
Hoverlay: A Peer-to-Peer System for

on-demand Sharing of Capacity across

Network Applications

by Georgios Exarchakos -

Submitted for the degree of Doctor of Philosophy

within the University of Surrey

Department of Computing
School of Electronics and Physical Sciences

University of Surrey
Guildford, Surrey GU2 7XH, U.K.

April 2009

© . Georgios Exarchakos 2009

ALL MISSING PAGES ARE BLANK

IN

ORIGINAL

iii

To my parents and siblings

Acknowledgements

Throughout these three and a half years of my research project, Dr Nick Antonopoulos

was my supervisor and mentor; an always-there person to discuss new ideas, prob­

lems and solutions. He is the person who very successfully guided me throughout my

research; a sagacious and honest person who offered long hours almost every day on

brain-s~orming. His trust and consistency were proved valuable characteristics for a

prosperous collaboration and helped me guess his expectations before even we discuss

matters. He was always there when I needed some help, a person to talk about both

research and personal issues willing to provide all his support. No extra words would

express my appreciation to Nick apart from one thing; I am now his son's godfather.

Apart from the daily communication I had with my supervisor, many people, col­

leagues and friends, have significantly contributed to my research with discussions, feed­

back and support in numerous occasions. I would like to particularly thank Kan Zhang,

Athanasios Pavlou, Dimitris Fotiadis, Alexandros Marinos, Athena Eftychiou and Ste­

fan Stafrace for spending some of their time to provide comments on my thesis. Finally,

I am grateful to my parents and siblings for their endless help as none of the following

pages would ever exist without them.

Many thanks to all and be sure that every single page reminds me your help.

v

Abstract

Heterogeneous distributed applications deployed on different networks may have variable

network throughput requirements during their lifetime frequently swapping between

underloaded and overloaded situations. This study proposes a model for on-demand

capacity sharing among networks allowing their sizes to adapt based on their workload

fluctuations. Its aim is to keep all nodes normally loaded and reduce the messaging cost

of deployed applications and focuses on those with highly dynamic workload fluctuations,

bursts of traffic and/or massive node failure rates.

Conceptual migration of capacity from one network to another may improve spare

capacity utilization and network reliability even in high workload situations. Hoverlay is

the proposed two-tier Unstructured P2P management architecture which realises capac­

ity sharing between networks in three steps: publishing, discovery, and commissioning

of capacity. While the first two refer to capacity publishing and discovery mechanisms

the last one fetches and commissions it to the requesting network. This architecture

facilitates the cooperation of heterogeneous networks each of which is represented by a

single server on an interconnected server overlay.

The second contribution of this thesis is the proposed search mechanisms "Stalkers"

deployed on Hoverlay to support the intermittent behaviour of service capacity. The

idea behind this is the use offresh and/or incoming server-to-server links so that queries

can trace resource migrations. There are three variations of this technique: k-Stalkers,

FireStalkers and FloodStalkers aiming at improving number of messages, query latency

and success rate.

A number of experiments were carried out and showed that Hoverlay increases node

utilization and allows the underlying network to resize based on its workload. Node

(capacity) migration between networks saves the overlay from multiple queries and in­

creases query success rate reducing its average latency if compared to the competitive

Flock of Condors system. A number of experiments to evaluate Stalkers mechanisms

showed that all the three variations of Stalkers achieve their aim in environments of

highly dynamic resources such as Hoverlay. They outperform Flooding and k-Walkers

in success rate and latency keeping the number of messages relatively low. The thesis

concludes with its findings and contributions as well as proposals for further work.

Vll

List of Publications

Book Editing

1. N. Antonopoulos, G. Exarchakos, L. Maozhen, and A. Liotta, Handbook of Re­

search on P2P and Grid Systems for Service-Oriented Computing: Models, Method­

ologies and Applications, IGI-Global, 2009.

Journal Publications

1. R. Vinod, G. Exarchakos, N. Antonopoulos, "Performance-driven Optimisation of

Gnutella Reconfiguration," Journal on Peer-to-Peer Networking and Applications,

[acceptedj.

2. L. Exarchakos, M. Leach, and G. Exarchakos, "Modelling electricity storage sys­

tems management under the influence of demand-side management programmes,"

International Journal of Energy Research, vol. 33, 2009, pp. 62-76.

3. E. Pournaras, G. Exarchakos, and N. Antonopoulos, "Load-driven neighbourhood

reconfiguration of Gnutella overlay," Journal of Computer Communications, vol.

31, Aug. 2008, pp. 3030-3039.

4. G. Exarchakos and N. Antonopoulos, "Resource Sharing Architecture For Coop­

erative Heterogeneous P2P Overlays," Journal of Network and Systems Manage­

ment, vol. 15, 2007, pp. 311-334.

5. G. Exarchakos, N. Antonopoulos, and J. Salter, "G-ROME: semantic-driven ca­

pacity sharing among P2P networks," Journal of Internet Research, vol. 17,2007,

pp. 7 - 20.

International Conferences

1. G. Exarchakos, N. Antonopoulos, and K. Zhang, "Firewalks: Discovery Mecha­

nism for Non-replicable Reusable Resources," Proceedings of the Seventh Interna­

tional Network Conference (INC 2008), Plymouth, UK, 2008, p. 65.

IX

x

2. K. Koukoumpetsos, N. Antonopoulos, K. Zhang, and G. Exarchakos, "Improving

Availability of Mobile Code Systems by Decoupling Interaction from Mobility,"

ICN 2008. Seventh International Conference on Networking, Mexico: 2008, pp.

602-607.

3. G. Exarchakos and N. Antonopoulos, "Non-replicable reusable resources discovery

on scale-free Peer-to-Peer networks," DEST 2008. 2nd IEEE International Con­

ference on Digital Ecosystems and Technologies, Phitsanulok, Thailand: 2008, pp.

28-33.

4. G. Exarchakos, J. Salter, and N. Antonopoulos, "Semantic Cooperation and Node

Sharing Among P2P Networks," Proceedings of the Sixth International Network

Conference (INC 2006), Plymouth, UK, Plymouth, UK: 2006, pp. 11-19.

5. N. Antonopoulos, G. Exarchakos, and K. Zhang, "Sharing Supply-Demand Trends

for Efficient Resource Discovery in GRID Environments," Proceedings of the Sev­

enth International Network Conference (INC 2008), Plymouth, UK, 2008, pp.

125-137.

Contents

List of Figures

List of Tables

1

2

Introduction

1.1 Defining Service Capacity

1.2 Research Question ..
1.3 Design Methodology

1.4 Background Overview

1.5 Architectural Principles

1.6 Proposed Approach ...

1.6.1 System Parameters .

1.6.2 Evaluation Metrics .

1.7 Innovation and Contribution

1.8 Thesis Layout

Resource Sharing Environments

2.1 Classification of Resources . .

2.2 Features of Service Capacity.

2.3 Grid Job Scheduling

2.3.1 Condor ...

2.4 P2P Networks. . . .

2.4.1 Node Characteristics

2.4.2 Centralised Indexes.

2.4.3 Structured Networks

2.4.4 Unstructured Networks

2.5 Unstructured P2P Topological Properties

2.6 Computational Resource Sharing

2.7 Unstructured Discovery Techniques Classification

2.8 Blind Search Techniques

2.9 Educated Informed Search Techniques

2.10 Uneducated Informed Techniques ..

xi

xiv

xviii

1

2

3

5

6

9

10

11

12

12

13

15

16

17

19

20
21

21

22

23

26

29

30

32

34

37

38

xii

2.11 Topological System Requirements.

2.12 Summary

3 Global ROME: Preliminary Model

3.1 Architecture Overview

3.2 Semantic Cooperation

3.3 Registration Process

3.4 Query Processing ...

3.5 Worked Scenario . . .

3.6 Simulations and Evaluation

3.7 G-ROME Weaknesses

3.8 Summary

4 Hoverlay: Architecture Specification

4.1 Architecture Overview

4.2 Overlay Interaction Messages

4.3 Server States

4.3.1 Bootstrapping State

4.3.2 Outgoing Query State

4.3.3 Incoming Query State

4.4 Resource Matchmaking ..

4.5 Underlying Node Relocator

4.6 Server and Node Failures

4.7 Experiments and Evaluation.

4.7.1 Simulation Practices .

4.7.2 Experiments Configuration

4.8 Evaluation on Uniform Query Distribution.

4.8.1 Query Success Rate

4.8.2 A verage Path Length of Successful Queries

4.8.3 Traded Capacity and Cost in Messages.

4.9 Evaluation on Hotspot Query Distribution

4.9.1 Query Success Rate

4.9.2 Average Path Length of Successful Queries

4.9.3 Satisfied Capacity and Cost in Messages.

4.10 Applicability Prospects ..

4.10.1 Publication Phase

4.10.2 Discovery Phase

4.10.3 Commission Phase'.

4.11 Summary

5 Stalkers: Resource Migration Detection

5.1 Resource Discovery Requirements .

5.2 Generic Design

CONTENTS

40

44

47

50

51

52

52

53

57

59

60

61

62

64

66

67

67

68

70

71

72

74

75

78

81

82

85

86

88

89

91

93

94

94

95

95

96

99

100

102

CONTENTS

5.3 FloodStalkers

5.4 k-Stalkers . .

5.5 FireStalkers.

5.6 Simulations and Evaluation

5.7 Query Success Rate

5.7.1 k-Stalkers vs. Flooding vs. k-Walkers

5.7.2 k-Stalkers vs. FloodStalkers vs. FireStalkers

5.7.3 Stalkers in fixed topology

5.8 A verage Path Length of Successful Queries

5.8.1 k-Stalkers vs. Flooding vs. k-Walkers

5.8.2 k-Stalkers vs. FloodStalkers vs. FireStalkers

5.8.3 Stalkers in fixed topology .

5.9 Cost in Messages

5.10 Requested and Satisfied Capacity .

5.11 Summary

6 Conclusions and Future Work

6.1 Contributions & Findings

6.2 Future Work

Bibliography

xiii

104

107

108

108

110

112

113

114

115

116

117

117

119

121

123

125

126

129

132

List of Figures

2.1 Vanthournout's Resource Classification. 16

2.2 Centralised Architecture and resource discovery mechanism 22

2.3 Two different BitTorrent networks for different files controlled by two

trackers. These networks exist as long as the downloading activities are

not complete. .. 23

2.4 Chord ring interactions. Node 3 tries to locate the file with key=139.

node 155 hosts all the keys from 123 to 155. 24

2.5 ROME Architectre 25

2.6 Gnutella interaction model. A query floods the network with queries

visiting all nodes up to TTL hops from query originator. 27

2.7 Gnutella II architecture. Indexing in hubs and selective forwarding saves

the network a lot of messages. .. 28

2.8 Unstructured P2P Search Methods classification by Tsoumakos et al. [100] 33

2.9 Extended Unstructured P2P Search Methods classification including Ed-

ucated and Uneducated Informed Methods 35

3.1 G-ROME layered architecture: components and processes 49

3.2 Flowchart of G-ROME Server processes 50

3.3 G-ROME Working Example: query propagation, answer delivery and

network reconfiguration . 55

3.4 Percentage of failed queries over the total number of queries . . . 57

3.5 Number of messages generated with the increase of the workload 58

4.1 Capacity OutSourcing Management Overlay System architecture overview

and components 63

4.2 Hoverlay communication sequence diagram 65

4.3 Process flow for queries originated from an underlying network 68

4.4 Process flow for queries originated from other servers of the overlay . 69

4.5 Hoverlay behaviour under churn 73

4.6 (a) Server popularity among other servers and nodes distribution and (b)

system capacity distribution among nodes .. 79

xv

xvi LIST OF FIGURES

4.7 Server horizon statistical properties: (a) max horizon sizes density (how

many servers have e.g. 15 servers in their horizon?) and (b) max horizon

depth (how many servers have horizon of depth e.g. 5 hops?) 80

4.8 Global Hoverlay workload and capacity: added or removed workload per

timeslot (top layer) and cumulative workload and system capacity (bot-

tom layer) 81

4.9 Success rate of disconnected Condors, Flock of Condors and Hoverlay in

a uniform query distribution environment 82

4.10 Cumulative number of total and satisfied queries for Condors, Flock of

Condors and Hoverlay .. 83

4.11 Averge number of query hops before they discover their first answer de­

ployed on disconnected Condors, Flock of Condors and Hoverlay in a

uniform query distribution environment 85

4.12 User-end perceived satisfaction: (a) capacity requested and satisfied from

server overlays and (b) requested capacity per timeslot. 86

4.13 Cost in messages: (a) total number of messages produces and (b) total

number of generated queries. 87

4.14 Hotspot capacity and workload: (a) cumulative and new per timeslot

workload and (b) capacity within hotspot triplets. 89

4.15 Success rate of disconnected Condors, Flock of Condors and Hoverlay in

a hotspot query distribution environment 90

4.16 Hotspots capacity fluctuation of Hoverlay architecture 91

4.17 A verge number of query hops before they discover their first answer de­

ployed on disconnected Condors, Flock of Condors and Hoverlay in a

uniform query distribution environment 92

4.18 User-end perceived satisfaction: (a) capacity requested and satisfied from

server overlays and (b) requested capacity per timeslot. 93

4.19 Cost in messages: (a) total number of messages produces and (b) total

number of generated queries. .

5.1 FloodStalkers worked example

5.2 k-Stalkers worked example . . .

5.3 FireStalkers worked example .

5.4 Success rate comparison of k-Stalkers against Flooding and k-Walkers in

93

105

107

108

the presence of rewiring .. 111

5.5 Percentage of repeated over total number of queries for Flooding, k-

Walkers and Stalkers in uniform query distribution environment 112

5.6 Success rate comparison of k-Stalkers, FireStalkers and FloodStalkers in

the presence of rewiring .. 113

5.7 Comparison of search methods success rate in two environments: enabled

and disabled rewiring. (a) through (e) represent the distance of each

method's success rate with rewiring enabled from that with rewiring dis-

abled. .. 115

LIST OF FIGURES xvii

5.8 Comparison of k-Stalkers versus Flooding and k-Walkers regarding their

average path length of successful queries in environments with the rewiring

mechanism enabled. .. 116

5.9 Comparison between k-Stalkers, FireStalkers and FloodStalkers regarding

their average path length of successful queries in environments with the

rewiring mechanism enabled .. 117

5.10 Comparison of search methods average path length in two environments:

enabled and disabled rewiring. (a) through (e) represent the distance of

each method's path lengths with rewiring enabled from that with rewiring

disabled .. 118

5.11 Com pari on between Stalkers, Flooding and k-Walkers regarding the num-

ber of messages they produce .. 119

5.12 Comparison between Stalkers and Flooding regarding the average number

of messages per query .. 120

5.13 Comparison between Stalkers, k-Walkers and Flooding regarding the re­

quested capacity (total and per query) 121

5.14 Comparison between Stalkers, k-Walkers and Flooding regarding the sat-

isfied user queries (total and per query) 122

List of Tables

2.1 Bedrax-Weiss Resource Classification and Service Capacity features. 17

2.2 Classification of the most famous Unstructured P2P Methods 34

3.1 Mapping of proposed system requirements to G-ROME layers

3.2 G-ROME Worked Example network initial configuration.

3.3 G-ROME Worked Example network final configuration.

3.4 Ring size changes of server 788

4.1 Mapping of proposed system requirements to G-ROME layers

4.2 Overlay message list description.

4.3 General Hoverlay message header structure

4.4 Hoverlay message payload description

48

54

56
59

62

64

65
66

4.5 Actions of UNR with respect to the state of monitored network application 71

6.1 Stalkers applicability in different environments 129

xix

~1
Introd uction

As a plethora of various distributed applications emerge, new computing platforms are

necessary to support their extra and sometimes evolving requirements. Symmetrically,

more powerful and diverse platforms provide material and motivation for new ideas

and applications. This research derives its motive from deficiencies of real networked

applications deployed on platforms unable to fully support their characteristics and

proposes a network architecture to address that issue. Falling into the area of distributed

computing, it focuses on sharing non-replicable intermittent resources over large-scale

and volatile decentralised heterogeneous and multi-administrative environments utilising

low cost, in installation and maintenance, platforms.

The throughput requirements of an application may largely vary over time and, thus,

abruptly overwhelm the network with messages (overloaded situation) that an existing

infrastructure could be unable to handle. This phenomenon may introduce delays in

network responsiveness and deterioration of deployed services quality. On the contrary,

low traffic leaves network resources under-utilised thus reducing their profitability (un­

derloaded situation). In certain cases, services provided by two different networks may

be in competition. That is, while one of them experiences high load, the other may keep

all the equipment fully functional even if underutilised. Existing architectures try to

improve the performance of a distributed application assuming that required resources

a) are locally available, b) can perform as expected under well-defined conditions and/or

c) rely on successful management. Distributed application architectures deployed on un­

reliable nodes usually focus on computationally heavy tasks and introduce redundancy

on well-selected nodes to ensure task completion and load-balancing.

Transfer of spare capacity from an underloaded network to an overloaded one can

be profitable for both networks. This thesis presents Hoverlay, a novel interconnec­

tion platform of different networks which provides appropriate mechanisms for sharing,

discovering and exchanging of nodes on demand. Its design respects a potential het­

erogeneity of nodes and their ownership, takes over their management and aims at fast

discovery at low cost. It is a network topology adaptation and resource discovery issue

approached with logical movement of appropriate nodes from providing to requesting

systems so that highly demanding areas of the network are quickly satisfied.

1

2 CHAPTER 1. INTRODUCTION

Its predecessor, G-ROME [42], was a more application-specific architecture based on

the same idea of nodes migrating between networks to relieve workload bursts. How­

ever, G-ROME had a set of weaknesses largely addressed by CSOA (Capacity Sharing

Overlay Architecture) described in [40]). This thesis presents a more complete view of

CSOA and renames it with a more unique name Hoverlay. Its name is an indication

of its functionality: "proceed through an area in search of a prey or quarry" 1. It is an

unstructured peer-to-peer (P2P) network built on top of other underlying ones which

uses Stalkers distributed algorithms to locate resources; CSOA was not using specially

designed search algorithms optimized for such environments.

Its business applicability may vary depending on the diversification and lifetime of

services sought by requestors. Hoverlay design eases the support of short-term trans­

actions between a variety of heterogeneous services. For instance, it is an architecture

suitable for networked applications involving a collection of services, not necessarily the

same, created to complete a single task; its lifetime coincides with that of the task it

processes.

1.1 Defining Service Capacity

In the context of large-scale resource sharing, a resource, according to Vanthournout

et al. [102], "is any source of supply, support, or aid that a component in a networked

environment can readily draw upon when needed". Yang et al. [107], define service

capacity as a resource that represents the throughput of the network (the number of

served requests per peer) in peer-to-peer file sharing environments where processing is

not the predominant shared resource. They distinguish the aggregate upload from aggre­

gate download service capacity with the former being "the overall achievable throughput

the system can offer to downloading peers interested in a given document" while "the

average download throughput achieved per peer, which might be roughly estimated as

the aggregated upload service capacity normalized by the number of downloading peers"

being the latter. Others (i.e. [54]), use just the term throughput as the aggregate down­

load rate of file-sharing peer-to-peer applications. Both of these definitions assume that

processing requirements are much less compared to bandwith ones.

In this research, service capacity refers to a more generalised context (not only file

sharing) and is closely connected to the throughput of a network. In high load situations,

more nodes able to receive, process and respond to requests are necessary to handle

part of that load. Thus, a definition of service capacity that could fit in that networked

environment would be the following: service capacity is the number of requests a node

can receive, process and respond within a time unit. However, this definition, though

comprehensive, is not normalised; network bandwidth measurements can be relatively

objective but measuring CPU performance cannot rely solely (if at all) on its clock

speed. Nodes with similar CPU clock may vary in their CPU performance but it gives

a rough idea of its capabilities. With the aim of supporting networked applications

1 stalk. Dictionary.com. Dictionary.com Unabridged (v 1.1). Random House, Inc.
http://dictionarveryfrequently y.reference.com/browse/stalk (accessed: November 06, 2008).

1.2. RESEARCH QUESTION 3

and their traffic, the proposed architecture assumes that bandwidth throughput is more

important than CPU and that most modern CPU architectures can efficiently handle

those applications. Therefore, service capacity is represented as a tuple of bandwidth

and CPU throughput in kbits-per-second (kbps) and million cydes-per-second (MHz),

respectively.

This definition helps the classification of nodes based on their current load. An

overloaded node receives more requests for service capacity than it can handle whereas

an underloaded one has almost all its capacity unoccupied. Normally loaded nodes

are able to serve current load without any extra remote help but keeping their service

capacity busy. A whole network is overloaded if one or more nodes are overloaded but

there are not any underloaded ones to take on their excessive load and underloaded if

the other way round. On any other condition, it is normally loaded. Networks can

be in any of these conditions irrespective of the relation between their global load and

capacity. For instance, a network with a single overloaded and all the remaining normally

loaded nodes remains overloaded though its excess workload could be split among others

without overloading them. Resources can take over extra capacity via Hoverlay only if

underloaded. Nodes monitor their service capacity and detect their load status based

on upper and lower thresholds set by their administrators.

The availability of service capacity depends not only on node failures but its usage,

too. It is a resource that cannot exist in replicas and allows a single task at a time

to access and use it; busy capacity is unavailable. As global workload increases within

a system, the available service capacity becomes scarcer. Assuming, without loss of

generality, that a node provides a single and unified portion of its service capacity, node

and service capacity may be used interchangeably this point onwards.

1.2 Research Question

Under certain conditions, some nodes may have to serve traffic that exceeds their ser­

vice capacity. Even if it is optimally used and the load uniformely distributed among

nodes, new capacity becomes crucial in case this traffic continues to grow. Though

all the resources within an organisation are well administered, they are limited; new

investements are required to serve excessive load produced either by internal or exter­

nal users. On the contrary, remote outer-organizational resources may be insufficiently

maintained and administered but enough to serve extra workload. The problem ad­

dressed in this thesis is three-faceted: publication, discovery and commission of

service capacity. Publication refers to resource representation and advertising, discovery

relates with mechanisms deployed for locating resources and commission embody ca­

pacity migration from providing to requesting environments and the ways that capacity

may be used. Therefore, the research question of this thesis is the following:

How can remote service capacity efficiently relieve on demand overloaded

network nodes given its highly intermittent availability?

4 CHAPTER 1. INTRODUCTION

While High Throughput Computing (HTC) platforms and Grids have high opera­

tional and maintenance costs, existing Peer-to-Peer (P2P) architectures are designed

and built to support a limited set of applications. Many Grid and HTC systems are

mature technologies that realise efficient resource sharing but require well administered

and maintained resources, they have weak scaling properties and/or are not resilient

to intermittent behaviour of the nodes [62], [76J. P2P Networks can continue working

properly even if some of their nodes experience frequent failures (fault-tolerance). They

are networks built to support a specific application that can easily scale from small to

large sizes sharing among nodes the cost of deploying such an application. Currently, a

small range of P2P applications are supported concerning mainly content management

(file sharing), parallel processing independent tasks and collaborative applications (in­

stant messaging, VoIP, office applications, limited support on P2P Gaming) [78J. This

research tries to relax scalability and applicability constraints of Grids and P2P Systems.

Unlike a P2P system, a Grid can support a variety of different applications but is not

as scalable as a P2P network. Grids facilitate this diversification of deployed applications

due to their generic advertisements of their resources and to their job submission services.

In P2P networks there is no clear differentiation between the application and network

configuration; the deployed application is a distributed algorithm dedicated to configure

and manage the network. Hoverlay focuses on networked applications (e.g. P2P) and

the load they produce rather than, though without precluding, heavy computational

tasks. Service capacity is an appropriate resource for supporting such applications as it

allows addressing their load via a job submission toolkit. For instance, if a P2P appli­

cation is heavily loaded, fresh capacity may join its network by running its client piece

of software. This resource exchange between different environments demands support

of node heterogeneity for two reasons: a) shared service capacity is not fixed or guar­

anteed and the node providing it may have completely different specification compared

to others, b) does not come from a similar environment (may have previously served a

completely different application) as that of its requestor. Therefore, any system used

to share such resources should be designed assuming certain specification of nodes, be­

havioural patterns of their users, well defined fixed and guaranteed capacity or specific

characteristics of applications they served in the past.

A distributed application may experience traffic bursts due to sudden users' unex­

pected behaviour. An extensive survey from Streamcheck Research revealed that an

increasing number of video streaming providers suffer from flash crowds especially in

peak hours [1]. For instance, in top news providers like CNN, MSNBC and ABC, be­

cause of traffic bursts, the "breaking stories are often unreachable during peak viewing

hours" and the users experience content outages and longer startup times. BBC an­

nounced that on 7th July 2002 the download time of webpages was eight times longer,

a quarter of requests for webpages were not served and .. email traffic reportedly doubled

in response to congestion on mobile networks" [2J.

Not only is there no system to adequately address the problem but also many network

applications seem to experience extreme workloads, posing a high maintenance and

1.3. DESIGN METHODOLOGY 5

administration cost. Instances of network application clients increase with the average

connection speed and penetration of Internet into the global population. New users

bring new behavioural patterns and cultural habits making application usage patterns

more stochastic. The research question becomes timely considering the lack of a widely

accepted solution to those problems.

Streaming servers and video repositories have high capital and installation cost,

processing and bandwidth requirements for live and/or on-demand services and may

become a substantial maintenance burden for several content providers. Hoverlay can

dynamically allocate and use existing infrastructure of companies that build different

applications on different networks. Using a Hoverlay server per application, capacity

can be outsourced from one network to another based on their requirements.

1.3 Design Methodology

The Hoverlay design follows a step-by-step problem identification-+solution-+evaluation

with feedback approach. Initially, a good problem and objectives definition as well as

identification of most important parameters are necessary to set the scene of this re­

search question, to decompose it into more fundamental problems and to identify any

system design requirements. Analytical overviews of existing approaches to those prob­

lems provide useful information about what should be avoided, adopted or adapted. Fi­

nally, solutions proposed to any of these subproblems aim at improving system efficiency

and should not generate new problems that would cancel any efficiency improvements

achieved.

Evaluation is an important step since it may depict potential deficiencies of proposed

solutions and provide an indication of a better approach. Results from the evaluation

step may feed back to problem specification and solution steps with useful conclusions

and allow them to appropriately adapt. Hoverlay is expected to be deployed on large­

scale environments with high topology change rates. Experimentation in real environ­

ments is impractical because of the number of nodes, their heterogeneity, application and

user behaviour diversity required. Therefore, its evaluation used appropriate simulations

of such environments allowed quick parameter modifications and results collection.

Several existing P2P simulators were tested such as PeerSim [641 and P2PSim [521.

PeerSim is a Java-based simulator that started supporting unstructured overlays after

the first simulations and experiments of the current research. P2PSim is a good P2P

simulator but supports only structured networks and its authors stopped maintaining

it the year the current project started. Therefore, a new simulator called Omeosis

for hybrid Unstructured P2P Networks was built in C++, based on Object-Oriented

programming principles. Though appropriate libraries of PeerSim for Unstructured net­

works appeared in the meantime, there was already enough material to use and build

on top of first Omeosis versions. Swapping to PeerSim would require familiarizing with

PeerSim libraries and converting the C++ code into Java; continuing developing Omeo­

sis was a more convenient path. Omeosis is able to simulate random and simultaneous

6 CHAPTER 1. INTRODUCTION

message delivery on random hybrid unstructured P2P networks, node migrations, dif­

ferent random topologies (scale-free, uniform random degree distributions) and has an

extensibility manager to install and handle different searching and rewiring techniques.

The generic design of Omeosis also allowed the simulation of existing systems which

are used as benchmarks for Hoverlay evaluation. Node migrations between networks

interconnected via a Peer-to-Peer overlay is a main difference from other Grid-based

systems. Flock of Condors (see section 1.4) is a well-known and mature system built with

similar purposes but migrates jobs intead of resources. This worked as the benchmark

to evaluate the main principles of the proposed architecture.

Stalkers is another facet of the current thesis' contribution; they are a set of search

mechanisms designed to improve Hoverlay performance. Omeosis was further extended

to support both Stalkers and existing search algorithms for the evaluation of the former

in the context of Hoverlay.

1.4 Background Overview

Networking is about sharing resources by replicating, moving or remotely accessing them.

Each network has different properties that depend on its topology. This section provides

an overview of the basic features of architectures that enable resource sharing. Any cen­

tralized approach of sharing underlying heterogeneous and intermittent resources would

suffer from high workload generated by frequent queries and advertisements of requested

and available capacity respectively. High rates of leavefjoin actions of those nodes would

cause extra significant update overhead. In case of a failure of the central manager, no

capacity sharing would be possible practically disconnecting all resources. A type of

distributed architectures that can scale to large networks using low-cost non-centrally

managed resources (nodes) is Peer-to-Peer Networks. The nodes of these networks may

belong to any user and are usually built on weak infrastructure. Their topology can be

classified into the Unstructured and Structured ones: the former construct a network

of arbitrarily and directly connected nodes whereas the latter a network of which the

connections among nodes are determined by a well defined algorithm.

Structured P2P Networks assign keys to resources, identifiers to nodes and map

those keys to specified IDs via a hash function. Thus, each node manages a certain

range of keys with the resources they represent either hosting them or as their proxy to

the overlay. Structured resource discovery mechanisms use this hash function to hash

the requested resource key and locate its hosting node ID. P2P systems such as CAN

[83J, Chord [96J, Pastry [87J and Tapestry [109J can guarantee successful discovery if the

requested resource is available in the network within 0 (log n) messages [74J. However,

latency becomes a considerable problem in case of large networks (huge number of nodes)

since each query is routed to the next intermediate nodes as far as possible producing

long-distance network traffic and delays. Low-capacity peers can introduce further delays

since they can easily become overloaded even if they don't process the query but just

forward it. Query routing is based on simple keys and exact matching of key hashes and

1.4. BACKGROUND OVERVIEW 7

thus structured P2P overlays do not support complicated queries.

Unstructured P2P overlays organise the peers in a random flat or hierarchical graph

which is decoupled from the location of the resources. Any unstructured overlay does

not guarantee successful discovery even if the requested resource exists in the system but

it usually supports complicated queries. Adopting a more distributed approach using

Unstructured P2P Networks solves the single-point-of-failure and reliability problems

of the centralised one. Replication of resources [75], [101] may increase the throughput

performance of the overlay network since it increases the availability of the same resource

[107]. Advertisements [110] or gossiping techniques may direct the query faster to the

resource provider thus reducing its latency.

However, replication or gossiping/advertisement as well as informed resource dis­

covery techniques of P2P Networks are not applicable to service capacity discovery.

Gossiping techniques disseminate information about a resource (e.g. its location, ca­

pacity) assuming that it rarely changes. Service capacity may frequently change over

time practically making this information rather unsuitable for advertising this type of

resource for discovery purposes. In contrast to other resources (i.e. files), service capac­

ity cannot be replicated but only reused. That is, only a limited number of users may

use it at any given time [20]. These properties make it a dynamic with high failure rates

resource and thus, its discovery difficult. Organizing underlying nodes in a Structured

P2P would require the use of its lookup function each time a node joins the system

resulting in a high maintenance cost.

Resource volatility is again the main reason why multiple advertisements widely

distributed among nodes and informed search techniques are not preferred. Service

capacity availability frequently changes over time and thus any advertisements or in­

formation about its status become quickly invalid or expensive to update. Hoverlay

design is based on a decentralised indexing service, resources are registered with a single

entity and the deployed discovery mechanism tries to guess resource locations without

any assistance from special-purpose statistical data.

High Throughput (HTC) and Grid Computing (Grid) platforms are built to share

any kind of resources focusing mainly on reusable ones. HTCs are aggregations of

very powerful machines in a single or federated administrative domain and/or require

good resource management [62]. Existing research on high throughput computing has

produced several solutions to the issue of reusable resources discovery especially storage

capacity and CPU cycles. Condor [73], [99] is one of the most mature high throughput

computing technologies. It is a distributed job scheduler providing the appropriate

services for submission and execution of jobs on remote idle resources even if they are

under different administrative domains. A central manager receives the advertisements

of available resources and tries to submit the queued jobs to the appropriate ones,

which report back to the manager their execution state regarding each job. The central

manager along with the idle resources constitutes the condor pool.

Flocking [39], [38] was introduced to statically link several condor pools and share

resources between them. It requires a manual configuration of neighboring pools thus

8 CHAPTER 1. INTRODUCTION

limiting the adaptability of the system in case of dynamic changes in resource availability.

It is also assumed that pool managers run on reliable machines [29J since their failure

can prevent execution of new jobs. These constraints can be relaxed with a Pastry [87J

self-organizing overlay of Condor pools [29J. The Condor pools are organized into a ring

and proactively advertise their idle resources to their neighbours so that they can choose

these advertised resources whenever necessary. Unfortunately, this P2P-based flock of

Condors requires a substantial maintenance overhead for updating the proximity-aware

routing tables since it is based on the advertisements of available resources. If the

availability of the resources very frequently changes, these updates need to be also

frequent and therefore introduce high maintenance costs.

An important feature of Condor Flocking is that the execution machines are always

managed by the same managers. Thus, every new discovery of similar remote resources

by the same manager follows the same procedure. Given that the required service

capacity could frequently exceed the locally available one, a local manager would forward

equally frequent queries seeking almost the same amount of capacity; thus resulting in

a significant number of messages.

The benefits of P2P overlays [74J, [14J for the discovery of reusable resources have

been identified and used in P-Grid. P-Grid, identifying the update overhead posed by

resource advertisements on DHT-based overlays, uses a tree-based distributed storage

system for maintaining them [5J. Resource providers locate in this tree the requestors

they can serve and offer themselves for use. While other structured P2P networks hash

the indexing keys, thus limiting searching capabilities, P-Grid enables complex queries.

The organization of this overlay raises a number of concerns about its scalability in case

of large highly dynamic networks since an update action of one advertisement could

propagate to many peers. OurGrid [26J is another effort to combine the maturity of

Grids in resource sharing with the benefits of P2P Networks on decentralised resource

discovery.

Sensor Networks is also a field that uses the benefits of P2P Networks to achieve

reliable cooperation of networked sensors. Recent research on P2P-based end-to-end

bandwidth allocation [31J proposes a wireless unstructured overlay of sensors. Initially

a central peer possesses all the bandwidth and distributes it on-demand via queries

broadcasted to all peers. Gradually, this centralised architecture converges into a pure

Unstructured P2P network as bandwidth moves away from that central peer. This

system cannot be applied to the case of service capacity sharing since it makes an

important assumption: the available bandwidth within the whole network is known a­

priori and initially centrally stored. Requests for bandwidth are one-hop broadcastings;

in wireless environments these broadcastings introduce the same cost in messages either

aimimg at reaching one or more nodes.

All the systems described above are efficient in the context they were developed for

but they are insufficient in the context of service capacity. Network characteristics may

change extremely fast so that any advertisement and/or indexing scheme could result

in frequent updates with a high cost on messages.

1.5. ARCHITECTURAL PRINCIPLES 9

1.5 Architectural Principles

Any system aiming to share service capacity over large-scale heterogeneous environ­

ments has to follow some guidelines and respect certain constraints. Hoverlay is to be

deployed on a network of random nodes without guarantees for proper administration

and predictable usage patterns of their local resources.

Its acceptance depends on, among other factors, respect of resource ownership. Re­

source owners need to feel in control of their own resources and allowed to use them

whenever necessary. Tasks originated from a local node are to be executed in priority

against remote ones as that would save the network from frequent invocations of dis­

covery mechanisms. A node may also abruptly withdraw from a network without any

notification to any other entity violently terminating current tasks. Hoverlay outsources

free (unused) only service capacity to avoid conflicts with tasks currently in execution

status; a way to monitor resources availability is necessary. As soon as a task from

a local node arrives, some of the current tasks may be terminated, if a node becomes

overloaded, so that the local resources are provided back to their owner. Meanwhile,

the discovery mechanism is triggered to seek for extra service capacity to handle that

excessive load.

Large-scale networks of heterogeneous nodes may experience unpredictable workload;

two separate areas (set of nodes within a radius from the center) may serve significantly

different load. This is a characteristic with which Hoverlay needs to deal and efficiently

achieve service capacity transfer between these two areas. Though they may be quite

distant, their bridging and capacity migration needs to be completed as fast and with as

low number of messages as possible. Moreover, nodes with frequent requests for extra

capacity may significantly increase message costs and thus, they should be served faster

than others. Ideally, shared capacity distribution should follow that of requests within

the system so that the per-node success rate is uniform across network.

Resource indexing should avoid centralisation. A centralised indexing service may

help on fast resource discovery but suffers from a number of problems: it is a ' single­

point-of-failure', traffic ' bottleneck', expensive to maintain and upgrade. Sophisticated

equipment to handle numerous simultaneous requests and highly qualified personnel to

ensure security levels and QoS may be required. Potential failure of such a centralised en­

tity would cancel out any communication between nodes and resource discovery becomes

impossible. Frequent (as is the case given the service capacity volatility) join/dis-join

actions and/or capacity requests from nodes may overwhelm that central server with

messages causing latency increase and quality of service deterioration. Decentralised

architectures spend more messages to seek for required resources, they do not always

guarantee discovery even if those resources are available but are more robust in node

failures and all produced traffic is distributed among many nodes.

The proposed architecture has to scale well and achieve good success rate by keeping

the messages per request rate as low as possible despite any abrupt changes to network

topology. The time interval between a request initiation and a response delivery (la­

tency) should also be as low as possible. Otherwise, not only would the quality of

10 CHAPTER 1. INTRODUCTION

service deteriorate but a response would be useless if arrived after the load drops back

to normal, too.

1.6 Proposed Approach

As described above, any proposed answer to our research question has to provide an

answer to several parts: publication, discovery and commission of service capacity. While

resource publication and commission relate mainly to the overlay architecture, resource

discovery is an algorithmic problem loosely-coupled to that overlay. Thus, this report

approaches these two facets of the research question separately but not independently.

Though a variety of discovery mechanisms may be deployed on the same overlay, only

some can perform well. Therefore, the Hoverlay design aims at an architecture which

takes into account all special features and behaviour of service capacity and eases its

fast discovery as analysed before.

It introduces the idea of collaboration between networks, not just between nodes.

A network that experiences low workload may provide (outsource) on demand under­

utilised nodes to another network with overloaded ones so that the former take over all

the excessive workload of the latter. All underloaded nodes register with the Hoverlay

which overloaded ones use to seek their required excess service capacity via sending

appropriate queries. Once the appropriate nodes are discovered, they move to the re­

questing network. Each node can be used only by one network at a time.

The proposed overlay is an unstructured Peer-to-Peer network of servers. A server

represents an underlying network and acts as mediator between service capacity re­

questers and providers. There is a one-to-many relationship between a server and nodes

of its underlying network; it is the single place of the overlay with which an underloaded

node registers and from which an overloaded one starts a request. Servers try to satisfy

requests with a subset of their registered underloaded nodes and if that is not possible,

they forward the same request to their own neighbouring servers. Discovered nodes

are transfered from responding to requesting server which becomes their new and only

portal. Subsequent registrations of those nodes are directed to that new server until,

eventually, they are moved again upon request. Node mobility from one server to an­

other (Le. from one network to another) is, in fact, equivalent to the migration of its

access control to another server.

P2P Overlays support heterogeneity of underlying networks and can reorganise them­

selves based on load and request distribution even in the presence of frequent server

departures and arrivals. Specifically, unstructured ones introduce very low cost (in

terms of messages) from rand9m server/node failures while remaining resistant to graph

fragmentations. Servers of Hoverlay may implement access policies on nodes of their un­

derlying network which may vary from transparency to highly constrained accessibility;

that gives network administrators control over their resources and deployed applications.

Node mobility and its registration to the local server increases the probability subse­

quent requests from an underlying node will be served quickly using local underloaded

1.6. PROPOSED APPROACH 11

resources. Moreover, this scheme helps underloaded nodes move to areas of the overlay

which produce more requests and thus their distribution be adaptive to the one of global

workload.

Therefore, node (service capacity) location has a short lifetime since not only does it

allow exclusive access but its access rights are mobile, too; that makes its discovery more

difficult. Stalkers is a search algorithm specifically designed to tackle service capacity

intermittent behaviour on unstructured P2P overlays. Its principal idea is that request

forwarding from server to server should track the movements of nodes. Old provider

servers lose their available service capacity as they attract more requesters and links.

Based on Stalkers, each server has outgoing (created by the server itself upon receiving

an answer) and incoming (created by others upon receiving an answer from that server)

links. This is a collection of search mechanisms based on modifications of k-Walkers

using outgoing links to discover recent providers and incoming links for recent requesters

which probably have gathered new service capacity and discovered new providers via

their latest requests.

The Hoverlay environment was parametrised and evaluated based on a set of metrics.

The parameters and metrics that were used are shown below.

1.6.1 System Parameters

• Failure Rate represents the join/leave rate of nodes. This rate in P2P networks

is not stable either on time or per node. As detailed in [89] and [93], the on-time

of a node may vary significantly and may also depend on connection speed of the

node.

• Connectivity Degree is the number of neighbours of a node. Every node is

directly connected to a number of other nodes to forward and receive requests to

and from. The connectivity degree influences the success rate of the architecture

[89].

• Network Size is the number of nodes of a network. The number of requests in an

overlay usually increases with that overlay size and, thus it may affect bandwidth

consumption and success rate. Depending on the overlay topology, its size may

have little effect on the success rate if the Time-to-Live (TTL) (below) parameter

is used.

• Time-To-Live (TTL) is the maximum number of steps a query can do within an

overlay. This sets an upper limit to number of messages generated by the deployed

discovery mechanism (Le. Stalkers). If a query cannot reach the network edges

because of the TTL, then its success is not guaranteed even if an answer exists in
that network.

• The search techniques [74] and [101] are methods used for the forwarding re­

quests from one server to its neighbours. These techniques are a major factor that

influences the number of messages produced in the overlay per query. The bigger

12 CHAPTER 1. INTRODUCTION

the TTL the further the termination horizon of query propagation is and thus the

more messages per request are spent.

1.6.2 Evaluation Metrics

The behaviour of the proposed architecture will be evaluated based on the following

factors:

• success rate is the percentage of successful (answered) requests over total number

of requests.

• satisfied capacity is the total amount of requested service capacity that was

satisfied by the system.

• number of propagated messages produced by the discovery mechanism.

• latency is a qualitative metric that measures the time elapsed from the moment

a query leaves a requestor untill the first answer is returned back to it.

1. 7 Innovation and Contribution

This research is based on three innovations in the area of resource sharing and discovery.

Existing research on dynamic bandwidth allocation in networks focuses on improving

bandwidth allocation and load-balancing techniques. However, this research develops a

system that discovers new remotely available capacity that can efficiently serve a portion

of the excessive requests at a requestor node.

The innovation of our approach to the research question lies on logical migration

of nodes from overloaded to underloaded networks. This logical movement reduces

reallocation latency of the same or similar free resources to the same network, thus

very efficiently supporting frequent small fluctuations in capacity requirements of that

network.

Finally, the basic principle behind Stalkers discovery mechanism is innovative since

its aim is to detect resource movements (migrations between networks) without using

any additional information but rather links lifetimes. It tries to efficiently use both

incoming and outgoing links to increase the probability of locating available resources.

Grids and P2P Systems are two resource sharing paradigms which assume resource

availability guarantees or deal with different in nature resources. Service capacity is a

reusable and non-replicable resource with highly intermittent availability. Commercial

P2P systems deal with mai~iy replicable (file sharing) or consumable (IP Telephony)

resources. Shared nodes serving network traffic cannot provide guarantees that they

will keep offering the same capacity throughout their lifetime and, additionally, there is

no guarantee that this traffic will have a specific pattern and/or CPU, memory require­

ments. This makes service capacity significantly different from resources in Grid or P2P

environments.

1.B. THESIS LAYOUT 13

This research contributes to the scientific community by identifying and analysing

special features of reusable non-replicable resources, comparing them against replicable

ones and proposing a set of guidelines for sharing them. Though, Bedrax-Weiss et al.

[201 have pointed out these differences, they do not provide any design principles as to

how distributed systems should deal with such resources.

1.8 Thesis Layout

Hoverlay is an architecture based on unstructured P2P Networks adopting ideas from

Grids and as such it uses the new search algorithm, Stalkers, for resource discovery. The

whole thesis is organised in the following seven chapters:

• Chapter 1 - Introduction anything upto the current chapter analysing the research

question,

• Chapter 2 - Resource Sharing Environments offering a literature review of dis­

tributed resource sharing systems and the topological requirements and principles

of Hoverlay. This chapter starts with the identification of those service capac­

ity features that make it a special resource for sharing in dynamic heterogeneous

environments. An analysis of existing resource sharing systems follows focusing

on P2P topologies, their discovery mechanisms and their combination with Grids

for supporting computational resources. It provides a classification into two cate­

gories (blind and informed search) and overview of existing mechanisms used for

resource discovery in P2P networks. It also proposes a further subclassification

of informed ones based on the source and maintenance of the information they

use for query migrations. It finishes with an enumeration of drives and principles

based on which the proposed architecture, Hoverlay, is designed.

• Chapter 3 - Global ROME: Preliminary Model presenting a preliminary model,

G-ROME, which facilitates resource migration between Chord-based underlying

networks. It provides the specification of that system and a preliminary evalua­

tion through simulations. However, G-ROME exhibits some weaknesses which are

analysed and provide the motive for the Hoverlay design.

• Chapter 4 - Hoverlay: Architecture Specification analysing the proposed architec­

ture with its protocols evaluated under various environmental settings and existing

search algorithms. It is a detailed description of the Hoverlay specification includ­

ing its components and their interaction protocols. The chapter continues with its

evaluation via simulations and comparisons with Flock of Condors. In high load

situations, Hoverlay outperforms its competitor (Flock of Condors) with regards to

success rate and query latency without introducing much higher cost in messages.

• Chapter 5 - Tracing Resource Migration which analyses the proposed search algo­

rithm evaluated in combination with Hoverlay in various network settings. Based

on the literature review of chapter 2, this one starts with the requirements of an

14 CHAPTER 1. INTRODUCTION

efficient search algorithm appropriate for sharing service capacity in decentralised

dynamic and heterogeneous networks. It continues with its, Stalkers, generic de­

sign and provides three variations depending on the metric it aims at optimizing.

After extensive simulations and comparisons with existing search techniques, the

experiments show that Stalkers achieve their targets.

• Chapter 6 - Conclusions and Future Work concludes this thesis with an overview

of its contributions and findings from all the experiments carried out before. It

closes with a number of options for extending or improving both Hoverlay and

Stalkers efficiency.

~~--------------------------~
Resource Sharing Environments

While previous sections offer a clear view of the research topic, this chapter provides an

overview of existing work on related issues positioning current research in the appro­

priate context. It gives important details about related systems and identifies potential

shortcomings of existing mechanisms with similar aims. This review is essential to spec­

ify a complete list of required design principles and features of the proposed system,

Hoverlay, which will help sketching out its architecture.

Initially, this review depicts some special behavioural patterns and features of the re­

sources this study deals with, service capacity. It, then, gives some background informa­

tion on Grids and P2P Networks, two principal distributed resource sharing paradigms.

While the former support sharing of resources like service capacity, the latter facili­

tate the collaboration of nodes in large-scale heterogeneous environments. An extensive

analysis of P2P Overlays giving an emphasis on Unstructured ones (a subclass of theirs)

and their resource discovery mechanisms precedes a section about attempts to apply

their benefits on Grid systems scalability. This chapter tries to address the following

questions:

1. how different service capacity is versus other resource types,

2. which existing systems could be used for sharing service capacity and what their

weaknesses are,

3. which discovery mechanisms are available for searching resources in decentralised

networks,

4. what requirements a service capacity sharing framework has.

It concludes that a decentralised overlay architecture, Hybrid Unstructured P2P Overlay,

can work as the basis for Hoverlay in order to satisfy the special characteristics of service

capacity. Though a classification of and details about existing discovery mechanisms

deployed on similar networks are presented within this chapter, the requirements analysis

of the proposed one, Stalkers, appears in Chapter 5.

According to [62], any central control of the entire network would limit its scala­

bility and fault-resilience. These two features are the primary targets of its design but

15

16 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

Source: Vanthournout et al. 'A taxonomy for resource discove111' [l02}

Figure 2.1: Vanthournout's Resource Classification

centralised architectures are weak on both and therefore, practically, cannot constitute

a design basis for sharing service capacity.

2.1 Classification of Resources

Every member of a distributed system is involved in some sort of resource exchange.

Optimization techniques focusing on the efficiency of a system need to use special char­

acteristics of all exchanged resources. Therefore, understanding the nature of different

resource types helps the identification of appropriate resource sharing systems for each

one of them. Previous studies provide resource type groupings based on a number of

characteristics.

Vanthournout et al. [102] propose a classification of resources based on how fre­

quently their location and properties change. While the fixed ones have fixed unique

location and/or properties, replicable ones have multiple replicas which, in some cases,

may be fixed. When resources location is variable they are mobile even if replicable

or with fixed properties. Resources with variable identifiers and/or properties are dy­

namic though they may have fixed location, too. Mobile and dynamic resources

refer to all of the above. Figure 2.1 visualises this resource classification.

Holt [59], based on whether a resource can be reused or not, identifies two classes:

reusable and consumable. A reusable resource represents a total number of capacity

units each of which can be assigned to a single task at a time. As soon as the task

terminates, another one may reuse the same capacity. A task may use and release

any portion of the available capacity but no more than the maximum available. For

instance, CPU cycles, bandwidth or buffers can be reusable resources. Consumable

resources have unlimited number of capacity units; a producer may provide any number

of units which disappear from the system as soon as a task consumes them. IP packets or

P2P queries are examples of consumable resources. Their fundamental difference is that

consumable resources can be used only once whereas the reusable ones may, sequentially

only, serve any number of requestors. Therefore, reusable and consumable resources are

two mutually exclusive sets.

Bedrax-Weiss et al. in [20] include more classification factors, besides the ones iden-

2.2. FEATURES OF SERVICE CAPACITY 17

Factor Classes
lifetime consumable ./ producible replenishable reusable
quantity discrete ./ continuous
divisibility single ./ multiple
availability fixed variable ./
certainty deterministic stochastic ./
access shared exclusive ./
aggregation pooled ./ non-pooled

Table 2.1: Bedrax- Weiss Resource Classification and Service Capacity features

tified above, and provide mutually exclusive subcategories for each one. Differences on

resources lifetime factor give four categories: consumable and reusable, as analysed

before, and producible or replenishable. While producible resources are produced

but never used or consumed within the same system (e.g. human wastes from a house­

hold perspective without installed recycling systems), replenishable ones are produced

and/or consumed simultaneously or at different times (e.g. human wastes in an urban

environment with recycling systems). The quantity of a resource capacity may either be

discrete, if produced/consumed in chunks only (e.g. IP traffic divided in packets with

a minimum length multiple of 1 bit), or continuous, if any amount of it (e.g. water in

a tank). In terms of divisibility of resource's capacity, it may be single-, if consumed as

a whole (e.g. an IP packet), or multiple-capacity one, otherwise (e.g. hard disk stor­

age space). Resource capacity variations over time give two more categories: fixed (no

change) and variable ones (e.g. an video file and stream respectively). With respect

to the accuracy of the capacity measurement, deterministic resources (e.g. number of

bits in a IP packet) have well-defined capacity but stochastic ones (e.g. energy of a elec­

tromagnetic photon) a more probabilistic approximation. While shared resources (e.g.

files in read access mode) can be used by many activities at the same time, exclusive

ones (e.g. a video stream) by a single requestor at a time only.

Smith and Becker in [94] also distinguish two more categories of resources: pooled

and non-pooled ones if they collectively can compose a bigger resource (pool of re­

sources) or not, respectively. Resources pools, as defined in [94], are resource aggregators

and can be viewed as a resource whose capacity is allocated to mUltiple activites at the

same time. Table 2.1 presents the resource classification as proposed by Bedrax-Weiss

et al. in [20].

2.2 Features of Service Capacity

This research focuses on sharing service capacity which involves description, publishing

and discovery of resources. Though service capacity is tightly coupled to capabilities

and location of hardware, its description and publication site are decoupled from any

physical location. The current study deals with both its physical instance and reference

to that instance. Resource references may be description files (e.g. adverts, specifi-

18 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

cations, pointers) or database tuples which inherit part of their behaviour from their

physical pairs (resource physical instances). Based on Vanthournout's classification, files

are replicable and potentially mobile resources whereas computational ones (i.e. CPU,

memory, bandwidth) cannot move or exist in replicas but have very dynamic properties.

A description may be mobile but there should only be one instance within the whole

system as, otherwise, access to that resource would be uncontrollable and the resource

overwhelmed by rejecting multiple simultaneous requests. Service capacity is a dynamic

resource due to frequent load fluctuations; so is its description since the latter has to

reflect important properties of the former. While some physical resources have fixed lo­

cation their descriptions may not. Following Vanthournout's grouping, service capacity

(using its physical instance and references into a bundled form) may be classified into

any category apart from the 'replicable' one.

Bedrax-Weiss classification of this resource type helps on the identification of more

features important for the system design. Service capacity is associated with compu­

tational resources of the network and as such it can only be a reusable resource since

e.g. CPU or bandwidth may be reused by a task as soon as the previous releases it.

It is also a discrete resource since nodes cannot provide and/or request any amount of

shared service capacity but only chunks of it. It may also be partially consumed or as a

whole. Given the non-deterministic fluctuations of resource owner's load, it has variable

stochastic availability and allows exclusive only access since only a single task at a time

may use it. Not only maya node share a set of chunks of its capacity but references to

those chunks may be gathered in pools, as well. All features of service capacity based

on this classification method appear in Table 2.1 marked with a tick on their right side.

There are two more characteristics successfully depicted by Bustos-Jimenez et al. in

[28]. Frequent fluctuations of network load may cause equally frequent requests for extra

capacity shortening the lifetime of resource references, too. Short response times are

essential to improve Quality of Service as perceived by users. Moreover, deployed search

mechanisms look for resources that fulfill a set of requirements ignoring their unique

identifier. The aim is to get the requesting task done on time no matter where the extra

capacity comes from. Yang et al. [107] have successfully analysed how service capacity

evolves with the load of a network in a context of replicable resources. While replication

of resources improves their availability and thus service capacity, Hoverlay shares fixed

system-wide non-replicable capacity; regardless of the workload, the available capacity

is limited.

The source of such heterogeneity is not only the diversity of shared resources but

network policies, as well. While files are resources with fixed quality once created, the

quality of service capacity depends on system's maintenance. A resource becomes more

reliable if it is frequently updated and offers predictable availability. System administra­

tors who want to offer high Quality of Service try to do frequent updates and upgrades

and ensure stable availability of the resources. Improving the reliability of a resource

usually aims at a profit and leads in a legal binding with consumers [62]. On the contrary,

some administrators (e.g. owners of home-office networks), with the aim of maintenance

2.3. GRID JOB SCHEDULING 19

cost reduction, offer out of date resources with poor availability.

We assume that the resources are not always properly updated, upgraded and avail­

able to resource requestors. They may fail causing any ongoing activity to abruptly

terminate. Their requestors and providers may belong to different administrative do­

mains, have not any incentive to share and are not bound to any regulations; therefore,

no sanction schemes can be applied.

2.3 Grid Job Scheduling

Sharing resources is an issue well addressed by high performance computing (HPC) sys­

tems. They aim to provide vast, highly available, fault-tolerant computational resources

[99]. While Parallel and Distributed Computing platforms enable the aggregation and

sharing of several well and centrally administered resources within the same adminis­

trative domain, Grids organise resources under various sharing policies and domains.

Therefore, Parallel and Distributed systems can not constitute the basis for designing

a multi-administrative system for dynamic and reusable resources. However, Grids sat­

isfy some of the constraints set in section 2.2 since they aggregate cross-organisl;1tional

resources in Virtual Organisations [48].

Successful examples of massive resource sharing and parallel processing are the

seti@home [12], genome@home and folding. net [70]. They construct star networks

(client-server) to share CPU cycles of nodes running bags of independent tasks but

are prone to man-in-the-middle attacks and server failures [15]. A single central entity

(server) submits jobs onto underlying machines and all the communication goes to it;

nodes work in isolation from each other. Though this topology is tolerant to node fail­

ures it has scalability problems because of the central server which has to deal with node

registrations, sometimes data-intensive task distribution and results aggregation.

Grids can be distinguished in computational, data and service grids [69]. Data Grids

provide the suitable infrastructure for large data management and mining applications.

Service Grids aggregate resources, any single machine is unable to provide, into compos­

ite services and Computational Grids gather computational capacity much higher than

the capacity provided by a single machine of the Grid.

Grid Computing architecture designs assume that shared resources are powerful,

diverse, well-administered and their network connection very reliable [48], [62]. The

aggregation of appropriate resources in Grid Virtual Organisations has to achieve a cer­

tain point of reliability which may require highly reliable resources. The administration

policy of Grids is also well defined and centrally controlled ensuring high and uniform

availability of resources but high maintenance costs, as well. According to Iamnitchi

and Foster [62], Grids deploy a well-administered infrastructure, the use of which has

to be profitable for the owner. This may involve human negotiations which may be

time-consuming procedures and practically require a certain level of trust between the

producers and consumers (contracting parts), thus, reducing the scalability of the sys­

tem.

20 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

Established Grid architectures, among others, are the Globus [47], Legion [56],

PUNCH [66] and Sun Grid Engine [51]. They achieve control of ongoing activities

via centralised or hierarchical entities [15] which decrease their scalability, adaptability

and availability. Therefore, these systems violate the requirement for high scalability

and fault-resilience.

While Grids offer good coordination mechanisms for resource sharing, they seem

to be weak in the discovery of highly dynamic resources. These platforms moved to­

wards a more decentralised approach to resource discovery to address the problem. For

instance, Globus discovery mechanism moved from the centralised indexing MDS to a

decentralised one MDS-II (a number of distributed index servers), which, however, offers

limited scalability [35].

2.3.1 Condor

Condor is one of the most mature high throughput computing technologies and supports

cross-organisational dynamic resource sharing and job scheduling [73], [99]. It is a

distributed job scheduler providing the appropriate services for submission and execution

of jobs on remote idle resources even if these are under different administrative domains.

A central manager receives advertisements from available resources and tries to submit

the queued jobs to appropriate resources which report back to manager the execution

state of each job.

A central manager along with a set of idle resources constitutes the condor pool which

records availability information (using ClassAds) about each resource. These resources

though they may be located in different administrative domains, they are considered as

local from their manager perspective. Resource requestors submit their jobs in ClassAd

description to their managers, which match those ClassAds with their local resources. As

soon as a suitable resource is found, the job is allocated to it. Condor provides services

for job resubmission or migration via a check-pointing scheme in case of resource failures.

Both submission and execution machines run specialised Condor daemons. All resources

(busy or free) inform the manager about their status using heartbeats.

However, each manager is a priority-based system and may access only local re­

sources. A job waits in a priority queue till it gets at its top and the central manager

finds a match with any of its available resources. Therefore, flocking [38], [39] was

introduced to statically link several Condor pools and share resources between them.

Condor Flocking aims at increasing resource availability and system efficiency via creat­

ing communities of pools. A neighbourhood of pools (interconnected pools) is configured

manually thus limiting the system adaptivity to dynamic changes in resource availability

and to failures of neighbollring managers.

There are two kinds of flocking techniques: the private and the group flocking [39].

In private flocking, if a job is not satisfied its central manager submits it to every pool

of the flock. As soon as a pool allocates a resource for that job and its execution starts,

it sends a signal to all the other pools to prevent them from duplicate execution. Once

a job execution terminates, that job leaves all the queues in which it is placed. Group

2.4. P2P NETWORKS 21

flocking uses advertisements of jobs (source-initiative) or resources (server-initiative) to

other pools. The final decision as to which resource will be used for the execution is on

the central manager of submission machine. In case of source-initiative approach, a pool

may send a query for resources to every other pool in its flock, which may respond with

an appropriate machine that satisfies the query; initiating pool uses one of the responses

it got. In the server-initiated scenario, a pool advertises its available resources to other

pools and the execution pool grants permission to the submission pool for accessing that

particular resource.

Even with Condor Flocking, each Condor Pool manages the same execution machines

and is assumed to be running on a reliable machine [29]. Based on Condor usage patterns

[62], a good portion of requests it handles are repeated [62]; thus, every new discovery

of the same/similar remote resources by a manager follows the same workflow. Given

that the required capacity could frequently exceed local availability, the local manager

would forward equally frequent queries seeking extra capacity of similar properties; thus

resulting in a significant number of messages.

Though flocking erases the 'single-point-of-failure' issue of Condor system, it cannot

create dynamic pool neighbourhoods, uses a single-hop horizon for query forwarding and

retains the priority-based execution scheme. Private flocking was quickly abandoned

[38] since it introduces many messages to avoid redundant executions of a job. However,

group flocking suffers from many updating messages, too, in case of frequent failures of

central managers and/or resources. Finally, prioritization scheme of jobs cannot be used

for sharing dynamic resources that have immediate need for help.

2.4 P2P Networks

Peer-to-Peer (P2P) networks try to overcome assumptions like high and uniform avail­

ability of Grid resources and address solutions to resource discovery problems in highly

dynamic environments. They are usually referred to as overlays, built on the appli­

cation OSI layer and serve a single application and share specific resources for which

they are usually optimised. Their name derives from the communication type between

their members (peers); at their simplest form peers interact without intermediaries (e.g.

servers). Every peer (it will be referred as node this point onwards) has a basic char­

acteristic: intermittent membership. A node may frequently and abruptly join/leave a

network without notifying other members even if this violates/terminates an ongoing

activity.

2.4.1 Node Characteristics

The owners and administrators of nodes are usually anonymous individuals that volun­

tarily offer their resources using a weak infrastructure (limited bandwidth, storage and

CPU capacity and unreliable connectivity). In this context, they do not provide any

guarantees on reliability' and efficiency of their resources [62] and they usually do not

expect income by sharing them. However, the network setup requires minimal effort

22 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

since there in no central coordinating authority and any change on node membership

status requires minimal network reconfiguration.

A node, member of a P2P network, usually exhibits intermittent and untrustworthy

behaviour. Defining churn rate as the percentage of nodes joining and leaving a network

per time unit, P2P networks experience high such rates [98] ; they have not been designed

to rely on central entities and thus they are considered to be resilient even to high churn

rates. Resource provisioning is not always a natural corollary of P2P membership; that

is, a node participating in a P2P network may provide useless or no resources at all.

If a P2P requires that a node provides a minimum amount of resources to become a

member, there are no guarantees that these resources will be of any use to the remaining

P2P community or the provider may frequently change its shared resources to avoid bad

reputation mechanisms [13], [45]. In case there are no such requirements, even nodes

without any shared resources may join the P2P.

2.4.2 Centralised Indexes

Centralised P2P networks follow the same principles as client-server architectures for

resource discovery. A single entity responds to every query originated from a member

of this star network. This centralised entity is a single point of failure and vulnerable

to attacks like denial-of-service or man-in-the-middle. It is usually a very reliable and

powerful machine with good connectivity. In P2P context, its role is to provide either

directly the requested information (e.g. location) about it.

Napster [90] is a P2P system that uses a centralised index server to store the location

of files shared by every node in that network. A node joins the network by submitting

a list of files it shares to a predefined Napster server. That server, upon receiving a

query from any node, using its index, creates a list of other nodes that may provide

the requested resource and responds back. Requesting node, then, directly connects to

one of them to forward the query to and retrieve the file. Though the actual requested

file does not reside in Napster server, thus reducing minimum required specifications of

that server for storage capacity and bandwidth, the whole network may shut down if

the server fails. Napster topology is visualised in figure 2.2.

8
8

index server active node

o inactive node

Worked Example
1. Node 21 requests index from the Napster
Server
2. Napster Server responds with a list of
Nodes that provide the requested resource
3. Node 21 requests the resource from Node
62
4. Node 62 responds back with the resource

Figure 2.2: Centralised Architecture and resource discovery mechanism

2.4. P2P NETWORKS 23

BitTorrent BitTorrent

".

Worked Exam~le G

Tracke~ H.m' ' •. , e "'~~
.-' !~ - :-_,,-'B-~<

~rp.,. ~ ", ~ '«.,' ~ ,,".'//::0
. 62 ", \. ~ :-r.;;\"-

" 1 V
1. Node requests index from the tracker
2. The tracker responds with a list of Nodes that are currently downloading the file
3. Node requests the chunks of the fi le from the retrieved nodes
4. The nodes responds back with the file

index tracker 0 existing node

interacting node

Figure 2.3: Two different BitTorrent networks for different files controlled by two trackers.
These networks exist as long as the downloading activities are not complete.

The concept of centralised index servers is also used in BitTorrent [81J which is mostly

deployed for file sharing. It uses regular websites to publish available files in nodes. For

every shared file there is a node that controls the distribution of that file, the tracker,

which is the centralised entity of the network. A node may share a file by publishing

on a website a small . torrent file containing a pointer to its tracker, possible names and

length of that file. Any requestor of that specific file locates the corresponding torrent

in a website which requestor's BitTorrent client uses to access the tracker and retrieve a

list of nodes currently downloading that specific file. It can start downloading in parallel

different chunks of the file from nodes that already have downloaded them. Providers

of these chunks may continue retrieving the remaining chunks from other nodes; thus,

a node may be simultaneously provider and requestor of different chunks of a file. If

no file transfer is currently active the requestor node directs the query to the torrent

publisher. Figure 2.3 shows a shapshot of BitTorrent topology with two trackers.

Each shared file may have different trackers and one tracker may coordinate the

sharing of multiple files. Potential failure of a tracker cancels all current and future

transfers of the files it coordinates. This scheme partially solves the Napster's single

point of failure since the same nodes may continue interacting with other nodes for

different files coordinated by other trackers. However, there is not an automated torrent

discovery mechanism. It is a system designed for replicable persistent resources. Using

web publishing and manual discovery of the appropriate torrent files for highly dynamic

resources restricts the adaptivity of the network to abrupt changes such as frequent node

failures.

2.4.3 Structured Networks

Aiming to a more robust network than centralised architectures, Structured P2P net­

works use distributed indexes of shared resources. Structured P2P networks assign a

random ID to every node and a key to every resource and map each pointer tuple [key,

resource] onto a specified node. The organisation of nodes is fiat; that is, all nodes

24 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

~ 2 ~
'\) G'/

'. (~ ... -' ······ 0 .---
16

Worked Example

1. Node 3 looks for a file hosted in Node 139. It is supposed to
send the request to a node half way from the destination
(Node 70). There is not any node with such id; so the next
existing node is responsible for the key (Node 81).
2. Node 81 tries to halve the distance by sending it to Node
110. There is not such a node so the node with the closest id
takes over the request (Node 132).
3. Node 132 tries to halve the distance and discovers the next
node (Node 155) as the responsible for keys 133 to 155.

active node o inactive node

Figure 2.4: Chord ring interactions. Node 3 tries to locate the file with key=139. node 155
hosts all the keys from 123 to 155.

are equally important and have the same amount of responsibilities within the network.

Given the keys, this type of overlay networks can perform efficient discovery but they

require a copy or pointer to each resource at the node which is responsible for this

resource key.

They are theoretically well-founded topologies and guarantee successful discovery

if the requested resource is available in the network within a logarithmic number of,

function of network size, steps. Latency becomes a considerable problem in case of large

networks (huge number of nodes) since each query is routed to the next intermediate

nodes as far as possible producing long-distance network traffic and delays [74]. Struc­

tured P2P topologies use nodes IDs and well-defined algorithms to establish connections

ignoring their physical location; thus, a direct connection between two nodes in applica­

tion layer may cause long-distance IP traffic if the two nodes are located too far apart.

Low-capacity nodes can introduce further delays since they can easily become over­

loaded even if they don't process queries but just forward them. Query routing is based

on simple keys and thus Structured P2P overlays do not support complicated queries.

Although search efficiency is very important for long-term transaction discovery, there

is no obvious way to apply these topologies and support low-latency partial transaction

discovery on large networks.

The discovery mechanism is based on Distributed Hash Tables and achieves same

performance for scarce and famous resources. The membership in P2P networks is highly

intermittent and DHTs need frequent updates to retain the logarithmic-based success

guarantee. However, this comes at a high cost in messages, maintenance overhead.

Therefore, Structured P2P networks are not suitable for sharing reusable and with

variable capacity resources since the high maintenance cost of DHTs would introduce

scalability problems to the system.

Well known Structured P2P networks are the Chord [96], CAN [83], Tapestry [109],

Pastry [87], Kademlia [109] and Viceroy [75] . Chord is a one-dimensional DHT-based

overlay that organises nodes into a ring. The lookup function sends messages over this

2.4. P2P NETWORKS 25

Bootstrap
Server N14

N1 Monitoring Data

New
Machine

Standard Chord Ring Architecture N25

" . '

N57
N48

N46

ROME

Node Failure

supported actions

Chord Data

Bootstrap Server
address

ROME data structures

Source: Salter, J. and Antonopoulos, N. (2005), ROME: Optimising DHT-based Peer-to-Peer Networks,
Proceedings of the Fifth International Network Conference (INC2005), Samos Island, Greece, 5-7 July 2005,

pp. 81-88.

Figure 2.5: ROME Architectre

ring with clockwise direction only. Each node has a unique identifier produced by a

hash function. A shared resource is assigned a key which is hashed with the same

hash function to determine the node id that will be responsible for that key. Every

node has a neighbour list pointing to the next neighbour and to log2 (n) different nodes

(clockwise). The lookup function tries to halve the distance between currently visited

and destination node. The theoretically expected average number of messages for one

lookup is log~(n) and the maximum is lOg2 (n). Figure 2.4 presents a Chord ring with its

discovery mechanism in action.

Recent advances on Structured P2P Networks include modifications of existing ar­

chitectures to enable complex query handling. A well used technique is the insertion

of multiple layers on those architectures. Zhang and Ma in [108J propose a hierarchi­

cal (two-layered) DHT-based Chord ring for facilitating attribute and range queries on

multimedia files. The upper layer is a Chord ring built based on one common attribute

of those files. Each node of that ring is a virtual cluster of arbitrarily connected content

providers grouped together with regards to another attribute. These clusters play the

role of the lower layer and enable complex queries. Each query in this architecture,

however, requires the use of the common attribute for locating the appropriate cluster

before it applies a range query. Others try to enable complex query handling in Struc­

tured P2P Networks via tree-like architectures such as VBI-tree [63]. Another approach

to the problem of range queries is the use of a single structured overlay not based on

hash functions but rather on the actual e.g. file names of the resources they index. For

instance, assuming a Chord ring they first try to locate the first node of the range using

DHT-like query forwarding schemes and then sequentially hop from node to node untill

the range is finished. Examples of this scheme are the following: [21], [34], [80].

Given that the discovery mechanism performan~e depends on the whole network

size, any reduction of ring diameter would reduce the lookup cost, as well. Salter

J. et al. in [88] proposed a reactive overlay (ROME) for optimizing the Chord ring

size and thus the lookup overhead. They used a bootstrap server, which preserves a

pool of underutilised nodes that dynamically places them in the ring based on network

workload. Symmetrically, it removes nodes from the ring if they are underutilised.

26 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

ROME tries several actions before an insertion occurs e.g. swap, replace. ROME,

though a centralised approach implemented on top of Chord, it does not modify Chord

functionality and therefore, in case of server failure, the ring can still sub-optimally

perform. It is a monitoring and load-balancing mechanism which, however, takes action

only when a node is overloaded and has available free nodes to place in the ring to take

over a portion of that load. Figure 2.5 presents the ROME layer with its functionality.

2.4.4 Unstructured Networks

While Structured P2P networks deploy expensive maintenance protocols to tackle high

churn rates, the Unstructured P2P architectures try to minimize maintenance costs in­

troduced by node failures/departures. Unstructured P2P overlays organise peers in a

random flat or hierarchical graph which is decoupled from resource locations. No un­

structured overlay may guarantee successful discovery even if the requested resource

exists in the system but it supports complicated queries. In general, discovery mecha­

nisms in Unstructured P2P networks use forwarding schemes of a query to a subset of

neighbours of each node. However, network organization and/or topology may change

as nodes join/leave while a query travels the overlay [97]. That is, if the behaviour of

nodes is highly intermittent then the overlay configuration does not remain the same

from the beginning to the end of a query propagation.

In case of hierarchical overlays, certain nodes (super-peers) take over resource index­

ing; all nodes discover the requested resource location via accessing a set of super-peers.

Super-peers, besides providing content, have more responsibilities than normal nodes

and they create a network between each other, independent from nodes, but nodes

access them to use their extra services. This scheme has the same advantages as BitTor­

rent; it reduces the number of messages required. In contrast to BitTorrent, it typically

provides a mechanism for automatic discovery of other super-peers. However, the cost

of a failed super-peer has a bigger impact than that of a failed node. It may discon­

nect all the nodes dependent on that failed super-peer unless nodes are aware of other

super-peers, too.

In flat organisations (without hierarchy) all nodes have the same responsibilities

and perform the same actions in case of an incoming query. If a node can satisfy the

query given just its own resources, it responds back to query originator with a set of

discovered resources. Random organisations locate easily the popular resources and

are highly tolerant to node failures. The resource location is not coupled to network

organisation; that is, there are not any constraints as to where each resource should be

placed within the network. This forces a query to search any node in the network thus

resulting in many unnecessary messages.

Some well-known Unstructured P2P architectures are the Gnutella I [3], Gnutella

II [4], FastTrack [71] and Freenet [33]. Freenet is designed to provide high levels of

anonymity for its users. BitTorrent is a centralized Unstructured P2P architecture

since there is a central entity to maintain an index of resources located in nodes which

currently participate in a downloading transaction of the same file. However, trackers

2.4. P2P NETWORKS 27

o inactive node active node

Worked Example

Node 62 sends request with TIL=2. The
request is forwarded to all the neighbours.
1. The request reaches nodes 15, 21,92
2. The request is forwarded to 44, 3, 25, 86
and 31 .

Figure 2.6: Gnutella interaction model. A query floods the network with queries visiting all
nodes upto TTL hops from query originator.

do not communicate between each other and therefore, from the perspective of the file

being downloaded, its tracker is its central coordinator and single point of failure. The

following paragraphs will focus on systems (Gnutella and FastTrack) that produce the

most traffic on the internet [93].

Gnutella I is a file sharing fiat P2P network. Every peer has dual roles since it acts as

both server and client. The topology configuration is not coupled to resource locations

in the network but the connections between nodes are rather random. Each node joins

the network by contacting one of the well-known peers and retrieving a list of other

peers. Once connected, the requestor node forwards a query to all its neighbours. Upon

receiving a query, a node processes it locally and returns back any available resource

while at the same time forwards it to its own neighbours. This forwarding scheme

continues from neighbour to neighbour but it stops when a horizon is reached. On every

hop the query Time-to-Live counter, initially set by its originator to a specific integer

number, gets reduced by one and when is zero the forwarding is abandoned. The TTL

protects the network from infinite query loops and exponential increase of messages.

Forwarding a query to all neighbours may result in exponential growth of messages,

given that all nodes have more than one outbound neighbour. That is , the number of

nodes visited on every hop of a query increases exponentially. However, the more hops

done the lower the probability to build up a tree-like searching space [92]. Therefore,

the cost in messages of a flooding scheme has upper bounds even if the horizon is far

away from query originator.

Gnutella II tries to reduce the number of messages and improve efficiency by adding

a level of hierarchy: an overlay of randomly conneded hubs. Every node (leaf) may

connect to one or two hubs, usually more powerful peers with better connectivity. Each

hub hashes the content of its leaves and exchanges a version of its hash table with its

neighbouring hubs. Each hub may connect to 5-30 other ultra-peers and to 200-300

leaves. It processes the incoming queries on behalf of leaves; that is, it forwards the

query to leaves that have the requested resource and only to its immediate neighbours

28 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

Worked Example 0 inactive node active node
Some of the nodes are connected with more than one hub. This increases the probability that the node will not get
disconnected if one of its hubs fails.
1. Node 3 sends request to Hub 3.
2. The hub, based on the indexes of the local nodes forwards the query to Node 11 and based on the indexes received
from neighbouring hubs, forwards the query to hubs 1 and 4.
3. Hubs 1 and 4 forward the query to their appropriate local nodes and stop the forwarding. The Node 11 that belongs
to the same hub as the query originator responds with its answer.
4. Remote nodes respond back with the answer.

Figure 2.7: Gnutella II architecture. Indexing in hubs and selective forwarding saves the
network a lot of messages.

that possibly have the appropriate leaves. That is, queries from underlying nodes travel

only one hop within the overlay of hubs, thus, saving the network from many messages.

However, the requestor node may retrieve more hubs from one of its corresponding hubs

and repeat the same process with them. There is not a mechanism for a node to change

roles (leaf to hub and vice versa) according to network status. This architecture helps

peers to easily locate the abundant resources.

FastTrack is a proprietary network architecture and most details about its protocols

are known by research on its traffic analysis and a brief description on its dedicated

website. It constructs an overlay with two classes of nodes: the supernodes which are

powerful peers with good connectivity and the ordinary ones. Each node has only one

parent supernode to which it uploads the index of its files and retains a short-lifetime

TCP connection with it. During registration process, a node uses its supernode refresh

list to check the connectivity with all other available supernodes and chooses one to

establish a TCP connection with. The node hops from one supernode to another using

its periodically updated supernode refresh list. Requestor nodes forward their queries

to their supernodes which respond back with a list of other leaf nodes that requestors

may directly contact to retrieve the file. The same queries are also forwarded to a small

number of other supernodes that direct their responses directly to the query originator.

In Unstructured P2P networks, new nodes usually register with well-known existing

2.5. UNSTRUCTURED P2P TOPOLOGICAL PROPERTIES 29

ones and every node usually uses some evolving mechanisms for choosing the best peers

when updating its neighbour list. Given the high churn rates, the network structure may

converge to a star topology and, therefore, to a centralised organisation [15]. Moreover,

the intermittent behaviour of peers increases its partition probability [16], [17], [11].

Baldoni in [17] proves that there is a trade-off between the overlay reliability (achieving

well-connected graph) and its scalability (number of messages required).

2.5 Unstructured P2P Topological Properties

Unstructured P2P Networks usually construct random connections between nodes (edges).

That is, each node is connected with a random subset of the remaining nodes. How­

ever, certain actions and decisions taken during their lifetime may gradually convert the

network topology into a non-uniform one. Join, leave and rewiring actions are some of

those that contribute to this phenomenon. Diestel in [37] defines the degree of a node

as the number of its neighbours. If connections between nodes are directional then the

number of incoming connections is the in-degree and the number of outgoing ones is the

out-degree. Nodes with zero degree are isolated. A degree distribution shows the number

of nodes with a specific degree d ~ O. Symmetrically, in- and out-degree dist~ibutions

take into account the incoming and outgoing node, respectively, connections only.

If every degree d appears on the same number of nodes then that network has uniform

degree distribution and non-uniform otherwise. The Unstructured P2P Overlays that

automatically construct and update their neighbour lists (unlike networks with statically

defined by users neighbourhoods i.e. Instant Messaging services e.g. [18]) need to

access an existing node to join the network and tend to prefer sending requests to more

reliable nodes. More robust nodes are usually well-known since they have a longer and

reliable contribution to the network. Therefore they are more frequently selected to

send requests to and due to deployed rewiring policies their fame attracts more fame.

There are several studies of unstructured networks claiming that rewiring and scaling

mechanisms deployed on those networks gradually transform them into networks with

small-world properties and in some cases into power-law degree distributions making

famous nodes even more famous [7], [9], [44], [46], [79], [85], [86]. Finally, another factor

affecting the degree of a node and thus its fame is the QUality of Service offered by that

node. If neither robustness nor Quality of Service of a node are negative, then its fame

keeps increasing. Several traffic analysis of random unstructured networks confirm those

properties.

Based on a traffic analysis of Gnutella from Ripeanu [85], this P2P tends to create

connections to the most reliable and persistent (stay alive for longer than others) nodes

which are only the 20% of network size. Symmetrically, the least persistent nodes, which

are the majority in the network, have less connections. Therefore, Gnutella converges

to a power-law topology with a well-connected core in the centre and weakly connected

branches and leaves. These famous nodes become members of a giant component in

the centre of the network which works as a bridge between any two, even infamous,

30 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

ones shortening the network diameter [9]. Vaucher et al. in [103] also confirm these

conclusions. This topology exhibits robustness in case of random, even high, node

failures; its connectivity heavily depends on those few famous nodes in its core and

therefore the probability that random failures affect the majority of them and thus

potentially fragment the network is low. These famous nodes bridge otherwise distant

ones thus the reducing network diameter and latency of deployed search mechanisms.

Both the increased robustness and efficiency of those networks allow them to freely scale;

scale-free networks.

However, due to their fame they face high load, are easy to detect and vulnerable

to targeted attacks [10], [85], [90]. Power-law properties are also observed to real­

world large scale networks such as World Wide Web [8] and [27], Internet [44], citation,

metabolic [23] and human sexual contacts [72] networks. Guclu and Yuksel in [57]

confirm the above and propose a method to force an upper bound on the degree of a

very popular node (hard cut-off) as a way to force fairness on load distribution among

nodes investigating potential effects on network efficiency, too.

2.6 Computational Resource Sharing

Peer-to-Peer systems seem to be a promising architecture for sharing non-replicable

reusable resources. Though task scheduling in Grid environments is a mature field, au­

tomated distributed resource discovery is still dependent on centralised entities or static

links. However, recent research tries to enhance the scalability of Grid environments by

deploying P2P networks for large-scale resource discovery over Grids.

Butt et al. [29] identifying the weaknesses of Condor Flocking, propose a self­

organising Pastry [87] overlay of condor pools. Collaborative condor pools get a random

ID based on which are organized into a ring and proactively advertise their idle re­

sources to their neighbours. Their proposed system deploys an advertisement scheme;

each pool sends advertisements to all its neighbouring pools which, in turn, decrease a

hop counter, Time-to-Live (TTL), by one and forward it to their own and so on un­

til TTL is zero. This P2P-based flock of Condors requires a substantial maintenance

overhead for updating the proximity-aware routing tables and advertisement data since

frequent changes to resources and/or pool states may quickly invalidate look-up tables

and already published adverts.

P-Grid [5] uses features of P2P overlays [14], [74] to discover Grid resources. P-Grid,

trying to avoid the update overhead of advertisements on DHT-based Grid overlays, uses

a tree-based distributed storage system of advertisements. Resource providers locate in

this tree requestors they can serve and offer themselves for use. A node is assigned a

key, a path that indicates the location of the node within the tree. Each P-Grid node is

responsible for resources, the hash key of which starts with a binary description of the

node's tree path. One or more nodes may have the same key, in which case all of them are

responsible for resources with this prefix. While other Structured P2P networks hash the

indexing keys, thus limiting the searching capabilities, P-Grid enables complex queries.

2.6. COMPUTATIONAL RESOURCE SHARING 31

The organization of this overlay has good fault.,tolerance characteristics but multiple

advertisements per resource. Frequent changes of the state of a resource should produce

equally frequent updates to advertisement hosting nodes. This architecture introduces

delays on resource joining actions since the network needs some time to periodically

discover nodes in other paths.

Gupta et al. in [58] propose CompuP2P, a two-layered Chord-based market of any

computing resources. Every node, either requestors or provider, calculates its service

capacity based on which it joins the lower Chord ring of the architecture. The same

ring may contain different resource types (e.g. both CPU cycles and storage capacity).

Each node of the upper ring indexes all the nodes of same resource type and capacity.

Requests for capacity first reach the upper ring to locate a subset of nodes providing the

requested resources and then requestors deploy a Chord look-up process to locate those

nodes in the lower ring. Though, they try to address heterogeneity of nodes, the authors

implicitly admit weaknesses in high churn rates. To alleviate this problem, especially in

case of CPU cycles, CompuP2P does not index the actual capacity of nodes but rather

its average value within a quite long period. Moreover, the diameter of the upper layer

can get as big as that of the lower one in case all nodes provide unique resource capacity

in type and size. The look-up and maintenance costs for pertaining accurate finger

tables on both rings can become very expensive in those cases.

Celaya et al. in [32] present a Structured CPU cycle stealing P2P Network. Nodes

are organised in a B-Tree structure based on their IP-address so that sibling nodes are

physically located in vicinity thus reducing latency. It is a job scheduling system which

assumes well maintained resources and rare join/leave node actions, as stated by authors.

Hoverlay is to be deployed on large-scale heterogeneous networks with no guarrantees

on nodes behaviour.

OurGrid as analysed in [26] creates a pool of resources for every community. Each

pool is connected to all other pools and broadcasts the queries it cannot serve with the

local resources. It is assumed that the jobs that are to be executed do not need access

to the network interface of the execution machine. There are no guarantees about the

quality of service offered by the execution machines. The allocation of the resources to

jobs is based on a reputation scheme that rewards peers that have a reliable contribution

to the community.

A P2P-based dynamic reusable resource discovery architecture is proposed by Awan

et al. in [15]. They deploy an Unstructured P2P network to share processor cycles. The

main concept behind this is the submission of multiple chunks of a task with their replicas

to uniformly random peers. The submission node decides how many redundant replicas

of each chunk are necessary based on the network status it has so far experienced. The

authors provide theoretical models to calculate replicas redundancy factors and devised

a uniform walking-based sampling algorithm to distribute those tasks regardless of the

network topology (uniform, power-law, etc). There is no guarrantee that the sampling

walker will terminate on a free CPU. Though CPU cycles are not replicable resources,

authors treat CPU sharing as a task replication-based one and, thus, their algorithms

32 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

are not applicable to the context of current research.

In [28], the authors propose the "Inter-flops" (IFL) load-balancing algorithm of

Active-Objects on Unstructured P2P Networks practically sharing CPU cycles. That

study identifies two states of a resource, underloaded and overloaded, based on which

IFL takes the appropriate decisions. If overloaded, a resourse forwards a request to

a subset of its neighbouring nodes seeking underloaded ones to send its objects to; if

underloaded, it proactively advertises itself to a single neighbouring node. IFL, trying

to address latency problems of computational resource sharing, tends to select the best

neighbours and heavily depends on locality of nodes since all requests and advertisements

have a single-hop length ignoring any variations of network topology and distribution of

requests which is assumed to be uniform. If certain areas of a network experience high

workload, requests originated by nodes in their centres will not be treated equally; nodes

on the borders would have access to a bigger plethora of resources. Real systems [8],

[104], [84] tend to form power-law distributions in which case IFL would overload the

famous ones. High workload situations would trap requests in queues of famous nodes

increasing latency and probability of network fragmentation had they failed.

In an effort to avoid the maintenance costs of Structured P2P Networks over Grids,

Hu and Klefstad in [60] present an Unstructured P2P Overlay which tries to achieve

global load-balancing. That is, the maximum difference in number of assigned tasks

between any two nodes needs to be kept between 0 and 2. Each node receives the task

queue sizes of all its neighbours to find the biggest distance compared to its own. It

then notifies back all neighbours about this difference which is added on top of their

own calculated distances, thus discovering task queue size differences between any two

nodes. As soon as a node detects a total difference higher than 2 it starts moving tasks to

neighbour with the highest difference. This is a load-balancing algorithm which achieves

global equilibrium in return to latency increase and message cost.

Bhrathi and Chervenak in [22] deploy an Unstructured P2P Network of Grid Index

Services of Globus Toolkit 4. The network uses flooding to search for a requested

resource and a query caching scheme to reduce the number of messages. It seems to

be a preliminary research project with limited results. More focus on network topology

evolution and discovery mechanism is required taking into account the special features

of shared computational resources.

2.7 Unstructured Discovery Techniques Classification

There is a variety of discovery techniques that fit for Unstructured P2P Networks and can

be deployed on them regar,dless of their organization and topology. These algorithms

may be grouped in two disjoint subsets: one regarding hierarchical and another flat

Unstructured P2P Networks. Both are based in the neighbour-to-neighbour forwarding

scheme; that is, a node upon receiving a request, it processes and then forwards it to a

subset of its neighbours. In [100], Tsoumakos D. and Roussopoulos N. classified these

search methods based on the number of next destinations (size of mUlticast) and the

-

2.7. UNSTRUCTURED DISCOVERY TECHNIQUES CLASSIFICATION 33

Unstructured P2P Search

Non-flood-based ...-...>..-~ Flood-based

Figure 2.8: Unstructured P2P Search Methods classification by Tsoumakos et al. [100]

way these are selected.

In the case of blind search schemes, each node forwards queries to a random subset

of its neighbours until a certain number of hops is reached assuming that there are more

than one appropriate resources within the network. If an informed one is deployed,

it uses some historical information about resource locations (meta-information) and

forwards the query to a subset of neighbours that would maximize the search success

rate. Thil:l information is either direct pointers to or some hints about resource locations

and can be gathered into a single repository accessible by all (centralized informed) or

distributed among some nodes of the network (distributed informed). Each node of the

network, which uses a pure distributed informed method, has and manages a portion

of this meta-information. If a hybrid distributed informed method is used this meta­

information is shared among a subset of nodes that act as super-peers. A node forwards

a query to all its imm diate neighbours if the forwarding technique is flood-based or to a

subset of them, otherwise (non-flood-based). Figure 2.8 presents a general classification

of Unstructured P2P discovery mechanisms primarily derived from their work in [100].

Section 2.4.2 describes two centralized informed techniques: Napster [90] and Bit­

Torrent [81]. Both these systems are based on central indexes from which all nodes

retrieve their contemporary neighbour lists. These methods guarantee that if an answer

exists somewhere in the network it is accessible by all the requests. Though they achieve

high accuracy, efficiency in number of messages and good adaptability to node churn

(services may be available even if an important percentile of nodes fail), their central

index is a single-point-of-failure. They require a stable central entity to deal with the

frequent requests in highly dynamic environments and to ensure availability of the in­

dex. Table 2.2 presents a collection of Unstructured P2P Search Methods with their

cla sification on the categories of figure 2.8. More details on those algorithms follow in

the next sections.

Flood-based techniques produce many messages but achieve good success rate, low

latency and fault-resilience. The non-flood-based ones produce generally fewer messages

than flood-based ones at a cost on their success. The pure distributed informed schemes

manage to satisfy a high percentile of requests only after some time in operation with

34 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

Blind
Informed

Flood Non-flood
Centralised Pure Hybrid

Flooding X X
Modified-BFS X X
Iterative Deepening X X
Random Walkers X X
Intelligent-BFS X X
APS X X
Napster, BitTorrent X X
Local Indices X X
Gnutella II, GUESS X X

Table 2.2: Classification of the most famous Unstructured P2P Methods

number of messages comparable to blind non-flood-based ones. However, they exhibit

weak adaptability to fast topology changes which can substantially reduce their success

rate [101]. Finally, centralized informed schemes depend on central entities which, if

failed, could shut down the whole network.

Informed methods, as presented above, are educated mechanisms which increase

their efficiency as long as the resources are not continuously displaced and node connec­

tivity stays relatively unchanged (Le. no/minimum rewirings). A new type of informed

search techniques for unstructured networks appeared with the studies of their statistical

dynamics and evolution patterns. Though they do not store resource location informa­

tion they may use network statistical features inferred by its topology and degree of

connectivity of each node. For instance, assuming that famous nodes are more capable

of providing an answer, trying to reach them before the non-popular ones during query

forwarding (Le. a query chooses to visit a high degree node before a low-degree one) may

increase success rate and reduce generated messages. In this case, neighbour selection,

though not educated, tends to select more suitable nodes; this is a feature of educated

informed algorithms.

Therefore, informed methods can be further sub-classified into educated and unedu­

cated ones as shown in figure 2.9. Topological properties of networks may be inferred

via Neighbour Lists of nodes and thus these methods are decoupled from any stored in­

formation in them; Neighbour Lists are standard components of nodes in Unstructured

P2P Networks and represent topologies in decentralised manner.

2.8 Blind Search Techniques

Flooding is a widely used blind technique that was introduced by Gnutella I [3]. It is

frequently referred to as Gnutella search method, as well. The nodes that use flooding

forward each incoming query to all their own neighbouring ones unless:

• the query has already been forwarded TTL consecutive times (its TTL has ex­

pired), in which case the query stops there.

--

2.8. BLIND SEARCH TECHNIQUES 35

.. ...

Figure 2.9: Extended Unstructured P2P Search Methods classification including Educated and
Uneducated Informed Methods

• one of the next destination nodes is the query originator which is excluded from

the query broadcasting.

• query loops are created if forwarded to neighbours that already have processed the

same query. These neighbours are also excluded from that broadcasting.

Flooding is characterised for its simplicity and its high cost in number of messages per

query produced in the network [101]. It can quickly access a big portion of the network

consuming substantial bandwidth as the number of visited nodes per query increases

exponentially per hop. The large number of messages produced puts a substantial

burden on the nodes since they have to handle many incoming queries [75]. Despite

this exhausting network exploration, the resources placed beyond that horizon cannot

be discovered by that node [24]; TTL sets a horizon for every node. It can, however,

guarantee discovery if these resources are located within that horison.

Aiming at cost (number of messages) reduction of Flooding, Kalogeraki et al [65]

introduced the Modified Breadth-First Search technique. It is a blind non-flood­

based search scheme which, instead of the whole neighbour list of each node, it uses

a random strict subset of them (e.g. each node forwards every query to 2 out of its 5

neighbours). The node chooses randomly a percentage (parameter of the method) of its

neighbours to forward the query to thus reducing the number of messages produced by

a single query. It reduces the probability of loops as it does not explore every link but

it cannot avoid the exponential increase of messages. As in Flooding, a TTL counter

per query works as its propagation stopping condition. Though the overall produced

messages are fewer, they are still a substantial workload and bandwidth consumption.

It is a probabilistic method that does not guarantee discovery of resources located ei­

ther beyond or within the TTL radius [101] and highly depends on the size of selected

neighbours subset.

36 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

Expanding Ring [75} or Iterative Deepening [106] is another blind flood-based

method which does consecutive floods with an increased TTL each time. Initially, the

requestor node floods its neighbourhood with a query for a small number of steps. The

nodes at a distance of TTL hops stall the forwarding and wait for the query originator

to confirm before they continue; they do not notify originator when a query gets into

stalled mode. If all responses discovered during that first wave comprise a satisfactory

set of resources, then the query originator simply does nothing and any stalled query

gets dropped as soon as its lifetime expires. Otherwise, the originator floods again a

'ReBend' metll:16ge to notify all nodes with stalled queries to continue their forwarding

with another TTL. This process of iterative increase of TTL stops when a maximum TTL

is reached. In every iteration queries travel deeper in the network but nodes already

visited on previous waves are revisited on the current one. This method manages to

almost halve the overall average number of produced messages per query and solves the

problem of TTL choice of Flooding. However, this improvement comes at the cost of

slight increase of discovery latency while message duplication remains an issue [101].

If the usually requested resources are the famous ones which are uniformly distributed

in the network, Iterative Deepening is considered to work well [75]. 'Resend' message

floods aim at reactivating stalled queries assuming that they follow same paths as the

queries. However, if this mechanism is deployed on a frequently changing topology with

many failures or rewirings, the probability the floods reach all nodes with stalled queries

significantly decreases.

All three methods above generate high workload (messages) and message duplica­

tion. The non-flood-based blind Random Walkers method [75] efficiently resolves these

two issues at the expense of considerable increase of latency and instability of its suc­

cess rate. Initially, the requestor node forwards a query to random k neighbours. All

the following receivers of the query forward it to a single random neighbour of theirs.

Forwarding stops when the query is successful or when it has reached nodes TTL hops

away from originator. A 'checking' stopping mechanism may also be used; that is, the

query periodically checks with the originator whether it should stop hoping from node

to node. In worst case scenario it may generate k*TTL messages but its success rate

and number of discovered answers greatly vary depending on network topology. Due to

the limited number of nodes it visits and the TTL stopping condition it exhibits proba­

bilistic bahaviour and is difficult to discover scarce resources [101]. However, Gkantsidis

et a1. in [55] claim that Random Walkers can perform even better than Flooding in case

of nodes re-issuing same queries em clustered networks assuming that nodes within their

horizons do not change.

A rather special case of,k-Walkers is I-Walker, refered to as Depth-First Search (DFS)

and used in Freenet [33}. DFS selects randomly one neighbour on each hop trying to

forward queries as deeper in the network as possible. The query originator has to set

the TTL quite big to increase its success rate. The messages spent by this mechanism

are only equal to TTL but it suffers from high latency and significant fluctuations over

time on its success rate.

2.9. EDUCATED INFORMED SEARCH TECHNIQUES 37

Gkantsidis et al. in [53J propose a generalised scheme for modelling search mecha­

nisms via a budget distribution to neighbours process. That is, a) each query originator

assigns a budget to every replica of the query it sends out, b) the receivers reduce the

budget of the query they received by one and c) distribute it among to the new query

replicas. This forwarding scheme stops when the budget is consumed. This ensures

the maximum number of messages spent for every query. If the budget is evenly split

among the neighbours selected then this budget-based mechanism may convert to blind

search mechanisms as explained above. The authors, however, propose a more informed

budget djl'ltrjbution among neighbours b_ed on the criticality of Hnkl'l (Le. neighbouTIl

on paths with increases success rate get more budget).

2.9 Educated Informed Search Techniques

Gnutella II [4J and GUESS [36] methods are based on hybrid P2P organizations. A

subset of nodes, the super-peers, keeps an index of resources shared by nodes that are

connected with them (leaves). In case of Gnutella II, each node sends the query to a

super-peer (hub) which then forwards it to its immediate neighbouring hubs if they seem

able to answer it. The hub that receives a query matches the request to any. indexed

resources and if there are matches, it forwards the query to appropriate nodes. The

neighbouring hubs periodically exchange their indexes so that they can send forward

the query only to hubs that can help. The query does not travel further than the

immediate neighbours of the query originator hub. In GUESS, however, the requestor

node contacts one super-peer at a time and the super-peer forwards the query only to

leaves that can respond to it based on its indexes. There is no forwarding between

super-peers.

Apart from modified-BFS, Kalogeraki et al introduced Intelligent Breadth First

Search in [65]. It is an informed technique based on which each node forwards the query

to neighbours that are more likely to find an answer. It maintains a list of {neighbour,

query} tuples when the query has been answered by or via this neighbour. The answers

follow the reverse path of the query informing all intermediate nodes about that success.

On any subsequent query, it tries to match, based on a heuristic, requirements of the new

one with the most recent successful ones from that list. From these matches, it chooses

the neighbours that have returned the most answers on similar queries. As shown in

[65] and [101], Intelligent BFS is better than Flooding as it produces less messages but

more than Modified-BFS. While nodes interact in a network and build up more accurate

tables the number of answers discovered increase. This indicates that the learning mech­

anism of the method produces better results after some time. However its weaknesses

are that the messages it produces cannot be less than these of Modified-BFS and that it

has limited adaptability to the nodes failures and topology changes though it could be

improved by using query failures along with success rate to rank the neighbours [101].

Adaptive Probabilistic Search introduced by Tsoumakos and Roussopoulos in [100] is

based on a local index which reflects the probabilities each neighbour has to be chosen

38 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

for the next query forwarding. Its forwarding scheme is Random Walkers; thus the

query originator forwards each query to k neighbours and the intermediaries to just

one. The neighbours with higher probability have higher priority to be selected. There

are two approaches in modifying those probablilities tables: optimistic and pessimistic.

In the optimistic approach, its current hosting node increases this probability before a

query is forwarded and only decreases it when that node gets a notification about a

query miss via the reverse path of the walker. In the pessimistic one, the probability is

initially decreased and only increased if notified of a query success propagated over the

reverse path of the walker. It has the same advantages and disadvantages as Random

Walkers: good efficiency, low produced traffic but introduces significant latency and

weak adaptability to topology changes. A modified version of APS, the s-APS, can

dynamically switch between optimistic and pessimistic approaches. Their efficiency

progressively improves in environments with low resource joins/departures rates [100].

Local Indices [106] method uses a clustering technique to organize nodes into groups.

Each node has an index of resources of all nodes in a radius r. Whenever a node receives

a query it tries to match the request to that index and forwards it to the discovered

nodes. Otherwise, it sends the query beyond the radius r. The join action of a node

involves the flooding of the network with a TTL=r with its local index of resources. It

is a method that achieves high success rate and discovers many answers at the expense

of many messages.

Another educated informed method is proposed in [111] by Zhuge et al. The authors

describe a k-walkers based algorithm the forwarding of which, however, relies on trust

values maintained in nodes for their neighbours. Initially, all neighbours are assigned a

zero trust value. As soon as a path gets successful, the resource provider feeds back to

its predecessor in that query path with the response. Then that predecessor increases

by one the trusted value for its successful neighbour. The feedback stops there without

further backtracking to the query originator. Thus, only the predecessor of responder

node gets notified about a success. Query forwardings follow these values giving priority

to the most promising neighbours.

2.10 Uneducated Informed Techniques

Uneducated techniques use network dynamics and topology properties derived from

implicit information such as node degree. Certain unstructured topologies exhibit char­

acteristics that enable more efficiellt resource discovery. Power-law networks have short

average path length [9] and achieve logarithmic search efficiency [61]. As argued in [25],

search techniques can be even more efficient (twice logarithmic) in scale-free networks.

Though these networks have good resilience on node failures and attacks [10], a com­

bined attack to selected high degree nodes will negatively affect the search efficiency or

even fragment the network [30].

Though, blind search algorithms were initially designed assuming uniform node de­

gree distribution of networks, several studies (as cited in section 2.5) claim that real

2.10. UNEDUCATED INFORMED TECHNIQUES 39

Unstructured P2P Networks exhibit power-law degree distributions; thus, they end up

being deployed on topologies for which they do not fit. Due to rewiring and join/leave

mechanisms (see section 2.5) nodes hosting famous resources, with more reliable connec­

tivity or more resources than others tend to attract more links. Symmetrically, nodes

with unpopular resources, weak connectivity or few resources tend to have small degrees

and be located towards the boundaries. By definition, a vast majority of nodes in these

networks have a link to a famous one and thus any query may easily reach the giant

component in its centre. In contrast to unpopular resources, famous ones are easy to

discover.

LV et al. in [75], claim that random walkers quickly reach high-degree nodes in

power-law networks but have poor efficiency in rare resources and therefore the node

degree should be ignored in query forwarding. Replication methods could alleviate

the situation but in the current study this is not applicable as service capacity is a

non-replicable resource. Adamic et al. in [6] proposed an algorithm based on random

walkers resembling the Random Walks with Lookahead [53]. At each step, the walker

visits all neighbours of the current node and if no success it hops to the one with the

highest degree. This process stops after Time-to-Live (TTL) steps. Mihail et al. in

[77] formalised the random-walker with lookahead discovery mechanism on power-law

networks. At every step of the walker all the neighbours of the current node are'checked

for the requested resource and their own degree. Only the one with the highest degree

then forwards the query. They claimed that the time a random walk with lookahead

needs to explore the whole network is sublinear to the network size. This happens due

to the giant component in its centre, a small subset of interconnected nodes attracting

many links from the boundaries of the network, which eases the access to a majority of

nodes as it preserves links with a big portion of the network.

Fraigniaud et al. [49] focused on developing an algorithm to exploit the power­

law degree distribution properties quickly locating high-degree nodes. It is a modified

Depth-First-Search which first forwards queries to neighbours with the highest degree.

When a certain number of steps are completed, the query backtracks to visit the second

highest degree neighbour. For every change of a node degree all its neighbours have to be

notified thus increasing the maintenance cost. Backtracking introduces high latencies

in search mechanisms cancelling the advantage of short average path length of scale­

free networks. Adamic et al. in [6] also claimed that searching mechanisms in scale-free

networks should give preference to high-degree nodes when forwarding a query. However,

this assumes that the resources are replicable, non-reusable and that always hosted by

the same node. This assumption is also used by the QRE algorithm [49] but is not the

case with the resources on which this work focuses.

All these proposed discovery schemes assume that resource availability of a node

may never drop due to its incoming degree modifications over time. Once a resource is

discovered, the requestor may open a connection to that provider for future direct access

to that resource assuming this resource does not change location. However, if resources

migrate among different nodes those links may also become unsuccessful.

Publish: Pools to
host free resources
only. Each pool

40 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

2.11 Topological System Requirements

Grids and P2P Networks are the two most decentralised and well-known paradigms of

distributed computing. Given all features of service capacity, none of these two may

be used as is for efficiently, reliably and inexpensively sharing this kind of resources

in large scale heterogeneous environments. However, both exhibit certain very useful

characteristics which may be used to compose a more appropriate architecture, Hoverlay.

Grids aggregate massive resource capacity into, sometimes complex, composite ser­

vices and offer on-demand high reliability and quality of service. However, they have

a number of weaknesses that reduce their adaptability in environments with volatile

resources and dynamic conditions. In brief, they:

1. use static links between those services. In these cases, manual configuration is

necessary.

2. allow automatic service composition via predefined well-known centralised service

indexing servers.

3. require good maintenance of resources to ensure availability and promised service

quality provisioning.

4. aim at financial benefits from shared resources. Resource owners and consumers

are bound via contracts; human intervention is again necessary.

Despite their weaknesses, Grids exhibit certain useful features for sharing service

capacity. As with service capacity, Grid resources are reusable, non-replicable and allow

exclusive only access. Gathering free resources into pools is a concept that respects re-

source ownership and administration policies within the same domain. There is usually a

one-to-many relation between a pool and the resources it monitors/manages. At its most
monitors one or
more resources but decentralised form, a pool may monitor only one resource (one-to-one relation) in which

each resource is case connectivity with other pools is necessary. Many-to-one pools-to-resource relations
monitored by one
and only one pool may violate exclusive access to a resource, produce deadlock situations, affect system

at any time. reliability or generate many unnecessary messages. In fact, if resource advertisements

appear in more than one pool, there may be three situations:

• a job submission to an already busy resource without any guarantees that the new

job will be executed on time (loss of system reliability).

• two jobs submitted to be sequentially executed on the same resource but the first

waits for the termination of the second (deadlock situation).

• upon submission of a job, all pools hosting advertisement replicas of the same re­

source receive notifications, before a second job is submitted, to deactivate/remove

those adverts avoiding the two previous situations. Assuming that a checkpoint­

ing scheme can take over this responsibility, heartbeats should be transmitted

to all advert hosting pools. In case those advertisements migrate between pools

this checkpointing scheme becomes either expensive or infeasible without an extra

discovery mechanism.

2.11. TOPOLOGICAL SYSTEM REQUIREMENTS 41

For similar reasons, once a resource takes over a job (i.e. service capacity is used) it

disappears from the system. This explains why resource aggregation into pools based

on a one-to-any relation is preferable to a many-to-any one.

The well-known Grid system, Condor, collects resources into pools which are used

upon request. They use advertisements of resource specifications to match against job

requirements and deploy a checkpointing scheme to detect resource busy/free conditions.

In contrast to the reliable Grid Resources, there is no guarantee that service capacity

once freed is the same as before committed since its volume depends on current condi-

Publish: Nodes
need to re-register
once they change
status from busy to
underloaded.

Represent:
Service capacity
specification as a
non-replicable
advert.

Represent:
tions of its provider. Therefore, advertisements of the same resource may differ over time Adverts of same

giving more unreliability and uncertainty. Each pool places jobs into priority queues and resource are not
the same over

if no resources are available, via flocking, they migrate to other pools (only single-hop time.

migrations are allowed). These constraints assume that one-hop job migration is enough Discover:

to discover the appropriate resources; that is, Condor Flocking relies on high degree of Multi-hop searches
on interconnected

pools or high availability or resources. pools.

Condor extends resource availability by using source- and server-initiative group

flocking which are the reactive (job advertisements) and proactive (resource adver­

tisements), respectively, approaches to resource discovery problem. Applying server-
Commit: Once initiative flocking for service capacity sharing the system needs to match network policies
resource is

of both submission and execution domains whereas in source-initiative approach· the dis- discovered, fetch

covered resource migrates and has to fully adopt the network policies of its new domain.

Hoverlay is to be deployed in highly heterogeneous environments where network poli­

cies may be significantly different and server-initiative flocking practically impossible to

apply. Therefore, upon successful discovery, service capacity migrates to requesting en­

vironment which may use its own policies and submission procedure; that is, discovered

adverts of resources are moved from providing to requesting domains (pools) ensuring

system-wide uniqueness of each resource.

Unlike Grids which aim at job execution submitting jobs to remote resources, P2P

Networks focus on discovery via transferring resources to remote requestors. P2P Sys­

tems assume volatile and potentially malicious or selfish behaviour of resources, unreli­

able connectivity, automatic network reconfiguration and reorganisation, are application­

specific, have low maintenance costs and can grow in large numbers of nodes. Their main

shortcomings that make them unsuitable for service capacity sharing are:

1. P2P Networks are designed and deployed for specific applications. They currently

support replicable/cache-able resource sharing (files, distributed storage, stream­

ing), collaborations over long-life multi-access resources (office applications) and

communication over static user-driven links (VoIP and instant messaging).

2. compared to centralised architectures, they suffer from longer response times to

requests due to their distributed search algorithms.

3. new nodes may join a P2P Network only via accessing a well-known existing one

(entry point). There are several schemes to discover those entry points; well­

maintained caches of nodes membership activities or hard-coded node addresses

its advert into
requesting domain
(remove it from
providing and
place it in
requesting pool).

Discover: P2P
interconnection of
resource pools

Publish: resources
re-register with
local pool

42 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

which are guaranteed to be always-on [67]. Though resource sharing is not directly

affected by those mechanisms, its expansion depends on single points of failure.

If more than one cache is used, there is a probability the network created by

continuous joins/departures be fragmented.

4. P2P Networks are heterogeneous and large-scale by nature and as such suffer from

high security risks. Their security guarantees depend on security levels of its

members.

Robustness and scalability of P2P Networks are the two main reasons due to which

they may constitute a basis for designing a service capacity sharing system. They are

architectures optimised for resource discovery and that will be their role in the proposed

system, Hoverlay, interconnecting resource pools in a P2P overlay. In Structured P2P

Networks the manager node of a resource has the same key as its hash; every time a

resource joins a network that hash function and the discovery mechanism are activated

to place the resource in a specific node. Input to that hash function could only be the

service capacity as, if otherwise, only qualitative or semantic searches would be possible.

These networks deploy exact-matching discovery mechanisms and thus requestor needs

to know the exact hash key of a requested resource. In case of service capacity, adver­

tisements may be complicated specifications practically impossible to hash and search

in Structured P2P Networks because:

• every different value of a qualitative or quantitative property of that specification

would produce different hash key,

• searches based on a subset of properties are impossible as exact-matching algo­

rithms require prior knowledge of the full resource specification,

• every time a resource joins the network new, potentially different, specification is

to be registered.

If hashing of a single property is used for locating service capacity resources, a node in

Structured P2P Networks indexes resources whose property values belong to the same

range. In case that node fails all resources within that range disjoin the network. Given

that service capacity is highly intermittent, in worst case scenario, these procedures need

to be frequently executed increasing maintenance costs of such systems.

Resource registrations dictated by structured organisations may cancel potential

benefits of placing a node in its nearest pool. Every resource, once freed, may register

with a different pool from the one it used before. Therefore, frequent load fluctuations

cause equally often discovery mechanism invocations which would be avoided if resources

registered with the local pool. To address this issue, registration could have two phases:

initially the freed resource could try to register with the pool from which it moved to

the local one and if unsuccessful that local one via the structured discovery mechanism

locates the appropriate hosting pool. However, assuming intermittent behaviour of pools

in a heterogeneous environment that first phase would frequently fail and introduce

2.11. TOPOLOGICAL SYSTEM REQUIREMENTS 43

further latencies. As analysed in 2.6, there are a number of Grid architectures achieving

efficient resource discovery over large-scale Structured P2P Networks which however

suffer from problems derived from the nature of these overlays.

Despite their strengths, Structured P2P Overlays are not appropriate for sharing

service capacity due to their weaknesses related to hashing volatile, multi-property and

intermittent resources. On the contrary, Unstructured P2P Networks achieve minimal

maintenance costs in return to expensive search mechanisms. In that case, pools are

interconnected in an unstructured overlay with arbitrary connections and each one of

them manage a set of underlying nodes/resources. This topology resembles hierarchical

two-layer Unstructured P2P Networks, like Gnutella II, with pools being the super-peers.

Grouping resources into pools, apart from the benefits as analysed before, reduces search

latency and space as discovery mechanisms are deployed solely on pools overlay rather

than underlying networks. However, it does introduce local single-point-of-failures as a

pool failure would practically disconnect both its free and underlying nodes but without

or slightly affecting other pools. Resourceful pools may attract many links and a possible

failure could fragment the network [30]. However, the more rewirings that pool provides

the more links it attracts and the faster its resources migrate. This mechanism of

rewirings reduces the lifetime of its high incoming degree and the network's dependency

on such nodes.

Disconnected resources need to re-register with the overlay by contacting another

existing pool. If not hard-coded, these pools are discovered via dedicated caches which

statistically tend to provide the most stable resources. That results to preferential

attachment of new nodes and pools on the overlay which gradually converges to a power­

law topology. Rewiring is an action present on most self-configurable Unstructured P2P

Overlays sometimes part of a distributed search algorithm or as a result of neighbours

failures. In the former case, these algorithms try to improve their efficiency by replacing a

neighbour with a better one while in the latter one, a failed neighbouring node gives place

to another already accessed during a query propagation. Both ways tend to prefer more

stable and reliable nodes; thus, famous nodes increase their incoming degree faster that

the others. Though these actions may transform the overlay of pools into a power-law

topology, service capacity moves between pools; the more links a famous node attracts,

the faster its available service capacity is moved away from it and thus the faster its

quality of service deteriorates. Resource migrations work as a countermeasure to winner­

takes-all phenomenon which, e.g. in globally high load, may result in a load-balanced

overlay as no pool will have enough time to gather many resources and significantly

increase its reliability and thus its fame.

There is now a set of requirements and principles for the architecture of the proposed

system. However, search of that Unstructured P2P Overlay of pools is not sufficiently

addressed yet. Resource mobility and non-replicability are features not present in re­

sources with which existing Unstructured P2P search techniques as such deal. Apart

from node and pool failure, resource mobility leads to a more unstable pools overlay

as links should adapt in a way that resource movements are easily tracked. Stalkers is

Discover:
Overlay of pools is
an Unstructured
P2P Network.

Discover: Adapt
links to track node
movements

44 CHAPTER 2. RESOURCE SHARING ENVIRONMENTS

designed to address those situations.

2.12 Summary

This research provides an infrastructure for sharing reusable and highly dynamic re­

sources (service capacity) between users with unreliable machines and connectivity. Grid

Computing achieves resource sharing for task scheduling purposes based on centralised

entities. They assume reliability of resources and try to offer high quality of services.

They support, apart from scheduling, job migration and execution checkpointing which

informs the central manager about its execution state helping decisions for resubmission

and/or migration. However, their weaknesses include scalability and dependency on

resources reliability to achieve availability.

Peer-to-Peer Networks is another well-known class of resource sharing architectures.

These systems are already deployed in large scale environments whose typical users are

inexperienced individuals under various administrative domains behind firewalls and

with any kind of network connection settings. While Structured P2P Networks provide

guarantees about discovery efficiency in deterministic number of messages using DHT

indexes, they suffer from scalability in highly dynamic environments. On the contrary,

Unstructured ones cannot provide these guarantees but they are resilient to high churn

rates since join/leave actions of nodes have minimal effects on network configuration.

However, if a well known node fails, the network may even get partitioned or some other

peers isolated.

This research tries to address the problem of network workload fluctuations adapting

network size to keep nodes normally loaded. Its basic concept is that underutilized

nodes from a network can be used by overloaded nodes in different networks to serve

their excessive workload. The solution proposed, Hoverlay and Stalkers, moves capacity

(nodes) from one network to another improving the utilization of spare capacity and

helping networks to deal with high workload situations. Three steps are necessary

to achieve this goal: resource publishing, discovery and commitment. The first step

announces availability, then appropriate nodes are located and finally they migrate to

requestor network and commited by an underlying node.

Centralized systems, due to their single-point-of-failure entities, exhibit weak robust­

ness and scalability properties as; frequent registration and discovery requests caused by

intermittent shared resources could overwhelm that central entity converting it into a

bottleneck. Grid Computing platforms assume well-maintained resources and seem un­

suitable to share service capacity because of their priority-based request queuing scheme

increasing response latency. Structured P2P Networks cannot deal with complex queries

and have high maintenance costs in frequent join/leave actions of resources. However,

Unstructured ones have instant join/leave procedures with minimal maintenance costs

and thus that will form the base of Hoverlay.

This chapter also provides a general understanding of unstructured search algorithms

and their classes. It identifies two vertical classification methods: the multicasting size

2.12. SUMMARY 45

(number of nodes a query is forwarded to) and the way neighbours are selected to

propagate queries they receive. However, it gives an extensive description of the blind

(randomly chosen neighbours) and informed (neighbours chosen based on statistical

information) classes. It also proposes an extension of informed techniques classification

into Educated and Uneducated Informed ones based on whether the information they

use for query propagations is explicitly collected or exists hidden in network elements

(i.e. node degrees or link lifetime). The descriptions of those mechanisms will provide

useful material for the design of Stalkers.

Service capacity is a non-replicable reusable resource with highly intermittent be­

haviour. Important principles of both well-studied resource sharing paradigms, Grids

and Unstructured P2P Networks, will be used to design Hoverlay. While the former

can provide useful ideas for components such as the pool of resources, reasoning and

feasibility for pool interconnections, job submission toolkits and security mechanisms,

the latter can be the overlay that interconnects pools easing their collaboration and im­

proving the scalability and fault-resilience attributes to the proposed architecture. The

following chapters present a preliminary model which, given some extensions and im­

provements, results in Hoverlay and a set of appropriate search mechanisms for sharing

service capacity within that environment.

~~--------------------------~
Global ROME: Preliminary Model

Global ROME (G-ROME) is designed to provide an interconnection of multiple inde­

pendent ROME-enabled P2P networks constructing a two-layered hierarchy. ROME

[88] is a capacity sharing mechanism helping Chord rings to keep a near-optimum size

and reduce their average query latency by replacing, swaping, removing and inserting

nodes based on the workload each area of the ring experiences. It is a system designed

and developed from the same group as the one presented in this thesis. G-ROM~ got in­

spiration from that system and tried to move it one step forward by interlinking ROME

servers; the aim was to improve the scalability of underlying rings. The overlay of G­

ROME is an Unstructured P2P Network of ROME bootstrap servers and enables the

discovery of extra not locally available capacity to cope with workload increases.

Its design follows the guidelines of section 2.11 for pools overlay topology. ROME im­

plements the resource publication phase whereas G-ROME provides the interconnection

between ROME pools. Though it uses existing Unstructured P2P search mechanisms

it introduces keywords to improve search efficiency and accuracy. Servers are enhanced

to deal with both ROME and G-ROME functions and with queries directly from other

overlay servers and indirectly from underlying nodes. Requests for capacity from un­

derlying nodes are handled by ROME processes which take decisions about appropriate

actions. Queries are forwarded onto the overlay only when local ROME cannot satisfy

the requirements of the local ring. Each layer of ROME---'> G-ROME stack fulfils a subset

of requirements as set in sections 1.5 and 2.11 so that they collectively address all related

design principles. Table 3.1 maps those requirements to their appropriate layer.

Inheriting all the components from ROME, a G-ROME server is the most impor­

tant component of the architecture as resource publication point and member of pools

unstructured overlay. It consists of:

• a Neighbour List (NL) to interact with other servers on the overlay. For every

unsatisfied query, servers forwards it to all their neighbours .

• a Node Pool (NP) to store pointers to (adverts of) locally available free nodes

that represent a certain amount of capacity. This is a component already present

in ROME.

47

48 CHAPTER 3. GLOBAL ROME: PRELIMINARY MODEL

Requirement
1. Pools to host free resources only
2. Each pool monitors one or more resources
3. Each resource is monitored by one and only one pool at any time
4. Nodes need to re-register once they change status from busy to

underloaded
5. Adverts of same resource are not the same over time
6. Resources re-register with local pool
7. Service capacity specification as a non-replicable advert
8. Multi-hop searches on interconnected pools
9. Once resource is discovered, fetch its advert into request­

ing domain (remove it from providing and place it in re­
questing pool)

Layer

ROME

G-ROME

10. P2P interconnection of resource pools
11. Overlay of pools is an Unstructured P2P Network
12. Search technique able to trace node movements
13. Adapt links to track node movements

none

Table 3.1: Mapping of proposed system requirements to G-ROME layers

• a Keyword List (KL) to describe the application deployed on an underlying

network (i.e. file sharing, lookup applications or distributed processing) .

• a Keyword Exclusion List (KEL) to describe applications which most of the

nodes in Node Pool and Chord ring are not willing to serve. Each node has a

set of keywords to sketch out applications it cannot serve. A collection of most

frequent keywords of all nodes in the administrative domain of a server construct

this latter's KEL.

G-ROME discovery mechanism uses KEL of request originating server to find not

only adequate but appropriate nodes as well. It tries to match the query with free nodes

whose KELs have no common keywords with those of requester server (fully compatible

nodes). This enables relationships between servers supporting relevant applications. In

this architecture, it is assumed that there is one-to-one mapping between a G-ROME

server and an underlying network/application. In real world systems, a server may be

in charge of underlying nodes involved in interactions of more than one distributed ap­

plications. For instance, a node may participate in two completely different applications

(therefore networks, too) in which case may appear in two pools with different ID and

different capacity. That is, a single node may physically host two or more distributed

application processes but in G-ROME each such process appears as different node.

G-ROME architecture uses a keyword-based technique to initialize and update Neigh­

bour Lists. A new server may join the network using an existing server (registrar) by

copying the latter's Neighbour List. The new server updates its own while receiving

queries, answers and registration messages from other servers based on several crite­

ria, as described in the following sections. Both of these operations, initialization and

updating of Neighbour Lists, ensure low overhead in messages for server registration

Id=1

Id=3 ,
/ ,

/ "
...........

BS: ROME bootstrap server

BS Id=4 .'r;:::;<:;~;:;::=jl , I G-ROME I
/. ~ I ROME I
. ..' I Chord I

Keyword
Exclusion List

C Register =::> ~nd QueV

Figure 3.1: G-ROME layered architecture: components and processes

49

and maintenance in the overlay. Figure 3.1 provides a general overview of the proposed

architecture.

Each bootstrap server connects to a number of other servers via its Neighbour List.

Server functionality can be divided into three layers: G-ROME monitors ROME oper­

ating on top, as ROME does over Chord rings, and invokes the suitable node discovery

mechanisms when necessary. Each G-ROME server supports the following operations:

1. Register: an existing server registers a new server or node to the overlay. A

server registers with the G-ROME overlay by acquiring the Neighbour List of an

existing one.

2. Update Neighbours: every server uses the keywords of received query or answer

originator servers to update its Neighbour List.

3. Send Query: if a ROME server, while monitoring its Chord ring or upon receiving

a query, has run out of free service capacity in its Node Pool it sends a query to

all its neighbours requesting additional capacity.

4. Answer Query: as soon as a remote server receives a query, it answers back

providing the requested appropriate capacity (if at all available) to query originator

server or propagates the same query to all its neighbours.

Each server keeps a certain amount of free capacity (safety capacity) in its ROME
pool for future use by local ring which no external requestor may use. This technique

aims at reducing the number of messages transmitted in the overlay by preventing servers

from sending requests whenever their rings experience slight workload fluctuations un­

able to satisfy with local service capacity. Both servers and nodes have to be G-ROME

enabled to participate in this system. That is, servers need the G-ROME processes as

described above and nodes need a G-ROME process (relocate) to resolve which server

monitors them. Relocate process is invoked when a node moves to another server and its

role is to kill the old ROME process that was configured to refer to the previous server

and restart it parameterised with the new server address.

50 CHAPTER 3. GLOBAL ROME: PRELIMINARY MODEL

>--------:~ Extract Peers from pool

lol/lerwisel

Received Peers in Pool Update Neighbour List t----:;iI'II

Figure 3.2: Flowchart of G-ROME Server processes

3.1 Architecture Overview

A G-ROME server may be in any or both of two states: a) reply to received queries

and b) query for capacity modes. On external query arrival, its reply state is activated

and all proper actions are done to either provide the requested capacity or forward the

same query to its neighbours. However, internal queries trigger its query state and it

either immediately replies back with local resources or reserves as much local capacity

as possible and forwards a query on the overlay seeking for the remaining portion. If

local resources in Node Pool are enough to satisfy both an internal and external query

then the server can be simulataneously in both states. Safety capacity levels in Node

Pool depend on the excessive workload increase rate of the underlying network. That is,

safety capacity is equal to the workload increase rate times the total underlying network

load. Figure 3.2 illustrates the main functionality of a server which refers to query

processing (sending/ propagating/ answering queries).

Reserving capacity for future use by local underlying nodes practically reduces re­

source availability and withholds capacity from moving to servers in need. In high load

situations this safety capacity reaches its maximum size as it is proportional to the

requested one from underlying nodes. This adaptivity helps the system to reduce the

number of queries and messages from highly loaded networks but to make maximum use

of spare capacity when this is not needed locally. The level of the adaptivity depends

on the history size taken into account; a small portion of past activity makes the safety

capacity more responsive to workload fluctuations . Two parameters are necessary to

determine the exact size of safety capacity: a) the percentage of requested capacity by

underlying nodes and b) the time window size during which that requested capacity

was monitored. Both these parameters are set by server administrators and accrue from

calibration, policies and application type deployed on the underlying network.

If ROME monitoring identifies a node that needs extra capacity to serve part of

its load but ROME Node Pool is unable to satisfy, appropriate G-ROME processes are

triggered to seek that capacity in external pools by sending out to the whole NL an

appropriate query. When a set of nodes that satisfy its needs is found, it places their

adverts into its Node Pool and updates the Keyword Exclusion and Neighbour List with

relevant details from the response originator.

3.2. SEMANTIC COOPERATION 51

Serving external queries (if any) and waiting for internal ones are two parallel pro­

cesses for each server. For every incoming external query it updates its Neighbour List

and safety capacity and either propagates the query to its neighbours or answers by

extracting at least the requested capacity from the Node Pool. In the latter case it

notifies directly the query originator with a list of IP addresses of nodes that collectively

provide the requested capacity.

3.2 Semantic Cooperation

Answer refinement is necessary in the context of P2P Networks which are dedicated to

specific applications. Not all discovered nodes are able to participate in an underlying

Chord network. Though they may be able to provide the requested resources, they

may be inappropriate or unwilling to take over a specific task. Therefore, semantics

are introduced to specify special requester or provider requirements. Simple keywords

are used for the semantic cooperation between servers and nodes. For simplicity and

without loss of generality they are simple words or (key,value) pairs.

G-ROME uses two semantic components: Keyword List (KL) and Keyword Ex­

clusion List (KEL). Every node has a Keyword Exclusion List to specify properties of

traffic it is not willing to serve. Every server has both a Keyword List and a Keyword

Exclusion List. A Node Pool can only contain nodes whose Keyword Exclusion List has

no common keywords with the Keyword List of its server. This ensures that each pool

strictly enlists nodes able and willing to serve traffic of that specific underlying network.

For scalability purposes the server Keyword Exclusion List may contain 10% only of the

most common exclusion keywords of nodes in Node Pool and underlying network (busy

nodes). Both Keyword List and Keyword Exclusion List of a query originating server are

included in every query forwarded to its neighbours. A server upon receiving a query,

it tries to find nodes in its local pool without any common keywords in their Keyword

Exclusion Lists and Keyword List of the query. This guarantees that discovered nodes

will be useful in the requestor server's context; thus, compatible with the application

deployed on requesting underlying network.

The server Keyword Exclusion List attached to a query is used by each visited

server to update its Neighbour List. If this latter is full, one of its entries may be

replaced by another or, if otherwise, appended. If the query originator server is less

semantically distant from a visited server, this latter replaces one of its neighbours with

the former. Semantic distance is defined as the number of common keywords between

a server Keyword List and the Keyword Exclusion List of another. Symmetrically,

semantic closeness is the number of non common keywords between a server Keyword

List and Keyword Exclusion List of another. Every server, upon receiving a query or

answer, compares its Keyword List with the Keyword Exclusion Lists of that message

originator and its neighbours. Based on this comparison, servers choose the semantically

closest neighbours, thus ensuring that they are directly connected to neighbours that

will probably offer more compatible answers.

" ,

52 CHAPTER 3. GLOBAL ROME: PRELIMINARY MODEL

This rewiring scheme uses semantics to bring closer Chord rings that would be more

willing to share capacity if available. However, both servers KL and KEL adapt to node

migrations as keywords move in and out their context. For instance, a server gets noti­

fied via queries sent by one of its neighbours that this latter's KEL gets populated with

keywords incompatible to its own; in this case, rewiring may be triggered and break

the link between those two servers. Though a server may serve the same application,

its links change based on the nodes moving in/out; two servers may lose their direct

connection even if their applications are semantically related. Therefore, servers practi­

cally experience semantic cooperation with the nodes rather than the server of a remote

neighbouring domain. This scheme is a dynamic quality measurement mechanism of

servers as it allows them to link to neighbours that are more likely to help in the near

future given their current capacity quality (semantics) and availability.

3.3 Registration Process

There are two different registration processes for a G-ROME-enabled server: a) node

registration with its local server and b) server joining to the G-ROME network. A

new node registers with a server if their lists, Keyword Exclusion List and Keyword

List respectively, have null intersection. The server updates its Keyword Exclusion List

when a new node registers with it. Once a node has registered with a server, it keeps

the connection open using heartbeats so that the server can promptly identify changes

in node's capacity size and understand that it has failed.

By joining G-ROME, a server initializes its Neighbour List used for sending queries

to other servers. Initially, it sends a registration request to another registered server

(registrar) which, in response, provides its own Neighbour List. It repeats the same

registration messages to the newly acquired neighbours aiming at filling its list with the

most semantically close neighbours. That is, out of all Neighbour Lists it receives, it

keeps only servers as neigbours who have the biggest semantic similarity. To reduce the

probability of overlay fragmentation, any server that receives a registration request has

to register the new server with its own Neighbour List. That point onwards, it is able

to initiate queries into G-ROMEand is treated as any other server.

The initial neighbours of a new server may have very few keywords in common to

their lists. However, the update process, which is triggered through outgoing or incoming

queries, ensures that every server tends to improve its Keyword List semantic closeness

with those of its neighbours.

3.4 Query Processing

A server generates queries for service capacity discovery whenever its Node Pool cannot

fully satisfy requests from its underlying ROME. Every query needs a set of fields to

support a) appropriate propagation, b) Neighbour List updating and c) keyword-based

node selection. It contains the requestor address, its Keyword List and Keyword Exclu-

3.5. WORKED SCENARIO 53

sion List; this way it describes the applications that any discovered node must support

and those that the most free and busy ones of the originator server are not willing to

serve.

Every query travels on G-ROME overlay by hopping between neighbouring servers

using their Neighbour Lists commencing from its originator. Once a query is received,

the current server inserts query originator into its Neighbour List based on the semantic

neighbour list updating scheme and forks the same query to all its neighbours if unable

to satisfy the request. Attaching the address of that server to the forked queries and

using a Time-to-Live (TTL) counter to set a maximum number of hops a query may

travel on the overlay are two ways to prevent queries from getting trapped into deadlock

and infinite loops situations.

There are three conditions to be fulfilled before a response from a server is sent

back to query originator: a) that server has more service capacity in its pool than the

minimum required safety capacity, b) has one or more nodes that can collectively provide

the whole required capacity (partial satisfaction of requests is not a valid answer) and c)

the intersections between query Keyword List and Keyword Exclusion Lists of selected

nodes are null. Otherwise, the TTL counter drops by one and if that is bigger than

zero, the query is forwarded to neighbours of that server. Partial answers would have

required the deployment of capacity reservation schemes which could in turn result in

deadlocks. Query originator server can always select the first received answer because it

is guaranteed to provide the required capacity and as a result the server does not have

to wait for query propagation until the TTL-defined network horizon.

Each answer, apart from discovered node details (i.e. address and Keyword Exclusion

List), includes the address, Keyword List and Keyword Exclusion List of the responding

server. A requestor, receiving an answer, checks whether it could replace any of its

existing neighbours with that responding server. This replacement takes place only

if the responder is serriantically closer than at least one current neighbour; the most

semantically distant is replaced.

The requestor needs two more messages to complete the migration of discovered

nodes. It sends back to the provider server an acceptance confirmation and a message

to every fetched node to invoke its G-ROME 'relocate' operation. This operation is

active only when the node is in standby mode in a Node Pool. This ensures that G­

ROME servers cannot communicate with busy nodes of their underlying networks but

only with nodes in Node Pool.

3.5 Worked Scenario

A comprehensive hypothetical scenario with a network of five servers is presented below

to show the functionality of G-ROME. Each server has only two neighbours to forward

queries to with TTL = 2. Servers manage a subset of system keywords which collectively

count up to ten. Table 3.2 presents the directional graph of this example network

providing the configuration of those five servers including their Neighbour Lists, Keyword

54 CHAPTER 3. GLOBAL ROME: PRELIMINARY MODEL

, , , Server NL KL KEL Node Pool SF , ,
.4.,' 1 ''.}., A D,E a,c,h f (nl,2,{d,f}) (n8,1,{b,f}) 8 1 , 1 , , B A,C b,d,i,j a,g,h (n5, 3, {g}) (n6 , 7, {e, f}) 4 \

, , 1 ,
1 ,

\ 'A , , 1
C B,D d,e,g a,b,h (n7,6,{b,j}) \ I', , I 3

~
1 'v).! " (n2' 5, {d}) I f""'" ;:l.. D C,E b,c,e,g,i d,f 7

E B,C a,e,d,f c,h,j (n3,3, {b,i}) (n4 ,7, {h , j}) 5

Table 3.2: G-ROME Worked Example network initial configuration: Neighbour List (NL) ,
Keyword List (KL), Keyword Exclusion List (KEL) , Node Pool and Safety Capacity (SF) of
every server

Lists, Keyword Exclusion Lists and Safety Capacity.

1. Query generation from A : Server A generates a query requesting for capacity of 5

units. Though its local Node Pool has two nodes, they are insufficient to satisfy

the requested capacity. Since no reservation is allowed, these nodes remain free

in the Node Pool and propagates a query on the overlay. The query contains the

requested capacity CAP = 5, TTL = 2, the server's K L = a, c, hand K EL = f
forwarded to neighbours E and D:

Ql from A to D & E: CAP = 5, TTL = 2, KL = {a , c, h}, KEL = {J}

The index of Q denotes the number of hop that query has traveled within the

overlay.

This query propagation triggers a series of reactions to its subsequent receivers.

These reactions are illustrated in figures 3.3b through 3.3d and analysed on the

following three steps.

2. Query reaches D and E: Both servers have not received the same query before

and, hence, they accept and process it. Server D contains node n2 in its Node

Pool which a) satisfies the requested capacity and b) whose KEL has no common

keywords with query's KL (i.e. KELn2 nKLA = 0) but c) its safety threshold (7)

is already above the available capacity (5). Therefore, the query originator cannot

use that node and server D will forward the same query to its neighbours C and

E , reducing the TTL to one since it has already travelled one hop:

Q2 from D & E to B & C: CAP = 5, TTL =1, KL = {a,c, h} , KEL = {J}

Server D updates its neighbour list by replacing C with A since the intersection of

its KL with the query originator's KEL is smaller than that with server C (if two

or more of those intersections give same size sets, one of them is chosen randomly

to be replaced):

3.5. WORKED SCENARIO 55

(a) Step 1: Initial Configumtion (b) Step 2

I , ,
' .. , , , , , I

o
" / -- . 2 •

, A, ___
• ________ I'!IIo ___________ ~ o

"".. ,,1

" I

,'.

0 0 o o
(c) Step 3 (d) Step 4: Final Configumtion

Non-visited Server Query Originator Server ~rf Message Delivery J</ Rewiring

o Visited Server Resource Provider Server .0.' Rejected Message Link

Figure 3.3: G-ROME Working Example: query propagation, answer delivery and network
reconfiguration

As soon as the query reaches server E , its Node Pool detects one node that could

satisfy the requested capacity. However, both query 's KL and node's KEL contain

keyword {h} (i.e. KELn4 nKLA = {h}). Therefore, this node cannot be used in

the requesting underlying network application. Server E cannot serve the capacity

and, thus, will forward the query (with TTL=l) to its neighbours Band C. Its

KL intersections with KELs of the query and its neighbours all give one keyword.

Therefore, there is no change in the Neighbour List of server E.

3. Quer'lj reaches Band C: Server D links with C and E; as server E has already

received the query Ql during the previous step from server E, it rejects the in­

coming one. It is the first time that server C receives Q2 and therefore accepts it.

Its Node Pool has one node n7 with more available capacity than the requested

and the safety and its KEL has no common keywords with the query's KL (i.e.

K E Ln7 n K L A = 0) . It then sends an answer wi th this node to query originator

server, even though the available capacity in its pool becomes zero, much lower

than the safety. Server C prepares and sends back to the requestor an answer with

its own KL and KEL and the discovered node removing the node from its Node

Pool:

Al from C to A: KL = {d, e,g}, KEL = {a , b, h}, Nodes:(n7, 6, {b , j})

56

\

CHAPTER 3. GLOBAL ROME: PRELIMINARY MODEL

, , Server NL KL KEL Node Pool SF - , - I
,

I '''',.I..
-----1'------- - A D,E a,c,h f (nl,2,{d,J}) (ns,l , {b,J}) 8
, I B A,C b,d,i,j a,g,h (n5, 3, {g}) 4 , , I

\ 'A
C A,D d,e,g a,b,h (n7,6,{b,j}) \ I~~ - 3 \ I,V

.:.(J ~,. D A,E b,c,e,g,i d,f (n2,5,{d}) 7
E B,C a,e,d,f c,h,j (n3,3, {b , i}) (n4' 7, {h,j}) 5

Table 3.3: G-ROME Worked Example network final configuration

Responding server C calculates the intersection of its KL with the KELs of Q2

query and of its neighbours (B, D). It then uses the neighbours that give the

smallest intersections: KLcnKELB = {g}, KLcnKELD = 0, KLcnKELA =

0. Therefore, the query originator has to replace the neighbour that gives the

biggest intersection: server B. C replaces B and its neighbours are D and A.

Assuming that query Q2 arrives at C from E after the one from D then that query

is rejected since C has already processed it. However, it is the first time server B

processes it. Its local pool can satisfy the requested capacity with node n6, which

is compatible with the requestor's underlying application (i.e. K ELn6 n K LA =

0). The query originator is already a neighbour of server B and, therefore, its

Neighbour List remains intact. Server B prepares and sends the answer:

A2 from B to A: KL = {b, d, i,j} , K EL = {a, g, h}, Nodes: (n6, 7, fe, J})

4. Query originator A receives both At and A2 answers: Assuming that A2 (from

server C) arrives first, server A places the discovered node into its Node Pool. It

tries to update its Neighbour List calculating the intersections of its KL with the

answer's and its neighbours' KELs:

KLA n KELE = {e, h}, KLA n KELD = 0, KLA n KELB = {a, h}

There is no change to the Neighbour List of A as B is not semantically closer

compared to its existing neighbours.

Answer Al is rejected because the query it refers to is already answered. However,

the new answer activates the Neighbour List updating scheme but no neighbour

gets replaced since:

KLA n KELE = {e, h}, KLA n KELD = 0, KLA n KELc = {a, h}

The final state of the network in this scenario is shown in Table 3.3. Note that the

migrated node is not listed in A's Node Pool as it was immediately placed within its

underlying Chord ring to serve the request.

3.6. SIMULATIONS AND EVALUATION

dropped queries (*1 00%)

1

o 1000 2000

-TIL=O - TTL=l

3000 4000

57

TTL=2 - TIL=3 - TIL=5 - TIL=7

1000 1500
I i

2000workload (*1000)
, I ' • iii

5000 6000 7000

Figure 3.4: Percentage oj Jailed queries over the total number oj queries

3.6 Simulations and Evaluation

Following the evaluation methodology as described in 1.3, a simulator was built in

C++ with the aim to prove that, by interconnecting independent ROME networks, it

is possible to achieve a significant increase of handled workload in the whole system

without increasing the globally available capacity. It also aims to identify the effect

of semantic contextualization of queries as well as the semantic-based Neighbour List

updating.

G-ROME simulator executes each experiment in three steps:

1. system-wide keyword production. That is the global set of keywords that exist in

a simulated network of servers .

2. server construction and initialization with initial Node Pool, Keyword List, random

Neighbour List and no ring. Each server is represented as a composable object by:

Pool, Keyword List etc.

3. for every simulated TTL the simulator executes a number of iterations linearly

increasing the global workload in every iteration. This workload is randomly dis­

tributed on a random subset of servers. Some servers may get a negative workload

so in each iteration some rings shrink and new available capacity is produced.

During experimental execution, there are several metrics to record for every TTL and

iteration: number of queries , number of failed queries, number of messages and ring size

of every underlying network. It is assumed that no servers fail during the experiments.

Furthermore, the server registrations take place only during their initialization. Their

Neighbour Lists are initially filled with random servers and thereafter they get updatedy

through the processes described above.

Below, a set of experiments demonstrate the effect of TTL on discovering the ap­

propriate resources in terms of number of failed queries (capacity not found) and total

number of generated messages. While the first one reveals the benefits of G-ROME, the

second present potential costs produced by deploying it. The last of those three ex­

periments illustrates the ability of a single ring to handle much more workload when its

58 CHAPTER 3. GLOBAL ROME: PRELIMINARY MODEL

messages ('1000) -TTL=O - TTL=1 TTL=2 - TTL=3 - TTL=5 - TIL=7

10000

ili~ 8000

6000

4000 a (I I I I
1200

2000
1400 1600

0 workl 0)

0 1000 2000 3000 4000 5000 6000 7000

Figure 3.5: Number of messages generated with the increase of the workload

server participates in a G-ROME network than it would alone. The size of the network

for these experiments is 1,000 servers each having a maximum initial capacity of 500

units. The size of each neighbour list is set to 3 entries and the system-wide keyword

superset is 10,000 keywords of which a maximum of 10 are randomly assigned to each

server and 3 to each node. The experiments were run with 1,000 iterations and a fixed

global workload increa e per iteration of 6000 uni ts . On every iLeration a random subset

of servers are s lected to assign the workload; no more than LO% of it is assigned to each

one. TTLs {O, 1, 2, 3, 5, 7} were tested.

Figure 3.4 illustrates the reduction in failed queries when the separate ROME net­

works are interconnect d and figure 3.5 presents the cost (number of messages) of Lhese

queries with the increase of TTL when interconnecting Lhe G-ROME enabled servers.

In disconnected ROME neLworks (TTL= O) the rings cannot hancll more workload and

any effort to dis over more capaciLy would resulL in query failure . G-ROME 'llables

them increase their capacity and with certain TTL and workload increase, Lhey can find

all Lhe rcque1:iL d capacity every iteration. Linear incr ase of the system-wide workload

causes exponenLial increase in Lhe number of mes ages.

Figure 3.4 shows Lhat initially the lower Lhe TTL the mol' queries are failed. Th is i1:i

because of the small search depth within which the available resources are limited and

further constrained by semantic-based discovery. F\uthermore, the increase rate of failed

queries percentage is initially lower since the 1:iemantic-based Neighbour List updating

creates links to servers with enough spare nodes to serve a limited workload. As these

get exhausted the failed queries increase rapidly. At any TTL, the number of failed

queries is less than or equal to that of TTL=l. Increasing TTL does not always give

better results since any TTL bigger than a certain point causes exhaustive exploration of

the whole network; that point appears to be TTL=5. Finally, the network is flooded by

huge number of messages without any benefit over non-connected independent ROME

networks (TTL=O).

In Figure 3.5, the base line (TTL=O) represents a scenario with disconnected ROME

servers which do not produce any messages since there are no interconnected servers.

The distance between lines for different TTLs increases exponentially. As TTL increases,

the number of servers that are explored increases exponentially too. This distance stops

3.7. G-ROME WEAKNESSES 59

Time-to-Live (TTL)
0 1 2 3 4 5 6 1 8 9 10

Nodes 226 363 149 1921 2418 2915 3565 4214 4385 4557 4128
Nodesi 1.6 2.06 2.56 1.25 1.2 1.22 1.18 1.04 1.03 1.03

NodeSi_l

Table 3.4: Ring size changes of server 788

increasing exponentially after the TTL which forces exhaustive exploration of the whole

network. Any bigger TTL would produce almost the same number of messages since

query cyclic paths are avoided appending the visited server address on every query.

The actual benefits of G-ROME become more evident in Table 3.4 which illustrates

the ring size increase of a single server as the TTL increases. During that experiment

the simulator chose randomly to monitor the ring size of server 788. At TTL=lO the

ring size is almost 21 times bigger than in TTL=O (equivalent to a disconnected ROME

server). As long as queries explore bigger parts of the network while TTL increases,

more fresh capacity is discovered making the ring size augment. However, if TTL is

beyond a certain point, each query explores the whole network exhausting most of its

chances to find new resources and thus ring size tends to stabilise. In such situations,

new resource availability depends on workload fluctuations and task completion rate of

other rings. All data in bold fonts represent statistics collected by experiments whereas

those in italics are intervals calculated assuming linear relations between observed data.

The last line of that table gives the mathematical derivatives while number of visited

nodes change as TTL increases.

G-ROME enables ring sizes to increase while there is available capacity on the inter­

connected servers. Nevertheless, if workload increases further than the globally available

capacity, G-ROME stops having any fundamental benefit even if queries make an ex­

haustive search of the network. In general, a server would need bigger TTL to discover

the required capacity in case of scarce as opposed to plentiful available capacity in the

network. Assuming that the system-wide workload is uniformly distributed over rings

as far as the available capacity is adequate, small TTLs appear to be suitable for finding

the requested capacity. As the global available capacity becomes scarce slightly bigger

TTLs are required. On the other hand, if workload is distributed on a small set of servers

(query hotspots) large TTLs appear to be necessary to find the requested capacity in

case of scarce available capacity and relatively small TTLs in case of plentiful available

capacity.

3.7 G-ROME Weaknesses

Though G-ROME design follows all requirements of section 2.11, it has a number of

weaknesses. It is tightly coupled to ROME processes and Chord networks as these

two have taken over a substantial part of those requirements. It fulfils the aims of the

current research but it is an application-specific (Chord) model. Overlay organisation

60 CHAPTER 3. GLOBAL ROME: PRELIMINARY MODEL

of servers is a principal design requirement of this research and thus any proposed

architecture should not rely on underlying applications/networks but provide necessary

processes to realise its targets. Full support of heterogeneity will inevitably augment

design hurdles especially in commit phase of remote resources. Topologies, protocols

and distributed algorithms (i.e. join/leave node actions) may differ among underlying

networks. Therefore, migrating nodes between networks requires an appropriate task

submission mechanism so that any new node joining a network is able to register with

it and participate in its traffic. These actions are interesting issues but beyond scope

of this research which is to discover and deliver appropriate resources to a requestor; it

then takes over their registration to its network.

As also stated in the introductory part of this chapter, G-ROME does not fulfil

all requirements of search mechanism as its aim is primarily to evaluate feasibility.

Therefore, existing discovery algorithms were used which however are optimised for

replicable fixed-location and multi-access resources. Service capacity does not fall into

this category and requires more adaptive algorithms able to trace resource movements

between networks. G-ROME deploys a semantic rewiring scheme to enhance search

efficiency giving priority to links between semantically close servers. This technique

gradually populates Neighbour Lists with links only to the closest servers which, under

certain circumstances, may result in isolated cluster formations. That is, semantic close

servers develop links between each other discarding more distant ones creating well­

connected clusters which, however, have no links to servers outside those clusters. In

that case, the whole overlay gets fragmented into several smaller G-ROME networks

reducing resource availability each server has access to; search efficiency may be affected

since queries cannot escape those clusters.

Each query carries a set of server addresses which compose its propagation path.

This ensures that no such path contains cycles without, however, eliminating server

revisiting. As a query forks to a subset of neighbours in each server of its path, there

are a number of parallel query paths originated from same requestor. Each such path is

not aware of its 'sibling' paths and therefore it may revisit a number of servers already

reached by a parallel similar one. Instead of appending visited server addresses at the

end of a query, query ids should be cached for some time in every server.

3.8 Summary

This chapter describes the G-ROME architecture, which aims to reduce the number of

failed user queries in DHT-based netwo~ks that experience high workloads. G-ROME

achieves this by first creating a Gnutella-like interconnection of independent P2P net­

works and second by providing mechanisms that enable overloaded networks to use the

underlying interconnection in order to acquire spare nodes from underutilized networks.

The resulting system is simple and a number of experiments have shown that it can sig­

nificantly increase a network's ability to deal with considerable increases of its workload.

~Ll __________________________ ~
Hoverlay: Architecture Specification

Hoverlay is an Unstructured P2P-based management system that enables sharing of non­

replicable reusable resources focusing on service capacity. It facilitates the cooperation

of heterogeneous networks for improving spare (currently not used) capacity utilization

in the whole system. Its overlay consists of a set of interconnected servers each of which

represents nodes of an underlying network. A node can be a mobile device, workstation,

cluster, supercomputer or any arbitrary interconnection of them. It aims at transferring

nodes from one underlying network to another so that their capacity can be shared

between networks.

Sections 1.5 and 2.11 form the frame within which the proposed architecture needs

to be designed. G-ROME, which heavily relies on ROME (see section 3.7), only par­

tially addresses the principles described there. Hoverlay uses a number of G-ROME

features supporting at the same time wider heterogeneity and addressing the latter's

shortcomings. Though, as all Unstructured P2P Networks, its efficiency heavily de­

pends on deployed search algorithms, its design is not tightly coupled to any of them.

It provides flexibility of d~ploying various ones. However, certain aspects of its design

may affect search algorithm designs. The algorithm to be adopted for searching service

capacity resources, Stalkers, is studied in chapter 5. Following a similar table as the 3.1

one, its requirements become clear.

Hoverlay is a two-layered architecture (servers overlay and underlying nodes/resources)

resembles on certain points to G-ROME. However, unlike that, Hoverlay needs to address

all those requirements without depending on ROME or Chord. Underlying nodes may

be in any kind of centralised or distributed formation: P2P (Unstructured/Structured),

Grid, client-server etc. As an effort to avoid overlay fragmentation, it does not use se­

mantic contextualisation of resources or requests. However, rewiring is a technique used

here, as well, not for server clustering but rather resource traceability purposes as thy

migrate from server to server. Finally, message caching by every server is introduced to

prevent cycles on query propagation paths.

Hoverlay is based on a set of assumptions to make its concept feasible. All nodes

accept incoming connections either laying behind a firewall/NAT or not. This is an

implementation-oriented problem but rather important for deploying Hoverlay in real

61

62 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

Requirement
1. Pools to host free resources only
2. Each pool monitors one or more resources
3. Each resource is monitored by one and only one pool at

any time
4. Nodes need to re-register once they change status from

busy to underloaded
5. Adverts of same resource are not the same over time
6. Resources re-register with local pool
7. Service capacity specification as a non-replicable advert
8. Multi-hop searches on interconnected pools
9. Once resource is discovered, fetch its advert into request­

ing domain (remove it from providing and place it in re­
questing pool)

10. P2P interconnection of resource pools
11. Overlay of pools is an Unstructured P2P Network
12. Adapt links to track node movements
13. Search technique able to trace node movements

Layer

Hoverlay

Stalkers

Table 4.1: Mapping of proposed system requirements to G-ROME layers

environments. There is significant work [91], [95], [19], [50], [105] on these issues with a

variety of solutions for different both hypothetical and real environment settings. Each

server may only (if any) provide the whole requested capacity and no resource reservation

scheme is deployed to enable partial answers. A voiding partial answers simplifies the

discovery mechanism and helps overlay to deal with resource variable availability and

high failure rates of nodes and servers. Reserving unreliable nodes could easily result to

deadlock situations and increase the query failure rates.

4.1 Architecture Overview

A Hoverlay server uses only a random list of other server IDs (Neighbour List) to share

its own resources and discover new ones in their overlay. Whenever necessary, a local

(requesting) server forwards queries originated from underlying nodes (internal queries)

to its neighbours and waits for an answer. A Node Pool, embeded in every server, keeps

records of available underutilized nodes and tries to satisfy an internal query using that

capacity reserving as much as possible. Any extra amount of capacity (if at all), not

provided by local pool, is queried to neighbouring servers. Each request has a lifetime

which is the maximum time a requesting server may wait for answers from the overlay.

A query terminates if its lifetime expires or an answer is received.

In case of an external query (sent by another overlay server), servers try to completely

satisfy it using capacity in their local Node Pool only. A pool reserves, if there is

locally sufficient capacity, at least as much as the query requirements and initiates a

handshaking protocol to deliver those resources to query originator server. Otherwise

(not enough capacity available), it forwards the same query to its server neighbours

4.1. ARCHITECTURE OVERVIEW

---.-r
Server

,.• __ ._ _•................ -.......... .
! I N .. ~::w'U.

i Node Pool

Query Processor
(QP)

:=~=Pl -::---l---::-:-;
i UN Relocator (UNR) i
L .. __ _ .. _ _ __ _ l

63

UN : Underlying Network

; Server) : Capacity OutSourcing
Management Overlay Server

: server or client process

o : safety resources

o : rescurce (capacity) node

Figure 4.1: Capacity OutSourcing Management Overlay System architecture overview and com­
ponents

without reserving any resources. Resource reservations from remote servers follow two

rules: a) responders should fully satisfy the required capacity and b) each resource

must be fully reserved i.e. a server cannot reserve a portion of its capacity. Though

a server tries to reserve just about enough resources to address the requirements, the

indivisibility feature of service capacity may force it exceed the required amount. Figure

4.1 illustrates the main Hoverlay components.

All three Hoverlay server components (Neighbour List, Node Pool and Query Proces­

sor) are for handling incoming queries and answers. The Underlying Network Relocator

resides in every underlying node accomplishing its logical movement as well as monitor­

ing its workload:

• Neighbour List (NL) determines the next destinations of a forwarded query. It

applies the server forwarding policy (if flooding all neighbours are selected, a sub­

set otherwise). Due to intermittent behaviour of service capacity, NLs implement

blind search techniques only as otherwise information collected in case of informed

techniques would quickly get out-of-date (see section 2.9). A number of different

search techniques are under evaluation to identify key features that affect search

efficiency and would play important role in the design of Stalkers. Following ar­

chitectural requirements, there is no monitoring or updating cherne to guarantee

good direct connection of servers with their neighbours; thus reducing mainte­

nance costs of these lists and practically unbinding system efficiency from resource

reliability. This may improve system applicability in large-scale networks. How­

ever, the list gets refreshed either upon receiving and answer replacing the oldest

neighbour wi th the answer originator server or periodically (manually defined time

intervals) with the external incoming query originators. These frequent updates

help on keeping the overlay connected .

• Node Pool (NP) stores adverts of free nodes until they are reused. Internal

queries may reserve any amount of capacity available whereas external ones can

only reserve the capacity that fully satisfies their requirements . Node Pools keep

some of the available capacity (safety capacity) for use by underlying busy nodes

64 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

Type Description
register Registers a UNR with a server. Each server keeps track of available nodes

to serve any incoming query.
query Used by a UNR and servers asking the overlay for available nodes to help

an overloaded one.
response Used by a responder server when a received query can be satisfied
move Used by the requesting UNR to submit the appropriate application and

configuration to the discovered node
ack Used by both nodes and servers to positively/negatively respond to a re­

quest. In case of registration it also transfers the Neighbour List of the
registrar server.

Table 4.2: Overlay message list description

only. No external query is satisfied if the capacity availability in a Node Pool is

lower than its safety level. Safety capacity is used to serve only internal queries

produced by small fluctuations of workload of underlying nodes. It prevents a

large number of queries from being forwarded to the overlay. The safety capacity

size is a percentage of the average requested capacity from the underlying nodes

within the last few time units (time frame). This percentage and time frame are

application specific and are configured by server administrators .

• Query Processor (QP) processes any incoming query and performs all the com­

munication activities of a server. It caches any internal and external query for a

given period of time and interacts with Node Pool to satisfy it, if possible respond­

ing back or forwarding it to neighbouring servers otherwise. In case of internal

queries, it waits for the answers. As soon as an answer is received it merges the

discovered capacity with that reserved in local Node Pool, if any, and acknowleges

back .

• Underlying Network Relocator (UNR) resides in underlying network nodes

and is responsible for controlling node relocations from one network to another.

It is used by remote servers that nodes migrate to.

4.2 Overlay Interaction Messages

Hoverlay communication protocol defines five messages for registering an underloaded

node with a server, asking overlay for underloaded capacity, responding with a list of

nodes and realizing the actual migration of a node from one underlying network to

another as shown in Table 4.2. Figure 4.2 demonstrates the interaction of nodes and

servers in case of server and node registration, query forwarding and node migration.

Each Hoverlay message has a header and a payload. The header has fixed size and

consists of four fields and the payload has variable number of fields and size. Header

field sizes follows those of a Gnutella message header [85J as shown in Table 4.3.

TTL represents the maximum number of steps a message may travel on servers

4.2. OVERLAY INTERACTION MESSAGES 65

Header Payload
MessageID: 16byte TTL: Ibyte Type: Ibyte Length: 4bytes

Table 4.3: General Hoverlay message header structure

overlay. This prevents messages from visiting every node of the network saving it from

excessive traffic. Type is a code specifying message payload type (register: OxOl ,

query: OxlO, response: Oxll, ack: OxOO, move: Ox20) and is used by message

receivers to appropriately understand its payload fields. Length of payload makes each

message distinguishable from a next one e.g. in a buffer and helps receivers to parse

variable-length payloads.

Message ID is a 16-bit message unique identifier. Any server should not process a

query more than once to prevent infini te loops and unnecessary messages on the overlay.

Each server, upon receiving a message, uses its Message ID and its own local cache to

check whether that has already been processed. A query lives in a cache for a total of

TTL-hops+l time units, where TTL-hops is the number of remaining hops a query may

travel beyond current server. A node uses the Message ID of an answer to verify that it

relates to a, not yet answered, query it generated sometime in the past.

Some fields are common for more than one message types. IP and Port are essential

for messages that require connection establishment between two entities to be transmit­

ted i.e. register. query, response and move messages. Capacity specification is necessary

for register. query and response messages.

• Port: (2 bytes) listening port of a message originator at which an incoming con­

nection may be accepted

• IP: (4 bytes) IP address of message originator

• NT: (2 bytes) network throughput in kbits per time-unit that a node requests or

makes available

• PT: (3 bytes) processor throughput - the first byte is used for the percentage of

quory
forwa,dlng

'-'

(~J

""""IAr

- - -------~----- - -~
query query

roo:nnno:",

. ---------~-------~ -----' . ,----
move

~------------------
ack

(N~eB J

~ -IaQ,='''IA' ___ 1

---------~-------~

I
I

node
,egislratoon

Figure 4.2: Hoverlay communication sequence diagram

66

Type
OxOl

Ox 10

Ox 11

Ox20

OxOO

CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

Fields
[PortIIPINTIPT] - IP and Port for incoming connections and the maxi­
mum shared capabilities of the node/server to be registered with the overlay
[PortIIPINTIPTIS:lbyte] - IP, Port, requested minimum NT and PT of
the requesting server. The response has to contain nodes each of which has
a minimum NT and altogether reach PT CPU speed if S=OxOO or otherwise
each one has a minimum PT and altogether the NT.
[PortIIPINTIPT]1...* - A list of IP, Port, maximum shared NT and PT
of discovered nodes
[EL:4bytesIEIFL:4bytesIF] - The executable E of size EL (in bytes)
is necessary for a migrating node to participate in the new network. Its
configuration file F has size FL (in bytes).
[A:lbytel(PortIIP)1...*] - A=OxOl if the acknowledgement is positive
and A=OxOO if negative. If used in reply to a registration request a list
of Port,IP tuples are followed representing the Neighbour List of registrar
server.

Table 4.4: Hoverlay message payload description

the CPU usage required or shared and the remaining two for its nominative CPU

cycles in millions per second (MHz)

Table 4.4 shows the payload structure of each message type. Boolean (Le. S, A)

fields must have the minimum size of one byte. As in Gnutella Specification [36] fields

that represent file sizes (Le. EL, FL) use four bytes. It is assumed that an executable

file and its configuration in a move message cannot be more than 4.2Gb. In case the

executable startup requires a large dataset, it should use an application specific protocol

to fetch and/or access that dataset. Port, IP and NT field sizes are adopted by Gnutella

Specification, too. The PT field allows numbers up to 65536 expressing CPU speed in

MHz. Hoverlay has to take two actions with regards to these PT and NT values:

• Application monitoring: UNR has to monitor changes of both these values and

generate queries requesting the appropriate capacity (tuple of those values),

• Resource Matchmaking: Servers need to match that tuple of incoming queries with

those of free nodes in pools.

For more information on these actions refer to 4.5 and 4.4 sections respectively.

4.3 Server States

Every server has two main mutually exclusive states: bootstrapping and active states.

When in the former one it tries to register with the overlay and while in the latter it

reacts to messages from overlay and its underlying network. The active state has two

views, not necessarily mutually exclusive: outgoing query and incoming query views

which refer to handling a query coming from an underlying node or an overlay server,

respectively.

4.3. SERVER STATES 67

4.3.1 Bootstrapping State

A bootstrapping process is invoked if a server has empty Neighbour List or it has re­

ceived no answers or external queries for some time; on any of these cases the server is

practically disconnected from the overlay. Server bootstrapping while joining the overlay

is equivalent to its neighbour list initialization. A new server (unregistered) uses an ex­

isting one (registrar) to retrieve a fresh Neighbour List. Both registrar and unregistered

servers have to record each other as one of their neighbours, rejecting randomly another

one if necessary, thus reducing the overlay fragmentation or server isolation probability.

This registration process ensures low cost of the overlay bootstrapping and expansion.

As soon as a registration message reaches an existing server, taking the role of

a registrar, it responds with an acknowledgement message accompanied with its own

Neighbour List. The unregistered server uses it as its own temporary Neighbour List

to send the same registration message to all its new neighbours which respond with

their own neighbours. It appends to this list those new neighbours until its Neighbour

List is full or no more acknowledgement messages are received. If no acknowledgement

messages are received within a pre-set waiting time, it retries and exponentially increases

that waiting time.

4.3.2 Outgoing Query State

Underlying nodes construct and send the appropriate queries to their local server whose

Node Pool responds to Query Processor with an empty answer, if no nodes can be

found, or, otherwise, with a list of nodes that satisfy as much of the requested capacity

as possible. If that query is still not completely satisfied the Query Processor forwards

it to a subset of its neighbours requesting for the remaining capacity that the local pool

cannot provide and reducing its TTL by 1. Otherwise, a proper answer is sent back

to requesting node. Each. query is copied in cache before Query Processor forwards it

and waits for answers. As soon as its lifetime expires or first answer arrives, the cache

removes the query. Any answer received without its corresponding query pair being in

cache is rejected and negatively acknowledged to its originator.

Each response carries a set of nodes that represent discovered capacity which is

at least as much as the requested amount. As soon as it reaches a requesting server,

the Node Pool retrieves and reserves its discovered nodes alongside to locally already

reserved ones. Simultaneously, the query processor sends a positive acknowledgement

back to answer originator server and a complete answer with all nodes (local and remote)

reserved in local Node Pool back to the query originator node. The pool, then, waits for

a positive or negative acknowledgement by query originator and removes these reserved

nodes, if positive, or frees them, otherwise.

Response originator may receive a negative acknowledgement if there is no need for

extra capacity any more or if delivered response is invalid (e.g. one of retrieved nodes

has failed). A response to a requesting server may be unnecessary if the corresponding

query is not in its cache; this may happen in three cases:

68

L..
o

~en
Gl en
:::l Gl
og

n:

Gl­
"0 0 o 0
zo..

CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

[node overloaded] [otherwise]

[server ex/sts], send query

Figure 4.3: Process flow for queries originated from an underlying network

• requesting server fails and/or its cache is completely cleared for some reason (e.g.

server failed).

• a valid response about the same query is already delivered and cache is cleared

from that specific query ID.

• if new resources, sufficient to serve the request, appear in Node Pool of requesting

server while waiting for responses e.g. if underlying nodes become underloaded.

These are wrapped and delivered via an appropriate answer message to query

originator node.

In case of invalid response, requesting server keeps waiting for another answer till query

lifetime expires. If query fails and its originator node is still in need of capacity, it

prepares a new query to local server seeking nodes to satisfy the current workload; that

may include both the unsatisfied former request and any extra necessary amount or

just a portion of them. Figure 4.3 presents the flow control when Hoverlay reacts to an

underlying query.

4.3.3 Incoming Query State

An Hoverlay server has a different behaviour upon receiving a query originated from

another from the overlay. Its primary target is to verify that it has not already processed

a query with same ID by checking its cache; if a message with same ID exists in cache

then the query is dropped and no action is taken or, otherwise, Query Processor caches

it and transfers the control to local Node Pool.

Once Node Pool processes are triggered by an incoming external query, it tries to

match all those requirements over its resource availability. That pool needs to check two

things before positively answering to the query:

4.3. SERVER STATES

....
0
(fJ
(fJ
Q)
u
0 a.
~
Q)
:J a

:;
0 .o-
r. .!!!
Cl.....l

I 'iii
Z

aJ--g g
za.

Underlying Network
Relocator

[query in cache]

lack received OR timeout]

Figure 4.4: Fmcess flow for queries originated from other servers of the overlay

• if it hosts more capacity than the safety one, and

• if that capacity is sufficient to completely serve the query requirements.

69

Both need a positive answer so that the pool prepares an response back to query origi­

nator server. After this resource extraction from pool its capacity availability might get

lower than its safety level. This is to improve search efficiency and success giving pri­

ority to servers that have immediate needs for support; given that local pool host more

capacity than its safety level, it is assumed that it has no immediate needs generated by

its underlying nodes. The matched resources, if any, are reserved and returned to Query

Processor who prepares the appropriate answer to deliver to query originator waiting

for its acknowledgement.

That answer stays in cache for some time as the providing server needs a way to

determine whether its pool should remove or free the reserved capacity. If the other end

(requesting server) remains silent for that period of acknowledges back positively, these

resources are removed from local pool. Though this may affect resource availability

and contribute to reliability, it helps system to prevent multiple adverts and potentially

parallel access attempts onto resources. Moreover, it is assumed that these resources

are already unreliable and are able to detect connection loss and re-initiate registration

process if necessary. In case of a negative acknowledgement from requesting server, the

provider frees those resources for future use by internal/external queries. A response is

cleared from the cache as soon as an acknowledgement is received or its lifetime expires.

In case Node Pool has insufficient capacity to fully serve query requirements, the

Query Processor reduces its TTL counter by one and if that is bigger than zero it is

forwarded to neighbouring servers from local Neighbour List. Using the same notation,

Figure 4.4 illustrates the process control flow in case a query has been received from the

overlay:

70 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

4.4 Resource Matchmaking

Hoverlay is to be deployed on highly dynamic environments to support primarily traffic

needs of networked applications. It does not assume guaranties of resource availability

and therefore it cannot 100% rely on the service capacity of registered nodes. This

makes the use of kbps and MHz two more feasible parameters of their capacity. A server

upon receiving a query, it starts the matching process on this Node Pool. Based on the

S field of the query, it tries to discover nodes that cumulatively or individually satisfy

those capacity parameters.

Though the required network throughput can be easily compared against those of­

fered by free nodes, CPU speed and usage comparisons in heterogeneous environments

are more difficult. Hoverlay assumes that a multiplication of the CPU usage with its

clock speed gives a rough estimation of the required processing capacity. More detailed

comparisons need information of both hardware (e.g. cache, CPU architecture, MIPS,

memory speed, I/O latency) and software (e.g. language or executable, compiler ver­

sion, operating system) environments of nodes. Such matchmaking is well-documented

and used by Condors. However, these two systems differ in purpose: Condor focus on

job completion whereas the proposed one here on traffic and enables nodes to request

for extra capacity if necessary. CompuP2P [58], as a computational resource sharing

paradigm deployed on dynamic P2P Networks, also uses cycles/second to represent pro­

cessor capacity.

The following scenario demonstrates a simple matchmaking process on a server with

two free nodes in its Pool. Though this is a rather simplistic example, section 4.10

provides other alternatives and criticism on how this resource matching can work in real­

world environments. There are three nodes involved in this interaction: the requestor,

and the two available ones. Their configuration appears below:

1. Node A (requestor): Its capacity is NT = 100kbps and PT = {50%, 2000M Hz}

and its overload threshold is NT = 100kbps and PT = {40%, 2000M Hz}. As­

suming that its load is: NT = 100kbps and PT = {60%, 2000M Hz} then it seeks

for resources satisfying the: NT = 100kbps and PT = {20%, 2000M Hz} with

S = OxOO. That is, the query that reaches the server host of nodes B & C looks

for a set of nodes each of which has a minimum network throughput 100kbps and

collectively {40%,2000MHz} processor capacity.

2. Node B (free): Its overload threshold published in its server Pool is NT = 20kbps

and PT = {20%, 2000M Hz}. This node cannot match the requirements as its

network throughput is well below the requested one.

3. Node C (free): Its overload threshold published in its server Pool is NT = 200kbps

and PT = {70%, 1000M Hz}. Its network throughput is enough to cover A's

requirements. The product of its CPU usage with clock speed is bigger than that

of query's; that is, 70% * 1000MHz > 20% * 2000MHz.

Therefore, Node C migrates to requesting node underlying network to take on part of

4.5. UNDERLYING NODE RELOCATOR 71

Network
uderloaded normally loaded overloaded

underloaded register query

CPU normally loaded query
overloaded query query query

Table 4.5: Actions of UNR with respect to the state of monitored network application

requestor's workload.

4.5 Underlying Node Relocator

UNR is a proxy server residing in underlying nodes monitoring CPU and network usage

of an application. The application is manually registered with UNR which measures

CPU cycles spent and data volume transferred over the network connection by the

application client on a per time-unit basis.

This UNR server may register and create a configuration profile for more than one

application. Apart from the application installation directory path and filename, UNR

profiles two tuples (min, max) representing the minimum and maximum allowed CPU

and network throughput (CPU cycles in MHz and kbits per time-unit respectively) per

application. These thresholds are used as metrics to trigger an action (register, query)

to Hoverlay. From Hoverlay perspective, a UNR is a client which forwards appropriate

messages to servers while monitoring an application.

A registration message is sent to the local server if its connection with that UNR

is lost or both network and processor throughput used by the application are below

their corresponding minimum thresholds (underloaded state). If any of these metrics

is above its maximum threshold then the underlying node is overloaded and a message

requesting for help is sent to that local Hoverlay server. Table 4.5 presents the actions

a UNR can take based on the state of these two metrics. A node generates queries if

either its CPU or network interface are overloaded and registration messages if both of

them are underloaded.

An application is normally loaded if its consumption in CPU and network throughput

does not exceed their maximum thresholds and are not both below their minimum ones.

While the max threshold protects the application host from devoting too many resources

into the network it participates, the min one improves its utility. The levels of processor

and network bandwidth usage are determined based on the application activity the last

few (user input) time units it was active. That is, the UNR records an activity history

to calculate these average throughputs.

The current network throughput of an application represents the total data volume

that is received and sent within current time unit whereas processor usage is the average

CPU cycles consumed by that application within that time unit. A query originated

by a requesting node specifies the minimum requirements in network and processor

throughput. Every Hoverlay server, receiver of that query, tries to select a minimum

72 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

subset of nodes. Hoverlay gives the option to overloaded nodes of choosing one criterion

(high priority) that needs to be satisfied by every selected node and the other one (low

priority) collectively and cumulatively by all of them.

4.6 Server and Node Failures

As analysed in system principles and requirements sections (see 1.5 and 2.11), Hoverlay is

to be deployed in large-scale unreliable heterogeneous environments without any guaran­

tees on resource availability. Therefore, both servers and underlying nodes are assumed

to be hosted in unreliable machines and have equally unstable connections.

When a server fails all links from underlying nodes and its neighbours are broken.

Therefore, no queries, answers or registration messages may be sent from/to that server.

If no answer can be sent, neither can an acknowledgement since it is only sent after

an answer. All reserved nodes in its pool become free and its cache clears as soon

as the server returns to active state or rejoins the overlay. It is assumed that the

acknowledgement is received immediately after a successfully sent answer.

While the local server is failed, its underlying nodes keep generating queries with a

lifetime asking each time for any additional capacity they may need. Underlying nodes

try to send periodically a registration message until a local server is able to respond

positively. However, it is an application-specific parameter whether these nodes will

seek for another server to send queries or registration messages to or simply wait for

their last and failed one to become active again. If a generated but not sent query

expires, its requested capacity is added to the next one. This saves the overlay from

queries asking for huge amounts of capacity when the local server comes back online

or another is found. If a server has permanently failed, its underlying network cannot

reconnect to the network unless a server with the same DNS is activated or the nodes

are reconfigured to use another server.

Similarly, a Node Pool may contain broken links to failed free nodes. Therefore, an

answer may contain both alive and failed nodes. This is detected in the requesting node

which drops that answer and original query as failed. If a requesting node is failed,

the Query Processor of its local server cannot communicate to deliver e.g. a potential

answer and thus, it frees any reserved node for that query.

The following experiments aim to evaluate the behaviour of Hoverlay in environments

under different churn ratios. For that purpose we run simulations with the following

network configuration:

• 1000 servers and 50000 nodes,

• each node has on average 10 units of capacity ranging from 0 to 20 (500000 units

of global capacity),

• each server links with four other servers and the TTL of each query (starting from

the underlying node) is 4.

4.6. SERVER AND NODE FAILURES 73

slIccess(,100%) -0% churn - 2% churn - 6% churn - 14% chllrn

0.8

06

0.4

0 2

o+-~--~~--~,-~--~~--~-,--~~~--~-,--~~--~~~~~

o 50 100 150 200

(a) Hoverlay success rote

messages

80

- 0% churn - 2% churn - 6% churn - 14 % churn

70

60
50
40

30
20

1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.s
o 50 100 150 200

(b) Messages per query spent by H overlay

Figure 4.5: Hoverlay behaviour under churn

• the system-wide workload increases linearly (ranging from 0 to 500000) throughout

the 210 timeslots of the experiments,

• the churn rates simulated where: 0%, 2%, 6% and 14% for both servers and

underlying nodes.

For all those experiments, the system uses Flooding to discover resources. It is a widely

used search mechanism which deploys no neighbour selection heuristics. Thus, the

conclusions from the results cannot be biased by the search mechanism.

A fixed workload amount per timeslot (A = 2381) tops-up the system-wide one.

However, 20% of that amount is removed from the system on every timeslot and, hence,

120% is added so that A remains fixed using randomly selected underlying nodes. Due to

this system workload linearity, once a node has migrated into an underlying network it

stays busy until it either fails or its workload falls below its underload threshold. Failed

nodes rejoin the system as free resources after a random waiting time period. The

success rate starts dropping fast as soon as the system-wide capacity gets exhausted.

This increases the number of queries and as success likelihood drops these queries flood

the network up to their horizon producing more and more messages. In principle, the

bigger the churn rate the more fresh capacity appears in the system in every timeslot.

Figures 4.5a and 4.5b illustrate the success rate achieved by Hoverlay and mes­

sages spent under the churn ratios simulated. As the global workload increases, queries

74 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

initially use resources in requestor's close vicinity before they exhaust their horizon.

Therefore, with the aim to keep the success rate at a maximum level they spend more

and more messages while pools get empty of capacity. This explains why, for all churn

rates, the number of produced messages start increasing fast before the success rate

drops fast. The fast drop of success likelihood is at the point that queries exhaust their

horizon and no more resources can be found.

Despite the re-registering of previously failed nodes the global workload increases

much more than that fresh capacity which is insufficient to retain the good success rate.

In fact, the more nodes fail and re-register later on the more workload can be satisfied.

This explains why the success rate improves in the presence of higher churn even in

situations of high workload. Within an environment of many server failures queries

have an increased probability to get interrupted and stopped before their TTL expiry.

This may reduce the success rate even in resourceful environments as is the case in the

first few timeslots of of figure 4.5a. If famous (many incoming links) servers fail then

the impact of churn is bigger in success rate causing wider fluctuations and reducing the

average query path. More extensive results with their analysis on Hoverlay's behaviour

under churn can be found in our publication [40].

Based on the above, churn is actually beneficial to Hoverlay and positively biases

its performance evaluation. Arguably then, it makes sense to omit it as a parameter in

further experimentation.

4.7 Experiments and Evaluation

With a view on Hoverlay principal concepts and functionalities, the following set of

experiments serves as a proof-of-concept and basis for a detailed evaluation. An Un­

structured P2P Network of servers (pools of resources) comprises its backbone designed

to support on-demand resource migration between networks. Both this architectural

element (P2P Overlay of pools) and sharing technique (resource migration) comprise

two main sources of differences compared to other architectures. Existing competitive

resource sharing systems, appropriate to work as a benchmark appear below:

• Condor: a local pool (manager) to facilitate resource sharing within an individ­

ual network (centralised architecture). Such systems try to improve resource uti­

lization within a single network by using a central resource aggregator (pool).

Experimentation with Condor systems may provide useful material for evaluat­

ing possible costs (e.g. traffic, latency) introduced by Hoverlay as it proposes an

arbitrary connection of similar systems .

• Flock of Condors; this category represents Condor-like systems with intercon­

nected (via an Unstructured P2P Overlay) managers. They basically assume static

links between pools and no mobility of resources. As documented in Chapter 2,

current proposals for Unstructured P2P Condor Flocking, though weak, come

closer to Hoverlay than any other. Their common features and behaviour will act

as the principal benchmarking for all evaluation factors.

4.7. EXPERIMENTS AND EVALUATION 75

As stated earlier in this chapter, an Unstructured P2P Overlay of servers supports

resource volatility minimising any registration costs of underlying nodes. Hoverlay­

also assumes that resource migration may reduce latency introduced by queries. All

experiments below need to use a set of performance metrics against which all these

three resource sharing paradigms (Condors, Flock of Condors and Hoverlay) will be

assessed and Hoverlay's claims and assumptions confirmed:

• Success rate: percentage of successful queries over the total number of those gener­

ated in the system. Due to workload fluctuations, in certain cases answers delivered

to requesting nodes may be unnecessary as their load has fallen to normal levels

while waiting for a response; such cases are not precluded from that percentage.

This metric serves as an indication of Hoverlay efficiency in finding the required

by overloaded underlying networks capacity.

• Hops per Answered Query: Query latency is an important factor that represents

the elapsed time from query generation till answer delivery to requesting node.

However, it depends on several factors such as connection speeds, processing power

and memory of intermediate servers on query paths. As these factors are difficult

to predict, the path length (hops) of a successful query can be used to estimate

its latency without loss of generality assuming that all hops are temporally equal.

This metric corresponds to the average path length of successful queries from

their requesting nodes until first provider server. Late responses that a server may

receive for an already satisfied query do not contribute to it.

• Satisfied User Queries: number of additional user queries (requested capacity) that

overloaded networks have managed to satisfy with extra capacity discovered via a

given overlay. If an underlying node gets a response with its requested capacity,

that system has made it possible for these user queries to be processed successfully.

• Messages: number of messages (traffic) produced in the system by any operation

(registrations, queries, answers and acknowledgements).

4.7.1 Simulation Practices

For these evaluation purposes, a C++ object-oriented simulator (called Omeosis) was

developed. It can simulate time as a sequence of timeslots during which any message

(query, answer, registration, acknowledgement) may travel for a single hop only and

ensures their concurrent processing and propagation. It assumes that no connection

introduces any extra delay; thus, any message produced during a timeslot reaches its

next destination on the following timeslot. Timeslots are equivalent to iterations of the

main loop. Therefore, every iteration executes three phases:

1. Set global workload: add or remove workload on a random subset of underlying

nodes. Each node of this subset takes on a chunk of that workload (w) defined as

a random integer within: w = {xd~ : 1 ~ x ~ max (en where max (e) corresponds

to the maximum capacity a node can have. This chunk distribution finishes as soon

76 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

as the whole additional workload of this iteration is consumed; this determines the

size of that subset. Thus, there is a non negligible probability that a) a node takes

on two or more, b) multiple underlying nodes of a single server take on at least

one or even c) no underlying node of a server take on any chunks.

2. Generate queries: once a message reaches a node or server another appropriate one

(if necessary) is queued in its output buffer for delivery on the following timeslot.

Apart from output buffer, messages are also stored in caches with the appropriate

expiry time. If an underlying node is still overloaded, as soon as the waiting time

of its cached query expires a new one with same requirements is generated and

again cached for an exponentially increasing period (Le. TT L + 2repetitions+l).

Therefore, message queues in output buffers follow the order of incoming ones.

Exponential increase of waiting time before retry is a usual practice in request

submission to networks and help them avoid bursts of requests especially during

high load situations.

3. Send produced messages: while both phases above may be in parallel or sequen­

tially in any order executed, this one has to follow both. Otherwise, an incoming

message would probably trigger another message generation and delivery within

the same timeslot: violation of the step-by-step and concurrent message propaga­

tion.

Every network component (server or underlying node) incorporates a set of modules

which facilitate communication (input and output buffers), message caching, time event

handling (reactions to time progress such as cache cleaning, message regeneration) and

message processing. Servers use a pool which can reserve resources upon request, free

resources if response is not accepted or otherwise release them. Apart from time events,

underlying nodes react to workload changes, too. An increase of their load may trigger

the suitable query generation module. Symmetrically, a drop to its load may force

the rejecting of pending queries in its cache. All experiments used the same initial

configuration of servers and nodes achieved by choosing the same parameters and feed

to the random number generator used throughout. Both of server overlay size and

number of underlying nodes are user inputs and remain fixed during the experiment.

The simulator first creates the server overlay and carries on with the underlying nodes.

As soon as it generates a server, it populates its Neighbour List with a random subset of

the previously created ones; thus, their popularity follows the order they were created

by resulting into a power-law network.

As with Hoverlay specification above, nodes appear in pools when their load is below

a certain threshold; thus, reserved nodes may still have some load below their threshold.

The global workload fluctuates based on a pattern predefined by user input; applying a

positive or negative workload per timeslot on underlying nodes implements a rise or drop,

respectively, of the global workload. A monitoring module records all actions triggered

by any event (message deliveries, workload changes, lifetime expirations) which finally

creates appropriate output files in both analytical and concise forms. These results

4.7. EXPERIMENTS AND EVALUATION 77

appear below.

Testing played an important role in Omeosis development phase. A module of the

simulator keeps track of every message delivered and records any change on any node or

server status. These files were input to Matlab and AWK scripts to parse and ensure that

certain tests based on a set of rules were successful after every experiment conducted

including the ones presented below. These rules which greatly helped on debugging

logical errors and ensure the simulator's expected functionality are the following:

1. Throughout experiments the number of servers and underlying nodes remains

fixed. Nodes can either be reserved or free in local pools or busy in underly­

ing networks. Summing up reserved, free and busy nodes should equal to the

initial number of nodes set as an input parameter. Similar rule applies to their

capacity, too.

2. Every node has one outgoing link to a server and no incoming ones. Servers have

a fixed number of outgoing and any number of incoming ones. Summing up the

incoming links of servers should equal to the outgoing links of both servers and

nodes. In case of Condor-based systems, without rewiring in place, all links of

servers should remain the same. However, Hoverlay introduces node migration

and, hence, the simulator must ensure that once a node changes its outgoing link,

the incoming ones of its provider server decrease and those of its requestor increase

by one.

3. Every query involves a sequence of messages which must be kept in order. That is,

query propagation on the overlay always follows a request from an underlying node

to its server; resource discovery terminates a query path and produces maximum

two consecutive answers which in turn trigger their acknowledgements.

4. No query may trav,el beyond its preset horizon and the number of messages pro­

duced by that query cannot exceed a theoretical maximum (propagation on an

acyclic tree-like network).

5. The total number of messages at the end of every iteration must be equal to

the sum of registration, query, answer, positive and negative acknowledgement

messages.

6. Moreover, acknowledgement messages should also equal registration and answer

messages as every such message is always followed by an acknowledgement.

Apart from automatic testing processes, log files record every message including their

sources, destinations, delivery timeslot and their content. This analytical information

was checked in two ways: a) random queries were selected and all their related messages

(queries, answers, acknowledgements) as well as the reactions of all servers and nodes

involved were manually traced, b) random underlying nodes and servers were also de­

picted and all messages they received/sent traced. This manual process was a testing

procedure following all main versions of Omeosis and all the experiments conducted.

78 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

4.7.2 Experiments Configuration

The system evaluation was based on two main environments selected to test different

aspects:

• Uniform Query Distribution: every node in the whole system has equal probability

with any other to generate a query.

• Hotspot Query Distribution: only a small subset of nodes produce queries. All

managers of these nodes are neighbouring servers and belong in the same area of

the overlay. That is, all underlying nodes of servers in the vicinity of a given centre

(centroid) have the same probability to produce a query; nodes of servers outside

that area have zero probability to become requestors.

These environments provide enough material to evaluate Hoverlay on the metrics

above. The experiments configuration is as follows:

• Network Sizes: 10 000 servers (i.e. independent networks) and 50000 nodes uni­

formly distributed among the servers. During connections initial setup, a node

links to any server with probability 10 too· Therefore, servers with no underlying

nodes cannot generate queries or provide answers but may increase the hops per

answered query and number of messages. All nodes are initially free and available

in their local pools.

• Capacity: each node represents capacity (c) of size between 5 and 10 (5 ::; c ::; 10)

units inclusive. The capacity density function shows the number of nodes rep­

resenting a certain amount of capa~~t;. As shown in figure 4.6b, it follows a

geometric distribution: d(c) = n) . Multiplying the number of nodes with

the sum of c * d(c) products gives a close estimation of system capacity: C =
10

50 000 "~4 ~ 300 000 capacity units. Though the representation of resource w2c-
c=5

capacity with a simple number is a bit abstract, without loss of generality, it is

useful to conduct experiments, produce results and conclude focusing primarily of

the contribution of this thesis with regards to the resource migration rather than

the resource heterogeneity. In real world scenarios, different representations of ca­

pacity may be used (see section ?? for more details). With node capacity deviating

from 5 to 10, the experiments practically assume 6 different node types; though

these boundaries could be extended they would not make significant difference to

the experiments.

• Connectivity & Time-to-Live: each server connects with a maximum 3 other ran­

dom ones. Its Neighbour.List initial configuration occurs during server's creation

with links to other existing ones. That is, the probability a server attracting a

new link from another one exponentially increases with latter's age thus resulting

into a power-law incoming-degree distribution. This Neighbour List size is small

enough to increase the average path length between any two servers making diffi­

cult the access of any resource from the vast majority of underlying nodes. The

4.7. EXPERIMENTS AND EVALUATION 79

10000 nodes -o-from servers ~from clients nodes

25000

1000 20000

100
15000

10000

10
5000

deglee
capaci

a
10 100 5 7 9 11

(a) Distribution of server-to-server and nodes-to­
server incoming degree

(b) Capacity distribution over nodes

Figure 4.6: (a) Server popularity among other servers and nodes distribution and (b) system
capacity distribution among nodes.

TTL of every query is set fixed to 7; that is, each query may access a maximum of
7 L 3t = 3280 (= 32.8% of all) servers. Practically, this percentage is lower as the

t=O
average number of servers another one may reach is 26.29; that is, only 0.26% of

Hoverlay overlay size. This becomes clear in figure 4.7a which presents a density

function of reachable servers (e.g. How many servers may reach 25 others in their

vicinity? -answer: 513) which follows a normal distribution .

• Workload: given the global initially available capacity, system-wide workload

should have both valleys and peaks fluctuating from 0% to even 150% of global

capacity. This helps the system evaluation under several situations like workload

increase/decrease, long-lasting strenuous high-load or relaxing low-load phases.

These fluctuations appear in figures 4.8 and 4.14a with respect to those two eval­

uation scenarios mentioned above.

Figure 4.6a presents the incoming degree distribution of servers distinguishing server­

to-server from nodes-to-server links. Both axes have logarithmic scales to improve read­

ability. As explained above, server-to-server degrees follow a power-law distribution as

only a small number of them are very popular; that is a result of the way new servers

join their overlay. This coincides with real systems based on preferential attachment

of new nodes onto older and more stable ones: e.g. Gnutella WebCaches [67]. It is a

reasonable network topology for Hoverlay; it is expected to have power-law properties as

strong providers will attract more links. Initial network configuration achieves a Pois­

son distribution of links from nodes to servers. Node migration (Hoverlay case only)

may distort this distribution. While good providers (pools with plenty of resources and,

thus, high node-originated incoming degree) attract more and more links they lose their

resources faster. Therefore, though there must be a correlation between the two distri­

butions presented in 4.6a, they do not necessarily coincide. Finally, figure 4.6b plots the

distribution of global capacity onto nodes (number of nodes with the same capacity).

80 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

servers 5.13% servers

500 2500

400 2000

300 1500

200 1000

"100 500

0 0
depth

0 10 20 30 40 50 60 a 10 15

(a) Distribution of max server horizon size (b) Distribution of max server horizon depth

Figure 4.7: Server horizon statistical properties: (a) max horizon sizes density (how many
servers have e.g. 15 servers in their horizon '?) and (b) max horizon depth (how many servers
have horizon of depth e.g. 5 hops'?)

It follows a geometric density function complying with the idea that most of Hoverlay

users offer low-capacity resources.

Despite the theoretical maximum number of reachable servers for each query (see

above), Hoverlay monitoring at its initial phase shows that this number does not exceed

57 (figure 4.7a), way lower to the theoretical one. That is the maximum number of

servers a query may visit via Outbound Neighbour Lists even with infinite TTL; thus,

servers overlay appears to have a number of cyclic paths. Without revisiting servers, a

server may access all its reachable servers with an average path length of 7.5 hops as

shown in figure 4.7b. Therefore, TTL = 7 appears to be an appropriate query path

length for this network configuration.

The small neighbour list size ensures that the overlay is a weakly connected graph

and each query, even if flooding is deployed, does only explore a small portion of the

network and therefore has access to a limited capacity size. This neighbourhood size

becomes even more important in hotspot query distribution scenario as, preserving the

same TTL, it helps the simulation of situations whereby resources may forever move

out the vicinity of a hotspot area. All the experiments below were run with the same

parameters apart from the input workload. The aim of the workload was to evaluate

Hoverlay in as many as possible situations:

• workload peak to levels well above system-wide capacity

• workload peak to levels below system-wide capacity

• short workload valley between two peaks

• long workload valley to levels well below system-wide capacity

• long workload peak to levels well above system-wide capacity

To improve readability of the produced plots, these workload situations appear only

once in the input data with one peak between every two drops or valleys and linear

4.8. EVALUATION ON UNIFORM QUERY DISTRIBUTION 81

transition between them. These experiments were run with real data from FTSE Index

of London stock exchange market. However, due to the randomness introduced from

the network configuration and capacity and query distributions the figures were very

complex, difficult to read and to draw conclusions from.

As the focus of these experiments is mostly the sharing mechanisms rather than

search efficiency, the deployed discovery protocol is set to a well-known and usual bench­

mark in Peer-to-Peer scientific community: Flooding. This mechanism minimises doubts

about results accuracy as it explores the whole vicinity of each requesting server. Being

more selective at query propagation at this evaluation stage, factors such as selectiv­

ity heuristics could distort results (e.g. k-walkers have unstable success rate and thus

results would be unclear and non-conclusive regarding benefits and costs of Hoverlay).

Flooding on a static overlay ensures that queries from a server, either in a Condor-based

or Hoverlay architecture, may explore the same servers; this eliminates one factor of re­

sults differentiation: deployed search technique. Further experimentation about search

mechanisms follow in Chapter 5. For similar reasons, these experiments have rewiring

deactivated; its evaluation appears alongside search mechanisms.

4.8 Evaluation on Uniform Query Distribution

Hoverlay evaluation with regards to uniform query distribution appears in the following

subsections. That is, on every timeslot certain amount of workload (positive or negative)

is distributed onto a uniformly selected random subset of nodes. Hoverlay is compared

against Condors, both disconnected and Flock versions (referred to in text and graphs as

Condors and Flock of Condors respectively) . Condors represent a centralised approach

while their Flock and Hoverlay two decentralised ones. Their explanation will follow an

observation-justification scheme. Throughout these graphs, there are three main colours

used: black for Condors, blue for Flock of Condors and red for Hoverlay; grey is mostly

used to highlight differences between those two latter systems on each evaluation metric.

While global capacity remains fixed as no node joins or leaves the overlay throughout

the experiments, global workload fluctuates as shown in the two-layered figure 4.8. Both

capacity - global workload - global capacity

400000 v~ /"- /'
300000 "'=7' ~ /'
200000
100000 '--____ .J

o
o 50 100 150 times lots 200

50oo~ l
-50000] workload per timeslot

Figure 4.8: Global Hoverlay workload and capacity: added or removed workload per timeslot
(top layer) and cumulative workload and system capacity (bottom layer)

82 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

layers share the same x-axis (timeslots) but their y-axes have same units (capacity) and

different scale. Bottom layer describes the workload added or removed per timeslot

whereas top one illustrates the system-wide capacity and cumulative load applied on to

the system. Fixed positive or negative new load produces linear increases or decreases

of global load at same intervals. After initialization phase, Hoverlay load fluctuates

between ~ and i of its capacity.

4.8.1 Query Success Rate

Figure 4.9 presents Condors, Flock of Condors and Hoverlay success rates. Based on its

plots, Hoverlay outperforms both disconnected Condors and their Flock with regards to

the percentage of successful over the total number of generated queries. Throughout the

experiment Hoverlay achieves better than Condors (up to 50%) success rate confirming

that interconnecting individual networks contributes to the satisfaction of more user

requests. For most of the experiment duration, when the system is normally and heavily

loaded, Hoverlay manages to satisfy bigger portion of queries (on average 5% more)

compared to Flock of Condors.

Any explanation of this improvement in success rate achieved with Hoverlay should

derive from the fundamental differences of the two systems: resource migration. Indeed,

the reasoning is two-faceted: a) resource reservations in Flock of Condors last longer

and b) resource migrations are also translated to query migrations. In details:

• Service capacity is a highly dynamic resource; one of the system design require­

ments was that it should not rely on guarantees that migrated resources have

the capacity their provider pools claim to have. A requesting node may reject

discovered but unnecessary or unsuitable capacity. Resource migration eases the

re-registration of this capacity with requestor's pool avoiding extra messages and

latency to return it back to its provider pool. In case of Hoverlay, once capacity is

discovered an answer travels from remote provider (Server A) to requestor server

(Server B) which then, at the same time, acknowledges the provider and wraps

that answer to forward it to the underlying node. If for any reason that capacity

success r100%) - Condors - Flock of Condors - Hoverlay

0.8

0.6

0.4

02

50 100

timeslots

150 200

Figure 4.9: Success rate of disconnected Condors, Flock of Condors and Hoverlay in a uniform
query distribution environment

4.8. EVALUATION ON UNIFORM QUERY DISTRIBUTION 83

queries

180000
160000
140000
120000
100000
80000
60000
40000
20000

Phase A

o -1-- ----,--"

Condors

Phase B

I • Total Queries . Satisfied Quenes
I
I Phase C
I
I
I
I
I
I
I
I
I
I
I

~i~"~-.~"L-~BD~-i~ .. --~--.. ~~~ .. ~
I
I

Condors I Condors

Figure 4.10: Cumulative number of total and satisfied queries for Condors, Flock of Condors

and Hoverlay

is not used, it registers with Server B; providers get acknowledgements on the

next timeslot (reservations last 2 timeslots). However in case of Flock of Condors,

rejected resources need to return back to the provider with the acknowledgement

to their response. Before Server B acknowledges Server A, it has to wait for the

acknowledgement from the underlying node. Thus, discovered resources need to

stay reserved for 4 timeslots before released. While Flock of Condors keeps re­

sources reserved for 2 extra timeslots practically useless, Hoverlay provides them

to requesting nodes serving extra load .

• The overlay topology of these experiments is a power-law one. With a uniform

distribution of load on nodes, every node has the same probability to generate a

query. The majority of servers are at the edges of the overlay (leaf servers) and,

hence, most of the queries come from those edges. Due to this overlay topology,

most of the query paths direct to high-incoming-degree servers. These queries in

combination with resource migrations force capacity to move from the centre of the

overlay to its edges. Further increase of global workload will most likely generate

queries from those overlay edges. With an adequate TTL, queries may traverse

the whole overlay. However, if resources do not migrate extra increase of their

workload generate queries forwarded via always the same server. A good portion

of resources are managed by servers in the overlay centre which, however, have a

shorter horizon, less accessible capacity and worst success rate.

Uniform resource distribution in scale-free networks does not work for the benefit of

success rate in highly dynamic environments and resources.

Two dashed lines divide the figure 4.9 area into three phases (A, B, C): A & C

marked with (+)'s and B with a (-). These marks denote the areas in which Hoverlay is

more (A & C) or less (B) successful than Flock of Condors. Figure 4.10 is a supportive

bar chart that illustrates the number of queries generated and satisfied within the three

phases of the experiment; it is a summation of total and of satisfied queries per phase.

When the whole system handles low global workload (Phase B), Flock of Condors reach

even 20% higher success rate than Hoverlay. As shown in figure 4.10, this deterioration is

84 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

superficial due to the very low number of produced queries and the even lower number

of satisfied ones for all three systems. Moreover, the difference between the number

of satisfied queries of Hoverlay and Flock of Condors is negligible compared to that

of Phases A or C. Therefore, the results of those two figures confirm that migrating

resources can help on satisfying more user requests even in a static network (i.e. without

rewiring).

Condors, as a set of disconnected pools preventing access to remote resources, seem to

have from 10% to even 50% lower success rate compared to the other two architectures.

For the first few timeslots, Flock of Condors and Hoverlay reach 100% success by seeking

for both local and remote capacity. Some servers contain no local free capacity, even on

the first few timeslots, in which case Condors cannot serve requests from their underlying

nodes; hence, lower success rate than Flock of Condors or Hoverlay.

Global workload in the beginning of Phase A steadily increases and therefore no new

fresh nodes appear in server pools. Gradually all resources within requestors vicinity

exhaust and a) more queries fail, b) more new queries browse the overlay and c) more

servers regenerate the unsatisfied ones. Capacity exhaustion increases the number of

queries and their repetitions deteriorating the success rate of all three systems.

Symmetrically, applying negative workload on nodes makes the global cumulative

one drop; some of these nodes (resources) become underloaded and available for on­

demand migration or local re-commission via their pools. In some other cases despite

their workload drop, they may remain overloaded but reactively adjust downwards their

requested capacity. That is, responses for past queries may not be necessary and thus

the discovered capacity may either stay in its new local pool or be partially used by

the requesting node. The unused portion of that capacity may serve extra load of the

underlying network without extra requests.

All systems during Phase B generate very few queries and satisfy even fewer, as

shown in figure 4.10. Flock of Condors satisfy negligibly more queries than Hoverlay

but this difference is substantial compared to the number of queries they generate.

This makes the success rate of Flock of Condors by 20% better than that of Hoverlay.

However, it is a misleading conclusion if not accompanied by this observation.

As shown in 4.8, from timeslot 80 till around 100, global workload drops and stabilises

at almost ~ of global capacity. On timeslot 96 (left border of phase B), system's workload

approaches the ~ of its capacity. That is the point after which Flock of Condors become

more successful. As underlying nodes lose workload, some either become underloaded

or normally loaded or even remain overloaded at same or lower workload levels. There

are no new queries but for repeated ones. As fresh capacity becomes available, repeated

queries get satisfied improving st,lccess rate for both systems.

While in case of Condor flocking unnecessary capacity returns back to its provider,

Hoverlay moves it to requesting server. Within phase B, this migration is useless as that

capacity may only be used on workload increase or even potentially harmful for sys­

tem success rate as it may be moved away from places accessible by requesting servers.

This is the case for those few repeated queries. Global workload affected most of the

4.8. EVALUATION ON UNIFORM QUERY DISTRIBUTION 85

loaded nodes but not all; some remain overloaded and thus keep regenerating queries.

As workload drops and before its stabilisation at its lowest level, repeated queries from

several servers move out capacity from the vicinity of other servers which keep prop­

agating queries even during steady-workload period. Without any workload increase

that will trigger other servers query propagation, no fresh capacity can migrate in their

horizon whereas Flock of Condors repositions free capacity to its initial provider and

thus probably close to repeated query generators.

This clearance of requesting servers' horizon from available resources explains that

success rate swap between Flock of Condors and Hoverlay architectures with former's

being higher than latter's one. However, that cannot justify why their difference in phase

B is well over than in the other two. That difference can be justified considering the

minimal number of queries on which this percentage is based. Flock of Condors keep,

in low global workload cases, the resources at their initial distribution among servers

bringing a bigger impact on success rate. Overloaded nodes and their queries start

increasing with the global workload. At the end of phase B a good portion of those

queries are successful due to the available capacity generated during the last workload

drop. Therefore, the impact of that factor gets lower and the success rate of both systems

increases.

4.8.2 A verage Path Length of Successful Queries

Figure 4.11 presents the average number of hops successful queries had to travel before

they discover their first answer. The graphs confirm that Hoverlay manages to achieve

better success rate with shorter query paths especially on workload fluctuations. It helps

queries get responses from 0.5 to even 2 hops sooner than Flock of Condors do. This 2-

hop improvement takes place around timeslots that global workload started decreasing:

fresh capacity appears close to the regenerators of r peated qu ries.

The averag path lengths of Flock of Condors and Hoverlay do not follow the pattern

of success rate and stay well below query TTL. The power-law topology of the overlay,

in the absence of rewiring, stays the same throughout the experiment. Most query

hops
4

3.5
3

25
2

1.5

- Condors - Flock of Condors - Hoverlay

1

05
o+-~ __ ~~ __ ~ __ r-~--~~--~-.--~~--~--~-.--~~ __ ~~~tim~es~lo~ts

o 50 100 150 200

Figure 4.11: Averge number of query hops before they discover their first answer deployed on
disconnected Condors, Flock of Condors and Hoverlay in a uniform query distribution environ-

ment

86 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

paths start from the edges of the network and finish at its centre. Thus, while workload

increases resources in the centre become scarce; the biggest portion of the capacity is

close to leaf servers. Long successful paths are less than short ones and, thus, their

average remains below TTL mean value 4.5 (1 hop from node to server plus T~L).

As soon as workload starts droping the effect ofresource migrations becomes clearer.

Fresh capacity appears in the pools of domains it migrated to, closer to requestors. On

the contrary, Flock of Condors place that capacity back to its originators and thus

repeated queries need to travel further to re-discover it. This explains why Flock of

Condors exhibit path length bursts on the first few timeslots the workload starts de­

creasing. While workload keeps dropping, free capacity increases close to requestors

vicinity, servers generate no new queries and more and more repeated ones are canceled.

This keeps the average hop count in low levels.

In case of disconnected set of Condors, queries can only travel from underlying nodes

to their local servers; hence, one hop. Until timeslot 44 successful queries of both Flock

of Condors and Hoverlay exhibit almost the same hop count. Workload increases linearly

for the first 44 timeslots and all migrated nodes join the requesting underlying networks.

Given that both systems use flooding tested on same topologies, all servers explore their

whole horizon and thus the average hop count has minimal deviation.

4.8.3 Traded Capacity and Cost in Messages

In general, Hoverlay satisfies more load than Flock of Condors (figure 4.12a) though

both systems request almost the same amount (figure 4.12b). This improvement comes

at almost same cost in messages (figure 4.13a). Both systems outperform Condors in

terms of satisfied capacity due to the inability of the latter to acce's remote capacity;

however, Condors have a minimal overall cost in messages as their queries can only

travel one hop.

Following similar patterns as success rate, satisfied capacity of Hoverlay is more

than that of Flock of Condors in phases A & c. Flock of Condors superiority in Phase B

capacity - Condors - Flock of Condors - Hoverlay capacity

BOOO
7000

6000

5000
4000

3000

2000

WOO

38000

28000

18000

8000

·2000
O~~~~~~~~~~~~~~~s

o 50 100 150 200 ·12000

(a) Satisfied User Queries

New Lo ad - Condors
- Flock of Condors - Hoverlay

(b) Requested Capacity

Figure 4.12: User-end perceived satisfaction: (a) capacity requested and satisfied fr-om server
overlays and (b) requested capacity per times lot.

4.8. EVALUATION ON UNIFORM QUERY DISTRIBUTION 87

messages - Condors - Flock of Condors - Hoverlay queries - Condors - Flock of Condors - Hoverlay

160000
140000

120000

100000

80000

60000

40000
20000
o~~~~~~~~~~~~

o 50 100 150 200

(a) Total number of messages

4000

3500

3000

2500

2000

1500

1D00
9]0

0
0 50 100 19] 200

(b) Queries

Figure 4.13: Cost in messages: (a) total number of messages produces and (b) total number of
generated queries.

becomes insignificant as the requested capacity during that period is much lower than

that of remaining two phases. The same reasoning as with success rate lines above makes

their shape comprehensible. However , their exact shapes depend on requested capacity,

too. This explains why the lines of satisfied capacity have similar drops and increases

as the requested capacity but the distance between blue and red lines resembles the one

of figure 4.9.
Figures 4.12b, 4.13a and 4.13b have a common characteristic: almost vertical deep

decreases and high increases in plotted lines. These radical changes happen on timeslots

that new load swaps from positive to negative values and vice-versa. Though within 45-

65 timeslots interval the global workload drops linearly the number of messages, number

of queries and requested capacity are non-zero and follow similar patterns. Similarly, the

pattern of 45-65 interval tops the new positive workload of 66-79 timeslots. Differences

on those patterns appear as portions of those repeated queries get satisfied or stopped

as unnecessary (especially after workload drops). Finally, the lines for Flock of Condors

and Hoverlay architectures, of all these three figures , practically overlap with slight

differences mainly in 4.12b and 4.13b (Hoverlay produces less queries which cumulatively

request less capacity). Condors, due to lack of query forwarding in the servers overlay,

exhibit much less number of messages. Their low success rate forces them to repeat

many queries and finally overpass both Flock of Condors and Hoverlay in number of

messages and queries.

To sum up, this experiment proves that even in fixed topologies with high workload

situations and similar search technique (exhaustive flooding) deployed, Hoverlay is more

efficient than Flock of Condors in terms of:

• success rate (percentage of successful queries) ,

• satisfied capacity (portion of requested capacity that was satisfied) and

• average path length of successful queries before they hit their first answer.

This is basically the positive effect of resource migration to requesting networks and

88 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

comes at practically no cost in messages. However, under certain circumstances, when

the global load gets lower than global capacity the resources distribution is skewed

and may negatively affect the success rate. Considering the low total and even lower

satisfied number of queries on those cases, that deterioration of success rate is almost

insignificant.

4.9 Evaluation on Hotspot Query Distribution

Experimenting with random workload distribution all over the network helps evaluating

resource migration for its effect on system's efficiency but not its adaptability. Uniform

query distribution over underlying nodes retains the incoming degree distribution of

servers with respect to their underlying nodes. However, if queries come from a specific

small subset of neighbouring servers (hotspot) for long periods two scenarios for further

experimentation emerge regarding the behaviour of all three systems:

• workload fluctuations of underlying nodes of those servers: which system quickly

addresses the requested capacity?

• hotspot shifting: which system is more successful if hotspots shift to another area

of the server overlay?

On top of the common experiment configuration parameters as set in subsection

4.7.2, few more are necessary to complete hotspot initialization and shifting:

• Number of spots: network initialisation is exactly the same as in previous experi­

ments but a subset of servers are picked to belong in three, not necessarily neigh­

bouring, hotspot areas. In fact, each of these three areas consists of a centroid

(server) and all other servers within its vicinity directly or indirectly accessible via

incoming or outgoing links.

• Spot radius: the distance (number of hops) of any server within a hotspot area

from its centroid cannot exceed five hops.

• Spot lifetime: the lifetime (timeslots) of each hotspot area. As soon as its activity

terminates another one is selected. At any given moment there are three such

areas (triplets) which all start and end their activity simultaneously before they

pass on their role to new randomly selected ones. This lifetime is 70 timeslots;

thus, within 210 timeslots three shifts of hotspot triplets take place.

Hotspot area size varies according to its connectivity. Within same radius, there

may be more servers if its centroid comes closer to popular nodes. Given the power­

law server-to-server incoming degree distribution, an area built around a server without

incoming links (leaf-server) is smaller than another circling a hub. At no case three

five-hop radius areas cover the whole network and with a TTL=7 the capacity available

to requesting servers is limited. Furthermore, as shown in figures 4.7a and 4.7b, higher

TTL would overload the network. While in previous experiments cumulative applied

4.9. EVALUATION ON HOTSPOT QUERY DISTRIBUTION 89

c<lpacity -global workload - global capacity

200000
300000~
100000 ~

o ~--~
timestots

o 50 100 150 200

SOOO 1
-500~ workload per times lot

(a) Cumulative and fresh workload applied on
hotspot triplets

C<lt1acity

140000

120000

100000

80000

60000

40000 I
20000

timestots
0

0 50 100 150 200

(b) Total capacity of hotspot triplets

Figure 4.14: Hotspot capacity and workload: (a) cumulative and new per timeslot workload
and (b) capacity within hotspot triplets.

workload reaches 150% of system-wide capacity, in the following ones accessible capacity

is less and therefore the workload must have lower peaks (up to 50% of capacity) as shown

in figure 4.14a.

The three relocations of hotspot triplets become clear in figure 4.14b for both Condor­

based architectures and Hoverlay. It presents the cumulative capacity of hotspots on

those three intervals. While that capacity is fixed per interval for Condor-based systems,

Hoverlay increases this capacity at the first few timeslots after hotspot relocation via

resource migration. The average maximum path length for servers is 7.5 hops; those in

the interior of big hotspots cannot explore far beyond their area borders. Most of the

accessible servers from a centroid belong to the same area; queries originated from that

server can only travel 2 hops beyond the borders of its area.

Most of the observations from figures below share the same analysis as in previous

experiments. Thus, detailed explanations will only follow observations that differentiate

those figures from the ones of previous section. Two main factors contribute to these

differentiations: a) for long intervals same servers produce large number of queries and

b) hotspot areas change centroid every 70 timeslots.

4.9.1 Query Success Rate

Starting from query success rate of figure 4.15, throughout the experiment all systems

experience, in general, low success rate but Hoverlay is the most successful (up to 20%)

compared to Condor-based systems. Condors success is squeezed between x-axis and

Flock of Condors line. Hoverlay performance can be explained the same way as in

uniform query distribution environment in section 4.8. Both query originators migration

and shorter resource reservations duration from the Hoverlay play important role.

In fact, hotspot areas are very small compared to the network size and workload

is uniformly distributed among their nodes. Hotspot locations can be anywhere in the

network and thus resources do not necessarily move to leaf servers; widening of requestors

90

success ('100%)
0.8

07
0.6
0.5

0.4

0.3
0.2

CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

- Condors - Flock of Condors - Hoverlay

0.1 timeslots
O~~~=.~~~~~-p~~~--~~~~~~~~~~~

o 50 100 150 200

Figure 4.15: Success rate of disconnected Condors, Flock of Condors and Hoverlay in a hotspot
query distribution environment

horizon, as claimed in 4.8, cannot stand as a reasoning in this environment . Unlike Flock

of Condors, resources joining requesting underlying networks become equal members to

the existing ones. Condor-based systems are task-oriented; each node is assigned a very

specific job and cannot take on another as an extension of the existing remote one; the

discovery mechanism needs to be triggered again. Additional load targeted to underlying

nodes of a specific server cannot be assigned to remote ones currently under commission

to that server.

Therefore, Hoverlay with migrations not only does it serve portion of hotspot queries

but increases the capacity on which future workload may be distributed. Newly migrated

nodes join the networks without getting overloaded; they can take on some more work­

load without overpassing their threshold. This reduces both number of queries and

requested capacity and improves the success rate.

These plots show abrupt success rate increases for all three systems just after the

timeslot of hotspot relocations. Moving hotspots is also translated into query originators

migration; just servers within hotspot areas may generate new queries. These queries,

then, browse areas full of free capacity allowing better success. Initially all systems

perform well as global workload is low and available capacity plenty. However, aligning

figure 4.14a and 4.14b makes clear that global workload quickly gets much bigger than

available capacity and thus success rates of all systems drop. Towards timeslot 70

(hotspots relocation), success rate increases as global workload drops.

On timeslot 70, a hotspot relocation takes place to areas that cumulatively con­

tain more available capacity. This makes success rates of all systems abruptly increase.

Though there is now enough accessible and available capacity only about 50% of queries

are successful. Hotspot relocation is not followed by workload; that is, workload already

applied onto certain servers remains on them until satisfied even if no more is added.

Therefore, past highly loaded hotspots (as is the case during 0-70 timeslots) regenerate

queries alongside new ones. Around timeslot 80, though global workload starts decreas­

ing, success rate of all systems drops quickly, too, justified by the following reasoning:

1. calculation of success rate includes every query from both past and new hotspots,

4.9. EVALUATION ON HOTSPOT QUERY DISTRIBUTION 91

cilpilcity

140

• hotspot capacity fluctuation

120

100

80

60

40

20

o
-20

timeslots

190 200 210

Figure 4.16: Hotspots capacity fluctuation of Hoverlay architecture

2. past hotspots do not generate new but only repeat old unsatisfied queries,

3. new hotspots take on new and for a short period (see figure 4.14a) workload only;

they have much more capacity and less workload than past ones, thus, most of

their queries get satisfied,

4. as soon as their workload starts dropping (timeslot 80 onwards) , new hotspots

stop producing or repeating queries,

5. queries come from old hotspots only which, however,

6. have not managed to discover more capacity despite exploring their entire vicinity.

Decreasing workload helps success rate to increase. Unlike previous experiments,

Hoverlay is more successful until the end of this interval (timeslot 140). The main

percentage of global workload is still on servers of past hotspots. Hence, the biggest

portion of removed workload is also applied there and fresh capacity appears in their

vicinity. However, in case of Flock of Condors, free capacity returns to its original host

and owner. This may move capacity outside hotspot areas making difficult to reach

from inner servers.

As a confirmation of the above, figure 4.16 shows hotspots capacity fluctuations (only

the amount of capacity added to or removed from those areas). The first hotspot triplet

(0-70 timeslots) significantly increases its capacity consuming all available resources in

the vicinity (that increase reaches 40% of its cumulative initial capacity). The second

triplet confirms the conclusions above as no expansion takes place in those hotspots.

On the contrary, some capacity (60 capacity units) is removed as a result of repeated

queries from past interval. Some servers of new hotspots are close to the previous ones

and therefore capacity is moved between the two hotspots. The last hotspots expand

just once when global workload starts increasing again.

4.9.2 Average Path Length of Successful Queries

Based on plots of figure 4.17, Hoverlay outperform Flock of Condors in terms of average

query path length of successful queries. While the former fluctuates between 1 and 3

92

hops

8
7

6
5
4
3
2
1

CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

- Condors - Flock of Condors - Hoverlay

o+-~ __ ~~ __ ~ __ '-~ __ ~~ __ ~-' __ ~~ __ ~~'--r __ ~~ __ ~~_t~im~e~s~lo~ts

o 50 100 150 200

Figure 4.17: Averge number of query hops before they discover their first answer deployed on
disconnected Condors, Flock of Condors and Hoverlay in a ttniform query distribution environ­
ment

hops, the latter reaches even 8 hops with an average of 2 hops longer paths for most of

the experiment.

Though one would expect that cumulative hotspots capacity augments in case of

Hoverlay, it does not happen as figure 4.16 reveals. These areas seem to be the most

capacity-rich compared to previous ones (see figure 4.14b) and as such at lea t one of

their centroids is close to high incoming-degree servers. The bigger and closer to hubs

the area is, the biggest the probability of cyclic paths starting and terminating within

same area. Flooding such a network using outgoing links deteriorates accessibility to

resources outside that area. That explains why hotspots on the last interval, though

highly loaded, do not significantly increase their capacity.

Initially, queries tend to travel far to discover resources as low-capacity hotspots are

charged with high workload. This causes a non smooth increase of path length unlike

the first scenario of Uniform Query Distribution. Resource migration helps Hoverlay

reduce requested capacity per query and thus increase success in few hops. As hotspots

exhaust all reachable capacity, query success drops to zero for Condor-based systems

and thus no average hop count to be recorded. Within first few timeslots Hoverlay

moves all discovered capacity within hotspot areas keeping query paths shorter than

Condors-based systems and even gradually reducing them.

The second interval starts with a relatively small workload increase compared to

capacity available within second hotspot triplet and thus both Flock of Condors and

Hoverlay exhibit similar path lengths. Once workload starts dropping, all queries come

from previous triplet of hotspots and fresh capacity returns to its owner: a) outside

-if F lock of Condors- or b) inside -if Hoverlay- their borders; thus, the latter satisfies

repeated queries faster than the former. At the final phase of this experiment, success

rate of Flock of Condors approaches zero and thus the average path length is a calculation

of a small sample causing a fluctuation on the graph.

4.9. EVALUATION ON HOTSPOT QUERY DISTRIBUTION

calH'city -Condors - Flock of Condors - Hoverlay capacity

3000

2500

2000

I SOD

1000

SOD

O ~~~~~~~~~~~~~~·

o 50 100 150 200 ·5000

(a) Satisfied User Queries

New Load - Condors
- Flock of Condors - Hoverlay

50 100 150

(b) Requested Capacity

93

200

Figure 4.18: User-end perceived satisfaction: (a) capacity requested and satisfi ed from server
overlays and (b) r-equested capacity per times lot.

4.9.3 Satisfied Capacity and Cost in Messages

For completeness, figures 4.18a, 4.18b, 4.19a and 4.19b present the results for the re­

maining evaluation metrics. All lines drew in these figures follow similar patterns as

those for Uniform Query Distribution experiments. In brief, Hoverlay satisfies bigger

portion of requested capacity justified by the better success rate. As expected, right

after the hotspot areas relocation the satisfied capacity reach its peaks as the new areas

contain unused free resources. Flock of Condors and Hoverlay handles slightly more

queries and experiences higher load in overlay messages requesting for the same amount

of capacity. All these three graphs exhibit step-wise increases or drops as a result of

repeated queries and the steady at internals additional workload.

To sum up, the experiments above evaluate Hoverlay in dynamic environments of

hotspots. Though hotspot areas may change their centre, the proposed architecture

achieves better performance in terms of success rate, satisfied capacity and average path

length of successful queries in both high and low workload situations. Moreover, that

messag:s - Condors - Flock of Condors - Hoverl ay Ilueries - Condors - Flock of Condors - Hoverlay

90000 1400
80000
70000

60000
50000
40000

30000
20000

10000 slots
O~~~~~~~~~~~~

o 50 100 150 200

(a) Total mtmber of messages

1200

1000

800

600

400

200

O~~~~~~~-.~~~,-~~~~

o 50 100 150 200

(b) Queries

Figure 4.19: Cost in messages: (a) total number of m essages produces and (b) total number of
generated queries.

94 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

comes at a slight increase in messages compared to Flock of Condors. The adaptability

of this system is partially approved as only hotspot relocation and resource migration

are tested. Following experiments in Chapter 5 expand these tests in case of rewiring

and different search schemes, too.

4.10 Applicability Prospects

Real-world deployment of Hoverlay reveals a number of considerations about its appli­

cability. Business environments introduce certain constraints related to the control and

management of a resource. The following paragraphs present some of those important

parameters concerning the proposed system's applicability. These parameters can be

classified based on Hoverlay's three phases: publication, discovery and commission.

4.10.1 Publication Phase

An important aspect of the resource publication phase is its representation. As detailed

in section 4.4, the current version of Hoverlay uses a rather fussy representation of the

resource capacity: a tuple of network and CPU usage. Based on a number of related

studies, this representation does not accurately captures the capacity of a resource. This

inaccuracy derives from the nature of service capacity: stochastic variability over time

and high heterogeneity of the providing machines. The proposed system implicitly relies

on the reactive capacity discovery; it tolerates deviations from the advertised capacity.

That is, the discovered resource may be published with a certain level of capacity which,

however, may not depict the current level as it is a highly intermittent resource.

A requesting network may largely benefit from migrations of resources offering more

capacity than that they were published with; this capacity may accommodate future load

without triggering the discovery mechanism (can be considered as an implicit proactive

mechanism). However, in some cases migrated nodes offer less capacity than that in

their adverts. Instead of preventing this, Hoverlay provides the mechanism to reactively

handle it by issuing a new query if the new capacity is not enough to serve the requested

load. In a random query distribution, both these cases are expected to have the same

frequency and, thus, to introduce no extra queries. Hoverlay uses the same mechanism

to handle misrepresentation of a node capacity.

However, in non-uniform query distribution scenarios accurate representation and

publishing of capacity may be of great importance for system efficiency. There are a

number of techniques to achieve this. A widely used method is the ClassAds adopted by

Condor pools [82]; in this case, Hoverlay converges to a modified Flock of Condors practi­

cally mapping servers to Condor pool managers and introducing resource migration. As

mentioned before, CompuP2P [58] focuses on processing capacity only represented with

processor cycles per time unit assuming resource homogeneity or high capacity avail­

ability. A method for translating the capacity of each node into units is via sampling

network and CPU usage of the UNR module running on each machine. For instance,

the published capacity of a node can be a (sub)multiple of the UNR client network and

4.10. APPLICABILITY PROSPECTS 95

CPU usage for that specific node.

Without violation of generality, the experiments above used single numbers to rep­

resent capacity within simulation runs. Introducing more complex representations (i.e.

ClassAds) into those experiments would make the resources more unique and the queries

more specific. Though the whole system would be a resourceful environment, the re­

sources would rather be rare and as such their discovery more difficult. This may produce

similar results but with lower system-wide workload.

4.10.2 Discovery Phase

Server misbehaviour or greedy behaviour may cause certain problems on the discovery

process. For instance, a server may keep sending requests for some time gathering

practically a big portion of system's capacity. As long as these resources become again

available in that server's pool, Hoverlay can help others discover them and bring balance

on the overlay; there is no way with the current version of Hoverlay to prevent such a

phenomenon. However, Chapter 5 introduces a family of search mechanisms, Stalkers,

which would disgrace this behaviour via sending many requests back to the requestor.

That is, high requestors create a fame attracting more and more queries. As long as a

server generates queries, it increasingly frequently appears in inbound neighbour lists.

Stalkers forward queries using both outgoing and incoming links and therefore a famous

requestor will soon get overloaded by queries practically bringing high maintenance

and bandwidth cost for that server. This may work as a disincentive to that greedy

behaviour.

In some cases, this behaviour may be the result of intentional activity with the aim

of collecting and subsequently disconnecting big portion of systems resources (suici­

dal peer). This problem is classified to a category of security-related issues which re­

quire server authentication to ensure that each component works the way it is expected

to. However, these issues become out of the scope of this thesis and are necessary to

be addressed before Hoverlay is deployed on real business scenarios. Finally, resource

matching is an important step of the discovery process and is highly correlated to the

publishing mechanism. The more accurately a resource has been published the more

efficient the matching process can be.

4.10.3 Commission Phase

Regarding the commission phase, this node migration introduces certain issues to be

addressed before deployed in real world environments: control transfer and service sub­

mission to remote resources. In Hoverlay, node may move among underlying networks

built on different management policies; they need to comply and be compatible with

all of them as they move. An initial approach to this problem is provided in Chapter

3 using a set of keywords to describe the applications and policies deployed on an un­

derlying network and those a node is not compatible with. Following the principles of

section 3.2, queries can be more selective with regards to the appropriateness of discov­

ered resources. This strengthens the resources uniqueness within the system practically

96 CHAPTER 4. HOVERLAY: ARCHITECTURE SPECIFICATION

contributing into their scarcity.

After resource migration, its UNR has to facilitate the execution of the distributed

application onto that node. This practically means that the new service (job) needs

to be submitted to the machine of that node. Condor system maturity on job submis­

sion toolkit can provide a suitable and realistic approach to the distributed application

deployment on the fetched nodes. That scheme may offer a generalised approach but

Hoverlay, for heterogeneity purposes, does not constraint the way a new node joins

an underlying network. Apart from the use of Condors submission mechanism, the new

node may already have the service to be deployed in which case only its parameterisation

would be enough to bootstrap the node in that network.

Another issue to consider while a node migrates from one network to another is

the workload left over from those served in the past. As long as its workload remains

below the underload threshold, that node can move among different networks. Upon

migration, the node cannot discard existing load which is, however, added to the one

from the new network. After a number of migrations, the underload threshold may stay

fully occupied by past workload preventing any further move. Therefore, a node may

simultaneously participate to a number of networks serving very different applications

but queries produced by any of those services reach the current manager server of that

node. In non uniform capacity distribution environments this mechanism may affect

the success rate as each server tries to optimise its neighbourhood via rewiring based

on the answers it gets. If keywords or other kind of semantics are introduced, as in

section 3.2, then using the current only server may disadvantage queries generated by

past workload. In that case, access to multiple servers can be a technique to alleviate

this problem. As mentioned in the final chapter of this thesis, this is an interesting

avenue for future work.

4.11 Summary

Hoverlay is a system that enables logical movement of nodes from one network to another

aiming to relieve requesting nodes which experience high workload. Remote nodes are

moved into the requesting node domain to take over some of that excessive workload. It

is an arbitrary network of servers (overlay) each of which represents a single underlying

network. All servers use blind search techniques to discover free nodes from other

networks and move them into the requesting network. It is designed to be tolerant

to node and server failures since it has minimized the maintenance costs of server and

node components.

Node migration and dynamic server overlay differentiate Hoverlay from Condor­

based architectures which exhibit more static links between managers and nodes. A

simulator tested on a set of rules was used for its evaluation aiming at conceptual

characteristics of the architecture in static environments. After a number of experiments

in two scenarios of uniform and hotspot query distributions, results proved that, on both

scenarios, Hoverlay performs better than disconnected Condors and Flock of Condors

4.11. SUMMARY 97

achieving important improvements in both success rate and average successful query

path length at a negligible expense in messages.

The following part of this thesis focuses on searching algorithms deployable on Hov­

erlay. It proposes a set of new blind search mechanisms, Stalkers, able to track resource

migrations and outperform other well-known ones in dynamic environments of non­

replicable reusable resources such as service capacity. Appropriate evaluation of those

algorithms deployed on Hoverlay are also provided.

~:;------------------------~
Stalkers: Resource Migration Detection

Stalkers is a collection of three algorithms based on the same principles: FloodStalkers,

k-Stalkers and FireStalkers which were published in [43] and [41] under different

names: Scale-free Flood Walkers, Scale-free Walkers and Firewalks, respectively. Their

main common features are that all:

1. are based on k-walkers: Query recall is not a priority for Hoverlay and k-Walkers is

a non-flood-based algorithm which produces low traffic compared to other search

algorithms. However, its fluctuating success rate and higher latency remain chal­

lenges that Stalkers need to tackle.

2. give priority to fresh links: Stalkers increase their efficiency by capturing the

most up-to-date configuration and topology of the network. Resources are not

permanently located at some place and therefore links should, ideally, always link

requestors to providers.

3. use both outgoing and incoming links: Resource migrations attach certain im­

plicit semantics on links as a link initiator has received while its target server has

provided resources. This is a way to track resource migrations.

As nodes migrate and servers experience fluctuations in the capacity they handle, ap­

propriate rewiring could be used to bring requestors closer to providers. If providers

were always the same servers, no server would benefit from connecting to other servers;

however, this is not the case with Hoverlay. Rewiring frequency is an important factor;

re-linking at a lower rate than the resource migration rate would cause a false capture of

network topology but if it is done faster it would create excessive connection overhead

that could overwhelm servers.

The following sections present an overview of design requirements for Stalkers, their

actual generic design principles and the detailed description of all three aforementioned

variations. This chapter finishes with their evaluation and comparisons with Flooding

and k-Walkers before a summary.

99

100 CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

5.1 Resource Discovery Requirements

Following the principles of any proposed architecture for sharing service capacity, as

detailed in section 1.5, this one sets a set of requirements for the proposed search mech­

anism, Stalkers. Its key objective is to achieve low latency and good success rate despite

the ever changing resource location and network topology.

Service capacity features raise a number of difficulties to be addressed. According to

Hoverlay topology, there is a number of servers hosting free service capacity. As long as

a server receives queries and responds back to requestors it attracts more links increasing

its popularity. However, the more incoming links a server gathers the faster its resources

migrate. Resource migrations allows requesting servers to gather many resources which

when freed in its local Pool attract many links. Symmetrically, servers with little or

no capacity lose incoming links. Therefore, these migrations ease the promotion or

demotion of servers to hubs or leaf servers allows. As hubs lose their resources other

servers become resource rich and it is their turn to attract links and become famous.

Besides the factors analysed in 2.5 that make a network power-law, the appearance of

hubs in Hoverlay depends on another four factors:

• average requestors/providers density: represents the percentage of requestors /

providers within the servers overlay. If a handful of requesting servers gather a

good portion of global service capacity, they are likely to be the future power-law

hubs once they free these resources. Resource distribution becomes more uniform

as the average query rate of servers is uniform too; that is, if all servers ask for the

same amount of capacity per time unit, the resources tend to get evenly distributed

among servers. If there is only a minority of good providers they tend to be the

current power-law hubs especially if requestors are a majority.

• requestors/providers density distribution: shows how these servers are spatially

distributed within the network. Splitting the Hoverlay unstructured overlay into

areas of equal size, the density distribution represents the percentiles of a certain

type of servers (Le. requestors or providers) in those areas. If that ratio is the

same for every area of that overlay then the density distribution of this type of

servers is uniform. Otherwise, if, for instance, a minority of areas have high ratios

of those servers then these servers are locally clustered. In case of Hoverlay, if

most of the requesting servers are clustered in neighbouring areas of the overlay,

they quickly consume any available resource within their vicinity and their queries

need to travel beyond the borders their areas to access potential providers.

• query generation rate: refers to the average number of queries per server. It affects

the resource migration frequency and thus the topology adaptation frequency.

High query generation rate may shorten links lifetime and conversion from power­

law to uniform topologies and vice-versa may become faster.

• requested capacity rate: represents the average service capacity requested per re­

questing server. It affects discovery success rate and number of replies but not the

5.1. RESOURCE DISCOVERY REQUIREMENTS 101

overlay topology as Hoverlay servers may respond with a minimum capacity equal

to the requested one. However, networks with low query generation rate and few

requestors but high requested capacity rate might gather plenty of resources in

those servers which if freed in future may become power-law hubs.

While the first two factors relate to search efficiency the last two contribute to the

Hoverlay topology changes.

Any discovery mechanism deployed on such dynamic environments needs to be ad­

equately adaptable to achieve good success rate and low latency. Previous sections

described important features of widely used algorithms. While educated informed tech­

niques may achieve a good success rate, their adaptability is weak due to statistical data

they need to retain distributed all over the network or expensive if this data needs to

be promptly updated. The flood-based blind ones achieve good success rate at a high

cost in messages regardless of topology changes. If non-flood-based ones are deployed,

queries tend to reach high degree nodes much faster than others but have more variable

success rate, higher latency and are not equally efficient at discovering rare resources.

Assuming that there is no rewiring policy in place, all these mechanisms would be unable
Adapt: Rewire

to track resource movements as links once established cannot change and every query once a resource
from a requestor would follow the same path as its previous one. Given that service migrates

capacity migrates and old providers may currently have no resource left, queries could

be trapped into resourceless paths. therefore, this lack of adaptability may affect search

efficiency as well.

Well-known uneducated informed techniques avoid statistical data but rely on degree

distribution. Each query needs to hop to neighbours with the highest degree first prob­

ing all of them unless every server receives updates with the degree of its neighbours.

While the first scheme introduces significant latency, the second introduces extra mes­

sages. These search mechanisms target high-degree nodes assuming that they are good

providers. As long as such a node has available resources this is a valid assumption but

in case of Hoverlay the more links a server gets the faster it loses its resources. Without
Search: Forward

the appropriate adaptability, queries forwarded based on these schemes get trapped to queries to both

fixed paths as in case of blind and educated informed techniques. To alleviate this providers and
requestros

problem, the proposed search mechanism should be able to forward queries to providers

and requestors, too. Providers are the servers that have offered an answer to the query

originator and requestors the ones whose queries reached that server.

There is an assumption for the design of Stalkers: recall; the percentage of resources

discovered over all those that could be returned for that request, is not a important

parameter for Hoverlay as any valid discovered resources would be used. Flood-based
Search: Base of

techniques, though they may provide better recall, are more expensive compared to non- Stalkers is a blind

flood-based ones. Informed techniques cannot work as the base of Stalkers. Therefore, non-flood-based

Stalkers can only be a non-flood-based blind search mechanism. If query generation

and/or requested capacity rates are high, topology changes may be fast; thus each

topology settings have short lifetime. Hoverlay is a topology changing between shortlived

power-law and uniform modes. Stalkers needs to exploit those power-law settings but

technique.

Search: Choose
recent neighbours
to forward queries
to.

102 CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

also have a parallel mechanism to adapt as soon as these settings change.

This introduces the concept of links lifetime in that discovery mechanism. Freshness

of links is a factor that may help queries reach resources that were recently moved. It

is a piece of information already present in servers (Neighbour Lists) and require no

maintenance as it gets updated once a link is created or deleted. Fresh incoming links

lead to recent requestors which a) may soon become providers as soon as their workload

drops and they free resources and b) can be source of other recent providers discovered

via their last queries. The fresh outgoing ones drive queries to recent providers which

a) may still have available resources and b) are sources of recent requestors.

Stalkers is a non-flood-based search algorithm that uses fresh incoming and outgoing

links to forward queries to and relies on rewirings upon answer deliveries for adaptability

purposes. Therefore, the choice of links is not blind but based on certain implicit criteria,

freshness. This classifies Stalkers into the Uneducated Informed Techniques category.

5.2 Generic Design

Rewiring is a complement of search algorithms in Hoverlay architecture. As specified

in section 5.1, new links need to be created for every resource migration from requestor

to provider server. From requestor's point of view, that is an outgoing link and for a

provider an incoming one. This helps both to identify fresh providers and requestors, re­

spectively. Though query recall is not important it may be useful. If rewiring was taking

place for the first and only accepted answer, a requesting server would ignore knowledge

about network topology available in extra received responses. Every recent answer is an

indication of fresh providers; if rejected, the probability that their originators are still

providers goes up as their resources are not used and remain free in their original pool.

Therefore, rewiring actions are invoked on every received answer regardless if accepted

or not.

Practically, the size of both outbound and inbound Neighbour Lists are finite. The

more connections a server has the bigger its burden to handle their overhead and traffic

is. Therefore, the outbound list can be limited to a user-defined value whereas the size

of the inbound list depends on other servers. In case these lists are full and a new link is

to be created, the oldest one is replaced. If an answer originator is already in requestor's

outbound list there is no update action on that list (not even for the timestamp of that

link):

• If that providing server has been a provider all the time since the link was created

then its resources have been migrating throughout that period; thus it is not a

new provider.

• If there were intervals during which it acted as both requestor and provider there

are two cases: either the answer receiver does not frequently send out queries and

its network path to that provider has not significantly changed since link creation

or the provider has experienced significant and frequent workload fluctuations

during that period. Not updating the link timestamp in this latter case is a way of

5.2. GENERIC DESIGN 103

punishment for that provider's unreliability. However, the requestor is unable to

know which of those two cases holds and the former one does not severely affect the

success rate since the network evolution is slow and query rate of that requestor

low.

Refering to Chapter 2, high-degree nodes of a power-law network are connected to

a good number of other nodes thus making them easily discoverable. Though rewiring

tends to create such topologies, resource migration shortens their lifetime unless power­

law hubs are able to offer fresh resources. The main concept behind Stalkers is two­

folded: a query forwarded to fresh requestors can quickly locate a) good and famous

providers via their outbound lists and b) recently freed local resources. Using prior

knowledge collected by other nodes, one can improve its query success. This knowledge

is recorded on each node by updating its neighbour list with the discovered providers.

Every received answer triggers the updating process of requestor's neighbour list. There­

fore, a fresh requestor may have recently discovered resources which may soon release

and know a set of other potential providers. Every link's reliability and freshness are

closely and positively related.

Though Hoverlay avoids partial answers to prevent deadlock situations, resources

may stay reserved in their local pool from the moment they are attached to an answer

till the requesting server positively or negatively acknowledges it. Therefore, the more

servers a distributed discovery mechanism visits the more service capacity may be re­

served, even temporarily, and thus the higher its impact on its availability is. k- Walkers

is a blind non-flood-based technique producing low traffic and minimizing that resource

reservation phenomenon. High-incoming-degree servers, if not good providers, are good

pools of fresh requestors; if not fresh then they would not have high incoming degree in

the first place. In power-law environments k- Walkers tend to reach high-degree nodes

easier than others which in combination with rewiring and visiting of both outbound

and inbound neighbours may stabilise their success rate and reduce latency.

Fresh providers are a good source of fresh requestors and vice-versa. Therefore, once

a query reaches a provider it needs to be forked to a subset of its incoming links and

when it arrives to a requestor be forwarded to a subset of outbound neighbours. Paths

created only by outgoing links usually drive queries to high-degree servers (see section

2.10) assuming that a random neighbour is selected on every step. However, if that

selection is biased, e.g. freshest ones in priority, there is no guarantee that path leads to

power-law hubs. On the contrary, a fresh requestor has built the freshest outbound list

it could have, thus, giving indirect access to high-degree servers and potential providers.

As with k-Walkers, a query originator, using Stalkers, sends out the same request

to its k direct neighbours. This initial step may use, depending on the specific Stalkers

variation, links from any or both outbound and inbound Neighbour Lists. Once a server

receives a query that is unable to satisfy (see Chapter 4) it forwards it to a mixture of

the freshest incoming and outgoing links, not necessarily both. All these three 'flavours'

presented below build k independent paths which in case of:

• FloodStalkers are made of outgoing links only but are forked on every intermediate

104 CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

server to a subset of its incoming ones .

• k-Stalkers resemble k-Walkers but the freshest (not random one) among both in­

coming and outgoing is selected to hop to.

• FireStalkers are similar to k-Stalkers but do a broadcast on the very last step or

if a very fresh link is discovered.

The three most important metrics for the evaluation of search mechanisms deployed

on Hoverlay are: query success rate, average query path length (a.k.a. latency) and

number of messages per query. Stalkers variations are designed to optimize one of

those metrics. FloodStalkers visit many more nodes than k-Stalkers and FireStalkers

aiming at high success rate. FireStalkers try to reduce the average query path lengths

whereas k-Stalkers focus on reducing the number of messages. Moreover, k-Stalkers

is the uneducated informed (see 2.10) version of k-Walkers. Stalkers introduce two

important concepts: 'fresh' and/or 'incoming' links are more likely to direct queries to

providers. Comparison between Flooding, k-Walkers on outgoing links and Stalkers will

provide useful material for evaluating these concepts.

All descriptions of Stalkers algorithms below assume that query forwarding stops

when a server is able to satisfy the query. Any parallel paths of the same query may

independently keep expanding till their TTL expires, they discover appropriate resources

or revisit a server that has already processed it.

5.3 FloodStalkers

FloodStalkers deploy a random k-Walkers scheme for discovering high-degree providers

and one-hop broadcastings to the outbound list of a subset of their recent requestors

for locating recent providers and free resources. Every server has different behaviour to

queries received from incoming links compared to those from outgoing ones. In the first

case, it is part of a walker and as such it needs to forward every query, if unable to satisfy,

to a single random outgoing link and to w most recent inbound ones. Randomness for

walkers is used to help paths reach high-degree servers as they are a good source of

requestors; the higher their degree the more probable is to have fresh incoming links (a

server is at its peak degree a bit after it has lost all its resources).

Branches to incoming links may locate recently discovered by those servers resources

which, due to their frequent workload fluctuations, are now available again in their

pools. Moreover, a recent requestor might have received a number of answers for its

last queries and appropriately updated its outbound Neighbour List with originators of

those responses. Each query may. have resulted in resource migration from one server

only and thus any unused fresh responder in that list has increased probability to still

have those resources. If that recent requestor is unable to satisfy the query, it broadcasts

the same query to its outbound fresh list.

FloodStalkers resemble to Lookahead Random Walkers [77] but exhibit some different

features:

5.3. FLOODSTALKERS

ONL size = 3
TTL=4
k=2
w= 1

_---2-- __

Figure 5.1: FloodStalkers w07'ked example

105

Provider Server

Requesting Server

Visited Server

?- Actual link

' -~ f A Query Hop i

• they use outgoing links only [or walker travelling and incoming ones for the' looka­

head ' phase,

• only a fraction of those incoming links are used for branching,

• walkers are independent from their branches as walker forwarding does not depend

on the degree of those branches,

• each branch terminates after a one-hop broadcasting to outbound neighbours.

A detailed view of this algorithm is available in figure 5.1 and pseudocode of Algorithm

1.
Every node in the network has a fixed-s ize M Outbound Neighbour List (ONL) of

providers and a variable-size Inbound Neighbour List (INL) of requestors. The query

originator node starts k walkers selecting k random neighbours from its ONL. Each

walker travels from its originator via intermediate nodes (intermediaries) and terminates

when either discovering a response provider or after a maximum of q.ttl steps away from

its source. The intermediaries use one random neighbour of their ONL to forward the

walker to. If they are located at most q.ttl- 2 steps away from query originator, they use

random w of the most recent inbound neighbours from INL (branch-intermediaries) to

forward the same query to. The branch-intermediaries either respond or again broadcast

the query with unitary TTL (q.ttl = 1) to all their outbound neighbours. Therefore the

query can be either of type normal, forwarded as walker, or branch, forwarded via

branch-intermediaries.

It is interesting to note that on q.hops = q.ttl - 1 the branch does not carryon

the final broadcasting and that on q.hops = q.ttl incoming links are not used at all.

Both happen in order to prevent a query travel beyond the maximum TTL hops away

106 CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

Algorithm 1 FloodStalkers

Require: q, q.ttl € N, q.w € N, q.hops EN: q.hops::; q.ttl
1: bq t- q {query to forward to q.w incoming links}
2: if q.hops = 0 then {query still in its originator}
3: forward q to k most recent neighbours of ONL
4: else
5: q.hops t- q.hops + 1
6: if q can be satisfied then
7: send response back to originator
8: else if q.hops < q.ttl then {TTL has not expired yet}
9: if q.type =1= branch then {query received via an incoming link}

10: select one n € ON L with equal probability
11: forward q to node n
12: bq.type t- branch
13: bq.ttl t- min(2, q.ttl- q.hops)
14: bq.hops t- 0
15: if bq.ttl > 0 then {TTL expires on the next hop}
16: select the freshest mi E IN L where i = 1, ... , q.w
17: forward bq to all mi

18: end if
19: else {query received via an outgoing link}
20: forward q to all n € ON L
21: end if
22: end if
23: end if

from originator. Given the fixed size of ONL, high-degree nodes are prevented from

broadcasting to a big portion of the network. Practically, an INL has a maximum

number of entries which are updated on a first-in-first-out mode.

Though this algorithm adds a higher cost on any network it is deployed, compared

to random walkers, it achieves a more stable success rate for two reasons: the branches

of walkers a) contribute to resource discovery even if the walker abruptly terminates

due to a server failure and b) in combination with that freshness-based priority system

allow search paths to overpass traps of famous and resource-empty servers. k-Walkers

have only k paths and visit a very small portion of the network; an abrupt termination

of one of them may seriously affect the success of a query. While on one time unit

failed servers may terminate quite a few query paths, on the next one they may not be

in their paths at all. FloodStalkers alleviate this phenomenon by using those branches

and, thus, increasing the success likelyhood. Finally, it is a more attractive technique

compared to any flood-based one as its cost increases linearly (vs. exponentially) with

TTL of queries.

Different varieties of FloodStalkers may emerge if e.g. a requestor server initially

sends out to k of its freshest, either outbound or inbound, neighbours or random walkers

are replaced by paths comprising the freshest outbound link of each intermediary. Due

to that broadcasting phase, FloodStalkers may produce, in general, fewer than Flooding

messages but they could be comparable in case of low TTL.

5.4. K-STALKERS

ONL size = 3
TTL=4
k=2 "" "" /"

/"
/

/
L_

1'--

107

---2---

_-----3------
- - - -)0,.

Provider Server Requesting Server Visited Server .i-~
~ Actual link ,- Query Hop i

Figure 5.2: k-Stalkers worked example

5.4 k-Stalkers

While FloodStalkers aim at high-degree providers and fresh requestors, k-Stalkers try

to locate servers with the most recent activity. They are a modified version of random

k-Walkers as each server gives priority to the freshest link. As such, they introduce same

workload on the overlay as k-Walkers. They do not provide, however, guarantees that

with this scheme walkers head to the most recently active servers in Hoverlay.

Initially, a random subset from query originator ONL is selected to fork the query

to, but all intermediaries have to choose one neighbour, the most recently added to

their either ONL or INL. Each walker stops when a response is found, TTL expires

or a circle has closed on a server that has already processed that query. Despite that

pI' ference to fresh links, a certain level of randomness is introduced with that random

initial multicasting and random changes to network connectivity while walkers travel

till they expire. Keeping same notation as in FloodStalkers, Figure 5.2 and Algorithm

2 provide further details.

Assuming that a requestor has discovered a number of providers via its latest search,

a query targeting the most recent requestor hopes to discover recent providers. If, in

the meantime, requestor state has changed to a provider one it would be beneficial for

that query.

Algorithm 2 k-Stalkers

Require: q, q.ttl to ~, q.k to ~ , q.hops to ~ : q.hops ~ q.ttl
1: if q.hops = 0 then {query still in its originator}
2: forward q to k most recent neighbours of ONL
3: else
4: q.hops f- q.hops + 1
5: if q can be satisfied then
6: send response back to originator
7: else if q.hops < q.ttl then {TTL has not expired yet}
8: select the most recent n to 0 N L
9: select the most recent m to IN L

10: forward q to the most recent node between n,m
11: end if
l2: end if

108 CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

ONL size = 3
ITL=4
k=3

Figure 5.3: FireStalkers worked example

5.5 FireStalkers

.4-- - "I..

Provider Server

Requesting Server

Visited Server

~ Actual link

'-~ I ~I Query Hop i

FireStalkers is another Stalkers variation similar to k-Stalkers but with the differences of

trying to keep their cost in messages low but increase their efficiency. Query originator

servers start k-Walkers selecting the k most recent neighbours from both their ONL and

I L. Each walker travels from his originator via intermediate nodes (intermediaries) and

terminates with a k-multicasting on the last hop. The server located on the q.ttl - l hop

of a query path forwards the same query to all its q.k freshest inbound and/or oubound

neighbours (final multicasting).

In principle, for every hop of that path between the first and last one (i.e. 1 < hop <
q.ttl- 1) , servers select only the freshest neighbour from both INL and ONL. However,

if that link was created within a time window q.f then the walking path conv rts to one­

hop k-multicasting just like the 'final multicasting' . After these multicasting actions,

query forwarding stops even if the maximum TTL is not yet reached. A link created

within the last q.J time units is the result of a very recent query. That query may

have also triggered more rewirings helping the current server to significantly update its

Neighbour List with fresh providers. The reason FireStalkers do not use broadcasting is

that in case of a high-incoming-degree servers it would cause flooding of a big portion of

the network. Figure 5.3 and pseudocode listing of Algorithm 3 give a more structured

and compreh llsive overview of FireStalkers.

5 .6 Simulations and Evaluation

With appropriat extensions, Omeosis (Hov rlay simulator presented in section 4.7) may

also run experim llts r garding different deployed search mechanisms. That evaluation
section left two parts of the proposed architecture in abeyance: r-ewiring and Stalker-so

Rewiring on every received answer is a mechanism introduced to improve network adapt­

ability and ffici -ncy in the presence of resource mobility. Stalkers use two uneducat cl

5.6. SIMULATIONS AND EVALUATION

Algorithm 3 FireStalkers

Require: q, q.ttl E ~, q.k E ~, q.f E ~, q.hops E ~ : q.hops::; q.ttl
1: if q.hops = 0 then {query still in its originator}
2: forward q to k most recent neighbours of ONL or INL

3: else
4: q.hops - q.hops + 1
5: if q can be satisfied then
6: send response back to originator
7: else
8: r _ the freshest outgoing or incoming link
9: if q.hops = q.ttl - 1 OR r created within the last q.f timeunits then

10: q.ttl - q.hops + 1
11: forward q to k freshest links among outbound and inbound ones
12: else if q.haps < q.ttl - 1 then
13: forward q to r
14: end if
15: end if
16: end if

109

informed mechanisms (give priority tofresh links and visit both outbound and inbound

neighbours) to track resource migrations.

Rewiring is a mechanism present in most real networks. Though there is a variety

of reasons for rewiring that could change the topology of a network, the experiments

below focus on the one triggered upon an answer delivery: preferential rewiring. As

explained in 4.7, the overlay for these experiments is built using preferential server-to­

server attachments converting the network to a power-law incoming-degree distribution.

After this initialisation phase server overlay size is fixed and rewirings only take place.

Good resource providers get popular quickly but as nodes move out and the server fail

to answer queries this fame gradually drops and its incoming links are rewired to other

servers. This allows resources to quickly gather to areas in need of capacity responding

to workload fluctuations; this is a measure of Hoverlay adaptability.

Following similar experimentation practices as of section 4.7, rewiring and Stalkers

evaluation rely on the same evaluation metrics and simulation parameters as in sec­

tion 4.7. Thus, direct comparisons between results of all experiments are easier; two

more search-specific parameters comprise the complete configuration of the following

experiments:

• Number of Walkers: all versions of Stalkers are random walkers-based algorithms

and therefore the number of walkers needs to be user input. For all the following

experiments this is set: k = 3 .

• Freshness Time Window: FloodStalkers and FireStalkers use a time window. The

former choose w = 2 incoming links to forward a query to and the latter does a

k-multicasting from an intermediary server if its freshest link was created within

the last f = 2 time units.

Flooding and k-Walkers function as benchmarking for Stalkers evaluation and share

110 CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

same parameters (Le. TTL & k). Flooding is an expensive but efficient technique

whereas k-Walkers an inexpensive with variable relatively low success rate: they com­

prise the two extremes of uneducated search mechanisms.

Each search technique has a specific coloured representation in figures below. Though

all are plotted as solid lines, a single colour corresponds to all plots of any metric for one

search method. That is one-to-one mapping of methods to colours for all figures below:
• Flooding: gold • k-Stalkers: blue • FloodStalkers: red

• k-Walkers: brown • FireStalkers: green

However, in case of experiments without rewiring in an effort to avoid many colours and

to improve readability, greyscale only is used for all methods. While one-to-one mapping

is not followed for those plots please refer to figure legends if grey ones are present.

The following sections present an analysis of the results for both rewiring and search

methods gathered from experiments on random workload distribution among all under­

lying nodes. The contribution of rewiring is explained alongside Stalkers evaluation.

Following similar analysis patterns as in section 4.7, the results presentation starts with

success rate and average number of hops followed by messages spent and requested

capacity.

5.7 Query Success Rate

Figures 5.4 and 5.6 compare the success rates achieved by all five simulated search

mechanisms. While the former plots success rates of Flooding, k-Walkers and k-Stalkers,

the latter is a figure exclusively for Stalkers. Both plot the same blue line (mapped to

k-Stalkers) as a reference to ease comparisons between any subset of search techniques.

With this reference line one may visually get a good estimation of the distance between

any two plots of those figures.

Both Flooding and k-Walkers plot lines are well (roughly 10%) below the k-Stalkers

one. FireStalkers achieve about 5% better success than k-Stalkers whereas FloodStalk­

ers outperform all evaluated methods reaching even 60% better success rate than k­

Stalkers. Therefore, ordering their ratios starting from the highest one, the following

sequence confirms that FloodStalkers achieve their target (success rate): SFS > SFRS >
SKS > SKW > SFL where Sm is the query success ratio of the mth method with

m = {F S, FRS, K S, KW, F L} representing the FloodStalkers, FireStalkers, k-Stalkers,

k-Walkers and Flooding respectively.

Flooding and k-Walkers underperform Stalkers mainly because they do not manage

to trace resource migrations and get trapped into high-degree but weak providers. The

server overlay is initially configured as a power-law topology with many leaf servers link­

ing to hubs in its centre (giant component). Given the uniform distribution of workload

onto the nodes, the vast majority of queries originate from those leaf servers. Flooding

and k-Walkers use outbound neighbours only to propagate queries and therefore they

quickly reach hubs. The rewiring scheme forces those leaves to link deeper within the

overlay and closer to its hubs whose resources move out as received queries increase.

5.7. QUERY SUCCESS RATE 111

success (*100%) Flooding with Rewmng - k-Walkers - k-Stalkers

0.8

0.6

0.4

02
timeslots

o+-~~~~~--'-~~--~~--'-~~--~~~r-~~-=~~~~

o 50 100 150 200

Figure 5.4: Success rate comparison oJ k-Stalkers against Flooding and k- Walkers in the pres­
ence oJ rewiring

The hubs are well interconnected between each other and since they are a minority

of servers their outgoing links miss the big portion of leaves to which resources might

have migrated. Therefore, those two blind search schemes force resources move out of

their paths and combined with rewiring leaf servers have finally access to very limited

resources. This makes the success rate drop and, hence, rewirings become rarer even

more affecting the success of those search mechanisms.

On the other hand, Stalkers with the use of incoming links avoid this phenomenon

and locaLe resources even after their migrations. Rewiring ensures that the topology

adapts to those migrations and the freshness-based priority scheme for query forwarding

speeds up those adaptations. The giant component initially receives many queries and

while providing resources, its servers accumulate a number of fresh incoming links that

Stalkers use to locate resources practically avoiding the 'trap' that Flooding and k­

Walkers got into. While rewiring and query propagation to inbound neighbours drive

queries to the right direction, priority to freshest links helps them increase their success

likelihood.

In general, all lines follow similar patterns as those of figure 4.9 with success rate

increase on global workload drop and vice versa. Initially (1-44 timeslots), the requested

capacity increases faster than workload and quickly pushes down the success rate of all

methods. This happens because

• more and more resources get busy and even overloaded and no fresh capacity

appears into node pools,

• fewer queries are satisfied causing relatively soon query repetitions,

• requested capacity increases even more with repeated queries.

Thereafter, till timeslot 65, global workload decreases and, hence, fresh capacity

appears in pools, load of some nodes drops below their overload threshold and some re­

peated queries stop as unnecessary; thus, success rate increases. Though global workload

within timeslots 109-143 gets at its lowest point, all techniques (apart from FloodStalk­

ers) appear to have unstable success rate. During this interval only a few queries travel

112 CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

queries ("100%) Flooding - k·Walkers - k·Stalkers

o 50 100 150 200

(a) k-Stalkers versus Flooding and k- Walkers

queries ("100%) - k·Stalkers - FlreStalkers - FloodStalkers

o 50 100 150 200

(b) FloodStalkers versus FireStalkers versus k-Stalkers

Figure 5.5: Percentage of repeated over total number of queries for Flooding, k- Walkers and
Stalkers in uniform query distribution environment

within the overlay (see figures 5.lla and 5.11b) causing that fluctuation. The percentage

of repeated over those few queries is relatively high (see figures 5.5a and 5.5b) and their

horizon is almost resource-free as otherwise they would have been cane lled during the

workload drop of the previous phase.

From timeslot 181 onwards, the success rate drops lower than that of timeslot 44

though the system-wide workload reaches the same peak. Apart from new queries due

to workload increase, there are still repeated ones from previous intervals (i.e. 109-143

as above). They remained unsatisfied even after the biggest workload drop' this increase

and finally stabilisation of system-wide workload at its highest point obliterates most

probabilities for discovery.

5.7.1 k-Stalkers vs. Flooding vs. k-Walkers

k-Walkers achieve roughly the same success rate as Flooding. Both these techniques

are deployed on a power-law degree distribution overlay and in combination with the

rewiring mechanism they increase the degree of famous servers. Given that most of

the queries come from leaf servers they can both exhaustively explore their very small

portion of the network within their horizon. k-Walkers becomes noticeably more suc­

cessful compared to Flooding during the lowest system-wide workload levels on 109-143

timeslots interval. Flooding exhibits a higher ratio of repeated over total number of

5.7. QUERY SUCCESS RATE

success ("100%)

0.8

06

0.4

02

113

- k-Stalkers - FlreStalkers - FlooclStalkers

Ot-~~~~~~~~~~~~--~~~~~~~~~
o 50 100 150 200

Figure 5.6: Success rate comparison of k-Stalkers, FireStalkers and FloodStalkers in the pres­
ence of rewiring

queries compared to k-Walkers for that interval (see figure 5.5a). For quite some time

these repeated queries try without success to discover capacity and therefore remain

unsatisfied affecting success rate. The biggest this ratio is, the lower the success rate.

k-Stalkers achieve an improvement in k-Walkers success rate throughout the exper­

iment reaching a maximum of 20% due to query forwarding via both inbound and out­

bound neighbours. As analysed before, by following the most recent neighbour, queries

manage to trace resource migrations and avoid deadlocks and loops. While system-wide

workload monotonously increases this has no positive effect on the success rate as mi­

grated resources are busy. However, queries, with the aim of tracing node migrations,

finally visit servers with updated outbound neighbour lists and thus indirectly access

the ones offering free resources.

While workload decreases, portion of system capacity becomes available but some

nodes keep regenerating queries. In those cases, queries manage to discover resources on

their pools and via inbound neighbours, too. Therefore, the benefit from inbound query

propagation is access to outbound neighbours with probably free capacity in periods of

workload increase and on top of that direct access to migrated free resources in periods

of workload decrease. This explains why k-Stalkers improvement is more noticeable

during workload drop rather than increase. The longer this load drop is, servers stop

generating queries and thus their neighbour lists gradually become outdated but more

and more free resources appear in their pools.

5.7.2 k-Stalkers vs. FloodStalkers vs. FireStalkers

Figure 5.6 presents two important phenomena: a) k-Stalkers achieve the lowest and

b) FloodStalkers the highest success rate among Stalkers. k-Stalkers forward queries

choosing the freshest link practically ignoring recently updated outbound links; apart

from the link chosen to receive a query there might be other links to servers that re­

cently offered not finally migrated resources. On the contrary, FireStalkers trust such

Neighbour Lists and once a link is too fresh it is assumed that more than one will be

too; hence local one-hop multicasting. This trust is beneficial for FireStalkers as they

achieve on average 5% (up to 20%) better success rate compared to k-Stalkers.

114 CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

FloodStalkers performance (100% success rate) during roughly 60-70 and 90-155

timeslots is an indication that they efficiently use the available capacity as workload

drops below system capacity levels. Outside those intervals, the success rate drops

roughly as much as the global workload overpasses system capacity (i.e. success drops

to 50% when workload increases up to 150% of system capacity). The red line appears

to have two gaps on 132-133 and 140-144 timeslots denoting lack of queries. During

90-155 interval, servers send out repeated queries only. FloodStalkers achieving 100%

success rate satisfy all of them once regenerated so that subsequent timeslots have no

queries; hence the gaps of red line. This lack of queries is interrupted by a burst of

repeated queries (red 'dash' between those gaps).

5.7.3 Stalkers in fixed topology

After disabling the rewiring mechanism, the comparative results collected by reruning

the experiments above appear in figures 5.7a through 5.7e. These plots do not illustrate

the success rate of methods in the absence of rewiring but rather the subtraction of that

rate from the one with rewiring presented in 5.4 and 5.6 figures. That is, their lines

represent the distance between those two rates produced by the following operation

successm,r(i) - successm,nr(i) for each method m and timeslot i where rand nr stand

for rewiring and no rewiring respectively. Figure 5.7f differs from the first 5 of that

group in that it gives absolute values of FloodStalkers success rates used in 5.7 e to

calculate the operation above. In fact, its grey area is what actually that subtraction

calculates.

All of these 5.7a through 5.7e plots exhibit a relatively wide fluctuation when global

workload reaches its deepest 'valley' as they rely on a small sample of queries per

iteration. Most of 5.7a and, at a lesser extent, 5.7b lines are below x-axis; Flooding

and k-Walkers are more successful if rewiring is disabled. They both use outgoing links

only and as they discover resources rewiring mechanism forces them link to providers

which, however, lose all their free resources as workload increases. Therefore, future

queries travel on paths with fewer resources negatively affecting their success rate. Given

that rewirings take place upon answer delivery, a drop in success rate reduces rewiring

rate, too, trapping queries into paths with low success probability. Unlike k-Walkers,

Flooding speeds up this phenomenon by quickly exhausting resources in those paths;

hence, the distance of success rate of Flooding in rewiring-disabled from rewiring-enabled

environments is more noticeable than that of k-Walkers.

Rewiring helps Stalkers, visiting incoming links, to escape paths without fresh ca­

pacity, trace migrated resources and discover fresh providers. In the absence of rewiring

freshness plays no role in success rate as all links are created during network initialisation.

Forwarding queries via incoming links help them avoid similar traps as those of Flooding

and k-Walkers. However, they cannot detect resource migrations and therefore part of

the available workload may be relocated away form their paths. This phenomenon is less

noticeable in k-Stalkers as their success rate is the lowest among Stalkers. Therefore,

they keep the resource migration rate low and resource distribution relatively intact.

5.B. AVERAGE PATH LENGTH OF SUCCESSFUL QUERIES 115

04 04

0.3 0.3

0.2 02

01 01

limeslols
0 I" -- , : • • a

50 200
-01 -0 1

-02 -02

-03 -0.3

(a) Flooding

0.7 0.7

0.6 0.6

0.5 0.5

004 004

0.3 0.3

02 0.2

01 0.1

s a

-0.1 -0 .1

(d) FireS talkers

(b) k- Walkers

50 100 150 200

(e) FloodStalkers

04

0.3

02

01

a
200

-a 1

-a 2

-a 3

(c) k-Stalkers

success - FloodStalkers No· ReWiring
('100%) - FloodStalkers with Rewiring

0.8

0.6

04

0.2

Is a
a 50 100 150 200

(f) FloodStalkers success rate:
with fj without rewiring

Figure 5.7: Comparison of search methods success rate in two environments: enabled and
disabled rewiring. (a) through (e) represent the distance oj each method's success rate with
rewiring enabled Jrom that with rewiring disabled

FireStalkers and especially F loodStalkers use these mechanisms more efficiently in­

cr asing, in parallel, the Jistance between their success rates in those two environment

modes (with versus without rewiring). Moreover, 5.7d and 5.7e figures illustrate a clear

improvement for those two methods while global workload decreases. During that phase,

tracing migrated nodes gets into action and facilitates resource discovery. In the absence

of rewiring, queries keep exploring the same network part from which resources may have

even moved away.

5.8 Average Path Length of Successful Queries

Figures 5.8 and 5.9 present a comparison of the average path lengths of successful queries

for a ll simulated methods. While the former compares Flooding, k-Walkers and k­

Stalkers the latter displays a comparison of the three Stalkers variations. k-Stalkers,

being the common method for both figures, plays the role of reference line to ease

comparison between lines of either figures. k-Stalkers alongside FireStalkers exhibit on

average only half a hop bigger delay in resource discovery compared to Flooding and

k-Walkers. FloodStalkers appear to experience longer path lengths (up to 2 hops more

116

hops

4

3 .5

3

2.5

2

1.5

o

CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

Flooding with Revvlrlng - k-VValkers - k-Stalkers

50 100 150 200

Figure 5.8: Comparison of k-Stalkers versus Flooding and k- Walkers regar'ding their avemge
path length of successful queries in environments with the rewiring mechanism enabled

that the other Stalkers). Though the half-hop difference is negligible, the 2-hop one can

become important in bandwidth used.

However, these hop count differences can be misleading if not asse sed in combination

with query success rate. FloodStalkers achieve better success rate compared to all other

four methods. They help queries to avoid small cycles and find paths to resources

satisfying many more queries. Not only do they discover answers for the same queries and

hop count as the other algorithms but also for more spending extra hops. This pushes up

the average path length of successful queries. That explain the small difference between

Flooding/k-Walkers and k-Stalkers/FireStalkers. While Stalkers preserve their horizon

wide enough to improve their success rate, Flooding and k-Walkers tend Lo shorten it

and get locked to a small one with very few resources.

Most of the successful queries of all three methods in 5.8 discover their resources

within one hop from the requesting erver. Initially, as workload increases and local pools

get exhausted, queries get satisfied by their immediate neighbouring ones. However,

every server has the same probability to generate queries due to the uniform distribution

of increasing global workload among underlying nodes and query repetitions. Therefore,

they quickly spend resources in their close vicinity and queries from more distant servers

do not manage to get there on time; thus, very few queries discover answers beyond their

two-hop vicinity keeping the average path length low.

5.8.1 k-Stalkers vs. Flooding vs. k-Walkers

Unlike what one may expect, the average path length of successful queries decreases

with global workload despite the increase of success rate. Workload drops are uniformly

applied on underlying nodes and hence, the probability a server satisfies queries from its

underlying nodes with local resources is the same for all overlay servers. There are still

responses from servers far away from local ones but their respon es are either a minority

compared to the total number of responses or even unnecessary as soon as they reach

the requesting one. Thus, Flooding and k-Walkers using outgoing links only manag

to increase their success probability as workload decreases via discovering mainly fresh

local resources. This does not help servers adapt their Neighbour Lists and improve

5.8. AVERAGE PATH LENGTH OF SUCCESSFUL QUERIES

hops

4

35

3

2.5

2

1.5

o 50

- k-Stalkers - F IreStalkers - FloodStalkers

100 150 200

117

Figure 5.9: Comparison between k-Stalkers, FireStalkers and FloodStalkers regarding their
average path length of successful queries in environments with the rewiring mechanism enabled

their efficiency when workload starts increasing again.

While Flooding and k-Walkers exhibit similar path length till the first answer of

successful queries, k-Stalkers spend on average up to half a hop more to discover the

first response. As explained before, Stalkers use some mechanisms to avoid resource­

empty paths, discover capacity that both Flooding and k-Walkers could not locate. This

justifies the increase in both their success rate and average path length.

5.8.2 k-Stalkers vs. FloodStalkers vs. FireStalkers

FireStalkers is a special ase as it achieves better success rate compared to k-Stalkers

though their average path length is shorter. Their conditional one-hop multicasting

stops query propagation assuming that queries have reached a quite promising server

whose neighbours are good providers. FireStalkers appear to have bigger delays (0.5

hops) in discovering resources from timeslot 144 onwards compared to k-Stalkers. They

retain better success rate throughout the experiment and thus their produce and repeat

[ewer queries seeking [or smaller amount of capacity. Given that small resources are

more frequent they manage to find resources deeper in the overlay.

All methods appear to have a peak in their average path lengths of successful queries

on timeslots around 44 and 80. These are the points the additional workload per timeslot

shifts from positive to negative values. For a few timeslots after those points, there are

still many queries in the overlay but this workload shift places fresh capacity in pools

both close to and far from requesting servers. This increases the success likelihood and

the average path Length. While workload keeps dropping, queries get satisfied closer and

closer to their requestors as explained above; underlying nodes regenerate less queries

and more and more free capacity appears in their close vicinity.

5.8.3 Stalkers in fixed topology

Experimenting with fixed server neighbour lists also produced results about the aver­

age path lengths of successful queries travelling without assistance from any rewiring

mechanism. Comparing those results with the ones presented in 5.8 and 5.9, six more

118 CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

0.8

0.6

0.4

02

o
-0.2

-0.4

-0.6

-a 8

-1

0.8

0.6

0.4

0.2

timeSlots
"""T-r"'- T --r-r-T"T -··' . ,,.~ . ,

50 100 150 200

(a) Flooding

0 tr.~~~~~~~~
-0.2

-0.4

-0.6

-0.8

-1

(d) FireStalkers

0.8

0.6

0.4

0.2

o
-0.2

-0.4

0.6

-0.8

-1

3

2.5

1.5

(b) k- Walkers

0.5

o ~~~~~~~~~~

·0.5

-I

-1.5

(e) FloodStalkers

1

0.8

0.6

0.4

0.2

o~~~~~~~~~.

-0.2

-0.4

0.6

-0 8

-I

hops

4.5

4

3.5

3

2.5

2

1.5

(c) k- Stalkers

-FloodStalkers No· Rewlrlng
- FloodSlalkers with RewlrlnQ

0.5
o~~~~~~~~t~ill~le~SI~ot .S

o 50 100 150 200

(f) FloodStalkers success rate:
with fj without rewiring

Figure 5.10: Comparison of search methods average path length in two environments: enabled
and disabled rewiring. (a) through (e) represent the distance of each method's path lengths with
rewiring enabled from that with rewiring disabled

figures 5.lOa through 5.10f are designed using the same principles as in 5.7a through

5.7e. These figures illustrate the difference between average path lengths of each method

deployed on those two environments (active and inactive rewiring). As before, plot 5.10f

presents the actual path lengths of FloodStalkers in both environments.

Flooding (5 .10a) and k-Walkers (5.lOb experience bigger delays if deployed to server

overlay with fixed neighbour lists. Neighbour list rewirings, as explained before, in case

of those two methods initially bring requesting servers closer to provider ones which

however stop providing as soon as all their resources migrate; the lack of any mech­

anism to prevent queries getting trapped into such paths decreases their success and

shortens the successful paths. When these rewirings are carefully us d for the benefit

of deployed methods, as is the case with Stalkers, the average length of those paths

becomes even shorter. This explains why k-Stalkers reduce their success delay when

rewiring mechanism is active more than k-Walkers do.

Deactivating rewiring, all links in servers' neighbour lists have the same times lot tag.

Therefore, Stalkers cannot pick the most recent neighbour as there is not such informa­

tion; if selection between an incoming and outgoing link is necessary, th outgoing is

used. This has no effect on Flooding and k-Walkers as by definition they use outgoing

5.9. COST IN MESSAGES

messages
("1000)

400
350

300
250

200
150

100

Flooding No-Rewiring
Flooding with ReWiring

- FloodStalker

messages
("1000)

25

20

15

10

5

119

- k-Walkers - k-Stalkers - FireStalkers

50
o timeslots 0 -j--,.....-r-r-...-,~~,......,,-,--.-::~ '-r-.,......,.---.'-'tl.:.;:m""esr.::,lots

o 50 100 150 200 0 50 100 150 200

(a) Flooding versus FloodS talkers (b) k- Walkers versus k-Stalkers versus FireStalkers

Figure 5.11: Comparion between Stalkers, Flooding and k- Walkers regarding the number of
messages they produce

links only. Without any rewiring mechanism, the network does not adapt to resource

migrations and swapping between inbound and outbound neighbours makes little dif­

ference in both success rate and delay (i.e. k-Stalkers and FireStalkers). However, both

FireStalkers and FloodStalkers use multicastings exploring bigger part of their vicinity

and when combined with rewirings they carefully select the source of these broadcasts

increasing the success probability. Therefore, more queries get an answer from distant

servers positively affecting both success rate and average path length.

5.9 Cost in Messages

Stalkers achieve significant benefits over Flooding and k-Walkers mainly related with

success rate and come at a relatively low and sometimes negligible cost in the average

response delay. Extending the evaluation of the proposed methods, figures 5.lla and

5.11b display the total cost in messages produced in each timeslot. A general obser­

vation is that Flooding and FloodStalkers spent at least one order of magnitude more

messages than k-Stalkers , k-Walkers and FireStalkers. Among all, FireStalkers are the

least expensive and FloodStalkers the most in terms of messages.

While Flooding-based queries visit every outgoing link in their vicinity, FloodStalkers­

based ones visit a maximum of 21 outgoing links and 12 incoming ones. The former,

avoiding incoming links, practically restricts its accessibility to outbound servers only

and thus leaves big part of this horizon unexplored though the increase of messages is

exponential with the Time-to-Live parameter. For the latter, messages increase linearly

with the Time-to-Live but any server in the vicinity is accessible by queries. Moreover,

FloodStalkers achieve better success rate and some messages are spent on answer and

their positive or negative acknowledgements. However, FloodStalkers during some in­

tervals is twice as expensive in messages as Flooding. The differences in the explorable

horizon and extra messages on answers or acknowledgements are not enough to justify

this cost of FloodStalkers.

120 CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

messages Flooding with Rewiring - FloodSlalkers messages - k·Slalkers - FireSlalkers

120 80

70
100

60
80 50

60 40

40
30

20
20 10

timeslots 0 timeslots

50 100 150 200 0 50 100 150 200

(a) Flooding versus FloodStalkers (b) k-Stalkers versus FireStalkers

Figure 5.12: Comparison between Stalkers and Flooding regarding the average number of mes­
sages per query

FloodStalkers produce many more queries than Flooding. Due to their better suc­

ce s rate more nodes join the requesting underlying networks. All these nodes while

being reserved and waiting to migrate on-demand, experience their own workload fluc­

tuations. Thus, by the time they arrive to requesting node they have a load which if

added to the new one from their requestors may, or at least are close to, exceed their

overload threshold. This increases the number of queries and messages traveling in the

overlay. As expected, k-Walkers an 1 k-Stalkers spend roughly the same number of mes­

sages though the former are slightly more expensive as they experience lower success

rates and are forced to expire their Time-to-Live. FireS talkers , due to their conditional

multicasting and especially during high workload situations with many rewirings, stop

query propagation quite early achieving the lowest cost in terms of messages among all

the other methods.

Figures 5.12a and 5.12b extend the evaluation of Stalkers illustrating the number

of messages per query. The first figure confirms the explanation above that Flooding

progresses in a restricted area of the overlay whereas FloodStalkers may access any

server in originator's vicinity and have to spend some extra messages in answers and

acknowledgements due to their improved success rate. Unlike Flooding, their plot shows

a deep drop in number of messages per query spend during the 109-143 interval. This

confirms the adaptability of Hoverlay and FloodStalkers as they achieve high success

rate (100%) by spending very few messages; they first gather resources locally and

then they address workload fluctuations with those local resources. Flooding, even

though deployed on Hoverlay with rewiring mechanism enabled, does not gather enough

resources close to requestors so that they quickly address workload fluctuations; they

instead have to forward consecutive queries on the overlay.

As shown in 5.12b figure, both k-Stalkers and FireStalkers produce about an order of

magnitude less messages per query. This is explained by the nature of those algorithms

as they spend a maximum of k * TTL + 1 queries, k + 1 answers (k from providers to

originating server and one from that server to originating node) and an equal amount

5.10. REQUESTED AND SATISFIED CAPACITY 121

capacity
("1000)

Flooding No-Rewinng
Flooding wllh R winng

- FloodStalkers

capacity - k-Walkers - k-Stalkers - FireStalkers
("1000)

20 20

15 15

10 10

5 5

o 50 100 150 200 o 50 100 150 200

(a) Total requested capacity oj Flooding and Flood-(b) Total requested capacity oj k- Walkers, k-Stalkers
Stalkers and FireStalkers

c,lpacity Flooding with ReWiring - FloodStalkers capacity - k-Stalkers - FireStalkers

14 18
16

12 14
10 12

8

~
10

6 8
6

4
4

2 2

0
timeslots 0 timeslots

0 50 100 150 200 0 50 100 150 200

(c) Requested capacity pe1' query oj Flooding and(d) ReqlLested capacity per query oj k-Stalkers and
FloodStalkers FireStalkers

Figure 5.13: Comparison between Stalkers, k- Walkers and Flooding regar'ding the requested
capacity (total and per query)

of acknowledgements; that is, k (TTL + 2) + 3 messages. FireStalkers on high load

situations become even less expensive as rewirings are more frequent amI more links are

created within the t ime window f parameter of the method. This forces many queries to

multicast and terminate within a few hops from their originator. While that multicasting

spends k messages, it saves the neLwork from the remaining TTL expiration. This result

confirms that FireStalkers exhibit the shortest average path length of successful queries

among all simulated methods.

However, in other network settings with much bigger Neighbour Lists and more

walkers deployed by FireStalkers, these multicastings even if they take place quite early

in query paths may produce much more messages that TTL. In these cases, FireStalker

would be more expensive than k-Stalkers but they would still retain their advantage in

the query average path length.

5.10 Requested and Satisfied Capacity

Figures 5.13a and 5.13b present the total requested capacity per timeslot for all methods.

All these plots follow the global workload patterns topped up with the capacity requested

122 CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

capacity cilpacity - k-Walkers -k-Slalkers - FireSlalkers
(*1000) (*1000)

10
7

8 6

5
6

4

4 3

2
2

I

0
limeslots

0
0 50 100 150 200 0 50 100 ISO 200

(a) Total satisfied capacity of Flooding and Flood-(b) Total satisfied capacity of k- Walker'S, k-Stalkers
Stalkers and FireStalkers

capacity Flooding wilh Rewiring - FloodSlalkers cilpilcity - k-Walkers -k·Slalkers - FlreStalkers

10

8

6

4

2

12

10

8

6

4

2

o timeslots 0 +-"-.-~.,....,.-r-~~-.-~~-r-.-~...,.:..:.til:.;.:n.::.;es:.;..:.,lots

o 50 100 150 200 o 50 100 150 200

(c) Satified capacity per query of Flooding and(d) Satisfied capacity per que1"lj of k-Stalke1'S and
FloodStalkers FireStalkers

Figure 5.14: Comparison between Stalkers, k- Walkers and Flooding regarding the satisfied 1£ser
queries (total and per query)

by repeated queries; the periodic repetitions of past unsuccessful queries become clear

with the step-like capacity drops. FloodStalkers appear to request slightly more capacity

than Flooding; the latter produces fewer queries, requested capacity is distributed among

them and re-requested whenever they are regenerated. FloodStalkel's, especially while

global workload drops, increases th number of queries via the mechanism explain d

before where!1S Plotluillg wcmlcl wuit for !!: 'olrl Lrieally illCl'Casihg pedoJ Lo regellet'ate a
failed query. T his makes th di fference between those two plots I arer towards th end

of th experiment as waiting period of past queri s has significantly incr ased.

(Jollsiderihg the requested capacity pel' query for Stalkers (plotted in 5. 13c and 5.13d

figures) useful conclusions can be drawn confirming the above. Due to the same mech­

anism that increases the number of me sages and queries of FloodStalkers compar d to

Flooding, requested capacity per query of the former is more than thaL of the laUer.

Nodes joining a requesting underlying network take on part of the requested capacity

and in addition to the load already handle may become overloaded. This forces them

to generate a new query with, however, less requested capacity (the portion that exceed

their overload threshold only). The higher the success rate the more dominant this phe­

nomenon is. The same mechanism, to a lesser extent, affects the amount of requested

5.11. SUMMARY 123

capacity per query of FireStalkers compared to k-Stalkers; the better success rate of

FireStalkers help them reduce the requested capacity per query.

Figures 5.14a and 5.14b present the cumulative satisfied capacity of all methods.

That is the requested capacity that each method managed to satisfy. It is important

to note that if put in order starting from the one that satisfied the most of requested

capacity, the sequence produced is similar to the one for success rate: SGFS > SCFRS >
SCKS > SCKW > SGFL with SC standing for satisfied capacity. Figures 5.14c and

5.14d extend these results with the satisfied capacity per successful query. These figures

confirm the results on query success rate of tested methods. It is notable that the

difference between the two lines of figure 5.14c is relatively much smaller than that in

5.14a. FloodStalkers manage to satisfy many more queries than Flooding and thus more

capacity despite its lower requested capacity per query.

5.11 Summary

This chapter presents Stalkers, a generic algorithm for the discovery of service capacity

in Hoverlay environment, as well as three variations of it: FloodStalkers, kStalkers and

FireStalkers. Using the overview of Unstructured P2P Search presented in Chapter 2,

it starts with the requirements a search algorithm needs to satisfy in order to perform

well in such a dynamic environment. It then analyses the generic algorithm design of

Stalkers and continues with the details of all three variations. The second part of the

chapter is an analytical evaluation of those algorithms based on a benchmark consisting

of Flooding and k-Walkers tested with the same experiment settings.

All Stalkers variations achieve better success rate compared to the benchmarks start­

ing from 5% (k-Stalkers) and reaching even 60% improvement (FloodStalkers) with Fire­

Stalkers outperforming }<-Stalkers for an average 5%, too. These improvements come at

a negligible extra cost in latency (on average half a hop longer path lengths of successful

queries) for k-Stalkers and FireStalkers. FloodStalkers appear to introduce bigger delays

(2 more hops than the other two Stalkers) but this is a rather superficial deterioration

as this method manages to significantly improve its success rate by discovering capacity

deeper in the network than the other can do. That is, they double their average path

lengths of successful queries but achieve 6 times better success rate on the same time

slots.

However, FloodStalkers are costly in terms of messages whereas FireStalkers the least

expensive. The use of the freshest incoming links and rewiring help the former find paths

that Flooding and k-Walkers cannot avoiding small cycles. This makes them spend more

messages. On the other hand FireStalkers trust recently updated outbound neighbour

lists and stop query forwarding on the first few hops with a final multicasting saving the

network from many messages. Finally, FloodStalkers achieve the least requested and

most satisfied capacity per times lot and per query as a result of their good success rate.

To sum up, a) FloodStalkers outperform all other tested algorithms in success rate

at a cost in messages fulfilling the purpose of their design, b) k-Stalkers spend fewer

124 CHAPTER 5. STALKERS: RESOURCE MIGRATION DETECTION

messages than k-Walkers but cannot outperform FireStalkers (in different environment

settings with outbound degree higher than TTL k-Stalkers would be winners) and c)

FireStalkers experience the shortest average path length of successful queries and thus

they fulfil their design purpose, too.

While Flooding and k-Walkers perform better in terms of success rate compared to

Stalkers deployed on environments without rewiring, Stalkers significantly improve their

success likelihood in the presence of a rewiring mechanism due to their preference in

fresh links. With regards to average path length of successful queries, rewiring helps

all methods to discover resources faster. A superficial exception is FloodStalkers which,

however, are the variation that makes extensive use of rewiring; lack of such a mecha­

nism prevents query paths from tracing resource migrations that FloodStalkers would,

otherwise, detect even far from query originators.

~()--------------------------~
Conclusions and Future Work

Network applications are dynamic distributed computing environments that frequently

exhibit phenomena of underloading and overloading due to massive fluctuations in the

number of user queries they produce and handle. These, sometimes abrupt, traffic

variations may surpass the available capacity of their nodes and make a number of user

queries be rejected. For this reason it is beneficial to provide mechanisms that allow

overloaded networks to utilise free capacity of underloaded ones. In this way, systems can

achieve significantly enhanced performance in terms of the amount of requested capacity

they satisfy. Optimizing the node utilization and minimizing the traffic volume may be

insufficient actions when excessive capacity grows well above total network capacity.

Importing fresh extra capacity into an overloaded network could be another approach

to the problem and is actually the main idea studied and evaluated in this document.

The current thesis discourses upon that problem and idea proposing Hoverlay as an

implementation of that innovative approach. Its main conceptual innovation the logical

on-demand migration of free nodes from one network to another in order to serve extra

workload in terms of user queries. These" mobile" nodes may also autonomously disjoin

the network they serve if they are underutilised and make themselves available for other

overloaded ones. The resulting system is simple in design, deadlock-free avoiding to

reserve partial answers while queries propagate through the overlay and fully supports

heterogeneity as it makes no assumption regarding the topology and type of the under­

lying networks. Therefore, the system has good applicability in scenarios where instead

of network capacity the underlying networks share processing power or even storage

capacity.

Its architecture is based on Unstructured Peer-to-Peer overlays as a framework to

facilitate resource (Le. capacity) publishing, discovery and migration. Hoverlay's speci­

fication is a more detailed, generalised, enhanced and complete version of its predeces­

sor same-purpose architecture, G-ROME, also presented in this document. That P2P

overlay comprises with a set of arbitrarily interconnected servers on top of underlying

networks. There is a one-to-one mapping between networks and servers which provide

suitable services for free resource registration with their local pool and for resource pro­

vision upon request by either their own or remote via other servers underlying nodes.

125

126 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Unlike Condor, resources move to request originator network rather than the opposite

and once freed they register with the server of that network.

This architecture is independent from the deployed search mechanisms on its Peer­

to-Peer overlay; thus, an appropriate search algorithm had to be devised to improve

discovery efficiency complying with the special characteristics of service capacity. The

proposed discovery mechanism is a combination of a rewiring and a query propagation

strategy based on the ideas:

1. each requestor creates a link to all networks offered to provide capacity even though

that was never used,

2. fresh requestors may have discovered resources which will be soon released due to

workload fluctuations and

3. fresh requestors may have recently opened connections to other providing networks

with free capacity based on the rewiring rule 1.

These rules shape a category of discovery mechanisms called Stalkers the general features

of which are also detailed here. The current study also proposes three specializations

of this category k-Stalkers, FireStalkers and FloodStalkers aiming at optimizing certain

metrics. For instance, k-Stalkers reduce the number of messages required to discover

resources at a cost in success rate, FireStalkers the average path length of successful

queries and FloodStalkers increase the success rate of queries at a cost in messages.

Extensive simulations provided useful material for comparing Hoverlay with a com­

petitive architecture, Condor. Their results have shown that the proposed architecture,

under certain circumstances, performs better than the latter even with non optimized

search techniques in terms of success rate, response latency and number of messages

spent to discover the requested capacity. It manages to find the required spare capacity

with higher probability and as a result, there is a significant increase in the number of

additional successfully processed user queries that would otherwise have been dropped.

Further experimentation on Stalkers and other search methods revealed the benefits of

the former in environments like Hoverlay regarding the percentage of successful queries

and their average path length till their first response is discovered.

6.1 Contributions & Findings

With the current dissertation, the author identifies a problem important for both indus­

try and academia. The approach analysed and evaluated in it makes a 3-dimensional

contribution defined by three axes:

• Study of the special features of reusable non-replicable resources that need to be

considered if they are to be shared in a decentralised environment.

• A decentralised architecture that facilitates the publication, sharing and discovery

of such resources.

6.1. CONTRIBUTIONS & FINDINGS 127

• A generic search strategy with three variations for discovering those shared re­

sources in the proposed architecture.

Despite the extensive research on replicable resources, the lack of guidelines on shar­

ing reusable non-replicable resources on large scale heterogeneous self-configurable de­

centralised systems was a motivation of this study to deal with them. Thus, sharing

such resources has to follow a set of rules as detailed below:

• Resource publishing: minimize the cost in messages for making available such re­

sources and maintaining accurate information about their current condition. For

instance, advertisements should be easy to update or the system able to toler­

ate with inconsistencies between resources and their adverts. Keeping accurate

information for discovery purposes requires an expensive maintenance mechanism.

• A void providing guarantees for resource availability and make the system tolerant

with load fluctuations caused by external factors. In decentralised systems, there

is some time elapsed between the discovery and commission of a resource. During

that time, both discovered and requesting resource may have changed status from

underloaded to normally loaded or even overloaded and vice versa.

• Minimize the cost introduced by resource failures. Any system providing such

resources should not assume soft resource departures. That is, no large-scale

decentralised system dealing with reusable non-replicable resources may assume

certain actions from a failing node before its departure.

Complying with these principles, Hoverlay is a main contribution of this dissertation.

It is a system seated on top of different networks and enables their collaboration via

exchanging resources. All resources at any given moment have a single publishing point

(their local server) accessible with just one message. These servers provide upon request

resources to other requesting servers which in turn do not reject responses that do not

fulfil the initial request. On the contrary, they let their underlying requestor decide

whether the response was satisfactory as both requestors and provided nodes may have

changes status during all this migration process. Once relocated resources are freed

they publish their availability on their last requesting server for future use from the

local underlying network. Resources may depart at any time without any notification.

After a set of experiments and comparisons with an existing architecture, Condor,

Hoverlay achieves better performance in terms of success rate and query response latency

in high workload scenarios. These experiments show that:

1. The percentage of successful queries over the total number of queries increase with

the decrease of system-wide workload and vice versa (finding for both systems).

2. Migrated nodes operate as equal members of requesting underlying network and

reduce the overall requested per query capacity easing the success as low capacity

resources are more frequent (finding for Hoverlay only).

128 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

3. Resource migration moves capacity away from the horizon of some servers. For

instance, requesting servers just outside the borders of another's horizon consume

resources that the latter may need in the future but will be unable to reach (finding

for Hoverlay only).

4. In environments with hotspots, decreasing load in past hotspot areas frees capacity

within the vicinity of requestors (finding for Hoverlay). If placed back to its owners

(Flock of Condors), its rediscovery becomes more difficult (finding for Flock of

Condors).

5. Hoverlay can increase dynamically the capacity of a hotspot area and thus address

more user queries. (finding for Hoverlay).

6. Placing free resources back to their originators can be beneficial once hotspots

change location moving closer to those originators (finding for Flock of Condors).

7. If free resources re-register with their last requesting server, local underlying net­

work can address much quicklier their fluctuations (finding for Hoverlay). Resource

migration in case of Hoverlay reduces the average path length of successful queries

Summarizing the findings above, Hoverlay achieves better success rate in high workload

situations as migrated nodes operate as equal members of their new hosting networks

whereas Flock of Condors perform better in low workload environments. The more the

workload decreases the rarer the resource relocations and, hence, the slower the resource

redistribution. Therefore, when just very few nodes generate queries and their vicinity

is resource-free in Hoverlay they have low probability to discover capacity. However,

returning resources back to their originators increases the probability that some of them

go back within those few requestors' horizon. Furthermore, Hoverlay manages to keep

the average path length of successful queries lower than Flock of Condors throughout

the experiments, thus, fulfilling the requirement for low latency. These advantages of

Hoverlay come almost at no extra cost in messages compared to messages produced by

Flock of Condors.

Continuing with the proposed search algorithms 'Stalkers', they use two principal

ideas: a) fresh requestors have recently discovered resources that may soon release and a

more accurate and up-to-date snapshot of their vicinity and b) recent providers may still

have some free resources. This thesis proposes three variations exploiting these ideas

each of which targets different metric: k"Stalkers for reducing number of messages in

low bandwidth networks, FireStalkers to improve latency keeping their cost in messages

relatively low and FloodStalkers to 9ptimize success rate at the expense of messages.

Their evaluation concluded that they all outperform Flooding and k-Walkers on

success rate at an insignificant increase in their average path length of successful queries

and in messages spent. In brief, k-Stalkers performance depends on the Neighbour

List size; they achieve relatively good success rate and guaranteed maximum number of

messages. FloodStalkers give the best success likelihood but spend a lot of messages and

6.2. FUTURE WORK

Bandwidth
Low
High

Connectivity (Neighbour List size)
Low High

FireStalkers k-Stalkers
FloodStalkers FireStalkers

Table 6.1: Stalkers applicability in different environments

129

FireStalkers are more successful and faster than k-Stalkers but can be a more expensive

choice if deployed on highly-connected overlays.

Table 6.1 gives an overview of scenarios to which each of those mechanisms is suitable

to be deployed. The parameters of these scenarios are the connectivity of the overlay and

the bandwidth available. FireStalkers can achieve good success rate without overloading

the overlay if it is deployed in low-connectivity and low-bandwidth or high-connectivity

and high-bandwidth environments. High-connectivity networks with low bandwidth can

afford k-Stalkers due to their guaranteed limited number of messages and relatively good

success rate. Finally, FloodStalkers can perform well in high-bandwidth environments

but with low connectivity in order to avoid network overloading.

Further experimentation on more static environments revealed that all these three

variations perform better in the presence of rewiring mechanisms as they can make full

use of the freshness of links. In static networks all links have the same lifetime and

'Stalkers' make no informed selections of neighbours. However, Flooding and k-Walkers

do not manage to outperform them in success rate as Stalkers are based on incoming

links, too, and still exhibit some traceability of resource migrations.

6.2 Future Work

The detailed evaluation .of Hoverlay and Stalkers identified the advantages and short­

comings of these mechanisms. Furthermore, some of their aspects, being out of scope for

this work, are not yet sufficiently researched. This section tries to provide an overview

of possible further work to improve and study the proposed architecture and algorithms.

Research on them can be extended but not limited to proactive placement of resources in

carefully selected areas of the network, load-balancing of servers overlay, security related

issues and applicability scenarios.

Hoverlay relies on the concept of reactive resource migration from a providing net­

work to a requesting one in order to server an overloaded underlying node. A requesting

node needs to wait till a response is discovered and nodes migrated to its own net­

work. Moreover, based on the findings above, resource migration may negatively affect

system's success rate in case of low system-wide workload levels. Therefore, a symmet­

rical facet of the proposed methodology is the proactive resource relocation. The main

criteria of this action are the provider availability levels and requesting networks' load

patterns. Providers may outsource some of their resources if they foresee they can meet

their own and others requirements in near future. They may also choose to displace

portion of their free capacity to avoid flash crowds as soon as they get discovered by

130 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

many requestors.

Proactivity in Hoverlay can be expressed in two ways: a) resource placement into

another server and b) rewiring without prior request. In the former case, servers with

plenty of resources, unnecessary for the forseeable future, may choose to spread them on

servers more likely to request for extra capacity or to those that are likely to receive many

queries in the near future. However, the latter case is a proactive network reorganisation

strategy based on which a server tries to attract more incoming links to avoid spreading

resources without any definite need to do so. They are two contradictory strategies from

traffic handling perspective: selfish and selfless, respectively. Proactive placement is a

way to avoid attracting traffic or else move traffic away to other servers. A server may

use proactive rewiring to re-route part of other servers' traffic to itself thus relieving

them from routing responsibilities.

As detailed in Chapter 2, power-law networks are efficient in discovery but Hoverlay

cannot create long-lasting hubs as service capacity migrates among servers. Proactive

placement could be used as a way to extent the lifetime of those hubs and improve

search performance of deployed mechanisms. However, it requires a small protocol for

the communication between those two parties thus introducing more messages. Single­

hop placement of a resource seems to be a better approach compared to an exhaustive

or even expensive search of the best-fit server. That is, a server may only place a

fraction of its resources to direct neighbours. Subsequent hops may reduce resource

availability as part of their lifetime will be spent in continuous migrations. The node

representing that resource may also suffer from isolation as it will practically be offiine

during its migration; addressing possible fluctuations of its workload will be delayed till

its final hop is complete. Finally, in scenarios with low global workload multi-hops in

the deployed proactive placement mechanism might cause resources in whole network

purposelessly moving around.

On the other hand, proactive rewiring does not require any extra communication

protocol as no resource exchange takes place. Given Stalkers mechanisms which dis­

tinguish and use both incoming and outgoing links, proactively opening connections to

other servers pretending request delivery can be a way of forced rewiring. This method

does not introduce extra messages but create cycles as new outbound servers might link

back to the server which initiated those proactive rewirings once they request and fetch

some of its resources. Ongoing research tests variations of those mechanisms and tries

to identify the scenarios proactive placement and rewirings can be useful.

In an attempt to formalise Hoverlay functionality, Karkinsky et al. in [68] presented

a Resource Allocation System (RAS) inspired by the current Hoverlay. The authors

captured and modelled interesting fe~tures of an oversimplified version of Hoverlay using

1t-calculus and B-method. They identified three entities: servers, clients and resources.

They are terms with slightly different semantics: servers have the same role as the

specification above, clients represent underlying requesting nodes (overloaded resources)

and resources are free nodes migrating between servers. Though they have an interesting

approach, they focus on rather obvious properties and rely on assumptions that make

6.2. FUTURE WORK 131

RAS an unrealistic system. Formal modeling can provide useful tools for assessing

decentralised systems but they are not mature enough, yet, to achieve the accuracy

of simulations and prototypes. Further work on could, however, be complementary to

existing evaluation practices for distributed systems.

Each node of the underlying network depends on a single server to discover extra

available capacity. In order to relax this limitation, the underlying nodes should be able

to send queries to more than one server. This would increase the heterogeneity and

fault-tolerance of the system. A simple approach would be a protocol which helps each

node to populate and update a list of candidate servers. Each node uses only one server

to register with if available but more than one to make requests. The way this list gets

updated and which server{s) are chosen to register with or make queries to are some of

the issues that need to be addressed.

Though Hoverlay focuses on resource discovery issues, it assumes a deployed mech­

anism on every underlying node to enable its migration and joining with the requesting

network. In a heterogeneous environment, each underlying network may support dif­

ferent distributed applications and have different joining requirements. Therefore, each

requesting node may need to submit all the appropriate data and task to migrated nodes

to take on portion of its load; this requires a common job submission toolkit. Condor can

provide such tools making both systems (Condor and Hoverlay) complementary rather

than competitive.

Both this job submission process on relocated nodes and the actual node migration

raise a number of security concerns related to access rights control of that node and

other networked resources, their data integrity, possible coordinated attacks e.t.c. Prob­

lems may be caused during migration for both providing and requesting networks. For

instance, if the deployed distributed application of the provider was an archiving service

moving out a node maintaining a portion of that distributed archive may cause loss of

information and break data integrity. Depending the archived data recovery mechanism

used in that network, that loss of information may invalidate a bigger portion of date

archived in that network. Furthermore, if multiple malicious nodes join a single network

they may be able to compromise its trust and security mechanisms.

Malicious behaviour may appear in servers as well. Suicidal servers may fake high

workload situations and gather big portion of system-wide available resources and then

disconnect practically removing that capacity from the network. Symmetrically, a server

may be a good provider for long thus becoming a strong hub of the overlay which, how­

ever, if failed may even fragment the topology. Another case of misbehaved servers could

be the provision of already well loaded nodes and therefore force these nodes generate

many queries overloading the whole overlay; this is a way to bypass the exponential

waiting period of unsatisfied queries as explained Chapter 5. These can be only a hand­

full of security related problems that need to be addressed before Hoverlay is applied to

a business environment.

Bibliography

[1] News video quality survey. Technical report, Streamcheck Research.

[2] News sites toil as visits rocket. BBG, July 2005.

[3] Gnutella. http://wiki.limewire.org/index.php?title=GDF, July 2008.

[4] Gnutella2. http://g2.trillinux.org/index.php?title=Main_Page, 2009.

[5] Karl Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information

Systems, volume 2172/2001 of Lecture Notes in Computer Science, pages 179-194.

Springer Berlin / Heidelberg, 2001.

[6] Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A. Hu­

berman. Search in power-law networks. Physical Review E, 64(4):046135, 2001.

Copyright (C) 2008 The American Physical Society; Please report any problems

to prola@aps.org.

[7] R. Akavipat, L-S. Wu, and F. Menczer. Small world peer networks in distributed

web search. In Proceedings of the 13th international World Wide Web conference

on Alternate track papers \ & posters, pages 396-397, New York, NY, USA,

2004. ACM.

[81 R. Albert, H. Jeong, and A. L. Barabasi. Diameter of the World-Wide web. Nature,

401(6749):130-131, 1999.

[9] Reka Albert and Albert-Laszlo Barabasi. Statistical mechanics of complex net­

works. Reviews of Modern Physics, 74(1):47, 2002. Copyright (C) 2008 The

American Physical Society; Please report any problems to prola@aps.org.

[10] Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi. Error and attack tol­

erance of complex networks. Nature, 406(6794):378-382, July 2000.

[111 Andre Allavena, Alan Demers, and John E. Hopcroft. Correctness of a gossip

based membership protocol. In Proceedings of the twenty-fourth annual AGM

symposium on Principles of distributed computing, pages 292-301, Las Vegas, NV,

USA, 2005. ACM.

133

134 BIBLIOGRAPHY

[12] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.

SETI@home: an experiment in public-resource computing. Communmunications

of the ACM, 45(11):56-61, 2002.

[13] N. Andrade, F. Brasileiro, W. Cirne, and M. Mowbray. Discouraging free riding

in a peer-to-peer CPU-sharing grid. In High performance Distributed Computing,

2004. Proceedings. 13th IEEE International Symposium on, pages 129-137, June

2004.

[14] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to­

peer content distribution technologies. ACM Comput. Surv., 36(4):335-371, 2004.

[15] Asad Awan, Ronaldo A. Ferreira, Suresh Jagannathan, and Ananth Grama. Un­

structured peer-to-peer networks for sharing processor cycles. Parallel Computing,

32(2): 115-135, February 2006.

[16] R. Baldoni, S. Bonomi, A. Rippa, L. Querzoni, S.T. Piergiovanni, and A. Vir­

gillito. Evaluation of unstructured overlay maintenance protocols under churn. In

Distributed Computing Systems Workshops, 2006. ICDCS Workshops 2006. 26th

IEEE International Conference on, page 13, Rome, Italy, July 2006. ACM.

[17] Roberto Baldoni, Adnan Mian, Sirio Scipioni, and Sara Tucci-Piergiovanni. Churn

Resilience of Peer-to-Peer Group Membership: A Performance Analysis, volume

3741/2005 of Lecture Notes in Computer Science, pages 226-237. Springer Berlin

/ Heidelberg, 2005.

[18] S. A. Baset and H. G. Schulzrinne. An analysis of the skype Peer-to-Peer internet

telephony protocol. In INFO COM 2006. 25th IEEE International Conference on

Computer Communications. Proceedings, pages 1-11, April 2006.

[19] B. Beckles. Current methods for negotiating firewalls for the condor system. In

Proceedings of the 4th UK e-Science All Hands Meeting 2005, Nottingham, UK,

September 2005.

[20] Tania Bedrax-weiss, Conor Mcgann, and Sailesh Ramakrishnan. Formalizing re­

sources for planning. In Proceedings of the ICAPS-03 Workshop on PDDL, pages

7-14, 2003.

[21] Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mercury: sup­

porting scalable multi-attribute range queries. SIGCOMM Comput. Commun.

Rev., 34(4):353-366, 2004.

[22] S. Bharathi and A. Chervenak. Design of a Peer-to-Peer information system us­

ing the GT4 index service. In Grid Computing, 7th IEEE/ACM International

Conference on, pages 321-322, Barcelona, Spain, September 2006.

[23] Sven Bilke and Carsten Peterson. Topological properties of citation and metabolic

networks. Physical Review E, 64(3):36106, September 2001.

BIBLIOGRAPHY 135

[24] R. Blanco, N. Ahmed, D. Hadaller, L. G. A. Sung, H. Li, and M. A. Soliman. A

survey of data management in peer-to-peer systems. Technical Report CS-2006-18,

University of Waterloo, Waterloo, Canada, June 2006.

[25] Bela Bollobas and Oliver Riordan. The diameter of a Scale-Free random graph.

Combinatorica, 24(1):5-34, 2004.

[26] Francisco Brasileiro, Eliane Araujo, William Voorsluys, Milena Oliveira, and

Flavio Figueiredo. Bridging the high performance computing gap: the OurGrid

experience. In Cluster Computing and the Grid, 2007. CCGRID 2007. Seventh

IEEE International Symposium on, pages 817-822, Rio de Janeiro, Brazil, May

2007.

[27] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra­

jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure

in the web. Computer Networks, 33(1-6):309-320, June 2000.

[28] Javier Bustos-Jimenez, Denis Caromel, and Jose Piquer. Load Balancing: Toward

the Infinite Network and Beyond, volume 4376/2007 of Lecture Notes in Computer

Science, pages 176-191. Springer Berlin / Heidelberg, 2007.

[29] Ali R. Butt, Rongmei Zhang, and Y. Charlie Hu. A self-organizing flock of condors.

J. Parallel Distrib. Comput., 66(1):145-161, 2006.

[30] Duncan S. Callaway, M. E. J. Newman, Steven H. Strogatz, and Duncan J. Watts.

Network robustness and fragility: Percolation on random graphs. Physical Review

Letters, 85(25):5468, December 2000. Copyright (C) 2008 The American Physical

Society; Please reP9rt any problems to prola@aps.org.

[31] L. Caviglione and F. Davoli. Peer-to-peer middleware for bandwidth allocation in

sensor networks. Communications Letters, IEEE, 9(3):285-287, 2005.

[32] Javier Celaya and Unai Arronategui. Scalable Architecture for Allocation of Idle

CPUs in a P2P Network, volume 4208/2006 of Lecture Notes in Computer Science,

pages 240-249. Springer Berlin / Heidelberg, 2006.

[33] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore Hong. Freenet: A Dis­

tributed Anonymous Information Storage and Retrieval System, volume 2009/2001

of Lecture Notes in Computer Science, pages 46-66. Springer Berlin / Heidelberg,

Berlin, Germany, 2001.

[34] Adina Crainiceanu, Prakash Linga, Johannes Gehrke, and Jayavel Shanmugasun­

daram. Querying peer-to-peer networks using p-trees. In Proceedings of the 7th

International Workshop on the Web and Databases: colocated with ACM SIG­

MOD/PODS 2004, pages 25-30, Paris, France, 2004. ACM.

136 BIBLIOGRAPHY

[35] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information ser­

vices for distributed resource sharing. In High Performance Distributed Comput­

ing, 2001. Proceedings. 10th IEEE International Symposium on, pages 181-194,

San Francisco, CA, USA, 2001.

[36] S. Daswani and A. Fisk. Gnutella UDP extension for scalable searches (GUESS)

vO. 1. In Gnutella Development Forum, Tech. Rep. LimeWire LLC, August 2002.

[37] R. Diestel and R. Diestel. Graph theory. Springer New York, New York, USA,

2nd edition, 2000.

[38] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A worldwide

flock of condors: load sharing among workstation clusters. Future Gener. Comput.

Syst., 12(1):53-65, 1996.

[39] X. Evers, J.F.C.M. de Jongh, R. Boontje, J. Epema, and R. Van Dantzig. Condor

flocking: load sharing between pools of workstations. Technical Report 93-104,

Technische Universiteit Delft, 1993.

[40] Georgios Exarchakos and Nick Antonopoulos. Resource sharing architecture for

cooperative heterogeneous P2P overlays. Journal of Network and Systems Man­

agement, 15(3):311-334, 2007.

[41] Georgios Exarchakos and Nick Antonopoulos. Non-replicable reusable resources

discovery on scale-free Peer-to-Peer networks. In Digital Ecosystems and Tech­

nologies, 2008. DEST 2008. 2nd IEEE International Conference on, pages 28-33,

Phitsanulok, Thailand, February 2008.

[42] Georgios Exarchakos, Nick Antonopoulos, and James Salter. G-ROME: semantic­

driven capacity sharing among P2P networks. Internet Research, 17(1):7 - 20,

2007.

[43] Georgios Exarchakos, Nick Antonopoulos, and Kan Zhang. Firewalks: Discovery

mechanism for non-replicable reusable resources. In Proceedings of the Seventh

International Network Conference (INC 2008), page 65, Plymouth, UK, 2008.

Lulu. com.

[44] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law rela­

tionships of the internet topology. Computer Communications Review, 29(4):251-

262, 1999.

[45] M. Feldman, C. PapadimitriOl1, J. Chuang, and I. Stoica. Free-riding and white­

washing in peer-to-peer systems. Selected Areas in Communications, IEEE Journal

on, 24(5):1010-1019, May 2006.

[46] George Fletcher, Hardik Sheth, and Katy BG'Arner. Unstructured Peer-to-Peer

Networks: Topological Properties and Search Performance, pages 14-27. 2005.

BIBLIOGRAPHY 137

[47] Ian Foster and Carl Kesselman. Globus: a metacomputing infrastructure toolkit.

International Journal of High Performance Computing Applications, 11(2):115-

128, June 1997.

[48] Ian Foster and Carl Kesselman. The Grid in a nutshell, pages 3-13. Kluwer

Academic Publishers, 2004.

[49] Pierre Fraigniaud, Philippe Gauron, and Matthieu Latapy. Combining the Use of

Clustering and Scale-Free Nature of User Exchanges into a Simple and Efficient

P2P System, volume 3648/2005 of Lecture Notes in Computer Science, pages 1163-

1172. Springer Berlin / Heidelberg, Berlin, Germany, 2005.

[50] A. Ganguly, A. Agrawal, P. Boykin, and R. Figueiredo. WOW: self-organizing

wide area overlay networks of virtual workstations. Journal of Grid Computing,

5(2):151-172, June 2007.

[51] W. Gentzsch. Sun grid engine: towards creating a compute power grid. In Clus­

ter Computing and the Grid, 2001. Proceedings. First IEEE/ACM International

Symposium on, pages 35-36, Wasington, USA, 2001.

[52] Thorner M. Gil, Frans Kaashoek, Jinyang Li, Robert Morris, and

Jeremy Stribling. p2psim: a simulator for peer-to-peer (p2p) protocols.

http:// pdos.csail.mit.edu/ p2psim/.

[53] C. Gkantsidis, M. Mihail, and A. Saberi. Hybrid search schemes for unstruc­

tured peer-to-peer networks. In INFOCOM 2005. 24th Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings IEEE, volume 3,

pages 1526-1537, March 2005.

[54] C. Gkantsidis, J. M.iller, and P. Rodriguez. Anatomy of a p2p content distribution

system with network coding. 5th Int. Work. on P2P System (IPTPS), February

2006.

[55] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random walks in peer-to­

peer networks: Algorithms and evaluation. Performance Evaluation, 63(3):241-

263, March 2006.

[56] Andrew S. Grimshaw, Wm. A. Wulf, and CORPORATE The Legion Team. The le­

gion vision of a worldwide virtual computer. Communicatios of the ACM, 40(1):39-

45, 1997.

[57] Hasan GucIu and Murat Yuksel. Scale-Free overlay topologies with hard cutoffs

for unstructured Peer-to-Peer networks. In Distributed Computing Systems, 2007.

ICDCS '07. 27th International Conference on, page 32, 2007.

[58] Rohit Gupta, V. Sekhri, and A.K. Somani. CompuP2P: an architecture for internet

computing using Peer-to-Peer networks. Parallel and Distributed Systems, IEEE

Transactions on, 17(11):1306-1320, November 2006.

138 BIBLIOGRAPHY

[59] Richard C. Holt. Some deadlock properties of computer systems. ACM Comput.

Surv., 4(3):179-196, 1972.

[60] J. Hu and R. Klefstad. Decentralized load balancing on unstructured Peer-2-Peer

computing grids. In Network Computing and Applications, 2006. NCA 2006. Fifth

IEEE International Symposium on, pages 247-250, Cambridge, MA, 2006.

[61] Ken Y. K. Hui, John C. S. Lui, and David K. Y. Yau. Small-world overlay P2P

networks: construction, management and handling of dynamic flash crowds. Com­

puter Networks, 50(15):2727-2746, October 2006.

[62] A. Iamnitchi, I. Foster, and D.C. Nurmi. A peer-to-peer approach to resource

location in grid environments. In High Performance Distributed Computing, 2002.

HPDC-ll 2002. Proceedings. 11th IEEE International Symposium on, page 419,

2002.

[63] H.V. Jagadish, Beng Chin Ooi, Quang Hieu Vu, Rong Zhang, and Aoying Zhou.

VBI-Tree: a Peer-to-Peer framework for supporting Multi-Dimensional indexing

schemes. In Data Engineering, 2006. ICDE '06. Proceedings of the 22nd Interna­

tional Conference on, page 34, April 2006.

[64] Mark Jelasity, Alberto Montresor, Gian Paolo Jesi, and Spyros Voulgaris. PeerSim

P2P simulator. http://peersim.sourceforge.netj.

[65] Vana Kalogeraki, Dimitrios Gunopulos, and D. Zeinalipour-Yazti. A local search

mechanism for peer-to-peer networks. In Proceedings of the eleventh international

conference on Information and knowledge management, pages 300-307, McLean,

Virginia, USA, November 2002. ACM.

[66] Nirav Kapadia and Jose Fortes. PUNCH: an architecture for web-enabled wide­

area network-computing. Cluster Computing, 2(2):153-164, September 1999.

[67] Pradnya Karbhari, Mostafa Ammar, Amogh Dhamdhere, Himanshu Raj,

George F. Riley, and Ellen Zegura. Bootstrapping in Gnutella: A Measurement

Study, volume 3015/2004 of Lecture Notes in Computer Science, pages 22-32.

Springer Berlin / Heidelberg, 2004.

[68] Damien Karkinsky, Steve Schneider, and Helen Treharne. Combining Mobility with

State, volume 4591/2007 of Lecture Notes in Computer Science, pages 373-392.

Springer Berlin / Heidelberg, Heidelberg, Germany, 2007.

[69] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxonomy

and survey of grid resource management systems for distributed computing. Soft­

ware: Practice and Experience, 32(2):135-164, 2002.

[70] Stefan M Larson, Christopher D Snow, Michael Shirts, and Vijay S Pande. Fold­

ing@ Home and Genome@ Home: Using distributed computing to tackle previously

intractable problems in computational biology. Horizon Press, 2002.

BIBLIOGRAPHY 139

[71] Jian Liang, Rakesh Kumar, and Keith W. Ross. The Fast Track overlay: A mea­

surement study. Computer Networks, 50(6):842-858, April 2006.

[72] Fredrik Liljeros, Christofer R. Edling, Luis A. Nunes Amaral, H. Eugene Stanley,

and Yvonne Aberg. The web of human sexual contacts. Nature, 411(6840):907-

908, June 2001.

[73] M.J. Litzkow, M. Livny, and M.W. Mutka. Condor-a hunter of idle workstations.

In Distributed Computing Systems, 1988., 8th International Conference on, pages

104-111, San Jose, CA, USA, 1988.

[74] Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and

comparison of peer-to-peer overlay network schemes. Communications Surveys fj

Tutorials, IEEE, 7(2):72-93, 2005.

[75] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and replication

in unstructured peer-to-peer networks. In Proceedings of the 16th international

conference on Supercomputing, pages 84-95, New York, New York, USA, 2002.

ACM.

[76] Carlo Mastroianni, Domenico Talia, and Oreste Verta. A super-peer model for

resource discovery services in large-scale grids. Future Generation Computer Sys­

tems, 21(8):1235-1248, October 2005.

[77] Milena Mihail, Amin Saberi, and Prasad Tetali. Random walks with lookahead

on power law random graphs. Internet Mathematics, 3(2):147-152, 2006.

[78] Kiran Nagaraja, S. Rollins, and M. Khambatti. From the editors: peer-to-peer

community: looking beyond the legacy of napster and gnutella. Distributed Sys­

tems Online, IEEE, 7(3), March 2006.

[79] M. E. J. Newman. The structure and function of complex networks. SIAM Review,

45(2):167-256, 2003.

[80] Nikos Ntarmos, Theoni Pitoura, and Peter Triantafillou. Range Query Optimiza­

tion Leveraging Peer Heterogeneity in DHT Data Networks, volume 4125/2007 of

Lecture Notes in Computer Science, pages 111-122. Springer Berlin / Heidelberg,

2007.

[81] Johan Pouwelse, Pawe Garbacki, Dick Epema, and Henk Sips. The Bittorrent P2P

File-Sharing System: Measurements and Analysis, volume 3640/2005 of Lecture

Notes in Computer Science, pages 205-216. Springer Berlin / Heidelberg, 2005.

[82] R. Raman, M. Livny, and M. Solomon. Matchmaking: distributed resource man­

agement for high throughput computing. pages 140-146, Jul 1998.

[83] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Schenker. A scalable content-addressable network. SIGCOMM Compututer Com­

munication Review, 31(4):161-172, October 2001.

140 BIBLIOGRAPHY

[84] S. Redner. How popular is your paper? an empirical study of the citation dis­

tribution. The European Physical Journal B - Condensed Matter and Complex

Systems, 4(2):131-134, August 1998.

[85] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network. In Peer­

to-Peer Computing, 2001. Proceedings. First International Conference on, pages

99-100, Linkoping, Sweden, August 2001.

[86] Matei Ripeanu and Ian Foster. Mapping the Gnutella Network: Macroscopic Prop­

erties of Large-Scale Peer-to-Peer Systems, volume 2429/-1/2002 of Lecture Notes

in Computer Science, pages 85-93. Springer Berlin / Heidelberg, Berlin, Germany,

2002.

[87] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object Lo­

cation, and Routing for Large-Scale Peer-to-Peer Systems, volume 2218/2001 of

Lecture Notes in Computer Science, pages 329-350. Springer Berlin / Heidelberg,

2001.

[88] J. Salter, N. Antonopoulos, and R. Peel. ROME: optimising lookup and load­

balancing in DHT-based P2P networks. In Proceedings of the 2005 International

Conference on Parallel and Distributed Processing Techniques and Applications

(PDPTA OS), pages 27-30, Las Vegas, NV, USA, June 2005.

[89] K. Samant and S. Bhattacharyya. Topology, search, and fault tolerance in unstruc­

tured P2P networks. In System Sciences, 2004. Proceedings of the 37th Annual

Hawaii International Conference on, page 6 pp., 2004.

[90] Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. Measuring and

analyzing the characteristics of napster and gnutella hosts. Multimedia Systems,

9(2):170-184, August 2003.

[91] G. Scherp, W. Hasselbring, and J. Ploski. The WISENT grid architecture: Coping

with firewalls and NAT. In German e-Science Conference, 2007.

[92] R. Schollmeier. Why peer-to-peer (P2P) does scale: an analysis of P2P traffic

patterns. In Peer-to-Peer Computing, 2002. (P2P 2002). Proceedings. Second

International Conference on, pages 112-119, Linkoping, Sweden, September 2002.

IEEE.

[93] Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic across large net­

works. IEEE/ACM Transactions on Networking (TON), 12(2):219-232, April

2004.

[94] Stephen F Smith and Marcel A Becker. An ontology for constructing scheduling

systems. Working Notes of 1997 AAAI Spring Symposium on Ontological Engi­

neering, pages 120-129, March 1997.

BIBLIOGRAPHY 141

[95] Sechang Son, B. Allcock, and M. Livny. CODO: firewall traversal by cooperative

on-demand opening. In High Performance Distributed Computing, 2005. HPDC-

14. Proceedings. 14th IEEE International Symposium on, pages 233-242, July

2005.

[96] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek,

and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet

applications. Networking, IEEE/ ACM Transactions on, 11(1):17-32, February

2003.

[97] D. Stutzbach, R. Rejaie, and S. Sen. Characterizing unstructured overlay topolo­

gies in modern P2P File-Sharing systems. Networking, IEEE/ACM Transactions

on, 16(2):267-280, April 2008.

[98] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks.

In Proceedings of the 6th ACM SIGCOMM conference on Internet measurement,

pages 189-202, Rio de Janeriro, Brazil, October 2006. ACM.

[99] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in

practice: the condor experience: Research articles. Concurrency and Computation:

Practice & Expererience, 17(2-4):323-356, February 2005.

[100] D. Tsoumakos and N. Roussopoulos. Adaptive probabilistic search for peer-to­

peer networks. In Peer-to-Peer Computing, 2003. (P2P 2003). Proceedings. Third

International Conference on, pages 102-109, Linkoping, Sweden, September 2003.

[101] Dimitrios Tsoumakos and Nick Roussopoulos. Analysis and comparison of P2P

search methods. In Proceedings of the 1st international conference on Scalable

information systems, volume 152 of ACM International Conference Proceeding

Series, page 25, Hong Kong, 2006. ACM.

[102] Koen Vanthournout, Geert Deconinck, and Ronnie Belmans. A taxonomy for

resource discovery. Personal and Ubiquitous Computing, 9(2):81-89, March 2005.

[103] Jean Vaucher, Gilbert Babin, Peter Kropf, and Thierry Jouve. Experimenting with

Gnutella Communities, volume 2468/2002 of Lecture Notes in Computer Science,

pages 255-257. Springer Berlin / Heidelberg, Heidelberg, Germany, 2002.

[104] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of /,small-world/,

networks. Nature, 393(6684):440-442, June 1998.

[105] DJ. Wolinsky, A. Agrawal, P.O. Boykin, J.R. Davis, A. Ganguly, V. Paramygin,

Y.P. Sheng, and R.J. Figueiredo. On the design of virtual machine sandboxes for

distributed computing in wide-area overlays of virtual workstations. In Virtualiza­

tion Technology in Distributed Computing, 2006. VTDC 2006. First International

Workshop on, page 8, Tampa, Florida, USA, November 2006.

142 BIBLIOGRAPHY

[106] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. In

Distributed Computing Systems, 2002. Proceedings. 22nd International Conference

on, pages 5-14, Vienna, Austria, July 2002. IEEE.

[107] Xiangying Yang and Gustavo de Veciana. Performance of peer-to-peer networks:

Service capacity and role of resource sharing policies. Performance Evaluation,

63(3):175-194, March 2006.

[108] Haiyang Zhang and Huadong Ma. An efficient hierarchical DHT-Based complex

query for multimedia information. In Multimedia and Expo, 2001 IEEE Interna­

tional Conference on, pages 568-571, 2007.

[109] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubia­

towicz. Tapestry: a resilient global-scale overlay for service deployment. Selected

Areas in Communications, IEEE Journal on, 22(1):41-53, 2004.

[110] D. Zhou and V. Lo. Cluster computing on the fly: resource discovery in a cycle

sharing peer-to-peer system. In Cluster Computing and the Grid, 2004. CCGrid

2004. IEEE International Symposium on, pages 66-73,2004.

[111] Hai Zhuge, Xue Chen, and Xiaoping Sun. Preferential walk: towards efficient and

scalable search in unstructured peer-to-peer networks. In Special interest tracks

and posters of the 14th international conference on World Wide Web, pages 882-

883, Chiba, Japan, 2005. ACM.

	502664_002
	502664_002a
	502664_003
	502664_004
	502664_005
	502664_006
	502664_007
	502664_008
	502664_009
	502664_010
	502664_011
	502664_012
	502664_013
	502664_014
	502664_015
	502664_016
	502664_017
	502664_018
	502664_019
	502664_020
	502664_021
	502664_022
	502664_023
	502664_024
	502664_025
	502664_026
	502664_027
	502664_028
	502664_029
	502664_030
	502664_031
	502664_032
	502664_033
	502664_034
	502664_035
	502664_036
	502664_037
	502664_038
	502664_039
	502664_040
	502664_041
	502664_042
	502664_043
	502664_044
	502664_045
	502664_046
	502664_047
	502664_048
	502664_049
	502664_050
	502664_051
	502664_052
	502664_053
	502664_054
	502664_055
	502664_056
	502664_057
	502664_058
	502664_059
	502664_060
	502664_061
	502664_062
	502664_063
	502664_064
	502664_065
	502664_066
	502664_067
	502664_068
	502664_069
	502664_070
	502664_071
	502664_072
	502664_073
	502664_074
	502664_075
	502664_076
	502664_077
	502664_078
	502664_079
	502664_080
	502664_081
	502664_082
	502664_083
	502664_084
	502664_085
	502664_086
	502664_087
	502664_088
	502664_089
	502664_090
	502664_091
	502664_092
	502664_093
	502664_094
	502664_095
	502664_096
	502664_097
	502664_098
	502664_099
	502664_100
	502664_101
	502664_102
	502664_103
	502664_104
	502664_105
	502664_106
	502664_107
	502664_108
	502664_109
	502664_110
	502664_111
	502664_112
	502664_113
	502664_114
	502664_115
	502664_116
	502664_117
	502664_118
	502664_119
	502664_120
	502664_121
	502664_122
	502664_123
	502664_124
	502664_125
	502664_126
	502664_127
	502664_128
	502664_129
	502664_130
	502664_131
	502664_132
	502664_133
	502664_134
	502664_135
	502664_136
	502664_137
	502664_138
	502664_139
	502664_140
	502664_141
	502664_142
	502664_143
	502664_144
	502664_145
	502664_146
	502664_147
	502664_148
	502664_149
	502664_150
	502664_151
	502664_152
	502664_153

