceivers. Cascading sixteen 1:32 passive optical splitters

to the output ports of one 1:16 active optical splitter scales optical multicast group size to

512 racks using 545 optical ports. Active optical splitters provide lossless splitting using

semiconductor optical amplifier (SOA) [77]. They can also provide tunability in the splitting

ratio using Mach-Zehnder Interferometers (MZI) [141] to create asymmetric multicast trees.
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MEMS OSS with 320 ports are commercially available [3] and 1100 port implementation

was presented in [129]. Considering same number of splitter ports as number of racks, a

1100 port OSS can support 512 racks and maximum multicast group size of 512 (broadcast).

Multiple OSSs (with an SDN controller to manage the traffic among them) can be placed in

ring or tree topologies to support larger number of racks. Commodity OSSs are open-flow

enabled and compatible to integrate with SDN data centers.

Software architecture scalability is imposed by the control plane delay. The control

plane achieves an average end-to-end delay of 30–50 ms for processing 320 multicast jobs in

a 320 rack data center (Section 6.3.1). The control plane delay grows slowly with increasing

traffic matrix and rack sizes. This makes the system scalable to support hundreds of racks

and numerous multicast flows.

6.3 Control plane evaluation

In this section, we evaluate the implementation of the prototype control plane. We measured

the execution delay of different control plane components. The results indicate that the

control plane incurs a very low overhead apart from the fixed OSS reconfiguration time.

Moreover, we numerically study the optimal and greedy resource allocation algorithms, the

reallocation strategies, and the impact of number of splitters. Our results show that: (i) the

greedy heuristic is a practical and efficient solution to the resource allocation problem, (ii)

a myopic reallocation strategy, can be more efficient than a far-sighted strategy, and (iii)

deploying a large number of small splitters improves the performance of flows with small

multicast group sizes.

6.3.1 Control plane

The total delay of the control plane consists of communicating via the northbound (Redis

Messaging System) and southbound APIs, the resource allocation algorithm, and the net-

work controller software. For Redis, we measured the average latency for transmitting 100

messages of 20 bytes between the controller and the servers. In our measurements, we did
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Table 6.2: Average control plane delays measured on the prototype.

Control Plane Component Delay (ms)

Northbound API (Redis) 0.65

Computing an optimal solution 22.40

Computing a greedy solution 1.90

Network Controller software 4.8

OSS reconfiguration 25

Total (Optimal): 52.8

Total (Greedy): 32.3

not include the ToR setup time (flow rule entry), since it is much faster (5–10 ms) than

the OSS reconfiguration and is executed in parallel. Table 6.2 shows the average delay

of different components for a configuration of 320 ToRs, processing traffic matrix of 320

multicast flows with ten 1:32 optical splitters on the prototype controller server. The total

delay is 52.8 ms and 32.3 ms for the optimal and the greedy algorithms respectively.

6.3.2 Algorithm evaluation

We study the performance of the resource allocation algorithm through simulations. In our

evaluations, the resource allocation algorithm runs on a traffic matrix of a given size, which

is periodically repopulated with random flows. The flow sizes are uniformly distributed

between 250 MB–2.5 GB and the multicast group is selected uniformly randomly among all

the racks subject to a maximum group size. We modeled the OCS network with link speed

and reconfiguration delays as measured on the prototype. The simulation time includes the

OSS reconfiguration delay, the resource allocation algorithm computation delay, and the

transmission time on the optical links. The results are averaged over several runs of 200

seconds simulation time. We define following metrics for our evaluations:

i) Achievable Throughput: Average throughput over the optical network excluding the

throughput loss due to the idle time during resource allocation algorithm computation:

Traffic Transmitted
(Total Time - Total Algorithm Time) . ii) Effective Throughput: Overall average throughput
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over the optical network: Traffic Transmitted
Total Time .

The achievable throughput is the theoretical maximum throughput that can be achieved

by providing more computation power to the controller and using advanced optical switching

technologies.

6.3.2.1 Optimal vs. greedy allocation

We computed the achievable and effective throughput for different traffic matrix sizes in

a 320 rack network with twenty 1:16 splitters and maximum multicast group size of 32.

Figure 6.5(a) shows the achievable and effective throughput as a percentage of the maxi-

mum bandwidth of the optical network. The achievable throughput for the both optimal

and greedy solutions increases as the traffic matrix size increases. A larger traffic matrix

increases the probability of scheduling larger flows, thus, increasing the achievable through-

put. The optimal algorithm incurs large computation delay in processing large traffic ma-

trix sizes and consequently, the effective throughput reduces with increasing matrix sizes.

The difference between the achievable and effective throughput for the greedy algorithm is

small due to fast algorithm computation. In summary, the greedy algorithm is an efficient

heuristic in practice as it trade-offs the sub-optimal solution with faster performance. The

optimal solution’s computation time can be reduced by a more efficient implementation of

the branch-and-bound method.

6.3.2.2 Reallocation strategy

We evaluate the reallocation strategies by measuring the achievable and effective throughput

vs. the number of free splitters prior to reallocation. Figure 6.5(b) shows the results for

an architecture of 320 racks and twenty 1:16 splitters. Myopic reallocation (waiting for a

small number of splitters before reconfiguration) of free optical splitters, leads to a higher

achievable throughput for both optimal and greedy solutions. Reconfiguring the switch as

soon as a few splitters are available prevents wastage of optical resources (e.g. when a large

flow and a small flow are scheduled together, a small flow will finish much faster). The

far-sighted strategy (waiting for a large number of splitters before reconfiguration) leads to
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Figure 6.5: (a) Achievable and effective throughput of the optimal and greedy algorithms vs. the

traffic matrix size, (b) Impact of the reallocation strategy on the maximum achievable and effective

throughput, and (c) Effect of optical splitter size on the maximum achievable throughput for 160-640

racks.

less frequent reconfigurations and consequently less overhead due to OSS reconfiguration

and control algorithm delay. Since the optimal algorithm has a large control overhead, the

effective throughput of the optimal algorithm is higher for the far-sighted strategy. However,

far-sighted strategy results in a lower achievable throughput for the greedy algorithm. For

the greedy algorithm, the control overhead is relatively low and the losses due to the idle

time dominate.

6.3.2.3 Optical splitter sizing

Due to the limited number of ports on the OSS, only a fixed number of splitters can be used.

Thus, it is important to determine the optimal number and size of the splitters. We evaluate

the achievable throughput for the optimal algorithm for a traffic matrix of 100 multicast

flows with maximum group size varying between 2.5%–25% of the number of racks. We

consider the total number of racks ranging from 160 to 640 with an equal number of OSS

ports in each scenario.

Figure 6.5(c) shows the achievable throughput vs. the optical splitter widths (as a

percentage of the number of racks) for different maximum multicast group sizes. The average

throughput values are normalized to the same scale after accounting for increased capacity
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due to number of ports in each scenario. We observe that for smaller multicast group sizes,

the achievable throughput is higher with narrower but larger number of splitters. The

achievable throughput decreases as the multicast group size increases as several modules

need to be cascaded to serve one single flow. As a rule of thumb, we will use splitter sizes

between 5–10% of the total number of racks. This range of splitter size limits excessive

cascading for larger multicast group sizes and provides higher throughput.

6.4 System evaluation

In this section, we evaluate the performance of Optical Multicast System for transmitting

bulk multicast flows and compare it with IP multicast, unicast, and peer-to-peer methods.

In all evaluations, optical multicast refers to physical layer optical multicast using passive

optical splitters. We start by presenting experimental results measured on the prototype

testbed. Next, we present numerical evaluations at scale, computed on our custom simula-

tion platform and conclude with the cost and energy efficiency analysis. We use following

metrics:

i) Transmission Time: Time to deliver a flow excluding the connection overheads.

ii) Latency: Total time to deliver a set of flows including all connection and control plane

overheads.

iii) Throughput: Link throughput while transmitting one flow: Flow Size
Transmission Time .

iv) Connection Overheads: The total delay from a request to begin the flow transmission.

v) Energy Consumption: Energy (Joules) = Power (Watt)×Transmission Time (Sec-

onds).

We compare the performance for delivering a traffic matrix of multicast flows with i) IP

multicast that creates a multicast tree (star for the 1-hop topology in our prototype) using

spanning-tree algorithm, manages the multicast group memberships, and replicates packets

at the switch/router, ii) sequence of unicast transmissions on the EPS network, iii) peer-to-

peer method that imitates multicast transmission by creating many-to-many connections

using bittorrent [75], and iv) an optical circuit switching network not equipped with the
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optical multicast system.

We perform comparison with both non-blocking and over-subscribed EPS networks as

real-world data center networks are typically over-subscribed. Moreover, since the extra

optical switching capacity in the optical multicast system allows further over-subscription

of the EPS network, this comparison helps us to evaluate the benefits of adding this system

to a data center network. Following are the network configurations in our evaluations:

• Physical layer optical multicast

• Transport layer IP multicast

– Non-blocking EPS network

– EPS network + background traffic

• Multicast through sequence of unicasts

– OCS point-to-point network

– Non-blocking EPS network

– EPS network + background traffic

• Peer-to-peer multicast using Twitter Murder

– Non-blocking EPS network

– EPS network + background traffic

Implementation Details: We used Iperf [8] to generate data and measure the link char-

acteristics. Iperf is a common network performance measurement tool that generates UDP

and TCP datagrams and measures the network throughput. UDP is an unreliable but fast

and efficient transmission protocol For a fair comparison against peer-to-peer multicast that

guarantees data delivery, we optimized the UDP buffer size and service type to achieve an

average 0.35% packet error rate for 4.2 Gbps throughput. The multicast transmission can

be improved by using reliable multicast protocols [9,11] in which, data is transmitted on the
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optical network and the NACKs on the electronic network [182]. Flows are read/written in

the host memory on transmission/reception to make maximal use of the optical link band-

width. The Juniper EX4500 switch in the testbed provides advanced Layer 3 functionality

that allows IP multicast implementation. For peer-to-peer multicast, we implemented Mur-

der [19] that is a bittorrent-based fast data distribution platform developed by Twitter. We

implemented Murder using the open source Herd libraries [7]. To emulate over-subscription,

we generated background traffic using Distributed Internet Traffic Generator (D-ITG) [5]

on a spare NIC of the servers.

6.4.1 Experimental results

In the first experiment, we transmit a traffic matrix of 50 multicast flows, with uniform

distribution of flow size (250 MB–2.5 GB) and multicast group size (1–4). These flow sizes

are chosen based on the data center applications. As discussed in the introduction, parallel

database join operations include multicast flows of several hundred megabytes. For software

updates (e.g. OS updates) and VM migrations, the flow sizes are in the range of gigabytes.

Figure 6.6(a) shows the latencies over different network configurations. Optical multicast

and IP multicast have comparable latencies. IP multicast with background traffic leads to

32% higher latency than optical multicast. Transmitting multicast flows with sequence of

unicast flows is twice as slower than optical multicast. In this case, adding background traffic

increases the latency by over 3x. Peer-to-peer multicast on the EPS network is an order of

magnitude slower than optical multicast with and without background traffic. Transmitting

the same traffic matrix in a hybrid network not equipped with the optical multicast system

takes twice as long. We observe that the OSS reconfiguration time does not noticeably affect

optical multicast latency for bulk multicasting. Equipping an OCS network with optical

multicast has significant impact on the multicast traffic delivery. Furthermore, peer-to-peer

is a time-consuming multicast data delivery method.

In the next experiment, we evaluate the effect of multicast group size on transmitting

one multicast flow. We measured the transmission time excluding the connection overheads.

Figure 6.6(b) shows the results for a 250 MB flow. Optical multicast, IP multicast and peer-
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Figure 6.6: Experimental results: (a) Latency to deliver 50 multicast flows in a configuration of 8

racks and two 1:4 optical splitters. (b, c) Evaluating the effect of increasing number of multicast

receivers on the transmission time and the throughput of a 250 MB flow, (d, e) Evaluating the effect

of flow size on throughput for mice and elephant flows, (f) Evaluating the effect of flow and multicast

group size on peer-to-peer multicast connection overheads, (BG: Background Traffic).

to-peer have constant transmission time regardless of multicast group size. Unicast method

transmission time increases linearly with the number of receivers.

We also measured the throughput vs. multicast group size as shown in Fig. 6.6(c). Opti-

cal multicast and IP multicast achieve the highest throughput regardless of multicast group

size and we compare all subsequent results with this value. Introducing background traf-

fic decreases the throughput of IP multicast to 73% of its original throughput. Unicast

method’s performance decreases with increasing group size. For multicast group of 7 re-

ceivers, unicast method’s throughput is almost 30% of optical multicast. Background traffic

reduces the throughput of unicast further close to 16% of the optical multicast. Peer-to-peer

multicast has a very low throughput for a 250 MB flow size close to 10% of optical multicast.
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This result confirms that multicast group size does not change the performance of optical

and IP multicast. However, unicast transmission performance is highly dependent on the

number of receivers, as expected. Peer-to-peer method also has constant throughput over

different multicast group sizes but it is an order of magnitude lower than optical multicast.

We also measured the impact of the flow size on the throughput for optical multicast, IP

multicast, and peer-to-peer methods. For each measurement point, we performed 3 multi-

cast transmissions with 2–4 multicast receivers and average the throughput. However, based

on the previous experiment, the multicast group size has no impact on the performance of

these methods. We plotted all the measurements compared to the highest throughput that

was for optical and IP multicast.

Figures 6.6(d) and 6.6(e) show the results for mice and elephant flows, respectively. Op-

tical and IP multicast achieve similar performance irrespective of the flow size. Introducing

background traffic has lower impact on the throughput of mice than elephant flows. Peer-to-

peer multicast has an average throughput of 1–2% for mice flows. Its performance improves

as the flow size increases and it reaches similar performance as optical multicast for flows

larger than 1.5 GB. We conclude that peer-to-peer multicast is not efficient for transmission

of mice multicast flows. However, for very large flows, it achieves comparable performance

as optical and IP multicast. For peer-to-peer multicast, the impact of background traffic is

more notable on transmission of elephant flows.

We further compared the efficiency of optical multicast and peer-to-peer multicast by

measuring the connection overheads on transmitting 250 MB, 1 GB and 2.5 GB flows.

Optical multicast connection overhead is the OSS configuration time. For peer-to-peer

multicast, it is the bittorrent file (metadata of the flow) generation and peer-to-seed con-

nection times. Figure 6.6(f) shows the results for 3–7 multicast receivers. Peer-to-peer

multicast has significantly higher and variable connection overhead that increases with the

flow size.

We also measured the share of connection overheads in the latencies of the first exper-

iment presented in Fig. 6.6(a). For optical multicast, it was 5% of the overall latency but

47% for the peer-to-peer multicast. We infer that peer-to-peer multicast has longer and
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varying connection overheads that increases mainly by the flows size and slightly with the

multicast group size. However, the connection overhead for optical multicast is the fixed

OSS reconfiguration time.

To summarize, optical multicast achieves similar performance as IP multicast regardless

of the flow size. The performance of optical multicast is not degraded by increasing the mul-

ticast group size. Multicast transmission through sequence of unicast flows has link stress

proportional to the number of receivers and results in higher latencies. Peer-to-peer multi-

cast is not suitable for transmission of mice flows. However, it can be a reasonable solution

for low-priority bulk multicasting. Furthermore, adding the optical multicast system to a

hybrid network will significantly improve the performance of multicast flow transmission.

6.4.2 Numerical results

In order to evaluate the performance of the optical multicast system at scale, we developed

a custom packet-based simulation environment using NS3 libraries [13]. For optical multi-

cast, we used testbed measurements to adjust the channel end-to-end delay. We also added

the OSS reconfiguration time to the connection overheads and used on-off communication

patterns to generate data. To get statistically meaningful results, we repeated each exper-

iment 10 times and averaged the results. For our evaluations, we used following network

configurations:

• Physical layer optical multicast

• Transport layer IP multicast

– Non-blocking EPS network

– 1:4 Over-subscribed EPS network

– 1:10 Over-subscribed EPS network

• Multicasting over sequence of unicasts

– Optical point-to-point OCS network
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– Non-blocking EPS network

– 1:4 Over-subscribed EPS network

– 1:10 Over-subscribed EPS network

In the first evaluation, we consider a network of 320 racks and ten 1:32 optical splitters.

A traffic matrix of 320 multicast flows with maximum multicast group size of 32 and flow

size of 250 MB–2.5 GB (both uniformly distributed) is transmitted on the networks. We

used the greedy resource allocation algorithm.

Figures 6.7(a) and 6.7(b) show the latencies for different network configurations. Optical

multicast and non-blocking IP multicast achieve comparable latencies. For IP multicast, a

1:4 and 1:10 over-subscribed EPS network leads to 3x and 9x higher latencies, respectively.

Multicast through sequence of unicast transmissions over a non-blocking EPS network re-

sults in 50% higher latency as compared to optical multicast. In this case, 1:4 and 1:10

over-subscription decrease the latencies by 5x and 13x, respectively. Confirming the exper-

imental results, OSS reconfiguration time does not result in notable additional latency for

bulk multicasting. Multicast through unicast transmissions is not efficient for transmitting

multicast flows, especially in over-subscribed networks.

In the next set of numerical evaluations, we study the effect of multicast group size.

Figure 6.7(c) shows the transmission time of a 250 MB flow to 5–100 multicast receivers.

We observe that increasing the multicast group size does not affect the performance of

optical and IP multicast. However, the performance of unicast transmission degrades as the

multicast group size grows. Figure 6.7(d) shows the throughput with increasing multicast

group size. Optical and IP multicast achieve close to line-rate (10 Gbps) throughput. Over-

subscription by ratios of 4 and 10, decreases the throughput of IP multicast to 2.36 and 0.94

Gbps, respectively. Finally, the throughput of unicast transmission is inversely proportional

to the number of receivers.

In order to better understand the impact of the optical multicast system on a data

center network, we computed the latency for delivering 20 TB of data based on the overall

switching capacity (including switching delays) for the following network configurations: i)
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An EPS network in non-blocking, 1:4 and 1:10 over-subscription configurations, ii) A hybrid

architecture consisting of an OCS network and an EPS network in non-blocking, 1:4 and

1:10 configurations, and iii) Optical multicast system with 320 splitter ports on a hybrid

architecture with the EPS network in non-blocking, 1:4 and 1:10 over-subscription config-

urations. In the sole EPS configuration, the EPS layer serves both unicast and multicast

(through sequence of unicast transmissions) flows. In the case of hybrid configurations,

the optical layer first serves all multicast flows and then transmits unicast flows along with

the EPS layer. We varied the volume of multicast flows 1–55% with average multicast

group size of 16. As shown in Fig. 6.7(e), adding an extra OCS network results in 48%

lower latency than a sole EPS network. With 15% of the total multicast flows, the optical

multicast system reduces the latency by 55%. Adding the optical multicast system to an

over-subscribed EPS network, the latency is reduced by 83% and 92% for 1:4 and 1:10 over-

subscription ratios, respectively. The gains of adding the optical multicast system improve

with increasing percentage of multicast flows and larger average multicast group sizes.

6.4.3 Cost and energy efficiency

Optical circuit switching consumes considerably less power than electronic packet switch-

ing. Table 6.3 shows the typical per port power values for commercially available EPS,

OCS and the optical multicast system network components. In the optical multicast sys-

tem prototype, the per port power consumption of optical switching is 60x lower than

EPS. Furthermore, using OCS in data centers avoids unnecessary optical-electrical-optical

conversions at the electronic packet switches. We computed the total switching energy to

achieve similar latency values for different network configurations. It is calculated based

on the per port energy consumption and the transmission time (E(J) = P(W ) t(s)), thus to

achieve similar latency with electronic unicast as optical multicast, more EPS ports (more

bandwidth) are required, i.e. more energy consumption. Figure 6.7(f) shows the switching

energy as the multicast group size increases. To deliver a 250 MB multicast flow, optical

multicast consumes an order of magnitude less switching energy than IP multicast. The

difference grows to 2 orders of magnitude for IP multicast in a 1:4 over-subscribed network
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Table 6.3: Power consumption and cost of the EPS, OCS and the Optical Multicast System network

components.

Component Per Port Energy (W)
Per Port

Cost ($)

10GBASE-SR SFP+ 1 260

10GBASE-ZR SFP+ 1.5 605

10G EPS Switching 8.75 575

Optical Switching 0.14 350

Optical Splitter 0 2

Table 6.4: Cost increase in adding an OCS network + Optical Multicast System to a 320 rack data

center EPS network under different over-subscription conditions.

Network Configuration Interconnection Network Cost Increase

Non-blocking EPS + OCS + Optical Multicast 156%

1:4 OS EPS + OCS + Optical Multicast 104%

1:10 OS EPS + OCS + Optical Multicast 87%

as well as the unicast method in a non-blocking configuration.

For a more comprehensive energy efficiency analysis, we computed the total energy con-

sumption (sum of the transceiver and the switching energy consumptions) for delivering

20 TB of data in a 320 rack data center with an average multicast group size of 16. In

Fig. 6.8(a), we compare a solely EPS network with a hybrid network equipped with op-

tical multicast. With multicast flows constituting 15% of the total volume of the flows,

a hybrid network equipped with optical multicast consumes up to 50, 80, and 91% less

switching energy than a solely EPS network in non-blocking, 1:4, and 1:10 over-subscribed

configurations, respectively.

Enabling optical multicast in a hybrid network requires optical transceivers with higher

output power and extra optical switching ports to attach the splitters. The per port costs

and energy values for a typical transceiver used in hybrid networks (SFP+ SR) and the ones

required for the optical multicast architecture (SFP+ ZR) are presented in Table 6.3. We
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calculated the cost of building a hybrid network + optical multicast vs. a non-blocking EPS

network. Adding an extra optical network increases the overall switching capacity of the

data center. This allows for supporting more servers or increasing the over-subscription ra-

tio of the EPS network. Table 6.4 shows the additional cost of building the optical multicast

system, compared to a solely non-blocking EPS network in 3 configurations: i) non-blocking,

ii) 1:4 over-subscribed, and iii) 1:10 over-subscribed. We ignored the links cost in our anal-

ysis as it is negligible. We assumed that the cost of an EPS network linearly reduces with

increasing the over-subscription ratio. Building a hybrid + optical multicast network with

a 1:4 over-subscribed EPS network will cost twice as much compared to a solely EPS non-

blocking network. However, even with 10% of the total flows being multicast, it will provide

approximately 80% lower latency (Fig. 6.7(e)) and energy consumption (Fig. 6.8(a)). Fur-

thermore, considering that network is only 15% of the data center cost [95], the investment

improves data center performance and reduces the operating costs. For large-scale data cen-

ters with more than 320 racks, the per port switch cost and switching energy consumption

scales linearly.

6.5 Paxos with optical multicast

As discussed in Section 6.2, distributed files systems are widely used as a data storage

solution in data center networks. Majority of these systems use Paxos algorithm or its

variation to provide strong consistency guarantees. Paxos-type algorithms will significantly

benefit from multicast-enabled networks. Ring Paxos [149] is a variation of Paxos that

uses IP multicast to disseminate messages among the learners. We chose Ring Paxos since

compared to other atomic broadcast protocols [43,137], it achieves higher throughput, lower

latency, and steady performance as the number of receivers increases. We implemented

Ring Paxos on the servers of our prototype testbed and evaluated its performance over

the optical multicast and an IP multicast-enabled EPS network. The configuration is 5

Acceptors, 1–7 Learners, and 8, 16 and 32 kbytes message sizes. Figure 6.8(b) shows the

receiving throughput of the Learners that confirms successful end-to-end implementation of
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Paxos on the optical multicast system.

6.6 Optical incast

Optical multicast architecture is designed to enable direct integration of optical modules

and subsystems such as Arrayed Waveguide Gratings (AWG) [200] and Wavelength Selec-

tive Switches (WSS) [49] to provide functionalities such as incast, all-to-all-cast, or aggre-

gation/breakout of links with different data rates. These functionalities can also address

inter data center network applications such as multicast and incast between data centers or

providing rack-to-rack connectivity across data centers to improve scalability and reliabil-

ity [180].

Optical splitters are bi-directional and work as combiners as well. This functionality

allows enabling rack-to-rack optical incast. As demonstrated in Fig. 6.8(c), incast flows can

be routed by i) building an incast tree between all the senders (S1,. . . ,Sn) and the receiver

(R1) using the optical combiner and, ii) time-division multiplexing the senders using an SDN

controller to utilize the full link capacity. Compared to optical multicast, optical incast does

not require high power transmitters since the optical signal of the senders are added rather

than divided. However, achieving efficient time-division multiplexing of senders requires a

fast northbound API to minimize the controller overhead.
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Figure 6.7: (a, b) Numerical results on the latency of delivering 320 multicast flows among 320

racks with ten 1:32 optical splitters, comparing optical with IP multicast and unicast on an EPS

network in non-blocking and over-subscription configurations, (c, d) Effect of multicast group size

on transmission time and throughput for a 250 MB flow, (e) Latency improvement of a hybrid and

optical multicast-equipped data center network in delivering 20 TB of data compared to a sole EPS

network vs. percentage of multicast flows, (f) Calculation of switching energy on delivering a 250

MB multicast flows to achieve similar latency vs. Multicast Group Size, (OS: Over-subscribed, NB:

Non-blocking).
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Figure 6.8: (a) Improvement in energy consumption on delivering 20 TB of data with Hybrid +

optical multicast network compared to a sole EPS network in non-blocking, 1:4 and 1:10 configura-

tions (OS: Over-subscribed, NB: Non-blocking), (b) Ring Paxos run on IP multicast supported EPS

network and optical multicast-enabled network (message size: 8, 16 and 32 kbytes), (c) Enabling

optical incast using passive optical combiners and Time-Division Multiplexing of the senders by the

SDN controller.
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Chapter 7

QCN BASED DATACENTER

CONGESTION CONTROL

7.1 Introduction

Data centers host a large variety of applications including web search, social networks,

recommendation systems, and database storage. Intensive concurrent communications can

go among tens to hundreds or even thousands of servers. Heavily fan-in traffic patterns

and microbursts are often seen with distributed applications. All these new trends are

demanding stringent performances of throughput, latency and scalability from datacenter

networks.

In addition, inter-datacenter communications often go through WAN peering links,

which are generally high-end, premium links that network operators demand their high

availability. Since packet losses are generally unacceptable over WAN links due to large

RTTs, the edge links usually include a large buffer. Furthermore, datacenter operators pay

peering link operators for their peak utilization (95 percentile) and consequently, ensuring

high average throughput is cost-effective.

Fast and accurate congestion notification plays a crucial role in meeting these stringent

demands. Conventionally, the network signals congestion by dropping packets, which could
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be detrimental to applications’ performance. Hence, modern datacenters adopt Explicit

Congestion Notification (ECN) to mark packets in order to notify impending congestion.

However, only receivers can echo ECN marks back to the senders, which leads to end-to-

end latency. Besides, single bit ECN feedback is not sufficient to indicate the degree of

congestion, and hence averaging ECN marks is a common practice that further increases

the networks’ response time.

Separately, a Layer 2 congestion management algorithm, QCN (Quantized Congestion

Notification), has been standardized for Ethernet Data Center Bridging: IEEE 802.1Qau.

QCN uses direct multi-bit network feedback as congestion notification and it has the fol-

lowing properties that make it a more reliable congestion metric: (i) direct feedback from

congestion points, (ii) multi-bit feedback, and (iii) inclusion of higher-order queue growth.

Besides, more information on where congestion occurred is useful for load balancing and

maybe other telemetry purposes. Unfortunately, IP-routed datacenters limit QCN’s adop-

tion.

While most datacenter switches support QCN feedback, QCN’s reaction functions re-

quire changes at servers’ Network Interface Cards (NICs) where QCN’s support is less

common. We aim to leverage commonly available high-fidelity QCN’s congestion signal but

make it Layer 3 capable and show how it can be used in two different congestion man-

agement areas: congestion control (which acts in sub-RTT time scale) and load balancing

(which acts in a multiple RTT time scale).

First, we propose using standard QCN feedback to tune TCP’s congestion window in-

stead of adjusting the rate of hardware rate-limiters: QCN-CC. There are several challenges

that we need to address such as devising a minimum set of kernel level changes at end hosts

to process QCN feedback, and enabling QCN messages to work at L3 of networking stack.

With this we avoid the dependency of QCN on NICs that support it, hence making it

immediately usable with any host NIC.

In addition, we propose to use QCN feedback for accurate congestion-aware load bal-

ancing: QCN-LB. While FlowBender [121] bases its decision on single-bit ECN marks for

rerouting traffic. QCN-LB calculates aggregated QCN feedback quanta; and if it is over a
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threshold, QCN-LB tries a different path.

Our main contributions are described below:

(i) Implementational: We show how to make QCN feedbacks across the boundary be-

tween Layer 2 and Layer 3 domains. Our proposed changes can be readily incorporated

in most current commercial switches. We also overcome several issues with original

QCN congestion control mechanism such as unfairness, overreaction to congestion

notifications etc.

(ii) Design: 1) Congestion Control (QCN-CC): we extend QCN’s host-side functions to

window-based transport layer, instead of using hardware rate limiters. Furthermore,

QCN-CC is self-clocked and it precludes the need of high-performance hardware or

software based timers. QCN-CC can provide flow-level isolation thus, avoiding arbi-

trarily sharing of the rate limiters by flows which might severely interfere with each

other. 2) Load balancing: we also make use of QCN’s feedback to guide load balanc-

ing. Aggregated feedback quota is used to indicate whether a path is under congestion

and call for a reroute.

(iii) Evaluation: We compare the performance of QCN-CC and QCN-LB against other

state-of-the-art congestion control and load balancing mechanisms using simulations

based on realistic datacenter workloads. A key aspect of these evaluations is including

both intra and inter-datacenter traffic which poses significant challenges for congestion

management due to mismatch of flow RTTs by orders of magnitudes. Our simulations,

based on real world workloads, show the benefit of direct QCN feedback: QCN-CC

significantly reduces the tail latency of short flows as compared to competing ECN-

based congestion control schemes DCTCP (by 3.5×) and DCQCN (by 2.0×). For

traffic load balancing which works at a slower time scale than congestion control,

QCN-LB is able to reduce flow’s FCT by as much as 2.0× compared to ECN-based

FlowBender.

The work presented in this chapter was done in collaboration with Abdul Kabbani,
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Milad Sharif, and Rong Pan. Abdul Kabbani made major contributions to the design

level details and algorithmic ideas. Milad Sharif, Rong Pan, and Abdul Kabbani provided

important feedback and ideas behind the evaluation presented in this chapter.

7.2 Related Work

Providing high-fidelity feedback, congestion control, and load balancing for datacenter net-

works has received considerable attention. Below we briefly highlight the most relevant

work.

Congestion control: Data Center TCP (DCTCP) [39], HULL [41], D2TCP [204] rely

on Explicit Congestion Notification (ECN) marks aggregated over several packets due to

obtain fine-grained congestion information. TCP Bolt [197] also relies on ECN and is

essentially DCTCP without slow start. However, averaging ECN marks to derive congestion

information over several RTTs could be slow and lead to delayed reaction to congestion.

Further, ECN marking is generally not supported end-to-end outside the datacenter fabric

and in fact, the ECN marks could be overwritten at external switches. This makes ECN

based techniques unsuitable for dealing with congestion at the datacenter edge.

TIMELY [156] and DCQCN [232] are two recent proposals for congestion control for

RDMA deployments. While TIMELY relies on accurate RTT measurements, DCQCN relies

on ECN marks as a proxy for QCN feedback. However, such end-to-end congestion methods

may require several RTTs to converge and may lead to packet losses especially for small

flows. Further, TIMELY cannot be supported without specialized hardware to guarantee

high fidelity RTT information.

ICMP Source Quench [94] relies on notifications from switches for managing congestion.

However, due to challenges associated with practical deployments, its deployment never took

off and has been recently deprecated. FastLane [229] leverages in-network notifications

to avoid packet losses for small flows but it is not a congestion control scheme and it

requires changes to switches. Several proposals have been proposed for reducing latency

of TCP flows in datacenter and other environments. Some examples include pFabric [42],
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Detail [228], Fastpass [165], RCP [86]. These proposals require significant changes to switch

architectures, and to our knowledge, are not being deployed on a large scale.

Congestion control for datacenter-edge links has not been widely addressed. Most of the

existing schemes rely on minimizing congestion at inter-datacenter or WAN links through

traffic engineering, e.g., SWAN [111] and B4 [116]. TCP Fast Open [167] proposes techniques

to reduce completion time of short flows over long RTTs by enabling data exchange during

the handshake phase.

QCN: Several papers have looked at the performance of different aspects of QCN. [37]

discusses the design and evaluation of QCN congestion control mechanism. [83] evaluated

the performance of QCN in incast scenarios while [230] proposed an algorithm FQCN to

improve fairness of multiple flows sharing one bottleneck link in incast scenarios. AF-

QCN [120] addressed the issue of providing weighted-fairness for QCN congestion control

in multi-tenant datacenters.

Load Balancing: Equal Cost Multiple Path (ECMP) forwarding is the standard mech-

anism used in today’s datacenters for load balancing. However, ECMP results in static

path assignments which may lead to large flows sharing congested paths. MPTCP [171]

splits a TCP flow into multiple subflows where each subflow is randomly assigned a different

path and flows with good performance are prioritized. However, MPTCP incurs significant

implementation complexity on both senders and receivers.

FlowBender [121] leverages ECN marks for rerouting flows from congested paths. CONGA [38]

employs congestion-aware flowlet switching on specialized hardware for load balancing.

Centralized load balancing techniques such as Hedera [35], B4 [116], SWAN [111], and

MicroTE [57] are complex and may not handle traffic volatility inherent in datacenter

workloads.

7.3 Background

The Ethernet local area network standardization body, IEEE 802.1, started defining a set

of enhancements to their protocols for data center environments as of 2005. The goal back
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then was to bring together Ethernet, fiber channels and InfiniBand, for use with clustering

and storage area networks. IEEE 802.1Qau, based on the QCN algorithm, was designed

to provide congestion management for data center bridging traffic. In this section, we

will review the design of QCN, analyze its pros and cons, and explain our motivation for

overcoming QCN’s limitation by designing QCN-CC.

7.3.1 QCN Algorithm

We start with a brief overview of the QCN algorithm, highlighting the more relevant as-

pects to our design. We refer to [22] and [37] for more details. QCN algorithm has two

components:

(i) Congestion Point (CP): This is the component in the switch that samples the incoming

packets, measures the extent of the congestion, and conveys that information back to the

source of the packet using a multi-bit feedback.

(ii) Reaction Point (RP): This is a component at the sender side with a Rate Limiter (RL),

which decreases the rate based on the feedback it receives from CP and actively probes for

available bandwidth in the absence of congestion.

Congestion Point

The goal of CP is to maintain the queue at the desired buffer occupancy Qeq. The CP

randomly samples the incoming packets with a probability depending on the severity of the

congestion 1. It then computes the congestion score Fb as:

Fb = (Q−Qeq) + w · (Q−Qold), (7.1)

where Q is the instantaneous queue-size, Qold is the queue-size when the last packet was

sampled, and w is a non-negative constant which is typically set to 2. If Fb > 0, CP sends a

feedback message containing the quantized value of Fb to the source of the sampled packet.

1The sampling period can be configured in a lookup table, against the computed congestion score, typically

ranging between 150KB and 15KB.
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The intuition is that Fb captures the queue-size excess (Q−Qeq) as well as the derivative

of the queue size (Q−Qold). Hence, positive Fb means that either the buffer or the link are

oversubscribed.

Reaction Point

The RP algorithm maintains two rates: (a) current rate (RC), which is the sending rate at

any point in time, and (b) target rate (RT ), which is current rate just before receiving the

last congestion feedback. RP goes throught three main phases:

(i) Rate decrease: When RP receives a congestion notification, it cuts CR in proportion to

the received Fb.

RT ← RC (7.2)

RC ← RC(1−Gd · Fb) (7.3)

where Gd is set such that the sending rate can be decreased by at most 50%.

(ii) Fast Recovery (FR): After cutting its rate, RP enters the FR phase to gradually recover

the lost bandwidth and get back to the target rate. The recovery cycles are based on timer

expirations or byte counter resets. At the end of each cycle, RC is updated as follows:

RC ←
1

2
(RC +RT ) (7.4)

(iii) Active Increase (AI): RP enters active increase phase after completing five cycles of

FR to probe for extra bandwidth. During this phase, RP increases its sending rate by a

configurable RAI value in each stage (also based on byte-counting and a timer).

7.3.2 Pros and Cons of QCN

In this section, we discuss the advantages and limitations of QCN. On the positive side,

QCN benefits from (i) a direct and granular multi-bit network congestion feedback, which is
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fast and accurate; (ii) a Proportional Integral (PI) based controller to enhance end-to-end

loop stability; (iii) rate recovery mechanism similar to BIC-TCP [224] at host, that has

significant impact on stability of the control loop especially in the presence of increasing

feedback delay [40]; (iv) a timer-based fast recovery mechanism to recoup from low rates;

(v) rate-based mechanism, as opposed to window-based, which helps to alleviate bursts in

the network, leading to more stable queues and reduced queueing latency. We discuss the

impact of some of these features in more details in Section 7.4.1.

On the negative side, QCN’s major limitations are: i) targeting Layer 2 domain only

by design, while most data centers today operate in Layer 3 routed domain; ii) requiring

hardware support both at the hosts as well as in the fabric switches (very few host NICs

implement QCN’s rate limiters even though there are widely spread QCN switches); (iii)

not being scalable due to the relatively low number of rate limiters at NICs; and (iv) having

many configuration parameters to tune.

7.4 Design

Several congestion control schemes have been proposed in the past decade, which have raised

the bar of performance and implementability. In this section, we are interested in answering

the following questions: what are the major features that fundamentally distinguish QCN

as a congestion control scheme? How much of QCN’s current design and implementation

is it really worth to salvage or overhaul? And what are the minimal practical adjustments

needed for immediately leveraging QCN on readily-deployable and commercially-available

platforms?

7.4.1 Dissecting QCN

Before diving deep into the final design pf QCN-CC , it is important to understand the

impact that each major component of QCN has on the performance of QCN as a congestion

control scheme. We illustrate the value of the QCN feedback signal using a series of micro-

benchmarks. In particular, we will discuss the advantages of: (i) sending direct feedback to
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Figure 7.1: Impact of derivative term on queue size for QCN rate control with 6-bit congestion

feedback.

the sender, (ii) differential term of the feedback, and (iii) multi-bit feedback (up to 6 bits)

as opposed to a single bit feedback such as ECN marking.

To evaluate the QCN feedback mechanism, we simulate a 10:1 incast scenario in a

dumbbell topology using a packet-level simulator. We use following parameters for the

QCN-based rate control algorithm described above: byte counter of 150KB, timer of 15ms,

and linear increase of RAI = 5Mbps. These parameters are close to the optimal values as

determined by previous studies [37]. We also add a 5% jitter in the timers to avoid the

buffer overflow caused by the synchronized senders. The buffer size at the congested switch

is 1MB and the QCN feedback threshold Qoff is set to 90KB. For the sake of simplicity, we

disable Hyper Active Increase (HAI) in the rate control mechanism since the main utility

of HAI is to recover from severe congestion events.

In full QCN implementation, dynamic sampling probability varies between 1-10% based

on the extent of the congestion at any switch. However, in our evaluations, we neglect the

dynamic sampling rate and use a fixed sampling rate of 10%. The switches can be easily

tuned to set such a fixed sampling rate. In current commodity switches, the sampling rate

can go as high as 50%. Since the QCN notifications are small, this adds relatively low

overhead.
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Figure 7.2: Impact of derivative term on flow rates in QCN rate control with 6-bit congestion

feedback.
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Figure 7.3: Queue sizes for QCN rate control vs. the number of bits in QCN feedback. Results for

6-bit feedback are shown in Figure 7.1(b).

Impact of derivative: We first demonstrate the impact of the derivate term in the QCN

congestion feedback. We run the incast scenaio for two QCN-based rate control with W = 0

and W = 2. Figure 7.1 shows the queue at the congestion point and Figure 7.2 shows the

individual flow throughputs for W = 0 and W = 2. It is evident that the derivative term

leads to higher queue stability closer to the desired queue occupancy. Furthermore, as

shown in Figure 7.2, individual flow throughputs significantly benefit from a more stable

queue. With W = 0, individual flow rates can deviate by as much as 50% from their fair

share values, while with W = 2, the deviation from fair share is less than 25%.
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Figure 7.4: Flow rates for QCN rate control vs. the number of bits in QCN feedback. Flow rates

for 6-bit feedback are shown in Figure 7.2(b).

Impact of multi-bit feedback: Next, we evaluate the benefits of multi-bit feedback on

congestion control. Figure 7.3 and 7.4 show the queue and the individual rates of all the

flows vs. the number of bits in the QCN congestion feedback. As it can be seen in the

figure, single bit feedback notification leads to an unstable queue with occupancy as high as

twice of the desired Qoff and flow rates as high as 70% more than the fair share value. As

we increase the number of bits in the QCN feedback, the rate and queue stability improve.

We get the best results with 6-bit congestion feedback (Figures 7.2(b) and 7.1(b)), with

approximately 10% lower queue variation and 20% lower throughput variation compared to

results with 4-bit feedback.

As shown, congestion control can benefit from fine-grained multi-bit notification as well

as the derivative term in QCN feedback. Besides, QCN also benefits from direct feedback

from the congestion point as opposed to ECN feedback, which requires at least one roundtrip

time to convey the congestion information back to the sender. As we illustrate later (§7.4.5),

exact location of the congestion can be used to make more intelligent routing decisions.

Next, we describe our approach to enable transmission of QCN notifications across an L3

network and highlight the required modifications for processing QCN feedback on the host

side. Subsequently, we describe our window-based congestion control algorithm, QCN-CC ,

which relies on the above modifications.
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7.4.2 L2 QCN in an L3 Network

One of the major contributions of our work is identifying simple fabric and host modifica-

tions that allows QCN’s L2 notification frames to get routed properly in an L3 network.

We leverage the standard L2 learning feature available on any L3 commodity switch today.

L2 learning is a hardware feature in which a switch caches the source MAC address of a

packet (data packet in QCN’s case) along with the corresponding input switch port num-

ber. The switch can then properly forward an L2 packet (e.g. QCN notification frame)

to a MAC address that has been already cached through the corresponding cached port

number. Today’s data center switches typically have L2 tables that can accommodate at

the order of 100,000 MAC entries. This is more than sufficient for maintaining the cached

MAC address of the sampled packet long enough before its corresponding congestion control

frame traverses back in the reverse direction using the cached information. 2

Hence, all needed for QCN’s notification packets to get routed back to their L2 sources

is preserving their L2 source MAC address throughout the fabric (i.e. don’t over-write that

value end-to-end) and turning on L2 learning. The caveat here is that switches can continue

to simultaneously routed IP packets based on the IP table information while forwarding non-

IP L2 frames based on the L2 table information that gets populated based on the L2 header

of IP packets.

7.4.3 Host Modifications

The QCN standard ambitiously targeted an ultra-fast reaction mechanism at the hosts in

order to promptly adjust the rates of the culprit flows at early onsets of congestion. More-

over, the rate recovery mechanism requires several timers that are best implemented in

2The worst case here is when as many packets as the capacity of the L2 table arrive with a different MAC

address each at the highest speed (i.e. from all ports). Conservatively assuming 100,000 L2 entries and a

16-port 40Gbps switch, with a 0.5KB average packet size, it is impossible that an L2 cached entry could be

evicted in less than 600µs from the time it was added, which is much more than the round-trip time in any

reasonably designed data center today.
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hardware for higher precision and lower overhead as opposed to their kernel-based counter-

part. It is generally desirable to implement QCN’s host-side mechanism entirely in hardware

as a rate-based scheme based on the following assumptions: (i) the number of concurrently

active flows at a host is small; (ii) sending a flow at the full line rate by default (instead of

TCP’s slow start) would help to minimize its completion time.

At the time, a hardware rate-limiter-based approach sounded reasonable given that

the kernel networking latency was still relatively slow and that NIC vendors were already

ramping up on better rate limiting designs and other advanced capabilities. The issue,

however, is that years after the QCN standard was standardized, network operators still

fear dealing with a complicated NIC that is not easy to configure (timers, byte counters,

jitter ranges, active-increase, and hyper-active-increase increments) and might require some

advanced congestion control understanding. In fact, we are not aware of any good QCN-

capable NIC in the market that provides the QCN implementation in hardware and that

scales well on rate limiting [168]. Sharing rate limiters across flows in an arbitrary random

way subjects flows to potentially severe head of line blocking effects: different flows are

exposed to different congestion signals and are essentially desired to send at different rates

depending on the paths they traverse.

Our take on the hardware rate-based approach is multifold. Our intuition is that QCN’s

main advantage is in providing a rich multi-bit feedback signal directly to end hosts. We

believe that other optimizations, such as packet-pacing at the host (being rate-based) or

timer-triggered fast rate recovery, can be removed to simplify the design, and more impor-

tantly, to avoid the dependency on a limited set of specific NICs. In §7.5 we also illustrate

why timers used in QCN rate control scheme are not necessary.

We next describe two use cases of our proposed changes to L2 QCN and host-side

processing on kernel: (a) QCN-CC - QCN based Congestion Control, and (b) QCN-LB -

QCN based Load Balancing. Note that, we did not make any attempts to optimize the

QCN-based schemes and rather modified new designs in the recent literature to highlight

the advantages of usign QCN as explicit congestion notification.
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7.4.4 QCN-Based Congestion Control

In this section we discuss QCN-CC , a window-based congestion control, that uses QCN

feedback to adjust the congestion window. QCN-CC preserves the core functionality of TCP

such as slow start, additive increase in congestion avoidance, and recovery from packet losses.

The key difference, however, is the way that cwnd is updated in response to congestion and

in recovery phase, which is inspired by the original QCN rate control algorithm.

Similar to rate-based QCN, QCN-CC maintain a target window, cwndT . When QCN-

CC receives a QCN feedback, it sets the cwndT to its current cwnd and reduces cwnd and

ssthresh in proportion to the QCN feedback as follows

cwndT ← cwnd (7.5)

cwnd← cwnd(1−Gd · Fb) (7.6)

We set the weighted-factor, Gd, such that cwnd is reduced by three-fourths of its current

value for the highest value of Fb.

Upon receiving a QCN congestion notification, QCN-CC enters the fast-recovery phase.

The fast-recovery phases is similar to BIC-TCP [224] and helps to recover cwnd, after

receiving a QCN feedback. Since QCN messages are received directly from the congestion

point, fast-recovery mechanism can avoid conservative cwnd selection. At the end of each

cycle of fast-recovery, when QCN-CC receives an ACK, it increases the cwnd exponentially

and sets the congestion window to

cwnd← cwnd+
cwndT − cwnd

2cwnd
(7.7)

After 5 cycles of fast-recovery, QCN-CC goes to active increase phase and increments

the cwnd similar to TCP Sack whenever it receives an ACK. We select a value of 5 for the

fast-recovery threshold based on in its counterpart in rate-based QCN which is proven to

perform well in practice. QCN-CC congestion control algorithm is described in Algorithm 5

in more details.
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Algorithm 5 QCN-CC algorithm outline

1: on QCN Feedback:

2: qcn fast recovery ← 0

3: target cwnd← cwnd

4: cwnd← cwnd× (1− Fb
2bits+1 )

5: ssthresh← ssthresh× (1− Fb
2bits+2 )

6: on ACK of new packet:

7: if qcn fast recovery ≥ 5 then

8: if cwnd < ssthresh then

9: cwnd← cwnd+ 1

10: else

11: cwnd← cwnd+ 1
cwnd

12: else

13: cwnd← cwnd+ (target cwnd−cwnd)
2×cwnd

14: qcn fast recovery + +

7.4.5 QCN-Based Load Balancing

We now describe QCN-LB , which is a simple host-based dynamic load balancer that uses

QCN congestion feedbacks to make routing decisions. We borrow the core functionality

of QCN-LB from FlowBender [121]. Similar to FlowBender, QCN-LB senses the extent

of the congestion on the current route and tries to reroute the traffic to avoid congested

or failed routes. The main difference between the two designs is that QCN-LB uses QCN

feedbacks to detect congestions, while FlowBender relies on ECN marks. Whenever, a

QCN congestion notification is received, QCN-LB checks the QCN feedback value and if

Fb exceeds a certain threshold T it marks the route as congested. QCN-LB only reroutes

the flow if the congestion is persistent, i. e. Fb exceeds the threshold for N consecutive

notifications. As suggested in [121], we use VLAN tags as simple mechanism for the hosts

to change the path of each flow. We refer the readers to [121, 190] to how the fabric and

hosts should be configured to enable host-based rerouting in the network.

Compared to FlowBender, QCN-LB benefits from a much faster reaction time to con-

gestion due to the direct QCN feedbacks. More importantly, QCN-LB can exploit the
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Algorithm 6 QCN-LB algorithm outline

1: num feedbacks← 0

2: on QCN Feedback:

3: F = Fb
2bits+1

4: if F ≥ T then

5: num feedbacks← num feedbacks+ 1

6: if num feedbacks ≥ N then

7: if qcn cp id 6= dst id then

8: Change V

9: num feedbacks← 0

information about the location of the bottleneck link in the feedbacks and avoid spurious

reroutes. In a common scenario in datacenters, in which the congestion happens at the

destination ToR, the bottleneck link cannot be avoided as all of the paths to the destina-

tion cross the congested link. In such scenarios, load balancers such as FlowBender would

actually hurt the performance due to excessive packet reordering as highlighted in §7.5.2.

QCN-LB , on the other hand, can check the source of the QCN notification and ignore the

message if it is from a destination ToR. Another advantages of QCN-LB is that it avoids

rerouting multiple large flows simultaneously since the QCN feedback messages for different

flows are naturally jittered due to sampling.

QCN-LB is fairly simple to tune and requires only configuring two parameters T and

N . In our evaluations, we observed that the QCN-LB performs well for wide range of T

between 2% to 20%. Further, we set N = 5 to prevent rerouting of small flows or flows with

smaller cwnd. Algorithm 6 describes the QCN-LB in more detail.

7.5 Evaluation

In this section, we evaluate the performance of our QCN-based designs for various network

functions, using extensive packet-level simulations in ns2 [25]. More specifically, we compare

the performance of QCN-LB (§7.4.5) and our QCN-based congestion control (§7.4.4) to

other state-of-the-art schemes. First, we illustrate the value of QCN feedback as a direct
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Figure 7.5: Fat-tree datacenter network topology.

congestion signal in load balancing as well as congestion control, using a series of micro-

benchmarks. We then evaluate QCN-CC ’s performance in a more realistic network running

mix of workloads observed in typical production deployments.

7.5.1 Methodology

Topology: We use the fat-tree network [136] shown in Figure 7.5 in our simulations. The

fabric interconnects 128 servers organized into four pods. Each pod consists of four aggre-

gation switches and four top-of-rack (ToR) switches. Aggregation switches are connected

to eight core switches resulting in a fabric with overall 4:1 oversubscription. Similar to

Google’s Jupiter architecture [192], the fabric is directly connected to the inter-cluster net-

working layer with an external cluster border router. Each pod is provided with a pool of

25% of aggregate intra-cluster bandwidth [192] for external connectivity.

We use 10Gbps point-to-point Ethernet links across our entire network. All the switches

in the topology have a per-port buffer capacity of 1MB. We also configure the host delay
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and intra-datacenter switching delay to be 1µs and 2µs, respectively. Thus, the minimum

RTT between two servers on different pods of a datacenter is 14µs. In order to incorporate

the effect of long RTT of inter-datacenter traffic, we set the propagation delay of the links

connecting hosts to the external switch to 10ms, resulting in RTT of roughly ∼ 20ms for

datacenter-edge traffic.

Workloads: We simulate empirical workloads based on observed distributions in produc-

tion data centers. In particular, we consider two flow size distributions from a cluster

running data-mining workload [96] and a Hadoop cluster [177]. Both of the flow size distri-

butions are heavy-tailed with majority of the flows being less than 10KB. The data-mining

workload is more skewed and hence, is easier to handle because it is less likely to have

multiple large flows competing for network resource concurrently.

We generate mix of inter- and intra-datacenter traffic with roughly 1:5 ratio similar to

Facebook’s production network [177]. In order to simulate the high utilization of the inter-

datacenter fabric, we generate competing traffic originating from the external hosts. We

keep the link utilization of the external links at about 80% [116]. For all our simulations,

we select the source-destination pairs uniformly across all of the hosts. Furthermore, we

use ECMP as our multipath routing scheme unless mentioned otherwise.

Performance evaluation: Similar to prior work [38, 42] we use average and tail Flow

Completion Time (FCT) as our metric to evaluate the performance of QCN-CC . We

compare QCN-CC to standard TCP, DCTCP [39], and DCQCN [232]. DCTCP leverages

ECN to convey congestion information to the end hosts and adjusts the congestion window

size based on the fraction of marked bytes. As WAN networks generally do not support

end-to-end ECN marking, we only enable ECN marking on intra-datacenter switches. 3

DCQCN [232] is another rate-based protocol that also relies on ECN marks. We adopt

DCQCN*, a window-based version of DCQCN to for our performance comparisons. In

DCQCN, the rate reduction mechanism is similar to DCTCP, while the rate recovery mech-

3We did evaluate with ECN enabled on all of the switches, end-to-end, and have found marking on the

inter-datacenter fabric to have almost no impact on our results, as most of the congestion happens locally

in the intra-datacenter fabric.
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anism is same as the QCN rate-based scheme. For DCQCN*, we keep the rate reduction

mechanism same as DCQCN, but we change the recovery mechanism to mimic that of

TCP-BIC. For similar reasons as discussed earlier when comparing QCN rate-based scheme

to QCN-CC, the performance of DCQCN and DCQCN* should be similar. We also eval-

uated the performance of QCN-CC against TIMELY [156]. Consistent with the findings

in [233], the performance of TIMELY was worse than DCQCN, and therefore, we have

omitted TIMELY’s results for the sake of brevity.

On the load balancing front, we compare QCN-LB ’s results to ECMP and FlowBen-

der [121]. ECMP is the natively supported load balancing mechanism on Ethernet switches

today, based on oblivious hashing, and FlowBender uses ECN marks to sense the congestion

on the path to destination to dynamically reroute connections at the roundtrip timescale.

Parameters: We use ns-2 FullTCP Sack implementation as our standard TCP protocol

and build other schemes on top of it. For DCTCP, we set the parameters as described in

[39]: (1) g, the factor for exponential weighted averaging, is set to 1
16 , and (2) K, the buffer

occupancy threshold for setting the CE-bit, is set to 90KB (typical for 10 Gbps links).

For a fair comparison, for QCN-based schemes, we set Qoff equal 90KB. All other TCP

functionalities are the same as in FullTCP Sack implementation.

For FlowBender, we use the settings suggested in [121]: (1) N , the number of congested

RTTs before a sender reroutes the traffic, is set to 1, and (2) T , the threshold for the

fraction of marked acks to consider a route as congested, is set to 5%. As recommended

in the paper, we put the connection in a locked state after 5 consecutive reroutes to avoid

excessive packet reordering.

An important factor in flow completion times is the Retransmission Timeout (RTO) of

TCP as dropped packets are retransmitted after expiration of an RTO. We use commonly

used RTO values for inter and intra datacenter traffic [206,229]. For intra-datacenter traffic,

we set the RTO value as 1ms. For inter-datacenter traffic, we use an RTO value of 100ms.
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Figure 7.6: CDF of individual flow rates with rate-based and Window-based QCN.

7.5.2 Benchmark

Window-based QCN: To compare QCN-CC to its rate-based counterpart as described

in [37], we simultaneously generate 50 large flows sharing a single bottleneck link and

measure the individual throughput. We repeat the same experiment with two different

RTTs i. e. 100 and 400µs. The CDF of the individual flow rates normalized by the median

throughput is shown in Figure 7.6. For a fair comparison, we show the results achieved by

rate-based QCN with and without the byte-counter to highlight its impact on the fairness

of QCN.

QCN-CC yields similar performance as the rate-based QCN congestion control without
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Figure 7.7: Normalized FCT of large transfers for various RTTs.
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Figure 7.8: Packet loss rate at the congestion point.

the byte counter. However, adding byte counter leads to significant unfairness, especially

at higher RTT values. The byte counter unfairly prioritizes flows with higher rates which

is well-known [120]. The window-based QCN-CC algorithm overcomes these issues.

Edge Caching: In order to illustrate the importance of direct feedback of QCN, we consider

a scenario in which the congestion happens at the edge of the network, which is common

for networks with edge caches for content delivery.
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Figure 7.9: Normalized average FCT. Error bars show the maximum and minimum completion

times.

To model such a scenario, we simulate a 20:1 incast with varying RTT between 20ms

to 80ms. We set the delay from the transmitters to the congestion point to 50µs. Each

sender, transmits large transfers of 50MB to a single host. Once each transfer is complete,

senders immediately initiate the next transfer. We run the simulation for 10,000 transfers

and compute the average and 99th percentile FCT. Figure 7.7 shows the results for QCN-

CC, DCTCP, and DCQCN*. The numbers are normalized by the FCT achieved by TCP-

DropTail . QCN-CC leads to almost 10% smaller average FCT and 20% smaller tail FCT

when compared to DCTCP and DCQCN. This is mostly due to roudtrip timescale reaction

of DCTCP and DCQCN* to the congestion, which is at order of tens of milliseconds. QCN-

CC, on the other hand, exploits the direct congestion feedback of QCN and reacts much

faster that other scheme. This also lowers the drop rate (< 1%) at the congestion points

(Figure 7.8).

Load balancing efficiency:
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We now show the benefits of QCN’s direct feedback in load balancing. We consider

a 4:1 oversubscribed leaf-spine topology with 8 spines switches. We simulate two different

scenarios to evaluate the performance of QCN-LB . In the first experiment, we generate large

transfers from servers in one rack destined to single host in another rack. In this scenario,

as congestion happens at the destination ToR, each flow always experiences congestion

regardless of the selected path by the load balancer. In fact, the dynamic reroutings by the

load balancer could actually hurt the performance of TCP due to packet re-ordering.

In the other experiment, servers in one rack, send large transfers to all the other servers.

Here, the congestion happens at the source ToR, and routing decisions by the load balancer

directly impact the flow completion times. As all flows are of equal size, more efficient load

balancer, improves both the average and the maximum flow completion times. Figure 7.9

shows the average flow completion time for the two experiments, comparing the performance

of ECMP, QCN-LB, and FlowBender. The error bars show the maximum and minimum

completion times. As shown in Figure 7.9(a), FlowBender performs slightly worse than

other schemes mostly due to spurious rerouting and packet-reordering, while QCN-LB does

not react to the QCN feedback from the destination ToR and avoids unnecessary reroutings.

In the second scenario (7.9(b)), QCN-LB , leads to 2x smaller flow completion times than

FlowBender, due to its fast reaction to congestion.

7.5.3 Overall Performance

In this section, we show the overall performance of QCN-CC in the network shown in Figure

7.5. We use two different realistic workloads with traffic scenarios where there is a mix of

intra- and inter-datacenter flows.

Figures 7.11 and 7.10 show the average completion times for intra-datacenter traffic

achieved by each scheme as the fabric load varies from 40% to 80% for the two workloads.

The results are obtained for simulations with more than 500,000 flows and normalized to

the FCT achieved with TCP-DropTail at 40% load. We break down the results for small

[0, 10KB], medium [10KB, 100KB], and large (> 100 KB) flows.

For the data-mining workload, QCN-CC achieves about 4−5× lower average FCT com-
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Figure 7.10: Average flow completion times for data mining workload. Numbers are normalized to

FCT achieved by TCP-DropTail at 40% load. Note that the range of the y-axis is different for (c).
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Figure 7.11: Average flow completion times for Facebook workload. Numbers are normalized to

FCT achieved by TCP-DropTail at 40% load.
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Figure 7.12: 99th percentile FCT for small intra-datacenter flows.

paring to TCP-DropTail for small and medium flows. Note that TCP-DropTail does not

appear in Figure 7.10 as its performance is outside the plotted range. As expected, DCTCP

and DCQCN* have comparable performance as they both use ECN as the congestion feed-

back. However, QCN-CC outperforms DCQCN, acheiving 30% lower average FCT across

all flow sizes at high load.

For the Facebook workload, the average flow completion times for QCN-CC are 4 −

5× smaller than TCP-DropTail for small flows. Similar to the other workload, QCN-

CC achieves 16− 31% lower average FCT comparing to DCTCP and 12− 24% lower than

DCQCN.

The benefits of QCN-CC are more apparent in the tail latencies of small flows. Figure

7.13 shows the 99.9 percentile of FCTs for small flows for the two workloads. For data-

mining workload, QCN-CC leads to 5×, 3.5×, and 2× lower tail latency at 80% fabric load

comparing to TCP-DropTail , DCTCP, and DCQCN, respectively. For Facebook workload,

QCN-CC outperforms DCQCN and achieves 50% lower tail latency at high load.

It is worth mentioning that QCN-CC significantly improves both average and tail la-
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Figure 7.13: Overall average FCT for inter-datacenter flows.

tencies of intra-datacenter flows, while improving the performance of the inter-datacenter

flows as well. Figures 7.13(a) and 7.13(b) show the overall average FCT for all the inter-

datacenter traffic for data-mining and Facebook workload, respectively. As it can be seen,

QCN-CC improves the overall average FCT by ∼ 10% comparing to other schemes. Note

that inter-datacenter FCTs do not vary much as we always maintain the link utilization

of the external links at 80% regardless of the intra-datacenter fabric load by generating

competing flows.
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This thesis presented novel systems and algorithms for wireless and datacenter networks

that enable and accelarate new applications. Below, we highlight general conclusions and

possible future directions.

Adaptive Wireless Multicast

In Chapters 2 and 3, we presented the design and large-scale experimental evaluation of the

AMuSe system for large scale content delivery via wireless multicast. AMuSe only needs

access to the channel quality measurements such as RSSI and Packet Delivery Ratio on

WiFi devices and can be implemented as an application layer protocol on existing devices.

Chapter 2 focussed on the AMuSe feedback scheme which provides a scalable and efficient

mechanism to monitor the quality of WiFi multicast services to a large group of users.

One of the key observations in our work is the presence of a few abnormal nodes, which

experience low service quality even at very low multicast transmission bitrate. Existing

feedback alternatives only allow tuning the network parameters for multicast according to

the weakest receiver, which results in low network utilization. AMuSe can overcome this

obstacle by collecting reports from a sufficient number of receivers.

In Chapter 3, we designed a novel multicast rate adaptation algorithm (MuDRA) that

utilizes the AMuSe feedback scheme to provide high throughput while satisfying service re-

quirements. The design of MuDRA is based on insights learned from extensive experimental

observations. MuDRA detects when the system operates at the target rate, which is the

optimal rate at which receivers MuDRA’s performance on the ORBIT testbed with hun-

dreds of nodes shows that it can reliably support applications such as large scale multimedia

content delivery.

In Chapter 4, we focused on dynamically tuning multicast transmission rate and video

rate for enhancing video QoE. We presented the DYVR-M and DYVR-A algorithms for

maximizing the video rate while ensuring low loss rate, buffer underflows, and video rate

switches. The DYVR algorithms do not require future estimates of channel state at the

receivers. They can be easily incorporated within existing ABR video streaming frame-

works and have low computational complexity. Our analysis shows that DYVR-M and
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DYVR-A can achieve average utility within an additive term O( 1
W ) of the optimal utility,

where W affects how closely the QoE constraints are satisfied. Extensive simulations and

experimental evaluations indicate that DYVR-M and DYVR-A outperform other video rate

adaptation algorithms such as BBA or PBA.

The QPRC and QARC problem formulations and the DYVR algorithms provide a flex-

ible method for network operators, video providers, or receivers to specify and meet their

QoE requirements. With new standards such as [114] enabling server-based push to clients

to alleviate network congestion, we believe that the presented architecture could provide a

way to exploit multicasting opportunities and improve video streaming performance over

wireless networks. In future work, we plan to conduct experimental evaluations with the

802.11n and 802.11ac standards which may provide enhanced performance. We also plan

to explore Scalable Video Coding (SVC) techniques and reformulate the video QoE opti-

mization problem for SVC.

In Chapter 5 we presented the Dynamic Monitoring (DyMo) system for large scale

monitoring of LTE eMBMS services, based on the concept of Stochastic Group Instructions.

Our extensive simulations show that DyMo achieves accurate, close to optimal, estimation

of the maximum SNR threshold so that only a small number of UEs (User Equipments) with

SNR below the threshold suffer from poor service. It can improve the spectral efficiency for

eMBMS operation while adding a low reporting overhead.

Some possible future directions include further optimizations of multicast rate adap-

tation algorithms distinguishing between losses due to channel conditions and collisions.

Moreoever, we will also consider evaluation of proposed ideas in AMuSe with the multicast

specifications in the new IEEE 802.11aa standard. We believe that techniques such as DyMo

are attractive monitoring for a variety of large scale wireless systems such as Machine-to-

Machine communications and Internet of Things (IoT) networks and our future work will

explore some of these directions.
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Datacenter Networks

In Chapter 6, we presented a unique hardware-software system architecture to integrate

circuit-based optical modules with datacenters’ Ethernet network. We developed an op-

tical multicast system, to enable efficient physical layer multicast through passive optical

splitters. It is built on a hybrid architecture that combines traditional electronic packet

switching with optical circuit switching networks. The optical space switch is the switching

fabric of the optical network and also the connectivity substrate of splitters. Network man-

agement and configurations are handled through a 3-layered SDN control plane. We built a

hardware prototype and developed a simulation environment to evaluate the performance

of the system.

Optical multicast delivers multicast flows to all receivers simultaneously irrespective of

the multicast group size, similar to IP multicast. However, optical multicast performs a

more efficient multicast in data centers since: (i) it is built on an optical circuit switch-

ing substrate with lower energy consumption than electronic packet switching, and (ii)

does not require applying complex configurations on all switches and routers to enable IP

multicast since multicast group management and tree formation is handled by the SDN

controller. Compared to application layer multicast using peer-to-peer methods, optical

multicast achieves considerably higher throughput for large range of flows sizes (up to 1.5

GB) with fixed, minimal connection overheads. Our future work includes enabling optical

multicast in an inter data center network to perform long-haul one-to-many virtual machine

migration and utilizing optical multicast system architecture to enable optical incast.

In Chapter 7, we recast L2 QCN, already commonly available on existing Ethernet

switching platforms, as an effective mechanism that is very powerful for better congestion

control and load balancing purposes in L3 networks. The proposed changes encompass (i)

simple switch configuration changes for enabling L2 learning that would suffice for properly

forwarding QCN’s feedback frames as well as (ii) straightforward TCP kernel changes for

processing the notification packets within the kernel. We dissect the various aspects of

QCN and retain those that are more critical for its performance, hence simplifying its
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deployability and configuration.

Our simulations, based on real world workloads, show that QCN-CC significantly re-

duces the average latency of short flows by at least 15% and tail latency by 2× when

compared to DCTCP and DCQCN. Moreover, our load balancing scheme QCN-LB takes

clear advantage of the congestion point location information piggybacked in the QCN signal

to avoid rerouting flows when rerouting can only hurt. Furthermore, QCN’s direct feedback

yields 2× smaller flow completion times for large flows as compared to FlowBender. While

we demonstrate QCN’s importance by showcasing its value via two simple congestion con-

trol and load balancing algorithms, there are other opportunities to design other schemes

that can further leverage the QCN feedback such as telemetric systems for datacenters.
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[90] A. Fréville, “The multidimensional 0–1 knapsack problem: An overview,” Eur. J.

Oper. Res., vol. 155, no. 1, pp. 1–21, 2004.

[91] L. Georgiadis, M. J. Neely, L. Tassiulas et al., “Resource allocation and cross-layer

control in wireless networks,” Foundations and Trends in Networking, vol. 1, no. 1,

pp. 1–144, 2006.

[92] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” SIGOPS Oper.

Syst. Rev., vol. 37, no. 5, pp. 29–43, 2003.

[93] P. Giaccone, E. Leonardi, and F. Neri, “On the interaction between TCP-like sources

and throughput-efficient scheduling policies,” Performance Evaluation, vol. 70, no. 4,

pp. 251–270, 2013.

[94] F. Gont, “Deprecation of ICMP source quench messages,” 2012.

[95] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: research

problems in data center networks,” SIGCOMM Comput. Commun. Rev., vol. 39,

no. 1, pp. 68–73, 2008.

[96] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,

P. Patel, and S. Sengupta, “Vl2: A scalable and flexible data center network,” in

Proc. ACM SIGCOMM’09, 2009.

[97] H. Gudmundsdottir, E. I. sgeirsson, M. H. L. Bodlaender, J. T. Foley, M. M. Halldrs-

son, and Y. Vigfusson, “Wireless scheduling algorithms in complex environments,” in

ACM MSWiM’14, 2014.

[98] S. K. S. Gupta, V. Shankar, and S. Lalwani, “Reliable multicast MAC protocol for

wireless LANs,” in IEEE ICC’03, 2003.

213



BIBLIOGRAPHY

[99] V. Gupta, C. Gutterman, Y. Bejerano, and G. Zussman, “Experimental evaluation of

large scale WiFi multicast rate control,” in Proc. IEEE INFOCOM’16, 2016.

[100] ——, “Experimental evaluation of large scale WiFi multicast rate control,” in

arXiv:1601.06425 [cs.NI], 2016.

[101] V. Gupta, Y. Bejerano, J. Ferragut, K. Guo, C. Gutterman, T. Nandagopal, and

G. Zussman, “Light-weight feedback mechanism for WiFi multicast to very large

groups experimental evaluation,” IEEE/ACM Trans. Netw., vol. 24, no. 6, pp. 3826–

3840, 2016.

[102] V. Gupta, R. Norwitz, S. Petridis, C. Gutterman, Y. Bejerano, and G. Zussman,

“Demo: WiFi multicast to very large groups experimentation on the ORBIT testbed,”

2015.

[103] ——, “Demo: AMuSe: Large-scale WiFi video distribution experimentation on the

ORBIT testbed,” in Proc. IEEE INFOCOM’16, 2016.

[104] V. Gupta, H. Pasandi, X. Lianghua, and G. Zussman, “Demo video for mobility

scenario,” 2017. [Online]. Available: https://goo.gl/MiOZvv

[105] ——, “QoE optimization for video streaming over wireless multicast (technical

report),” 2017. [Online]. Available: goo.gl/LQDwYY

[106] V. Gupta, L. Xu, B. Wu, C. Gutterman, Y. Bejerano, and G. Zussman, “Demo: Eval-

uating video delivery over wireless multicast,” in Proc. IEEE INFOCOM’17, 2017.

[107] N. Hajlaoui and I. Jabri, “On the performance of IEEE 802.11n protocol,” in ACM

WiNTECH’12, 2012.

[108] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Predictable 802.11 packet delivery

from wireless channel measurements,” in ACM SIGCOMM’10, 2010.

[109] ——, “Predictable 802.11 packet delivery from wireless channel measurements,” in

Proc. ACM SIGCOMM’10, 2010.

214

https://goo.gl/MiOZvv
goo.gl/LQDwYY


BIBLIOGRAPHY

[110] G. Holland, N. Vaidya, and P. Bahl, “A rate-adaptive MAC protocol for multi-hop

wireless networks,” in ACM MOBICOM’01, 2001.

[111] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wat-

tenhofer, “Achieving high utilization with software-driven WAN,” in Proc. ACM SIG-

COMM’13, 2013.

[112] H. Hu, X. Zhu, Y. Wang, R. Pan, J. Zhu, and F. Bonomi, “Proxy-based multi-stream

scalable video adaptation over wireless networks using subjective quality and rate

models,” IEEE Trans. Multimedia, vol. 15, no. 7, pp. 1638–1652, 2013.

[113] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A buffer-based

approach to rate adaptation: Evidence from a large video streaming service,” in Proc.

ACM SIGCOMM’15, 2015.

[114] R. Huysegems, J. van der Hooft, T. Bostoen, P. Rondao Alface, S. Petrangeli,

T. Wauters, and F. De Turck, “HTTP/2-based methods to improve the live expe-

rience of adaptive streaming,” in Proc. ACM MM’15, 2015.

[115] “IEEE draft standard for information technology telecommunications and informa-

tion exchange between systems local and metropolitan area networks - specific re-

quirements, part 11: Wireless LAN medium access control (MAC) and physical

layer (PHY) specifications - amendment: MAC enhancements for robust audio video

streaming,” IEEE, July 2011.

[116] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-

derer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-deployed software

defined WAN,” in Proc. ACM SIGCOMM’13, 2013.

[117] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and stability in

HTTP-based adaptive video streaming with festive,” in Proc. ACM CoNEXT’12,

2012.

215



BIBLIOGRAPHY

[118] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikan-

der, “LIPSIN: line speed publish/subscribe inter-networking,” in Proc. ACM SIG-

COMM’09, 2009.

[119] G. Judd, X. Wang, and P. Steenkiste, “Efficient channel-aware rate adaptation in

dynamic environments,” in ACM MobiSys’08, 2008.

[120] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar, “Af-qcn: Approxi-

mate fairness with quantized congestion notification for multi-tenanted data centers,”

in Proc. IEEE HOTI’10, 2010.

[121] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “Flowbender: Flow-level adap-

tive routing for improved latency and throughput in datacenter networks,” in Proc.

ACM CoNEXT’14, 2014.

[122] A. Kamerman and L. Montebani, “WaveLAN-ii: a high-performance wireless LAN

for the unlicensed band,” Bell Labs technical journal, vol. 2, no. 3, p. 118133, 1997.

[123] S. Kaul, M. Gruteser, and I. Seskar, “Creating wireless multi-hop topologies on space-

constrained indoor testbeds through noise injection,” in IEEE TRIDENTCOM’06,

2006.

[124] A. Kaya, D. Calin, and H. Viswanathan, “On the performance of stadium high density

carrier Wi-Fi enabled LTE small cell deployments,” in Proc. IEEE WCNC’15, 2015.

[125] G. Keiser, “FTTX concepts and applications,” John Wiley and Sons, 2006.

[126] A. A. Khalek, C. Caramanis, and R. W. Heath, “A cross-layer design for perceptual

optimization of H. 264/SVC with unequal error protection,” IEEE J. Sel. Areas in

Commun., vol. 30, no. 7, pp. 1157–1171, 2012.

[127] D. Kilper, K. Bergman, V. W. Chan, I. Monga, G. Porter, and K. Rauschenbach,

“Optical networks come of age,” Opt. Photon. News, vol. 25, no. 9, pp. 50–57, 2014.

216



BIBLIOGRAPHY

[128] J. Kim, S. Kim, S. Choi, and D. Qiao, “CARA: collision-aware rate adaptation for

IEEE 802.11 WLANs,” in IEEE INFOCOM’06, 2006.

[129] J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P.

Lichtenwalner, A. R. Papazian, R. E. Frahm, and J. V. Gates, “Training 1100 x 1100-

port MEMS-based optical crossconnect switches,” in Proc. OSA CLEO’04, 2004.

[130] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky,

and S. Uhlig, “Software-defined networking: A comprehensive survey,” ArXiv e-prints,

June 2014.

[131] J. K. Kuri and S. Kumar, “Reliable multicast in multi-access wireless LANs,”

ACM/Kluwer Wirel. Netw., vol. 7, pp. 359–369, 2001.

[132] M. Lacage, M. Manshaei, and T. Turletti, “IEEE 802.11 rate adaptation: a practical

approach,” in ACM MSWiM’04, 2004.

[133] C. Lai, D. Brunina, B. Buckley, C. Ware, W. Zhang, A. Garg, B. Jalali, and

K. Bergman, “First demonstration of a cross-layer enabled network node,” IEEE

J. Lightw. Technol., vol. 31, no. 9, pp. 1512–1525, May 2013.

[134] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst., vol. 16, no. 2,

pp. 133–169, May 1998.

[135] D. Lecompte and F. Gabin, “Evolved multimedia broadcast/multicast service (eM-

BMS) in LTE-advanced: overview and rel-11 enhancements,” IEEE Comm. Mag.,

vol. 50, no. 11, pp. 68–74, 2012.

[136] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient supercomput-

ing,” IEEE Trans. Comput., vol. 100, no. 10, pp. 892–901, 1985.

[137] R. Levy, “The complexity of reliable distributed storage,” PhD Thesis, EPFL, 2008.

[138] D. Li, Y. Li, J. Wu, S. Su, and J. Yu, “ESM: efficient and scalable data center multicast

routing,” IEEE/ACM Trans. Netw., vol. 20, no. 3, pp. 944–955, 2012.

217



BIBLIOGRAPHY

[139] P. Li, H. Zhang, B. Zhao, and S. Rangarajan, “Scalable video multicast with joint

layer resource allocation in broadband wireless networks,” in Proc. IEEE ICNP’10,

2010.

[140] X. Li and M. J. Freedman, “Scaling IP multicast on datacenter topologies.” in Proc.

ACM CoNEXT’13, 2013.

[141] Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers

or nanofibers,” Opt. Lett., vol. 33, no. 4, pp. 303–305, Feb. 2008.

[142] Z. Li and T. Herfet, “HLBP: a hybrid leader based protocol for MAC layer multicast

error control in wireless LANs,” in IEEE GLOBECOM’08, 2008.

[143] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran, “Probe and

adapt: Rate adaptation for HTTP video streaming at scale,” IEEE J. Sel. Areas in

Commun., vol. 32, no. 4, pp. 719–733, 2014.

[144] W.-S. Lim, D.-W. Kim, and Y.-J. Suh, “Design of efficient multicast protocol for

IEEE 802.11n WLANs and cross-layer optimization for scalable video streaming,”

IEEE Trans. Mobile Comput., vol. 11, no. 5, pp. 780 –792, 2012.

[145] K. Lin, W. Shen, C. Hsu, and C. Chou, “Quality-differentiated video multicast in

multi-rate wireless networks,” IEEE Trans. Mobile Comput., vol. 12, no. 1, pp. 21–

34, January 2013.

[146] Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time- and

Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-

Generation PON Stage 2 (NG-PON2),” IEEE J. Lightw. Technol, vol. 31, no. 4, pp.

587–593, Feb. 2013.

[147] X. Ma and G.-S. Kuo, “Optical switching technology comparison: optical MEMS vs.

other technologies,” IEEE Commun. Mag., vol. 41, no. 11, pp. 16–23, Nov. 2003.

[148] W. Mach and E. Schikuta, “Parallel database join operations in heterogeneous grids,”

in Proc. PDCAT’07, 2007.

218



BIBLIOGRAPHY

[149] P. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring paxos: A high-throughput

atomic broadcast protocol,” in Proc. IEEE/IFIP DSN’10, 2010.

[150] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz,

“Simple heuristics for unit disk graphs,” Networks, vol. 25, pp. 59–68, 1995. [Online].

Available: citeseer.nj.nec.com/marathe95simple.html

[151] H. McBride and H. Liu, “Multicast in the data center overview,” IETF, Internet

Draft, 2012.

[152] M. McBride and C. Perkins, “Multicast WiFi problem statement,” Work-

ing Draft, IETF Internet-Draft, 2015, http://www.ietf.org/internet-drafts/

draft-mcbride-mboned-wifi-mcast-problem-statement-00.txt.

[153] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “Openflow: Enabling innovation in campus networks,”

SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008.

[154] L. Militano, D. Niyato, M. Condoluci, G. Araniti, A. Iera, and G. M. Bisci, “Ra-

dio resource management for group-oriented services in LTE-A,” IEEE Trans. Veh.

Technol., vol. 64, no. 8, pp. 3725–3739, 2015.

[155] P. Mirowski, H. Steck, P. Whiting, R. Palaniappan, M. MacDonald, and T. K. Ho,

“KL-divergence kernel regression for non gaussian fingerprint based localization,” in

IPIN’11, 2011.

[156] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat, Y. Wang,

D. Wetherall, D. Zats et al., “TIMELY: RTT-based congestion control for the data-

center,” in Proc. ACM SIGCOMM’15, 2015.

[157] R. K. Mok, X. Luo, E. W. Chan, and R. K. Chang, “QDASH: a QoE-aware DASH

system,” in Proc. ACM MMSys’12, 2012.

219

citeseer.nj.nec.com/marathe95simple.html
http://www.ietf.org/internet-drafts/draft-mcbride-mboned-wifi-mcast-problem-statement-00.txt
http://www.ietf.org/internet-drafts/draft-mcbride-mboned-wifi-mcast-problem-statement-00.txt


BIBLIOGRAPHY

[158] M. J. Neely, “Stochastic network optimization with application to communication and

queueing systems,” Synthesis Lectures on Communication Networks, vol. 3, no. 1, pp.

1–211, 2010.

[159] A. B. Owen, Monte Carlo theory, methods and examples, 2013.

[160] Q. Pang, V. Leung, and S. Liew, “A rate adaptation algorithm for IEEE 802.11

WLANs based on MAC-layer loss differentiation,” in IEEE BroadNets’06, 2006.

[161] K. Papagiannaki, M. Yarvis, and W. S. Conner, “Experimental characterization of

home wireless networks and design implications,” in IEEE INFOCOM’06, 2006.

[162] E. Park, S. Han, H. Kim, K. Son, and L. Jing, “Efficient multicast video streaming

for IPTV service over WLAN using CC-FEC,” in IEEE ICICSE’08, 2008.

[163] Y. Park, C. Jo, S. Yun, and H. Kim, “Multi-room IPTV delivery through pseudo-

broadcast over IEEE 802.11 links,” in IEEE VTC’10, 2010.

[164] K. Pelechrinis, T. Salonidis, H. Lundgren, and N. Vaidya, “Experimental characteri-

zation of 802.11n link quality at high rates,” in ACM WiNTECH’10, 2010.

[165] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fastpass: A

centralized zero-queue datacenter network,” in Proc. ACM SIGCOMM’14, 2014.

[166] B. Quinn and K. Almeroth, “IP multicast applications: Challenges and solutions,”

IETF, Internet Draft, 2001.

[167] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan, “TCP fast open,”

in Proc. ACM CoNEXT’11, 2011.

[168] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter, and A. Vahdat,

“SENIC: Scalable NIC for end-host rate limiting.” in Proc. USENIX NSDI’14, 2014.

[169] B. Radunovic, A. Proutiere, D. Gunawardena, and P. Key, “Dynamic channel, rate

selection and scheduling for white spaces,” in ACM CONEXT’11, 2011.

220



BIBLIOGRAPHY

[170] H. Rahul, F. Edalat, D. Katabi, and C. Sodinii, “Frequency-aware rate adaptation

and MAC protocols,” in ACM MOBICOM’09, 2009.

[171] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley, “Im-

proving datacenter performance and robustness with multipath TCP,” in Proc. ACM

SIGCOMM’11, 2011.

[172] T. S. Rappaport, Wireless Communication Principle and Practice, 2nd edition. Pren-

tice Hall, 2002.

[173] S. Rayanchu, A. Mishra, D. Agrawal, S. Saha, and S. Banerjee, “Diagnosing wire-

less packet losses in 802.11: Separating collision from weak signal,” in IEEE INFO-

COM’08, 2008.

[174] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, “Measurement-

based models of delivery and interference in static wireless networks,” in Proc. ACM

SIGCOMM’06, 2006.

[175] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the levy-walk nature

of human mobility,” IEEE Trans. Netw., vol. 19, no. 3, pp. 630–643, 2011.

[176] G. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,”

IEEE Network, vol. 1, no. 17, pp. 60–65, 2013.

[177] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social network’s

(datacenter) network,” in Proc. ACM SIGCOMM’15, 2015.

[178] L. H. Sahasrabuddhe and B. Mukherjee, “Light trees: optical multicasting for im-

proved performance in wavelength routed networks,” IEEE Commun. Mag., vol. 37,

no. 2, pp. 67–73, 1999.

[179] P. Salvador, L. Cominardi, F. Gringoli, and P. Serrano, “A first implementation and

evaluation of the IEEE 802.11 aa group addressed transmission service,” ACM SIG-

COMM Comp. Comm. Rev., vol. 44, no. 1, pp. 35–41, 2013.

221



BIBLIOGRAPHY

[180] P. Samadi, J. Xu, and K. Bergman, “Virtual machine migration over optical circuit

switching network in a converged inter/intra data center architecture,” in Proc. OSA

OFC’15, 2015.

[181] P. Samadi, V. Gupta, B. Birand, H. Wang, G. Zussman, and K. Bergman, “Poster:

Accelerating incast and multicast traffic delivery for data-intensive applications using

physical layer optics,” in Proc. SIGCOMM’14, 2014.

[182] ——, “Software-addressable optical accelerators for data-intensive applications in

cluster-computing platforms,” in Proc. ECOC’14, 2014.

[183] P. Samadi, V. Gupta, J. Xu, H. Wang, G. Zussman, and K. Bergman, “Optical

multicast system for data center networks,” Optics Express, vol. 23, no. 17, pp. 22 162–

22 180, 2015.

[184] N. Sambo, G. Meloni, G. Berrettini, F. Paolucci, A. Malacarne, A. Bogoni, F. Cug-

ini, L. Poti, and P. Castoldi, “Demonstration of data and control plane for optical

multicast at 100 and 200 gb/s with and without frequency conversion,” IEEE J. Opt.

Commun. Netw., vol. 5, no. 7, pp. 667–676, 2013.

[185] S. Sanfilippo and P. Noordhuis, “Redis,” http://redis.io.

[186] S. Scellato, I. Leontiadis, C. Mascolo, P. Basu, and M. Zafer, “Evaluating temporal

robustness of mobile networks,” IEEE Trans. Mobile Comput., vol. 12, no. 1, pp.

105–117, 2013.

[187] S. Sen, N. K. Madabhushi, and S. Banerjee, “Scalable WiFi media delivery through

adaptive broadcasts,” in Proc. USENIX NSDI’10, 2010.

[188] Y. Seok and Y. Choi, “Efficient multicast supporting in multi-rate wireless local area

networks,” in IEEE ICOIN’03, 2003.

[189] V. Sgardoni, M. Sarafianou, P. Ferre, A. Nix, and D. Bull, “Robust video broadcasting

over 802.11a/g in time-correlated fading channels,” IEEE Trans. Consum. Electron.,

vol. 55, no. 1, pp. 69–76, 2009.

222

http://redis.io


BIBLIOGRAPHY

[190] M. Sharif and A. Kabbani, “Flicr: Flow-level congestion-aware routing for direct-

connect data centers,” in Proc. INFOCOM’17, 2017.

[191] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts, Sixth

Edition. McGraw-Hill, 2010.

[192] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving,

G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda,

J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos

topologies and centralized control in google’s datacenter network,” in Proc. ACM

SIGCOMM’15, 2015.

[193] R. Sivaraj, A. Pande, and P. Mohapatra, “Spectrum-aware radio resource manage-

ment for scalable video multicast in LTE-advanced systems,” in Proc. IFIP Network-

ing’13, 2013.

[194] M. R. Souryal, L. Klein-Berndt, L. E. Miller, and N. Moayeri, “Link assessment in an

indoor 802.11 network,” in IEEE WCNC’06, 2006.

[195] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: near-optimal bitrate adap-

tation for online videos,” in Proc. IEEE INCOFOM’16, 2016.

[196] V. Srinivas and L. Ruan, “An efficient reliable multicast protocol for 802.11-based

wireless LANs,” in IEEE WoWMoM’09, 2009.

[197] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter, “Practical

DCB for improved data center networks,” in Proc. IEEE INFOCOM’14, 2014.

[198] A. Sugita, A. Kaneko, and M. Itoh, “Planar lightwave circuit,” US Patent 6304706,

Oct. 2001.

[199] M.-T. Sun, L. Huang, A. Arora, and T.-H. Lai, “Reliable MAC layer multicast in

IEEE 802.11 wireless networks,” in IEEE ICPP’02, 2002.

223



BIBLIOGRAPHY

[200] H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wave-

length division multi/demultiplexer with nanometre resolution,” IEEE Electron. Lett.,

vol. 26, no. 2, pp. 87–88, 1990.

[201] Y. Tanigawa, K. Yasukawa, and K. Yamaoka, “Transparent unicast translation to

improve quality of multicast over wireless LAN,” in IEEE CCNC’10, 2010.

[202] G. Tian and Y. Liu, “Towards agile and smooth video adaptation in dynamic http

streaming,” in ACM CONEXT’12, 2012.

[203] ——, “Towards agile and smooth video adaptation in dynamic http streaming,” in

Proc. ACM CoNEXT’12, 2012.

[204] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter tcp (d2tcp),”

in Proc. ACM SIGCOMM’12, 2012.

[205] A. W. Van der Vaart, Asymptotic statistics. Cambridge university press, 2000.

[206] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger,

G. A. Gibson, and B. Mueller, “Safe and effective fine-grained TCP retransmissions

for datacenter communication,” in Proc. ACM SIGCOMM’09, 2009.

[207] J. Vella and S. Zammit, “A survey of multicasting over wireless access networks,”

IEEE Commun. Surveys Tuts., vol. 15, no. 2, pp. 718–753, 2013.

[208] J. Villalon, P. Cuenca, L. Orozco-Barbosa, Y. Seok, and T. Turletti, “Cross-layer

architecture for adaptive video multicast streaming over multirate wireless LANs,”

IEEE J. Sel. Areas Commun., vol. 25, no. 4, pp. 699 –711, 2007.

[209] A. Vlavianos, L. Law, I. Broustis, S. Krishnamurthy, and M. Faloutsos, “Assessing

link quality in ieee 802.11 wireless networks: Which is the right metric?” in IEEE

PIMRC’08, 2008.

[210] K. N. D. Vukobratovic, “A survey on application layer forward error correction codes

for IP datacasting in DVB-H,” in 3rd COST 2100 MCM, 2007.

224



BIBLIOGRAPHY

[211] M. Vutukuru, H. Balakrishnan, and K. Jamieson, “Cross-layer wireless bit rate adap-

tation,” in ACM SIGCOMM’09, 2009.

[212] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. E. Ng, M. Kozuch, and

M. Ryan, “c-through: Part-time optics in data centers,” in Proc. ACM SIGCOMM’10,

2010.

[213] H. Wang, Y. Xia, K. Bergman, T. E. Ng, S. Sahu, and K. Sripanidkulchai, “Rethinking

the physical layer of data center networks of the next decade: Using optics to enable

efficient *-cast connectivity,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 3, pp.

52–58, 2013.

[214] X. Wang, L. Wang, Y. Wang, and D. Gu, “Reliable multicast mechanism in WLAN

with extended implicit MAC acknowledgment,” in IEEE VTC’08, 2008.

[215] X. Wang, L. Wang, Y. Wang, Y. Zhang, and A. Yamada, “Supporting MAC layer

multicast in IEEE 802.11n: Issues and solutions,” in IEEE WCNC’09, 2009.

[216] X. Wang, J. Chen, A. Dutta, and M. Chiang, “Adaptive video streaming over whites-

pace: SVC for 3-tiered spectrum sharing,” in IEEE INFOCOM’15, 2015.

[217] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn, “Ceph: A

scalable, high-performance distributed file system,” in Proc. USENIX OSDI’06, 2006.

[218] T. White, “Hadoop: the definitive guide,” O’Reilly Media Inc., 2009.

[219] S. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation for 802.11

wireless networks,” in ACM MOBICOM’06, 2006.

[220] F. Wu, Y. Yang, O. Zhang, K. Srinivasan, and N. B. Shroff, “Anonymous-query based

rate control for wireless multicast: Approaching optimality with constant feedback,”

in Proc. ACM MOBIHOC ’16, 2016.

225



BIBLIOGRAPHY

[221] M. Wu, S. Makharia, H. Liu, D. Li, and S. Mathur, “IPTV multicast over wireless LAN

using merged hybrid ARQ with staggered adaptive FEC,” IEEE Trans. Broadcast.,

vol. 55, no. 2, pp. 363 –374, 2009.

[222] S. Xiang, L. Cai, and J. Pan, “Adaptive scalable video streaming in wireless networks,”

in Proc. ACM MMSys’12, 2012.

[223] X. Xie, X. Zhang, S. Kumar, and L. E. Li, “Pistream: Physical layer informed adaptive

video streaming over lte,” in Proc. ACM MobiCom’15, 2015.

[224] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control (BIC) for fast

long-distance networks,” in Proc. IEEE INFOCOM’04, 2004.

[225] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach for dy-

namic adaptive video streaming over HTTP,” in Proc. ACM CoNEXT’15. ACM,

2015.

[226] J. Yoon, H. Zhang, S. Banerjee, and S. Rangarajan, “MuVi: A multicast video delivery

scheme for 4G cellular networks,” in Proc. ACM MobiCom’12, 2012.

[227] A. H. Zahran, J. Quinlan, D. Raca, C. J. Sreenan, E. Halepovic, R. K. Sinha, R. Jana,

and V. Gopalakrishnan, “Oscar: an optimized stall-cautious adaptive bitrate stream-

ing algorithm for mobile networks,” in Proc. ACM MoVID’16, 2016.

[228] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail: reducing the flow

completion time tail in datacenter networks,” in Proc. ACM SIGCOMM’12, 2012.

[229] D. Zats, A. P. Iyer, G. Ananthanarayanan, R. Agarwal, R. Katz, I. Stoica, and A. Vah-

dat, “FastLane: making short flows shorter with agile drop notification,” in Proc.

ACM SoCC’15, 2015.

[230] Y. Zhang and N. Ansari, “On mitigating TCP incast in data center networks,” in

Proc. IEEE INFOCOM’11, 2011.

226



BIBLIOGRAPHY

[231] K. Zheng, F. Liu, L. Lei, C. Lin, and Y. Jiang, “Stochastic performance analysis of

a wireless finite-state markov channel,” IEEE Trans. on Wireless Commun., vol. 12,

no. 2, pp. 782–793, 2013.

[232] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S. Raindel,

M. H. Yahia, and M. Zhang, “Congestion control for large-scale RDMA deployments,”

in Proc. ACM SIGCOMM’15, 2015.

[233] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “Ecn or delay: Lessons learnt from

analysis of DCQCN and TIMELY,” in Proc. ACM CoNEXT’16, 2016.

[234] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin, J. Rex-

ford, and R. K. Sinha, “Can accurate predictions improve video streaming in cellular

networks?” in Proc. ACM HotMobile’15, 2015.

227


	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Contributions
	1.3 Contributions to Literature

	I Adaptive Multicast Services
	2 LIGHT-WEIGHT FEEDBACK FOR WIRELESS MULTICAST
	2.1 Introduction
	2.2 Related work
	2.3 Network Setting
	2.4 Objective
	2.5 The AMuSe Feedback Mechanism
	2.6 Experimental Evaluation of Testbed Environment
	2.7 Feedback Node Selection
	2.A Proof of Proposition 1

	3 MULTICAST DYNAMIC RATE ADAPTATION
	3.1 Introduction
	3.2 Related Work
	3.3 Testbed and Key Observations
	3.4 Network Model and Objective
	3.5 Multicast Rate Adaptation
	3.6 Reporting Interval Duration
	3.7 Experimental Evaluation
	3.8 Demonstration Application

	4 OPTIMIZING VIDEO QoE FOR MULTICAST STREAMING
	4.1 Introduction
	4.2 Related Work
	4.3 Model and Problem Formulation
	4.4 Online Transmission and Video Rate Adaptation
	4.5 Numerical Evaluations
	4.6 Implementation and Experimental Evaluation

	5 DYNAMIC MONITORING OF LARGE SCALE LTE-eMBMS
	5.1 Introduction
	5.2 Related Work
	5.3 Model and Objective
	5.4 The DyMo System
	5.5 Algorithms for SNR Threshold Estimation
	5.6 Performance Evaluation
	5.7 Conclusion


	II Datacenter Networks
	6 OPTICAL MULTICAST FOR DATACENTER NETWORKS
	6.1 Introduction
	6.2 Architecture and implementation
	6.3 Control plane evaluation
	6.4 System evaluation
	6.5 Paxos with optical multicast
	6.6 Optical incast

	7 QCN BASED DATACENTER CONGESTION CONTROL
	7.1 Introduction
	7.2 Related Work
	7.3 Background
	7.4 Design
	7.5 Evaluation


	III Conclusions
	IV Bibliography

