71 research outputs found

    Resonances in a spring-pendulum: algorithms for equivariant singularity theory

    Get PDF
    A spring-pendulum in resonance is a time-independent Hamiltonian model system for formal reduction to one degree of freedom, where some symmetry (reversibility) is maintained. The reduction is handled by equivariant singularity theory with a distinguished parameter, yielding an integrable approximation of the Poincaré map. This makes a concise description of certain bifurcations possible. The computation of reparametrizations from normal form to the actual system is performed by Gröbner basis techniques.

    Bifurcations of maps: numerical algorithms and applications

    Get PDF
    Dynamical systems theory provides mathematical models for systems which evolve in time according to a rule, originally expressed in analytical form as a system of equations. Discrete-time dynamical systems defined by an iterated map depending on control parameters, \begin{equation} \label{Map:g} g(x,\alpha) := f^{(J)}(x,\alpha)= \underbrace{f(f(f(\cdots f}_{J \mbox{~times}}(x,\alpha),\alpha),\alpha),\alpha), \end{equation} appear naturally in, e.g., ecology and economics, where x∈Rnx\in \R^n and α∈Rk\alpha \in \R^k are vectors of state variables and parameters, respectively. %The system dynamics describe a sequence of points \left\{x_k{\right\} \subset \R^n (orbit), provided an initial x0∈Rnx_0 \in \R^n is given. The main goal in the study of a dynamical system is to find a complete characterization of the geometry of the orbit structure and the change in orbit structure under parameter variation. An aspect of this study is to identify the invariant objects and the local behaviour around them. This local information then needs to be assembled in a consistent way by means of geometric and topological arguments, to obtain a global picture of the system. At local bifurcations, the number of steady states can change, or the stability properties of a steady state may change. The computational analysis of local bifurcations usually begins with an attempt to compute the coefficients that appear in the normal form after coordinate transformation. These coefficients, called critical normal form coefficients, determine the direction of branching of new objects and their stability near the bifurcation point. After locating a codim 1 bifurcation point, the logical next step is to consider the variation of a second parameter to enhance our knowledge about the system and its dynamical behaviour. % % In codim 2 bifurcation points branches of various codim 1 bifurcation curves are rooted. % These curve can be computed by a combination of parameter-dependent center manifold reduction and asymptotic expressions for the new emanating curves. We implemented new and improved algorithms for the bifurcation analysis of fixed points and periodic orbits of maps in the {\sc Matlab} software package {\sc Cl\_MatcontM}. This includes the numerical continuation of fixed points of iterates of the map with one control parameter, detecting and locating their bifurcation points, and their continuation in two control parameters, as well as detection and location of all codim 2 bifurcation points on the corresponding curves. For all bifurcations of codim 1 and 2, the critical normal form coefficients are computed with finite directional differences, automatic differentiation and symbolic derivatives of the original map. Asymptotics are derived for bifurcation curves of double and quadruple period cycles rooted at codim 2 points of cycles with arbitrary period to continue the double and quadruple period bifurcations. In the case n=2n=2 we compute one-dimensional invariant manifolds and their transversal intersections to obtain initial connections of homoclinic and heteroclinic orbits orbits to fixed points of (\ref{Map:g}). We continue connecting orbits, using an algorithm based on the continuation of invariant subspaces, and compute their fold bifurcation curves, corresponding to the tangencies of the invariant manifolds. {\sc Cl\_MatcontM} is freely available at {\bf www.matcont.ugent.be} and {\bf www. sourceforge.net}

    Dynamics of Macrosystems; Proceedings of a Workshop, September 3-7, 1984

    Get PDF
    There is an increasing awareness of the important and persuasive role that instability and random, chaotic motion play in the dynamics of macrosystems. Further research in the field should aim at providing useful tools, and therefore the motivation should come from important questions arising in specific macrosystems. Such systems include biochemical networks, genetic mechanisms, biological communities, neutral networks, cognitive processes and economic structures. This list may seem heterogeneous, but there are similarities between evolution in the different fields. It is not surprising that mathematical methods devised in one field can also be used to describe the dynamics of another. IIASA is attempting to make progress in this direction. With this aim in view this workshop was held at Laxenburg over the period 3-7 September 1984. These Proceedings cover a broad canvas, ranging from specific biological and economic problems to general aspects of dynamical systems and evolutionary theory

    Mathematical foundations of elasticity

    Get PDF
    [Preface] This book treats parts of the mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is intended for mathematicians, engineers, and physicists who wish to see this classical subject in a modern setting and to see some examples of what newer mathematical tools have to contribute

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area

    Bifurcations from codimension-one D4m-equivariant homoclinic cycles

    Get PDF
    Das Thema dieser Arbeit ist eine detaillierte Beschreibung der Dynamik in der NĂ€he von D4m-symmetrischen relativen homoklinen Zykeln mit Hilfe von Lins Methode. Die homoklinen Zykel haben die Kodimension-1, d.h. wir beobachten ihre generische Entfaltung innerhalb einer einparametrigen Familie. Sie bestehen aus mehreren Trajektorien, die sowohl fĂŒr positive als auch negative Zeit derselben hyperbolischen Gleichgewichtslage zustreben (Homokline Trajektorien) und die alle durch die von einer endlichen Gruppe induzierten Symmetrie voneinander abhĂ€ngig sind. Wir nehmen reelle fĂŒhrende Eigenwerte und homokline Trajektorien an, die sich der Gleichgewichtslage entlang fĂŒhrender Richtungen nĂ€hern. Die Homoklinen befinden sich in flussinvarianten UnterrĂ€umen. Insbesondere fĂŒr solche homoklinen Zykel in Differentialgleichungen mit Dk-Symmetrie (Dk ist die Symmetriegruppe eines regelmĂ€ĂŸigen k-Ecks in der Ebene), bei denen k ein Vielfaches von 4 ist, stehen einige dieser flussinvarianten UnterrĂ€ume senkrecht zueinander. Dies impliziert das Verschwinden der typischerweise auftretenden Terme fĂŒhrender exponentieller Konvergenzordnung in einigen der aus Lins Methode gewonnenen Bestimmungsgleichungen. Um eine genaue Beschreibung der nichtwandernden Dynamik eines solchen homoklinen Zykels zu geben, d.h. eine Beschreibung der Lösungen, die in der Umgebung des Zykels sowohl im Phasen- als auch im Parameterraum verbleiben, sind weitere Informationen ĂŒber die Restterme in den Bestimmungsgleichungen erforderlich. In dieser Arbeit stellen wir eine verfeinerte Darstellung der Restterme in den Bestimmungsgleichungen vor und identifizieren zwei weitere Terme mit nĂ€chsthöheren exponentiellen Konvergenzraten. Darauf aufbauend diskutieren wir die Lösbarkeit der resultierenden Bestimmungsgleichungen fĂŒr homokline Zykel in R4. Dabei sind zwei FĂ€lle zu unterscheiden, die vom GrĂ¶ĂŸenverhĂ€ltnis der beiden neuen Terme abhĂ€ngen. In einem Fall beobachten wir einen endlichen Subshift. Im anderen Fall erweist sich die Analysis als schwieriger, so dass wir die Untersuchung auf periodische Lösungen beschrĂ€nken.The topic of this thesis is a detailed description of the dynamics near D4m-symmetric relative homoclinic cycles by using Lin’s method. The homoclinic cycles have codimension-one, that is we observe the generic unfolding within a one- parameter family. They consist of several trajectories that are homoclinic to a hyperbolic equilibrium and which are all related to each other by means of the symmetry induced by a finite group. We assume real leading eigenvalues and connecting trajectories that approach the equilibrium along leading directions. The homoclinics are situated in flow-invariant subspaces. Especially for such homoclinic cycles in differential equations with Dk-symmetry (Dk is the symmetry group of a regular k-gon in the plane) where k is a multiple of 4 some of these flow-invariant subspaces are perpendicular to each other. This implies the vanishing of the typically appearing leading order terms in some of the determination equations gained from Lin’s method. In order to give a precise description of the nonwandering dynamics of such a homoclinic cycle, that is a description of the solutions that remain in the neighbourhood of the cycle both in phase and parameter space, further information about the residual terms in the determination equations are needed. In this thesis we present a more sophisticated representation of the residual terms in the determination equations and identify two further terms of next leading exponential rates. Based on this we discuss the solvability of the resulting determination equations for homoclinic cycles in R4. Thereby two cases must be distinguished, depending on the size ratio of the two new terms. In one case we observe subshifts of finite type. In the other case the analysis turns out to be more difficile so we restrict the investigation to periodic solutions. Beyond that we show how vector fields in R4 containing a homoclinic cycle with Dk-symmetry can be constructed. Those can be used for numerical investigations. One of these examples we consider numerically to verify some of the analytic results

    Mathematical and Numerical Aspects of Dynamical System Analysis

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Complexity Science in Human Change

    Get PDF
    This reprint encompasses fourteen contributions that offer avenues towards a better understanding of complex systems in human behavior. The phenomena studied here are generally pattern formation processes that originate in social interaction and psychotherapy. Several accounts are also given of the coordination in body movements and in physiological, neuronal and linguistic processes. A common denominator of such pattern formation is that complexity and entropy of the respective systems become reduced spontaneously, which is the hallmark of self-organization. The various methodological approaches of how to model such processes are presented in some detail. Results from the various methods are systematically compared and discussed. Among these approaches are algorithms for the quantification of synchrony by cross-correlational statistics, surrogate control procedures, recurrence mapping and network models.This volume offers an informative and sophisticated resource for scholars of human change, and as well for students at advanced levels, from graduate to post-doctoral. The reprint is multidisciplinary in nature, binding together the fields of medicine, psychology, physics, and neuroscience

    Dynamical Models of Biology and Medicine

    Get PDF
    Mathematical and computational modeling approaches in biological and medical research are experiencing rapid growth globally. This Special Issue Book intends to scratch the surface of this exciting phenomenon. The subject areas covered involve general mathematical methods and their applications in biology and medicine, with an emphasis on work related to mathematical and computational modeling of the complex dynamics observed in biological and medical research. Fourteen rigorously reviewed papers were included in this Special Issue. These papers cover several timely topics relating to classical population biology, fundamental biology, and modern medicine. While the authors of these papers dealt with very different modeling questions, they were all motivated by specific applications in biology and medicine and employed innovative mathematical and computational methods to study the complex dynamics of their models. We hope that these papers detail case studies that will inspire many additional mathematical modeling efforts in biology and medicin
    • 

    corecore