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Abstract 

Heterogeneous distributed applications deployed on different networks may have variable 

network throughput requirements during their lifetime frequently swapping between 

underloaded and overloaded situations. This study proposes a model for on-demand 

capacity sharing among networks allowing their sizes to adapt based on their workload 

fluctuations. Its aim is to keep all nodes normally loaded and reduce the messaging cost 

of deployed applications and focuses on those with highly dynamic workload fluctuations, 

bursts of traffic and/or massive node failure rates. 

Conceptual migration of capacity from one network to another may improve spare 

capacity utilization and network reliability even in high workload situations. Hoverlay is 

the proposed two-tier Unstructured P2P management architecture which realises capac­

ity sharing between networks in three steps: publishing, discovery, and commissioning 

of capacity. While the first two refer to capacity publishing and discovery mechanisms 

the last one fetches and commissions it to the requesting network. This architecture 

facilitates the cooperation of heterogeneous networks each of which is represented by a 

single server on an interconnected server overlay. 

The second contribution of this thesis is the proposed search mechanisms "Stalkers" 

deployed on Hoverlay to support the intermittent behaviour of service capacity. The 

idea behind this is the use offresh and/or incoming server-to-server links so that queries 

can trace resource migrations. There are three variations of this technique: k-Stalkers, 

FireStalkers and FloodStalkers aiming at improving number of messages, query latency 

and success rate. 

A number of experiments were carried out and showed that Hoverlay increases node 

utilization and allows the underlying network to resize based on its workload. Node 

(capacity) migration between networks saves the overlay from multiple queries and in­

creases query success rate reducing its average latency if compared to the competitive 

Flock of Condors system. A number of experiments to evaluate Stalkers mechanisms 

showed that all the three variations of Stalkers achieve their aim in environments of 

highly dynamic resources such as Hoverlay. They outperform Flooding and k-Walkers 

in success rate and latency keeping the number of messages relatively low. The thesis 

concludes with its findings and contributions as well as proposals for further work. 
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~1 
Introd uction 

As a plethora of various distributed applications emerge, new computing platforms are 

necessary to support their extra and sometimes evolving requirements. Symmetrically, 

more powerful and diverse platforms provide material and motivation for new ideas 

and applications. This research derives its motive from deficiencies of real networked 

applications deployed on platforms unable to fully support their characteristics and 

proposes a network architecture to address that issue. Falling into the area of distributed 

computing, it focuses on sharing non-replicable intermittent resources over large-scale 

and volatile decentralised heterogeneous and multi-administrative environments utilising 

low cost, in installation and maintenance, platforms. 

The throughput requirements of an application may largely vary over time and, thus, 

abruptly overwhelm the network with messages (overloaded situation) that an existing 

infrastructure could be unable to handle. This phenomenon may introduce delays in 

network responsiveness and deterioration of deployed services quality. On the contrary, 

low traffic leaves network resources under-utilised thus reducing their profitability (un­

derloaded situation). In certain cases, services provided by two different networks may 

be in competition. That is, while one of them experiences high load, the other may keep 

all the equipment fully functional even if underutilised. Existing architectures try to 

improve the performance of a distributed application assuming that required resources 

a) are locally available, b) can perform as expected under well-defined conditions and/or 

c) rely on successful management. Distributed application architectures deployed on un­

reliable nodes usually focus on computationally heavy tasks and introduce redundancy 

on well-selected nodes to ensure task completion and load-balancing. 

Transfer of spare capacity from an underloaded network to an overloaded one can 

be profitable for both networks. This thesis presents Hoverlay, a novel interconnec­

tion platform of different networks which provides appropriate mechanisms for sharing, 

discovering and exchanging of nodes on demand. Its design respects a potential het­

erogeneity of nodes and their ownership, takes over their management and aims at fast 

discovery at low cost. It is a network topology adaptation and resource discovery issue 

approached with logical movement of appropriate nodes from providing to requesting 

systems so that highly demanding areas of the network are quickly satisfied. 
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2 CHAPTER 1. INTRODUCTION 

Its predecessor, G-ROME [42], was a more application-specific architecture based on 

the same idea of nodes migrating between networks to relieve workload bursts. How­

ever, G-ROME had a set of weaknesses largely addressed by CSOA (Capacity Sharing 

Overlay Architecture) described in [40]). This thesis presents a more complete view of 

CSOA and renames it with a more unique name Hoverlay. Its name is an indication 

of its functionality: "proceed through an area in search of a prey or quarry" 1. It is an 

unstructured peer-to-peer (P2P) network built on top of other underlying ones which 

uses Stalkers distributed algorithms to locate resources; CSOA was not using specially 

designed search algorithms optimized for such environments. 

Its business applicability may vary depending on the diversification and lifetime of 

services sought by requestors. Hoverlay design eases the support of short-term trans­

actions between a variety of heterogeneous services. For instance, it is an architecture 

suitable for networked applications involving a collection of services, not necessarily the 

same, created to complete a single task; its lifetime coincides with that of the task it 

processes. 

1.1 Defining Service Capacity 

In the context of large-scale resource sharing, a resource, according to Vanthournout 

et al. [102], "is any source of supply, support, or aid that a component in a networked 

environment can readily draw upon when needed". Yang et al. [107], define service 

capacity as a resource that represents the throughput of the network (the number of 

served requests per peer) in peer-to-peer file sharing environments where processing is 

not the predominant shared resource. They distinguish the aggregate upload from aggre­

gate download service capacity with the former being "the overall achievable throughput 

the system can offer to downloading peers interested in a given document" while "the 

average download throughput achieved per peer, which might be roughly estimated as 

the aggregated upload service capacity normalized by the number of downloading peers" 

being the latter. Others (i.e. [54]), use just the term throughput as the aggregate down­

load rate of file-sharing peer-to-peer applications. Both of these definitions assume that 

processing requirements are much less compared to bandwith ones. 

In this research, service capacity refers to a more generalised context (not only file 

sharing) and is closely connected to the throughput of a network. In high load situations, 

more nodes able to receive, process and respond to requests are necessary to handle 

part of that load. Thus, a definition of service capacity that could fit in that networked 

environment would be the following: service capacity is the number of requests a node 

can receive, process and respond within a time unit. However, this definition, though 

comprehensive, is not normalised; network bandwidth measurements can be relatively 

objective but measuring CPU performance cannot rely solely (if at all) on its clock 

speed. Nodes with similar CPU clock may vary in their CPU performance but it gives 

a rough idea of its capabilities. With the aim of supporting networked applications 

1 stalk. Dictionary.com. Dictionary.com Unabridged (v 1.1). Random House, Inc. 
http://dictionarveryfrequently y.reference.com/browse/stalk (accessed: November 06, 2008). 
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and their traffic, the proposed architecture assumes that bandwidth throughput is more 

important than CPU and that most modern CPU architectures can efficiently handle 

those applications. Therefore, service capacity is represented as a tuple of bandwidth 

and CPU throughput in kbits-per-second (kbps) and million cydes-per-second (MHz), 

respectively. 

This definition helps the classification of nodes based on their current load. An 

overloaded node receives more requests for service capacity than it can handle whereas 

an underloaded one has almost all its capacity unoccupied. Normally loaded nodes 

are able to serve current load without any extra remote help but keeping their service 

capacity busy. A whole network is overloaded if one or more nodes are overloaded but 

there are not any underloaded ones to take on their excessive load and underloaded if 

the other way round. On any other condition, it is normally loaded. Networks can 

be in any of these conditions irrespective of the relation between their global load and 

capacity. For instance, a network with a single overloaded and all the remaining normally 

loaded nodes remains overloaded though its excess workload could be split among others 

without overloading them. Resources can take over extra capacity via Hoverlay only if 

underloaded. Nodes monitor their service capacity and detect their load status based 

on upper and lower thresholds set by their administrators. 

The availability of service capacity depends not only on node failures but its usage, 

too. It is a resource that cannot exist in replicas and allows a single task at a time 

to access and use it; busy capacity is unavailable. As global workload increases within 

a system, the available service capacity becomes scarcer. Assuming, without loss of 

generality, that a node provides a single and unified portion of its service capacity, node 

and service capacity may be used interchangeably this point onwards. 

1.2 Research Question 

Under certain conditions, some nodes may have to serve traffic that exceeds their ser­

vice capacity. Even if it is optimally used and the load uniformely distributed among 

nodes, new capacity becomes crucial in case this traffic continues to grow. Though 

all the resources within an organisation are well administered, they are limited; new 

investements are required to serve excessive load produced either by internal or exter­

nal users. On the contrary, remote outer-organizational resources may be insufficiently 

maintained and administered but enough to serve extra workload. The problem ad­

dressed in this thesis is three-faceted: publication, discovery and commission of 

service capacity. Publication refers to resource representation and advertising, discovery 

relates with mechanisms deployed for locating resources and commission embody ca­

pacity migration from providing to requesting environments and the ways that capacity 

may be used. Therefore, the research question of this thesis is the following: 

How can remote service capacity efficiently relieve on demand overloaded 

network nodes given its highly intermittent availability? 



4 CHAPTER 1. INTRODUCTION 

While High Throughput Computing (HTC) platforms and Grids have high opera­

tional and maintenance costs, existing Peer-to-Peer (P2P) architectures are designed 

and built to support a limited set of applications. Many Grid and HTC systems are 

mature technologies that realise efficient resource sharing but require well administered 

and maintained resources, they have weak scaling properties and/or are not resilient 

to intermittent behaviour of the nodes [62], [76J. P2P Networks can continue working 

properly even if some of their nodes experience frequent failures (fault-tolerance). They 

are networks built to support a specific application that can easily scale from small to 

large sizes sharing among nodes the cost of deploying such an application. Currently, a 

small range of P2P applications are supported concerning mainly content management 

(file sharing), parallel processing independent tasks and collaborative applications (in­

stant messaging, VoIP, office applications, limited support on P2P Gaming) [78J. This 

research tries to relax scalability and applicability constraints of Grids and P2P Systems. 

Unlike a P2P system, a Grid can support a variety of different applications but is not 

as scalable as a P2P network. Grids facilitate this diversification of deployed applications 

due to their generic advertisements of their resources and to their job submission services. 

In P2P networks there is no clear differentiation between the application and network 

configuration; the deployed application is a distributed algorithm dedicated to configure 

and manage the network. Hoverlay focuses on networked applications (e.g. P2P) and 

the load they produce rather than, though without precluding, heavy computational 

tasks. Service capacity is an appropriate resource for supporting such applications as it 

allows addressing their load via a job submission toolkit. For instance, if a P2P appli­

cation is heavily loaded, fresh capacity may join its network by running its client piece 

of software. This resource exchange between different environments demands support 

of node heterogeneity for two reasons: a) shared service capacity is not fixed or guar­

anteed and the node providing it may have completely different specification compared 

to others, b) does not come from a similar environment (may have previously served a 

completely different application) as that of its requestor. Therefore, any system used 

to share such resources should be designed assuming certain specification of nodes, be­

havioural patterns of their users, well defined fixed and guaranteed capacity or specific 

characteristics of applications they served in the past. 

A distributed application may experience traffic bursts due to sudden users' unex­

pected behaviour. An extensive survey from Streamcheck Research revealed that an 

increasing number of video streaming providers suffer from flash crowds especially in 

peak hours [1]. For instance, in top news providers like CNN, MSNBC and ABC, be­

cause of traffic bursts, the "breaking stories are often unreachable during peak viewing 

hours" and the users experience content outages and longer startup times. BBC an­

nounced that on 7th July 2002 the download time of webpages was eight times longer, 

a quarter of requests for webpages were not served and .. email traffic reportedly doubled 

in response to congestion on mobile networks" [2J. 

Not only is there no system to adequately address the problem but also many network 

applications seem to experience extreme workloads, posing a high maintenance and 
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administration cost. Instances of network application clients increase with the average 

connection speed and penetration of Internet into the global population. New users 

bring new behavioural patterns and cultural habits making application usage patterns 

more stochastic. The research question becomes timely considering the lack of a widely 

accepted solution to those problems. 

Streaming servers and video repositories have high capital and installation cost, 

processing and bandwidth requirements for live and/or on-demand services and may 

become a substantial maintenance burden for several content providers. Hoverlay can 

dynamically allocate and use existing infrastructure of companies that build different 

applications on different networks. Using a Hoverlay server per application, capacity 

can be outsourced from one network to another based on their requirements. 

1.3 Design Methodology 

The Hoverlay design follows a step-by-step problem identification-+solution-+evaluation 

with feedback approach. Initially, a good problem and objectives definition as well as 

identification of most important parameters are necessary to set the scene of this re­

search question, to decompose it into more fundamental problems and to identify any 

system design requirements. Analytical overviews of existing approaches to those prob­

lems provide useful information about what should be avoided, adopted or adapted. Fi­

nally, solutions proposed to any of these subproblems aim at improving system efficiency 

and should not generate new problems that would cancel any efficiency improvements 

achieved. 

Evaluation is an important step since it may depict potential deficiencies of proposed 

solutions and provide an indication of a better approach. Results from the evaluation 

step may feed back to problem specification and solution steps with useful conclusions 

and allow them to appropriately adapt. Hoverlay is expected to be deployed on large­

scale environments with high topology change rates. Experimentation in real environ­

ments is impractical because of the number of nodes, their heterogeneity, application and 

user behaviour diversity required. Therefore, its evaluation used appropriate simulations 

of such environments allowed quick parameter modifications and results collection. 

Several existing P2P simulators were tested such as PeerSim [641 and P2PSim [521. 

PeerSim is a Java-based simulator that started supporting unstructured overlays after 

the first simulations and experiments of the current research. P2PSim is a good P2P 

simulator but supports only structured networks and its authors stopped maintaining 

it the year the current project started. Therefore, a new simulator called Omeosis 

for hybrid Unstructured P2P Networks was built in C++, based on Object-Oriented 

programming principles. Though appropriate libraries of PeerSim for Unstructured net­

works appeared in the meantime, there was already enough material to use and build 

on top of first Omeosis versions. Swapping to PeerSim would require familiarizing with 

PeerSim libraries and converting the C++ code into Java; continuing developing Omeo­

sis was a more convenient path. Omeosis is able to simulate random and simultaneous 
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message delivery on random hybrid unstructured P2P networks, node migrations, dif­

ferent random topologies (scale-free, uniform random degree distributions) and has an 

extensibility manager to install and handle different searching and rewiring techniques. 

The generic design of Omeosis also allowed the simulation of existing systems which 

are used as benchmarks for Hoverlay evaluation. Node migrations between networks 

interconnected via a Peer-to-Peer overlay is a main difference from other Grid-based 

systems. Flock of Condors (see section 1.4) is a well-known and mature system built with 

similar purposes but migrates jobs intead of resources. This worked as the benchmark 

to evaluate the main principles of the proposed architecture. 

Stalkers is another facet of the current thesis' contribution; they are a set of search 

mechanisms designed to improve Hoverlay performance. Omeosis was further extended 

to support both Stalkers and existing search algorithms for the evaluation of the former 

in the context of Hoverlay. 

1.4 Background Overview 

Networking is about sharing resources by replicating, moving or remotely accessing them. 

Each network has different properties that depend on its topology. This section provides 

an overview of the basic features of architectures that enable resource sharing. Any cen­

tralized approach of sharing underlying heterogeneous and intermittent resources would 

suffer from high workload generated by frequent queries and advertisements of requested 

and available capacity respectively. High rates of leavefjoin actions of those nodes would 

cause extra significant update overhead. In case of a failure of the central manager, no 

capacity sharing would be possible practically disconnecting all resources. A type of 

distributed architectures that can scale to large networks using low-cost non-centrally 

managed resources (nodes) is Peer-to-Peer Networks. The nodes of these networks may 

belong to any user and are usually built on weak infrastructure. Their topology can be 

classified into the Unstructured and Structured ones: the former construct a network 

of arbitrarily and directly connected nodes whereas the latter a network of which the 

connections among nodes are determined by a well defined algorithm. 

Structured P2P Networks assign keys to resources, identifiers to nodes and map 

those keys to specified IDs via a hash function. Thus, each node manages a certain 

range of keys with the resources they represent either hosting them or as their proxy to 

the overlay. Structured resource discovery mechanisms use this hash function to hash 

the requested resource key and locate its hosting node ID. P2P systems such as CAN 

[83J, Chord [96J, Pastry [87J and Tapestry [109J can guarantee successful discovery if the 

requested resource is available in the network within 0 (log n) messages [74J. However, 

latency becomes a considerable problem in case of large networks (huge number of nodes) 

since each query is routed to the next intermediate nodes as far as possible producing 

long-distance network traffic and delays. Low-capacity peers can introduce further delays 

since they can easily become overloaded even if they don't process the query but just 

forward it. Query routing is based on simple keys and exact matching of key hashes and 
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thus structured P2P overlays do not support complicated queries. 

Unstructured P2P overlays organise the peers in a random flat or hierarchical graph 

which is decoupled from the location of the resources. Any unstructured overlay does 

not guarantee successful discovery even if the requested resource exists in the system but 

it usually supports complicated queries. Adopting a more distributed approach using 

Unstructured P2P Networks solves the single-point-of-failure and reliability problems 

of the centralised one. Replication of resources [75], [101] may increase the throughput 

performance of the overlay network since it increases the availability of the same resource 

[107]. Advertisements [110] or gossiping techniques may direct the query faster to the 

resource provider thus reducing its latency. 

However, replication or gossiping/advertisement as well as informed resource dis­

covery techniques of P2P Networks are not applicable to service capacity discovery. 

Gossiping techniques disseminate information about a resource (e.g. its location, ca­

pacity) assuming that it rarely changes. Service capacity may frequently change over 

time practically making this information rather unsuitable for advertising this type of 

resource for discovery purposes. In contrast to other resources (i.e. files), service capac­

ity cannot be replicated but only reused. That is, only a limited number of users may 

use it at any given time [20]. These properties make it a dynamic with high failure rates 

resource and thus, its discovery difficult. Organizing underlying nodes in a Structured 

P2P would require the use of its lookup function each time a node joins the system 

resulting in a high maintenance cost. 

Resource volatility is again the main reason why multiple advertisements widely 

distributed among nodes and informed search techniques are not preferred. Service 

capacity availability frequently changes over time and thus any advertisements or in­

formation about its status become quickly invalid or expensive to update. Hoverlay 

design is based on a decentralised indexing service, resources are registered with a single 

entity and the deployed discovery mechanism tries to guess resource locations without 

any assistance from special-purpose statistical data. 

High Throughput (HTC) and Grid Computing (Grid) platforms are built to share 

any kind of resources focusing mainly on reusable ones. HTCs are aggregations of 

very powerful machines in a single or federated administrative domain and/or require 

good resource management [62]. Existing research on high throughput computing has 

produced several solutions to the issue of reusable resources discovery especially storage 

capacity and CPU cycles. Condor [73], [99] is one of the most mature high throughput 

computing technologies. It is a distributed job scheduler providing the appropriate 

services for submission and execution of jobs on remote idle resources even if they are 

under different administrative domains. A central manager receives the advertisements 

of available resources and tries to submit the queued jobs to the appropriate ones, 

which report back to the manager their execution state regarding each job. The central 

manager along with the idle resources constitutes the condor pool. 

Flocking [39], [38] was introduced to statically link several condor pools and share 

resources between them. It requires a manual configuration of neighboring pools thus 
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limiting the adaptability of the system in case of dynamic changes in resource availability. 

It is also assumed that pool managers run on reliable machines [29J since their failure 

can prevent execution of new jobs. These constraints can be relaxed with a Pastry [87J 

self-organizing overlay of Condor pools [29J. The Condor pools are organized into a ring 

and proactively advertise their idle resources to their neighbours so that they can choose 

these advertised resources whenever necessary. Unfortunately, this P2P-based flock of 

Condors requires a substantial maintenance overhead for updating the proximity-aware 

routing tables since it is based on the advertisements of available resources. If the 

availability of the resources very frequently changes, these updates need to be also 

frequent and therefore introduce high maintenance costs. 

An important feature of Condor Flocking is that the execution machines are always 

managed by the same managers. Thus, every new discovery of similar remote resources 

by the same manager follows the same procedure. Given that the required service 

capacity could frequently exceed the locally available one, a local manager would forward 

equally frequent queries seeking almost the same amount of capacity; thus resulting in 

a significant number of messages. 

The benefits of P2P overlays [74J, [14J for the discovery of reusable resources have 

been identified and used in P-Grid. P-Grid, identifying the update overhead posed by 

resource advertisements on DHT-based overlays, uses a tree-based distributed storage 

system for maintaining them [5J. Resource providers locate in this tree the requestors 

they can serve and offer themselves for use. While other structured P2P networks hash 

the indexing keys, thus limiting searching capabilities, P-Grid enables complex queries. 

The organization of this overlay raises a number of concerns about its scalability in case 

of large highly dynamic networks since an update action of one advertisement could 

propagate to many peers. OurGrid [26J is another effort to combine the maturity of 

Grids in resource sharing with the benefits of P2P Networks on decentralised resource 

discovery. 

Sensor Networks is also a field that uses the benefits of P2P Networks to achieve 

reliable cooperation of networked sensors. Recent research on P2P-based end-to-end 

bandwidth allocation [31J proposes a wireless unstructured overlay of sensors. Initially 

a central peer possesses all the bandwidth and distributes it on-demand via queries 

broadcasted to all peers. Gradually, this centralised architecture converges into a pure 

Unstructured P2P network as bandwidth moves away from that central peer. This 

system cannot be applied to the case of service capacity sharing since it makes an 

important assumption: the available bandwidth within the whole network is known a­

priori and initially centrally stored. Requests for bandwidth are one-hop broadcastings; 

in wireless environments these broadcastings introduce the same cost in messages either 

aimimg at reaching one or more nodes. 

All the systems described above are efficient in the context they were developed for 

but they are insufficient in the context of service capacity. Network characteristics may 

change extremely fast so that any advertisement and/or indexing scheme could result 

in frequent updates with a high cost on messages. 
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1.5 Architectural Principles 

Any system aiming to share service capacity over large-scale heterogeneous environ­

ments has to follow some guidelines and respect certain constraints. Hoverlay is to be 

deployed on a network of random nodes without guarantees for proper administration 

and predictable usage patterns of their local resources. 

Its acceptance depends on, among other factors, respect of resource ownership. Re­

source owners need to feel in control of their own resources and allowed to use them 

whenever necessary. Tasks originated from a local node are to be executed in priority 

against remote ones as that would save the network from frequent invocations of dis­

covery mechanisms. A node may also abruptly withdraw from a network without any 

notification to any other entity violently terminating current tasks. Hoverlay outsources 

free (unused) only service capacity to avoid conflicts with tasks currently in execution 

status; a way to monitor resources availability is necessary. As soon as a task from 

a local node arrives, some of the current tasks may be terminated, if a node becomes 

overloaded, so that the local resources are provided back to their owner. Meanwhile, 

the discovery mechanism is triggered to seek for extra service capacity to handle that 

excessive load. 

Large-scale networks of heterogeneous nodes may experience unpredictable workload; 

two separate areas (set of nodes within a radius from the center) may serve significantly 

different load. This is a characteristic with which Hoverlay needs to deal and efficiently 

achieve service capacity transfer between these two areas. Though they may be quite 

distant, their bridging and capacity migration needs to be completed as fast and with as 

low number of messages as possible. Moreover, nodes with frequent requests for extra 

capacity may significantly increase message costs and thus, they should be served faster 

than others. Ideally, shared capacity distribution should follow that of requests within 

the system so that the per-node success rate is uniform across network. 

Resource indexing should avoid centralisation. A centralised indexing service may 

help on fast resource discovery but suffers from a number of problems: it is a ' single­

point-of-failure', traffic ' bottleneck', expensive to maintain and upgrade. Sophisticated 

equipment to handle numerous simultaneous requests and highly qualified personnel to 

ensure security levels and QoS may be required. Potential failure of such a centralised en­

tity would cancel out any communication between nodes and resource discovery becomes 

impossible. Frequent (as is the case given the service capacity volatility) join/dis-join 

actions and/or capacity requests from nodes may overwhelm that central server with 

messages causing latency increase and quality of service deterioration. Decentralised 

architectures spend more messages to seek for required resources, they do not always 

guarantee discovery even if those resources are available but are more robust in node 

failures and all produced traffic is distributed among many nodes. 

The proposed architecture has to scale well and achieve good success rate by keeping 

the messages per request rate as low as possible despite any abrupt changes to network 

topology. The time interval between a request initiation and a response delivery (la­

tency) should also be as low as possible. Otherwise, not only would the quality of 
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service deteriorate but a response would be useless if arrived after the load drops back 

to normal, too. 

1.6 Proposed Approach 

As described above, any proposed answer to our research question has to provide an 

answer to several parts: publication, discovery and commission of service capacity. While 

resource publication and commission relate mainly to the overlay architecture, resource 

discovery is an algorithmic problem loosely-coupled to that overlay. Thus, this report 

approaches these two facets of the research question separately but not independently. 

Though a variety of discovery mechanisms may be deployed on the same overlay, only 

some can perform well. Therefore, the Hoverlay design aims at an architecture which 

takes into account all special features and behaviour of service capacity and eases its 

fast discovery as analysed before. 

It introduces the idea of collaboration between networks, not just between nodes. 

A network that experiences low workload may provide (outsource) on demand under­

utilised nodes to another network with overloaded ones so that the former take over all 

the excessive workload of the latter. All underloaded nodes register with the Hoverlay 

which overloaded ones use to seek their required excess service capacity via sending 

appropriate queries. Once the appropriate nodes are discovered, they move to the re­

questing network. Each node can be used only by one network at a time. 

The proposed overlay is an unstructured Peer-to-Peer network of servers. A server 

represents an underlying network and acts as mediator between service capacity re­

questers and providers. There is a one-to-many relationship between a server and nodes 

of its underlying network; it is the single place of the overlay with which an underloaded 

node registers and from which an overloaded one starts a request. Servers try to satisfy 

requests with a subset of their registered underloaded nodes and if that is not possible, 

they forward the same request to their own neighbouring servers. Discovered nodes 

are transfered from responding to requesting server which becomes their new and only 

portal. Subsequent registrations of those nodes are directed to that new server until, 

eventually, they are moved again upon request. Node mobility from one server to an­

other (Le. from one network to another) is, in fact, equivalent to the migration of its 

access control to another server. 

P2P Overlays support heterogeneity of underlying networks and can reorganise them­

selves based on load and request distribution even in the presence of frequent server 

departures and arrivals. Specifically, unstructured ones introduce very low cost (in 

terms of messages) from rand9m server/node failures while remaining resistant to graph 

fragmentations. Servers of Hoverlay may implement access policies on nodes of their un­

derlying network which may vary from transparency to highly constrained accessibility; 

that gives network administrators control over their resources and deployed applications. 

Node mobility and its registration to the local server increases the probability subse­

quent requests from an underlying node will be served quickly using local underloaded 
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resources. Moreover, this scheme helps underloaded nodes move to areas of the overlay 

which produce more requests and thus their distribution be adaptive to the one of global 

workload. 

Therefore, node (service capacity) location has a short lifetime since not only does it 

allow exclusive access but its access rights are mobile, too; that makes its discovery more 

difficult. Stalkers is a search algorithm specifically designed to tackle service capacity 

intermittent behaviour on unstructured P2P overlays. Its principal idea is that request 

forwarding from server to server should track the movements of nodes. Old provider 

servers lose their available service capacity as they attract more requesters and links. 

Based on Stalkers, each server has outgoing (created by the server itself upon receiving 

an answer) and incoming (created by others upon receiving an answer from that server) 

links. This is a collection of search mechanisms based on modifications of k-Walkers 

using outgoing links to discover recent providers and incoming links for recent requesters 

which probably have gathered new service capacity and discovered new providers via 

their latest requests. 

The Hoverlay environment was parametrised and evaluated based on a set of metrics. 

The parameters and metrics that were used are shown below. 

1.6.1 System Parameters 

• Failure Rate represents the join/leave rate of nodes. This rate in P2P networks 

is not stable either on time or per node. As detailed in [89] and [93], the on-time 

of a node may vary significantly and may also depend on connection speed of the 

node. 

• Connectivity Degree is the number of neighbours of a node. Every node is 

directly connected to a number of other nodes to forward and receive requests to 

and from. The connectivity degree influences the success rate of the architecture 

[89]. 

• Network Size is the number of nodes of a network. The number of requests in an 

overlay usually increases with that overlay size and, thus it may affect bandwidth 

consumption and success rate. Depending on the overlay topology, its size may 

have little effect on the success rate if the Time-to-Live (TTL) (below) parameter 

is used. 

• Time-To-Live (TTL) is the maximum number of steps a query can do within an 

overlay. This sets an upper limit to number of messages generated by the deployed 

discovery mechanism (Le. Stalkers). If a query cannot reach the network edges 

because of the TTL, then its success is not guaranteed even if an answer exists in 
that network. 

• The search techniques [74] and [101] are methods used for the forwarding re­

quests from one server to its neighbours. These techniques are a major factor that 

influences the number of messages produced in the overlay per query. The bigger 
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the TTL the further the termination horizon of query propagation is and thus the 

more messages per request are spent. 

1.6.2 Evaluation Metrics 

The behaviour of the proposed architecture will be evaluated based on the following 

factors: 

• success rate is the percentage of successful (answered) requests over total number 

of requests. 

• satisfied capacity is the total amount of requested service capacity that was 

satisfied by the system. 

• number of propagated messages produced by the discovery mechanism. 

• latency is a qualitative metric that measures the time elapsed from the moment 

a query leaves a requestor untill the first answer is returned back to it. 

1. 7 Innovation and Contribution 

This research is based on three innovations in the area of resource sharing and discovery. 

Existing research on dynamic bandwidth allocation in networks focuses on improving 

bandwidth allocation and load-balancing techniques. However, this research develops a 

system that discovers new remotely available capacity that can efficiently serve a portion 

of the excessive requests at a requestor node. 

The innovation of our approach to the research question lies on logical migration 

of nodes from overloaded to underloaded networks. This logical movement reduces 

reallocation latency of the same or similar free resources to the same network, thus 

very efficiently supporting frequent small fluctuations in capacity requirements of that 

network. 

Finally, the basic principle behind Stalkers discovery mechanism is innovative since 

its aim is to detect resource movements (migrations between networks) without using 

any additional information but rather links lifetimes. It tries to efficiently use both 

incoming and outgoing links to increase the probability of locating available resources. 

Grids and P2P Systems are two resource sharing paradigms which assume resource 

availability guarantees or deal with different in nature resources. Service capacity is a 

reusable and non-replicable resource with highly intermittent availability. Commercial 

P2P systems deal with mai~iy replicable (file sharing) or consumable (IP Telephony) 

resources. Shared nodes serving network traffic cannot provide guarantees that they 

will keep offering the same capacity throughout their lifetime and, additionally, there is 

no guarantee that this traffic will have a specific pattern and/or CPU, memory require­

ments. This makes service capacity significantly different from resources in Grid or P2P 

environments. 
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This research contributes to the scientific community by identifying and analysing 

special features of reusable non-replicable resources, comparing them against replicable 

ones and proposing a set of guidelines for sharing them. Though, Bedrax-Weiss et al. 

[201 have pointed out these differences, they do not provide any design principles as to 

how distributed systems should deal with such resources. 

1.8 Thesis Layout 

Hoverlay is an architecture based on unstructured P2P Networks adopting ideas from 

Grids and as such it uses the new search algorithm, Stalkers, for resource discovery. The 

whole thesis is organised in the following seven chapters: 

• Chapter 1 - Introduction anything upto the current chapter analysing the research 

question, 

• Chapter 2 - Resource Sharing Environments offering a literature review of dis­

tributed resource sharing systems and the topological requirements and principles 

of Hoverlay. This chapter starts with the identification of those service capac­

ity features that make it a special resource for sharing in dynamic heterogeneous 

environments. An analysis of existing resource sharing systems follows focusing 

on P2P topologies, their discovery mechanisms and their combination with Grids 

for supporting computational resources. It provides a classification into two cate­

gories (blind and informed search) and overview of existing mechanisms used for 

resource discovery in P2P networks. It also proposes a further subclassification 

of informed ones based on the source and maintenance of the information they 

use for query migrations. It finishes with an enumeration of drives and principles 

based on which the proposed architecture, Hoverlay, is designed. 

• Chapter 3 - Global ROME: Preliminary Model presenting a preliminary model, 

G-ROME, which facilitates resource migration between Chord-based underlying 

networks. It provides the specification of that system and a preliminary evalua­

tion through simulations. However, G-ROME exhibits some weaknesses which are 

analysed and provide the motive for the Hoverlay design. 

• Chapter 4 - Hoverlay: Architecture Specification analysing the proposed architec­

ture with its protocols evaluated under various environmental settings and existing 

search algorithms. It is a detailed description of the Hoverlay specification includ­

ing its components and their interaction protocols. The chapter continues with its 

evaluation via simulations and comparisons with Flock of Condors. In high load 

situations, Hoverlay outperforms its competitor (Flock of Condors) with regards to 

success rate and query latency without introducing much higher cost in messages. 

• Chapter 5 - Tracing Resource Migration which analyses the proposed search algo­

rithm evaluated in combination with Hoverlay in various network settings. Based 

on the literature review of chapter 2, this one starts with the requirements of an 
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efficient search algorithm appropriate for sharing service capacity in decentralised 

dynamic and heterogeneous networks. It continues with its, Stalkers, generic de­

sign and provides three variations depending on the metric it aims at optimizing. 

After extensive simulations and comparisons with existing search techniques, the 

experiments show that Stalkers achieve their targets. 

• Chapter 6 - Conclusions and Future Work concludes this thesis with an overview 

of its contributions and findings from all the experiments carried out before. It 

closes with a number of options for extending or improving both Hoverlay and 

Stalkers efficiency. 



~~--------------------------~ 
Resource Sharing Environments 

While previous sections offer a clear view of the research topic, this chapter provides an 

overview of existing work on related issues positioning current research in the appro­

priate context. It gives important details about related systems and identifies potential 

shortcomings of existing mechanisms with similar aims. This review is essential to spec­

ify a complete list of required design principles and features of the proposed system, 

Hoverlay, which will help sketching out its architecture. 

Initially, this review depicts some special behavioural patterns and features of the re­

sources this study deals with, service capacity. It, then, gives some background informa­

tion on Grids and P2P Networks, two principal distributed resource sharing paradigms. 

While the former support sharing of resources like service capacity, the latter facili­

tate the collaboration of nodes in large-scale heterogeneous environments. An extensive 

analysis of P2P Overlays giving an emphasis on Unstructured ones (a subclass of theirs) 

and their resource discovery mechanisms precedes a section about attempts to apply 

their benefits on Grid systems scalability. This chapter tries to address the following 

questions: 

1. how different service capacity is versus other resource types, 

2. which existing systems could be used for sharing service capacity and what their 

weaknesses are, 

3. which discovery mechanisms are available for searching resources in decentralised 

networks, 

4. what requirements a service capacity sharing framework has. 

It concludes that a decentralised overlay architecture, Hybrid Unstructured P2P Overlay, 

can work as the basis for Hoverlay in order to satisfy the special characteristics of service 

capacity. Though a classification of and details about existing discovery mechanisms 

deployed on similar networks are presented within this chapter, the requirements analysis 

of the proposed one, Stalkers, appears in Chapter 5. 

According to [62], any central control of the entire network would limit its scala­

bility and fault-resilience. These two features are the primary targets of its design but 

15 
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Source: Vanthournout et al. 'A taxonomy for resource discove111' [l02} 

Figure 2.1: Vanthournout's Resource Classification 

centralised architectures are weak on both and therefore, practically, cannot constitute 

a design basis for sharing service capacity. 

2.1 Classification of Resources 

Every member of a distributed system is involved in some sort of resource exchange. 

Optimization techniques focusing on the efficiency of a system need to use special char­

acteristics of all exchanged resources. Therefore, understanding the nature of different 

resource types helps the identification of appropriate resource sharing systems for each 

one of them. Previous studies provide resource type groupings based on a number of 

characteristics. 

Vanthournout et al. [102] propose a classification of resources based on how fre­

quently their location and properties change. While the fixed ones have fixed unique 

location and/or properties, replicable ones have multiple replicas which, in some cases, 

may be fixed. When resources location is variable they are mobile even if replicable 

or with fixed properties. Resources with variable identifiers and/or properties are dy­

namic though they may have fixed location, too. Mobile and dynamic resources 

refer to all of the above. Figure 2.1 visualises this resource classification. 

Holt [59], based on whether a resource can be reused or not, identifies two classes: 

reusable and consumable. A reusable resource represents a total number of capacity 

units each of which can be assigned to a single task at a time. As soon as the task 

terminates, another one may reuse the same capacity. A task may use and release 

any portion of the available capacity but no more than the maximum available. For 

instance, CPU cycles, bandwidth or buffers can be reusable resources. Consumable 

resources have unlimited number of capacity units; a producer may provide any number 

of units which disappear from the system as soon as a task consumes them. IP packets or 

P2P queries are examples of consumable resources. Their fundamental difference is that 

consumable resources can be used only once whereas the reusable ones may, sequentially 

only, serve any number of requestors. Therefore, reusable and consumable resources are 

two mutually exclusive sets. 

Bedrax-Weiss et al. in [20] include more classification factors, besides the ones iden-
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Factor Classes 
lifetime consumable ./ producible replenishable reusable 
quantity discrete ./ continuous 
divisibility single ./ multiple 
availability fixed variable ./ 
certainty deterministic stochastic ./ 
access shared exclusive ./ 
aggregation pooled ./ non-pooled 

Table 2.1: Bedrax- Weiss Resource Classification and Service Capacity features 

tified above, and provide mutually exclusive subcategories for each one. Differences on 

resources lifetime factor give four categories: consumable and reusable, as analysed 

before, and producible or replenishable. While producible resources are produced 

but never used or consumed within the same system (e.g. human wastes from a house­

hold perspective without installed recycling systems), replenishable ones are produced 

and/or consumed simultaneously or at different times (e.g. human wastes in an urban 

environment with recycling systems). The quantity of a resource capacity may either be 

discrete, if produced/consumed in chunks only (e.g. IP traffic divided in packets with 

a minimum length multiple of 1 bit), or continuous, if any amount of it (e.g. water in 

a tank). In terms of divisibility of resource's capacity, it may be single-, if consumed as 

a whole (e.g. an IP packet), or multiple-capacity one, otherwise (e.g. hard disk stor­

age space). Resource capacity variations over time give two more categories: fixed (no 

change) and variable ones (e.g. an video file and stream respectively). With respect 

to the accuracy of the capacity measurement, deterministic resources (e.g. number of 

bits in a IP packet) have well-defined capacity but stochastic ones (e.g. energy of a elec­

tromagnetic photon) a more probabilistic approximation. While shared resources (e.g. 

files in read access mode) can be used by many activities at the same time, exclusive 

ones (e.g. a video stream) by a single requestor at a time only. 

Smith and Becker in [94] also distinguish two more categories of resources: pooled 

and non-pooled ones if they collectively can compose a bigger resource (pool of re­

sources) or not, respectively. Resources pools, as defined in [94], are resource aggregators 

and can be viewed as a resource whose capacity is allocated to mUltiple activites at the 

same time. Table 2.1 presents the resource classification as proposed by Bedrax-Weiss 

et al. in [20]. 

2.2 Features of Service Capacity 

This research focuses on sharing service capacity which involves description, publishing 

and discovery of resources. Though service capacity is tightly coupled to capabilities 

and location of hardware, its description and publication site are decoupled from any 

physical location. The current study deals with both its physical instance and reference 

to that instance. Resource references may be description files (e.g. adverts, specifi-
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cations, pointers) or database tuples which inherit part of their behaviour from their 

physical pairs (resource physical instances). Based on Vanthournout's classification, files 

are replicable and potentially mobile resources whereas computational ones (i.e. CPU, 

memory, bandwidth) cannot move or exist in replicas but have very dynamic properties. 

A description may be mobile but there should only be one instance within the whole 

system as, otherwise, access to that resource would be uncontrollable and the resource 

overwhelmed by rejecting multiple simultaneous requests. Service capacity is a dynamic 

resource due to frequent load fluctuations; so is its description since the latter has to 

reflect important properties of the former. While some physical resources have fixed lo­

cation their descriptions may not. Following Vanthournout's grouping, service capacity 

(using its physical instance and references into a bundled form) may be classified into 

any category apart from the 'replicable' one. 

Bedrax-Weiss classification of this resource type helps on the identification of more 

features important for the system design. Service capacity is associated with compu­

tational resources of the network and as such it can only be a reusable resource since 

e.g. CPU or bandwidth may be reused by a task as soon as the previous releases it. 

It is also a discrete resource since nodes cannot provide and/or request any amount of 

shared service capacity but only chunks of it. It may also be partially consumed or as a 

whole. Given the non-deterministic fluctuations of resource owner's load, it has variable 

stochastic availability and allows exclusive only access since only a single task at a time 

may use it. Not only maya node share a set of chunks of its capacity but references to 

those chunks may be gathered in pools, as well. All features of service capacity based 

on this classification method appear in Table 2.1 marked with a tick on their right side. 

There are two more characteristics successfully depicted by Bustos-Jimenez et al. in 

[28]. Frequent fluctuations of network load may cause equally frequent requests for extra 

capacity shortening the lifetime of resource references, too. Short response times are 

essential to improve Quality of Service as perceived by users. Moreover, deployed search 

mechanisms look for resources that fulfill a set of requirements ignoring their unique 

identifier. The aim is to get the requesting task done on time no matter where the extra 

capacity comes from. Yang et al. [107] have successfully analysed how service capacity 

evolves with the load of a network in a context of replicable resources. While replication 

of resources improves their availability and thus service capacity, Hoverlay shares fixed 

system-wide non-replicable capacity; regardless of the workload, the available capacity 

is limited. 

The source of such heterogeneity is not only the diversity of shared resources but 

network policies, as well. While files are resources with fixed quality once created, the 

quality of service capacity depends on system's maintenance. A resource becomes more 

reliable if it is frequently updated and offers predictable availability. System administra­

tors who want to offer high Quality of Service try to do frequent updates and upgrades 

and ensure stable availability of the resources. Improving the reliability of a resource 

usually aims at a profit and leads in a legal binding with consumers [62]. On the contrary, 

some administrators (e.g. owners of home-office networks), with the aim of maintenance 
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cost reduction, offer out of date resources with poor availability. 

We assume that the resources are not always properly updated, upgraded and avail­

able to resource requestors. They may fail causing any ongoing activity to abruptly 

terminate. Their requestors and providers may belong to different administrative do­

mains, have not any incentive to share and are not bound to any regulations; therefore, 

no sanction schemes can be applied. 

2.3 Grid Job Scheduling 

Sharing resources is an issue well addressed by high performance computing (HPC) sys­

tems. They aim to provide vast, highly available, fault-tolerant computational resources 

[99]. While Parallel and Distributed Computing platforms enable the aggregation and 

sharing of several well and centrally administered resources within the same adminis­

trative domain, Grids organise resources under various sharing policies and domains. 

Therefore, Parallel and Distributed systems can not constitute the basis for designing 

a multi-administrative system for dynamic and reusable resources. However, Grids sat­

isfy some of the constraints set in section 2.2 since they aggregate cross-organisl;1tional 

resources in Virtual Organisations [48]. 

Successful examples of massive resource sharing and parallel processing are the 

seti@home [12], genome@home and folding. net [70]. They construct star networks 

(client-server) to share CPU cycles of nodes running bags of independent tasks but 

are prone to man-in-the-middle attacks and server failures [15]. A single central entity 

(server) submits jobs onto underlying machines and all the communication goes to it; 

nodes work in isolation from each other. Though this topology is tolerant to node fail­

ures it has scalability problems because of the central server which has to deal with node 

registrations, sometimes data-intensive task distribution and results aggregation. 

Grids can be distinguished in computational, data and service grids [69]. Data Grids 

provide the suitable infrastructure for large data management and mining applications. 

Service Grids aggregate resources, any single machine is unable to provide, into compos­

ite services and Computational Grids gather computational capacity much higher than 

the capacity provided by a single machine of the Grid. 

Grid Computing architecture designs assume that shared resources are powerful, 

diverse, well-administered and their network connection very reliable [48], [62]. The 

aggregation of appropriate resources in Grid Virtual Organisations has to achieve a cer­

tain point of reliability which may require highly reliable resources. The administration 

policy of Grids is also well defined and centrally controlled ensuring high and uniform 

availability of resources but high maintenance costs, as well. According to Iamnitchi 

and Foster [62], Grids deploy a well-administered infrastructure, the use of which has 

to be profitable for the owner. This may involve human negotiations which may be 

time-consuming procedures and practically require a certain level of trust between the 

producers and consumers (contracting parts), thus, reducing the scalability of the sys­

tem. 
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Established Grid architectures, among others, are the Globus [47], Legion [56], 

PUNCH [66] and Sun Grid Engine [51]. They achieve control of ongoing activities 

via centralised or hierarchical entities [15] which decrease their scalability, adaptability 

and availability. Therefore, these systems violate the requirement for high scalability 

and fault-resilience. 

While Grids offer good coordination mechanisms for resource sharing, they seem 

to be weak in the discovery of highly dynamic resources. These platforms moved to­

wards a more decentralised approach to resource discovery to address the problem. For 

instance, Globus discovery mechanism moved from the centralised indexing MDS to a 

decentralised one MDS-II (a number of distributed index servers), which, however, offers 

limited scalability [35]. 

2.3.1 Condor 

Condor is one of the most mature high throughput computing technologies and supports 

cross-organisational dynamic resource sharing and job scheduling [73], [99]. It is a 

distributed job scheduler providing the appropriate services for submission and execution 

of jobs on remote idle resources even if these are under different administrative domains. 

A central manager receives advertisements from available resources and tries to submit 

the queued jobs to appropriate resources which report back to manager the execution 

state of each job. 

A central manager along with a set of idle resources constitutes the condor pool which 

records availability information (using ClassAds) about each resource. These resources 

though they may be located in different administrative domains, they are considered as 

local from their manager perspective. Resource requestors submit their jobs in ClassAd 

description to their managers, which match those ClassAds with their local resources. As 

soon as a suitable resource is found, the job is allocated to it. Condor provides services 

for job resubmission or migration via a check-pointing scheme in case of resource failures. 

Both submission and execution machines run specialised Condor daemons. All resources 

(busy or free) inform the manager about their status using heartbeats. 

However, each manager is a priority-based system and may access only local re­

sources. A job waits in a priority queue till it gets at its top and the central manager 

finds a match with any of its available resources. Therefore, flocking [38], [39] was 

introduced to statically link several Condor pools and share resources between them. 

Condor Flocking aims at increasing resource availability and system efficiency via creat­

ing communities of pools. A neighbourhood of pools (interconnected pools) is configured 

manually thus limiting the system adaptivity to dynamic changes in resource availability 

and to failures of neighbollring managers. 

There are two kinds of flocking techniques: the private and the group flocking [39]. 

In private flocking, if a job is not satisfied its central manager submits it to every pool 

of the flock. As soon as a pool allocates a resource for that job and its execution starts, 

it sends a signal to all the other pools to prevent them from duplicate execution. Once 

a job execution terminates, that job leaves all the queues in which it is placed. Group 
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flocking uses advertisements of jobs (source-initiative) or resources (server-initiative) to 

other pools. The final decision as to which resource will be used for the execution is on 

the central manager of submission machine. In case of source-initiative approach, a pool 

may send a query for resources to every other pool in its flock, which may respond with 

an appropriate machine that satisfies the query; initiating pool uses one of the responses 

it got. In the server-initiated scenario, a pool advertises its available resources to other 

pools and the execution pool grants permission to the submission pool for accessing that 

particular resource. 

Even with Condor Flocking, each Condor Pool manages the same execution machines 

and is assumed to be running on a reliable machine [29]. Based on Condor usage patterns 

[62], a good portion of requests it handles are repeated [62]; thus, every new discovery 

of the same/similar remote resources by a manager follows the same workflow. Given 

that the required capacity could frequently exceed local availability, the local manager 

would forward equally frequent queries seeking extra capacity of similar properties; thus 

resulting in a significant number of messages. 

Though flocking erases the 'single-point-of-failure' issue of Condor system, it cannot 

create dynamic pool neighbourhoods, uses a single-hop horizon for query forwarding and 

retains the priority-based execution scheme. Private flocking was quickly abandoned 

[38] since it introduces many messages to avoid redundant executions of a job. However, 

group flocking suffers from many updating messages, too, in case of frequent failures of 

central managers and/or resources. Finally, prioritization scheme of jobs cannot be used 

for sharing dynamic resources that have immediate need for help. 

2.4 P2P Networks 

Peer-to-Peer (P2P) networks try to overcome assumptions like high and uniform avail­

ability of Grid resources and address solutions to resource discovery problems in highly 

dynamic environments. They are usually referred to as overlays, built on the appli­

cation OSI layer and serve a single application and share specific resources for which 

they are usually optimised. Their name derives from the communication type between 

their members (peers); at their simplest form peers interact without intermediaries (e.g. 

servers). Every peer (it will be referred as node this point onwards) has a basic char­

acteristic: intermittent membership. A node may frequently and abruptly join/leave a 

network without notifying other members even if this violates/terminates an ongoing 

activity. 

2.4.1 Node Characteristics 

The owners and administrators of nodes are usually anonymous individuals that volun­

tarily offer their resources using a weak infrastructure (limited bandwidth, storage and 

CPU capacity and unreliable connectivity). In this context, they do not provide any 

guarantees on reliability' and efficiency of their resources [62] and they usually do not 

expect income by sharing them. However, the network setup requires minimal effort 
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since there in no central coordinating authority and any change on node membership 

status requires minimal network reconfiguration. 

A node, member of a P2P network, usually exhibits intermittent and untrustworthy 

behaviour. Defining churn rate as the percentage of nodes joining and leaving a network 

per time unit, P2P networks experience high such rates [98] ; they have not been designed 

to rely on central entities and thus they are considered to be resilient even to high churn 

rates. Resource provisioning is not always a natural corollary of P2P membership; that 

is, a node participating in a P2P network may provide useless or no resources at all. 

If a P2P requires that a node provides a minimum amount of resources to become a 

member, there are no guarantees that these resources will be of any use to the remaining 

P2P community or the provider may frequently change its shared resources to avoid bad 

reputation mechanisms [13], [45]. In case there are no such requirements, even nodes 

without any shared resources may join the P2P. 

2.4.2 Centralised Indexes 

Centralised P2P networks follow the same principles as client-server architectures for 

resource discovery. A single entity responds to every query originated from a member 

of this star network. This centralised entity is a single point of failure and vulnerable 

to attacks like denial-of-service or man-in-the-middle. It is usually a very reliable and 

powerful machine with good connectivity. In P2P context, its role is to provide either 

directly the requested information (e.g. location) about it. 

Napster [90] is a P2P system that uses a centralised index server to store the location 

of files shared by every node in that network. A node joins the network by submitting 

a list of files it shares to a predefined Napster server. That server, upon receiving a 

query from any node, using its index, creates a list of other nodes that may provide 

the requested resource and responds back. Requesting node, then, directly connects to 

one of them to forward the query to and retrieve the file. Though the actual requested 

file does not reside in Napster server, thus reducing minimum required specifications of 

that server for storage capacity and bandwidth, the whole network may shut down if 

the server fails. Napster topology is visualised in figure 2.2. 

8 
8 

index server active node 

o inactive node 

Worked Example 
1. Node 21 requests index from the Napster 
Server 
2. Napster Server responds with a list of 
Nodes that provide the requested resource 
3. Node 21 requests the resource from Node 
62 
4. Node 62 responds back with the resource 

Figure 2.2: Centralised Architecture and resource discovery mechanism 
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2. The tracker responds with a list of Nodes that are currently downloading the file 
3. Node requests the chunks of the fi le from the retrieved nodes 
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Figure 2.3: Two different BitTorrent networks for different files controlled by two trackers. 
These networks exist as long as the downloading activities are not complete. 

The concept of centralised index servers is also used in BitTorrent [81J which is mostly 

deployed for file sharing. It uses regular websites to publish available files in nodes. For 

every shared file there is a node that controls the distribution of that file, the tracker, 

which is the centralised entity of the network. A node may share a file by publishing 

on a website a small . torrent file containing a pointer to its tracker, possible names and 

length of that file. Any requestor of that specific file locates the corresponding torrent 

in a website which requestor's BitTorrent client uses to access the tracker and retrieve a 

list of nodes currently downloading that specific file. It can start downloading in parallel 

different chunks of the file from nodes that already have downloaded them. Providers 

of these chunks may continue retrieving the remaining chunks from other nodes; thus, 

a node may be simultaneously provider and requestor of different chunks of a file. If 

no file transfer is currently active the requestor node directs the query to the torrent 

publisher. Figure 2.3 shows a shapshot of BitTorrent topology with two trackers. 

Each shared file may have different trackers and one tracker may coordinate the 

sharing of multiple files. Potential failure of a tracker cancels all current and future 

transfers of the files it coordinates. This scheme partially solves the Napster's single 

point of failure since the same nodes may continue interacting with other nodes for 

different files coordinated by other trackers. However, there is not an automated torrent 

discovery mechanism. It is a system designed for replicable persistent resources. Using 

web publishing and manual discovery of the appropriate torrent files for highly dynamic 

resources restricts the adaptivity of the network to abrupt changes such as frequent node 

failures. 

2.4.3 Structured Networks 

Aiming to a more robust network than centralised architectures, Structured P2P net­

works use distributed indexes of shared resources. Structured P2P networks assign a 

random ID to every node and a key to every resource and map each pointer tuple [key, 

resource] onto a specified node. The organisation of nodes is fiat; that is, all nodes 
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Worked Example 

1. Node 3 looks for a file hosted in Node 139. It is supposed to 
send the request to a node half way from the destination 
(Node 70). There is not any node with such id; so the next 
existing node is responsible for the key (Node 81). 
2. Node 81 tries to halve the distance by sending it to Node 
110. There is not such a node so the node with the closest id 
takes over the request (Node 132). 
3. Node 132 tries to halve the distance and discovers the next 
node (Node 155) as the responsible for keys 133 to 155. 

active node o inactive node 

Figure 2.4: Chord ring interactions. Node 3 tries to locate the file with key=139. node 155 
hosts all the keys from 123 to 155. 

are equally important and have the same amount of responsibilities within the network. 

Given the keys, this type of overlay networks can perform efficient discovery but they 

require a copy or pointer to each resource at the node which is responsible for this 

resource key. 

They are theoretically well-founded topologies and guarantee successful discovery 

if the requested resource is available in the network within a logarithmic number of, 

function of network size, steps. Latency becomes a considerable problem in case of large 

networks (huge number of nodes) since each query is routed to the next intermediate 

nodes as far as possible producing long-distance network traffic and delays [74]. Struc­

tured P2P topologies use nodes IDs and well-defined algorithms to establish connections 

ignoring their physical location; thus, a direct connection between two nodes in applica­

tion layer may cause long-distance IP traffic if the two nodes are located too far apart. 

Low-capacity nodes can introduce further delays since they can easily become over­

loaded even if they don't process queries but just forward them. Query routing is based 

on simple keys and thus Structured P2P overlays do not support complicated queries. 

Although search efficiency is very important for long-term transaction discovery, there 

is no obvious way to apply these topologies and support low-latency partial transaction 

discovery on large networks. 

The discovery mechanism is based on Distributed Hash Tables and achieves same 

performance for scarce and famous resources. The membership in P2P networks is highly 

intermittent and DHTs need frequent updates to retain the logarithmic-based success 

guarantee. However, this comes at a high cost in messages, maintenance overhead. 

Therefore, Structured P2P networks are not suitable for sharing reusable and with 

variable capacity resources since the high maintenance cost of DHTs would introduce 

scalability problems to the system. 

Well known Structured P2P networks are the Chord [96], CAN [83], Tapestry [109], 

Pastry [87], Kademlia [109] and Viceroy [75] . Chord is a one-dimensional DHT-based 

overlay that organises nodes into a ring. The lookup function sends messages over this 
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Figure 2.5: ROME Architectre 

ring with clockwise direction only. Each node has a unique identifier produced by a 

hash function. A shared resource is assigned a key which is hashed with the same 

hash function to determine the node id that will be responsible for that key. Every 

node has a neighbour list pointing to the next neighbour and to log2 (n) different nodes 

(clockwise). The lookup function tries to halve the distance between currently visited 

and destination node. The theoretically expected average number of messages for one 

lookup is log~(n) and the maximum is lOg2 (n). Figure 2.4 presents a Chord ring with its 

discovery mechanism in action. 

Recent advances on Structured P2P Networks include modifications of existing ar­

chitectures to enable complex query handling. A well used technique is the insertion 

of multiple layers on those architectures. Zhang and Ma in [108J propose a hierarchi­

cal (two-layered) DHT-based Chord ring for facilitating attribute and range queries on 

multimedia files. The upper layer is a Chord ring built based on one common attribute 

of those files. Each node of that ring is a virtual cluster of arbitrarily connected content 

providers grouped together with regards to another attribute. These clusters play the 

role of the lower layer and enable complex queries. Each query in this architecture, 

however, requires the use of the common attribute for locating the appropriate cluster 

before it applies a range query. Others try to enable complex query handling in Struc­

tured P2P Networks via tree-like architectures such as VBI-tree [63]. Another approach 

to the problem of range queries is the use of a single structured overlay not based on 

hash functions but rather on the actual e.g. file names of the resources they index. For 

instance, assuming a Chord ring they first try to locate the first node of the range using 

DHT-like query forwarding schemes and then sequentially hop from node to node untill 

the range is finished. Examples of this scheme are the following: [21], [34], [80]. 

Given that the discovery mechanism performan~e depends on the whole network 

size, any reduction of ring diameter would reduce the lookup cost, as well. Salter 

J. et al. in [88] proposed a reactive overlay (ROME) for optimizing the Chord ring 

size and thus the lookup overhead. They used a bootstrap server, which preserves a 

pool of underutilised nodes that dynamically places them in the ring based on network 

workload. Symmetrically, it removes nodes from the ring if they are underutilised. 



26 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS 

ROME tries several actions before an insertion occurs e.g. swap, replace. ROME, 

though a centralised approach implemented on top of Chord, it does not modify Chord 

functionality and therefore, in case of server failure, the ring can still sub-optimally 

perform. It is a monitoring and load-balancing mechanism which, however, takes action 

only when a node is overloaded and has available free nodes to place in the ring to take 

over a portion of that load. Figure 2.5 presents the ROME layer with its functionality. 

2.4.4 Unstructured Networks 

While Structured P2P networks deploy expensive maintenance protocols to tackle high 

churn rates, the Unstructured P2P architectures try to minimize maintenance costs in­

troduced by node failures/departures. Unstructured P2P overlays organise peers in a 

random flat or hierarchical graph which is decoupled from resource locations. No un­

structured overlay may guarantee successful discovery even if the requested resource 

exists in the system but it supports complicated queries. In general, discovery mecha­

nisms in Unstructured P2P networks use forwarding schemes of a query to a subset of 

neighbours of each node. However, network organization and/or topology may change 

as nodes join/leave while a query travels the overlay [97]. That is, if the behaviour of 

nodes is highly intermittent then the overlay configuration does not remain the same 

from the beginning to the end of a query propagation. 

In case of hierarchical overlays, certain nodes (super-peers) take over resource index­

ing; all nodes discover the requested resource location via accessing a set of super-peers. 

Super-peers, besides providing content, have more responsibilities than normal nodes 

and they create a network between each other, independent from nodes, but nodes 

access them to use their extra services. This scheme has the same advantages as BitTor­

rent; it reduces the number of messages required. In contrast to BitTorrent, it typically 

provides a mechanism for automatic discovery of other super-peers. However, the cost 

of a failed super-peer has a bigger impact than that of a failed node. It may discon­

nect all the nodes dependent on that failed super-peer unless nodes are aware of other 

super-peers, too. 

In flat organisations (without hierarchy) all nodes have the same responsibilities 

and perform the same actions in case of an incoming query. If a node can satisfy the 

query given just its own resources, it responds back to query originator with a set of 

discovered resources. Random organisations locate easily the popular resources and 

are highly tolerant to node failures. The resource location is not coupled to network 

organisation; that is, there are not any constraints as to where each resource should be 

placed within the network. This forces a query to search any node in the network thus 

resulting in many unnecessary messages. 

Some well-known Unstructured P2P architectures are the Gnutella I [3], Gnutella 

II [4], FastTrack [71] and Freenet [33]. Freenet is designed to provide high levels of 

anonymity for its users. BitTorrent is a centralized Unstructured P2P architecture 

since there is a central entity to maintain an index of resources located in nodes which 

currently participate in a downloading transaction of the same file. However, trackers 
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o inactive node active node 

Worked Example 

Node 62 sends request with TIL=2. The 
request is forwarded to all the neighbours. 
1. The request reaches nodes 15, 21,92 
2. The request is forwarded to 44, 3, 25, 86 
and 31 . 

Figure 2.6: Gnutella interaction model. A query floods the network with queries visiting all 
nodes upto TTL hops from query originator. 

do not communicate between each other and therefore, from the perspective of the file 

being downloaded, its tracker is its central coordinator and single point of failure. The 

following paragraphs will focus on systems (Gnutella and FastTrack) that produce the 

most traffic on the internet [93]. 

Gnutella I is a file sharing fiat P2P network. Every peer has dual roles since it acts as 

both server and client. The topology configuration is not coupled to resource locations 

in the network but the connections between nodes are rather random. Each node joins 

the network by contacting one of the well-known peers and retrieving a list of other 

peers. Once connected, the requestor node forwards a query to all its neighbours. Upon 

receiving a query, a node processes it locally and returns back any available resource 

while at the same time forwards it to its own neighbours. This forwarding scheme 

continues from neighbour to neighbour but it stops when a horizon is reached. On every 

hop the query Time-to-Live counter, initially set by its originator to a specific integer 

number, gets reduced by one and when is zero the forwarding is abandoned. The TTL 

protects the network from infinite query loops and exponential increase of messages. 

Forwarding a query to all neighbours may result in exponential growth of messages, 

given that all nodes have more than one outbound neighbour. That is , the number of 

nodes visited on every hop of a query increases exponentially. However, the more hops 

done the lower the probability to build up a tree-like searching space [92]. Therefore, 

the cost in messages of a flooding scheme has upper bounds even if the horizon is far 

away from query originator. 

Gnutella II tries to reduce the number of messages and improve efficiency by adding 

a level of hierarchy: an overlay of randomly conneded hubs. Every node (leaf) may 

connect to one or two hubs, usually more powerful peers with better connectivity. Each 

hub hashes the content of its leaves and exchanges a version of its hash table with its 

neighbouring hubs. Each hub may connect to 5-30 other ultra-peers and to 200-300 

leaves. It processes the incoming queries on behalf of leaves; that is, it forwards the 

query to leaves that have the requested resource and only to its immediate neighbours 
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Worked Example 0 inactive node active node 
Some of the nodes are connected with more than one hub. This increases the probability that the node will not get 
disconnected if one of its hubs fails. 
1. Node 3 sends request to Hub 3. 
2. The hub, based on the indexes of the local nodes forwards the query to Node 11 and based on the indexes received 
from neighbouring hubs, forwards the query to hubs 1 and 4. 
3. Hubs 1 and 4 forward the query to their appropriate local nodes and stop the forwarding. The Node 11 that belongs 
to the same hub as the query originator responds with its answer. 
4. Remote nodes respond back with the answer. 

Figure 2.7: Gnutella II architecture. Indexing in hubs and selective forwarding saves the 
network a lot of messages. 

that possibly have the appropriate leaves. That is, queries from underlying nodes travel 

only one hop within the overlay of hubs, thus, saving the network from many messages. 

However, the requestor node may retrieve more hubs from one of its corresponding hubs 

and repeat the same process with them. There is not a mechanism for a node to change 

roles (leaf to hub and vice versa) according to network status. This architecture helps 

peers to easily locate the abundant resources. 

FastTrack is a proprietary network architecture and most details about its protocols 

are known by research on its traffic analysis and a brief description on its dedicated 

website. It constructs an overlay with two classes of nodes: the supernodes which are 

powerful peers with good connectivity and the ordinary ones. Each node has only one 

parent supernode to which it uploads the index of its files and retains a short-lifetime 

TCP connection with it. During registration process, a node uses its supernode refresh 

list to check the connectivity with all other available supernodes and chooses one to 

establish a TCP connection with. The node hops from one supernode to another using 

its periodically updated supernode refresh list. Requestor nodes forward their queries 

to their supernodes which respond back with a list of other leaf nodes that requestors 

may directly contact to retrieve the file. The same queries are also forwarded to a small 

number of other supernodes that direct their responses directly to the query originator. 

In Unstructured P2P networks, new nodes usually register with well-known existing 
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ones and every node usually uses some evolving mechanisms for choosing the best peers 

when updating its neighbour list. Given the high churn rates, the network structure may 

converge to a star topology and, therefore, to a centralised organisation [15]. Moreover, 

the intermittent behaviour of peers increases its partition probability [16], [17], [11]. 

Baldoni in [17] proves that there is a trade-off between the overlay reliability (achieving 

well-connected graph) and its scalability (number of messages required). 

2.5 Unstructured P2P Topological Properties 

Unstructured P2P Networks usually construct random connections between nodes (edges). 

That is, each node is connected with a random subset of the remaining nodes. How­

ever, certain actions and decisions taken during their lifetime may gradually convert the 

network topology into a non-uniform one. Join, leave and rewiring actions are some of 

those that contribute to this phenomenon. Diestel in [37] defines the degree of a node 

as the number of its neighbours. If connections between nodes are directional then the 

number of incoming connections is the in-degree and the number of outgoing ones is the 

out-degree. Nodes with zero degree are isolated. A degree distribution shows the number 

of nodes with a specific degree d ~ O. Symmetrically, in- and out-degree dist~ibutions 

take into account the incoming and outgoing node, respectively, connections only. 

If every degree d appears on the same number of nodes then that network has uniform 

degree distribution and non-uniform otherwise. The Unstructured P2P Overlays that 

automatically construct and update their neighbour lists (unlike networks with statically 

defined by users neighbourhoods i.e. Instant Messaging services e.g. [18]) need to 

access an existing node to join the network and tend to prefer sending requests to more 

reliable nodes. More robust nodes are usually well-known since they have a longer and 

reliable contribution to the network. Therefore they are more frequently selected to 

send requests to and due to deployed rewiring policies their fame attracts more fame. 

There are several studies of unstructured networks claiming that rewiring and scaling 

mechanisms deployed on those networks gradually transform them into networks with 

small-world properties and in some cases into power-law degree distributions making 

famous nodes even more famous [7], [9], [44], [46], [79], [85], [86]. Finally, another factor 

affecting the degree of a node and thus its fame is the QUality of Service offered by that 

node. If neither robustness nor Quality of Service of a node are negative, then its fame 

keeps increasing. Several traffic analysis of random unstructured networks confirm those 

properties. 

Based on a traffic analysis of Gnutella from Ripeanu [85], this P2P tends to create 

connections to the most reliable and persistent (stay alive for longer than others) nodes 

which are only the 20% of network size. Symmetrically, the least persistent nodes, which 

are the majority in the network, have less connections. Therefore, Gnutella converges 

to a power-law topology with a well-connected core in the centre and weakly connected 

branches and leaves. These famous nodes become members of a giant component in 

the centre of the network which works as a bridge between any two, even infamous, 
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ones shortening the network diameter [9]. Vaucher et al. in [103] also confirm these 

conclusions. This topology exhibits robustness in case of random, even high, node 

failures; its connectivity heavily depends on those few famous nodes in its core and 

therefore the probability that random failures affect the majority of them and thus 

potentially fragment the network is low. These famous nodes bridge otherwise distant 

ones thus the reducing network diameter and latency of deployed search mechanisms. 

Both the increased robustness and efficiency of those networks allow them to freely scale; 

scale-free networks. 

However, due to their fame they face high load, are easy to detect and vulnerable 

to targeted attacks [10], [85], [90]. Power-law properties are also observed to real­

world large scale networks such as World Wide Web [8] and [27], Internet [44], citation, 

metabolic [23] and human sexual contacts [72] networks. Guclu and Yuksel in [57] 

confirm the above and propose a method to force an upper bound on the degree of a 

very popular node (hard cut-off) as a way to force fairness on load distribution among 

nodes investigating potential effects on network efficiency, too. 

2.6 Computational Resource Sharing 

Peer-to-Peer systems seem to be a promising architecture for sharing non-replicable 

reusable resources. Though task scheduling in Grid environments is a mature field, au­

tomated distributed resource discovery is still dependent on centralised entities or static 

links. However, recent research tries to enhance the scalability of Grid environments by 

deploying P2P networks for large-scale resource discovery over Grids. 

Butt et al. [29] identifying the weaknesses of Condor Flocking, propose a self­

organising Pastry [87] overlay of condor pools. Collaborative condor pools get a random 

ID based on which are organized into a ring and proactively advertise their idle re­

sources to their neighbours. Their proposed system deploys an advertisement scheme; 

each pool sends advertisements to all its neighbouring pools which, in turn, decrease a 

hop counter, Time-to-Live (TTL), by one and forward it to their own and so on un­

til TTL is zero. This P2P-based flock of Condors requires a substantial maintenance 

overhead for updating the proximity-aware routing tables and advertisement data since 

frequent changes to resources and/or pool states may quickly invalidate look-up tables 

and already published adverts. 

P-Grid [5] uses features of P2P overlays [14], [74] to discover Grid resources. P-Grid, 

trying to avoid the update overhead of advertisements on DHT-based Grid overlays, uses 

a tree-based distributed storage system of advertisements. Resource providers locate in 

this tree requestors they can serve and offer themselves for use. A node is assigned a 

key, a path that indicates the location of the node within the tree. Each P-Grid node is 

responsible for resources, the hash key of which starts with a binary description of the 

node's tree path. One or more nodes may have the same key, in which case all of them are 

responsible for resources with this prefix. While other Structured P2P networks hash the 

indexing keys, thus limiting the searching capabilities, P-Grid enables complex queries. 
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The organization of this overlay has good fault.,tolerance characteristics but multiple 

advertisements per resource. Frequent changes of the state of a resource should produce 

equally frequent updates to advertisement hosting nodes. This architecture introduces 

delays on resource joining actions since the network needs some time to periodically 

discover nodes in other paths. 

Gupta et al. in [58] propose CompuP2P, a two-layered Chord-based market of any 

computing resources. Every node, either requestors or provider, calculates its service 

capacity based on which it joins the lower Chord ring of the architecture. The same 

ring may contain different resource types (e.g. both CPU cycles and storage capacity). 

Each node of the upper ring indexes all the nodes of same resource type and capacity. 

Requests for capacity first reach the upper ring to locate a subset of nodes providing the 

requested resources and then requestors deploy a Chord look-up process to locate those 

nodes in the lower ring. Though, they try to address heterogeneity of nodes, the authors 

implicitly admit weaknesses in high churn rates. To alleviate this problem, especially in 

case of CPU cycles, CompuP2P does not index the actual capacity of nodes but rather 

its average value within a quite long period. Moreover, the diameter of the upper layer 

can get as big as that of the lower one in case all nodes provide unique resource capacity 

in type and size. The look-up and maintenance costs for pertaining accurate finger 

tables on both rings can become very expensive in those cases. 

Celaya et al. in [32] present a Structured CPU cycle stealing P2P Network. Nodes 

are organised in a B-Tree structure based on their IP-address so that sibling nodes are 

physically located in vicinity thus reducing latency. It is a job scheduling system which 

assumes well maintained resources and rare join/leave node actions, as stated by authors. 

Hoverlay is to be deployed on large-scale heterogeneous networks with no guarrantees 

on nodes behaviour. 

OurGrid as analysed in [26] creates a pool of resources for every community. Each 

pool is connected to all other pools and broadcasts the queries it cannot serve with the 

local resources. It is assumed that the jobs that are to be executed do not need access 

to the network interface of the execution machine. There are no guarantees about the 

quality of service offered by the execution machines. The allocation of the resources to 

jobs is based on a reputation scheme that rewards peers that have a reliable contribution 

to the community. 

A P2P-based dynamic reusable resource discovery architecture is proposed by Awan 

et al. in [15]. They deploy an Unstructured P2P network to share processor cycles. The 

main concept behind this is the submission of multiple chunks of a task with their replicas 

to uniformly random peers. The submission node decides how many redundant replicas 

of each chunk are necessary based on the network status it has so far experienced. The 

authors provide theoretical models to calculate replicas redundancy factors and devised 

a uniform walking-based sampling algorithm to distribute those tasks regardless of the 

network topology (uniform, power-law, etc). There is no guarrantee that the sampling 

walker will terminate on a free CPU. Though CPU cycles are not replicable resources, 

authors treat CPU sharing as a task replication-based one and, thus, their algorithms 
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are not applicable to the context of current research. 

In [28], the authors propose the "Inter-flops" (IFL) load-balancing algorithm of 

Active-Objects on Unstructured P2P Networks practically sharing CPU cycles. That 

study identifies two states of a resource, underloaded and overloaded, based on which 

IFL takes the appropriate decisions. If overloaded, a resourse forwards a request to 

a subset of its neighbouring nodes seeking underloaded ones to send its objects to; if 

underloaded, it proactively advertises itself to a single neighbouring node. IFL, trying 

to address latency problems of computational resource sharing, tends to select the best 

neighbours and heavily depends on locality of nodes since all requests and advertisements 

have a single-hop length ignoring any variations of network topology and distribution of 

requests which is assumed to be uniform. If certain areas of a network experience high 

workload, requests originated by nodes in their centres will not be treated equally; nodes 

on the borders would have access to a bigger plethora of resources. Real systems [8], 

[104], [84] tend to form power-law distributions in which case IFL would overload the 

famous ones. High workload situations would trap requests in queues of famous nodes 

increasing latency and probability of network fragmentation had they failed. 

In an effort to avoid the maintenance costs of Structured P2P Networks over Grids, 

Hu and Klefstad in [60] present an Unstructured P2P Overlay which tries to achieve 

global load-balancing. That is, the maximum difference in number of assigned tasks 

between any two nodes needs to be kept between 0 and 2. Each node receives the task 

queue sizes of all its neighbours to find the biggest distance compared to its own. It 

then notifies back all neighbours about this difference which is added on top of their 

own calculated distances, thus discovering task queue size differences between any two 

nodes. As soon as a node detects a total difference higher than 2 it starts moving tasks to 

neighbour with the highest difference. This is a load-balancing algorithm which achieves 

global equilibrium in return to latency increase and message cost. 

Bhrathi and Chervenak in [22] deploy an Unstructured P2P Network of Grid Index 

Services of Globus Toolkit 4. The network uses flooding to search for a requested 

resource and a query caching scheme to reduce the number of messages. It seems to 

be a preliminary research project with limited results. More focus on network topology 

evolution and discovery mechanism is required taking into account the special features 

of shared computational resources. 

2.7 Unstructured Discovery Techniques Classification 

There is a variety of discovery techniques that fit for Unstructured P2P Networks and can 

be deployed on them regar,dless of their organization and topology. These algorithms 

may be grouped in two disjoint subsets: one regarding hierarchical and another flat 

Unstructured P2P Networks. Both are based in the neighbour-to-neighbour forwarding 

scheme; that is, a node upon receiving a request, it processes and then forwards it to a 

subset of its neighbours. In [100], Tsoumakos D. and Roussopoulos N. classified these 

search methods based on the number of next destinations (size of mUlticast) and the 
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Unstructured P2P Search 

Non-flood-based ...-...>..-~ Flood-based 

Figure 2.8: Unstructured P2P Search Methods classification by Tsoumakos et al. [100] 

way these are selected. 

In the case of blind search schemes, each node forwards queries to a random subset 

of its neighbours until a certain number of hops is reached assuming that there are more 

than one appropriate resources within the network. If an informed one is deployed, 

it uses some historical information about resource locations (meta-information) and 

forwards the query to a subset of neighbours that would maximize the search success 

rate. Thil:l information is either direct pointers to or some hints about resource locations 

and can be gathered into a single repository accessible by all (centralized informed) or 

distributed among some nodes of the network (distributed informed). Each node of the 

network, which uses a pure distributed informed method, has and manages a portion 

of this meta-information. If a hybrid distributed informed method is used this meta­

information is shared among a subset of nodes that act as super-peers. A node forwards 

a query to all its imm diate neighbours if the forwarding technique is flood-based or to a 

subset of them, otherwise (non-flood-based). Figure 2.8 presents a general classification 

of Unstructured P2P discovery mechanisms primarily derived from their work in [100]. 

Section 2.4.2 describes two centralized informed techniques: Napster [90] and Bit­

Torrent [81]. Both these systems are based on central indexes from which all nodes 

retrieve their contemporary neighbour lists. These methods guarantee that if an answer 

exists somewhere in the network it is accessible by all the requests. Though they achieve 

high accuracy, efficiency in number of messages and good adaptability to node churn 

(services may be available even if an important percentile of nodes fail), their central 

index is a single-point-of-failure. They require a stable central entity to deal with the 

frequent requests in highly dynamic environments and to ensure availability of the in­

dex. Table 2.2 presents a collection of Unstructured P2P Search Methods with their 

cla sification on the categories of figure 2.8. More details on those algorithms follow in 

the next sections. 

Flood-based techniques produce many messages but achieve good success rate, low 

latency and fault-resilience. The non-flood-based ones produce generally fewer messages 

than flood-based ones at a cost on their success. The pure distributed informed schemes 

manage to satisfy a high percentile of requests only after some time in operation with 
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Blind 
Informed 

Flood Non-flood 
Centralised Pure Hybrid 

Flooding X X 
Modified-BFS X X 
Iterative Deepening X X 
Random Walkers X X 
Intelligent-BFS X X 
APS X X 
Napster, BitTorrent X X 
Local Indices X X 
Gnutella II, GUESS X X 

Table 2.2: Classification of the most famous Unstructured P2P Methods 

number of messages comparable to blind non-flood-based ones. However, they exhibit 

weak adaptability to fast topology changes which can substantially reduce their success 

rate [101]. Finally, centralized informed schemes depend on central entities which, if 

failed, could shut down the whole network. 

Informed methods, as presented above, are educated mechanisms which increase 

their efficiency as long as the resources are not continuously displaced and node connec­

tivity stays relatively unchanged (Le. no/minimum rewirings). A new type of informed 

search techniques for unstructured networks appeared with the studies of their statistical 

dynamics and evolution patterns. Though they do not store resource location informa­

tion they may use network statistical features inferred by its topology and degree of 

connectivity of each node. For instance, assuming that famous nodes are more capable 

of providing an answer, trying to reach them before the non-popular ones during query 

forwarding (Le. a query chooses to visit a high degree node before a low-degree one) may 

increase success rate and reduce generated messages. In this case, neighbour selection, 

though not educated, tends to select more suitable nodes; this is a feature of educated 

informed algorithms. 

Therefore, informed methods can be further sub-classified into educated and unedu­

cated ones as shown in figure 2.9. Topological properties of networks may be inferred 

via Neighbour Lists of nodes and thus these methods are decoupled from any stored in­

formation in them; Neighbour Lists are standard components of nodes in Unstructured 

P2P Networks and represent topologies in decentralised manner. 

2.8 Blind Search Techniques 

Flooding is a widely used blind technique that was introduced by Gnutella I [3]. It is 

frequently referred to as Gnutella search method, as well. The nodes that use flooding 

forward each incoming query to all their own neighbouring ones unless: 

• the query has already been forwarded TTL consecutive times (its TTL has ex­

pired), in which case the query stops there. 
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.. ... 

Figure 2.9: Extended Unstructured P2P Search Methods classification including Educated and 
Uneducated Informed Methods 

• one of the next destination nodes is the query originator which is excluded from 

the query broadcasting. 

• query loops are created if forwarded to neighbours that already have processed the 

same query. These neighbours are also excluded from that broadcasting. 

Flooding is characterised for its simplicity and its high cost in number of messages per 

query produced in the network [101]. It can quickly access a big portion of the network 

consuming substantial bandwidth as the number of visited nodes per query increases 

exponentially per hop. The large number of messages produced puts a substantial 

burden on the nodes since they have to handle many incoming queries [75]. Despite 

this exhausting network exploration, the resources placed beyond that horizon cannot 

be discovered by that node [24]; TTL sets a horizon for every node. It can, however, 

guarantee discovery if these resources are located within that horison. 

Aiming at cost (number of messages) reduction of Flooding, Kalogeraki et al [65] 

introduced the Modified Breadth-First Search technique. It is a blind non-flood­

based search scheme which, instead of the whole neighbour list of each node, it uses 

a random strict subset of them (e.g. each node forwards every query to 2 out of its 5 

neighbours). The node chooses randomly a percentage (parameter of the method) of its 

neighbours to forward the query to thus reducing the number of messages produced by 

a single query. It reduces the probability of loops as it does not explore every link but 

it cannot avoid the exponential increase of messages. As in Flooding, a TTL counter 

per query works as its propagation stopping condition. Though the overall produced 

messages are fewer, they are still a substantial workload and bandwidth consumption. 

It is a probabilistic method that does not guarantee discovery of resources located ei­

ther beyond or within the TTL radius [101] and highly depends on the size of selected 

neighbours subset. 
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Expanding Ring [75} or Iterative Deepening [106] is another blind flood-based 

method which does consecutive floods with an increased TTL each time. Initially, the 

requestor node floods its neighbourhood with a query for a small number of steps. The 

nodes at a distance of TTL hops stall the forwarding and wait for the query originator 

to confirm before they continue; they do not notify originator when a query gets into 

stalled mode. If all responses discovered during that first wave comprise a satisfactory 

set of resources, then the query originator simply does nothing and any stalled query 

gets dropped as soon as its lifetime expires. Otherwise, the originator floods again a 

'ReBend' metll:16ge to notify all nodes with stalled queries to continue their forwarding 

with another TTL. This process of iterative increase of TTL stops when a maximum TTL 

is reached. In every iteration queries travel deeper in the network but nodes already 

visited on previous waves are revisited on the current one. This method manages to 

almost halve the overall average number of produced messages per query and solves the 

problem of TTL choice of Flooding. However, this improvement comes at the cost of 

slight increase of discovery latency while message duplication remains an issue [101]. 

If the usually requested resources are the famous ones which are uniformly distributed 

in the network, Iterative Deepening is considered to work well [75]. 'Resend' message 

floods aim at reactivating stalled queries assuming that they follow same paths as the 

queries. However, if this mechanism is deployed on a frequently changing topology with 

many failures or rewirings, the probability the floods reach all nodes with stalled queries 

significantly decreases. 

All three methods above generate high workload (messages) and message duplica­

tion. The non-flood-based blind Random Walkers method [75] efficiently resolves these 

two issues at the expense of considerable increase of latency and instability of its suc­

cess rate. Initially, the requestor node forwards a query to random k neighbours. All 

the following receivers of the query forward it to a single random neighbour of theirs. 

Forwarding stops when the query is successful or when it has reached nodes TTL hops 

away from originator. A 'checking' stopping mechanism may also be used; that is, the 

query periodically checks with the originator whether it should stop hoping from node 

to node. In worst case scenario it may generate k*TTL messages but its success rate 

and number of discovered answers greatly vary depending on network topology. Due to 

the limited number of nodes it visits and the TTL stopping condition it exhibits proba­

bilistic bahaviour and is difficult to discover scarce resources [101]. However, Gkantsidis 

et a1. in [55] claim that Random Walkers can perform even better than Flooding in case 

of nodes re-issuing same queries em clustered networks assuming that nodes within their 

horizons do not change. 

A rather special case of,k-Walkers is I-Walker, refered to as Depth-First Search (DFS) 

and used in Freenet [33}. DFS selects randomly one neighbour on each hop trying to 

forward queries as deeper in the network as possible. The query originator has to set 

the TTL quite big to increase its success rate. The messages spent by this mechanism 

are only equal to TTL but it suffers from high latency and significant fluctuations over 

time on its success rate. 
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Gkantsidis et al. in [53J propose a generalised scheme for modelling search mecha­

nisms via a budget distribution to neighbours process. That is, a) each query originator 

assigns a budget to every replica of the query it sends out, b) the receivers reduce the 

budget of the query they received by one and c) distribute it among to the new query 

replicas. This forwarding scheme stops when the budget is consumed. This ensures 

the maximum number of messages spent for every query. If the budget is evenly split 

among the neighbours selected then this budget-based mechanism may convert to blind 

search mechanisms as explained above. The authors, however, propose a more informed 

budget djl'ltrjbution among neighbours b_ed on the criticality of Hnkl'l (Le. neighbouTIl 

on paths with increases success rate get more budget). 

2.9 Educated Informed Search Techniques 

Gnutella II [4J and GUESS [36] methods are based on hybrid P2P organizations. A 

subset of nodes, the super-peers, keeps an index of resources shared by nodes that are 

connected with them (leaves). In case of Gnutella II, each node sends the query to a 

super-peer (hub) which then forwards it to its immediate neighbouring hubs if they seem 

able to answer it. The hub that receives a query matches the request to any. indexed 

resources and if there are matches, it forwards the query to appropriate nodes. The 

neighbouring hubs periodically exchange their indexes so that they can send forward 

the query only to hubs that can help. The query does not travel further than the 

immediate neighbours of the query originator hub. In GUESS, however, the requestor 

node contacts one super-peer at a time and the super-peer forwards the query only to 

leaves that can respond to it based on its indexes. There is no forwarding between 

super-peers. 

Apart from modified-BFS, Kalogeraki et al introduced Intelligent Breadth First 

Search in [65]. It is an informed technique based on which each node forwards the query 

to neighbours that are more likely to find an answer. It maintains a list of {neighbour, 

query} tuples when the query has been answered by or via this neighbour. The answers 

follow the reverse path of the query informing all intermediate nodes about that success. 

On any subsequent query, it tries to match, based on a heuristic, requirements of the new 

one with the most recent successful ones from that list. From these matches, it chooses 

the neighbours that have returned the most answers on similar queries. As shown in 

[65] and [101], Intelligent BFS is better than Flooding as it produces less messages but 

more than Modified-BFS. While nodes interact in a network and build up more accurate 

tables the number of answers discovered increase. This indicates that the learning mech­

anism of the method produces better results after some time. However its weaknesses 

are that the messages it produces cannot be less than these of Modified-BFS and that it 

has limited adaptability to the nodes failures and topology changes though it could be 

improved by using query failures along with success rate to rank the neighbours [101]. 

Adaptive Probabilistic Search introduced by Tsoumakos and Roussopoulos in [100] is 

based on a local index which reflects the probabilities each neighbour has to be chosen 
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for the next query forwarding. Its forwarding scheme is Random Walkers; thus the 

query originator forwards each query to k neighbours and the intermediaries to just 

one. The neighbours with higher probability have higher priority to be selected. There 

are two approaches in modifying those probablilities tables: optimistic and pessimistic. 

In the optimistic approach, its current hosting node increases this probability before a 

query is forwarded and only decreases it when that node gets a notification about a 

query miss via the reverse path of the walker. In the pessimistic one, the probability is 

initially decreased and only increased if notified of a query success propagated over the 

reverse path of the walker. It has the same advantages and disadvantages as Random 

Walkers: good efficiency, low produced traffic but introduces significant latency and 

weak adaptability to topology changes. A modified version of APS, the s-APS, can 

dynamically switch between optimistic and pessimistic approaches. Their efficiency 

progressively improves in environments with low resource joins/departures rates [100]. 

Local Indices [106] method uses a clustering technique to organize nodes into groups. 

Each node has an index of resources of all nodes in a radius r. Whenever a node receives 

a query it tries to match the request to that index and forwards it to the discovered 

nodes. Otherwise, it sends the query beyond the radius r. The join action of a node 

involves the flooding of the network with a TTL=r with its local index of resources. It 

is a method that achieves high success rate and discovers many answers at the expense 

of many messages. 

Another educated informed method is proposed in [111] by Zhuge et al. The authors 

describe a k-walkers based algorithm the forwarding of which, however, relies on trust 

values maintained in nodes for their neighbours. Initially, all neighbours are assigned a 

zero trust value. As soon as a path gets successful, the resource provider feeds back to 

its predecessor in that query path with the response. Then that predecessor increases 

by one the trusted value for its successful neighbour. The feedback stops there without 

further backtracking to the query originator. Thus, only the predecessor of responder 

node gets notified about a success. Query forwardings follow these values giving priority 

to the most promising neighbours. 

2.10 Uneducated Informed Techniques 

Uneducated techniques use network dynamics and topology properties derived from 

implicit information such as node degree. Certain unstructured topologies exhibit char­

acteristics that enable more efficiellt resource discovery. Power-law networks have short 

average path length [9] and achieve logarithmic search efficiency [61]. As argued in [25], 

search techniques can be even more efficient (twice logarithmic) in scale-free networks. 

Though these networks have good resilience on node failures and attacks [10], a com­

bined attack to selected high degree nodes will negatively affect the search efficiency or 

even fragment the network [30]. 

Though, blind search algorithms were initially designed assuming uniform node de­

gree distribution of networks, several studies (as cited in section 2.5) claim that real 
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Unstructured P2P Networks exhibit power-law degree distributions; thus, they end up 

being deployed on topologies for which they do not fit. Due to rewiring and join/leave 

mechanisms (see section 2.5) nodes hosting famous resources, with more reliable connec­

tivity or more resources than others tend to attract more links. Symmetrically, nodes 

with unpopular resources, weak connectivity or few resources tend to have small degrees 

and be located towards the boundaries. By definition, a vast majority of nodes in these 

networks have a link to a famous one and thus any query may easily reach the giant 

component in its centre. In contrast to unpopular resources, famous ones are easy to 

discover. 

LV et al. in [75], claim that random walkers quickly reach high-degree nodes in 

power-law networks but have poor efficiency in rare resources and therefore the node 

degree should be ignored in query forwarding. Replication methods could alleviate 

the situation but in the current study this is not applicable as service capacity is a 

non-replicable resource. Adamic et al. in [6] proposed an algorithm based on random 

walkers resembling the Random Walks with Lookahead [53]. At each step, the walker 

visits all neighbours of the current node and if no success it hops to the one with the 

highest degree. This process stops after Time-to-Live (TTL) steps. Mihail et al. in 

[77] formalised the random-walker with lookahead discovery mechanism on power-law 

networks. At every step of the walker all the neighbours of the current node are'checked 

for the requested resource and their own degree. Only the one with the highest degree 

then forwards the query. They claimed that the time a random walk with lookahead 

needs to explore the whole network is sublinear to the network size. This happens due 

to the giant component in its centre, a small subset of interconnected nodes attracting 

many links from the boundaries of the network, which eases the access to a majority of 

nodes as it preserves links with a big portion of the network. 

Fraigniaud et al. [49] focused on developing an algorithm to exploit the power­

law degree distribution properties quickly locating high-degree nodes. It is a modified 

Depth-First-Search which first forwards queries to neighbours with the highest degree. 

When a certain number of steps are completed, the query backtracks to visit the second 

highest degree neighbour. For every change of a node degree all its neighbours have to be 

notified thus increasing the maintenance cost. Backtracking introduces high latencies 

in search mechanisms cancelling the advantage of short average path length of scale­

free networks. Adamic et al. in [6] also claimed that searching mechanisms in scale-free 

networks should give preference to high-degree nodes when forwarding a query. However, 

this assumes that the resources are replicable, non-reusable and that always hosted by 

the same node. This assumption is also used by the QRE algorithm [49] but is not the 

case with the resources on which this work focuses. 

All these proposed discovery schemes assume that resource availability of a node 

may never drop due to its incoming degree modifications over time. Once a resource is 

discovered, the requestor may open a connection to that provider for future direct access 

to that resource assuming this resource does not change location. However, if resources 

migrate among different nodes those links may also become unsuccessful. 
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2.11 Topological System Requirements 

Grids and P2P Networks are the two most decentralised and well-known paradigms of 

distributed computing. Given all features of service capacity, none of these two may 

be used as is for efficiently, reliably and inexpensively sharing this kind of resources 

in large scale heterogeneous environments. However, both exhibit certain very useful 

characteristics which may be used to compose a more appropriate architecture, Hoverlay. 

Grids aggregate massive resource capacity into, sometimes complex, composite ser­

vices and offer on-demand high reliability and quality of service. However, they have 

a number of weaknesses that reduce their adaptability in environments with volatile 

resources and dynamic conditions. In brief, they: 

1. use static links between those services. In these cases, manual configuration is 

necessary. 

2. allow automatic service composition via predefined well-known centralised service 

indexing servers. 

3. require good maintenance of resources to ensure availability and promised service 

quality provisioning. 

4. aim at financial benefits from shared resources. Resource owners and consumers 

are bound via contracts; human intervention is again necessary. 

Despite their weaknesses, Grids exhibit certain useful features for sharing service 

capacity. As with service capacity, Grid resources are reusable, non-replicable and allow 

exclusive only access. Gathering free resources into pools is a concept that respects re-

source ownership and administration policies within the same domain. There is usually a 

one-to-many relation between a pool and the resources it monitors/manages. At its most 
monitors one or 
more resources but decentralised form, a pool may monitor only one resource (one-to-one relation) in which 

each resource is case connectivity with other pools is necessary. Many-to-one pools-to-resource relations 
monitored by one 
and only one pool may violate exclusive access to a resource, produce deadlock situations, affect system 

at any time. reliability or generate many unnecessary messages. In fact, if resource advertisements 

appear in more than one pool, there may be three situations: 

• a job submission to an already busy resource without any guarantees that the new 

job will be executed on time (loss of system reliability). 

• two jobs submitted to be sequentially executed on the same resource but the first 

waits for the termination of the second (deadlock situation). 

• upon submission of a job, all pools hosting advertisement replicas of the same re­

source receive notifications, before a second job is submitted, to deactivate/remove 

those adverts avoiding the two previous situations. Assuming that a checkpoint­

ing scheme can take over this responsibility, heartbeats should be transmitted 

to all advert hosting pools. In case those advertisements migrate between pools 

this checkpointing scheme becomes either expensive or infeasible without an extra 

discovery mechanism. 
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For similar reasons, once a resource takes over a job (i.e. service capacity is used) it 

disappears from the system. This explains why resource aggregation into pools based 

on a one-to-any relation is preferable to a many-to-any one. 

The well-known Grid system, Condor, collects resources into pools which are used 

upon request. They use advertisements of resource specifications to match against job 

requirements and deploy a checkpointing scheme to detect resource busy/free conditions. 

In contrast to the reliable Grid Resources, there is no guarantee that service capacity 

once freed is the same as before committed since its volume depends on current condi-

Publish: Nodes 
need to re-register 
once they change 
status from busy to 
underloaded. 

Represent: 
Service capacity 
specification as a 
non-replicable 
advert. 

Represent: 
tions of its provider. Therefore, advertisements of the same resource may differ over time Adverts of same 

giving more unreliability and uncertainty. Each pool places jobs into priority queues and resource are not 
the same over 

if no resources are available, via flocking, they migrate to other pools (only single-hop time. 

migrations are allowed). These constraints assume that one-hop job migration is enough Discover: 

to discover the appropriate resources; that is, Condor Flocking relies on high degree of Multi-hop searches 
on interconnected 

pools or high availability or resources. pools. 

Condor extends resource availability by using source- and server-initiative group 

flocking which are the reactive (job advertisements) and proactive (resource adver­

tisements), respectively, approaches to resource discovery problem. Applying server-
Commit: Once initiative flocking for service capacity sharing the system needs to match network policies 
resource is 

of both submission and execution domains whereas in source-initiative approach· the dis- discovered, fetch 

covered resource migrates and has to fully adopt the network policies of its new domain. 

Hoverlay is to be deployed in highly heterogeneous environments where network poli­

cies may be significantly different and server-initiative flocking practically impossible to 

apply. Therefore, upon successful discovery, service capacity migrates to requesting en­

vironment which may use its own policies and submission procedure; that is, discovered 

adverts of resources are moved from providing to requesting domains (pools) ensuring 

system-wide uniqueness of each resource. 

Unlike Grids which aim at job execution submitting jobs to remote resources, P2P 

Networks focus on discovery via transferring resources to remote requestors. P2P Sys­

tems assume volatile and potentially malicious or selfish behaviour of resources, unreli­

able connectivity, automatic network reconfiguration and reorganisation, are application­

specific, have low maintenance costs and can grow in large numbers of nodes. Their main 

shortcomings that make them unsuitable for service capacity sharing are: 

1. P2P Networks are designed and deployed for specific applications. They currently 

support replicable/cache-able resource sharing (files, distributed storage, stream­

ing), collaborations over long-life multi-access resources (office applications) and 

communication over static user-driven links (VoIP and instant messaging). 

2. compared to centralised architectures, they suffer from longer response times to 

requests due to their distributed search algorithms. 

3. new nodes may join a P2P Network only via accessing a well-known existing one 

(entry point). There are several schemes to discover those entry points; well­

maintained caches of nodes membership activities or hard-coded node addresses 

its advert into 
requesting domain 
(remove it from 
providing and 
place it in 
requesting pool). 
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which are guaranteed to be always-on [67]. Though resource sharing is not directly 

affected by those mechanisms, its expansion depends on single points of failure. 

If more than one cache is used, there is a probability the network created by 

continuous joins/departures be fragmented. 

4. P2P Networks are heterogeneous and large-scale by nature and as such suffer from 

high security risks. Their security guarantees depend on security levels of its 

members. 

Robustness and scalability of P2P Networks are the two main reasons due to which 

they may constitute a basis for designing a service capacity sharing system. They are 

architectures optimised for resource discovery and that will be their role in the proposed 

system, Hoverlay, interconnecting resource pools in a P2P overlay. In Structured P2P 

Networks the manager node of a resource has the same key as its hash; every time a 

resource joins a network that hash function and the discovery mechanism are activated 

to place the resource in a specific node. Input to that hash function could only be the 

service capacity as, if otherwise, only qualitative or semantic searches would be possible. 

These networks deploy exact-matching discovery mechanisms and thus requestor needs 

to know the exact hash key of a requested resource. In case of service capacity, adver­

tisements may be complicated specifications practically impossible to hash and search 

in Structured P2P Networks because: 

• every different value of a qualitative or quantitative property of that specification 

would produce different hash key, 

• searches based on a subset of properties are impossible as exact-matching algo­

rithms require prior knowledge of the full resource specification, 

• every time a resource joins the network new, potentially different, specification is 

to be registered. 

If hashing of a single property is used for locating service capacity resources, a node in 

Structured P2P Networks indexes resources whose property values belong to the same 

range. In case that node fails all resources within that range disjoin the network. Given 

that service capacity is highly intermittent, in worst case scenario, these procedures need 

to be frequently executed increasing maintenance costs of such systems. 

Resource registrations dictated by structured organisations may cancel potential 

benefits of placing a node in its nearest pool. Every resource, once freed, may register 

with a different pool from the one it used before. Therefore, frequent load fluctuations 

cause equally often discovery mechanism invocations which would be avoided if resources 

registered with the local pool. To address this issue, registration could have two phases: 

initially the freed resource could try to register with the pool from which it moved to 

the local one and if unsuccessful that local one via the structured discovery mechanism 

locates the appropriate hosting pool. However, assuming intermittent behaviour of pools 

in a heterogeneous environment that first phase would frequently fail and introduce 
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further latencies. As analysed in 2.6, there are a number of Grid architectures achieving 

efficient resource discovery over large-scale Structured P2P Networks which however 

suffer from problems derived from the nature of these overlays. 

Despite their strengths, Structured P2P Overlays are not appropriate for sharing 

service capacity due to their weaknesses related to hashing volatile, multi-property and 

intermittent resources. On the contrary, Unstructured P2P Networks achieve minimal 

maintenance costs in return to expensive search mechanisms. In that case, pools are 

interconnected in an unstructured overlay with arbitrary connections and each one of 

them manage a set of underlying nodes/resources. This topology resembles hierarchical 

two-layer Unstructured P2P Networks, like Gnutella II, with pools being the super-peers. 

Grouping resources into pools, apart from the benefits as analysed before, reduces search 

latency and space as discovery mechanisms are deployed solely on pools overlay rather 

than underlying networks. However, it does introduce local single-point-of-failures as a 

pool failure would practically disconnect both its free and underlying nodes but without 

or slightly affecting other pools. Resourceful pools may attract many links and a possible 

failure could fragment the network [30]. However, the more rewirings that pool provides 

the more links it attracts and the faster its resources migrate. This mechanism of 

rewirings reduces the lifetime of its high incoming degree and the network's dependency 

on such nodes. 

Disconnected resources need to re-register with the overlay by contacting another 

existing pool. If not hard-coded, these pools are discovered via dedicated caches which 

statistically tend to provide the most stable resources. That results to preferential 

attachment of new nodes and pools on the overlay which gradually converges to a power­

law topology. Rewiring is an action present on most self-configurable Unstructured P2P 

Overlays sometimes part of a distributed search algorithm or as a result of neighbours 

failures. In the former case, these algorithms try to improve their efficiency by replacing a 

neighbour with a better one while in the latter one, a failed neighbouring node gives place 

to another already accessed during a query propagation. Both ways tend to prefer more 

stable and reliable nodes; thus, famous nodes increase their incoming degree faster that 

the others. Though these actions may transform the overlay of pools into a power-law 

topology, service capacity moves between pools; the more links a famous node attracts, 

the faster its available service capacity is moved away from it and thus the faster its 

quality of service deteriorates. Resource migrations work as a countermeasure to winner­

takes-all phenomenon which, e.g. in globally high load, may result in a load-balanced 

overlay as no pool will have enough time to gather many resources and significantly 

increase its reliability and thus its fame. 

There is now a set of requirements and principles for the architecture of the proposed 

system. However, search of that Unstructured P2P Overlay of pools is not sufficiently 

addressed yet. Resource mobility and non-replicability are features not present in re­

sources with which existing Unstructured P2P search techniques as such deal. Apart 

from node and pool failure, resource mobility leads to a more unstable pools overlay 

as links should adapt in a way that resource movements are easily tracked. Stalkers is 

Discover: 
Overlay of pools is 
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links to track node 
movements 
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designed to address those situations. 

2.12 Summary 

This research provides an infrastructure for sharing reusable and highly dynamic re­

sources (service capacity) between users with unreliable machines and connectivity. Grid 

Computing achieves resource sharing for task scheduling purposes based on centralised 

entities. They assume reliability of resources and try to offer high quality of services. 

They support, apart from scheduling, job migration and execution checkpointing which 

informs the central manager about its execution state helping decisions for resubmission 

and/or migration. However, their weaknesses include scalability and dependency on 

resources reliability to achieve availability. 

Peer-to-Peer Networks is another well-known class of resource sharing architectures. 

These systems are already deployed in large scale environments whose typical users are 

inexperienced individuals under various administrative domains behind firewalls and 

with any kind of network connection settings. While Structured P2P Networks provide 

guarantees about discovery efficiency in deterministic number of messages using DHT 

indexes, they suffer from scalability in highly dynamic environments. On the contrary, 

Unstructured ones cannot provide these guarantees but they are resilient to high churn 

rates since join/leave actions of nodes have minimal effects on network configuration. 

However, if a well known node fails, the network may even get partitioned or some other 

peers isolated. 

This research tries to address the problem of network workload fluctuations adapting 

network size to keep nodes normally loaded. Its basic concept is that underutilized 

nodes from a network can be used by overloaded nodes in different networks to serve 

their excessive workload. The solution proposed, Hoverlay and Stalkers, moves capacity 

(nodes) from one network to another improving the utilization of spare capacity and 

helping networks to deal with high workload situations. Three steps are necessary 

to achieve this goal: resource publishing, discovery and commitment. The first step 

announces availability, then appropriate nodes are located and finally they migrate to 

requestor network and commited by an underlying node. 

Centralized systems, due to their single-point-of-failure entities, exhibit weak robust­

ness and scalability properties as; frequent registration and discovery requests caused by 

intermittent shared resources could overwhelm that central entity converting it into a 

bottleneck. Grid Computing platforms assume well-maintained resources and seem un­

suitable to share service capacity because of their priority-based request queuing scheme 

increasing response latency. Structured P2P Networks cannot deal with complex queries 

and have high maintenance costs in frequent join/leave actions of resources. However, 

Unstructured ones have instant join/leave procedures with minimal maintenance costs 

and thus that will form the base of Hoverlay. 

This chapter also provides a general understanding of unstructured search algorithms 

and their classes. It identifies two vertical classification methods: the multicasting size 



2.12. SUMMARY 45 

(number of nodes a query is forwarded to) and the way neighbours are selected to 

propagate queries they receive. However, it gives an extensive description of the blind 

(randomly chosen neighbours) and informed (neighbours chosen based on statistical 

information) classes. It also proposes an extension of informed techniques classification 

into Educated and Uneducated Informed ones based on whether the information they 

use for query propagations is explicitly collected or exists hidden in network elements 

(i.e. node degrees or link lifetime). The descriptions of those mechanisms will provide 

useful material for the design of Stalkers. 

Service capacity is a non-replicable reusable resource with highly intermittent be­

haviour. Important principles of both well-studied resource sharing paradigms, Grids 

and Unstructured P2P Networks, will be used to design Hoverlay. While the former 

can provide useful ideas for components such as the pool of resources, reasoning and 

feasibility for pool interconnections, job submission toolkits and security mechanisms, 

the latter can be the overlay that interconnects pools easing their collaboration and im­

proving the scalability and fault-resilience attributes to the proposed architecture. The 

following chapters present a preliminary model which, given some extensions and im­

provements, results in Hoverlay and a set of appropriate search mechanisms for sharing 

service capacity within that environment. 



~~--------------------------~ 
Global ROME: Preliminary Model 

Global ROME (G-ROME) is designed to provide an interconnection of multiple inde­

pendent ROME-enabled P2P networks constructing a two-layered hierarchy. ROME 

[88] is a capacity sharing mechanism helping Chord rings to keep a near-optimum size 

and reduce their average query latency by replacing, swaping, removing and inserting 

nodes based on the workload each area of the ring experiences. It is a system designed 

and developed from the same group as the one presented in this thesis. G-ROM~ got in­

spiration from that system and tried to move it one step forward by interlinking ROME 

servers; the aim was to improve the scalability of underlying rings. The overlay of G­

ROME is an Unstructured P2P Network of ROME bootstrap servers and enables the 

discovery of extra not locally available capacity to cope with workload increases. 

Its design follows the guidelines of section 2.11 for pools overlay topology. ROME im­

plements the resource publication phase whereas G-ROME provides the interconnection 

between ROME pools. Though it uses existing Unstructured P2P search mechanisms 

it introduces keywords to improve search efficiency and accuracy. Servers are enhanced 

to deal with both ROME and G-ROME functions and with queries directly from other 

overlay servers and indirectly from underlying nodes. Requests for capacity from un­

derlying nodes are handled by ROME processes which take decisions about appropriate 

actions. Queries are forwarded onto the overlay only when local ROME cannot satisfy 

the requirements of the local ring. Each layer of ROME---'> G-ROME stack fulfils a subset 

of requirements as set in sections 1.5 and 2.11 so that they collectively address all related 

design principles. Table 3.1 maps those requirements to their appropriate layer. 

Inheriting all the components from ROME, a G-ROME server is the most impor­

tant component of the architecture as resource publication point and member of pools 

unstructured overlay. It consists of: 

• a Neighbour List (NL) to interact with other servers on the overlay. For every 

unsatisfied query, servers forwards it to all their neighbours . 

• a Node Pool (NP) to store pointers to (adverts of) locally available free nodes 

that represent a certain amount of capacity. This is a component already present 

in ROME. 

47 
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Requirement 
1. Pools to host free resources only 
2. Each pool monitors one or more resources 
3. Each resource is monitored by one and only one pool at any time 
4. Nodes need to re-register once they change status from busy to 

underloaded 
5. Adverts of same resource are not the same over time 
6. Resources re-register with local pool 
7. Service capacity specification as a non-replicable advert 
8. Multi-hop searches on interconnected pools 
9. Once resource is discovered, fetch its advert into request­

ing domain (remove it from providing and place it in re­
questing pool) 

Layer 

ROME 

G-ROME 

10. P2P interconnection of resource pools 
11. Overlay of pools is an Unstructured P2P Network 
12. Search technique able to trace node movements 
13. Adapt links to track node movements 

none 

Table 3.1: Mapping of proposed system requirements to G-ROME layers 

• a Keyword List (KL) to describe the application deployed on an underlying 

network (i.e. file sharing, lookup applications or distributed processing) . 

• a Keyword Exclusion List (KEL) to describe applications which most of the 

nodes in Node Pool and Chord ring are not willing to serve. Each node has a 

set of keywords to sketch out applications it cannot serve. A collection of most 

frequent keywords of all nodes in the administrative domain of a server construct 

this latter's KEL. 

G-ROME discovery mechanism uses KEL of request originating server to find not 

only adequate but appropriate nodes as well. It tries to match the query with free nodes 

whose KELs have no common keywords with those of requester server (fully compatible 

nodes). This enables relationships between servers supporting relevant applications. In 

this architecture, it is assumed that there is one-to-one mapping between a G-ROME 

server and an underlying network/application. In real world systems, a server may be 

in charge of underlying nodes involved in interactions of more than one distributed ap­

plications. For instance, a node may participate in two completely different applications 

(therefore networks, too) in which case may appear in two pools with different ID and 

different capacity. That is, a single node may physically host two or more distributed 

application processes but in G-ROME each such process appears as different node. 

G-ROME architecture uses a keyword-based technique to initialize and update Neigh­

bour Lists. A new server may join the network using an existing server (registrar) by 

copying the latter's Neighbour List. The new server updates its own while receiving 

queries, answers and registration messages from other servers based on several crite­

ria, as described in the following sections. Both of these operations, initialization and 

updating of Neighbour Lists, ensure low overhead in messages for server registration 
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Figure 3.1: G-ROME layered architecture: components and processes 
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and maintenance in the overlay. Figure 3.1 provides a general overview of the proposed 

architecture. 

Each bootstrap server connects to a number of other servers via its Neighbour List. 

Server functionality can be divided into three layers: G-ROME monitors ROME oper­

ating on top, as ROME does over Chord rings, and invokes the suitable node discovery 

mechanisms when necessary. Each G-ROME server supports the following operations: 

1. Register: an existing server registers a new server or node to the overlay. A 

server registers with the G-ROME overlay by acquiring the Neighbour List of an 

existing one. 

2. Update Neighbours: every server uses the keywords of received query or answer 

originator servers to update its Neighbour List. 

3. Send Query: if a ROME server, while monitoring its Chord ring or upon receiving 

a query, has run out of free service capacity in its Node Pool it sends a query to 

all its neighbours requesting additional capacity. 

4. Answer Query: as soon as a remote server receives a query, it answers back 

providing the requested appropriate capacity (if at all available) to query originator 

server or propagates the same query to all its neighbours. 

Each server keeps a certain amount of free capacity (safety capacity) in its ROME 
pool for future use by local ring which no external requestor may use. This technique 

aims at reducing the number of messages transmitted in the overlay by preventing servers 

from sending requests whenever their rings experience slight workload fluctuations un­

able to satisfy with local service capacity. Both servers and nodes have to be G-ROME 

enabled to participate in this system. That is, servers need the G-ROME processes as 

described above and nodes need a G-ROME process (relocate) to resolve which server 

monitors them. Relocate process is invoked when a node moves to another server and its 

role is to kill the old ROME process that was configured to refer to the previous server 

and restart it parameterised with the new server address. 
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Figure 3.2: Flowchart of G-ROME Server processes 

3.1 Architecture Overview 

A G-ROME server may be in any or both of two states: a) reply to received queries 

and b) query for capacity modes. On external query arrival, its reply state is activated 

and all proper actions are done to either provide the requested capacity or forward the 

same query to its neighbours. However, internal queries trigger its query state and it 

either immediately replies back with local resources or reserves as much local capacity 

as possible and forwards a query on the overlay seeking for the remaining portion. If 

local resources in Node Pool are enough to satisfy both an internal and external query 

then the server can be simulataneously in both states. Safety capacity levels in Node 

Pool depend on the excessive workload increase rate of the underlying network. That is, 

safety capacity is equal to the workload increase rate times the total underlying network 

load. Figure 3.2 illustrates the main functionality of a server which refers to query 

processing (sending/ propagating/ answering queries). 

Reserving capacity for future use by local underlying nodes practically reduces re­

source availability and withholds capacity from moving to servers in need. In high load 

situations this safety capacity reaches its maximum size as it is proportional to the 

requested one from underlying nodes. This adaptivity helps the system to reduce the 

number of queries and messages from highly loaded networks but to make maximum use 

of spare capacity when this is not needed locally. The level of the adaptivity depends 

on the history size taken into account; a small portion of past activity makes the safety 

capacity more responsive to workload fluctuations . Two parameters are necessary to 

determine the exact size of safety capacity: a) the percentage of requested capacity by 

underlying nodes and b) the time window size during which that requested capacity 

was monitored. Both these parameters are set by server administrators and accrue from 

calibration, policies and application type deployed on the underlying network. 

If ROME monitoring identifies a node that needs extra capacity to serve part of 

its load but ROME Node Pool is unable to satisfy, appropriate G-ROME processes are 

triggered to seek that capacity in external pools by sending out to the whole NL an 

appropriate query. When a set of nodes that satisfy its needs is found, it places their 

adverts into its Node Pool and updates the Keyword Exclusion and Neighbour List with 

relevant details from the response originator. 
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Serving external queries (if any) and waiting for internal ones are two parallel pro­

cesses for each server. For every incoming external query it updates its Neighbour List 

and safety capacity and either propagates the query to its neighbours or answers by 

extracting at least the requested capacity from the Node Pool. In the latter case it 

notifies directly the query originator with a list of IP addresses of nodes that collectively 

provide the requested capacity. 

3.2 Semantic Cooperation 

Answer refinement is necessary in the context of P2P Networks which are dedicated to 

specific applications. Not all discovered nodes are able to participate in an underlying 

Chord network. Though they may be able to provide the requested resources, they 

may be inappropriate or unwilling to take over a specific task. Therefore, semantics 

are introduced to specify special requester or provider requirements. Simple keywords 

are used for the semantic cooperation between servers and nodes. For simplicity and 

without loss of generality they are simple words or (key,value) pairs. 

G-ROME uses two semantic components: Keyword List (KL) and Keyword Ex­

clusion List (KEL). Every node has a Keyword Exclusion List to specify properties of 

traffic it is not willing to serve. Every server has both a Keyword List and a Keyword 

Exclusion List. A Node Pool can only contain nodes whose Keyword Exclusion List has 

no common keywords with the Keyword List of its server. This ensures that each pool 

strictly enlists nodes able and willing to serve traffic of that specific underlying network. 

For scalability purposes the server Keyword Exclusion List may contain 10% only of the 

most common exclusion keywords of nodes in Node Pool and underlying network (busy 

nodes). Both Keyword List and Keyword Exclusion List of a query originating server are 

included in every query forwarded to its neighbours. A server upon receiving a query, 

it tries to find nodes in its local pool without any common keywords in their Keyword 

Exclusion Lists and Keyword List of the query. This guarantees that discovered nodes 

will be useful in the requestor server's context; thus, compatible with the application 

deployed on requesting underlying network. 

The server Keyword Exclusion List attached to a query is used by each visited 

server to update its Neighbour List. If this latter is full, one of its entries may be 

replaced by another or, if otherwise, appended. If the query originator server is less 

semantically distant from a visited server, this latter replaces one of its neighbours with 

the former. Semantic distance is defined as the number of common keywords between 

a server Keyword List and the Keyword Exclusion List of another. Symmetrically, 

semantic closeness is the number of non common keywords between a server Keyword 

List and Keyword Exclusion List of another. Every server, upon receiving a query or 

answer, compares its Keyword List with the Keyword Exclusion Lists of that message 

originator and its neighbours. Based on this comparison, servers choose the semantically 

closest neighbours, thus ensuring that they are directly connected to neighbours that 

will probably offer more compatible answers. 
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This rewiring scheme uses semantics to bring closer Chord rings that would be more 

willing to share capacity if available. However, both servers KL and KEL adapt to node 

migrations as keywords move in and out their context. For instance, a server gets noti­

fied via queries sent by one of its neighbours that this latter's KEL gets populated with 

keywords incompatible to its own; in this case, rewiring may be triggered and break 

the link between those two servers. Though a server may serve the same application, 

its links change based on the nodes moving in/out; two servers may lose their direct 

connection even if their applications are semantically related. Therefore, servers practi­

cally experience semantic cooperation with the nodes rather than the server of a remote 

neighbouring domain. This scheme is a dynamic quality measurement mechanism of 

servers as it allows them to link to neighbours that are more likely to help in the near 

future given their current capacity quality (semantics) and availability. 

3.3 Registration Process 

There are two different registration processes for a G-ROME-enabled server: a) node 

registration with its local server and b) server joining to the G-ROME network. A 

new node registers with a server if their lists, Keyword Exclusion List and Keyword 

List respectively, have null intersection. The server updates its Keyword Exclusion List 

when a new node registers with it. Once a node has registered with a server, it keeps 

the connection open using heartbeats so that the server can promptly identify changes 

in node's capacity size and understand that it has failed. 

By joining G-ROME, a server initializes its Neighbour List used for sending queries 

to other servers. Initially, it sends a registration request to another registered server 

(registrar) which, in response, provides its own Neighbour List. It repeats the same 

registration messages to the newly acquired neighbours aiming at filling its list with the 

most semantically close neighbours. That is, out of all Neighbour Lists it receives, it 

keeps only servers as neigbours who have the biggest semantic similarity. To reduce the 

probability of overlay fragmentation, any server that receives a registration request has 

to register the new server with its own Neighbour List. That point onwards, it is able 

to initiate queries into G-ROMEand is treated as any other server. 

The initial neighbours of a new server may have very few keywords in common to 

their lists. However, the update process, which is triggered through outgoing or incoming 

queries, ensures that every server tends to improve its Keyword List semantic closeness 

with those of its neighbours. 

3.4 Query Processing 

A server generates queries for service capacity discovery whenever its Node Pool cannot 

fully satisfy requests from its underlying ROME. Every query needs a set of fields to 

support a) appropriate propagation, b) Neighbour List updating and c) keyword-based 

node selection. It contains the requestor address, its Keyword List and Keyword Exclu-
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sion List; this way it describes the applications that any discovered node must support 

and those that the most free and busy ones of the originator server are not willing to 

serve. 

Every query travels on G-ROME overlay by hopping between neighbouring servers 

using their Neighbour Lists commencing from its originator. Once a query is received, 

the current server inserts query originator into its Neighbour List based on the semantic 

neighbour list updating scheme and forks the same query to all its neighbours if unable 

to satisfy the request. Attaching the address of that server to the forked queries and 

using a Time-to-Live (TTL) counter to set a maximum number of hops a query may 

travel on the overlay are two ways to prevent queries from getting trapped into deadlock 

and infinite loops situations. 

There are three conditions to be fulfilled before a response from a server is sent 

back to query originator: a) that server has more service capacity in its pool than the 

minimum required safety capacity, b) has one or more nodes that can collectively provide 

the whole required capacity (partial satisfaction of requests is not a valid answer) and c) 

the intersections between query Keyword List and Keyword Exclusion Lists of selected 

nodes are null. Otherwise, the TTL counter drops by one and if that is bigger than 

zero, the query is forwarded to neighbours of that server. Partial answers would have 

required the deployment of capacity reservation schemes which could in turn result in 

deadlocks. Query originator server can always select the first received answer because it 

is guaranteed to provide the required capacity and as a result the server does not have 

to wait for query propagation until the TTL-defined network horizon. 

Each answer, apart from discovered node details (i.e. address and Keyword Exclusion 

List), includes the address, Keyword List and Keyword Exclusion List of the responding 

server. A requestor, receiving an answer, checks whether it could replace any of its 

existing neighbours with that responding server. This replacement takes place only 

if the responder is serriantically closer than at least one current neighbour; the most 

semantically distant is replaced. 

The requestor needs two more messages to complete the migration of discovered 

nodes. It sends back to the provider server an acceptance confirmation and a message 

to every fetched node to invoke its G-ROME 'relocate' operation. This operation is 

active only when the node is in standby mode in a Node Pool. This ensures that G­

ROME servers cannot communicate with busy nodes of their underlying networks but 

only with nodes in Node Pool. 

3.5 Worked Scenario 

A comprehensive hypothetical scenario with a network of five servers is presented below 

to show the functionality of G-ROME. Each server has only two neighbours to forward 

queries to with TTL = 2. Servers manage a subset of system keywords which collectively 

count up to ten. Table 3.2 presents the directional graph of this example network 

providing the configuration of those five servers including their Neighbour Lists, Keyword 
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Table 3.2: G-ROME Worked Example network initial configuration: Neighbour List (NL) , 
Keyword List (KL), Keyword Exclusion List (KEL) , Node Pool and Safety Capacity (SF) of 
every server 

Lists, Keyword Exclusion Lists and Safety Capacity. 

1. Query generation from A : Server A generates a query requesting for capacity of 5 

units. Though its local Node Pool has two nodes, they are insufficient to satisfy 

the requested capacity. Since no reservation is allowed, these nodes remain free 

in the Node Pool and propagates a query on the overlay. The query contains the 

requested capacity CAP = 5, TTL = 2, the server's K L = a, c, hand K EL = f 
forwarded to neighbours E and D: 

Ql from A to D & E: CAP = 5, TTL = 2, KL = {a , c, h}, KEL = {J} 

The index of Q denotes the number of hop that query has traveled within the 

overlay. 

This query propagation triggers a series of reactions to its subsequent receivers. 

These reactions are illustrated in figures 3.3b through 3.3d and analysed on the 

following three steps. 

2. Query reaches D and E: Both servers have not received the same query before 

and, hence, they accept and process it. Server D contains node n2 in its Node 

Pool which a) satisfies the requested capacity and b) whose KEL has no common 

keywords with query's KL (i.e. KELn2 nKLA = 0) but c) its safety threshold (7) 

is already above the available capacity (5). Therefore, the query originator cannot 

use that node and server D will forward the same query to its neighbours C and 

E , reducing the TTL to one since it has already travelled one hop: 

Q2 from D & E to B & C: CAP = 5, TTL =1, KL = {a,c, h} , KEL = {J} 

Server D updates its neighbour list by replacing C with A since the intersection of 

its KL with the query originator's KEL is smaller than that with server C (if two 

or more of those intersections give same size sets, one of them is chosen randomly 

to be replaced): 
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Figure 3.3: G-ROME Working Example: query propagation, answer delivery and network 
reconfiguration 

As soon as the query reaches server E , its Node Pool detects one node that could 

satisfy the requested capacity. However, both query 's KL and node's KEL contain 

keyword {h} (i.e. KELn4 nKLA = {h}). Therefore, this node cannot be used in 

the requesting underlying network application. Server E cannot serve the capacity 

and, thus, will forward the query (with TTL=l) to its neighbours Band C. Its 

KL intersections with KELs of the query and its neighbours all give one keyword. 

Therefore, there is no change in the Neighbour List of server E. 

3. Quer'lj reaches Band C: Server D links with C and E; as server E has already 

received the query Ql during the previous step from server E, it rejects the in­

coming one. It is the first time that server C receives Q2 and therefore accepts it. 

Its Node Pool has one node n7 with more available capacity than the requested 

and the safety and its KEL has no common keywords with the query's KL (i.e. 

K E Ln7 n K L A = 0) . It then sends an answer wi th this node to query originator 

server, even though the available capacity in its pool becomes zero, much lower 

than the safety. Server C prepares and sends back to the requestor an answer with 

its own KL and KEL and the discovered node removing the node from its Node 

Pool: 

Al from C to A: KL = {d, e,g}, KEL = {a , b, h}, Nodes:(n7, 6, {b , j}) 
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Table 3.3: G-ROME Worked Example network final configuration 

Responding server C calculates the intersection of its KL with the KELs of Q2 

query and of its neighbours (B, D). It then uses the neighbours that give the 

smallest intersections: KLcnKELB = {g}, KLcnKELD = 0, KLcnKELA = 

0. Therefore, the query originator has to replace the neighbour that gives the 

biggest intersection: server B. C replaces B and its neighbours are D and A. 

Assuming that query Q2 arrives at C from E after the one from D then that query 

is rejected since C has already processed it. However, it is the first time server B 

processes it. Its local pool can satisfy the requested capacity with node n6, which 

is compatible with the requestor's underlying application (i.e. K ELn6 n K LA = 

0). The query originator is already a neighbour of server B and, therefore, its 

Neighbour List remains intact. Server B prepares and sends the answer: 

A2 from B to A: KL = {b, d, i,j} , K EL = {a, g, h}, Nodes: (n6, 7, fe, J}) 

4. Query originator A receives both At and A2 answers: Assuming that A2 (from 

server C) arrives first, server A places the discovered node into its Node Pool. It 

tries to update its Neighbour List calculating the intersections of its KL with the 

answer's and its neighbours' KELs: 

KLA n KELE = {e, h}, KLA n KELD = 0, KLA n KELB = {a, h} 

There is no change to the Neighbour List of A as B is not semantically closer 

compared to its existing neighbours. 

Answer Al is rejected because the query it refers to is already answered. However, 

the new answer activates the Neighbour List updating scheme but no neighbour 

gets replaced since: 

KLA n KELE = {e, h}, KLA n KELD = 0, KLA n KELc = {a, h} 

The final state of the network in this scenario is shown in Table 3.3. Note that the 

migrated node is not listed in A's Node Pool as it was immediately placed within its 

underlying Chord ring to serve the request. 
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Figure 3.4: Percentage oj Jailed queries over the total number oj queries 

3.6 Simulations and Evaluation 

Following the evaluation methodology as described in 1.3, a simulator was built in 

C++ with the aim to prove that, by interconnecting independent ROME networks, it 

is possible to achieve a significant increase of handled workload in the whole system 

without increasing the globally available capacity. It also aims to identify the effect 

of semantic contextualization of queries as well as the semantic-based Neighbour List 

updating. 

G-ROME simulator executes each experiment in three steps: 

1. system-wide keyword production. That is the global set of keywords that exist in 

a simulated network of servers . 

2. server construction and initialization with initial Node Pool, Keyword List, random 

Neighbour List and no ring. Each server is represented as a composable object by: 

Pool, Keyword List etc. 

3. for every simulated TTL the simulator executes a number of iterations linearly 

increasing the global workload in every iteration. This workload is randomly dis­

tributed on a random subset of servers. Some servers may get a negative workload 

so in each iteration some rings shrink and new available capacity is produced. 

During experimental execution, there are several metrics to record for every TTL and 

iteration: number of queries , number of failed queries, number of messages and ring size 

of every underlying network. It is assumed that no servers fail during the experiments. 

Furthermore, the server registrations take place only during their initialization. Their 

Neighbour Lists are initially filled with random servers and thereafter they get updatedy 

through the processes described above. 

Below, a set of experiments demonstrate the effect of TTL on discovering the ap­

propriate resources in terms of number of failed queries (capacity not found) and total 

number of generated messages. While the first one reveals the benefits of G-ROME, the 

second present potential costs produced by deploying it. The last of those three ex­

periments illustrates the ability of a single ring to handle much more workload when its 



58 CHAPTER 3. GLOBAL ROME: PRELIMINARY MODEL 

messages ('1000) -TTL=O - TTL=1 TTL=2 - TTL=3 - TTL=5 - TIL=7 

10000 

ili~ 8000 

6000 

4000 a ( I I I I 
1200 

2000 
1400 1600 

0 workl 0) 

0 1000 2000 3000 4000 5000 6000 7000 

Figure 3.5: Number of messages generated with the increase of the workload 

server participates in a G-ROME network than it would alone. The size of the network 

for these experiments is 1,000 servers each having a maximum initial capacity of 500 

units. The size of each neighbour list is set to 3 entries and the system-wide keyword 

superset is 10,000 keywords of which a maximum of 10 are randomly assigned to each 

server and 3 to each node. The experiments were run with 1,000 iterations and a fixed 

global workload increa e per iteration of 6000 uni ts . On every iLeration a random subset 

of servers are s lected to assign the workload; no more than LO% of it is assigned to each 

one. TTLs {O, 1, 2, 3, 5, 7} were tested. 

Figure 3.4 illustrates the reduction in failed queries when the separate ROME net­

works are interconnect d and figure 3.5 presents the cost (number of messages) of Lhese 

queries with the increase of TTL when interconnecting Lhe G-ROME enabled servers. 

In disconnected ROME neLworks (TTL= O) the rings cannot hancll more workload and 

any effort to dis over more capaciLy would resulL in query failure . G-ROME 'llables 

them increase their capacity and with certain TTL and workload increase, Lhey can find 

all Lhe rcque1:iL d capacity every iteration. Linear incr ase of the system-wide workload 

causes exponenLial increase in Lhe number of mes ages. 

Figure 3.4 shows Lhat initially the lower Lhe TTL the mol' queries are failed. Th is i1:i 

because of the small search depth within which the available resources are limited and 

further constrained by semantic-based discovery. F\uthermore, the increase rate of failed 

queries percentage is initially lower since the 1:iemantic-based Neighbour List updating 

creates links to servers with enough spare nodes to serve a limited workload. As these 

get exhausted the failed queries increase rapidly. At any TTL, the number of failed 

queries is less than or equal to that of TTL=l. Increasing TTL does not always give 

better results since any TTL bigger than a certain point causes exhaustive exploration of 

the whole network; that point appears to be TTL=5. Finally, the network is flooded by 

huge number of messages without any benefit over non-connected independent ROME 

networks (TTL=O). 

In Figure 3.5, the base line (TTL=O) represents a scenario with disconnected ROME 

servers which do not produce any messages since there are no interconnected servers. 

The distance between lines for different TTLs increases exponentially. As TTL increases, 

the number of servers that are explored increases exponentially too. This distance stops 
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Time-to-Live (TTL) 
0 1 2 3 4 5 6 1 8 9 10 

Nodes 226 363 149 1921 2418 2915 3565 4214 4385 4557 4128 
Nodesi 1.6 2.06 2.56 1.25 1.2 1.22 1.18 1.04 1.03 1.03 

NodeSi_l 

Table 3.4: Ring size changes of server 788 

increasing exponentially after the TTL which forces exhaustive exploration of the whole 

network. Any bigger TTL would produce almost the same number of messages since 

query cyclic paths are avoided appending the visited server address on every query. 

The actual benefits of G-ROME become more evident in Table 3.4 which illustrates 

the ring size increase of a single server as the TTL increases. During that experiment 

the simulator chose randomly to monitor the ring size of server 788. At TTL=lO the 

ring size is almost 21 times bigger than in TTL=O (equivalent to a disconnected ROME 

server). As long as queries explore bigger parts of the network while TTL increases, 

more fresh capacity is discovered making the ring size augment. However, if TTL is 

beyond a certain point, each query explores the whole network exhausting most of its 

chances to find new resources and thus ring size tends to stabilise. In such situations, 

new resource availability depends on workload fluctuations and task completion rate of 

other rings. All data in bold fonts represent statistics collected by experiments whereas 

those in italics are intervals calculated assuming linear relations between observed data. 

The last line of that table gives the mathematical derivatives while number of visited 

nodes change as TTL increases. 

G-ROME enables ring sizes to increase while there is available capacity on the inter­

connected servers. Nevertheless, if workload increases further than the globally available 

capacity, G-ROME stops having any fundamental benefit even if queries make an ex­

haustive search of the network. In general, a server would need bigger TTL to discover 

the required capacity in case of scarce as opposed to plentiful available capacity in the 

network. Assuming that the system-wide workload is uniformly distributed over rings 

as far as the available capacity is adequate, small TTLs appear to be suitable for finding 

the requested capacity. As the global available capacity becomes scarce slightly bigger 

TTLs are required. On the other hand, if workload is distributed on a small set of servers 

(query hotspots) large TTLs appear to be necessary to find the requested capacity in 

case of scarce available capacity and relatively small TTLs in case of plentiful available 

capacity. 

3.7 G-ROME Weaknesses 

Though G-ROME design follows all requirements of section 2.11, it has a number of 

weaknesses. It is tightly coupled to ROME processes and Chord networks as these 

two have taken over a substantial part of those requirements. It fulfils the aims of the 

current research but it is an application-specific (Chord) model. Overlay organisation 
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of servers is a principal design requirement of this research and thus any proposed 

architecture should not rely on underlying applications/networks but provide necessary 

processes to realise its targets. Full support of heterogeneity will inevitably augment 

design hurdles especially in commit phase of remote resources. Topologies, protocols 

and distributed algorithms (i.e. join/leave node actions) may differ among underlying 

networks. Therefore, migrating nodes between networks requires an appropriate task 

submission mechanism so that any new node joining a network is able to register with 

it and participate in its traffic. These actions are interesting issues but beyond scope 

of this research which is to discover and deliver appropriate resources to a requestor; it 

then takes over their registration to its network. 

As also stated in the introductory part of this chapter, G-ROME does not fulfil 

all requirements of search mechanism as its aim is primarily to evaluate feasibility. 

Therefore, existing discovery algorithms were used which however are optimised for 

replicable fixed-location and multi-access resources. Service capacity does not fall into 

this category and requires more adaptive algorithms able to trace resource movements 

between networks. G-ROME deploys a semantic rewiring scheme to enhance search 

efficiency giving priority to links between semantically close servers. This technique 

gradually populates Neighbour Lists with links only to the closest servers which, under 

certain circumstances, may result in isolated cluster formations. That is, semantic close 

servers develop links between each other discarding more distant ones creating well­

connected clusters which, however, have no links to servers outside those clusters. In 

that case, the whole overlay gets fragmented into several smaller G-ROME networks 

reducing resource availability each server has access to; search efficiency may be affected 

since queries cannot escape those clusters. 

Each query carries a set of server addresses which compose its propagation path. 

This ensures that no such path contains cycles without, however, eliminating server 

revisiting. As a query forks to a subset of neighbours in each server of its path, there 

are a number of parallel query paths originated from same requestor. Each such path is 

not aware of its 'sibling' paths and therefore it may revisit a number of servers already 

reached by a parallel similar one. Instead of appending visited server addresses at the 

end of a query, query ids should be cached for some time in every server. 

3.8 Summary 

This chapter describes the G-ROME architecture, which aims to reduce the number of 

failed user queries in DHT-based netwo~ks that experience high workloads. G-ROME 

achieves this by first creating a Gnutella-like interconnection of independent P2P net­

works and second by providing mechanisms that enable overloaded networks to use the 

underlying interconnection in order to acquire spare nodes from underutilized networks. 

The resulting system is simple and a number of experiments have shown that it can sig­

nificantly increase a network's ability to deal with considerable increases of its workload. 
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Hoverlay: Architecture Specification 

Hoverlay is an Unstructured P2P-based management system that enables sharing of non­

replicable reusable resources focusing on service capacity. It facilitates the cooperation 

of heterogeneous networks for improving spare (currently not used) capacity utilization 

in the whole system. Its overlay consists of a set of interconnected servers each of which 

represents nodes of an underlying network. A node can be a mobile device, workstation, 

cluster, supercomputer or any arbitrary interconnection of them. It aims at transferring 

nodes from one underlying network to another so that their capacity can be shared 

between networks. 

Sections 1.5 and 2.11 form the frame within which the proposed architecture needs 

to be designed. G-ROME, which heavily relies on ROME (see section 3.7), only par­

tially addresses the principles described there. Hoverlay uses a number of G-ROME 

features supporting at the same time wider heterogeneity and addressing the latter's 

shortcomings. Though, as all Unstructured P2P Networks, its efficiency heavily de­

pends on deployed search algorithms, its design is not tightly coupled to any of them. 

It provides flexibility of d~ploying various ones. However, certain aspects of its design 

may affect search algorithm designs. The algorithm to be adopted for searching service 

capacity resources, Stalkers, is studied in chapter 5. Following a similar table as the 3.1 

one, its requirements become clear. 

Hoverlay is a two-layered architecture (servers overlay and underlying nodes/resources) 

resembles on certain points to G-ROME. However, unlike that, Hoverlay needs to address 

all those requirements without depending on ROME or Chord. Underlying nodes may 

be in any kind of centralised or distributed formation: P2P (Unstructured/Structured), 

Grid, client-server etc. As an effort to avoid overlay fragmentation, it does not use se­

mantic contextualisation of resources or requests. However, rewiring is a technique used 

here, as well, not for server clustering but rather resource traceability purposes as thy 

migrate from server to server. Finally, message caching by every server is introduced to 

prevent cycles on query propagation paths. 

Hoverlay is based on a set of assumptions to make its concept feasible. All nodes 

accept incoming connections either laying behind a firewall/NAT or not. This is an 

implementation-oriented problem but rather important for deploying Hoverlay in real 
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Requirement 
1. Pools to host free resources only 
2. Each pool monitors one or more resources 
3. Each resource is monitored by one and only one pool at 

any time 
4. Nodes need to re-register once they change status from 

busy to underloaded 
5. Adverts of same resource are not the same over time 
6. Resources re-register with local pool 
7. Service capacity specification as a non-replicable advert 
8. Multi-hop searches on interconnected pools 
9. Once resource is discovered, fetch its advert into request­

ing domain (remove it from providing and place it in re­
questing pool) 

10. P2P interconnection of resource pools 
11. Overlay of pools is an Unstructured P2P Network 
12. Adapt links to track node movements 
13. Search technique able to trace node movements 

Layer 

Hoverlay 

Stalkers 

Table 4.1: Mapping of proposed system requirements to G-ROME layers 

environments. There is significant work [91], [95], [19], [50], [105] on these issues with a 

variety of solutions for different both hypothetical and real environment settings. Each 

server may only (if any) provide the whole requested capacity and no resource reservation 

scheme is deployed to enable partial answers. A voiding partial answers simplifies the 

discovery mechanism and helps overlay to deal with resource variable availability and 

high failure rates of nodes and servers. Reserving unreliable nodes could easily result to 

deadlock situations and increase the query failure rates. 

4.1 Architecture Overview 

A Hoverlay server uses only a random list of other server IDs (Neighbour List) to share 

its own resources and discover new ones in their overlay. Whenever necessary, a local 

(requesting) server forwards queries originated from underlying nodes (internal queries) 

to its neighbours and waits for an answer. A Node Pool, embeded in every server, keeps 

records of available underutilized nodes and tries to satisfy an internal query using that 

capacity reserving as much as possible. Any extra amount of capacity (if at all), not 

provided by local pool, is queried to neighbouring servers. Each request has a lifetime 

which is the maximum time a requesting server may wait for answers from the overlay. 

A query terminates if its lifetime expires or an answer is received. 

In case of an external query (sent by another overlay server), servers try to completely 

satisfy it using capacity in their local Node Pool only. A pool reserves, if there is 

locally sufficient capacity, at least as much as the query requirements and initiates a 

handshaking protocol to deliver those resources to query originator server. Otherwise 

(not enough capacity available), it forwards the same query to its server neighbours 
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Figure 4.1: Capacity OutSourcing Management Overlay System architecture overview and com­
ponents 

without reserving any resources. Resource reservations from remote servers follow two 

rules: a) responders should fully satisfy the required capacity and b) each resource 

must be fully reserved i.e. a server cannot reserve a portion of its capacity. Though 

a server tries to reserve just about enough resources to address the requirements, the 

indivisibility feature of service capacity may force it exceed the required amount. Figure 

4.1 illustrates the main Hoverlay components. 

All three Hoverlay server components (Neighbour List, Node Pool and Query Proces­

sor) are for handling incoming queries and answers. The Underlying Network Relocator 

resides in every underlying node accomplishing its logical movement as well as monitor­

ing its workload: 

• Neighbour List (NL) determines the next destinations of a forwarded query. It 

applies the server forwarding policy (if flooding all neighbours are selected, a sub­

set otherwise). Due to intermittent behaviour of service capacity, NLs implement 

blind search techniques only as otherwise information collected in case of informed 

techniques would quickly get out-of-date (see section 2.9). A number of different 

search techniques are under evaluation to identify key features that affect search 

efficiency and would play important role in the design of Stalkers. Following ar­

chitectural requirements, there is no monitoring or updating cherne to guarantee 

good direct connection of servers with their neighbours; thus reducing mainte­

nance costs of these lists and practically unbinding system efficiency from resource 

reliability. This may improve system applicability in large-scale networks. How­

ever, the list gets refreshed either upon receiving and answer replacing the oldest 

neighbour wi th the answer originator server or periodically (manually defined time 

intervals) with the external incoming query originators. These frequent updates 

help on keeping the overlay connected . 

• Node Pool (NP) stores adverts of free nodes until they are reused. Internal 

queries may reserve any amount of capacity available whereas external ones can 

only reserve the capacity that fully satisfies their requirements . Node Pools keep 

some of the available capacity (safety capacity) for use by underlying busy nodes 
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Type Description 
register Registers a UNR with a server. Each server keeps track of available nodes 

to serve any incoming query. 
query Used by a UNR and servers asking the overlay for available nodes to help 

an overloaded one. 
response Used by a responder server when a received query can be satisfied 
move Used by the requesting UNR to submit the appropriate application and 

configuration to the discovered node 
ack Used by both nodes and servers to positively/negatively respond to a re­

quest. In case of registration it also transfers the Neighbour List of the 
registrar server. 

Table 4.2: Overlay message list description 

only. No external query is satisfied if the capacity availability in a Node Pool is 

lower than its safety level. Safety capacity is used to serve only internal queries 

produced by small fluctuations of workload of underlying nodes. It prevents a 

large number of queries from being forwarded to the overlay. The safety capacity 

size is a percentage of the average requested capacity from the underlying nodes 

within the last few time units (time frame). This percentage and time frame are 

application specific and are configured by server administrators . 

• Query Processor (QP) processes any incoming query and performs all the com­

munication activities of a server. It caches any internal and external query for a 

given period of time and interacts with Node Pool to satisfy it, if possible respond­

ing back or forwarding it to neighbouring servers otherwise. In case of internal 

queries, it waits for the answers. As soon as an answer is received it merges the 

discovered capacity with that reserved in local Node Pool, if any, and acknowleges 

back . 

• Underlying Network Relocator (UNR) resides in underlying network nodes 

and is responsible for controlling node relocations from one network to another. 

It is used by remote servers that nodes migrate to. 

4.2 Overlay Interaction Messages 

Hoverlay communication protocol defines five messages for registering an underloaded 

node with a server, asking overlay for underloaded capacity, responding with a list of 

nodes and realizing the actual migration of a node from one underlying network to 

another as shown in Table 4.2. Figure 4.2 demonstrates the interaction of nodes and 

servers in case of server and node registration, query forwarding and node migration. 

Each Hoverlay message has a header and a payload. The header has fixed size and 

consists of four fields and the payload has variable number of fields and size. Header 

field sizes follows those of a Gnutella message header [85J as shown in Table 4.3. 

TTL represents the maximum number of steps a message may travel on servers 
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Header Payload 
MessageID: 16byte TTL: Ibyte Type: Ibyte Length: 4bytes 

Table 4.3: General Hoverlay message header structure 

overlay. This prevents messages from visiting every node of the network saving it from 

excessive traffic. Type is a code specifying message payload type (register: OxOl , 

query: OxlO, response: Oxll, ack: OxOO, move: Ox20) and is used by message 

receivers to appropriately understand its payload fields. Length of payload makes each 

message distinguishable from a next one e.g. in a buffer and helps receivers to parse 

variable-length payloads. 

Message ID is a 16-bit message unique identifier. Any server should not process a 

query more than once to prevent infini te loops and unnecessary messages on the overlay. 

Each server, upon receiving a message, uses its Message ID and its own local cache to 

check whether that has already been processed. A query lives in a cache for a total of 

TTL-hops+l time units, where TTL-hops is the number of remaining hops a query may 

travel beyond current server. A node uses the Message ID of an answer to verify that it 

relates to a, not yet answered, query it generated sometime in the past. 

Some fields are common for more than one message types. IP and Port are essential 

for messages that require connection establishment between two entities to be transmit­

ted i.e. register. query, response and move messages. Capacity specification is necessary 

for register. query and response messages. 

• Port: (2 bytes) listening port of a message originator at which an incoming con­

nection may be accepted 

• IP: (4 bytes) IP address of message originator 

• NT: (2 bytes) network throughput in kbits per time-unit that a node requests or 

makes available 

• PT: (3 bytes) processor throughput - the first byte is used for the percentage of 
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Figure 4.2: Hoverlay communication sequence diagram 
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Ox 11 

Ox20 

OxOO 

CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION 

Fields 
[PortIIPINTIPT] - IP and Port for incoming connections and the maxi­
mum shared capabilities of the node/server to be registered with the overlay 
[PortIIPINTIPTIS:lbyte] - IP, Port, requested minimum NT and PT of 
the requesting server. The response has to contain nodes each of which has 
a minimum NT and altogether reach PT CPU speed if S=OxOO or otherwise 
each one has a minimum PT and altogether the NT. 
[PortIIPINTIPT]1...* - A list of IP, Port, maximum shared NT and PT 
of discovered nodes 
[EL:4bytesIEIFL:4bytesIF] - The executable E of size EL (in bytes) 
is necessary for a migrating node to participate in the new network. Its 
configuration file F has size FL (in bytes). 
[A:lbytel(PortIIP)1...*] - A=OxOl if the acknowledgement is positive 
and A=OxOO if negative. If used in reply to a registration request a list 
of Port,IP tuples are followed representing the Neighbour List of registrar 
server. 

Table 4.4: Hoverlay message payload description 

the CPU usage required or shared and the remaining two for its nominative CPU 

cycles in millions per second (MHz) 

Table 4.4 shows the payload structure of each message type. Boolean (Le. S, A) 

fields must have the minimum size of one byte. As in Gnutella Specification [36] fields 

that represent file sizes (Le. EL, FL) use four bytes. It is assumed that an executable 

file and its configuration in a move message cannot be more than 4.2Gb. In case the 

executable startup requires a large dataset, it should use an application specific protocol 

to fetch and/or access that dataset. Port, IP and NT field sizes are adopted by Gnutella 

Specification, too. The PT field allows numbers up to 65536 expressing CPU speed in 

MHz. Hoverlay has to take two actions with regards to these PT and NT values: 

• Application monitoring: UNR has to monitor changes of both these values and 

generate queries requesting the appropriate capacity (tuple of those values), 

• Resource Matchmaking: Servers need to match that tuple of incoming queries with 

those of free nodes in pools. 

For more information on these actions refer to 4.5 and 4.4 sections respectively. 

4.3 Server States 

Every server has two main mutually exclusive states: bootstrapping and active states. 

When in the former one it tries to register with the overlay and while in the latter it 

reacts to messages from overlay and its underlying network. The active state has two 

views, not necessarily mutually exclusive: outgoing query and incoming query views 

which refer to handling a query coming from an underlying node or an overlay server, 

respectively. 
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4.3.1 Bootstrapping State 

A bootstrapping process is invoked if a server has empty Neighbour List or it has re­

ceived no answers or external queries for some time; on any of these cases the server is 

practically disconnected from the overlay. Server bootstrapping while joining the overlay 

is equivalent to its neighbour list initialization. A new server (unregistered) uses an ex­

isting one (registrar) to retrieve a fresh Neighbour List. Both registrar and unregistered 

servers have to record each other as one of their neighbours, rejecting randomly another 

one if necessary, thus reducing the overlay fragmentation or server isolation probability. 

This registration process ensures low cost of the overlay bootstrapping and expansion. 

As soon as a registration message reaches an existing server, taking the role of 

a registrar, it responds with an acknowledgement message accompanied with its own 

Neighbour List. The unregistered server uses it as its own temporary Neighbour List 

to send the same registration message to all its new neighbours which respond with 

their own neighbours. It appends to this list those new neighbours until its Neighbour 

List is full or no more acknowledgement messages are received. If no acknowledgement 

messages are received within a pre-set waiting time, it retries and exponentially increases 

that waiting time. 

4.3.2 Outgoing Query State 

Underlying nodes construct and send the appropriate queries to their local server whose 

Node Pool responds to Query Processor with an empty answer, if no nodes can be 

found, or, otherwise, with a list of nodes that satisfy as much of the requested capacity 

as possible. If that query is still not completely satisfied the Query Processor forwards 

it to a subset of its neighbours requesting for the remaining capacity that the local pool 

cannot provide and reducing its TTL by 1. Otherwise, a proper answer is sent back 

to requesting node. Each. query is copied in cache before Query Processor forwards it 

and waits for answers. As soon as its lifetime expires or first answer arrives, the cache 

removes the query. Any answer received without its corresponding query pair being in 

cache is rejected and negatively acknowledged to its originator. 

Each response carries a set of nodes that represent discovered capacity which is 

at least as much as the requested amount. As soon as it reaches a requesting server, 

the Node Pool retrieves and reserves its discovered nodes alongside to locally already 

reserved ones. Simultaneously, the query processor sends a positive acknowledgement 

back to answer originator server and a complete answer with all nodes (local and remote) 

reserved in local Node Pool back to the query originator node. The pool, then, waits for 

a positive or negative acknowledgement by query originator and removes these reserved 

nodes, if positive, or frees them, otherwise. 

Response originator may receive a negative acknowledgement if there is no need for 

extra capacity any more or if delivered response is invalid (e.g. one of retrieved nodes 

has failed). A response to a requesting server may be unnecessary if the corresponding 

query is not in its cache; this may happen in three cases: 
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[node overloaded] [otherwise] 

[server ex/sts], send query 

Figure 4.3: Process flow for queries originated from an underlying network 

• requesting server fails and/or its cache is completely cleared for some reason (e.g. 

server failed). 

• a valid response about the same query is already delivered and cache is cleared 

from that specific query ID. 

• if new resources, sufficient to serve the request, appear in Node Pool of requesting 

server while waiting for responses e.g. if underlying nodes become underloaded. 

These are wrapped and delivered via an appropriate answer message to query 

originator node. 

In case of invalid response, requesting server keeps waiting for another answer till query 

lifetime expires. If query fails and its originator node is still in need of capacity, it 

prepares a new query to local server seeking nodes to satisfy the current workload; that 

may include both the unsatisfied former request and any extra necessary amount or 

just a portion of them. Figure 4.3 presents the flow control when Hoverlay reacts to an 

underlying query. 

4.3.3 Incoming Query State 

An Hoverlay server has a different behaviour upon receiving a query originated from 

another from the overlay. Its primary target is to verify that it has not already processed 

a query with same ID by checking its cache; if a message with same ID exists in cache 

then the query is dropped and no action is taken or, otherwise, Query Processor caches 

it and transfers the control to local Node Pool. 

Once Node Pool processes are triggered by an incoming external query, it tries to 

match all those requirements over its resource availability. That pool needs to check two 

things before positively answering to the query: 
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Figure 4.4: Fmcess flow for queries originated from other servers of the overlay 

• if it hosts more capacity than the safety one, and 

• if that capacity is sufficient to completely serve the query requirements. 
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Both need a positive answer so that the pool prepares an response back to query origi­

nator server. After this resource extraction from pool its capacity availability might get 

lower than its safety level. This is to improve search efficiency and success giving pri­

ority to servers that have immediate needs for support; given that local pool host more 

capacity than its safety level, it is assumed that it has no immediate needs generated by 

its underlying nodes. The matched resources, if any, are reserved and returned to Query 

Processor who prepares the appropriate answer to deliver to query originator waiting 

for its acknowledgement. 

That answer stays in cache for some time as the providing server needs a way to 

determine whether its pool should remove or free the reserved capacity. If the other end 

(requesting server) remains silent for that period of acknowledges back positively, these 

resources are removed from local pool. Though this may affect resource availability 

and contribute to reliability, it helps system to prevent multiple adverts and potentially 

parallel access attempts onto resources. Moreover, it is assumed that these resources 

are already unreliable and are able to detect connection loss and re-initiate registration 

process if necessary. In case of a negative acknowledgement from requesting server, the 

provider frees those resources for future use by internal/external queries. A response is 

cleared from the cache as soon as an acknowledgement is received or its lifetime expires. 

In case Node Pool has insufficient capacity to fully serve query requirements, the 

Query Processor reduces its TTL counter by one and if that is bigger than zero it is 

forwarded to neighbouring servers from local Neighbour List. Using the same notation, 

Figure 4.4 illustrates the process control flow in case a query has been received from the 

overlay: 
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4.4 Resource Matchmaking 

Hoverlay is to be deployed on highly dynamic environments to support primarily traffic 

needs of networked applications. It does not assume guaranties of resource availability 

and therefore it cannot 100% rely on the service capacity of registered nodes. This 

makes the use of kbps and MHz two more feasible parameters of their capacity. A server 

upon receiving a query, it starts the matching process on this Node Pool. Based on the 

S field of the query, it tries to discover nodes that cumulatively or individually satisfy 

those capacity parameters. 

Though the required network throughput can be easily compared against those of­

fered by free nodes, CPU speed and usage comparisons in heterogeneous environments 

are more difficult. Hoverlay assumes that a multiplication of the CPU usage with its 

clock speed gives a rough estimation of the required processing capacity. More detailed 

comparisons need information of both hardware (e.g. cache, CPU architecture, MIPS, 

memory speed, I/O latency) and software (e.g. language or executable, compiler ver­

sion, operating system) environments of nodes. Such matchmaking is well-documented 

and used by Condors. However, these two systems differ in purpose: Condor focus on 

job completion whereas the proposed one here on traffic and enables nodes to request 

for extra capacity if necessary. CompuP2P [58], as a computational resource sharing 

paradigm deployed on dynamic P2P Networks, also uses cycles/second to represent pro­

cessor capacity. 

The following scenario demonstrates a simple matchmaking process on a server with 

two free nodes in its Pool. Though this is a rather simplistic example, section 4.10 

provides other alternatives and criticism on how this resource matching can work in real­

world environments. There are three nodes involved in this interaction: the requestor, 

and the two available ones. Their configuration appears below: 

1. Node A (requestor): Its capacity is NT = 100kbps and PT = {50%, 2000M Hz} 

and its overload threshold is NT = 100kbps and PT = {40%, 2000M Hz}. As­

suming that its load is: NT = 100kbps and PT = {60%, 2000M Hz} then it seeks 

for resources satisfying the: NT = 100kbps and PT = {20%, 2000M Hz} with 

S = OxOO. That is, the query that reaches the server host of nodes B & C looks 

for a set of nodes each of which has a minimum network throughput 100kbps and 

collectively {40%,2000MHz} processor capacity. 

2. Node B (free): Its overload threshold published in its server Pool is NT = 20kbps 

and PT = {20%, 2000M Hz}. This node cannot match the requirements as its 

network throughput is well below the requested one. 

3. Node C (free): Its overload threshold published in its server Pool is NT = 200kbps 

and PT = {70%, 1000M Hz}. Its network throughput is enough to cover A's 

requirements. The product of its CPU usage with clock speed is bigger than that 

of query's; that is, 70% * 1000MHz > 20% * 2000MHz. 

Therefore, Node C migrates to requesting node underlying network to take on part of 
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Network 
uderloaded normally loaded overloaded 

underloaded register query 

CPU normally loaded query 
overloaded query query query 

Table 4.5: Actions of UNR with respect to the state of monitored network application 

requestor's workload. 

4.5 Underlying Node Relocator 

UNR is a proxy server residing in underlying nodes monitoring CPU and network usage 

of an application. The application is manually registered with UNR which measures 

CPU cycles spent and data volume transferred over the network connection by the 

application client on a per time-unit basis. 

This UNR server may register and create a configuration profile for more than one 

application. Apart from the application installation directory path and filename, UNR 

profiles two tuples (min, max) representing the minimum and maximum allowed CPU 

and network throughput (CPU cycles in MHz and kbits per time-unit respectively) per 

application. These thresholds are used as metrics to trigger an action (register, query) 

to Hoverlay. From Hoverlay perspective, a UNR is a client which forwards appropriate 

messages to servers while monitoring an application. 

A registration message is sent to the local server if its connection with that UNR 

is lost or both network and processor throughput used by the application are below 

their corresponding minimum thresholds (underloaded state). If any of these metrics 

is above its maximum threshold then the underlying node is overloaded and a message 

requesting for help is sent to that local Hoverlay server. Table 4.5 presents the actions 

a UNR can take based on the state of these two metrics. A node generates queries if 

either its CPU or network interface are overloaded and registration messages if both of 

them are underloaded. 

An application is normally loaded if its consumption in CPU and network throughput 

does not exceed their maximum thresholds and are not both below their minimum ones. 

While the max threshold protects the application host from devoting too many resources 

into the network it participates, the min one improves its utility. The levels of processor 

and network bandwidth usage are determined based on the application activity the last 

few (user input) time units it was active. That is, the UNR records an activity history 

to calculate these average throughputs. 

The current network throughput of an application represents the total data volume 

that is received and sent within current time unit whereas processor usage is the average 

CPU cycles consumed by that application within that time unit. A query originated 

by a requesting node specifies the minimum requirements in network and processor 

throughput. Every Hoverlay server, receiver of that query, tries to select a minimum 
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subset of nodes. Hoverlay gives the option to overloaded nodes of choosing one criterion 

(high priority) that needs to be satisfied by every selected node and the other one (low 

priority) collectively and cumulatively by all of them. 

4.6 Server and Node Failures 

As analysed in system principles and requirements sections (see 1.5 and 2.11), Hoverlay is 

to be deployed in large-scale unreliable heterogeneous environments without any guaran­

tees on resource availability. Therefore, both servers and underlying nodes are assumed 

to be hosted in unreliable machines and have equally unstable connections. 

When a server fails all links from underlying nodes and its neighbours are broken. 

Therefore, no queries, answers or registration messages may be sent from/to that server. 

If no answer can be sent, neither can an acknowledgement since it is only sent after 

an answer. All reserved nodes in its pool become free and its cache clears as soon 

as the server returns to active state or rejoins the overlay. It is assumed that the 

acknowledgement is received immediately after a successfully sent answer. 

While the local server is failed, its underlying nodes keep generating queries with a 

lifetime asking each time for any additional capacity they may need. Underlying nodes 

try to send periodically a registration message until a local server is able to respond 

positively. However, it is an application-specific parameter whether these nodes will 

seek for another server to send queries or registration messages to or simply wait for 

their last and failed one to become active again. If a generated but not sent query 

expires, its requested capacity is added to the next one. This saves the overlay from 

queries asking for huge amounts of capacity when the local server comes back online 

or another is found. If a server has permanently failed, its underlying network cannot 

reconnect to the network unless a server with the same DNS is activated or the nodes 

are reconfigured to use another server. 

Similarly, a Node Pool may contain broken links to failed free nodes. Therefore, an 

answer may contain both alive and failed nodes. This is detected in the requesting node 

which drops that answer and original query as failed. If a requesting node is failed, 

the Query Processor of its local server cannot communicate to deliver e.g. a potential 

answer and thus, it frees any reserved node for that query. 

The following experiments aim to evaluate the behaviour of Hoverlay in environments 

under different churn ratios. For that purpose we run simulations with the following 

network configuration: 

• 1000 servers and 50000 nodes, 

• each node has on average 10 units of capacity ranging from 0 to 20 (500000 units 

of global capacity), 

• each server links with four other servers and the TTL of each query (starting from 

the underlying node) is 4. 
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Figure 4.5: Hoverlay behaviour under churn 

• the system-wide workload increases linearly (ranging from 0 to 500000) throughout 

the 210 timeslots of the experiments, 

• the churn rates simulated where: 0%, 2%, 6% and 14% for both servers and 

underlying nodes. 

For all those experiments, the system uses Flooding to discover resources. It is a widely 

used search mechanism which deploys no neighbour selection heuristics. Thus, the 

conclusions from the results cannot be biased by the search mechanism. 

A fixed workload amount per timeslot (A = 2381) tops-up the system-wide one. 

However, 20% of that amount is removed from the system on every timeslot and, hence, 

120% is added so that A remains fixed using randomly selected underlying nodes. Due to 

this system workload linearity, once a node has migrated into an underlying network it 

stays busy until it either fails or its workload falls below its underload threshold. Failed 

nodes rejoin the system as free resources after a random waiting time period. The 

success rate starts dropping fast as soon as the system-wide capacity gets exhausted. 

This increases the number of queries and as success likelihood drops these queries flood 

the network up to their horizon producing more and more messages. In principle, the 

bigger the churn rate the more fresh capacity appears in the system in every timeslot. 

Figures 4.5a and 4.5b illustrate the success rate achieved by Hoverlay and mes­

sages spent under the churn ratios simulated. As the global workload increases, queries 
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initially use resources in requestor's close vicinity before they exhaust their horizon. 

Therefore, with the aim to keep the success rate at a maximum level they spend more 

and more messages while pools get empty of capacity. This explains why, for all churn 

rates, the number of produced messages start increasing fast before the success rate 

drops fast. The fast drop of success likelihood is at the point that queries exhaust their 

horizon and no more resources can be found. 

Despite the re-registering of previously failed nodes the global workload increases 

much more than that fresh capacity which is insufficient to retain the good success rate. 

In fact, the more nodes fail and re-register later on the more workload can be satisfied. 

This explains why the success rate improves in the presence of higher churn even in 

situations of high workload. Within an environment of many server failures queries 

have an increased probability to get interrupted and stopped before their TTL expiry. 

This may reduce the success rate even in resourceful environments as is the case in the 

first few timeslots of of figure 4.5a. If famous (many incoming links) servers fail then 

the impact of churn is bigger in success rate causing wider fluctuations and reducing the 

average query path. More extensive results with their analysis on Hoverlay's behaviour 

under churn can be found in our publication [40]. 

Based on the above, churn is actually beneficial to Hoverlay and positively biases 

its performance evaluation. Arguably then, it makes sense to omit it as a parameter in 

further experimentation. 

4.7 Experiments and Evaluation 

With a view on Hoverlay principal concepts and functionalities, the following set of 

experiments serves as a proof-of-concept and basis for a detailed evaluation. An Un­

structured P2P Network of servers (pools of resources) comprises its backbone designed 

to support on-demand resource migration between networks. Both this architectural 

element (P2P Overlay of pools) and sharing technique (resource migration) comprise 

two main sources of differences compared to other architectures. Existing competitive 

resource sharing systems, appropriate to work as a benchmark appear below: 

• Condor: a local pool (manager) to facilitate resource sharing within an individ­

ual network (centralised architecture). Such systems try to improve resource uti­

lization within a single network by using a central resource aggregator (pool). 

Experimentation with Condor systems may provide useful material for evaluat­

ing possible costs (e.g. traffic, latency) introduced by Hoverlay as it proposes an 

arbitrary connection of similar systems . 

• Flock of Condors; this category represents Condor-like systems with intercon­

nected (via an Unstructured P2P Overlay) managers. They basically assume static 

links between pools and no mobility of resources. As documented in Chapter 2, 

current proposals for Unstructured P2P Condor Flocking, though weak, come 

closer to Hoverlay than any other. Their common features and behaviour will act 

as the principal benchmarking for all evaluation factors. 
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As stated earlier in this chapter, an Unstructured P2P Overlay of servers supports 

resource volatility minimising any registration costs of underlying nodes. Hoverlay­

also assumes that resource migration may reduce latency introduced by queries. All 

experiments below need to use a set of performance metrics against which all these 

three resource sharing paradigms (Condors, Flock of Condors and Hoverlay) will be 

assessed and Hoverlay's claims and assumptions confirmed: 

• Success rate: percentage of successful queries over the total number of those gener­

ated in the system. Due to workload fluctuations, in certain cases answers delivered 

to requesting nodes may be unnecessary as their load has fallen to normal levels 

while waiting for a response; such cases are not precluded from that percentage. 

This metric serves as an indication of Hoverlay efficiency in finding the required 

by overloaded underlying networks capacity. 

• Hops per Answered Query: Query latency is an important factor that represents 

the elapsed time from query generation till answer delivery to requesting node. 

However, it depends on several factors such as connection speeds, processing power 

and memory of intermediate servers on query paths. As these factors are difficult 

to predict, the path length (hops) of a successful query can be used to estimate 

its latency without loss of generality assuming that all hops are temporally equal. 

This metric corresponds to the average path length of successful queries from 

their requesting nodes until first provider server. Late responses that a server may 

receive for an already satisfied query do not contribute to it. 

• Satisfied User Queries: number of additional user queries (requested capacity) that 

overloaded networks have managed to satisfy with extra capacity discovered via a 

given overlay. If an underlying node gets a response with its requested capacity, 

that system has made it possible for these user queries to be processed successfully. 

• Messages: number of messages (traffic) produced in the system by any operation 

(registrations, queries, answers and acknowledgements). 

4.7.1 Simulation Practices 

For these evaluation purposes, a C++ object-oriented simulator (called Omeosis) was 

developed. It can simulate time as a sequence of timeslots during which any message 

(query, answer, registration, acknowledgement) may travel for a single hop only and 

ensures their concurrent processing and propagation. It assumes that no connection 

introduces any extra delay; thus, any message produced during a timeslot reaches its 

next destination on the following timeslot. Timeslots are equivalent to iterations of the 

main loop. Therefore, every iteration executes three phases: 

1. Set global workload: add or remove workload on a random subset of underlying 

nodes. Each node of this subset takes on a chunk of that workload (w) defined as 

a random integer within: w = {xd~ : 1 ~ x ~ max (en where max (e) corresponds 

to the maximum capacity a node can have. This chunk distribution finishes as soon 
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as the whole additional workload of this iteration is consumed; this determines the 

size of that subset. Thus, there is a non negligible probability that a) a node takes 

on two or more, b) multiple underlying nodes of a single server take on at least 

one or even c) no underlying node of a server take on any chunks. 

2. Generate queries: once a message reaches a node or server another appropriate one 

(if necessary) is queued in its output buffer for delivery on the following timeslot. 

Apart from output buffer, messages are also stored in caches with the appropriate 

expiry time. If an underlying node is still overloaded, as soon as the waiting time 

of its cached query expires a new one with same requirements is generated and 

again cached for an exponentially increasing period (Le. TT L + 2repetitions+l). 

Therefore, message queues in output buffers follow the order of incoming ones. 

Exponential increase of waiting time before retry is a usual practice in request 

submission to networks and help them avoid bursts of requests especially during 

high load situations. 

3. Send produced messages: while both phases above may be in parallel or sequen­

tially in any order executed, this one has to follow both. Otherwise, an incoming 

message would probably trigger another message generation and delivery within 

the same timeslot: violation of the step-by-step and concurrent message propaga­

tion. 

Every network component (server or underlying node) incorporates a set of modules 

which facilitate communication (input and output buffers), message caching, time event 

handling (reactions to time progress such as cache cleaning, message regeneration) and 

message processing. Servers use a pool which can reserve resources upon request, free 

resources if response is not accepted or otherwise release them. Apart from time events, 

underlying nodes react to workload changes, too. An increase of their load may trigger 

the suitable query generation module. Symmetrically, a drop to its load may force 

the rejecting of pending queries in its cache. All experiments used the same initial 

configuration of servers and nodes achieved by choosing the same parameters and feed 

to the random number generator used throughout. Both of server overlay size and 

number of underlying nodes are user inputs and remain fixed during the experiment. 

The simulator first creates the server overlay and carries on with the underlying nodes. 

As soon as it generates a server, it populates its Neighbour List with a random subset of 

the previously created ones; thus, their popularity follows the order they were created 

by resulting into a power-law network. 

As with Hoverlay specification above, nodes appear in pools when their load is below 

a certain threshold; thus, reserved nodes may still have some load below their threshold. 

The global workload fluctuates based on a pattern predefined by user input; applying a 

positive or negative workload per timeslot on underlying nodes implements a rise or drop, 

respectively, of the global workload. A monitoring module records all actions triggered 

by any event (message deliveries, workload changes, lifetime expirations) which finally 

creates appropriate output files in both analytical and concise forms. These results 
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appear below. 

Testing played an important role in Omeosis development phase. A module of the 

simulator keeps track of every message delivered and records any change on any node or 

server status. These files were input to Matlab and AWK scripts to parse and ensure that 

certain tests based on a set of rules were successful after every experiment conducted 

including the ones presented below. These rules which greatly helped on debugging 

logical errors and ensure the simulator's expected functionality are the following: 

1. Throughout experiments the number of servers and underlying nodes remains 

fixed. Nodes can either be reserved or free in local pools or busy in underly­

ing networks. Summing up reserved, free and busy nodes should equal to the 

initial number of nodes set as an input parameter. Similar rule applies to their 

capacity, too. 

2. Every node has one outgoing link to a server and no incoming ones. Servers have 

a fixed number of outgoing and any number of incoming ones. Summing up the 

incoming links of servers should equal to the outgoing links of both servers and 

nodes. In case of Condor-based systems, without rewiring in place, all links of 

servers should remain the same. However, Hoverlay introduces node migration 

and, hence, the simulator must ensure that once a node changes its outgoing link, 

the incoming ones of its provider server decrease and those of its requestor increase 

by one. 

3. Every query involves a sequence of messages which must be kept in order. That is, 

query propagation on the overlay always follows a request from an underlying node 

to its server; resource discovery terminates a query path and produces maximum 

two consecutive answers which in turn trigger their acknowledgements. 

4. No query may trav,el beyond its preset horizon and the number of messages pro­

duced by that query cannot exceed a theoretical maximum (propagation on an 

acyclic tree-like network). 

5. The total number of messages at the end of every iteration must be equal to 

the sum of registration, query, answer, positive and negative acknowledgement 

messages. 

6. Moreover, acknowledgement messages should also equal registration and answer 

messages as every such message is always followed by an acknowledgement. 

Apart from automatic testing processes, log files record every message including their 

sources, destinations, delivery timeslot and their content. This analytical information 

was checked in two ways: a) random queries were selected and all their related messages 

(queries, answers, acknowledgements) as well as the reactions of all servers and nodes 

involved were manually traced, b) random underlying nodes and servers were also de­

picted and all messages they received/sent traced. This manual process was a testing 

procedure following all main versions of Omeosis and all the experiments conducted. 
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4.7.2 Experiments Configuration 

The system evaluation was based on two main environments selected to test different 

aspects: 

• Uniform Query Distribution: every node in the whole system has equal probability 

with any other to generate a query. 

• Hotspot Query Distribution: only a small subset of nodes produce queries. All 

managers of these nodes are neighbouring servers and belong in the same area of 

the overlay. That is, all underlying nodes of servers in the vicinity of a given centre 

(centroid) have the same probability to produce a query; nodes of servers outside 

that area have zero probability to become requestors. 

These environments provide enough material to evaluate Hoverlay on the metrics 

above. The experiments configuration is as follows: 

• Network Sizes: 10 000 servers (i.e. independent networks) and 50000 nodes uni­

formly distributed among the servers. During connections initial setup, a node 

links to any server with probability 10 too· Therefore, servers with no underlying 

nodes cannot generate queries or provide answers but may increase the hops per 

answered query and number of messages. All nodes are initially free and available 

in their local pools. 

• Capacity: each node represents capacity (c) of size between 5 and 10 (5 ::; c ::; 10) 

units inclusive. The capacity density function shows the number of nodes rep­

resenting a certain amount of capa~~t;. As shown in figure 4.6b, it follows a 

geometric distribution: d(c) = n) . Multiplying the number of nodes with 

the sum of c * d(c) products gives a close estimation of system capacity: C = 
10 

50 000 "~4 ~ 300 000 capacity units. Though the representation of resource w2c-
c=5 

capacity with a simple number is a bit abstract, without loss of generality, it is 

useful to conduct experiments, produce results and conclude focusing primarily of 

the contribution of this thesis with regards to the resource migration rather than 

the resource heterogeneity. In real world scenarios, different representations of ca­

pacity may be used (see section ?? for more details). With node capacity deviating 

from 5 to 10, the experiments practically assume 6 different node types; though 

these boundaries could be extended they would not make significant difference to 

the experiments. 

• Connectivity & Time-to-Live: each server connects with a maximum 3 other ran­

dom ones. Its Neighbour.List initial configuration occurs during server's creation 

with links to other existing ones. That is, the probability a server attracting a 

new link from another one exponentially increases with latter's age thus resulting 

into a power-law incoming-degree distribution. This Neighbour List size is small 

enough to increase the average path length between any two servers making diffi­

cult the access of any resource from the vast majority of underlying nodes. The 
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Figure 4.6: (a) Server popularity among other servers and nodes distribution and (b) system 
capacity distribution among nodes. 

TTL of every query is set fixed to 7; that is, each query may access a maximum of 
7 L 3t = 3280 (= 32.8% of all) servers. Practically, this percentage is lower as the 

t=O 
average number of servers another one may reach is 26.29; that is, only 0.26% of 

Hoverlay overlay size. This becomes clear in figure 4.7a which presents a density 

function of reachable servers (e.g. How many servers may reach 25 others in their 

vicinity? -answer: 513) which follows a normal distribution . 

• Workload: given the global initially available capacity, system-wide workload 

should have both valleys and peaks fluctuating from 0% to even 150% of global 

capacity. This helps the system evaluation under several situations like workload 

increase/decrease, long-lasting strenuous high-load or relaxing low-load phases. 

These fluctuations appear in figures 4.8 and 4.14a with respect to those two eval­

uation scenarios mentioned above. 

Figure 4.6a presents the incoming degree distribution of servers distinguishing server­

to-server from nodes-to-server links. Both axes have logarithmic scales to improve read­

ability. As explained above, server-to-server degrees follow a power-law distribution as 

only a small number of them are very popular; that is a result of the way new servers 

join their overlay. This coincides with real systems based on preferential attachment 

of new nodes onto older and more stable ones: e.g. Gnutella WebCaches [67]. It is a 

reasonable network topology for Hoverlay; it is expected to have power-law properties as 

strong providers will attract more links. Initial network configuration achieves a Pois­

son distribution of links from nodes to servers. Node migration (Hoverlay case only) 

may distort this distribution. While good providers (pools with plenty of resources and, 

thus, high node-originated incoming degree) attract more and more links they lose their 

resources faster. Therefore, though there must be a correlation between the two distri­

butions presented in 4.6a, they do not necessarily coincide. Finally, figure 4.6b plots the 

distribution of global capacity onto nodes (number of nodes with the same capacity). 
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Figure 4.7: Server horizon statistical properties: (a) max horizon sizes density (how many 
servers have e.g. 15 servers in their horizon '?) and (b) max horizon depth (how many servers 
have horizon of depth e.g. 5 hops'?) 

It follows a geometric density function complying with the idea that most of Hoverlay 

users offer low-capacity resources. 

Despite the theoretical maximum number of reachable servers for each query (see 

above), Hoverlay monitoring at its initial phase shows that this number does not exceed 

57 (figure 4.7a), way lower to the theoretical one. That is the maximum number of 

servers a query may visit via Outbound Neighbour Lists even with infinite TTL; thus, 

servers overlay appears to have a number of cyclic paths. Without revisiting servers, a 

server may access all its reachable servers with an average path length of 7.5 hops as 

shown in figure 4.7b. Therefore, TTL = 7 appears to be an appropriate query path 

length for this network configuration. 

The small neighbour list size ensures that the overlay is a weakly connected graph 

and each query, even if flooding is deployed, does only explore a small portion of the 

network and therefore has access to a limited capacity size. This neighbourhood size 

becomes even more important in hotspot query distribution scenario as, preserving the 

same TTL, it helps the simulation of situations whereby resources may forever move 

out the vicinity of a hotspot area. All the experiments below were run with the same 

parameters apart from the input workload. The aim of the workload was to evaluate 

Hoverlay in as many as possible situations: 

• workload peak to levels well above system-wide capacity 

• workload peak to levels below system-wide capacity 

• short workload valley between two peaks 

• long workload valley to levels well below system-wide capacity 

• long workload peak to levels well above system-wide capacity 

To improve readability of the produced plots, these workload situations appear only 

once in the input data with one peak between every two drops or valleys and linear 
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transition between them. These experiments were run with real data from FTSE Index 

of London stock exchange market. However, due to the randomness introduced from 

the network configuration and capacity and query distributions the figures were very 

complex, difficult to read and to draw conclusions from. 

As the focus of these experiments is mostly the sharing mechanisms rather than 

search efficiency, the deployed discovery protocol is set to a well-known and usual bench­

mark in Peer-to-Peer scientific community: Flooding. This mechanism minimises doubts 

about results accuracy as it explores the whole vicinity of each requesting server. Being 

more selective at query propagation at this evaluation stage, factors such as selectiv­

ity heuristics could distort results (e.g. k-walkers have unstable success rate and thus 

results would be unclear and non-conclusive regarding benefits and costs of Hoverlay). 

Flooding on a static overlay ensures that queries from a server, either in a Condor-based 

or Hoverlay architecture, may explore the same servers; this eliminates one factor of re­

sults differentiation: deployed search technique. Further experimentation about search 

mechanisms follow in Chapter 5. For similar reasons, these experiments have rewiring 

deactivated; its evaluation appears alongside search mechanisms. 

4.8 Evaluation on Uniform Query Distribution 

Hoverlay evaluation with regards to uniform query distribution appears in the following 

subsections. That is, on every timeslot certain amount of workload (positive or negative) 

is distributed onto a uniformly selected random subset of nodes. Hoverlay is compared 

against Condors, both disconnected and Flock versions (referred to in text and graphs as 

Condors and Flock of Condors respectively) . Condors represent a centralised approach 

while their Flock and Hoverlay two decentralised ones. Their explanation will follow an 

observation-justification scheme. Throughout these graphs, there are three main colours 

used: black for Condors, blue for Flock of Condors and red for Hoverlay; grey is mostly 

used to highlight differences between those two latter systems on each evaluation metric. 

While global capacity remains fixed as no node joins or leaves the overlay throughout 

the experiments, global workload fluctuates as shown in the two-layered figure 4.8. Both 

capacity - global workload - global capacity 

400000 v~ /"- /' 
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o 
o 50 100 150 times lots 200 

50oo~ l 
-50000 ] workload per timeslot 

Figure 4.8: Global Hoverlay workload and capacity: added or removed workload per timeslot 
(top layer) and cumulative workload and system capacity (bottom layer) 
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layers share the same x-axis (timeslots) but their y-axes have same units (capacity) and 

different scale. Bottom layer describes the workload added or removed per timeslot 

whereas top one illustrates the system-wide capacity and cumulative load applied on to 

the system. Fixed positive or negative new load produces linear increases or decreases 

of global load at same intervals. After initialization phase, Hoverlay load fluctuates 

between ~ and i of its capacity. 

4.8.1 Query Success Rate 

Figure 4.9 presents Condors, Flock of Condors and Hoverlay success rates. Based on its 

plots, Hoverlay outperforms both disconnected Condors and their Flock with regards to 

the percentage of successful over the total number of generated queries. Throughout the 

experiment Hoverlay achieves better than Condors (up to 50%) success rate confirming 

that interconnecting individual networks contributes to the satisfaction of more user 

requests. For most of the experiment duration, when the system is normally and heavily 

loaded, Hoverlay manages to satisfy bigger portion of queries (on average 5% more) 

compared to Flock of Condors. 

Any explanation of this improvement in success rate achieved with Hoverlay should 

derive from the fundamental differences of the two systems: resource migration. Indeed, 

the reasoning is two-faceted: a) resource reservations in Flock of Condors last longer 

and b) resource migrations are also translated to query migrations. In details: 

• Service capacity is a highly dynamic resource; one of the system design require­

ments was that it should not rely on guarantees that migrated resources have 

the capacity their provider pools claim to have. A requesting node may reject 

discovered but unnecessary or unsuitable capacity. Resource migration eases the 

re-registration of this capacity with requestor's pool avoiding extra messages and 

latency to return it back to its provider pool. In case of Hoverlay, once capacity is 

discovered an answer travels from remote provider (Server A) to requestor server 

(Server B) which then, at the same time, acknowledges the provider and wraps 

that answer to forward it to the underlying node. If for any reason that capacity 

success r100%) - Condors - Flock of Condors - Hoverlay 
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Figure 4.9: Success rate of disconnected Condors, Flock of Condors and Hoverlay in a uniform 
query distribution environment 
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Figure 4.10: Cumulative number of total and satisfied queries for Condors, Flock of Condors 

and Hoverlay 

is not used, it registers with Server B; providers get acknowledgements on the 

next timeslot (reservations last 2 timeslots). However in case of Flock of Condors, 

rejected resources need to return back to the provider with the acknowledgement 

to their response. Before Server B acknowledges Server A, it has to wait for the 

acknowledgement from the underlying node. Thus, discovered resources need to 

stay reserved for 4 timeslots before released. While Flock of Condors keeps re­

sources reserved for 2 extra timeslots practically useless, Hoverlay provides them 

to requesting nodes serving extra load . 

• The overlay topology of these experiments is a power-law one. With a uniform 

distribution of load on nodes, every node has the same probability to generate a 

query. The majority of servers are at the edges of the overlay (leaf servers) and, 

hence, most of the queries come from those edges. Due to this overlay topology, 

most of the query paths direct to high-incoming-degree servers. These queries in 

combination with resource migrations force capacity to move from the centre of the 

overlay to its edges. Further increase of global workload will most likely generate 

queries from those overlay edges. With an adequate TTL, queries may traverse 

the whole overlay. However, if resources do not migrate extra increase of their 

workload generate queries forwarded via always the same server. A good portion 

of resources are managed by servers in the overlay centre which, however, have a 

shorter horizon, less accessible capacity and worst success rate. 

Uniform resource distribution in scale-free networks does not work for the benefit of 

success rate in highly dynamic environments and resources. 

Two dashed lines divide the figure 4.9 area into three phases (A, B, C): A & C 

marked with (+)'s and B with a (-). These marks denote the areas in which Hoverlay is 

more (A & C) or less (B) successful than Flock of Condors. Figure 4.10 is a supportive 

bar chart that illustrates the number of queries generated and satisfied within the three 

phases of the experiment; it is a summation of total and of satisfied queries per phase. 

When the whole system handles low global workload (Phase B), Flock of Condors reach 

even 20% higher success rate than Hoverlay. As shown in figure 4.10, this deterioration is 
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superficial due to the very low number of produced queries and the even lower number 

of satisfied ones for all three systems. Moreover, the difference between the number 

of satisfied queries of Hoverlay and Flock of Condors is negligible compared to that 

of Phases A or C. Therefore, the results of those two figures confirm that migrating 

resources can help on satisfying more user requests even in a static network (i.e. without 

rewiring). 

Condors, as a set of disconnected pools preventing access to remote resources, seem to 

have from 10% to even 50% lower success rate compared to the other two architectures. 

For the first few timeslots, Flock of Condors and Hoverlay reach 100% success by seeking 

for both local and remote capacity. Some servers contain no local free capacity, even on 

the first few timeslots, in which case Condors cannot serve requests from their underlying 

nodes; hence, lower success rate than Flock of Condors or Hoverlay. 

Global workload in the beginning of Phase A steadily increases and therefore no new 

fresh nodes appear in server pools. Gradually all resources within requestors vicinity 

exhaust and a) more queries fail, b) more new queries browse the overlay and c) more 

servers regenerate the unsatisfied ones. Capacity exhaustion increases the number of 

queries and their repetitions deteriorating the success rate of all three systems. 

Symmetrically, applying negative workload on nodes makes the global cumulative 

one drop; some of these nodes (resources) become underloaded and available for on­

demand migration or local re-commission via their pools. In some other cases despite 

their workload drop, they may remain overloaded but reactively adjust downwards their 

requested capacity. That is, responses for past queries may not be necessary and thus 

the discovered capacity may either stay in its new local pool or be partially used by 

the requesting node. The unused portion of that capacity may serve extra load of the 

underlying network without extra requests. 

All systems during Phase B generate very few queries and satisfy even fewer, as 

shown in figure 4.10. Flock of Condors satisfy negligibly more queries than Hoverlay 

but this difference is substantial compared to the number of queries they generate. 

This makes the success rate of Flock of Condors by 20% better than that of Hoverlay. 

However, it is a misleading conclusion if not accompanied by this observation. 

As shown in 4.8, from timeslot 80 till around 100, global workload drops and stabilises 

at almost ~ of global capacity. On timeslot 96 (left border of phase B), system's workload 

approaches the ~ of its capacity. That is the point after which Flock of Condors become 

more successful. As underlying nodes lose workload, some either become underloaded 

or normally loaded or even remain overloaded at same or lower workload levels. There 

are no new queries but for repeated ones. As fresh capacity becomes available, repeated 

queries get satisfied improving st,lccess rate for both systems. 

While in case of Condor flocking unnecessary capacity returns back to its provider, 

Hoverlay moves it to requesting server. Within phase B, this migration is useless as that 

capacity may only be used on workload increase or even potentially harmful for sys­

tem success rate as it may be moved away from places accessible by requesting servers. 

This is the case for those few repeated queries. Global workload affected most of the 
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loaded nodes but not all; some remain overloaded and thus keep regenerating queries. 

As workload drops and before its stabilisation at its lowest level, repeated queries from 

several servers move out capacity from the vicinity of other servers which keep prop­

agating queries even during steady-workload period. Without any workload increase 

that will trigger other servers query propagation, no fresh capacity can migrate in their 

horizon whereas Flock of Condors repositions free capacity to its initial provider and 

thus probably close to repeated query generators. 

This clearance of requesting servers' horizon from available resources explains that 

success rate swap between Flock of Condors and Hoverlay architectures with former's 

being higher than latter's one. However, that cannot justify why their difference in phase 

B is well over than in the other two. That difference can be justified considering the 

minimal number of queries on which this percentage is based. Flock of Condors keep, 

in low global workload cases, the resources at their initial distribution among servers 

bringing a bigger impact on success rate. Overloaded nodes and their queries start 

increasing with the global workload. At the end of phase B a good portion of those 

queries are successful due to the available capacity generated during the last workload 

drop. Therefore, the impact of that factor gets lower and the success rate of both systems 

increases. 

4.8.2 A verage Path Length of Successful Queries 

Figure 4.11 presents the average number of hops successful queries had to travel before 

they discover their first answer. The graphs confirm that Hoverlay manages to achieve 

better success rate with shorter query paths especially on workload fluctuations. It helps 

queries get responses from 0.5 to even 2 hops sooner than Flock of Condors do. This 2-

hop improvement takes place around timeslots that global workload started decreasing: 

fresh capacity appears close to the regenerators of r peated qu ries. 

The averag path lengths of Flock of Condors and Hoverlay do not follow the pattern 

of success rate and stay well below query TTL. The power-law topology of the overlay, 

in the absence of rewiring, stays the same throughout the experiment. Most query 
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Figure 4.11: Averge number of query hops before they discover their first answer deployed on 
disconnected Condors, Flock of Condors and Hoverlay in a uniform query distribution environ-

ment 
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paths start from the edges of the network and finish at its centre. Thus, while workload 

increases resources in the centre become scarce; the biggest portion of the capacity is 

close to leaf servers. Long successful paths are less than short ones and, thus, their 

average remains below TTL mean value 4.5 (1 hop from node to server plus T~L). 

As soon as workload starts droping the effect ofresource migrations becomes clearer. 

Fresh capacity appears in the pools of domains it migrated to, closer to requestors. On 

the contrary, Flock of Condors place that capacity back to its originators and thus 

repeated queries need to travel further to re-discover it. This explains why Flock of 

Condors exhibit path length bursts on the first few timeslots the workload starts de­

creasing. While workload keeps dropping, free capacity increases close to requestors 

vicinity, servers generate no new queries and more and more repeated ones are canceled. 

This keeps the average hop count in low levels. 

In case of disconnected set of Condors, queries can only travel from underlying nodes 

to their local servers; hence, one hop. Until timeslot 44 successful queries of both Flock 

of Condors and Hoverlay exhibit almost the same hop count. Workload increases linearly 

for the first 44 timeslots and all migrated nodes join the requesting underlying networks. 

Given that both systems use flooding tested on same topologies, all servers explore their 

whole horizon and thus the average hop count has minimal deviation. 

4.8.3 Traded Capacity and Cost in Messages 

In general, Hoverlay satisfies more load than Flock of Condors (figure 4.12a) though 

both systems request almost the same amount (figure 4.12b). This improvement comes 

at almost same cost in messages (figure 4.13a). Both systems outperform Condors in 

terms of satisfied capacity due to the inability of the latter to acce's remote capacity; 

however, Condors have a minimal overall cost in messages as their queries can only 

travel one hop. 

Following similar patterns as success rate, satisfied capacity of Hoverlay is more 

than that of Flock of Condors in phases A & c. Flock of Condors superiority in Phase B 
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Figure 4.13: Cost in messages: (a) total number of messages produces and (b) total number of 
generated queries. 

becomes insignificant as the requested capacity during that period is much lower than 

that of remaining two phases. The same reasoning as with success rate lines above makes 

their shape comprehensible. However , their exact shapes depend on requested capacity, 

too. This explains why the lines of satisfied capacity have similar drops and increases 

as the requested capacity but the distance between blue and red lines resembles the one 

of figure 4.9. 
Figures 4.12b, 4.13a and 4.13b have a common characteristic: almost vertical deep 

decreases and high increases in plotted lines. These radical changes happen on timeslots 

that new load swaps from positive to negative values and vice-versa. Though within 45-

65 timeslots interval the global workload drops linearly the number of messages, number 

of queries and requested capacity are non-zero and follow similar patterns. Similarly, the 

pattern of 45-65 interval tops the new positive workload of 66-79 timeslots. Differences 

on those patterns appear as portions of those repeated queries get satisfied or stopped 

as unnecessary (especially after workload drops). Finally, the lines for Flock of Condors 

and Hoverlay architectures, of all these three figures , practically overlap with slight 

differences mainly in 4.12b and 4.13b (Hoverlay produces less queries which cumulatively 

request less capacity). Condors, due to lack of query forwarding in the servers overlay, 

exhibit much less number of messages. Their low success rate forces them to repeat 

many queries and finally overpass both Flock of Condors and Hoverlay in number of 

messages and queries. 

To sum up, this experiment proves that even in fixed topologies with high workload 

situations and similar search technique (exhaustive flooding) deployed, Hoverlay is more 

efficient than Flock of Condors in terms of: 

• success rate (percentage of successful queries) , 

• satisfied capacity (portion of requested capacity that was satisfied) and 

• average path length of successful queries before they hit their first answer. 

This is basically the positive effect of resource migration to requesting networks and 
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comes at practically no cost in messages. However, under certain circumstances, when 

the global load gets lower than global capacity the resources distribution is skewed 

and may negatively affect the success rate. Considering the low total and even lower 

satisfied number of queries on those cases, that deterioration of success rate is almost 

insignificant. 

4.9 Evaluation on Hotspot Query Distribution 

Experimenting with random workload distribution all over the network helps evaluating 

resource migration for its effect on system's efficiency but not its adaptability. Uniform 

query distribution over underlying nodes retains the incoming degree distribution of 

servers with respect to their underlying nodes. However, if queries come from a specific 

small subset of neighbouring servers (hotspot) for long periods two scenarios for further 

experimentation emerge regarding the behaviour of all three systems: 

• workload fluctuations of underlying nodes of those servers: which system quickly 

addresses the requested capacity? 

• hotspot shifting: which system is more successful if hotspots shift to another area 

of the server overlay? 

On top of the common experiment configuration parameters as set in subsection 

4.7.2, few more are necessary to complete hotspot initialization and shifting: 

• Number of spots: network initialisation is exactly the same as in previous experi­

ments but a subset of servers are picked to belong in three, not necessarily neigh­

bouring, hotspot areas. In fact, each of these three areas consists of a centroid 

(server) and all other servers within its vicinity directly or indirectly accessible via 

incoming or outgoing links. 

• Spot radius: the distance (number of hops) of any server within a hotspot area 

from its centroid cannot exceed five hops. 

• Spot lifetime: the lifetime (timeslots) of each hotspot area. As soon as its activity 

terminates another one is selected. At any given moment there are three such 

areas (triplets) which all start and end their activity simultaneously before they 

pass on their role to new randomly selected ones. This lifetime is 70 timeslots; 

thus, within 210 timeslots three shifts of hotspot triplets take place. 

Hotspot area size varies according to its connectivity. Within same radius, there 

may be more servers if its centroid comes closer to popular nodes. Given the power­

law server-to-server incoming degree distribution, an area built around a server without 

incoming links (leaf-server) is smaller than another circling a hub. At no case three 

five-hop radius areas cover the whole network and with a TTL=7 the capacity available 

to requesting servers is limited. Furthermore, as shown in figures 4.7a and 4.7b, higher 

TTL would overload the network. While in previous experiments cumulative applied 
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Figure 4.14: Hotspot capacity and workload: (a) cumulative and new per timeslot workload 
and (b) capacity within hotspot triplets. 

workload reaches 150% of system-wide capacity, in the following ones accessible capacity 

is less and therefore the workload must have lower peaks (up to 50% of capacity) as shown 

in figure 4.14a. 

The three relocations of hotspot triplets become clear in figure 4.14b for both Condor­

based architectures and Hoverlay. It presents the cumulative capacity of hotspots on 

those three intervals. While that capacity is fixed per interval for Condor-based systems, 

Hoverlay increases this capacity at the first few timeslots after hotspot relocation via 

resource migration. The average maximum path length for servers is 7.5 hops; those in 

the interior of big hotspots cannot explore far beyond their area borders. Most of the 

accessible servers from a centroid belong to the same area; queries originated from that 

server can only travel 2 hops beyond the borders of its area. 

Most of the observations from figures below share the same analysis as in previous 

experiments. Thus, detailed explanations will only follow observations that differentiate 

those figures from the ones of previous section. Two main factors contribute to these 

differentiations: a) for long intervals same servers produce large number of queries and 

b) hotspot areas change centroid every 70 timeslots. 

4.9.1 Query Success Rate 

Starting from query success rate of figure 4.15, throughout the experiment all systems 

experience, in general, low success rate but Hoverlay is the most successful (up to 20%) 

compared to Condor-based systems. Condors success is squeezed between x-axis and 

Flock of Condors line. Hoverlay performance can be explained the same way as in 

uniform query distribution environment in section 4.8. Both query originators migration 

and shorter resource reservations duration from the Hoverlay play important role. 

In fact, hotspot areas are very small compared to the network size and workload 

is uniformly distributed among their nodes. Hotspot locations can be anywhere in the 

network and thus resources do not necessarily move to leaf servers; widening of requestors 
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Figure 4.15: Success rate of disconnected Condors, Flock of Condors and Hoverlay in a hotspot 
query distribution environment 

horizon, as claimed in 4.8, cannot stand as a reasoning in this environment . Unlike Flock 

of Condors, resources joining requesting underlying networks become equal members to 

the existing ones. Condor-based systems are task-oriented; each node is assigned a very 

specific job and cannot take on another as an extension of the existing remote one; the 

discovery mechanism needs to be triggered again. Additional load targeted to underlying 

nodes of a specific server cannot be assigned to remote ones currently under commission 

to that server. 

Therefore, Hoverlay with migrations not only does it serve portion of hotspot queries 

but increases the capacity on which future workload may be distributed. Newly migrated 

nodes join the networks without getting overloaded; they can take on some more work­

load without overpassing their threshold. This reduces both number of queries and 

requested capacity and improves the success rate. 

These plots show abrupt success rate increases for all three systems just after the 

timeslot of hotspot relocations. Moving hotspots is also translated into query originators 

migration; just servers within hotspot areas may generate new queries. These queries, 

then, browse areas full of free capacity allowing better success. Initially all systems 

perform well as global workload is low and available capacity plenty. However, aligning 

figure 4.14a and 4.14b makes clear that global workload quickly gets much bigger than 

available capacity and thus success rates of all systems drop. Towards timeslot 70 

(hotspots relocation), success rate increases as global workload drops. 

On timeslot 70, a hotspot relocation takes place to areas that cumulatively con­

tain more available capacity. This makes success rates of all systems abruptly increase. 

Though there is now enough accessible and available capacity only about 50% of queries 

are successful. Hotspot relocation is not followed by workload; that is, workload already 

applied onto certain servers remains on them until satisfied even if no more is added. 

Therefore, past highly loaded hotspots (as is the case during 0-70 timeslots) regenerate 

queries alongside new ones. Around timeslot 80, though global workload starts decreas­

ing, success rate of all systems drops quickly, too, justified by the following reasoning: 

1. calculation of success rate includes every query from both past and new hotspots, 
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Figure 4.16: Hotspots capacity fluctuation of Hoverlay architecture 

2. past hotspots do not generate new but only repeat old unsatisfied queries, 

3. new hotspots take on new and for a short period (see figure 4.14a) workload only; 

they have much more capacity and less workload than past ones, thus, most of 

their queries get satisfied, 

4. as soon as their workload starts dropping (timeslot 80 onwards) , new hotspots 

stop producing or repeating queries, 

5. queries come from old hotspots only which, however, 

6. have not managed to discover more capacity despite exploring their entire vicinity. 

Decreasing workload helps success rate to increase. Unlike previous experiments, 

Hoverlay is more successful until the end of this interval (timeslot 140). The main 

percentage of global workload is still on servers of past hotspots. Hence, the biggest 

portion of removed workload is also applied there and fresh capacity appears in their 

vicinity. However, in case of Flock of Condors, free capacity returns to its original host 

and owner. This may move capacity outside hotspot areas making difficult to reach 

from inner servers. 

As a confirmation of the above, figure 4.16 shows hotspots capacity fluctuations (only 

the amount of capacity added to or removed from those areas). The first hotspot triplet 

(0-70 timeslots) significantly increases its capacity consuming all available resources in 

the vicinity (that increase reaches 40% of its cumulative initial capacity). The second 

triplet confirms the conclusions above as no expansion takes place in those hotspots. 

On the contrary, some capacity (60 capacity units) is removed as a result of repeated 

queries from past interval. Some servers of new hotspots are close to the previous ones 

and therefore capacity is moved between the two hotspots. The last hotspots expand 

just once when global workload starts increasing again. 

4.9.2 Average Path Length of Successful Queries 

Based on plots of figure 4.17, Hoverlay outperform Flock of Condors in terms of average 

query path length of successful queries. While the former fluctuates between 1 and 3 



92 

hops 

8 
7 

6 
5 
4 
3 
2 
1 

CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION 

- Condors - Flock of Condors - Hoverlay 

o+-~ __ ~~ __ ~ __ '-~ __ ~~ __ ~-' __ ~~ __ ~~'--r __ ~~ __ ~~_t~im~e~s~lo~ts 

o 50 100 150 200 

Figure 4.17: Averge number of query hops before they discover their first answer deployed on 
disconnected Condors, Flock of Condors and Hoverlay in a ttniform query distribution environ­
ment 

hops, the latter reaches even 8 hops with an average of 2 hops longer paths for most of 

the experiment. 

Though one would expect that cumulative hotspots capacity augments in case of 

Hoverlay, it does not happen as figure 4.16 reveals. These areas seem to be the most 

capacity-rich compared to previous ones (see figure 4.14b) and as such at lea t one of 

their centroids is close to high incoming-degree servers. The bigger and closer to hubs 

the area is, the biggest the probability of cyclic paths starting and terminating within 

same area. Flooding such a network using outgoing links deteriorates accessibility to 

resources outside that area. That explains why hotspots on the last interval, though 

highly loaded, do not significantly increase their capacity. 

Initially, queries tend to travel far to discover resources as low-capacity hotspots are 

charged with high workload. This causes a non smooth increase of path length unlike 

the first scenario of Uniform Query Distribution. Resource migration helps Hoverlay 

reduce requested capacity per query and thus increase success in few hops. As hotspots 

exhaust all reachable capacity, query success drops to zero for Condor-based systems 

and thus no average hop count to be recorded. Within first few timeslots Hoverlay 

moves all discovered capacity within hotspot areas keeping query paths shorter than 

Condors-based systems and even gradually reducing them. 

The second interval starts with a relatively small workload increase compared to 

capacity available within second hotspot triplet and thus both Flock of Condors and 

Hoverlay exhibit similar path lengths. Once workload starts dropping, all queries come 

from previous triplet of hotspots and fresh capacity returns to its owner: a) outside 

-if F lock of Condors- or b) inside -if Hoverlay- their borders; thus, the latter satisfies 

repeated queries faster than the former. At the final phase of this experiment, success 

rate of Flock of Condors approaches zero and thus the average path length is a calculation 

of a small sample causing a fluctuation on the graph. 
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Figure 4.18: User-end perceived satisfaction: (a) capacity requested and satisfi ed from server 
overlays and (b) r-equested capacity per times lot. 

4.9.3 Satisfied Capacity and Cost in Messages 

For completeness, figures 4.18a, 4.18b, 4.19a and 4.19b present the results for the re­

maining evaluation metrics. All lines drew in these figures follow similar patterns as 

those for Uniform Query Distribution experiments. In brief, Hoverlay satisfies bigger 

portion of requested capacity justified by the better success rate. As expected, right 

after the hotspot areas relocation the satisfied capacity reach its peaks as the new areas 

contain unused free resources. Flock of Condors and Hoverlay handles slightly more 

queries and experiences higher load in overlay messages requesting for the same amount 

of capacity. All these three graphs exhibit step-wise increases or drops as a result of 

repeated queries and the steady at internals additional workload. 

To sum up, the experiments above evaluate Hoverlay in dynamic environments of 

hotspots. Though hotspot areas may change their centre, the proposed architecture 

achieves better performance in terms of success rate, satisfied capacity and average path 

length of successful queries in both high and low workload situations. Moreover, that 

messag:s - Condors - Flock of Condors - Hoverl ay Ilueries - Condors - Flock of Condors - Hoverlay 

90000 1400 
80000 
70000 

60000 
50000 
40000 

30000 
20000 

10000 slots 
O~~~~~~~~~~~~ 

o 50 100 150 200 

(a) Total mtmber of messages 

1200 

1000 

800 

600 

400 

200 

O~~~~~~~-.~~~,-~~~~ 

o 50 100 150 200 

(b) Queries 

Figure 4.19: Cost in messages: (a) total number of m essages produces and (b) total number of 
generated queries. 
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comes at a slight increase in messages compared to Flock of Condors. The adaptability 

of this system is partially approved as only hotspot relocation and resource migration 

are tested. Following experiments in Chapter 5 expand these tests in case of rewiring 

and different search schemes, too. 

4.10 Applicability Prospects 

Real-world deployment of Hoverlay reveals a number of considerations about its appli­

cability. Business environments introduce certain constraints related to the control and 

management of a resource. The following paragraphs present some of those important 

parameters concerning the proposed system's applicability. These parameters can be 

classified based on Hoverlay's three phases: publication, discovery and commission. 

4.10.1 Publication Phase 

An important aspect of the resource publication phase is its representation. As detailed 

in section 4.4, the current version of Hoverlay uses a rather fussy representation of the 

resource capacity: a tuple of network and CPU usage. Based on a number of related 

studies, this representation does not accurately captures the capacity of a resource. This 

inaccuracy derives from the nature of service capacity: stochastic variability over time 

and high heterogeneity of the providing machines. The proposed system implicitly relies 

on the reactive capacity discovery; it tolerates deviations from the advertised capacity. 

That is, the discovered resource may be published with a certain level of capacity which, 

however, may not depict the current level as it is a highly intermittent resource. 

A requesting network may largely benefit from migrations of resources offering more 

capacity than that they were published with; this capacity may accommodate future load 

without triggering the discovery mechanism (can be considered as an implicit proactive 

mechanism). However, in some cases migrated nodes offer less capacity than that in 

their adverts. Instead of preventing this, Hoverlay provides the mechanism to reactively 

handle it by issuing a new query if the new capacity is not enough to serve the requested 

load. In a random query distribution, both these cases are expected to have the same 

frequency and, thus, to introduce no extra queries. Hoverlay uses the same mechanism 

to handle misrepresentation of a node capacity. 

However, in non-uniform query distribution scenarios accurate representation and 

publishing of capacity may be of great importance for system efficiency. There are a 

number of techniques to achieve this. A widely used method is the ClassAds adopted by 

Condor pools [82]; in this case, Hoverlay converges to a modified Flock of Condors practi­

cally mapping servers to Condor pool managers and introducing resource migration. As 

mentioned before, CompuP2P [58] focuses on processing capacity only represented with 

processor cycles per time unit assuming resource homogeneity or high capacity avail­

ability. A method for translating the capacity of each node into units is via sampling 

network and CPU usage of the UNR module running on each machine. For instance, 

the published capacity of a node can be a (sub)multiple of the UNR client network and 
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CPU usage for that specific node. 

Without violation of generality, the experiments above used single numbers to rep­

resent capacity within simulation runs. Introducing more complex representations (i.e. 

ClassAds) into those experiments would make the resources more unique and the queries 

more specific. Though the whole system would be a resourceful environment, the re­

sources would rather be rare and as such their discovery more difficult. This may produce 

similar results but with lower system-wide workload. 

4.10.2 Discovery Phase 

Server misbehaviour or greedy behaviour may cause certain problems on the discovery 

process. For instance, a server may keep sending requests for some time gathering 

practically a big portion of system's capacity. As long as these resources become again 

available in that server's pool, Hoverlay can help others discover them and bring balance 

on the overlay; there is no way with the current version of Hoverlay to prevent such a 

phenomenon. However, Chapter 5 introduces a family of search mechanisms, Stalkers, 

which would disgrace this behaviour via sending many requests back to the requestor. 

That is, high requestors create a fame attracting more and more queries. As long as a 

server generates queries, it increasingly frequently appears in inbound neighbour lists. 

Stalkers forward queries using both outgoing and incoming links and therefore a famous 

requestor will soon get overloaded by queries practically bringing high maintenance 

and bandwidth cost for that server. This may work as a disincentive to that greedy 

behaviour. 

In some cases, this behaviour may be the result of intentional activity with the aim 

of collecting and subsequently disconnecting big portion of systems resources (suici­

dal peer). This problem is classified to a category of security-related issues which re­

quire server authentication to ensure that each component works the way it is expected 

to. However, these issues become out of the scope of this thesis and are necessary to 

be addressed before Hoverlay is deployed on real business scenarios. Finally, resource 

matching is an important step of the discovery process and is highly correlated to the 

publishing mechanism. The more accurately a resource has been published the more 

efficient the matching process can be. 

4.10.3 Commission Phase 

Regarding the commission phase, this node migration introduces certain issues to be 

addressed before deployed in real world environments: control transfer and service sub­

mission to remote resources. In Hoverlay, node may move among underlying networks 

built on different management policies; they need to comply and be compatible with 

all of them as they move. An initial approach to this problem is provided in Chapter 

3 using a set of keywords to describe the applications and policies deployed on an un­

derlying network and those a node is not compatible with. Following the principles of 

section 3.2, queries can be more selective with regards to the appropriateness of discov­

ered resources. This strengthens the resources uniqueness within the system practically 
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contributing into their scarcity. 

After resource migration, its UNR has to facilitate the execution of the distributed 

application onto that node. This practically means that the new service (job) needs 

to be submitted to the machine of that node. Condor system maturity on job submis­

sion toolkit can provide a suitable and realistic approach to the distributed application 

deployment on the fetched nodes. That scheme may offer a generalised approach but 

Hoverlay, for heterogeneity purposes, does not constraint the way a new node joins 

an underlying network. Apart from the use of Condors submission mechanism, the new 

node may already have the service to be deployed in which case only its parameterisation 

would be enough to bootstrap the node in that network. 

Another issue to consider while a node migrates from one network to another is 

the workload left over from those served in the past. As long as its workload remains 

below the underload threshold, that node can move among different networks. Upon 

migration, the node cannot discard existing load which is, however, added to the one 

from the new network. After a number of migrations, the underload threshold may stay 

fully occupied by past workload preventing any further move. Therefore, a node may 

simultaneously participate to a number of networks serving very different applications 

but queries produced by any of those services reach the current manager server of that 

node. In non uniform capacity distribution environments this mechanism may affect 

the success rate as each server tries to optimise its neighbourhood via rewiring based 

on the answers it gets. If keywords or other kind of semantics are introduced, as in 

section 3.2, then using the current only server may disadvantage queries generated by 

past workload. In that case, access to multiple servers can be a technique to alleviate 

this problem. As mentioned in the final chapter of this thesis, this is an interesting 

avenue for future work. 

4.11 Summary 

Hoverlay is a system that enables logical movement of nodes from one network to another 

aiming to relieve requesting nodes which experience high workload. Remote nodes are 

moved into the requesting node domain to take over some of that excessive workload. It 

is an arbitrary network of servers (overlay) each of which represents a single underlying 

network. All servers use blind search techniques to discover free nodes from other 

networks and move them into the requesting network. It is designed to be tolerant 

to node and server failures since it has minimized the maintenance costs of server and 

node components. 

Node migration and dynamic server overlay differentiate Hoverlay from Condor­

based architectures which exhibit more static links between managers and nodes. A 

simulator tested on a set of rules was used for its evaluation aiming at conceptual 

characteristics of the architecture in static environments. After a number of experiments 

in two scenarios of uniform and hotspot query distributions, results proved that, on both 

scenarios, Hoverlay performs better than disconnected Condors and Flock of Condors 
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achieving important improvements in both success rate and average successful query 

path length at a negligible expense in messages. 

The following part of this thesis focuses on searching algorithms deployable on Hov­

erlay. It proposes a set of new blind search mechanisms, Stalkers, able to track resource 

migrations and outperform other well-known ones in dynamic environments of non­

replicable reusable resources such as service capacity. Appropriate evaluation of those 

algorithms deployed on Hoverlay are also provided. 



~:;------------------------~ 
Stalkers: Resource Migration Detection 

Stalkers is a collection of three algorithms based on the same principles: FloodStalkers, 

k-Stalkers and FireStalkers which were published in [43] and [41] under different 

names: Scale-free Flood Walkers, Scale-free Walkers and Firewalks, respectively. Their 

main common features are that all: 

1. are based on k-walkers: Query recall is not a priority for Hoverlay and k-Walkers is 

a non-flood-based algorithm which produces low traffic compared to other search 

algorithms. However, its fluctuating success rate and higher latency remain chal­

lenges that Stalkers need to tackle. 

2. give priority to fresh links: Stalkers increase their efficiency by capturing the 

most up-to-date configuration and topology of the network. Resources are not 

permanently located at some place and therefore links should, ideally, always link 

requestors to providers. 

3. use both outgoing and incoming links: Resource migrations attach certain im­

plicit semantics on links as a link initiator has received while its target server has 

provided resources. This is a way to track resource migrations. 

As nodes migrate and servers experience fluctuations in the capacity they handle, ap­

propriate rewiring could be used to bring requestors closer to providers. If providers 

were always the same servers, no server would benefit from connecting to other servers; 

however, this is not the case with Hoverlay. Rewiring frequency is an important factor; 

re-linking at a lower rate than the resource migration rate would cause a false capture of 

network topology but if it is done faster it would create excessive connection overhead 

that could overwhelm servers. 

The following sections present an overview of design requirements for Stalkers, their 

actual generic design principles and the detailed description of all three aforementioned 

variations. This chapter finishes with their evaluation and comparisons with Flooding 

and k-Walkers before a summary. 

99 
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5.1 Resource Discovery Requirements 

Following the principles of any proposed architecture for sharing service capacity, as 

detailed in section 1.5, this one sets a set of requirements for the proposed search mech­

anism, Stalkers. Its key objective is to achieve low latency and good success rate despite 

the ever changing resource location and network topology. 

Service capacity features raise a number of difficulties to be addressed. According to 

Hoverlay topology, there is a number of servers hosting free service capacity. As long as 

a server receives queries and responds back to requestors it attracts more links increasing 

its popularity. However, the more incoming links a server gathers the faster its resources 

migrate. Resource migrations allows requesting servers to gather many resources which 

when freed in its local Pool attract many links. Symmetrically, servers with little or 

no capacity lose incoming links. Therefore, these migrations ease the promotion or 

demotion of servers to hubs or leaf servers allows. As hubs lose their resources other 

servers become resource rich and it is their turn to attract links and become famous. 

Besides the factors analysed in 2.5 that make a network power-law, the appearance of 

hubs in Hoverlay depends on another four factors: 

• average requestors/providers density: represents the percentage of requestors / 

providers within the servers overlay. If a handful of requesting servers gather a 

good portion of global service capacity, they are likely to be the future power-law 

hubs once they free these resources. Resource distribution becomes more uniform 

as the average query rate of servers is uniform too; that is, if all servers ask for the 

same amount of capacity per time unit, the resources tend to get evenly distributed 

among servers. If there is only a minority of good providers they tend to be the 

current power-law hubs especially if requestors are a majority. 

• requestors/providers density distribution: shows how these servers are spatially 

distributed within the network. Splitting the Hoverlay unstructured overlay into 

areas of equal size, the density distribution represents the percentiles of a certain 

type of servers (Le. requestors or providers) in those areas. If that ratio is the 

same for every area of that overlay then the density distribution of this type of 

servers is uniform. Otherwise, if, for instance, a minority of areas have high ratios 

of those servers then these servers are locally clustered. In case of Hoverlay, if 

most of the requesting servers are clustered in neighbouring areas of the overlay, 

they quickly consume any available resource within their vicinity and their queries 

need to travel beyond the borders their areas to access potential providers. 

• query generation rate: refers to the average number of queries per server. It affects 

the resource migration frequency and thus the topology adaptation frequency. 

High query generation rate may shorten links lifetime and conversion from power­

law to uniform topologies and vice-versa may become faster. 

• requested capacity rate: represents the average service capacity requested per re­

questing server. It affects discovery success rate and number of replies but not the 
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overlay topology as Hoverlay servers may respond with a minimum capacity equal 

to the requested one. However, networks with low query generation rate and few 

requestors but high requested capacity rate might gather plenty of resources in 

those servers which if freed in future may become power-law hubs. 

While the first two factors relate to search efficiency the last two contribute to the 

Hoverlay topology changes. 

Any discovery mechanism deployed on such dynamic environments needs to be ad­

equately adaptable to achieve good success rate and low latency. Previous sections 

described important features of widely used algorithms. While educated informed tech­

niques may achieve a good success rate, their adaptability is weak due to statistical data 

they need to retain distributed all over the network or expensive if this data needs to 

be promptly updated. The flood-based blind ones achieve good success rate at a high 

cost in messages regardless of topology changes. If non-flood-based ones are deployed, 

queries tend to reach high degree nodes much faster than others but have more variable 

success rate, higher latency and are not equally efficient at discovering rare resources. 

Assuming that there is no rewiring policy in place, all these mechanisms would be unable 
Adapt: Rewire 

to track resource movements as links once established cannot change and every query once a resource 
from a requestor would follow the same path as its previous one. Given that service migrates 

capacity migrates and old providers may currently have no resource left, queries could 

be trapped into resourceless paths. therefore, this lack of adaptability may affect search 

efficiency as well. 

Well-known uneducated informed techniques avoid statistical data but rely on degree 

distribution. Each query needs to hop to neighbours with the highest degree first prob­

ing all of them unless every server receives updates with the degree of its neighbours. 

While the first scheme introduces significant latency, the second introduces extra mes­

sages. These search mechanisms target high-degree nodes assuming that they are good 

providers. As long as such a node has available resources this is a valid assumption but 

in case of Hoverlay the more links a server gets the faster it loses its resources. Without 
Search: Forward 

the appropriate adaptability, queries forwarded based on these schemes get trapped to queries to both 

fixed paths as in case of blind and educated informed techniques. To alleviate this providers and 
requestros 

problem, the proposed search mechanism should be able to forward queries to providers 

and requestors, too. Providers are the servers that have offered an answer to the query 

originator and requestors the ones whose queries reached that server. 

There is an assumption for the design of Stalkers: recall; the percentage of resources 

discovered over all those that could be returned for that request, is not a important 

parameter for Hoverlay as any valid discovered resources would be used. Flood-based 
Search: Base of 

techniques, though they may provide better recall, are more expensive compared to non- Stalkers is a blind 

flood-based ones. Informed techniques cannot work as the base of Stalkers. Therefore, non-flood-based 

Stalkers can only be a non-flood-based blind search mechanism. If query generation 

and/or requested capacity rates are high, topology changes may be fast; thus each 

topology settings have short lifetime. Hoverlay is a topology changing between shortlived 

power-law and uniform modes. Stalkers needs to exploit those power-law settings but 

technique. 
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also have a parallel mechanism to adapt as soon as these settings change. 

This introduces the concept of links lifetime in that discovery mechanism. Freshness 

of links is a factor that may help queries reach resources that were recently moved. It 

is a piece of information already present in servers (Neighbour Lists) and require no 

maintenance as it gets updated once a link is created or deleted. Fresh incoming links 

lead to recent requestors which a) may soon become providers as soon as their workload 

drops and they free resources and b) can be source of other recent providers discovered 

via their last queries. The fresh outgoing ones drive queries to recent providers which 

a) may still have available resources and b) are sources of recent requestors. 

Stalkers is a non-flood-based search algorithm that uses fresh incoming and outgoing 

links to forward queries to and relies on rewirings upon answer deliveries for adaptability 

purposes. Therefore, the choice of links is not blind but based on certain implicit criteria, 

freshness. This classifies Stalkers into the Uneducated Informed Techniques category. 

5.2 Generic Design 

Rewiring is a complement of search algorithms in Hoverlay architecture. As specified 

in section 5.1, new links need to be created for every resource migration from requestor 

to provider server. From requestor's point of view, that is an outgoing link and for a 

provider an incoming one. This helps both to identify fresh providers and requestors, re­

spectively. Though query recall is not important it may be useful. If rewiring was taking 

place for the first and only accepted answer, a requesting server would ignore knowledge 

about network topology available in extra received responses. Every recent answer is an 

indication of fresh providers; if rejected, the probability that their originators are still 

providers goes up as their resources are not used and remain free in their original pool. 

Therefore, rewiring actions are invoked on every received answer regardless if accepted 

or not. 

Practically, the size of both outbound and inbound Neighbour Lists are finite. The 

more connections a server has the bigger its burden to handle their overhead and traffic 

is. Therefore, the outbound list can be limited to a user-defined value whereas the size 

of the inbound list depends on other servers. In case these lists are full and a new link is 

to be created, the oldest one is replaced. If an answer originator is already in requestor's 

outbound list there is no update action on that list (not even for the timestamp of that 

link): 

• If that providing server has been a provider all the time since the link was created 

then its resources have been migrating throughout that period; thus it is not a 

new provider. 

• If there were intervals during which it acted as both requestor and provider there 

are two cases: either the answer receiver does not frequently send out queries and 

its network path to that provider has not significantly changed since link creation 

or the provider has experienced significant and frequent workload fluctuations 

during that period. Not updating the link timestamp in this latter case is a way of 
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punishment for that provider's unreliability. However, the requestor is unable to 

know which of those two cases holds and the former one does not severely affect the 

success rate since the network evolution is slow and query rate of that requestor 

low. 

Refering to Chapter 2, high-degree nodes of a power-law network are connected to 

a good number of other nodes thus making them easily discoverable. Though rewiring 

tends to create such topologies, resource migration shortens their lifetime unless power­

law hubs are able to offer fresh resources. The main concept behind Stalkers is two­

folded: a query forwarded to fresh requestors can quickly locate a) good and famous 

providers via their outbound lists and b) recently freed local resources. Using prior 

knowledge collected by other nodes, one can improve its query success. This knowledge 

is recorded on each node by updating its neighbour list with the discovered providers. 

Every received answer triggers the updating process of requestor's neighbour list. There­

fore, a fresh requestor may have recently discovered resources which may soon release 

and know a set of other potential providers. Every link's reliability and freshness are 

closely and positively related. 

Though Hoverlay avoids partial answers to prevent deadlock situations, resources 

may stay reserved in their local pool from the moment they are attached to an answer 

till the requesting server positively or negatively acknowledges it. Therefore, the more 

servers a distributed discovery mechanism visits the more service capacity may be re­

served, even temporarily, and thus the higher its impact on its availability is. k- Walkers 

is a blind non-flood-based technique producing low traffic and minimizing that resource 

reservation phenomenon. High-incoming-degree servers, if not good providers, are good 

pools of fresh requestors; if not fresh then they would not have high incoming degree in 

the first place. In power-law environments k- Walkers tend to reach high-degree nodes 

easier than others which in combination with rewiring and visiting of both outbound 

and inbound neighbours may stabilise their success rate and reduce latency. 

Fresh providers are a good source of fresh requestors and vice-versa. Therefore, once 

a query reaches a provider it needs to be forked to a subset of its incoming links and 

when it arrives to a requestor be forwarded to a subset of outbound neighbours. Paths 

created only by outgoing links usually drive queries to high-degree servers (see section 

2.10) assuming that a random neighbour is selected on every step. However, if that 

selection is biased, e.g. freshest ones in priority, there is no guarantee that path leads to 

power-law hubs. On the contrary, a fresh requestor has built the freshest outbound list 

it could have, thus, giving indirect access to high-degree servers and potential providers. 

As with k-Walkers, a query originator, using Stalkers, sends out the same request 

to its k direct neighbours. This initial step may use, depending on the specific Stalkers 

variation, links from any or both outbound and inbound Neighbour Lists. Once a server 

receives a query that is unable to satisfy (see Chapter 4) it forwards it to a mixture of 

the freshest incoming and outgoing links, not necessarily both. All these three 'flavours' 

presented below build k independent paths which in case of: 

• FloodStalkers are made of outgoing links only but are forked on every intermediate 
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server to a subset of its incoming ones . 

• k-Stalkers resemble k-Walkers but the freshest (not random one) among both in­

coming and outgoing is selected to hop to. 

• FireStalkers are similar to k-Stalkers but do a broadcast on the very last step or 

if a very fresh link is discovered. 

The three most important metrics for the evaluation of search mechanisms deployed 

on Hoverlay are: query success rate, average query path length (a.k.a. latency) and 

number of messages per query. Stalkers variations are designed to optimize one of 

those metrics. FloodStalkers visit many more nodes than k-Stalkers and FireStalkers 

aiming at high success rate. FireStalkers try to reduce the average query path lengths 

whereas k-Stalkers focus on reducing the number of messages. Moreover, k-Stalkers 

is the uneducated informed (see 2.10) version of k-Walkers. Stalkers introduce two 

important concepts: 'fresh' and/or 'incoming' links are more likely to direct queries to 

providers. Comparison between Flooding, k-Walkers on outgoing links and Stalkers will 

provide useful material for evaluating these concepts. 

All descriptions of Stalkers algorithms below assume that query forwarding stops 

when a server is able to satisfy the query. Any parallel paths of the same query may 

independently keep expanding till their TTL expires, they discover appropriate resources 

or revisit a server that has already processed it. 

5.3 FloodStalkers 

FloodStalkers deploy a random k-Walkers scheme for discovering high-degree providers 

and one-hop broadcastings to the outbound list of a subset of their recent requestors 

for locating recent providers and free resources. Every server has different behaviour to 

queries received from incoming links compared to those from outgoing ones. In the first 

case, it is part of a walker and as such it needs to forward every query, if unable to satisfy, 

to a single random outgoing link and to w most recent inbound ones. Randomness for 

walkers is used to help paths reach high-degree servers as they are a good source of 

requestors; the higher their degree the more probable is to have fresh incoming links (a 

server is at its peak degree a bit after it has lost all its resources). 

Branches to incoming links may locate recently discovered by those servers resources 

which, due to their frequent workload fluctuations, are now available again in their 

pools. Moreover, a recent requestor might have received a number of answers for its 

last queries and appropriately updated its outbound Neighbour List with originators of 

those responses. Each query may. have resulted in resource migration from one server 

only and thus any unused fresh responder in that list has increased probability to still 

have those resources. If that recent requestor is unable to satisfy the query, it broadcasts 

the same query to its outbound fresh list. 

FloodStalkers resemble to Lookahead Random Walkers [77] but exhibit some different 

features: 
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• they use outgoing links only [or walker travelling and incoming ones for the' looka­

head ' phase, 

• only a fraction of those incoming links are used for branching, 

• walkers are independent from their branches as walker forwarding does not depend 

on the degree of those branches, 

• each branch terminates after a one-hop broadcasting to outbound neighbours. 

A detailed view of this algorithm is available in figure 5.1 and pseudocode of Algorithm 

1. 
Every node in the network has a fixed-s ize M Outbound Neighbour List (ONL) of 

providers and a variable-size Inbound Neighbour List (INL) of requestors. The query 

originator node starts k walkers selecting k random neighbours from its ONL. Each 

walker travels from its originator via intermediate nodes (intermediaries) and terminates 

when either discovering a response provider or after a maximum of q.ttl steps away from 

its source. The intermediaries use one random neighbour of their ONL to forward the 

walker to. If they are located at most q.ttl- 2 steps away from query originator, they use 

random w of the most recent inbound neighbours from INL (branch-intermediaries) to 

forward the same query to. The branch-intermediaries either respond or again broadcast 

the query with unitary TTL (q.ttl = 1) to all their outbound neighbours. Therefore the 

query can be either of type normal, forwarded as walker, or branch, forwarded via 

branch-intermediaries. 

It is interesting to note that on q.hops = q.ttl - 1 the branch does not carryon 

the final broadcasting and that on q.hops = q.ttl incoming links are not used at all. 

Both happen in order to prevent a query travel beyond the maximum TTL hops away 
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Algorithm 1 FloodStalkers 

Require: q, q.ttl € N, q.w € N, q.hops EN: q.hops::; q.ttl 
1: bq t- q {query to forward to q.w incoming links} 
2: if q.hops = 0 then {query still in its originator} 
3: forward q to k most recent neighbours of ONL 
4: else 
5: q.hops t- q.hops + 1 
6: if q can be satisfied then 
7: send response back to originator 
8: else if q.hops < q.ttl then {TTL has not expired yet} 
9: if q.type =1= branch then {query received via an incoming link} 

10: select one n € ON L with equal probability 
11: forward q to node n 
12: bq.type t- branch 
13: bq.ttl t- min(2, q.ttl- q.hops) 
14: bq.hops t- 0 
15: if bq.ttl > 0 then {TTL expires on the next hop} 
16: select the freshest mi E IN L where i = 1, ... , q.w 
17: forward bq to all mi 

18: end if 
19: else {query received via an outgoing link} 
20: forward q to all n € ON L 
21: end if 
22: end if 
23: end if 

from originator. Given the fixed size of ONL, high-degree nodes are prevented from 

broadcasting to a big portion of the network. Practically, an INL has a maximum 

number of entries which are updated on a first-in-first-out mode. 

Though this algorithm adds a higher cost on any network it is deployed, compared 

to random walkers, it achieves a more stable success rate for two reasons: the branches 

of walkers a) contribute to resource discovery even if the walker abruptly terminates 

due to a server failure and b) in combination with that freshness-based priority system 

allow search paths to overpass traps of famous and resource-empty servers. k-Walkers 

have only k paths and visit a very small portion of the network; an abrupt termination 

of one of them may seriously affect the success of a query. While on one time unit 

failed servers may terminate quite a few query paths, on the next one they may not be 

in their paths at all. FloodStalkers alleviate this phenomenon by using those branches 

and, thus, increasing the success likelyhood. Finally, it is a more attractive technique 

compared to any flood-based one as its cost increases linearly (vs. exponentially) with 

TTL of queries. 

Different varieties of FloodStalkers may emerge if e.g. a requestor server initially 

sends out to k of its freshest, either outbound or inbound, neighbours or random walkers 

are replaced by paths comprising the freshest outbound link of each intermediary. Due 

to that broadcasting phase, FloodStalkers may produce, in general, fewer than Flooding 

messages but they could be comparable in case of low TTL. 
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Figure 5.2: k-Stalkers worked example 

5.4 k-Stalkers 

While FloodStalkers aim at high-degree providers and fresh requestors, k-Stalkers try 

to locate servers with the most recent activity. They are a modified version of random 

k-Walkers as each server gives priority to the freshest link. As such, they introduce same 

workload on the overlay as k-Walkers. They do not provide, however, guarantees that 

with this scheme walkers head to the most recently active servers in Hoverlay. 

Initially, a random subset from query originator ONL is selected to fork the query 

to, but all intermediaries have to choose one neighbour, the most recently added to 

their either ONL or INL. Each walker stops when a response is found, TTL expires 

or a circle has closed on a server that has already processed that query. Despite that 

pI' ference to fresh links, a certain level of randomness is introduced with that random 

initial multicasting and random changes to network connectivity while walkers travel 

till they expire. Keeping same notation as in FloodStalkers, Figure 5.2 and Algorithm 

2 provide further details. 

Assuming that a requestor has discovered a number of providers via its latest search, 

a query targeting the most recent requestor hopes to discover recent providers. If, in 

the meantime, requestor state has changed to a provider one it would be beneficial for 

that query. 

Algorithm 2 k-Stalkers 

Require: q, q.ttl to ~, q.k to ~ , q.hops to ~ : q.hops ~ q.ttl 
1: if q.hops = 0 then {query still in its originator} 
2: forward q to k most recent neighbours of ONL 
3: else 
4: q.hops f- q.hops + 1 
5: if q can be satisfied then 
6: send response back to originator 
7: else if q.hops < q.ttl then {TTL has not expired yet} 
8: select the most recent n to 0 N L 
9: select the most recent m to IN L 

10: forward q to the most recent node between n,m 
11: end if 
l2: end if 
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FireStalkers is another Stalkers variation similar to k-Stalkers but with the differences of 

trying to keep their cost in messages low but increase their efficiency. Query originator 

servers start k-Walkers selecting the k most recent neighbours from both their ONL and 

I L. Each walker travels from his originator via intermediate nodes (intermediaries) and 

terminates with a k-multicasting on the last hop. The server located on the q.ttl - l hop 

of a query path forwards the same query to all its q.k freshest inbound and/or oubound 

neighbours (final multicasting). 

In principle, for every hop of that path between the first and last one (i.e. 1 < hop < 
q.ttl- 1) , servers select only the freshest neighbour from both INL and ONL. However, 

if that link was created within a time window q.f then the walking path conv rts to one­

hop k-multicasting just like the 'final multicasting' . After these multicasting actions, 

query forwarding stops even if the maximum TTL is not yet reached. A link created 

within the last q.J time units is the result of a very recent query. That query may 

have also triggered more rewirings helping the current server to significantly update its 

Neighbour List with fresh providers. The reason FireStalkers do not use broadcasting is 

that in case of a high-incoming-degree servers it would cause flooding of a big portion of 

the network. Figure 5.3 and pseudocode listing of Algorithm 3 give a more structured 

and compreh llsive overview of FireStalkers. 

5 .6 Simulations and Evaluation 

With appropriat extensions, Omeosis (Hov rlay simulator presented in section 4.7) may 

also run experim llts r garding different deployed search mechanisms. That evaluation 
section left two parts of the proposed architecture in abeyance: r-ewiring and Stalker-so 

Rewiring on every received answer is a mechanism introduced to improve network adapt­

ability and ffici -ncy in the presence of resource mobility. Stalkers use two uneducat cl 
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Algorithm 3 FireStalkers 

Require: q, q.ttl E ~, q.k E ~, q.f E ~, q.hops E ~ : q.hops::; q.ttl 
1: if q.hops = 0 then {query still in its originator} 
2: forward q to k most recent neighbours of ONL or INL 

3: else 
4: q.hops - q.hops + 1 
5: if q can be satisfied then 
6: send response back to originator 
7: else 
8: r _ the freshest outgoing or incoming link 
9: if q.hops = q.ttl - 1 OR r created within the last q.f timeunits then 

10: q.ttl - q.hops + 1 
11: forward q to k freshest links among outbound and inbound ones 
12: else if q.haps < q.ttl - 1 then 
13: forward q to r 
14: end if 
15: end if 
16: end if 
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informed mechanisms (give priority tofresh links and visit both outbound and inbound 

neighbours) to track resource migrations. 

Rewiring is a mechanism present in most real networks. Though there is a variety 

of reasons for rewiring that could change the topology of a network, the experiments 

below focus on the one triggered upon an answer delivery: preferential rewiring. As 

explained in 4.7, the overlay for these experiments is built using preferential server-to­

server attachments converting the network to a power-law incoming-degree distribution. 

After this initialisation phase server overlay size is fixed and rewirings only take place. 

Good resource providers get popular quickly but as nodes move out and the server fail 

to answer queries this fame gradually drops and its incoming links are rewired to other 

servers. This allows resources to quickly gather to areas in need of capacity responding 

to workload fluctuations; this is a measure of Hoverlay adaptability. 

Following similar experimentation practices as of section 4.7, rewiring and Stalkers 

evaluation rely on the same evaluation metrics and simulation parameters as in sec­

tion 4.7. Thus, direct comparisons between results of all experiments are easier; two 

more search-specific parameters comprise the complete configuration of the following 

experiments: 

• Number of Walkers: all versions of Stalkers are random walkers-based algorithms 

and therefore the number of walkers needs to be user input. For all the following 

experiments this is set: k = 3 . 

• Freshness Time Window: FloodStalkers and FireStalkers use a time window. The 

former choose w = 2 incoming links to forward a query to and the latter does a 

k-multicasting from an intermediary server if its freshest link was created within 

the last f = 2 time units. 

Flooding and k-Walkers function as benchmarking for Stalkers evaluation and share 
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same parameters (Le. TTL & k). Flooding is an expensive but efficient technique 

whereas k-Walkers an inexpensive with variable relatively low success rate: they com­

prise the two extremes of uneducated search mechanisms. 

Each search technique has a specific coloured representation in figures below. Though 

all are plotted as solid lines, a single colour corresponds to all plots of any metric for one 

search method. That is one-to-one mapping of methods to colours for all figures below: 
• Flooding: gold • k-Stalkers: blue • FloodStalkers: red 

• k-Walkers: brown • FireStalkers: green 

However, in case of experiments without rewiring in an effort to avoid many colours and 

to improve readability, greyscale only is used for all methods. While one-to-one mapping 

is not followed for those plots please refer to figure legends if grey ones are present. 

The following sections present an analysis of the results for both rewiring and search 

methods gathered from experiments on random workload distribution among all under­

lying nodes. The contribution of rewiring is explained alongside Stalkers evaluation. 

Following similar analysis patterns as in section 4.7, the results presentation starts with 

success rate and average number of hops followed by messages spent and requested 

capacity. 

5.7 Query Success Rate 

Figures 5.4 and 5.6 compare the success rates achieved by all five simulated search 

mechanisms. While the former plots success rates of Flooding, k-Walkers and k-Stalkers, 

the latter is a figure exclusively for Stalkers. Both plot the same blue line (mapped to 

k-Stalkers) as a reference to ease comparisons between any subset of search techniques. 

With this reference line one may visually get a good estimation of the distance between 

any two plots of those figures. 

Both Flooding and k-Walkers plot lines are well (roughly 10%) below the k-Stalkers 

one. FireStalkers achieve about 5% better success than k-Stalkers whereas FloodStalk­

ers outperform all evaluated methods reaching even 60% better success rate than k­

Stalkers. Therefore, ordering their ratios starting from the highest one, the following 

sequence confirms that FloodStalkers achieve their target (success rate): SFS > SFRS > 
SKS > SKW > SFL where Sm is the query success ratio of the mth method with 

m = {F S, FRS, K S, KW, F L} representing the FloodStalkers, FireStalkers, k-Stalkers, 

k-Walkers and Flooding respectively. 

Flooding and k-Walkers underperform Stalkers mainly because they do not manage 

to trace resource migrations and get trapped into high-degree but weak providers. The 

server overlay is initially configured as a power-law topology with many leaf servers link­

ing to hubs in its centre (giant component). Given the uniform distribution of workload 

onto the nodes, the vast majority of queries originate from those leaf servers. Flooding 

and k-Walkers use outbound neighbours only to propagate queries and therefore they 

quickly reach hubs. The rewiring scheme forces those leaves to link deeper within the 

overlay and closer to its hubs whose resources move out as received queries increase. 
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Figure 5.4: Success rate comparison oJ k-Stalkers against Flooding and k- Walkers in the pres­
ence oJ rewiring 

The hubs are well interconnected between each other and since they are a minority 

of servers their outgoing links miss the big portion of leaves to which resources might 

have migrated. Therefore, those two blind search schemes force resources move out of 

their paths and combined with rewiring leaf servers have finally access to very limited 

resources. This makes the success rate drop and, hence, rewirings become rarer even 

more affecting the success of those search mechanisms. 

On the other hand, Stalkers with the use of incoming links avoid this phenomenon 

and locaLe resources even after their migrations. Rewiring ensures that the topology 

adapts to those migrations and the freshness-based priority scheme for query forwarding 

speeds up those adaptations. The giant component initially receives many queries and 

while providing resources, its servers accumulate a number of fresh incoming links that 

Stalkers use to locate resources practically avoiding the 'trap' that Flooding and k­

Walkers got into. While rewiring and query propagation to inbound neighbours drive 

queries to the right direction, priority to freshest links helps them increase their success 

likelihood. 

In general, all lines follow similar patterns as those of figure 4.9 with success rate 

increase on global workload drop and vice versa. Initially (1-44 timeslots), the requested 

capacity increases faster than workload and quickly pushes down the success rate of all 

methods. This happens because 

• more and more resources get busy and even overloaded and no fresh capacity 

appears into node pools, 

• fewer queries are satisfied causing relatively soon query repetitions, 

• requested capacity increases even more with repeated queries. 

Thereafter, till timeslot 65, global workload decreases and, hence, fresh capacity 

appears in pools, load of some nodes drops below their overload threshold and some re­

peated queries stop as unnecessary; thus, success rate increases. Though global workload 

within timeslots 109-143 gets at its lowest point, all techniques (apart from FloodStalk­

ers) appear to have unstable success rate. During this interval only a few queries travel 
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(a) k-Stalkers versus Flooding and k- Walkers 
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(b) FloodStalkers versus FireStalkers versus k-Stalkers 

Figure 5.5: Percentage of repeated over total number of queries for Flooding, k- Walkers and 
Stalkers in uniform query distribution environment 

within the overlay (see figures 5.lla and 5.11b) causing that fluctuation. The percentage 

of repeated over those few queries is relatively high (see figures 5.5a and 5.5b) and their 

horizon is almost resource-free as otherwise they would have been cane lled during the 

workload drop of the previous phase. 

From timeslot 181 onwards, the success rate drops lower than that of timeslot 44 

though the system-wide workload reaches the same peak. Apart from new queries due 

to workload increase, there are still repeated ones from previous intervals (i.e. 109-143 

as above). They remained unsatisfied even after the biggest workload drop' this increase 

and finally stabilisation of system-wide workload at its highest point obliterates most 

probabilities for discovery. 

5.7.1 k-Stalkers vs. Flooding vs. k-Walkers 

k-Walkers achieve roughly the same success rate as Flooding. Both these techniques 

are deployed on a power-law degree distribution overlay and in combination with the 

rewiring mechanism they increase the degree of famous servers. Given that most of 

the queries come from leaf servers they can both exhaustively explore their very small 

portion of the network within their horizon. k-Walkers becomes noticeably more suc­

cessful compared to Flooding during the lowest system-wide workload levels on 109-143 

timeslots interval. Flooding exhibits a higher ratio of repeated over total number of 
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Figure 5.6: Success rate comparison of k-Stalkers, FireStalkers and FloodStalkers in the pres­
ence of rewiring 

queries compared to k-Walkers for that interval (see figure 5.5a). For quite some time 

these repeated queries try without success to discover capacity and therefore remain 

unsatisfied affecting success rate. The biggest this ratio is, the lower the success rate. 

k-Stalkers achieve an improvement in k-Walkers success rate throughout the exper­

iment reaching a maximum of 20% due to query forwarding via both inbound and out­

bound neighbours. As analysed before, by following the most recent neighbour, queries 

manage to trace resource migrations and avoid deadlocks and loops. While system-wide 

workload monotonously increases this has no positive effect on the success rate as mi­

grated resources are busy. However, queries, with the aim of tracing node migrations, 

finally visit servers with updated outbound neighbour lists and thus indirectly access 

the ones offering free resources. 

While workload decreases, portion of system capacity becomes available but some 

nodes keep regenerating queries. In those cases, queries manage to discover resources on 

their pools and via inbound neighbours, too. Therefore, the benefit from inbound query 

propagation is access to outbound neighbours with probably free capacity in periods of 

workload increase and on top of that direct access to migrated free resources in periods 

of workload decrease. This explains why k-Stalkers improvement is more noticeable 

during workload drop rather than increase. The longer this load drop is, servers stop 

generating queries and thus their neighbour lists gradually become outdated but more 

and more free resources appear in their pools. 

5.7.2 k-Stalkers vs. FloodStalkers vs. FireStalkers 

Figure 5.6 presents two important phenomena: a) k-Stalkers achieve the lowest and 

b) FloodStalkers the highest success rate among Stalkers. k-Stalkers forward queries 

choosing the freshest link practically ignoring recently updated outbound links; apart 

from the link chosen to receive a query there might be other links to servers that re­

cently offered not finally migrated resources. On the contrary, FireStalkers trust such 

Neighbour Lists and once a link is too fresh it is assumed that more than one will be 

too; hence local one-hop multicasting. This trust is beneficial for FireStalkers as they 

achieve on average 5% (up to 20%) better success rate compared to k-Stalkers. 
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FloodStalkers performance (100% success rate) during roughly 60-70 and 90-155 

timeslots is an indication that they efficiently use the available capacity as workload 

drops below system capacity levels. Outside those intervals, the success rate drops 

roughly as much as the global workload overpasses system capacity (i.e. success drops 

to 50% when workload increases up to 150% of system capacity). The red line appears 

to have two gaps on 132-133 and 140-144 timeslots denoting lack of queries. During 

90-155 interval, servers send out repeated queries only. FloodStalkers achieving 100% 

success rate satisfy all of them once regenerated so that subsequent timeslots have no 

queries; hence the gaps of red line. This lack of queries is interrupted by a burst of 

repeated queries (red 'dash' between those gaps). 

5.7.3 Stalkers in fixed topology 

After disabling the rewiring mechanism, the comparative results collected by reruning 

the experiments above appear in figures 5.7a through 5.7e. These plots do not illustrate 

the success rate of methods in the absence of rewiring but rather the subtraction of that 

rate from the one with rewiring presented in 5.4 and 5.6 figures. That is, their lines 

represent the distance between those two rates produced by the following operation 

successm,r(i) - successm,nr(i) for each method m and timeslot i where rand nr stand 

for rewiring and no rewiring respectively. Figure 5.7f differs from the first 5 of that 

group in that it gives absolute values of FloodStalkers success rates used in 5.7 e to 

calculate the operation above. In fact, its grey area is what actually that subtraction 

calculates. 

All of these 5.7a through 5.7e plots exhibit a relatively wide fluctuation when global 

workload reaches its deepest 'valley' as they rely on a small sample of queries per 

iteration. Most of 5.7a and, at a lesser extent, 5.7b lines are below x-axis; Flooding 

and k-Walkers are more successful if rewiring is disabled. They both use outgoing links 

only and as they discover resources rewiring mechanism forces them link to providers 

which, however, lose all their free resources as workload increases. Therefore, future 

queries travel on paths with fewer resources negatively affecting their success rate. Given 

that rewirings take place upon answer delivery, a drop in success rate reduces rewiring 

rate, too, trapping queries into paths with low success probability. Unlike k-Walkers, 

Flooding speeds up this phenomenon by quickly exhausting resources in those paths; 

hence, the distance of success rate of Flooding in rewiring-disabled from rewiring-enabled 

environments is more noticeable than that of k-Walkers. 

Rewiring helps Stalkers, visiting incoming links, to escape paths without fresh ca­

pacity, trace migrated resources and discover fresh providers. In the absence of rewiring 

freshness plays no role in success rate as all links are created during network initialisation. 

Forwarding queries via incoming links help them avoid similar traps as those of Flooding 

and k-Walkers. However, they cannot detect resource migrations and therefore part of 

the available workload may be relocated away form their paths. This phenomenon is less 

noticeable in k-Stalkers as their success rate is the lowest among Stalkers. Therefore, 

they keep the resource migration rate low and resource distribution relatively intact. 
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Figure 5.7: Comparison of search methods success rate in two environments: enabled and 
disabled rewiring. (a) through (e) represent the distance oj each method's success rate with 
rewiring enabled Jrom that with rewiring disabled 

FireStalkers and especially F loodStalkers use these mechanisms more efficiently in­

cr asing, in parallel, the Jistance between their success rates in those two environment 

modes (with versus without rewiring). Moreover, 5.7d and 5.7e figures illustrate a clear 

improvement for those two methods while global workload decreases. During that phase, 

tracing migrated nodes gets into action and facilitates resource discovery. In the absence 

of rewiring, queries keep exploring the same network part from which resources may have 

even moved away. 

5.8 Average Path Length of Successful Queries 

Figures 5.8 and 5.9 present a comparison of the average path lengths of successful queries 

for a ll simulated methods. While the former compares Flooding, k-Walkers and k­

Stalkers the latter displays a comparison of the three Stalkers variations. k-Stalkers, 

being the common method for both figures, plays the role of reference line to ease 

comparison between lines of either figures. k-Stalkers alongside FireStalkers exhibit on 

average only half a hop bigger delay in resource discovery compared to Flooding and 

k-Walkers. FloodStalkers appear to experience longer path lengths (up to 2 hops more 
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Figure 5.8: Comparison of k-Stalkers versus Flooding and k- Walkers regar'ding their avemge 
path length of successful queries in environments with the rewiring mechanism enabled 

that the other Stalkers). Though the half-hop difference is negligible, the 2-hop one can 

become important in bandwidth used. 

However, these hop count differences can be misleading if not asse sed in combination 

with query success rate. FloodStalkers achieve better success rate compared to all other 

four methods. They help queries to avoid small cycles and find paths to resources 

satisfying many more queries. Not only do they discover answers for the same queries and 

hop count as the other algorithms but also for more spending extra hops. This pushes up 

the average path length of successful queries. That explain the small difference between 

Flooding/k-Walkers and k-Stalkers/FireStalkers. While Stalkers preserve their horizon 

wide enough to improve their success rate, Flooding and k-Walkers tend Lo shorten it 

and get locked to a small one with very few resources. 

Most of the successful queries of all three methods in 5.8 discover their resources 

within one hop from the requesting erver. Initially, as workload increases and local pools 

get exhausted, queries get satisfied by their immediate neighbouring ones. However, 

every server has the same probability to generate queries due to the uniform distribution 

of increasing global workload among underlying nodes and query repetitions. Therefore, 

they quickly spend resources in their close vicinity and queries from more distant servers 

do not manage to get there on time; thus, very few queries discover answers beyond their 

two-hop vicinity keeping the average path length low. 

5.8.1 k-Stalkers vs. Flooding vs. k-Walkers 

Unlike what one may expect, the average path length of successful queries decreases 

with global workload despite the increase of success rate. Workload drops are uniformly 

applied on underlying nodes and hence, the probability a server satisfies queries from its 

underlying nodes with local resources is the same for all overlay servers. There are still 

responses from servers far away from local ones but their respon es are either a minority 

compared to the total number of responses or even unnecessary as soon as they reach 

the requesting one. Thus, Flooding and k-Walkers using outgoing links only manag 

to increase their success probability as workload decreases via discovering mainly fresh 

local resources. This does not help servers adapt their Neighbour Lists and improve 
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Figure 5.9: Comparison between k-Stalkers, FireStalkers and FloodStalkers regarding their 
average path length of successful queries in environments with the rewiring mechanism enabled 

their efficiency when workload starts increasing again. 

While Flooding and k-Walkers exhibit similar path length till the first answer of 

successful queries, k-Stalkers spend on average up to half a hop more to discover the 

first response. As explained before, Stalkers use some mechanisms to avoid resource­

empty paths, discover capacity that both Flooding and k-Walkers could not locate. This 

justifies the increase in both their success rate and average path length. 

5.8.2 k-Stalkers vs. FloodStalkers vs. FireStalkers 

FireStalkers is a special ase as it achieves better success rate compared to k-Stalkers 

though their average path length is shorter. Their conditional one-hop multicasting 

stops query propagation assuming that queries have reached a quite promising server 

whose neighbours are good providers. FireStalkers appear to have bigger delays (0.5 

hops) in discovering resources from timeslot 144 onwards compared to k-Stalkers. They 

retain better success rate throughout the experiment and thus their produce and repeat 

[ewer queries seeking [or smaller amount of capacity. Given that small resources are 

more frequent they manage to find resources deeper in the overlay. 

All methods appear to have a peak in their average path lengths of successful queries 

on timeslots around 44 and 80. These are the points the additional workload per timeslot 

shifts from positive to negative values. For a few timeslots after those points, there are 

still many queries in the overlay but this workload shift places fresh capacity in pools 

both close to and far from requesting servers. This increases the success likelihood and 

the average path Length. While workload keeps dropping, queries get satisfied closer and 

closer to their requestors as explained above; underlying nodes regenerate less queries 

and more and more free capacity appears in their close vicinity. 

5.8.3 Stalkers in fixed topology 

Experimenting with fixed server neighbour lists also produced results about the aver­

age path lengths of successful queries travelling without assistance from any rewiring 

mechanism. Comparing those results with the ones presented in 5.8 and 5.9, six more 
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Figure 5.10: Comparison of search methods average path length in two environments: enabled 
and disabled rewiring. (a) through (e) represent the distance of each method's path lengths with 
rewiring enabled from that with rewiring disabled 

figures 5.lOa through 5.10f are designed using the same principles as in 5.7a through 

5.7e. These figures illustrate the difference between average path lengths of each method 

deployed on those two environments (active and inactive rewiring). As before, plot 5.10f 

presents the actual path lengths of FloodStalkers in both environments. 

Flooding (5 .10a) and k-Walkers (5.lOb experience bigger delays if deployed to server 

overlay with fixed neighbour lists. Neighbour list rewirings, as explained before, in case 

of those two methods initially bring requesting servers closer to provider ones which 

however stop providing as soon as all their resources migrate; the lack of any mech­

anism to prevent queries getting trapped into such paths decreases their success and 

shortens the successful paths. When these rewirings are carefully us d for the benefit 

of deployed methods, as is the case with Stalkers, the average length of those paths 

becomes even shorter. This explains why k-Stalkers reduce their success delay when 

rewiring mechanism is active more than k-Walkers do. 

Deactivating rewiring, all links in servers' neighbour lists have the same times lot tag. 

Therefore, Stalkers cannot pick the most recent neighbour as there is not such informa­

tion; if selection between an incoming and outgoing link is necessary, th outgoing is 

used. This has no effect on Flooding and k-Walkers as by definition they use outgoing 
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Figure 5.11: Comparion between Stalkers, Flooding and k- Walkers regarding the number of 
messages they produce 

links only. Without any rewiring mechanism, the network does not adapt to resource 

migrations and swapping between inbound and outbound neighbours makes little dif­

ference in both success rate and delay (i.e. k-Stalkers and FireStalkers). However, both 

FireStalkers and FloodStalkers use multicastings exploring bigger part of their vicinity 

and when combined with rewirings they carefully select the source of these broadcasts 

increasing the success probability. Therefore, more queries get an answer from distant 

servers positively affecting both success rate and average path length. 

5.9 Cost in Messages 

Stalkers achieve significant benefits over Flooding and k-Walkers mainly related with 

success rate and come at a relatively low and sometimes negligible cost in the average 

response delay. Extending the evaluation of the proposed methods, figures 5.lla and 

5.11b display the total cost in messages produced in each timeslot. A general obser­

vation is that Flooding and FloodStalkers spent at least one order of magnitude more 

messages than k-Stalkers , k-Walkers and FireStalkers. Among all, FireStalkers are the 

least expensive and FloodStalkers the most in terms of messages. 

While Flooding-based queries visit every outgoing link in their vicinity, FloodStalkers­

based ones visit a maximum of 21 outgoing links and 12 incoming ones. The former, 

avoiding incoming links, practically restricts its accessibility to outbound servers only 

and thus leaves big part of this horizon unexplored though the increase of messages is 

exponential with the Time-to-Live parameter. For the latter, messages increase linearly 

with the Time-to-Live but any server in the vicinity is accessible by queries. Moreover, 

FloodStalkers achieve better success rate and some messages are spent on answer and 

their positive or negative acknowledgements. However, FloodStalkers during some in­

tervals is twice as expensive in messages as Flooding. The differences in the explorable 

horizon and extra messages on answers or acknowledgements are not enough to justify 

this cost of FloodStalkers. 
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Figure 5.12: Comparison between Stalkers and Flooding regarding the average number of mes­
sages per query 

FloodStalkers produce many more queries than Flooding. Due to their better suc­

ce s rate more nodes join the requesting underlying networks. All these nodes while 

being reserved and waiting to migrate on-demand, experience their own workload fluc­

tuations. Thus, by the time they arrive to requesting node they have a load which if 

added to the new one from their requestors may, or at least are close to, exceed their 

overload threshold. This increases the number of queries and messages traveling in the 

overlay. As expected, k-Walkers an 1 k-Stalkers spend roughly the same number of mes­

sages though the former are slightly more expensive as they experience lower success 

rates and are forced to expire their Time-to-Live. FireS talkers , due to their conditional 

multicasting and especially during high workload situations with many rewirings, stop 

query propagation quite early achieving the lowest cost in terms of messages among all 

the other methods. 

Figures 5.12a and 5.12b extend the evaluation of Stalkers illustrating the number 

of messages per query. The first figure confirms the explanation above that Flooding 

progresses in a restricted area of the overlay whereas FloodStalkers may access any 

server in originator's vicinity and have to spend some extra messages in answers and 

acknowledgements due to their improved success rate. Unlike Flooding, their plot shows 

a deep drop in number of messages per query spend during the 109-143 interval. This 

confirms the adaptability of Hoverlay and FloodStalkers as they achieve high success 

rate (100%) by spending very few messages; they first gather resources locally and 

then they address workload fluctuations with those local resources. Flooding, even 

though deployed on Hoverlay with rewiring mechanism enabled, does not gather enough 

resources close to requestors so that they quickly address workload fluctuations; they 

instead have to forward consecutive queries on the overlay. 

As shown in 5.12b figure, both k-Stalkers and FireStalkers produce about an order of 

magnitude less messages per query. This is explained by the nature of those algorithms 

as they spend a maximum of k * TTL + 1 queries, k + 1 answers (k from providers to 

originating server and one from that server to originating node) and an equal amount 
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Figure 5.13: Comparison between Stalkers, k- Walkers and Flooding regar'ding the requested 
capacity (total and per query) 

of acknowledgements; that is, k (TTL + 2) + 3 messages. FireStalkers on high load 

situations become even less expensive as rewirings are more frequent amI more links are 

created within the t ime window f parameter of the method. This forces many queries to 

multicast and terminate within a few hops from their originator. While that multicasting 

spends k messages, it saves the neLwork from the remaining TTL expiration. This result 

confirms that FireStalkers exhibit the shortest average path length of successful queries 

among all simulated methods. 

However, in other network settings with much bigger Neighbour Lists and more 

walkers deployed by FireStalkers, these multicastings even if they take place quite early 

in query paths may produce much more messages that TTL. In these cases, FireStalker 

would be more expensive than k-Stalkers but they would still retain their advantage in 

the query average path length. 

5.10 Requested and Satisfied Capacity 

Figures 5.13a and 5.13b present the total requested capacity per timeslot for all methods. 

All these plots follow the global workload patterns topped up with the capacity requested 
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by repeated queries; the periodic repetitions of past unsuccessful queries become clear 

with the step-like capacity drops. FloodStalkers appear to request slightly more capacity 

than Flooding; the latter produces fewer queries, requested capacity is distributed among 

them and re-requested whenever they are regenerated. FloodStalkel's, especially while 

global workload drops, increases th number of queries via the mechanism explain d 

before where!1S Plotluillg wcmlcl wuit for !!: 'olrl Lrieally illCl'Casihg pedoJ Lo regellet'ate a 
failed query. T his makes th di fference between those two plots I arer towards th end 

of th experiment as waiting period of past queri s has significantly incr ased. 

(Jollsiderihg the requested capacity pel' query for Stalkers (plotted in 5. 13c and 5.13d 

figures) useful conclusions can be drawn confirming the above. Due to the same mech­

anism that increases the number of me sages and queries of FloodStalkers compar d to 

Flooding, requested capacity per query of the former is more than thaL of the laUer. 

Nodes joining a requesting underlying network take on part of the requested capacity 

and in addition to the load already handle may become overloaded. This forces them 

to generate a new query with, however, less requested capacity (the portion that exceed 

their overload threshold only). The higher the success rate the more dominant this phe­

nomenon is. The same mechanism, to a lesser extent, affects the amount of requested 
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capacity per query of FireStalkers compared to k-Stalkers; the better success rate of 

FireStalkers help them reduce the requested capacity per query. 

Figures 5.14a and 5.14b present the cumulative satisfied capacity of all methods. 

That is the requested capacity that each method managed to satisfy. It is important 

to note that if put in order starting from the one that satisfied the most of requested 

capacity, the sequence produced is similar to the one for success rate: SGFS > SCFRS > 
SCKS > SCKW > SGFL with SC standing for satisfied capacity. Figures 5.14c and 

5.14d extend these results with the satisfied capacity per successful query. These figures 

confirm the results on query success rate of tested methods. It is notable that the 

difference between the two lines of figure 5.14c is relatively much smaller than that in 

5.14a. FloodStalkers manage to satisfy many more queries than Flooding and thus more 

capacity despite its lower requested capacity per query. 

5.11 Summary 

This chapter presents Stalkers, a generic algorithm for the discovery of service capacity 

in Hoverlay environment, as well as three variations of it: FloodStalkers, kStalkers and 

FireStalkers. Using the overview of Unstructured P2P Search presented in Chapter 2, 

it starts with the requirements a search algorithm needs to satisfy in order to perform 

well in such a dynamic environment. It then analyses the generic algorithm design of 

Stalkers and continues with the details of all three variations. The second part of the 

chapter is an analytical evaluation of those algorithms based on a benchmark consisting 

of Flooding and k-Walkers tested with the same experiment settings. 

All Stalkers variations achieve better success rate compared to the benchmarks start­

ing from 5% (k-Stalkers) and reaching even 60% improvement (FloodStalkers) with Fire­

Stalkers outperforming }<-Stalkers for an average 5%, too. These improvements come at 

a negligible extra cost in latency (on average half a hop longer path lengths of successful 

queries) for k-Stalkers and FireStalkers. FloodStalkers appear to introduce bigger delays 

(2 more hops than the other two Stalkers) but this is a rather superficial deterioration 

as this method manages to significantly improve its success rate by discovering capacity 

deeper in the network than the other can do. That is, they double their average path 

lengths of successful queries but achieve 6 times better success rate on the same time 

slots. 

However, FloodStalkers are costly in terms of messages whereas FireStalkers the least 

expensive. The use of the freshest incoming links and rewiring help the former find paths 

that Flooding and k-Walkers cannot avoiding small cycles. This makes them spend more 

messages. On the other hand FireStalkers trust recently updated outbound neighbour 

lists and stop query forwarding on the first few hops with a final multicasting saving the 

network from many messages. Finally, FloodStalkers achieve the least requested and 

most satisfied capacity per times lot and per query as a result of their good success rate. 

To sum up, a) FloodStalkers outperform all other tested algorithms in success rate 

at a cost in messages fulfilling the purpose of their design, b) k-Stalkers spend fewer 
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messages than k-Walkers but cannot outperform FireStalkers (in different environment 

settings with outbound degree higher than TTL k-Stalkers would be winners) and c) 

FireStalkers experience the shortest average path length of successful queries and thus 

they fulfil their design purpose, too. 

While Flooding and k-Walkers perform better in terms of success rate compared to 

Stalkers deployed on environments without rewiring, Stalkers significantly improve their 

success likelihood in the presence of a rewiring mechanism due to their preference in 

fresh links. With regards to average path length of successful queries, rewiring helps 

all methods to discover resources faster. A superficial exception is FloodStalkers which, 

however, are the variation that makes extensive use of rewiring; lack of such a mecha­

nism prevents query paths from tracing resource migrations that FloodStalkers would, 

otherwise, detect even far from query originators. 
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Conclusions and Future Work 

Network applications are dynamic distributed computing environments that frequently 

exhibit phenomena of underloading and overloading due to massive fluctuations in the 

number of user queries they produce and handle. These, sometimes abrupt, traffic 

variations may surpass the available capacity of their nodes and make a number of user 

queries be rejected. For this reason it is beneficial to provide mechanisms that allow 

overloaded networks to utilise free capacity of underloaded ones. In this way, systems can 

achieve significantly enhanced performance in terms of the amount of requested capacity 

they satisfy. Optimizing the node utilization and minimizing the traffic volume may be 

insufficient actions when excessive capacity grows well above total network capacity. 

Importing fresh extra capacity into an overloaded network could be another approach 

to the problem and is actually the main idea studied and evaluated in this document. 

The current thesis discourses upon that problem and idea proposing Hoverlay as an 

implementation of that innovative approach. Its main conceptual innovation the logical 

on-demand migration of free nodes from one network to another in order to serve extra 

workload in terms of user queries. These" mobile" nodes may also autonomously disjoin 

the network they serve if they are underutilised and make themselves available for other 

overloaded ones. The resulting system is simple in design, deadlock-free avoiding to 

reserve partial answers while queries propagate through the overlay and fully supports 

heterogeneity as it makes no assumption regarding the topology and type of the under­

lying networks. Therefore, the system has good applicability in scenarios where instead 

of network capacity the underlying networks share processing power or even storage 

capacity. 

Its architecture is based on Unstructured Peer-to-Peer overlays as a framework to 

facilitate resource (Le. capacity) publishing, discovery and migration. Hoverlay's speci­

fication is a more detailed, generalised, enhanced and complete version of its predeces­

sor same-purpose architecture, G-ROME, also presented in this document. That P2P 

overlay comprises with a set of arbitrarily interconnected servers on top of underlying 

networks. There is a one-to-one mapping between networks and servers which provide 

suitable services for free resource registration with their local pool and for resource pro­

vision upon request by either their own or remote via other servers underlying nodes. 

125 
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Unlike Condor, resources move to request originator network rather than the opposite 

and once freed they register with the server of that network. 

This architecture is independent from the deployed search mechanisms on its Peer­

to-Peer overlay; thus, an appropriate search algorithm had to be devised to improve 

discovery efficiency complying with the special characteristics of service capacity. The 

proposed discovery mechanism is a combination of a rewiring and a query propagation 

strategy based on the ideas: 

1. each requestor creates a link to all networks offered to provide capacity even though 

that was never used, 

2. fresh requestors may have discovered resources which will be soon released due to 

workload fluctuations and 

3. fresh requestors may have recently opened connections to other providing networks 

with free capacity based on the rewiring rule 1. 

These rules shape a category of discovery mechanisms called Stalkers the general features 

of which are also detailed here. The current study also proposes three specializations 

of this category k-Stalkers, FireStalkers and FloodStalkers aiming at optimizing certain 

metrics. For instance, k-Stalkers reduce the number of messages required to discover 

resources at a cost in success rate, FireStalkers the average path length of successful 

queries and FloodStalkers increase the success rate of queries at a cost in messages. 

Extensive simulations provided useful material for comparing Hoverlay with a com­

petitive architecture, Condor. Their results have shown that the proposed architecture, 

under certain circumstances, performs better than the latter even with non optimized 

search techniques in terms of success rate, response latency and number of messages 

spent to discover the requested capacity. It manages to find the required spare capacity 

with higher probability and as a result, there is a significant increase in the number of 

additional successfully processed user queries that would otherwise have been dropped. 

Further experimentation on Stalkers and other search methods revealed the benefits of 

the former in environments like Hoverlay regarding the percentage of successful queries 

and their average path length till their first response is discovered. 

6.1 Contributions & Findings 

With the current dissertation, the author identifies a problem important for both indus­

try and academia. The approach analysed and evaluated in it makes a 3-dimensional 

contribution defined by three axes: 

• Study of the special features of reusable non-replicable resources that need to be 

considered if they are to be shared in a decentralised environment. 

• A decentralised architecture that facilitates the publication, sharing and discovery 

of such resources. 
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• A generic search strategy with three variations for discovering those shared re­

sources in the proposed architecture. 

Despite the extensive research on replicable resources, the lack of guidelines on shar­

ing reusable non-replicable resources on large scale heterogeneous self-configurable de­

centralised systems was a motivation of this study to deal with them. Thus, sharing 

such resources has to follow a set of rules as detailed below: 

• Resource publishing: minimize the cost in messages for making available such re­

sources and maintaining accurate information about their current condition. For 

instance, advertisements should be easy to update or the system able to toler­

ate with inconsistencies between resources and their adverts. Keeping accurate 

information for discovery purposes requires an expensive maintenance mechanism. 

• A void providing guarantees for resource availability and make the system tolerant 

with load fluctuations caused by external factors. In decentralised systems, there 

is some time elapsed between the discovery and commission of a resource. During 

that time, both discovered and requesting resource may have changed status from 

underloaded to normally loaded or even overloaded and vice versa. 

• Minimize the cost introduced by resource failures. Any system providing such 

resources should not assume soft resource departures. That is, no large-scale 

decentralised system dealing with reusable non-replicable resources may assume 

certain actions from a failing node before its departure. 

Complying with these principles, Hoverlay is a main contribution of this dissertation. 

It is a system seated on top of different networks and enables their collaboration via 

exchanging resources. All resources at any given moment have a single publishing point 

(their local server) accessible with just one message. These servers provide upon request 

resources to other requesting servers which in turn do not reject responses that do not 

fulfil the initial request. On the contrary, they let their underlying requestor decide 

whether the response was satisfactory as both requestors and provided nodes may have 

changes status during all this migration process. Once relocated resources are freed 

they publish their availability on their last requesting server for future use from the 

local underlying network. Resources may depart at any time without any notification. 

After a set of experiments and comparisons with an existing architecture, Condor, 

Hoverlay achieves better performance in terms of success rate and query response latency 

in high workload scenarios. These experiments show that: 

1. The percentage of successful queries over the total number of queries increase with 

the decrease of system-wide workload and vice versa (finding for both systems). 

2. Migrated nodes operate as equal members of requesting underlying network and 

reduce the overall requested per query capacity easing the success as low capacity 

resources are more frequent (finding for Hoverlay only). 
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3. Resource migration moves capacity away from the horizon of some servers. For 

instance, requesting servers just outside the borders of another's horizon consume 

resources that the latter may need in the future but will be unable to reach (finding 

for Hoverlay only). 

4. In environments with hotspots, decreasing load in past hotspot areas frees capacity 

within the vicinity of requestors (finding for Hoverlay). If placed back to its owners 

(Flock of Condors), its rediscovery becomes more difficult (finding for Flock of 

Condors). 

5. Hoverlay can increase dynamically the capacity of a hotspot area and thus address 

more user queries. (finding for Hoverlay). 

6. Placing free resources back to their originators can be beneficial once hotspots 

change location moving closer to those originators (finding for Flock of Condors). 

7. If free resources re-register with their last requesting server, local underlying net­

work can address much quicklier their fluctuations (finding for Hoverlay). Resource 

migration in case of Hoverlay reduces the average path length of successful queries 

Summarizing the findings above, Hoverlay achieves better success rate in high workload 

situations as migrated nodes operate as equal members of their new hosting networks 

whereas Flock of Condors perform better in low workload environments. The more the 

workload decreases the rarer the resource relocations and, hence, the slower the resource 

redistribution. Therefore, when just very few nodes generate queries and their vicinity 

is resource-free in Hoverlay they have low probability to discover capacity. However, 

returning resources back to their originators increases the probability that some of them 

go back within those few requestors' horizon. Furthermore, Hoverlay manages to keep 

the average path length of successful queries lower than Flock of Condors throughout 

the experiments, thus, fulfilling the requirement for low latency. These advantages of 

Hoverlay come almost at no extra cost in messages compared to messages produced by 

Flock of Condors. 

Continuing with the proposed search algorithms 'Stalkers', they use two principal 

ideas: a) fresh requestors have recently discovered resources that may soon release and a 

more accurate and up-to-date snapshot of their vicinity and b) recent providers may still 

have some free resources. This thesis proposes three variations exploiting these ideas 

each of which targets different metric: k"Stalkers for reducing number of messages in 

low bandwidth networks, FireStalkers to improve latency keeping their cost in messages 

relatively low and FloodStalkers to 9ptimize success rate at the expense of messages. 

Their evaluation concluded that they all outperform Flooding and k-Walkers on 

success rate at an insignificant increase in their average path length of successful queries 

and in messages spent. In brief, k-Stalkers performance depends on the Neighbour 

List size; they achieve relatively good success rate and guaranteed maximum number of 

messages. FloodStalkers give the best success likelihood but spend a lot of messages and 
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Bandwidth 
Low 
High 

Connectivity (Neighbour List size) 
Low High 

FireStalkers k-Stalkers 
FloodStalkers FireStalkers 

Table 6.1: Stalkers applicability in different environments 
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FireStalkers are more successful and faster than k-Stalkers but can be a more expensive 

choice if deployed on highly-connected overlays. 

Table 6.1 gives an overview of scenarios to which each of those mechanisms is suitable 

to be deployed. The parameters of these scenarios are the connectivity of the overlay and 

the bandwidth available. FireStalkers can achieve good success rate without overloading 

the overlay if it is deployed in low-connectivity and low-bandwidth or high-connectivity 

and high-bandwidth environments. High-connectivity networks with low bandwidth can 

afford k-Stalkers due to their guaranteed limited number of messages and relatively good 

success rate. Finally, FloodStalkers can perform well in high-bandwidth environments 

but with low connectivity in order to avoid network overloading. 

Further experimentation on more static environments revealed that all these three 

variations perform better in the presence of rewiring mechanisms as they can make full 

use of the freshness of links. In static networks all links have the same lifetime and 

'Stalkers' make no informed selections of neighbours. However, Flooding and k-Walkers 

do not manage to outperform them in success rate as Stalkers are based on incoming 

links, too, and still exhibit some traceability of resource migrations. 

6.2 Future Work 

The detailed evaluation .of Hoverlay and Stalkers identified the advantages and short­

comings of these mechanisms. Furthermore, some of their aspects, being out of scope for 

this work, are not yet sufficiently researched. This section tries to provide an overview 

of possible further work to improve and study the proposed architecture and algorithms. 

Research on them can be extended but not limited to proactive placement of resources in 

carefully selected areas of the network, load-balancing of servers overlay, security related 

issues and applicability scenarios. 

Hoverlay relies on the concept of reactive resource migration from a providing net­

work to a requesting one in order to server an overloaded underlying node. A requesting 

node needs to wait till a response is discovered and nodes migrated to its own net­

work. Moreover, based on the findings above, resource migration may negatively affect 

system's success rate in case of low system-wide workload levels. Therefore, a symmet­

rical facet of the proposed methodology is the proactive resource relocation. The main 

criteria of this action are the provider availability levels and requesting networks' load 

patterns. Providers may outsource some of their resources if they foresee they can meet 

their own and others requirements in near future. They may also choose to displace 

portion of their free capacity to avoid flash crowds as soon as they get discovered by 
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many requestors. 

Proactivity in Hoverlay can be expressed in two ways: a) resource placement into 

another server and b) rewiring without prior request. In the former case, servers with 

plenty of resources, unnecessary for the forseeable future, may choose to spread them on 

servers more likely to request for extra capacity or to those that are likely to receive many 

queries in the near future. However, the latter case is a proactive network reorganisation 

strategy based on which a server tries to attract more incoming links to avoid spreading 

resources without any definite need to do so. They are two contradictory strategies from 

traffic handling perspective: selfish and selfless, respectively. Proactive placement is a 

way to avoid attracting traffic or else move traffic away to other servers. A server may 

use proactive rewiring to re-route part of other servers' traffic to itself thus relieving 

them from routing responsibilities. 

As detailed in Chapter 2, power-law networks are efficient in discovery but Hoverlay 

cannot create long-lasting hubs as service capacity migrates among servers. Proactive 

placement could be used as a way to extent the lifetime of those hubs and improve 

search performance of deployed mechanisms. However, it requires a small protocol for 

the communication between those two parties thus introducing more messages. Single­

hop placement of a resource seems to be a better approach compared to an exhaustive 

or even expensive search of the best-fit server. That is, a server may only place a 

fraction of its resources to direct neighbours. Subsequent hops may reduce resource 

availability as part of their lifetime will be spent in continuous migrations. The node 

representing that resource may also suffer from isolation as it will practically be offiine 

during its migration; addressing possible fluctuations of its workload will be delayed till 

its final hop is complete. Finally, in scenarios with low global workload multi-hops in 

the deployed proactive placement mechanism might cause resources in whole network 

purposelessly moving around. 

On the other hand, proactive rewiring does not require any extra communication 

protocol as no resource exchange takes place. Given Stalkers mechanisms which dis­

tinguish and use both incoming and outgoing links, proactively opening connections to 

other servers pretending request delivery can be a way of forced rewiring. This method 

does not introduce extra messages but create cycles as new outbound servers might link 

back to the server which initiated those proactive rewirings once they request and fetch 

some of its resources. Ongoing research tests variations of those mechanisms and tries 

to identify the scenarios proactive placement and rewirings can be useful. 

In an attempt to formalise Hoverlay functionality, Karkinsky et al. in [68] presented 

a Resource Allocation System (RAS) inspired by the current Hoverlay. The authors 

captured and modelled interesting fe~tures of an oversimplified version of Hoverlay using 

1t-calculus and B-method. They identified three entities: servers, clients and resources. 

They are terms with slightly different semantics: servers have the same role as the 

specification above, clients represent underlying requesting nodes (overloaded resources) 

and resources are free nodes migrating between servers. Though they have an interesting 

approach, they focus on rather obvious properties and rely on assumptions that make 
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RAS an unrealistic system. Formal modeling can provide useful tools for assessing 

decentralised systems but they are not mature enough, yet, to achieve the accuracy 

of simulations and prototypes. Further work on could, however, be complementary to 

existing evaluation practices for distributed systems. 

Each node of the underlying network depends on a single server to discover extra 

available capacity. In order to relax this limitation, the underlying nodes should be able 

to send queries to more than one server. This would increase the heterogeneity and 

fault-tolerance of the system. A simple approach would be a protocol which helps each 

node to populate and update a list of candidate servers. Each node uses only one server 

to register with if available but more than one to make requests. The way this list gets 

updated and which server{s) are chosen to register with or make queries to are some of 

the issues that need to be addressed. 

Though Hoverlay focuses on resource discovery issues, it assumes a deployed mech­

anism on every underlying node to enable its migration and joining with the requesting 

network. In a heterogeneous environment, each underlying network may support dif­

ferent distributed applications and have different joining requirements. Therefore, each 

requesting node may need to submit all the appropriate data and task to migrated nodes 

to take on portion of its load; this requires a common job submission toolkit. Condor can 

provide such tools making both systems (Condor and Hoverlay) complementary rather 

than competitive. 

Both this job submission process on relocated nodes and the actual node migration 

raise a number of security concerns related to access rights control of that node and 

other networked resources, their data integrity, possible coordinated attacks e.t.c. Prob­

lems may be caused during migration for both providing and requesting networks. For 

instance, if the deployed distributed application of the provider was an archiving service 

moving out a node maintaining a portion of that distributed archive may cause loss of 

information and break data integrity. Depending the archived data recovery mechanism 

used in that network, that loss of information may invalidate a bigger portion of date 

archived in that network. Furthermore, if multiple malicious nodes join a single network 

they may be able to compromise its trust and security mechanisms. 

Malicious behaviour may appear in servers as well. Suicidal servers may fake high 

workload situations and gather big portion of system-wide available resources and then 

disconnect practically removing that capacity from the network. Symmetrically, a server 

may be a good provider for long thus becoming a strong hub of the overlay which, how­

ever, if failed may even fragment the topology. Another case of misbehaved servers could 

be the provision of already well loaded nodes and therefore force these nodes generate 

many queries overloading the whole overlay; this is a way to bypass the exponential 

waiting period of unsatisfied queries as explained Chapter 5. These can be only a hand­

full of security related problems that need to be addressed before Hoverlay is applied to 

a business environment. 
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