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Abstract

The topic of this thesis is a detailed description of the dynamics near D4m-symmetric relative homoclinic

cycles by using Lin’s method.

The homoclinic cycles have codimension-one, that is we observe the generic unfolding within a one-

parameter family. They consist of several trajectories that are homoclinic to a hyperbolic equilibrium

and which are all related to each other by means of the symmetry induced by a finite group. We

assume real leading eigenvalues and connecting trajectories that approach the equilibrium along leading

directions. The homoclinics are situated in flow-invariant subspaces.

Especially for such homoclinic cycles in differential equations with Dk-symmetry (Dk is the symmetry

group of a regular k-gon in the plane) where k is a multiple of 4 some of these flow-invariant subspaces are

perpendicular to each other. This implies the vanishing of the typically appearing leading order terms in

some of the determination equations gained from Lin’s method. In order to give a precise description of

the nonwandering dynamics of such a homoclinic cycle, that is a description of the solutions that remain

in the neighbourhood of the cycle both in phase and parameter space, further information about the

residual terms in the determination equations are needed.

In this thesis we present a more sophisticated representation of the residual terms in the determination

equations and identify two further terms of next leading exponential rates. Based on this we discuss the

solvability of the resulting determination equations for homoclinic cycles in R4. Thereby two cases must

be distinguished, depending on the size ratio of the two new terms. In one case we observe subshifts of

finite type. In the other case the analysis turns out to be more difficile so we restrict the investigation to

periodic solutions.

Beyond that we show how vector fields in R4 containing a homoclinic cycle with Dk-symmetry can

be constructed. Those can be used for numerical investigations. One of these examples we consider

numerically to verify some of the analytic results.
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1 Introduction

Bifurcation theory is one of the big topics in the modern theory of dynamical systems. Roughly speaking it

studys a sudden change of the dynamical behavior when changing the parameter in a family of dynamical

systems. This can range from the change in the number of equilibria up to the transition from tame to

wild (chaotic) dynamics. The roots of the bifurcation theory date back to Poincaré, [P1890], but it is

still a vibrant research topic with many applications in several scientific disciplines.

Thereby the bifurcation theory of heteroclinic and homoclinic solutions play a key role in our under-

standing of complex (chaotic) dynamics. Heteroclinic solutions are solutions that connect in infinite

time, invariant solution sets of the differential equations such as i.e. equilibrium points or periodic orbits.

If the connected sets are identical, we speak of a homoclinic solution. A review of the contemporary

results and literature of bifurcation theory of homoclinic and heteroclinic orbits is provided by Homburg

and Sandstede [HomSan10]. An introduction to chaotic dynamics can be found in [Dev89].

The modern bifurcation theory of heteroclinic and homoclinic solutions is significantly influenced by the

fundamental work of Shil’nikov from the 1960s. An outline can be found in the monographs [SSTC98,

SSTC01]. Shil’nikov’s approach to study homoclinic bifurcation problems is based on Poincaré first return

maps. This has become the standard technique for treating this type of bifurcation problems.

At the beginning of the 1990s, Lin established a method for constructing orbits in neighbourhoods of

heteroclinic chains, [Lin90]. Nowadays, this procedure is also known as Lin’s method. Essentially, it

is based on a Liapunov/Schmidt reduction. In the course of the reduction process information on the

dynamics is lost (e.g. stability statements). However, in several cases the existence of certain orbits can

be proved more easily. With respect to chaotic dynamics it is even possible to prove by means of that

method the existence of an invariant set on which the dynamics is topologically conjugated to a finite

subshift on a finite number of symbols, [HJKL11]. We want to remark that due to the loss of stability

results the existence of a suspended (hyperbolic) horseshoe cannot be proved.

Of growing interest is the study of heteroclinic cycles or more generally, heteroclinic networks. In the

simplest case, such networks consists of equilibria and orbits connecting these equilibria (heteroclinic

orbits). Such networks have been identified as a ”source” of non-trivial dynamics and appear, among

other things, in physical problems such as convection [GuHo88, Ruc01], in population dynamics [Hof94,

Hof98, MaLe75] or also in neuronal networks [AOWT07].

In general, a heteroclinic trajectory connecting hyperbolic equilibria with same saddle index (same di-

mension of the unstable manifold) has at least codimension-one, i.e. such a trajectory occurs robustly

in one-parameter families of differential equations. If there are no dependencies between the heteroclinic

trajectories, the codimension of a heteroclinic network is the sum of the codimensions of the individual

heteroclinic trajectories of the network. The study of such networks is thus only meaningful in corre-

spondingly multi-parameter families of differential equations.

The situation is different for symmetric differential equations. The symmetry can enforce flow-invariant

subspaces in which heteroclinic trajectories are robust or at least of low codimension, [Kru97]. This can

lead to complicated heteroclinic networks with low codimension or even codimension-zero. Codimension-

zero networks in particular are robust - they persist under perturbations of the underlying differential

equation.

Symmetries of differential equations respectively vector fields are described by means of group actions – a

vector field has a certain symmetry or equivalently it is equivariant under the (linear) action (representa-
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1 Introduction

tion) of a groupG if it commutes with the representation operators ofG. In this respectG is also called the

symmetry group of the vector field. The text books [Van82, GSch85, GSS88, ChoLau00, Fie07] provide

general treatises on equivariant bifurcation theory. In [Fie96] among others also symmetric heteroclinic

networks are considered.

Of particular interest are heteroclinic networks, which result as a group orbit of the symmetry group

of a single heteroclinic trajectory. In a certain sense, this trajectory defines the network. Then the

codimension of the network can coincide with the codimension of the defining trajectory. Surprisingly,

such networks can generate very complex dynamics.

Robust heteroclinic networks have been increasingly investigated since the 90s, compare [AgCaLa05,

AgLaRo10, HomKno10, KLPRS10, KruMel04]. A detailed review on robust heteroclinic cycles is provided

by [Kru97]. Part II of that paper describes in detail the state of mathematical research, while in Part III

experiments and numerical applications are discussed.

More recently bifurcation problems of non-robust symmetric heteroclinic networks came into focus. Even

simple networks of this kind can generate very complex dynamics. For example this is the case for a

network consisting of two homoclinics which emerge from each other by a reflectional symmetry and

approach a hyperbolic equilibrium along the same direction – a so-called Z2-symmetric Bellows. Note

that Z2-symmetric Bellows form at least a codimension-1 relative homoclinic cycle. They generate shift-

dynamik (full shift on two symbols), [Hom93].

In [Mat99] Matthies shows that in the course of aD3-Takens-Bogdanov bifurcationD3- symmetric relative

homoclinic cycles arise, which generate a subshift of finite type. In [Hom93] as well as in [Mat99], first

return maps were used to study the dynamics of the network.

In [HJKL11] the dynamics near codimension-one homoclinic cycles are considered by applying Lin’s

method. Under open conditions and in a wide range of cases bifurcation scenarios were established

describing how shift dynamics appear or disappear in the bifurcation. It turned out that the analysis

in [HJKL11] fails for homoclinic cycles with specific symmetries. The prototype bifurcation where this

analysis fails arises for homoclinic cycles in differential equations with Dk-symmetry where k is a multiple

of 4.

The goal of this thesis is to extend the analysis in [HJKL11] in such a way that we obtain a more

precise description of the nonwandering dynamics in the neighbourhood of a homoclinic cycle where the

analysis in [HJKL11] does not provide a complete picture. Beyond that we show how vector fields in R4

containing a homoclinic cycle with Dk-symmetry can be constructed. Those can be used for numerical

investigations. One of these examples we consider numerically to verify some of the analytic results.

In what follows we briefly discuss the reasons for the failure of the analysis given in [HJKL11] in case of

D4m-symmetric homoclinic cycles. We start by introducing the precise framework used there.

In [HJKL11] a one-parameter family of differential equations

ẋ = f(x, λ) (1.1)

is considered, where x ∈ Rn, λ ∈ R, and f is sufficiently smooth. Further (1.1) is assumed to be

equivariant (symmetric) under the linear action of a finite group G, cf. [GSS88]:

gf(x, λ) = f(gx, λ), ∀g ∈ G, (1.2)

and has for λ = 0 a heteroclinic trajectory γ connecting two hyperbolic equilibria p and hp with

8



h ∈ G. That is γ is a solution of (1.1) at λ = 0 with

lim
t→−∞

γ(t) = p and lim
t→∞

γ(t) = hp.

As a consequence of the symmetry we find for any solution q of (1.1) that also gq is a solution of (1.1)

for all g ∈ G. Hence, with γ being a heteroclinic trajectory connecting p and hp also gγ is a heteroclinic

trajectory connecting gp and g(hp). Let Γ be the heteroclinic network generated by γ, that is

Γ = G(γ). (1.3)

In other words, Γ is the group orbit of the closure of a single heteroclinic trajectory γ. Such a heteroclinic

network, where each connecting trajectory is related to a single trajectory by symmetry, is called relative

homoclinic cycle. It consists of the hyperbolic equilibrium p, the heteroclinic trajectory γ and all

further G-images of γ and p.

The connectivity matrix C = (cij) of a heteroclinic network (with heteroclinic trajectories γi) is a

0-1 matrix, where cij = 1 if the endpoint (the ω-limit ω(γi)) of the heteroclinic connection γi is equal

to the starting point (the α-limit α(γj)) of the heteroclinic connection γj .

The main theorem of [HJKL11] uses notation for topological Markov chains which we recall in the

following, cf. also [Shu86, Definition 10.1].

Definition 1.0.1. Let

Σk = {1, . . . , k}Z

denote the set of double-infinite sequences, κ : Z → {1, . . . , k}, i 7→ κi, equipped with the product topology.

Let further A = (aij)i,j∈{1,...,k} be a 0-1 matrix, that is ai,j ∈ {0, 1}. By

ΣA = {κ ∈ Σk | aκiκi+1
= 1}

we denote the topological Markov chain defined by A. The left shift σ operating on Σk by

σ : Σk → Σk, (σκ)i = κi+1

leaves ΣA invariant. The pair (ΣA, σ) is called a subshift of finite type.

With that we can formulate the main statement in [HJKL11]. Thereby we leave out some assumptions

which we address as “generic conditions”. For more details concerning these assumptions we refer to

Section 4.1 and [HJKL11].

Theorem 1.0.2 ([HJKL11], Theorem 1.1). Let ẋ = f(x, λ) be a one parameter family of differential

equations equivariant with respect to a finite group G, cf. (1.2), which has at λ = 0 a codimension-one

relative homoclinic cycle Γ with hyperbolic equilibrium as defined in (1.3). Assume further some generic

conditions concerning minimal intersection of tangent spaces at the stable and unstable manifolds along

γ and non-orbit-flip and non-inclination flip properties. Write γ1, . . . , γk for the connecting trajectories

that constitute Γ.

There is an explicit construction of k×k matrices A− and A+ with coefficients in {0, 1} and the nonzero

coefficients in mutually disjoint positions, so that the following holds for any generic family unfolding a

relative homoclinic cycle as above.

Take cross sections Si transverse to γi and write Πλ for the first return map on the collection of cross

9



1 Introduction

sections ∪kj=1Sj. For λ > 0 small enough, there is an invariant set Dλ ⊂ ∪kj=1Sj for Πλ such that for each

κ ∈ ΣA+
there exists a unique x ∈ Dλ with Πiλ(x) ∈ Sκi

. Moreover, (Dλ,Πλ) is topologically conjugate

to (ΣA+
, σ). An analogous statement holds for λ < 0 with ΣA+

replaced by ΣA− .

This above description of the dynamics provides a complete picture of the local nonwandering dynamics

near Γ if and only if

A+ +A− = C, (1.4)

where C denotes the connectivity matrix of the relative homoclinic cycle.

Due to the topological conjugation between (Dλ,Πλ) and the finite subshift (ΣA+
, σ) one speaks of shift

dynamics. We illustrate the statement of Theorem 1.0.2 by means of a D4 symmetric relative homoclinic

cycle as it is depicted in Figure 1.1, cf. also [HJKL11, Table 1, Case 6]. Here the group orbit Γ is

obtained from a single homoclinic trajectory asymptotic to a G-invariant hyperbolic equilibrium p. The

connectivity matrix of this homoclinic cycle is given as C = 1, the matrix where all entries are equal to

one. Recall that Dk is the symmetry group of a regular k-gon in the plane. Hence it is generated by

two elements, the reflection ζ which generates a cyclic subgroup of order two and the rotation θk which

generates a cyclic subgroup of order k. According to the achievements in [HJKL11] we find that the

matrices A−, A+ are given by

A− =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









, A+ =









0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0









. (1.5)

Obviously A+ +A− 6= 1. That means that Theorem 1.0.2 does not provide a complete description of the

nonwandering dynamics in the neighbourhood of the homoclinic cycle under consideration.

Indeed for this example Theorem 1.0.2 merely confirms well-known facts: If λ < 0 the nonwandering set

consists of four 1-periodic solutions, shadowing the individual connecting trajectories γi (i = 1, 2, 3, 4).

If λ > 0 the nonwandering dynamics consists of two 2-periodic orbits shadowing in each case the figure

eight configuration consisting of the pairs of homoclinic trajectories being opposite. Note in this respect

that those pairs are located within invariant subspaces, cf. also Section 4.1 and 5.1. Hence for each pair

[HomSan10, Theorem 5.79] applies. Figure 6.2 in Section 6 illustrates the bifurcation within the invariant

subspace.

The aim of this thesis is to show that under further appropriate assumptions on the vector field (1.1) the

analysis in [HJKL11] can be refined to the effect that the statement of Theorem 1.0.2 remains true for

instance with matrices

A− =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









, A+ =









0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0









. (1.6)

According to this A+ for λ > 0 the nonwandering dynamics consists of all trajectories avoiding shadowing

twice the same homoclinic trajectory in a row. Further we want to remark that with the matrices given in

(1.6) the corresponding dynamics is completely described. In this respect we refer to the main statement

of this thesis formulated as Theorem 5.3.3 below.

10
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γ4
γ3

Figure 1.1: A relative homoclinic cycle which is built up as group orbit of the closure of the homoclinic trajectory γ. The
underlying symmetry group is D4. In this particular example is D4 the isotropy group of the equilibrium p, and Z2 is the
isotropy group of the homoclinic trajectory γ. The single homoclinic trajectories are located within invariant subspaces,
and what is more the subspaces related to adjacent homoclinic trajectories are orthogonal to each other.

Before we elaborate on our goal, let us uncover the reason why the analysis in [HJKL11] provides only an

incomplete description. To this end let γ1, . . . , γk be, as above, the connecting trajectories that constitute

the relative homoclinic cycle Γ. The matrices A± are constructed by showing that a related succession

of connecting trajectories γi ⊂ Γ, or in other words an itinerary along Γ, can be shadowed by an actual

trajectory of (1.1). For more detailed explanations we use the following definition.

Definition 1.0.3. Let κ ∈ Σk be fixed. A heteroclinic chain Γκ is a double infinite sequence of

connecting trajectories γκi
, i ∈ Z, so that ω(γκi−1

) = α(γκi
).

One of the key statements of Lin’s method, [Lin90, San93, Kno04] concerns the existence of so-called Lin

trajectories : For a given sequence of ω = (ωi)i∈Z there exists a unique piecewise continuous trajectory

X = (Xi)i∈Z, Xi : [−ωi, ωi] → Rn that follows the succession of Γκ. The Xi are solutions of (1.1) and

between the final point of each Xi and the initial point of its successor Xi+1 there may appear a jump

Ξi = Xi+1(−ωi+1)−Xi(ωi) 6= 0. Note that Ξi = Ξi(ω, λ, κ). So actual trajectories X shadowing Γκ are

related to solutions of Ξi(ω, λ, κ) = 0, i ∈ Z.

According to Sandstede [San93], the jump can be written as

Ξi(ω, λ, κ) = ξ∞κi
(λ) + ξi(ω, λ, κ).

The first addend ξ∞κi
measures the distance between the stable and unstable manifold and is thus only

influenced by the system parameter λ. Under appropriate assumptions ξ∞κi
can be chosen as the system

parameter itself. The second one, ξi, becomes exponentially small with increasing ωi.

In the case of the homoclinic cycle discussed here, we find, cf. [HJKL11, Proposition 3.7],

Ξi(ω, λ, κ) = λ− e2µ
s(λ)ωi〈ηsκi−1

(λ), η−κi
(λ)〉+Ri(ω, λ, κ) = 0, (1.7)

for all i ∈ Z where the residual terms have the form Ri(ω, λ, κ) = O(e2µ
s(λ)ωi+1δ) + O(e2µ

s(λ)ωiδ) for

some δ > 1. Thereby µs denotes the leading stable eigenvalue of D1f(p, λ). These equations we will call

determination equations .

If for given κ all products 〈ηsκi−1
, η−κi

〉 are different from zero, system (1.7) is solvable if and only if all

these products have the same sign as λ. At this point we want to mention that for fixed κ the sign of

11



1 Introduction

the scalar product does not depend on λ. With the matrix M = (mi,j)i,j∈{1,...,k}, mi,j := sgn〈ηsi , η−j 〉 we
find

A− =
1

2
(|M | −M) and A+ =

1

2
(|M |+M). (1.8)

If 〈ηsκi−1
, η−κi

〉 = 0 for some i a more involved analysis than the one carried out in [HJKL11] is necessary

to solve equation (1.7). More precisely, in order to decide whether or not (1.7) is solvable knowledge

about the leading order terms of the residual terms Ri(ω, λ, κ) is needed.

Next we discuss under which circumstances the scalar products under consideration become zero. To this

end we introduce

esi := lim
t→∞

γi(t)− p

‖γi(t)− p‖ , (1.9)

which defines the direction the homoclinic trajectory γi is approaching the equilibrium p for positive

time. Further we define

e−j := lim
t→−∞

ψj(t)

‖ψj(t)‖
(1.10)

where ψj(t) is a solution of the adjoint variational equation along γj(t)

ẋ = −[D1f(γj(t), λ)]
Tx, x(0) = ψj

and ψj is a unit vector satisfying

span{ψj} =
(
Tγj(0)W

s(ω(γj)) + Tγj(0)W
u(α(γj))

)⊥
.

The orthogonal complement is defined by a G-invariant scalar product 〈·, ·〉. We want to remark that in

the context of [HJKL11] the vector ψj is, up to scalar multiples, uniquely defined. The existence of the

limit in (1.10) is ensured by the considerations in [HJKL11, Section 3], cf. also Lemma 2.4.1 below.

It turns out that

ηsκi−1
(λ) ∈ span{esκi−1

} and η−κi
(λ) ∈ span{e−κi

}

and what is more

〈ηsκi−1
(λ), η−κi

(λ)〉 = Ãi(λ, κ)〈esκi−1
, e−κi

〉, Ãi(λ, κ) > 0.

The scalar product 〈esi , e−i 〉 is due to the symmetry equal to 〈es1, e−1 〉. Of course the sign of 〈es1, e−1 〉
depends on the choice of ψ1. We choose ψ1 such that

〈es1, e−1 〉 < 0. (1.11)

Now, in terms of the above introduced D4-symmetric homoclinic cycle, cf. also Figure 1.1, we find that

the homoclinic trajectories γi are located in invariant subspaces. Consequently the corresponding ηsi and

η−i are also located within these subspaces. As the D4 is the symmetry group of the square some of these

subspaces are perpendicular to each other. This implies 〈ηsi , η−i+1〉 = 0, i = 1, 2, 3, 4. In the end this

provides the zeros off the minor diagonal in the matrix A+ given in (1.5). In other words, by means of

the results in [HJKL11] it cannot be decided whether a heteroclinic chain Γκ with κ of the form that for

one i ∈ Z there is a j ∈ {1, . . . , 4} such that κi = j and κi+1 = j + 1 has a shadowing actual trajectory.

As already indicated above the topic of this thesis is a more detailed analysis of D4m-symmetric relative

homoclinic cycles by using Lin’s method. For this purpose a more sophisticated representation of the

residual terms Ri(ω, λ, κ) is required – especially for those i for which the scalar product 〈esκi−1
, e−κi

〉
disappears. Let denote Jκ the set of all those i.
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According to our findings the determination equation takes in this case the form

Ξi(ω, λ, κ) := λ− e4µ
s(λ)ωiBi(λ)− e2µ

s(λ)(ωi−1+ωi)Ci(λ, κ),+Ři(ω, λ, κ) = 0, i ∈ Jκ, (1.12)

For the structure of the residual terms Ři(ω, λ, κ) we refer to Theorem 5.3.1.

If i, i−1 ∈ Jκ the quantity Ci(0, κ) at λ = 0 arises from the scalar product of η−κi
(0) on one side and a direc-

tion within span{esκi−2
} on the other side. The second direction results from ηsκi−2

(0) through transporta-

tion along the homoclinic solution γκi−1
(t) via the adjoint variational equation ẋ = −[D1f(γκi−1

(t), 0)]Tx

from −ωi−1 to ωi. With i, i − 1 ∈ Jκ, η
−
κi

and ηsκi−2
are situated in the same one-dimensional subspace

and it turns out that all Ci(λ, κ) have the same absolute value and are different from zero. The sign of

Ci(λ, κ) depends on the topological structure of - to put it simple - the stable manifold within a tubular

neighbourhood of the homoclinic trajectory γ and whether κi = κi−2 or not.

Unfortunately we are unable to give a nice geometrical interpretation for the quantity Bi(λ). However we

are able to prove some helpful properties of this quantity. First we want to note that B(λ) = Bi(λ) does

not depend on i. Though we could not prove that B(λ) 6= 0, but we show that the term does not vanish

as a consequence of symmetry. Moreover we show in Chapter 7 numerically that the B(0) related to the

example constructed in Chapter 6 is different from zero. We take that as justification for a corresponding

assumption on B(0) in our analysis carried out in Chapter 5.

After establishing the advanced system of determination equations, we will discuss its solvability. The

investigations in [HJKL11] show that if (1.7) holds for all i ∈ Z, the solving transition times ωi are for fixed

λ of approximately the same size. More precisely, they satisfy the equation ωi(λ, κ) = 1
2µs(0) (ln(|λ|) +

ln(ri)), with uniformly (that is independent of λ and κ) bounded terms ri, cf. [HJKL11, Equation 4.8].

Recall in this respect that λ is close to zero. Then ln(|λ|) dominates the other addend and for sufficiently

small λ the transition times are approximately given by ωi(λ, κ) ≈ 1
2µs(0) ln(|λ|).

Now, the i th equation in the set of determination equations has the form (1.7) or (1.12) depending on

whether 〈esκi−1
, e−κi

〉 6= 0 or not. Thus the system of determination equations has become considerably

more complicated. This also has an effect on the resulting dynamics, which is particularly evident in the

transition times ω = (ωi)i∈Z that solve the system for given λ and κ.

When solving the set of determination equations, three cases must be distinguished, |B(0)| > |Ci(0, κ)|,
|B(0)| = |Ci(0, κ)| and |B(0)| < |Ci(0, κ)|. In all three cases, for the solving ωi the following equation

applies

ωi(λ, κ) =







1
2µs(0) (ln(|λ|) + ln(ri(λ, κ))), i ∈ Z \ Jκ,

1
4µs(0) (ln(|λ|) + ln(r2i (λ, κ))), i ∈ Jκ.

(1.13)

However, the properties of the terms ri are different in the cases.

In the first case, |B(0)| > |Ci(0, κ)|, we find, similarly to [HJKL11], that the ri are uniformly bounded.

Hence for λ sufficiently small, ln(|λ|) dominates the term and we find with

ωi(λ, κ) ≈







1
2µs(0) ln(|λ|), i ∈ Z \ Jκ,

1
4µs(0) ln(|λ|), i ∈ Jκ.

that the transition times are essentially of the same size (for fixed λ), only differing by a factor of 2,

depending on the course of the trajectory. More precisely, it takes only half as much time to run along

the homoclinic trajectories γi to γj if they lie in mutually orthogonal subspaces than in the other cases.
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1 Introduction

Consequently the first case, |B(0)| > |Ci(0, κ)|, can be seen as a generalization of the results in [HJKL11].

There are matrices A± so that the corresponding topological Markov chains ΣA± describe the nonwan-

dering dynamics as explained in Theorem 1.0.2. These matrices are defined as in (1.8) but here by means

of the matrix M = (mij) with

mij :=







sgn〈ηsi (λ), η−j (λ)〉, sgn〈ηsi (λ), η−j (λ)〉 6= 0,

sgnB(λ), sgn〈ηsi (λ), η−j (λ)〉 = 0.
(1.14)

What is more, A++A− = 1. That is in this respect the description of the dynamics provides a complete

picture of the local nonwandering dynamics near Γ. So in this case, the nonwandering dynamics in the

neighbourhood of the cycle can be described by a subshift of finite type. Regarding the D4-symmetric

homoclinic cycle, cf. Figure 1.1, this results for B(λ) > 0 in (1.6). For the precise formulation of the

bifurcation result we refer to Theorem 5.3.3.

A different picture emerges in the remaining cases |B(0)| = |Ci(0, κ)| and |B(0)| < |Ci(0, κ)|. To realize

this it is enough to consider periodic trajectories. Here, for such a trajectory N denotes the length of the

longest sequence of determination equations with i ∈ Jκ and sgnCi(λ, κ) 6= sgnB(λ). It turns out that

the periodic trajectories exist for a λ-range (0, λ̂(N)) or (−λ̂(N), 0), respectively, where λ̂(N) → 0 as N

tends to infinity.

The reason for this is that the ri in (1.13) are no longer uniformly bounded, but can have huge differences

in size depending on the course of the trajectory, that is given by κ. It can be seen that the ri are larger

the larger the value of N becomes. Thus, the second summand in (1.13) can have a non-negligible

influence on the transition times ωi. To ensure that for fixed κ inf(ω) is still sufficiently large to satisfy

our analysis, λ may have to be very small. To be more precise, the following estimate has to be satisfied

λ <
(
B(0)/C(0)

)2N
e4µ

s(0) inf(ω).

Hence the existence of a shadowing trajectory depends on the size of λ. Note that the solutions according

to Theorem 1.0.2 are not affected by the restricted λ-ranges, since here Jκ = ∅ and consequently N = 0.

In order to decide at what sign of λ the periodic orbits do exist we can in most cases rely on the

determination by means of the matrices A± from (1.8), with M = (mij) as in (1.14). The only exceptions

that oppose the assignment via the matrices A± are the periodic orbits for which i ∈ Jκ and sgnCi(λ, κ) 6=
sgnB(λ) holds for all i. For |B(0)| = |Ci(0, κ)| these orbits do not exist, whereas for |B(0)| < |Ci(0, κ)|
they exist exactly for the opposite sign of λ than in the case |B(0)| > |Ci(0, κ)|.
Finally, it should be emphasised that in the cases |B(0)| = |Ci(0, κ)| and |B(0)| < |Ci(0, κ)| the local

nonwandering dynamics cannot be described by a subshift. For the precise formulation of these cases see

Theorem 5.3.4.

This thesis is organized as follows. In the subsequent Chapter 2 we introduce the subject of exponential

dichotomy that imposes a fundamental part of Lin’s method. Briefly speaking exponential dichotomies

allows to define (time-depending) stable subspaces of linear differential equations ẋ = A(t)x via the

image of a certain projection P (·). Using this concept allows to extract leading terms and their rates of

convergences from certain solutions of differential equations. We have compiled the information presented

from various literature, for example [Cop78, Kla06, San93, Kno99], to derive more accurate estimates

of convergence rates, especially for projections P (·) associated to exponential dichotomies themselves.

Our findings will be used in Chapter 4 to determine terms of leading exponential rates of the residuals

Ri(ω, λ, κ) in (1.7). Further in Section 2.6 we clarify the meaning of the expression ’Codimension-one’
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for homoclinic trajectories. In doing so we simply recall statements from [HomSan10].

To keep this thesis self-contained we provide in Chapter 3 a detailed derivation of Lin’s method. In

particular we proof the existence of Lin trajectories and derive a suitable representation of the jumps

Ξi(ω, λ, κ) and present finally some basic estimates related to it. We are aware that most of that material

can be found in the existing literature, cf. for example [Lin90, San93, Kno04]. However for the further

analysis of the residual terms Ri(ω, λ, κ) in Chapter 4 it is essential to have this background at our

disposal. Further, due to the introduction of an additional projection in (3.38) and the in Lemmata 2.1.14

and 2.5.6 stated convergence rates of the projections the here presented estimates are more accurate than

existing estimates found in the literature. Finally we consider the derivatives of the jump ξi(ω, λ, κ) with

respect to the transition times ωj and present corresponding estimates.

In Chapter 4 we derive representations of the residual terms Ri(ω, λ, κ) specifically tailored to codimen-

sion-one symmetric homoclinic cycles that are generated by a single homoclinic trajectory. The Theo-

rems 4.3.1 and 4.3.3 provide correspondingly adapted representations of the residual terms. Here we take

in particular into account that invariant subspaces may be perpendicular to each other. Theorem 4.3.3

is of particular interest for further considerations of symmetric homoclinic cycles in R4. The basis for

these theorems are the Lemmata 4.3.14, 4.3.20 and 4.3.22. In the last two lemmata the above mentioned

terms Bi and Ci are defined.

Having now a more distinct representation of the jump ξi we discuss the solvability of the resulting

system of determination equations
(
Ξi(ω, λ, κ)

)

i∈Z
= 0 in Chapter 5. Here we restrict ourselves to D4m-

symmetric vector fields in R4. Section 5.2 provides the information about the signs of B and Ci. Then,

Section 5.3 contains with Theorem 5.3.3 and Theorem 5.3.4 our main results that describe the dynamic

behaviour in the neighbourhood of the homoclinic cycle Γ differentiated according to the size ratios of

|Ci| to |B|. In case of Theorem 5.3.4 we discuss only periodic trajectories, that is the sequence in κ is

finite. The proofs of the theorems can be found in the subsequent subsections.

To verify the analytic results numerically it calls for examples of vector fields containing a symmetric

homoclinic cycle. In Chapter 6 we present with Theorem 6.2.8 an explicit construction of families of

Dk-symmetric polynomial vector fields in R4 possessing a codimension-one homoclinic cycle. Further we

prove the validity of the in Section 5.1 assumed hypotheses for the constructed cycles, cf. Lemma 6.1.1

and Section 6.3. This Chapter basically is a version of [HKK14].

Finally in Section 7 we make use of the constructed D4-symmetric vector field in Section 6, namely (6.7),

and examine it numerically. First we use MATLAB to show graphically the non-vanishing of the term

B(0) in Section 7.1. In Section 7.2 we confirm the analytic results of Theorem 5.3.3 in case of the example

vector field (6.7). To this end we use the continuation package AUTO and examine the neighbourhood

of the homoclinic cycle Γ for certain periodic orbits. We especially verify the existence of the periodic

orbits for κ = 12 and κ = 1234 for the same sign of λ. That is, we find the 2-periodic trajectory that

shadows the pathway of the homoclinic trajectories γ1 and γ2, cf. Figure 1.1 as well as the 4-periodic

trajectory that follows γ1, γ2, γ3 and γ4 before it closes. This verifies that for this example the relation

|B(0)| > |Ci(0, κ)| applies. Otherwise these two periodic trajectories should not exist for the same sign

of λ. Also we find that these periodic trajectories κ = 12 and κ = 1234 exist for the same sign of λ as

the trajectory that shadows a figure-eight configuration κ = 13, which concludes that B(λ) > 0. This

also can be inferred by the fact that we failed to find the trajectory κ = 121 - that is the trajectory that

follows γ1 twice, moves on to trace γ2 and then closes - no matter for which sign of λ.

When investigating the trajectory κ = 1243 different transition times could also be identified. Staying in

the same invariant subspace took almost twice as long as moving to the perpendicular subspace.
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2 Preliminaries

As we have indicated in the introduction an essential part of Lin’s method consists of the exact estimation

of leading terms within the determination equations Ξi(ω, λ, κ) = 0. For this purpose we provide in this

section some fundamentals that lead to assertions about rates of convergence of special solutions of

ordinary differential equations.

First we introduce in Section 2.1 the concept of exponential dichotomies that is used to determine

stable subspaces of linear time depending differential equations. In Section 2.2 we apply this concept

on variational equations along solutions of autonomous equations, since this is the context in which

exponential dichotomies appear in Lin’s method. Then in Sections 2.3, 2.4 and 2.5 we use exponential

dichotomies to extract leading terms and their rates of convergence

• from solutions within the stable manifold of hyperbolic equilibria (Lemma 2.3.1),

• from stable solutions of disturbed linear equations (Lemma 2.4.1),

• from transition matrices composed with projections of exponential dichotomies (Lemma 2.5.2)

• and from projections of exponential dichotomies themselves (Lemma 2.5.6).

Each of these lemmata is used when it comes to find the leading terms in the determination equations

that we gain from Lin’s method when applying it on codimension-one D4k-symmetric homoclinic cycles.

Finally in Section 2.6, we collect the assumptions on a vector field to unfold a codimension-1 homoclinic

trajectory.

To begin with we recall some basic statements about linear mappings, especially concerning coheren-

cies between a linear mapping and its transpose regarding image and kernel as well as eigenvalues and

eigenspaces. Most lemmata and theorems listed here can be found in any textbook for linear algebra.

For example we refer to [Gan, Fis03].

By L(Rn,Rn) we denote the set of all linear mappings that map from Rn into Rn. Let A ∈ L(Rn,Rn)

be such a linear mapping. The kernel and the image of A are defined as

kerA := {x ∈ Rn | Ax = 0} and imA := {y ∈ Rn | ∃x ∈ Rn : Ax = y}.

Both the kernel and the image of A are linear subspaces of Rn that satisfy the dimension formula

dim(kerA) + dim(imA) = n,

see [Fis03, Satz 2.2.4]. Now, let 〈·, ·〉 : Rn × Rn → R be an arbitrary scalar product and U ⊆ Rn be a

linear subspace of Rn. Then we denote by U⊥ the orthogonal complement of U with respect to the scalar

product 〈·, ·〉:
U⊥ := {x ∈ Rn | 〈x, y〉 = 0 ∀y ∈ U}.

Of course U⊥ is a linear subspace of Rn as well, [Fis03, p.294].

By AT we denote the transpose of A with respect to the scalar product 〈·, ·〉, that is AT satisfies

〈Ax, y〉 = 〈x,AT y〉

for all x, y ∈ Rn. Between the kernel and the image of a linear mapping A and its transpose AT the
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2 Preliminaries

following relations apply:

Lemma 2.0.1 ([Fis03], Satz 6.2.4). Let A,AT ∈ L(Rn,Rn) be a linear mapping and its transpose. Then

imAT = (kerA)⊥ and kerAT = (imA)⊥.

In the following we denote by σ(A) the spectrum, that is the set of all (including complex) eigenvalues

of A ∈ L(Rn,Rn) ⊂ L(Cn,Cn),

σ(A) := {µ ∈ C | det(A− µ · id) = 0}.

It is a well known fact that for every A ∈ L(Rn,Rn) there exists a non-singular matrix T ∈ L(Rn,Rn)

such that T−1AT has Jordan normal form, see [Fis03, p.259ff]. The column vectors of T associated to

the Jordan block corresponding to the eigenvalue µ ∈ σ(A) span the generalized eigenspace of A with

respect to the eigenvalue µ. We denote this generalised eigenspace by EA(µ). For a partial spectrum

σ1 ⊂ σ(A) of A we denote the corresponding generalised eigenspace by EA(σ1). Further we define the

complement spectrum of A with respect to µ by

σcµ := σ(A) \ {µ}

and denote by EA(σ
c
µ) the generalized eigenspace of A with respect to the spectrum σcµ. If it is evident

from the context to which matrix the eigenspaces refer, we omit the subscript.

It is easy to see that A and AT have the same spectrum, that is σ(A) = σ(AT ). Hence for any µ ∈ σ(A)

we also find σcµ = σ(AT ) \ {µ}. As a direct consequence of Lemma 2.0.1 the following relation yields

between eigenspaces of A and AT .

Lemma 2.0.2. Let A,AT ∈ L(Rn,Rn) be a linear mapping and its transpose. Let further σ(A) = σ1∪σ2,

σ1 ∩ σ2 = ∅. Then we find

EAT (σ1) = E−AT (−σ1) = EA(σ2)
⊥.

Especially for an eigenvalue µ ∈ σ(A) of A we obtain

EAT (µ) = E−AT (−µ) = EA(σ
c
µ)

⊥.

We conclude this section with the definition of projection.

Definition 2.0.3. A projection P ∈ L(Rn,Rn) is a linear mapping satisfying P 2 = P .

Remark 2.0.4. Due to P 2 = P we find that (id − P ) also is a projection satisfying P (id − P ) =

(id− P )P = 0. Therefore the following relations yield

imP = ker(id− P ) and im(id− P ) = kerP.

2.1 Exponential dichotomies and trichotomies

Exponential dichotomies play a central role in the theory of Lin’s method. Therefore it is necessary to be

familiar with the basic definitions and theorems which we will provide in this section. A standard reference

on this subject is [Cop78]. However for our further analysis we need more detailed information which
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2.1 Exponential dichotomies and trichotomies

extend the statements presented in [Cop78]. To be precise we have need of a more specific roughness-

theorem, see Lemma 2.1.7, that can be found in [Kla06] and which is inspired by [San93] and [Kno99].

Furthermore, we look at the relations between the exponential dichotomies of a linear differential equations

and its adjoint equation. And finally, we also consider the concept of exponential trichotomy, see for

example [HaLi86, Bey94, Kla06].

Consider the linear differential equation in Rn

ẋ = A(t)x, (2.1)

where A(·) is a continuous matrix function on an interval J ⊂ R. The corresponding transition matrix

we denote by Φ(·, ·).

Definition 2.1.1. Equation (2.1) is said to have an exponential dichotomy on J , if there exist a

projection P (·) and constants α < β and K > 0 such that for all s, t ∈ J

(i) Φ(t, s)P (s) = P (t)Φ(t, s),

(ii) ‖Φ(t, s)P (s)‖ ≤ Keα(t−s), t ≥ s,

(iii) ‖Φ(t, s)(id− P (s))‖ ≤ Ke−β(s−t), s ≥ t.







(2.2)

We say that (2.1) has an exponential dichotomy with projection P (·) and exponential rates α and β.

Basically this definition can be found in [Cop78]. However there it was formulated in terms of fundamental

matrices instead of transition matrices and it was explicitly demanded, that α and β have different signs.

Indeed the condition α < 0 < β is not necessary for the concept of exponential dichotomies but it

displays the classical approach in which exponential dichotomies first have been used. In i.e. [San93] the

additional condition in the definition was spared.

The most interesting cases are those in which the interval J is equal to a half-line R+ or R− or where J

is equal to the whole line R.

To explain the basic idea of exponential dichotomies we assume for a moment that (2.1) has an exponential

dichotomy on R+ with the constants α and β satisfying the additional condition α < 0 < β. Then

Definition 2.1.1(ii) says that for x ∈ imP (s) the term Φ(t, s)x tends exponentially fast with the rate α to

zero as t tends to infinity. On the contrary, Definition 2.1.1(iii) provides that for y ∈ im(id−P (t)) \ {0}
the term Φ(s, t)y tends to infinity with an exponential rate of at least β, as s → ∞. This can be

seen as follows: Define x := Φ(s, t)y. Then x ∈ im(id − P (s)) and with Definition 2.1.1(iii) we find

‖Φ(t, s)x‖ ≤ Ke−β(s−t)‖x‖ or equivalently ‖y‖K−1eβ(s−t) ≤ ‖Φ(s, t)y‖.

Remark 2.1.2. If equation (2.1) has an exponential dichotomy on R+ with projection P+(·) and con-

stants α < 0 < β then it holds

x ∈ imP+(s) ⇔ ‖Φ(t, s)x‖ →
t→∞

0,

x ∈ kerP+(s) \ {0} ⇒ ‖Φ(t, s)x‖ →
t→∞

∞.

This statement can be found in [Cop78]. Due to condition (i) in Definition 2.1.1 all projections P+(t),

t > 0, are determined by P+(0). But note that P+(0) is not uniquely given. By Definition 2.1.1(ii) and

(iii) only its image is entirely settled, while there is some freedom in choosing its kernel. This also holds
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2 Preliminaries

true, when α and β have the same sign. Indeed one can show the following Lemma that was formulated

in [Cop78] for classical dichotomies.

Lemma 2.1.3 ([Kla06], Lemma A.2.3.). Assume that (2.1) has an exponential dichotomy on R+ with

constants α and β and associated projection P (·). Let Q(0) be a projection on R+ with imP (0) = imQ(0).

Then the projection Q(t) := Φ(t, 0)Q(0)Φ(0, t) is also associated to the exponential dichotomy of (2.1)

with constants α, β.

Corresponding to Remark 2.1.2, if (2.1) has an exponential dichotomy on R−, then Definition 2.1.1(iii)

provides that for x ∈ kerP (s) the solution Φ(t, s)x tends exponentially fast (with the rate −β) to zero

for t → −∞.

Remark 2.1.4. If equation (2.1) has an exponential dichotomy on R− with projection P−(·) and con-

stants α < 0 < β then it holds

x ∈ imP−(s) \ {0} ⇒ ‖Φ(t, s)x‖ →
t→−∞

∞,

x ∈ kerP−(s) ⇔ ‖Φ(t, s)x‖ →
t→−∞

0.

Here the kernel of P−(0) is determined and we have freedom in choosing its image. Again we refer to

[Cop78] for this statement.

Indeed the projection is uniquely determined, if (2.1) has an exponential dichotomy on the whole line

R. The image of P is then given by the subspace of initial values of solutions bounded on the positive

half-line R+ and the kernel of P is the subspace of initial values of solutions bounded on the negative

half-line R−.

Hence we see that the classical approach of exponential dichotomies (the approach where we chose the

constants α and β to have different signs) describes a separation of the set of solutions into those that

converge exponentially fast to zero and those increasing exponentially. Thus, by using exponential di-

chotomies one can define stable or unstable subspaces at time t of the non-autonomous equation (2.1),

respectively, by means of the corresponding projections.

Definition 2.1.5. Assume that equation (2.1) has an exponential dichotomy (2.2) on R+ with projection

P+(·) and constants α < 0 < β. Then the stable subspace at time t, Es
A(·)(t), is well defined by

Es
A(·)(t) := imP+(t).

If equation (2.1) has an exponential dichotomy on R− with projection P−(·) and constants α < 0 < β

then the unstable subspace at time t, Eu
A(·)(t), is given by Eu

A(·)(t) := kerP−(t).

In the more generalized concept of exponential dichotomies, where the assumption α < 0 < β is replaced

by α < β, one simply separates the set of solutions into those having an exponential upper bound and

those having an exponential lower bound. This approach can be used to describe strong stable or strong

unstable subspaces of the non-autonomous equation (2.1).

Now, a first example of a linear differential equation having an exponential dichotomy we get by consid-

ering the autonomous equation ẋ = Ax with constant coefficient matrix A. Let the spectrum σ(A) be

composed of two non-empty sets σ1 and σ2; σ(A) = σ1 ∪ σ2 and σ1 ∩ σ2 = ∅. If there are constants α

and β such that

Re(µ1) < α < β < Re(µ2), ∀µ1 ∈ σ1, ∀µ2 ∈ σ2 (2.3)

then ẋ = Ax has an exponential dichotomy on R+ and R− with constants α and β. The associated
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2.1 Exponential dichotomies and trichotomies

projection P (t) ≡ P can be chosen to be the spectral projection according to the given decomposition of

the spectrum of A.

A special case we obtain, if A has no eigenvalues with zero real part, that is the spectrum σ(A) = σs∪σu,

with σs := {µ ∈ σ(A)| Re(µ) < 0} and σu := {µ ∈ σ(A)| Re(µ) > 0}. In that case we call A hyperbolic .

We outline this in the following lemma. Its statement was proven by Coppel in [Cop78].

Lemma 2.1.6. Let A ∈ L(Rn,Rn) be hyperbolic with σ(A) = σs(A)∪σu(A). Let further α and β be two

constants satisfying

Re(µs) < α < 0 < β < Re(µu)

for all µs ∈ σs(A) and µu ∈ σu(A). Then the differential equation ẋ = Ax has an exponential dichotomy

(2.2) on both R+ and R− with exponential rates α and β. The corresponding projections P+ and P−

satisfy

imP+ = Es
A := {x ∈ Rn | ‖eAtx‖ →

t→∞
0},

kerP− = Eu
A := {x ∈ Rn | ‖eAtx‖ →

t→−∞
0}.







(2.4)

Indeed one can choose a projection P (·) ≡ P that way that ẋ = Ax has an exponential dichotomy

on the whole line R: just define imP := imP+ and kerP := kerP−. Of course imP+ = Es
A is the

generalised stable eigenspace of A corresponding to the eigenvalues in σs(A); Es
A = EA(σs). Analogously

kerP− = Eu
A is the unstable eigenspace of A; Eu

A = EA(σu).

Further examples can be gained by perturbing systems having an exponential dichotomy. For one of the

most important properties of exponential dichotomies is their so-called roughness, their persistence under

certain perturbations. Over time many different roughness-theorems have been proven, see for example

[Cop78] and [JuWig01]. In the following we give the kind of roughness-theorem we need for our analysis.

Here we restrict ourselves to exponentially bounded perturbation of autonomous systems.

Lemma 2.1.7 ([Kla06], Lemma A.2.4.). Let A ∈ L(Rn,Rn) and for t ∈ [t0,∞) let B(t) ∈ L(Rn,Rn).

We assume that ẋ = Ax has an exponential dichotomy on [t0,∞) with constants α and β and that there

are positive constants KB and δ such that

‖B(t)‖ ≤ KBe
−δt. (2.5)

Then the equation

ẋ = [A+B(t)]x (2.6)

has an exponential dichotomy on [t0,∞) with the same constants α and β.

For the proof ideas of Sandstede (see [San93]) and Knobloch (see [Kno99]) were used instead of going

along the lines of Coppel’s proof, where sgnα 6= sgnβ was explicitly used, see [Cop78, Lemma 4.1]. In

order to keep this thesis self-contained we present the proof exactly as it can be found in [Kla06].

Proof. Let Φ(·, ·) be the transition matrix of (2.6) and recall that there is a decomposition σ(A) = σ1∪σ2

of the spectrum of A such that (2.3) is true. The corresponding spectral projection we denote by P , where

P projects on the generalised eigenspace of σ1.

First projections P̂s(t) on Rn are constructed which satisfy the second inequality (ii) in (2.2). For that
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purpose consider for η ∈ imP the fixed point equation

x(t, s) = eA(t−s)η +
t∫

s

eA(t−τ)PB(τ)x(τ, s)dτ −
∞∫

t

eA(t−τ)(id− P )B(τ)x(τ, s)dτ

=: (Ts(x, η)) (t, s)

(2.7)

in the Banach space

Sα := {x : [t0,∞)× [t0,∞) → Rn | sup
t≥s≥t0

eα(s−t)‖x(t, s)‖ < ∞}

with the norm ‖x‖α := sup
t≥s≥t0

eα(s−t)‖x(t, s)‖. Indeed the Banach fixed point theorem can be applied to

prove that (2.7) has a unique fixed point xs(η)(·, ·). For that the following estimates for some positive

constant K are exploited:

‖eA(t−s)P‖ ≤ Keα(t−s), t ≥ s,

‖eA(t−s)(id− P )‖ ≤ Keβ(t−s) ≤ Keα(t−s), s ≥ t,

‖x(τ, s)‖ ≤ ‖x‖αeα(τ−s), τ ≥ s.







(2.8)

Together with (2.5) these estimates show that Ts maps Sα into itself and that (at least for sufficiently

large t0) Ts is a contraction. More precisely it yields

eα(s−t)‖Ts(x, Pη)(t, s)‖ ≤ K‖η‖+ KKB‖x‖α
δ

e−δt0 < ∞ (2.9)

and

‖Ts(x, η)− Ts(y, η)‖α ≤ KKB

δ
e−δt0‖x− y‖α. (2.10)

This conclusion is true independently on the sign of α. By construction xs(η)(·, ·) solves (2.6). On the

other hand, if

x(·, ·), x(t, s) := Φ(t, s)Φ(s, t0)ξ, (2.11)

belongs to Sα, then it solves (2.7). With that projections P̂s(s)(·) can be defined by

P̂s(s) : Rn → Rn

ξ 7→ xs(Pξ)(s, s).

Indeed P̂s(s)(·) is linear, because xs(η)(·, ·) depends linearly on η, and Pξ = Pxs(Pξ)(s, s), see (2.7),

shows that P̂s(s)
2(·) = P̂s(s)(·). Further, by construction we have

xs(Pξ)(t, s) = Φ(t, s)xs(Pξ)(s, s) = Φ(t, s)P̂s(s)ξ. (2.12)

Hence for x(·, ·) defined in (2.11) it applies

x(·, ·) ∈ Sα ⇔ x(s, s) = Φ(s, t0)ξ ∈ imP̂s(s). (2.13)

Finally (2.12) and the third estimate in (2.8) yield that for some positive Ks

‖Φ(t, s)P̂s(s)‖ ≤ Kse
α(t−s), t ≥ s ≥ t0. (2.14)
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Next it is shown that the image of P̂s are invariant under Φ, that is

Φ(t, s)imP̂s(s) = imP̂s(t). (2.15)

Consider x(·, ·), x(τ, t) := Φ(τ, t)Φ(t, s)ξ with ξ ∈ imP̂s(s). Then, because of (2.14), x(·, ·) belongs to Sα.

Now the invariance property (2.15) follows from (2.13).

With that projections P+(t) can be defined which are associated to the exponential dichotomy of (2.6).

To this end consider the direct sum decompositions of Rn

Rn = imP̂s(t)⊕ Φ(t, t0)(kerP̂s(t0)). (2.16)

Denote by P+(t) the corresponding projections with

imP+(t) = imP̂s(t). (2.17)

Of course P+(t) commutes with Φ: P+(t)Φ(t, s) = Φ(t, s)P+(s). It remains to verify the estimates (ii)

and (iii) in (2.2). For that solutions of (2.6) are considered which start in kerP+(s) = im(id−P+(s)) as

solutions of the fixed point equation

x(s, t) = eA(s−t)(id− P )η +
s∫

t0

eA(s−τ)PB(τ)x(τ, t)dτ −
t∫

s

eA(s−τ)(id− P )B(τ)x(τ, t)dτ

=: (Tu(x, (id− P )η)) (s, t)

(2.18)

in the Banach space

Sβ := {x : [t0,∞)× [t0,∞) → Rn | sup
t≥s≥t0

eβ(t−s)‖x(s, t)‖ < ∞}

with the norm ‖x‖β := sup
t≥s≥t0

eβ(t−s)‖x(s, t)‖. For that the following estimates are used

‖eA(t−s)P‖ ≤ Keα(t−s) ≤ Keβ(t−s), t ≥ s,

‖eA(t−s)(id− P )‖ ≤ Keβ(t−s), s ≥ t,

‖x(τ, t)‖ ≤ ‖x‖βeβ(τ−t), t ≥ τ.







(2.19)

Again the Banach fixed point theorem yields that for each η ∈ im(id − P ) equation (2.18) has a unique

fixed point xu(η)(·, ·), since

eβ(t−s)‖Tu(x, (id− P )η)(s, t)‖ ≤ K‖η‖+ KKB‖x‖β
δ

e−δt0 < ∞ (2.20)

and

‖Tu(x, η)− Tu(y, η)‖β ≤ KKB

δ
e−δt0‖x− y‖β . (2.21)

And again

P̂u(t) : Rn → Rn

ξ 7→ xu((id− P )ξ)(t, t)

are projections. From the fixed point equation (2.18) we read that imP̂u(t0) = im(id− P ) and similarly
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we read from (2.7) that kerP̂s(t0) = im(id− P ). This finally gives

imP̂u(t) = Φ(t, t0)kerP̂s(t0) = kerP+(t).

The function xu(η)(·, s) is a solution of (2.6). Therefore

xu((id− P )ξ)(t, s) = Φ(t, s)xu((id− P )ξ)(s, s) = Φ(t, s)P̂u(s)(ξ). (2.22)

With that we get similar to (2.14) that for some positive Ku

‖Φ(s, t)P̂u(t)‖ ≤ Kue
β(s−t), t ≥ s ≥ t0. (2.23)

Because of imP+(t) = imP̂s(t) and im(id− P+(t)) = imP̂u(t) it yields for t ≥ s ≥ t0

Φ(t, s)P+(s) = Φ(t, s)P̂s(t)P
+(s)

Φ(s, t)(id− P+(t)) = Φ(s, t)P̂u(t)(id− P+(t)).






(2.24)

If {‖P+(t)‖, t ≥ t0} is bounded then, due to (2.14) and (2.23), we find a positive constant C such that

‖Φ(t, s)P+(s)‖ = Ceα(t−s), t ≥ s ≥ t0,

‖Φ(s, t)(id− P+(t))‖ = Ce−β(t−s), t ≥ s ≥ t0.






(2.25)

Then, see Definition 2.1.1, equation (2.6) has an exponential dichotomy as stated in the lemma.

The proof is concluded with the verification that {‖P+(t)‖, t ≥ t0} is indeed bounded. For ξ ∈ Rn define

ξs := P+(t)ξ and ξu := (id− P+(t))ξ. Since imP+(t) = imP̂s(t) it applies

P+(t)ξ = P̂s(t)P
+(t)ξ = P̂s(t)ξs = xs(Pξs)(t, t).

Then due to (2.7) it yields

P+(t)ξ = Pξs −
∞∫

t

eA(t−τ)(id− P )B(τ)xs(Pξs)(τ, t)dτ

= Pξ − Pξu −
∞∫

t

eA(t−τ)(id− P )B(τ)xs(Pξs)(τ, t)dτ

= Pξ − PP̂u(t)ξu −
∞∫

t

eA(t−τ)(id− P )B(τ)xs(Pξs)(τ, t)dτ

= Pξ − Pxu((id− P )ξu)(t, t)−
∞∫

t

eA(t−τ)(id− P )B(τ)xs(Pξs)(τ, t)dτ.

Exploiting now (2.18) one obtains

P+(t)ξ = Pξ −
t∫

t0

eA(t−τ)PB(τ)xu((id− P )ξu)(τ, t)dτ −
∞∫

t

eA(t−τ)(id− P )B(τ)xs(Pξs)(τ, t)dτ. (2.26)

24



2.1 Exponential dichotomies and trichotomies

Because of (2.12) and (2.22) it follows

P+(t)ξ = Pξ −
t∫

t0

eA(t−τ)PB(τ)Φ(τ, t)P̂u(t)(id− P+(t))ξdτ

−
∞∫

t

eA(t−τ)(id− P )B(τ)Φ(τ, t)P̂s(t)P
+(t)ξdτ.







(2.27)

Next the integral terms in the last equation are estimated: By means of (2.5), (2.19) and (2.23) we find

‖
t∫

t0

eA(t−τ)PB(τ)Φ(τ, t)P̂u(t)(id− P+(t))ξdτ‖ ≤
t∫

t0

KKBKue
(α−β)(t−τ)e−δτ (1 + ‖P+(t)‖)‖ξ‖ dτ.

Because of α− β < 0 we get

‖
t∫

t0

eA(t−τ)PB(τ)Φ(τ, t)P̂u(t)(id− P+(t))ξdτ‖ ≤





t∫

t0

KKBKue
−δτ (1 + ‖P+(t)‖)dτ



 ‖ξ‖. (2.28)

In the same way, but this time exploiting (2.5), (2.8) and (2.14) we get

‖
∞∫

t

eA(t−τ)(id− P )B(τ)Φ(τ, t)P̂s(t)P
+(t)ξdτ‖ ≤





∞∫

t

KKBKse
−δτdτ‖P+(t)‖



 ‖ξ‖. (2.29)

Then choose t0 that large that KKB max{Ks,Ku}
∫∞
t0

e−δτdτ ≤ 1
2 . Finally, combining (2.27) – (2.29)

yields

‖P+(t)‖ ≤ 2



‖P‖+KKBKu

∞∫

t0

e−δτdτ



 ≤ 2‖P‖+ 1.

We will need some details of the proof again in Chapter 6.3. To make it easier for us later on, we already

present the needed statements here as remarks.

Remark 2.1.8. Indeed the constants Ks and Ku can be chosen equally with

Ks = Ku =
δK

δ −KKBe−δt0
.

This can be seen as follows. From (2.9) we derive for the unique fixed point xs(Pξ)(·, ·) of (2.7) the

estimate

‖xs(Pξ)‖α ≤ Kδ

δ −KKBe−δt0
‖ξ‖.

Recall from (2.10) that t0 was chosen large enough so that δ −KKBe
−δt0 > 0. This together with (2.12)

gives

‖Φ(t, s)P̂s(s)ξ‖ = ‖xs(Pξ)(t, s)‖ ≤ eα(t−s)
Kδ

δ −KKBe−δt0
‖ξ‖

and compared with (2.14) we obtain the possible constant Ks as presented above.

Analogously we find for the unique fixed point xu((id−P )ξ)(·, ·) of (2.18) that due to (2.20) the following

estimate yields

‖xu((id− P )ξ)‖β ≤ Kδ

δ −KKBe−δt0
‖ξ‖.
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In combination with (2.22) and (2.23) this yields Ku.

Remark 2.1.9. For Ks and Ku chosen as in Remark 2.1.8 we can choose

t0 =
1

δ
ln

(
(2K + 1)KKB

δ

)

.

Then the contraction arguments in (2.10) and (2.21) are satisfied with the constant 1
2K+1 < 1 and we

find with e−δt0 = δ
(2K+1)KKB

that

KKB max{Ks,Ku}
∫ ∞

t0

e−δτdτ =
K2KBδ

δ −KKBe−δt0
e−δt0

δ
=

K

1− 1
2K+1

1

(2K + 1)
=

1

2
.

Remark 2.1.10. Due to (2.14), (2.23) and (2.24) we obtain that the constant C of the exponential

dichotomy in (2.25) can be estimated with C = sup
t≥t0

‖P+(t)‖max{Ks,Ku}. Applying the norm of P+,

Remark 2.1.8 and Remark 2.1.9 this yields

C = (2‖P‖+ 1)
δK

δ −KKBe−δt0
=

1

2
(2‖P‖+ 1)(2K + 1).

We continue the list of remarks with more general statements.

Remark 2.1.11. If (2.1) has an exponential dichotomy on the interval [t0,∞), t0 > 0 then (2.1) also

has an exponential dichotomy on R+ with the same projection and the same exponential rates α and β,

see [Cop78]. Hence the exponential dichotomy of (2.6) on [t0,∞) can be extended on R+.

Remark 2.1.12 ([Kla06], Remark A.2.5.). Let σ(A) = σ1 ∪ σ2 be the decomposition of the spectrum of

A as introduced at the beginning of the proof. Then ẋ = Ax and therefore also ẋ = (A + B(t))x has an

exponential dichotomy with constants α̃ and β̃ if

Re(µ1) < α̃ < β̃ < Re(µ2), ∀µ1 ∈ σ1, ∀µ2 ∈ σ2.

Moreover the corresponding xs and xu do not depend on the choice of α̃ and β̃.

Remark 2.1.13. Due to the construction of the projection P+(·) we find with kerP+(t) = imP̂u(t) and

imP̂u(t0) = kerP that

kerP+(t0) = kerP.

Hence the dimensions of the images of the projections P and P+(·) of the exponential dichotomies of

ẋ = Ax and ẋ = (A+B(t))x remain equal.

Of course a similar lemma to Lemma 2.1.7 holds for exponential dichotomies on (−∞, t0]. We simply

need to claim that ‖B(t)‖ ≤ KBe
δt for some δ > 0.

Next we want to state that for any projection P+(·) and P associated to the exponential dichotomy on

R+ of (2.6) and ẋ = Ax, respectively, the norm ‖P+(t)−P‖ tends exponentially fast to zero for t → ∞.

We do this in view of the later estimation of the jump terms gained from Lin’s method.

Lemma 2.1.14 ([Kla06], Lemma A.2.6.). Let the assumptions of Lemma 2.1.7 hold true. Let further

P be the spectral projection of A associated to the exponential dichotomy of ẋ = Ax on [t0,∞), c.f.

(2.3), and let P+(·) be the projection of the exponential dichotomy of (2.6) on [t0,∞) in accordance with

Lemma 2.1.7. Then there are positive constants ϑ and K such that ‖P+(t)− P‖ ≤ Ke−ϑt. In particular
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it can be shown that any ϑ > 0 with

α− β + ϑ < 0, Re(µ) < α− ϑ, ∀µ ∈ σ1, ϑ+ δ < 0 (2.30)

is suitable.

Remark 2.1.15. Let µ̃1 ∈ σ1 and µ̃2 ∈ σ2 denote leading eigenvalues of σ1 and σ2, respectively, in the

sense of the inequalities

Re(µ1) ≤ Re(µ̃1), Re(µ̃2) ≤ Re(µ2), ∀µ1 ∈ σ1, µ2 ∈ σ2.

The first and the second condition in (2.30) can be combined to one restriction on ϑ. Indeed within the

first inequality ϑ < β −α we can make ϑ as large as possible if we choose β as close to Re(µ̃2) and α as

close to Re(µ̃1) as possible, see (2.3). The second restriction ϑ < α− Re(µ̃1) tells that α should at best

be chosen far from Re(µ̃1) to increase ϑ.

To optimize ϑ within these two restrictions we therefore choose α = (β+ Re(µ̃1))/2 and obtain from both

the first and the second inequality in (2.30)

ϑ <
β − Re(µ̃1)

2
= β − α = α− Re(µ̃1).

Now, ϑ increases with β hence we choose β as close to Re(µ̃2) as possible.

In the following we want to inspect the correlation between (2.1) and its adjoint equation

ẋ = −A(t)Tx, (2.31)

with regard to exponential dichotomy. The transition matrix of (2.31) we denote by Ψ(·, ·). Note, that

Ψ(t, s) = Φ(s, t)T , for all s, t ∈ J , where Φ(·, ·) denotes the transition matrix of (2.1). This simply follows

from differentiating the condition Φ(t, s)Φ(s, t) = id with respect to t. Therefore solutions of the linear

equation (2.1) and solutions of the adjoint equation (2.31) to initial values that stay orthogonal to each

other remain orthogonal for all time:

Lemma 2.1.16. Let u(·) and v(·) be solutions of (2.1) and (2.31), respectively, with u(0) = u0 and

v(0) = v0. If 〈u0, v0〉 = 0 then 〈u(t), v(t)〉 = 0 for all t ∈ R.

Proof. With u(t) = Φ(t, 0)u0 and v(t) = Ψ(t, 0)v0 we find

〈u(t), v(t)〉 = 〈Φ(t, 0)u0,Ψ(t, 0)v0〉 =
〈
Φ(t, 0)u0,Φ(0, t)

T v0
〉
= 〈Φ(0, t)Φ(t, 0)u0, v0〉 = 〈u0, v0〉 = 0.

Naturally with (2.1) having an exponential dichotomy also the adjoint system (2.31) has an exponential

dichotomy, cf. i.e [Pal84]. The following lemma shows the relation of the corresponding projections.

Lemma 2.1.17. Assume that (2.1) has an exponential dichotomy (2.2) on R+ with constants α, β and

projection P+(·). Then we find that the adjoint equation (2.31) also has an exponential dichotomy on

R+with constants −β,−α. For the associated projection Q+ holds the relation

imQ+(s) = im(id− P+(s))T = (imP+(s))⊥.

27



2 Preliminaries

Proof. We still denote by Φ(·, ·) and Ψ(·, ·) the transition matrices of (2.1) and (2.31), respectively. Recall

that Ψ(t, s) = Φ(s, t)T . Now, let (2.1) have an exponential dichotomy (2.2) on R+ with projection P+(·).
Then we find that the projection P+(·)T commutes with Ψ(·, ·), since for all s, t ∈ R+

Ψ(s, t)P+(t)T = Φ(t, s)TP+(t)T = [P+(t)Φ(t, s)]T = [Φ(t, s)P+(s)]T = P+(s)TΦ(t, s)T = P+(s)TΨ(s, t).

In finite dimensional spaces every matrix norm is equivalent, that is for any two norms ‖ · ‖a and ‖ · ‖b
we find two constants c1, c2 > 0 such that for all A ∈ L(Rn,Rn): c1‖A‖a ≤ ‖A‖b ≤ c2‖A‖a. Let in

addition ‖ · ‖T denote a self-adjoint norm, that is ‖AT ‖T = ‖A‖T for all A ∈ L(Rn,Rn). Then there exist

constants c1 and c2 such that for all A ∈ L(Rn,Rn)

c1‖AT ‖ ≤ ‖AT ‖T = ‖A‖T ≤ c2‖A‖.

Therefore we find with Ψ(s, t)P+(t)T = [Φ(t, s)P+(s)]T that

‖Ψ(s, t)P+(t)T ‖ ≤ c2
c1

‖Φ(t, s)P+(s)‖ ≤ c2
c1
Keα(t−s), t ≥ s ≥ 0,

‖Ψ(s, t)(id− P+(t))T ‖ ≤ c2
c1

‖Φ(t, s)(id− P+(s))‖ ≤ c2
c1
Ke−β(s−t), s ≥ t ≥ 0.

Hence (2.31) also has an exponential dichotomy on R+ with constants −β,−α and for example, projection

(id − P+(·))T . Therefore any projection Q+(·) associated with the exponential dichotomy of (2.31)

on R+ needs to satisfy imQ+(s) = im(id − P+(s))T = {x ∈ Rn | ‖Ψ(t, s)x‖ →
t→∞

0}. The identity

im(id− P+(s))T = (imP+(s))⊥ follows from Lemma 2.0.1 and Remark 2.0.4.

An analogous lemma is true for exponential dichotomy on R−.

Remark 2.1.18. Assume that equation (2.1) has an exponential dichotomy on R+ with corresponding

projections P+(·) and the stable subspace Es
A(·)(t) = imP+(t). Then we get the stable subspace Es

−A(·)T (t)

of the adjoint equation (2.31) from

Es
−A(·)T (t) = kerP+(t)T = [imP+(t)]⊥ = [Es

A(·)(t)]
⊥.

Analogously, if equation (2.1) has an exponential dichotomy on R− with projections P−(·) and the unstable

subspace Eu
A(·)(t) = kerP−(t) we get the unstable subspace Eu

−A(·)T (t) of the adjoint equation (2.31) from

Eu
−A(·)T (t) = imP−(t)T = [kerP−(t)]⊥ = [Eu

A(·)(t)]
⊥.

In the special case of A(t) ≡ A ∈ L(Rn,Rn) the assertion of Remark 2.1.18 is confirmed by Lemma 2.0.2.

Now, the concept of exponential dichotomy can be extended by introducing two instead of just one

dividing cut. This leads us to the concept of exponential trichotomy, cf. [HaLi86].

Definition 2.1.19. Equation (2.1) is said to have an exponential trichotomy on the interval J ,

if there exist projections P (t), Q(t) and R(t) with P (t) + Q(t) + R(t) = id, ∀t ∈ J , and constants

α < γ − c < γ + c < β, c > 0 and K > 0 such that for all s, t ∈ J

Φ(t, s)P (s) = P (t)Φ(t, s), Φ(t, s)Q(s) = Q(t)Φ(t, s), Φ(t, s)R(s) = R(t)Φ(t, s)

28



2.2 Variational equations

and
‖Φ(t, s)P (s)‖ ≤ Keα(t−s), ‖Φ(t, s)Q(s)‖ ≤ Ke(γ+c)(t−s), t ≥ s,

‖Φ(t, s)Q(s)‖ ≤ Ke(γ−c)(t−s), ‖Φ(t, s)R(s)‖ ≤ Keβ(t−s), s ≥ t.

If we choose γ = 0 Definition 2.1.19 conforms with the classical definition of exponential trichotomy as it

can be found in [Bey94]. Assume equation (2.1) has an exponential trichotomy on R+ with γ = 0. Then

again, cf. our considerations on exponential dichotomies that lead to Remark 2.1.2, we find that solutions

starting in imP (s) decay with an exponential rate of at least α, as t → ∞, whereas solutions starting in

imR(t) increase with an exponential rate of at least β as s → ∞. Finally solutions starting in imQ(s) do

not decay faster than e−ct and simultaneously do not increase faster than ect. In this sense the images

of P (t), Q(t) and R(t) can be seen as stable, centre and unstable subspaces at time t corresponding to

equation (2.1). Note, that in this case only the images of P (t) and P (t) +Q(t) are uniquely determined,

that is only the stable and the centre-stable subspaces are fixed.

Let A ∈ L(Rn,Rn) and the spectrum σ(A) = σs ∪ σc ∪ σu with σc := {µ ∈ σ(A)| Re(µ) = 0}. If

σs, σc, σu 6= ∅, then the autonomous system ẋ = Ax has an exponential trichotomy on R+ and R− with

γ = 0.

However, setting γ = Re(µ) for any µ ∈ σ(A) allows a cut at an arbitrary point of the spectrum. This

way one can for example separate the leading stable subspace from the strong stable subspace. Let

σ(A) = σss ∪ {µs} ∪ σu with Re(µs) < 0 and Re(µ) < Re(µs) for all µ ∈ σss. Then the system ẋ = Ax

has an exponential trichotomy on R+ with γ = Re(µs). Again only the images of P (t) and P (t) +Q(t)

are settled.

As in the case of exponential dichotomies there are also certain roughness-theorems for exponential

trichotomies. Again we confine ourselves to exponentially bounded perturbations of autonomous systems.

The following lemma can already be found in [Kla06, Lemma A.2.9] for the case γ = 0.

Lemma 2.1.20. Let A ∈ L(Rn,Rn) and for t ∈ [t0,∞) let B(t) ∈ L(Rn,Rn). We assume that ẋ = Ax

has an exponential trichotomy on [t0,∞) with constants α < γ − c < γ + c < β, c > 0, and that there are

positive constants KB and δ such that

‖B(t)‖ ≤ KBe
−δt.

Then equation (2.6) has an exponential trichotomy on [t0,∞) with the same constants α < γ−c < γ+c <

β.

Proof. The proof parallels the proof in [Kla06]. The idea is to define the projections P,Q and R by

means of projections of exponential dichotomies of (2.6). According to Lemma 2.1.7 equation (2.6) has

two exponential dichotomies on [t0,∞): one with constants α < γ − c and corresponding projection

Ps(t) and another one with constants γ + c < β and projection Pcs(t). Since α < γ + c we find

imPs(t) ⊂ imPcs(t). Further, thanks to Lemma 2.1.3, we may choose the kernels of these projections

such that kerPcs(0) ⊂ kerPs(0) and hence kerPcs(t) ⊂ kerPs(t) for all t. This yields that Ps(t)Pcs(t) =

Pcs(t)Ps(t) = Ps(t) and therefore Q(t) := Pcs(t) − Ps(t) is a projection. This shows that equation (2.6)

has an exponential trichotomy with projections P (t) := Ps(t), Q(t) and R(t) := id−Pcs(t) and constants

α < γ − c < γ + c < β.

2.2 Variational equations

In this section we apply Lemma 2.1.7 and 2.1.20 to prove that certain variational equations have ex-

ponential dichotomies or trichotomies, respectively. Further we present geometrical interpretations of
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the corresponding stable and unstable subspaces. To this end we start with the autonomous differential

equation in Rn

ẋ = f(x), (2.32)

with f : Rn → Rn sufficiently smooth. Denote by {ϕt(·)} the corresponding flow of the system (2.32)

and let p be a hyperbolic equilibrium of (2.32), that is Df(p) is a hyperbolic matrix.

Remark 2.2.1. Due to Lemma 2.1.6 the linear autonomous differential equation ẋ = Df(p)x has an

exponential dichotomy (2.2) on R with constants αs and αu, where

Re(µs) < αs < 0 < αu < Re(µu)

for all µs ∈ σs and µu ∈ σu; σ(Df(p)) = σs∪σu. The corresponding projection P is the spectral projection

with respect to the generalised eigenspaces of σs and σu, that is imP = EDf(p)(σs).

The stable and unstable manifold to the equilibrium p are defined by

W s(p) := {x ∈ Rn | ‖ϕt(x)− p‖ →
t→∞

0},

Wu(p) := {x ∈ Rn | ‖ϕt(x)− p‖ →
t→−∞

0}.







(2.33)

With ns := dimW s(p) and nu := dimWu(p) we find that ns + nu = n. Solutions within the stable

manifold converge exponentially fast towards the equilibrium for positive time. Analogously solutions in

the unstable manifold converge exponentially fast towards the equilibrium for negative time. We express

this in the following Lemma which is based on [Rob99, Chapter 5, Theorem 10.1].

Lemma 2.2.2. Consider the differential equation (2.32) with the corresponding flow {ϕt(·)} and the

hyperbolic equilibrium p.

(i) Let x0 ∈ W s(p) then

‖ϕt(x0)− p‖ ≤ eα
st‖x0‖, ∀t > 0

(ii) Let x0 ∈ Wu(p) then

‖ϕt(x0)− p‖ ≤ eα
ut‖x0‖, ∀t < 0

The exponential rates αs and αu are bounds of the corresponding stable and unstable spectrum, respec-

tively, as presented in Remark 2.2.1.

Recall that the generalised stable eigenspace EDf(p)(σs) is tangent to the stable manifold W s(p) in the

equilibrium point p. Analogously EDf(p)(σu) is tangent to Wu(p) in p. Regarding the theory of stable

and unstable manifolds we refer to [Shu86, HiPuSh77, Rob99] where the assertions made above can be

found.

The linear variational equation of (2.32) along a solution ϕt(x0) of (2.32) through any point x0 ∈
Rn reads as follows

ẋ = Df(ϕt(x0))x. (2.34)

The adjoint variational equation corresponding to (2.34) reads

ẋ = −[Df(ϕt(x0))]
Tx. (2.35)
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Alike the case of the linear equation (2.1) and its adjoint equation (2.31) we again denote the transition

matrices of (2.34) and (2.35) by Φ(t, τ) and Ψ(t, τ) := Φ(τ, t)T , respectively.

Thanks to the roughness theorem, cf. Lemma 2.1.7, the exponential dichotomy of ẋ = Df(p)x passes on

to variational equation (2.34) along solutions of (2.32) that start within the stable or unstable manifold,

respectively.

Lemma 2.2.3. Consider the variational equation (2.34) with the corresponding transition matrix Φ(t, s).

Write A(t) := Df(ϕt(x0)).

(i) Let x0 ∈ W s(p). Then the variational equation (2.34) has an exponential dichotomy (2.2) on R+

with constants α = αs and β = αu given in Remark 2.2.1. The corresponding projection P+(·)
satisfies

imP+(τ) = {x ∈ Rn | ‖Φ(t, τ)x‖ →
t→∞

0} =: Es
A(·)(τ)

with dim(imP+(τ)) = ns.

(ii) Let x0 ∈ Wu(p). Then the variational equation (2.34) has an exponential dichotomy (2.2) on R−

with constants α = αs and β = αu given in Remark 2.2.1. The corresponding projection P−(·)
satisfies

kerP−(τ) = {x ∈ Rn | ‖Φ(t, τ)x‖ →
t→−∞

0} =: Eu
A(·)(τ).

with dim(kerP−(τ)) = nu.

This Lemma basically can be found in [Sch95, Lemma 1.3]. However, there the exponential rates α and β

were not mentioned. This is due to the fact that a different version of the roughness theorem was used to

prove this result, where the exponential rates do not explicitly arise from. Therefore we give the detailed

proof using Lemma 2.1.7 even though it hardly differs from the proof given in [Sch95].

Proof. We rewrite (2.34) into

ẋ = Df(p)x+
[
Df(ϕt(x0))−Df(p)

]
x.

The differential equation ẋ = Df(p)x has an exponential dichotomy on R+ with projection P , dim imP =

ns, and constants αs and αu, cf. Remark 2.2.1. Since x0 ∈ W s(p) the solution ϕt(x0) converges

exponentially fast towards p as t → ∞, cf. Lemma 2.2.2. Therefore we find due to the Lipschitz

continuity

‖Df(ϕt(x0))−Df(p)‖ ≤ K‖ϕt(x0)− p‖ ≤ KCeα
st

for some positive constants K and C. Hence we can apply Lemma 2.1.7 with A = Df(p) and B(t) =

Df(ϕt(x0))−Df(p) and find that (2.34) has an exponential dichotomy with the same exponential rates

αs and αu. Due to (ii) and (iii) in Definition 2.1.1 we find

imP+(τ) = {x ∈ Rn | ‖Φ(t, τ)x‖ →
t→∞

0},

cf. also Remark 2.1.2. Finally the dimensions of the image and the kernel of the corresponding projections

do not change, cf. Remark 2.1.13, so dim imP+(τ) = ns. Analogously one can prove (ii).

In case of the adjoint variational equation (2.35) a similar lemma holds true. Again the following result

can be found in [Sch95, Lemma 1.4], appart from the exponential rates α and β.
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Lemma 2.2.4. Consider the adjoint variational equation (2.35) with the corresponding transition matrix

Ψ(t, s). Let A(t) := Df(ϕt(x0)).

(i) Let x0 ∈ W s(p). Then the adjoint variational equation (2.35) has an exponential dichotomy (2.2)

on R+ with the constants α = −αu and β = −αs given in Remark 2.2.1. The corresponding

projection Q+(·) fulfils

imQ+(τ) = {x ∈ Rn | ‖Ψ(t, τ)x‖ →
t→∞

0} =: Es
−A(·)T (τ)

with dim(imQ+(τ)) = nu.

(ii) Let x0 ∈ Wu(p). Then the adjoint variational equation (2.35) has an exponential dichotomy (2.2)

on R− with the constants α = −αu and β = −αs given in Remark 2.2.1. The corresponding

projection Q−(·) satisfies

kerQ−(τ) = {x ∈ Rn | ‖Ψ(t, τ)x‖ →
t→−∞

0} =: Eu
−A(·)T (τ)

with dim(kerQ−(τ)) = ns.

Proof. The proof runs along the same lines as the proof of Lemma 2.2.3. Again we rewrite (2.35) into

ẋ = −Df(p)Tx+
[
Df(p)−Df(ϕt(x0))

]T
x

and apply Lemma 2.1.7 with A = −Df(p)T and B(t) = [Df(p)−Df(ϕt(x0))]
T
. Since p is a hyperbolic

equilibrium of (2.32) also −Df(p)T has no eigenvalues with zero real part. We just have to bear in

mind that σs(−AT ) = −σu(A) and σu(−AT ) = −σs(A). Therefore ẋ = −Df(p)Tx has an exponential

dichotomy (2.2) with constants α = −αu and β = −αs, cf. Lemma 2.1.17.

Remark 2.2.5. Due to Lemma 2.1.17 the following relations apply between the projection P±(·) of

Lemma 2.2.3 and the projections Q±(·) of Lemma 2.2.4:

imQ+(t) = (imP+(t))⊥ and kerQ−(t) = (kerP−(t))⊥.

In the following we take a closer look at the stable and unstable subspaces of the variational equations

and find that they can be represented by the tangent spaces of the stable and unstable manifolds of (2.32)

in any point x0 of the stable or unstable manifold.

Lemma 2.2.6 ([Sch95], Lemma 1.5, Lemma 1.6). Let p be a saddle point of (2.32) and let Φ(t, s) and

Ψ(t, s) be the transition matrices of the variational equation (2.34) and the adjoint variational equa-

tion (2.35) along the solution ϕt(x0), respectively.

(i) If x0 ∈ W s(p) then

Tx0
W s(p) = {x ∈ Rn | sup

t∈R+

‖Φ(t, 0)x‖ < ∞} = Es
A(·)(0),

(Tx0
W s(p))

⊥
= {x ∈ Rn | sup

t∈R+

‖Ψ(t, 0)x‖ < ∞} = Es
−A(·)T (0).
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(ii) If x0 ∈ Wu(p) then

Tx0
Wu(p) = {x ∈ Rn | sup

t∈R−

‖Φ(t, 0)x‖ < ∞} = Eu
A(·)(0),

(Tx0
Wu(p))

⊥
= {x ∈ Rn | sup

t∈R−

‖Ψ(t, 0)x‖ < ∞} = Eu
−A(·)T (0).

We omit the proof and simply refer to [Sch95].

In the following we adopt the concept of exponential trichotomies on the set of variational equations (2.34)

and their adjoint equations (2.35) along solutions within the stable or unstable manifold of a hyperbolic

equilibrium. To this end let p be a hyperbolic equilibrium of (2.32). The spectrum σ(Df(p)) shall be

divided into leading stable and unstable eigenvalues σls/lu and strong stable and unstable spectrum, that

is σ(Df(p)) = σss ∪ σls ∪ σlu ∪ σuu where

σls := {µs ∈ σ(Df(p)) | Re(µs) = max{Re(µ), µ ∈ σs}},

σlu := {µu ∈ σ(Df(p)) | Re(µu) = min{ Re(µ), µ ∈ σu}},

and σss = σs \ σls, σuu = σu \ σlu. Hence we obtain σs = σls ∪ σss and σu = σlu ∪ σuu.

Analogously to the considerations in Remark 2.2.1 regarding exponential dichotomies we separate the

spectrum by real constants in the following manner:

Re µ < αss < βs < Re µs < αs < 0 < αu < Re µu < βu < αuu < Re µ̂ (2.36)

for all µ ∈ σss, µ
s ∈ σls, µ

u ∈ σlu and µ̂ ∈ σuu. In the following we denote by nls and nlu the dimensions

of the generalized eigenspaces EDf(p)(σls) and EDf(p)(σlu), respectively. Further let nss be the dimension

of the generalized strong stable eigenspace EDf(p)(σss), that is the sum of the algebraic multiplicity of

all eigenvalues µ ∈ σss and let analogously nuu be the dimension of the generalized strong unstable

eigenspace EDf(p)(σuu). Then we find ns = nls + nss and nu = nlu + nuu. Recall Definition 2.1.19 for

the introduction of the projections P,Q and R and their relation to the exponential rates α, β, γ − c and

γ + c.

Lemma 2.2.7. Consider the linear variational equation (2.34) and its adjoint variational equation (2.35)

along ϕt(x0) with their corresponding transition matrices Φ(t, τ) and Ψ(t, τ). Let A(t) := Df(ϕt(x0)).

(i) Let x0 ∈ W s(p). Then the variational equation (2.34) has an exponential trichotomy on R+ with

projections P = P+
ss, Q = P+

ls and R = P+
u and constants α = αss, β = αu, γ − c = βs and

γ + c = αs such that

im(P+
ss(τ)) = {x ∈ Rn | ‖Φ(t, τ)x‖ ≤ Keα

ss(t−τ)‖x‖, t ≥ τ ≥ 0} =: Ess
A(·)(τ),

im(P+
ss(τ) + P+

ls (τ)) = {x ∈ Rn | ‖Φ(t, τ)x‖ ≤ Keα
s(t−τ)‖x‖, t ≥ τ ≥ 0} = Es

A(·)(τ).

Further we have dim im(P+
ss) = nss, dim im(P+

ls ) = nls and dim im(P+
u ) = nlu + nuu.

(ii) Let x0 ∈ Wu(p). Then the variational equation (2.34) has an exponential trichotomy on R− with

projections P = P−
s , Q = P−

lu and R = P−
uu and constants α = αs, β = αuu, γ − c = αu and

γ + c = βu such that

im(P−
uu(τ)) = {x ∈ Rn | ‖Φ(t, τ)x‖ ≤ Keα

uu(t−τ)‖x‖, t ≤ τ ≤ 0} =: Euu
A(·)(τ),
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im(P−
uu(τ) + P−

lu(τ)) = {x ∈ Rn | ‖Φ(t, τ)x‖ ≤ Keα
u(t−τ)‖x‖, t ≤ τ ≤ 0} = Eu

A(·)(τ).

Further we have dim im(P−
s ) = nls + nss, dim im(P+

lu) = nlu and dim im(P+
uu) = nuu.

(iii) Let x0 ∈ W s(p). Then the adjoint variational equation (2.35) has an exponential trichotomy on R+

with projections P = Q+
ss, Q = Q+

ls and R = Q+
u and constants α = −αuu, β = −αs, γ − c = −βu

and γ + c = −αu such that

im(Q+
ss(τ)) = {x ∈ Rn | ‖Ψ(t, τ)x‖ ≤ Ke−α

uu(t−τ)‖x‖, t ≥ τ ≥ 0} =: Ess
−A(·)T (τ),

im(Q+
ss(τ) +Q+

ls(τ)) = {x ∈ Rn | ‖Ψ(t, τ)x|| ≤ Ke−α
u(t−τ)‖x‖, t ≥ τ ≥ 0} = Es

−A(·)T (τ).

Further we have dim im(Q+
ss) = nuu, dim im(Q+

ls) = nlu and dim im(Q+
u ) = nls + nss.

(iv) Let x0 ∈ Wu(p). Then the adjoint variational equation (2.35) has an exponential trichotomy on R−

with projections P = Q−
s , Q = Q−

lu and R = Q−
uu and constants α = −αu, β = −αss, γ − c = −αs

and γ + c = −βs such that

im(Q−
uu(τ)) = {x ∈ Rn | ‖Ψ(t, τ)x‖ ≤ Ke−α

ss(t−τ)‖x‖, t ≤ τ ≤ 0} =: Euu
−A(·)T (τ),

im(Q−
uu(τ) +Q−

lu(τ)) = {x ∈ Rn | ‖Ψ(t, τ)x|| ≤ Ke−α
s(t−τ)‖x‖, t ≤ τ ≤ 0} = Eu

−A(·)T (τ).

Further we have dim im(Q−
s ) = nlu + nuu, dim im(Q−

lu) = nls and dim im(Q−
uu) = nss.

The proofs run along the same lines as the proofs of Lemma 2.2.3 and 2.2.4, respectively, by applying

the rougness-Lemma 2.1.20.

Similar to the statements of Lemma 2.2.6 we find an explicit representation of the strong stable subspaces

Ess
A(·)(τ) and Euu

−A(·)T (τ). To this end we first introduce the geometrical objects which will be identified

as the images of the projections P±
ss and Q±

uu.

Remark 2.2.8. Invariant manifold theory provides the existence of the so-called extended unstable

manifold W ls,u(p) of p which is a locally invariant manifold whose tangent space at p is the sum of

the generalized unstable eigenspace EDf(p)(σu) and the leading stable eigenspace EDf(p)(σls). Likewise

the extended stable manifold W s,lu(p) is a locally invariant manifold having the tangent space in p

consisting of the generalised stable eigenspace EDf(p)(σs) plus the leading unstable eigenspace EDf(p)(σlu).

The construction of these manifolds can take place via the graph transform method and it provides that

any x ∈ W s,lu(p) does not run away from p faster than eβ
ut, that is

x ∈ W s,lu(p) ⇒ ‖ϕt(x)− p‖ ≤ Keβ
ut‖x− p‖, t > 0. (2.37)

Analogously we find

x ∈ W ls,u(p) ⇒ ‖ϕt(x)− p‖ ≤ Keβ
st‖x− p‖, t < 0.

See (2.36) for the introduction of βu and βs. Note that the local extended (un)stable manifolds are not

uniquely defined but they possess unique tangent spaces along the (un)stable manifold. The first general

proofs of the existence of these manifolds were given by Kelley [Kel67] and by Hirsch, Pugh and Shub

[HiPuSh77].

Remark 2.2.9. Assume the leading stable eigenvalue of a hyperbolic equilibrium p to be real and semisim-

ple. Then, within the stable manifold one find an invariant strong stable foliation F ss. The leaves
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of F ss, the so-called strong stable fibres, Fss, have the same dimension as EDf(p)(σss) and they

are local submanifolds of the stable manifold. The foliation is locally invariant. To be precise, the single

fibres are transported into each other via the flow of the differential equation:

ϕt(Fss(x0)) ⊆ Fss(ϕt(x0)), t ≥ 0.

Further we find for all x ∈ Fss(x0) that

‖ϕt(x)− ϕt(x0)‖ < Keα
sst‖x− x0‖. (2.38)

See Figure 2.1 for illustration. The existence of F ss was shown in [Hom96, Theorem 2.1.1] in case of

real simple leading eigenvalues and it can be extended to real semisimple eigenvalues.

With this we find

Lemma 2.2.10. Assume the leading eigenvalues µs and µu to be real and semisimple. Let x0 ∈ W s(p).

Then
(i) Ess

A(·)(τ) = Tϕτ (x0)Fss(ϕτ (x0)),

(ii) Ess
−A(·)T (τ) =

(
Tϕτ (x0)W

s,lu(p)
)⊥

.

For x0 ∈ Wu(p) we have

(iii) Euu
A(·)(τ) = Tϕτ (x0)Fuu(ϕτ (x0)),

(iv) Euu
−A(·)T (τ) =

(
Tϕτ (x0)W

ls,u(p)
)⊥

.

Proof. The proof of the lemma runs along the same lines as the proof of Lemma 2.2.6 for the stable

subspaces, cf. [Sch95]. We confine ourselves with the proof of (i) and (ii). The proof of (iii) and (iv)

follows analogously. Without loss of generality we assume p = 0.

We begin with the proof of (i). To start with we prove the assertion for x0 ∈ W s
loc(p). Then ϕτ (x0) ∈

W s
loc(p) for all τ ≥ 0.

We use the fact that the strong stable fibre Fss(ϕτ (x0)) can be expressed as graph of a smooth function

hτ : E(σss) → E(σls) + E(σu)

such that locally around p we have Fss(ϕτ (x0)) = graph(hτ ), cf. Figure 2.1. With Hτ : E(σss) → Rn,

Hτ (ξ) = ξ + hτ (ξ) we obtain Fss(ϕτ (x0)) = im(Hτ ). Using the flow {ϕt(·)} of (2.32) we obtain a

parametrization of Fss(ϕτ (x0)) by

Fss(ϕτ (x0)) = {Hτ (ξ) | ξ ∈ E(σss)} = {ϕ0(Hτ (ξ)) | ξ ∈ E(σss)}.

Of course the last relation in this equation is trivial but it serves as a basis for the definition of the

function ψ introduced below.

Let ξ0 be such that Hτ (ξ0) = ϕτ (x0) ∈ Fss(ϕτ (x0)). Then we have

Tϕτ (x0)Fss(ϕτ (x0)) = {DHτ (ξ0)η | η ∈ E(σss)} = {Dξ

(
ϕ0(Hτ (ξ0))

)
η | η ∈ E(σss)}.
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We define for η ∈ E(σss) a function ψ by

ψ(·, η) : R+ → Rn; ψ(t, η) = Dξ

(
ϕt(Hτ (ξ0))

)
η, t ≥ 0

and show that it is continuous differentiable on R+ and that it solves the variational equation

ẋ = Df(ϕt(Hτ (ξ0)))x

along the solution ϕt(Hτ (ξ0)) of (2.32):

ψ̇(t, η) = d
dt (Dξ

(
ϕt(Hτ (ξ0))

)
η) = Dξ(

d
dtϕ

t(Hτ (ξ0))η) = Dξf(ϕ
t(Hτ (ξ0)))η

= Df(ϕt(Hτ (ξ0)))Dξ

(
ϕt(Hτ (ξ0))

)
η

= Df(ϕt(Hτ (ξ0)))ψ(t, η).

On that behalf we assume at least f ∈ C2(Rn,Rn).

Since ξ0 was chosen such that Hτ (ξ0) = ϕτ (x0), we find that ψ is a solution of the variational equation

ẋ = Df(ϕt(ϕτ (x0)))x = Df(ϕt+τ (x0))x with the corresponding transition matrix U(t, 0) = Φ(t + τ, τ).

Hence ψ satisfies the representation ψ(t, η) = U(t, 0)ψ(0, η) = Φ(t+ τ, τ)ψ(0, η).

E(σss)

E(σls)

W ss(p)

p

ξ

ξ + hτ (ξ) = Hτ (ξ)

x0

ϕτ (x0)

x

W s(p)

ϕτ (x)

Fss(ϕτ (x0))

Fss(x0)

hτ (ξ)

Figure 2.1: Illustration of the strong stable fibres Fss(x0) and Fss(ϕτ (x0)) within the stable manifold W s(p).

Due to the properties of the strong stable fibre Fss(ϕτ (x0)), cf.(2.38), the difference of two solutions of

(2.32) starting in this fibre goes exponentially fast to zero with a convergence rate of eα
sst. Using this

property we declare the function

Ω : E(σss) → C1
αss(R+,Rn); ξ 7→ Ω(ξ) := ϕ(·)(Hτ (ξ))− ϕ(·)(ϕτ (x0)).

Here we denote by C1
αss(R+,Rn) the space of all continuous differentiable functions g : R+ → Rn satisfying

‖g(t)‖ ≤ Keα
sst for some constant K > 0 and for all t ≥ 0.
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Then we find that ψ(·, η) ∈ C1
αss(R+,Rn) for all η ∈ E(σss) since ψ(·, η) = DΩ(ξ0)η with DΩ(ξ0) ∈

L(E(σss), C
1
αss(R+,Rn)). Thus we have

‖Φ(t+ τ, τ)ψ(0, η)‖ = ‖ψ(t, η)‖ ≤ Keα
sst = Keα

ss((t+τ)−τ)

and hence

Tϕτ (x0)Fss(ϕτ (x0)) ⊆ {x ∈ Rn | ‖Φ(t, τ)x‖ ≤ Keα
ss(t−τ)‖x‖, t ≥ τ ≥ 0}.

Due to Lemma 2.2.7 we find that the right-hand side has the same dimension as the tangent space of the

stable fibre Tϕτ (x0)Fss. Hence we have proven

Tϕτ (x0)Fss(ϕτ (x0)) = {x ∈ Rn | ‖Φ+(t, τ)x‖ ≤ Keα
ss(t−τ)‖x‖, t ≥ τ ≥ 0}.

for all x0 ∈ W s
loc(p).

Now we assume x0 ∈ W s(p) and x0 /∈ W s
loc(p). Then there exists a T ∈ R+ such that x1 := ϕT (x0) ∈

W s
loc(p).

Let U0 be a neighbourhood of ϕτ (x0) in W s(p). Then we can choose T large enough such that U1 :=

ϕT (U0) is a neighbourhood of ϕτ (x1) in W s
loc(p). Since ϕT (·) is a local diffeomorphism from U0 to U1 we

find

DϕT (ϕτ (x0))Tϕτ (x0)Fss(ϕτ (x0)) = Tϕτ (x1)Fss(ϕτ (x1)).

The solutions Dϕ(·)(ϕτ (x0))η, η ∈ Rn, of the linear variational equation ẋ = Df(ϕt+τ (x0))x on R+ can

be expressed as

Dϕt(ϕτ (x0))η = Φ(t+ τ, τ)Dϕ0(ϕτ (x0))
︸ ︷︷ ︸

id

η = Φ(t+ τ, τ)η.

From this it follows

Φ(t, τ)η = Φ(t, T + τ)Φ(T + τ, τ)η = Φ(t, T + τ)DϕT (ϕτ (x0))η.

Hence we find

η ∈ Tϕτ (x0)Fss(ϕτ (x0))

⇐⇒ DϕT (ϕτ (x0))η ∈ Tϕτ (x1)Fss(ϕτ (x1))

⇐⇒ ‖Φ(t, τ + T )DϕT (ϕτ (x0))η‖ ≤ Keα
ss(t−τ−T )‖DϕT (ϕτ (x0))η‖, t ≥ τ + T ≥ 0

⇐⇒ ‖Φ(t, τ)η‖ ≤ Ke−α
ssT ‖DϕT (ϕτ (x0))‖eα

ss(t−τ)‖η‖, t ≥ τ + T ≥ 0

⇐⇒ ‖Φ(t, τ)η‖ ≤ K̃eα
ss(t−τ)‖η‖, t ≥ τ ≥ 0

The last equivalence holds since the existence of an exponential dichotomy on [T + τ,∞) implies the

existence of an exponential dichotomy on R+ with the same projections, cf. [Cop78] and Remark 2.1.11.

The proof of (ii) is carried out in three steps. At first we prove in the same way as we have proven (i)

that for any x0 ∈ W s
loc(p)

Tϕτ (x0)W
s,lu
loc (p) ⊆ {x ∈ Rn | ‖Φ(t, τ)x‖ ≤ Leβ

u(t−τ)‖x‖, t ≥ τ ≥ 0}.
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Then we extend this assertion for all x0 ∈ W s(p). Finally we prove

[
Tϕτ (x0)W

s,lu(p)
]⊥

= {x ∈ Rn | ‖Ψ(t, τ)x‖ ≤ Le−α
uu(t−τ)‖x‖, t ≥ τ ≥ 0}.

Let x0 ∈ W s
loc(p). Recall that W

s,lu(p) is not uniquely defined. However its tangent space along elements

of the stable manifold is uniquely given. So we simply pick one manifold and express it as graph of a

smooth function h : E(σs ∪ σlu) → E(σuu). With the function

H : E(σs ∪ σlu) → Rn; H(ξ) = ξ + h(ξ)

and the flow {ϕt(·)} of (2.32) we obtain a parametrization of the chosen manifold W s,lu
loc (p) by

W s,lu
loc (p) = {H(ξ) | ξ ∈ E(σs ∪ σlu)} = {ϕ0(H(ξ)) | ξ ∈ E(σs ∪ σlu)}.

Now we choose ξ0 ∈ E(σs ∪ σlu) such that H(ξ0) = ϕτ (x0) ∈ W s
loc(p) ⊂ W s,lu

loc (p), τ > 0. Then we have

TH(ξ0)W
ls,u(p) = {DH(ξ0)η | η ∈ E(σs ∪ σlu)} = {Dξϕ

0(H(ξ0))η | η ∈ E(σs ∪ σlu)}.

Analogously to the considerations in (i) we find that the function

ψ(·, η) : R+ → Rn; ψ(t, η) = Dξϕ
t(H(ξ0))η, t ≥ 0

is continuous differentiable on R+ and solves the variational equation

ẋ = Df(ϕt(H(ξ0)))x = Df(ϕt+τ (x0))x.

Therefore ψ satisfies the representation ψ(t, η) = U(t, 0)ψ(0, η) with transition matrix U(·, ·) satisfying

U(t, 0) = Φ(t+ τ, τ).

Now, due to (2.37) we can declare the function

Ω : E(σs ∪ σlu) → C1
βu(R+,Rn); ξ 7→ Ω(ξ) := ϕ(·)(H(ξ)).

Then ψ(·, η) ∈ C1
βu(R−,Rn) for all η ∈ E(σs ∪ σlu) since ψ(·, η) = DΩ(ξ0)η with DΩ(ξ0) ∈ L(E(σs ∪

σlu), C
1
βu(R+,Rn)). Therefore we have

‖Φ(t+ τ, τ)ψ(0, η)‖ = ‖ψ(t, η)‖ ≤ Leβ
ut.

and hence

Tϕτ (x0)W
s,lu
loc (p) ⊆ {x ∈ Rn | ‖Φ(t, τ)x‖ ≤ Leβ

u(t−τ), t ≥ τ ≥ 0}.

Now we assume x0 ∈ W s(p), x0 /∈ W s
loc(p). Then again we can choose a T ∈ R+ such that x1 := ϕT (x0) ∈

W s
loc(p) and U1 := ϕT (U0) is a neighbourhood of ϕτ (x1) in W s

loc(p) for a neighbourhood U0 of ϕτ (x0).

Since ϕT (·) is a local diffeomorphism from U0 to U1 we find

DϕT (ϕτ (x0))Tϕτ (x0)W
s,lu(p) = Tϕτ (x1)W

s,lu(p).

The solutions Dϕ(·)(ϕτ (x0))η, η ∈ Rn, of the linear variational equation ẋ = Df(ϕt+τ (x0))x on R+ can
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be expressed as

Dϕt(ϕτ (x0))η = Φ(t+ τ, τ)Dϕ0(ϕτ (x0))
︸ ︷︷ ︸

id

η = Φ(t+ τ, τ)η.

From this it follows

Φ(t, τ)η = Φ(t, τ + T )Φ(τ + T, τ)η = Φ(t, τ + T )DϕT (ϕτ (x0))η.

Hence we find

η ∈ Tϕτ (x0)W
s,lu(p)

⇐⇒ DϕT (ϕτ (x0))η ∈ Tϕτ (x1)W
s,lu(p)

=⇒ ‖Φ(t, τ + T )DϕT (ϕτ (x0))η‖ ≤ Leβ
u(t−τ−T )‖DϕT (ϕτ (x0))η‖, t ≥ τ + T ≥ 0

⇐⇒ ‖Φ(t, τ)η‖ ≤ Le−β
uT ‖DϕT (ϕτ (x0))‖eβ

u(t−τ)‖η‖, t ≥ τ + T ≥ 0

⇐⇒ ‖Φ(t, τ)η‖ ≤ L̃eβ
u(t−τ)‖η‖, t ≥ τ ≥ 0

We conclude with the third step. In this regard we choose ξ ∈ Rn such that ‖Ψ(t, τ)ξ‖ ≤ Ke−α
uu(t−τ)‖ξ‖

for all t ≥ τ ≥ 0. Further let η ∈ Tϕτ (x0)W
s,lu(p). Recall from (2.36) that 0 < βu < αuu. Then we have

on the one hand

∣
∣
〈
e−β

u(t−τ)Φ(t, τ)η, eα
uu(t−τ)Ψ(t, τ)ξ

〉∣
∣ = e(α

uu−βu)(t−τ) |〈Φ(t, τ)η,Ψ(t, τ)ξ〉|

= e(α
uu−βu)(t−τ) ∣∣

〈
Φ(t, τ)η,Φ(τ, t)T ξ

〉∣
∣

= e(α
uu−βu)(t−τ) |〈Φ(τ, t)Φ(t, τ)η, ξ〉|

= e(α
uu−βu)(t−τ) |〈η, ξ〉|

t→∞−→
{

∞, 〈η, ξ〉 6= 0

0, 〈η, ξ〉 = 0

and on the other hand

∣
∣
∣

〈

e−β
u(t−τ)Φ(t, τ)η, eα

uu(t−τ)Ψ(t, τ)ξ
〉∣
∣
∣ ≤ ‖e−βu(t−τ)Φ(t, τ)η‖‖eαuu(t−τ)Ψ(t, τ)ξ‖ ≤ L̃‖η‖ ·K‖ξ‖.

Therefore the scalar product of η and ξ has to be zero. Thus we have shown the inclusion

{x ∈ Rn | ‖Ψ(t, τ)x‖ ≤ Ke−α
uu(t−τ)‖x‖, t ≥ τ ≥ 0} ⊆

(

Tϕτ (x0)W
s,lu
loc (p)

)⊥
.

Again the equality follows from the equality of the dimensions, cf. Lemma 2.2.7(iii).

2.3 Behaviour in the stable manifold

In the following sections we will apply the concept of exponential dichotomies and trichotomies to deter-

mine leading terms and corresponding rates of convergence of special solutions of differential equations.

Now this section is attended to solutions of autonomous differential equations starting in the stable

manifold of a hyperbolic equilibrium. That kind of solutions converge exponentially fast towards the

equilibrium point. We are interested in the exact rate of convergence and the form of the leading term.
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We consider the differential equation

ẋ = f(x, λ).

First we name the required assumptions.

(A2.1). Let p = 0 be an asymptotically stable equilibrium of a smooth family of vector fields f : Rn×R →
Rn and assume that

(i) σ(D1f(0, λ)) = {µs(λ)} ∪ σss(λ), where Re(µ) < αss < Re(µs(λ)) < αs < 0 for all µ ∈ σss(λ).

(ii) for all λ the leading stable eigenvalue µs(λ) is semisimple, that is the algebraic multiplicity equals

the geometric multiplicity.

(iii) we choose αs such that 2αs < Re(µs(λ)) for sufficiently small λ,

(iv) we choose ν ∈ N, ν ≥ 2 such that for all k ∈ {0, . . . , ν−1}\{1} D
(k)
1 f(0, λ) = 0 and D

(ν)
1 f(0, λ) 6= 0.

With E(µs(λ)) and E(σss(λ)) we name the generalised eigenspaces of D1f(0, λ) assigned to µs(λ) and

σss(λ), respectively. Then Ps(λ) denotes the projection on the leading stable eigenspace E(µs(λ)) along

the strong stable eigenspace E(σss(λ)).

Since p = 0 is a hyperbolic equilibrium of the vector field f , that is f(0, λ) = 0 and D1f(0, λ) 6= 0,

(A2.1)(iv) holds in general for ν = 2. However, ν might be greater than two, if the derivatives of the

vector field f at the equilibrium point p = 0 vanish from the second up to the (ν − 1)th order.

In addition to (A2.1) we also need the following assumption.

(A2.2). Let (A2.1) hold true. Additionally we assume

(v) σss(λ) = {µss(λ)} ∪ σsss(λ), where Re(µ) < αsss < Re(µss(λ)) < αss for all µ ∈ σsss(λ).

(vi) for all λ the eigenvalue µss(λ) is semisimple.

(vii) we can choose αs such that ναs < Re(µss(λ)) for sufficiently small λ.

Let E(µss(λ)) be the eigenspaces assigned to µss(λ) and let Pss(λ) be the projection on E(µss(λ)) along

E(σcµss(λ)) = E(µs(λ))⊕ E(σsss(λ)).

Unlike Assumption (A2.1)(iii) which always can be satisfied with an appropriate choice of αs the As-

sumption (A2.2)(vii) means a restriction. The spectral gap between µs(λ) and µss(λ) may not be too

large so that the inequality ναs < Re(µss(λ)) can be satisfied.

The following lemma is an extension of [San93, Lemma 1.7] where it was formulated for simple leading

eigenvalues and for ν = 2. The assertion under part a) also can be found in [HJKL11, Lemma 3.3] for

ν = 2.

Lemma 2.3.1. a) Let the Assumption (A2.1) be satisfied. Then there is a d > 0 such that for all

trajectories x(·) of ẋ = f(x, λ) with ‖x(0)‖ < d there exists the limit

ηs(x(0), λ) = lim
t→∞

e−D1f(0,λ)tPs(λ)x(t) ∈ E(µs(λ))

and a constant cs > 0 such that

∥
∥
∥x(t)− eD1f(0,λ)tηs(x(0), λ)

∥
∥
∥ ≤ cse

max{αss,ναs}t.
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b) If in addition (A2.2) holds, then there is a d > 0 such that for all trajectories x(·) of ẋ = f(x, λ) with

‖x(0)‖ < d there also exists the limit

ηss(x(0), λ) = lim
t→∞

e−D1f(0,λ)tPss(λ)x(t) ∈ E(µss(λ)).

Furthermore there is a constant css > 0 such that

∥
∥
∥x(t)− eD1f(0,λ)tηs(x(0), λ)− eD1f(0,λ)tηss(x(0), λ)

∥
∥
∥ ≤ csse

max{αsss,ναs}t.

Proof. The vector field allows a representation f(x, λ) = D1f(0, λ)+g(x, λ), where g(0, λ) = D1g(0, λ) =

0. If ν > 2 then we find in addition that D
(k)
1 g(0, λ) = 0 for all k < ν. For simplicity we write

A(λ) := D1f(0, λ). Then x(·) is a trajectory of ẋ = f(x, λ) if and only if it solves for any s < t the

integral equation

x(t) = eA(λ)(t−s)x(s) +

t∫

s

eA(λ)(t−τ)g(x(τ), λ)dτ. (2.39)

To prove the existence of the limits ηs and ηss we show that e−A(λ)tPs(λ)x(t) and e−A(λ)tPss(λ)x(t) are

fundamental sequences. Since A(λ)E(µs(λ)) ⊂ E(µs(λ)) and A(λ)E(σss(λ)) ⊂ E(σss(λ)) we find that

Ps and eA(λ)t commute. Hence we obtain from (2.39)

Ps(λ)x(t) = eA(λ)(t−s)Ps(λ)x(s) +

t∫

s

eA(λ)(t−τ)Ps(λ)g(x(τ), λ)dτ, (2.40)

and therefore

∥
∥
∥e−A(λ)tPs(λ)x(t)− e−A(λ)sPs(λ)x(s)

∥
∥
∥ ≤

t∫

s

‖e−A(λ)τPs(λ)‖‖g(x(τ), λ)‖dτ.

Due to the exponential dichotomy of ẋ = A(λ)x and since µs(λ) is semisimple we find ‖e−A(λ)τPs(λ)‖ ≤
K1e

− Re(µ(λ))τ . Additionally we exploit (iv) in (A2.1) which leads to

‖g(x, λ)‖ ≤ cg‖x‖ν , ∀x : ‖x‖ < ε (2.41)

for some positive constant cg and a ν ≥ 2. Finally ‖x(τ)‖ ≤ K2e
αsτ and we obtain

∥
∥
∥e−A(λ)tPs(λ)x(t)− e−A(λ)sPs(λ)x(s)

∥
∥
∥ ≤ K1K

ν
2 cg

t∫

s

e(να
s− Re(µs(λ)))τdτ,

with ναs − Re(µs(λ)) < 2αs − Re(µs(λ)) < 0 due to (A2.1)(iii). Hence, for all ε > 0 there is a t0

such that for all t > s > t0 the right-hand side of the last inequality is smaller than ε. This makes

e−A(λ)tPs(λ)x(t) a fundamental sequence.

Analogously to the projection Ps we also find that Pss and eA(λ)t commute and again for any t, s with

t > s there is a constant C > 0 such that for x(·) with ‖x(0)‖ < d

∥
∥
∥e−A(λ)tPss(λ)x(t)− e−A(λ)sPss(λ)x(s)

∥
∥
∥ ≤

t∫

s

‖e−A(λ)τPss(λ)‖‖g(x(τ), λ)‖dτ ≤ C

t∫

s

e(να
s− Re(µss(λ)))τdτ.

41



2 Preliminaries

Also here we exploit that µss(λ) is semisimple. Due to (A2.2)(vii) we find ναs − Re(µss(λ)) < 0 and

this shows that e−A(λ)tPss(λ)x(t) is a fundamental sequence as well.

Next we turn towards the estimates. For that we first decompose (2.39) by means of the projection Ps

into

Ps(λ)x(t) = eA(λ)(t−s)Ps(λ)x(s) +
t∫

s

eA(λ)(t−τ)Ps(λ)g(x(τ), λ)dτ,

(id− Ps(λ))x(t) = eA(λ)(t−s)(id− Ps(λ))x(s) +
t∫

s

eA(λ)(t−τ)(id− Ps(λ))g(x(τ), λ)dτ.

In the first equation the limit s → ∞ does exist and we get

‖x(t)− eA(λ)tηs(x(0), λ)‖ ≤ ‖eA(λ)(t−s)(id− Ps(λ))x(s)‖+ ‖
t∫

s

eA(λ)(t−τ)(id− Ps(λ))g(x(τ), λ)dτ‖

+‖
∞∫

t

eA(λ)(t−τ)Ps(λ)g(x(τ), λ)dτ‖.

Without loss of generality we set s = 0. Now, the single terms on the right hand side can be estimated

as follows:

‖eA(λ)t(id− Ps(λ))x(0)‖ ≤ K1e
αsst‖x(0)‖ = O(eα

sst),

‖
t∫

0

eA(λ)(t−τ)(id− Ps(λ))g(x(τ), λ)dτ‖ ≤ K1K
ν
2 cg

t∫

0

eα
ss(t−τ)eνα

sτdτ = O(eνα
st + eα

sst),

‖
∞∫

t

eA(λ)(t−τ)Ps(λ)g(x(τ), λ)dτ‖ ≤ K1K
ν
2 cg

∞∫

t

e Re(µs(λ))(t−τ)eνα
sτdτ = O(eνα

st).

This proves the estimate in a).

To obtain the estimate in b) we need to refine the decomposition of (2.39) by also using the projection

Pss. To this end recall that between the two projections the relations PssPs = 0, (id− Pss)Ps = Ps and

Pss(id− Ps) = Pss hold. Then we find

Ps(λ)x(t) = eA(λ)(t−s)Ps(λ)x(s) +
t∫

s

eA(λ)(t−τ)Ps(λ)g(x(τ), λ)dτ

Pss(λ)x(t) = eA(λ)(t−s)Pss(λ)x(s) +
t∫

s

eA(λ)(t−τ)Pss(λ)g(x(τ), λ)dτ

(id− Pss(λ))(id− Ps(λ))x(t) = eA(λ)(t−s)(id− Ps(λ))(id− Pss(λ))x(s)

+
t∫

s

eA(λ)(t−τ)(id− Pss(λ))(id− Ps(λ))g(x(τ), λ)dτ.

Again in the first and second equation the limits s → ∞ do exist and we get

‖x(t)− eA(λ)tηs(x(0), λ)− eA(λ)tηss(x(0), λ)‖

≤ ‖eA(λ)t(id− Pss(λ))(id− Ps(λ))x(0)‖+ ‖
t∫

0

eA(λ)(t−τ)(id− Pss(λ))(id− Ps(λ))g(x(τ), λ)dτ‖

+‖
∞∫

t

eA(λ)(t−τ)Pss(λ)g(x(τ), λ)dτ‖+ ‖
∞∫

t

eA(λ)(t−τ)Ps(λ)g(x(τ), λ)dτ‖

by setting s = 0 in the third equation. We already estimated the last term with O(eνα
st). The remaining
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terms on the right hand side can be estimated as follows:

‖eA(λ)t(id− Pss(λ))(id− Ps(λ))x(0)‖ ≤ K1e
αssst‖x(0)‖

≤ O(eα
ssst),

‖
t∫

0

eA(λ)(t−τ)(id− Pss(λ))(id− Ps(λ))g(x(τ), λ)dτ‖ ≤ K1K
ν
2 cg

t∫

0

eα
sss(t−τ)eνα

sτdτ

≤ O(eνα
st + eα

ssst),

‖
∞∫

t

eA(λ)(t−τ)Pss(λ)g(x(τ), λ)dτ‖ ≤ K1K
ν
2 cg

∞∫

t

eRe(µss(λ))(t−τ)eνα
sτdτ

≤ O(eνα
st),

This concludes the proof.

Remark 2.3.2. If the leading eigenvalues µs(λ) and µss(λ) are real, we have

eD1f(0,λ)tηs(x(0), λ) = eµ
s(λ)tηs(x(0), λ),

eD1f(0,λ)tηss(x(0), λ) = eµ
ss(λ)tηss(x(0), λ).

Remark 2.3.3. If σss(λ) = ∅, that is D1f(0, λ) has no strong stable eigenvalues the constant αss can be

choosen arbitrarily small and we simply find the estimate:

∥
∥
∥x(t)− eD1f(0,λ)tηs(x(0), λ)

∥
∥
∥ ≤ cse

ναst.

Lemma 2.3.1 does not say anything about ηs possibly becoming zero. In the following we want to go into

this matter. To this end we need more information on the stable manifold W s(p) of an equilibrium p.

For σss 6= ∅ one can prove the existence of a submanifold of W s(p) called the strong stable manifold

W ss(p). This manifold distinguish itself in a stronger rate of convergence of the rest of W s(p), cf.

[HiPuSh77, Shu86],

W ss(p) := {x ∈ Rn | ‖ϕt(x0)− p‖ ≤ eα
sst‖x0‖} ⊂ W s(p). (2.42)

Locally around p, that is in a neighbourhood U(p, ε), ε > 0 sufficiently small, one speaks of the local

stable manifold

W s
loc(p) := W s(p) ∩ U(p, ε).

Analogously one defines the local strong stable manifold

W ss
loc(p) := W ss(p) ∩ U(p, ε).

Via a coordinate transformation one can embed the local manifolds into the generalized eigenspaces

of the corresponding eigenvalues, that is W s
loc(p) ⊂ EDf(p)(σs) and W ss

loc(p) ⊂ EDf(p)(σss), see i.e.

[Rob99, Shu86] and Section 4.2.

Corollary 2.3.4. Assume (A2.1) and let ηs(x(0), λ) be given as in Lemma 2.3.1. Then ηs(x(0), λ) 6= 0

if and only if x(0) /∈ W ss(0).

Proof. Recall that ηs(x(0), λ) = lim
t→∞

e−A(λ)tPs(λ)x(t). With x(0) ∈ W ss(0) also x(t) ∈ W ss(0) for all

t > 0. Especially for t sufficiently large we find x(t) ∈ W ss
loc(0) which can be embedded into the strong
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stable eigenspace E(σss(λ)). Therefore, for t sufficiently large, Ps(λ)x(t) = 0. Hence x(0) ∈ W ss(0)

implies ηs(x(0), λ) = 0.

Now, let x(0) /∈ W ss(0). Then we find for s > 0 sufficiently large that x(s) /∈ W ss
loc(0) ⊂ E(σss(λ)) and

hence Ps(λ)x(s) 6= 0. With (2.40) we find for t > s

e−A(λ)(t−s)Ps(λ)x(t) = Ps(λ)x(s) +

t∫

s

e−A(λ)(τ−s)Ps(λ)g(x(τ), λ)dτ. (2.43)

In the following we will estimate the integral term. To this end we use the estimate for g, cf. (2.41),

‖e−A(λ)(τ−s)Ps(λ)‖ ≤ e−µ
s(λ)(τ−s)‖Ps(λ)‖ and ‖x(τ)‖ ≤ eα

s(τ−s)‖x(s)‖, see Lemma 2.2.2. Thus we gain

with 2αs − µs(λ) < 0

∥
∥
∥
∥
∥
∥

t∫

s

e−A(λ)(τ−s)Ps(λ)g(x(τ), λ)dτ

∥
∥
∥
∥
∥
∥

≤
t∫

s

e(2α
s−µs(λ))(τ−s)‖Ps(λ)‖cg‖x(s)‖2dτ ≤ cg‖Ps(λ)‖‖x(s)‖2

|2αs − µs(λ)| .

For d = ‖x(0)‖ sufficiently small, that is for ‖x(s)‖ sufficiently small, s > 0, we then find that

∥
∥
∥
∥
∥
∥

t∫

s

e−A(λ)(τ−s)Ps(λ)g(x(τ), λ)dτ

∥
∥
∥
∥
∥
∥

≤ cg‖Ps(λ)‖‖x(s)‖2
|2αs − µs(λ)| < ‖Ps(λ)x(s)‖.

Hence we conclude with (2.43) and the reverse triangle inequality

‖e−A(λ)(t−s)Ps(λ)x(t)‖ ≥

∣
∣
∣
∣
∣
∣

‖Ps(λ)x(s)‖ − ‖
t∫

s

e−A(λ)(τ−s)Ps(λ)g(x(τ), λ)dτ‖

∣
∣
∣
∣
∣
∣

that for d sufficiently small there is a d̂ > 0 independent of t such that

‖e−A(λ)(t−s)Ps(λ)x(t)‖ ≥ d̂.

Therefore ηs(x(0), λ) = lim
t→∞

e−A(λ)tPs(λ)x(t) 6= 0.

Remark 2.3.5. We assumed the equilibrium p = 0 to be asymptotically stable. If p is a hyperbolic

equilibrium then Lemma 2.3.1 describes the behaviour of solutions in the stable manifold. One obtains a

similar lemma for solutions in the unstable manifold by reversing time.

2.4 Perturbed linear equations

The following lemma states a similar assertion to Lemma 2.3.1 for non-autonomous perturbed linear

differential equations

ẋ = [A(λ) +B(t, λ)]x (2.44)

with A(λ), B(t, λ) ∈ L(Rn,Rn) for all λ ∈ R, t ∈ R. But unlike Lemma 2.3.1 we do not consider

trajectories given on the whole semiaxis R+ but only on [s,∞) for some s ≥ 0. Part a) of this lemma

can be found in [HJKL11, Lemma 3.4], for s = 0. First we state the required preconditions.

(A2.3). Consider a smooth family of linear nonautonomous differential equation (2.44) and assume that

(i) σ(A(λ)) = {µs(λ)} ∪ σu(λ) ∪ σss(λ), where Re(µ) < αss < Re(µs(λ)) < αs < 0 < Re(µ̂) for all
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µ ∈ σss(λ) and for all µ̂ ∈ σu(λ).

(ii) the leading eigenvalue µs(λ) is for all λ semisimple.

(iii) there is a δ < 0 such that ‖B(t, λ)‖ < KBe
δt and αs + δ < Re(µs(λ)).

Let further E(µs(λ)) and E(σcµs(λ)) be the generalised eigenspaces of A(λ) assigned to µs(λ) and σcµs(λ) =

σss(λ) ∪ σu(λ), respectively, and let Ps(λ) be the projection on E(µs(λ)) along E(σcµs(λ)).

(A2.4). Additionally to (A2.3) we assume that

(iv) σss(λ) = {µss(λ)} ∪ σsss(λ) where Re(µ) < αsss < Re(µss(λ)) < αss for all µ ∈ σsss(λ).

(v) the eigenvalue µss(λ) is for all λ semisimple.

(vi) we can choose δ and αs such that αs + δ < Re(µss(λ)) for sufficiently small λ.

Further E(µss(λ)) denotes the eigenspaces of A(λ) assigned to µss(λ) and Pss(λ) is the projection on

E(µss(λ)) along E(σcµss(λ)).

Analogously to the considerations in the forgoing section we find that Assumption (A2.3)(iii) can always

be satisfied by an appropriate choice of αs whereas Assumption (A2.4)(vi) means a restriction. Again the

spectral gap between µs(λ) and µss(λ) may not be too large so that the inequality αs + δ < Re(µss(λ))

can be satisfied.

Lemma 2.4.1. a) Let the asumption (A2.3) be satisfied. Then there is a d > 0 such that for all

trajectories x(·) of (2.44) with ‖x(0)‖ < d and for all s ∈ [0, t] with x(s) = ξ and lim
t→∞

x(t; s, ξ) = 0 there

exists the limit

η+(ξ, λ) = lim
t→∞

e−A(λ)(t−s)Ps(λ)x(t; s, ξ) ∈ E(µs(λ))

and a constant c > 0 such that

∥
∥
∥x(t; s, ξ)− eA(λ)(t−s)η+(ξ, λ)

∥
∥
∥ ≤ cemax{αss(t−s),(αs(t−s)+δt)}.

b) If in addition (A2.4) holds true, then there is a d > 0 such that for all trajectories x(·) of (2.44) with

‖x(0)‖ < d and lim
t→∞

x(t; s, ξ) = 0 there also exists the limit

η++(ξ, λ) = lim
t→∞

e−A(λ)(t−s)Pss(λ)x(t; s, ξ) ∈ E(µss(λ)).

Furthermore there is a constant c > 0 such that

∥
∥
∥x(t)− eA(λ)(t−s)η+(x(0), λ)− eA(λ)(t−s)η++(x(0), λ)

∥
∥
∥ ≤ cemax{αsss(t−s),(αs(t−s)+δt)}.

Proof. x(·; s, ξ) is a solution of (2.44) with x(s; s, ξ) = ξ if and only if it solves the integral equation

x(t; s, ξ) = eA(λ)(t−u)x(u; s, ξ) +

t∫

u

eA(λ)(t−τ)B(τ, λ)x(τ ; s, ξ)dτ

for any u ∈ R. Now, let P (λ) be the spectral projection of the exponential dichotomy of ẋ = A(λ)x (on the

whole line R) with imP (λ) = E(σs(λ)) and kerP (λ) = E(σu(λ)). Then we find that Ps(λ)P (λ) = Ps(λ)
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and we can decompose the solution x(·; s, ξ) by means of the projection P (λ) into

P (λ)x(t; s, ξ) = eA(λ)(t−u)P (λ)x(u; s, ξ) +
t∫

u

eA(λ)(t−τ)P (λ)B(τ, λ)x(τ ; s, ξ)dτ,

(id− P (λ))x(t; s, ξ) = −
∞∫

t

eA(λ)(t−τ)(id− P (λ))B(τ, λ)x(τ ; s, ξ)dτ.







(2.45)

Here we get the second equation by letting u tend to infinity. This can be done since both x(u; s, ξ) and

e−A(λ)u(id− P (λ)) tend to zero as u goes to infinity.

Analogously to the proof of Lemma 2.3.1 we show the existence of η+(ξ, λ) by verifying that

e−A(λ)(t−s)Ps(λ)x(t; s, ξ)

is a fundamental sequence. From (2.45) we get with Ps(λ)x(t; s, ξ) = Ps(λ)P (λ)x(t; s, ξ)

∥
∥
∥e−A(λ)(t−s)Ps(λ)x(t; s, ξ)− e−A(λ)(u−s)Ps(λ)x(u; s, ξ)

∥
∥
∥ =

∥
∥
∥
∥
∥
∥

t∫

u

eA(λ)(s−τ)Ps(λ)B(τ, λ)x(τ ; s, ξ)dτ

∥
∥
∥
∥
∥
∥

Since ‖B(τ, λ)‖ ≤ KBe
δτ we find, due to the roughness theorem 2.1.7, that equation (2.44) has an

exponential dichotomy on R+ with exponential rate αs and some constant K1 > 0 such that ‖x(τ ; s, ξ)‖ ≤
K1e

αs(τ−s). This is because x(τ ; s, ξ) tends to zero as τ → ∞ and is therefore situated within the stable

subspace of (2.44). Finally we use ‖eA(λ)(s−τ)Ps(λ)‖ ≤ K2e
Re(µs(λ))(s−τ), since µs(λ) is semisimple. This

leads to

∥
∥
∥
∥
∥
∥

t∫

u

eA(λ)(s−τ)Ps(λ)B(τ, λ)x(τ ; s, ξ)dτ

∥
∥
∥
∥
∥
∥

≤ K1K2KBe
( Re(µs(λ))−αs)s

t∫

u

e(α
s+δ− Re(µs(λ)))τdτ

with e( Re(µs(λ))−αs)s < 1 and αs+δ− Re(µs(λ)) < 0. Therefore, for all ε > 0, we find a t0 such that for t >

u > t0 the right hand side of the previous equation is smaller than ε. That makes e−A(λ)(t−s)Ps(λ)x(t; s, ξ)

a fundamental sequence.

Since Pss(λ)x(t; s, ξ) = Pss(λ)P (λ)x(t; s, ξ) we obtain analogously

∥
∥e−A(λ)(t−s)Pss(λ)x(t; s, ξ)− e−A(λ)(u−s)Pss(λ)x(u; s, ξ)

∥
∥ =

∥
∥
∥
∥

t∫

u

eA(λ)(s−τ)Pss(λ)B(τ, λ)x(τ ; s, ξ)dτ

∥
∥
∥
∥

≤ K1K2KBe
( Re(µss(λ))−αs)s

t∫

u

e(α
s+δ− Re(µss(λ)))τdτ

with e( Re(µss(λ))−αs)s < 1 and αs + δ − Re(µss(λ)) < 0, due to the restrictive condition (A2.4) (vi).

That concludes the proof that e−A(λ)(t−s)Pss(λ)x(t; s, ξ) is a fundamental sequence, since for all ε > 0

there exists a t0 such that for t > u > t0 the right hand side of the last equation is smaller than ε.

It remains to prove the estimates. In accordance with (2.45) we decompose the solution x(t; s, ξ) by
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means of the projection Ps(λ) and obtain

Ps(λ)x(t; s, ξ) = eA(λ)(t−u)Ps(λ)x(u; s, ξ) +
t∫

u

eA(λ)(t−τ)Ps(λ)B(τ, λ)x(τ ; s, ξ)dτ,

(id− Ps(λ))x(t; s, ξ) = eA(λ)(t−u)(id− Ps(λ))P (λ)x(u; s, ξ)

+
t∫

u

eA(λ)(t−τ)(id− Ps(λ))P (λ)B(τ, λ)x(τ ; s, ξ)dτ

−
∞∫

t

eA(λ)(t−τ)(id− P (λ))B(τ, λ)x(τ ; s, ξ)dτ.







(2.46)

In the first equation the limit u → ∞ does exist and we get

Ps(λ)x(t; s, ξ) = eA(λ)(t−s)η+(ξ, λ)−
∞∫

t

eA(λ)(t−τ)Ps(λ)B(τ, λ)x(τ ; s, ξ)dτ.

Therefore we find

∥
∥x(t; s, ξ)− eA(λ)(t−s)η+(ξ, λ)

∥
∥

≤
∥
∥eA(λ)(t−u)(id− Ps(λ))P (λ)x(u; s, ξ)

∥
∥+

∥
∥
∥
∥

t∫

u

eA(λ)(t−τ)(id− Ps(λ))P (λ)B(τ, λ)x(τ ; s, ξ)dτ

∥
∥
∥
∥

+

∥
∥
∥
∥

∞∫

t

eA(λ)(t−τ)(id− P (λ))B(τ, λ)x(τ ; s, ξ)dτ

∥
∥
∥
∥
+

∥
∥
∥
∥

∞∫

t

eA(λ)(t−τ)Ps(λ)B(τ, λ)x(τ ; s, ξ)dτ

∥
∥
∥
∥
.

Without loss of generality we set u = s. Then the single terms on the right hand side of this inequality

can be estimated as follows
∥

∥

∥
eA(λ)(t−s)(id− Ps(λ))P (λ)x(s; s, ξ)

∥

∥

∥
≤ K2e

αss(t−s) ‖ξ‖ = O(eα
ss(t−s)),

∥

∥

∥

∥

t
∫

s

eA(λ)(t−τ)(id− Ps(λ))P (λ)B(τ, λ)x(τ ; s, ξ)dτ

∥

∥

∥

∥

≤ K1K2KB

t
∫

s

eα
ss(t−τ)eδτeα

s(τ−s)dτ = O(eα
s(t−s)eδt

+eα
ss(t−s)),

∥

∥

∥

∥

∞
∫

t

eA(λ)(t−τ)(id− P (λ))B(τ, λ)x(τ ; s, ξ)dτ

∥

∥

∥

∥

≤ K1K2KB

∞
∫

t

eα
u(t−τ)eδτeα

s(τ−s)dτ = O(eα
s(t−s)eδt),

∥

∥

∥

∥

∞
∫

t

eA(λ)(t−τ)Ps(λ)B(τ, λ)x(τ ; s, ξ)dτ

∥

∥

∥

∥

≤ K1K2KB

∞
∫

t

eα
s(t−τ)eδτeα

s(τ−s)dτ = O(eα
s(t−s)eδt).

This gives the estimate in a).

To obtain the estimate in b) we additionally decompose (2.46) by means of the projection Pss(λ). To this

end recall that Pss(λ)Ps(λ) = 0, (id− Pss(λ))Ps(λ) = Ps(λ) and Pss(λ)(id− Ps(λ)) = Pss(λ). Therefore

we end up with

Ps(λ)x(t; s, ξ) = eA(λ)(t−u)Ps(λ)x(u; s, ξ) +
t∫

u

eA(λ)(t−τ)Ps(λ)B(τ, λ)x(τ ; s, ξ)dτ

Pss(λ)x(t; s, ξ) = eA(λ)(t−u)Pss(λ)x(u; s, ξ) +
t∫

u

eA(λ)(t−τ)Pss(λ)B(τ, λ)x(τ ; s, ξ)dτ
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(id− Pss(λ))(id− Ps(λ))x(t; s, ξ) = eA(λ)(t−u)(id− Pss(λ))(id− Ps(λ))P (λ)x(u; s, ξ)

+
t∫

u

eA(λ)(t−τ)(id− Pss(λ))(id− Ps(λ))P (λ)B(τ, λ)x(τ ; s, ξ)dτ

−
∞∫

t

eA(λ)(t−τ)(id− P (λ))B(τ, λ)x(τ ; s, ξ)dτ.

Since in the first and second equation the limits u → ∞ do exist we get

‖x(t)− eA(λ)(t−s)η+(ξ, λ)− eA(λ)(t−s)η++(ξ, λ)‖

≤ ‖eA(λ)(t−u)(id− Pss(λ))(id− Ps(λ))P (λ)x(u; s, ξ)‖+ ‖
∞∫

t

eA(λ)(t−τ)(id− P (λ))B(τ, λ)x(τ ; s, ξ)dτ‖

+‖
t∫

u

eA(λ)(t−τ)(id− Pss(λ))(id− Ps(λ))P (λ)B(τ, λ)x(τ ; s, ξ)dτ‖

+‖
∞∫

t

eA(λ)(t−τ)Ps(λ)B(τ, λ)x(τ ; s, ξ)dτ‖+ ‖
∞∫

t

eA(λ)(t−τ)Pss(λ)B(τ, λ)x(τ ; s, ξ)dτ‖

We already estimated the second and the fourth term with O(eα
s(t−s)+δt) each. By setting u = s the

remaining terms can be estimated as follows:

‖eA(λ)(t−s)(id− Pss(λ))(id− Ps(λ))P (λ)x(s; s, ξ)‖ ≤ K2e
αsss(t−s)‖ξ‖

= O(eα
sss(t−s)),

‖
t∫

s

eA(λ)(t−τ)(id− Pss(λ))(id− Ps(λ))P (λ)B(τ, λ)x(τ ; s, ξ)dτ‖ ≤ K1K2KB

t∫

0

eα
sss(t−τ)eδτeα

s(τ−s)dτ

= O(eα
s(t−s)+δt + eα

ssst),

‖
∞∫

t

eA(λ)(t−τ)Pss(λ)B(τ, λ)x(τ ; s, ξ)dτ‖ ≤ K1K2KB

∞∫

t

eµ
ss(λ)(t−τ)eδτeα

s(τ−s)dτ

= O(eα
s(t−s)+δt).

This concludes the proof.

Remark 2.4.2. If the leading eigenvalues µs(λ) and µss(λ) of A(λ) are real, we have

eA(λ)tη+(x(0), λ) = eµ
s(λ)tη+(x(0), λ),

eA(λ)tη++(x(0), λ) = eµ
ss(λ)tη++(x(0), λ).

Remark 2.4.3. Analogously to Remark 2.3.3 we can choose αss arbitrarily small, if A(λ) has no strong

stable eigenvalues and we obtain the estimate:

∥
∥
∥x(t; s, ξ)− eA(λ)(t−s)η+(ξ, λ)

∥
∥
∥ ≤ ceα

s(t−s)+δt.

Analogously to the considerations concerning ηs in the forgoing section we now determine when η+ can

become zero.

Corollary 2.4.4. Assume (A2.3) and let η+(ξ, λ) be given as in Lemma 2.4.1. Then η+(ξ, λ) 6= 0 if

and only if ξ /∈ imP+
ss(s), where P+

ss(·) denotes the projection of the exponential dichotomy of (2.44) that

projects onto the strong stable subspace Ess
A+B(·)(s), also cf. Lemma 2.2.7.

Proof. Recall that η+(ξ, λ) = lim
t→∞

e−A(λ)(t−s)Ps(λ)x(t; s, ξ). With ξ ∈ imP+
ss(s) we find x(t; s, ξ) ∈
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imP+
ss(t) for all t > s. For t sufficiently large we find imP+

ss(t) = EA(σss(λ)) and therefore Ps(λ)x(t; s, ξ) =

0. Hence ξ ∈ imP+
ss(s) implies η+(ξ, λ) = 0.

Now, let ξ /∈ imP+
ss(s). Then for s sufficiently large we have Ps(λ)ξ 6= 0 and with (2.45) we find

e−A(λ)(t−s)Ps(λ)x(t) = Ps(λ)ξ +

t∫

s

e−A(λ)(τ−s)Ps(λ)B(τ, λ)x(τ)dτ. (2.47)

In the following we will estimate the integral term. To this end we use ‖B(τ, λ)‖ < KBe
δτ , ‖x(τ)‖ ≤

eα
s(τ−s)‖ξ‖ and ‖e−A(λ)(τ−s)Ps(λ)‖ ≤ e−µ

s(λ)(τ−s)‖Ps(λ)‖. Thus we gain with αs + δ − µs(λ) < 0

∥
∥
∥
∥

t∫

s

e−A(λ)(τ−s)Ps(λ)B(τ, λ)x(τ)dτ

∥
∥
∥
∥

≤ e(µ
s(λ)−αs)s

t∫

s

e(α
s+δ−µs(λ))τ‖Ps(λ)‖KB‖ξ‖ dτ

≤ KB‖Ps(λ)‖‖ξ‖
|αs + δ − µs(λ)|

(
eδs − e(α

s+δ−µs(λ))te(µ
s(λ)−αs)s

)

≤ eδs
KB‖Ps(λ)‖‖ξ‖
|αs + δ − µs(λ)| .

For s < t sufficiently large we then find that

∥
∥
∥
∥
∥
∥

t∫

s

e−A(λ)(τ−s)Ps(λ)B(τ, λ)x(τ)dτ

∥
∥
∥
∥
∥
∥

≤ eδs
KB‖Ps(λ)‖‖ξ‖
|αs + δ − µs(λ)| < ‖Ps(λ)ξ‖

and with (2.47) follows from the reverse triangle inequality

‖e−A(λ)(t−s)Ps(λ)x(t)‖ ≥

∣
∣
∣
∣
∣
∣

‖Ps(λ)ξ‖ − ‖
t∫

s

e−A(λ)(τ−s)Ps(λ)B(τ, λ)x(τ)dτ‖

∣
∣
∣
∣
∣
∣

> 0.

Therefore for s sufficiently large there is a d̂ > 0 independent of t such that

‖e−A(λ)(t−s)Ps(λ)x(t)‖ ≥ d̂.

Hence η+(ξ, λ) = lim
t→∞

e−A(λ)(t−s)Ps(λ)x(t; s, ξ) 6= 0.

In what follows we give a similar lemma to Lemma 2.4.1 for linear non-autonomous systems (2.44) where

A(λ) is non-hyperbolic. Then x = 0 might not be the only equilibrium of ẋ = A(λ)x. Here we are

interested in the rate of convergence of solutions x(·) of (2.44) that tend to an element p ∈ kerA(λ) as

t → ∞. Again we start with stating the requirements.

(A2.5). Consider a smooth family of linear non-autonomous differential equation (2.44) and assume

that

(i) σ(A(λ)) = σs(λ) ∪ σc(λ) ∪ σu(λ), where Re(µ) < αs < −αc < 0 < αc < αu < Re(µ̂) for all

µ ∈ σs(λ) and for all µ̂ ∈ σu(λ).

(ii) there is a δ < 0 such that ‖B(t, λ)‖ < KBe
δt,

(iii) there is a p ∈ kerA(λ) and

(iv) x(·) is a solution of (2.44) that converges exponentially to p as t → ∞, that is, there exist constants

ϑ > 0 and M > 0 such that ‖x(t)− p‖ ≤ Me−ϑt, t > 0.
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(A2.6). Additionally to (A2.5) we assume that

(v) σs(λ) = {µs(λ)} ∪ σss(λ) where Re(µ) < αss < Re(µs(λ)) < αs for all µ ∈ σss(λ).

(vi) the eigenvalue µs(λ) is for all λ semisimple.

(vii) the constant δ satisfies δ < Re(µs(λ)) for sufficiently small λ.

Further E(µs(λ)) denotes the eigenspaces of A(λ) assigned to µs(λ) and Qs(λ) is the projection on

E(µs(λ)) along E(σcµs(λ)).

Obviously condition (vii), δ < Re(µs(λ)), is again a restriction.

Lemma 2.4.5. a) Let the Assumption (A2.5) be satisfied. Then there exists a constant C > 0 such that

‖x(t)− p‖ ≤ Cemax{αs,δ}t.

b) If in addition Assumption (A2.6) holds true then there exists the limit

η(x(0), λ) = lim
t→∞

e−A(λ)tQs(λ)[x(t)− p] ∈ E(µs(λ)).

Furthermore there is a constant c > 0 such that

∥
∥
∥x(t)− p− eA(λ)tη(x(0), λ)

∥
∥
∥ ≤ cemax{αss,δ}t.

Proof. We define y(t) := x(t)− p. Then y is a solution of the inhomogeneous differential equation

ẋ = [A(λ) +B(t, λ)]x+B(t, λ)p (2.48)

that converges towards zero as t → ∞. The variation of constants formula yields

y(t) = eA(λ)(t−s)y(s) +

t∫

s

eA(λ)(t−τ)B(τ, λ)[y(τ) + p]dτ.

Now, let Ps(λ), Pc(λ) and Pu(λ) be projections of the exponential trichotomy of ẋ = A(λ)x with

imPs(λ) = E(σs(λ)), imPc(λ) = E(σc(λ)) and imPu(λ) = E(σu(λ)). Then we can decompose the

solution y(t) = Ps(λ)y(t) + Pc(λ)y(t) + Pu(λ)y(t) and obtain

Ps(λ)y(t) = eA(λ)(t−s)Ps(λ)y(s) +
t∫

s

eA(λ)(t−τ)Ps(λ)B(τ, λ)[y(τ) + p]dτ

Pc(λ)y(t) = eA(λ)(t−s)Pc(λ)y(s) +
t∫

s

eA(λ)(t−τ)Pc(λ)B(τ, λ)[y(τ) + p]dτ

Pu(λ)y(t) = eA(λ)(t−s)Pu(λ)y(s) +
t∫

s

eA(λ)(t−τ)Pu(λ)B(τ, λ)[y(τ) + p]dτ

Looking closely at the second and third equation we see that the terms on the right-hand side converge

for s → ∞. This can be seen as follows. Due to the estimates of the exponential trichotomy, cf.

Definition 2.1.19, and ‖y(t)‖ ≤ Me−ϑt, ϑ > 0, we obtain

‖eA(λ)(t−s)Pc(λ)y(s)‖ ≤ KMe−α
c(t−s)e−ϑs ≤ KMe−α

cte(−ϑ+α
c)s, s ≥ t,

‖eA(λ)(t−s)Pu(λ)y(s)‖ ≤ KMeα
u(t−s)e−ϑs ≤ KMeα

ute(−ϑ−α
u)s, s ≥ t.
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Further, since ‖y(t) + p‖ < Kp is bounded and ‖B(t, λ)‖ ≤ KBe
δt, δ < 0 we see with C = KKBKp

‖
t∫

s

eA(λ)(t−τ)Pc(λ)B(τ, λ)[y(τ) + p]dτ‖ ≤ C
t∫

s

e−α
c(t−τ)eδτdτ ≤ Ce−α

ct
t∫

s

e(δ+α
c)τdτ, s ≥ t,

‖
t∫

s

eA(λ)(t−τ)Pu(λ)B(τ, λ)[y(τ) + p]dτ‖ ≤ C
t∫

s

eα
u(t−τ)eδτdτ ≤ Ceα

ut
t∫

s

e(δ−α
u)τdτ, s ≥ t.

Since αu > 0 we have δ−αu < 0 and −ϑ−αu < 0. With an appropriate choice of αc > 0 close to zero we

also have −ϑ+αc < 0 and δ+αc < 0. Hence we find that both eA(λ)(t−s)Pc(λ)y(s) and eA(λ)(t−s)Pu(λ)y(s)

converge to zero as s → ∞. Additionally also the integral terms
∫ t

s
eA(λ)(t−τ)Pc/u(λ)B(τ, λ)[y(τ) + p]dτ

converge for s → ∞. This finally yields by letting s tend to infinity:

Ps(λ)y(t) = eA(λ)(t−s)Ps(λ)y(s) +
t∫

s

eA(λ)(t−τ)Ps(λ)B(τ, λ)[y(τ) + p]dτ

Pc(λ)y(t) = −
∞∫

t

eA(λ)(t−τ)Pc(λ)B(τ, λ)[y(τ) + p]dτ

Pu(λ)y(t) = −
∞∫

t

eA(λ)(t−τ)Pu(λ)B(τ, λ)[y(τ) + p]dτ







(2.49)

So to prove a) it remains to estimate the four terms on the right-hand side. In case of the first term we

set s = 0.

‖eA(λ)tPs(λ)y(0)‖ ≤ Keα
st‖y(0)‖ = O(eα

st),

‖
t∫

0

eA(λ)(t−τ)Ps(λ)B(τ, λ)[y(τ) + p]dτ‖ ≤ KKpKB

t∫

0

eα
s(t−τ)eδτdτ = O(eα

st + eδt),

‖
∞∫

t

eA(λ)(t−τ)Pc(λ)B(τ, λ)[y(τ) + p]dτ‖ ≤ KKpKB

∞∫

t

e−α
c(t−τ)eδτdτ = O(eδt),

‖
∞∫

t

eA(λ)(t−τ)Pu(λ)B(τ, λ)[y(τ) + p]dτ‖ ≤ KKpKB

∞∫

t

eα
u(t−τ)eδτdτ = O(eδt).

In order to show b) we again prove the existence of η(x(0), λ) by verifying that e−A(λ)tQs(λ)y(t) is a

fundamental sequence. From (2.49) we obtain with Qs(λ)y(t) = Qs(λ)Ps(λ)y(t) that

∥
∥
∥e−A(λ)tQs(λ)y(t)− e−A(λ)sQs(λ)y(s)

∥
∥
∥ ≤

t∫

s

‖e−A(λ)τQs(λ)‖‖B(τ, λ)‖‖y(τ)+p‖dτ ≤ C

t∫

s

e(δ−µ
s(λ))τdτ.

This combined with (A2.6)(vii) shows that lim
t→∞

e−A(λ)tQs(λ)y(t) indeed exists.

Next we turn towards the estimates. To this end we decompose y(t) by means of the projection Qs(λ)

and obtain from (2.49)

Qs(λ)y(t) = eA(λ)(t−s)Qs(λ)y(s) +
t∫

s

eA(λ)(t−τ)Qs(λ)B(τ, λ)[y(τ) + p]dτ

(id−Qs(λ))y(t) = eA(λ)(t−s)(id−Qs(λ))Ps(λ)y(s)

+
t∫

s

eA(λ)(t−τ)(id−Qs(λ))Ps(λ)B(τ, λ)[y(τ) + p]dτ

−
∞∫

t

eA(λ)(t−τ)(id−Qs(λ))[Pc(λ) + Pu(λ)]B(τ, λ)[y(τ) + p]dτ
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In the first equation the limit s → ∞ does exist and with s = 0 in the second equation we get

‖y(t)− eA(λ)tη(x(0), λ)‖ ≤ ‖eA(λ)t(id−Qs(λ))Ps(λ)y(0)‖

+‖
∞∫

t

eA(λ)(t−τ)Qs(λ)B(τ, λ)[y(τ) + p]dτ‖

+‖
t∫

0

eA(λ)(t−τ)(id−Qs(λ))Ps(λ)B(τ, λ)[y(τ) + p]dτ‖

+‖
∞∫

t

eA(λ)(t−τ)(id−Qs(λ))[Pc(λ) + Pu(λ)]B(τ, λ)[y(τ) + p]dτ‖

The single terms on the right hand side of the inequality can be estimated as follows:

‖eA(λ)t(id−Qs(λ))Ps(λ)y(0)‖ ≤ Keα
sst‖y(0)‖ = O(eα

sst),

‖
∞∫

t

eA(λ)(t−τ)Qs(λ)B(τ, λ)[y(τ) + p]dτ‖ ≤ KKpKB

∞∫

t

eµ
s(λ)(t−τ)eδτdτ = O(eδt),

‖
t∫

0

eA(λ)(t−τ)(id−Qs(λ))Ps(λ)B(τ, λ)[y(τ) + p]dτ‖ ≤ KKpKB

t∫

0

eα
ss(t−τ)eδτdτ = O(eα

sst + eδt),

‖
∞∫

t

eA(λ)(t−τ)(id−Qs(λ))Pc(λ)B(τ, λ)[y(τ) + p]dτ‖ ≤ KKpKB

∞∫

t

e−α
c(t−τ)eδτdτ = O(eδt),

‖
∞∫

t

eA(λ)(t−τ)(id−Qs(λ))Pu(λ)B(τ, λ)[y(τ) + p]dτ‖ ≤ KKpKB

∞∫

t

eα
u(t−τ)eδτdτ = O(eδt).

This concludes the proof.

Remark 2.4.6. If we assume that all eigenvalues of σc are semisimple we find that eA(λ)(t−s)Pc(λ) is

bounded. In that case we do not need to assume, that x(t) converges exponentially to p as t → ∞. It

suffices to simply assume convergence. To be precise, Assumption (A2.5)(iv) can be replaced by

(iv) 1) all eigenvalues of σc(λ) are semisimple,

(iv) 2) x(·) is a solution of (2.44) converging to p as t → ∞.

In order to support the understanding of the forgoing lemma we give the following example.

Example 2.4.7. Consider the linear equation

ẋ =

[

0 0

0 −a

]

x+ e−tx

with a ∈ R+. Then we find the two decoupled one-dimensional equations ẋ1 = e−tx1 and ẋ2 = (−a +

e−t)x2 which can be solved via separation of variables. This leads to

x1(t) = c1e
−e−t

and x2(t) = c2e
−ate−e

−t

,

c1, c2 ∈ R. Now we find lim
t→∞

(x1(t), x2(t))
T = (c1, 0)

T ∈ kerA. The rate of convergence of x2 is given by

−a. The rule of l’Hospital shows, that the rate of convergence of x1 is given by δ = −1:

lim
t→∞

1− e−e
−t

e−t
= lim
t→∞

−e−te−e
−t

−e−t
= lim
t→∞

e−e
−t

= 1.

Now, if x(·) is a solution that converges to (0, 0)T then c1 = 0 and x(·) has the rate of convergence −a. In
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case that x(·) is converging to any other element in kerA it has the rate of convergence of max{−1,−a}
which might be worse, if −a < −1.

2.5 Application on projections

According to (2.2) we find for projections corresponding to exponential dichotomies on R+ with rate α < 0

that lim
t→∞

Φ(t, s)P+(s) = 0. That is the term Φ(·, s)P+(s) which is solution of the matrix differential

equation Ẋ = A(t)X tends towards the equilibrium point X = 0 ∈ Rn×n. So, just as we have investigated

the question of leading exponential rates during the forgoing section we now determine the leading

convergence rates of Φ(·, s)P+(s).

Moreover, we find that the projections P+(·) corresponding to the exponential dichotomy of a perturbed

linear equation ẋ = [A + B(t)]x on R+ with rate α < 0 converge towards the spectral projection P of

ẋ = Ax, as t tends to infinity, cf. Lemma 2.1.14. So it also seems possible to provide exact rates of

convergence and leading terms of the projections P+(t) themselves.

2.5.1 Behaviour of Φ(λ)(t, s)P±(λ, s) and Φ(λ)(s, t)(id− P±(λ, t))

To begin with, consider the differential equation (2.44) and let Φ(λ)(·, ·) denote the corresponding tran-

sition matrix. We start with an assertion based on Lemma 2.4.1 that provides a representation of the

compositions of the transition matrix Φ(λ)(·, ·) and the projection of the exponential dichotomy. To this

end we itemize the following assumptions:

(A2.7). Consider a smooth family of linear nonautonomous differential equation (2.44) and assume that

(i) σ(A(λ)) = σs(λ) ∪ σu(λ), with Re(µ) < αs < 0 < αu < Re(µ̂) for all µ ∈ σs(λ) and for all

µ̂ ∈ σu(λ),

(ii) there is a δ < 0 such that ‖B(t, λ)‖ < KBe
δt.

(A2.8). Let (A2.7) hold true. Additionally assume σs(λ) = {µs(λ)} ∪ σss(λ), where µs(λ) is for all λ

semisimple and Re(µ) < αss < Re(µs(λ)) < αs for all µ ∈ σss(λ). Further let αs be chosen such that

αs + δ < µs(λ).

(A2.9). Let (A2.7) hold true. Additionally assume σu(λ) = {µu(λ)} ∪ σuu(λ), where µu(λ) is for all λ

semisimple and αu < Re(µu(λ)) < αuu < Re(µ) for all µ ∈ σuu(λ). Further let αu be chosen such that

−αu + δ < −µu(λ).

Remark 2.5.1. With Assumption (A2.7) to hold true equation (2.44) has, due to Lemma 2.1.7, an

exponential dichotomy (2.2) on R+ with projection P+(λ, ·) and exponential rates αs and αu.

Moreover, with (A2.8) and σss(λ) 6= ∅, equation (2.44) even has an exponential trichotomy on R+ with

projections P+
ss(λ, ·), P+

s (λ, ·) and P+
u,uu(λ, ·), cf. Lemma 2.2.7(i), where P+

ss(t) defines the strong stable

subspace at time t and imP+(t) = im(P+
s (t) + P+

ss(t)), imP+
u,uu = im(id− P+).

If (A2.9) is satisfied with σuu(λ) 6= ∅ then the adjoint equation of (2.44),

ẋ = −[A(λ) +B(t, λ)]Tx, (2.50)

has an exponential trichotomy on R+, cf. Lemma 2.2.7(iii), with projections Q+
ss(λ, ·), Q+

s (λ, ·) and

Q+
u,uu(λ, ·).
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Lemma 2.5.2. Assume (A2.7) and let P+(λ, ·) denote the projection of the exponential dichotomy of

(2.44) on R+, as declared in Remark 2.5.1.

a) Let (A2.8) hold true. Then there exists a linear time-depending operator S+(λ, s) : Rn → Rn with

imS+(λ, s) = EA(µ
s(λ)), kerS+(λ, s) = kerP+(λ, s)⊕ imP+

ss(λ, s),

such that

Φ(λ)(t, s)P+(λ, s) = eA(λ)(t−s)S+(λ, s) +O(eα
ss(t−s) + eα

s(t−s)eδt), t ≥ s ≥ 0.

b) If (A2.9) holds true, then there exists a linear time-depending operators R+(λ, s) : Rn → Rn with

kerR+(λ, s) = EA(σ
c
µu(λ)), imR+(λ, s) = kerP+(λ, s) ∩ [imQ+

ss(λ, s)]
⊥,

such that

Φ(λ)(s, t)(id− P+(λ, t)) = e−A(λ)T (t−s)R+(λ, s) +O(e−α
uu(t−s) + e−α

u(t−s)eδt), t ≥ s ≥ 0.

Proof. We start with the proof of a), which is a direct consequence of Lemma 2.4.1.

With (A2.7) and (A2.8) the Assumption (A2.3) is satisfied. The mapping Φ(λ)(·, s)P+(λ, s)ξ, ξ ∈
Rn, satisfies the differential equation (2.44) and due to the exponential dichotomy (2.2) we find that

lim
t→∞

Φ(λ)(t, s)P+(λ, s)ξ = 0 for all ξ ∈ Rn. Thus we can apply Lemma 2.4.1 which leads to the pointwise

definition of S+

S+(λ, s)ξ := lim
t→∞

e−A(λ)(t−s)Ps(λ)Φ(λ)(t, s)P
+(λ, s)ξ = η+(P+(λ, s)ξ, λ),

and to the estimate

∥
∥
∥Φ(λ)(t, s)P+(λ, s)ξ − eA(λ)(t−s)S+(λ, s)ξ

∥
∥
∥ ≤ c(eα

ss(t−s) + eα
s(t−s)eδt),

for any c > 0. Here Ps(λ) denotes the spectral projection onto the leading stable eigenspace EA(µ
s(λ)) of

A(λ) along EA(σ
c
µs(λ)). Hence we easily see that imS+(λ, s) ⊆ EA(µ

s(λ)) and kerS+(λ, s) ⊇ kerP+(λ, s).

With Corollary 2.4.4 we see that ξ is an element of the kernel of S+(λ, s) if and only if ξ lies in the kernel

of P+(λ, s) or within the image of P+
ss(λ, s). This implies that the dimension of kerS+(λ, s) is equal to

n− ns and hence the dimension formular yields imS+(λ, s) = EA(µ
s(λ)).

The proof of b) follows along the same line. Only, instead of Φ(λ)(s, ·)(id − P+(λ, ·)) we consider its

transpose Φ(λ)(s, ·)T (id − P+(λ, s))T = Ψ(λ)(·, s)(id − P+(λ, s))T . Then Φ(λ)(s, ·)T (id − P+(λ, s))T ξ,

ξ ∈ Rn, is a solution of the adjoint differential equation (2.50) that converge due to the exponential

dichotomy to zero.

Again applying Lemma 2.4.1 provides for any ξ ∈ Rn the pointwise definition of

R+(λ, s)T ξ := lim
t→∞

eA(λ)T (t−s)Qs(λ)Φ(λ)(s, t)
T (id− P+(λ, s))T ξ = η+((id− P+(λ, s))T ξ, λ)

and the estimate

∥
∥
∥Φ(λ)(s, t)T (id− P+(λ, s))T ξ − e−A(λ)T (t−s)R+(λ, s)T ξ

∥
∥
∥ ≤ c(e−α

uu(t−s) + e−α
u(t−s)eδt).
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Here Qs(λ) denotes the projection on the leading stable eigenspace E−AT (−µu(λ)) of the matrix −AT

along E−AT (σc−µu(λ)). Therefore we find imR+(λ, s)T ⊆ E−AT (−µu(λ)) and kerR+(λ, s)T ⊇ imP+(λ, s)T .

Again we find, due to Corollary 2.4.4, that ξ lies in the kernel of R+(λ, s)T if and only if ξ lies in

imP+(λ, s)T or it lies within the image of the projection Q+
ss(λ, s), which is the projection of the expo-

nential trichotomy of (2.50) that projects onto the strong leading subspace. Using the dimension formula

then implies imR+(λ, s)T = E−AT (−µu(λ)). Finally, applying Lemmata 2.0.1 and 2.0.2 we gain

kerR+(λ, s) = [imR+(λ, s)T ]⊥ = [E−AT (−µu(λ))]⊥ = EA(σ
c
µu(λ))

and

imR+(λ, s) =
[
kerR+(λ, s)T

]⊥
=

[
imP+(λ, s)T ⊕ imQ+

ss(λ, s)
]⊥

= kerP+(λ, s) ∩ kerQ+
ss(λ, s)

T .

Remark 2.5.3. If in addition

(i) σ(A(λ)) has no strong stable eigenvalues, we find kerS+(λ, s) = kerP+(λ, s) and

Φ(λ)(t, s)P+(λ, s) = eA(λ)(t−s)S+(λ, s) +O(eα
s(t−s)eδt), t ≥ s ≥ 0.

(ii) σ(A(λ)) has no strong unstable eigenvalues, we find imR+(λ, s) = kerP+(λ, s) and

Φ(λ)(s, t)(id− P+(λ, t)) = e−A(λ)T (t−s)R+(λ, s) +O(e−α
u(t−s)eδt), t ≥ s ≥ 0.

(iii) the leading stable eigenvalue µs(λ) is real, we obtain

eA(λ)(t−s)S+(λ, s) = eµ
s(λ)(t−s)S+(λ, s).

(iv) the leading unstable eigenvalue µu(λ) is real, we obtain

e−A(λ)T (t−s)R+(λ, s) = e−µ
u(λ)(t−s)R+(λ, s).

Remark 2.5.4. An analogous lemma holds for projections of exponential dichotomies of (2.44) on R−.

Namely there exist linear time-depending operators S−(λ, s) and R−(λ, s) : Rn → Rn with

imS−(s) = EA(µ
u(λ)), kerS−(s) = imP−(s)⊕ imP−

uu(λ, s),

kerR−(s) = EA(σ
c
µs(λ)), imR−(s) = imP−(s) ∩ [imQ−

uu(λ, s)]
⊥,

such that

Φ(λ)(t, s)(id− P−(λ, s)) = eA(λ)(t−s)S−(λ, s) + O( eα
uu(t−s) + eα

u(t−s)eδt) t ≤ s ≤ 0,

Φ(λ)(s, t)P−(λ, t) = e−A(λ)T (t−s)R−(λ, s) + O(e−α
ss(t−s) + e−α

s(t−s)eδt) t ≤ s ≤ 0.

Here δ denotes a positive constant such that ‖B(t, λ)‖ ≤ KBe
δt and αs−δ < µs(λ) and −αu−δ < −µu(λ)

uniformly in λ. The projections P−
uu(λ, s) and Q−

uu(λ, s) are projections of the exponential trichotomy on
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R−, cf. Lemma 2.2.7(ii) and (iv). If the leading eigenvalues µs(λ) and µu(λ) are real, we obtain

eA(λ)(t−s)S−(λ, s) = eµ
u(λ)(t−s)S−(λ, s),

e−A(λ)T (t−s)R−(λ, s) = e−µ
s(λ)(t−s)R−(λ, s).

2.5.2 Behaviour of P±(λ, t)

Now we consider the single projection P+ without being paired with the corresponding transition matrix.

To this end, we consider the differential equation (2.44) and assume Assumption (A2.7). Then, cf.

Remark 2.5.1, (2.44) has an exponential dichotomy on R+ with corresponding projection P+.

At first we look at the differential equation this projection is a solution of. Since P+ is a projection

of the exponential dichotomy of (2.44) we find, cf. (2.2)(i), P+(λ, t) = Φ(λ)(t, τ)P+(λ, τ)Φ(λ)(τ, t).

Differentiating this equation with respect to t yields

Ṗ+(λ, t) = Φ̇(λ)(t, τ)P+(λ, τ)Φ(λ)(τ, t) + Φ(λ)(t, τ)P+(λ, τ)Φ̇(λ)(τ, t)

= [A(λ) +B(t, λ)]Φ(λ)(t, τ)P+(λ, τ)Φ(λ)(τ, t)

+Φ(λ)(t, τ)P+(λ, τ)Φ(λ)(τ, t)[−A(λ)−B(t, λ)]

= [A(λ) +B(t, λ)]P+(λ, t)− P+(λ, t)[A(λ) +B(t, λ)].

Therefore P+(λ, ·) satisfies the matrix differential equation

Ẋ = [A(λ) +B(t, λ)]X −X[A(λ) +B(t, λ)]. (2.51)

This matrix differential equation can be read as linear differential equation. To this end we introduce for

any A ∈ Rn×n the linear operator ad(A), cf. [Ros02],

ad(A) : Rn×n → Rn×n

X 7→ ad(A)X := AX −XA.

Hence equation (2.51) then reads

Ẋ = [ad(A(λ)) + ad(B(t, λ))]X (2.52)

which has a similar structure to equation (2.44).

Further, we have lim
t→∞

P+(λ, t) = P (λ), cf. Lemma 2.1.14, where P (λ) denotes the spectral projection

of A(λ) with respect to the stable and unstable spectrum, that is imP (λ) = EA(σs(λ)) and kerP (λ) =

EA(σu(λ)). This projection commutes with A(λ) and hence ad(A(λ))P (λ) = 0, i.e. P (λ) is a non-trivial

element of ker ad(A(λ)).

In fact the following lemma holds for the eigenvalues of ad(A):

Lemma 2.5.5 ([Ros02], §1.2 Lemma 8). If A ∈ Rn×n has n eigenvalues {µj |j = 1, . . . , n}, then ad(A)

has n2 eigenvalues {µj − µk |j, k = 1, 2, . . . , n}.

So we find that 0 is an eigenvalue of ad(A(λ)) and for n ≥ 2 the spectrum of ad(A(λ)) always decomposes
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into stable, centre and unstable spectrum:

σ(ad(A)) = σs(ad(A)) ∪ σc(ad(A)) ∪ σu(ad(A)).

Thus Assumption (A2.5)(i) applies with constants αsad, αcad and αuad where

Re(µ) < αsad < −αcad < 0 < αcad < αuad < Re(µ̂)

for all µ ∈ σs(ad(A)) and µ̂ ∈ σu(ad(A)).

With P (λ) ∈ ker ad(A(λ)) and ‖P+(λ, t) − P (λ)‖ < Ke−ϑt, cf. Lemma 2.1.14, also (A2.5)(iii) and (vi)

are valid. Finally with

‖ad(B(t, λ))‖ = sup
‖X‖=1

‖ad(B(t, λ))X‖ = sup
‖X‖=1

‖B(t, λ)X −XB(t, λ)‖

≤ sup
‖X‖=1

2‖B(t, λ)‖‖X‖ ≤ 2 ‖B(t, λ)‖ ≤ 2KBe
δt,

δ < 0, also (A2.5)(ii) is satisfied. Hence one can apply Lemma 2.4.5 a), resulting in the following Lemma.

Lemma 2.5.6. Consider the linear differential equation (2.44) and assume (A2.7). Let P+(λ, ·) and

P (λ) be the projections corresponding to the exponential dichotomy on R+ of (2.44) and ẋ = A(λ)x,

respectively. Then there is a constants C > 0 such that

∥
∥P+(λ, t)− P (λ)

∥
∥ < Cemax{αs

ad,δ}t.

Remark 2.5.7. Due to Lemma 2.1.14 we already know that ‖P+(λ, t)− P (λ)‖ < Ke−ϑt with ϑ > 0 re-

stricted by certain inequalities. To be precise the inequalities related to our case read, due to Remark 2.1.15

with β = αu and Reµ̃1 < αs for all µ̃1 ∈ σs(A(λ)),

ϑ < (αu − αs)/2 and ϑ < −δ.

Hence Lemma 2.5.6 is an improvement towards Lemma 2.1.14 if δ and αsad are smaller than (αs−αu)/2.

The constant αsad is bounded below by the real parts of the stable spectrum of ad(A(λ))

σs(ad(A(λ))) = {µj − µk | µj , µk ∈ σ(A(λ)), Re(µj) < Re(µk)}.

So the size of αsad is determined by the size of the smallest spectral gap of A(λ), that is the size of the

smallest non-zero distance between the real parts of the eigenvalues of A(λ):

αsad > −min{| Re(µj − µk)| | µj , µk ∈ σ(A(λ)), Re(µj) 6= Re(µk)}. (2.53)

Thus, if −| Re(µj − µk)| < (αs − αu)/2 for all µj , µk ∈ σ(A), Re(µj) 6= Re(µk), then Lemma 2.5.6 is

an improvement compared to Lemma 2.1.14.

Suppose for example that the spectrum of A(λ) only consists of two eigenvalues µs(λ) and µu(λ), Re(µs) <

αs < 0 < αu < Re(µu). Then σs(ad(A(λ))) = {µs − µu} and αsad can be chosen as

αsad := αs − αu > Re(µs)− Re(µu),

which indeed is an improvement compared to Lemma 2.1.14.
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2 Preliminaries

2.6 Codimension-one homoclinic trajectories

This thesis deals with the nonwandering dynamics near a homoclinic network of codimension-one. The

specific homoclinic network we introduce in Section 4. However, beforehand we declare the terminus

codimension-one in context of a single homoclinic trajectory. Shortly speaking this means that we

observe the generic unfolding, i.e. the splitting up, of this homoclinic trajectory within a one-dimensional

parameter space. Hence we need to make sure that the homoclinic trajectory indeed splits up in the

characteristic way and that there are no further effects that might influence the dynamics near the

homoclinic trajectory atypically. Since this description is quite vague we now go into more details. As a

reference for the following explanations, see for example [Kuz04, HomSan10].

Consider the differential equation ẋ = f(x, λ), f : Rn × R → R and assume that at λ = λ0 we find a

hyperbolic equilibrium p which is connected to itself via a homoclinic trajectory γ. Then γ is situated

within the intersection of the stable manifold W s(p) and the unstable manifold Wu(p) of the equilibrium

p.

Definition 2.6.1. Let X be a finite dimensional smooth manifold. An intersection of two submanifolds

U, V ⊆ X is called transversal in x ∈ U ∩ V if the tangent spaces of the submanifolds U and V in x

complement each other to the tangent space of X. We write U ⋔x V .

The intersection of W s(p) and Wu(p) along a homoclinic trajectory γ cannot be transversal with regard

to the whole phase space Rn. In the generic case one finds

Tγ(t)W
s(p) ∩ Tγ(t)W

u(p) = span{γ̇(t)} (2.54)

which implies dim(Tγ(t)W
s(p) + Tγ(t)W

u(p)) = n− 1.

Definition 2.6.2. A homoclinic trajectory γ is called non-degenerate, if (2.54) holds true.

Then in general one can expect the homoclinic trajectory to exist permanently at an isolated parameter

value λ = λ0 within a family of differential equations ẋ = f(x, λ) having a one-dimensional parameter

space. That is for λ 6= λ0 the homoclinic trajectory γ does not exist any more. This is the generic

situation and can be explained by the transversal intersection of the manifolds

Ws :=
⋃

λ

W s(p(λ))× {λ} and

Wu :=
⋃

λ

Wu(p(λ))× {λ},
(2.55)

of the extended differential equation

ẋ = f(x, λ)

λ̇ = 0

within the product space Rn × R of phase and parameter space. Here p(λ) denotes the family of saddle

points for λ close to λ0 with p(λ0) = p. This situation is depicted in Figure 2.2 in case of a homoclinic

trajectory in R2 × R. Note that the transversality of the intersection of Ws and Wu is sufficient for the

splitting of the homoclinic trajectory but not necessary. Indeed it is necessary for the splitting of the

homoclinic trajectory with non-zero speed:

Definition 2.6.3. Let γ be a homoclinic trajectory existing at an isolated parameter value λ = λ0 ∈ R

within a family of differential equations ẋ = f(x, λ). Further, let γ satisfy (2.54). We say that γ splits

with non-zero speed, if d′(λ)|λ0
6= 0 where d denotes a scalar split function d : R → R, λ 7→ d(λ) that
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2.6 Codimension-one homoclinic trajectories

measures the distance between the stable and unstable manifolds W s(p(λ)) and Wu(p(λ)) near γ for λ

close to λ0.

x1

λ

x2

q0

Ws

Wu

p

Figure 2.2: Transverse intersection of the invariant manifolds Ws and Wu in case of a homoclinic trajectory.

In accordance to these considerations the first demand on a generic homoclinic trajectory reads as follows:

(H2.1). The homoclinic trajectory γ is non-degenerate and splits up with non-zero speed in λ, that is the

stable and unstable manifolds unfold generically with respect to the parameter λ.

In the following we exclude further interesting scenarios which complicate the behaviour of the homoclinic

trajectory. At first we leave out the orbit flip situation, where a connecting trajectory approaches the

equilibrium along non-leading directions.

(H2.2). The connecting trajectory γ is in a non-orbit flip scenario, i.e. γ approaches the equilibrium

along leading directions:

γ 6⊂ W ss
λ=0(p) and γ 6⊂ Wuu

λ=0(p).

Generically one can expect a connecting trajectory to approach the equilibrium along leading directions.

Hence in general the orbit flip is a bifurcation of at least codimension two; one parameter controls the

breaking up of the trajectory, the other one describes the flipping of the direction the trajectory approaches

the equilibrium from non-leading to leading. In [San93] orbit-flip bifurcations were considered.

In view of the next hypothesis recall the definition of extended stable and unstable manifolds W s,lu(p)

and W ls,u(p) of a hyperbolic equilibrium we outlined in Remark 2.2.8. Further assume that the leading

stable and unstable eigenvalues are real and simple.

Following the unstable manifold along a homoclinic trajectory one normally expects this manifold to

tend towards the strong unstable directions ED1f(p,0)(σuu). Likewise the stable manifold generically

tends towards the strong stable directions ED1f(p,0)(σss) when followed along the homoclinic trajectory

backwards in time. In case of the stable manifold the situation is depicted in Figure 2.3. This behaviour

of the global stable manifold is a consequence of the strong λ-Lemma, see [Den89]. In short, this lemma

59



2 Preliminaries

states that a disk D which intersects the extended unstable manifold W ls,u(p) transversally, becomes

Ck exponentially close to W ss
loc(p) under the flow of the system. So we see that in the generic situation

the stable manifold W s(p) and the extended unstable manifold W ls,u(p) intersect transversally in any

point along γ within the local unstable manifold. In the so-called inclination flip situation this property

is violated, which we want to prohibit. This leads to the hypothesis:

(H2.3). The leading eigenvalues µs(λ) and µu(λ) of D1f(p, λ) are real and simple and the connecting

trajectory γ satisfies a non-inclination flip condition. That is for all xu ∈ Wu
loc(p) ∩ γ and all xs ∈

W s
loc(p) ∩ γ applies

W s(p) ⋔xu
W ls,u(p) and Wu(p) ⋔xs

W s,lu(p)

Recall that the tangent space of W ls,u(p) along the unstable manifold is uniquely defined. So is the

tangent space of W s,lu(p) along the stable manifold.

W
ls,u
loc

W s

W s

Γ

Γx

Figure 2.3: The relative position of W s(p) and W ls,u in the generic case.

In the following we want to state a consequence of Hypothesis (H2.3). To this end we recall some

notations from previous sections. Let A(t) = D1f(γ(t), 0). By Es
−A(·)T (t) and Eu

−A(·)T (t) we denote the

(time-depending) stable subspaces at t of the adjoint variational equation ẋ = −[A(t)]Tx for t ∈ R+

and t ∈ R−, respectively. These subspaces are defined by the image of corresponding projections of

the exponential dichotomy, cf. Lemma 2.2.6. Analogously we can define the strong stable subspaces

Ess
−A(·)T (t) and Euu

−A(·)T (t) of ẋ = −[A(t)]Tx, cf. Lemma 2.2.7.

Let further Z = (Tγ(0)W
s(p) + Tγ(0)W

u(p))⊥ and

ψ(t) := Ψ(t, 0)ψ, ψ ∈ Z, ψ 6= 0, (2.56)

where Ψ(t, 0) denotes the transition matrix of the adjoint variational equation ẋ = −[D1f(γ(t), 0)]
Tx.

Due to (2.54) we find that Z is one-dimensional and by construction we have, cf. Lemma 2.2.6, Z ⊂
Es

−A(·)T (0) ∩ Eu
−A(·)T (0). Additionally the following lemma applies.

Lemma 2.6.4 ([Kno04], Lemma 2.3.4, Lemma 2.3.5). Let the leading eigenvalues µs and µu be real and

simple.
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2.6 Codimension-one homoclinic trajectories

(i) Assume for all xu ∈ γ ∩Wu
loc(p) that dim(Txu

W s(p) + Txu
W ls,u(p)) = n.

Then Z ∩ Euu
−A(·)T (0) = {0}.

(ii) Assume for all xu ∈ γ ∩Wu
loc(p) that dim(Txu

W s(p) + Txu
W ls,u(p)) = n− 1.

Then ψ(t) ∈ Euu
−A(·)T (t), t ∈ R−.

Proof. Both Tγ(t)W
s(p) and Tγ(t)W

u(p) are invariant under the flow of the transition matrix Φ(·, ·) of

the variational equation along γ(·). At first, recall that the transition matrices Φ(·, ·) and Ψ(·, ·) of the

variational equation and its adjoint mutually preserve orthogonality, cf. Lemma 2.1.16. Further recall

from Lemma 2.2.10 that Euu
−A(·)T (τ) =

(
Tγ(τ)W

ls,u(p)
)⊥

. From this it follows that for any z ∈ Euu
−A(·)T (0)

we find

lim
t→−∞

Ψ(t, 0)z

‖Ψ(t, 0)z‖ ∈
(
TpW

ls,u(p)
)⊥

.

Now, we start with the proof of (i).

Let Dγ(t) be a disk within the stable manifold such that for sufficiently large |t| we find Tγ(t)Dγ(t) ⊕
Tγ(t)W

ls,u
loc (p) = Rn. Consequently we find with ψ ∈ Z that ψ(t)/‖ψ(t)‖⊥

(
Tγ(t)Dγ(t) ⊕ Tγ(t)W

u(p)
)
for

all t ∈ R−. Then the strong λ-lemma, cf. [Den89], and the continuity of the scalar product provide

lim
t→−∞

ψ(t)

‖ψ(t)‖ ∈ (TpW
ss(p)⊕ TpW

u(p))⊥.

Hence ψ /∈ Euu
−A(·)T (0), that is Z ∩ Euu

−A(·)T (0) = {0}.
Next we verify (ii).

In this case we find with ψ ∈ Z that lim
t→−∞

ψ(t)/‖ψ(t)‖ ∈ (E(µs(0)) ⊕ TpW
u(p))⊥. Hence ψ(t) ∈

Euu
−A(·)T (t).

In case of the leading eigenvalues being real and simple Lemma 2.6.4 shows that Hypothesis (H2.3) is

equivalent to the condition

Z 6⊂ Ess
−A(·)T (0) and Z 6⊂ Euu

−A(·)T (0). (2.57)

While (H2.3) presents the geometrical constellation of the non-inclination flip situation, (2.57) provides

a necessary information for estimating the jump ξi(ω, λ, κ) as we will outline in Section 4.3.

In case that the leading stable and unstable eigenvalues of the equilibrium p are real and simple and the

homoclinic trajectory γ is non-degenerate and satisfies (H2.2) and (H2.3), one can distinguish twisted and

non-twisted homoclinic trajectories, see [Den89, CDF90]. These are two essentially different geometrical

situations, cf. Figure 2.4. Even though in the further course of this thesis the leading eigenvalues will be

semisimple rather than simple due to the symmetry, such that the concept of twisted and non-twisted

homoclinic solutions is not applicable, we want to mention it here. In [Juk06], among others, bifurcations

of twisted and non-twisted homoclinic solutions in symmetric vector fields are investigated.

In the following we transcribe the definition of twisted and non-twisted from [CDF90]. To this end we

define in accordance with (1.9)

es := lim
t→∞

(γ(t)− p)/‖γ(t)− p‖ and eu := lim
t→−∞

(γ(t)− p)/‖γ(t)− p‖. (2.58)

Definition 2.6.5. Let γ be a non-degenerate homoclinic trajectory asymptotic to a saddle p where the

leading stable and unstable eigenvalues are real and simple. Further assume Hypotheses (H2.2) and

(H2.3).
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(i) We call γ twisted, if eu and es point to opposite sides of Tγ(ω)W
s(p)+Tγ(ω)W

u(p) and Tγ(−ω)W
s(p)+

Tγ(−ω)W
u(p), respectively, for ω > 0 sufficiently large.

(ii) If eu, es point to the same side of Tγ(ω)W
s(p) + Tγ(ω)W

u(p) and Tγ(−ω)W
s(p) + Tγ(−ω)W

u(p),

respectively, ω > 0 sufficiently large, then we call γ non-twisted.

Regarding this definition, note that Tγ(ω)W
s(p) + Tγ(ω)W

u(p) and Tγ(−ω)W
s(p) + Tγ(−ω)W

u(p) denote

two different hyperplanes in Rn. However, the hyperplanes are related to each other via the transport

by means of the transition matrix of the variational equation along γ. The statement that the directions

eu and es point to the same or opposite sides of the hyperplanes therefore has to be read in this context.

Due to the definition of ψ(t), cf. (2.56), we find that ψ(t) ∈
(
Tγ(t)W

s(p) + Tγ(t)W
u(p)

)⊥
for all t ∈ R.

Thus, the statement of the following lemma is readily apparent.

es

γ
γ

eu

es

eu

Z

Z

W s(p) W s(p)

e−

e+

e−

e+

Figure 2.4: Twisted and non-twisted homoclinic trajectories in R3. The blue arrows display the transportation of the
Z-direction along the homoclinic trajectory γ for positive and negative time via the transition matrix Ψ of the adjoint
variational equation ẋ = −[D1f(γ(t), 0)]T x.

Lemma 2.6.6 ([Kno04], Lemma 2.3.7). Let γ be a non-degenerate homoclinic trajectory asymptotic

to a saddle p where the leading stable and unstable eigenvalue are real and simple. Further assume

Hypotheses (H2.2) and (H2.3). Then the homoclinic trajectory γ is twisted or non-twisted, respectively,

if

sgn lim
t→−∞

〈es, ψ(t)〉 = −sgn lim
t→∞

〈eu, ψ(t)〉 or sgn lim
t→−∞

〈es, ψ(t)〉 = sgn lim
t→∞

〈eu, ψ(t)〉.

In accordance with (1.10) we define

e+ := lim
t→∞

ψ(t)/‖ψ(t)‖ and e− := lim
t→−∞

ψ(t)/‖ψ(t)‖. (2.59)

With this the twist condition reads:

Corollary 2.6.7. Let γ be a non-degenerate homoclinic trajectory asymptotic to a saddle p where the

leading stable and unstable eigenvalue are real and simple. Further assume Hypotheses (H2.2) and (H2.3).

Define

O := sgn(〈es, e−〉〈eu, e+〉).

Then the homoclinic trajectory γ is twisted or non-twisted, respectively, if

O = −1 or O = 1.

Remark 2.6.8. In [HomSan10] the quantity O is called orientation index and it is used to describe the

orientability of the homoclinic centre manifold W c
hom(λ), which is 2-dimensional under the conditions
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mentioned in Corollary 2.6.7. If O = −1 the homoclinic centre manifold has the topological structure of

a Möbius band, if O = 1 it has the structure of an annulus.

Looking at the fibre bundle of tangent directions of the stable manifold, that are complementary to γ̇,

along the homoclinic trajectory

F(W s
γ ) :=

⋃

t∈R

(
Tγ(t)W

s(p) ∩ [ span{γ̇(t)}]⊥
)

we see that according to Figure 2.4 in R3 with 2-dimensional stable manifold also F(W s
γ ) has the topo-

logical structure of a Möbius band or an annulus, if O = −1 or O = 1, respectively. However, in higher

dimensions with semisimple leading eigenvalues the correlation between the topological structure of F(W s
γ )

and the value of O is not any more given, cf. Remark 5.2.3.

For the sake of completeness we conclude this section with the demand that the leading eigenvalues are

not resonant.

(H2.4). The leading stable eigenvalue µs(λ) and the leading unstable eigenvalue µu(λ) of D1f(p, λ)

satisfy

| Re(µs(λ))| 6= Re(µu(λ)).

Consequently the vector field f is neither hamiltonian nor reversible, which would have implied the

homoclinic trajectory to be robust, that is of codimension-zero.

Remark 2.6.9. A homoclinic trajectory satisfying Hypotheses (H2.1) - (H2.4) is of codimension-one.
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3 Lin’s method

Lin’s method is beside first return maps one of the basic tools to analyse the dynamics near connecting

trajectories. It is named after Xiao-Bao Lin who first introduced this method in 1990, [Lin90]. Lin

establishes a method to construct trajectories that stay in a surrounding area of a heteroclinic network

for all time. Later modifications can be found in [San93] and [Kno04].

In the following we give a brief description of Lin’s method, before we go into more details in Section 3.2.

The proof of Lin’s method can be found in [Lin90], [San93] and [Kno04]. However, to understand the

modifications we are about to accomplish in this thesis it is essential to present the whole proof of Lin’s

method, since it explains certain geometric terms which we will use later. The only formal change we

have made here is the introduction of another projector Fκi
in (3.38), which does not matter for the proof

of Lin’s method, but does matter for the more precise representation of the residuals.

In order to not perturb the train of thoughts too much we postpone the proofs of all assertions from

Section 3.2 to Section 3.3.

We orientate ourselves by the notations and explanations made in [Kno04]. Note, that in [Kno04] Lin’s

method was considered in the context of a homoclinic trajectory asymptotic to a hyperbolic equilibrium

that is allowed to be degenerate. The considerations we undertake in this section are made in the context

of a heteroclinic chain, where each heteroclinic trajectory satisfies a minimal intersection condition.

Now, the basic idea of Lin’s method can be described as follows. Consider a family of ordinary differential

equations

ẋ = f(x, λ), (3.1)

that possesses at λ = λ0 a heteroclinic network Γ consisting of a finite number of equilibrium points p

and finitely many connecting (heteroclinic) trajectories γ.

Any solution of (3.1) that stays for all time in the surrounding area of a heteroclinic network Γ is

determined by the biinfinite sequence of heteroclinic trajectories it follows. Such a sequence of trajectories

we call heteroclinic chain and denote it by

Γκ :=
⋃

i∈Z

({pκi
} ∪ γκi

) ⊆ Γ,

see Definition 1.0.3, with κ ∈ ΣC . Here ΣC denotes the topological Markov chain defined by the

connectivity matrix C = (cij) of the heteroclinic network Γ, see Definition 1.0.1. Thereby each trajectory

γκi
connects pκi

to pκi+1
in forward time. Thus γκi

lies in the intersection of the unstable manifold

Wu(pκi
) of pκi

and the stable manifold W s(pκi+1
) of pκi+1

. It can be possible that some or even all of

the pκi
and γκi

coincide. For example, when considering the case pκi
= p, for all i ∈ Z, the heteroclinic

chain reduces to a homoclinic chain, consisting of homoclinic loops γκi
all asymptotic to p in forward

and backward time. If in addition also γκi
= γ for all i ∈ Z the heteroclinic chain simply consists of a

homoclinic trajectory γ asymptotic to p.

For a given sequence κ ∈ ΣC and a sequence ω := (ωi)i∈Z of sufficiently large transition times ωi > 0

Lin proved the existence of the so called Lin trajectory , which we define in the following.

To this end let Sκi
be a hyperplane transversal to γκi

⊂ Γκ at some point qκi
‘in the middle’ of γκi

, that

is far enough away from both pκi
and pκi+1

. Let further Zκi
be a subspace that is complementary to the

sum of the tangent spaces at qκi
of the stable manifold W s(pκi+1

) and the unstable manifold Wu(pκi
)

such that qκi
+ Zκi

⊂ Sκi
.
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Definition 3.0.1. A Lin trajectory is a piecewise continuous trajectory X = (Xi)i∈Z satisfying the

following two properties:

• Each Xi is an actual trajectory of the vector field, starting at a point on Sκi−1
, staying close to

γκi−1
until it reaches a neighbourhood of pκi

, and then continuing close to γκi
until it finally reaches

Sκi
at exactly the time 2ωi.

• The ‘jump’ Ξi given by the difference between the initial point of Xi+1 and the final point of Xi is

situated within the subspace Zκi
.

A visualisation of the described situation is depicted in Figure 3.2. Since the vector field f depends on

a parameter λ, both the trajectory X and the corresponding jump Ξ := (Ξi)i∈Z depend on ω, λ and the

sequence κ:

X = X(ω, λ, κ), Ξ = Ξ(ω, λ, κ).

In order to obtain an actual trajectory of the vector field which stays for all time near the heteroclinic

chain Γκ one has to set all the jumps equal to zero, leading to the system of determination equations

Ξ(ω, λ, κ) = 0. (3.2)

That way Lin reduced the problem of detecting trajectories staying close to Γ to that of discussing the

solvability of equation (3.2) depending on κ and λ.

A major part of Lin’s method is to gain good expressions and approximations of the single jumps Ξi.

Due to B. Sandstede [San93] we know that indeed each jump Ξi can be split into two parts

Ξi = ξ∞κi
(λ) + ξi(ω, λ, κ), (3.3)

where the first one ξ∞κi
only depends on λ, since it simply measures the distance between the stable

manifold W s(pκi+1
) and the unstable manifold Wu(pκi

). The second part is known to be exponentially

small, as inf(ω) tends to infinity.

For discussing the solvability of equation (3.2) it is further necessary to know explicit expressions for

the terms of leading exponential rates of ξi. However, this task will be dealt with in Chapter 4. In

this chapter we focus on proving the existence of Lin trajectories and providing first estimates of the

jump and its derivatives with respect to the transition times ωj . To this end we begin in Section 3.1

with declaring the setting within we consider Lin’s method. Afterwards we firstly sketch the idea of

proving the existence and uniqueness of Lin trajectories in Section 3.2, before we go into more detail in

Section 3.3. In Section 3.4 we consider the two parts of the jump (3.3) and present first estimates of

ξi(ω, λ, κ). We conclude this chapter with Section 3.5 by investigating the derivative of ξi(ω, λ, κ) with

respect to ω and show that the derivatives of ξi(ω, λ, κ) with respect to ωj satisfy the same estimates as

ξi(ω, λ, κ) itself.

3.1 Setting

We consider a family of autonomous differential equations (3.1) where we assume:

(H3.1).

(i) The vector field f : Rn × Rd → Rn is smooth, i.e. f ∈ Cl+3(Rn × Rd,Rn), l ≥ 3.
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(ii) For λ = 0 equation (3.1) has a heteroclinic network Γ consisting of finitely many hyperbolic equilibria

and a finite number of connecting trajectories γ := {γ(t)|t ∈ R}.

(iii) Each orbit γ satisfies the minimal intersection condition dim(Tγ(0)W
u(α(γ))∩Tγ(0)W

s(ω(γ))) = 1,

(iv) and we assume additionally dimTγ(0)W
u(α(γ)) + dimTγ(0)W

s(ω(γ)) = n.

In case of a homoclinic network, that is Γ has only one hyperbolic equilibrium, condition (iv) is auto-

matically fulfilled, while condition (iii) requires that the homoclinic trajectories γ are non-degenerate.

As we have mentioned above, in the considerations in [Kno04] condition (iii) was spared.

We introduce the following direct sum decomposition of Rn that we shall use throughout this thesis. To

this end let Γκ be a double infinite sequence of connecting trajectories for a given sequence κ ∈ ΣC as

defined in Definition 1.0.3, with pκi
= α(γκi

) for all i ∈ Z. Recall that C denotes the connectivity matrix

of Γ. For each heteroclinic trajectory γκi
⊂ Γκ we find due to Hypothesis (H3.1)(iii), the one-dimensional

subspace

Uκi
:= Tγκi

(0)W
s(pκi+1

) ∩ Tγκi
(0)W

u(pκi
) (3.4)

which is equal to the vector field direction span{f(γκi
(0), 0)} along γκi

(0). Further we define comple-

ments W±
κi

of Uκi
within the tangent spaces of the stable and unstable manifolds, that is W+

κi
⊕ Uκi

=

Tγκi
(0)W

s(pκi+1
) and W−

κi
⊕Uκi

= Tγκi
(0)W

u(pκi
). To be precise we define for an arbitrary scalar product

〈·, ·〉
W+
κi

:= Tγκi
(0)W

s(pκi+1
) ∩ U⊥

κi
,

W−
κi

:= Tγκi
(0)W

u(pκi
) ∩ U⊥

κi
,

Zκi
:=

(

Tγκi
(0)W

s(pκi+1
) + Tγi(0)W

u(pκi
)
)⊥

.







(3.5)

Altogether this leads to the direct sum decomposition of Rn

Rn = Uκi
⊕W+

κi
⊕W−

κi
⊕ Zκi

, (3.6)

where the subspaces are via construction pairwise orthogonal to each other except for W+
κi

and W−
κi
. Due

to Hypothesis (H3.1)(iii) and (iv) Zκi
is one-dimensional. Finally we define the cross-section Sκi

of the

heteroclinic trajectory γκi
by

Sκi
= γκi

(0) + (Zκi
⊕W+

κi
⊕W−

κi
). (3.7)

Now, for each heteroclinic solution γκi
(·) we find solutions γ±

κi
(λ)(·) of (3.1) defined on R±, respectively

that fulfil the following properties:

(P3.1).

(i) the trajectories γ±
κi
(λ)(·) are close to γκi

,

(ii) lim
t→∞

γ+
κi
(λ)(t) = pκi+1

(λ) and lim
t→−∞

γ−
κi
(λ)(t) = pκi

(λ),

(iii) γ±
κi
(λ)(0) ∈ Sκi

,

(iv) ξ∞κi
:= γ+

κi
(λ)(0)− γ−

κi
(λ)(0) ∈ Zκi

.

Figure 3.1 gives a visualisation of this scenario. Indeed the following lemma applies:

Lemma 3.1.1. For all λ close to 0 there is a unique pair (γ+
κi
(λ), γ−

κi
(λ)) of solutions of (3.1) satisfying

the properties (P3.1) (i)-(iv). The mappings γ±
κi
(·) : Rd → Cb(R±,Rn) are smooth.
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pκi
pκi+1

γ−
κi
(λ)

γ+
κi
(λ)

γκi
(0) + Zκi

Figure 3.1: Visualisation of Lemma 3.1.1

As already mentioned this result is due to Sandstede. Hence an adequately formulated lemma can

be found in [San93, Lemma 3.3] in context of a homoclinic trajectory. In [HomSan10, Lemma 2.4] it

was formulated for a heteroclinic trajectory, in [Kno04, Lemma 2.1.2] in the context of a degenerated

homoclinic trajectory.

Having the solutions γ±
κi
(λ) of (3.1) we can declare the variational equations along γ±

κi

ẋ = D1f(γ
±
κi
(λ)(t), λ)x, (3.8)

and their adjoint variational equations

ẋ = −
[
D1f(γ

±
κi
(λ)(t), λ)

]T
x. (3.9)

Let Φ±
κi
(λ)(·, ·) denote the transition matrices of (3.8).

Now, in order to facilitate our further analysis we assume the following Hypotheses.

(H3.2). For sufficiently small λ and all i ∈ Z let pκi
(λ) ≡ pκi

.

(H3.3). For sufficiently small λ and all i ∈ Z:

W s
loc,λ(pκi

) ⊆ Tpκi
W s
λ=0(pκi

), Wu
loc,λ(pκi

) ⊆ Tpκi
Wu
λ=0(pκi

).

Additionally to embedding the local stable and unstable manifolds into the generalised eigenspaces of

D1f(pκi
, λ) as stipulated in (H3.3) we wish to flatten the stable and unstable manifolds simultaneously

along the orbits of the particular solutions γ±
κi
(λ)(t). To this end we define

Sκi

λ,t :=







γ+
κi
(λ)(t) + Φ+

κi
(λ)(t, 0)(W+

κi
⊕W−

κi
⊕ Zκi

), t ≥ 0,

γ−
κi
(λ)(t) + Φ−

κi
(λ, )(t, 0)(W+

κi
⊕W−

κi
⊕ Zκi

), t ≤ 0.

Due to Lemma 3.1.1 we have γ+
κi
(λ)(0), γ−

κi
(λ)(0) ∈ Sκi

= γκi
(0)+(W+

κi
⊕W−

κi
⊕Zκi

). Hence the definition

above is admissible and we find Sκi

λ,0 = Sκi
. Eventually denote by W s

Sκi
λ,t

(pκi+1
) and Wu

Sκi
λ,t

(pκi
) the traces

of the stable and unstable manifolds, respectively, in Sκi

λ,t:

W s
Sκi
λ,t

(pi+1) = W s(pκi+1
) ∩ Sκi

λ,t, Wu
Sκi
λ,t

(pκi
) = Wu(pκi

) ∩ Sκi

λ,t.
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(H3.4). There is an ε > 0 such that for sufficiently small λ and for all i ∈ Z

(i) W s
Sκi
λ,0

(pκi+1
) ∩B(γκi

(0), ε) ⊆ γ+
κi
(λ)(0) +W+

κi
,

(ii) Wu
Sκi
λ,0

(pκi
) ∩B(γκi

(0), ε) ⊆ γ−
κi
(λ)(0) +W−

κi
.

(H3.5). There is an ε > 0 such that for sufficiently small λ and for all i ∈ Z

(i) W s
Sκi
λ,t

(pκi+1
) ∩B(γ+

κi
(λ)(t), ε) ⊆ γ+

κi
(λ)(t) + Φκi

(t, 0)W+
κi
, t ≥ 0,

(ii) Wu
Sκi
λ,t

(pκi
) ∩B(γ−

κi
(λ)(t), ε) ⊆ γ−

κi
(λ)(t) + Φκi

(t, 0)W−
κi
, t ≤ 0.

Here Φκi
(·, ·) denotes the transition matrix of the linear variational equation along the heteroclinic solu-

tion γκi
:

ẋ = D1f(γκi
(t), 0)x. (3.10)

Indeed (H3.5) can be seen as a continuation of (H3.4) along γ±
κi
(λ)(t).

Remark 3.1.2. As a direct consequence of Hypotheses (H3.4) and (H3.5) we find that

Tγ+
κi

(λ)(0)W
s
Sκi
λ,0

(pκi+1
) = W+

κi
,

Tγ+
κi

(λ)(t)W
s
Sκi
λ,t

(pκi+1
) = Φκi

(t, 0)W+
κi

t ≥ 0.

We also find that Tγ+
κi

(λ)(t)W
s
Sκi
λ,t

(pκi+1
) can be obtained from Tγ+

κi
(λ)(0)W

s
Sκi
λ,0

(pκi+1
) through transportation

via the transition matrix Φ+
κi
(λ)(t, 0):

Tγ+
κi

(λ)(t)W
s
Sκi
λ,t

(pκi+1
) = Φ+

κi
(λ)(t, 0)Tγ+

κi
(λ)(0)W

s
Sκi
λ,0

(pκi+1
).

Therefore we conclude that for any vector field f satisfying Hypotheses (H3.1) and (H3.5) we find for λ

sufficiently small

Φκi
(t, 0)W+

κi
= Φ+

κi
(λ)(t, 0)W+

κi
, t ≥ 0,

Φκi
(t, 0)W−

κi
= Φ−

κi
(λ)(t, 0)W−

κi
, t ≤ 0.

Indeed Hypotheses (H3.2) - (H3.5) do not imply a restriction to the vector fields under consideration

since there always exist certain transformation to obtain the claimed results independent of the sequence

κ ∈ ΣC , see [Kno04]. However, we want to point out that we lose some degree of differentiability of the

vector field. To be precise, after the vector field transformation we find f ∈ Cl(Rn × Rd,Rn). We will

see to the justification of these hypotheses in Section 4.2, where we do this in the context of homoclinic

networks in symmetric vector fields.

In order to estimate the jump ξi(ω, λ, κ) we denote by µsi (λ) and µui (λ) the leading stable and unstable

eigenvalues of D1f(pi, λ) and we furthermore assume

(H3.6). For sufficiently small λ and all i ∈ Z let | Re(µsi (λ))| < Re(µui (λ)).

That is the stable eigenvalues µsi (λ) lie closer to the imaginary axis than the unstable eigenvalues µui (λ).

In view of the upcoming symmetry, a uniform requirement of the relations of the real parts of the leading

eigenvalues for all i ∈ Z makes sense. The choice of which of the two is closer to the imaginary axis is

thereby done without loss of generality. The estimates presented in Section 3.4 can be transcribed for

the case Re(µui (λ)) < | Re(µsi (λ))|.
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We conclude this section with a final assumption which we will call occasionally but not exclusively.

(H3.7). For all i ∈ Z the spectrum of D1f(pi, λ) has neither strong stable nor strong unstable eigen-

values.

3.2 Outline of Lin’s method

The first step of Lin’s method is already completed by solving the problem of finding solutions γ±
κi
(λ)(·)

of (3.1) defined on R± that fulfil the Property (P3.1). This part was based on the idea of Sandstede,

cf. [San93]. Next we describe the second step of Lin’s method which introduces the Lin trajectories

X := (Xi)i∈Z.

We start with an introduction of notations that we will use throughout this thesis.

Definition 3.2.1.

(1) Let U be a normed space. By l∞U we denote the space of all bounded sequences x := (xi)i∈Z, xi ∈ U .

l∞U is equipped with the supremum norm.

(2) ω := (ωi)i∈Z, ωi ∈ R+.

(3) By Vω we denote the space of all sequences v := (v+i , v
−
i )i∈Z where v+i ∈ C([0, ωi+1],Rn) and

v−i ∈ C([−ωi, 0],Rn). Vω is equipped with the norm ‖v‖Vω
:= max{sup

i∈Z

‖v+i ‖, sup
i∈Z

‖v−i ‖}.

γκi−1

Sκi
Sκi−1

Xi+1

Ξi

γκi

pκi
pκi+1

γκi
(0)

γκi
(0) + Zκi

x+
i−1 x−

i

Xi

Figure 3.2: Idea of Lin’s method

The following theorem ensures the existence of the above described Lin trajectories.

Theorem 3.2.2. Consider a vector field f(·, λ) and assume (H3.1)-(H3.5). Then there are constants

c,Ω such that for each (ω, λ, κ) with |λ| < c, ωi > Ω and κ ∈ ΣC there are unique sequences of solutions

x±
i (ω, λ, κ)(·) of (3.1) satisfying:

(i) x+
i (ω, λ, κ)(·) : [0, ωi+1] → Rn, x−

i (ω, λ, κ)(·) : [−ωi, 0] → Rn;

(ii) x+
i (ω, λ, κ)(ωi+1) = x−

i+1(ω, λ, κ)(−ωi+1);
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(iii) x±
i (ω, λ, κ)(0) ∈ Sκi

are close to γ±
κi
(λ)(0);

(iv) x+
i (ω, λ, κ)(0)− x−

i (ω, λ, κ)(0) ∈ Zκi

(v) x±
i (ω, λ, κ)(0)− γ±

κi
(λ)(0) ∈ W+

κi
⊕W−

κi
⊕ Zκi

.

Theorem 3.2.2 is a special case of [Kno04, Theorem 2.1.4], where degenerate homoclinic trajectories

are considered. In [VanFie92, Theorem 6] an adequate theorem was formulated for a single homoclinic

trajectory. In the following we merely outline the proof and refer to Chapter 3.3 for detailed explanations.

The objects x±
i will be characterised as perturbations of γ±

κi
from Lemma 3.1.1:

x±
i (ω, λ, κ)(·) = γ±

κi
(λ)(·) + v±i (ω, λ, κ)(·). (3.11)

So the task to find the quantities x±
i is rephrased into the task of finding appropriate v±i . To this end

let ω := (ωi)i∈Z be a sequence of sufficiently large transition times ωi. In order to prove the theorem we

look for v±i as solutions of the following boundary value problem

v̇±i (t) = D1f(γ
±
κi
(λ)(t), λ)v±i (t) + h±

κi
(t, v±i (t), λ) (3.12)

v+i (ωi+1)− v−i+1(−ωi+1) = γ−
κi+1

(λ)(−ωi+1)− γ+
κi
(λ)(ωi+1) =: di+1(ωi+1, λ),

v+i (0), v
−
i (0) ∈ W+

κi
⊕W−

κi
⊕ Zκi

, close to zero,

v+i (0)− v−i (0) ∈ Zκi
,







(3.13)

where h±
κi

is defined as

h±
κi
(t, v, λ) := f(γ±

κi
(λ)(t) + v, λ)− f(γ±

κi
(λ)(t), λ)−D1f(γ

±
κi
(λ)(t), λ)v. (3.14)

Due to (P3.1) a solution (v+i , v
−
i )i∈Z ∈ Vω of the boundary value problem ((3.12),(3.13)) provides a

unique sequence of solutions x±
i (ω, λ, κ)(·) of (3.1) that fulfils Theorem 3.2.2.

The boundary value problem ((3.12),(3.13)) will be solved in the following way. First we consider the

inhomogeneous equation

v̇±i (t) = D1f(γ
±
κi
(λ)(t), λ)v±i (t) + g±i (t), (3.15)

where g := (g+i , g
−
i )i∈Z ∈ Vω. Here we prove, that for all g we find a unique solution v̂ = v̂(. . . ,g) of the

boundary value problem ((3.15),(3.13)). Then substituting g by the non-linearity h of equation (3.12)

gives a fixed point equation whose solution satisfies the boundary value problem ((3.12),(3.13)).

Let us now start with more detailed explanations. Recall that Φ±
κi
(λ)(·, ·) denotes the transition matrix of

the homogeneous part of equation (3.15) which is given by equation (3.8). This variational equation has

exponential dichotomies on R±, cf. Section 2.1. We denote the projections associated to equation (3.8)

by P±
κi

such that there are positive constants K and α+
κi
, β+
κi
, α−

κi
and β−

κi
with

‖Φ+
κi
(λ)(t, s)(id− P+

κi
(λ, s))‖ ≤ Ke−α

+
κi

(t−s), t ≥ s ≥ 0,

‖Φ+
κi
(λ)(t, s)P+

κi
(λ, s)‖ ≤ Ke−β

+
κi

(s−t), s ≥ t ≥ 0,

‖Φ−
κi
(λ)(t, s)P−

κi
(λ, s)‖ ≤ Ke−α

−
κi

(t−s), 0 ≥ t ≥ s,

‖Φ−
κi
(λ)(t, s)(id− P−

κi
(λ, s))‖ ≤ Ke−β

−
κi

(s−t), 0 ≥ s ≥ t.







(3.16)
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Remark 3.2.3. In contrast to the Definition 2.1.1 of the exponential dichotomy in Section 2.1 the role

of the projections (id−P+
κi
) and P+

κi
associated with the exponential dichotomy on R+ is vice versa. That

is to say here the kernel instead of the image of P+
κi

is determined to be the stable subspace at time t

of (3.8) along γ+
κi
. We have done this for convenience since also the kernel of P−

κi
is settled to be the

unstable subspace at time t of (3.8) along γ−
κi

That way our notation correspond to that in [HJKL11].

Recall that we have some freedom in choosing the image of P±
κi
. Here we set

kerP+
κi
(λ, 0) = Tγ+

κi
(λ)(0)W

s(pκi+1
), imP+

κi
(λ, 0) = W−

κi
⊕ Zκi

,

kerP−
κi
(λ, 0) = Tγ−

κi
(λ)(0)W

u(pκi
), imP−

κi
(λ, 0) = W+

κi
⊕ Zκi

,

}

(3.17)

and with the condition

P±
κi
(λ, t)Φ±

κi
(λ)(t, s) = Φ±

κi
(λ)(t, s)P±

κi
(λ, s)

the projections are now uniquely defined. As for the constants α+
κi
, β+
κi
, α−

κi
and β−

κi
the considerations in

Section 2.2 show that they are closely related to the leading eigenvalues of the linearisation of the vector

field D1f(pκi
, λ) at the equilibrium points pκi

. So let µsκi
(λ) and µuκi

(λ) denote a leading stable and

unstable eigenvalue of D1f(pκi
, λ), respectively. Then the constants α+

κi
, β+
κi
, α−

κi
and β−

κi
can be chosen

(for all λ sufficiently small) within the limits of the following inequalities, cf. Lemma 2.2.3

Re(µsκi+1
(λ)) < −α+

κi
< β+

κi
< Re(µuκi+1

(λ)),

Re(µsκi
(λ)) < −α−

κi
< β−

κi
< Re(µuκi

(λ)).






(3.18)

The following Lemma is the first step towards the proof of Theorem 3.2.2. An analogous lemma can be

found in [Kno04, Lemma 2.1.5] again in the context of a degenerate homoclinic trajectory.

Lemma 3.2.4. Assume Hypotheses (H3.1)-(H3.5). Let Ω ∈ R+ be sufficiently large and further let ω be

a sequence with ωi > Ω, i ∈ Z. Then there is a constant c such that for each κ ∈ ΣC , g ∈ Vω, a ∈ l∞
Rn

and λ with |λ| < c the system (3.15) has exactly one solution vω ∈ Vω satisfying

(i) P+
κi−1

(λ, ωi)(v
+
i−1(ωi)− ai) = 0, P−

κi
(λ,−ωi)(v

−
i (−ωi)− ai) = 0;

(ii) v+i (0), v
−
i (0) ∈ W+

κi
⊕W−

κi
⊕ Zκi

;

(iii) v+i (0)− v−i (0) ∈ Zκi
.

vω and hence v±i depend on (λ, κ, g,a) and the mapping

vω : Rd × ΣC × Vω × l∞
Rn → Vω

(λ, κ, g,a) 7→ vω(λ, κ, g,a)

is smooth in (λ, g,a) and moreover linear in (g,a). Further there is a constant C such that

‖vω‖Vω
≤ C(‖a‖l∞

Rn
+ ‖g‖Vω

). (3.19)

For λ sufficiently small and ωi sufficiently large the images of the projections P+
κi−1

and P−
κi

form a direct

sum decomposition of Rn:

Rn = imP+
κi−1

(λ, ωi)⊕ imP−
κi
(λ,−ωi), (3.20)
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see [VanFie92, Lemma 7] and Lemma 3.3.2 below. Therefore we find for each di ∈ Rn an ai such that

P+
κi−1

ai − P−
κi
ai = di. In this context Lemma 3.2.4 can be seen as an ”approximation” of the boundary

value problem ((3.15),(3.13)), because Lemma 3.2.4(i) says that P+
κi−1

v+i−1 − P−
κi
v−i = di instead of

v+i−1 − v−i = di as demanded in (3.13). The values ‖(id − P+
κi−1

)v+i−1‖ and ‖(id − P−
κi
)v−i ‖ decrease

exponentially fast as ωi increases. In Figure 3.3 the full nonlinear situation is depicted. So the quantity

a is only a device to handle the coupling condition between v+i−1 and v−i near the equilibrium. Indeed

we prove, cf. [Kno04, Lemma 2.1.6], that for given ω and d := (di)i∈Z ∈ l∞
Rn there is an a according to

Lemma 3.2.4 satisfying v+i−1(λ, κ,g,a)(ωi)− v−i (λ, κ,g,a)(−ωi) = di.

x+
i−1(ωi)

im(P−
κi
(λ,−ωi))

γ+
κi−1

x+
i−1

γ+
κi−1

(ωi) im(P+
κi−1

(λ, ωi))

v+i−1(ωi)

Figure 3.3: v+i−1(ωi) in the nonlinear problem

Lemma 3.2.5. Assume Hypotheses (H3.1)-(H3.5). Let Ω ∈ R+ be sufficiently large and further let ω be

a sequence with ωi > Ω, i ∈ Z. Then there is a constant c such that for each κ ∈ ΣC , g ∈ Vω, d ∈ l∞
Rn

and λ with |λ| < c there is exactly one v̂ω ∈ Vω solving (3.15) and satisfying the boundary conditions

(i) v̂+i−1(ωi)− v̂−i (−ωi) = di;

(ii) v̂+i (0), v̂
−
i (0) ∈ W+

κi
⊕W−

κi
⊕ Zκi

;

(iii) v̂+i (0)− v̂−i (0) ∈ Zκi
.

The mapping

v̂ω : Rd × ΣC × Vω × l∞
Rn → Vω

(λ, κ, g,d) 7→ v̂ω(λ, κ, g,d)

is smooth in (λ, g,d) and depend linearly on (g,d) and there exists a constant Ĉ such that

‖v̂ω‖Vω
≤ Ĉ(‖g‖Vω

+ ‖d‖l∞
Rn
). (3.21)

Now, by replacing the function g in v̂ by

H : Vω × Rd × ΣC → Vω

(v, λ, κ) 7→ (h+
κi
(·, v+i (·), λ), h−

κi
(·, v−i (·), λ))i∈Z

we are back to the non-linear boundary value problem ((3.12),(3.13)). So analogously to [Kno04, Lemma

2.1.7] we state:

Lemma 3.2.6. Assume Hypotheses (H3.1)-(H3.5). There are constants c,Ω such that for fixed ω with

ωi > Ω the following holds true: For each λ ∈ Rd with |λ| < c the fixed point problem

v = v̂ω(λ, κ,H(v, λ, κ),d(ω, λ, κ)) =: Fω(v, λ, κ) (3.22)
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has a unique solution v̄ω in a sufficiently small neighbourhood of 0 ∈ Vω. The mapping λ 7→ v̄ω(λ, κ) is

smooth.

We want to point out that all the considerations have been done in the space Vω, that is for fixed ω.

Therefore it is not yet clear how v̄(ω, λ, κ) = (v̄+i (ω, λ, κ), v̄−i (ω, λ, κ))i∈Z := v̄ω(λ, κ) depends on ω.

However, for the analysis of the determination equations only (v̄+i (ω, λ, κ)(0), v̄−i (ω, λ, κ)(0))i∈Z is of

importance, see (3.57) and Section 3.4. Thus we define

v̄±(0) : BΩ × Rd × ΣC → l∞Rn , (ω, λ, κ) 7→ (v̄±i (ω, λ, κ)(0))i∈Z, (3.23)

where BΩ := (Ω,∞)Z.

Lemma 3.2.7 ([Kno04] Lemma 2.1.8). The mappings defined in (3.23) depend smoothly on ω.

The proof of this Lemma can be transcribed from [VanFie92, Lemma 12], [San93, Bemerkung 3.17] or

[Kno04, Lemma 2.1.8]. Although in [VanFie92] only periodic solutions are searched and therefore v̄ is

only considered as a mapping (Ω,∞)×R → R it gives the basic idea of proving the smoothness of v̄ with

respect to the l∞ variable ω: performing a time rescaling.

To this end let ω = (ωi)i∈Z be a fixed sequence. Further let 0 < δ < 1 and let β = (βi)i∈Z ∈ l∞
R

with

|βi| < δ. Then we replace ẋ = f(x, λ) by ẋ = (1 + βi)f(x, λ) in the ith circulation. This correspond to a

time rescaling t 7→ (1 + βi)t in each case. Note that ẋ = f(x, λ) and ẋ = (1 + βi)f(x, λ) have the same

orbits, but they will be passed through in different time.

The further proceeding in the proof of the smoothness with respect to ω ∈ l∞
R

is sketched in [Kno04].

With (1+ β)ω := ((1 + βi)ωi)i∈Z one can define ˇ̄vω(β, λ, κ) = ˇ̄v(β,ω, λ, κ) = (ˇ̄v+i , ˇ̄v
−
i )i∈Z by

ˇ̄v+i (β,ω, λ, κ)(t) := v̄+i ((1+ β)ω, λ, κ)((1 + βi+1)t),

ˇ̄v−i (β,ω, λ, κ)(t) := v̄−i ((1+ β)ω, λ, κ)((1 + βi)t).






(3.24)

Note that the sequence (v̄+i ((1 + β)ω, λ, κ)(·), v̄−i ((1 + β)ω, λ, κ)(·))i∈Z is the unique solution of v =

F(1+β)ω(v, λ, κ), see (3.22).

Then one shows that ˇ̄vω is the unique solution of

v = F̌ω(β,v, λ, κ), (3.25)

a fixed point equation that arises in the same way as (3.22). The mapping F̌ω(·,v, λ, κ) is smooth and

therefore ˇ̄vω(β, λ, κ) depends smoothly on β ∈ l∞
R
. Then, via (3.24), v̄(ω, λ, κ) depends smoothly on

ω ∈ l∞
R
.

In order to derive the addressed fixed point equation (3.25) and to make clear it solutions depend smoothly

on β one proves similar statements to Lemmata 3.2.4, 3.2.5 and 3.2.6 in case of the rescaled equations.

Thereby one make use of [Kno04, Lemma 3.3.3] that states that a function F : l∞ → l∞, x 7→ (f i(x))i∈Z

is differentiable in x0 if

• f i is differentiable for all i ∈ Z,

• there is a K > 0 such that ‖Df i(x0)‖ < K for all i ∈ Z

• Df i(·) are continuous in x0, uniformly in i.
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Indeed we find for all quantities appearing in the lemmata that the ith component of it never depend

on the entire sequence β but only on βi−1 and βi. So the differentiability of these ith components with

respect to β reduces to the partial differentiability with respect to βi−1 and βi.

3.3 Existence and Uniqueness of Lin trajectories - the proofs

This section is dedicated to the proof of Theorem 3.2.2. To this end we trace the path we have described

in Section 3.2 and prove the Lemmata 3.2.4, 3.2.5 and 3.2.6. In doing so we simply redraw the steps

in [Kno04]. The basic difference is that we do this in the context of a heteroclinic chain Γκ within a

heteroclinic network as presented in Hypothesis (H3.1) instead of a degenerated homoclinic trajectory.

Indeed this means a simplification of the considerations in [Kno04].

We start with two technical lemmata.

Lemma 3.3.1 ([Kno04] Lemma 3.2.1). Let P±
κi

be the projections associated with the exponential di-

chotomies of the variational equation (3.8) along γ±
κi
(λ)(·) as introduced in (3.17). Then the mappings

P±
κi
(·, t) depend smoothly on λ.

The second lemma is dedicated to the direct sum decomposition of Rn we have mentioned in (3.20). To

this end we define Pκi
as the spectral projection of D1f(pκi

, λ) associated to the exponential dichotomy

of ẋ = D1f(pκi
, λ)x on R, that is

imPκi
= Tpκi

W s(pκi
), kerPκi

= Tpκi
Wu(pκi

). (3.26)

Due to Hypotheses (H3.2) and (H3.3) Pκi
is independend of λ.

Lemma 3.3.2 ([VanFie92] Lemma 7). Assume Hypotheses (H3.1)-(H3.5). There exist constants Ω and

c such that for all |λ| < c and ω > Ω we have

Rn = imP+
κi−1

(λ, ωi)⊕ imP−
κi
(λ,−ωi). (3.27)

Moreover, the norm of the projection P̃κi
(λ, ωi) defining the decomposition (3.27) is uniformly bounded,

meaning that there is a constant M̃κi
such that ‖P̃κi

(λ, ωi)‖ ≤ 4M̃κi
. We stipulate

imP̃κi
(λ, ωi) = imP+

κi−1
(λ, ωi), kerP̃κi

(λ, ωi) = imP−
κi
(λ, ωi). (3.28)

Proof. The proof follows along the lines of the proof of Lemma 7 in [VanFie92].

Let M̃κi
:= max{‖Pκi

‖, ‖id−Pκi
‖} ≥ 1, where Pκi

denotes the spectral projection of D1f(pκi
, λ) defined

in (3.26). The projections P−
κi

and P+
κi−1

converge to the projection Pκi
, that is

lim
t→−∞

‖P−
κi
(λ, t)− Pκi

‖ = 0, lim
t→∞

‖P+
κi−1

(λ, t)− (id− Pκi
)‖ = 0. (3.29)

Therefore we find c, Ω such that for all ωi > Ω and all |λ| < c we have ‖P−
κi
(λ,−ωi)− Pκi

‖ ≤ 1/(4M̃κi
)

and ‖P+
κi−1

(λ, ωi)− (id− Pκi
)‖ ≤ 1/(4M̃κi

). For each ωi > Ω we define

Sκi
(λ, ωi) := P−

κi
(λ,−ωi)Pκi

+ P+
κi−1

(λ, ωi)(id− Pκi
). (3.30)
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This mapping is invertible since

Sκi
(λ, ωi) = id−

[

(id− P−
κi
(λ,−ωi))Pκi

+ (id− P+
κi−1

(λ, ωi))(id− Pκi
)
]

where

‖(id− P−
κi
(λ,−ωi))Pκi

‖+ ‖(id− P+
κi−1

(λ, ωi))(id− Pκi
)‖ ≤ 1/2.

Therefore it follows that ‖Sκi
(λ, ωi)‖, ‖Sκi

(λ, ωi)
−1‖ ≤ 2.

Now we define

P̃κi
(λ, ω) := Sκi

(λ, ω)(id− Pκi
)Sκi

(λ, ω)−1 (3.31)

and show that P̃κi
is the claimed projection. It is obvious that P̃ 2

κi
= P̃κi

so P̃κi
is clearly a projection.

From P̃κi
(λ, ωi)Sκi

(λ, ωi) = Sκi
(λ, ωi)(id− Pκi

) = P+
κi−1

(λ, ωi)(id− Pκi
) we conclude that

imP̃κi
(λ, ωi) = imP+

κi−1
(λ, ωi)(id− Pκi

) = imP+
κi−1

(λ, ωi). (3.32)

The last equality in (3.32) is due to (3.29) since P+
κi−1

(λ, ωi) is injective on im(id − Pκi
) for ωi > Ω

sufficiently large and both projections P+
κi−1

(λ, ωi) and (id − Pκi
) have the same dimension. Analogous

we find from (id− P̃κi
(λ, ωi))Sκi

(λ, ωi) = Sκi
(λ, ωi)Pκi

= P−
κi
(λ,−ωi)Pκi

that

im(id− P̃κi
(λ, ωi)) = imP−

κi
(λ,−ωi)Pκi

= imP−
κi
(λ,−ωi).

Finally we gain from (3.31)

‖P̃κi
(λ, ωi)‖ ≤ 4‖id− Pκi

‖ ≤ 4M̃κi
and ‖id− P̃κi

(λ, ωi)‖ ≤ 4‖Pκi
‖ ≤ 4M̃κi

which concludes the proof.

Remark 3.3.3. The inverse Sκi
(λ, ωi)

−1 is given by the Neumann-Series

S−1
κi

(λ, ωi) =

∞∑

k=0

[

(id− P−
κi
(λ,−ωi))Pκi

+ (id− P+
κi−1

(λ, ωi))(id− Pκi
)
]k

. (3.33)

Before we begin to prove the Lemmata 3.2.4, 3.2.5 and 3.2.6 from the latest section we want to introduce

an abridging notation we often use throughout the following considerations.

Definition 3.3.4. For any x = (x+
i , x

−
i )i∈Z ∈ Vω we define

x±,s
i (t) := (id− P±

κi
(t))x±

i (t);

x±,u
i (t) := P±

κi
(t)x±

i (t).

3.3.1 Proof of Lemma 3.2.4

Now that all necessary prearrangements are made we can focus on the proof of Lin’s method. In the

first step we solve the boundary value problem ((3.15),(3.13)). But instead of v+i (ωi+1)− v−i+1(−ωi+1) =

di+1(ωi+1, λ) we introduce a ∈ l∞
Rn to handle this coupling condition. To this end we define for any a

a+i (λ, ωi, κi−1) := P+
κi−1

(λ, ωi)ai;

a−i (λ,−ωi, κi) := P−
κi
(λ,−ωi)ai.

76



3.3 Existence and Uniqueness of Lin trajectories - the proofs

Then condition (i) in Lemma 3.2.4 tells that

P+
κi−1

(λ, ωi)v
+
i−1(λ,g,a)(ωi) = a+i (λ, ωi, κi−1);

P−
κi
(λ,−ωi)v

−
i (λ,g,a)(−ωi) = a−i (λ,−ωi, κi).

}

(3.34)

Proof of Lemma 3.2.4. We follow along the lines of the proof of Lemma 2.1.5 and Lemma 3.2.3 in [Kno04].

We start with the proof of the existence and uniqueness of v±i and hence of vω. To solve equation (3.15)

we use variation of constant formula

v+i (t) = Φ+
κi
(λ)(t, 0)v+i (0) +

t∫

0

Φ+
κi
(λ)(t, s)g+i (s)ds,

v−i (t) = Φ−
κi
(λ)(t, 0)v−i (0)−

0∫

t

Φ−
κi
(λ)(t, s)g−i (s)ds.







(3.35)

Now we put t equal to ωi+1 in the equation for v+i , while we set t = −ωi in the equation for v−i . Then we

multiply these equations with Φ+
κi
(λ)(0, ωi+1) or Φ

−
κi
(λ)(0,−ωi) and apply P+

κi
(0) or P−

κi
(0), respectively.

This leads to

P+
κi
(λ, 0)v+i (0) = Φ+

κi
(λ)(0, ωi+1)P

+
κi
(λ, ωi+1)v

+
i (ωi+1)

︸ ︷︷ ︸

a+i+1

−
ωi+1∫

0

Φ+
κi
(λ)(0, s)P+

κi
(λ, s)g+i (s)ds,

P−
κi
(λ, 0)v−i (0) = Φ−

κi
(λ)(0,−ωi)P

−
κi
(λ,−ωi)v

−
i (−ωi)

︸ ︷︷ ︸

a−i

+
0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)g−i (s)ds.







(3.36)

In view of the statements (ii) and (iii) in Lemma 3.2.4 we set

v+i (0) = w+
i + w−

i + z+i and v−i (0) = w+
i + w−

i + z−i

with w+
i + w−

i ∈ W+
κi

⊕ W−
κi

and z+i , z
−
i ∈ Zκi

. Plugging this into (3.36) we find that the left-hand

side of (3.36) can be considered as a linear mapping L depending on λ from l∞((W+⊕W−)×Z×Z) into

l∞(W−⊕Z)×(W+⊕Z). Indeed these equations are decoupled over i, so let Li be the part of L that acts on

the ith equation.

If we accept for a moment, that Li and thus L is bijective, then we can solve (3.36) for (v+i (0), v
−
i (0))

depending on (λ, g+i , g
−
i , a

+
i+1, a

−
i ). Putting this into (3.35) gives our solution vω satisfying (i)-(iii). We

remark that the v±i do not depend on the entire sequence a and κ but only on a+i+1, a
−
i and κi:

v±i = v±ω,i(λ, κi,g, (a
+
i+1, a

−
i )). (3.37)

In [Kno04] the bijectivity of Li is formally proven. However, for our purposes it is useful to solve (3.36)

explicitly for v+i (0) and v−i (0), as we will see later, when estimating the jump ξi(ω, λ, κ). To this end we

introduce a projection Fκi
with

imFκi
= Uκi

⊕ Zκi
, kerFκi

= W+
κi

⊕W−
κi
. (3.38)

Note that Fκi
is independent of λ. We further make use of Hypothesis (H3.4) and the corresponding

Remark 3.1.2, which states that W+
κi

⊂ Tγ+
κi

(0)W
s(p) and W−

κi
⊂ Tγ−

κi
(0)W

s(p). This together with the
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definition (3.17) of P±
κi

gives

P+
κi
(λ, 0)v+i (0) = w−

i + z+i and P−
κi
(λ, 0)v−i (0) = w+

i + z−i

and finally

(id− Fκi
)P−
κi
(λ, 0)v−i (0) = w+

i and (id− Fκi
)P+
κi
(λ, 0)v+i (0) = w−

i .

Summarizing this leads to

v+i (0) = P+
κi
(λ, 0)v+i (0) + (id− Fκi

)P−
κi
(λ, 0)v−i (0),

v−i (0) = P−
κi
(λ, 0)v−i (0) + (id− Fκi

)P+
κi
(λ, 0)v+i (0).






(3.39)

Proof of the smoothness: The linearity of vω on (g,a) is obvious by the construction. Hence the

differentiability of vω with respect to (g,a) follows from the estimate (3.45) below.

All Li depend smoothly on λ. So the differentiability of v±i (. . .)(0) with respect to λ follows from the

differentiability of Li and P±
κi

with respect to λ, see Lemma 3.3.1. Hence the differentiability of v±i (. . .)(t)

follows from (3.35).

Proof of estimate (3.19): From equation (3.36) we find by exploiting exponential dichotomies (3.16) that

there are constants K and β+
κi
, α−

κi
allowing the estimate

‖P+
κi
(λ, t))v+i (t)‖ ≤ Ke−β

+
κi

(ωi+1−t)‖a+i+1‖+K
ωi+1∫

t

eβ
+
κi

(t−s)‖g+,ui (s)‖ds;

‖P−
κi
(λ, t)v−i (t)‖ ≤ Ke−α

−
κi

(ωi+t)‖a−i ‖+K
t∫

−ωi

e−α
−
κi

(t−s)‖g−,ui (s)‖ds.







(3.40)

Now, (id − P+
κi
(λ, ωi+1))v

+
i (ωi+1) and (id − P−

κi
(λ, ωi))v

−
i (ωi) can be written by means of the variation

of constants formula (3.35) by applying the projections (id− P±
κi
)

(id− P+
κi
(t))v+i (t) = Φ+

κi
(λ)(t, 0)(id− P+

κi
(0))v+i (0) +

t∫

0

Φ+
κi
(λ)(t, s)(id− P+

κi
(s))g+i (s)ds,

(id− P−
κi
(t))v−i (t) = Φ−

κi
(λ)(t, 0)(id− P−

κi
(0))v−i (0)−

0∫

t

Φ−
κi
(λ)(t, s)(id− P−

κi
(s))g−i (s)ds.







(3.41)

Again exploiting exponential dichotomies (3.16) by additionally using the decomposition of v±κi
(0) given

in equation (3.39) combined with the above estimate (3.40) of P±
κi
v±κi

at t = 0 we find the estimate

‖(id− P+
κi
(λ, t))v+i (t)‖ ≤ KLe−α

+
κi
t‖P−

κi
(λ, 0)v−i (0)‖+K

t∫

0

e−α
+
κi

(t−s)‖g+,si (s)‖ds

≤ KLe−α
+
κi
t

[

Ke−α
−
κi
ωi‖a−i ‖+K

0∫

−ωi

eα
−
κi
s‖g−,ui (s)‖ds

]

+K
t∫

0

e−α
+
κi

(t−s)‖g+,si (s)‖ds

‖(id− P−
κi
(λ, t))v−i (t)‖ ≤ KLeβ

−
κi
t‖P+

κi
(λ, 0)v+i (0)‖+K

0∫

t

eβ
−
κi

(t−s)‖g−,si (s)‖ds

≤ KLeβ
−
κi
t

[

Ke−β
+
κi
ωi+1‖a+i+1‖+K

ωi+1∫

0

e−β
+
κi
s‖g+,ui (s)‖ds

]

+K
0∫

t

eβ
−
κi

(t−s)‖g−,si (s)‖ds







(3.42)
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We will come back to the estimates (3.40) and (3.42) when it comes to estimating the jump ξi(ω, λ, κ).

In order to go on with the proof of Lin’s method it suffices to use the following rougher estimates

‖P+
κi
(λ)v+i ‖ ≤ K‖a+i+1‖+M‖g+,ui ‖;

‖P−
κi
(λ)v−i ‖ ≤ K‖a−i ‖+M‖g−,ui ‖;






(3.43)

which follow from (3.40) and

‖(id− P+
κi
(λ))v+i ‖ ≤ KL

[

Ke−α
−
κi
ωi‖a−i ‖+M‖g−,ui ‖

]

+M‖g+,si ‖;

‖(id− P−
κi
(λ))v−i ‖ ≤ KL

[

Ke−β
+
κi
ωi+1‖a+i+1‖+M‖g+,ui ‖

]

+M‖g−,si ‖;







(3.44)

which follow from (3.42). Combining (3.43) and (3.44) finally leads to

‖v+i ‖, ‖v−i ‖ ≤ K̃(‖a−i ‖+ ‖a+i+1‖) + M̃(‖g−i ‖+ ‖g+i ‖). (3.45)

Further we find from (3.40) and (3.42) the estimate

‖v±i (0)‖ ≤ K̃eαΩ(‖a−i ‖+ ‖a+i+1‖) + M̃(‖g−i ‖+ ‖g+i ‖) (3.46)

for some α < 0.

3.3.2 Proof of Lemma 3.2.5

In the following we use the device a to integrate the coupling condition v+i (ωi+1) − v−i+1(−ωi+1) =

di+1(ωi+1, λ).

Proof of Lemma 3.2.5. We follow along the lines of the proof of Lemma 2.1.6 and Lemma 3.2.5 in [Kno04].

We show that for a given d there is an a such that vω(λ, κ,g,a) satisfies

v+i−1(λ, κ,g,a)(ωi)− v−i (λ, κ,g,a)(−ωi) = di, i ∈ Z. (3.47)

Therefore a is defined by a system consisting of (3.47) and (3.34). Combining these equations leads to

a+i − a−i = di − (id− P+
κi−1

(λ, ωi))v
+
i−1(. . .)(ωi) + (id− P−

κi
(λ,−ωi))v

−
i (. . .)(−ωi).

Now, using projection P̃κi
defined in Lemma 3.3.2 we get

a+i = P̃κi

(

di − (id− P+
κi−1

(λ, ωi))v
+
i−1(. . .)(ωi) + (id− P−

κi
(λ,−ωi))v

−
i (. . .)(−ωi)

)

,

a−i = −(id− P̃κi
)
(

di − (id− P+
κi−1

(λ, ωi))v
+
i−1(. . .)(ωi) + (id− P−

κi
(λ,−ωi))v

−
i (. . .)(−ωi)

)







(3.48)

which yields the fixed point equation for a:

ai = (2P̃κi
− id)

(

di − (id− P+
κi−1

(λ, ωi))v
+
i−1(. . . ,a)(ωi) + (id− P−

κi
(λ,−ωi))v

−
i (. . . ,a)(−ωi)

)

. (3.49)

Note that (id − P+
κi−1

)v+i−1 + (id − P−
κi
)v−i depend linearly on (g,a) - cf. Lemma 3.2.4. Hence the fixed
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point equation (3.49) can be rewritten in the form

a = L1(λ, κ)a+ L2(λ, κ)g+ L3(λ, κ)d (3.50)

where Lj(λ, κ)(·), j = 1, 2, 3 are linear operators depending on (λ, κ). The estimate (3.44) ensures,

that Ω can be chosen large enough such that for sufficiently small λ the linear operator (id − L1) is

invertible. Thus (3.50) can be solved for a = âω(λ, κ,g,d) and the mapping âω depends linearly on

(g,d). Altogether we have

v̂ω(λ, κ,g,d) = vω(λ, κ,g, âω(λ, κ,g,d)). (3.51)

Due to (3.48) we find that a±i do not depend on the entire sequence d and κ but only on di and κi−1, κi:

a±i = â±ω,i(λ, (κi−1, κi),g, di). (3.52)

Proof of the smoothness: The smoothness of v̂ω with respect to (g,d) again follows from the linear

dependence on these variables and estimate (3.21), which we prove below. The differentiability of âω

with respect to λ is obvious and with the result of Lemma 3.2.4 it passes on to v̂ω.

Proof of estimate (3.21): We have shown that v̂±i (λ, κ,g,d) = v±i (λ, κ,g, âω(λ, κ,g,d)). Therefore

estimate (3.19) provides

‖v̂ω‖Vω
≤ Ĉ1(‖âω‖l∞

Rn
+ ‖g‖Vω

).

Further, from equation (3.50) we gain the estimate ‖âω‖l∞
Rn

≤ Ĉ2(‖d‖l∞
Rn

+ ‖g‖Vω
) which finally leads to

the claimed estimate (3.21).

3.3.3 Proof of Lemma 3.2.6

Eventually we can deal with the nonlinear boundary value problem ((3.12),(3.13)). To this end we first

define the following Nemyzki operators

Definition 3.3.5. Let

H+
i : C([0, ωi+1],Rn)× Rd × ΣC → C([0, ωi+1],Rn),

H−
i : C([−ωi, 0],Rn)× Rd × ΣC → C([−ωi, 0],Rn),

be the Nemyzki operators where

H±
i (v, λ, κ)(t) := h±

κi
(t, v(t), λ).

Further we set H := (H+
i , H

−
i )i∈Z. More precisely

H : Vω × Rd × ΣC → Vω

(v, λ, κ) 7→ (H+
i (v

+
i , λ, κ), H

−
i (v−i , λ, κ))i∈Z.

Lemma 3.3.6. H+
i and H−

i are smooth mappings in (v, λ). Moreover

(
D1H

±
i (v, λ, κ)w

)
(t) := D2h

±
κi
(t, v(t), λ)w(t).

Proof. The proof is based on the proof of Lemma 3.2.7 in [Kno04]. We will show the proof exemplarily
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for H+
i . Invoking the mean-value-theorem gives

‖H+
i (v + w, λ, κ)−H+

i (v, λ, κ)−D2h
+
κi
(·, v(·), λ)w(·)‖ 1

‖w‖

= sup
t∈[0,ωi+1]

‖h+
κi
(t, (v + w)(t), λ)− h+

κi
(t, v(t), λ)−D2h

+
κi
(t, v(t), λ)w(t)‖ 1

‖w‖

≤ sup
t∈[0,ωi+1]

1∫

0

‖D2h
+
κi
(t, v(t) + τw(t), λ)−D2h

+
κi
(t, v(t), λ)‖ → 0

as ‖w‖ tends to zero. This proves the differentiability with respect to v. Since D2h
+
κi

is continuous with

respect to v also D1H
±
i is continuous with respect to v. The existence of higher derivatives can be proven

analogously. The differentiability with respect to λ follows from the differentiability of h±
κi

with respect

to λ.

The smoothness of H±
i passes on to H because the H±

i are defined by means of the same h±
κi

and depend

only on vi and not on the entire sequence v. Hence we find D1H = (D1H
+
i , D1H

−
i )i∈Z, where

D1H(v, λ, κ)w = (D1H
+
i (v

+
i (t), λ, κ)w

+
i (t), D1H

−
i (v

−
i (t), λ, κ)w

−
i (t))i∈Z.

Then D1H is continuous with respect to v since for all i ∈ Z D1H
±
i are continuous with respect to v±i .

Now, we can rewrite the boundary value problem ((3.12),(3.13)) into the fixed point problem

v = v̂ω(λ,H(v, λ, κ),d(ω, λ, κ)) =: Fω(v, λ, κ). (3.53)

The mapping d is smooth in λ. Together with the smoothness of v̂ω and H it follows that Fω is smooth

in (v, λ).

Proof of Lemma 3.2.6. We follow along the lines of the proof of Lemma 2.1.7 and Lemma 3.2.10 in

[Kno04]. The proof will be given by means of the Banach fixed point theorem. First we show that there

is a Fω(·, λ, κ) invariant closed neighbourhood of 0 ∈ Vω. Due to estimate (3.21) we find as an immediate

consequence that

‖Fω‖Vω
≤ Ĉ(‖d‖l∞

Rn
+ ‖H‖Vω

). (3.54)

From the definition of h±
κi
, cf. (3.14), we see that H(0, λ, κ) = 0. Therefore we obtain an estimate of

‖H‖Vω
by using the mean value theorem:

‖H(v, λ, κ)‖Vω
≤

1∫

0

‖D1H(τv, λ, κ)‖Vω
dτ‖v‖Vω

.

Looking at Lemma 3.3.6 and the property D2h
±
κi
(t, 0, λ) ≡ 0 we find that D1H(0, λ, κ) = 0. Hence there

is an ε such that for ‖v‖Vω
, ‖λ‖ < ε it holds

‖D1H(τv, λ, κ)‖Vω
≤ (2Ĉ)−1 (3.55)

and thus

‖H(v, λ, κ)‖Vω
≤ ε

2Ĉ
.

Now, let Ω be the constant corresponding to Lemma 3.3.2. Then there is an Ω̃ > Ω such that for all

ω > Ω̃ we have ‖γκi
(ω) − γκi+1

(−ω)‖ ≤ ε/(6Ĉ). By construction of γ±
κi

we know that γ±
κi
(λ)(t) →

γκi
(t) uniformly in t ∈ R± as λ → 0. Therefore we find an ε̄ < ε such that for all ‖λ‖ < ε̄ it holds
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‖γ±
κi
(λ)(±ω) − γκi

(±ω)‖ ≤ ε/(6Ĉ). Hence for ‖λ‖ < ε̄ and ω with ωi > Ω̃ we find with (3.13) that the

norm of d can be estimated with

‖d‖l∞
Rn

≤ ε

2Ĉ
.

Altogether (3.54) says that for ‖λ‖ < ε̄ =: c and ω with ωi > Ω̃ the mapping Fω leaves the ball

B[0, ε] ⊂ Vω invariant.

Further for these variables we have, cf. (3.53) in combination with (3.55) and (3.21)

‖D1Fω(v, λ, κ)‖Vω
≤ ‖D2v̂ω(. . .)‖Vω

· ‖D1H(. . .)‖Vω
< Ĉ

1

2Ĉ
=

1

2
.

So we see by invoking the mean value theorem that Fω is a contraction on B[0, ε]. Hence the existence

and uniqueness follows by the Banach fixed point theorem.

This concludes the proof of Theorem 3.2.2 about the existence and uniqueness of the Lin trajectories.

3.4 The jump Ξ(ω, λ, κ)

Summarising, Lin’s method provides for a given sequence κ and a sequence ω := (ωi)i∈Z of sufficiently

large transition times a unique Lin trajectory (Xi(ω, λ, κ))i∈Z with

Xi(t) :=







x+
i−1(t), t ∈ [0, ωi]

x−
i (t− 2ωi), t ∈ [ωi, 2ωi]

, (3.56)

that is a piecewise continuous solutions of (3.1) which shadows the pathway of the heteroclinic chain Γκ.

Now, to gain an actual, that is a continuous solution of (3.1) each single jump

Ξi(ω, λ, κ) := x+
i (ω, λ, κ)(0)− x−

i (ω, λ, κ)(0),

has to be equal to zero. Therefore, in order to obtain statements about the nonwandering dynamics

in the neighbourhood of the heteroclinic network, one has to discuss the solvability of the system of

determination equations Ξ(ω, λ, κ) = 0 in dependence on the sequences κ and the sign of λ.

Thanks to the idea of Sandstede, cf. [San93], we know that Ξ consists of two components: ξ∞κi
which

only depend on λ and ξi(ω, λ, κ) that decreases exponentially when ω tends to infinity. This is due to

the partition (3.11) of x±
i into γ±

κi
and v±i which yields

Ξi(ω, λ, κ) = γ+
κi
(λ)(0)− γ−

κi
(λ)(0)

︸ ︷︷ ︸
+ v+i (ω, λ, κ)(0)− v−i (ω, λ, κ)(0)

︸ ︷︷ ︸

= ξ∞κi
(λ) + ξi(ω, λ, κ).







(3.57)

Within this section we want to take a first look at these two components, as far as it is possible in the

broader context of heteroclinic chains. First we consider ξ∞κi
(λ) in Section 3.4.1, before we are looking

at the estimates of the jump ξi, i ∈ Z. To this end we derive a suitable representation of ξi(ω, λ, κ) in

Section 3.4.2, as it can be found in [Kno04]. Afterwards we present estimates for the individual terms

appearing in the representation. Explicit expressions of some of the terms we will present in Section 4 in

case of G-symmetric homoclinic networks.
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3.4.1 Melnikov integral - ξ∞κi
(λ)

Lemma 3.1.1 provides solutions γ±
κi
(λ)(·) of (3.1) close to γκi

situated within the stable manifoldW s(pi+1)

or the unstable manifold Wu(pi), respectively. Since ξ∞κi
(λ) is defined as

ξ∞κi
(λ) := γ+

κi
(λ)(0)− γ−

κi
(λ)(0)

it measures the distance of the stable and unstable manifold and is due to Lemma 3.1.1 situated within

the one-dimensional subspace Zi. In the following we show, how this information is used in solving the

determination equations Ξ(ω, λ, κ) = 0.

To this end we consider ẋ = f(x, λ) having for λ = λ0 a single heteroklinic trajectory γ connecting two

hyperbolic equilibria p− and p+. In accordance with Hypothesis (H3.1) we demand

(P3.2).

(i) lim
t→∞

γ(t) = p+ and lim
t→−∞

γ(t) = p−,

(ii) dim(Tγ(0)W
u(p−) ∩ Tγ(0)W

s(p+)) = 1,

(iii) dimTγ(0)W
u(p−) + dimTγ(0)W

s(p+) = n.

Due to (iii) and (ii) the intersection of the unstable manifold Wu(p−) of the equilibrium p− and the

stable manifold W s(p+) of p+ cannot be transversal. Indeed we have

dim
(
Tγ(0)W

u(p−) + Tγ(0)W
s(p+)

)
= n− 1

With Z := (Tγ(0)W
s(p+)+Tγ(0)W

u(p−))⊥ we find an one-dimensional subspace that not only complement

the tangent spaces of the manifolds to the whole phase-space. Additionally we have for all ψ ∈ Z that

Ψ(t, 0)ψ is a bounded solution of ẋ = −[D1f(γ(t), λ0)]
Tx for all t ∈ R, cf. Lemma 2.2.6. Here again

Ψ(·, ·) denotes the transition matrix of the adjoint variational equation ẋ = −[D1f(γ(t), λ0)]
Tx.

Analogously to the considerations in Section 2.6 we then generically find the heteroclinic trajectory to exist

at an isolated parameter value λ = λ0 within a family of differential equations ẋ = f(x, λ), with λ ∈ R.

This again can be explained by the transversal intersection of the manifolds Ws :=
⋃

λ

W s(p+(λ))× {λ}
and Wu :=

⋃

λ

Wu(p−(λ))× {λ}, cf. (2.55), of the extended differential equation

ẋ = f(x, λ)

λ̇ = 0

}

(3.58)

within the product space Rn × R. Here p+(λ) and p−(λ) denote the families of saddle points for λ close

to λ0 with p±(λ0) = p±. Recall Figure 2.2 in case of a homoclinic trajectory in R2 × R.

Hence for the generic case we demand:

(P3.3). The heteroclinic trajectory γ splits up with non-zero speed.

As well as for homoclinic trajectories we mean by this the existence of a scalar split function d : R → R,

λ 7→ d(λ) that measures the displacement of the stable and unstable manifoldsW s(p+(λ)) andWu(p−(λ))

near γ for λ close to λ0, that satisfies d
′(λ)|λ0

6= 0, cf. Definition 2.6.3.
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Indeed an appropriate split function d can be defined by

d(λ) := 〈ψ, γ+(λ)(0)− γ−(λ)(0)〉 (3.59)

where ψ ∈ Z, ‖ψ‖ = 1 and γ±(λ)(·) are the unique solutions of ẋ = f(x, λ) which are close to γ, satisfying

• lim
t→±∞

γ±(λ)(t) = p±(λ),

• γ±(λ)(0) ∈ γ(0) + [f(γ(0), 0)]⊥,

• γ+(λ)(0)− γ−(λ)(0) ∈ Z.

Note, that with this we are in the context of Lemma 3.1.1. Hence we find ξ∞(λ) = d(λ)ψ.

The first derivative of the split function (3.59) in λ = λ0, d
′(λ)|λ0

, is known as the Melnikov integral M,

cf. [HomSan10, Kr11], and has the following form, cf. [GuHo83, Kuz04],

d′(λ)|λ0
= M :=

∞∫

−∞

〈Ψ(λ0)(t, 0)ψ,Dλf(γ(t), λ0)〉dt. (3.60)

Then the following theorem applies.

Theorem 3.4.1 ([Kuz04], p.230). Let γ be a heteroclinic trajectory existing at an isolated parameter value

λ = λ0 ∈ R within a family of differential equations ẋ = f(x, λ) that satisfies (P3.2). The manifolds Ws

and Wu of the extended differential equation (3.58) intersect transversally if and only if the Melnikov

integral (3.60) is different from zero.

Indeed the assertion in [Kuz04] was only made in context of homoclinic trajectories but it also holds true

for heteroclinic trajectories.

So, if we assume a heteroclinic trajectory γ to satisfy Properties (P3.2) and (P3.3), the geometrical

consequence is that we find the generic case of the splitting up of the heteroclinic trajectory, due to

the transversal intersection of Ws and Wu. Analytically this means with d′(λ)|λ0
6= 0 that due to the

inverse-function-theorem the scalar split function (3.59) is invertible for all λ sufficiently close to λ0.

Hence we can reparameterize the system with the parameter d and obtain for the jump:

ξ∞κi
(d) = ξ∞κi

(λ(d)) = dψ.

The considerations above show that in a generic system one real parameter is needed to describe the

splitting up of a single heteroclinic connection satisfying (P3.2) and (P3.3). This parameter can be

chosen that way, that it measures the distance of the stable and unstable manifold. Hence in a generic

system holding k different heteroclinic trajectories it takes k different real parameters. That is, in the

case of the heteroclinic network Γ, declared in Hypothesis (H3.1), the dimension of the parameter space

would in general be at least as large as the number of the different heteroclinic trajectories the network

consists of. Thereby each term 〈ξ∞i , ψi〉 can be interpreted as one component of the parameter λ ∈ Rd

for each heteroclinic trajectory γi that splits up with non-zero speed.
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3.4.2 Representation of the jump ξi(ω, λ, κ)

Here we focus on the second component of the jump. First we present a suitable representation of ξi as

it can also be found in [Kno04]. In accordance with (3.57) we have

ξi(ω, λ, κ) = v+i (ω, λ, κ)(0)− v−i (ω, λ, κ)(0). (3.61)

We decompose v+i (ω, λ, κ)(0) and v−i (ω, λ, κ)(0) by means of the projections P+
κi
(λ, 0) and P−

κi
(λ, 0),

respectively, cf. (3.17). Indeed, due to Hypothesis (H3.4), this is the same as the decomposition of

v+i (ω, λ, κ)(0) in its components of (W−
κi
⊕Zκi

) and W+
κi

and similarly the decomposition of v−i (ω, λ, κ)(0)

in its components of (W+
κi

⊕ Zκi
) and W−

κi
.

Now, recall that in our case Zκi
is one-dimensional and denote by ψκi

a normal vector with span{ψκi
} =

Zκi
. Recall further from the introduction (cf. (1.11)) that we choose the directions of ψj , j ∈ Z, such

that 〈 lim
t→∞

γj(t)−pj+1

‖γj(t)−pj+1‖ , lim
t→−∞

ψj(t)
‖ψj(t)‖ 〉 < 0. Then ξi can be written as

ξi(ω, λ, κ) = 〈ψκi
, ξi(ω, λ, κ)〉ψκi

. (3.62)

Since Zκi
is orthogonal to W+

κi
and W−

κi
the decompositions described above yield

〈ψκi
, ξi(ω, λ, κ)〉 =

〈
ψκi

, P+
κi
(λ, 0)v+i (ω, λ, κ)(0)

〉
−
〈
ψκi

, P−
κi
(λ, 0)v−i (ω, λ, κ)(0)

〉
. (3.63)

The addends on the right-hand side we denote by

T 1

κi
:=

〈
ψκi

, P+
κi
(λ, 0)v+i (ω, λ, κ)(0)

〉
and T 2

κi
:= −

〈
ψκi

, P−
κi
(λ, 0)v−i (ω, λ, κ)(0)

〉
. (3.64)

Next we derive appropriate representations of T 1

κi
and T 2

κi
. We will do this exemplarily for T 1

κi
. Due to

(3.36) we have

P+
κi
(λ, 0)v+i (ω, λ, κ)(0) = Φ+

κi
(λ)(0, ωi+1)P

+
κi
(λ, ωi+1)a

+
i+1

−
ωi+1∫

0

Φ+
κi
(λ)(0, s)P+

κi
(λ, s)h+

κi
(s, v+i (ω, λ, κ)(s), λ)ds.

Here we substitute a+i+1, cf. (3.48) with di given in the first equation in (3.13), by using

a+i+1 = P̃κi+1
(λ, ωi+1)

[

γ−
κi+1

(λ)(−ωi+1)− γ+
κi
(λ)(ωi+1)− (id− P+

κi
(λ, ωi+1))v

+
i (ω, λ, κ)(ωi+1)

+(id− P−
κi+1

(λ,−ωi+1))v
−
i+1(ω, λ, κ)(−ωi+1)

]

.
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Recalling that α(γ−
κi+1

) = ω(γ+
κi
) = pκi+1

and taking the scalar product with ψκi
leads to

T 1

κi
=

〈
ψκi

, P+
κi
(λ, 0)v+i (ω, λ, κ)(0)

〉
=

〈

Φ+
κi
(λ)(0, ωi+1)

TP+
κi
(λ, 0)Tψκi

, P̃κi+1
(λ, ωi+1)

[(
γ−
κi+1

(λ)(−ωi+1)− pκi+1

)
−

(
γ+
κi
(λ)(ωi+1)− pκi+1

)

+ (id− P−
κi+1

(λ,−ωi+1))v
−
i+1(ω, λ, κ)(−ωi+1)

− (id− P+
κi
(λ, ωi+1))v

+
i (ω, λ, κ)(ωi+1)

]〉

−
〈

ψκi
,
ωi+1∫

0

Φ+
κi
(λ)(0, s)P+

κi
(λ, s)h+

κi
(s, v+i (ω, λ, κ)(s), λ)ds

〉

.

Thereby we denote the adjoint of A with respect to 〈·, ·〉 by AT and we take into consideration that Φ±

and P± commute.

We get a similar expression for T 2

κi
= −〈ψκi

, P−
κi
(λ, 0)v−i (ω, λ, κ)(0)〉 by following the same lines. Even-

tually we plug these expressions into (3.63) and finally obtain:

〈ψκi
, ξi(ω, λ, κ)〉 = T 1

κi
+ T 2

κi
=

〈

Φ+
κi
(λ)(0, ωi+1)

TP+
κi
(λ, 0)Tψκi

, P̃κi+1
(λ, ωi+1)

[(
γ−
κi+1

(λ)(−ωi+1)− pκi+1

)

−
(
γ+
κi
(λ)(ωi+1)− pκi+1

)

+(id− P−
κi+1

(λ,−ωi+1))v
−
i+1(ω, λ, κ)(−ωi+1)

−(id− P+
κi
(λ, ωi+1))v

+
i (ω, λ, κ)(ωi+1)

]〉

−
〈

ψκi
,
ωi+1∫

0

Φ+
κi
(λ)(0, s)P+

κi
(λ, s)h+

κi
(s, v+i (ω, λ, κ)(s), λ)ds

〉

−
〈

Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

, (id− P̃κi
(λ, ωi))

[(
γ+
κi−1

(λ)(ωi)− pκi

)

−
(
γ−
κi
(λ)(−ωi)− pκi

)

+(id− P+
κi−1

(λ, ωi))v
+
i−1(ω, λ, κ)(ωi)

−(id− P−
κi
(λ,−ωi))v

−
i (ω, λ, κ)(−ωi)

]〉

−
〈

ψκi
,

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)h−

κi
(s, v−i (ω, λ)(s), λ, κ)ds

〉

.







(3.65)

Note that the first two summand on the right-hand side of (3.65) arise from T 1

κi
while the remaining two

arise from T 2

κi
.

Within the following sections we derive suitable estimates of the single components of the above repre-

sentation of the jump. To this end we introduce for all hyperbolic equilibria pκi
the constants αs and αu

such that

Re(µκi
(λ)) < αs(κi) < 0 < αu(κi) < Re(µ̃κi

(λ)) (3.66)

for all µκi
(λ) ∈ σs(D1f(pκi

, λ)) and µ̃κi
(λ) ∈ σu(D1f(pκi

, λ)). For the sake of convenience we will spare

the dependency on κi in the notations. The context will show which αs/u we are talking about. This can

be seen on the one hand due to the equilibrium we focus on and on the other hand due to the index of

the transition time. The index i of ωi correspond to the equilibrium pκi
and hence to αs/u(κi).
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Further we introduce the constant ν ∈ N as follows:

Definition 3.4.2. For all i ∈ Z we define the constant ν = ν(i) ∈ N, ν ≥ 2 such that for all

k ∈ {0, . . . , ν − 1} \ {1} it holds Dk
1f(pκi

, λ) = 0 and Dν
1f(pκi

, λ) 6= 0.

For the same reasoning as above in case of αs/u we omit the dependency on i in the notations.

Since pκi
is a hyperbolic equilibrium of the vector field f , that is f(pκi

(λ), λ) = 0 and D1f(pκi
(λ), λ) 6= 0,

we find in general ν = 2. For ν > 2 Definition 3.4.2 demands the vanishing of the derivatives of the vector

field f at the equilibrium point pκi
from the second up to the (ν − 1)th order. When estimating the

jump ξi(ω, λ, κ) we need to distinguish different cases characterised by the value of ν since it effects the

convergence rates of some terms in the representation of the jump (3.65). Note that the vanishing of the

derivatives of the vector field may be caused by symmetry. In this regard we refer to Section 4.1, where

we introduce symmetric vector fields, and to Section 5 where we consider D4m-symmetric vector fields in

R4 containing a homoclinic cycle. Due to the geometric setting introduced in 5.1 we find ν = 3.

Now we continue in the following way. At first we see to the projections P̃κi
, P+

κi
and P−

κi
. Especially we

are interested in the impact on their composition. Based on these results we estimate all those terms of

(3.65) containing γ±
κi
. Then we see to the remaining terms, that is we estimate the v±i and the integral

terms. Finally we summarise the results we gained so far.

3.4.3 Basic estimates of the projections

Looking at the representation of the jump ξi in (3.65) we find in most scalar products on the right hand

side a composition of the projections P̃ or (id − P̃ ) and one of the projections (id − P+) or (id − P−),

respectively. Since the image of P̃κi
(ωi) is equal to the image of P+

κi−1
(ωi) and the kernel of P̃κi

(ωi) is

equal to the kernel of P−
κi
(−ωi) it is to be expected that the compositions P̃κi

(ωi)(id − P+
κi−1

(ωi)) and

(id − P̃κi
(ωi))(id − P−

κi
(−ωi)) will become very small. In the following we examine these compositions

more closely. Thereby we omit the dependency on λ in our notation.

Lemma 3.4.3. Assume Hypotheses (H3.1)-(H3.6). Let P±
κi

be the projections associated with the ex-

ponential dichotomies of the variational equation (3.8) along γ±
κi
(λ)(·) as introduced in (3.17) and let

P̃κi
be the projection introduced in Lemma 3.3.2. Then there exist constants Ω and c in accordance to

Theorem 3.2.2 such that for all ‖λ‖ < c and ω with inf ω > Ω the following estimates apply:

‖P̃κi
(ωi)(id− P−

κi
(−ωi))− P+

κi−1
(ωi)(id− P−

κi
(−ωi))‖ = O(emax{ναs,αs−αu}ωi)

‖P̃κi
(ωi)(id− P+

κi−1
(ωi))‖ = O(e1/2(αs−αu)ωi)

‖(id− P̃κi
(ωi))(id− P−

κi
(−ωi))‖ = O(emax{(ν−1)αs,1/2(αs−αu)}ωi)

‖(id− P̃κi
(ωi))(id− P+

κi−1
(ωi))− P−

κi
(−ωi)(id− P+

κi−1
(ωi))‖ = O(emax{ναs,αs−αu}ωi)

Proof. Recall that the named projections are defined in a surrounding area of the equilibrium point pκi
.

Hence the exponential rates αs/u correspond to the leading eigenvalues of the linearisation D1f(pκi
, λ).

First we provide information about the composition of projections P±
κi
(·) and the spectral projection Pκi

of D1f(pκi
, λ), cf. (3.26). The definition of P+

κi
and P−

κi
, cf. equation (3.17), provides

kerP−
κi
(−t) = Tγ−

κi
(λ)(−t)W

u(pκi
) and kerP+

κi−1
(t) = Tγ+

κi−1
(λ)(t)W

s(pκi
).

For t sufficiently large we can invoke Hypothesis (H3.3) that flattens the stable and unstable manifold

87



3 Lin’s method

W s(pκi
), Wu(pκi

) locally around pκi
. That is for t sufficiently large we have for all λ close to zero

Tγ−
κi

(λ)(−t)W
u(pκi

) = Tpκi
Wu
λ=0(pκi

) and Tγ+
κi−1

(λ)(t)W
s(pκi

) = Tpκi
W s
λ=0(pκi

)

and therefore, cf. (3.26) for the definition of Pκi
,

im(id− P−
κi
(−t)) = kerP−

κi
(−t) = kerPκi

= im(id− Pκi
),

im(id− P+
κi−1

(t)) = kerP+
κi−1

(t) = imPκi
= ker(id− Pκi

).

Thus for t > 0 sufficiently large and ‖λ‖ sufficiently small we find

P−
κi
(−t)(id− Pκi

) = 0, P+
κi−1

(t)Pκi
= 0,

Pκi
(id− P−

κi
(−t)) = 0, (id− Pκi

)(id− P+
κi−1

(t)) = 0,

(id− Pκi
)(id− P−

κi
(−t)) = (id− P−

κi
(−t)), Pκi

(id− P+
κi−1

(t)) = (id− P+
κi−1

(t)).







(3.67)

Now, due to the definition of P̃ , cf. (3.31), we have

P̃κi
(ωi) = Sκi

(ωi)(id− Pκi
)Sκi

(ωi)
−1, (id− P̃κi

(ωi)) = Sκi
(ωi)Pκi

Sκi
(ωi)

−1

and in combination with (3.30) and (3.33) in Lemma 3.3.2, we find

P̃κi
(ωi) = P+

κi−1
(ωi)(id− Pκi

)
∞∑

k=0

[

(id− P−
κi
(−ωi))Pκi

+ (id− P+
κi−1

(ωi))(id− Pκi
)
]k

,

(id− P̃κi
(ωi)) = P−

κi
(−ωi)Pκi

∞∑

k=0

[

(id− P−
κi
(−ωi))Pκi

+ (id− P+
κi−1

(ωi))(id− Pκi
)
]k

.







(3.68)

Then simple calculations by repeatedly invoking (3.67) into (3.68) yield for λ sufficiently small and ωi > Ω,

Ω according to Lemma 3.3.2,

P̃κi(ωi)(id− P−

κi
(−ωi)) = P+

κi−1
(ωi)(id− P−

κi
(−ωi))

∞
∑

k=0

[

(id− P+
κi−1

(ωi))(id− P−

κi
(−ωi))

]k

P̃κi(ωi)(id− P+
κi−1

(ωi)) = P+
κi−1

(ωi)
∞
∑

k=1

[

(id− P−

κi
(−ωi))(id− P+

κi−1
(ωi))

]k

(id− P̃κi(ωi))(id− P−

κi
(−ωi)) = P−

κi
(−ωi)

∞
∑

k=1

[

(id− P+
κi−1

(ωi))(id− P−

κi
(−ωi))

]k

(id− P̃κi(ωi))(id− P+
κi−1

(ωi)) = P−

κi
(−ωi)(id− P+

κi−1
(ωi))

∞
∑

k=0

[

(id− P−

κi
(−ωi))(id− P+

κi−1
(ωi))

]k























































(3.69)

Exemplarily we present the calculation that leads to the first equation in (3.69). To this end we look at

the first equation in (3.68). By applying (3.67) we obtain for k ≥ 2

(id− Pκi
)
[

(id− P−
κi
(−ωi))Pκi

+ (id− P+
κi−1

(ωi))(id− Pκi
)
]k

= (id− P−
κi
(−ωi))Pκi

[

(id− P−
κi
(−ωi))Pκi

+ (id− P+
κi−1

(ωi))(id− Pκi
)
]k−1

= (id− P−
κi
(−ωi))(id− P+

κi−1
(ωi))(id− Pκi

)
[

(id− P−
κi
(−ωi))Pκi

+ (id− P+
κi−1

(ωi))(id− Pκi
)
]k−2

.
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Hence we find by repeatedly invoking these relations

(id− Pκi
)
[

(id− P−
κi
(−ωi))Pκi

+ (id− P+
κi−1

(ωi))(id− Pκi
)
]k

=







[

(id− P−
κi
(−ωi))(id− P+

κi−1
(ωi))

](k−1)/2

Pκi
, k odd,

[

(id− P−
κi
(−ωi))(id− P+

κi−1
(ωi))

]k/2

(id− Pκi
), k even.

Now, multiplying (id− P−
κi
(−ωi)) from the right side leads to

(id− Pκi
)
[

(id− P−
κi
(−ωi))Pκi

+ (id− P+
κi−1

(ωi))(id− Pκi
)
]k

(id− P−
κi
(−ωi))

=







0, k odd,

[

(id− P−
κi
(−ωi))(id− P+

κi−1
(ωi))

]k/2

(id− P−
κi
(−ωi)), k even

=







0, k odd,

(id− P−
κi
(−ωi))

[

(id− P+
κi−1

(ωi))(id− P−
κi
(−ωi))

]k/2

, k even.

Therefore we can conclude from this and the first equation in (3.68)

P̃κi
(ωi)(id− P−

κi
(−ωi))

= P+
κi−1

(ωi)(id− Pκi
)

∞∑

k=0

[

(id− P−
κi
(−ωi))Pκi

+ (id− P+
κi−1

(ωi))(id− Pκi
)
]k

(id− P−
κi
(−ωi))

= P+
κi−1

(ωi)(id− P−
κi
(−ωi))

∞∑

k=0

[

(id− P+
κi−1

(ωi))(id− P−
κi
(−ωi))

]k

The remaining equations in (3.69) can be gained analogously.

After we have generated the representations (3.69) we go on to estimate the compositions of the projections

(id − P−
κi
(·)) and (id − P+

κi−1
(·)). To this end we first recall that both ‖(id − P+

κi−1
(ωi)) − Pκi

‖ and

‖(id − P−
κi
(−ωi)) − (id − Pκi

)‖ tend exponentially fast to zero as ωi tends to infinity. This follows

from Lemma 2.1.14. Recall that in Lemma 2.1.14 the image of P+(·) and here the kernel of P+
κi−1

(·) is

determined to be the stable subspace, cf. (2.2) versus (3.16).

As a direct consequence of Lemma 2.1.14 we find that there exist positive constants K and ϑ such that

‖(id− P+
κi−1

)(t)− Pκi
‖ ≤ Ke−ϑ

+
κi
t. The constant ϑ+

κi
is constraint only through the two conditions

ϑ+
κi

<
β − Re(µsκi

)

2
, ∀µsκi

∈ σs(D1f(pκi
, λ)) and ϑ+

κi
< δ+κi

, (3.70)

cf. Remark 2.1.15, where

Re(µsκi
) < αs ≤ α < β ≤ αu < Re(µuκi

)

and

‖B+
κi
(t)‖ = ‖D1f(γ

+
κi−1

(t))−D1f(pκi
)‖ ≤ KBe

−δ+κi
t.
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With the Definition 3.4.2 of ν we find

D1f(γ
+
κi−1

(t)) =
ν−1∑

k=1

Dkf(pκi
)

(k−1)! (γ+
κi−1

(t)− pκi
)k−1 +O(‖γ+

κi−1
(t)− pκi

‖ν−1)

= D1f(pκi
) +O(‖γ+

κi−1
(t)− pκi

‖ν−1)

and hence

‖B+
κi
(t)‖ = ‖D1f(γ

+
κi−1

(t))−D1f(pκi
)‖ ≤ K‖γ+

κi−1
(t)− pκi

‖ν−1 ≤ KCe(ν−1) Re(µs
κi

)t. (3.71)

Therefore we find on one hand with

ϑ+
κi

≤ −(ν − 1)αs < −(ν − 1) Re(µsκi
) =: δ+κi

that ϑ+
κi

satisfies the second inequality in (3.70). The first inequality of (3.70) on the other hand can be

satisfied with β = αu:

ϑ+
κi

≤ αu − αs

2
<

αu − Re(µsκi
)

2
=:

β − Re(µsκi
)

2
.

Analogously we find for t < 0 that ‖P−
κi
(t)− Pκi

‖ ≤ Keϑ
−
κi
t where ϑ−

κi
> 0 has to satisfy the conditions

ϑ−
κi

<
Re(µuκi

)− α

2
, ∀µuκi

∈ σu(D1f(pκi
, λ)) and ϑ−

κi
< δ−κi

with

‖B−
κi
(t)‖ = ‖D1f(γ

−
κi−1

(t))−D1f(pκi
)‖ ≤ KCe(ν−1)αut = KBe

δ−κi
t. (3.72)

Hence with

ϑ−
κi

≤ αu − αs

2
< (ν − 1)αu

both inequalities are fulfilled for all ν ≥ 2.

This leads to the estimates

∥
∥
∥P+

κi−1
(t)− (id− Pκi

)
∥
∥
∥ =

∥
∥
∥(id− P+

κi−1
(t))− Pκi

∥
∥
∥ ≤ Kemax{(ν−1)αs,1/2(αs−αu)}t,

∥
∥P−

κi
(−t)− Pκi

∥
∥ =

∥
∥(id− P−

κi
(−t))− (id− Pκi

)
∥
∥ ≤ Kemax{−(ν−1)αu,1/2(αs−αu)}t.






(3.73)

With this we now can estimate the composition of the projections (id−P+
κi−1

(·)) and (id−P−
κi
(·)). From

(3.67) we find for ωi sufficiently large

∥
∥
∥(id− P+

κi−1
(ωi))(id− P−

κi
(−ωi))

∥
∥
∥ =

∥
∥
∥(id− P+

κi−1
(ωi))(id− P−

κi
(−ωi))− Pκi

(id− P−
κi
(−ωi))

∥
∥
∥

≤
∥
∥
∥(id− P+

κi−1
(ωi))− Pκi

∥
∥
∥ ·

∥
∥(id− P−

κi
(−ωi))

∥
∥

and

∥
∥
∥(id− P−

κi
(−ωi))(id− P+

κi−1
(ωi))

∥
∥
∥ =

∥
∥
∥(id− P−

κi
(−ωi))(id− P+

κi−1
(ωi))− (id− Pκi

)(id− P+
κi−1

(ωi))
∥
∥
∥

≤
∥
∥(id− P−

κi
(−ωi))− (id− Pκi

)
∥
∥ ·

∥
∥
∥(id− P+

κi−1
(ωi))

∥
∥
∥ .

Since (id−P−
κi
(·)) and (id−P+

κi−1
(·)) are projections of the exponential dichotomy their norm is bounded
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and with estimate (3.73) we find

∥
∥
∥(id− P+

κi−1
(ωi))(id− P−

κi
(−ωi))

∥
∥
∥ = O

(
emax{(ν−1)αs,1/2(αs−αu)}ωi

)

∥
∥
∥(id− P−

κi
(−ωi))(id− P+

κi−1
(ωi))

∥
∥
∥ = O

(
emax{−(ν−1)αu,1/2(αs−αu)}ωi

)







(3.74)

Combining (3.69) and (3.74) we obtain that the composition P̃κi
(ωi)(id − P−

κi
(−ωi)) basically acts as

P+
κi−1

(ωi)(id − P−
κi
(−ωi)) apart from higher order terms. Analogously (id − P̃κi

(ωi))(id − P+
κi−1

(ωi))

equals P−
κi
(−ωi)(id − P+

κi−1
(ωi)) plus terms of higher order. The exponential rates follow immediately

from (3.74). Only in case of the first and the last estimate in Lemma 3.4.3 we wrote for simplicity

emax{ναs,αs−αu}ωi instead of emax{(ν−1/2)αs−1/2αu,αs−αu}ωi .

Remark 3.4.4. Applying Lemma 2.5.6 instead of 2.1.14 the exponential rate of the projections presented

in Lemma 3.4.3 might be improved, cf. Remark 2.5.7. There we find that the following exponential

extensions hold ∥
∥
∥P+

κi−1
(t)− (id− Pκi

)
∥
∥
∥ ≤ Cemax{αs

ad,(ν−1)αs}t,

∥
∥P−

κi
(−t)− Pκi

∥
∥ ≤ Cemax{αs

ad,−(ν−1)αu}t,

for some constant αsad which is determined by the inequality

αsad > −min{| Re(µ)− Re(µ̃)| | µ, µ̃ ∈ σ(D1f(pκi
, λ)), Re(µ) 6= Re(µ̃)},

cf. (2.53). Now, if αsad < (αs − αu)/2 we obtain an improvement to estimate (3.73).

According to Remark 3.4.4 there is one special case we would like to mention explicitly. This case is simply

determined by the absence of strong stable and strong unstable eigenvalues, cf. Hypothesis (H3.7). Then

αsad simply has to satisfy αsad > − Re(µuκi
(λ) − µsκi

(λ)) for any stable eigenvalue µsκi
and any unstable

eigenvalue µuκi
of D1f(pκi

, λ). Hence αsad can be chosen as αsad := αs − αu and we find the following

exponential extensions

∥
∥
∥P+

κi−1
(t)− (id− Pκi

)
∥
∥
∥ ≤ Cemax{αs−αu,(ν−1)αs}t,

∥
∥P−

κi
(−t)− Pκi

∥
∥ ≤ Cemax{αs−αu,−(ν−1)αu}t.






(3.75)

Now, using this estimate instead of (3.73) we obtain

∥
∥
∥(id− P+

κi−1
(ωi))(id− P−

κi
(−ωi))

∥
∥
∥ = O

(
emax{(ν−1)αs,(αs−αu)}ωi

)

∥
∥
∥(id− P−

κi
(−ωi))(id− P+

κi−1
(ωi))

∥
∥
∥ = O

(
emax{αs−αu,−(ν−1)αu}ωi

)







(3.76)

which results in the following lemma.

Lemma 3.4.5. Assume Hypotheses (H3.1)-(H3.6). Let P±
κi

be the projections associated with the expo-

nential dichotomies of the variational equation (3.8) along γ±
κi
(λ)(·) as introduced in (3.17) and let P̃κi

be the projection introduced in Lemma 3.3.2.

Further assume Hypothesis (H3.7). Then there exist constants Ω and c in accordance to Theorem 3.2.2
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such that for all ‖λ‖ < c and ω with inf ω > Ω the following estimates apply:

‖P̃κi
(ωi)(id− P−

κi
(−ωi))− P+

κi−1
(ωi)(id− P−

κi
(−ωi))‖ = O(emax{ναs−αu,min{2,ν−1}(αs−αu)}ωi)

‖P̃κi
(ωi)(id− P+

κi−1
(ωi))‖ = O(emax{αs−αu,−(ν−1)αu}ωi)

‖(id− P̃κi
(ωi))(id− P−

κi
(−ωi))‖ = O(emax{(ν−1)αs,αs−αu}ωi)

‖(id− P̃κi
(ωi))(id− P+

κi−1
(ωi))− P−

κi
(−ωi)(id− P+

κi−1
(ωi))‖ = O(emax{ναs−αu,min{2,ν−1}(αs−αu)}ωi)

Proof. The proof follows along the same line as the proof of Lemma 3.4.3. We only apply Estimate (3.75)

instead of (3.73).

In the following we will often take advantage of Lemma 3.4.5 and present alternative estimates in the

special case where we find no strong stable and strong unstable eigenvalues, cf. Hypothesis (H3.7).

3.4.4 Basic estimates involving γ±

On the basis of Lemma 3.4.3 or Lemma 3.4.5, respectively, we estimate in the following each term within

(3.65) containing one of the expressions γ±
κi
.

Lemma 3.4.6. Assume Hypotheses (H3.1)-(H3.6). Let P̃κi
be the projection introduced in Lemma 3.3.2.

Then there exist constants Ω and c in accordance to Theorem 3.2.2 such that for all ‖λ‖ < c and ω with

inf ω > Ω the following estimates apply:

P̃κi+1
(λ, ωi+1)

(
γ−
κi+1

(λ)(−ωi+1)− pκi+1

)
= O

(
e−α

uωi+1
)
,

P̃κi+1
(λ, ωi+1)

(
γ+
κi
(λ)(ωi+1)− pκi+1

)
= O

(
e(3α

s−αu)/2 ωi+1
)
,

(id− P̃κi
(λ, ωi))

(
γ+
κi−1

(λ)(ωi)− pκi

)
= O

(
eα

sωi
)
,

(id− P̃κi
(λ, ωi))

(
γ−
κi
(λ)(−ωi)− pκi

)
= O

(
emax{(ν−1)αs−αu,(αs−3αu)/2}ωi

)
.







(3.77)

If we additionally assume Hypothesis (H3.7), the second and fourth estimate can be improved by

P̃κi+1
(λ, ωi+1)

(
γ+
κi
(λ)(ωi+1)− pκi+1

)
= O

(
emax{(2αs−αu),αs−(ν−1)αu}ωi+1

)

(id− P̃κi
(λ, ωi))

(
γ−
κi
(λ)(−ωi)− pκi

)
= O

(
emax{(ν−1)αs−αu,(αs−2αu)}ωi

)






(3.78)

Proof. The terms γ−
κi
(λ)(·) and γ+

κi−1
(λ)(·) are solutions within the unstable manifold Wu(pκi

) and the

stable manifold W s(pκi
), respectively. Therefore we find for t ≥ 0 due to Lemma 2.2.2 the estimates

‖γ−
κi
(λ)(−t)− pκi

‖ ≤ K̃e−α
ut and ‖γ+

κi−1
(λ)(t)− pκi

‖ ≤ K̃eα
st. (3.79)

Additionally we find due to Hypothesis (H3.3) that γ−
κi
(λ)(−ωi)− pκi

∈ Tpκi
Wu(pκi

) and γ+
κi−1

(λ)(ωi)−
pκi

∈ Tpκi
W s(pκi

) for ωi sufficiently large. The definition of the projections P−
κi

and P+
κi−1

, cf. (3.17),

further provides kerP−
κi
(−ωi) = Tpκi

Wu(pκi
) and kerP+

κi−1
(ωi) = Tpκi

W s(pκi
). Hence we find for ωi

sufficiently large

γ−
κi
(λ)(−ωi)− pκi

= (id− P−
κi
(−ωi))

(
γ−
κi
(λ)(−ωi)− pκi

)
,

γ+
κi−1

(λ)(ωi)− pκi
= (id− P+

κi−1
(ωi))

(
γ+
κi−1

(λ)(ωi)− pκi

)
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and in combination with Lemma 3.4.3 and (3.79) this provides the first four estimates.

Applying Lemma 3.4.5 instead of Lemma 3.4.3, for that we need Hypothesis (H3.7), we obtain the

remaining two estimates.

3.4.5 Estimates regarding v±i

Before starting to estimate v± we take a closer look on the non linearities h±
κi
, given in (3.14). To this

end recall the Definition 3.3.4 for the shortened notation of h±,s, h±,u, v±,s and v±,u. We extend this

notation to the function f when writing for short

fs(γ+
κi
(t) + . . .) := (id− P+

κi
(t))f(γ+

κi
(t) + ...), fu(γ+

κi
(t) + . . .) := P+

κi
(t)f(γ+

κi
(t) + ...),

fs(γ−
κi
(t) + . . .) := (id− P−

κi
(t))f(γ−

κi
(t) + ...), fu(γ−

κi
(t) + . . .) := P−

κi
(t)f(γ−

κi
(t) + ...).






(3.80)

The following lemma was inspirited by [San93, Lemma 3.13].

Lemma 3.4.7. Assume Hypotheses (H3.1)-(H3.6). There exist constants Ω and c in accordance to

Theorem 3.2.2 such that for all ‖λ‖ < c and ω with inf ω > Ω there exists a constant M > 0 such that

the non-linearities h±,s
i satisfy

‖h+,s
κi

(t, v+i (t), λ)‖ ≤ M
(
eα

st‖v+,ui (t)‖+ ‖v+,si (t)‖
)(
‖v+,si (t)‖+ ‖v+,ui (t)‖

)
, t ∈ [0, ω],

‖h−,s
κi

(t, v−i (t), λ)‖ ≤ M
(
e1/2(αu−αs)t‖v−,ui (t)‖+ ‖v−,si (t)‖

)(
‖v−,si (t)‖+ ‖v−,ui (t)‖

)
, t ∈ [−ω, 0].

If in addition Hypothesis (H3.7) holds, we find

‖h−,s
κi

(t, v−i (t), λ)‖ ≤ M(eα
ut‖v−,ui (t)‖+ ‖v−,si (t)‖)(‖v−,si (t)‖+ ‖v−,ui (t)‖), t ∈ [−ω, 0].

Proof. For the sake of convenience we omit the dependency on λ in the notations below. First we prove

the validity of the assertion for t ≥ Ω or t ≤ −Ω, respectively. To this end we call in the definition of

h±
κi
, cf. (3.14) and apply the Mean-value-theorem. This provides

‖h±,s
κi

(t, (v±,si + v±,ui )(t))‖

= ‖fs(γ±
κi
(t) + v±,si (t) + v±,ui (t))− fs(γ±

κi
(t))−Dfs(γ±

κi
(t))[v±,si (t) + v±,ui (t)]‖

=

∥
∥
∥
∥

[
1∫

0

Dfs(γ±
κi
(t) + τ(v±,si (t) + v±,ui (t)))−Dfs(γ±

κi
(t))dτ

]

[v±,si (t) + v±,ui (t)]

∥
∥
∥
∥

≤
1∫

0

‖ ∂
∂vs f

s(γ±
κi
(t) + τ(v±,si (t) + v±,ui (t)))− ∂

∂vs f
s(γ±

κi
(t))‖dτ‖v±,si (t)‖

+
1∫

0

‖ ∂
∂vu f

s(γ±
κi
(t) + τ(v±,si (t) + v±,ui (t)))− ∂

∂vu f
s(γ±

κi
(t))‖dτ‖v±,ui (t)‖.







(3.81)

The first summand in the last line is already of order O
(
‖v±,si (t)‖(‖v±,si (t)‖+ ‖v±,ui (t)‖)

)
and applying
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again the Mean-value-theorem to the second summand yields

‖h±,s
κi

(t, (v±,si + v±,ui )(t))‖

≤ C‖v±,si (t)‖(‖v±,si (t)‖+ ‖v±,ui (t)‖)

+

(
1∫

0

1∫

0

‖ ∂2

∂vu∂vs f
s(γ±

κi
(t) + τ1τ2(v

±,s
i (t) + v±,ui (t)))‖τ1dτ2dτ1‖v±,si (t)‖

+
1∫

0

1∫

0

‖ ∂2

∂(vu)2 f
s(γ±

κi
(t) + τ1τ2(v

±,s
i (t) + v±,ui (t)))‖τ1dτ2dτ1‖v±,ui (t)‖

)

‖v±,ui (t)‖.







(3.82)

The second addend is of the order O
(
‖v±,si (t)‖‖v±,ui (t)‖

)
For further investigation of the last summand

we make use of Hypothesis (H3.3): For t ≥ Ω or t ≤ −Ω, respectively, we are close to the hyperbolic

equilibrium pκi
or pκi+1

, respectively, and here the local stable and unstable manifolds W s
loc,λ(pκi

) and

Wu
loc,λ(pκi

) coincide with their tangent spaces Tpκi
W s
λ=0(pκi

) and Tpκi
Wu
λ=0(pκi

). Thus, calling the

definitions (3.26) of the projection Pκi
and (3.17) of the projection P±

κi
(t) we find that

(id− Pκi+1
)v+,ui (t) ∈ Wu

loc(pκi+1
) and Pκi

v−,ui (t) ∈ W s
loc(pκi

).

Hence
f((id− Pκi+1

)v+,ui (t)) ∈ Tpκi+1
Wu
λ=0(pκi+1

) and

f(Pκi
v−,ui (t)) ∈ Tpκi

W s
λ=0(pκi

)

and we can therefore write

f((id− Pκi+1
)v+,ui (t)) = (id− Pκi+1

)f((id− Pκi+1
)v+,ui (t)) and

f(Pκi
v−,ui (t)) = Pκi

f(Pκi
v−,ui (t)).






(3.83)

Further we find, cf. (3.67), Pκi
(id− P−

κi
(−t)) = 0 and (id− Pκi

)(id− P+
κi−1

(t)) = 0 and hence

(id− Pκi+1
)fs((id− Pκi+1

)v+,ui (t)) ≡ 0, t ≥ Ω

Pκi
fs(Pκi

v−,ui (t)) ≡ 0, t ≤ −Ω.

This provides that each partial derivative of (id− P ) ◦ fs ◦ (id− P ) or P ◦ fs ◦ P with respect to v±,ui ,

respectively, vanishes, especially

∂2

∂(vu)2 (id− Pκi+1
)fs((id− Pκi+1

)v+,ui (t)) = 0,

∂2

∂(vu)2Pκi
fs(Pκi

v−,ui (t)) = 0.

Therefore we can again apply the Mean-value-theorem on the last summand in (3.82), by adding a
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zero-term. We do this exemplarily for h−,s
κi

where we add ∂2

∂(vu)2 (−id+ (id− Pκi
))fs(Pκi

v−,ui (t)).

‖h−,s
κi

(t, (v−,s
i + v

−,u
i )(t))‖

≤ C1‖v
−,s
i (t)‖(‖v−,s

i (t)‖+ ‖v−,u
i (t)‖) + C2‖v

−,s
i (t)‖‖v−,u

i (t)‖

+
1
∫

0

1
∫

0

‖ ∂2

∂(vu)2
fs(γ−

κi
(t) + τ1τ2(v

−,s
i (t) + (id− Pκi)v

−,u
i (t) + Pκiv

−,u
i (t)))

− ∂2

∂(vu)2
fs(Pκiv

−,u
i (t)) + ∂2

∂(vu)2
(id− Pκi)f

s(Pκiv
−,u
i (t))‖τ1dτ2dτ1‖v

−,u
i (t)‖2

≤ (C1 + C2)‖v
−,s
i (t)‖(‖v−,s

i (t)‖+ ‖v−,u
i (t)‖)

+
1
∫

0

1
∫

0

1
∫

0

‖ ∂3

∂(vu)2∂γ
fs(τ3γ

−

κi
(t) + τ1τ2(τ3(v

−,s
i (t) + (id− Pκi)v

−,u
i (t)) + Pκiv

−,u
i (t)))‖τ2

1 τ2dτ3dτ2dτ1

·‖v−,u
i (t)‖2‖γ−

κi
(t)‖

+
1
∫

0

1
∫

0

1
∫

0

‖ ∂3

∂(vu)2∂vs f
s(τ3γ

−

κi
(t) + τ1τ2(τ3(v

−,s
i (t) + (id− Pκi)v

−,u
i (t)) + Pκiv

−,u
i (t)))‖τ2

1 τ2dτ3dτ2dτ1

·
(

‖v−,u
i (t)‖2 · ‖v−,s

i (t)‖
)

+
1
∫

0

1
∫

0

1
∫

0

‖ ∂3

∂(vu)2∂(id−P )vu f
s(τ3γ

−

κi
(t) + τ1τ2(τ3(v

−,s
i (t) + (id− Pκi)v

−,u
i (t)) + Pκiv

−,u
i (t)))‖τ2

1 τ2dτ3dτ2dτ1

·
(

‖v−,u
i (t)‖2 · ‖(id− Pκi)v

−,u
i (t)‖

)

+
1
∫

0

1
∫

0

‖ ∂2

∂(vu)2
(id− Pκi)f

s(Pκiv
−,u
i (t))‖τ1dτ2dτ1‖v

−,u
i (t)‖2

First we focus on the last term. With the definition of fs and (3.83) we find

∂2

∂(vu)2 (id− Pκi
)fs(Pκi

v−,ui (t)) = ∂2

∂(vu)2 (id− Pκi
)(id− P−

κi
(t))f(Pκi

v−,ui (t))

= ∂2

∂(vu)2 (id− Pκi
)(id− P−

κi
(t))Pκi

f(Pκi
v−,ui (t))

= (id− Pκi
)(id− P−

κi
(t))Pκi

∂2

∂(vu)2 f(Pκi
v−,ui (t)),

where (id− Pκi
)(id− P−

κi
(t)) = (id− P−

κi
(t)), cf. (3.67).

Now, since the vector field f is at least of differentiability class C3 the partial derivatives are all bounded.

Hence we end up with

‖h−,s
κi

(t, (v−,si + v−,ui )(t))‖ ≤ (C1 + C2)‖v−,si (t)‖(‖v−,si (t)‖+ ‖v−,ui (t)‖)

+C3(‖γ−
κi
(t)‖+ ‖v−,si (t)‖+ ‖(id− Pκi

)v−,ui (t)‖)‖v−,ui (t)‖2

+C4‖(id− P−
κi
(t))Pκi

‖ ‖v−,ui (t)‖2.







(3.84)

We find from (3.79) that ‖γ−
κi
(t)‖ ≤ Keα

ut and from (3.73) or (3.75), respectively, that

‖(id− P−
κi
(t))Pκi

‖ ≤ K







eα
ut, if (H3.7) applies,

e
1
2 (α

u−αs)t, else,

‖(id− Pκi
)v−,ui (t)‖ = ‖(id− Pκi

)P−
κi
(t)v−,ui (t)‖ ≤ K‖v−,ui (t)‖







eα
ut, if (H3.7) applies,

e
1
2 (α

u−αs)t, else.

These estimates in combination with (3.84) provides the claimed estimate for t ≤ −Ω.
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Analogously we obtain for h+,s
κi

:

‖h+,s
κi

(t, (v+,si + v+,ui )(t))‖ ≤ (C1 + C2)‖v+,si (t)‖(‖v+,si (t)‖+ ‖v+,ui (t)‖)

+C3(‖γ+
κi
(t)‖+ ‖v+,si (t)‖+ ‖Pκi

v+,ui (t)‖)‖v+,ui (t)‖2

+C4‖(id− Pκi
)(id− P+

κi
(t))‖ ‖v+,ui (t)‖2

≤ M(eα
st‖v+,ui (t)‖+ ‖v+,si (t)‖)(‖v+,si (t)‖+ ‖v+,ui (t)‖)

since ‖γ+
κi
(t)‖ ≤ Keα

st and ‖(id−P+
κi
(t))(id−Pκi+1

)‖ = ‖Pκi+1
P+
κi
(t)‖ ≤ Keα

st due to (3.79) and (3.73).

It remains to consider h+,s
κi

for t ∈ [0,Ω] and h−,s
κi

for t ∈ [−Ω, 0]. We confine ourselves with showing the

estimate for h+,s
κi

. For h−,s
κi

the proof goes analog. Since Ω is fixed this is simply done by choosing the

constants adequately. To be more precise we have for t ∈ [0,Ω], since h+,s
κi

(t, v+i (t), λ) = O(‖v+i (t)‖2),

‖h+,s
κi

(t, v+i (t), λ)‖ ≤ K(‖v+,si (t)‖+ ‖v+,ui (t)‖)2

≤ Ke−α
s(Ω−t)(‖v+,si (t)‖+ ‖v+,ui (t)‖)2

≤ K̃(eα
st‖v+,ui (t)‖+ ‖v+,si (t)‖)(‖v+,si (t)‖+ ‖v+,ui (t)‖)

with K̃ = Ke−α
sΩ.

To gain a similar property for h±,u
κi

we follow the idea in [Kno04] and decompose v±,si (t) into

v±,si (t) = v±,ssi (t) + v±,sui (t)

where

v±,ssi (t) ∈ Φ±
κi
(λ)(t, 0)W±

κi
and v±,sui (t) ∈ Φ±

κi
(λ)(t, 0) span{f(γ±

κi
(λ)(0), λ)}. (3.85)

With this it was shown in [Kno04, Equation (5.25)] that

‖h±,u
κi

(t, v±i (t), λ)‖ ≤ M(‖v±,ui (t)‖+ ‖v±,sui (t)‖)‖v±i (t)‖.

However for our further analysis we need to state this estimate more sophisticated.

Lemma 3.4.8. Assume Hypotheses (H3.1)-(H3.5). There exist constants Ω and c in accordance to

Theorem 3.2.2 such that for all |λ| < c and ω with inf ω > Ω there exists a constant M > 0 such that the

non-linearities h±,u
κi

satisfy for t ∈ [0, ω] or t ∈ [−ω, 0], respectively,

‖h±,u
κi

(t, v±i (t), λ)‖ ≤ M(‖v±,ui (t)‖+ ‖v±,sui (t)‖)‖v±i (t)‖
(
‖v±i (t)‖+ ‖γ±

κi
(t)− pκi+1/κi

‖
)ν−2

.

Moreover we find for h−,u
κi

(t, v−i (t), λ), t ∈ [−ω, 0]

‖h−,u
κi

(t, v−i (t), λ)− 1
2D

2
1f

u(γ−
κi
(t), λ)[v−,ui (t), v−,ui (t)]− 1

6D
3fu(γ−

κi
(λ)(t), λ)[v−,ui (t), v−,ui (t), v−,ui (t)]‖

≤ M
(

(‖v−,ui (t)‖+ ‖v−,sui (t)‖)‖v−,si (t)‖
(
‖v−i (t)‖+ ‖γ−

κi
(t)− pκi

‖
)ν−2

+‖v−,ui (t)‖4
(
‖v−i (t)‖+ ‖γ−

κi
(t)− pκi

‖
)max{0,ν−4})

.

The two isolated terms on the left-hand side of the second estimate of h−,u
κi

will play an important role
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when it comes to find terms of leading exponential rates within the residual term Ri(ω, λ, κ).

Proof. We prove these statements again by invoking the Mean-value-theorem. To this end recall the

definition of h±,u
κi

given in (3.14) and Definition 3.3.4 as well as the definition of fu in (3.80). As before

we suppress the dependency on λ.

h±,u
κi

(t, (v±,si + v±,ui )(t))

= fu(γ±
κi
(t) + v±,si (t) + v±,ui (t))− fu(γ±

κi
(t))−Dfu(γ±

κi
(t))[v±,si (t) + v±,ui (t)]

=

[
1∫

0

∂
∂vss f

u(γ±
κi
(t) + τ(v±,ssi (t) + v±,sui (t) + v±,ui (t)))− ∂

∂vss f
u(γ±

κi
(t))dτ

]

v±,ssi (t)

+

[
1∫

0

∂
∂vsu f

u(γ±
κi
(t) + τ(v±,ssi (t) + v±,sui (t) + v±,ui (t)))− ∂

∂vsu f
u(γ±

κi
(t))dτ

]

v±,sui (t)

+

[
1∫

0

∂
∂vu f

u(γ±
κi
(t) + τ(v±,si (t) + v±,ui (t)))− ∂

∂vu f
u(γ±

κi
(t))dτ

]

v±,ui (t)

Applying again the Mean-value-theorem yields

h±,u
κi

(t, (v±,si + v±,ui )(t))

=

[
1∫

0

1∫

0

∂2

∂(vss)2 f
u(γ±

κi
(t) + τ1τ2(v

±,s
i (t) + v±,ui (t)))τ1dτ2dτ1

]

[v±,ssi (t), v±,ssi (t)]

+ 2

[
1∫

0

1∫

0

∂2

∂vss∂vsu f
u(γ±

κi
(t) + τ1τ2(v

±,s
i (t) + v±,ui (t)))τ1dτ2dτ1

]

[v±,ssi (t), v±,sui (t)]

+

[
1∫

0

1∫

0

∂2

∂(vsu)2 f
u(γ±

κi
(t) + τ1τ2(v

±,s
i (t) + v±,ui (t)))τ1dτ2dτ1

]

[v±,sui (t), v±,sui (t)]

+ 2

[
1∫

0

1∫

0

∂2

∂vu∂vs f
u(γ±

κi
(t) + τ1τ2(v

±,s
i (t) + v±,ui (t)))τ1dτ2dτ1

]

[v±,ui (t), v±,si (t)]

+

[
1∫

0

1∫

0

∂2

∂(vu)2 f
u(γ±

κi
(t) + τ1τ2(v

±,s
i (t) + v±,ui (t)))τ1dτ2dτ1

]

[v±,ui (t), v±,ui (t)].







(3.86)

For further investigation of the first summand of (3.86) we make use of the Hypothesis (H3.5): Let

‖v±,si (t)‖ < ε. Then we find v+,ssi (t) ∈ W s
Σλ,t

(pκi+1
) ∩ B(γ±

κi
(λ)(t), ε) and v−,ssi (t) ∈ Wu

Σλ,t
(pκi

) ∩
B(γ±

κi
(λ)(t), ε). Hence we find

P±
κi
(t) f(γ±

κi
(λ)(t) + v±,ssi (t), λ)

︸ ︷︷ ︸

∈TW s/u

≡ 0.

Therefore we have ∂2

∂(vss)2 f
u(γ±

κi
(λ)(t) + v±,ssi (t), λ) = 0. So we can rewrite the first summand on the
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right-hand side of (3.86) by adding a zero and apply the Mean-value-theorem again.

1∫

0

1∫

0

∂2

∂(vss)2 f
u(γ±

κi
(t) + τ1τ2(v

±,ss
i (t) + v±,sui (t) + v±,ui (t)))τ1dτ2dτ1[v

±,ss
i (t), v±,ssi (t)]

=

[
1∫

0

1∫

0

(
∂2

∂(vss)2 f
u(γ±

κi
(t) + τ1τ2(v

±,ss
i (t) + v±,sui (t) + v±,ui (t)))

− ∂2

∂(vss)2 f
u(γ±

κi
(t) + τ1τ2v

±,ss
i (t))

)

τ1dτ2dτ1

]

[v±,ssi (t), v±,ssi (t)]

=

[
1∫

0

1∫

0

1∫

0

∂3

∂(vss)2∂vsu f
u(γ±

κi
(t) + τ1τ2(v

±,ss
i (t) + τ3(v

±,su
i (t) + v±,ui (t))))τ21 τ2dτ3dτ2dτ1

]

[v±,ssi (t), v±,ssi (t), v±,sui (t)]

+

[
1∫

0

1∫

0

1∫

0

∂3

∂(vss)2∂vu f
u(γ±

κi
(t) + τ1τ2(v

±,ss
i (t) + τ3(v

±,su
i (t) + v±,ui (t))))τ21 τ2dτ3dτ2dτ1

]

[v±,ssi (t), v±,ssi (t), v±,ui (t)]







(3.87)

Since the vector field f is smooth the partial derivatives are all bounded. What is even more we find for

k ≥ 2 with Definition 3.4.2 of the constant ν ≥ 2 that

Dkf(γ+
κi
(t) + v+i (t)) =

ν−1∑

l=k

Dlf(pκi+1
)

(l − k)!
(γ+
κi
(t) + v+i (t)− pκi+1

)l−k +O(‖γ+
κi
(t) + v+i (t)− pκi

‖ν−k)

= O
(
(‖v+i (t)‖+ ‖γ+

κi
(t)− pκi+1

‖)ν−k
)
,

and analogously

Dkf(γ−
κi
(t) + v−i (t)) = O

(
(‖v−i (t)‖+ ‖γ−

κi
(t)− pκi

‖)ν−k
)
.

Summarizing we find from equation (3.86) with the estimates for the partial derivatives of f

h±,u
κi

(t, v±i (t))

= O
(
(‖v±,ssi (t)‖2 + (‖v±,sui (t)‖+ ‖v±,ssi (t)‖)‖v±,sui (t)‖+ ‖v±,ui (t)‖(‖v±,ui (t)‖+ ‖v±,si (t)‖))

(‖v±i (t)‖+ ‖γ±
κi
(t)− pκi+1/κi

‖)ν−2
)

= O
(
(‖v±,ssi (t)‖2 + ‖v±,si (t)‖‖v±,sui (t)‖+ ‖v±,ui (t)‖‖v±i (t)‖)(‖v±i (t)‖+ ‖γ±

κi
(t)− pκi+1/κi

‖)ν−2
)
.

Replacing ‖v±,ssi (t)‖2 by the estimates we gain from (3.87) we finally obtain

h±,u
κi

(t, v±i (t))

= O
(
(‖v±,si (t)‖‖v±,sui (t)‖+ ‖v±,ui (t)‖‖v±i (t)‖)(‖v±i (t)‖+ ‖γ±

κi
(t)− pκi+1/κi

‖)ν−2
)

+O
(
‖v±,ssi (t)‖2(‖v±,sui (t)‖+ ‖v±,ui (t)‖)(‖v±i (t)‖+ ‖γ±

κi
(t)− pκi+1/κi

‖)max{0,ν−3})

= O
(
(‖v±,sui (t)‖+ ‖v±,ui (t)‖)‖v±i (t)‖(‖v±i (t)‖+ ‖γ±

κi
(t)− pκi+1/κi

‖)ν−2
)
.







(3.88)

Here we used ‖v±,ssi (t)‖, ‖v±,si (t)‖ ≤ ‖v±i (t)‖ and ‖v±i (t)‖ ≤ ‖γ±
κi
(t)− pκi+1/κi

‖+ ‖v±i (t)‖.

It remains to show the second estimate. To this end we have a closer look on the last term of (3.86).
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Again we add an appropriately zero-term and apply the Mean-value-theorem:

1∫

0

1∫

0

∂2

∂(vu)2 f
u(γ−

κi
(t) + τ1τ2(v

−,s
i (t) + v−,ui (t)))τ1dτ2dτ1[v

−,u
i (t), v−,ui (t)]

=

[
1∫

0

1∫

0

(
∂2

∂(vu)2 f
u(γ−

κi
(t) + τ1τ2(v

−,s
i (t) + v−,ui (t)))− ∂2

∂(vu)2 f
u(γ−

κi
(t)) + ∂2

∂(vu)2 f
u(γ−

κi
(t))

)

τ1dτ2dτ1

]

[v−,ui (t), v−,ui (t)]

=

[
1∫

0

1∫

0

1∫

0

∂3

∂(vu)2∂vs f
u(γ−

κi
(t) + τ1τ2τ3(v

−,s
i (t) + v−,ui (t)))τ21 τ2dτ3dτ2dτ1

]

[v−,ui (t), v−,ui (t), v−,si (t)]

+

[
1∫

0

1∫

0

1∫

0

∂3

∂(vu)3 f
u(γ−

κi
(t) + τ1τ2τ3(v

−,s
i (t) + v−,ui (t)))τ21 τ2dτ3dτ2dτ1

]

[v−,ui (t), v−,ui (t), v−,ui (t)]

+

1∫

0

1∫

0

τ1dτ2dτ1

︸ ︷︷ ︸

=1/2

D2
1f

u(γ−
κi
(t))[v−,ui (t), v−,ui (t)]

The extraction of the term D3fu(γ−
κi
)[v−,ui , v−,ui , v−,ui ] takes place in an analogously way as the extraction

of D2
1f

u(γ−
κi
)[v−,ui , v−,ui ]. We start from the middle summand of the latest equation and repeat the

procedure:

1∫

0

1∫

0

1∫

0

∂3

∂(vu)3 f
u(γ−

κi
(t) + τ1τ2τ3(v

−,s
i (t) + v−,ui (t)))τ21 τ2dτ3dτ2dτ1[v

−,u
i (t), v−,ui (t), v−,ui (t)]

=

[
1∫

0

1∫

0

(
1∫

0

∂3

∂(vu)3 f
u(γ−

κi
(t) + τ1τ2τ3(v

−,s
i (t) + v−,ui (t)))

− ∂3

∂(vu)3 f
u(γ−

κi
(t)) + ∂3

∂(vu)3 f
u(γ−

κi
(t))

)

τ21 τ2dτ3dτ2dτ1

]

[v−,ui (t), v−,ui (t), v−,ui (t)]

=

[
1∫

0

1∫

0

1∫

0

1∫

0

∂4

∂(vu)3∂vs f
u(γ−

κi
(t) + τ1τ2τ3τ4(v

−,s
i (t) + v−,ui (t)))τ31 τ

2
2 τ3dτ4dτ3dτ2dτ1

]

[v−,ui (t), v−,ui (t), v−,ui (t), v−,si (t)]

+

[
1∫

0

1∫

0

1∫

0

1∫

0

∂4

∂(vu)4 f
u(γ−

κi
(t) + τ1τ2τ3τ4(v

−,s
i (t) + v−,ui (t)))τ31 τ

2
2 τ3dτ4dτ3dτ2dτ1

]

[v−,ui (t), v−,ui (t), v−,ui (t), v−,ui (t)]

+

1∫

0

1∫

0

1∫

0

τ21 τ2dτ3dτ2dτ1

︸ ︷︷ ︸

=1/6

D3fu(γ−
κi
(t))[v−,ui (t), v−,ui (t), v−,ui (t)].
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Finally we simply have to collect the single terms. From the two latter equations we find

1∫

0

1∫

0

∂2

∂(vu)2 f
u(γ−

κi
(t) + τ1τ2(v

−,s
i (t) + v−,ui (t)))τ1dτ2dτ1[v

−,u
i (t), v−,ui (t)]

= D2
1f

u(γ−
κi
(t))[v−,ui (t), v−,ui (t)] +D3fu(γ−

κi
(t))[v−,ui (t), v−,ui (t), v−,ui (t)]

+O
(
‖v−,ui (t)‖2‖v−,si (t)‖(‖v−i (t)‖+ ‖γ−

κi
(t)− pκi

‖)max{0,ν−3})

+O
(
(‖v−,ui (t)‖3(‖v−,si (t)‖+ ‖v−,ui (t)‖)(‖v−i (t)‖+ ‖γ−

κi
(t)− pκi

‖)max{0,ν−4})

And this together with (3.86) and (3.87) yields

h−,u
κi

(t, v−i (t))

= D2
1f

u(γ−
κi
(t))[v−,ui (t), v−,ui (t)] +D3fu(γ−

κi
(t))[v−,ui (t), v−,ui (t), v−,ui (t)]

+O
(
(‖v−,sui (t)‖+ ‖v−,ui (t)‖)‖v−,si (t)‖(‖v−i (t)‖+ ‖γ−

κi
(t)− pκi

‖)ν−2
)

+O
(
(‖v−,ui (t)‖2‖v−,si (t)‖+ ‖v−,ssi (t)‖2(‖v−,sui (t)‖+ ‖v−,ui (t)‖))

(‖v−i (t)‖+ ‖γ−
κi
(t)− pκi

‖)max{0,ν−3})

+O
(
(‖v−,ui (t)‖3(‖v−,si (t)‖+ ‖v−,ui (t)‖))(‖v−i (t)‖+ ‖γ−

κi
(t)− pκi

‖)max{0,ν−4})







(3.89)

In the end we only want to simplify this expression by using the inequality chain

‖v−,ssi (t)‖ ≤ ‖v−,si (t)‖

‖v−,ui (t)‖






≤ ‖v−i (t)‖ ≤ ‖v−i (t)‖+ ‖γ−

κi
(t)− pκi

‖.

With this we find

‖v−,ui (t)‖2‖v−,si (t)‖+ ‖v−,ssi (t)‖2(‖v−,sui (t)‖+ ‖v−,ui (t)‖)

≤ (‖v−,ui (t)‖+ ‖v−,sui (t)‖)‖v−,si (t)‖(‖v−i (t)‖+ ‖γ−
κi
(t)− pκi

‖),

and

‖v−,ui (t)‖3‖v−,si (t)‖ ≤ ‖v−,ui (t)‖‖v−,si (t)‖(‖v−i (t)‖+ ‖γ−
κi
(t)− pκi

‖)2,

Thus the second O-term in (3.89) is included in the first O-term as well as the first part of the last

O-term. This concludes the proof.

Now we have everything we need to take a closer look on v±i . To this end we define, in view of Lemma 3.4.7

and for the sake of shortness, the following constant:

αw :=







−αu, if additionally (H3.7) applies,

(αs − αu)/2, else.
(3.90)

Lemma 3.4.9. Assume Hypotheses (H3.1)-(H3.6). Let v±i be the solutions of the boundary value problem

( (3.12),(3.13)) and denote by v±,si and v±,ui their projections as defined in Definition 3.3.4. Then there

exist constants Ω and c in accordance to Theorem 3.2.2 such that for all |λ| < c and ω with inf ω > Ω
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the following estimates apply with some K̄ > 0:

‖v+,si (t)‖ ≤ K̄eα
st(e2α

w(ωi+1−t)e2α
wωi+1 + eα

sωie2α
wωi+1 + e2α

sωi), t ∈ [0, ωi+1],

‖v−,si (t)‖ ≤ K̄e−α
wt(e2α

s(ωi+t)e2α
sωi + e2α

sωieα
wωi+1 + e2α

wωi+1), t ∈ [−ωi, 0],

‖v+,ui (t)‖ ≤ K̄(eα
w(ωi+1−t)eα

wωi+1 + e4α
sωi), t ∈ [0, ωi+1],

‖v−,ui (t)‖ ≤ K̄(eα
s(ωi+t)eα

sωi + e4α
wωi+1), t ∈ [−ωi, 0].

Proof. At first we want to show that v+i and v−i , i ∈ Z, are exponentially small for Ω sufficiently large.

To this end recall (3.21) with g replaced by H(v, λ, κ):

‖v‖Vω
≤ Ĉ(‖H‖Vω

+ ‖d‖l∞
Rn
). (3.91)

From Definition 3.3.5 of H(v, λ, κ) = (H+
i (v

+
i , λ, κ), H

−
i (v−i , λ, κ))i∈Z it follows that H±

i (0, λ, κ) = 0 and

D1H
±
i (0, λ, κ) = 0. Hence we have uniformly in λ

H±
i (v

±
i , λ, κ) = O(‖v±i ‖2),

and thus

‖H‖Vω
= O(‖v‖2Vω

).

Therefore there is an ε > 0 such that for ‖v‖Vω
< ε

C̃‖H‖Vω
≤ 1

2
‖v‖Vω

.

Together with (3.91) this shows that there is a constant C such that

‖v‖Vω
≤ C‖d‖l∞

Rn
.

Now, the definition of d = (di)i∈Z, cf. (3.13), finally proves that ‖v‖Vω
is exponentially small for Ω

sufficiently large.

Let us now go into the estimates in more detail. From the first line in (3.42) we gain with −α+
κi

= αs− δ

for some positive δ such that Reµsκi+1
(λ) < αs − δ, cf. (3.18) and (3.66), by invoking Lemma 3.4.7

‖v+,si (t)‖ ≤ KLe(α
s−δ)t‖v−,ui (0)‖+K

t∫

0

e(α
s−δ)(t−s)‖h+,s

i (s, v+i (s), λ)‖ds

≤ KLeα
st‖v−,ui (0)‖+KM

t∫

0

e(α
s−δ)(t−s)(eα

ss‖v+,ui (s)‖+ ‖v+,si (s)‖)(‖v+,ui (s)‖+ ‖v+,si (s)‖)ds

≤ eα
st

(

KL‖v−,ui (0)‖+KM(‖v+,ui ‖+ sup
s∈[0,t]

e−α
ss‖v+,si (s)‖)(‖v+,ui ‖+ ‖v+,si ‖)

t∫

0

e−δ(t−s)ds

)

.

Multiplying by e−α
st and applying the supreme norm we obtain

sup
t∈[0,ωi+1]

(e−α
st‖v+,si (t)‖) ≤ KL‖v−,ui (0)‖+KM

(

‖v+,ui ‖+ sup
s∈[0,ωi+1]

(e−α
ss‖v+,si (s)‖)

)

(‖v+,ui ‖+‖v+,si ‖).

Since ‖v+i ‖ is exponentially small we find for Ω < inf ω large enough that 1−KM(‖v+,ui ‖+ ‖v+,si ‖) > 1
2

101
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and thus there is a constant K̃1 such that

sup
t∈[0,ωi+1]

(e−α
st‖v+,si (t)‖) ≤ K̃1(‖v−,ui (0)‖+ ‖v+,ui ‖(‖v+,ui ‖+ ‖v+,si ‖)). (3.92)

Analogously we find from (3.42) with β−
κi

= −αw + δ for v−,si that

sup
t∈[−ωi,0]

(eα
wt‖v−,si (t)‖) ≤ K̃1(‖v+,ui (0)‖+ ‖v−,ui ‖(‖v−,ui ‖+ ‖v−,si ‖)). (3.93)

This finally leads to

‖v+,si (t)‖ ≤ K̃1e
αst(‖v−,ui (0)‖+ ‖v+,ui ‖(‖v+,ui ‖+ ‖v+,si ‖)),

‖v−,si (t)‖ ≤ K̃1e
−αwt(‖v+,ui (0)‖+ ‖v−,ui ‖(‖v−,ui ‖+ ‖v−,si ‖)),






(3.94)

and, since 1− K̃1‖v±,ui ‖ > 1
2 ,

‖v±,si ‖ ≤ 2K̃1(‖v∓,ui (0)‖+ ‖v±,ui ‖2). (3.95)

As a direct consequence of estimate (3.94) we obtain

‖a+i ‖ ≤ Ceα
wωi ,

‖a−i ‖ ≤ Ceα
sωi .







(3.96)

This can be seen by looking at the equation of a+ and a− given in (3.48). Calling in the definition of d

in (3.13) provides

‖a+i ‖ ≤ ‖P̃κi
(λ, ωi)(γ

−
κi
(λ)(−ωi)− pκi

)‖+ ‖P̃κi
(λ, ωi)(γ

+
κi−1

(λ)(ωi)− pκi
)‖

+‖P̃κi
(λ, ωi)(id− P+

κi−1
(λ, ωi))‖‖(id− P+

κi−1
(λ, ωi))v

+
i−1(λ)(ωi)‖

+‖P̃κi
(λ, ωi)(id− P−

κi
(λ,−ωi))‖‖(id− P−

κi
(λ,−ωi))v

−
i (λ)(−ωi)‖;

‖a−i ‖ ≤ ‖(id− P̃κi
(λ, ωi))(γ

−
κi
(λ)(−ωi)− pκi

)‖+ ‖(id− P̃κi
(λ, ωi))(γ

+
κi−1

(λ)(ωi)− pκi
)‖

+‖(id− P̃κi
(λ, ωi))(id− P+

κi−1
(λ, ωi))‖‖(id− P+

κi−1
(λ, ωi))v

+
i−1(λ)(ωi)‖

+‖(id− P̃κi
(λ, ωi))(id− P−

κi
(λ,−ωi))‖‖(id− P−

κi
(λ,−ωi))v

−
i (λ)(−ωi)‖.

Applying the estimates presented in Lemmata 3.4.3 and 3.4.6 and equation (3.94) we see that each term

in ‖a−i ‖ can be estimated by eα
sωi . In case of ‖a+i ‖ the term with the smallest exponential rate is given by

(id − P−
κi
(−ωi))v

−
i (−ωi) = v−,si (−ωi) with e

1
2 (α

s−αu)ωi . In case that Hypothesis (H3.7) applies we even

find that ‖a+i ‖ can be estimated by e−α
uωi . To this end we apply Lemma 3.4.5 instead of Lemma 3.4.3.

This finally leads to the estimate (3.96).
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Let us now consider v±,ui . Due to (3.40) we have with β+
κi

= αu and α−
κi

= −αs, cf. (3.18) and (3.66),

‖v+,ui (t)‖ ≤ Ke−α
u(ωi+1−t)‖a+i+1‖+K

ωi+1∫

t

eα
u(t−s)‖h+,u

i (s, v+i (s), λ)‖ds

≤ KCe−α
u(ωi+1−t)eα

wωi+1 +KM(‖v+,si ‖+ ‖v+,ui ‖)2;

‖v−,ui (t)‖ ≤ Keα
s(ωi+t)‖a−i ‖+K

t∫

−ωi

eα
s(t−s)‖h−,u

i (s, v−i (s), λ)‖ds

≤ KCeα
s(ωi+t)eα

sωi +KM(‖v−,si ‖+ ‖v−,ui ‖)2;







(3.97)

which leads to
‖v+,ui ‖ ≤ K̃2(e

αwωi+1 + ‖v+,si ‖2);

‖v−,ui ‖ ≤ K̃2(e
αsωi + ‖v−,si ‖2).






(3.98)

Again we have used that ‖v±i ‖ is exponentially small such that for inf ω sufficiently large we find

1−KM(2‖v±,si ‖+ ‖v±,ui ‖) > 1/2. equations (3.98) and (3.97) for t = 0 in combination with (3.95) then

yield

‖v+,si ‖ ≤ 2K̃1(KCe2α
sωi +KM(‖v−,si ‖+ ‖v−,ui ‖)2 + K̃2

2 (e
αwωi+1 + ‖v+,si ‖2)2)

≤ 2K̃1(KCe2α
sωi +KM(‖v−,si ‖+ ‖v−,ui ‖)2 + K̃2

2e
2αwωi+1 + ε+(ω)‖v+,si ‖);

‖v−,si ‖ ≤ 2K̃1(KCe(α
w−αu)ωi+1 +KM(‖v+,si ‖+ ‖v+,ui ‖)2 + K̃2

2 (e
αsωi + ‖v−,si ‖2)2)

≤ 2K̃1(KCe(α
w−αu)ωi+1 +KM(‖v+,si ‖+ ‖v+,ui ‖)2 + K̃2

2e
2αsωi + ε−(ω)‖v−,si ‖);

where ε±(ω) are exponentially small. Hence we find a constant K̃3 such that

‖v+,si ‖ ≤ K̃3(e
2αwωi+1 + e2α

sωi + (‖v−,si ‖+ ‖v−,ui ‖)2);

‖v−,si ‖ ≤ K̃3(e
(αw−αu)ωi+1 + e2α

sωi + (‖v+,si ‖+ ‖v+,ui ‖)2).






(3.99)

Successively plugging the estimates of (3.98) and (3.99) into each other yields in a first step

‖v+,si ‖ ≤ K̃3K̃
2
2 (e

2αwωi+1 + e2α
sωi + ε̂−(ω)‖v−,si ‖);

‖v−,si ‖ ≤ K̃3K̃
2
2 (e

2αwωi+1 + e2α
sωi + ε̂+(ω)‖v+,si ‖);






(3.100)

with ε̂±(ω) exponentially small for Ω sufficiently large. Here we have used that αw − αu ≤ 2αw. In a

second step we plug the estimates (3.100) successively into each other and these solutions we apply in

(3.98). Finally we obtain

‖v+,si ‖ ≤ K̃4(e
2αwωi+1 + e2α

sωi);

‖v−,si ‖ ≤ K̃4(e
2αwωi+1 + e2α

sωi);

‖v+,ui ‖ ≤ K̃4(e
αwωi+1 + e4α

sωi);

‖v−,ui ‖ ≤ K̃4(e
4αwωi+1 + eα

sωi).







(3.101)
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Plugging these estimates into (3.97) and (3.94) gives

‖v+,ui (t)‖ ≤ K̃5(e
−αu(ωi+1−t)eα

wωi+1 + (eα
wωi+1 + e2α

sωi)2);

‖v−,ui (t)‖ ≤ K̃5(e
αs(ωi+t)eα

sωi + eα
sωie2α

wωi+1 + e4α
wωi+1);

and
‖v+,si (t)‖ ≤ K̃5e

αst(e2α
wωi+1 + e2α

sωi);

‖v−,si (t)‖ ≤ K̃5e
−αwt(e2α

sωi + e2α
wωi+1).






(3.102)

We want to simplify the estimate of v+,ui (t) by applying −αu ≤ αw and end up with

‖v+,ui (t)‖ ≤ K̃5(e
αw(ωi+1−t)eα

wωi+1 + eα
wωi+1e2α

sωi + e4α
sωi);

‖v−,ui (t)‖ ≤ K̃5(e
αs(ωi+t)eα

sωi + eα
sωie2α

wωi+1 + e4α
wωi+1).






(3.103)

With (3.102) and (3.103) the main part of finding suitable estimations of v±,si (t) and v±,ui (t) is accom-

plished. But still we wish to specify the estimates further.

We start with v±,si . To this end we look again at the integral term in (3.41), invoke Lemma 3.4.7 and

make use of the estimates (3.103) and (3.102). We do this exemplarily for v−,si . Here we set again

β−
κi

= −αw + δ for some δ > 0 close to zero.

0∫

t

‖Φ−
κi
(t, s)(id− P−

κi
(s))‖‖h−,s

κi
(s, v−i (s), λ)‖ds

≤
0∫

t

e(−α
w+δ)(t−s)‖h−,s

κi
(s, v−i (s), λ)‖ds

≤ M
0∫

t

e(−α
w+δ)(t−s)(−eα

ws‖v−,ui (s)‖+ ‖v−,si (s)‖)(‖v−,ui (s)‖+ ‖v−,si (s)‖)ds

≤ K̃2
5M e−α

wt
0∫

t

eδ(t−s)(eα
s(2ωi+s) + e2α

wωi+1)

·(eαs(2ωi+s) + (eα
us + eα

sωi)e2α
wωi+1 + e4α

wωi+1)ds

≤ K̃2
5M e−α

wt
0∫

t

eδ(t−s)(eα
s(2ωi+s) + e2α

wωi+1)2ds

≤ K̃2
5M e−α

wt

(

e4α
sωi

0∫

t

e2α
ssds+ 2e2α

sωie2α
wωi+1

0∫

t

eα
ssds+ e4α

wωi+1

0∫

t

eδ(t−s)ds

)

≤ K̃2
5M e−α

wt
(
eα

s(ωi+t)eα
sωi + e2α

wωi+1
)2

.







(3.104)

Analogously we obtain

t∫

0

‖Φ+
κi
(t, s)(id− P+

κi
(s))h+,s

κi
(s, v+i (s), λ)‖ds ≤ K

t∫

0

e(α
s−δ)(t−s)‖h+,s

κi
(s, v+i (s), λ)‖ds

≤ KK̃2
5M eα

st
(
eα

w(2ωi+1−t) + e2α
sωi

)2
.







(3.105)
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In combination with the linear term this finally leads to

‖v−,si (t)‖ ≤ KLe−α
wt‖v+,ui (0)‖+K

0∫

t

e(−α
w+δ)(t−s)‖h−,s

κi
(s, v−i (s), λ)‖ds

≤ K̃6e
−αwt

(
e2α

s(ωi+t)e2α
sωi + e2α

sωieα
wωi+1 + e2α

wωi+1
)
,

‖v+,si (t)‖ ≤ KLeα
st‖v−,ui (0)‖+K

t∫

0

e(α
s−δ)(t−s)‖h+,s

κi
(s, v+i (s), λ)‖ds

≤ K̃6e
αst

(
e2α

w(ωi+1−t)e2α
wωi+1 + e2α

wωi+1eα
sωi + e2α

sωi
)
,

so that we are finished with the estimate of v±,si .

In case of v±,ui we also see again to the integral term. But before we can do this we need to estimate the

term v±,sui .

To this end recall that we have decomposed v±i by means of the projection P±
κi
(t) where v±,ui (t) ∈ imP±

κi
(t)

and v±,si (t) ∈ im(id−P±
κi
(t)) = Tγ±

κi
(t)W

s/u(0). This decomposition we refined by decomposing v±,s(t) =

v±,ss(t) + v±,su(t) where v±,ss ∈ Φ±(λ)(t, 0)W± and v±,su ∈ Φ±(λ)(t, 0) span{f(γ±(λ)(0), λ)}. Note

that

v±,sui (0) = 0.

Therefore we can estimate v±,su(t) in the same way as v±,s(t) but without the linear term, which drops

out. Hence we find, cf. (3.104) and (3.105),

‖v+,sui (t)‖ ≤ K
t∫

0

e(α
s−δ)(t−s)‖h+,s

κi
(s, v+i (s), λ)‖ds

≤ KMK̃2
5 eα

st
(
eα

w(ωi+1−t)eα
wωi+1 + e2α

sωi
)2

,

‖v−,sui (t)‖ ≤ K
0∫

t

e(−α
w+δ)(t−s)‖h−,s

κi
(s, v−i (s), λ)‖ds

≤ KMK̃2
5 e−α

wt
(
eα

s(ωi+t)eα
sωi + e2α

wωi+1
)2

.







(3.106)

Comparing these estimates with (3.103) we see that the sum of ‖v±,sui (t)‖ and ‖v±,ui (t)‖ can be estimated

by the same terms as ‖v±,ui (t)‖, that is

‖v+,sui (t)‖+ ‖v+,ui (t)‖ ≤ C̃K̃5(e
αw(ωi+1−t)eα

wωi+1 + eα
wωi+1e2α

sωi + e4α
sωi),

‖v−,sui (t)‖+ ‖v−,ui (t)‖ ≤ C̃K̃5(e
αs(ωi+t)eα

sωi + eα
sωie2α

wωi+1 + e4α
wωi+1).

for some constant C̃ > 1. Now with this we can estimate the integral term in (3.97) for v±,ui (t) again by

invoking Lemma 3.4.8. Additionally we make use of the estimates (3.103) and (3.102) which yield

‖v−i (s)‖ ≤ ‖v−,si (s)‖+ ‖v−,ui (s)‖ ≤ K̃5e
αs(ωi+s)eα

sωi + e2α
wωi+1 ,

‖v+i (s)‖ ≤ ‖v+,si (s)‖+ ‖v+,ui (s)‖ ≤ K̃5e
αw(ωi+1+s)eα

wωi+1 + e2α
sωi .

We see to the integral in (3.97) exemplarily for v−,ui . Here we set −α− = αs−δ for some δ > 0 sufficiently
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small such that αs − δ > Reµs(λ) is still satisfied, cf. (3.18) and (3.66).

t∫

−ωi

‖Φ−
κi
(λ)(t, s)P−

κi
(λ, s)h−

κi
(s, v−i (s), λ)‖ds

≤
t∫

−ωi

e(α
s−δ)(t−s)‖h−,u

i (s, v−i (s), λ)‖ds

≤ M
t∫

−ωi

e(α
s−δ)(t−s)(‖v−,ui (s)‖+ ‖v−,sui (s)‖)‖v−i (s)‖ds

≤ C̃K̃2
5M

t∫

−ωi

e(α
s−δ)(t−s)(eα

s(ωi+s)eα
sωi + e2α

wωi+1)2ds

≤ C̃K̃2
5M eα

st

[

e3α
sωi

t∫

−ωi

eα
s(ωi+s)ds+ 2e2α

sωie2α
wωi+1

t∫

−ωi

e−δ(t−s)ds

]

+C̃K̃2
5M e4α

wωi+1

t∫

−ωi

e(α
s−δ)(t−s)ds

≤ C̃K̃2
5M

(
eα

st
[
e3α

sωi + 2e2α
sωie2α

wωi+1
]
+ e4α

wωi+1
)
.







(3.107)

Analogously we find,

ωi+1∫

t

‖Φ+
κi
(λ)(t, s)P+

κi
(λ, s)h+

κi
(s, v+i (s), λ)‖ds

≤
ωi+1∫

t

e(−α
w+δ)(t−s)‖h+,u

i (s, v+i (s), λ)‖ds

≤ C̃K̃2
5M

(
e−α

wt
[
e3α

wωi+1 + 2e2α
sωie2α

wωi+1
]
+ e4α

sωi
)
.

Finally in combination with the linear term we obtain

‖v+,ui (t)‖ ≤ Keα
w(ωi+1−t)‖a+i+1‖+K

ωi+1∫

t

e−α
w(t−s)‖h+,u

i (s, v+i (s), λ)‖ds

≤ K̃7(e
αw(ωi+1−t)eα

wωi+1 + e4α
sωi),

‖v−,ui (t)‖ ≤ Keα
s(ωi+t)‖a−i ‖+K

t∫

−ωi

eα
s(t−s)‖h−,u

i (s, v−i (s), λ)‖ds

≤ K̃7(e
αs(ωi+t)eα

sωi + e4α
wωi+1).

Corollary 3.4.10. Assume Hypotheses (H3.1)-(H3.6), then there exist constants Ω and c in accordance

to Theorem 3.2.2 such that for all ‖λ‖ < c and ω with inf ω > Ω the following estimates apply with some

K̄ > 0:
‖v+,sui (t)‖+ ‖v+,ui (t)‖ ≤ K̄(eα

w(ωi+1−t)eα
wωi+1 + e4α

sωi),

‖v−,sui (t)‖+ ‖v−,ui (t)‖ ≤ K̄(eα
s(ωi+t)eα

sωi + e4α
wωi+1).

(3.108)

Proof. This estimate follows from Lemma 3.4.9 and the Estimate (3.106).

Now we have collected nearly every information we need to estimate each single term appearing in the

representation of the jump ξi(ω, λ, κ), cf. (3.65). What remains to consider are the integral terms
∫
Φ±P±h±,u.
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3.4.6 Estimates regarding the integral terms

We start with the integral
∫
Φ+
κi
(0, s)P+

κi
(s)h+

κi
(s, v+i (s))ds.

Lemma 3.4.11. Assume Hypotheses (H3.1)-(H3.6). Then there exist constants Ω and c in accordance

to Theorem 3.2.2 such that for all ‖λ‖ < c and ω with inf ω > Ω the following estimates apply:

∥
∥
∥
∥
∥
∥

ωi+1∫

0

Φ+
κi
(λ)(0, s)P+

κi
(λ, s)h+

κi
(s, v+i (s), λ)ds

∥
∥
∥
∥
∥
∥

= O
(

e6α
sωi + e2α

sωie2α
wωi+1 + emax{(ν−2)αs+3αw,4αw}ωi+1

)

,

with αw as defined in (3.90).

Proof. With h+,u
κi

:= P+
κi
h+
κi

we find due to Lemma 3.4.8

∥
∥
∥
∥

ωi+1∫

0

Φ+
κi
(λ)(0, s)P+

κi
(λ, s)h+

κi
(s, v+i (s), λ)ds

∥
∥
∥
∥

≤ M
ωi+1∫

0

‖Φ+
κi
(λ)(0, s)P+

κi
(λ, s)‖

(
‖v+,ui (s)‖+ ‖v+,sui (s)‖

)
‖v+i (s)‖

(
‖v+i (s)‖+ ‖γ+

κi
(s)− pκi+1

‖
)ν−2

ds.

The exponential dichotomy (3.16) provides ‖Φ+
κi
(λ)(0, s)P+

κi
(λ, s)‖ ≤ Ke−β

+
i s. Here β+

i can be chosen

as β+
i = αu + δ for some δ > 0 such that the inequality αu + δ < Re(µu(λ)) is still satisfied for

all ‖λ‖ sufficiently small, cf. (3.18) and (3.66). Indeed we choose β+
i = −αw + δ, since −αw ≤ αu.

Further we find ‖γ+
κi
(s) − pκi+1

‖ ≤ Keα
ss, cf. (3.79). Combining this result with Lemma 3.4.9 we find

‖v+i (s)‖ + ‖γ+
κi
(s) − pκi+1

‖ ≤ K̃(eα
ss + e4α

sωi). Then we obtain by additionally applying the binomial

theorem

∥

∥

∥

∥

ωi+1
∫

0

Φ+
κi
(λ)(0, s)P+

κi
(λ, s)h+

κi
(s, v+i (s), λ)ds

∥

∥

∥

∥

≤ M
ωi+1
∫

0

Ke(α
w
−δ)s(‖v+,u

i (s)‖+ ‖v+,su
i (s)‖)‖v+i (s)‖ · K̃ν−2

(

e4α
sωi + eα

ss
)ν−2

ds

≤ MKK̃ν−2
ν−2
∑

k=0

(

ν−2
k

)

e4kα
sωi

ωi+1
∫

0

e((ν−2−k)αs+αw)se−δs(‖v+,u
i (s)‖+ ‖v+,su

i (s)‖)‖v+i (s)‖ds.



































(3.109)

Now we focus on the integral term in the last line. Invoking the estimates for ‖v+,si (s)‖, ‖v+,ui (s)‖ and

‖v+,ui (s)‖+ ‖v+,sui (s)‖ given in Lemma 3.4.9 and Corollary 3.4.10 leads with

‖v+i (s)‖ ≤ ‖v+,si (s)‖+ ‖v+,ui (s)‖ ≤ K̄(eα
w(ωi+1−s)eα

wωi+1 + e2α
sωi)

to
ωi+1∫

0

e((ν−2−k)αs+αw)se−δs(‖v+,ui (s)‖+ ‖v+,sui (s)‖)‖v+i (s)‖ds

≤ 2K̄2
ωi+1∫

0

e((ν−2−k)αs+αw)se−δs
(
e−α

wse2α
wωi+1 + e4α

sωi
) (

−eα
wse2α

wωi+1 + e2α
sωi

)
ds

≤ 2K̄2
ωi+1∫

0

e((ν−2−k)αs+αw)se−δs
[
e−2αwse4α

wωi+1 + 2e−α
wse2α

wωi+1e2α
sωi + e6α

sωi
]
ds

≤ 2K̄2

[

e4α
wωi+1

ωi+1∫

0

e((ν−2−k)αs−αw)sds+ 2e2α
wωi+1e2α

sωi

ωi+1∫

0

e((ν−2−k)αs)se−δsds

+e6α
sωi

ωi+1∫

0

e((ν−2−k)αs+αw)sds

]

Most of the integral terms in the last line can be estimated by a constant c > 0. First we find that
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e−δs < 1 for s > 0 so that term dropped out in the first and the last integral. Then we find for all

k = 0, . . . , ν − 2, ν ≥ 2 that (ν − 2− k)αs ≤ 0 and (ν − 2− k)αs + αw < 0 and hence

ωi+1∫

0

e(ν−2−k)αsse−δsds ≤ c and

ωi+1∫

0

e((ν−2−k)αs+αw)sds ≤ c.

Additionally we also get for the first integral

ωi+1∫

0

e((ν−2−k)αs−αw)sds < c
(

1 + e((ν−2−k)αs−αw)ωi+1

)

Therefore we obtain

ωi+1∫

0

e((ν−2−k)αs+αw)se−δs(‖v+,ui (s)‖+ ‖v+,sui (s)‖)‖v+i (s)‖ds

≤ 2cK̄2
(
2e2α

sωie2α
wωi+1 + e6α

sωi + e4α
wωi+1 + e((ν−2−k)αs+3αw)ωi+1

)

which finally leads with (3.109) to

∥
∥
∥
∥

ωi+1∫

0

Φ+
κi
(λ)(t, s)P+

κi
(λ, s)h+

κi
(s, v+i (s), λ)ds

∥
∥
∥
∥

≤ C
(
e2α

sωie2α
wωi+1 + e6α

sωi
)
+ C







e4α
wωi+1 + e((ν−2)αs+3αw)ωi+1 , ν > 2,

e3α
wωi+1 , ν = 2.

It remains to estimate the other integral
∫
Φ−
κi
(0, s)P−

κi
(s)h−

κi
(s, v−i (s))ds. Following along the lines of

the proof of Lemma 3.4.11 we obtain the estimate

∥
∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)h−

κi
(s, v−i (s))ds

∥
∥
∥
∥
∥
∥

= O(e6α
wωi+1 + e2α

wωi+1e2α
sωi) +







O(e3α
sωi), ν = 2,

O(e4α
sωi), ν > 2.

(3.110)

However, in view of the determination of the leading terms within the residuals Ri(ω, λ, κ) in the deter-

mination equation (1.7) we will decompose the integral into several parts which we estimate separately.

The separation of the integral is based on the separation of h−
κi
(s, v−i (s)) presented in Lemma 3.4.8.

Lemma 3.4.12. Assume Hypotheses (H3.1)-(H3.6). Then there exist constants Ω and c in accordance

with Theorem 3.2.2 such that for all ‖λ‖ < c and ω with inf ω > Ω the following estimates apply:

∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)D2

1f(γ
−
κi
(λ)(s), λ)[v−,u(s), v−,u(s)]ds

∥
∥
∥
∥
∥

=







O
(
e3α

sωi + e2α
sωie4α

wωi+1 + e8α
wωi+1

)
, ν = 2,

O
(
e4α

sωi + e2α
sωie4α

wωi+1 + e8α
wωi+1

)
, ν ≥ 3,
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∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)D3

1f(γ
−
κi
(λ)(s), λ)[v−,u(s), v−,u(s), v−,u(s)]ds

∥
∥
∥
∥
∥

=







O
(
e4α

sωi + e3α
sωie4α

wωi+1 + e2α
sωie8α

wωi+1 + e12α
wωi+1

)
, ν = 2, ν = 3

O
(
emax{4αs+αw,6αs}ωi + e4α

sωie4α
wωi+1 + e2α

sωie8α
wωi+1 + e12α

wωi+1
)
, ν ≥ 4,

and

∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)

(
h−
κi
(s, v−i (s), λ)− 1

2D
2
1f(γ

−
κi
(λ)(s), λ)[v−,u(s), v−,u(s)]

− 1
6D

3
1f(γ

−
κi
(λ)(s), λ)[v−,u(s), v−,u(s), v−,u(s)]

)
ds
∥
∥

= O
(
e5α

sωi + e4α
sωieα

wωi+1 + e2α
sωie2α

wωi+1 + e6α
wωi+1

)
,

with αw as defined in (3.90).

Proof. We start with the estimation of
∫
Φ−
κi
(t, s)P−

κi
(s)D2

1f(γ
−
κi
(s))[v−,ui (s), v−,ui (s)]ds. Due to the ex-

ponential dichotomy (3.16) we find ‖Φ−
κi
(t, s)P−

κi
(s)‖ ≤ Ke−α

−
κi

(t−s) where we can choose −α−
κi

:=

αs − δ for some δ > 0 such that the inequality αs − δ > µs(λ) is still satisfied, cf. (3.18). Fur-

ther we have ‖D2
1f(γ

−
κi
(s))[v−,ui (s), v−,ui (s)]‖ = O(‖v−,ui (s)‖2 · ‖γ−

κi
(s) − pκi

‖ν−2). Equation (3.79) pro-

vides ‖γ−
κi
(s) − pκi

‖ ≤ K̃eα
us ≤ K̃e−α

ws for s < 0 and from Lemma 3.4.9 we obtain ‖v−,ui (s)‖ ≤
K̄(eα

s(ωi+s)eα
sωi + e4α

wωi+1). Now this yield

∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)D2

1f(γ
−
κi
(λ)(s), λ)[v−,ui (s), v−,ui (s)]ds

∥
∥
∥
∥
∥

≤ MK
0∫

−ωi

e−(αs−δ)s‖v−,ui (s)‖2‖γ−
κi
(s)− pκi

‖ν−2ds

≤ MKK̄2K̃ν−2
0∫

−ωi

e(−α
s−(ν−2)αw)seδs

(
eα

sse2α
sωi + e4α

wωi+1
)2

ds

≤ MKK̄2K̃ν−2

(

e4α
sωi

0∫

−ωi

e(α
s−(ν−2)αw)sds+ 2e2α

sωie4α
wωi+1

0∫

−ωi

e−(ν−2)αwseδsds

+e8α
wωi+1

0∫

−ωi

e(−α
s−(ν−2)αw)sds

)

The second and the third integral are bounded for all ν ≥ 2, the first integral is bounded for ν ≥ 3. For

ν = 2 we find
0∫

−ωi

e(α
s−(ν−2)αw)sds ≤ ce−α

sωi . Hence we get

∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)D2

1f(γ
−
κi
(λ)(s), λ)[v−,ui (s), v−,ui (s)]ds

∥
∥
∥
∥
∥

≤ Ce4α
wωi+1(e4α

wωi+1 + e2α
sωi) + C







e3α
sωi , ν = 2,

e4α
sωi , ν > 2.
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Analogously we estimate

∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)D3

1f(γ
−
κi
(λ)(s), λ)[v−,ui (s), v−,ui (s), v−,ui (s)]ds

∥
∥
∥
∥
∥

≤ MK
0∫

−ωi

e−(αs−δ)s‖v−,ui (s)‖3‖γ−
κi
(s)− pκi

‖max{0,ν−3}ds

only here we use ‖D3
1f(γ

−
κi
(s))[v−,ui (s), v−,ui (s), v−,ui (s)]‖ = O(‖v−,ui (s)‖3 · ‖γ−

κi
(s) − pκi

‖max{0,ν−3}).

Hence we obtain for ν = 2 and ν = 3

∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)D3

1f(γ
−
κi
(λ)(s), λ)[v−,ui (s), v−,ui (s), v−,ui (s)]ds

∥
∥
∥
∥
∥

≤ MKK̄2
0∫

−ωi

e−α
sseδs

(
eα

sse2α
sωi + e4α

wωi+1
)3

ds

≤ MKK̄2

(

e4α
sωi

0∫

−ωi

e2α
s(ωi+s)ds+ 3e3α

sωie4α
wωi+1

0∫

−ωi

eα
s(ωi+s)ds

+3e2α
sωie8α

wωi+1

0∫

−ωi

eδsds+ e12α
wωi+1

0∫

−ωi

e−α
ssds

)

≤ C
(
e4α

sωi + e3α
sωie4α

wωi+1 + e2α
sωie8α

wωi+1 + e12α
wωi+1

)
,

since each single integral term is bounded. For ν > 3 we get

∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)D3

1f(γ
−
κi
(λ)(s), λ)[v−,ui (s), v−,ui (s), v−,ui (s)]ds

∥
∥
∥
∥
∥

≤ MKK̄2K̃ν−3
0∫

−ωi

e(−α
s−(ν−3)αw)seδs

(
eα

sse2α
sωi + e4α

wωi+1
)3

ds

≤ MKK̄2K̃ν−3

(

e6α
sωi

0∫

−ωi

e(2α
s−(ν−3)αw)sds+ 3e4α

sωie4α
wωi+1

0∫

−ωi

e(α
s−(ν−3)αw)sds

+3e2α
sωie8α

wωi+1

0∫

−ωi

e−(ν−3)αwseδsds+ e12α
wωi+1

0∫

−ωi

e(−α
s−(ν−3)αw)sds

)

.

Again the last three integral terms are bounded for all ν > 3. The first integral is bounded for ν > 4.

For ν = 4 we get
0∫

−ωi

e(2α
s−(ν−3)αw)sds ≤ ce(−2αs+αw)ωi . This finally leads to

∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)D3

1f(γ
−
κi
(λ)(s), λ)[v−,ui (s), v−,ui (s), v−,ui (s)]ds

∥
∥
∥
∥
∥

≤ C
(
e12α

wωi+1 + e2α
sωie8α

wωi+1
)
+ C







e4α
sωi + e3α

sωie4α
wωi+1 , ν = 2, ν = 3

emax{4αs+αw,6αs}ωi + e4α
sωie4α

wωi+1 , ν > 3.

Now let us consider the rest of the integral. With Lemma 3.4.8 and the exponential dichotomy (3.16) we
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find

∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)

(
h−,u
κi

(s, v−i (s), λ)− 1
2D

2
1f(γ

−
κi
(λ)(s), λ)[v−,ui (s), v−,ui (s)]

− 1
6D

3
1f(γ

−
κi
(λ)(s), λ)[v−,ui (s), v−,ui (s), v−,ui (s)]

)
ds
∥
∥

≤ MK
0∫

−ωi

e−(αs−δ)s (‖v−,ui (s)‖+ ‖v−,sui (s)‖
)
‖v−,si (s)‖

(
‖v−i (s)‖+ ‖γ−

κi
(s)− pκi

‖
)ν−2

ds

+MK
0∫

−ωi

e−(αs−δ)s‖v−,ui (s)‖4
(
‖v−i (s)‖+ ‖γ−

κi
(s)− pκi

‖
)max{0,ν−4}

ds.

This time we simply estimate ‖v−i (s)‖+ ‖γ−
κi
(s)− pκi

‖ with a constant. This leads to

∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)

(
h−,u
κi

(s, v−i (s), λ)− 1
2D

2
1f(γ

−
κi
(λ)(s), λ)[v−,ui (s), v−,ui (s)]

− 1
6D

3
1f(γ

−
κi
(λ)(s), λ)[v−,ui (s), v−,ui (s), v−,ui (s)]

)
ds
∥
∥

≤ C
0∫

−ωi

e−(αs−δ)s‖v−,si (s)‖(‖v−,ui (s)‖+ ‖v−,sui (s)‖)ds+ C
0∫

−ωi

e−(αs−δ)s‖v−,ui (s)‖4ds







(3.111)

To begin with we focus on the first of the two integrals and obtain by invoking Lemma 3.4.9 and Corol-

lary 3.4.10

0∫

−ωi

e−α
s

eδs‖v−,si (s)‖(‖v−,ui (s)‖+ ‖v−,sui (s)‖)ds

≤ K̄2
0∫

−ωi

e−α
ss · e−αws

(
e2α

sse4α
sωi + e2α

sωieα
wωi+1 + e2α

wωi+1
) (

eα
sse2α

sωi + e4α
wωi+1

)
ds

≤ K̄2
0∫

−ωi

e−(αw+αs)s
[
e3α

sse6α
sωi + e2α

sse4α
sωie4α

wωi+1 + eα
sse2α

sωi(e2α
sωieα

wωi+1 + e2α
wωi+1)

+(e2α
sωieα

wωi+1 + e2α
wωi+1)e4α

wωi+1
]
ds

≤ K̄2

(

e6α
sωi

0∫

−ωi

e(2α
s−αw)sds+ e4α

sωie4α
wωi+1

0∫

−ωi

e(α
s−αw)sds

+e2α
sωi(e2α

sωieα
wωi+1 + e2α

wωi+1)
0∫

−ωi

e−α
wsds+ e5α

wωi+1(e2α
sωi + eα

wωi+1)
0∫

−ωi

e−(αw+αs)sds

)

≤ K̄2
(
emax{6αs,4αs+αw}ωi + e2α

sωi(e2α
sωieα

wωi+1 + e2α
wωi+1) + e6α

wωi+1
)
.
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Finally we turn towards the second integral on the right-hand-side of (3.111) and invoke again Lemma 3.4.9.

0∫

−ωi

e−(αs−δ)s‖v−,ui (s)‖4ds

≤ K̄4
0∫

−ωi

e−α
sseδs(eα

sse2α
sωi + e4α

wωi+1)4ds

≤ K̄4
0∫

−ωi

e−α
sseδs

[
e4α

sse8α
sωi + 4e3α

sse6α
sωie4α

wωi+1 + 6e2α
sse4α

sωie8α
wωi+1

+4eα
sse2α

sωie12α
wωi+1 + e16α

wωi+1
]
ds

≤ K̄4

(

e5α
sωi

0∫

−ωi

e3α
s(ωi+s)ds+ 4e4α

sωie4α
wωi+1

0∫

−ωi

e2α
s(ωi+s)ds + 6e3α

sωie8α
wωi+1

0∫

−ωi

eα
s(ωi+s)ds

+4e2α
sωie12α

wωi+1

0∫

−ωi

eδsds+ e16α
wωi+1

0∫

−ωi

e−α
ssds

)

≤ 6K̄4
(
e5α

sωi + e4α
sωie4α

wωi+1 + e3α
sωie8α

wωi+1 + e2α
sωie12α

wωi+1 + e16α
wωi+1

)
.

Combining the last to estimates concludes the proof.

3.4.7 Summarising the estimates of T 1

κi
and T 2

κi

Here we collect the estimates of the forgoing sections to finally estimate each single term appearing in

the expression of the jump (3.65). To this end we first consider the left-hand sides of the scalar products.

Due to exponential dichotomies (3.16) we find with β+
κi

= αu and −α−
κi

= αs, cf. (3.18) and (3.66)

‖Φ+
κi
(λ)(0, ωi+1)

TP+
κi
(λ, 0)Tψκi

‖ = O(e−α
uωi+1),

‖Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

‖ = O(eα
sωi).






(3.112)

With this we obtain the following estimates of the single terms in (3.65).

T 11

κi
:=

〈

Φ+
κi
(λ)(0, ωi+1)

TP+
κi
(λ, 0)Tψκi

, P̃κi+1
(λ, ωi+1)

(
γ−
κi+1

(λ)(−ωi+1)− pκi+1

)〉

The estimate of this terms simply follows from Lemma 3.4.6 in combination with the first equation in

(3.112):

T 11

κi
= O

(

e−2αuωi+1

)

. (3.113)

T 12

κi
:= −

〈

Φ+
κi
(λ)(0, ωi+1)

TP+
κi
(λ, 0)Tψκi

, P̃κi+1
(λ, ωi+1)

(
γ+
κi
(λ)(ωi+1)− pκi+1

)〉

Again we may immediately adopt Lemma 3.4.6 and combine it with (3.112). This yields

T 12

κi
=







O
(
emax{2(αs−αu),αs−ναu}ωi+1

)
, if (H3.7) applies,

O
(
e3/2(αs−αu)ωi+1

)
, else.

(3.114)

T 13

κi
:=

〈

Φ+
κi
(λ)(0, ωi+1)

TP+
κi
(λ, 0)Tψκi

, P̃κi+1
(λ, ωi+1)(id− P−

κi+1
(λ,−ωi+1))v

−
i+1(λ)(−ωi+1)

〉

Recall the shortened notation v−,si+1(−ωi+1) := (id−P−
κi+1

(−ωi+1))v
−
i+1(−ωi+1), cf. Definition 3.3.4. Then
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we obtain from Lemma 3.4.9 in combination with Estimate (3.112)

T 13

κi
=







O
(
e−2αuωi+1 [e2α

sωi+1 + e−2αuωi+2 ]
)
, if (H3.7) applies,

O
(
e1/2(αs−3αu)ωi+1 [e2α

sωi+1 + e(α
s−αu)ωi+2 ]

)
, else,

(3.115)

since the projection P̃κi+1
(λ, ωi+1) is bounded.

T 14

κi
:= −

〈

Φ+
κi
(λ)(0, ωi+1)

TP+
κi
(λ, 0)Tψκi

, P̃κi+1
(λ, ωi+1)(id− P+

κi
(λ, ωi+1))v

+
i (λ)(ωi+1)

〉

From Lemmata 3.4.3 and 3.4.5 we find the estimates

P̃κi+1
(λ, ωi+1)(id− P+

κi
(λ, ωi+1)) =







O
(
emax{αs−αu,−(ν−1)αu}ωi+1

)
, if (H3.7) applies,

O
(
e1/2(αs−αu)ωi+1

)
, else.

This in combination with the estimate of v+,si (ωi+1) := (id − P+
κi
(ωi+1))v

+
i (ωi+1) in Lemma 3.4.9 and

Estimate (3.112) provides

T 14

κi
=







O
(
emax{2(αs−αu),αs−ναu}ωi+1 [e2α

sωi + e−2αuωi+1 ]
)
, if (H3.7) applies,

O
(
e3/2(αs−αu)ωi+1 [e2α

sωi + e(α
s−αu)ωi+1 ]

)
, else.

(3.116)

T 15

κi
:= −

〈

ψκi
,
ωi+1∫

0

Φ+
κi
(λ)(0, s)P+

κi
(λ, s)h+

κi
(s, v+i (λ)(s), λ)ds

〉

The estimate of this term follows immediately from Lemma 3.4.11:

T 15

κi
=







O
(
e6α

sωi + e2α
sωie−2αuωi+1 + emax{(ν−2)αs−3αu,−4αu}ωi+1

)
, if (H3.7) applies,

O
(
e6α

sωi + e2α
sωie(α

s−αu)ωi+1

+emax{(ν− 1
2 )α

s− 3
2α

u,2(αs−αu)}ωi+1

)

, else.

(3.117)

Summarising we obtain for the first two scalar products on the right-hand side in (3.65) the estimate

T 1

κi
=







O
(
e6α

sωi + e−2αuωi+1
)
, if (H3.7) applies,

O
(
e6α

sωi + e2α
sωie(α

s−αu)ωi+1 + emax{3/2(αs−αu),−2αu}ωi+1

+e1/2(αs−3αu)ωi+1e(α
s−αu)ωi+2

)
, else.

(3.118)

We continue with estimating the terms in the remaining two scalar products of (3.65).

T 21

κi
:= −

〈

Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

, (id− P̃κi
(λ, ωi))

(
γ+
κi−1

(λ)(ωi)− pκi

)〉

Applying Lemma 3.4.6 in combination with the second equation in (3.112) yields:

T 21

κi
= O

(

e2α
sωi

)

. (3.119)

T 22

κi
:=

〈

Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

, (id− P̃κi
(λ, ωi))

(
γ−
κi
(λ)(−ωi)− pκi

)〉

Analogously combining Lemma 3.4.6 and (3.112) provides

T 22

κi
=







O
(
emax{ναs−αu,2(αs−αu)}ωi

)
, if (H3.7) applies,

O
(
emax{ναs−αu,3/2(αs−αu)}ωi

)
, else.

(3.120)
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T 23

κi
:= −

〈

Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

, (id− P̃κi
(λ, ωi))(id− P+

κi−1
(λ, ωi))v

+
i−1(λ)(ωi)

〉

From Lemma 3.4.9 with v+,si−1(−ωi) := (id− P+
κi−1

(ωi))v
+
i−1(ωi) in combination with Estimate (3.112) we

obtain

T 23

κi
=







O
(
e2α

sωi [e2α
sωi−1 + e−2αuωi ]

)
, if (H3.7) applies,

O
(
e2α

sωi [e2α
sωi−1 + e(α

s−αu)ωi ]
)
, else.

(3.121)

T 24

κi
:=

〈

Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

, (id− P̃κi
(λ, ωi))(id− P−

κi
(λ,−ωi))v

−
i (λ)(−ωi)

〉

The Lemmata 3.4.3 and 3.4.5 provide the estimates

(id− P̃κi
(λ, ωi)(id− P−

κi
(λ,−ωi)) =







O
(
emax{(ν−1)αs,αs−αu}ωi

)
, if (H3.7) applies,

O
(
emax{(ν−1)αs,(αs−αu)/2}ωi

)
, else.

In combination with the estimate of v−,si (−ωi) := (id − P−
κi

− (ωi))v
−
i (−ωi) in Lemma 3.4.9 and Esti-

mate (3.112) this yields

T 24

κi
=







O
(
emax{ναs−αu,2(αs−αu)}ωi [e2α

sωi + e−2αuωi+1 ]
)
, if (H3.7) applies,

O
(

emax{(ν+ 1
2 )α

s− 1
2α

u,(3αs−αu)}ωi [e2α
sωi + e(α

s−αu)ωi+1 ]
)

, else.
(3.122)

T 25

κi
:= −

〈

ψκi
,

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)h−

κi
(s, v−i (λ)(s), λ, κ)ds

〉

Due to equation (3.110) we find

T 25

κi
=







O
(
e−6αuωi+1 + e−2αuωi+1e2α

sωi + emin{ν+1,4}αsωi
)
, if (H3.7) applies,

O
(
e3(α

s−αu)ωi+1 + e(α
s−αu)ωi+1e2α

sωi + emin{ν+1,4}αsωi
)
, else.

(3.123)

With this we have estimated each term of the representation (3.65) of the jump ξi(ω, λ, κ).

3.5 The derivative of the jump ξi(ω, λ, κ)

In addition to the exponential convergence rates of the jump ξi(ω, λ, κ), the convergence rates of the

derivatives of the jump with respect to the transition times ωj , Dωj
ξi(ω, λ, κ), j ∈ Z, will be of importance

in the further course of this thesis. Due to the representation (3.61) of the jump its differentiability with

respect to ω and hence ωj is given thanks to Lemma 3.2.7. With this the derivative with respect to ω is

actually a derivative with respect to β. However, we will spare ourselves this paraphrase.

It is not surprising that the derivatives of the single components of the jump, that we have considered

in the Sections 3.4.3 - 3.4.5, have exactly the same convergence rates as the components themselves. In

Section 3.5.2, however, we will verify this in detail and summarize the results in Section 3.5.3.

But beforehand we study in the subsequent section the differentiability of the jump with respect to

ω ∈ l∞. As well as the estimates of Dωj
ξi(ω, λ, κ) this will be needed during the proof of our main result

in Chapter 5.
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3.5.1 The derivative of ξi(ω, λ, κ) with respect to ω

The, so far unpublished, statements and proofs provided in this subsection are the work of Jürgen

Knobloch (personal contact, June 2021). Since Theorem 3.5.1 will be important in the course of this

thesis and in order to keep the thesis self contained, they were made available for this purpose.

Theorem 3.5.1. Let i be fixed and let ω be a sequence with a lower bound Ω > 0. Then
(
Djξi(ω)

)

j∈Z
∈ l1

with Djξi(ω) = O
(
1/2|j−i|

)
and

Dξi(ω)h =
∑

j

Djξi(ω)hj ,

h = (hj) ∈ l∞.

Before we turn towards the proof of Theorem 3.5.1 we start with some preliminary statements. At first

we present a technical lemma that is inspired by [HJKL11, Lemma 4.4].

Lemma 3.5.2. Let (a±i )i∈Z be a sequence of positive numbers such that for all j ∈ Z

a−j + a+j ≤ 1

2q
(a−j−1 + a+j+1) + ε,

for some q > 1 and some additional term ε. Then, for any i ∈ N the following holds true

a−j + a+j ≤ 1

qi
‖a‖+ 4q2

(q − 1)2
ε.

Proof. First, we prove by induction with respect to i that

(a−j−i + a+j+i) + (a+j−i + a−j+i) ≤
1

q
(a−j−i−1 + a+j+i+1) +

4q

q − 1
ε. (3.124)

So, let i = 0. According to the assumption of the lemma we have 2(a−j + a+j ) ≤ 1
q (a

−
j−1 + a+j+1) + 2ε(N),

where 2 < 4q/(q− 1). Now assume that (3.124) holds true for some i. Again applying the assumption of

the lemma we obtain

(a−j−i−1 + a+j+i+1) + (a+j−i−1 + a−j+i+1) ≤ 1
2q (a

−
j−i−2 + a+j−i) +

1
2q (a

−
j+i + a+j+i+2) + 2ε

= 1
2q (a

−
j−i−2 + a+j+i+2) +

1
2q (a

−
j+i + a+j−i) + 2ε

≤ 1
2q (a

−
j−i−2 + a+j+i+2) +

1
2q [(a

−
j+i + a+j−i) + (a+j+i + a−j−i)]

+2ε

≤ 1
2q (a

−
j−i−2 + a+j+i+2) +

1
2q2 (a

−
j−i−1 + a+j+i+1)

+(2 + 1
2q

4q
q−1 )ε.

Therefore

(1− 1

2q2
)(a−j−i−1 + a+j+i+1) + (a+j−i−1 + a−j+i+1) ≤

1

2q
(a−j−i−2 + a+j+i+2) +

2q

q − 1
ε

and hence

(a−j−i−1 + a+j+i+1) + (a+j−i−1 + a−j+i+1) ≤
1

q
(a−j−i−2 + a+j+i+2) +

4q

q − 1
ε.
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This finally proves (3.124) which in particular yields

(a−j−i + a+j+i) ≤
1

q
(a−j−i−1 + a+j+i+1) +

4q

q − 1
ε. (3.125)

For i = 0 we then find by repeatedly invoking (3.125)

(a−j + a+j ) ≤ 1
q (a

−
j−1 + a+j+1) +

4q
q−1ε

≤ 1
q2 (a

−
j−2 + a+j+2) + ( 1q + 1) 4q

q−1ε
...

≤ 1
qi (a

−
j−i + a+j+i) +

i−1∑

k=0

1
qk

4q
q−1ε

≤ 1
qi (a

−
j−i + a+j+i) +

4q2

(q−1)2 ε

which proves the lemma.

Lemma 3.5.3. Let ω1,ω2 be two sequences with a common lower bound Ω for which ω1
i = ω2

i for all

i ∈ [−N,N ] ∩ Z. If Ω is sufficiently large, then there exists a constant C such that

‖v0(ω1, λ, κ)(0)− v0(ω
2, λ, κ)(0)‖ ≤ C

(
1/2

)N
.

Proof. The proof basically runs along similar lines as the proofs of [HJKL11, Lemma 4.5], [Kno00, Lemma

5.1] or [Lin90, Lemma 3.4]. For the sake of simplicity we suppress the dependency on λ and κ. By (3.22)

we get

v0(ω)(0) = v̂ω,0(H(v),d(ω))(0).

Recall that the banach spaces in which the solutions of the fixed point equations (3.22) are searched

depend explicitly on ω. Therefore we define ω̃i := min{ω1
i , ω

2
i } and ω̃ := (ω̃i)i∈Z. Then of course

‖v0(ω1)(0)− v0(ω
2)(0)‖ ≤ ‖v0(ω1)(0)− v0(ω̃)(0)‖+ ‖v0(ω̃)(0)− v0(ω

2)(0)‖.

In order to study ‖v0(ω1)(0)− v0(ω̃)(0)‖ we define vR := v(ω1)|ω̃ that is

vR,+i (·) = v+i (ω
1)(·)|[0,ω̃i] and vR,−i+1 (·) = v−i+1(ω

1)(·)|[−ω̃i+1,0].

So we have in particular vR,±i (0) = v±i (ω
1)(0). With this we obtain

‖v0(ω1)(0)− v0(ω̃)(0)‖ = ‖vR0 (0)− v0(ω̃)(0)‖. (3.126)

Now, it is obvious that v(ω̃) = v̂ω̃(H(v(ω̃)),d(ω̃)). Further, we consider the fixed point equation

v = v̂ω̃(H(v),dR), (3.127)

where dR = (dRi )i∈Z with

dRi := v+i−1(ω
1)(ω̃i)− v−i (ω

1)(−ω̃i). (3.128)
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Recall in this respect, cf. (3.13), that

di+1(ω̃) := v+i (ω̃)(ω̃i+1)− v−i+1(ω̃)(−ω̃i+1)

= γ−
κi+1

(λ)(−ω̃i+1)− γ+
κi
(λ)(ω̃i+1).






(3.129)

The unique solution of (3.127) is vR.

Now we compare v(ω̃) and vR. To this end we define ∆v := (∆v+i ,∆v−i )i∈Z where

∆v±i := vR,±i (t)− v±i (ω̃)(t).

By linearity of v̂ω(H(v),d(ω)) with respect to the first and second component, cf. Lemma 3.2.5, we

obtain

∆v = v̂ω̃(∆H,∆d),

with ∆H := H(vR)−H(v(ω̃)) and ∆d := dR − d(ω̃). Invoking (3.51) we find

v̂ω̃(∆H,∆d) = vω̃(∆H, âω̃(∆H,∆d)).

Henceforth we will use the short hand notation ∆a := âω̃(∆H,∆d). In particular we find for the term

to estimate

‖v0(ω1)(0)− v0(ω̃)(0)‖ = ‖∆v0(0)‖ = ‖vω̃,0(∆H,∆a)(0)‖.

From now on we proceed as in the proof of [Kno00, Lemma 5.1]. Recall that v±ω̃,0(g,a)(·) solves the

variational equation v̇ = D1f(γκ0
(t))v + g±0 (t) and a+1 = P+

κ0
(ω̃1)v

+
0 (ω̃1) and a−0 = P−

κ0
(ω̃0)v

−
0 (−ω̃0), cf.

(3.34). Exploiting the asymptotic behaviour of the variational equation, we find, similar to the estimate

in (3.46) for i = 0, that there are constants C,M > 0 and α < 0 such that

‖∆v±0 (0)‖ ≤ CeαΩ̃(‖∆a+1 ‖+ ‖∆a−0 ‖) +M‖∆H0‖,

where Ω̃ is the lower bound of ω̃. Parallel to the proof of Lemma 3.4.9 we find for Ω̃ sufficiently large

M‖∆H0‖ ≤ 1

2
‖∆v±0 (0)‖.

Putting this together yields

‖∆v±0 (0)‖ ≤ CeαΩ̃(‖∆a+1 ‖+ ‖∆a−0 ‖), (3.130)

The fixed point equation (3.49) of a provides the existence of a constant C1 such that

‖∆a+i ‖+ ‖∆a−i ‖ ≤ C1(‖∆di‖+ ‖(id− P+
κi−1

(ω̃i))∆v+i−1(ω̃i)‖+ ‖(id− P−
κi
(−ω̃i))∆v−i (−ω̃i)‖).

The second and third term at the right-hand side of the last inequality can be expressed as in equation

(3.41). Once more exploiting exponential dichotomies and taking into account that the g-terms arising

there are O(‖∆v‖2) we end up with

‖∆a+i ‖+ ‖∆a−i ‖ ≤ C1(‖∆di‖+ C2e
−αΩ̃(‖∆v+i−1(0)‖+ ‖∆v−i (0)‖) + ε(‖∆v+i−1‖+ ‖∆v−i ‖)). (3.131)

Here ε can be chosen arbitrarily small (by taking inf(ω) and inf(ω̂) and hence Ω̃ sufficiently large).
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Similar to the proof of estimate (3.45) we can show that

‖∆v±i ‖ ≤ C3((‖∆a+i+1‖+ ‖∆a−i ‖) + (‖∆h+
i ‖+ ‖∆h−

i ‖)), (3.132)

where ∆h±
i (t) = h±

κi
(t, vR,±i (t)) − h±

κi
(t, v±i (ω̃)(t))). Using the mean-value-theorem in combination with

h±
κi
(t, 0) ≡ 0 and D2h

±
κi
(t, 0) ≡ 0, cf. (3.14), it yields ‖∆h±

i (t)‖ ≤ ε‖∆v±i (t)‖. Again by choosing ε

sufficiently small we obtain from (3.132)

‖∆v±i ‖ ≤ C4(‖∆a+i+1‖+ ‖∆a−i ‖). (3.133)

Combining the inequalities (3.131) and (3.133) then yields, again with Ω̃ sufficiently large,

‖∆a+i ‖+ ‖∆a−i ‖ ≤ K‖∆di‖+
1

4
(‖∆a+i+1‖+ ‖∆a−i−1‖). (3.134)

Recall that for i ∈ [−N,N ] ∩ Z we have ω1
i = ω̃i. Hence

dRi = v+i−1(ω
1)(ω̃i)− v−i (ω

1)(−ω̃i) = v+i−1(ω
1)(ω1

i )− v−i (ω
1)(−ω1

i )

= γ−
κi
(−ω1

i )− γ+
κi−1

(ω1
i ) = γ−

κi
(−ω̃i)− γ+

κi−1
(ω̃i)

= di(ω̃), for i ∈ [−N,N ] ∩ Z.

So, ‖∆di‖ = 0 for i ∈ [−N,N ] ∩ Z and therefore

‖∆a+i ‖+ ‖∆a−i ‖ ≤ 1

4
(‖∆a+i+1‖+ ‖∆a−i−1‖), for i ∈ [−N,N ] ∩ Z.

Now, we can apply Lemma 3.5.2 with ε = 0 that results in

‖∆a+0 ‖+ ‖∆a−0 ‖ ≤ 1
2N

(‖∆a+N‖+ ‖∆a−−N‖),

‖∆a+1 ‖+ ‖∆a−1 ‖ ≤ 1
2N−1 (‖∆a+N‖+ ‖∆a−2−N‖).

Finally estimating ‖∆a+N‖ + ‖∆a−−N‖ and ‖∆a+N‖ + ‖∆a−2−N‖ by ‖∆a‖l∞ and inserting in (3.133) for

i = 0 yields the lemma.

Remark 3.5.4. The statement of Lemma 3.5.3 is also true for vi with sequences that coincide on a block

centred at i.

Remark 3.5.5. The statement of Lemma 3.5.3 can be extended to the situation that |ω1
i − ω2

i | < 1/2N

for all i ∈ [−N,N ] ∩ Z.

Proof. The proof runs parallel the proof of Lemma 3.5.3 until we reach the Estimate 3.134. Then, we

can apply Lemma 3.5.2 that results in

‖∆a+0 ‖+ ‖∆a−0 ‖ ≤ 16K‖∆d‖+ 1
2N

(‖∆a+N‖+ ‖∆a−−N‖),

‖∆a+1 ‖+ ‖∆a−1 ‖ ≤ 16K‖∆d‖+ 1
2N−1 (‖∆a+N‖+ ‖∆a−2−N‖),

with ‖∆d‖ := max
i∈[−N,N ]

‖∆di‖. Together with (3.130) this yields the existences of two constants C4 and

C5 such that

‖∆v±0 (0)‖ ≤ eαΩ̃(C4
1

2N−1
+ C5‖∆d‖). (3.135)
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Hence, it remains to consider ∆di. We start with dRi+1, cf. the definition in (3.128) and make use of the

first statement in (3.13).

dRi+1 = v+i (ω)(ω̃i+1)− v−i+1(ω)(−ω̃i+1)

= v+i (ω)(ωi+1)− v−i+1(ω)(−ωi+1)

+(v+i (ω)(ω̃i+1)− v+i (ω)(ωi+1)) + (v−i+1(ω)(−ωi+1)− v−i+1(ω)(−ω̃i+1))

= γ−
κi+1

(−ωi+1)− γ+
κi
(ωi+1)

+(v+i (ω)(ω̃i+1)− v+i (ω)(ωi+1)) + (v−i+1(ω)(−ωi+1)− v−i+1(ω)(−ω̃i+1)).

With this we then find by using the relation (3.129)

∆di+1 = dRi+1 − di+1(ω̃)

= (γ−
κi+1

(−ωi+1)− γ−
κi+1

(−ω̃i+1)) + (γ+
κi
(ω̃i+1)− γ+

κi
(ωi+1))

+(v+i (ω)(ω̃i+1)− v+i (ω)(ωi+1)) + (v−i+1(ω)(−ωi+1)− v−i+1(ω)(−ω̃i+1)).

In the following we apply the mean value theorem on each of the four differences above. In the first two

cases we obtain for some intermediate points ω̄±
i+1 ∈ [ω̃i+1, ωi+1]

‖γ±
κi/i+1

(±ωi+1)− γ±
κi/i+1

(±ω̃i+1)‖ ≤ ‖γ̇±
κi/i+1

(±ω̄±
i+1)‖ · |ω̃i+1 − ωi+1|.

For t tending towards infinity the term γ̇±(±t) = f(γ±(±t)) is tending towards f(p) = 0. In case of the

other two terms we find

‖v±i/i+1(ω)(±ωi+1)− v±i/i+1(ω)(±ω̃i+1)‖ ≤ ‖v̇±i/i+1(ω)(±ω̄±
i+1)‖ · |ω̃i+1 − ωi+1|.

The v±i satisfy the differential equation v̇±i (t) = D1f(γ
±
κi
(t))v±i (t) + h±

κi
(t, v±i (t)), cf. (3.12). Due to

Lemma 3.4.9 we find that v±i (ω) tends to zero for ω tending to infinity. Hence h±
κi
(ω, v±i (ω)) also tends

to zero while D1f(γ
±
κi
(ω)) tends to D1f(p). Thus v̇

±
i (ω) tends to zero.

Summarizing we find for Ω sufficiently large and for |i+ 1| < N with |ω̃i+1 − ωi+1| < 1/2N the existence

of a constant c such that

‖∆dRi+1‖ ≤ c
1

2N

with c = c(Ω̃) tending to zero as Ω̃ tends to infinity. Hence we find from (3.135) that ‖∆v±0 (0)‖ < C6
1
2N

and therefore, cf. (3.126) ‖v0(ω)(0)− v0(ω̃)(0)‖ < C6
1
2N

. Analogously we find ‖v0(ω̃)(0)− v0(ω̂)(0)‖ <

C6
1
2N

wich finally results in ‖v0(ω)(0)− v0(ω̂)(0)‖ < 2C6
1
2N

.

Corollary 3.5.6. Let i be fixed and let ω be a sequence with lower bound Ω > 0. Then
(
Djξi(ω)

)

j∈Z
∈ l1.

Proof. We prove the statement only for ξ0 by using Lemma 3.5.3. Due to Remark 3.5.4 the statement

can be transferred to ξi, i 6= 0.

We define

hN := (hN,j)j∈Z : hN,j =

{

hN , j = N

0, else.
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Write

DNξ0(ω)hN + r̂N (hN ) = ξ0(ω + hN )− ξ0(ω)

= v+0 (ω + hN )(0)− v−0 (ω + hN )(0)−
(
v+0 (ω)(0)− v−0 (ω)(0)

)
.

Then the proof of Lemma 3.5.3 reveals that

‖DNξ0(ω)hN + r̂N (hN )‖ ≤ C(1/2)N‖∆a‖l∞ .

Then, applying the mean-value-theorem on the ‖∆a‖l∞ we obtain a constant C̃ such that

‖DNξ0(ω)hN + r̂N (hN )‖ = ‖DNξ0(ω) +
r̂N (hN )

|hN | ‖|hN | ≤ C̃(1/2)N |hN |.

Now, the limit hN → 0 gives

‖DNξ0(ω)‖ ≤ C̃(1/2)N .

This proves the corollary.

Remark 3.5.7. The last two inequalities in the proof of Corollary 3.5.6 imply that there is a constant

C such that
‖r̂N (hN )‖

|hN | ≤ C(1/2)N .

Now we turn towards the proof of Theorem 3.5.1.

Proof of Theorem 3.5.1. Again we confine to prove the statement for ξ0. The statement for i 6= 0 follows

analogously. We define

hN := (hNj )j∈Z : hNj =

{

hj , ∈ [−N,N ] ∩ Z

0, else.

and write with this

ξ0(ω + h)− ξ0(ω) =
(
ξ0(ω + hN )− ξ0(ω)

)
+

(
ξ0(ω + h)− ξ0(ω + hN )

)
. (3.136)

The sequences ω + h and ω + hN satisfy the assumption of Lemma 3.5.3. Via (3.61) the result of

Lemma 3.5.3 is transferred to ξ0, resulting in

(
ξ0(ω + h)− ξ0(ω + hN )

)
= O(1/2N ).

Hence the limit N → ∞ in (3.136) yields

ξ0(ω + h)− ξ0(ω) = lim
N→∞

(
ξ0(ω + hN )− ξ0(ω)

)
. (3.137)

As in the finite dimensional case the term on the right-hand side can be written as

ξ0(ω + hN )− ξ0(ω) = Dξ0(ω)hN + rN (hN ) =

N∑

j=−N
Djξ0(ω)hj + rN (hN ). (3.138)

Note that rN (hN ) = o(‖hN‖l∞) and hence also rN (hN ) = o(‖h‖l∞). According to Corollary 3.5.6 the
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limit lim
N→∞

N∑

j=−N
Djξ0(ω)hj does exist. So, because of (3.137) and (3.138), also the limit lim

N→∞
rN (hN ) =:

r(h) does exist. Altogether this yields

ξ0(ω + h)− ξ0(ω) =
∑

j∈Z

Djξ0(ω)hj + r(h).

So it remains to show that r(h) = o(‖h‖l∞). To this end we write ξ0(ω + hN )− ξ0(ω) as follows:

ξ0(ω + hN )− ξ0(ω) = ξ0(ω + hN )− ξ0(ω + hN − h0)
︸ ︷︷ ︸

=D0ξ0(ω+hN−h0)h0+r̂0(h0)

+ξ0(ω + hN − h0)− ξ0(ω).

And ξ0(ω + hN − h0)− ξ0(ω) we write as

ξ0(ω + hN − h0)− ξ0(ω) = ξ0(ω + hN − h0)− ξ0(ω + hN − h0 − (. . . , 0, h1, 0, . . .))

+ξ0
(
ω + hN − h0 − (. . . , 0, h1, 0, . . .)

)
− ξ0(ω)

= ξ0
(
ω + hN − (. . . , 0, h0, 0, . . .)

)
− ξ0

(
ω + hN − (. . . , 0, h0, h1, 0, . . .)

)

︸ ︷︷ ︸

=D1ξ0

(
ω+hN−(...,0,h0,h1,0,...)

)
h1+r̂1(h1)

+ξ0
(
ω + hN − (. . . , 0, h0, h1, 0, . . .)

)
− ξ0(ω).

Proceeding along that line we finally obtain

ξ0(ω + hN )− ξ0(ω) = D0ξ0(ω + hN − h0)h0 + r̂0(h0)

+D1ξ0
(
ω + hN − (. . . , 0, h0, h1, 0, . . .)

)
h1 + r̂1(h1)

+D−1ξ0
(
ω + hN − (. . . , 0, h−1, h0, h1, 0, . . .)

)
h−1 + r̂−1(h−1)

+ . . .+DNξ0
(
ω + hN − (. . . , 0, h−(N−1), . . . , hN , 0, . . .)

)
hN + r̂N (hN )

+D−Nξ0(ω)h−N + r̂−N (h−N ),

where r̂i(hi) = o(hi). Further, we rewrite the terms in the last equation as

Diξ0(ω + . . .) = Diξ0(ω) +Diξ0(ω + . . .)−Diξ0(ω)
︸ ︷︷ ︸

=:Ri(h)

.

Due to the continuity of the partial derivatives of ξ0 we have Ri(h) → 0 as ‖h‖l∞ → 0. This shows

rN (hN ) =
N∑

i=−(N−1)

Ri(h)hi +
N∑

i=−N
r̂i(hi).

According to Corollary 3.5.6 and Remark 3.5.7 both
∑N
i=−(N−1) ‖Ri(h)‖ and

∑N
i=−N

‖r̂i(hi)‖
|hi| converge
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uniformly. Hence

lim
‖h‖l∞→0

r(h)
‖h‖l∞

≤ lim
‖h‖l∞→0

lim
N→∞

(
N∑

i=−(N−1)

‖Ri(h)‖+
N∑

i=−N

‖r̂i(hi)‖
|hi|

)

= lim
N→∞

lim
‖h‖l∞→0

(
N∑

i=−(N−1)

‖Ri(h)‖+
N∑

i=−N

‖r̂i(hi)‖
|hi|

)

= 0.

3.5.2 Estimates of the derivative of ξi(ω, λ, κ) with respect to ωj

In what follows we study the derivatives of the single components within the representation of the jump

ξi(ω, λ, κ) given in (3.65). For convenience we drop the dependency of λ in the notation. At first we start

with the projections P±
κi
(t) and P̃κi

.

Lemma 3.5.8. Assume Hypotheses (H3.1)-(H3.7). There exist constants Ω and c in accordance to

Theorem 3.2.2 such that for all |λ| < c and ω with inf ω > Ω the following estimates apply:

‖Dωj
(id− P+

κi
(ωi+1))‖ = ‖Dωj

P+
κi
(ωi+1)‖ = O(emax{(ν−1)αs,αs−αu}ωi+1),

‖Dωj
(id− P−

κi+1
(−ωi+1))‖ = ‖Dωj

P−
κi+1

(−ωi+1)‖ = O(emax{−(ν−1)αu,αs−αu}ωi+1),

‖Dωj
(id− P̃κi+1

(ωi+1))‖ = ‖Dωj
P̃κi+1

(ωi+1)‖ = O(emax{(ν−1)αs,αs−αu}ωi+1),

and

‖Dωj

(
(P̃κi+1

(ωi+1)− P+
κi
(ωi+1))(id− P−

κi+1
(−ωi+1))

)
‖ = O(emax{ναs−αu,min{2,ν−1}(αs−αu)}ωi+1),

‖Dωj

(
P̃κi+1

(ωi+1)(id− P+
κi
(ωi+1))

)
‖ = O(emax{−(ν−1)αu,αs−αu}ωi+1),

‖Dωj

(
(id− P̃κi+1

(ωi+1))(id− P−
κi+1

(−ωi+1))
)
‖ = O(emax{(ν−1)αs,αs−αu}ωi+1),

‖Dωj

(
(id− P̃κi+1

(ωi+1)− P−
κi+1

(−ωi+1))(id− P+
κi
(ωi+1))

)
‖ = O(emax{ναs−αu,min{2,ν−1}(αs−αu)}ωi+1).

Proof. The projections under consideration only depend on ωi+1. So the partial derivatives with respect

to ωj , j 6= i+ 1 are zero. It remains to consider the partial derivative with respect to ωi+1. Exemplarily

we do this for P+
κi
(t). From (2.51) we infer

Dωi+1
P+
κi
(ωi+1) = Ṗ+

κi
(ωi+1) = Df(γ+

κi
(ωi+1))P

+
κi
(ωi+1)− P+

κi
(ωi+1)Df(γ+

κi
(ωi+1)). (3.139)

Now we make use of the estimates ‖Df(γ+
κi
(ωi+1)) −Df(p)‖ ≤ e(ν−1)αsωi+1 , cf. (3.71), and (3.75) and

exploit that the projection corresponding to the spectral decomposition of Df(p), Pκi+1
≡ P , commutes

with Df(p):

Dωi+1
P+
κi
(ωi+1) = Df(γ+

κi
(t))[P+

κi
(ωi+1)− (id− P )] + [Df(γ+

κi
(t))−Df(p)](id− P )

+(id− P )[Df(p)−Df(γ+
κi
(t))] + [(id− P )− P+

κi
(ωi+1)]Df(γ+

κi
(t))

= O(emax{(ν−1)αs,αs−αu}ωi+1).

122



3.5 The derivative of the jump ξi(ω, λ, κ)

Analogously we find

Dωi+1
P−
κi+1

(−ωi+1) = O(emax{(ν−1)αu,αs−αu}ωi+1).

For the proof of the estimate for P̃κi+1
(ωi+1) = Sκi+1

(ωi+1)(id − Pκi+1
)Sκi+1

(ωi+1)
−1 we use Defini-

tion (3.31) via the mapping Sκi+1
and its inverse S−1

κi+1
. By differentiating the relation Sκi+1

S−1
κi+1

= id

with respect to ωi+1 we obtain

Dωi+1
(S−1
κi+1

) = −S−1
κi+1

(Dωi+1
Sκi+1

)S−1
κi+1

.

Thus, the derivatives of Sκi
and S−1

κi
satisfy the same estimation. Calling in the definition of Sκi+1

=

P−
κi+1

(−ωi+1)Pκi+1
+ P+

κi
(ωi+1)(id − Pκi+1

), cf. (3.30), and differentiating it with respect to ωi+1 then

yields with the above estimates of Dωi+1
P±
κi+1

the claimed estimate.

In order to verify the remaining four estimates of the lemma we first study the derivative of the compo-

sition of (id− P−
κi+1

) and (id− P+
κi
). To this end we look at the second equation on the right-hand side

in (3.67). With this we find

Dωi+1

(
(id− P−

κi+1
(−ωi+1))(id− P+

κi
(ωi+1))

)

= Dωi+1

(
(id− P−

κi+1
(−ωi+1)− (id− P ))(id− P+

κi
(ωi+1))

)

= Ṗ−
κi+1

(−ωi+1)(id− P+
κi
(ωi+1))− (id− P−

κi+1
(−ωi+1)− (id− P ))Ṗ+

κi
(ωi+1).

Due to (3.75) and the estimates of the derivative of P−
κi+1

we then conclude

Dωi+1

(
(id− P−

κi+1
(−ωi+1))(id− P+

κi
(ωi+1))

)
= O(emax{−(ν−1)αu,αs−αu}ωi+1). (3.140)

Along similar lines we also find

Dωi+1

(
(id− P+

κi
(ωi+1))(id− P−

κi+1
(−ωi+1))

)
= O(emax{(ν−1)αs,αs−αu}ωi+1). (3.141)

Then the stated estimates follow from differentiation the equations in (3.69) and invoking estimates

(3.140), (3.141) and (3.76).

Remark 3.5.9. If Hypothesis (H3.7) does not apply, we have to make use of the weaker estimate (3.73)

instead of (3.75). With this we find the estimates

‖Dωj
(id− P+

κi
(ωi+1))‖ = ‖Dωj

P+
κi
(ωi+1)‖ = O(emax{(ν−1)αs,1/2(αs−αu)}ωi+1),

‖Dωj
(id− P−

κi+1
(−ωi+1))‖ = ‖Dωj

P−
κi+1

(−ωi+1)‖ = O(emax{−(ν−1)αu,1/2(αs−αu)}ωi+1),

‖Dωj
(id− P̃κi+1

(ωi+1))‖ = ‖Dωj
P̃κi+1

(ωi+1)‖ = O(emax{(ν−1)αs,1/2(αs−αu)}ωi+1)

and in case of the other four estimates of the derivatives that are stated in the above lemma we find the

same estimates as for the terms themselves, cf. Lemma 3.4.3.

Lemma 3.5.10. Assume Hypotheses (H3.1)-(H3.6). There exist constants Ω and c in accordance to

Theorem 3.2.2 such that for all |λ| < c and ω with inf ω > Ω the following estimates apply:

Dωj
γ−
κi+1

(−ωi+1) = O(e−α
uωi+1),

Dωj
γ+
κi
(ωi+1) = O(eα

sωi+1).
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Proof. The estimate for the derivative of γ+
κi

and γ−
κi+1

follow from (3.79) and the fact that γ± solve the

differential equation ẋ = f(x) which yield via taylor expansion

γ̇±(t) = f(γ±(t)) = f(p) +Df(p)(γ±(t)− p) +O
(
(γ±(t)− p)2

)

with f(p) = 0. So, the derivatives of γ+
κi

and γ−
κi+1

with respect to ωi+1 are of order O(eα
sωi+1) and

O(e−α
uωi+1), respectively. The derivative with respect to ωj , j 6= i+ 1 are zero.

Lemma 3.5.11. Assume Hypotheses (H3.1)-(H3.6). There exist constants Ω and c in accordance to

Theorem 3.2.2 such that for all |λ| < c and ω with inf ω > Ω the following estimates apply:

‖Dωj
Φ+
κi
(0, ωi+1)

TP+
κi
(0)Tψκi

‖ = O(e−α
uωi+1),

‖Dωj
Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

‖ = O(eα
sωi).

Proof. Exemplarily we consider F 1
κi
(ω) := Φ+

κi
(0, ωi+1)

TP+
κi
(0)Tψκi

. Since this term only depends on

ωi+1 we have Dωj
F 1
κi
(ω) = 0, for all j 6= i + 1. To study the derivative Dωi+1

F 1
κi
(ω) we recall that

Φ+
κi
(0, ·)T is the transition matrix of ẋ = −[Df(γ+

κi
(t))]Tx. Hence

Dωi+1
F 1
κi
(ω) = Φ̇+

κi
(0, ωi+1)

TP+
κi
(0)Tψκi

= −[Df(γ+
κi
(ωi+1))]

TΦ+
κi
(0, ωi+1)

TP+
κi
(0)Tψκi

= −[Df(γ+
κi
(ωi+1))]

TF 1
κi
(ω).

Incorporating the estimate of F 1
κi
(ω) that is given by (3.112) yields

Dωi+1
F 1
κi
(ω) ≤ Ce−α

uωi+1 .

That is both F 1
κi
(ω) and its derivatives Dωj

F 1
κi
(ω) are of order O(e−α

uωi+1). The second statement of

the lemma follows accordingly.

We continue with the partial derivatives of h±,s and h±,u before moving on to vi(ω)(·). Note in this respect

that v̄±(ω) is differentiable with respect to ω, cf. Lemma 3.2.7. Hence vi(ω)(·) is differentiable with

respect to ω, which can be seen by introducing the linear and bounded projection Qi : v̄±(ω) 7→ v±i (ω).

Then Qi ◦Dv̄±(ω) = D
(
Qiv̄±)(ω). Therefore the partial derivatives Djvi(ω)(·) do exist.

Further recall that h±
κi
(t, v+i (ω)(t)) are Nemyzki operators. Their differentiability with respect to v±i was

shown in Lemma 3.3.6.

Recall Definition 3.3.4 and (3.80) for the notation of the superscripts s and u.

Lemma 3.5.12. Assume Hypotheses (H3.1)-(H3.6). There exist constants Ω and c in accordance to

Theorem 3.2.2 such that for all |λ| < c and ω with inf ω > Ω there exists a constant M > 0 such that

Dωj
h±,s
i satisfy

‖Dωj
h+,s
κi

(t, v+i (ω)(t))‖ ≤ M
(
(eα

st‖v+,ui (ω)(t)‖+ ‖v+,si (ω)(t)‖)‖Djv
+,u
i (ω)(t)‖

+‖v+i (ω)(t)‖‖Djv
+,s
i (ω)(t)‖

)
, t ∈ [0, ω],

‖Dωj
h−,s
κi

(t, v−i (ω)(t))‖ ≤ M
(
(e1/2(αu−αs)t‖v−,ui (ω)(t)‖+ ‖v−,si (ω)(t)‖)‖Djv

−,u
i (ω)(t)‖

+‖v−i (ω)(t)‖‖Djv
−,s
i (ω)(t)‖

)
, t ∈ [−ω, 0].
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If additionally Hypothesis (H3.7) applies then

‖Dωj
h−,s
κi

(t, v−i (ω)(t))‖ ≤ M
(
(eα

ut‖v−,ui (ω)(t)‖+ ‖v−,si (ω)(t)‖)‖Djv
−,u
i (ω)(t)‖

+‖v−i (ω)(t)‖‖Djv
−,s
i (ω)(t)‖

)
, t ∈ [−ω, 0].

Proof. Recall (3.14) for the definition of h±. According to the chain rule we then find

Dωj
h±
κi
(t, v±i (ω)(t)) =

[
D1f(γ

±
κi
(t) + v±i (ω)(t))−D1f(γ

±
κi
(t))

]
Djv

±
i (ω)(t).

Applying the projection (id− P±
κi
(t)) and separating v±i by means of this projection yields:

‖Dωj
h±,s
κi

(t, (v±,si (ω) + v±,ui (ω))(t))‖

≤ ‖ ∂
∂vs f

s(γ±
κi
(t) + v±,si (ω)(t) + v±,ui (ω)(t))− ∂

∂vs f
s(γ±

κi
(t))‖‖Djv

±,s
i (ω)(t)‖

+‖ ∂
∂vu f

s(γ±
κi
(t) + v±,si (ω)(t) + v±,ui (ω)(t))− ∂

∂vu f
s(γ±

κi
(t))‖‖Djv

±,u
i (ω)(t)‖.

From here we can proceed as in the proof of Lemma 3.4.7 subsequent to equation (3.81).

In regard to the following lemma recall the decomposition of v±,si (t) into

v±,si (t) = v±,ssi (t) + v±,sui (t)

where, cf. (3.85)

v±,ssi (t) ∈ Φ±
κi
(t, 0)W±

κi
and v±,sui (t) ∈ Φ±

κi
(t, 0) span{f(γ±

κi
(0))}.

Lemma 3.5.13. Assume Hypotheses (H3.1)-(H3.6). There exist constants Ω and c in accordance to

Theorem 3.2.2 such that for all |λ| < c and ω with inf ω > Ω there exists a constant M > 0 such that

Dωj
h±,u
κi

satisfy for t ∈ [0, ω] or t ∈ [−ω, 0], respectively,

‖Dωj
h±,u
κi

(t, v±i (ω)(t))‖ ≤ M
(
(‖v±,ui (ω)(t)‖+ ‖v±,sui (ω)(t)‖)‖Djv

±,s
i (ω)(t)‖

+‖v±i (ω)(t)‖‖Djv
±,u
i (ω)(t)‖+ ‖v±,ssi (ω)(t)‖‖Djv

±,su
i (ω)(t)‖

)

·(‖γ±
κi
(t)− pκi+1/κi

‖+ ‖v±i (ω)(t)‖)ν−2

Moreover we find for Dωj
h−,u
κi

(t, v−i (t), λ), t ∈ [−ω, 0]

‖Dωj

(
h−,u
κi

(t, v−i (t))− 1
2D

2fu(γ−
κi
(t))[v−,ui (t), v−,ui (t)]− 1

6D
3fu(γ−

κi
(t))[v−,ui (t), v−,ui (t), v−,ui (t)]

)
‖

≤ M
([
(‖v−,ui (t)‖+ ‖v−,sui (t)‖)‖Djv

−,s
i (ω)(t)‖

+(‖Djv
−,s
i (ω)(t)‖+ ‖Djv

−,su
i (ω)(t)‖)‖v−,si (t)‖

]
(‖v−i (t)‖+ ‖γ−

κi
(t)− pκi

‖)ν−2

+‖v−,ui (t)‖3‖Djv
−,u
i (ω)(t)‖(‖γ−

κi
(t)− pκi

‖+ ‖v−i (t)‖)max{0,ν−4}) .

Proof. Analogously to the previous lemma we find with the additionally decomposition of v±,si into
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v±,ssi ∈ Φ±
κi
(t, 0)W±

κi
and v±,sui ∈ Φ±

κi
(t, 0) span{f(γ±

κi
(0))

Dωj
h±,u
κi

(t, (v±,si (ω) + v±,ui (ω))(t))

=
[
Dfu(γ±

κi
(t) + v±,si (ω)(t) + v±,ui (ω)(t))−Dfu(γ±

κi
(t))

]
[Djv

±,s
i (ω)(t) +Djv

±,u
i (ω)(t)]

=

[
∂

∂vss
fu(γ±

κi
(t) + v±,ssi (ω)(t) + v±,sui (ω)(t) + v±,ui (ω)(t))− ∂

∂vss
fu(γ±

κi
(t))

]

Djv
±,ss
i (ω)(t)

+

[
∂

∂vsu
fu(γ±

κi
(t) + v±,ssi (ω)(t) + v±,sui (ω)(t) + v±,ui (ω)(t))− ∂

∂vsu
fu(γ±

κi
(t))

]

Djv
±,su
i (ω)(t)

+

[
∂

∂vu
fu(γ±

κi
(t) + v±,si (ω)(t) + v±,ui (ω)(t))− ∂

∂vu
fu(γ±

κi
(t))

]

Djv
±,u
i (ω)(t) (3.142)

Proceeding along the lines of the proof of Lemma 3.4.8 from (3.86) to (3.88) yields

Dωj
h±,u
κi

(t, v±i (ω)(t)) ≤ M
[
(‖γ±

κi
(t)− pκi+1/κi

‖+ ‖v±i (ω)(t)‖)max{0,ν−3}‖v±,ssi (ω)(t)‖

·‖Djv
±,ss
i (ω)(t)‖(‖v±,ui (ω)(t)‖+ ‖v±,sui (ω)(t)‖)

+(‖γ±
κi
(t)− pκi+1/κi

‖+ ‖v±i (ω)(t)‖)ν−2
(
‖v±,ssi (ω)(t)‖‖Djv

±,su
i (ω)(t)‖

+‖v±,sui (ω)(t)‖‖Djv
±,s
i (ω)(t)‖+ ‖v±,ui (ω)(t)‖‖Djv

±,s
i (ω)(t)‖

+‖v±,si (ω)(t)‖‖Djv
±,u
i (ω)(t)‖+ ‖v±,ui (ω)(t)‖‖Djv

±,u
i (ω)(t)‖

)]
.

Using the relations ‖v±,ssi (t)‖ ≤ ‖γ±
κi
(t) − pκi+1/κi

‖ + ‖v±i (t)‖, ‖Djv
±,ss
i (t)‖ ≤ ‖Djv

±,s
i (t)‖ and

‖v±,si (t)‖, ‖v±,ui (t)‖ ≤ ‖v±i (t)‖ leads to the first statement of the lemma.

To prove the second estimate we have a closer look on the term (3.142) for the superscript ” − ” and

apply the mean-value theorem:

∂
∂vu f

u(γ−
κi
(t) + (v−,si (t) + v−,ui (t)))Djv

−,u
i (ω)(t)

=
1∫

0

∂2

∂vu∂vs f
u(γ−

κi
(t) + τ(v−,si (t) + v−,ui (t)))dτ [Djv

−,u
i (ω)(t), v−,si (t)]

+
1∫

0

∂2

∂(vu)2 f
u(γ−

κi
(t) + τ(v−,si (t) + v−,ui (t)))dτ [Djv

−,u
i (ω)(t), v−,ui (t)].

Analogous to the procedure in the proof of Lemma 3.4.8 subsequent to (3.88) we now add a zero-term to

the second summand. Applying again the Mean-value-theorem yields
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1∫

0

∂2

∂(vu)2 f
u(γ−

κi
(t) + τ1(v

−,s
i (t) + v−,ui (t)))dτ1[Djv

−,u
i (ω)(t), v−,ui (t)]

=

[
1∫

0

∂2

∂(vu)2 f
u(γ−

κi
(t) + τ1(v

−,s
i (t) + v−,ui (t)))− ∂2

∂(vu)2 f
u(γ−

κi
(t)) + ∂2

∂(vu)2 f
u(γ−

κi
(t))dτ1

]

[Djv
−,u
i (ω)(t), v−,ui (t)]

=

[
1∫

0

1∫

0

∂3

∂(vu)2∂vs f
u(γ−

κi
(t) + τ1τ2(v

−,s
i (t) + v−,ui (t)))τ1dτ2dτ1

]

[Djv
−,u
i (ω)(t), v−,ui (t), v−,si (t)]

+

[
1∫

0

1∫

0

∂3

∂(vu)3 f
u(γ−

κi
(t) + τ1τ2(v

−,s
i (t) + v−,ui (t)))τ1dτ2dτ1

]

[Djv
−,u
i (ω)(t), v−,ui (t), v−,ui (t)]

+D2
1f

u(γ−
κi
(t))[Djv

−,u
i (ω)(t), v−,ui (t)]

In exactly the same way we find for the middle summand of the latest equation

1∫

0

1∫

0

∂3

∂(vu)3 f
u(γ−

κi
(t) + τ1τ2(v

−,s
i (t) + v−,ui (t)))τ1dτ2dτ1[v

−,u
i (t), v−,ui (t), v−,ui (t)]

=

[
1∫

0

1∫

0

1∫

0

∂4

∂(vu)3∂vs f
u(γ−

κi
(t) + τ1τ2τ3(v

−,s
i (t) + v−,ui (t)))τ21 τ2dτ3dτ2dτ1

]

[Djv
−,u
i (ω)(t), v−,ui (t), v−,ui (t), v−,si (t)]

+

[
1∫

0

1∫

0

1∫

0

∂4

∂(vu)4 f
u(γ−

κi
(t) + τ1τ2τ3(v

−,s
i (t) + v−,ui (t)))τ21 τ2dτ3dτ2dτ1

]

[Djv
−,u
i (ω)(t), v−,ui (t), v−,ui (t), v−,ui (t)]

+ 1
2D

3fu(γ−
κi
(t))[Djv

−,u
i (ω)(t), v−,ui (t), v−,ui (t)].

Collecting all terms and using

Dωj

(
1
2D

2
1f

u(γ−
κi
(t))[v−,ui (t), v−,ui (t)]

)
= D2

1f
u(γ−

κi
(t))[Djv

−,u
i (ω)(t), v−,ui (t)],

Dωj

(
1
6D

3fu(γ−
κi
(t))[v−,ui (t), v−,ui (t), v−,ui (t)]

)
= 1

2D
3fu(γ−

κi
(t))[Djv

−,u
i (ω)(t), v−,ui (t), v−,ui (t)],

concludes the proof.

It remains to consider the derivatives of v±i (ω)(t). At first we see to the estimates of their time-derivatives,

which equal the estimates for v±i (ω)(t) themselves. Recall Definition 3.3.4 for the introduction of the

superscripts s and u and (3.90) for the definition of αw.

Lemma 3.5.14. Assume Hypotheses (H3.1)-(H3.6). There exist constants Ω and c in accordance to

Theorem 3.2.2 such that for all |λ| < c and ω with inf ω > Ω the following estimates apply with some

K̄ > 0:

‖ ddtv
+,s
i (ω)(t)‖ ≤ K̄eα

st(e2α
w(ωi+1−t)e2α

wωi+1 + eα
sωie2α

wωi+1 + e2α
sωi), t ∈ [0, ωi+1],

‖ ddtv
−,s
i (ω)(t)‖ ≤ K̄e−α

wt(e2α
s(ωi+t)e2α

sωi + e2α
sωieα

wωi+1 + e2α
wωi+1), t ∈ [−ωi, 0],

‖ ddtv
+,u
i (ω)(t)‖ ≤ K̄(eα

w(ωi+1−t)eα
wωi+1 + e4α

sωi), t ∈ [0, ωi+1],

‖ ddtv
−,u
i (ω)(t)‖ ≤ K̄(eα

s(ωi+t)eα
sωi + e4α

wωi+1), t ∈ [−ωi, 0].
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Proof. Since v±i (ω)(t) satisfy the differential equation (3.12) and the projections satisfy the matrix dif-

ferential equation

Ṗ±
κi
(t) = Df(γ±

κi
(t))P±

κi
(t)− P±

κi
(t)Df(γ±

κi
(t)),

cf. (3.139) or (2.51), we find with v±,si (t) = (id − P±
κi
(t))v±i (t) and v±,ui (t) = P±

κi
(t)v±i (t), cf. Defini-

tion 3.3.4, due to the product rule

‖v̇±,si (ω)(t)‖ ≤ ‖Df(γ±
κi
(t))‖‖v±,si (t)‖+ ‖h±,s

κi
(t, v±i (t))‖,

‖v̇±,ui (ω)(t)‖ ≤ ‖Df(γ±
κi
(t))‖‖v±,ui (t)‖+ ‖h±,u

κi
(t, v±i (t))‖.

The terms Df(γ±
κi
(t)) are bounded for all t ∈ (−∞, 0] or t ∈ [0,∞), respectively. The estimates for h±,s

and h±,u can be found in the Lemmata 3.4.7 and 3.4.8, respectively. Finally, Lemma 3.4.9 provides the

estimates of the terms v±,si (t) and v±,ui (t). Altogether this results in the lemma.

We continue with the partial derivatives of v±i (ω)(t) with respect to ωj .

Lemma 3.5.15. Assume Hypotheses (H3.1)-(H3.6). There exist constants Ω and c in accordance to

Theorem 3.2.2 such that for all |λ| < c and ω with inf ω > Ω the following estimates apply with some

K̄ > 0:

‖Djv
+,s
i (ω)(t)‖ ≤ K̄eα

st(e2α
w(ωi+1−t)e2α

wωi+1 + eα
sωie2α

wωi+1 + e2α
sωi), t ∈ [0, ωi+1],

‖Djv
−,s
i (ω)(t)‖ ≤ K̄e−α

wt(e2α
s(ωi+t)e2α

sωi + e2α
sωieα

wωi+1 + e2α
wωi+1), t ∈ [−ωi, 0],

‖Djv
+,u
i (ω)(t)‖ ≤ K̄(eα

w(ωi+1−t)eα
wωi+1 + e4α

sωi), t ∈ [0, ωi+1],

‖Djv
−,u
i (ω)(t)‖ ≤ K̄(eα

s(ωi+t)eα
sωi + e4α

wωi+1), t ∈ [−ωi, 0].

Proof. To estimate the derivatives of v±i (ω)(t) we use the fact that they solve

(
Djv

±
i (ω)

)·
(t) = Df(γ±

κi
(t))Djv

±
i (ω)(t) +Dωj

h±
κi
(t, v±i (ω)(t)). (3.143)

Due to the same structure of (3.143) and (3.12) we can follow the procedure in the proof of Lemma 3.4.9.

Thereby we make use of the Lemmata 3.5.12 and 3.5.13. Since the proofs differ slightly in some substeps,

we go into more detail below. In particular we want to point out, that there is no need to estimate Djvi

in advance, as we have done in the proof of Lemma 3.4.9 with the term vi itself.

From (3.143) follows with the variation of constants formula that

Djv
+,s
i (ω)(t) = Φ+

κi
(t, 0)Djv

+,s
i (ω)(0) +

t∫

0

Φ+
κi
(t, s)Dωj

h+,s
i (s, v+i (ω)(s))ds.

Due to (3.39) we find Djv
±
i (ω)(0) = P±

κi
(0)Djv

±
i (ω)(0) + (id− Fκi

)P∓
κi
(0)Djv

∓
i (ω)(0) and hence

Djv
+,s
i (ω)(0) = (id− P+

κi
(0))(id− Fκi

)Djv
−,u
i (ω)(0).
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Then we find by exploiting exponential dichotomy and invoking Lemma 3.5.12

‖Djv
+,s
i (ω)(t)‖ ≤ KLe(α

s−δ)t‖Djv
−,u
i (ω)(0)‖

+KM
t∫

0

e(α
s−δ)(t−s)((eα

ss‖v+,ui (s)‖+ ‖v+,si (s)‖)‖Djv
+,u
i (ω)(s)‖

+‖v+i (s)‖‖Djv
+,s
i (ω)(s)‖

)
ds

≤ eα
st

(

KL‖Djv
−,u
i (ω)(0)‖+KM

(
(‖v+,ui ‖+ sup

s∈[0,t]

e−α
ss‖v+,si (s)‖)‖Djv

+,u
i (ω)(s)‖

+‖v+i ‖ sup
s∈[0,t]

(e−α
ss‖Djv

+,s
i (ω)(s)‖)

) t∫

0

e−δ(t−s)ds

)

.

Proceeding as in the proof of Lemma 3.4.9 we find by multiplying with e−α
st and applying the supreme

norm

sup
t∈[0,ωi+1]

(e−α
st‖Djv

+,s
i (ω)(t)‖) ≤ KL‖Djv

−,u
i (ω)(0)‖+KM

(
‖v+i ‖ · sup

s∈[0,ωi+1]

(e−α
ss‖Djv

+,s
i (ω)‖)

+(‖v+,ui ‖+ sup
s∈[0,ωi+1]

(e−α
ss‖v+,si (s)‖))‖Djv

+,u
i (ω)‖

)
.

With ‖v+i ‖ tending to zero for Ω < inf ω tending to infinity we find for inf ω large enough that 1 −
KM‖v+i ‖ > 1/2. So we obtain with some constant K̃1 > 0

sup
t∈[0,ωi+1]

(e−α
st‖Djv

+,s
i (ω)(t)‖) ≤ K̃1

(
‖Djv

−,u
i (ω)(0)‖

+‖Djv
+,u
i (ω)‖

(
‖v+,ui ‖+ sup

s∈[0,ωi+1]

(e−α
ss‖v+,si (s)‖)

))
.

An analogous statement hold for ‖Djv
−,s
i ‖ and by invoking (3.92) and (3.93) we find analogously to

(3.94)

‖Djv
+,s
i (ω)(t)‖ ≤ K̃1e

αst(‖Djv
−,u
i (ω)(0)‖+ ‖Djv

+,u
i (ω)‖(‖v+,ui ‖+ ‖v−,ui (0)‖)),

‖Djv
−,s
i (ω)(t)‖ ≤ K̃1e

−αwt(‖Djv
+,u
i (ω)(0)‖+ ‖Djv

−,u
i (ω)‖(‖v−,ui ‖+ ‖v+,ui (0)‖)).






(3.144)

Note that, just as in the proof of Lemma 3.4.9, we have used the convergence of the terms v±i , which we

had to provide in advance for the proof of Lemma 3.4.9, but not the convergence of their derivatives with

respect to ωj .

Let us now consider Djv
±,u
i (ω). With the variation of constants formula we obtain

Djv
+,u
i (ω)(t) = Φ+

κi
(t, ωi+1)Djv

+,u
i (ω)(ωi+1) +

ωi+1∫

t

Φ+
κi
(t, s)Dωj

h+,u
i (s, v+i (ω)(s))ds.

Djv
−,u
i (ω)(t) = Φ−

κi
(t,−ωi)Djv

−,u
i (ω)(−ωi)−

t∫

ωi

Φ−
κi
(t, s)Dωj

h−,u
i (s, v−i (ω)(s))ds.







(3.145)

With v+,ui (ω)(ωi+1) = a+i+1, cf. (3.34) we find Djv
+,u
i (ω)(ωi+1) = Dωj

a+i+1 for j 6= i + 1. In case of a

differentiation with respect to ωi+1 we find

Dωi+1
a+i+1 = Dωi+1

v+,ui (ω)(ωi+1) = Di+1v
+,u
i (ω)(ωi+1) + v̇+,ui (ω)(ωi+1).
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Therefore in (3.145) we replace

Djv
+,u
i (ω)(ωi+1) =







Dωi+1
a+i+1 − v̇+,ui (ω)(ωi+1), if j = i+ 1,

Dωj
a+i+1, else,

and

Djv
−,u
i (ω)(−ωi) =







Dωi
a−i − v̇−,ui (ω)(−ωi), if j = i,

Dωj
a−i , else.

Looking at the definition of a+ and a− given in (3.48), calling in the definition of d = (di)i∈Z in (3.13)

and differentiating with respect to ωj then yields exemplarily for Dωj
a+i

‖Dωj
a+i ‖ ≤ ‖Dωj

P̃κi
(ωi)‖

(
‖γ−
κi
(−ωi)− pκi

‖+ ‖v−,si (ω)(−ωi)‖
)

+‖P̃κi
(ωi)(id− P−

κi
(−ωi))‖

(
‖Dωj

γ−
κi
(−ωi)‖+ ‖Djv

−,s
i (ω)(−ωi)‖+ ‖ ddtv

−,s
i (ω)(−ωi)‖

)

+‖Dωj

(
P̃κi

(ωi)(id− P+
κi−1

(ωi))
)
‖
(

‖γ+
κi−1

(ωi)− pκi
‖+ ‖v+,si−1(ω)(ωi)‖

)

+‖P̃κi
(ωi)(id− P+

κi−1
(ωi))‖

(

‖Dωj
γ+
κi−1

(ωi)‖+ ‖Djv
+,s
i−1(ω)(ωi)‖+ ‖ ddtv

+,s
i−1(ω)(ωi)‖

)

By invoking the estimates of γ±
κi

and their derivatives (Lemmata 3.4.6 and 3.5.10), the estimates of the

projections and their derivatives (Lemma 3.4.3 and Remark 3.5.9 or in case that (H3.7) applies Lem-

mata 3.4.5 and 3.5.8) as well as the estimates (3.94), (3.144) and Lemma 3.5.14 of v±,si (t), Djv
±,s
i (ω)(t)

and d
dtv

±,s
i (ω)(t) we find analogously to (3.96)

‖Dωj
a+i ‖ ≤ Ceα

wωi ,

‖Dωj
a−i ‖ ≤ Ceα

sωi .







(3.146)

Exploiting this estimate together with Lemma 3.5.14, Lemma 3.5.13 and exponential dichotomies we then

find from (3.145)

‖Djv
+,u
i (ω)(t)‖ ≤ KCeα

w(2ωi+1−t)

+KM(‖v+,si ‖+ ‖v+,ui ‖)(‖Djv
+,s
i (ω)‖+ ‖Djv

+,u
i (ω)‖);

‖Djv
−,u
i (ω)(t)‖ ≤ KCeα

s(2ωi+t)

+KM(‖v−,si ‖+ ‖v−,ui ‖)(‖Djv
−,s
i (ω)‖+ ‖Djv

−,u
i (ω)‖);







(3.147)

which results analogously to (3.98) in

‖Djv
+,u
i (ω)‖ ≤ K̃2(e

αwωi+1 + ‖v+i ‖‖Djv
+,s
i (ω)‖);

‖Djv
−,u
i (ω)‖ ≤ K̃2(e

αsωi + ‖v−i ‖‖Djv
−,s
i (ω)‖).






(3.148)

Here again only the convergence of the terms ‖v±i ‖ is needed, but not the convergence of ‖Djv
±
i (ω)‖.

Equations (3.148), (3.147) for t = 0 and the estimates of ‖v±,ui ‖, ‖v±,ui (0)‖ given in Lemma 3.4.9 in

combination with (3.144) then yield
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‖Djv
+,s
i (ω)‖ ≤ K̃3(e

2αwωi+1 + e2α
sωi + ‖v−i ‖(‖Djv

−,s
i (ω)‖+ ‖Djv

−,u
i (ω)‖));

‖Djv
−,s
i (ω)‖ ≤ K̃3(e

2αwωi+1 + e2α
sωi + ‖v+i ‖(‖Djv

+,s
i (ω)‖+ ‖Djv

+,u
i (ω)‖)).






(3.149)

Successively plugging the estimates of (3.148) and (3.149) into each other yields analogously to (3.101)

‖Djv
+,s
i (ω)‖ ≤ K̃4(e

2αwωi+1 + e2α
sωi);

‖Djv
−,s
i (ω)‖ ≤ K̃4(e

2αwωi+1 + e2α
sωi);

‖Djv
+,u
i (ω)‖ ≤ K̃4(e

αwωi+1 + e4α
sωi);

‖Djv
−,u
i (ω)‖ ≤ K̃4(e

4αwωi+1 + eα
sωi).







(3.150)

Thereby we again apply that v±i tends to zero if inf ω tends to infinity.

Plugging these estimates into (3.147) and (3.144) gives

‖Djv
+,s
i (ω)(t)‖ ≤ K̃5e

αst(e2α
wωi+1 + e2α

sωi);

‖Djv
−,s
i (ω)(t)‖ ≤ K̃5e

−αwt(e2α
sωi + e2α

wωi+1);

‖Djv
+,u
i (ω)(t)‖ ≤ K̃5(e

αw(ωi+1−t)eα
wωi+1 + eα

wωi+1e2α
sωi + e4α

sωi);

‖Djv
−,u
i (ω)(t)‖ ≤ K̃5(e

αs(ωi+t)eα
sωi + eα

sωie2α
wωi+1 + e4α

wωi+1).







(3.151)

These estimates for the derivatives agree with those from (3.102) and (3.103). The refinement of the

estimate for Djv
±,s
i is now completely analogous to that of v±,si in the proof of Lemma 3.4.9, since the

estimates of the terms h±,s
κi

and Dωj
h±,s
κi

are identical.

To refine the estimate of Djv
±,u
i we still need the estimate of the term Djv

±,su
i . To this end recall that

v±,su ∈ Φ±(t, 0) span{f(γ±(0))}. Then v±,sui (ω)(0) = 0. Hence also Djv
±,su
i (ω)(0) = 0. Therefore we

can estimate Djv
±,su
i (ω)(t) along the same lines as v±,sui (ω)(t) and obtain with

‖Djv
+,su
i (ω)(t)‖ ≤ K̃6 eα

st
(
eα

w(ωi+1−t)eα
wωi+1 + e2α

sωi
)2

,

‖Djv
−,su
i (ω)(t)‖ ≤ K̃6 e−α

wt
(
eα

s(ωi+t)eα
sωi + e2α

wωi+1
)2

.






(3.152)

the same estimate as for v±,su in (3.106). Proceeding as in the proof of Lemma 3.4.9 then yields the final

estimates.

Corollary 3.5.16. There exist constants Ω and c in accordance to Theorem 3.2.2 such that for all |λ| < c

and ω with inf ω > Ω the following estimates apply:

‖Dωi+1

(
v+,si (ω)(ωi+1)

)
‖ = O

(
eα

sωi+1(e2α
wωi+1 + e2α

sωi)
)

‖Dωi

(
v−,si (ω)(−ωi)

)
‖ = O

(
eα

wωi(e2α
sωi + e2α

wωi+1)
)

Proof. We prove this exemplarily for v+,si . The chain rule yields

Dωi+1

(
v+,si (ω)(ωi+1)

)
= Di+1v

+,s
i (ω)(ωi+1) +

d

dt
v+,si (ω)(t)|t=ωi+1

.

Then the statement follows with Lemmata 3.5.15 and 3.5.14.
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3.5.3 Summarising the estimates of Dωj
T 1

κi
and Dωj

T 2

κi

Recall the representation (3.65), where we have introduced the partitioning

〈ψκi
, ξi(ω, λ, κ)〉 = T 1

κi
+ T 2

κi
.

First we consider the scalar product T 11

κi
+ T 12

κi
+ T 13

κi
+ T 14

κi
which we differentiate by means of the

product rule. The first factor in the scalar product is Φ+
κi
(0, ωi+1)

TP+
κi
(0)Tψκi

. Due to Lemma 3.5.11

and estimate (3.112) both Φ+
κi
(0, ωi+1)

TP+
κi
(0)Tψκi

and its derivatives with respect to ωj are of order

O(e−α
uωi+1).

The second factor in the scalar product reads

P̃κi+1
(ωi+1)

[
(γ−
κi+1

(−ωi+1)− pκi+1
)− (γ+

κi
(ωi+1)− pκi+1

) + (id− P−
κi+1

(−ωi+1))v
−
i+1(ω, κ)(−ωi+1)

−(id− P+
κi
(ωi+1))v

+
i (ω, κ)(ωi+1)

]
.

Due to Lemma 3.5.10 and (3.79) we know that γ± and their derivatives are of the same order. Hence we

find

Dωj
T 11

κi
= Dωj

〈

Φ+
κi
(0, ωi+1)

TP+
κi
(0)Tψκi

, P̃κi+1
(ωi+1)(γ

−
κi+1

(−ωi+1)− pκi+1
)
〉

= O(e−2αuωi+1),






(3.153)

and by additionally invoking Lemmata 3.4.5 and 3.5.8 (in case that (H3.7) applies), or Lemma 3.4.3 and

Remark 3.5.9, respectively,

Dωj
T 12

κi
= Dωj

〈

Φ+
κi
(0, ωi+1)

TP+
κi
(0)Tψκi

,−P̃κi+1
(ωi+1)(γ

+
κi
(ωi+1)− pκi+1

)
〉

=







O
(
emax{2(αs−αu),αs−ναu}ωi+1

)
, if (H3.7) applies,

O
(
e3/2(αs−αu)ωi+1

)
, else.







(3.154)

The estimates for Dωj
T 13

κi
and Dωj

T 14

κi
follow from Lemma 3.4.9 and Corollary 3.5.16 and in case of

Dωj
T 14

κi
additionally from Lemmata 3.4.5 and 3.5.8, or Lemma 3.4.3 and Remark 3.5.9, respectively:

Dωj
T 13

κi
= Dωj

〈

Φ+
κi
(0, ωi+1)

TP+
κi
(0)Tψκi

, P̃κi+1
(ωi+1)v

−,s
i+1(ω, κ)(−ωi+1)

〉

=







O
(
e−2αuωi+1 [e2α

sωi+1 + e−2αuωi+2 ]
)
, if (H3.7) applies,

O
(
e1/2(αs−3αu)ωi+1 [e2α

sωi+1 + e(α
s−αu)ωi+2 ]

)
, else,

Dωj
T 14

κi
= Dωj

〈

Φ+
κi
(0, ωi+1)

TP+
κi
(0)Tψκi

,−P̃κi+1
(ωi+1)v

+,s
i (ω, κ)(ωi+1)

〉

=







O
(
emax{2(αs−αu),αs−ναu}ωi+1 [e2α

sωi + e−2αuωi+1 ]
)
, if (H3.7) applies,

O
(
e3/2(αs−αu)ωi+1 [e2α

sωi + e(α
s−αu)ωi+1 ]

)
, else.







(3.155)

Now we investigate the integral term T 15

κi
= −

〈

ψκi
,
ωi+1∫

0

Φ+
κi
(0, s)P+

κi
(s)h+

κi
(s, v+i (ω)(s))ds

〉

. For j 6=
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i+ 1 we have

‖Dωj
T 15

κi
‖ = C

ωi+1∫

0

‖Φ+
κi
(0, s)P+

κi
(s)‖‖Dωj

h+,u
κi

(s, v+i (ω)(s))‖ds (3.156)

Since Djv
±,s/u
i (ω)(t) satisfy the same estimates as v

±,s/u
i (ω)(t), cf. Lemmata 3.4.9 and 3.5.15, we find

due to Lemmata 3.4.8 and 3.5.13 that Dωj
h+,u
κi

satifies the same estimates as h+,u
κi

. Hence we can estimate

(3.156) in exactly the same way as
ωi+1∫

0

‖Φ+
κi
(0, s)P+

κi
(s)‖‖h+,u

κi
(s, v+i (ω)(s))‖ds in Lemma 3.4.11. This

results in

Dωj
T 15

κi
=







O
(
e6α

sωi + e2α
sωie−2αuωi+1

+emax{(ν−2)αs−3αu,−4αu}ωi+1
)
, if (H3.7) applies,

O
(
e6α

sωi + e2α
sωie(α

s−αu)ωi+1

+emax{(ν− 1
2 )α

s− 3
2α

u,2(αs−αu)}ωi+1

)

, else.

(3.157)

Dωi+1
T 15

κi
additionally comprises the term Φ+

κi
(0, ωi+1)P

+
κi
(ωi+1)h

+,u
κi

(ωi+1, v
+
i (ω)(ωi+1)). But also this

term is of the above order, due to Lemmata 3.4.8, 3.4.9 and the estimate from the exponential dichotomy

(3.16) with β+
κi

= αu.

Note that all estimates of Dωj
T 1k
κi

equal the corresonding estimates (3.113)-(3.117) for the terms T 1k
κi

,

k = 1, . . . , 5. Summarizing we find

Dωj
T 1

κi
=







O
(
e6α

sωi + e−2αuωi+1
)
, if (H3.7) applies,

O
(
e6α

sωi + e2α
sωie(α

s−αu)ωi+1 + emax{3/2(αs−αu),−2αu}ωi+1

+e1/2(αs−3αu)ωi+1e(α
s−αu)ωi+2

)
, else.

(3.158)

Analogously to the consideration for Dωj
T 1

κi
we find for Dωj

T 2k
κi

, k = 1, . . . , 5 the same estimates as

listed in (3.119)-(3.123) for T 2k
κi

. That is in case that Hypothesis (H3.7) applies

Dωj
T 21

κi
= −Dωj

〈

Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id− P̃κi
(ωi))

(
γ+
κi−1

(ωi)− pκi

)〉

= O
(
e2α

sωi
)
,

Dωj
T 22

κi
= Dωj

〈

Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id− P̃κi
(ωi))

(
γ−
κi
(−ωi)− pκi

)〉

= O
(
emax{ναs−αu,2(αs−αu)}ωi

)
,

Dωj
T 23

κi
= −Dωj

〈

Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id− P̃κi
(ωi))(id− P+

κi−1
(ωi))v

+
i−1(ωi)

〉

= O
(
e2α

sωi [e2α
sωi−1 + e−2αuωi ]

)
,

Dωj
T 24

κi
= Dωj

〈

Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id− P̃κi
(ωi))(id− P−

κi
(−ωi))v

−
i (−ωi)

〉

= O
(
emax{ναs−αu,2(αs−αu)}ωi [e2α

sωi + e−2αuωi+1
)
,

Dωj
T 25

κi
= −Dωj

〈

ψκi
,

0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)h−

κi
(s, v−i (s), κ)ds

〉

= O
(
e−6αuωi+1 + e−2αuωi+1e2α

sωi + e4α
sωi

)
,







(3.159)
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otherwise we find

Dωj
T 21

κi
= O

(
e2α

sωi
)
,

Dωj
T 22

κi
= O

(
emax{ναs−αu,3/2(αs−αu)}ωi

)
,

Dωj
T 23

κi
= O

(
e2α

sωi [e2α
sωi−1 + e(α

s−αu)ωi ]
)
,

Dωj
T 24

κi
= O

(
emax{(ν+1/2)αs−1/2αu,3αs−αu}ωi [e2α

sωi + e(α
s−αu)ωi+1

)
,

Dωj
T 25

κi
= O

(
e3(α

s−αu)ωi+1 + e(α
s−αu)ωi+1e2α

sωi + emin{ν+1,4}αsωi
)
.
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homoclinic cycles

Within this section we want to study the jump Ξ in the context of a homoclinic network in G-equivariant

vector fields. Thereby we understand under the expression homoclinic network Γ a hyperbolic equilibrium

p and a finite number of homoclinic trajectories γi that connect p to itself, Γ =
⋃

i γi ∪ p. The symmetric

homoclinic network under consideration is a special case of the in [HJKL11] discussed homoclinic cycles.

Basically we focus on the component ξi(ω, λ, κ). After we have presented estimates of the single terms

ξi consists of in Section 3.4.7 we now will extract explicit expressions of those terms which have leading

exponential rates.

To this end we first provide the setting for the symmetric homoclinic cycles in Section 4.1. In Section 4.2

we give the justification of the Hypotheses (H3.2)-(H3.5), which did apply in the proof of the existence

of Lin trajectories and in the estimation of some components of ξi(ω, λ, κ). We see to the justification

especially in the case of symmetric vector fields. Then Section 4.3 is dedicated to finding an appropriate

representation of the jump ξi(ω, λ, κ). We conclude this chapter by examining the derivatives of the jump

ξi(ω, λ, κ) with respect to the transition times ωj in Section 4.4.

Now, before we start to present the setting we recall some notions from the theory of group actions.

Compare [GSS88] for the following definitions.

Definition 4.0.1. Let (G, ∗), G 6= ∅, be a finite group. A family of vector fields f : Rn × Rd → Rn is

called G-equivariant (G-symmetric), if the following condition holds for all (x, λ) ∈ Rn × Rd and for

all g ∈ G:

gf(x, λ) = f(gx, λ). (4.1)

Indeed, instead of G we use a linear representation of the group G:

Definition 4.0.2. A linear representation, also called a linear action, of G on Rn is given by a

homomorphism ϑ : (G, ∗) →
(
GL(n,R), ·

)
that assigns every g ∈ G to an invertible linear transformation

ϑ(g) ∈ GL(n,R), where GL(n,R) denotes the general linear group of Rn. For simplicity we just write

gx := ϑ(g)x and say that G is acting linearly on Rn.

A representation of G on a subspace V ⊆ Rn is called

• irreducible, if the only G-invariant linear subspaces of V are {0} and V itself.

• absolutely irreducible, if the equality Aϑ(g) = ϑ(g)A for a linear mapping A ∈ L(V ) implies

that A is a scalar multiple of the identity.

Note, that such an acting satisfies

(i) id(x) = x ∀x ∈ Rn and

(ii) (gh)x = g(hx) ∀x ∈ Rn, ∀g, h ∈ G.

Here id denotes the neutral element of the group.

Now, let G 6= ∅ be a finite group that acts linearly on Rn. In the following we recall the definitions of

isotropy group, fixed point space and group orbit, cf. [Fie07].
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Definition 4.0.3. The isotropy group Gq of a point q ∈ Rn is defined by

Gq = {g ∈ G|gq = q}.

The fixed point space of a subgroup H ⊂ G is defined as

FixH = {x ∈ Rn|gx = x for g ∈ H}.

The group G defines a relation ∼ on Rn, where two elements x and y are related, if there exists an

element g ∈ G such that gx = y. The group orbit G(x) of an element x ∈ Rn is then given by

G(x) = {y ∈ Rn|y ∼ x}

and the group orbit of a subset A ⊂ Rn is given by

G(A) =
⋃

x∈A
G(x).

Note that it makes sense to speak of an isotropy subgroup Gγ of a trajectory γ, since each point of a

trajectory has the same isotropy subgroup.

For x ∈ FixH we find, due to (4.1), that f(x, λ) ∈ FixH. That means that FixH is invariant under the

flow {ϕtλ} of the differential equation.

Due to the definition, every group orbit is a G-invariant subset of Rn.

A special kind of subgroups are the cyclic subgroups.

Definition 4.0.4. A cyclic subgroup H ⊂ G is a subgroup that is generated by only one element

h ∈ G, that is H = {hk|h ∈ G, k ∈ N}. The order of a cyclic subgroup is given by the smallest integer

k > 0 with hk = id. We denote these subgroups by H = Zk(h).

To conclude this preface we state:

Remark 4.0.5. The scalar product 〈·, ·〉 we use to define orthogonal complements is chosen in such a

way, that it is invariant with respect to the representation of the group G. This can be done because G is

finite and hence compact. To be precise one can set

〈〈·, ·〉〉 := 1

|G|
∑

g∈G
〈g·, g·〉

for any given scalar product 〈·, ·〉. Then 〈〈·, ·〉〉 is obviously a scalar product and group-invariant. For

simplicity we write again 〈·, ·〉.

4.1 Setting

During Chapter 3 we considered Lin’s method in the context of a heteroclinic network, cf. Hypothe-

sis (H3.1). Indeed we want to apply Lin’s method on the special case of a codimension-one homoclinic net-

work. That is to say the heteroclinic network under consideration consists of only one hyperbolic equilib-

rium p which is connected to itself via a fixed number of homoclinic trajectories. Recall that in the case of

a homoclinic trajectory γ asymptotic to p the condition (H3.1)(iv), dimTγ(0)W
u(p)+dimTγ(0)W

s(p) = n,

is trivially fulfilled.

136



4.1 Setting

In order to be able to consider the homoclinic network within a one-dimensional parameter space, we

assume that each homoclinic trajectory is of codimension-one, cf. Section 2.6. However, if the unfolding

of one homoclinic trajectory is observable in a one-parameter family, it takes in general at least k different

parameters to describe the dynamic near a homoclinic network consisting of k different homoclinic tra-

jectories. By introducing a discrete symmetry, the dimension of the corresponding parameter space can

be reduced. To this end the context we assume from now on is that of a parameter-dependent differential

equation

ẋ = f(x, λ), f : Rn × R → R (4.2)

that is equivariant under the linear representation of a finite group G 6= ∅, cf. Definition 4.0.1. Then x(t)

is a solution of (4.2) if and only if gx(t) is a solution of (4.2) for all g ∈ G.

Let the homoclinic network Γ be generated by a single homoclinic trajectory γ, that is Γ = G(γ) is the

group orbit of the closure of γ, cf. Definition 4.0.3. Then each homoclinic trajectory in the network is

related to each other by symmetry and the codimension of the whole network equals the codimension

of the single trajectory γ. With this the homoclinic network Γ is a special case of a relative homoclinic

cycle, cf. [HJKL11] and (1.3).

In the following we give a precise declaration of the kind of homoclinic cycle we will consider further on.

To this end we itemize the required hypotheses.

(H4.1).

(i) The vector field f : Rn ×R → Rn is smooth, i.e. f ∈ Cl+3(Rn ×R,Rn), l ≥ max{3, ν}, and f(·, λ)
is equivariant with respect to a finite group G 6= ∅ for all λ ∈ R.

(ii) At λ = 0 there is a homoclinic cycle Γ = G(γ) equal to the closure of the group orbit of a homoclinic

trajectory γ asymptotic to a hyperbolic equilibrium p. We demand that the isotropy group of p, Gp

is equal to the whole group G and the isotropy group of γ is not trivial, Gγ 6= {id}, G.

Recall Definition 3.4.2 for the introduction of the constant ν.

The homoclinic cycle Γ = G(γ) declared in Hypothesis (H4.1) consists of one hyperbolic equilibrium p and

|G/Gγ | many homoclinic trajectories, each of them an image of γ. Because γ has a non-trivial isotropy

group Gγ it is situated within the fixed point space FixGγ . Therefore each of the homoclinic trajectories

γi - let us enumerate them with i ∈ {1, . . . , |G/Gγ |} - is situated within the fixed point space of the

corresponding isotropy group Gγi , i.e. γi ⊂ FixGγi . For the sake of convenience we use the shortened

notation

Fixi := FixGγi .

Then we postulate further that the intersection of two pairwise different fixed point spaces Fixi is trivial.

(H4.2). Assume that for all i, j with i 6= j we have Fixi ∩ Fixj = {0}.

By the prescribed linear action of Gp, cf. (H4.1), we find gp = p for all g ∈ G. Hence p is situated in the

fixed point space of the whole group G. Due to (H4.2) this fixed point space is trivial and thus p = 0.

As a spectral condition, we assume that:

(H4.3). The isotropy group Gp = G acts absolutely irreducible on the eigenspace E(µs(λ)) of the leading

stable eigenvalue µs(λ) of D1f(p, λ). Further 0 < − Re(µs(λ)) < Re(µu(λ)) for each leading unstable

eigenvalue µu(λ).
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4 Examination of the jump Ξ in case of G-equivariant homoclinic cycles

Due to this hypothesis the leading eigenvalues are not resonant, cf. Hypothesis (H2.4). Especially we

can choose the constants αs and αu that way that 0 < −αs < − Re(µs(λ)) < αu. Since the whole group

G acts absolutely irreducible on the eigenspace E(µs(λ)) corresponding to µs(λ) we can conclude:

Lemma 4.1.1. Assume Hypothesis (H4.3). Then the leading stable eigenvalue µs(λ) is real and semisim-

ple.

Proof. Due to the equivariance of the vector field and Gp = G we find that the representation of g

commutes with the linearisation of the vector field at p for all g ∈ G:

gD1f(p, λ) = D1f(gp, λ)g = D1f(p, λ)g.

Considering D1f(p, λ) restricted to E(µs(λ)) then implies due to the absolutely irreducible representation

of G, cf. Definition 4.0.2, that D1f(p, λ)|E(µs(λ)) is a scalar multiple of the identity. Hence, looking at

the jordan matrix of D1f(p, λ) we find that the Jordan block corresponding to the eigenvalue µs(λ) is

equal to a scalar multiple of the identity. Therefore µs(λ) has to be real and semisimple.

As we have mentioned before, the homoclinic trajectory γ and hence the resulting homoclinic cycle Γ =

G(γ) shall be of codimension-one. To this end it takes adequate premises following the Hypotheses (H2.1),

(H2.2) and (H2.3). Since γ lies within FixGγ , which is a flow-invariant subspace, it suffices to avoid

inclination flip and orbit flip and to ensure the splitting of the manifolds within this subspace.

In the following we recall the hypotheses in the context of symmetric vector fields. To this end let the

subscript FixGγ denote a restriction to FixGγ . We start with an analogue to (H2.1).

(H4.4). The homoclinic trajectory γ is non-degenerate, that is TγW
s(p) ∩ TγW

u(p) = span{γ̇}.
Further the restriction of the manifolds to the fixed point space FixGγ , W

s
FixGγ

(p) and Wu
FixGγ

(p) split

with non-zero speed in λ.

In vector fields that possess a discrete symmetry a homoclinic trajectory γ may occur robustly. This

happens when the intersection of the stable and unstable manifolds restricted to the fixed point space

FixGγ is transversal. Hypothesis (H4.4) excludes such constellations.

Further Hypothesis (H4.4) allows the following stipulation, cf. Section 3.4.1:

Remark 4.1.2. We choose the parameter λ in that way that λ measures the distance between the stable

and unstable manifolds, that is

λ = 〈ψ, γ+(λ)(0)− γ−(λ)(0)〉 = 〈ψi, ξ∞i (λ)〉.

To this end note that 〈ψi, ξ∞i (λ)〉 is independent of i due to the equivariance of the vector field and the

invariance of the scalar product with respect to the group G.

Hypothesis (H2.2) gives a non-orbit flip condition. With γ also the directions that γ approaches the

equilibrium, lim
t→±∞

γ(t)/‖γ(t)‖, lie within FixGγ .

(H4.5). The connecting trajectory γ approaches the equilibrium along leading directions, that is

γ 6⊂ W ss
λ=0,FixGγ

(p) and γ 6⊂ Wuu
λ=0,FixGγ

(p).

At this point we want to mention, that the demand of (H4.5) excludes an interesting class of codimension-

one homoclinic cycles where the symmetry forces the connections to approach the equilibrium along non-
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4.1 Setting

leading directions. For the derivation of the representation of the determination equations, the first of

the two conditions, γ 6⊂ W ss
λ=0,FixGγ

(p), is indeed sufficient.

Next we give the non-inclination flip condition, cf. (H2.3), inside the flow-invariant fixed point space

FixGγ .

(H4.6). Within FixGγ the leading eigenvalues µs(λ) and µu(λ) are real and simple. Further for all

xu ∈ Wu
loc(p) ∩ γ and all xs ∈ W s

loc(p) ∩ γ applies

W s
FixGγ

(p) ⋔xu
W ls,u

FixGγ
(p) and Wu

FixGγ
(p) ⋔xs

W s,lu
FixGγ

(p).

The transversality expressed in Hypothesis (H4.6) is meant in such a way that the sum of the tangent

spaces Txu
W s

FixGγ
(p) and Txu

W ls,u
FixGγ

(p) span a subspace of the same dimension as FixGγ .

Not only γ is situated within the fixed point space FixGγ but also the subspace Z, which we show in the

following.

Lemma 4.1.3. Assume Hypotheses (H4.1) and (H4.4) and let Z = (Tγ(0)W
s(p) + Tγ(0)W

u(p))⊥. Then

Z ⊂ FixGγ .

Proof. Since Gγ 6= {id}, Gγ contains at least one other group element h ∈ G, h 6= id.

In symmetric vector fields the stable and unstable manifold of an equilibrium point p are invariant with

respect to the isotropy subgroup Gp, that is for all g ∈ Gp we find

gW s(p) = W s(p), gWu(p) = Wu(p).

Recall that Gp = G due to (H4.1). Moreover we find for all h ∈ Gγ

hTγ(0)W
s(p) = Tγ(0)W

s(p), hTγ(0)W
u(p) = Tγ(0)W

u(p).

Now, let z ∈ Z =
(
Tγ(0)W

s(p) + Tγ(0)W
u(p)

)⊥
and let y be any element in Tγ(0)W

s(p) + Tγ(0)W
u(p).

Then also hy ∈ Tγ(0)W
s(p) + Tγ(0)W

u(p) and we find due to the invariance of the scalar product with

respect to the group action

0 = 〈z, y〉 = 〈hz, hy〉.

Hence hz ∈ Z. Then also z − hz ∈ Z and it yields for any x ∈ FixGγ that

〈z − hz, x〉 = 〈z, x〉 − 〈hz, x〉 = 〈hz, hx〉 − 〈hz, x〉 = 〈hz, x〉 − 〈hz, x〉 = 0.

This implies that either z − hz = 0 or z − hz ∈ (FixGγ)
⊥. If we assume the latter, it also means that

z ∈ (FixGγ)
⊥ since Z is only one-dimensional. Hence Z =

(
Tγ(0)W

s(p) + Tγ(0)W
u(p)

)⊥ ⊂ (FixGγ)
⊥

and therefore FixGγ ⊂ Tγ(0)W
s(p) + Tγ(0)W

u(p). This implies that within FixGγ the intersection of the

stable and the unstable manifold in γ(0) is transversal and hence the homoclinic cycle γ appears robustly,

a contradiction to Hypothesis (H4.4).

Therefore z − hz = 0, that is hz = z holds true for all z ∈ Z and all h ∈ Gγ . Thus we have shown that

Z ⊂ FixGγ .

Corollary 4.1.4. Let (γ+(λ), γ−(λ)) be the unique pair of solutions of (4.2) given in Lemma 3.1.1.

Then γ±(λ) ⊂ FixGγ .
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4 Examination of the jump Ξ in case of G-equivariant homoclinic cycles

Proof. Assuming γ±(λ) are not situated within FixGγ we find an element h ∈ Gγ such that the pair

(hγ+(λ), hγ−(λ)) satisfies the Properties (P3.1) and hγ±(λ)(·) 6= γ±(λ)(·). This is a contradiction to the

uniqueness of the pair of solutions satisfying (P3.1).

Remark 4.1.5. With Z ⊂ FixGγ we can conclude from Hypothesis (H4.6) and Lemma 2.6.4 that

Z 6⊂ Ess
−[D1f(γ+(·),λ)]T (0) and Z 6⊂ Euu

−[D1f(γ−(·),λ)]T (0).

For the derivation of the representation of the determination equations, only Z 6⊂ Euu
−[D1f(γ−(·),λ)]T (0)

will be needed.

Remark 4.1.6. Regarding the derivation of the determination equations there seems to be no need to

restrict the leading unstable eigenvalue µu to be real or simple. However, in order to be on the safe side,

that the homoclinic trajectory γ satisfies a generic unfolding of codimension-1, we bring these restrictive

requirements within the fixed point space FixGγ , cf. Hypothesis (H4.6). Whether and to what extent this

restriction might be omitted was not further investigated in this thesis.

Now, with Hypotheses (H4.1)-(H4.6) the assumptions (H1) - (H7) in [HJKL11] are fulfilled so that we

operate within the context of [HJKL11]. Further we recall Hypotheses (H3.2)-(H3.5) in terms of the

considered homoclinic cycle. For the definition of Siλ,t also consult the section around Hypothesis (H3.4).

(H4.7). For sufficiently small λ let

(i) p(λ) ≡ p,

(ii) W s
loc,λ(p) ⊆ TpW

s
λ=0(p) and Wu

loc,λ(p) ⊆ TpW
u
λ=0(p).

Further there is an ε > 0 such that for sufficiently small λ and all i ∈ {1, . . . , |G/Gγ |}

(iii)

W s
Si
λ,0

(p) ∩B(γi(0), ε) ⊆ γ+
i (λ)(0) +W+

i ,

Wu
Si
λ,0

(p) ∩B(γi(0), ε) ⊆ γ−
i (λ)(0) +W−

i ,

(iv)

W s
Si
λ,t

(p) ∩B(γ+
i (λ)(t), ε) ⊆ γ+

i (λ)(t) + Φi(t, 0)W
+
i , t ≥ 0,

Wu
Si
λ,t

(p) ∩B(γ−
i (λ)(t), ε) ⊆ γ−

i (λ)(t) + Φi(t, 0)W
−
i , t ≤ 0.

Hypothesis (H4.7) is necessary for applying Lin’s method. However, it does not mean a restriction to

the considered homoclinic cycle, since there exist certain vector field transformations such that Hypothe-

sis (H4.7) holds true. Yet, after the transformation we find f ∈ Cl(Rn ×R,Rn), that is we lose a certain

degree of differentiability.

Obviously condition (H4.7)(iii) is already included in (H4.7)(iv). However, in view of the vector field

transformation we listed them separately, since a transformation in the neighbourhood of γi(0) is first

required before it can be continued along γ±
i (t) for t > 0 or t < 0, respectively.

In Section 4.2 we present the transformations of the vector field for justifying Hypothesis (H4.7).

Remark 4.1.7. With Hypotheses (H4.1), (H4.4) and (H4.7) the assumptions for applying Lin’s method,

Hypotheses (H3.1) - (H3.5), are satisfied.
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4.2 Transformations justifying Hypothesis (H4.7)

Note that (H4.6) automatically follows from (H4.5) if FixGγ is two dimensional, no matter what the

dimension of the entire space is. Also Hypotheses (H4.5) and (H4.6) are trivially satisfied in a system

having no strong stable and no strong unstable eigenvalues. This special case comes along with a few

advantages. However we do not consider this case exclusively. Therefore the final hypothesis stated here,

cf. also Hypothesis (H3.7), is only called occasionally.

(H4.8). The spectrum of D1f(p, λ) has neither strong stable nor strong unstable eigenvalues:

σ(D1f(p, λ)) = {µs(λ), µu(λ)}.

4.2 Transformations justifying Hypothesis (H4.7)

In order to prove Lin’s method we required the Hypotheses (H3.2) - (H3.5). A justification of these

hypotheses can be found in [Kno04] in the more general context of a degenerate homoclinic trajectory.

Now, Hypothesis (H4.7) presents the Hypotheses (H3.2) - (H3.5) adapted for the context of the G-

equivariant homoclinic cycle under consideration. Therefore the validity of this hypothesis is essential

for applying Lin’s method on the homoclinic cycle. In this section we introduce transformations of the

vector field f which justify this hypothesis. Basically we are guided by the transformations presented in

[Kno04]. However, since the vector field under consideration in this thesis is equivariant with respect to

the action of a finite group G we only benefit from the transformations if they preserve the equivariance.

Therefore we first focus on the question how the symmetry can be retained, before we discuss the single

transformations in detail.

To begin with we show how we gain a new vector field out of a transformation. Let f ∈ Cl1(Rn×Rd,Rn)

be a family of vector fields and Tλ ∈ Cl2(Rn,Rn) be a λ-dependend transformation that is of class Cl3

in λ. Then we get the transformed vector field f̃ : Rn × Rd → Rn from

f̃(x, λ) = DTλ(T −1
λ (x))f(T −1

λ (x), λ), (4.3)

cf. Figure 4.1. Then the transformed vector field f̃ is of class Cl(Rn×Rd,Rn) where l = min{l1, l2−1, l3}.
Further we find for a G-equivariant transformation Tλ that the new vector field f̃ remains G-equivariant:

gf̃(x, λ) = gDTλ(T −1
λ (x))f(T −1

λ (x), λ)

= DTλ(gT −1
λ (x))gf(T −1

λ (x), λ) = DTλ(T −1
λ (gx))f(gT −1

λ (x), λ)

= DTλ(T −1
λ (gx))f(T −1

λ (gx), λ) = f̃(gx, λ).

Tλ
DTλ

X = T −1
λ (x)

f(X,λ)

x

f̃(x, λ) =

DTλ(X)f(X,λ)

Figure 4.1: The vector field transformation Tλ transports the coordinates X ∈ Rn while its derivative in X, DTλ(X) ∈

L(Rn,Rn), transports the vector field f(X,λ), since f̃(x, λ) = ẋ = d/dtTλ(X) = DTλ(X)Ẋ = DTλ(X)f(X,λ).
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4 Examination of the jump Ξ in case of G-equivariant homoclinic cycles

Next we see to the question of how to construct such a G-equivariant transformation. For the sake of

convenience we omit the dependency on the parameter λ.

Lemma 4.2.1. Let G be a finite group and let f : Rn → Rn be a G-equivariant vector field. For any

q ∈ Rn there exists a neighbourhood U(q) such that for a Gq-equivariant transformation Tq : Rn → Rn

that acts outside U(q) as identity there exists a transformation T : Rn → Rn that is G-equivariant and

acts within U(q) as Tq.

Proof. Let V (q) be a neighbourhood of any point q ∈ Rn. Then we get with U(q) := {gx|x ∈ V (q), g ∈
Gq} ⊇ V (q) a neighbourhood of q that is invariant with respect to the isotropy group Gq. Further consider

a transformation Tq that acts such that outside U(q) the vector field f remains unchanged. Within U(q)

the vector field shall remain equivariant with respect to the isotropy subgroup Gq of the point q, that is

gTq(x) = Tq(gx) ∀g ∈ Gq ∀x ∈ U(q). (4.4)

Since Tq acts outside the neighbourhood U(q) as identity the transformation is Gq-equivariant for all

x ∈ Rn.

If the isotropy subgroup Gq of the point q is equal to G, then q is the only element of the group orbit

G({q}) = {q} and we see from (4.4) that Tq and hence the transformed vector field is G-equivariant.

Otherwise, if Gq 6= G, the group orbit G({q}) consists of k = |G|
|Gq| different points G({q}) = {q1, . . . , qk}.

Without loss of generality we set q1 = q. Therefore we find k different group elements h1, . . . , hk ∈ G

such that qi = hiq. Each qi ∈ G({q}) has the isotropy group Gqi = hi ∗Gq ∗h−1
i . Note, that the elements

hi, i ∈ {1, . . . , k}, are not uniquely defined, but are elements of the left cosets hi ∗Gq := {hi ∗ g|g ∈ Gq}.
These left cosets present a decomposition of the whole group G.

Now we define for each qi, i ∈ {1, . . . , k}, the transformation

Tqi(x) := hTq(h−1x), where h ∈ hi ∗Gq. (4.5)

Note that Tqi is well defined since (4.5) is independent of the choice of the representative of the left coset

hi ∗Gq. Namely for any element h ∈ hi ∗Gq there is a g ∈ Gq such that h = hi ∗ g and with (4.4) we find

hTq(h−1x) = (hi ∗ g)Tq((g−1 ∗ h−1
i )x) = hiTq((g ∗ g−1 ∗ h−1

i )x) = hiTq(h−1
i x).

Then Tqi is a transformation that acts outside the neighbourhood U(qi) = hiU(q) as identity. Additionally

we find that Tqi is Gqi -equivariant since for any g ∈ Gqi there exists a g̃ ∈ Gq such that g = hi ∗ g̃ ∗ h−1
i

and hence

gTqi(x)
(4.5)
= (g ∗ hi)Tq(h−1

i x) = (hi ∗ g̃ ∗ h−1
i ∗ hi)Tq(h−1

i x)

(4.4)
= hiTq((g̃ ∗ h−1

i )x)

= hiTq((h−1
i ∗ hi ∗ g̃ ∗ h−1

i )x) = hiTq((h−1
i ∗ g)x) (4.5)

= Tqi(gx).

Due to the symmetry of the original vector field the transformation Tqi provides substantially the same

result in U(qi) as the transformation Tq in U(q).

Finally it remains to combine the transformations Tqi , qi ∈ G({q}). To this end we have to ensure that

the different neighbourhoods U(qi) are pairwise disjunct: U(qi) ∩ U(qj) = ∅ for all i 6= j. Since we

consider only a finite amount of neighbourhoods this can always be granted by choosing U(q) sufficiently
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4.2 Transformations justifying Hypothesis (H4.7)

small. Then we define for all x ∈ Rn the transformation

T := Tq1 ◦ . . . ◦ Tqk .

By construction T acts outside the neighbourhood U := U(q1)∪ . . .∪U(qk) as identity and within U(qi)

as Tqi for all i ∈ {1, . . . , k}. Note that U is G-invariant.

In the following we prove that T is additionally G-equivariant on Rn. For x ∈ Rn \ U we find that

gx ∈ Rn \ U and the G-equivariance simply follows from the fact that T (x) = x. Therefore let x be an

element of U . Without loss of generality we assume x ∈ U(q) = U(q1). Then due to (4.4) we find

g ∈ Gq : gT (x) = gTq(x) = Tq(gx) = T (gx).

Now, let g /∈ Gq. Thus g is an element of one of the left cosets hi ∗ Gq with hi /∈ Gq. Therefore there

exists an element g̃ ∈ Gq such that g = hi ∗ g̃ and we find

gx = (hi ∗ g̃ ∗ h−1
i )hix.

Since x ∈ U(q) we find hix ∈ U(qi) and with hi ∗ g̃ ∗ h−1
i ∈ Gqi also gx is an element of U(qi). This

finally leads to

gT (x) = gTq(x)
(4.5)
= Tqi(gx) = T (gx),

and the proof of the G-equivariance of T is completed.

Eventually we start with the transformations which justify Hypothesis (H4.7). Due to Lemma 4.2.1 we

only construct the transformations for one homoclinic trajectory γ. Therefore we spare the indices i in

our notations below. Recall that the vector field f ∈ Cl+3(Rn × R,Rn), l ≥ max{3, ν}.

Transformation justifying Hypothesis (H4.7)(i)

Let p be a hyperbolic equilibrium of ẋ = f(x, 0). Then the equation 0 = f(x, λ) can be solved near (p, 0)

for x = p(λ) by applying the implicit function theorem. Then

Tλ,p : Rn → Rn, x 7→ x+ (p− p(λ))

is a transformation on Rn that obviously leads to Hypothesis (H4.7)(i):

T −1
λ,p (p) = p− (p− p(λ)) = p(λ).

Further we find that Tλ,p is Gp-equivariant.

Now it is necessary to modify the transformation in that way, that it acts only within a Gp-invariant

neighbourhood of p. To this end let χ̃ : Rn → R be a C∞ cut-off function with the following properties:

(i) χ̃(x) ∈ [0, 1];

(ii) χ̃(x) = 1, ‖x‖ ≤ 1;

(iii) χ̃(x) = 0, ‖x‖ ≥ 2.

Here the norm ‖ · ‖ is induced by the scalar product 〈·, ·〉 which is invariant with respect to the group

action, cf. Remark 4.0.5. Hence ‖ · ‖ is G-invariant, that is ‖gx‖ = ‖x‖ for all x ∈ Rn and for all g ∈ G.
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4 Examination of the jump Ξ in case of G-equivariant homoclinic cycles

As a direct consequence we find that a δ-neighbourhood of p, Uδ(p) = {x|‖x − p‖ ≤ δ} is G-invariant.

With that we define another cut-off function χ by

χ(·) = 1

|Gp|
∑

g∈Gp

χ̃(g·).

Hence χ satisfies not only the conditions (i) - (iii) but in addition

(iv) χ(gx) = χ(x), ∀g ∈ Gp.

For δ > 0 we then define

Tλ,δ,p : Rn → Rn, x 7→ x+ χ

(
x− p

δ

)

· (p− p(λ)).

This mapping then acts on a δ-neighbourhood of p as the transformation Tλ,p and outside a 2δ-neighbourhood

of p the mapping acts as identity. It is easy to see that the transformation Tλ,δ,p is equivariant with respect

to the isotropy group Gp, since for all g ∈ Gp we find

gTλ,δ,p(x) = gx+ χ

(
gx− gp

δ

)

· (gp− gp(λ)) = gx+ χ

(
gx− p

δ

)

· (p− p(λ)) = Tλ,δ,p(gx).

Hence the transformation satisfies the assumptions of Lemma 4.2.1.

Due to the implicit function theorem we find that p(λ) and hence Tλ,δ,p has the same differentiability

class in λ as the vector field f . Further Tλ,δ,p is of class C∞ in x. Hence the transformed vector field f̃

remains of class Cl+3, l ≥ max{3, ν}.

Transformation justifying Hypothesis (H4.7)(ii)

In order to verify hypothesis (H4.7)(ii) let p ≡ p(λ) be a hyperbolic equilibrium of ẋ = f(x, λ) for

λ sufficiently small. Since Wu(p) and W s(p) are immersed manifolds, there are Cl+3-functions hsλ,p :

TpW
s
λ=0(p) → TpW

u
λ=0(p) and huλ,p : TpW

u
λ=0(p) → TpW

s
λ=0(p) with h

s(u)
λ,p (0) = Dh

s(u)
0,p (0) = 0 such

that the local stable and unstable manifolds can be displayed as W s
loc,λ(p) = p + graph(hsλ,p) and

Wu
loc,λ(p) = p+ graph(huλ,p), cf. [Kel67, HiPuSh77]. Thus the mapping

Hλ,p : Rn = TpW
u
λ=0(p)⊕ TpW

s
λ=0(p) → Rn

wu + ws 7→ wu + ws + huλ,p(w
u) + hsλ,p(w

s)

maps simultaneously TpW
u
λ=0(p) onto graph(huλ,p) and TpW

s
λ=0(p) onto graph(hsλ,p). Since Dh

s(u)
0,p (0) =

0 we have DH0,p(0) = id and therefore Hλ,p is indeed a local transformation.

Moreover we find that Hλ,p is Gp-equivariant. This can be seen as follows. For any g ∈ Gp we find with

gW s(p) = W s(p) that

gW s
loc,λ(p) = gp+ g(ws + hsλ,p(w

s)) = p+ gws + ghsλ,p(w
s)

!
= p+ ŵs + hsλ,p(ŵ

s) = W s
loc,λ(p)

where gws and ŵs are both elements of TpW
s(p) and ghsλ,p(w

s) as well as hsλ,p(ŵ
s) are elements of

TpW
u(p). Thus we find

ghsλ,p(w
s) = hsλ,p(ŵ

s) = hsλ,p(gw
s).

Analogously we find ghuλ,p(w
u) = huλ,p(gw

u) and hence gHλ,p(x) = Hλ,p(gx) for all g ∈ Gp.

Now, a homoclinic or heteroclinic trajectory is a global object and therefore we need a globally defined
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4.2 Transformations justifying Hypothesis (H4.7)

transformation that acts locally around the equilibrium like Hλ,p. To this end we make again use of the

above cut-off function χ. Let δ > 0. Then

Hλ,δ,p(w
u + ws) := wu + ws + χ

(
wu + ws

δ

)

huλ,p(w
u) + χ

(
wu + ws

δ

)

hsλ,p(w
s)

is a Gp-equivariant mapping that acts on a δ-neighbourhood of the origin in Rn as Hλ,p. Outside a 2δ-

neighbourhood of the origin this mapping acts as the identity. If the equilibrium p = 0 we are finished.

Otherwise we still need the transformation

Jp : TpW
u
λ=0(p)⊕ TpW

s
λ=0(p) → Rn

wu + ws 7→ p+ wu + ws,

which is a diffeomorphism of a neighbourhood of the origin in Rn onto the neighbourhood of p ∈ Rn.

Finally Tλ,δ,p := Jp ◦Hλ,δ,p ◦J−1
p transforms a neighbourhood of p onto a neighbourhood of p and satisfies

in addition

gTλ,δ,p(x) = Tλ,δ,p(gx)

for all g ∈ Gp. Hence it satisfies the assumptions of Lemma 4.2.1.

Note that Tλ,δ,p is of class Cl+3 in a surrounding area of p. Outside the 2δ-neighbourhood of p it acts as

identity and is therefore C∞. Hence, due to (4.3) the transformed vector field f̃ is of class Cl+2(Rn×R,Rn)

within the 2δ-neighbourhood of p and outside that neighbourhood still of class Cl+3(Rn × R,Rn).

In the end we want to point out that this construction heavily relies on the transversal intersection of

W s
loc,λ(p) and Wu

loc,λ(p).

Transformation justifying Hypothesis (H4.7)(iii)

Now we want to perform a similar transformation near γ±(λ)(0). Of course the intersection of W s(p)

and Wu(p) in γ(0) is not transversal. But since the homoclinic trajectory under consideration is non-

degenerate, cf. Hypothesis (H4.4), we find at least that within the cross-section S the traces of the

manifolds W s(p) and Wu(p) have no common tangent. Hypothesis (H4.7)(iii) prescribes the stable and

unstable manifolds only within the cross-section S. But the local transformation has to act on an open

neighbourhood of γ(0) in Rn.

To this end we define St := γ(t) + Φ(t, 0)(W+ ⊕ W− ⊕ Z), where Φ(·, ·) denotes again the transition

matrix of the variational equation (3.10) along γ(·). Then an ε-ball B(γ(0), ε) around γ(0) can be

thought to be foliated into leaves St: B(γ(0), ε) ⊂ ⋃

t∈(−ε,ε) St. Then by using appropriate coordinates

(x, t) ∈ Rn−1 × (−ε, ε) we construct a local transformation T (·, ·) such that T (·, t) acts on St and

simultaneously flattens within St the stable and unstable manifolds.

We can assume that γ(0) lies outside the 2δ-neighbourhood of p that is the effective range of the forgoing

transformation. Here the vector field is still of class Cl+3. Then there are, just as in the transformation

above, Cl+3 mappings ĥsλ,t,γ(0) : W
+ → W− ⊕ Z and ĥuλ,t,γ(0) : W

− → W+ ⊕ Z such that around γ(0)

for all small ε the traces of the stable and unstable manifolds within St, t ∈ (−ε, ε), can be presented by

W s
λ(p) ∩ St ∩B(γ(0), ε) = γ(t) + ŵ+ + ĥsλ,t,γ(0)(ŵ

+),

Wu
λ (p) ∩ St ∩B(γ(0), ε) = γ(t) + ŵ− + ĥuλ,t,γ(0)(ŵ

−),
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4 Examination of the jump Ξ in case of G-equivariant homoclinic cycles

where ĥ
s(u)
0,0,γ(0)(0) = 0 and Dĥ

s(u)
0,0,γ(0)(0) = 0. Further we find in accordance with Lemma 3.1.1

γ±(λ)(0)− γ(0) = γ±
1 (λ)

︸ ︷︷ ︸

∈W±

+ γ±
2 (λ)

︸ ︷︷ ︸

∈W∓⊕Z

.

Using new coordinates

w+ := ŵ+ − γ+
1 (λ) ∈ W+, w− := ŵ− − γ−

1 (λ) ∈ W−

and new mappings h
s(u)
λ,t,γ(0) : W

± → W∓ ⊕ Z,

hsλ,t,γ(0)(w
+) := ĥsλ,t,γ(0)(w

+ + γ+
1 (λ))− γ+

2 (λ),

huλ,t,γ(0)(w
−) := ĥuλ,t,γ(0)(w

− + γ−
1 (λ))− γ−

2 (λ),

we then find that for t = 0 the traces of the stable and unstable manifolds within S0 can be presented by

W s
λ(p) ∩ S0 ∩B(γ+(λ)(0), ε) = γ+(λ)(0) + w+ + hsλ,0,γ(0)(w

+),

Wu
λ (p) ∩ S0 ∩B(γ−(λ)(0), ε) = γ−(λ)(0) + w− + huλ,0,γ(0)(w

−).

Moreover we find h
s(u)
λ,0,γ(0)(0) = 0 and Dh

s(u)
0,0,γ(0)(0) = 0. Actually (w+, w−) 7→ (w+−γ+

1 (λ), w−−γ−
1 (λ))

is a transformation in W+ ⊕W−.

Now, with these prearrangements we explain the transformation that leads to Hypothesis (H4.7)(iii). For

that we see to the neighbourhood U(0) = (−ε, ε)× Ũ(0) ⊆ Rn, where Ũ(0) ⊆ W+⊕W−⊕Z = Rn−1 and

the neighbourhood U(γ(0)) =
⋃

t∈(−ε,ε)
γ+(λ)(t) + Ũ(0). Note that W+, W− and Z are Gγ(0)-invariant

subspaces each. Hence Ũ(0) can be chosen Gγ-invariant. Then both U(0) and U(γ(0)) are Gγ-invariant.

With

Hλ,γ(0) : U(0) → U(0)

(t, w+ + w− + z) 7→ (t, w+ + w− + z + hsλ,t,γ(0)(w
+) + huλ,t,γ(0)(w

−)).

we define a mapping which is a diffeomorphism of a neighbourhood of the origin in Rn onto a neighbour-

hood of the origin in Rn. Further we define

Jλ,γ(0) : U(0) → U(γ(0))

(t, w+ + w− + z) 7→ γ+(λ)(t) + w+ + w− + z,

which is a transformation from a neighbourhood of the origin in Rn onto a neighbourhood of γ+(λ)(t) in

Rn. Then

Tλ,γ(0) := Jλ,γ(0) ◦Hλ,γ(0) ◦ J−1
λ,γ(0)

transforms a neighbourhood of γ+(λ)(t) onto a neighbourhood of γ+(λ)(t). A straightforward calculation

shows that Tλ,γ(0)(γ+(λ)(0) + w+) = γ+(λ)(0) + w+ + hsλ,0,γ(0)(w
+) and hence

Tλ,γ(0)(γ+(λ)(0) + w+) ∈ W s
λ(p) ∩ (γ+(λ)(0) + (W+ ⊕W− ⊕ Z)).

As a matter of fact Tλ,γ(0) is defined only for small w+, w−, t and λ, but for all z. Further Tλ,γ(0) acts

as the identity in γ+(λ)(0) + Z. Since γ+(λ)(0) − γ−(λ)(0) ∈ Z both γ+(λ)(0) and γ−(λ)(0) are in the

146



4.2 Transformations justifying Hypothesis (H4.7)

domain of Tλ,γ(0). By considering

Tλ,γ(0)(γ+(λ)(0) + (γ−(λ)(0)− γ+(λ)(0))
︸ ︷︷ ︸

=:z∈Z

+w−) = γ+(λ)(0) + z
︸ ︷︷ ︸

=γ−(λ)(0)

+w− + huλ,0,γ(0)(w
−)

we verify

Tλ,γ(0)(γ−(λ)(0) + w−) ∈ Wu
λ (p) ∩ (γ−(λ)(0) + (W+ ⊕W− ⊕ Z)).

Summarizing these properties we see that in a neighbourhood of γ(0) the transformation T −1
λ,γ(0) maps

the trace of the stable manifold within S = S0 into (γ+(λ)(0)+W+) and simultaneously the trace of the

unstable manifold within S into (γ−(λ)(0) +W−).

It still remains to globalise Tλ,γ(0) for fixed λ while preserving its local properties. To this end we define

for δ > 0: χδ(t, w
+ + w− + z) := χ1

(
w++w−+z

δ

)

χ2

(
t
δ

)
. Here χ1 : W+ ⊕ W− ⊕ Z ⊂ Rn → R and

χ2 : R → R are two cut-off functions. Further, χ1 is chosen that way, that χ1(gx) = χ1(x) for all g ∈ Gγ .

Then we can globalise Hλ,γ(0) by:

Hλ,δ,γ(0)(t, w
+ + w− + z) := (t, w+ + w− + z + χδ(t, w

+ + w− + z)
(

hsλ,t,γ(0)(w
+) + huλ,t,γ(0)(w

−)
)

),

and get the desired transformation by

Tλ,δ,γ(0) := Jλ,γ(0) ◦Hλ,δ,γ(0) ◦ J−1
λ,γ(0).

Finally, following the line of action in the justification of Hypothesis (H4.7)(ii) we find for all g ∈ Gγ(0)

that gh
s(u)
λ,t,γ(0)(x) = h

s(u)
λ,t,γ(0)(gx) and hence

gTλ,δ,γ(0)(x) = Tλ,δ,γ(0)(gx).

Thus Lemma 4.2.1 can be applied.

Again we can state that Tλ,δ,γ(0) is of class Cl+3 within the 2δ-neighbourhood of γ(0) and outside it is

C∞. Hence the transformed vector field is Cl+2 in the surrounding areas of p (due to the transformation

that leads to Hypothesis (H4.7)(ii)) and γ(0) and all there G-images.

Transformation justifying Hypothesis (H4.7)(iv)

Hypothesis (H4.7)(iv) can be seen as a continuation of Hypothesis (H4.7)(iii) along γ±(λ)(t) as for

t = 0 (H4.7)(iv) coincides with (H4.7)(iii). Moreover, due to (H4.7)(ii), there is a T > 0, such that

Hypothesis (H4.7)(iv) is fulfilled for all t with |t| > T .

We construct two transformation T +
t and T −

t to obtain the situation in (H4.7)(iv) for t ≥ 0 and t ≤ 0,

respectively. These transformation can be gained in quite the same way as the transformation leading to

(H4.7)(iii). Due to our comments above we have to consider tubular neighbourhoods of {γ+(λ)(t), t ∈
[0, T ]} and {γ−(λ)(t), t ∈ [−T, 0]}. Exemplarily we present the transformation T +

t , t ∈ [0, T ].

We define W+
t := Φ(t, 0)W+, W−

t := Φ(t, 0)W− and Zt := Φ(t, 0)Z. Then again we find mappings

ĥsλ,t,γ(t) : W
+
t → W−

t ⊕ Zt with ĥs0,t,γ(t)(0) = Dĥs0,t,γ(t)(0) = 0 whose graphs locally represent the traces

of the stable manifold within Sλ,t, that is for small ε we have

W s
Sλ,t

∩B(γ+(λ)(t), ε) = γ+(λ)(t) + w+ + ĥsλ,t,γ(t)(w
+).

This time ĥs and ĥu are of class Cl+2 since the vector field is only of class Cl+2 due to the foregoing

147



4 Examination of the jump Ξ in case of G-equivariant homoclinic cycles

transformations.

Similar to the justification of Hypothesis (H4.7)(iii) we define:

H+
λ,γ : R×W+

t ⊕W−
t ⊕ Zt → Rn

(t, w+ + w− + z) 7→ (t, w+ + w− + z + ĥsλ,t,γ(t)(w
+)),

J+
λ,γ : R×W+

t ⊕W−
t ⊕ Zt → ⋃

t∈(0,T )

St

(t, w+ + w− + z) 7→ γ+(λ)(t) + w+ + w− + z.

With that we define T +
λ,γ :

⋃

t∈(0,T )

(B(γ+(λ)(t), ε)∩St) → Rn by T +
λ,γ := J+

λ,γ ◦H+
λ,γ ◦ (J+

λ,γ)
−1. Since H+

λ,γ

is a local diffeomorphism, because of Dĥs0,t,γ(t)(0) = 0, T +
λ,γ is a local transformation. By construction

we have T +
λ,γ(γ

+(λ)(t) + w+) = γ+(λ)(t) + w+ + ĥsλ,t,γ(t)(w
+) and hence for sufficiently small ε

T +
λ,γ

(
γ+(λ)(t) + Φ(t, 0)W+

)
= W s

Sλ,t
∩B(γ+(λ)(t), ε).

We globalise the transformation T +
λ,γ by globalising H+

λ,γ :

H+
λ,δ,γ(t, w

+ + w− + z) = (t, w+ + w− + z + χ1

(
w+ + w− + z

δ

)

ĥsλ,t,γ(t)(w
+)).

Then T +
λ,δ,γ = J+

λ,γ ◦H+
λ,δ,γ ◦(J+

λ,γ)
−1 acts locally around a tubular neighbourhood of {γ+(λ)(t), t ∈ [0, T ]}.

So in contrast to the previous defined transformations T +
λ,δ,γ does not transform the vector field locally

around a single point. However, the isotropy subgroup Gγ of the curve γ coincides with the isotropy

group of a single point on this curve. And again we find that the transformation T +
λ,δ,γ is equivariant

with respect to that isotropy group Gγ . Additionally, for t > T the transformation coincides with the

transformation justifying (H4.7)(ii). Therefore the tubular neighbourhoods can be chosen that way, that

they do not intersect each other. So an analogous version of Lemma 4.2.1 formulated for curve segments

can be applied.

Finally the resulting vector field looses a differentiability class for each transformation T +
λ,δ,γ and T −

λ,δ,γ .

Since this time the effective range of the transformations intersect the 2δ-neighbourhoods of the forgoing

transformations, the resulting vector field f is of differentiability class Cl.

4.3 Representation of the jump ξi(ω, λ, κ)

In this section we finally inspect the jump ξi(ω, λ, κ) in the context of G-equivariant homoclinic cycles as

declared in Hypotheses (H4.1) - (H4.7). The aim is to find a suitable representation of the jump in such

a way that ξi is given as sum of an explicit term plus residual terms. Now, this representation mainly

depends on the geometrical location of the fixed point spaces Fixκi
:= FixGγκi

, κi ∈ κ. To be more

precise, it is of great importance whether two consecutive fixed point spaces are orthogonal to each other

or not. Recall in this regard that due to Hypothesis (H4.2) the intersection of two different fixed point

spaces is trivial. We introduce for fixed κ the index set Jκ with

Jκ = {j ∈ Z | Fixκj−1
⊥Fixκj

}. (4.6)

In the following we present two theorems that show the appearance of the jump ξi(ω, λ, κ). Basically

they present the same representation of ξi(ω, λ, κ) but with slightly different residual terms which depend
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on different assumptions to the spectrum of D1f(p, λ). Theorem 4.3.1 comes with no restriction to the

spectrum of D1f(p, λ). However, in case that the vector field under consideration has no strong stable

and unstable eigenvalues, cf. Hypothesis (H4.8), we can improve the estimates of the residual terms.

This case is presented in Theorem 4.3.3.

Additionally we assume that ν ≥ 3. To this end recall Definition 3.4.2 of ν. This assumption is necessary

to determine the leading order terms in case that i ∈ Jκ.

The proofs of both theorems follow along same lines and we will mainly focus on the proof of Theo-

rem 4.3.1. We do this in Section 4.3.2 after we have collected some helpful Lemmata in Section 4.3.1.

Theorem 4.3.1. Assume Hypotheses (H4.1) - (H4.7) and let ν ≥ 3. Then there exist constants Ω and

c such that for all |λ| < c and ω with inf ω > Ω we find the following expression for the jump ξi:

(i) If i ∈ Z \ Jκ then the jump ξi can be written as

ξi(ω, λ, κ) = −e2µ
s(λ)ωiAi(λ, κ) +O(e2α

s(ωi−1+ωi)) +O(emax{αs+αss,3αs}ωi)

+







O(e(α
s−αu)ωi+1), i+ 1 ∈ Z \ Jκ

O(e2α
sωie(α

s−αu)ωi+1) +O(e3/2(α
s−αu)ωi+1)

+O(e1/2(α
s−3αu)ωi+1e(α

s−αu)ωi+2), i+ 1 ∈ Jκ

The functions Ai : R → R are smooth and moreover Ai(0, κ) 6= 0 for all i ∈ Z \ Jκ.

(ii) If i ∈ Jκ then the jump ξi can be written as

ξi(ω, λ, κ) = −e4µ
s(λ)ωi [Bi(λ, κ) +Di(λ, κ, ωi)]− e2µ

s(λ)ωi−1e2µ
s(λ)ωiCi(λ, κ)

+O(e2α
s(ωi−1+ωi)[e2α

sωi−2 + emax{αs,αss−αs}ωi−1 + emax{2αs,1/2(αs−αu),αss−αs}ωi ])

+O(emax{5αs,3αs+αss,3αs−αu,3/2(αs−αu)}ωi)

+O(e4α
sωie1/2(α

s−αu)ωi+1)

+







O(e(α
s−αu)ωi+1), i+ 1 ∈ Z \ Jκ

O(e2α
sωie(α

s−αu)ωi+1) +O(e3/2(α
s−αu)ωi+1)

+O(e1/2(α
s−3αu)ωi+1e(α

s−αu)ωi+2), i+ 1 ∈ Jκ

The functions Bi, Ci, Di(·, ·, ωi) : R× ΣC → R are smooth in λ. Di is equal to zero for ν > 3.

The O-terms are valid for ωi−2, ωi−1, ωi, ωi+1 and ωi+2 tending to infinity.

Remark 4.3.2. Theorem 4.3.1 is consistent with equation (1.7), where ξi(ω, λ, κ) = e2µ
s(λ)ωiAi(λ, κ) +

O(e2µ
s(λ)ωiδ) +O(e2µ

s(λ)ωi+1δ) for some δ > 1.

In case that the vector field under consideration has no strong stable and unstable eigenvalues, cf. Hy-

pothesis (H4.8), the theorem reads as follows.

Theorem 4.3.3. Assume Hypotheses (H4.1) - (H4.7) and let ν ≥ 3. Further assume (H4.8). Then there

exist constants Ω and c such that for all |λ| < c and ω with inf ω > Ω we find the following expression

for the jump ξi:
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(i) If i ∈ Z \ Jκ then the jump ξi can be written as

ξi(ω, λ, κ) = −e2µ
s(λ)ωiAi(λ, κ) +O(e2α

sωi [e2α
sωi−1 + e2α

sωi ])

+







O(e−2αuωi+1), i+ 1 ∈ Z \ Jκ

O(e−2αuωi+1 [e2α
sωi + e2α

sωi+1 + e−2αuωi+2), i+ 1 ∈ Jκ

The functions Ai(·, κ) : R → R are smooth and moreover Ai(0, κ) 6= 0 for all i ∈ Z \ Jκ.

(ii) If i ∈ Jκ then the jump ξi can be written as

ξi(ω, λ, κ) = −e4µ
s(λ)ωi [Bi(λ, κ) +Di(λ, κ, ωi)]− e2µ

s(λ)ωi−1e2µ
s(λ)ωiCi(λ, κ)

+O(e2α
s(ωi−1+ωi)[e2α

sωi−2 + eα
sωi−1 + emax{2αs,−αu}ωi ])

+O(emax{5αs,ναs−αu,2(αs−αu)}ωi) +O(e4α
sωie−α

uωi+1)

+







O(e−2αuωi+1), i+ 1 ∈ Z \ Jκ

O
(
e−2αuωi+1 [e2α

sωi + e2α
sωi+1 + e−2αuωi+2 ]

)
, i+ 1 ∈ Jκ

The functions Bi, Ci, Di(·, ·, ωi) : R× ΣC → R are smooth in λ. Di is equal to zero for ν > 3.

The O-terms are valid for ωi−2, ωi−1, ωi, ωi+1 and ωi+2 tending to infinity.

4.3.1 Properties of G-equivariant vector fields

In preparation of the proofs of Theorems 4.3.1 and 4.3.3 we present some basic characteristics of G-

equivariant vector fields. To be precise, we show that the transition matrices Φ±
κi
(·, ·) of the variational

equations (3.8) along γ±
κi

and the transition matrix Φ±
κi
(·, ·)T of the adjoint equation (3.9) leave both the

fixed point space Fixκi
and its orthogonal compliment Fix⊥κi

invariant.

Further we show that also the projections corresponding to the exponential dichotomy of the variational

equations (3.8) and (3.9), namely P±
κi

and (P±
κi
)T , leave Fixκi

and Fix⊥κi
invariant.

We start with a property concerning the derivatives of the equivariant vectorfield f .

Lemma 4.3.4. Let g ∈ G and Dkf(x0) ∈ Lk(Rn×. . .×Rn,Rn) be the k-th derivative of the G-equivariant

vector field f in x0 ∈ Rn. Then we find for all k ∈ N that

gDkf(x0)(·, . . . , ·) = Dkf(gx0)(g·, . . . , g·).

Proof. This follows by induction for the counter k, where the base case at k = 0 is given through the

definition of equivariance.

In case that the fixed point spaces under consideration are generated by a cyclic subgroup of order two,

Z2(h) for some h ∈ G, we find with the lemma above the following:

Corollary 4.3.5. Let h ∈ G with h = h−1. Let x0 ∈ FixZ2(h) and η ∈
(
FixZ2(h)

)⊥
. Then

Dkf(x0)[η, . . . , η] ∈







FixZ2(h), k even,

(
FixZ2(h)

)⊥
, k odd.
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Proof. First we show that for an element h ∈ G satisfying h = h−1 the assertion x ∈
(
FixZ2(h)

)⊥
is

equivalent to hx = −x

With x ∈
(
FixZ2(h)

)⊥
we also find that hx ∈

(
FixZ2(h)

)⊥
, since for all y ∈ FixZ2(h) we have due to the

group invariance of the scalar product

0 = 〈y, x〉 = 〈hy, hx〉 = 〈y, hx〉.

Thus x+ hx ∈
(
FixZ2(h)

)⊥
. On the other hand we find

h(hx+ x) = h2x+ hx = x+ hx

and hence hx + x ∈ FixZ2(h). Therefore we have hx + x ∈ FixZ2(h) ∩
(
FixZ2(h)

)⊥
= {0}, that is

hx+ x = 0 and thus hx = −x.

Now, let x = x1+x2 with x1 ∈ FixZ2(h) and x2 ∈
(
FixZ2(h)

)⊥
satisfy hx = −x. Then x1 has to be zero

and hence x ∈
(
FixZ2(h)

)⊥
, since

0 = hx+ x = h(x1 + x2) + x1 + x2 = 2x1 − x2 + x2 = 2x1.

Thus x ∈
(
FixZ2(h)

)⊥
is equivalent to hx = −x.

With this the statement simply follows from Lemma 4.3.4, since with x0 ∈ FixZ2(h) and η ∈
(
FixZ2(h)

)⊥

we find

hDkf(x0) [η, . . . , η] = Dkf(hx0) [hη, . . . , hη] = Dkf(x0) [−η, . . . ,−η] = (−1)kDkf(x0) [η, . . . , η] .

In accordance to Chapter 3 we enumerate the homoclinic trajectories with κi, κ ∈ ΣC . So let γκi
be one

of the homoclinic trajectories within the chain Γκ. For g ∈ G we denote the g-image of γκi
by

γgκi
:= gγκi

.

Analogously we define

γ±
gκi

:= gγ±
κi
.

The flow invariant stable and unstable manifolds W s(p) and Wu(p) of the equilibrium p are invariant

with respect to the isotropy group Gp = G. Therefore the g-image of the tangent space along a solution

within such a manifold is a tangent space along the g-image of that solution:

gTγ±
κi

(t)W
s/u(p) = Tgγ±

κi
(t)W

s/u(p).

Since the subspaces W±
κi
, Zκi

and Uκi
are defined via the tangent spaces of the stable and unstable

manifolds within the point γκi
(0) we then find that the g-images of these subspaces are equal to the
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subspaces defined for the g-image of γκi
(0), that is gγκi

(0) = γgκi
(0). Therefore we define

W±
gκi

:= gW±
κi
,

Zgκi
:= gZκi

,

Ugκi
:= gUκi

.

Since γ±
gκi

are situated within the stable or unstable manifolds W s(p) and Wu(p), respectively, the

variational equations

ẋ = D1f(γ
±
gκi

(λ)(t), λ)x (4.7)

of f along γ±
gκi

also have an exponential dichotomy either on R+ or R−. In accordance with our notation

above we denote by Φ±
gκi

(·, ·) the transition matrices of (4.7) and by P±
gκi

(·) the corresponding projections

of the exponential dichotomy. Analogously we denote by Ψ±
gκi

(·, ·) the transition matrices of the adjoint

variational equations

ẋ = −
[
D1f(γ

±
gκi

(λ)(t), λ)
]T

x (4.8)

of f along γ±
gκi

. Recall that Ψ±
gκi

(t, s) = Φ±
gκi

(s, t)T for all s, t ∈ R.

Now, the following Lemma gives a relation between solutions of the variational equations (3.8) and (4.7)

of f along γ±
κi

and its g-image γ±
gκi

.

Lemma 4.3.6. Let Φ±
gκi

(λ)(·, ·) and Φ±
κi
(λ)(·, ·) be the transition matrices of (4.7) and (3.8), respectively.

Then

Φ±
gκi

(λ)(t, τ) = gΦ±
κi
(λ)(t, τ)g−1.

Proof. Due to the G-symmetry and Lemma 4.3.4 we have

gD1f(x(t), λ) = D1f(gx(t), λ)g.

Hence we find for a solution x(·) of the Initial Value Problem ẋ = D1f(γ
±
κi
(λ)(t), λ)x, x(τ) = ξ that

y(·) = gx(·) is a solution of ẋ = D1f(γ
±
gκi

(λ)(t), λ)x, y(τ) = gξ, since

(gx). = gẋ = gD1f(γ
±
κi
(λ)(t), λ)x = D1f(gγ

±
κi
(λ)(t), λ)gx.

Therefore we have for all ξ ∈ Rn

gΦ±
κi
(λ)(t, τ)ξ = gx(t) = y(t) = Φ±

gκi
(λ)(t, τ)y(τ) = Φ±

gκi
(λ)(t, τ)gξ.

This concludes the proof.

Since both variational equations (3.8) and (4.7) have an exponential dichotomy we also can give a relation

between the corresponding projections.

Lemma 4.3.7. Let P±
gκi

(λ, t) be a projection of the exponential dichotomy of (4.7) with kerP±
gκi

(λ, 0) =

Tgγ±
κi

(0)W
s/u(p) and imP±

gκi
(λ, 0) = W∓

gκi
⊕ Zgκi

. Then we find for all t ∈ R±

P±
gκi

(λ, t) = gP±
κi
(λ, t)g−1.

Proof. P±
κi

is a projection of the exponential dichotomy of (3.8) with kerP±
κi
(λ, 0) = Tγ±

κi
(0)W

s/u(p) and

imP±
κi
(λ, 0) = W∓

κi
⊕ Zκi

. Now let x = x1 + x2 with x1 ∈ kerP±
gκi

(λ, 0) and x2 ∈ imP±
gκi

(λ, 0). Thus

152



4.3 Representation of the jump ξi(ω, λ, κ)

x1 ∈ Tgγ±
κi

(0)W
s/u(p) = gTγ±

κi
(0)W

s/u(p),

x2 ∈ W∓
gκi

⊕ Zgκi
= gW∓

κi
⊕ gZκi

,

and therefore
g−1x1 ∈ Tγ±

κi
(0)W

s/u(p) = kerP±
κi
(λ, 0),

g−1x2 ∈ W∓
κi

⊕ Zκi
= imP±

κi
(λ, 0).

Hence we find that gP±
κi
(λ, 0)g−1 has the same kernel and image as P±

gκi
(λ, 0), since gP±

κi
(λ, 0)g−1x1 =

g0 = 0 = P±
gκi

(λ, 0)x1 and gP±
κi
(λ, 0)g−1x2 = gg−1x2 = x2 = P±

gκi
(λ, 0)x2. Thus

P±
gκi

(λ, 0) = gP±
κi
(λ, 0)g−1.

The equality of these projections for all t ∈ R± follows from Lemma 4.3.6, since

P±
gκi

(λ, t) = Φ±
gκi

(λ)(t, 0)P±
gκi

(λ, 0)Φ±
gκi

(λ)(0, t)

= gΦ±
κi
(λ)(t, 0)g−1gP±

κi
(λ, 0)g−1gΦ±

κi
(λ)(0, t)g−1

= gΦ±
κi
(λ)(t, 0)P±

κi
(λ, 0)Φ±

κi
(λ)(0, t)g−1

= gP±
κi
(λ, t)g−1.

Recall that γ±
κi

is situated within the fixed point space Fixκi
:= FixGγκi

of the isotropy subgroup

Gγκi
⊂ G, cf. Corollary 4.1.4. Then Lemma 4.3.6 and 4.3.7 imply that Fixκi

is invariant under the

action of the transition matrix Φ±
κi

and the projection P±
κi
, since both objects commute with the linear

representation for all elements h ∈ Gγκi
. We record this statement in the following corollary.

Corollary 4.3.8. Let Gγκi
be the isotropy subgroup of γκi

. Then we find that Φ±
κi

and P±
κi

leave Fixκi
:=

FixGγκi
invariant.

Proof. Since γ±
κi

⊆ Fixκi
we have hγ±

κi
(t) = γ±

κi
(t) for all t ∈ R and for all h ∈ Gγκi

and therefore

Φ±
κi
(λ)(t, τ) = Φ±

hκi
(λ)(t, τ) = hΦ±

κi
(λ)(t, τ)h−1,

P±
κi
(λ, t) = P±

hκi
(λ, t) = hP±

κi
(λ, t)h−1.

In the following we show, that the transition matrices Ψ±
κi
(λ)(·, ·) of the adjoint equation (3.9) as well as

the transposed projections (P±
κi
)T also leave Fixκi

invariant. To this end recall that we denote by (·)T the

adjoint with respect to the scalar product 〈·, ·〉. This scalar product was chosen such that it is invariant

in regard to the group action, cf. Remark 4.0.5. Hence we find

Lemma 4.3.9. For all h ∈ G we find that hT = h−1.

Proof. For arbitrary x, y ∈ Rn and for all h ∈ G we find due to the group invariance of the scalar product

〈hx, y〉 = 〈h−1hx, h−1y〉 = 〈x, h−1y〉.
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Thus the adjoint of h in regard to the scalar product is hT = h−1.

With this result we can show:

Lemma 4.3.10. Ψ±
κi
(λ)(·, ·) and P±

κi
(λ, ·)T leave Fixκi

invariant.

Proof. Due to Corollary 4.3.8 we find that (Φ±
κi
)T and (P±

κi
)T commute with hT for all h ∈ Gγκi

:

hTΦ±
κi
(λ)(t, τ)T = [Φ±

κi
(λ)(t, τ)h]T = [hΦ±

κi
(λ)(t, τ)]T = Φ±

κi
(λ)(t, τ)ThT ,

hTP±
κi
(λ)(t)T = [P±

κi
(λ)(t)h]T = [hP±

κi
(λ)(t)]T = P±

κi
(λ)(t)ThT .

Thanks to Lemma 4.3.9 we find hT = h−1 for all h ∈ Gγκi
and hence Gγκi

= {hT | h ∈ Gγκi
}. Thus

(Φ±
κi
)T and (P±

κi
)T commute with all elements of Gγκi

.

Finally with Ψ±
κi
(λ)(τ, t) = Φ±

κi
(λ)(t, τ)T we find hTΨ±

κi
(λ)(τ, t) = Ψ±

κi
(λ)(τ, t)hT .

The following Lemma provides the necessary information to show, that Φ±
κi

and (Φ±
κi
)T leave Fix⊥κi

invariant as well.

Lemma 4.3.11. If the flow of the linear differential equation ẋ = A(t)x leaves the subspace U invariant

then U⊥ is invariant under the flow of the adjoint differential equation ẋ = −A(t)Tx.

Proof. Let Φ(·, ·) and Ψ(·, ·) denote the transition matrices of ẋ = A(t)x and ẋ = −A(t)Tx, respectively.

Then we have for all x ∈ U and for all s, t ∈ R that Φ(t, s)x ∈ U . Now, with any y ∈ U⊥ we find for all

x ∈ U and for all s, t ∈ R

0 = 〈y,Φ(t, s)x〉 =
〈
Φ(t, s)T y, x

〉
= 〈Ψ(s, t)y, x〉 .

Hence Ψ(s, t)y ∈ U⊥ for all s, t ∈ R.

Corollary 4.3.12.

(i) Ψ±
κi
(λ)(·, ·) leaves Fix⊥κi

invariant,

(ii) Φ±
κi
(λ)(·, ·) leaves Fix⊥κi

invariant.

Proof. (i) follows from Lemma 4.3.11 and Corollary 4.3.8, (ii) follows from Lemma 4.3.11 and 4.3.10.

Finally it remains to show, that the projections P±
κi

and (P±
κi
)T leave Fix⊥κi

invariant.

Lemma 4.3.13.

(i) P±
κi
(λ, ·) leaves Fix⊥κi

invariant,

(ii) P±
κi
(λ, ·)T leaves Fix⊥κi

invariant.

Proof. Due to Corollary 4.3.12 it suffices to show the invariance for the time t = 0. The rest follows from

transporting P±
κi

and (P±
κi
)T along γ±

κi
by the transition matrices Φ±

κi
and Ψ±

κi
= ((Φ±

κi
)T )−1:

P±
κi
(λ, t) = Φ±

κi
(λ)(t, 0)P±

κi
(λ, 0)Φ±

κi
(λ)(0, t),

P±
κi
(λ, t)T = Φ±

κi
(λ)(0, t)TP±

κi
(λ, 0)TΦ±

κi
(λ)(t, 0)T .
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At t = 0 we have imP±
κi
(0) = W∓

κi
⊕Zκi

and due to Hypothesis (H4.7)(iii) kerP±
κi
(0) = W±

κi
⊕Uκi

. Since

Uκi
⊕ Zκi

⊆ Fixκi
we find that Fix⊥κi

⊆ W+
κi

⊕W−
κi
.

Therefore any element in Fix⊥κi
can be expressed as w+ + w−, where w+ ∈ (W+

κi
∩ Fix⊥κi

) and w− ∈
(W−

κi
∩ Fix⊥κi

). Then we find

P±
κi
(0)(w+ + w−) = w∓ ∈ Fix⊥κi

.

This proves (i).

In general we cannot assume that W+
κi

and W−
κi

are orthogonal. Thus, in order to prove (ii) we need to

introduce two subspaces V +
κi

and V −
κi

such that V +
κi

and V −
κi

are subspaces of W+
κi

⊕W−
κi

with

W+
κi

⊕ V −
κi

= W+
κi

⊕W−
κi

and W+
κi
⊥V −

κi
,

W−
κi

⊕ V +
κi

= W+
κi

⊕W−
κi

and W−
κi
⊥V +

κi
.

Then we find for t = 0 with Lemma 2.0.1 that

imP±
κi
(0)T = (kerP±

κi
(0))⊥ = (W±

κi
⊕ Uκi

)⊥ = V ∓
κi

⊕ Zκi

kerP±
κi
(0)T = (imP±

κi
(0))⊥ = (W∓

κi
⊕ Zκi

)⊥ = V ±
κi

⊕ Uκi

Due to the choice of V ±
κi

we find Fix⊥κi
⊆ V +

κi
⊕V −

κi
. Then any element in Fix⊥κi

takes the form v+ + v− ∈
(V +
κi

∩ Fix⊥κi
)⊕ (V −

κi
∩ Fix⊥κi

) and we obtain

P±
κi
(0)T (v+ + v−) = v∓ ∈ Fix⊥κi

,

which proves (ii).

4.3.2 Proof of Theorems 4.3.1 and 4.3.3

Now we begin with proving the Theorems 4.3.1 and 4.3.3. We do this in several steps that focus on the

single terms Ai(λ, κ), Bi(λ, κ), Ci(λ, κ) and Di(λ, κ, ωi). These terms can be found within the term T 2

κi
,

cf. (3.64) and (3.65). To be more precise we find, cf. Section 3.4.7

T 21

κi
= −e2µ

s(λ)ωiAi(λ, κ) +R21

i (ω, λ, κ),

T 23

κi
= −e2µ

s(λ)ωi−1e2µ
s(λ)ωiCi(λ, κ) +R23

i (ω, λ, κ),

T 25

κi
= −e4µ

s(λ)ωi [Bi(λ, κ) +Di(λ, κ, ωi)] +R25

i (ω, λ, κ).

First we consider Ai(λ, κ) in Lemma 4.3.14 which is based on [HJKL11, Proposition 3.7] and [Kno04,

Theorem 2.1.9]. This lemma also is a basic step in proving equation (1.7). Lemma 4.3.20 below is

dedicated to the terms Bi(λ, κ) and Di(λ, κ, ωi) and Lemma 4.3.22 gives the term Ci(λ, κ).

Lemma 4.3.14. Assume Hypotheses (H4.1), (H4.3) - (H4.7). Let P±
κi

be the projections associated with

the exponential dichotomies of the variational equation (3.8) along γ±
κi
(λ)(·) as introduced in (3.17) and

let P̃κi
be the projection introduced in Lemma 3.3.2. Then there exist constants Ω and c in accordance to
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Theorem 3.2.2 such that for all |λ| < c and ω with inf ω > Ω the following estimate applies:

T 21

κi
:= −

〈

Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

, (id− P̃κi
(λ, ωi))

(
γ+
κi−1

(λ)(ωi)− p
)〉

= −e2µ
s(λ)ωiAi(λ, κ) +R21

i (ω, λ, κ)

with

Ai(λ, κ) = 〈η−κi
(λ), ηsκi−1

(λ)〉 where
ηsκi−1

(λ) ∈ Fixκi−1
∩ ED1f(p,λ)(µ

s(λ)),

η−κi
(λ) ∈ Fixκi

∩ [ED1f(p,λ)(σ
c
µs(λ))]⊥.

The residual term satisfies

R21

i (ω, λ, κ) =







O(emax{(ν+1)αs,2αs+min{2,ν−1}(αs−αu)}ωi), if additionally (H4.8) applies,

O(emax{αss+αs,(ν+1)αs,3αs−αu}ωi), else.

Proof. The function γ+
κi−1

(λ)(·) is a solution within the stable manifold W s(p) of the hyperbolic equi-

librium p. Recall that p = 0 and thus γ+
κi−1

(t) − p = γ+
κi−1

(t). Further, the leading stable eigen-

value µs(λ) ∈ σ(D1f(p, λ)) is real and semisimple and satisfies Re(µ(λ)) < αss < µs(λ) < αs for all

µ(λ) ∈ σss(D1f(p, λ)). Hence the Assumption (A2.1) is satisfied and we can apply the first part of

Lemma 2.3.1 and obtain in combination with Remark 2.3.2

γ+
κi−1

(λ)(ωi) = eµ
s(λ)ωiηsκi−1

(λ) +RA1
κi−1

(ωi) with RA1
κi−1

(ωi) = O
(
emax{αss,ναs}ωi

)
(4.9)

where ηsκi−1
(λ) ∈ E(µs(λ)). Since γ+

κi−1
(λ) ⊆ Fixκi−1

we also find ηsκi−1
(λ) ∈ Fixκi−1

. Due to Hypothe-

sis (H4.5) we find that ηsκi−1
(λ) 6= 0, cf. Corollary 2.3.4.

Note, if Hypothesis (H4.8) applies we do not have strong leading eigenvalues. Hence in that case we find

RA1
κi−1

(ωi) = O
(
eνα

sωi
)
, cf. Remark 2.3.3.

Additionally for ωi sufficiently large we find due to Hypothesis (H4.7)(ii) that γ+
κi−1

(λ)(ωi) ∈ TpW
s(p).

The definition of the projection P+
κi−1

, cf. (3.17), further provides kerP+
κi−1

(ωi) = TpW
s(p). Hence we

find for ωi sufficiently large

γ+
κi−1

(λ)(ωi) = (id− P+
κi−1

(ωi))γ
+
κi−1

(λ)(ωi).

Consulting Lemma 3.4.3 and Lemma 3.4.5 we find

(id− P̃κi
(ωi))(id− P+

κi−1
(ωi)) = P−

κi
(−ωi)(id− P+

κi−1
(ωi)) +RA2

κi
(ωi) (4.10)

with

RA2
κi

(ωi) =







O
(
emax{ναs−αu,min{2,ν−1}(αs−αu)}ωi

)
, if (H4.8) applies,

O
(
emax{ναs,αs−αu}ωi

)
, else.

(4.11)
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Hence we obtain with (4.9) and p = 0

(id− P̃κi
(ωi))

(
γ+
κi−1

(λ)(ωi)− p
)

= (id− P̃κi
(ωi))(id− P+

κi−1
(ωi))γ

+
κi−1

(λ)(ωi)

=
[
P−
κi
(−ωi)(id− P+

κi−1
(ωi)) +RA2

κi
(ωi)

]
γ+
κi−1

(λ)(ωi)

= P−
κi
(−ωi)γ

+
κi−1

(λ)(ωi) +RA2
κi

(ωi)γ
+
κi−1

(λ)(ωi)

= P−
κi
(−ωi)

[
eµ

s(λ)ωiηsκi−1
(λ) +RA1

κi−1
(ωi)

]

+RA2
κi

(ωi)γ
+
κi−1

(λ)(ωi),

that is

(id− P̃κi
(ωi))

(
γ+
κi−1

(λ)(ωi)− p
)
= eµ

s(λ)ωiP−
κi
(−ωi)η

s
κi−1

(λ) +RA3
κi

(ωi) (4.12)

with RA3
κi

(ωi) following from RA1
κi−1

(ωi), RA2
κi

(ωi), cf. (4.9) and (4.11), and γ+
κi−1

(λ)(ωi) = O(eα
sωi):

RA3
κi

(ωi) = P−
κi
(−ωi)RA1

κi−1
(ωi) +RA2

κi
(ωi)γ

+
κi−1

(λ)(ωi)

=







O(emax{ναs,αs+min{2,ν−1}(αs−αu)}ωi), if (H4.8) applies,

O(emax{αss,ναs,2αs−αu}ωi), else.







(4.13)

Considering the left-hand side of the scalar product T 21

κi
we find that Φ−

κi
(λ)(0, ·)TP−

κi
(λ, 0)Tψκi

solves

the adjoint variational equation (3.9), that is

ẋ = −
[
D1f(γ

−
κi
(λ)(t), λ)

]T
x = −D1f(p, λ)

Tx−
[
D1f(γ

−
κi
(λ)(t), λ)−D1f(p, λ)

]T
x.

Hence we can apply an equivalent assertion of the first part of Lemma 2.4.1 for solutions of linear perturbed

equations that tend to zero as t → −∞. The leading unstable eigenvalue of −D1f(p, λ)
T we find with

−µs(λ) which is real and semisimple. The estimate eδt of the perturbation [D1f(γ
−
κi
(λ)(t), λ)−D1f(p, λ)]

T

is given by (3.72) with δ = (ν − 1)αu. This finally yields in combination with Remark 2.4.2

Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

= eµ
s(λ)ωiη−κi

(λ) +RA4
κi

(ωi) (4.14)

where η−κi
(λ) ∈ E−D1f(p,λ)T (−µs(λ)) = [ED1f(p,λ)(σ

c
µs(λ))]⊥, cf. Lemma 2.0.2, and

RA4
κi

(ωi) = O
(

emax{αss,αs−(ν−1)αu}ωi

)

. (4.15)

Again, if Hypothesis (H4.8) applies, we obtain the estimate RA4
κi

(ωi) = O
(
e(α

s−(ν−1)αu)ωi
)
, cf. Re-

mark 2.4.3.

According to Lemma 4.3.10 we find that the projection P−
κi
(λ, ·)T and the transition matrix Φ−

κi
(λ)(·, ·)T

leave Fixκi
invariant. Hence we find with ψκi

∈ Zκi
⊂ Fixκi

that Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

∈ Fixκi

and also η−κi
(λ) ∈ Fixκi

. Further we find that η−κi
(λ) is different from zero, if ψκi

/∈ im(Q−
uu(0)) =

Euu
−D1fκi

(γ−(·),λ)T (0), cf. Corollary 2.4.4 applied to the differential equation ẋ = −[D1f(γ
−
κi
(·), λ)]Tx.

Thanks to Hypothesis (H4.6) or more precisely Remark 4.1.5 this condition is fulfilled and η−κi
(λ) 6= 0

holds true.
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Combining (4.12) and (4.14) yields

−T 21

κi
=

〈

Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id− P̃κi
(ωi))

(
γ+
κi−1

(ωi)− p
)〉

= eµ
s(λ)ωi

〈

Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, P−
κi
(−ωi)η

s
κi−1

(λ)
〉

+
〈
Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

,RA3
κi

(ωi)
〉

= eµ
s(λ)ωi

〈

Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, ηsκi−1
(λ)

〉

+
〈
Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

,RA3
κi

(ωi)
〉

= eµ
s(λ)ωi

〈

eµ
s(λ)ωiη−κi

(λ) +RA4
κi

(ωi), η
s
κi−1

(λ)
〉

+
〈
Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

,RA3
κi

(ωi)
〉

= e2µ
s(λ)ωi

〈

η−κi
(λ), ηsκi−1

(λ)
〉

+R21

i (ω, λ, κ).

From the second to the third line we moved P−
κi
(λ,−ωi) from the right-hand side of the scalar product to

the left-hand side and took into consideration that the projection P−
κi
(λ, ·)T is idempotent and commutes

with Φ−
κi
(λ)(0,−ωi)

T .

The residual term R21

i (ω, λ, κ) we obtain from RA3
κi

(ωi) and RA4
κi

(ωi), cf. (4.13) and (4.15), under

consideration that ηsκi−1
(λ) is bounded, µs(λ) < αs and Φ−

κi
(0,−ωi)

TP−
κi
(0)Tψκi

= O(eα
sωi):

R21

i (ω, λ, κ) = eµ
s(λ)ωi

〈

RA4
κi

(ωi), η
s
κi−1

(λ)
〉

+
〈
Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

,RA3
κi

(ωi)
〉

=







O
(
emax{(ν+1)αs,2αs+min{2,ν−1}(αs−αu)}ωi

)
, if (H4.8) applies,

O
(
emax{αs+αss,(ν+1)αs,3αs−αu}ωi

)
, else.

This concludes the proof.

Lemma 4.3.14 in combination with the representation of the jump ξi, cf. (3.65), and the estimates

presented in Section 3.4.7 already provides the estimation of the jump ξi that is used in the determination

equation (1.7) presented in the introduction.

Remark 4.3.15. If we assume µu(λ) being real and semisimple as well we find analogously to T 21

κi
that

T 11

κi
:=

〈

Φ+
κi
(λ)(0, ωi+1)

TP+
κi
(λ, 0)Tψκi

, P̃κi+1
(λ, ωi+1)

(
γ−
κi+1

(λ)(−ωi+1)− p)
〉

= e−2µu(λ)ωi+1〈η+κi
(λ), ηuκi+1

(λ)〉+R11

i (ω, λ, κ)

with

ηuκi+1
(λ) ∈ Fixκi+1

∩ E(µu(λ)) and η+κi
(λ) ∈ Fixκi

∩ E(σcµu(λ))⊥

and

R11

i (ω, λ, κ) =







O
(
emax{(ν−1)αs−2αu,−2αu+min{2,ν−1}(αs−αu)}ωi+1

)
, if (H4.8) applies,

O
(
emax{−αuu−αu,(ν−1)αs−2αu,αs−3αu}ωi+1

)
, else.

Remark 4.3.16. Additionally assume Hypothesis (H4.2). If i ∈ Jκ, that is Fixκi
is orthogonal to Fixκi−1

,

we find that not only the term Ai(λ, κ) := 〈η−κi
(λ), ηsκi−1

(λ)〉 disappears, but the whole expression

〈

Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

, P−
κi
(λ,−ωi)

(
γ+
κi−1

(λ)(ωi)− p
)〉

= 0.

This is due to the fact that the left-hand side of the scalar product is situated within Fixκi
, γ+

κi−1
is an

element of Fixκi−1
and the projection P−

κi
(λ,−ωi) can be shifted from the right-hand side to the other side

158



4.3 Representation of the jump ξi(ω, λ, κ)

of the scalar product where it already stands. Hence we find for i ∈ Jκ, cf. (4.10) and (4.11),

−T 21

κi
=

〈

Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

,
(
(id− P̃κi

(λ, ωi))− P−
κi
(λ,−ωi)

)
(γ+
κi−1

(λ)(ωi)− p)
〉

=
〈

Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

,RA2
κi

(ωi)
(
γ+
κi−1

(λ)(ωi)− p
)〉

=







O
(
emax{(ν+2)αs−αu,2αs+min{2,ν−1}(αs−αu)}ωi

)
, if (H4.8) applies,

O
(
emax{(ν+2)αs,3αs−αu}ωi

)
, else.

Analogously we find for i+ 1 ∈ Jκ, that is Fixκi
⊥Fixκi+1

, that

T 11

κi
=

〈

Φ+
κi
(λ)(0, ωi+1)

TP+
κi
(λ, 0)Tψκi

,
(
P̃κi+1

(λ, ωi+1)− P+
κi
(λ, ωi+1)

)(
γ−
κi+1

(λ)(−ωi+1)− p)
〉







O
(
emax{ναs−3αu,(ν−1)αs−(ν+1)αu,2αs−4αu}ωi+1

)
, if (H4.8) applies,

O
(
emax{ναs−2αu,αs−3αu}ωi+1

)
, else.

Before studying the term Bi(λ, κ) we state a lemma concerning the representation of Φ+
κi
(λ)(t, s)(id −

P+
κi
(λ, s)) and Φ−

κi
(λ)(s, t)P−

κi
(λ, t).

Lemma 4.3.17. Assume Hypotheses (H4.1) and (H4.3). Let P±
κi

be the projections associated with the

exponential dichotomies of the variational equation (3.8) along γ±
κi
(λ)(·) as introduced in (3.17). There

exist linear time-depending operators S+
κi
(λ, s) and R−

κi
(λ, s) with

imS+
κi
(λ, s) = E(µs(λ)), kerS+

κi
(λ, s) = imP+

κi
(λ, s)⊕ Tγ+

κi
(s)Fss(γ+

κi
(s)),

kerR−
κi
(λ, s) = E(σcµs(λ)) imR−

κi
(λ, s) = imP−

κi
(λ, s) ∩ Tγ−

κi
(s)W

ls,u(p),

such that

Φ+
κi
(λ)(t, s)(id− P+

κi
(λ, s)) = eµ

s(t−s)S+
κi
(λ, s) +RS

κi
(λ)(t, s), t ≥ s ≥ 0,

Φ−
κi
(λ)(s, t)P−

κi
(λ, t) = e−µ

s(t−s)R−
κi
(λ, s) +RR

κi
(λ)(t, s), t ≤ s ≤ 0.

with
RS
κi
(λ)(t, s) = O( eα

ss(t−s) + eα
s(t−s)e(ν−1)αst),

RR
κi
(λ)(t, s) = O(e−α

ss(t−s) + e−α
s(t−s)e(ν−1)αut).

Proof. Due to Hypothesis (H4.3) the leading stable eigenvalue is real and semisimple. Thus the existence

and representation of the operator S+
κi
(λ, s) as well as the corresponding estimates immediately follow

from Lemma 2.5.2 and Remark 2.5.3(iii) with δ = (ν−1)αs, cf. (3.71). To this end recall that imP+
ss(s) =

Tγ+
κi

(s)Fss(γ+
κi
(s)), cf. Lemmata 2.2.7 and 2.2.10.

Each assertion regarding the operator R−
κi
(λ, s) follow from Remark 2.5.4 with δ = (ν − 1)αu, cf. (3.72).

Again consult Lemmata 2.2.7 and 2.2.10 for [imQ−
uu(s)]

⊥ = Tγ−
κi

(s)W
ls,u(p).

Remark 4.3.18. If additionally Hypothesis (H4.8) applies we obtain from Remark 2.5.3(i) that

kerS+
κi
(λ, s) = imP+

κi
(λ, s), imR−

κi
(λ, s) = imP−

κi
(λ, s),
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and
RS
κi
(λ)(t, s) = O(eα

s(t−s)e(ν−1)αst),

RR
κi
(λ)(t, s) = O(e−α

s(t−s)e(ν−1)αut).

Remark 4.3.19. The properties of the transition matrices Φ±
κi

and the projections P±
κi

we have deduced

in Section 4.3.1 pass on to the operators S±
κi

and R±
κi
. That is to say we find for any g ∈ G

S+
gκi

(λ, s) = gS+
κi
(λ, s)g−1,

R−
gκi

(λ, s) = gR−
κi
(λ, s)g−1.

Hence S+
κi

and R−
κi

leave the fixed point space Fixκi
and Fix⊥κi

invariant.

Proof. Due to Lemmata 4.3.6 and 4.3.7 we know that Φ±
gκi

(λ)(t, s) = gΦ±
κi
(λ)(t, s)g−1 and P±

gκi
(λ, s) =

gP±
κi
(λ, s)g−1 for all g ∈ G. Hence for fixed s > 0 a simple comparing of coefficients

eµ
s(t−s)S+

gκi
(λ, s) + h.o.t. = Φ+

gκi
(λ)(t, s)(id− P+

gκi
(λ, s))

= gΦ+
κi
(λ)(t, s)(id− P+

κi
(λ, s))g−1 = eµ

s(t−s)gS+
κi
(λ, s)g1 + h.o.t.

yields S+
gκi

(λ, s) = gS+
κi
(λ, s)g−1. Analogously we obtain R−

gκi
(λ, s) = gR−

κi
(λ, s)g−1. Therefore S+

κi
(λ, s)

and R−
κi
(λ, s) leave Fixκi

invariant.

Further, since S+
κi

and R−
κi

commute with all group elements of the subgroup Gκi
we find that (S+

κi
)T

and (R−
κi
)T commute with all elements of Gκi

. Hence (S+
κi
)T and (R−

κi
)T leave Fixκi

invariant as well

and consequently S+
κi

and R−
κi

leave Fix⊥κi
invariant.

Lemma 4.3.20. Assume Hypotheses (H4.1) - (H4.7) and let ν ≥ 3. Let further i ∈ Jκ, that is

Fixκi−1
⊥Fixκi

. Then there exist constants Ω and c such that for all |λ| < c and ω with inf ω > Ω

we find the representation

T 25

κi
:= −

〈

ψκi
,

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)h−

κi
(s, v−i (s), λ)ds

〉

= −e4µ
s(λ)ωi [Bi(λ, κ) +Di(λ, κ, ωi)] +R25

i (ω, λ, κ)

with Bi(λ, κ) taking the form of the improper integral

Bi(λ, κ) :=
1

2

0∫

−∞

e2µ
s(λ)s

〈

Φ−
κi
(λ)(0, s)TP−

κi
(λ, 0)Tψκi

, D2
1f(γ

−
κi
(λ)(s), λ)

[

R−
κi
(λ, s)ηsκi−1

(λ)
]2
〉

ds,

where R−
κi

is given by Lemma 4.3.17, and Di(λ, κ, ωi) taking the form

Di(λ, κ, ωi) :=







1
6

0∫

−ωi

e−4µs(λ)ωi
〈
Φ−
κi
(λ)(0, s)TP−

κi
(λ, 0)Tψκi

,

D3
1f(γ

−
κi
(λ)(s), λ)

[

Φ−
κi
(λ)(s,−ωi)P

−
κi
(λ,−ωi)γ

+
κi−1

(λ)(ωi)
]3 〉

ds, if ν = 3

0, if ν > 3,
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and the residual term satisfying

R25

i (ω, λ, κ) =







O
(
e4α

sωi [e2α
sωi−1 + eα

sωi + e−α
uωi+1 ] + e(3α

s−(ν−2)αu)ωi

+e2α
sωie−2αuωi+1 + e−6αuωi+1

)
,






if (H4.8) applies

O
(
e4α

sωi [e2α
sωi−1 + eα

sωi + e(α
s−αu)/2ωi+1 ] + e(3α

s−(ν−2)αu)ωi

+e(3α
s+αss)ωi + e2α

sωie(α
s−αu)ωi+1 + e3(α

s−αu)ωi+1
)
,






else.

Proof. In the following we omit the dependency of λ in our notation. Consulting Lemma 3.4.12 we see

that the integral can be expressed as

0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)h−

κi
(s, v−i (s))ds = 1/2I2κi

(ω, κ) + 1/6I3κi
(ω, κ) +RB1

κi
(ω, κ)

where

Ikκi
(ω, κ) =

0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)Dkf(γ−

κi
(s))[v−,ui (s)]kds, (4.16)

k = 2, 3 and

RB1
κi

(ω, κ) = O
(

e5α
sωi + e4α

sωieα
wωi+1 + e2α

sωie2α
wωi+1 + e6α

wωi+1

)

. (4.17)

Hence

〈ψκi
,

0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)h−

κi
(s, v−i (s))ds〉 = 1/2〈ψκi

, I2κi
(ω, κ)〉+ 1/6〈ψκi

, I3κi
(ω, κ)〉

+〈ψκi
,RB1

κi
(ω, κ)〉.

(4.18)

Before examining the integrals Ikκi
, k = 2, 3 we consider the term v−,ui . From (3.36) we obtain by replacing

0 by t

v−,ui (t) := P−
κi
(t)v−i (t) = Φ−

κi
(t,−ωi)P

−
κi
(−ωi)a

−
i +RB2

κi
(ω, κ)(t) (4.19)

with, cf. (3.107),

RB2
κi

(ω, κ)(t) =
t∫

−ωi

Φ−
κi
(t, s)P−

κi
(s)h−

κi
(s, v−i (s))ds

= O(eα
s(2ωi+t)(eα

sωi + e2α
wωi+1)) +O(e4α

wωi+1).







(4.20)

Recall the representation of a−i given in (3.48) where di is given in (3.13). This provides

Φ−
κi
(t,−ωi)P

−
κi
(−ωi)a

−
i = Φ−

κi
(t,−ωi)P

−
κi
(−ωi)(id− P̃κi

(ωi))γ
+
κi−1

(ωi) +RB3
κi

(ω, κ)(t) (4.21)

with

RB3
κi

(ω, λ, κ)(t) = −Φ−
κi
(t,−ωi)P

−
κi
(−ωi)(id− P̃κi

(ωi))
[
γ−
κi
(−ωi) + (id− P−

κi
(−ωi))v

−
i (−ωi)

−(id− P+
κi−1

(ωi))v
+
i−1(ωi)

]






(4.22)

Applying (4.10) on the first term on the right-hand side of (4.21) we find

Φ−
κi
(t,−ωi)P

−
κi
(−ωi)(id− P̃κi

(ωi))γ
+
κi−1

(ωi) = Φ−
κi
(t,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi) +RB4
κi

(ω, κ)(t) (4.23)
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where we obtain with ν ≥ 3

RB4
κi

(ω, κ)(t) = Φ−
κi
(t,−ωi)P

−
κi
(−ωi)RA2

κi
(ωi)γ

+
κi−1

(ωi)

≤







O
(
eα

s(ωi+t)emax{(ν+1)αs−αu,3αs−2αu}ωi
)
, if (H4.8) applies,

O
(
eα

s(ωi+t)emax{(ν+1)αs,2αs−αu}ωi
)
, else.







(4.24)

Here we applied the estimates for γ+
κi−1

, (3.79), RA2
κi

, (4.11) and the exponential dichotomy (3.16) with

−α−
κi

= αs, cf. (3.18). With (4.9) and Lemma 4.3.17 we obtain for the first term on the right-hand side

of (4.23)

Φ−
κi
(t,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi) =
[
eµ

s(ωi+t)R−
κi
(t) +RR

κi
(−ωi, t)

][
eµ

sωiηsκi−1
+RA1

κi−1
(ωi)

]

= eµ
s(2ωi+t)R−

κi
(t)ηsκi−1

+RB5
κi

(ω, κ)(t)






(4.25)

with the residual term satisfying, cf. (4.9) and Lemma 4.3.17 for the residuals RA1
κi−1

and RR
κi
,

RB5
κi

(ω, κ)(t) =
[
eµ

s(ωi+t)R−
κi
(t) +RR

κi
(−ωi, t)

]
RA1
κi−1

(ωi) + eµ
sωiRR

κi
(−ωi, t)η

s
κi−1

=







O
(
eα

s(ωi+t)eνα
sωi

)
, if (H4.8) applies,

O
(
eα

s(ωi+t)emax{αss,ναs}ωi + eα
ss(ωi+t)eα

sωi
)
, else.







(4.26)

In the following we will estimate the single terms of RB3
κi

(ω, κ) in (4.22) by using exponential di-

chotomies (3.16) with −α−
κi

= αs, Lemma 3.4.3, equation (3.79) and Lemma 3.4.9.

∥
∥
∥Φ−

κi
(t,−ωi)P

−
κi
(−ωi)(id− P̃κi

(ωi))γ
−
κi
(−ωi)

∥
∥
∥

≤
∥
∥Φ−

κi
(t,−ωi)P

−
κi
(−ωi)

∥
∥

∥
∥
∥(id− P̃κi

(ωi))(id− P−
κi
(−ωi))

∥
∥
∥

∥
∥γ−

κi
(−ωi)

∥
∥

≤ eα
s(ωi+t) · emax{(ν−1)αs,(αs−αu)/2}ωi · e−αuωi

∥
∥
∥Φ−

κi
(t,−ωi)P

−
κi
(−ωi)(id− P̃κi

(ωi))(id− P+
κi−1

(ωi))v
+
i−1(ωi)

∥
∥
∥

≤
∥
∥Φ−

κi
(t,−ωi)P

−
κi
(−ωi)

∥
∥ ‖(id− P̃κi

(ωi))‖
∥
∥
∥(id− P+

κi−1
(ωi))v

+
i−1(ωi)

∥
∥
∥

≤ eα
s(ωi+t) · eαsωi [e2α

wωi + e2α
sωi−1 ]

∥
∥
∥Φ−

κi
(t,−ωi)P

−
κi
(−ωi)(id− P̃κi

(ωi1))(id− P−
κi
(−ωi))v

−
i (−ωi)

∥
∥
∥

≤
∥
∥Φ−

κi
(t,−ωi)P

−
κi
(−ωi)

∥
∥

∥
∥
∥(id− P̃κi

(ωi))(id− P−
κi
(−ωi))

∥
∥
∥

∥
∥(id− P−

κi
(−ωi))v

−
i (−ωi)

∥
∥

≤ eα
s(ωi+t) · emax{(ν−1)αs,(αs−αu)/2}ωi · eαwωi [e2α

sωi + e2α
wωi+1 ]

Summarizing we have

RB3
κi

(ω, κ)(t) = O(eα
s(2ωi+t)[emax{(ν−1)αs,−αu}ωi + e2α

sωi−1 ]). (4.27)

Equation (4.19) in combination with (4.21), (4.23) and (4.25) then yields

v−,ui (t) = eµ
s(2ωi+t)R−

κi
(t)ηsκi−1

+RB6
κi

(ω, κ)(t) (4.28)
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with, cf. (4.20), (4.27), (4.24) and (4.26),

RB6
κi

(ω, κ)(t) = RB2
κi

(ω, κ)(t) +RB3
κi

(ω, κ)(t) +RB4
κi

(ω, κ)(t) +RB5
κi

(ω, κ)(t)

= O(eα
s(2ωi+t)[e2α

sωi−1 + eα
sωi + e2α

wωi+1 ]) +O(e4α
wωi+1)

+







0, if (H4.8) applies,

O(eα
ss(ωi+t)eα

sωi) +O(eα
s(ωi+t)eα

ssωi), else.







(4.29)

Now we continue with the integralterm I2κi
(ω, κ). From (4.16) we obtain with (4.28)

I2κi
(ω, κ) = e4µ

sωi

0∫

−ωi

e2µ
ssΦ−

κi
(0, s)P−

κi
(s)D2

1f(γ
−
κi
(λ)(s), λ)

[

R−
κi
(s)ηsκi−1

, R−
κi
(s)ηsκi−1

]

ds

+RB7
κi

(ω, κ).

For ν ≥ 3 the limit of the integral on the right-hand side does exist and we obtain

I2κi
(ω, κ) = e4µ

sωi

0∫

−∞
e2µ

ssΦ−
κi
(0, s)P−

κi
(s)D2

1f(γ
−
κi
(s))

[

R−
κi
(s)ηsκi−1

, R−
κi
(s)ηsκi−1

]

ds

+RB7
κi

(ω, κ) +RB8
κi

(ω, κ)







(4.30)

with

RB8
κi

(ω, κ) = −e4µ
sωi

−ωi∫

−∞

e2µ
ssΦ−

κi
(0, s)P−

κi
(s)D2

1f(γ
−
κi
(s))[R−

κi
(s)ηsκi−1

, R−
κi
(s)ηsκi−1

]ds.

By applying exponential dichotomy (3.16) with −α−
κi

= αs and ‖D2
1f(γ

−
κi
(s))[·, ·]‖ = O(e(ν−2)αus) we get

‖RB8
κi

(ω, κ)‖ ≤ Ce4µ
sωi

−ωi∫

−∞
e(2µ

s−αs+(ν−2)αu)sds = O(e(2µ
s+αs−(ν−2)αu)ωi)

= O(e(3α
s−(ν−2)αu)ωi).







(4.31)

Next we estimate the residual term RB7
κi

(ω, κ). Due to the bilinearity of the second differential, we find

with (4.28)

RB7
κi

(ω, κ) =
0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)D2

1f(γ
−
κi
(s))[RB6

κi
(ω, κ)(s), eµ

s(2ωi+s)R−
κi
(s)ηsκi−1

]ds

+
0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)D2

1f(γ
−
κi
(s))[eµ

s(2ωi+s)R−
κi
(s)ηsκi−1

,RB6
κi

(ω, κ)(s)]ds

+
0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)D2

1f(γ
−
κi
(s))[RB6

κi
(ω, κ)(s),RB6

κi
(ω, κ)(s)]ds.

In case that (H4.8) does not apply this provides with (4.29) the following estimate. Note that we will use

the relation eµ
s(2ωi+s) + ‖RB6

κi
(s)‖ ≤ eα

s(2ωi+s) + e4α
wωi+1 .
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∥
∥RB7

κi
(ω, κ)

∥
∥ ≤ K

0∫

−ωi

e−α
sse(ν−2)αus

(
2eµ

s(2ωi+s)‖RB6
κi

(ω, κ)(s)‖+ ‖RB6
κi

(ω, κ)(s)‖2
)
ds

≤ K
0∫

−ωi

e−α
sse(ν−2)αus‖RB6

κi
(ω, κ)(s)‖

(
2eµ

s(2ωi+s) + ‖RB6
κi

(ω, κ)(s)‖
)
ds

≤ K̄
0∫

−ωi

e−α
sse(ν−2)αus

(
eα

s(2ωi+s)[e2α
sωi−1 + emax{αs,αss−αs}ωi + e2α

wωi+1 ]

+eα
ss(ωi+s)eα

sωi + e4α
wωi+1

)
·
(
eα

s(2ωi+s) + e4α
wωi+1

)
ds

≤ K̃
0∫

−ωi

e−α
sse(ν−2)αus

(
eα

s(4ωi+2s)[e2α
sωi−1 + emax{αs,αss−αs}ωi + e2α

wωi+1 ]

+eα
s(2ωi+s)e4α

wωi+1 + eα
ss(ωi+s)eα

s(ωi+s)e2α
sωi

+eα
ss(ωi+s)eα

sωie4α
wωi+1 + e8α

wωi+1
)
ds

≤ K̃
(
e4α

sωi [e2α
sωi−1 + emax{αs,αss−αs}ωi + e2α

wωi+1 ]
0∫

−ωi

eα
sse(ν−2)αusds

+e2α
sωie4α

wωi+1

0∫

−ωi

e(ν−2)αusds+ e3α
sωieα

ssωi

0∫

−ωi

e(α
ss+(ν−2)αu)sds

+eα
sωieα

ssωie4α
wωi+1

0∫

−ωi

e(α
ss−αs)se(ν−2)αusds+ e8α

wωi+1

0∫

−ωi

e−α
sse(ν−2)αusds

)
.

Since ν ≥ 3 the first two and the last integrals in the latest relation are bounded. From the third and

the fourth summand we obtain

e3α
sωieα

ssωi

0∫

−ωi

e(α
ss+(ν−2)αu)sds = O

(
e3α

sωiemax{αss,−(ν−2)αu}ωi
)
,

eα
sωieα

ssωie4α
wωi+1

0∫

−ωi

e(α
ss−αs)se(ν−2)αusds = O

(
e4α

wωi+1emax{αs+αss,2αs−(ν−2)αu}ωi
)
.

Note that these two terms will not appear in the calculation if (H4.8) applies. This finally yields

∥
∥RB7

κi
(ω, κ)

∥
∥ = O

(
e4α

sωi [e2α
sωi−1 + eα

sωi + e2α
wωi+1 ] + e2α

sωie4α
wωi+1 + e8α

wωi+1
)

+







0, if (H4.8) applies,

e3α
sωiemax{αss,−(ν−2)αu}ωi , else.







(4.32)

From (4.30) we gain the term Bi(λ, κ) by commuting the integration and the scalar product and moving

the transition matrix Φ−
κi

and the projection P−
κi

to the left-hand side of the scalar product:

1
2 〈ψκi

, I2κi
(ω, κ)〉

= e4µ
sωi

1

2

0∫

−∞

e2µ
ss

〈

Φ−
κi
(0, s)TP−

κi
(0)Tψκi

, D2
1f(γ

−
κi
(s))

[

R−
κi
(s)ηsκi−1

]2
〉

ds

︸ ︷︷ ︸

=:Bi(λ,κ)

+〈ψκi
,RB7

κi
(ω, κ) +RB8

κi
(ω, κ)〉.







(4.33)

To conclude the proof we need to estimate the remaining scalar product 〈ψκi
, I3κi

(ω, λ, κ)〉. For ν > 3 we

find due to Lemma 3.4.12 that

〈ψκi
, I3κi

(ω, κ)〉 = O
(

emax{4αs+αw,6αs}ωi + e4α
sωie4α

wωi+1 + e2α
sωie8α

wωi+1 + e12α
wωi+1

)

. (4.34)
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Hence for ν > 3 the lemma follows from (4.18) by invoking (4.30), (4.32), (4.17), (4.31) and (4.34). That

is

R25

i (ω, λ, κ) = −〈ψκi
,RB1

κi
(ω, κ) +RB7

κi
(ω, κ) +RB8

κi
(ω, κ)〉 − 〈ψκi

, I3κi
(ω, κ)〉.

To this end recall that αw was defined as

αw =







−αu, if (H4.8) applies,

1/2(αs − αu)}, else.

However for ν = 3 Lemma 3.4.12 provides among others the rate I3κi
(ω, κ) = O(e4α

sωi) which is not

good enough for our analysis. Therefore we need to discuss this term in more detail for ν = 3. Similar

to the procedure above we replace the expression v−,ui (s) only this time we just use equation (4.19) in

combination with (4.21) and (4.23). This yields

v−,ui (t) = Φ−
κi
(t,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi) +RB9
κi

(ω, κ)(t)

with, cf. (4.20), (4.24) and (4.27),

RB9
κi

(ω, κ)(t) = RB2
κi

(ω, κ)(t) +RB3
κi

(ω, κ)(t) +RB4
κi

(ω, κ)(t)

= O(eα
s(2ωi+t)[e2α

sωi−1 + eα
sωi + e2α

wωi+1 ]) +O(e4α
wωi+1).






(4.35)

Then we find from (4.16)

1
6 〈ψκi

, I3κi
(ω, κ)〉

=
1

6

0∫

−ωi

〈Φ−
κi
(0, s)TP−

κi
(0)Tψκi

, D3
1f(γ

−
κi
(s), λ)[Φ−

κi
(s,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi)]
3〉ds

︸ ︷︷ ︸

=:e4µ
s(λ)ωiDi(λ,κ,ωi)

+〈ψκi
,RB10

κi
(ω, κ)〉.







(4.36)

Since ‖Φ−
κi
(s,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi)‖ = O(eµ
s(2ωi+s)), cf. (4.25), we find

∥
∥
∥
∥
∥

0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)D3

1f(γ
−
κi
(s))[Φ−

κi
(t,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi)]
3ds

∥
∥
∥
∥
∥

≤ K
0∫

−ωi

e−µ
sse3µ

s(2ωi+s)ds

≤ Ke4µ
sωi

0∫

−ωi

e2µ
s(ωi+s)ds

≤ K̃e4µ
sωi .

This justifies the assignment of the integral in (4.36) as e4µ
s(λ)ωiDi(λ, κ, ωi).

The residual term RB10
κi

satisfies

∥
∥RB10

κi
(ω, κ)

∥
∥ ≤ K

0∫

−ωi

e−(αs−δ)s(3(eµ
s(2ωi+s))2 · ‖RB9

κi
(ω, κ)(s)‖

+3eµ
s(2ωi+s) · ‖RB9

κi
(ω, κ)(s)‖2 + ‖RB9

κi
(ω, κ)(s)‖3

)
ds.

Here we used that ‖Φ−
κi
(0, s)P−

κi
(s)‖ ≤ Ke−(αs−δ)s for some δ > 0 close to zero, cf. (3.16) this

time with −α−
κi

= αs − δ < αs < 0. The remaining estimates come from D3
1f(γ

−
κi
(s), λ)[v−,ui (s)]3 −
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D3
1f(γ

−
κi
(s), λ)[−Φ−

κi
(s,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi)]
3, where ‖Φ−

κi
(s,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi)‖ = O(eµ
s(2ωi+s)),

cf. (4.25). This yields the estimate

∥
∥RB10

κi
(ω, κ)

∥
∥

≤ K̃1

0∫

−ωi

e−(αs−δ)s(e2µ
s(2ωi+s)‖RB9

κi
(ω, κ)(s)‖+ eµ

s(2ωi+s)‖RB9
κi

(ω, κ)(s)‖2 + ‖RB9
κi

(ω, κ)(s)‖3
)
ds

≤ K̃1

0∫

−ωi

e−(αs−δ)s‖RB9
κi

(ω, κ)(s)‖
(
e2µ

s(2ωi+s) + ‖RB9
κi

(ω, κ)(s)‖
(
eµ

s(2ωi+s) + ‖RB9
κi

(ω, κ)(s)‖
))
ds.

In the following we use again the relation

eµ
s(2ωi+s) + ‖RB9

κi
(s)‖ ≤ C1(e

αs(2ωi+s) + e4α
wωi+1),

cf. (4.35) for some positive constant C1. Consequently we find

e2µ
s(2ωi+s) + ‖RB9

κi
(s)‖(eµs(2ωi+s) + ‖RB9

κi
(s)‖) ≤

(
eµ

s(2ωi+s) + ‖RB9
κi

(s)‖
)2

≤ C2
1

(
eα

s(2ωi+s) + e4α
wωi+1

)2
.

Thus, by additionally invoking the estimate of RB9
κi

, cf. (4.35), we obtain

∥
∥RB10

κi
(ω, κ)

∥
∥

≤ K̃2

0∫

−ωi

e−(αs−δ)s (eα
s(2ωi+s)[e2α

sωi−1 + eα
sωi + e2α

wωi+1 ] + e4α
wωi+1

)

·
(
eα

s(2ωi+s) + e4α
wωi+1

)2
ds

≤ K̃3

0∫

−ωi

e−(αs−δ)s (e3α
s(2ωi+s)[e2α

sωi−1 + eα
sωi + e2α

wωi+1 ] + e2α
s(2ωi+s)e4α

wωi+1

+eα
s(2ωi+s)e8α

wωi+1 + e12α
wωi+1

)
ds

≤ K̃3

(
e4α

sωi [e2α
sωi−1 + eα

sωi + e2α
wωi+1 ]

0∫

−ωi

e2α
s(ωi+s)eδsds

+e3α
sωie4α

wωi+1

0∫

−ωi

eα
s(ωi+s)eδsds+ e2α

sωie8α
wωi+1

0∫

−ωi

eδsds+ e12α
wωi+1

0∫

−ωi

e−α
sseδsds

)

= O
(
e4α

sωi [e2α
sωi−1 + eα

sωi + e2α
wωi+1 ] + e3α

sωie4α
wωi+1 + e2α

sωie8α
wωi+1 + e12α

wωi+1
)
.

Note, that each of the remaining integrals in the second last line is bounded.

Summarizing, for ν = 3 the lemma follows from (4.18) by using (4.30), (4.17), (4.31), (4.32) and (4.36)

with

R25

i (ω, λ, κ) = −〈ψκi
,RB1

κi
(ω, κ) +RB7

κi
(ω, κ) +RB8

κi
(ω, κ) +RB10

κi
(ω, κ)〉.

This concludes the proof.
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Remark 4.3.21. As we can see from this lemma the case ν = 2 plays a special role. For ν = 2 the term

I2κi
has with e3µ

sωi a different rate of convergence. Indeed we find

0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)D2

1f(γ
−
κi
(λ)(s), λ)[eµ

s(2ωi+s)R−
κi
(s)ηsκi−1

, eµ
s(2ωi+s)R−

κi
(s)ηsκi−1

]ds

= e3µ
sωi

0∫

−ωi

eµ
sseµ

s(ωi+s)Φ−
κi
(0, s)P−

κi
(s)D2

1f(γ
−
κi
(λ)(s), λ)

[

R−
κi
(s)ηsκi−1

, R−
κi
(s)ηsκi−1

]

ds,

where the integral term is bounded for ωi → ∞. However the corresponding coefficient to the leading

exponential rate still depends on the transition time ωi. So, to be precise we find under the assumption

of Hypotheses (H4.1) - (H4.7) with ν = 2 that there exist constants Ω and c such that for all |λ| < c and

ω with inf ω > Ω we find the estimate

∣
∣
∣
∣
∣

〈

ψκi
,

0∫

−ωi

Φ−
κi
(λ)(0, s)P−

κi
(λ, s)h−

κi
(s, v−i (s), λ)ds

〉

− e3µ
s(λ)ωiBi(λ, κ, ωi)

∣
∣
∣
∣
∣

= O
(
e3α

sωi [e2α
sωi−1 + eα

sωi + eα
wωi+1 ] + e2α

sωie2α
wωi+1 + e6α

wωi+1
)

with Bi(λ, κ, ωi) taking the form of the integral

Bi(λ, κ, ωi) :=
1
2

0∫

−ωi

eµ
s(λ)seµ

s(λ)(ωi+s)
〈
Φ−
κi
(λ)(0, s)TP−

κi
(λ, 0)Tψκi

,

D2
1f(γ

−
κi
(λ)(s), λ)

[

R−
κi
(λ, s)ηsκi−1

(λ), R−
κi
(λ, s)ηsκi−1

(λ)
]〉

ds.

The following lemma is dedicated to the term Ci(λ, κ). Recall Lemma 4.3.17 and equation (3.38) for the

definition of the terms S+
κi−1

, R−
κi−1

and (id− Fκi−1
).

Lemma 4.3.22. Assume Hypotheses (H4.1) - (H4.7). Then there exist constants Ω and c such that for

all |λ| < c and ω with inf ω > Ω we find the estimate

T 23

κi
:= −

〈

Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

, (id− P̃κi
(λ, ωi))v

+,s
i−1(ωi)

〉

= −e2µ
s(λ)ωi−1e2µ

s(λ)ωiCi(λ, κ) +R23

i (ω, λ, κ)

with

Ci(λ, κ) :=
〈

η−κi
(λ), S+

κi−1
(λ, 0)(id− Fκi−1

)R−
κi−1

(λ, 0)ηsκi−2
(λ)

〉

.

The residual term satisfies

R23

i (ω, λ, κ) =







O(e2α
sωi−1e2α

sωi [e2α
sωi−2 + eα

sωi−1 + emax{(ν−1)αs,−αu}ωi ]

+e2(α
s−αu)ωi),






if (H4.8) applies,

O(e2α
sωi−1e2α

sωi [e2α
sωi−2 + emax{αs,αss−αs}ωi−1

+emax{(ν−1)αs,(αs−αu)/2,αss−αs}ωi ]

+e2α
sωi−1e(α

s+αss)ωi + e(3α
s−αu)ωi),







else.

Proof. For the sake of convenience we omit the dependency of λ in our notation. We start with considering

the right-hand side of the scalar product, that is (id − P̃κi
(ωi))v

+,s
i−1(ωi). First we inspect the term
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v+,si−1(ωi). Equation (3.41) gives the representation of v+,si := (id− P+
κi
)v+i and together with (3.39) that

states v+,si (0) = (id− P+
κi
(0))(id− Fκi

)v−,ui (0) we obtain after an index shift and setting t = ωi

v+,si−1(ωi) = Φ+
κi−1

(ωi, 0)(id− P+
κi−1

(0))(id− Fκi−1
)v−,ui−1(0) +RC1

κi−1
(ω, κ) (4.37)

with, cf. Estimate (3.105),

RC1
κi−1

(ω, κ) =
ωi∫

0

Φ+
κi−1

(ωi, s)(id− P+
κi−1

(s))h+
κi−1

(s, v+i−1(s))ds

= O
(

eα
sωi

(
eα

wωi + e2α
sωi−1

)2
)

.







(4.38)

Recall (3.38) for the definition of the projection Fκi
.

Equation (4.28) together with Lemma 4.3.17 then provides

Φ+
κi−1

(ωi, 0)(id− P+
κi−1

(0))(id− Fκi−1
)v−,ui−1(0)

=
[

eµ
sωiS+

κi−1
(0) +RS

κi
(ωi, 0)

]

(id− Fκi−1
)
[

e2µ
sωi−1R−

κi−1
(0)ηsκi−2

+RB6
κi−1

(ω, κ)(0)
]

= eµ
sωie2µ

sωi−1S+
κi−1

(0)(id− Fκi−1
)R−

κi−1
(0)ηsκi−2

+RC2
κi−1

(ω, κ)

with
RC2
κi−1

(ω, κ) =
[

eµ
sωiS+

κi−1
(0) +RS

κi
(ωi, 0)

]

(id− Fκi−1
)RB6

κi−1
(ω, κ)(0)

+e2µ
sωi−1RS

κi
(ωi, 0)(id− Fκi−1

)R−
κi−1

(0)ηsκi−2

= O(eα
sωi‖RB6

κi−1
(ω, κ)(0)‖) +O(e2α

sωi−1emax{αss,ναs}ωi)







(4.39)

Summarising we find

v+,si−1(ωi) = eµ
sωie2µ

sωi−1S+
κi−1

(0)(id− Fκi−1
)R−

κi−1
(0)ηsκi−2

+RC3
κi−1

(ω, κ) (4.40)

where RC3
κi−1

results from (4.38) and (4.39) by invoking the estimate (4.29) of RB6 with an index shift

from i to i− 1:

RC3
κi−1

(ω, κ) = RC1
κi−1

(ω, κ) +RC2
κi−1

(ω, κ)

= O
(
e2α

sωi−1eα
sωi [e2α

sωi−2 + emax{αs,αss−αs}ωi−1 + emax{(ν−1)αs,αw}ωi ]
)

+O
(
e2α

sωi−1eα
ssωi

)
+O

(
e(α

s+2αw)ωi
)
.







(4.41)

Here again we have

αw =







−αu, if (H4.8) applies,

1/2(αs − αu), else.

and αss = −∞ if (H4.8) applies.

Now, due to Lemma 3.4.3 the projection (id − P̃κi
(ωi)) acts on (id − P+

κi−1
(ωi)) up to higher order

terms as P−
κi
(−ωi). To be precise we find with Lemma 3.4.3 or 3.4.5, respectively, and Lemma 3.4.9 for

v+,si−1(ωi) := (id− P+
κi−1

(ωi))v
+
i−1(ωi)

(id− P̃κi
(ωi))v

+,s
i−1(ωi) = P−

κi
(−ωi)v

+,s
i−1(ωi) +RC4

κi−1
(ω, κ) (4.42)
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with

‖RC4
κi−1

(ω, κ)‖

≤ ‖(id− P̃κi
(ωi))(id− P+

κi−1
(ωi))− P−

κi
(−ωi)(id− P+

κi−1
(ωi))‖‖v+,si−1(ωi)‖

=







O
(
emax{(ν+1)αs−αu,ναs−(ν−1)αu,3αs−2αu}ωi(e−2αuωi

+e2α
sωi−1)

)
,

}

if (H4.8) applies,

O
(
emax{(ν+1)αs,2αs−αu}ωi(e(α

s−αu)ωi + e2α
sωi−1)

)
, else,

= O
(
emax{(ν+1)αs,2αs−αu}ωi(e2α

wωi + e2α
sωi−1)

)
.







(4.43)

The projection P−
κi
(−ωi) in front of v+,si−1(ωi) does not effect the scalar product 〈(Φ−

κi
)T (P−

κi
)Tψκi

,

(id − P̃κi
)v+,si−1〉, since its adjoint P−

κi
(−ωi)

T also appears on the left-hand side. So when building the

scalar product we shift the projection P−
κi
(−ωi) from the right-hand side to the left-hand side and we

obtain with (4.42) and ‖Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

‖ = O(eα
sωi), cf. (3.112),

−T 23

κi
=

〈

Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id− P̃κi
(ωi))v

+,s
i−1(ωi)

〉

=
〈
Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, P−
κi
(−ωi)v

+,s
i−1(ωi)

〉
+

〈

Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

,RC4
κi−1

(ω, κ)
〉

=
〈
Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, v+,si−1(ωi)
〉
+RC5

κi−1
(ω, κ),

with

‖RC5
κi−1

(ω, κ)‖ = O(eα
sωi‖RC4

κi−1
(ω, κ)‖).

The left-hand side of the scalar product we obtain from (4.14) which leads together with (4.40) to

〈
Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, v+,si−1(ωi)
〉

=
〈

eµ
sωiη−κi

+RA4
κi

(ωi) , eµ
sωie2µ

sωi−1S+
κi−1

(0)(id− Fκi−1
)R−

κi−1
(0)ηsκi−2

+RC3
κi−1

(ω, κ)
〉

= e2µ
sωie2µ

sωi−1

〈

η−κi
, S+
κi−1

(0)(id− Fκi−1
)R−

κi−1
(0)ηsκi−2

〉

︸ ︷︷ ︸

Ci(λ,κ)

+RC6
κi−1

(ω, κ).

Thereby the residual term follows from (4.15) and (4.41)

RC6
κi−1

(ω, κ) =
〈

eµ
sωiη−κi

+RA4
κi

(ωi),RC3
κi−1

(ω, κ)
〉

+
〈

RA4
κi

(ωi),−eµ
sωie2µ

sωi−1S+
κi−1

(0)(id− Fκi−1
)R−

κi−1
(0)ηsκi−2

〉

= O(eα
sωi‖RC3

κi−1
(ω, κ)‖) +O(emax{αs+αss,2αs−(ν−1)αu}ωie2α

sωi−1).

Summarising the last four equations we obtain

T 23

κi
= −e2µ

sωie2µ
sωi−1Ci(λ, κ) +R23

i (ω, κ)
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with

R23

i (ω, κ) = −RC5
κi−1

(ω, κ)−RC6
κi−1

(ω, κ)

= O(eα
sωi(‖RC3

κi−1
(ω, κ)‖+ ‖RC4

κi−1
(ω, κ)‖)) +O(emax{αs+αss,2αs−(ν−1)αu}ωie2α

sωi−1)

= O(eα
sωi‖RC3

κi−1
(ω, κ)‖) +O(emax{αs+αss,2αs−(ν−1)αu}ωie2α

sωi−1).

Invoking the estimates (4.41) and (4.43) for the residuals RC3
κi−1

and RC4
κi−1

concludes the proof.

Now, with Lemmata 4.3.14, 4.3.20 and 4.3.22 we finally can prove the Theorems 4.3.1 and 4.3.3.

Proof of Theorem 4.3.1.

To begin with, recall the representation of the jump 〈ψκi
, ξi(ω, λ, κ)〉 given in (3.65). Here we have

introduced the partitioning

〈ψκi
, ξi(ω, λ, κ)〉 = T 1

κi
+ T 2

κi
.

Thereby the estimate of T 1

κi
depends on i + 1 ∈ Z \ Jκ or i + 1 ∈ Jκ. On the contrary the structure of

T 2

κi
is only depending on the index i being an element of Z \ Jκ or Jκ.

We start with examining the term T 1

κi
:=

5∑

k=1

T 1k
κi

.

To this end let first i+1 ∈ Z\Jκ. Here we simply adopt the Estimate (3.118) of T 1

κi
listed in Section 3.4.7.

Recall that in Theorem 4.3.1 the Hypothesis (H4.8) and thus (H3.7) does not apply. This yields

i+ 1 ∈ Z \ Jκ : T 1

κi
= O

(
e6α

sωi + e2α
sωie(α

s−αu)ωi+1 + emax{3/2(αs−αu),−2αu}ωi+1

+e1/2(αs−3αu)ωi+1e(α
s−αu)ωi+2

)
.






(4.44)

Now, let i + 1 ∈ Jκ. In that case we adopt the estimates of the terms T 12

κi
, . . . ,T 15

κi
from Section 3.4.7,

(3.114) - (3.117):

T 12

κi
= O

(
e3/2(αs−αu)ωi+1

)
,

T 13

κi
= O

(
e1/2(αs−3αu)ωi+1 [e2α

sωi+1 + e(α
s−αu)ωi+2 ]

)
,

T 14

κi
= O

(
e3/2(αs−αu)ωi+1 [e2α

sωi + e(α
s−αu)ωi+1 ]

)
,

T 15

κi
= O

(

e6α
sωi + e2α

sωie(α
s−αu)ωi+1 + emax{(ν− 1

2 )α
s− 3

2α
u,2(αs−αu)}ωi+1

)

.

Only T 11

κi
changes into

T 11

κi
= O

(
emax{ναs−2αu,αs−3αu}ωi+1

)
,

cf. Remark 4.3.16. This leads to

i+ 1 ∈ Jκ : T 1

κi
= O

(
e6α

sωi + e2α
sωie(α

s−αu)ωi+1 + e3/2(αs−αu)ωi+1

+e1/2(αs−3αu)ωi+1e(α
s−αu)ωi+2

)
.






(4.45)

Next we consider T 2

κi
:=

5∑

k=1

T 2k
κi

.

Let i ∈ Z \ Jκ. Due to Lemma 4.3.14 we find that Ai(λ, κ) := 〈η−κi
(λ), ηsκi−1

(λ)〉 is different from zero.
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Therefore we find

T 21

κi
= −e2µ

s(λ)ωiAi(λ, κ) +O(emax{αss+αs,(ν+1)αs,3αs−αu}ωi).

The estimates of the remaining terms T 22

κi
, . . . ,T 25

κi
we simply adopt from Section 3.4.7, (3.120) - (3.123):

T 22

κi
= O

(
emax{ναs−αu,3/2(αs−αu)}ωi

)
,

T 23

κi
= O

(
e2α

sωi [e2α
sωi−1 + e(α

s−αu)ωi ]
)

T 24

κi
= O

(

emax{(ν+ 1
2 )α

s− 1
2α

u,3αs−αu}ωi [e2α
sωi + e(α

s−αu)ωi+1 ]
)

.

T 25

κi
= O

(
e3(α

s−αu)ωi+1 + e(α
s−αu)ωi+1e2α

sωi + emin{ν+1,4}αsωi
)

This finally gives for ν ≥ 3

i ∈ Z \ Jκ : T 2

κi
= −e2µ

s(λ)ωiAi(λ, κ) +O(e2α
sωie2α

sωi−1) +O(e2α
sωie(α

s−αu)ωi+1)

+O(emax{αss+αs,(ν+1)αs,4αs,3/2(αs−αu)}ωi) +O(e3(α
s−αu)ωi+1).






(4.46)

Now, let i ∈ Jκ. Then we find that Ai(λ, κ) = 0. Therefore we use the estimate given in Remark 4.3.16

and obtain

T 21

κi
= O

(
emax{(ν+2)αs,3αs−αu}ωi

)
.

In case of T 22

κi
and T 24

κi
we make use of the estimates given in Section 3.4.7, cf. (3.120) and (3.122), see

above. Finally Lemmata 4.3.20 and 4.3.22 provide the terms T 25

κi
and T 23

κi
:

T 23

κi
= −e2µ

s(λ)ωi−1e2µ
s(λ)ωiCi(λ, κ) +O

(
e2α

sωi−1e2α
sωi [e2α

sωi−2 + emax{αs,αss−αs}ωi−1

+emax{(ν−1)αs,1/2(αs−αu),αss−αs}ωi ] + e(3α
s−αu)ωi

)
,

T 25

κi
= −e4µ

s(λ)ωi [Bi(λ, κ) +Di(λ, κ, ωi)] +O
(
e4α

sωi [e2α
sωi−1 + emax{αs,αss−αs}ωi + e1/2(αs−αu)ωi+1 ]

+e(3α
s−(ν−2)αu)ωi + e2α

sωie(α
s−αu)ωi+1 + e3(α

s−αu)ωi+1
)
.

Hence we obtain

i ∈ Jκ : T 2

κi
= −e4µ

s(λ)ωi [Bi(λ, κ) +Di(λ, κ, ωi)]− e2µ
s(λ)ωi−1e2µ

s(λ)ωiCi(λ, κ)

+O
(
e2α

sωi−1e2α
sωi

[
e2α

sωi−2 + emax{αs,αss−αs}ωi−1

+emax{2αs,1/2(αs−αu),αss−αs}ωi
]

+emax{5αs,3αs+αss,3αs−αu,3/2(αs−αu)}ωi + e4α
sωie1/2(αs−αu)ωi+1

+e2α
sωie(α

s−αu)ωi+1 + e3(α
s−αu)ωi+1

)
.







(4.47)

Now we simply need to put the different cases together.

171



4 Examination of the jump Ξ in case of G-equivariant homoclinic cycles

Case 1: i ∈ Z \ Jκ and i+ 1 ∈ Z \ Jκ
Combining the Estimates (4.44) and (4.46) yields for ν ≥ 3

〈ψκi
, ξi(ω, λ, κ)〉 = −e2µ

s(λ)ωiAi(λ, κ) +O(e2α
sωie2α

sωi−1) +O(emax{αss+αs,4αs,3/2(αs−αu)}ωi)

+O(e2α
sωie(α

s−αu)ωi+1) +O(emax{3/2(αs−αu),−2αu}ωi+1)

+O(e1/2(αs−3αu)ωi+1e(α
s−αu)ωi+2)

and more simplified

〈ψκi
, ξi(ω, λ, κ)〉 = −e2µ

s(λ)ωiAi(λ, κ) +O(e2α
sωie2α

sωi−1 + emax{αss+αs,3αs}ωi + e(α
s−αu)ωi+1). (4.48)

Case 2: i ∈ Z \ Jκ and i+ 1 ∈ Jκ

In this case we combine the Estimates (4.45) and (4.46) and obtain

〈ψκi
, ξi(ω, λ, κ)〉 = −e2µ

s(λ)ωiAi(λ, κ) +O(e2α
sωie2α

sωi−1) +O(emax{αss+αs,3αs}ωi)

+O(e2α
sωie(α

s−αu)ωi+1) +O(e3/2(αs−αu)ωi+1)

+O(e1/2(αs−3αu)ωi+1e(α
s−αu)ωi+2)







(4.49)

Case 3: i ∈ Jκ and i+ 1 ∈ Z \ Jκ
Here we combine (4.44) and (4.47). This yields

〈ψκi
, ξi(ω, λ, κ)〉 = −e4µ

s(λ)ωi [Bi(λ, κ) +Di(λ, κ, ωi)]− e2µ
s(λ)ωi−1e2µ

s(λ)ωiCi(λ, κ)

+O
(
e2α

sωi−1e2α
sωi [e2α

sωi−2 + emax{αs,αss−αs}ωi−1

+emax{2αs,αss−αs, 12 (α
s−αu)}ωi ] + emax{5αs,3αs+αss,3αs−αu, 32 (α

s−αu)}ωi

+e4α
sωie1/2(αs−αu)ωi+1 + e(α

s−αu)ωi+1
)
.







(4.50)

Case 4: i ∈ Jκ and i+ 1 ∈ Jκ

Finally in that case we combine (4.45) and (4.47). This yields

〈ψκi
, ξi(ω, λ, κ)〉 = −e4µ

s(λ)ωi [Bi(λ, κ) +Di(λ, κ, ωi)]− e2µ
s(λ)ωi−1e2µ

s(λ)ωiCi(λ, κ)

+O
(
e2α

sωi−1e2α
sωi [e2α

sωi−2 + emax{αs,αss−αs}ωi−1

+emax{2αs, 12 (α
s−αu),αss−αs}ωi ] + emax{5αs,3αs−αss,3αs−αu, 32 (α

s−αu)}ωi

+e4α
sωie1/2(αs−αu)ωi+1 + e2α

sωie(α
s−αu)ωi+1 + e3/2(αs−αu)ωi+1

+e1/2(αs+3αu)ωi+1e(α
s−αu)ωi+2

)
.







(4.51)

Summarising equations (4.48), (4.49), (4.50) and (4.51) concludes the proof.

Proof of Theorem 4.3.3. The proof of Theorem 4.3.3 follows along the same lines as the proof of Theo-

rem 4.3.1. Only this time we use the estimates that are labelled with the validity of Hypothesis (H3.7)

or (H4.8), respectively. That way we obtain, cf. either (3.118) or estimates (3.114) - (3.117) combined
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with Remark 4.3.16

T 1

κi
=







O
(
e6α

sωi + e−2αuωi+1
)

, if i+ 1 ∈ Z \ Jκ,

O
(
e6α

sωi + e−2αuωi+1 [e2α
sωi + e2α

sωi+1 + e−2αuωi+2 ]
)

, if i+ 1 ∈ Jκ.

If i ∈ Z \ Jκ we apply again Lemma 4.3.14 to obtain T 21

κi
and make use of the estimates of T 22

κi
- T 25

κi
in

(3.120) - (3.123). For i ∈ Jκ we use Remark 4.3.16 to gain the estimate of T 21

κi
, further we use (3.120)

and (3.122) to obtain T 22

κi
and T 24

κi
and we finally apply the Lemmata 4.3.20 and 4.3.22 to get T 25

κi
and

T 23

κi
. This together yield

T 2

κi
=







−e2µ
s(λ)ωiAi(λ, κ) +O

(
e2α

sωi [e2α
sωi−1 + e2α

sωi + e−2αuωi+1 ]

+e−6αuωi+1
)

}

, if i ∈ Z \ Jκ,

−e4µ
s(λ)ωi [Bi(λ, κ) +Di(λ, κ, ωi)]− e2µ

s(λ)ωi−1e2µ
s(λ)ωiCi(λ, κ)

+O
(
e2α

sωi−1e2α
sωi [e2α

sωi−2 + eα
sωi−1 + emax{2αs,−αu}ωi ]

+emax{5αs,ναs−αu,2(αs−αu)}ωi

+e4α
sωie−α

uωi+1 + e2α
sωie−2αuωi+1 + e−6αuωi+1

)







, if i ∈ Jκ.

Finally combining the four cases concludes the proof.

4.4 The derivative of the jump ξi(ω, λ, κ)

Based on the representation of the jump ξi(ω, λ, κ) given in Theorems 4.3.1 and 4.3.3, we now consider the

derivative of ξi with respect to the transition times ωj , i, j ∈ Z. For that consider 〈ξi, ψκi
〉 as a mapping

l∞ ×R×ΣC → R. We mainly concentrate on the jump representation given in Theorem 4.3.3, since we

will use this for further investigation in Section 5. Analogous results also hold for the representation of

ξi given in Theorem 4.3.1.

Theorem 4.4.1. Assume Hypotheses (H4.1) - (H4.7) and let ν ≥ 3. Further assume (H4.8). For fixed

κ the mapping ξi(·, λ, κ) is smooth, and we find the following expression for the partial derivative of the

jump ξi with respect to ωj:

(i) If i ∈ Z \ Jκ then

Dωj
〈ξi(ω, λ, κ), ψκi

〉 = −Dωj
(Ai(λ, κ)e

2µs(λ)ωi) +Dωj
Ri(ω, λ, κ),

where

Dωj
Ri(ω, λ, κ) = +O(e2α

sωi [e2α
sωi−1 + e2α

sωi ])

+







O(e−2αuωi+1), i+ 1 ∈ Z \ Jκ

O(e−2αuωi+1 [e2α
sωi + e2α

sωi+1 + e−2αuωi+2), i+ 1 ∈ Jκ

(ii) If i ∈ Jκ then

Dωj
〈ξi(ω, λ, κ), ψκi

〉 = −Dωj

(
[Bi(λ, κ) +Di(λ, κ, ωi)]e

4µs(λ)ωi + Ci(λ, κ)e
2µs(λ)(ωi−1+ωi)

)

+Dωj
Ri(ω, λ, κ),
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where

Dωj
Ri(ω, λ, κ) = (e2α

s(ωi−1+ωi)[e2α
sωi−2 + eα

sωi−1 + emax{2αs,−αu}ωi ])

+O(emax{5αs,ναs−αu,2(αs−αu)}ωi) +O(e4α
sωie−α

uωi+1)

+







O(e−2αuωi+1), i+ 1 ∈ Z \ Jκ

O
(
e−2αuωi+1 [e2α

sωi + e2α
sωi+1 + e−2αuωi+2 ]

)
, i+ 1 ∈ Jκ

Di is equal to zero for ν > 3.

The O-terms are valid for ωi−2, ωi−1, ωi, ωi+1 and ωi+2 tending to infinity.

Comparing Theorem 4.3.3 and Theorem 4.4.1 we see that the partial derivatives of the residual terms

with respect to ωj , j ∈ Z satisfy exactly the same estimates as the residual terms themselves.

Remark 4.4.2. For the estimates of the partial derivatives of the residual terms from Theorem 4.3.1,

that is if (H4.8) is omitted, it applies analogously that they correspond to the estimates of the residual

terms themselves.

Proof of Theorem 4.4.1. Note that Theorem 4.4.1 holds under the assumption of Hypothesis (H4.8). The

analogue from Section 3 is hypothesis (H3.7). So whenever we use estimates from Section 3, we use those

that are valid under Hypothesis (H3.7). Further recall that here we have ν ≥ 3.

The statement arises from differentiating the term in Theorem 4.3.3. So it remains to estimate the

derivatives of the residual terms Ri(ω). We start from the representation (3.65), where we have introduced

the partitioning

〈ψκi
, ξi(ω, λ, κ)〉 = T 1

κi
+ T 2

κi
.

Recall that the estimate of T 1

κi
depends on i + 1 ∈ Z \ Jκ or i + 1 ∈ Jκ whereas the estimate of T 2

κi

depends on i ∈ Z \ Jκ or i ∈ Jκ.

1. We start with examining the term Dωj
T 1

κi
:=

5∑

k=1

Dωj
T 1k
κi

for i+ 1 ∈ Z \ Jκ.

Here we simply adopt the estimate given in (3.158) in Section 3.5.3 yielding

i+ 1 ∈ Z \ Jκ : Dωj
T 1

κi
= O

(

e6α
sωi + e−2αuωi+1

)

. (4.52)

2. Now we inspect the estimates of Dωj
T 1

κi
:=

5∑

k=1

Dωj
T 1k
κi

in case that i+ 1 ∈ Jκ.

In this case we have, cf. Remark 4.3.16,
〈

Φ+
κi
(0, ωi+1)

TP+
κi
(0)Tψκi

, P+
κi
(ωi+1)γ

−
κi+1

(−ωi+1)
〉

= 0 and thus

Dωj
T 11

κi
= Dωj

〈

Φ+
κi
(0, ωi+1)

TP+
κi
(0)Tψκi

,
(
P̃κi+1

(λ, ωi+1)− P+
κi
(λ, ωi+1)

)(
γ−
κi+1

(λ)(−ωi+1)− p)
〉

.

So in addition to the considerations in Section 3.5.3 that result in Dωj
T 11

κi
, cf. (3.153), we apply

Lemma 3.4.5, and the fourth estimate in Lemma 3.5.8 and obtain

Dωj
T 11

κi
= O

(
emax{ναs−3αu,2αs−4αu}ωi+1

)
,

which equals the estimate of T 11

κi
in Remark 4.3.16 in case of (H4.8).
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In case of Dωj
T 1k
κi

for k = 2, . . . , 5 we stick to the estimates (3.154), (3.155) and (3.157) presented in

Section 3.5.3. Then we end up with

i+ 1 ∈ Jκ : Dωj
T 1

κi
= O

(

e6α
sωi + e−2αuωi+1 [e2α

sωi + e2α
sωi+1 + e−2αuωi+2 ]

)

. (4.53)

3. Next we consider the term Dωj
T 2

κi
:=

5∑

k=1

Dωj
T 2k
κi

for i ∈ Z \ Jκ.

For Dωj
T 2k
κi

, k = 2, . . . , 5 we use the same estimates as listed in (3.159) in Section 3.5.3. That is

Dωj
T 22

κi
= O

(
emax{ναs−αu,2(αs−αu)}ωi

)
,

Dωj
T 23

κi
= O

(
e2α

sωi [e2α
sωi−1 + e−2αuωi ]

)
,

Dωj
T 24

κi
= O

(
emax{ναs−αu,2(αs−αu)}ωi [e2α

sωi + e−2αuωi+1
)
,

Dωj
T 25

κi
= O

(
e−6αuωi+1 + e−2αuωi+1e2α

sωi + e4α
sωi

)
.







(4.54)

So in remains to consider T 21

κi
= −〈Φ−

κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id − P̃κi
(ωi))(γ

+
κi−1

(ωi)− p)〉. This term

contains the term −e2µ
sωi〈η−κi

, ηsκi+1
〉. So actually we are interested in

Dωj
R21

i = Dωj

(

〈Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id− P̃κi
(ωi))(γ

+
κi−1

(ωi)− p)〉 − e2µ
sωi〈η−κi

, ηsκi+1
〉
)

(4.55)

To this end we first consider Dωi

(
γ+
κi−1

(ωi)− p− eµ
sωiηsκi+1

)
. The derivative with respect to ωj , j 6= i is

zero.

Since γ+
κi−1

satisfies the differential equation ẋ = f(x) we find by applying the taylor expansion

Dωi

(
γ+
κi−1

(ωi)− p− eµ
sωiηsκi+1

)
= γ̇+

κi−1
(ωi)− µseµ

sωiηsκi+1

= f(γ+
κi−1

(ωi))− µseµ
sωiηsκi+1

= f(p) +Df(p)(γ+
κi−1

(ωi)− p) +O((γ+
κi−1

(ωi)− p)ν)

−µseµ
sωiηsκi+1

.

With γ+
κi−1

(ωi) − p ∈ TpW
s(p) we have Df(p)(γ+

κi−1
(ωi) − p) = µs(γ+

κi−1
(ωi) − p). Then we find with

f(p) = 0 and γ+
κi−1

(ωi)− p = eµ
sωiηsκi−1

+O(eνα
sωi), cf. (4.9)

Dωi

(
γ+
κi−1

(ωi)− p− eµ
sωiηsκi+1

)
= O(eνα

sωi). (4.56)

Along similar lines we consider Dωi

(
Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

− eµ
sωiη−κi

)
and obtain

Dωi

(
Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

− eµ
sωiη−κi

)

= Φ̇−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

− µseµ
sωiη−κi

= −[Df(γ−
κi
(−ωi))]

TΦ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

− µseµ
sωiη−κi

= −[Df(p) +O
(
(γ−
κi
(−ωi)− p)ν−1

)
]TΦ−

κi
(0,−ωi)

TP−
κi
(0)Tψκi

− µseµ
sωiη−κi

.

Applying Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

= eµ
sωiη−κi

+O(e(α
s−(ν−1)αu)ωi), cf. (4.14), with η−κi

∈ E−Df(p)T (−µs)
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yields with −[Df(p)]T η−κi
= µsη−κi

Dωi

(
Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

− eµ
sωiη−κi

)
= O(e(α

s−(ν−1)αu)ωi). (4.57)

Then we find from (4.55) by invoking (4.56), (4.57) and the estimates in the Lemmata 3.4.5 and 3.5.8

corresponding to
(
(id− P̃κi

(ωi))− P−
κi
(−ωi)

)
(id− P+

κi−1
(ωi)):

Dωj
R21

i = Dωj

(

〈Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id− P̃κi
(ωi))γ

+
κi−1

(ωi)〉 − e2µ
sωi〈η−κi

, ηsκi+1
〉
)

= Dωj

(

〈Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, γ+
κi−1

(ωi)〉 − e2µ
sωi〈η−κi

, ηsκi+1
〉
)

+Dωj

(

〈Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

,
(
(id− P̃κi

(ωi))− P−
κi
(−ωi)

)
γ+
κi−1

(ωi)〉
)

= Dωj

(

〈Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

− eµ
sωiη−κi

, γ+
κi−1

(ωi)〉

+〈eµsωiη−κi
, γ+
κi−1

(ωi)− eµ
sωiηsκi+1

〉
)

+O
(
emax{(ν+2)αs−αu,4αs−2αu}ωi

)

= O
(
e(2α

s−(ν−1)αu)ωi
)
+O

(
e(ν+1)αsωi

)
+O

(
emax{(ν+2)αs−αu,4αs−2αu}ωi

)
.

Summarizing we find

Dωj

(
T 21

κi
− (−e2µ

sωiAi(λ))
)
= Dωj

R21

i = O
(
emax{(ν+1)αs,4αs−2αu}ωi

)
. (4.58)

With this the estimate of Dωj
R21

i equals the estimate of R21

i in Lemma 4.3.14 for ν > 3 in case that

(H4.8) applies. Combining all estimates in (4.58) and (4.54) we obtain

i ∈ Z \ Jκ : Dωj

(

T 2

κi
+ e2µ

sωiAi(λ)
)

= O
(

e2α
sωi [e2α

sωi−1 + e2α
sωi + e−2αuωi+1 ] + e−6αuωi+1

)

. (4.59)

4. Finally it remains the term Dωj
T 2

κi
:=

5∑

k=1

Dωj
T 2k
κi

for i ∈ Jκ.

Analogously to the considerations in 2. for T 11

κi
we find

〈

Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, P−
κi
(−ωi)γ

+
κi−1

(ωi)
〉

=

0 for i ∈ Jκ, cf. Remark 4.3.16, and hence

Dωj
T 21

κi
= O

(
emax{(ν+2)αs−αu,4αs−2αu}ωi

)
. (4.60)

The term T 23

κi
= −〈Φ−

κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id − P̃κi
(ωi))v

+,s
i−1(ω)(ωi)〉 contains the explicit expression

−e2µ
sωi−1e2µ

sωiCi(κ), cf. Lemma 4.3.22. So we need the estimate of

Dωj
R23

i = Dωj

(

〈Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id− P̃κi
(ωi))v

+,s
i−1(ω)(ωi)〉

−e2µ
sωi−1e2µ

sωi〈η−κi
, S+
κi−1

(0)(id− Fκi−1
)R−

κi−1
(0)ηsκi−2

〉
)

.

The derivative of the left-hand side of the scalar product in T 23

κi
we obtain from (4.57). Now we see to

the term v+,si−1(ω)(ωi) on the right-hand side.

In the same way as we arrived at the estimate (4.57) we obtain from Lemma 4.3.17

Dωi

(
Φ+
κi
(ωi, 0)(id− P+

κi−1
(0))− eµ

sωiS+
κi
(0)

)
= O(eνα

sωi),

Dωi

(
Φ−
κi
(t,−ωi)P

−
κi
(−ωi)− eµ

s(ωi+t)R−
κi
(t)

)
= O(eα

s(ωi+t)e−(ν−1)αuωi).






(4.61)
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Thereby we take into account that Df(p)S+
κi
(0) = µsS+

κi
(0), since imS+

κi
(s) = E(µs(λ)), and

[−Df(p)TR−
κi
(t)T ]T = µsR−

κi
(t), since imR−

κi
(t)T = [kerR−

κi
(t)]⊥ = [E(σcµs)]⊥, cf. Lemma 4.3.17.

With this we can express the derivative of v+,si−1(ω)(ωi). To do so we trace the deduction of the term

Ci that is given in the proof of the Lemmata 4.3.20 and 4.3.22. We start at (4.19) to first obtain the

derivative of the term v−,ui (ω)(t). In the following we simply present the estimates of the derivatives

of the residual terms we come across, namely RB2
κi

in (4.20), RB3
κi

in (4.22) and RB4
κi

in (4.24). Due to

Lemmata 3.5.8-3.5.15 the partial derivatives always equal the estimates of the residual terms themselves:

Dωj

(
v−,ui (ω)(t)− Φ−

κi
(t,−ωi)P

−
κi
(−ωi)a

−
i

)

= Dωj
RB2
κi

(ω)(t) = O(eα
s(2ωi+t)(eα

sωi + e−2αuωi+1)) +O(e−4αuωi+1),

Dωj

(
Φ−
κi
(t,−ωi)P

−
κi
(−ωi)[a

−
i − (id− P̃κi

(ωi))γ
+
κi−1

(ωi)]
)

= Dωj
RB3
κi

(ω)(t) = O(eα
s(2ωi+t)[emax{(ν−1)αs,−αu}ωi + e2α

sωi−1 ]),

Dωj

(
Φ−
κi
(t,−ωi)P

−
κi
(−ωi)[(id− P̃κi

(ωi))− id]γ+
κi−1

(ωi)
)

= Dωj
RB4
κi

(ω)(t) = O
(
eα

s(ωi+t)emax{(ν+1)αs−αu,3αs−2αu}ωi
)
.

The final estimate we obtain with (4.56) and (4.61):

Dωj

(
Φ−
κi
(t,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi)− eµ
s(2ωi+t)R−

κi
(t)ηsκi−1

)

= Dωj

(
[Φ−
κi
(t,−ωi)P

−
κi
(−ωi)− eµ

s(ωi+t)R−
κi
(t)]γ+

κi−1
(ωi) + eµ

s(ωi+t)R−
κi
(t)[γ+

κi−1
(ωi)− eµ

sωiηsκi−1
]
)

= O
(
eα

s(ωi+t)eνα
sωi

)
.

Summarizing we find

Dωj

(
v−,ui (ω)(t)− Φ−

κi
(t,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi)
)

Dωj

(
v−,ui (ω)(t)− eµ

s(2ωi+t)R−
κi
(t)ηsκi−1

)






=

O
(
eα

s(2ωi+t)[e2α
sωi−1 + eα

sωi

+e−2αuωi+1 ] + e−4αuωi+1
)
.

(4.62)

From this we proceed with estimating the derivative of v+,si (ω)(ωi) starting from the representation in

(4.37):

Dωj

(
v+,si−1(ωi)− Φ+

κi−1
(ωi, 0)(id− P+

κi−1
(0))(id− Fκi−1

)v−,ui−1(0)
)

= Dωj
RC1
κi−1

(ω, κ)

= O
(

eα
sωi

(
e−α

uωi + e2α
sωi−1

)2
)

,

and by invoking (4.61) and (4.62) and Lemmata 3.4.9, 3.5.15 for the estimates regarding v−,ui−1

Dωj

(
Φ+
κi−1

(ωi, 0)(id− P+
κi−1

(0))(id− Fκi−1
)v−,ui−1(0)− eµ

sωie2µ
sωi−1S+

κi−1
(0)(id− Fκi−1

)R−
κi−1

(0)ηsκi−2

)

= Dωj

(

[Φ+
κi−1

(ωi, 0)(id− P+
κi−1

(0))− eµ
sωiS+

κi−1
(0)](id− Fκi−1

)v−,ui−1(0)

+eµ
sωiS+

κi−1
(0)(id− Fκi−1

)[v−,ui−1(0)− (e2µ
sωi−1R−

κi−1
(0)ηsκi−2

)]
)

= O(
(
e2α

sωi−1eα
sωi [e2α

sωi−2 + eα
sωi−1 + emax{(ν−1)αs,−2αu}ωi ] + e(α

s−4αu)ωi
)
.
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Combining the latest two equations we find

Dωj

(
v+,si−1(ωi)− eµ

sωie2µ
sωi−1S+

κi−1
(0)(id− Fκi−1

)R−
κi−1

(0)ηsκi−2

)

= O
(
e2α

sωi−1eα
sωi [e2α

sωi−2 + eα
sωi−1 + emax{(ν−1)αs,−αu}ωi ]

)
+O

(
e(α

s−2αu)ωi
)
.






(4.63)

Recall that v+,si−1(ωi) = (id− P+
κi−1

(ωi))v
+,s
i−1(ωi). Then, due to Lemmata 3.4.5, 3.5.8 and 3.4.9, 3.5.15 we

find for (id− P̃κi
(ωi))v

+,s
i (ω)(ωi) that

Dωj

(
((id− P̃κi

(ωi))− P−
κi
(−ωi))v

+,s
i−1(ω)(ωi)

)
= O

(
emax{(ν+1)αs−αu,3αs−2αu}ωi

[e−2αuωi + eα
sωi−1e−2αuωi + e2α

sωi−1 ]
)
.

(4.64)

Now we have collected every estimate in order to investigate the derivative of the residual R23

i that we

write as

Dωj
R23

i = Dωj

(

〈Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id− P̃κi
(ωi))v

+,s
i−1(ω)(ωi)〉 − e2µ

sωi−1e2µ
sωiCi(κ)

)

= Dωj

(

〈Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, v+,si−1(ω)(ωi) +
(
(id− P̃κi

(ωi))− P−
κi
(−ωi)

)
v+,si−1(ω)(ωi)〉

−e2µ
sωi−1e2µ

sωi〈η−κi
, S+
κi−1

(0)(id− Fκi−1
)R−

κi−1
(0)ηsκi−2

〉
)

= Dωj

(
〈Φ−

κi
(0,−ωi)

TP−
κi
(0)Tψκi

− eµ
sωiη−κi

, v+,si−1(ω)(ωi)〉

+〈eµsωiη−κi
, v+,si−1(ω)(ωi)− e2µ

sωi−1eµ
sωiS+

κi−1
(0)(id− Fκi−1

)R−
κi−1

(0)ηsκi−2
〉
)

+Dωj

(

〈Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

,
(
(id− P̃κi

(ωi))− P−
κi
(−ωi)

)
v+,si−1(ω)(ωi)〉

)

.

Together with (4.57), (4.63), (4.64) and Lemmata 3.4.9, 3.5.15 this results in

Dωj

(
T 23

κi
− (−e2µ

sωi−1e2µ
sωiCi(κ))

)
= Dωj

R23

i

= O
(
e2α

sωi−1e2α
sωi [e2α

sωi−2 + eα
sωi−1 + emax{(ν−1)αs,−αu}ωi ]

)
+O

(
e2(α

s−αu)ωi
)
.






(4.65)

This estimate equals the estimate of R23

i in Lemma 4.3.22 in case that (H4.8) applies.

We continue with T 25

κi
= −〈ψκi

,
0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)h−

κi
(s, v−i (s))ds〉 that contains the term −e4µ

sωi(Bi +

Di), see Lemma 4.3.20. Hence we need to estimate the residual termR25

i . To do so we trace the deduction

of the terms Bi and Di in the proof of Lemma 4.3.20.

Starting from (4.18) we find

Dωj

〈

ψκi
,

0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)h−

κi
(s, v−i (s))ds

− 1
2

0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)D2f(γ−

κi
(s))[v−,ui (s), v−,ui (s)]ds

− 1
6

0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)D3f(γ−

κi
(s))[v−,ui (s), v−,ui (s), v−,ui (s)]ds

〉

= Dωj
〈ψκi

,RB1
κi

(ω)〉

= O
(
e4α

sωi [eα
sωi + e−α

uωi+1 ] + e2α
sωie−2αuωi+1 + e−6αuωi+1

)
.







(4.66)
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Due to Lemmata 3.5.13, 3.4.9 and 3.5.15 the partial derivative of the residual term RB1
κi

(ω), (4.17), with

respect to ωj satisfies the same estimate as the term itself. Note that for j = i additionally the term

d
dt 〈ψκi

,RB1
κi

(ω)(t)〉|t=ωi

= 〈ψκi
, Φ−

κi
(0,−ωi)P

−
κi
(−ωi)

[
h−
κi
(−ωi, v

−
i (−ωi))− 1/2D2f(γ−

κi
(−ωi))[v

−,u
i (−ωi), v

−,u
i (−ωi)]

−1/6D3f(γ−
κi
(−ωi))[v

−,u
i (−ωi), v

−,u
i (−ωi), v

−,u
i (−ωi)

]
〉

has to be estimated. Also this term is due to Lemmata 3.4.8, 3.4.9 and the estimate from the exponential

dichotomy (3.16) with α−
κi

= −αs at least of the same order as RB1
κi

(ω).

Considering the first subtrahend from the right-hand side of the scalar product in (4.66), also cf. (4.30),

we obtain with (4.62)

Dωj

(

0
∫

−ωi

Φ−

κi
(0, s)P−

κi
(s)D2f(γ−

κi
(s))[v−,u

i (s)]2ds− e4µ
sωi

0
∫

−∞

e2µ
ssΦ−

κi
(0, s)P−

κi
(s)D2f(γ−

κi
(s))[R−

κi
(s)ηs

κi−1
]2ds

)

= Dωj

(

0
∫

−ωi

Φ−

κi
(0, s)P−

κi
(s)

[

D2f(γ−

κi
(s))[v−,u

i (s)]2 − eµ
s(4ωi+2s)D2f(γ−

κi
(s))[R−

κi
(s)ηs

κi−1
]2
]

ds

−e4µ
sωi

−ωi
∫

−∞

e2µ
ssΦ−

κi
(0, s)P−

κi
(s)D2f(γ−

κi
(s))[R−

κi
(s)ηs

κi−1
, R−

κi
(s)ηs

κi−1
]ds

)

= DωjR
B7
κi

(ω, λ, κ)(ωi) +DωjR
B8
κi

(ω, λ, κ)(ωi)

= O
(

e4α
sωi [e2α

sωi−1 + eα
sωi + e−2αuωi+1 ] + e(3α

s
−(ν−2)αu)ωi + e2α

sωie−4αuωi+1 + e−8αuωi+1
)

Thereby we estimated the partial derivatives of the integral terms along the same lines as for the residual

terms RB7
κi

, (4.32), and RB8
κi

, (4.31), in the proof of 4.3.20. The additional terms in case that j = i,

d

dt
RB8
κi

(ω, λ, κ)(t)|t=ωi
= e2µ

sωiΦ−
κi
(0,−ωi)P

−
κi
(−ωi)D

2f(γ−
κi
(−ωi))[R

−
κi
(−ωi)η

s
κi−1

, R−
κi
(−ωi)η

s
κi−1

]

and

d
dtRB7

κi
(ω, λ, κ)(t)|t=ωi

= Φ−
κi
(0,−ωi)P

−
κi
(−ωi)

[

D2f(γ−
κi
(−ωi))[v

−,u
i (−ωi)− eµ

sωiR−
κi
(−ωi)η

s
κi−1

, v−,ui (−ωi)]

+D2f(γ−
κi
(−ωi))[e

µsωiR−
κi
(−ωi)η

s
κi−1

, v−,ui (−ωi)− eµ
sωiR−

κi
(−ωi)η

s
κi−1

]
]

can be estimated by applying exponential dichotomy (3.16), 3.4.9 for the estimate of v−,ui , (4.28)

and the subsequent estimate of RB6
κi

for the difference between v−,ui and R−
κi
ηsκi−1

and the fact that

D2f(γ−
κi
(−ωi)) = O(e−(ν−2)αuωi). With this we obtain the estimates O

(
e(3α

s−(ν−2)αu)ωi
)

and

O
(
e(α

s−(ν−2)αu)ωi(e2α
sωi [e2α

sωi−1 + eα
sωi + e−2αuωi+1 ] + eα

sωie−4αuωi+1 + e−8αuωi+1)
)
, respectively.

Analogous considerations for the second subtrahend in (4.66) provides

Dωj

(
I3κi

(ω, λ, κ)(ωi)
)

= Dωj

(
0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)D3f(γ−

κi
(s))[v−,ui (s)]3

)

= O
(
e4α

sωi [emax{2αs,−αu}ωi + e−4αuωi+1 ] + e2α
sωie−8αuωi+1 + e−12αuωi+1

)
,
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if ν > 3 and with (4.62)

Dωj

(
0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)D3f(γ−

κi
(s))[v−,ui (s)]3

−
0∫

−ωi

Φ−
κi
(0, s)P−

κi
(s)D3f(γ−

κi
(s))[Φ−

κi
(s,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi)]
3ds

)

= Dωj

(
RB10
κi

(ω)
)

= O
(
e4α

sωi [e2α
sωi−1 + eα

sωi + e−2αuωi+1 ] + e3α
sωie−4αuωi+1 + e2α

sωie−8αuωi+1 + e−12αuωi+1
)
,

in case that ν = 3. Thereby the derivatives are estimated in the same way as the integration term in

Lemma 3.4.12 for ν > 3 and as the residual term RB10
κi

in the proof of Lemma 4.3.20 for ν = 3. In case

that j = i these estimates also include the estimate of the additional terms

d
dtI

3
κi
(ω, λ, κ)(t)|t=ωi

= Φ−
κi
(0,−ωi)P

−
κi
(−ωi)D

3f(γ−
κi
(−ωi))[v

−,u
i (−ωi)]

3

= O
(
e(α

s−(ν−3)αu)ωi(eα
sωi + e−4αuωi+1)3

)
,

in case that ν > 3 and

d

dt
RB10
κi

(ω)(t)|t=ωi
= O

(
eα

sωi(eα
sωi + e−4αuωi+1)2(eα

sωi [e2α
sωi−1 + eα

sωi + e−2αuωi+1 ] + e−4αuωi+1)
)
,

if ν = 3.

Summarizing this provides

Dωj

(
T 25

κi
− (−e4µ

sωi(Bi(κ) +Di(κ)))
)
= Dωj

R25

i

=







Dωj
〈ψκi

,RB1
κi

+RB7
κi

+RB8
κi

+RB10
κi

〉 , if ν = 3,

Dωj
〈ψκi

,RB1
κi

+RB7
κi

+RB8
κi

+ I3κi
〉 , if ν > 3,

= O
(
e4α

sωi [e2α
sωi−1 + eα

sωi + e−α
uωi+1 ] + e(3α

s−(ν−2)αu)ωi

+e2α
sωie−2αuωi+1 + e−6αuωi+1

)







(4.67)

This estimate equals the estimate of R25

i in Lemma 4.3.20 in case that (H4.8) applies.

Finally we simply adopt the estimates from 3. in case of T 22

κi
and T 24

κi
, cf. (4.54). Together with (4.60),

(4.65) and (4.67) this results in

i ∈ Jκ : Dωj

(
T 2

κi
−
(
− e4µ

sωi(Bi(κ) +Di(κ))− e2µ
sωi−1e2µ

sωiCi(κ)
))

= O
(
e2α

sωi−1e2α
sωi [e2α

sωi−2 + eα
sωi−1 + emax{2αs,−αu}ωi ] + e4α

sωie−α
uωi+1

+emax{5αs,ναs−αu,2(αs−αu)}ωi + e2α
sωie−2αuωi+1 + e−6αuωi+1

)
.







(4.68)

The estimates in (4.52), (4.53), (4.59) and (4.68) equal those of the terms T 1

κi
and T 2

κi
in the proof of

Theorem 4.3.3. Hence the estimates that apply for the residual terms of the jump ξi also apply for their

derivatives. This concludes the proof.
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5 Nonwandering dynamics for D4m-equivariant

homoclinic cycles

The prototype system where we find orthogonal fixed point spaces is gained from vector fields which are

equivariant with respect to the dihedral group Dk where k is a multiple of 4. Therefore this section is

dedicated to the solving of the system of determination equations Ξ = 0 in case of D4m-symmetry.

In the subsequent Section 5.1 we present the precise setting of this Chapter. In Section 5.2 we then discuss

the sign of the quantities Bi(λ, κ) and Ci(λ, κ) in Lemmata 5.2.6 and 5.2.1 and show that Di(λ, κ, ωi)

is equal to zero. Combining these information with the estimates of the jump ξi(ω, λ, κ) presented in

the last chapter results in Theorem 5.3.1. Based on this representation we then formulate our main

results. Theorem 5.3.3 describes the occurrence of shift dynamics under the condition that |Bi(0, κ)| >
|Ci(0, κ)|. The proof is given in Section 5.4. In case that |Bi(0, κ)| ≤ |Ci(0, κ)| the behaviour of the

nonwandering dynamic completely differs from that described in Theorem 5.3.3. We record this statement

in Theorem 5.3.4 that we proof in Section 5.5.

5.1 Setting

At this point we introduce the dihedral group D4m and describe its intended impact on the vector field.

Thereby we orientate ourselves to [HJKL11, Table 1, Case 6].

The dihedral group D4m is the symmetry group of a regular 4m-gon in the plane. The group D4m can

be written as semidirect product of the reflection group Z2(ζ) and the rotation group Z4m(θ4m):

D4m = Z2(ζ)⋉ Z4m(θ4m) (5.1)

where the reflection ζ and the rotation θ4m denote the generators of the corresponding cyclic subgroups

which generate the whole group. This notion further implies that Z2(ζ) ∩ Z4m(θ4m) = {id} and that

Z4m(θ4m) is a normal subgroup of D4m meaning that gZ4m(θ4m) = Z4m(θ4m)g for all g ∈ D4m. Note

that θ4m and ζ do not commute. Figure 5.1 exemplarily displays the symmetry group D4 of the regular

4-gon, the square.

ζ

θ4

x1

x2

b
A

bB

b
C

bD

b
ϕ

ϕ = π
2

Figure 5.1: The symmetry group D4 of the square.

Note that the generators ζ and θ4m satisfy

ζ2 = id, (θ2m4m)2 = id and (θ4mζ)2 = id. (5.2)
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5 Nonwandering dynamics for D4m-equivariant homoclinic cycles

In the course of our treatment we focus on the particular homoclinic cycle which is characterized by

Hypotheses (H4.1) with G = D4m:

(H5.1).

(i) The vector field f : Rn ×R → Rn is smooth, i.e. f ∈ Cl+3(Rn ×R,Rn), l ≥ max{3, ν}, and f(·, λ)
is equivariant with respect to the dihedral group D4m for all λ ∈ R.

(ii) At λ = 0 there is a homoclinic cycle Γ = G(γ) equal to the closure of the group orbit of a homoclinic

trajectory γ asymptotic to a hyperbolic equilibrium p. We demand that Gp = D4m.

Again recall Definition 3.4.2 for the introduction of the constant ν.

For simplification we assume

(H5.2). The dimension of the vector field n = 4.

Further we assume

(H5.3).

(i) The leading eigenspace E(µs(λ)) is two-dimensional.

(ii) Gp = D4m acts on E(µs(λ)) as D4m.

(iii) Gp = D4m acts on E(µu(λ)) as D4m.

(iv) 0 < | Re(µs(λ))| < Re(µu(λ)).

(v) The trajectory γ has the isotropy group Gγ = Z2(ζ).

Due to Hypothesis (H5.3)(v) the homoclinic cycle consists of 4m homoclinic trajectories. Each of them

is situated within the fixed point space of a reflection. To be precise, the latter relation in (5.2) implies

via induction for the counter k that (θk4mζ)2 = id, k = 1, . . . , 4m. That is for each k the group element

θk4mζ defines another reflection. With γ1 := γ ∈ FixZ2(ζ) we then find

γi := θi−1
4m γ1 ∈ Fixi = θ

(i−1)
4m FixZ2(ζ) = FixZ2(θ

2(i−1)
4m ζ). (5.3)

Here i and 2i are considered modulo 4m.

Since Gp acts on the 2-dimensional E(µs(λ)) as D4m we find that Gp acts absolutely irreducible on

E(µs(λ)). Hence µs(λ) is real and semisimple, cf. Lemma 4.1.1, and

dim(FixZ2(ζ) ∩ E(µs(λ))) = 1. (5.4)

The situation described by Hypotheses (H5.1) and (H5.3) is reflected in Figure 1.1 in case ofD4-symmetry.

Since n = 4, dimE(µs(λ)) = 2 and Gp acts on E(µu(λ)) as D4m we find that also E(µu(λ)) is two-

dimensional, µu(λ) is real and semisimple and dim(FixZ2(ζ) ∩ E(µu(λ))) = 1. (We wish to point out,

that (H5.3)(iii) has no equivalent in [HJKL11].)

In particular that means thatD1f(p, 0) has no strong stable or strong unstable eigenvalues: σ(D1f(p, 0)) =

{µs, µu}. Hence we do not have to worry about inclination and orbit flip.
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5.1 Setting

Eventually we find due to (H5.2) and (H5.3) that

FixZ2(θ
2m
4m) = 0 and dim(FixZ2(ζ)) = 2. (5.5)

Since U1 ⊕ Z1 ⊆ Fix1 = FixZ2(ζ), cf. Lemma 4.1.3 we find

Fixi = Ui ⊕ Zi and Fix⊥i = W+
i ⊕W−

i (5.6)

for all i = 1, . . . , 4m.

Lemma 5.1.1. Assume Hypotheses (H5.1) - (H5.3). Then the constant ν ≥ 3.

Proof. From the second relation in (5.2) we find according to the proof of Corollary 4.3.5 that θ2m4m = −id

if and only if FixZ2(θ
2m
4m) = 0. Hence (5.5) implies that θ2m4m(x) = −x for all x ∈ Rn. Together with the

equivariance of the vector field, cf. (4.1), this implies that f(·, λ) is odd. Thus there exists a natural

number ν ≥ 3, cf. Definition 3.4.2, such that

Dν
1f(p, λ) 6= 0 and Dk

1f(p, λ) = 0, k = 2, . . . , ν − 1.

Regarding the homoclinic trajectory we further assume:

(H5.4).

(i) The homoclinic trajectory γ is non-degenerate, that is Tγ(0)W
s(p, 0)∩Tγ(0)W

u(p, 0) = span{γ̇(0)}.

(ii) Further the restriction of the manifolds to the fixed point space FixGγ , W
s
FixGγ

(p) and Wu
FixGγ

(p)

split with non-zero speed in λ.

In Section 2.6 we discussed the property of γ being twisted or non-twisted, cf. Figure 2.4. The setting here

does not allow such a division of the homoclinic trajectory, since our leading eigenvalues are semisimple

rather than simple. However, the quantity O = sgn(〈es, e−〉〈eu, e+〉) introduced in Corollary 2.6.7 still

can be calculated even though we have left the context of Section 2.6.

Lemma 5.1.2. Assume Hypotheses (H5.1)-(H5.4). Then we find for the homoclinic trajectory γ that

constitutes the homoclinic cycle Γ that O = 1.

Proof. Recall that es and eu denote the directions at which γ is approaching the equilibrium, cf. (2.58),

and e−, e+ denote the transported directions of ψ ∈ Z = (Tγ(0)W
s(p) + Tγ(0)W

u(p))⊥ along the homo-

clinic trajectory via the transition matrix Ψ of the adjoint variational equation ẋ = −[D1f(γ, 0)]
Tx for

t → ±∞, respectively, cf. (2.59).

Recall from Lemma 4.1.3 that Z is situated in FixGγ . Further Lemma 4.3.10 implies that the transition

matrix Ψ leaves FixGγ invariant. Hence ψ(t) = Ψ(t, 0)ψ with ψ ∈ Z is situated in FixGγ for all t ∈ R.

So we find that all four directions es, eu, e+ and e− are elements of FixGγ .

Now, due to Hypotheses (H5.2) and (H5.3) the fixed point space FixGγ is two-dimensional, cf. (5.5).

Then γ separates this 2-dimensional subspace into a region inside and a region outside γ. When we choose

ψ such that sgn〈e−, es〉 = −1, cf. (1.11), then e− points towards the outer region of γ within FixGγ .

Since ψ(t) does not leave the fixed point space, it always has to point towards the outer region of γ for all

t ∈ R ∪ {±∞}. Hence e+ points towards the outer region of γ as well and we find sgn〈e+, eu〉 = −1.
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5 Nonwandering dynamics for D4m-equivariant homoclinic cycles

The symmetry transfers this property to all other homoclinics.

Finally we also stipulate (H4.7) which we do not wish to repeat here.

Remark 5.1.3. With Hypotheses (H5.1) - (H5.4) and (H4.7) the assumptions for applying Lin’s method,

Hypotheses (H3.1) - (H3.5), and the Hypotheses of Section 4, (H4.1) - (H4.8), are satisfied.

Remark 5.1.4. The above Hypotheses (H5.1) - (H5.4) entail the conditions demanded in [HJKL11].

5.2 Discussing the Leading terms in case of D4m-symmetry

In this section we study the terms Bi(λ, κ), Ci(λ, κ) and Di(λ, κ, ωi) in case of D4m-symmetry in R4

when i ∈ Jκ. Recall that i ∈ Jκ means that Fixκi
⊥Fixκi−1

, cf. (4.6). Note that the obtained statements

concerning Bi(λ, κ) and Ci(λ, κ) cannot automatically be transferred to higher-dimensional spaces. In

particular, we use in the following the absence of strong stable eigenvalues and the fact that the rotation

θ2m4m does not possess a non-trivial fixed point space.

Regarding the quantity Ci(λ, κ), that is given in Lemma 4.3.22 we know the following:

Lemma 5.2.1. Let |λ| < c and inf ω > Ω according to Lemma 4.3.22. Let further κ ∈ Σ4m and assume

Hypotheses (H5.1) - (H5.4). If i − 1, i ∈ Jκ, then Ci(λ, κ) 6= 0. Moreover, there exists a C(λ) such

that for all i ∈ Jκ for which also i − 1 ∈ Jκ either Ci(λ, κ) = −C(λ) or Ci(λ, κ) = C(λ) depending on

κi−2 = κi or κi−2 = 2m+ κi.

Note that with i − 1, i ∈ Jκ we find that Fixκi−2
= Fixκi

. Since the fixed point spaces contain two

homoclinic trajectories, we only have the two options that either κi−2 = κi or κi−2 = 2m + κi, cf. also

the proof below.

The first condition in Lemma 5.2.1, i ∈ Jκ, is always satisfied in our considerations. If the second condition

i − 1 ∈ Jκ is violated we will find, cf. Section 5.4 below, that the term Ci(λ, κ) has no impact on the

determination equation. Hence no further information about the sign of Ci(λ, κ) in case of i ∈ Z \ Jκ or

i− 1 ∈ Z \ Jκ is needed.

Proof. First we show that Ci(λ, κ) 6= 0. To this end we start from the representation given in Lemma 4.3.22:

Ci(λ, κ) :=
〈

η−κi
(λ), S+

κi−1
(λ, 0)(id− Fκi−1

)R−
κi−1

(λ, 0)ηsκi−2
(λ)

〉

.

From Lemma 4.3.14 we know that ηsκi−2
∈ Fixκi−2

∩ E(µs(λ)). Therefore it is not situated within

kerR−
κi−1

(λ, s) = E(σcµs(λ)), cf. Lemma 4.3.17. Thus R−
κi−1

(0)ηsκi−2
6= 0.

With i − 1 ∈ Jκ we find ηsκi−2
∈ Fix⊥κi−1

and hence R−
κi−1

(0)ηsκi−2
∈ Fix⊥κi−1

, cf. Remark 4.3.19. More

in particular from imR−
κi−1

(0) ⊆ imP−
κi−1

(0) = W+
κi−1

⊕ Zκi−1
, cf. Lemma 4.3.17 and (3.17), we infer

R−
κi−1

(0)ηsκi−2
∈ W+

κi−1
. Since W+

κi−1
⊆ kerFκi−1

, cf. the definition of Fκi
in (3.38), we obtain (id −

Fκi−1
)R−

κi−1
(0)ηsκi−2

= R−
κi−1

(0)ηsκi−2
∈ W+

κi−1
.

Since there are no strong stable or strong unstable eigenvalues Lemma 4.3.17 and (3.17) yield that

kerS+
κi−1

(0) = imP+
κi−1

(λ, 0) = W−
κi−1

⊕Zκi−1
which is complementary toW+

κi−1
⊕Uκi−1

. Hence S+
κi−1

(0)(id−
Fκi−1

)R−
κi−1

(0)ηsκi−2
= S+

κi−1
(0)R−

κi−1
(0)ηsκi−2

6= 0.

So it remains to show that η−κi
(λ) is not perpendicular to imS+

κi−1
(λ, 0)∩Fix⊥κi−1

= E(µs(λ))∩Fix⊥κi−1
, cf.

Lemma 4.3.17 and Remark 4.3.19. From its construction it follows that η−κi
(λ) ∈ Fixκi

∩ [E(σcµs(λ))]⊥,

cf. Lemma 4.3.14. But E(σcµs(λ)) ∩ E(µs(λ)) = {0} as well as Fixκi
∩ Fixκi−1

= {0}, due to i ∈ Jκ.

Hence Ci(λ, κ) 6= 0.
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5.2 Discussing the Leading terms in case of D4m-symmetry

Now we turn to the second statement of the lemma. Let, for the moment, κi−1 = 1. Then cf. (5.3),

Fixκi−1
= FixZ2(ζ). With Fixκi−2

⊆ FixZ2(ζ)
⊥, due to i− 1 ∈ Jκ, we find

Fixκi−2
= FixZ2(θ

2m
4mζ) = θm4mFixZ2(ζ) = θ3m4mFixZ2(ζ),

cf. (5.3). Hence either

(a) ηsκi−2
= ηsm+1 or (b) ηsκi−2

= ηs3m+1 = θ2m4mηsm+1 = −ηsm+1.

The latter equality in (b) yields since θ2m4m = −id, cf. the proof of Lemma 5.1.1. Analogously we find

Fixκi
= FixZ2(θ

2m
4mζ), due to i ∈ Jκ and hence either

(c) η−κi
= η−m+1 or (d) η−κi

= η−3m+1 = θ2m4mη−m+1 = −η−m+1.

Inserting this into the representation of Ci given in Lemma 4.3.22 yields the same absolute value in all

combinations of the cases (a) or (b) with (c) or (d). Only the sign differs depending on whether κi−2 = κi

or κi−2 = 2m+ κi.

Eventually, let κi−1 = j, j ∈ {1, . . . , 4m}. Then Fixj = θj−1
4m FixZ2(ζ) and

(a) ηsκi−2
= θj−1

4m ηsm+1 or (b) ηsκi−2
= −θj−1

4m ηsm+1 and

(c) η−κi
= θj−1

4m η−m+1 or (d) η−κi
= −θj−1

4m η−m+1.

Finally the D4m-invariance of the scalar product, cf. Remark 4.0.5, and the D4m-equivariance of R−
κi−1

and S+
κi−1

, cf. Remark 4.3.19 provide the lemma:

Ci(λ, κ) =
〈

η−κi
(λ), S+

κi−1
(λ, 0)(id− Fκi−1

)R−
κi−1

(λ, 0)ηsκi−2
(λ)

〉

= ±
〈

θj−1
4m η−m+1(λ), S

+
j (λ, 0)R

−
j (λ, 0)θ

j−1
4m ηsm+1(λ)

〉

= ±
〈

θj−1
4m η−m+1(λ), θ

j−1
4m S+

1 (λ, 0)R−
1 (λ, 0)η

s
m+1(λ)

〉

= ±
〈
η−m+1(λ), S

+
1 (λ, 0)R−

1 (λ, 0)η
s
m+1(λ)

〉
.

At this point we make some considerations about the geometrical interpretation of the term C(λ = 0). To

this end recall the definition of the fibre bundle F(W s
γ ) along a homoclinic trajectory γ, cf. Remark 2.6.8.

Due to the geometric setting and Hypothesis (H4.7) we find that within a tubular neighbourhood of γ

the fibre bundle F(W s
γ ) is situated in the stable manifold W s(p).

Lemma 5.2.2. Let |λ| < c and inf ω > Ω according to Lemma 4.3.22. Let further κ ∈ Σ4m and assume

Hypotheses (H5.1) - (H5.4). If i− 1, i ∈ Jκ, then there exists for λ = 0 a constant c̃ 6= 0 such that

Ci(0, κ) = c̃〈η−κi
(0), ηsκi−2

(0)〉.

The sign of c̃ is related to the topological structure of F(W s
γ ). If F(W s

γ ) has the structure of a Möbius

band, sgn c̃ = −1, if it has the structure of an annulus, sgn c̃ = 1.
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5 Nonwandering dynamics for D4m-equivariant homoclinic cycles

Proof. We obtain the terms Ci(λ, κ), cf. Lemma 4.3.22, from

T 23

κi
:=

〈

Φ−
κi
(λ)(0,−ωi)

TP−
κi
(λ, 0)Tψκi

, (id− P̃κi
(λ, ωi))v

+,s
i−1(ωi)

〉

.

The tracing of the derivation of the leading terms from the right-hand side of the scalarproduct T 23

κi
, cf.

the successive application of (4.37), (4.19), (4.21) and (4.23), thereby yields the representation

(id− P̃κi
(ωi))v

+,s
i−1(ωi)

= P−
κi
(−ωi)Φ

+
κi−1

(ωi, 0)(id− P+
κi−1

(0))(id− Fκi−1
)Φ−

κi−1
(0,−ωi−1)P

−
κi−1

(−ωi−1)γ
+
κi−2

(ωi−1) + h.o.t.

We do not need to pay further attention to the projection P−
κi
(−ωi) at the beginning of this expression,

since its transposed already appears on the left-hand side of the scalar product T 23

κi
. If we additionally

commute Φ−
κi−1

and P−
κi−1

with each other we obtain for the scalar product

〈

Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

, (id− P̃κi
(ωi))v

+,s
i−1(ωi)

〉

=
〈
Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

,

Φ+
κi−1

(ωi, 0)(id− P+
κi−1

(0))(id− Fκi−1
)P−
κi−1

(0)Φ−
κi−1

(0,−ωi−1)γ
+
κi−2

(ωi−1)
〉

+h.o.t.







(5.7)

While the geometrical interpretation of the left-hand side of the scalar product with

Φ−
κi
(0,−ωi)

TP−
κi
(0)Tψκi

= eµ
sωiη−κi

(λ) + h.o.t.

is clear, cf. (4.14) in Lemma 4.3.14, we continue to deal with the right-hand side. Thereby we know the

following about the images and kernels of the projections in the middle of the term:

im(id− P+
κi−1

(0)) = Tγ+
κi−1

(0)W
s(p) ⊇ W+

κi−1
,

im(id− Fκi−1
) = W+

κi−1
+W−

κi−1
,

ker(id− Fκi−1
) = Zκi−1

+ Uκi−1
and

imP−
κi−1

(0) = W+
κi−1

+ Zκi−1
,

cf. (3.38) and (3.17) in combination with Remark 3.1.2. Consequently

im(id− P+
κi−1

(0))(id− Fκi−1
)P−
κi−1

(0) = W+
κi−1

. (5.8)

At λ = 0 we find γ+
κi−2

= γκi−2
and Φ±

κi−1
(·, ·) = Φκi−1

(·, ·), where Φκi−1
denotes the transition matrix of

the linear variational equation along the homoclinic solution γκi−1
, cf. (3.10). With this we now consider

the right-hand side of the scalarproduct (5.7) from right to left. At first we find due to i− 1 ∈ Jκ

γκi−2
(ωi−1) ∈ TpW

s(p) ∩ Fixκi−2
= TpW

s(p) ∩ Fix⊥κi−1
.

The transition matrix Φκi−1
(0,−ωi−1) transports elements within the tangent space of the stable manifold

at γκi−1
(−ωi−1), into elements of the tangent space of the stable manifold at γκi−1

(0). In doing this it
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leaves the orthogonal complement of the fixed point space Fixκi−1
invariant. Hence

Φκi−1
(0,−ωi−1)γκi−2

(ωi−1) ∈ Tγκi−1
(0)W

s(p) ∩ Fix⊥κi−1
= W+

κi−1
.

Here recall, cf. (3.5), that W+
κi−1

= Tγκi−1
(0)W

s(p)∩U⊥
κi−1

. Applying now the three projections does due

to (5.8) not effect the term, resulting in

(id− P+
κi−1

(0))(id− Fκi−1
)P−
κi−1

(0)Φκi−1
(0,−ωi−1)γκi−2

(ωi−1) = Φκi−1
(0,−ωi−1)γκi−2

(ωi−1).

Finally the transition matrix Φκi−1
(ωi, 0) transports Φκi−1

(0,−ωi−1)γκi−2
(ωi−1) forward in time along

the homoclinic trajectory γκi−1
close towards the equilibium point p again:

Φκi−1
(ωi, 0)Φκi−1

(0,−ωi−1)γκi−2
(ωi−1) = Φκi−1

(ωi,−ωi−1)γκi−2
(ωi−1).

Thereby it remains in the tangend space of the stable manifold and the orthogonal complement of the

fixed point space Fixκi−1
: Φκi−1

(ωi,−ωi−1)γκi−2
(ωi−1) ∈ Tγκi−1

(ωi)W
s(p) ∩ Fix⊥κi−1

. This subspace is

one-dimensional and equals due to (H4.7) for ωi sufficiently large span{ηsκi−2
}. Hence there exists a

constant c̃ 6= 0 such that Φκi−1
(ωi,−ωi−1)γκi−2

(ωi−1) = c̃eµ
sωie2µ

sωi−1ηsκi−2
(0).

The sign of Φκi−1
(ωi,−ωi−1)γκi−2

(ωi−1) depends on whether the 2-dimensional fibre bundle F(W s
γκi−1

)

along the homoclinic trajectory γκi−1
, cf. Remark 2.6.8 for definition, has the topological structure of a

Möbius band or not, cf. Figure 5.2 below. Due to the symmetry the topological structure of F(W s
γ ) is

transferred to all other homoclinic trajectories that belong to the homoclinic cycle. Hence the topological

structure of F(W s
γκi−1

) equals the structure of F(W s
γ ).

The red arrows in Figure 5.2 display the transportation of the direction ηsκi−2
along the homoclinic

trajectory γκi−1
via the transition matrix Φκi−1

. Recall that ηsκi−2
∈ TpW

s(p) is perpendicular towards the

direction ηsκi−1
of the homoclinic trajectory γκi−1

approaching the equilibrium point p, due to i− 1 ∈ Jκ.

Hence

sgn
〈

Φκi−1
(ωi,−ωi−1)η

s
κi−2

, ηsκi−2

〉

=







1, if F(W s
γ ) has the structure of an annulus,

−1, if F(W s
γ ) has the structure of a Möbius band.

es

γκi−1

γκi−1

eu

es

eu

ηsκi−2
ηsκi−2

W s(p) W s(p)a) b)

Figure 5.2: Transportation of the direction ηsκi−2
along the homoclinic trajectory γκi−1 via the transition matrix of

the variational equation along γκi−1 in case that a) F(W s
γκi−1

) has the topological structure of a Möbius band and b)

F(W s
γκi−1

) has the topological structure of an annulus.
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Summarising we obtain for λ = 0

T 23

κi
= −

〈
Φκi

(0,−ωi)
TP−

κi
(0)Tψκi

, Φκi−1
(ωi,−ωi−1)γκi−2

(ωi−1)
〉
+ h.o.t.

= −
〈

eµ
sωiη−κi

(0) , c̃eµ
sωie2µ

sωi−1ηsκi−2
(0)

〉

+ h.o.t.

= −c̃e2µ
sωie2µ

sωi−1

〈

η−κi
(0) , ηsκi−2

(0)
〉

+ h.o.t.,

with Ci(0, κ) := c̃〈η−κi
(0), ηsκi−2

(0)〉.

Remark 5.2.3. In R3 with underlying simple leading eigenvalues, the topological structure of the two-

dimensional homoclinic centre manifold W c
hom(λ), which is indicated via the orientation index O, is

correlated with the topological structure of the fibre bundle F(W s
γ ), cf. Remark 2.6.8.

In the present case, with semisimple eigenvalues still the quantity O can be calculated. However, it does

not provide any information about the orientability of a possible homoclinic centre manifold, since here it

is not two-dimensional. The context for introducing the designation of twisted and non-twisted in terms

of the homoclinic centre manifold is therefore no longer given. What is even more, the value of O does

not give any information about the topological structure of the still two-dimensional fibre bundle F(W s
γ )

along the homoclinic trajectory γ = γ1 generating the homoclinic cycle. So although in our geometry

Lemma 5.1.2 holds, we see no reason why F(W s
γ ) could not possibly have the structure of a Möbius band.

Corollary 5.2.4. Let κ ∈ Σ4m and assume Hypotheses (H5.1) - (H5.4). If i− 1, i ∈ Jκ, then the sign of

Ci(λ, κ) can be determined using the following table.

F(W s
γ ): Möbius band F(W s

γ ): annulus

κi−2 = κi sgn Ci = sgn〈η−κi−2
,−ηsκi−2

〉 = 1 sgn Ci = sgn〈η−κi−2
, ηsκi−2

〉 = −1

κi−2 = 2m+ κi sgn Ci = sgn〈−η−κi−2
,−ηsκi−2

〉 = −1 sgn Ci = sgn〈−η−κi−2
, ηsκi−2

〉 = 1

Table 5.1: The sign of Ci(λ, κ).

Proof. If i− 1 and i are in Jκ we have, cf. Lemma 5.2.1, either κi = κi−2 or κi−2 = 2m+ κi. In the first

case, κi = κi−2, we find η−κi
(λ) = η−κi−2

(λ) and in the other case η−κi
(λ) = η−κi+2m(λ) = −η−κi−2

(λ). Recall

that we have chosen the direction of ψ1 ∈ Z1 such that sgn〈η−1 (λ), ηs1(λ)〉 = −1, cf. (1.11). With this the

corollary follows from Lemma 5.2.2.

Since in the following the κ, where Ci never changes sign, have a special role, we want to mention them

here.

Remark 5.2.5. Consider those κ ∈ Σ4m where i ∈ Jκ holds for all i ∈ Z and Ci(λ, κ) has always the

same sign. Then, according to Lemma 5.2.1, cf. also the table above, κ is an element of K2 or K4, where

K2 := {κ ∈ Σ4m|∀i ∈ Z : i ∈ Jκ and κi−2 = κi} (5.9)

and

K4 := {κ ∈ Σ4m|∀i ∈ Z : i ∈ Jκ and κi−2 = 2m+ κi}. (5.10)
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Due to κi−2 = κi for all i ∈ Z every second symbol in κ ∈ K2 is equal which implies that K2 contains all

κ that correspond to those trajectories shadowing alternately two different homoclines. Hence the corre-

sponding trajectories are 2-periodic. Further the traced homoclinic trajectories lie in mutually orthogonal

fixed point spaces, since i ∈ Jκ for all i ∈ Z. In a D4-equivariant vector field, for example, κ = 12 ∈ K2.

With κi−2 = 2m + κi for all i ∈ Z we find κi−4 = 2m + 2m + κi = κi. So every fourth symbol in κ is

equal and we have that K4 consists of only 4-periodic trajectories. Again the traced homoclinic trajectories

lie in mutually orthogonal fixed point spaces. As an example trajectory in a D4-equivariant vector field

consider κ = 1234 ∈ K4.

The sign of the Ci to the κ from K2 or K4 depends on the topological structure of F(W s
γ ), as shown in

Table 5.1.

Next we turn towards the quantity Bi(λ, κ) from Lemma 4.3.20.

Lemma 5.2.6. Let |λ| < c and inf ω > Ω according to Lemma 4.3.20. Let further κ ∈ Σ4m and assume

Hypotheses (H5.1) - (H5.4). There exists a B(λ) such that for all i ∈ Jκ the quantity Bi(λ, κ) equals

B(λ): Bi(λ, κ) =: B(λ).

Proof. The proof uses the same type of arguments as used in the proof of Lemma 5.2.1.

First, let κi = 1. Then, cf. (5.3), Fix1 = FixZ2(ζ) and we find γ−
κi

= γ−
1 ⊂ Fix1 and ψκi

∈ Fix1. Further

ηκi−1
∈ Fixκi−1

⊆ Fix⊥1 due to i ∈ Jκ. Thus Fixκi−1
= FixZ2(θ

2m
4mζ) = θm+1

4m FixZ2(ζ) = θ3m+1
4m FixZ2(ζ),

cf. (5.1). Hence either (a) ηsκi−1
= ηsm+1 or (b) ηsκi−1

= ηs3m+1 = θ2m4mηsm+1 = −ηsm+1. Inserting this into

the representation of Bi given in Lemma 4.3.20 yields the same value in both cases (a) and (b).

Now, let κi = j, j ∈ {1, . . . , 4m}. Then γ−
j = θj−1

4m γ−
1 , ψj = θj−1

4m ψ1 and (a) ηsκi−1
= θj−1

4m ηsm+1

or (b) ηsκi−1
= −θj−1

4m ηsm+1. Finally the D4m-invariance of the scalar product, cf. Remark 4.0.5, and

the D4m-equivariance of R−
κi
, Φ−

κi
and P−

κi
, cf. Remark 4.3.19, Lemmata 4.3.6 and 4.3.7 provide the

lemma.

An analytic proof of B(λ) being different from zero we will not be able to give. In Section 7 we will see

to a numerical argumentation in case of the example system we introduce in Section 6. However, we still

wish to present some results that show, that B(λ) does not trivially disappear.

Lemma 5.2.7. Let i ∈ Jκ. Then we find that

D2
1f(γ

−
κi
(λ)(s), λ)

[

R−
κi
(s)ηsκi−1

, R−
κi
(s)ηsκi−1

]

∈ Fixκi
and

D3
1f(γ

−
κi
(λ)(s), λ)

[

Φ−
κi
(t,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi)
]3

∈ Fix⊥κi
.

Proof. Without loss of generality we assume Fixκi
= FixZ2(ζ). ζ is a reflection and therefore self inverse.

Further we have R−
κi
(s)ηsκi−1

∈ Fix⊥κi
, since ηsκi−1

∈ Fixκi−1
⊆ Fix⊥κi

, due to i ∈ Jκ, and Remark 4.3.19.

Also Φ−
κi
(t,−ωi)P

−
κi
(−ωi)γ

+
κi−1

(ωi) ∈ Fix⊥κi
since γ+

κi−1
(ωi) ∈ Fixκi−1

⊆ Fix⊥κi
and Φ−

κi
and P−

κi
leave Fix⊥κi

invariant, cf. Section 4.3.1. According to that the assertion simply ensues form Corollary 4.3.5.

Corollary 5.2.8. The quantity Di(λ, κ, ωi) introduced in Lemma 4.3.20 is equal to zero.

Proof. For all λ the left-hand side of the scalar product in the term Di(λ, κ, ωi) is an element of Fixκi
,

the right-hand side is an element of Fix⊥κi
.
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While Di(λ, κ, ωi) = 0, we see that B(λ) will not vanish due to the D4m-symmetry of the system since

both sides of the scalar product lie in the same fixed point space.

Furthermore, the following observation can be made.

Lemma 5.2.9. (a) There is an ε > 0 such that for all η ∈ Fix⊥κi
∩ Tγ−

κi
(s)W

u(p) with ‖η‖ < ε we find

〈Φ−
κi
(λ)(0, s)TP−

κi
(0, λ)Tψκi

, D2
1f(γ

−
κi
(λ)(s), λ) [η, η]〉 = 0.

(b) Let i ∈ Jκ. Then R−
κi
(s, λ)ηsκi−1

(λ) /∈ Tγ−
κi

(λ)(s)W
u(p) for all s ≤ 0.

We see that R−
κi
(s)ηsκi−1

never satisfies the premise of assertion (a). Therefore B(λ) does not vanish for

that reason.

Proof. (a) First we show that D2
1f(γκi

(λ)(s), λ) [η, η] is an element of Tγ−
κi

(s)W
u(p).

Due to Hypothesis (H3.5) there exists an ε > 0 such that we can give a parametrisation of the unstable

manifold Wu(p) of the following form:

Wu
t,τ (p) = γ−

κi
(t) + τΦ−

κi
(t, 0)w−

κi
, t ≤ 0 (5.11)

with w−
κi

∈ W−
κi

and |τ | < ε. Since any η ∈ Tγ−
κi

(t)W
u(p)∩Fix⊥κi

has a representation as η = τ0Φ
−
κi
(t, 0)w−

κi

we find for η ∈ Tγ−
κi

(t)W
u(p) ∩ Fix⊥κi

sufficiently small that γ−
κi
(t) + η ∈ Wu(p) = Wu

t,τ0(p). Hence

f(γ−
κi
(t) + η, λ) is an element of Tγ−

κi
(t)+ηW

u(p). Using the parametrisation (5.11) we find

Tγ−
κi

(t)+ηW
u(p) = span{γ̇−

κi
(t) + τ0Φ̇

−
κi
(t, 0)w−

κi
,Φ−

κi
(t, 0)w−

κi
}.

With Φ−
κi
(t, 0)w−

κi
∈ Fix⊥κi

and Φ̇−
κi
(t, 0) = D1f(γ

−
κi
(t), λ)Φ−

κi
(t, 0) we also have τ0Φ̇

−
κi
(t, 0)w−

κi
∈ Fix⊥κi

,

since D1f(γ
−
κi
(t), λ) leaves Fix⊥κi

invariant, cf. Corollary 4.3.5. On the other hand we have γ̇−
κi
(t) ∈ Fixκi

.

Thus, if we decompose any element x ∈ Tγ−
κi

(t)+ηW
u(p) by means of the projection Fκi

with imFκi
= Fixκi

and kerFκi
= Fix⊥κi

, cf. (3.38) and (5.6), then we find Fκi
x ∈ span{γ̇−

κi
(t)}.

With this in mind we look at the Taylor expansion of f(γ−
κi
(s) + η, λ) up to the second order

f(γ−
κi
(s) + η, λ) = f(γ−

κi
(s), λ) +D1f(γ

−
κi
(s), λ)η +

1

2
D2

1f(γ
−
κi
(s), λ)[η, η] +O(‖η‖3)

and decompose the term by means of the projection Fκi
, cf. Corollary 4.3.5

Fκi
f(γ−

κi
(s) + η, λ) = f(γ−

κi
(s), λ) + 1

2D
2
1f(γ

−
κi
(s), λ)[η, η] +O(‖η‖4),

(id− Fκi
)f(γ−

κi
(s) + η, λ) = D1f(γ

−
κi
(s), λ)η +O(‖η‖3).






(5.12)

So, the left hand side of the first equation of (5.12) is situated in span{γ̇−
κi
(s)}. The same holds for

f(γ−
κi
(s), λ), the first term on the right hand side. Indeed every single term on the right hand side of the

first equation of (5.12) lies in span{γ̇−
κi
(s)}, since this equation holds for all η ∈ Tγ−

κi
(s)W

u(p) ∩ Fix⊥κi

with ‖η‖ < ε. Hence we find in particular

D2
1f(γ

−
κi
(s), λ)[η, η] ∈ span{γ̇−

κi
(s)}.

Now, on the other hand the term Φ−
κi
(0, s)TP−

κi
(0)Tψκi

stands orthogonal to the direction of the vector

field f(γ−
κi
(λ)(s), λ) = γ̇−

κi
(λ)(s) along γ−

κi
(λ)(s), since it is transported backwards in time through the
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adjoint variational equation (3.9). Hence the scalar product disappears.

(b) From Remark 4.3.19 and Lemma 4.3.17 we know that

R−
κi
(s)ηsκi−1

∈ Fix⊥κi
∩ imP−

κi
(λ, s) ⊆ Φ−

κi
(s, 0)W+

κi
.

Now, W+
κi

∩ Tγ−
κi

(0)W
u(p) = W+

κi
∩ (W−

κi
∩ Uκi

) = {0}. Hence Φ−
κi
(s, 0)W+

κi
∩ Tγ−

κi
(s)W

u(p) = {0} for all

s ≤ 0. This concludes the proof.

5.3 Main result

Representation of the jump Ξi(ω, λ, κ)

Before presenting our main result, we take a brief look at the final representation of the jump Ξi(ω, λ, κ)

in the D4m symmetric case. In Section 3.4.1 we have discussed the first part ξ∞κi
(λ) and in Section 4.3,

Theorem 4.3.3, we examined the second part ξi(ω, λ, κ). Now we simply collect both results and rewrite

the residual terms in a unified form that simplifies the later proof of the main result.

Theorem 5.3.1. Assume Hypothesis (H5.1)-(H5.4). Let βs be a constant satisfying −αu < βs < µs(λ).

Then there is a δ > 1 such that the jump Ξi can be written as one of the following alternatives:

(i) If i ∈ Z \ Jκ then Ξi(ω, λ, κ) = λ−Ai(λ, κ)e
2µs(λ)ωi +Ri(ω, λ, κ), where

Ri(ω, λ, κ) = O
(
e8/5µs(λ)δ(ωi−1+ωi)

)
+O

(
e16/5µs(λ)δωi

)

+







O
(
e2µ

s(λ)δωi+1
)
, i+ 1 ∈ Z \ Jκ

O
(
e8/5µs(λ)δωie2µ

s(λ)δωi+1)
)

+O
(
e4µ

s(λ)δωi+1
)
+O

(
e2µ

s(λ)δ(ωi+1+ωi+2)
)

}

, i+ 1 ∈ Jκ.

(ii) If i ∈ Jκ then Ξi(ω, λ, κ) = λ−B(λ)e4µ
s(λ)ωi − Ci(λ, κ)e

2µs(λ)(ωi−1+ωi) +Ri(ω, λ, κ), where

Ri(ω, λ, κ) = O
(
e8/5µs(λ)δ(ωi−1+ωi)[e8/5µs(λ)δωi−2 + e4/5µs(λ)δωi−1 + eµ

s(λ)δωi ]
)

+O
(
e4µ

s(λ)δωi
)
+O

(
e16/5µs(λ)δωieµ

s(λ)δωi+1
)

+







O
(
e2µ

s(λ)δωi+1
)
, i+ 1 ∈ Z \ Jκ

O
(
e2

−βs

αu µs(λ)δωie2
αu

−βs µ
s(λ)δωi+1)

)

+O
(
e4µ

s(λ)δωi+1
)

+O
(
e2µ

s(λ)δ(ωi+1+ωi+2)
)







, i+ 1 ∈ Jκ.

The coefficients Ai(λ, κ) := 〈η−κi
(λ), ηsκi−1

(λ)〉 are different from zero for all i ∈ Z \ Jκ. Further the

coefficients B(λ) do not depend on i ∈ Jκ. Finally there is a C(λ) > 0 such that |Ci(λ, κ)| = C(λ) for

all i with i− 1, i ∈ Jκ.

Proof. Recall from (3.3) that Ξi(ω, λ, κ) = ξ∞i (λ) + ξi(ω, λ, κ). Then the theorem basically follows from

Theorem 4.3.3. Here we have unified the notation of the O-terms by means of the parameter δ > 1. We

will give a justification of this representation below. The assertions concerning the coefficients B(λ) and

Ci(λ, κ) follow from Lemma 5.2.6 and Lemma 5.2.1. For the structure of these terms see Lemmata 4.3.20

and 4.3.22. Finally the considerations in Section 3.4.1 show that ξ∞i (λ) can be replaced by λ.
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Now, we prove the existence of a constant δ > 1 such that the residual terms in Theorem 4.3.3 satisfy

the representation above. To this end recall that −µu(λ) < −αu < µs(λ) < αs < 0. Then we can find a

δ1 > 1 such that still −αu 1
δ1

< µs(λ). Hence we find

O(e−kα
uω) = O(e−kµ

s(λ)δ1ω), (5.13)

for k ∈ {1, 2} and ω ∈ {ωi, ωi+1, ωi+2}.
The constant αs can be chosen arbitrarily close to µs(λ). Especially we can choose αs such that 5

4α
s <

µs(λ) and lαs − αu < (l + 1)µs(λ), l ∈ N. For some δ2 > 1 sufficiently small we then find

O(ekα
sω) = O(e

4k/5µs(λ)δ2ω), O(ek(α
s−αu)ω) = O(e2kµ

s(λ)δ2ω), (5.14)

k ∈ {1, 2} and ω ∈ {ωi−1, ωi, ωi+1}. With (5.13) and (5.14) we replace each residual term in Theorem 4.3.3

apart from O(e2α
sωie2α

uωi+1) for the second case i ∈ Jκ for which a more difficile estimate is needed.

From −αu < βs < µs(λ) < 0 we find that −αu < αu

−βsµ
s(λ) where αu

−βs > 1. Further we can chose αs

sufficiently close to µs(λ) such that αu

−βsα
sδ−1

3 < µs(λ) for some appropriate δ3 > 1. With this we obtain

O
(
e2α

sωie2α
uωi+1

)
= O

(
e2

−βs

αu µs(λ)δ3ωie2
αu

−βs µ
s(λ)δ3ωi+1

)
. (5.15)

Then the estimates listed in Theorem 5.3.1 follow from (5.13), (5.14) and (5.15) with 1 < δ < min{δ1, δ2, δ3}.

Corollary 5.3.2. Assume Hypothesis (H5.1)-(H5.4). Then the derivatives of the residual terms with

respect to ωj, Dωj
Ri(ω, λ, κ) satisfy exactly the same estimates as the residual terms Ri(ω, λ, κ) presented

in Theorem 5.3.1.

Proof. Since the derivatives of the residual terms Dωj
Ri(ω, λ, κ) in Theorem 4.4.1 satisfy the same

estimates as the residual terms Ri(ω, λ, κ) in Theorem 4.3.3 the corollary can be proved in the same way

as Theorem 5.3.1.

Description of the nonwandering dynamics

Now, we can give a more detailed description of the nonwandering dynamics of the system under consid-

eration. To this end we define the following matrix M by

M = (mij)i,j∈{1,...,4m}, mij :=







sgn〈ηsi (λ), η−j (λ)〉, if sgn〈ηsi (λ), η−j (λ)〉 6= 0,

sgnB(λ), if sgn〈ηsi (λ), η−j (λ)〉 = 0.
(5.16)

In this respect we want to note that sgn〈ηsi (λ), η−j (λ)〉 = 0 if and only if Fixi⊥Fixj and that neither

sgn〈ηsi (λ), η−j (λ)〉 nor sgnB(λ) depends on λ.

In order to characterise the nonwandering dynamics near Γ we need to distinguish two different cases

indicated by the size ratio of |B(0)| to C(0). So far, it is not known whether the geometry of the system

allows for an arbitrary aspect ratio of B(0) to C(0) or whether a certain ratio is enforced. Therefore, it

seems possible to control the ratio of B(0) and C(0) by means of another system parameter. In this sense,

the complete description of the local nonwandering dynamics in the neighbourhood of a D4m-symmetric

homoclinic cycle might no longer be a pure codimension-1 problem.
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Case |B(0)| > C(0):

This case presents itself as a natural extension of Theorem 1.0.2.

Theorem 5.3.3. Let ẋ = f(x, λ) be a one parameter family of differential equations equivariant with

respect to the finite group D4m which has at λ = 0 a codimension-one relative homoclinic cycle Γ with

hyperbolic equilibrium as defined in Hypotheses (H5.1) - (H5.4). Further assume |B(0)| > C(0).

With the 4m×4m matrices A− = − 1
2 (M−|M |) and A+ = 1

2 (M+ |M |), M given by (5.16), the following

holds for any generic family unfolding a relative homoclinic cycle as described above:

Take cross sections Si transverse to γi and write Πλ for the first return map on the collection of cross

sections ∪4m
j=1Sj. For λ > 0 small enough, there is an invariant set Dλ ⊂ ∪4m

j=1Sj for Πλ such that for each

κ ∈ ΣA+
there exists a unique x ∈ Dλ with Πiλ(x) ∈ Sκi

. Moreover, (Dλ,Πλ) is topologically conjugate

to (ΣA+
, σ). An analogous statement holds for λ < 0 with ΣA+

replaced by ΣA− .

The proof of this theorem is given in Section 5.4. The above description of the dynamics provides a

complete picture of the local nonwandering dynamics near Γ in the sense that A− +A+ = 1 is satisfied.

According to the definition of M , cf. (5.16) we find

B(λ) > 0, then mij =

{

1, |i− j| ≥ m,

−1, |i− j| < m,
and B(λ) < 0, then mij =

{

1, |i− j| > m,

−1, |i− j| ≤ m.

The difference i− j is calculated in Z4m, and |i− j| := min{i− j, j − i}.

So, for m = 1 and sgnB(λ) = 1 the matrices A− and A+ take the form given in (1.6), whereas for m = 1

and sgnB(λ) = −1 these matrices read

A− =









1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 1









, A+ =









0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0









.

For the transition times ωi it turns out, in the course of proving Theorem 5.3.3, that the following

equation holds, cf. (5.40) below:

ωi(λ, κ) =







1
2µs(0) (ln(|λ|) + ln(ri)), i ∈ Z \ Jκ,

1
4µs(0) (ln(|λ|) + ln(r2i )), i ∈ Jκ.

(5.17)

Thereby the ri are uniformly bounded terms. This means that the bounds of ri can be chosen indepen-

dently of λ and, apart from the distinction whether i ∈ Z \ Jκ or i ∈ Jκ, also independently of the course

of κ. For λ sufficiently small, the terms ri therefore have a negligible influence on the transition times.

Thus we find for fixed λ that it goes about twice as fast to move from a homoclinic trajectory within

one fixed point space to another homoclinic trajectory within an orthogonal fixed point space than in

the other circumstances. Apart from that the single transition times are nearly about the same size,

independent on κ.

Case |B(0)| ≤ C(0):

Regarding the case |B(0)| ≤ C(0) we find that the above result of Theorem 5.3.3 does not apply. The

analysis turns out to be more difficile and requires the distinction of further subcases such as the sub-

division according to the topological structure of the fibre bundle F(W s
γ ). In this respect, a complete
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description of the nonwandering dynamics is not our intention. Further investigations may reveal the need

to introduce even further system parameters. We merely restrict the investigation to periodic solutions.

Thereby we mean by period length the length of the recurring sequence in κ and not the transition time

of the corresponding periodic trajectory.

Theorem 5.3.4. Let ẋ = f(x, λ) be a one parameter family of differential equations equivariant with

respect to the finite group D4m which has at λ = 0 a codimension-one relative homoclinic cycle Γ with

hyperbolic equilibrium as defined in Hypotheses (H5.1) - (H5.4). Further assume |B(0)| ≤ C(0) and let

F(W s
γ ) have the topological structure of an annulus.

With the 4m×4m matrices A− = − 1
2 (M−|M |) and A+ = 1

2 (M+ |M |), M given by (5.16), the following

holds true for any generic family unfolding a relative homoclinic cycle as described above:

(i) Let B(0) > 0. For all N ∈ N there exists a λ̂(N) > 0 sufficiently small such that for all λ ∈ (0, λ̂)

and all periodic κ ∈ ΣA+
\ K2 with period length smaller or equal to N there is a unique periodic

trajectory x(λ, κ) : R → R4 solution of ẋ = f(x, λ) being situated in the neighbourhood of the

homoclinic cycle Γ.

For λ < 0 sufficiently small there exists such a unique trajectory for each periodic κ ∈ ΣA− ∪K2, if

|B(0)| < C(0), or κ ∈ ΣA− , if |B(0)| = C(0).

(ii) Let B(0) < 0. For all N ∈ N there exists a λ̂(N) < 0 sufficiently small such that for all λ ∈ (λ̂, 0)

and all periodic κ ∈ ΣA− \ K4 with period length smaller or equal to N there is a unique periodic

trajectory x(λ, κ) : R → R4 solution of ẋ = f(x, λ) being situated in the neighbourhood of the

homoclinic cycle Γ.

For λ > 0 sufficiently small there exists such a unique trajectory for each periodic κ ∈ ΣA+
∪K4, if

|B(0)| < C(0), or κ ∈ ΣA+
, if |B(0)| = C(0).

If F(W s
γ ) has the topological structure of a Möbius band, analogous statements to (i) and (ii) hold with

the sets K2 and K4 interchanged.

The result is somewhat similar - in the sense that the existence of a N -periodic trajectory depends on the

size of the parameter λ(N) with λ tending to zero as N goes to infinity - to the statement in [HomKno06,

Theorem 5.1].

The proof of Theorem 5.3.4 can be found in Section 5.5. At this point we just like to say a little about

the background of the described behaviour of the dynamics. To this end recall that to prove the existence

of a solution trajectory that is determined by κ, we must set the associated jumps Ξi(ω, λ, κ), i ∈ Z,

equal to zero. Here the form of Ξi is given by Theorem 5.3.1. The solvability of the resulting system

of determination equations (Ξi(ω, λ, κ))i∈Z = 0 can then be discussed depending on the choice of κ and

λ. In the present context, there can be sequences of successive homoclinic trajectories lying in mutually

orthogonal fixed point spaces. The representation of the associated jumps is given by Theorem 5.3.1(ii).

The zeros in the corresponding determination equations must basically be generated by the term that

contains B(λ).

Now, in contrast to the first case, where |B(0)| > C(0), it can be seen here that the sequence κ can have

a strong influence on the size of the transition times ωi that solve the determination equations. In fact,

the same equation (5.17) as shown above applies for ωi. Only with |B(0)| ≤ C(0) the terms ri are not

any more uniformly bounded. Particularly problematic are those jumps that satisfy the representation

Ξi(ω, λ, κ) = λ− e4µ
s(λ)ωiB(λ)− e2µ

s(λ)(ωi−1+ωi)Ci(λ, κ),+Ři(ω, λ, κ),
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with sgn(Ci(λ, κ)) 6= sgn(B(λ)). Assume for example B(λ) > 0 and let us briefly discuss the solvability

of Ξi(ω, λ, κ) = 0 for fixed λ > 0. Thereby we neglect for a moment the residual terms.

If Ci(λ, κ) < 0 the term e4µ
s(λ)ωiB(λ) has to offset both terms λ and e2µ

s(λ)(ωi−1+ωi)|Ci(λ, κ)|. Since

B(λ) ≤ |Ci(λ, κ)| this can only be done by decreasing the transition time ωi in relation to ωi−1 and hence

increasing e2µ
s(λ)ωi in relation to e2µ

s(λ)ωi−1 . If Ci+1(λ, κ) < 0 applies again in the next jump, anew the

corresponding transition time ωi+1 has to be reduced in relation to ωi. This goes on and on until the

next index k with either k ∈ Z \ Jκ or Ck(λ, κ) > 0. Then the determination equation Ξk = 0 can again

be solved for a much larger ωk: ωi−1 > ωi > ωi+1 > · · · > ωk−1 and ωk ≫ ωk−1.

If the sequences of consecutive jumps holding Ci(λ, κ) < 0 is finite the system of determination equations

can be solved at λ > 0 for the same, at least periodic, κ as in Theorem 5.3.3. However, depending on

the length of those sequences the transition times can be very different in size. To ensure that inf ω is

still large enough to satisfy our analysis the value of λ must become very small. We will find, cf. (5.83)

below, that λ <
(
B(0)/C(0)

)2L
e4µ

s(0) inf ω, where L denotes the length of the longest chain of consecutive

indices i in κ satisfying Ci(λ, κ) < 0. Consequently some trajectories do exist only for smaller λ than

others.

For those periodic κ that satisfy Ci(λ, κ) < 0 for all i ∈ Z there exist no solutions at λ > 0. Instead

the determination equations can be solved for those κ for λ < 0, if |B(0)| � C(0). So, whereas all

other periodic trajectories that follow homoclinic trajectories in mutually orthogonal fixed point spaces

do exist for λ > 0 we will find this exception for the opposite sign of λ. If |B(0)| = C(0) periodic

trajectories corresponding to these κ exist neither for positive nor for negative λ. Hence the existence of

these trajectories does not satisfy the rule implied by a Markov chain.

According to Remark 5.2.5 and Corollary 5.2.4 the condition Ci(λ, κ) < 0 for all i ∈ Z implies that κ is

an element of K2 if F(W s
γ ) has the topological structure of an annulus and an element of K4 if F(W s

γ )

has the topological structure of a Möbius band.

If B(λ) < 0 the critical trajectories are those that satisfy Ci(λ, κ) > 0 for all i ∈ Z. So in case that

F(W s
γ ) has the topological structure of an annulus, κ ∈ K4 are the exceptions and if F(W s

γ ) has the

topological structure of a Möbius band κ ∈ K2 show the different behaviour.

Remark 5.3.5. Of course, for any trajectory - periodic or not - that never follows successive homoclinic

trajectories lying in mutually orthogonal fixed point spaces, still Theorem 1.0.2 applies. That is, for all

κ ∈ Σ4m satisfying for all i ∈ Z that i ∈ Z \Jκ the existence of the corresponding trajectory x(λ, κ) : R →
R4 does not depend on any length of a period. This is because in those cases the terms B(λ) and Ci(λ, κ)

have no impact on the solvability of the determination equations.

Especially for B(λ) > 0 we find at λ < 0 that all κ ∈ ΣA− are such that i ∈ Z \ Jκ for all i ∈ Z. Hence

for λ < 0 we do not find any trajectories with transitions from homoclinic trajectories lying in mutually

orthogonal fixed point spaces, apart from those belonging to K2 or K4, respectively. In the case B(λ) < 0

and λ > 0 it is exactly the same, all κ ∈ ΣA+
are such that i ∈ Z \ Jκ for all i ∈ Z.

Remark 5.3.6. The 2-periodic trajectories corresponding to κ ∈ K2 and the 4-periodic trajectories

corresponding to κ ∈ K4

(i) exist for the same sign of λ , if |B(0)| > C(0).

(ii) exist for the opposite sign of λ , if |B(0)| < C(0).

(iii) exclude one another, if |B(0)| = C(0), that is only one type of these trajectories does exist, either

for positive or negative λ. The other type does not exist.
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The following two sections deal with the detailed proofs of the main Theorems 5.3.3 and 5.3.4.

5.4 Proof of Theorem 5.3.3

We prove the theorem under the assumption that B(λ) > 0. In principle we thereby follow the idea of the

proof of [HJKL11, Theorem 2.4] which is based on the implicit function theorem. However, due to the

more complicated structure of the system of determination equations this is not a one to one application.

5.4.1 Solution for fixed κ and λ > 0

In a first step we rewrite the single jumps Ξi given in Theorem 5.3.1 for fixed κ by introducing the

shortened notation

r̂i = e2µ
s(λ)ωi , r̂ = (r̂i)i∈Z (5.18)

into

i ∈ Z \ Jκ : Ξi(r̂, λ, κ) = λ−Ai(λ)r̂i + R̂i(r̂, λ, κ), (5.19)

R̂i(r̂, λ, κ) = O
(
r̂
4/5δ
i−1 r̂

4/5δ
i

)
+O

(
r̂
8/5δ
i

)
+







O
(
r̂δi+1

)
, i+ 1 ∈ Z \ Jκ

O
(
r̂
4/5δ
i r̂δi+1

)
+O

(
r̂2δi+1

)

+O
(
r̂δi+1r̂

δ
i+2

)
, i+ 1 ∈ Jκ.

i ∈ Jκ : Ξi(r̂, λ, κ) = λ−B(λ)r̂2i − Ci(λ)r̂i−1r̂i + R̂i(r̂, λ, κ), (5.20)

R̂i(r̂, λ, κ) = O
(
r̂
4/5δ
i−1 r̂

4/5δ
i [r̂

4/5δ
i−2 + r̂

2/5δ
i−1 + r̂

1/2δ
i ]

)
+O

(
r̂2δi

)
+O

(
r̂
8/5δ
i r̂

1/2δ
i+1

)

+







O
(
r̂δi+1

)
, i+ 1 ∈ Z \ Jκ

O
(
r̂

−βs

αu δ
i r̂

αu

−βs δ

i+1

)
+O

(
r̂2δi+1

)

+O
(
r̂δi+1r̂

δ
i+2

)
, i+ 1 ∈ Jκ

Our aim is to solve this set of equations near (r̂i, λ) = (0, 0) for r̂i = r̂i(λ, κ). Mind that only r̂i ≥ 0

makes sense whereas λ can be either positive or negative. Indeed, as considerations in [HJKL11] show,

the sign of λ allows for different trajectories, since the sign of the terms 〈η−κi
(0), ηsκi−1

(0)〉 = Ai(0) depend

on the geometry of the trajectory. In this subsection we consider the case λ > 0. Section 5.4.2 deals with

the case λ < 0.

For λ > 0 we introduce the rescaling

r̂i =

{

λri, i ∈ Z \ Jκ,√
λri, i ∈ Jκ.

(5.21)

With r = (ri)i∈Z it follows from the representations (5.19) and (5.20) of the jumps:

i ∈ Z \ Jκ : Ξi(r, λ, κ) = λ−Ai(λ)λri + R̃i(r, λ, κ), (5.22)
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i ∈ Jκ : Ξi(r, λ, κ) = λ−B(λ)λr2i +







−Ci(λ)λri−1ri + R̃i(r, λ, κ), i− 1 ∈ Jκ,

−Ci(λ)λ
3/2ri−1ri + R̃i(r, λ, κ), i− 1 ∈ Z \ Jκ.

(5.23)

The residual terms R̃i arise from R̂i accordingly. Thereby it turns out that for all i ∈ Z

R̃i = O
(
λδ

)
, δ > 1,

which can be seen in the following. Note that we replaced r̂j =
√
λrj if it is unknown whether j ∈ Z \ Jκ

or j ∈ Jκ.

i ∈ Z \ Jκ : R̃i = O
(√

λ
4/5δ

λ4/5δ
)
+O

(
λ8/5δ

)
+







O
(
λδ

)
, i+ 1 ∈ Z \ Jκ

O
(
λ4/5δ

√
λ
δ)

+O
(√

λ
2δ)

+O
(√

λ
δ√

λ
δ)
, i+ 1 ∈ Jκ.

= O
(
λ6/5δ

)
+O

(
λ8/5δ

)
+







O
(
λδ

)
, i+ 1 ∈ Z \ Jκ

O
(
λ13/10δ

)
+O

(
λδ

)
+O

(
λδ

)
, i+ 1 ∈ Jκ.

i ∈ Jκ : R̃i = O
(√

λ
4/5δ√

λ
4/5δ

[
√
λ

4/5δ
+

√
λ

2/5δ
+

√
λ

1/2δ
]
)
+O

(√
λ
2δ)

+O
(√

λ
8/5δ√

λ
1/2δ)

+







O
(
λδ

)
, i+ 1 ∈ Z \ Jκ

O
(√

λ
−βs

αu δ√
λ

αu

−βs δ)
+O

(√
λ
2δ)

+O
(√

λ
δ√

λ
δ)
, i+ 1 ∈ Jκ

= O
(
λ6/5δ + λδ + λ21/20δ

)
+O

(
λδ

)
+O

(
λ21/20δ

)

+







O
(
λδ

)
, i+ 1 ∈ Z \ Jκ

O
(
λ

(−βs)2+(αu)2

2(−βs)αu δ)+O
(
λδ

)
+O

(
λδ

)
, i+ 1 ∈ Jκ

It is obvious that each displayed exponent is greater or equal to δ > 1. Recall in this regard for the first

estimate in the last line that a2 + b2 ≥ 2ab.

This enables to factor out λ on the right-hand sides of (5.22) and (5.23). In the following we interpret

the right-hand side as an operator

χ : l∞ × R× ΣA → l∞, (r, λ, κ) 7→ χ(r, λ, κ).

So, for λ 6= 0 all jumps Ξi are equal to zero if

χ(r, λ, κ) = 0, χ = (χi)i∈Z, (5.24)
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where

χi(r, λ, κ) = 1−Ai(λ)ri +O
(
λδ−1

)
, i ∈ Z \ Jκ,

χi(r, λ, κ) = 1−B(λ)r2i − Ci(λ)ri−1ri +O
(
λδ−1

)
, i ∈ Jκ, i− 1 ∈ Jκ,

χi(r, λ, κ) = 1−B(λ)r2i − Ci(λ)λ
1/2ri−1ri +O

(
λδ−1

)
, i ∈ Jκ, i− 1 ∈ Z \ Jκ.







(5.25)

By construction χ(·, ·, κ) is smooth for λ > 0 and ri > 0, i ∈ Z. Note that for i ∈ Z \ Jκ the equation

χi(r, λ, κ) = 0 might only be solved for Ai(λ) > 0. Otherwise χi(r, λ, κ) > 0 for all λ > 0 close to zero.

In what follows we first consider χ(r, 0, κ) = 0 and afterwards we continue the corresponding solution for

λ > 0, cf. also (5.21).

A starting solution for λ = 0

According to (5.25) and using the short-hand notations B := B(0), Ci := Ci(0) and Ai := Ai(0) the

equation χ(r, 0, κ) = 0 translates into

0 = 1−Airi, i ∈ Z \ Jκ,

0 = 1−Br2i − Ciri−1ri, i ∈ Jκ, i− 1 ∈ Jκ,

0 = 1−Br2i , i ∈ Jκ, i− 1 ∈ Z \ Jκ.







(5.26)

The equation 0 = 1−Br2i − Ciri−1ri can be solved for ri > 0 with

ri =
1

2B

(

−Ciri−1 +
√

C2
i r

2
i−1 + 4B

)

. (5.27)

Now, using (5.27) we can rewrite (5.26) as a fixed point equation r = F(r, κ), F = (Fi)i∈Z, where

Fi(r, κ) =
1
Ai

, i ∈ Z \ Jκ,

Fi(r, κ) =
1
2B

(

−Ciri−1 +
√

C2
i r

2
i−1 + 4B

)

, i ∈ Jκ, i− 1 ∈ Jκ,

Fi(r, κ) =
1√
B
, i ∈ Jκ, i− 1 ∈ Z \ Jκ.







(5.28)

We show that F(·, κ) has a unique fixed point rκ = (rκi )i∈Z with rκi > 0. To this end we show that for an

appropriate closed set U ⊂ l∞ the mapping F(·, κ) : U → U is a contraction.

Recall from Theorem 5.3.1 that |Ci(λ, κ)| = C(λ) > 0 for i, i− 1 ∈ Jκ. With C := C(0) and

q :=
C

B
< 1,

we define U = ×
i∈Z

Ui, Ui ⊂ R by

Ui =







{
1
Ai

}

, i ∈ Z \ Jκ,
[

0, 1
(1−q)

√
B

]

, i ∈ Jκ, i− 1 ∈ Jκ,

{
1√
B

}

, i ∈ Jκ, i− 1 ∈ Z \ Jκ.

(5.29)

First we show that F(U, κ) ⊆ U . It is obvious that Fi(U, κ) ⊆ Ui for i ∈ Z \ Jκ and for i ∈ Jκ,

i− 1 ∈ Z \Jκ. So it remains to verify Fi(U, κ) ⊆ Ui for i− 1, i ∈ Jκ. In doing so we distinguish i− 2 ∈ Jκ
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and i − 2 ∈ Z \ Jκ. In these cases either, cf. second line in (5.28) and (5.29), ri−1 ∈
[

0, 1
(1−q)

√
B

]

or

ri−1 = 1√
B
. Since 1− q < 1 we have 1√

B
∈
[

0, 1
(1−q)

√
B

]

. So we only need to consider

Fi(r, κ) =
1

2B

(

−Ciri−1 +
√

C2
i r

2
i−1 + 4B

)

, for ri−1 ∈
[

0,
1

(1− q)
√
B

]

.

Using the definition of C = C(0), cf. Theorem 5.3.1, we find for this constellation

Fi(r, κ) ≤ 1
2B

(

Cri−1 +
√

C2r2i−1 + 4B
)

< 1
2B

(

2Cri−1 + 2
√
B
)

= qri−1 +
1√
B

≤ q 1
(1−q)

√
B
+ 1√

B

= 1
(1−q)

√
B
.

Altogether this verifies that F(U, κ) ⊂ U .

Next we show that F(·, κ) is contractive on U . To this end we show that q is an appropriate contraction

constant. We consider for r, s ∈ U

‖F(r, κ)− F(s, κ)‖l∞ = sup
i∈Z

|Fi(r, κ)− Fi(s, κ)|.

According to (5.28) we find that Fi(r, κ)− Fi(s, κ) = 0 for i ∈ Z \ Jκ and for i ∈ Jκ, i− 1 ∈ Z \ Jκ. For
the remaining possibility i− 1, i ∈ Jκ we find:

|Fi(r, κ)− Fi(s, κ)| =
∣
∣
∣

1
2B

(

−Ci
(
ri−1 − si−1

)
+

√

C2
i r

2
i−1 + 4B −

√

C2
i s

2
i−1 + 4B

)∣
∣
∣

=

∣
∣
∣
∣

1
2B

(

−Ci
(
ri−1 − si−1

)
+

C2
i

(
r2i−1−s2i−1

)

√
C2

i r
2
i−1+4B+

√
C2

i s
2
i−1+4B

)∣
∣
∣
∣

≤ 1
2B

(

C‖r− s‖l∞ +
C2(r2i−1−s2i−1)√
C2r2i−1+

√
C2s2i−1

)

≤ 1
2B (C‖r− s‖l∞ + C|ri−1 − si−1|)

≤ 2C
2B ‖r− s‖l∞ = q‖r− s‖l∞ .

This proves that F(·, κ) is indeed contractive on U . Finally, the Banach fixed point theorem guarantees

the fixed point rκ ∈ U .

Continuation of the solution for λ > 0

The above constructions show that

χ(rκ, 0, κ) = 0. (5.30)

In order to guarantee the intended continuation of the solution we apply the implicit function theorem

as stated in [Zei93, Theorem 4B]. At this point we want to stress that χ can continuously be extended

for λ ≤ 0 by defining for λ ≤ 0:

χi(r, λ, κ) = 1−Ai(λ)ri, i ∈ Z \ Jκ,

χi(r, λ, κ) = 1−B(λ)r2i − Ci(λ)ri−1ri, i ∈ Jκ, i− 1 ∈ Jκ,

χi(r, λ, κ) = 1−B(λ)r2i , i ∈ Jκ, i− 1 ∈ Z \ Jκ.

In what follows we consider χ(·, ·, κ) as a mapping defined on neighbourhoods of rκ in l∞ and 0 in R.
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Because of (5.30) it remains to show that D1χ(r
κ, 0, κ) ∈ L(l∞, l∞) is invertible. Note that then the

inverse is automatically bounded. We find that

D1χ(r
κ, 0, κ)r =

(
D1χi(r

κ, 0, κ)r
)

i∈Z
,

and by using the short-hand notations B := B(0), Ci := Ci(0) and Ai := Ai(0)

D1χi(r
κ, 0, κ)r = −Airi, i ∈ Z \ Jκ,

D1χi(r
κ, 0, κ)r = −Cir

κ
i ri−1 − (2Brκi + Cir

κ
i−1)ri, i ∈ Jκ, i− 1 ∈ Jκ,

D1χi(r
κ, 0, κ)r = −2Brκi ri, i ∈ Jκ, i− 1 ∈ Z \ Jκ.







(5.31)

First we consider kerD1χ(r
κ, 0, κ). Let r ∈ kerD1χ(r

κ, 0, κ), then:

ri = 0, i ∈ Z \ Jκ,

Cir
κ
i ri−1 + (2Brκi + Cir

κ
i−1)ri = 0, i ∈ Jκ, i− 1 ∈ Jκ,

ri = 0, i ∈ Jκ, i− 1 ∈ Z \ Jκ.







(5.32)

Only the second equation in (5.32), the one which is related to i ∈ Jκ, i − 1 ∈ Jκ, can have non-trivial

solutions.

First we consider the case where there is an i0 ∈ Jκ such that i0 − 1 ∈ Z \ Jκ. Then according to the

third equation in (5.32) ri0 = 0. From (5.27) we obtain

2Brκi + Cir
κ
i−1 =

√

C2
i (r

κ
i−1)

2 + 4B > 0, (5.33)

and hence, according to the second equation in (5.32) it yields

ri = 0, ∀i ∈ Jκ, i > i0.

So it remains to consider the case i0 ∈ Jκ and i0 − j ∈ Jκ, for all j ∈ N. The second equation in (5.32)

yields

ri0−1 = −
(
2B

Ci
+

rκi0−1

rκi0

)

ri0 . (5.34)

So, for Ci > 0 we find

|ri0−1| >
2B

C
|ri0 |.

Further, from (5.33) we conclude

rκi =
Ci
2B

rκi−1

(

−1 + sgn(Ci)

√

1 +
4B

C2(rκi−1)
2

)

,

and hence we find for Ci < 0

rκi0−1

rκi0
=

2B

Ci

(

−1 + sgn(Ci)

√

1 +
4B

C2(rκi−1)
2

)−1

<
2B

2C
. (5.35)
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So, on the other hand for Ci < 0 we obtain from (5.34) and (5.35) that

ri0−1 >
B

C
ri0 .

So, independently of the sign of Ci we find |ri0−1| > B
C |ri0 | and hence

|ri0−k| >
(
B

C

)k

|ri0 |. (5.36)

That means that the sequence (rio−k)k∈N is unbounded and therefore it does not belong to l∞. In the

consequence that means that D1χ(r
κ, 0, κ)r = 0 does not have a non-trivial solution in l∞, or in other

words

kerD1χ(r
κ, 0, κ) = {0}.

Hence D1χ(r
κ, 0, κ) ∈ L(l∞, l∞) is injective.

In order to show that D1χ(r
κ, 0, κ) is surjective let s ∈ l∞ be given and consider

D1χ(r
κ, 0, κ)r = s.

Again we use the Banach fixed point theorem to show that we find for any s ∈ l∞ an appropriate r ∈ l∞.

To this end recall that l∞ equipped with the supremum norm is a Banach space. From (5.31) we can

conclude the fixed point equation r = Fs(r, κ), Fs = (F s

i )i∈Z with

F s

i (r, κ) = − si
Ai

, i ∈ Z \ Jκ,

F s

i (r, κ) =
−Cir

κ
i

2Brκi +Cirκi−1
ri−1 − si

2Brκi +Cirκi−1
, i ∈ Jκ, i− 1 ∈ Jκ,

F s

i (r, κ) = − si
2Brκi

, i ∈ Jκ, i− 1 ∈ Z \ Jκ.







(5.37)

Now we show that for an appropriate closed set U s ⊂ l∞, depending on s ∈ l∞, the mapping Fs(·, κ) :
U s → U s is a contraction. With v = (vi)i∈Z ∈ l∞,

vi := |si|max

{
1

2Brκi
,

1

2Brκi + Cirκi−1

}

we define U s = ×
i∈Z

U s

i , U
s

i ⊂ R by

U s

i =







{

− si
Ai

}

, i ∈ Z \ Jκ,
[

− B
B−C ‖v‖l∞ , B

B−C ‖v‖l∞
]

, i ∈ Jκ, i− 1 ∈ Jκ,

{

− si
2Brκi

}

, i ∈ Jκ, i− 1 ∈ Z \ Jκ.

(5.38)

Note that all denominator, Ai, 2Brκi and, due to (5.33), 2Brκi + Cir
κ
i−1 are different from zero.

First we show that Fs(U s, κ) ⊆ U s. It is obvious that F s

i (U
s, κ) ⊆ U s

i for i ∈ Z \ Jκ and for i ∈ Jκ,

i − 1 ∈ Z \ Jκ. So it remains to verify F s

i (U
s, κ) ⊆ U s

i for i − 1, i ∈ Jκ. In doing so we distinguish

i − 2 ∈ Jκ and i − 2 ∈ Z \ Jκ. In these cases either, cf. the second and third line in (5.38), ri−1 ∈
[

− B
B−C ‖v‖l∞ , B

B−C ‖v‖l∞
]

or ri−1 = − si−1

2Brκi−1
. Due to the definition of vi we have in the latter case
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|ri−1| = |si−1|
2Brκi−1

≤ |vi−1| ≤ ‖v‖l∞ B
B−C . So we only need to consider

F s

i (r, κ) =
−Cir

κ
i

2Brκi + Cirκi−1

ri−1 −
si

2Brκi + Cirκi−1

, for ri−1 ∈
[

− B

B − C
‖v‖l∞ ,

B

B − C
‖v‖l∞

]

.

To this end we apply that for i−1, i ∈ Jκ, cf. (5.28), r
κ
i = Fi(r

κ, κ) = 1
2B

(

−Cir
κ
i−1 +

√

C2
i (r

κ
i−1)

2 + 4B
)

.

Further we use 2Brκi + Cir
κ
i−1 =

√

C2
i (r

κ
i−1)

2 + 4B, cf. (5.33). This yield

Crκi
2Brκi + Cirκi−1

=
C

2B

−Cir
κ
i−1 +

√

C2
i (r

κ
i−1)

2 + 4B
√

C2(rκi−1)
2 + 4B

≤ C

2B




Crκi−1

√

C2(rκi−1)
2
+ 1



 ≤ C

B
. (5.39)

Applying this we then find

|F s

i (r, κ)| ≤ Crκi
2Brκi +Cirκi−1

|ri−1|+ |si|
2Brκi +Cirκi−1

≤ C
B |ri−1|+ |vi| ≤

(
C
B

B
B−C + 1

)

‖v‖l∞ = B
B−C ‖v‖l∞

Altogether this verifies that Fs(U s, κ) ⊂ U s.

So it remains to show that Fs(·, κ) is contractive. We consider for r,u ∈ l∞

‖Fs(r, κ)− Fs(u, κ)‖l∞ = sup
i∈Z

|F s

i (r, κ)− F s

i (u, κ)|.

According to (5.37) we obtain F s

i (r, κ) − F s

i (u, κ) = 0 for i ∈ Z \ Jκ and for i ∈ Jκ, i − 1 ∈ Z \ Jκ. For

the remaining cases i− 1, i ∈ Jκ we find with (5.39):

|F s

i (r, κ)− F s

i (u, κ)| =
∣
∣
∣
∣

−Cir
κ
i

2Brκi + Cirκi−1

∣
∣
∣
∣
|ri−1 − ui−1| ≤

C

B
‖r− u‖l∞ .

Hence Fs(·, κ) is contractive and we find for any s ∈ l∞ a solution r ∈ l∞. This verifies the surjectivity

of D1χ(r
κ, 0, κ).

Summarising, for λ > 0 we can solve χ(r, λ, κ) = 0 with r = r(λ, κ) near r = rκ and λ = 0, if B > 0 and

Ai > 0 for all i ∈ Z \ Jκ. According to the definition of Ai := 〈η−κi
(0), ηsκi−1

(0)〉, cf. Lemma 4.3.14 and

the stipulation that 〈η−κi
(0), ηsκi−1

(0)〉 < 0, cf. (1.11), we find sgnAi = −sgn〈ηsκi
(0), ηsκi−1

(0)〉. Then Ai is

positive, if the angle between ηsκi
(0) and ηsκi−1

(0) is greater than 90°. This is equal to the condition that

|κi − κi−1| := min{κi − κi−1, κi−1 − κi} > m, differences calculated in Z4m. Since with B > 0 solutions

also exist for right angles between ηsκi
(0) and ηsκi−1

(0) we find for λ > 0 all those trajectories satisfying

|κi − κi−1| ≥ m for all i ∈ Z.

From (5.18) and (5.21) we find the following expression of ωi in terms of λ and κ:

ωi(λ, κ) =







1
2µs(0) (ln(λ) + ln(ri(λ, κ))), i ∈ Z \ Jκ,

1
4µs(0) (ln(λ) + ln(r2i (λ, κ))), i ∈ Jκ.

(5.40)

Due to (5.29) we find that rκi are uniformly bounded. So with ri(λ, κ) = rκi +O(λ) the terms ln(ri(λ, κ))

and ln(r2i (λ, κ)) are almost negligible for λ sufficiently small. Therefore the corresponding transition

times ωi basically differ by a factor of two, depending on whether i ∈ Jκ or i ∈ Z \ Jκ.
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5.4.2 Solution for fixed κ and λ < 0

We continue from the representations (5.19) and (5.20) of the jumps and introduce for λ < 0 the rescaling

r̂i =

{

−λri, i ∈ Z \ Jκ,√
−λri, i ∈ Jκ.

(5.41)

Then we obtain from (5.19) and (5.20) with r = (ri)i∈Z

i ∈ Z \ Jκ : Ξi(r, λ, κ) = λ+Ai(λ)λri + R̃i(r, λ, κ), (5.42)

i ∈ Jκ : Ξi(r, λ, κ) = λ+B(λ)λr2i +







Ci(λ)λri−1ri + R̃i(r, λ, κ), i− 1 ∈ Jκ,

−Ci(λ)(−λ)3/2ri−1ri + R̃i(r, λ, κ), i− 1 ∈ Z \ Jκ.
(5.43)

The residual terms R̃i arise from R̂i accordingly. Thereby it turns out that for all i ∈ Z

R̃i = O
(
(−λ)δ

)
, δ > 1.

Factoring out λ yield the determination equations

0 = 1 +Ai(λ)ri +O
(
(−λ)δ−1

)
, i ∈ Z \ Jκ,

0 = 1 +B(λ)r2i + Ci(λ)ri−1ri +O
(
(−λ)δ−1

)
, i ∈ Jκ, i− 1 ∈ Jκ,

0 = 1 +B(λ)r2i +O
(
(−λ)δ−1

)
+O

(
(−λ)1/2

)
, i ∈ Jκ, i− 1 ∈ Z \ Jκ.







(5.44)

An immediate consequence of the rescaling (5.41) is, that the right-hand side of the third equation is due

to B(λ) > 0 positive for λ close to zero. That is, if κ allows for a sequence with i ∈ Jκ and i− 1 ∈ Z \ Jκ
we cannot find a solution for this κ for λ < 0.

Moreover, when considering the second equation we find with Ci(λ) > 0 that the right-hand side also is

positive. Hence, if for fixed κ the jump Ξ(ω, λ, κ) contains for some i the case i ∈ Jκ, i − 1 ∈ Jκ and

Ci(λ) > 0 again we do not find a solution for this κ for λ < 0.

Consequently for λ < 0 there are only two types of sequences κ we might obtain a solution for: Either

we have for all i that i ∈ Z \ Jκ or we have for all i that i ∈ Jκ and Ci(λ) < 0.

Now, in the first case, i ∈ Z \ Jκ for all i, we obtain the equation

χi(r, λ, κ) = 1 +Ai(λ)ri +O
(
(−λ)δ−1

)

whose solvability follows along the same lines as in Section 5.4.1. Only here we have to assume Ai(λ) < 0.

In case that i ∈ Jκ and Ci(λ, κ) < 0 for all i the following equation applies

χi(r, λ, κ) = 1 +B(λ)r2i − C(λ)ri−1ri +O
(
λδ−1

)
. (5.45)

According to Corollary 5.2.4 the condition Ci(λ, κ) = −C(λ) for all i ∈ Z implies that κ is an element of

K2 or K4, cf. (5.9) and (5.10). In the following we show that the equation χ(r, λ, κ) = 0 has no solution

for those κ.
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Assuming there is a solution r(λ) for λ sufficiently small solving χ(r, λ, κ) = 0. Then there also has to

be a solution at λ = 0. Let rκ be such that χ(rκ, 0, κ) = 0. Then we conclude from (5.45) that the rκi
have to satisfy

rκi =
1

2B

(

Crκi−1 ±
√

C2(rκi−1)
2 − 4B

)

(5.46)

for all i ∈ Zp, p = 2 or p = 4, respectively. Thereby again B := B(0) and C := |Ci(0)|. This provides the
lower bound rκi ≥ 2

√
B
C for all i ∈ Zp, so that the discriminant is greater or equal to zero.

First we discuss equation (5.46) for the minus sign. Here we find the following upper bound for rκi

rκi =
1

2B
(Crκi−1 −

√

C2(rκi−1)
2 − 4B) =

2

Crκi−1 +
√

C2(rκi−1)
2 − 4B

≤ 2

Crκi−1

≤ 1√
B
.

However, for B > C we find that the upper bound 1√
B

is smaller than the lower bound 2
√
B
C , a contra-

diction. Hence we cannot find a real solution if at least one equation (5.46) has a negative sign.

Considering equation (5.46) for the plus sign we find the upper bound

rκi =
Crκi−1 +

√

C2(rκi−1)
2 − 4B

2B
≤ C

B
rκi−1.

Since B > C the sequence of the rκi needs to be strictly monotonically decreasing. This leads to the

contradictory statement rκi ≤
(
C
B

)p
rκi < rκi . Thus we do not find a solution of χ(r, 0, κ) = 0, which

contradicts the assumption.

In summary, for λ < 0 we only find solutions for those κ that satisfy i ∈ Z \ Jκ with Ai(λ) < 0 for

all i ∈ Z. This equals the condition, that the angle between ηsκi
(0) and ηsκi−1

(0) is less than 90° or

analogously |κi − κi−1| < m for all i ∈ Z.

5.4.3 Topological conjugation

We continue with the proof of Theorem 5.3.3 in the spirit of [HJKL11, Section 4.2]. Let λ > 0. First we

define the addressed invariant set Dλ and the related first return map Πλ.

To this end we consider for given κ ∈ ΣA+
the solution r(λ, κ) of χ(r, λ, κ) = 0, cf. (5.24). Via the

definition in (5.18) and the rescaling (5.21) this solution corresponds to a sequence of transition times

ω(λ, κ). Note that by construction this sequence has an allocated trajectory x(ω(λ, κ), λ, κ)(·) of (1.1).
Then, following the explanations in [HJKL11] we find

x(ω(λ, κ), λ, κ)(τn) ∈ Sκn
, for τn =







n∑

i=1

2ωi(λ, κ) , n ∈ N,

0 , n = 0,
0∑

i=n+1

−2ωi(λ, κ) , n ∈ −N.

(5.47)

With that we define the set Dλ in the union of cross sections ∪1≤i≤4mSi by

Dλ = {x(ω(λ, κ), λ, κ)(τn) | n ∈ Z, κ ∈ ΣA+
}.

Uniqueness of ω implies

ω(λ, σκ) = σ̂ω(λ, κ),
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where σ̂ is the left shift on the set of ω-sequences which is defined in the same way as σ in Definition 1.0.1:

(σ̂ω)i = ωi+1. Hence

Dλ = {x(ω(λ, κ), λ, κ)(0) | κ ∈ ΣA+
}.

Now, the first return map Πλ is defined by

Πλ : Dλ → Dλ, x(ω(λ, κ), λ, κ)(0) 7→ x(ω(λ, κ), λ, κ)(τ1) = x(ω(λ, σκ), λ, σκ)(0).

The map

Φλ : ΣA+
→ Dλ, κ 7→ x(ω(λ, κ), λ, κ)(0) (5.48)

is one-to-one. Therefore

Πλ ◦ Φλ = Φλ ◦ σ.

That is, the systems (Dλ,Πλ) and (ΣA+
, σ) are conjugated. For topological conjugacy continuity of Φλ

and Φ−1
λ must also be established.

For the continuity investigations we consider ΣA+
as being endowed with the product topology, which is,

cf. [Shu86, Chap. 10], induced by the metric

̺(κ1, κ2) =
∑

i∈Z

1

2|i|
|κ1
i − κ2

i |.

According to the Tychonoff Theorem, that states that the product of any collection of compact topological

spaces is compact with respect to the product topology, cf. [Dug66, Chap. XI, Thm. 1.4], and the fact

that ΣA+
is closed in Σ4m the space ΣA+

is compact.

The closure of ΣA+
can easily be seen as follows. Any κ ∈ Σ4m\ΣA+

is characterised by having an index i

such that a+κiκi+1
= 0. Then, ε > 0 can be chosen such that for any κ̂ satisfying ̺(κ, κ̂) < ε automatically

holds that it must equal κ on at least the range [−(i+1), i+1]. Thus κ̂ also lies in Σ4m \ΣA+
. According

to this Σ4m \ΣA+
is open and so ΣA+

is closed in Σ4m. In case of infinite instead of biinfinite sequences

{1, . . . , 4m}N the proof of the closure of a subset ΣA can be found in [Dev89, Proposition 13.5]

What follows are some preliminary considerations for the proof of the continuity of Φλ. We start with a

technical lemma.

Lemma 5.4.1. Let (ai)i∈Z ∈ l∞ be a sequence of positive real numbers. Let l ∈ Z and N ∈ N be arbitrary

numbers. If for some K, p with p > 1 and K < (p− 1)/2 the following holds true for all i ∈ [l−N, l+N ]

ai ≤ K

i+N−|i−l|
∑

j=i−(N−|i−l|)
j 6=i

1

p|i−j|
aj + ε, (5.49)

then

ai ≤
2K

p
‖a‖l∞

(
2K + 1

p

)N−|i−l|−1

+
ε(p− 1)

p− (1 + 2K)
, (5.50)

for all i ∈ [l − (N − 1), l + (N − 1)].

Proof. We prove the lemma by induction for the counter N :
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Let l be any integer and assume for that l that (5.49) holds true for N = 1, that is

al ≤ K

l+1∑

j=l−1
j 6=l

1

p|l−j|
aj + ε =

K

p
(al−1 + al+1) + ε

Estimating al−1 and al+1 by ‖a‖l∞ yields

al ≤
K

p
(al−1 + al+1) + ε ≤ 2K

p
‖a‖l∞ + ε

p− 1

p− (1 + 2K)
.

This proves (5.50) for N = 1 (and any l).

Now, assume that the assertion holds true for N . That is, for any k for which

ai ≤ K

i+N−|i−k|
∑

j=i−(N−|i−k|)
j 6=i

1

p|i−j|
aj + ε, (5.51)

is satisfied for all i ∈ [k −N, k +N ] the following holds true

ai ≤
2K

p
‖a‖l∞

(
2K + 1

p

)N−|i−k|−1

+
ε(p− 1)

p− (1 + 2K)
, (5.52)

for all i ∈ [k − (N − 1), k + (N − 1)].

Assume now that for some l estimate (5.49) holds true for N + 1, that is

ai ≤ K

i+(N+1)−|i−l|
∑

j=i−((N+1)−|i−l|)
j 6=i

1

p|i−j|
aj + ε, (5.53)

i ∈ [l − (N + 1), l + (N + 1)]. We have to prove that

ai ≤
2K

p
‖a‖l∞

(
2K + 1

p

)(N+1)−|i−l|−1

+
ε(p− 1)

p− (1 + 2K)
, (5.54)

for all i ∈ [l −N, l +N ].

First we verify (5.54) for i > l. We exploit that (5.51) implies (5.52) with k = l + 1. Taking this into

consideration we find for all i ∈ [l + 1, l +N ]

ai ≤ K

i+N+1−|i−l|
∑

j=i−(N+1−|i−l|)
j 6=i

1

p|i−j|
aj + ε = K

i+N−|i−(l+1)|
∑

j=i−(N−|i−(l+1)|)
j 6=i

1

p|i−j|
aj + ε,

and hence

ai ≤ 2K
p ‖a‖l∞

(
2K+1
p

)N−(i−(l+1))−1

+ ε p−1
p−(1+2K)

= 2K
p ‖a‖l∞

(
2K+1
p

)N−|i−l|
+ ε p−1

p−(1+2K) .

206



5.4 Proof of Theorem 5.3.3

Analogously, reasoning with k = l − 1 we find for all i ∈ [l −N, l − 1] that

ai ≤
2K

p
‖a‖l∞

(
2K + 1

p

)N−|i−l|
+ ε

p− 1

p− (1 + 2K)
.

It remains to prove (5.54) for i = l:

al ≤ K

l+N+1∑

j=l−(N+1)
j 6=l

1

p|l−j|
aj + ε

≤ K
l+N∑

j=l−N
j 6=l

1

p|l−j|
aj +

K

pN+1
(al+N+1 + al−N−1) + ε

≤ K

l+N∑

j=l−N
j 6=l

1

p|l−j|

(

2K

p
‖a‖l∞

(
2K + 1

p

)N−|j−l|
+ ε

p− 1

p− (1 + 2K)

)

+
2K

pN+1
‖a‖l∞ + ε

=
2K

p
‖a‖l∞




K

pN
2

l+N∑

j=l+1

(2K + 1)N−j+l +
1

pN



+ ε






1 +

K(p− 1)

p− (1 + 2K)

l+N∑

j=l−N
j 6=l

1

p|l−j|







≤ 2K

p
‖a‖l∞

1

pN

(

2K

N−1∑

k=0

(2K + 1)N−1−k + 1

)

+ ε

(

1 +
2K(p− 1)

p− (1 + 2K)

1

p(1− 1/p)

)

=
2K

p
‖a‖l∞

1

pN

(

2K
1− (2K + 1)N

1− (2K + 1)
+ 1

)

+ ε

(

1 +
2K

p− (1 + 2K)

)

=
2K

p
‖a‖l∞

(
(2K + 1)

p

)N

+ ε

(
p− 1

p− (1 + 2K)

)

This concludes the proof.

We continue with showing the continuity of the three mappings ω 7→ v0(ω, λ, κ)(0), κ 7→ v0(ω, λ, κ)(0)

and κ 7→ ω(λ, κ). To this end recall that we equipped ΣA+
with the metric ̺(κ1, κ2) =

∑

i∈Z

1
2|i|

|κ1
i −κ2

i |.
Further we equip l∞ with the metric ˆ̺(ω1,ω2) =

∑

i∈Z

1
2|i|

|ω1
i − ω2

i |.

Lemma 5.4.2. The mapping (l∞, ˆ̺),→ R4 × R4, ω 7→ v0(ω, λ, κ)(0) is continuous.

Proof. The statement simply follows from Lemma 3.5.3 and Remark 3.5.5.

Lemma 5.4.3 ([HJKL11], Lemma 4.5). The mapping (ΣA+
, ̺) → R4 × R4, κ 7→ v0(ω, λ, κ)(0) is con-

tinuous.

Proof. Analogously to the proof of Lemma 3.5.3 it is assumed that κ1, κ2 ∈ ΣA+ are two sequences that

coincide on a block of length 2N + 1 centered at j = 0:

κ1
i = κ2

i , i ∈ [−N,N ] ∩ Z.

Then it is established that ‖v0(ω, λ, κ1)(0)− v0(ω, λ, κ2)(0)‖ = O
(
1/2N

)
, which implies the lemma.
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To this end we start again from (3.22) that shows

‖v0(ω, κ1)(0)− v0(ω, κ2)(0)‖ = ‖v̂ω,0(κ1,H(v, κ1),d(ω, κ1))(0)− v̂ω,0(κ
2,H(v, κ2),d(ω, κ2))(0)‖.

Here once more we suppress the dependency of λ. If N ≥ 1 we have due to (3.51), (3.37) and (3.52) that

v̂ω,0(κ
2,H(v, κ2),d(ω, κ2)) = v̂ω,0(κ

1,H(v, κ2),d(ω, κ2))

and due to the linearity of v̂ω with respect to the second and third component, recall Lemma 3.2.5, we

find

‖v0(ω, κ1)(0)− v0(ω, κ2)(0)‖ = ‖v̂ω,0(κ1,∆H,∆d)(0)‖

with ∆H = H(v, κ1) − H(v, κ2) and ,∆d = d(ω, κ1) − d(ω, κ2). Recall that ∆di = 0 for i ∈ [−N +

1, N ] ∩ Z, compare (3.13). Invoking (3.51) we find

v̂ω,0(κ
1,∆H,∆d) = vω,0(κ

1,∆H, âω(κ
1,∆H,∆d)).

Now, proceeding from here as in the proof of Lemma 3.5.3 concludes the proof.

Corollary 5.4.4. Let κ1, κ2 ∈ ΣA+ be two sequences. Then we find

‖vi(ω, λ, κ1)(0)− vi(ω, λ, κ2)(0)‖ = O
(
1/2N

)
if κ1

j = κ2
j , j ∈ [−|i| −N, |i|+N ] ∩ Z.

Lemma 5.4.5. The mapping (ΣA+
, ̺) → (l∞, ˆ̺), κ 7→ ω(λ, κ) is continuous.

Proof. According to (5.18) and (5.21) we have

ωi(λ, κ) =
1

2µs(λ)
·







ln(λ) + ln ri(λ, κ), i ∈ Z \ Jκ,

ln(
√
λ) + ln ri(λ, κ), i ∈ Jκ,

where r(λ, κ) = (ri(λ, κ))i∈Z solves (5.24). So it is enough to prove the corresponding continuity of r(λ, ·)
(considered as a mapping (ΣA+

, ̺) → (l∞, ˆ̺)). To this end we write (5.24) as a fixed point equation

r = F(r, λ, κ), F = (Fi)i∈Z similar to (5.28). Further, introducing Ři(r, λ, κ) :=
1
λ R̃i(r, λ, κ) we find:

Fi(r, λ, κ) =
1

Ai(λ)

(
1 + Ři(r, λ, κ)

)
, i ∈ Z \ Jκ,

Fi(r, λ, κ) =
1

2B(λ)

(

−Ci(λ)ri−1 +
√

Ci(λ)2r2i−1 + 4B(λ)(1 + Ři(r, λ, κ))
)

, i ∈ Jκ, i− 1 ∈ Jκ,

Fi(r, λ, κ) =
1

2B(λ)

(

−Ci(λ)λ
1/2ri−1 +

√

Ci(λ)2λr2i−1 + 4B(λ)(1 + Ři(r, λ, κ))
)

, i ∈ Jκ, i− 1 ∈ Z \ Jκ.

In order to prove the continuity of r(λ, ·) we consider for fixed i

|ri(λ, κ1)− ri(λ, κ
2)|

= |Fi(r(λ, κ1), λ, κ1)− Fi(r(λ, κ
2), λ, κ2)|

≤ |Fi(r(λ, κ1), λ, κ1)− Fi(r(λ, κ
2), λ, κ1)|+ |Fi(r(λ, κ2), λ, κ1)− Fi(r(λ, κ

2), λ, κ2)|. (5.55)
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With this we will show that |ri(λ, κ1)− ri(λ, κ
2)| satisfies

|r1i − r2i | ≤ K(λ)
i+N∑

j=i−N
j 6=i

1

p|i−j|
|r1j − r2j |+O

(
1/2N

)
. (5.56)

for some p > 1 and a K(λ) tending to zero for λ tending to zero. Then applying Lemma 5.4.1 yield

|r1i − r2i | ≤
2K(λ)

p
‖r‖l∞

(
2K(λ) + 1

p

)N−1

+
(p− 1)

p− (1 + 2K(λ))
O
(
1/2N

)
,

that is |ri(λ, κ1) − ri(λ, κ
2)| = O

(( 2K(λ)+1
p

)N−1
)

+ O
(
1/2N

)
, implying the continuity of the mapping

κ 7→ r(λ, κ).

Now, in what follows we verify the estimate (5.56) by starting from (5.55). Thereby we have to distinguish

between the different cases of i and i− 1 being elements of Jκ or Z \ Jκ.

For reasons of clarity we omit the λ-dependence in the notation, especially this time we use the short-hand

notations B := B(λ), Ci := Ci(λ) and Ai := Ai(λ) and furthermore we use the following short notations

rj := r(λ, κj), rji := ri(λ, κ
j).

First let i ∈ Z \ Jκ. We start with the second term of (5.55) and adopt the argumentation from [HJKL11,

Proof of Lemma 4.6]:

|Fi(r2, κ1)− Fi(r
2, κ2)| = 1

Ai

∣
∣Ři(r

2, κ1)− Ři(r
2, κ2)

∣
∣.

= 1
|λ|Ai

|Ri(ω(r̂2), κ1)−Ri(ω(r̂2), κ2)|

With Theorem 5.3.1(i), cf. also Theorem 4.3.3(i), we get

|Fi(r2, κ1)− Fi(r
2, κ2)| ≤ 1

|λ|Ai
∣
∣ξi(ω(κ2), κ1)− ξi(ω(κ2), κ2)

∣
∣

=
1

|λ|Ai

(∣
∣v+i (ω(κ2), κ1)(0)− v+i (ω(κ2), κ2)(0)

∣
∣

+
∣
∣v−i (ω(κ2), κ1)(0)− v−i (ω(κ2), κ2)(0)

∣
∣

)

.

With Corollary 5.4.4 it follows that

|Fi(r2, κ1)− Fi(r
2, κ2)| = O

(
1/2N

)
. (5.57)

Analogously to the considerations above we obtain for the first term in (5.55)

|Fi(r1, κ1)− Fi(r
2, κ1)| = 1

|λ|Ai
|Ri(ω(r̂1), κ1)−Ri(ω(r̂2), κ1)|, (5.58)

with

Ri(ω(r̂j), κ1) = ξi(ω(r̂j), κ1) + r̂jiAi,

j ∈ {1, 2}, cf. Theorem 5.3.1. From Theorem 3.5.1 we find (Djξi(ω, κ))j∈Z ∈ l1 and D(±N+i)ξi(ω, κ) =

O(1/2N). Hence (DjRi(ω, κ))j∈Z ∈ l1 and D(±N+i)Ri(ω, κ) = O(1/2N) and by applying the mean-value-
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theorem we obtain

|Ri(ω(r̂1), κ1)−Ri(ω(r̂2), κ1)|

≤
∑

j∈Z

|DjRi(ω̄, κ1)|
∣
∣ωj(r̂

1
j )− ωj(r̂

2
j )
∣
∣

≤
i+N∑

j=i−N
|DjRi(ω̄, κ1)|

∣
∣ωj(r̂

1
j )− ωj(r̂

2
j )
∣
∣+

∑

|j−i|>N+1

|DjRi(ω̄, κ1)|
∣
∣ωj(r̂

1
j )− ωj(r̂

2
j )
∣
∣

≤
i+N∑

j=i−N
|DjRi(ω̄, κ1)|

( 1

2|µs(0)r̄j |
|r1j − r2j |

)
+O

(
1/2N

)

≤ c|DiRi(ω̄, κ1)||r1i − r2i |+
i+N∑

j=i−N
j 6=i

c|DjRi(ω̄, κ1)||r1j − r2j |+O
(
1/2N

)
. (5.59)

Due to the scalings (5.18) and (5.21) we find from Corollary 5.3.2 that |DjRi(ω̄, κ1)| = O(λδ) for some

δ > 1 for all j ∈ Z. Further |DjRi(ω̄, κ1)| ≤ C · 1/2|i−j|, for some C > 0, cf. Theorem 3.5.1. Since Ai is

bounded we finally obtain from (5.58) and (5.59)

|Fi(r1, κ1)− Fi(r
2, κ1)| ≤ c(λ)|r1i − r2i |+ c(λ)

i+N∑

j=i−N
j 6=i

1

2|i−j|
|r1j − r2j |+O(1/2N),

for some c(λ) ∈ (0, 1) that tends to zero as λ tends to zero. For that reason we explicitly indicate the

λ-dependence of c. Together with (5.55) and (5.57) we obtain with

|r1i − r2i | ≤
c(λ)

(1− c(λ))

i+N∑

j=i−N
j 6=i

1

2|i−j|
|r1j − r2j |+O

(
1/2N

)
.

a representation that correspond to (5.56).

Now, let i ∈ Jκ, i − 1 ∈ Z \ Jκ. Again we start with considering |Fi(r2, κ1)− Fi(r
2, κ2)|.

|Fi(r2, κ1)− Fi(r
2, κ2)|

= 1
2B

∣
∣
∣Ci

√
λ
(
r2i−1 − r2i−1

)
+
√

C2
i λ(r

2
i−1)

2 + 4B(1 + Ři(r2, κ1))−
√

C2
i λ(r

2
i−1)

2 + 4B(1 + Ři(r2, κ2))
∣
∣
∣

= 1
2B

∣
∣
∣

C2
i λ
(
(r2i−1)

2−(r2i−1)
2
)
+4B

(
Ři(r

2,κ1)−Ři(r
2,κ2)

)

√

C2
i λ(r

2
i−1)

2+4B(1+Ři(r2,κ1))+
√

C2
i λ(r

2
i−1)

2+4B(1+Ři(r2,κ2))

∣
∣
∣

≤ 1
2B

∣
∣
∣
4B

(
Ři(r

2,κ1)−Ři(r
2,κ2)

)

4
√
B

∣
∣
∣

≤ 1
2
√
B

∣
∣Ři(r

2, κ1)− Ři(r
2, κ2)

∣
∣

= 1
2λ

√
B

∣
∣Ri(ω(r2), κ1)−Ri(ω(r2), κ2)

∣
∣

= 1
2λ

√
B

∣
∣−B(r2i )

2 − Ci(κ
1)r2i r

2
i−1 +Ri(ω(r2), κ1)− (−B(r2i )

2 − Ci(κ
2)r2i r

2
i−1 +Ri(ω(r2), κ2))

∣
∣

= 1
2λ

√
B

∣
∣ξi(ω(κ2), κ1)− ξi(ω(κ2), κ2)

∣
∣

210



5.4 Proof of Theorem 5.3.3

As in the previous case we find due to Corollary 5.4.4 that
∣
∣ξi(ω(κ2), κ1) − ξi(ω(κ2), κ2)

∣
∣ = O

(
1/2N

)
.

Hence

|Fi(r2, κ1)− Fi(r
2, κ2)| = O

(
1/2N

)
.

Now we turn towards the second term:

|Fi(r1, κ1)− Fi(r
2, κ1)|

=
1

2B

∣
∣
∣Ci

√
λ
(
r2i−1 − r1i−1

)
+
√

C2
i λ(r

1
i−1)

2 + 4B(1 + Ři(r1, κ1))−
√

C2
i λ(r

2
i−1)

2 + 4B(1 + Ři(r2, κ1))
∣
∣
∣

=
1

2B

∣
∣
∣Ci

√
λ
(
r2i−1 − r1i−1

)
+

C2
i λ

(
(r1i−1)

2 − (r2i−1)
2
)
+ 4B

(
Ři(r

1, κ1)− Ři(r
2, κ1)

)

√

C2
i λ(r

1
i−1)

2 + 4B(1 + Ři(r1, κ1)) +
√

C2
i λ(r

2
i−1)

2 + 4B(1 + Ři(r2, κ1))

∣
∣
∣

≤ 1

2B

∣
∣
∣− Ci

√
λ
(
r1i−1 − r2i−1

)
+

C2
i λ

(
(r1i−1)

2 − (r2i−1)
2
)

|Ci|
√
λ
(
r1i−1 + r2i−1

) +
√
B
(
Ři(r

1, κ1)− Ři(r
2, κ1)

)
∣
∣
∣

≤ |Ci|
B

√
λ
∣
∣r1i−1 − r2i−1

∣
∣+

1

2
√
B

∣
∣Ři(r

1, κ1)− Ři(r
2, κ1)

∣
∣. (5.60)

The latter term in (5.60) can be estimated, as in the case above, by using the mean-value-theorem and

D(±N+i)Ri(ω, κ) = O
(
1/2N

)
:

1
2
√
B

∣
∣Ři(r

1, κ1)− Ři(r
2, κ1)

∣
∣ = 1

2
√
B|λ| |Ri(ω(r̂1, κ1))−Ri(ω(r̂2, κ1))|

≤ 1
2
√
B|λ|

∑

j∈Z

|DjRi(ω̄, λ, κ1)|
∣
∣ωj(r̂

1
j )− ωj(r̂

2
j )
∣
∣

≤ c(λ)|r1i − r2i |+ c(λ)
i+N∑

j=i−N
j 6=i

1
2|i−j| |r1j − r2j |+O

(
1/2N

)
.

In this regard, recall that also for i ∈ Jκ, due to the scalings (5.18) and (5.21), |DjRi(ω̄, λ, κ)| = O(λδ)

for some δ > 1, cf. Corollary 5.3.2. Again we want to note that c(λ) tends to zero as λ tends to zero.

Putting things together and inserting in (5.55) yields with the shortened notation ∆ri := |r1i − r2i |:

∆ri ≤
|Ci|

B(1− c(λ))
λ1/2∆ri−1 +

c(λ)

1− c(λ)

i+N∑

j=i−N
j 6=i

1

2|i−j|
∆rj +O

(
1/2N

)
. (5.61)

In the following we include the first term in the sum and obtain

∆ri ≤
c(λ) + 2

√
λ|Ci|/B

1− c(λ)

i+N∑

j=i−N
j 6=i

1

2|i−j|
∆rj +O

(
1/2N

)
, (5.62)

which again conforms to (5.56).

Finally, let i ∈ Jκ, i − 1 ∈ Jκ. Proceeding as in the previous case we get, instead of (5.61),

∆ri ≤
|Ci|
B

∆ri−1 + c(λ)
i+N∑

j=i−N

1

2|i−j|
∆rj +O

(
1/2N

)
. (5.63)
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More generally, if also i− k ∈ Jκ, k = 0, . . . , n for some n ∈ {1, . . . , N}, we get in the same way

∆ri−k ≤ |Ci−k|
B

∆ri−k−1 + c(λ)

i+N−2k∑

j=i−N

1

2|i−k−j|
∆rj +O

(
1/2N−k

)
. (5.64)

By replacing ∆ri−1 in the first summand in (5.63) by (5.64) for k = 1 we find with q = q(λ) :=

max{ |Ci(λ)|
B(λ) , 1

2}

∆ri ≤ q

(

q∆ri−2 + c(λ)
i+N−2∑

j=i−N
q|i−1−j|∆rj +O(qN−1)

)

+ c(λ)
i+N∑

j=i−N
q|i−j|∆rj +O(qN )

≤ q2∆ri−2 + c(λ)

(
i+N∑

j=i−N
q|i−1−j|+1∆rj +

i+N∑

j=i−N
q|i−j|∆rj

)

+ 2O(qN ).

Recall that we assume |Ci(0)|/B(0) < 1 and hence also |Ci(λ)|/B(λ) < 1 for sufficiently small λ.

For j ≤ i − 1 we find that q|i−1−j|+1 = qi−j and for j ≥ i we have q|i−1−j|+1 = qj−1+2. Therefore we

split both sums between j = i− 1 and j = i and obtain

∆ri ≤ q2∆ri−2 + c(λ)





i−1∑

j=i−N
2qi−j∆rj +

i+N∑

j=i

(1 + q2)qj−i∆rj



+ 2O(qN ). (5.65)

Continuing along the same proceeding we find for i− k ∈ Jκ, k = 0, . . . , n

∆ri ≤ qn∆ri−n + c(λ)

(
i−(n−1)∑

j=i−N
nqi−j∆rj +

i−1∑

j=i−(n−2)

1−q2(n−(i−j))

1−q2 (i− j + 1)qi−j∆rj

+ 1−q2n
1−q2

i+N∑

j=i

q|i−j|∆rj

)

+ nO
(
qN

)
.







(5.66)

This can be seen by induction for the counter n with (5.65) as base case for n = 2. In the induction step

from n to n+ 1 we replace the ∆ri−n in the first summand in (5.66) by (5.64) with k = n. To this end

we extend the sum in (5.64) to i+N and split in into three parts:

∆ri−n ≤ q∆ri−n−1 + c(λ)

(
i−n∑

j=i−N
q|i−n−j|∆rj +

i−1∑

j=i−n+1

q|i−n−j|∆rj

+
i+N∑

j=i

q|i−n−j|∆rj

)

+O(qN−n).







(5.67)

Then the combination of the first sum in (5.67) together with the first sum in (5.66) yields

qn
i−n∑

j=i−N
q|i−n−j|∆rj +

i−(n−1)
∑

j=i−N
nqi−j∆rj =

i−n∑

j=i−N
(n+ 1)qi−j∆rj + nqn−1∆ri−(n−1).
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The last term on the right-hand-side of this equation we add to the second sums in (5.67) and (5.66):

qn
i−1∑

j=i−n+1

q|i−n−j|∆rj +
i−1∑

j=i−(n−2)

1−q2(n−(i−j))

1−q2 (i− j + 1)qi−j∆rj + nqn−1∆ri−(n−1)

= (qn+1 + nqn−1)∆ri−(n−1) +
i−1∑

j=i−(n−2)

qnqj−i+n∆rj +
i−1∑

j=i−(n−2)

1−q2(n−(i−j))

1−q2 (i− j + 1)qi−j∆rj

= (qn+1 + nqn−1)∆ri−(n−1) +
i−1∑

j=i−(n−2)

(
q2(n+j−i) + 1−q2(n−(i−j))

1−q2 (i− j + 1)
)
qi−j∆rj

≤ nqn−1(q2 + 1)∆ri−(n−1) +
i−1∑

j=i−(n−2)

(i− j + 1)
(
q2(n+j−i) + 1−q2(n−(i−j))

1−q2
)
qi−j∆rj

= (n− 1 + 1) 1−q
2(n+1−(n−1))

1−q2 qn−1∆ri−(n−1) +
i−1∑

j=i−(n−2)

(i− j + 1) 1−q
2(n+1−(i−j))

1−q2 qi−j∆rj

=
i−1∑

j=i−(n−1)

(i− j + 1) 1−q
2(n+1−(i−j))

1−q2 qi−j∆rj .

Finally we add the third sums in (5.67) and (5.66) and obtain

qn
i+N∑

j=i

q|i−n−j|∆rj +
1− q2n

1− q2

i+N∑

j=i

q|i−j|∆rj =
(
q2n +

1− q2n

1− q2
)
i+N∑

j=i

q|i−j|∆rj =
1− q2(n+1)

1− q2

i+N∑

j=i

q|i−j|∆rj

With qn(q∆ri−(n+1) + O(qN−n)) = qn+1∆ri−(n+1) + O(qN ) and the last three estimates the relation

(5.66) is proven.

Now, since q < 1 we have 1− q2n < 1− q2(n−(i−j)) < 1 for j < i. Hence from (5.66) we can conclude for

all k = 0, . . . , n with i− k ∈ Jκ, by additionally combining the first two sums

∆ri ≤ qk∆ri−k +
c(λ)
1−q2

(
i−(k−1)∑

j=i−N
kqi−j∆rj +

i−1∑

j=i−(k−2)

(i− j + 1)qi−j∆rj +
i+N∑

j=i

q|i−j|∆rj

)

+kO
(
qN

)

≤ qk∆ri−k +
c(λ)
1−q2

(
i−1∑

j=i−N
(i− j + 1)qi−j∆rj +

i+N∑

j=i

q|i−j|∆rj

)

+ kO
(
qN

)

Recall that for λ tending to zero c(λ) tends to zero. Hence for λ sufficiently small we can separate
c(λ)
1−q2∆ri from the right-hand-side of the relation, c(λ)

1−q2 < 1, shift it to the left-hand-side and divide the

inequality by 1− c(λ)
1−q2 leading to

∆ri ≤ 1−q2
1−q2−c(λ)q

k∆ri−k +
c(λ)

1−q2−c(λ)

(
i−1∑

j=i−N
(i− j + 1)qi−j∆rj +

i+N∑

j=i+1

q|i−j|∆rj

)

+kO
(
qN

)
.







(5.68)

Now there are two alternatives. Either there is an n ∈ N such that i − k ∈ Jκ, k = 0, . . . , n and

i− n− 1 ∈ Z \ Jκ, or i− k ∈ Jκ for all k ∈ N.
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According to (5.61) we find in the first case, i− k ∈ Jκ, k = 0, . . . , n and i− n− 1 ∈ Z \ Jκ,

∆ri ≤ 1−q2
1−q2−c(λ)

|Ci−n−1|
B

√
λqn−1∆ri−n + c(λ)

1−q2−c(λ)

(
i−1∑

j=i−N
(i− j + 1)qi−j∆rj +

i+N∑

j=i+1

q|i−j|∆rj

)

+nO
(
qN

)

≤
c(λ) + (1−q2)|Ci−n−1|

qB(n+1)

√
λ

1− q2 − c(λ)

(
i−1∑

j=i−N
(i− j + 1)qi−j∆rj +

i+N∑

j=i+1

q|i−j|∆rj

)

+ nO
(
qN

)
.

With q < 1 we have q <
√
q < 1 and thus (i− j +1)q(i−j)/2 tends to zero for i− j tending to infinity. So

by using (i− j + 1)qi−j ≤ Kq(i−j)/2, for some constant K we finally obtain the estimate

∆ri ≤ K1(λ)
i+N∑

j=i−N
j 6=i

q|i−j|/2∆rj + nO
(
qN

)
,

where K1(λ) tends to zero for λ tending to zero. This estimate conforms to (5.56).

For the second alternative, i− k ∈ Jκ for all k ∈ N we find from (5.68) with the same argumentation as

above

∆ri ≤ 1−q2
1−q2−c(λ)q

N∆ri−N + c(λ)
1−q2−c(λ)

(
i−1∑

j=i−N
(i− j + 1)qi−j∆rj +

i+N∑

j=i+1

q|i−j|∆rj

)

+NO
(
qN

)

≤ O(qN ) +K2(λ)
i+N∑

j=i−N
j 6=i

q|i−j|/2∆rj +O
(
qN/2

)
,

with K2(λ) tending to zero for λ tending to zero. Note in this respect that ∆ri−N is bounded, cf. Section

5.4.1. So finally also in the last case an estimate corresponding to (5.56) was verified. This concludes the

proof.

Lemma 5.4.6. The conjugation Φλ is a homeomorphism.

Proof. According to [Dug66, Chap. XI, Thm. 2.1] it is enough to show that Φλ defined in (5.48) is

continuous. Since ΣA+ is compact and Φλ is bijective, it then follows that the inverse of Φλ is continuous

as well.

Since x(ω(λ, κ), λ, κ) are trajectories, we have

Φλ(κ) = x(ω(λ, κ), λ, κ)(0) = x+
0 (ω(λ, κ), λ, κ)(0) = γ+

κ0
(0) + v+0 (ω(λ, κ), λ, κ)(0).

Now, let κ1, κ2 ∈ ΣA+
be two sequences which coincide on a block of length 2N + 1 centered at i = 0:

κ1
j = κ2

j , j ∈ [−N,N ] ∩ Z.
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Then, because γ+
κ1
0
(0) = γ+

κ2
0
(0),

‖Φλ(κ1)− Φλ(κ
2)‖ ≤ ‖v+0 (ω(λ, κ1), λ, κ1)(0)− v+0 (ω(λ, κ2), λ, κ1)(0)‖

+‖v+0 (ω(λ, κ2), λ, κ1)(0)− v+0 (ω(λ, κ2), λ, κ2)(0)‖.

First we consider the first term on the right-hand side. We apply Lemma 5.4.2, which implies that the

mapping (l∞, ˆ̺) → R4, ω 7→ v+0 (ω, λ, κ)(0) is continuous. Together with Lemma 5.4.5 this yields that

this term tends to zero as N tends to infinity.

Further, on the second term on the right-hand side term we can apply Lemma 5.4.3.

Altogether this shows that ‖Φλ(κ1)− Φλ(κ
2)‖ tends to zero as N tends to infinity.

5.5 Proof of Theorem 5.3.4

Again we prove the theorem under the assumption that B(λ) > 0. Further we assume that the fibre

bundle F(W s
γ ) has the topological structure of an annulus. Recall that we are only concerned with

periodic solutions. Just as in the proof of Theorem 5.3.3 we make use of the implicit function theorem.

5.5.1 Solution for fixed κ and λ > 0

To begin with we follow the same approach as in the proof of Theorem 5.3.3 that results in the equa-

tion (5.25). Again we use the short-hand notations B := B(0), Ci := Ci(0), C = |Ci| and Ai := Ai(0).

A starting solution for λ = 0

Scanning the single steps of the proof of Theorem 5.3.3 we see that we often make use of the fact that

the quotient C
B is smaller than one. When generating a starting solution rκ for λ = 0 it provides us the

bounded areas (5.29) the rκi live in and the contraction of the fixed point equation (5.28). In case that
C
B ≥ 1 we find for Ci = −C with

Fi(r, κ) =
1

2B

(

Cri−1 +
√

C2r2i−1 + 4B

)

≥ C

B
ri−1 (5.69)

that Fi might rise above any real boundary. Further, the estimate |Fi(r, κ)−Fi(s, κ)| ≤ C
B |ri−1−si−1| for

i− 1, i ∈ Jκ provides us no longer the contractivity of F. So we need to find a different way of generating

a starting solution rκ for λ = 0.

Anyway we start from the fixed point equation (5.28). Since we are restricted to periodic solutions, the

index set under consideration is finite. Let N denote the length of the period in κ. Then we denote the

index set by ZN .

Here we define U = ×
i∈ZN

Ui, Ui ⊂ R by

Ui =







{
1
Ai

}

, i ∈ ZN \ Jκ,

[0,∞), i ∈ Jκ, i− 1 ∈ Jκ,

{
1√
B

}

, i ∈ Jκ, i− 1 ∈ ZN \ Jκ.

(5.70)

First we consider the case where there is at least one index i0 ∈ ZN \Jκ. Then we trivially get a solution
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of (5.28) for all indices i ∈ ZN \ Jκ and i ∈ Jκ, i − 1 ∈ ZN \ Jκ, if Ai > 0. In case that i, i − 1 ∈ Jκ we

obtain a solution of (5.28) by successive computation from its predecessors.

It remains to consider the case i ∈ Jκ for all i ∈ ZN . Here the fixed point equation (5.28) reduces to

Fi(r, κ) =
1

2B

(

−Ciri−1 +
√

C2
i r

2
i−1 + 4B

)

(5.71)

for all i ∈ ZN .

Now we make use of the special structure of this fixed point problem where the k-th equation of F only

depends on rk−1 and rewrite the fixed point equation for periodic orbits by repeated invoking of F into

the equivalent fixed point problem r = F(r, κ), F = (Fi)i∈ZN
with

Fi(r) := (Fi ◦ Fi−1 ◦ . . . ◦ Fi−N+1)(ri), ∀i ∈ ZN . (5.72)

Indeed it suffices to solve this equation for one index i ∈ ZN . The solution for the remaining indices we

obtain by successively plugging in the solution into (5.71).

First we consider the special case where Ci = −C for all i ∈ ZN . Recall from Remark 5.2.5 and

Corollary 5.2.4 that this condition only applies for κ ∈ K2, cf. (5.9), since we assume the topological

structure of the F(W s
γ ) to be an annulus. In this case we find that equation (5.72) has no solution

(for λ > 0), since estimate (5.69) leads to rκi ≥
(
C
B

)N
rκi . This is a contradiction for C > B. In case

that C = B the rκi have to be equal and we are looking for a solution of the equation ri = Fi(ri) =
1
2B (Bri +

√

B2r2i + 4B) which is equivalent to ri =
√

r2i + 4/B, also a contradiction. So the trajectories

corresponding to κ ∈ K2 do not exist for λ > 0. Otherwise we would find a starting solution.

Henceforth consider trajectories with at least one index j ∈ ZN such that Cj = C. Now we need to

determine each domain Di such that Fi(Di) ⊆ Di. Then the fixed point equation (5.72) is due to the

chain rule contractive if

dFi
dri

(ζi) =

N∏

k=1

dFk
drk−1

(ζk−1) < 1 (5.73)

for any ζ = (ζi)i∈ZN
with ζi ∈ Di for all i ∈ ZN .

To this end we introduce further index sets. By

J−
κ := {j ∈ Jκ | Cj < 0}

J+
κ := {j ∈ Jκ | Cj > 0}






(5.74)

we denote the subsets of Jκ that are determined by either a negative or a positive Cj . Further we define

the sequences

S−
κ (i) := {j ∈ J−

κ | ∃k = k(i) ∈ N : i ≤ j < i+ k(i) where i− 1, i+ k(i) ∈ J+
κ }

S+
κ (i) := {j ∈ J+

κ | ∃k = k(i) ∈ N : i ≤ j < i+ k(i) where i− 1, i+ k(i) ∈ J−
κ }






(5.75)

of consecutive indices j ∈ J±
κ with j ≥ i. The length of such a sequence S±

κ (i) is then given by the

corresponding k(i).

216



5.5 Proof of Theorem 5.3.4

Then we define the domains Dj ⊂ R, j ∈ ZN by

Dj :=







{
1√
B+C

}

, j ∈ J+
κ ∀j ∈ ZN

[

0, 1√
B+C

]

, ∃i ∈ J−
κ : j ∈ S+

κ (i+ 1), |i+ 1− j| ∈ 2Z

[
1√
B+C

, 1√
B

]

, ∃i ∈ J+
κ : j ∈ S+

κ (i), |i− j| ∈ 2Z+ 1

[

1√
B

(
C
B

)j−i
, 1√

B

j−i+1∑

l=0

(
C
B

)l
]

, ∃i ∈ J−
κ : j ∈ S−

κ (i), Di−1 =
[

0, 1√
B+C

]

[

1√
B+C

(
C
B

)j−i+1
, 1√

B

j−i+1∑

l=0

(
C
B

)l
]

, ∃i ∈ J−
κ : j ∈ S−

κ (i), Di−1 =
[

1√
B+C

, 1√
B

]

(5.76)

In the following we verify that Fj(Dj , κ) ⊆ Dj .

1.) In the case where j ∈ J+
κ we find due to

Fj(r, κ) =
1

2B

(

−Crj−1 +
√

C2r2j−1 + 4B
)

≤ 1√
B

that Fj ⊂
[

0, 1√
B

]

. Actually the Fj lie alternately above or below the value 1√
B+C

, which we show as

follows:

Fj(r, κ) =
1

2B

(

−Crj−1 +
√

C2r2j−1 + 4B
)

=
−C2r2j−1 + C2r2j−1 + 4B

2B
(

Crj−1 +
√

C2r2j−1 + 4B
) =

2

Crj−1 +
√

C2r2j−1 + 4B
.

Now, if rj−1 > 1√
B+C

then we find

Fj(r, κ) =
2

Crj−1 +
√

C2r2j−1 + 4B
<

2
√
B + C

C +
√
C2 + 4CB + 4B2

=
2
√
B + C

C + C + 2B
=

1√
B + C

,

whereas for rj−1 < 1√
B+C

we obtain

Fj(r, κ) =
2

Crj−1 +
√

C2r2j−1 + 4B
>

2
√
B + C

C +
√
C2 + 4CB + 4B2

=
1√

B + C
.

Especially we find Fj

(
1√
B+C

)

= 1√
B+C

for j ∈ J+
κ .

Summarizing it yields for j ∈ J+
κ

Fj(r, κ) ∈







[

0, 1√
B+C

]

, if rj−1 > 1√
B+C

,

[
1√
B+C

, 1√
B

]

, if rj−1 < 1√
B+C

,

{
1√
B+C

}

, if rj−1 = 1√
B+C

.

(5.77)

2.) Now let j ∈ J−
κ . Then we find

Fj(r, κ) =
1

2B

(

Crj−1 +
√

C2r2j−1 + 4B
)

≥ C

2B
rj−1 +

1√
B

>
1√
B
. (5.78)
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Indeed both lower estimates (5.69) and (5.78) apply.

So, let j ∈ J−
κ be within a sequence S−

κ (i) for some index i ∈ J−
κ . Applying estimate (5.69) (j − i) times

then results in Fj(r) ≥ (C/B)j−iri = (C/B)j−iFi(ri−1). Since i − 1 ∈ J+
κ we have due to (5.77) either

ri−1 = Fi−1(r) ∈
[

0, 1√
B+C

]

or ri−1 ∈
[

1√
B+C

, 1√
B

]

.

For ri−1 ∈
[

0, 1√
B+C

]

we find by once applying estimate (5.78)

Fj(r, κ) ≥
1√
B

(
C

B

)j−i
,

and for ri−1 ∈
[

1√
B+C

, 1√
B

]

we obtain by once more applying (5.69) and ri−1 ≥ 1√
B+C

Fj(r, κ) ≥
1√

B + C

(
C

B

)j−i+1

.

An upper bound we find with

Fj(r, κ) =
1

2B

(

Crj−1 +
√

C2r2j−1 + 4B
)

≤ C

B
rj−1 +

1√
B

and by applying this (j − i+ 1) times we obtain with ri−1 < 1/
√
B

Fj(r, κ) ≤
1√
B

j−i+1
∑

l=0

(
C

B

)l

.

Summarizing we obtain for j ∈ J−
κ

Fj(r, κ) ∈







[

1√
B

(
C
B

)j−i
, 1√

B

j−i+1∑

l=0

(
C
B

)l
]

, ∃i ∈ J−
κ : j ∈ S−

κ (i), ri−1 ∈
[

0, 1√
B+C

]

,

[

1√
B+C

(
C
B

)j−i+1
, 1√

B

j−i+1∑

l=0

(
C
B

)l
]

, ∃i ∈ J−
κ : j ∈ S−

κ (i), ri−1 ∈
[

1√
B+C

, 1√
B

] (5.79)

Especially this yields that Fi+k(i)(r, κ) ∈
[

0, 1√
B+C

]

for i ∈ S−
κ (i), since i+k(i) ∈ J+

κ and i+k(i)−1 ∈ J−
κ

with ri+k(i)−1 > 1/
√
B+C. Hence (5.77) and (5.79) justify the definition of Dj in (5.76).

Now, the considerations above show, that Fj(Dj) ⊆ Dj if and only if Fj(rj−1) ∈ Dj . To this end the

range Dj has to be chosen accordingly.

If for all i ∈ ZN it applies that i ∈ J+
κ then the choice of Dj is trivially {1/√B+C}. Otherwise there exist

at least one i ∈ ZN with i ∈ J−
κ . If j ∈ J+

κ and the difference between j and the first index l < j with

l ∈ J−
κ is odd, then Dj = [0, 1/

√
B+C]. If j ∈ J+

κ and j − l is even, l being the first index l < j with

l ∈ J−
κ , then Dj = [1/

√
B+C, 1/

√
B].

Finally, if j ∈ J−
κ the range Dj has to be chosen according to the range Dl of the first index l < j with

l ∈ J+
κ . Note, that there has to be such an index l ∈ J+

κ , since we already discussed the non-existence

of a solution if i ∈ J−
κ for all i ∈ ZN . The range Dl for l ∈ J+

κ in turn can be determined as described

above from the distance of l to the first index k with k < l and k ∈ J−
κ . Since we are discussing periodic

solutions only it might happen that k is equal to j −N = j.

Choosing the range Dj according to these considerations ensure that Fj(Dj) ⊆ Dj .

We continue with proving the contractivity of the fixed point equation (5.72) by applying (5.73). The
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derivative
dFj

drj−1
is given by

dFj
drj−1

(ζj−1) =
1

2B



−Cj +
C2
j ζj−1

√

C2
j ζ

2
j−1 + 4B



 .

For j ∈ J−
κ it is converging from below to C/B > 1 for ζj−1 → ∞. Hence we see that there are single

values in the product of the derivatives that will be greater than one. However, for j ∈ J+
κ we obtain

with
∣
∣
∣
dFj

drj−1
(ζj−1)

∣
∣
∣ = C

2B

(

1− Cζj−1√
C2ζ2j−1+4B

)

= C
2B

√
C2ζ2j−1+4B−Cζj−1√

C2ζ2j−1+4B

= C
2B

C2ζ2j−1+4B−C2ζ2j−1

C2ζ2j−1+4B+Cζj−1

√
C2ζ2j−1+4B

< C
C2ζ2j−1+2B

,

that the derivative tends to zero for ζj−1 → ∞. So the product of the derivatives (5.73) has the possibility

to become smaller than one.

In the following we show that the product of the derivatives (5.73) for each periodic trajectory with at

least one j ∈ J+
κ is always smaller than one. To this end we use the gained estimates

∣
∣
∣
∣

dFj
drj−1

(ζj−1)

∣
∣
∣
∣
<







C
B , j ∈ J−

κ ,

C
C2ζ2j−1+2B

, j ∈ J+
κ .

(5.80)

Further we need to split the periodic trajectory into segments characterised by positive or negative Cj in

the following way.

1.) We start with considering the sequences S−
κ (i) of consecutive indices j ∈ J−

κ , cf. (5.75). Then

i − 1 ∈ J+
κ and we first demand that Di−1 = [1/

√
B+C, 1/

√
B], cf. (5.76). Note that in this case the

sequence S+
κ (l), l + k(l) = i, of foregoing indices j ∈ J+

κ consists of an even number of elements:

. . . , l, l + 1, . . . , l + k(l)− 1 = i− 1
︸ ︷︷ ︸

∈S+
κ (l)⊆J+

κ

, i, i+ 1, . . . , i+ k(i)− 1
︸ ︷︷ ︸

∈S−
κ (i)⊆J−

κ

, i+ k(i)
︸ ︷︷ ︸

∈J+
κ

, . . .

Here we see to the product of
dFj

drj−1
for all indices j ∈ S−

κ (i) as well as the indices i− 1 and i+k(i) ∈ J+
κ .

We make use of (5.80). In case of i − 1 ∈ J+
κ we find ζi−2 > 0 and for i + k(i) ∈ J+

κ we have

ζi+k(i)−1 > 1/
√
B+C(C/B)k(i), cf. (5.76). Then we find

i+k(i)∏

j=i−1

dFj

drj−1
(ζj−1) <

C
C2ζ2i−2+2B

·
(
C
B

)k(i) · C
C2ζ2

i+k(i)−1
+2B

≤ 1
2

(
C
B

)k(i)+1 · C
C2

·C2k(i)

(B+C)·B2k(i)
+2B

≤ Ck(i)+2

2C2k(i)+2

2C·Bk(i)−1
+4Bk(i)+2

= 1
C2k(i)+2

Ck(i)+3
·Bk(i)−1

+4Bk(i)+2

Ck(i)+2

= 1

(C
B )

k(i)−1
+4(B

C )
k(i)+2 < 1

In the special case where C = B we find the product to be smaller than 1/5. If C > B and k(i) > 1
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we can simplify this estimate to
(
B
C

)k(i)−1
, in case that C > B and k(i) = 1 we find at least the upper

bound C3

C3+4B3 .

2.) Next we see to the sequences S−
κ (i) where Di−1 = [0, 1/

√
B+C]. In this case the number of elements

of the foregoing sequence S+
κ (l), l + k(l) = i, is odd. Here we build the product of

dFj

drj−1
only for

the indices j ∈ S−
κ (i) as well as the index i + k(i) ∈ J+

κ . This time we find for i + k(i) ∈ J+
κ that

ζi+k(i)−1 > 1/
√
B(C/B)k(i)−1, cf. (5.76). Then (5.80) leads to

i+k(i)∏

j=i

dFj

drj−1
(ζj−1) <

(
C
B

)k(i) · C
C2ζ2

i+k(i)−1
+2B

≤
(
C
B

)k(i) · C
C2C2k(i)−2

BB2k(i)−2
+2B

= Ck(i)+1

C2k(i)

Bk(i)−1
+2Bk(i)+1

= 1
C2k(i)

Ck(i)+1
·Bk(i)−1

+2Bk(i)+1

Ck(i)+1

= 1

(C
B )

k(i)−1
+2(B

C )
k(i)+1 < 1.

So in the case C = B we get the upper bound 1/3, if C > B and k(i) > 1 we find again the simpler

bound
(
B
C

)k(i)−1
and for C > B and k(i) = 1 we get C2

C2+2B2 .

3.) Eventually there only remain the sequences S+
κ (i). However the first element i of each of these

sequences is already considered within the product building above. Additionally the last element i+k(i)−1

is also included in the products above, if the sequences S+
κ (i) is even-numbered. Therefore the number

of remaining indices of S+
κ (i) is always even. We divide them into pairs of two and obtain from (5.80)

dFj
drj−1

(ζj−1) ·
dFj+1

drj
(ζj) <

C

C2ζ2j−1 + 2B
· C

C2ζ2j
=

1

C2ζ2j−1ζ
2
j + 2Bζ2j

Exploiting the second equation in (5.26) yields Cζi−1ζi = 1−Bζ2i and thus

dFj
drj−1

(ζj−1) ·
dFj+1

drj
(ζj) <

1

(1−Bζ2i )
2 + 2Bζ2i

=
1

B2ζ4i + 1
< 1.

Now, depending on the sequence κ the whole product (5.73) consists of different combinations of these

three subproducts. Since each subproduct is smaller than one we also find (5.73) to be smaller than one.

Hence the fixed point equation (5.72) is contractive and therefore has a unique fixed point rκi . This holds

for all i ∈ ZN .

Continuation of the solution for λ > 0

With the above constructions we have shown for χ : RN × R× ΣA → RN that

χ(rκ, 0, κ) = 0.

In order to guarantee the intended continuation of the solution we apply the implicit function theorem.

To this end we consider χ(·, ·, κ) as a mapping defined on neighbourhoods of rκ in RN and 0 in R and

show that D1χ(r
κ, 0, κ) ∈ L(RN ,RN ) is invertible. Basically this can be done as in Section 5.4 only here

we are restricted to periodic orbits which makes things a lot easier. We find that

D1χ(r
κ, 0, κ)r =

(
D1χi(r

κ, 0, κ)r
)

i∈ZN
,
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and
D1χi(r

κ, 0, κ)r = −Airi, i ∈ ZN \ Jκ,

D1χi(r
κ, 0, κ)r = −Cir

κ
i ri−1 − (2Brκi + Cir

κ
i−1)ri, i ∈ Jκ, i− 1 ∈ Jκ,

D1χi(r
κ, 0, κ)r = −2Brκi ri, i ∈ Jκ, i− 1 ∈ ZN \ Jκ.

Let r ∈ kerD1χ(r
κ, 0, κ), then:

ri = 0, i ∈ ZN \ Jκ,

Cir
κ
i ri−1 + (2Brκi + Cir

κ
i−1)ri = 0, i ∈ Jκ, i− 1 ∈ Jκ,

ri = 0, i ∈ Jκ, i− 1 ∈ ZN \ Jκ.







(5.81)

Only the second equation in (5.81), the one which is related to i ∈ Jκ, i − 1 ∈ Jκ, can have non-trivial

solutions.

First we consider the case where there is an i0 ∈ Jκ such that i0 − 1 ∈ ZN \ Jκ. Then according to the

third equation in (5.81) ri0 = 0. From (5.71) we obtain with rκi = Fi(r
κ, κ) that

2Brκi + Cir
κ
i−1 =

√

C2
i (r

κ
i−1)

2 + 4B > 0, (5.82)

and hence, according to the second equation in (5.81) it yields

ri = 0, ∀i ∈ Jκ, i > i0.

So it remains to consider the case i ∈ Jκ for all i ∈ ZN . In this case we find D1χ(r
κ, 0, κ) explicitly as

D1χ(r
κ, 0, κ) =

















2Brκ1 + C1r
κ
N 0 . . . 0 C1r

κ
1

C2r
κ
2 2Brκ2 + C2r

κ
1 0 . . . 0

0 C3r
κ
3 2Brκ3 + C3r

κ
2

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 CNrκN 2BrκN + CNrκN−1

















The determinant of this matrix is given by

det (D1χ(r
κ, 0, κ)) =

N∏

i=1

(2Brκi + Cir
κ
i−1)−

N∏

i=1

(Cir
κ
i )

and can be estimated by applying (5.82)

det(D1χ(r
κ, 0, κ)) =

N∏

i=1

√

C2
i (r

κ
i−1)

2 + 4B −
N∏

i=1

(Cir
κ
i )

>
N∏

i=1

√

C2
i (r

κ
i−1)

2 −
N∏

i=1

(Cir
κ
i )

=
N∏

i=1

(|Ci|rκi−1)−
N∏

i=1

(Cir
κ
i ) ≥ 0.

Hence D1χ(r
κ, 0, κ) is invertible and we can apply the implicit function theorem.

221



5 Nonwandering dynamics for D4m-equivariant homoclinic cycles

This concludes the proof of the solvability of the determination equations at λ > 0 for periodic trajectories.

The necessary and sufficient conditions to the corresponding κ are that Ai > 0 for all i ∈ ZN \ Jκ, B > 0

and, in case that i ∈ Jκ for all i ∈ ZN , that there is at least one index j ∈ J+
κ .

Due to (5.18) and the rescaling (5.21), we find that the same expression of ωi in terms of λ and ri as

presented in (5.40) applies. However, in contrast to the result of Theorem 5.3.3 we find that the ri for

i ∈ J−
κ are not uniformly bounded but, in case of B < C, grow exponentially with the length L of the

sequence of successive indices from J−
κ , ri > (C/B)L cf. the fourth and fifth row in (5.76). This reduces

the sizes of the corresponding ωi. In order to satisfy inf ω > Ω, as demanded in Theorem 3.2.2, λ has to

satisfy

λ ≤ 1

max
i∈Jκ

(r2i )
e4µ

s(0)Ω <

(
B

C

)2L

e4µ
s(0)Ω. (5.83)

So with L tending to infinity, λ tends to zero.

Remark 5.5.1. The limiting factor for the existence of a periodic trajectory is therefore not the period

length N but rather the length of the sequences S−
κ (i), i ∈ J−

κ . Or in other words, for all λ ∈ (0, λ̂(N))

there exist not only all periodic trajectories corresponding to κ ∈ ΣA+
\ K2 of length N , but all periodic

trajectories corresponding to κ ∈ ΣA+
\K2 that have no more than N consecutive determination equations

with negative Ci.

5.5.2 Solution for fixed κ and λ < 0

The system of equations under consideration are listed in Section 5.4.2 in (5.44). According to the

considerations in Section 5.4.2 we find that for λ < 0 there are only two types of sequences κ we might

obtain a solution for: Either we have for all i that i ∈ Z\Jκ or we have for all i that i ∈ Jκ and Ci(λ) < 0.

Again the solvability of the first case, i ∈ Z \ Jκ for all i, follows along the same lines as in Section 5.4.1

under the assumption Ai(λ) < 0.

In the following we discuss the solvability in case that i ∈ Jκ and Ci(λ) < 0 for all i. Here the following

equation applies

χi(r, λ, κ) = 1 +B(λ)r2i − C(λ)ri−1ri +O
(
λδ−1

)
(5.84)

for all i ∈ ZN .

As we have pointed out in Remark 5.2.5 these types of trajectories under consideration belong either to

κ ∈ K2, if the fibre bundle F(W s
γ ) has the topological structure of an annulus, or to κ ∈ K4, if F(W s

γ )

has the structure of a Möbius band, cf. (5.9) (5.10) and Corollary 5.2.4. Hence they are either 2-periodic

or 4-periodic. Here we discuss both cases.

While for B > C, using B := B(0) and C := |Ci(0)|, there was no solution of the equation χ(r, 0, κ) = 0

we easily find a solution for B < C by rκi = 1/
√
C−B for all i ∈ Z2 or i ∈ Z4. This solution also can be

continued for λ < 0 as we see in the following.

In case of the 2-periodic trajectory the Jacobian matrix D1χ(r
κ, 0, κ) has the form

D1χ(r
κ, 0, κ) =

1√
C −B




2B − C −C

−C 2B − C
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with the determinant

det (D1χ(r
κ, 0, κ)) =

2∏

i=1

2B − C√
C −B

−
2∏

i=1

C√
C −B

=
(2B − C)2 − C2

C −B
=

4B(B − C)

(C −B)
= −4B < 0.

In case of the 4-periodic trajectory the Jacobian matrix D1χ(r
κ, 0, κ) has the form

D1χ(r
κ, 0, κ) =

1√
C −B












2B − C 0 0 −C

−C 2B − C 0 0

0 −C 2B − C 0

0 0 −C 2B − C












with the determinant

det (D1χ(r
κ, 0, κ)) =

4∏

i=1

2B − C√
C −B

−
4∏

i=1

C√
C −B

=
(2B − C)4 − C4

(C −B)2
< 0.

So, no matter which case applies, the determinant is unequal to zero. Hence the implicit function theorem

can be applied and we find that these (either 2- or 4-)periodic trajectories exist for negative λ, whereas

every other periodic trajectory characterised by existing right-angled transitions does exist for positive

λ, cf. Section 5.5.1.

In case that C = B we fail to find a solution of χ(r, 0, κ) = 0 with κ such that i ∈ J−
κ for all i ∈ Zp, p

either equal to 2 or 4. This is because equation (5.84) implies 0 = 1−Bri(ri−1 − ri), which can only be

solved for ri−1 > ri for all i ∈ Zp, a contradiction. Since the existence of a solution r(λ), λ sufficiently

small, of χ(r, λ, κ) = 0 implies a solution to χ(r, 0, κ) = 0, we find that for κ ∈ K2 ∪K4 no corresponding

trajectory exists.

Summarizing, for λ < 0 we find all trajectories for those κ that satisfy i ∈ Z \ Jκ with Ai(λ) < 0 for all

i ∈ Z. Indeed we are not restricted to periodic trajectories as for these solutions already Theorem 1.0.2

applies. If B(0) < C(0) we additionally find the trajectories belonging to κ ∈ K2, if F(W s
γ ) has the

structure of an annulus, or κ ∈ K4, if F(W s
γ ) has the structure of a Möbius band. In case that B(0) = C(0)

these trajectories do not exist.
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6 Construction of a Dk-equivariant homoclinic cycle

In this section we provide an explicit construction of a family of polynomial vector fields fk in R4 with

Dk-symmetry, k ∈ N, k ≥ 3, unfolding a homoclinic cycle. The homoclinic cycle consists of k homoclinic

trajectories all connected to the hyperbolic equilibrium at the origin. In case that k = 4m, m ∈ N the

constructed vector field is an example of the in Section 5 considered vector fields.

This chapter is a version of [HKK14]. Only here we omit the description of the precise set-up and

background since we have done this in previous sections. We start in Section 6.1 with specifying the

properties concerning symmetry and unfolding that the constructed vector fields possess. Section 6.2

then provides the actual construction. In Section 6.3 we give a verification that the homoclinic trajectory

that constitute the homoclinic cycle satisfies the non-degeneracy condition (H5.4)(i).

6.1 Demands on the vector field fk

We present a construction of a Dk-equivariant polynomial vector field fk : R4×R → R4, (x, λ) 7→ fk(x, λ)

where we denote the coordinates with x = (x1, y1, x2, y2). We write R4 = R2 × R2 and we assume that

Dk acts on each R2 absolutely irreducible, cf. Definition 4.0.2.

For information on group theory in dynamical system contexts, we refer to [Fie07]. Also recall the

introduction of Section 4 for basic definitions on group theory and Section 5.1 for the introduction of

the group D4m as a representative of Dk. For our purpose the two-dimensional absolutely irreducible

representation ϑk : Dk → GL(2,R) is of interest, [LLHG99] where

ζ := ϑk(ζ) =

(

1 0

0 −1

)

, θk := ϑk(θk) =

(

cos( 2πk ) sin( 2πk )

− sin( 2πk ) cos( 2πk )

)

.

On R4 = R2 ⊕ R2, the state space of the desired vector field, the group Dk acts as ϑk + ϑk

(ϑk + ϑk)(g)((x1, y1), (x2, y2)) ≡ (ϑk(g)(x1, y1), ϑk(g)(x2, y2)),

for all g ∈ Dk, (xi, yi) ∈ R2, i = 1, 2. For this representation we have

FixZ2(ζ) := {(x1, 0, x2, 0) : xi ∈ R, i = 1, 2}. (6.1)

If k is even, this fixed point space is invariant under θ
k/2
k .

Then we construct fk with properties listed in Property (P6.1) below.

(P6.1).

(i) fk(·, λ) is Dk-equivariant with k ∈ N, k ≥ 3, where Dk acts on R2 × R2 as ϑk + ϑk.

(ii) fk(·, λ) has a hyperbolic equilibrium p = 0.

(iii) fk(·, 0) has in FixZ2(ζ) a homoclinic trajectory γk asymptotic to p.

(iv) Within Fix Z2(ζ) the homoclinic trajectory γk splits up with non-zero speed at λ = 0.

Due to Property (P6.1)(i) the vector field fk(·, λ) leaves FixZ2(ζ) invariant:

ζfk(x1, 0, x2, 0, λ) = fk(ζ(x1, 0, x2, 0), λ) = fk(x1, 0, x2, 0, λ).
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We denote the restriction of fk to FixZ2(ζ) by f̂k:

f̂k := fk|FixZ2(ζ).

With (P6.1)(ii) the isotropy group of p = 0 is obviously equal to the whole group Dk. The trajectory γk

has due to (P6.1)(iii) the isotropy subgroup Gγ = Z2(ζ). It is also a homoclinic trajectory of f̂k(·, 0).

Note that for k being even, the vector field f̂k is Z2(θ
k/2
k )-equivariant. This follows from Property (P6.1)(i).

In this consideration θ
k/2
k acts on FixZ2(ζ) as −id. Then the vector field f̂k(·, 0) has two homoclinic

trajectories, γk and −γk. Furthermore, θ
k/2
k acts as −id on the whole phase space R4. Hence the vector

field is odd which implies the existence of a natural number ν ≥ 3, cf. Definition 3.4.2, such that

Dν
1fk(p, λ) 6= 0 and Dl

1fk(p, λ) = 0, l = 2, . . . , ν − 1.

According to (P6.1)(i) the group acts absolutely irreducible on the stable and unstable subspaces E(µs(λ))

and E(µu(λ)). Invoking Lemma 4.1.1 then shows that Dkf(p, 0) has two real eigenvalues µs < 0 < µu,

both of geometric multiplicity two.

Remark 6.1.1. Any polynomial vector field fk on R4 which satisfies (P6.1) satisfies Hypothesis (H4.1)

with G = Dk, Hypotheses (H5.2), (H5.3) and Hypothesis (H5.4) restricted to FixZ2(ζ). In case that k is

even we also find ν ≥ 3.

For k = 4m, m ∈ N, any polynomial vector field fk satisfying (P6.1) also satisfies Hypothesis (H5.1).

By Property (P6.1) the leading eigenvalue is not yet determined. In the construction we introduce

freely selectable coefficients a and b which can be chosen such that the stable eigenvalue is closer to the

imaginary axis than the unstable eigenvalue, cf. Hypothesis (H5.3)(iv).

Note that Hypothesis (H5.4)(i) does not follow from Property (P6.1). This condition is solely satisfied

within FixZ2(ζ). However, we may assume that (H5.4)(i) is also satisfied in the full space since it describes

the generic situation. In Section 6.3 we state a range of coefficients for which the constructed vector fields

also satisfy (H5.4)(i).

6.2 Construction of Dk-equivariant vector fields in R4

The desired Dk-equivariant family of vector fields fk is build in several steps. First a single vector field

f̂k in R2 possessing a homoclinic trajectory to a hyperbolic equilibrium is constructed. In doing so, we

follow the idea of Sandstede [San97] – we construct f̂k in such a way that a (generalized) Cartesian leaf

forms a homoclinic trajectory.

Next, the vector field f̂k is embedded in a one-parameter family such that by changing the family pa-

rameter λ (off the critical value) the homoclinic trajectory splits up with non-zero speed.

In the final step, we extend this family into R4 and end up with a family as stated in Section 6.1.

6.2.1 Basic construction in R2

Sandstede used in [San97] the Cartesian leaf to construct a vector field in R2 having a homoclinic trajec-

tory. In [HKK14] the slightly modified curves

Ck(x1, x2) := x2
1(1− xk−2

1 )− x2
2

226
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were used. Note that C−1
3 (0) is the Cartesian leaf, and C−1

4 (0) is a lemniscate, cf. Figure 6.1. For any

odd or even k the curves C−1
k (0) resemble those for k = 3 or k = 4, respectively.

0 0.5 1.0−0.5
0

−0.4

0.4

x1

x2

0 0.5 1.0−0.5−1.0
0

−0.5

0.5

x1

x2

Figure 6.1: The curves C3(x1, x2) = 0 (left) and C4(x1, x2) = 0 (right).

The zero-level set C−1
k (0) of Ck is invariant under the flow of a given vector field f̂ if and only if

〈

∇Ck(x1, x2), f̂(x1, x2)
〉

= 0, ∀(x1, x2) ∈ C−1
k (0). (6.2)

Lemma 6.2.1 ([HKK14] Lemma 4.1). Let k ≥ 3 and a, b ∈ R\{0}, a2 < b2. The vector field

f̂k(x1, x2) :=

(

ax1 + bx2 − axk−1
1

bx1 + ax2 − bk2x
k−1
1 − ak2x

k−2
1 x2

)

has a homoclinic trajectory γ̂k which is subset of C−1
k (0) ∩ {x1 > 0}.

The expression of f̂k follows from a general polynomial ansatz of degree k−1 plugged in into equation (6.2).

Here we confine to show that the vector field indeed has a homoclinic trajectory to (x1, x2) = (0, 0).

Proof. First we show that f̂k satisfies equation (6.2): Let (x1, x2) ∈ C−1
k (0). Using

∇Ck(x1, x2) =

(

2x1 − kxk−1
1

−2x2

)

,

compute

〈

∇Ck(x1, x2), f̂k(x1, x2)
〉

= a((2x1 − kxk−1
1 )(x1 − xk−1

1 )− 2x2(x2 − k
2x

k−2
1 x2))

= a(2 (x2
1(1− xk−2

1 )− x2
2)

︸ ︷︷ ︸

=Ck(x1,x2)

−kxk−2
1 (x2

1 − xk1 − x2
2)

︸ ︷︷ ︸

=Ck(x1,x2)

)

= 0.

We must verify that f̂k(x1, x2) 6= 0 for all (x1, x2) ∈ C−1
k (0), x1 > 0. The first component f̂1

m evaluated

at those points equals

f̂1
k

(
x1,±x1

√

1− xk−2
1

)
= x1

√

1− xk−2
1

(
a

√

1− xk−2
1 ± b

)
,

and becomes zero for x1 = 0, xk−2
1 = 1 or xk−2

1 = 1−(b/a)2. With the assumption a2 < b2, the right-hand

side of the last equation, 1− (b/a)2, is negative. Hence, if k is even, this equation has no real solution. If

227



6 Construction of a Dk-equivariant homoclinic cycle

k is odd the only real solution is negative. Further, the second equation, xk−2
1 = 1, implies |x1| = 1. But

the second component f̂2
k (x1, 0) = b(1− k/2) is different from zero, since b 6= 0 and k ≥ 3.

Remark 6.2.2. Because of a2 < b2 the equilibrium (0, 0) is a saddle point with eigenvalues a + b and

a− b. If one imposes 0 < a2 < b2, then |a+ b| 6= |a− b|. This implies that the vector field f̂k is neither

Hamiltonian nor reversible. Choosing a > 0 implies that the leading stable eigenvalue is closer to the

imaginary axis than the unstable eigenvalue

|µs| < µu.

Remark 6.2.3. Let k be even. The vector field f̂k ist equivariant with respect to Z2(θ2), where θ2 acts

on R2 as −id. Consequently, θ2(γ̂k) is also a homoclinic orbit of f̂k asymptotic to (x1, x2) = (0, 0). Both

orbits, γ̂k and θ2(γ̂k), together with the equilibrium (0, 0) form the “figure-eight” drawn in the right panel

of Figure 6.1.

Remark 6.2.4. We can find an analytic solution for the homoclinic trajectory γ̂k = (γ̂1
k, γ̂

2
k) by choosing

the ansatz

γ̂1
k(t) = (1− u(t)2)

1
k−2 , γ̂2

k(t) = −γ̂1
k(t)u(t)

with u : (−∞,∞) → (−1, 1). Then u satisfies the initial value problem

u̇ =
k − 2

2
(b− au)(1− u2), u(0) = 0.

that can be solved by separation of variables. We obtain the inverse function of u = H(t) by

u 7→ t = H−1(u) =
2a ln(1− a

bu)− (a+ b) ln(1− u)− (a− b) ln(1 + u)

(k − 2)(b2 − a2)
.

Next a perturbation term is added to the vector field f̂k, that splits up the homoclinic trajectory γ̂k with

non-zero speed (for λ 6= 0). This results in the family of vector fields f̂k : R2 × R → R2.

Lemma 6.2.5 ([HKK14] Lemma 4.2). Let k ≥ 3 and a, b ∈ R\{0}, a2 < b2. Consider the family of

vector fields

f̂k(x, λ) :=

(

ax1 + bx2 − axk−1
1

bx1 + ax2 − bk2x
k−1
1 − ak2x

k−2
1 x2

)

+ λ∇Ck(x1, x2). (6.3)

In accordance with Lemma 6.2.1 this vector field has for λ = 0 the homoclinic trajectory γ̂k. This homo-

clinic trajectory splits up as λ moves off zero. Moreover, let for λ close to zero d(λ) denote the distance

of the stable and unstable manifolds of the equilibrium (0, 0), measured in a direction perpendicular to

f̂k(γ̂k(0), 0). The derivative d′(0) is different from zero.

Proof. The verification that the perturbation splits the homoclinic trajectory in the described way can

be done by using the Melnikov integral, cf. Section 3.4.1. It can be shown that, cf. [HomSan10],

d′(0) =

∞∫

−∞

〈

η(t), Dλf̂k(γ̂k(t), 0)
〉

dt,

where η(t) solves the adjoint variational equation v̇ = −[D1f̂k(γ̂k(t), 0)]
T v with |η(0)| = 1; η(0) ⊥ γ̂k(0).
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Therefore

η(t) = φ(t)

(

−f̂2
k (γ̂k(t), 0)

f̂1
k (γ̂k(t), 0)

)

with a scalar function φ. Simple calculations show that the function φ solves

φ̇ = − div(f̂k)(γ̂k(t), 0)φ.

Combining these results yields

d′(0) =

∞∫

−∞

φ(t)

〈(

−f̂2
k (γ̂k(t), 0)

f̂1
k (γ̂k(t), 0)

)

, Dλf̂k(γ̂k(t), 0)

〉

dt.

By construction the scalar product within this integral is always positive or negative, and as a solution

of a scalar linear differential equation φ(t) does also not change sign. Hence d′(0) 6= 0.

Remark 6.2.6. If k is even the entire family f̂k(·, λ) is equivariant with respect to representation of

Z2(θ2) which is given in Remark 6.2.3. Consequently, both homoclinic trajectories γ̂k and θ2(γ̂k) split up

as λ moves off zero.

Denote the stable and unstable eigenvalues by µs and µu respectively. Let a > 0, then |µs| < µu. Applying

a first return map, cf. [HomSan10], yields the bifurcation diagram depicted in Figure 6.2. In particular

this diagram reveals for which parameter values which periodic orbits do exist.

λ = 0λ < 0 λ > 0

λ = 0λ < 0 λ > 0

Figure 6.2: Bifurcation diagram of fk, a > 0: m is odd (top); m is even (bottom).

6.2.2 Extending the vector field to R4

The four-dimensional vector field fk = (f1
k , f

2
k , f

3
k , f

4
k )
T is constructed in such a way that ”fk|Fix Z2(ζ) =

f̂k”, more precisely

fk(x1, 0, x2, 0, λ) = (f̂1
k (x1, x2, λ), 0, f̂

2
k (x1, x2, λ), 0)

T . (6.4)

229



6 Construction of a Dk-equivariant homoclinic cycle

To this end the perturbed vector field is extended to R4 (see Theorem 6.2.8) by using a set of generators

for Dk-equivariant vector fields. Such generators can be found in a paper by Matthies [Mat99] for the

case k = 3 and in a paper by Lari-Lavassani, et al. [LLHG99] for k = 3, 4.

Dk-equivariant vector fields in R4

In this section we first describe the structure of Dk-equivariant polynomial vector fields in R4. To this

end we recall the following definitions and results from [ChoLau00, GSS88].

Let G be a finite group acting on the vector space Rn. A (polynomial) function s : Rn → R is called

G-invariant with respect to the given representation of the group if

s = s ◦ g ∀g ∈ G.

The set RG of G-invariant polynomials forms a ring. This ring is finitely generated, i.e. there is a finite

set s1, · · · , sj of G-invariant polynomials, the generators for the ring RG, such that each s ∈ RG has a

representation

s(x) = B(s1(x), ..., sj(x)),

where B : Rj → R is polynomial. The set {s1, · · · , sj} is called a Hilbert basis of RG. Further, the set

of equivariant polynomial vector fields forms a module MG over the ring RG. This module is finitely

generated, i.e. there exits a set {h1, · · · , hl} of G-equivariant polynomial vector fields such that each

f ∈ MG can be written as

f(x) =

l∑

i=1

Bi(s1(x), ..., sj(x))hi(x) ∀x, (6.5)

where Bi are polynomials.

Lari-Lavassani et al. [LLHG99] present a generating set for D3- and D4-equivariant vector fields f : R4 →
R4, where Dk acts as ϑk + ϑk. Matthies [Mat99] also presents a generating set for D3-equivariant vector

fields. Unlike Lari-Lavassani et al., he considered complex vector fields fC : C2 → C2. In what follows we

identify R2 with C since it seems to be adequate to work with complex coordinates in the context of the

Dk representations under consideration. We want to remark that the above notions and results spread

to representations on C2.

The coordinates in C2 we denote by z = (v, w) where v = x1+iy1 and w = x2+iy2. With the isomorphism

I : C2 → R4, (v, w) = (x1 + iy1, x2 + iy2) 7→ (x1, y1, x2, y2),

we obtain a complex vector field fC by

fC := I−1 ◦ f ◦ I.

The vector field fC is equivariant with respect to the complex representation (ϑk +ϑk)C of the group Dk

defined by

gC := I−1 ◦ g ◦ I, g ∈ Dk.

In particular, the corresponding complex representations of ζ and θk read

ζC(v, w) = (v̄, w̄), θk,C(v, w) = (ei2π/kv, ei2π/kw). (6.6)

In the following we present sets of Dk-invariant functions and Dk-equivariant vector fields. In the cases
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k = 3 and k = 4 these are generator sets for the corresponding ring RDk
or the module MDk

, respectively,

[LLHG99, Mat99].

Lemma 6.2.7 ([HKK14], Lemma 4.3). Assume Dk acts on C2 as defined in (6.6).

(i) The functions

s0(v, w) = vv̄, s1(v, w) = ww̄, s2(v, w) = vw̄ + v̄w

tj(v, w) = vjwk−j + v̄jw̄k−j , j ∈ {0, . . . , k}

are Dk-invariant polynomials on C2.

(ii) The mappings

g0(v, w) = (v, 0), g1(v, w) = (0, v), g2(v, w) = (w, 0), g3(v, w) = (0, w),

fj(v, w) = (v̄jw̄k−1−j , 0), hj(v, w) = (0, v̄jw̄k−1−j), j ∈ {0, . . . , k − 1}.

are Dk-equivariant polynomial mappings C2 → C2.

Proof. The invariance or equivariance of the given functions or mappings, respectively, can be verified by

straightforward calculations.

The vector field fk

We use the mappings presented in Lemma 6.2.7 to extend the vector field f̂k to the desired vector field

fk in R4. In the course of this we use representations of these vector fields in complex coordinates.

In complex coordinates the fixed space of Z2(ζC) reads, cf. (6.1) and (6.6)

FixZ2(ζC) := {(x1, x2) : xi ∈ R, i = 1, 2}.

According to (6.4) the R2-vector field f̂k can be seen as vector field on Z2(ζ) ⊂ R4 (we denote this vector

field again by f̂k). The related vector field f̂k,C reads (in complex coordinates)

f̂k,C(x1, x2, λ) = (f̂1
k (x1, x2, λ), f̂

2
k (x1, x2, λ)).

A crucial observation in respect of the intended extension is that the mappings in Lemma 6.2.7(ii)

leave FixZ2(ζC) invariant, and the polynomials in Lemma 6.2.7(i) are real-valued. Further, we find for

(v, w) ∈ FixZ2(ζC), i.e. for (v, w) = (x1, x2)

g0(x1, x2) = (x1, 0), g1(x1, x2) = (0, x1), g2(x1, x2) = (x2, 0), g3(x1, x2) = (0, x2),

fk−1(x1, x2) = (xk−1
1 , 0), hk−1(x1, x2) = (0, xk−1

1 ), hk−2(x1, x2) = (0, xk−2
1 x2).

Consequently, the vector field f̂k,C can be represented by means of merely these vector fields:

f̂k,C(x1, x2, λ) = a
(
g0 + g3 − fk−1 − k

2hk−2

)
(x1, x2) + b

(
g1 + g2 − k

2hk−1

)
(x1, x2)

+λ (2g0 − kfk−1 − 2g3) (x1, x2).

231



6 Construction of a Dk-equivariant homoclinic cycle

Theorem 6.2.8 ([HKK14] Theorem 4.1). The vector field

fk,C(v, w, λ) = a
(
g0 + g3 − fk−1 − k

2hk−2

)
(v, w) + b

(
g1 + g2 − k

2hk−1

)
(v, w)

+λ (2g0 − kfk−1 − 2g3) (v, w)

is equivariant with respect to the complex representation (ϑk + ϑk)C.

Moreover, the vector field fk := I ◦ fk,C ◦ I−1 satisfies (P6.1).

Proof. The first part of the theorem is an immediate consequence of the above representation of f̂k,C.

Further, by construction the vector field fk leaves Fix Z2(ζ) invariant and its restriction to this fixed

point space coincides with f̂k. So the properties concerning the homoclinic trajectory γk follow from our

considerations carried out in Section 6.2.1.

Remark 6.2.9. The construction presented in Theorem 6.2.8 is not the only way to extend the vector

field f̂k to R4 by using the set of generators listed above. In case that k is even,

f̃k,C(v, w, λ) = a
(

g0 + g3 − s
(k−2)/2
0 (g0 +

k
2g3)

)

(v, w) + b
(

g1 + g2 − k
2 s

(k−2)/2
0 g1

)

(v, w)

+λ
(

2g0 − ks
(k−2)/2
0 g0 − 2g3

)

(v, w)

is another way to extend the vector field. In this construction we only used the mappings g0, . . . , g3 and

the functions s0, . . . , s2, which have the same structure for all dihedral groups Dk, k ≥ 3. Hence f̃k,C is

not just equivariant with respect to Dk but equivariant with respect to Dl for all l ∈ N, l ≥ 3.

Remark 6.2.10. Not any vector field f̂C on FixZ2(ζC) can be extended to an ϑk×ϑk-equivariant vector

field fC on C2. If k is even, the components of all vector fields in Lemma 6.2.7 are monomials of odd

degree, whereas all functions in Lemma 6.2.7 are homogeneous polynomials of even degree. Hence, the

components of all polynomial vector fields fC that can be generated by those functions and vector fields,

cf. (6.5), are sums of homogeneous polynomials of odd degree. This must be true already for the restricted

vector field f̂C.

Recall that for k = 4, Lemma 6.2.7 presents a set of generators for the module MDk
.

For the real vector fields fk the polynomial structure is getting more and more complicated as k increases.

For that reason we confine ourselves to present the representation of f4:

f4(x, λ) =









ax1 +bx2 −ax3
1 + 3ax1y

2
1

ay1 +by2 +3ax2
1y1 − ay31

bx1 +ax2 −2bx3
1 + 6bx1y

2
1 −2ax2

1x2 + 2ay21x2 + 4ax1y1y2

by1 +ay2 +6bx2
1y1 − 2by31 +4ax1y1x2 + 2ay2(x

2
1 − y21)









+λ









2x1 −4x3
1 + 12x1y

2
1

2y1 +12x2
1y1 − 4y31

−2x2

−2y2









.

(6.7)
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6.3 Verification of Hypothesis (H5.4)(i)

We show that for |a| ≪ |b| the constructed vector field fk satisfies the Hypothesis (H5.4)(i). The

perturbation analysis below that shows this yields a strong restriction on the parameters a and b. We do

not believe the estimates to be optimal and we expect that condition (H5.4)(i) is still satisfied for many

times greater ratios |a|/|b|. However, this is not covered by our analysis.

The minimal intersection condition claimed in Hypothesis (H5.4)(i) is equivalent to the fact that the

adjoint of the variational equation along γk,

ψ̇ = −
[
D(x,y)fk(γk(t), 0)

]T
ψ, (6.8)

has (up to multiples) only one solution which is bounded on R. Note that one such bounded solution lies

in Fix Z2(ζ), cf. also the proof of Lemma 6.2.5. With that said it remains to show that equation (6.8)

has no bounded solution outside of Fix Z2(ζ). Recall that exactly those solutions of (6.8) are bounded on

R which start in the orthogonal complement of the sum of the tangent spaces of the stable and unstable

manifolds of the equilibrium p = 0 along γk, cf. Lemma 2.2.6.

As before we drop the dependence of the vector field on a and b in our notation.

With Hi : R4 → R4, Hi =
(
H1
i , H

2
i , H

3
i , H

4
i

)T
defined by

H1(x, 0) =
(
0, a+ (k − 1)axk−2

1 , 0, b+
k(k − 1)

2
bxk−2

1 +
k(k − 2)

2
axk−3

1 x2

)T
,

H2(x, 0) =
(
0, b, 0, a+

k

2
axk−2

1

)T
,

we write

fk(x, y, 0) =
(
f̂1
k (x, 0), 0, f̂

2
k (x, 0), 0

)T
+ y1H1(x, y) + y2H2(x, y).

Recall that along γk(t) the y-components are zero. Therefore the Jacobien of fk at γk(t) reads

D(x,y)fk(γk(t), 0) =D(x,y)

(
f̂1
k (γk(t), 0), 0, f̂

2
k (γk(t), 0), 0

)T

+H1(γk(t)) (0, 1, 0, 0) +H2(γk(t)) (0, 0, 0, 1). (6.9)

Within Fix Z2(ζ), a solution w of equation (6.8) is bounded on R if and only if w(t)⊥γk(t) for all t. Using

the inner unit normal ρ of C−1
k (0) ∩ {x1 > 0} within Fix Z2(ζ) we decompose a bounded solution w of

(6.8) as follows:

w(t) = w1(t)ρ(t) + w2(t)(0, 1, 0, 0)
T + w4(t)(0, 0, 0, 1)

T , (6.10)

where ρ(t) = (ρ1(t), 0 , ρ2(t), 0)T , |ρ(t)| ≡ 1, 〈γk(t), ρ(t)〉 = 0. With (6.10) we find

ẇ(t) = ẇ1(t)ρ(t) + w1(t)ρ̇(t) + ẇ2(t)(0, 1, 0, 0)
T + ẇ4(t)(0, 0, 0, 1)

T .

We plug in this expression in (6.8) and take the inner product with (0, 1, 0, 0)T or (0, 0, 0, 1)T to get

differential equations for w2 or w4, respectively. Here we take into consideration that, because of

〈ρ(t), ρ(t)〉 ≡ 1, the derivative ρ̇(t) is perpendicular to ρ(t). Moreover, ρ̇(t) is also perpendicular to
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6 Construction of a Dk-equivariant homoclinic cycle

(0, 1, 0, 0)T and (0, 0, 0, 1)T . Further we exploit that H1
i (γk(t)) ≡ H3

i (γk(t)) ≡ 0, i = 1, 2. Thus it follows

ẇ2 =−H2
1 (γk(t))w2 −H4

1 (γk(t))w4

ẇ4 =−H2
2 (γk(t))w2 −H4

2 (γk(t))w4.

More detailed this equation reads




ẇ2

ẇ4



 = −
(

aA(t) + bB(t)
)




w2

w4



 (6.11)

with

A(t) =




1 + (k − 1)

(
γ1
k(t)

)k−2 k(k−2)
2

(
γ1
k(t)

)k−3
γ2
k(t)

0 1 + k
2

(
γ1
k(t)

)k−2





B(t) =




0 1 + k(k−1)

2

(
γ1
k(t)

)k−2

1 0



 =




0 1

1 0



+




0 k(k−1)

2

(
γ1
k(t)

)k−2

0 0











(6.12)

First we consider equation (6.11) for a = 0, that is




ẇ2

ẇ4



 = −bB(t)




w2

w4



 (6.13)

With v := w4 this equation can be rewritten as second order equation

v̈ = b2
(

1 +
k(k − 1)

2

(
γ1(t)

)k−2
)

v. (6.14)

This equation can be treated as a similar problem in [Yew01, Lemma 2.2, Lemma 2.3]. Recall that

γ1
k(t) > 0 for all t ∈ R. Suppose (6.14) has a non-trivial bounded solution v. Then both v and v̇ are

square-integrable over R, moreover v decays exponentially fast as t → ±∞. Keeping that in mind we

find by multiplying (6.14) by v and integrating that

0 > −
∫ ∞

−∞

(
v̇(t)

)2
dt =

∫ ∞

−∞
b2
(

1 +
k(k − 1)

2

(
γ1
k(t)

)k−2
)(

v(t)
)2

dt > 0.

This contradicts the assumption of a bounded solution.

Summarizing, equation (6.13) has no bounded solution. Further, the matrix B(t) can be read as an

exponential decaying perturbation of a hyperbolic matrix. By the roughness theorem presented in

Lemma 2.1.7 this equation has exponential dichotomies on both R+ and R−. Altogether this implies

that equation (6.13) has an exponential dichotomy on R.

If we could guarantee that equation (6.11) still has an exponential dichotomy on R for a 6= 0 we are

finished. In that case equation (6.11) has no nontrivial bounded solution.

Now, the roughness theorem in [JuWig01, Theorem 3.2] guarantees with the estimate

|a| sup
t∈R

‖A(t)‖
(
K1

−α
+

K2

β

)

< 1, (6.15)
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that (6.11) has for sufficiently small |a| still an exponential dichotomy on R. Here K1, K2, α and β are

constants related to the exponential dichotomy of the truncated equation (6.13):

‖Φ(t, s)P (s)‖ ≤ K1e
α(t−s), t ≥ s,

‖Φ(t, s)(id− P (s))‖ ≤ K2e
−β(s−t), s ≥ t,

where Φ(·, ·) denotes the transition matrix of equation (6.13) and P (t) are the projections related to the

exponential dichotomy of this equation, cf. (2.2) .

In what follows we give an estimate of |a| such that (6.15) holds true. To that end we need estimates for

the constants K1, K2, α and β.

First we consider the exponential dichotomy of (6.13) on subintervalls [t+0 ,∞) and (−∞, t−0 ] with corre-

sponding constants K̃+
1 , K̃+

2 and K̃−
1 , K̃−

2 , respectively. We can show that for

t+0 = 1
(k−2)µs ln

(
−2(k−2)µs

3k(k−1)|b|

)

= 1
(k−2)(a−|b|) ln

(
2(k−2)(|b|−a)
3k(k−1)|b|

)

,

t−0 = 1
−(k−2)µu ln

(
2(k−2)µu

3k(k−1)|b|

)

= 1
−(k−2)(a+|b|) ln

(
2(k−2)(a+|b|)
3k(k−1)|b|

)

,







(6.16)

one may take constants K̃±
1 , K̃±

2 ≥ 9
2 and −α = β = |b|. The values of the constants are derived from

inspections of the proof of Lemma 2.1.7 which we will explain in the following. To this end we treat −bB(t)

as a perturbation of the constant hyperbolic matrix

(

0 −b

−b 0

)

, as indicated in equation (6.12). Then,

by Lemma 2.1.7, we find that the exponential rates related to the exponential dichotomy of (6.13) are

the same as the rates of the undisturbed equation. Hence we find −α = β = |b|.
Further we observe that the exponential dichotomy (2.2) of the undisturbed equation hold for a constant

K = 1 and a constant projection P with ‖P‖ = 1. The perturbation matrix satisfies (2.5) with KB =

|b| k(k−1)
2 and

δ =







−(k − 2)µs, t ≥ 0

(k − 2)µut, t ≤ 0
.

With this the choice of t±0 and the constants K̃±
1 , K̃±

2 follow from Remark 2.1.9 and Remark 2.1.10.

In [Cop78, Lecture 2] Coppel shows how an extention of the exponential dichotomy from a subintervall

[t0,∞) to the halfline R+ effects the constants. In fact, according to Coppel, any constants K+
1 ,K+

2 and

analogously any constants K−
1 ,K−

2 satisfying the inequality

K±
1 ≥ K̃±

1 N2
±e

±|b|t±0 , K±
2 ≥ K̃±

2 N2
±e

±|b|t±0 (6.17)

with

N± = e
±

t
±
0
∫

0

|b|‖B(τ)‖dτ
(6.18)

are suitable constants for the exponential dichotomy of (6.13) on R+ and R−, respectively. The right-hand

side in equation (6.18) can be estimated by

e
±

t
±
0
∫

0

|b|‖B(τ)‖dτ
≤ e±|b|t±0 e

± k(k−1)
2 |b|

±∞
∫

0

(γ1
k(τ))

k−2dτ

Using the representation of γ1
k given in Remark 6.2.4 we can rewrite the integral terms in N+ and N−
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and get the solution

0∫

−∞

(
γ1
k(τ)

)k−2
dτ = −

1∫

0

H−1
(
−sgn(b)

√
1− s

)
ds =

2 ln(1+ a
|b| )

a(k−2) ,

∞∫

0

(
γ1
k(τ)

)k−2
dτ =

1∫

0

H−1
(
sgn(b)

√
1− s

)
ds =

−2 ln(1− a
|b| )

a(k−2) .







(6.19)

For a > 0 the eigenvalue µs = a− |b| is the leading one and therefore we find that

0∫

−∞

(
γ1
k(τ)

)k−2
dτ ≤

∞∫

0

(
γ1
k(τ)

)k−2
dτ and − t−0 ≤ t+0 .

For a < 0 the relation signs are inversed.

For our further analysis we assume a > 0 and define

K(a, b) =
9

2
e3|b|t

+
0 e

k(k−1)|b|
∞
∫

0

(
γ1
k(τ)

)k−2
dτ

=
9

2
e

3|b|
(k−2)(a−|b|) ln( 2(k−2)(|b|−a)

3k(k−1)|b| )e
−2k(k−1)|b|

a(k−2)
ln(1− a

|b| ).

According to our above considerations we may choose

K±
1 = K±

2 = K(a, b).

Further, using |γik(t)| ≤ 1, i = 1, 2 we find sup
t∈R

‖A(t)‖ = k2√
2
. Summarizing, from (6.15) with α = β = |b|,

K1 = K2 = K(a, b) and the above estimate of ‖A(t)‖ we obtain

a ≤ |b|√
2k2K(a, b)

. (6.20)

From this inequality we gain the desired estimate for a. First we realize that K(a, b) decreases monoton-

ically as a → 0. Consequently we find that for a ≤ |b|
r , r ≫ 1

|b|√
2k2K( |b|r , b)

≤ |b|√
2k2K(a, b)

.

Hence any a > 0 with

a ≤ min

{

|b|
r
,

|b|
k2K( |b|r , b)

}

, r ≫ 1

satisfies the Inequality (6.20). Indeed

K(
|b|
r
, b) =

9

2
e

−3r
(k−2)(r−1)

ln(
2(k−2)
3k(k−1)

(1− 1
r ))e

−2k(k−1)r ln(1− 1
r
)

(k−2)

does not depend on b any more.

Consider the cases k = 3 and k = 4. With r = 1000 we then find

k = 3 : a ≤ |b| · 0.145 · 10−9,

k = 4 : a ≤ |b| · 0.221 · 10−8.
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In order to assess the quality of this estimate, we remark that |b|√
2k2K , where

K = lim
a→+0

K(a, b) =
9

2

(
3k(k − 1)

2(k − 2)

) 3
k−2

e
2k(k−1)

k−2 ,

is an upper bound for a. For k = 3 we find (
√
2k2K)−1 ≈ 0.147 ·10−9 and for k = 4 we find (

√
2k2K)−1 ≈

0.223 · 10−8.

237





7 Numerical investigation of an example system

In Chapter 6 we have constructed with (6.7) a family of vector fields holding a D4-equivariant homoclinic

cycle. Further we have proven that the system (6.7) satisfies the Hypotheses (H5.1) - (H5.4), apart

from (H5.4)(i), whose validity was only proven for extremely small values of |a|. Indeed we believe that

(H5.4)(i) holds true for much larger values of |a|, however this is not covered by our analysis.

During this chapter we wish to investigate system (6.7) numerically in order to check whether it is an

example for the statement in Theorem 5.3.3. We start in Section 7.1 with the numerical verification that

the leading term B(λ), defined in Lemma 4.3.20, is different from zero. In Section 7.2 we try to determine

the existence of certain periodic solutions and compare the results with Theorem 5.3.3.

7.1 Checking the sign of B(λ) by using Matlab

In Section 5.2 we discussed analytically the sign of the term B(λ). Thereby the question of whether the

term can possibly disappear was not completely answered. In this section we show numerically that there

at least exist example systems, like (6.7), where B(λ) is different from zero.

The term Bi(λ, κ) is given as an improper integral on the interval (−∞, 0], cf. Lemma 4.3.20. Recall in

this respect that the value of B(λ) = Bi(λ, κ) is for any κ ∈ Σ4m independent of i ∈ Jκ, cf. Lemma 5.2.6.

Its integrand is the scalar product of two terms multiplied by an converging exponential factor. Now,

the idea of the numerical considerations is to approximately calculate the integrand of Bi for λ = 0 and

display it over the time t < 0. We will observe that the integrand does not change sign and hence the

integral can not become zero.

For λ = 0 the term Bi reads, cf. Lemma 4.3.20,

Bi(0, κ) :=
1

2

0∫

−∞

e2µ
ss

〈

Φκi
(0, s)TP−

κi
(0, 0)Tψκi

, D2
1f(γκi

(0)(s), 0)
[

R−
κi
(0, s)ηsκi−1

(0)
]2
〉

ds,

where γκi
is one of the homoclinic solutions, Φκi

(0, s) is the transition matrix of the variational equation

ẋ = D1f(γκi
(t), 0)x (7.1)

and P−
κi
(0, 0) is the corresponding projection of the exponential dichotomy mapping onto W+

κi
⊕Zκi

along

Tγκi
(0)W

u(p), cf. (3.17).

From Lemma 4.3.17 we know that R−
κi
(0, s)ηsκi−1

(0) is an element of imP−
κi
(0, s)∩Fix⊥κi

that is transported

backwards in time via the transition matrix Φκi
(s, t), t ≤ s ≤ 0. For s = 0 we therefore find that

R−
κi
(0, 0)ηsκi−1

(0) ∈ W+
κi
. Hence R−

κi
(0, ·)ηsκi−1

(0) is a solution of (7.1) with initial value x(0) ∈ W+
κi
.

Now, the basic problem in calculating R−
κi
(0, s)ηsκi−1

(0) is, that we do not have a representation of the

subspace W+
κi
. However, W+

κi
is a subspace of Tγκi

(0)W
s(p) and hence we know that any solution of (7.1)

that starts in W+
κi

converges to zero for t → ∞, cf. Lemma 2.2.6.

Now, this leads to the first step for calculating B(0): the determination of W+
κi
. Due to the symmetry

of the system it suffices to consider the case κi = 1. To this end we consider the system of differential

equations

ẋ = f(x, 0),

ẏ = D1f(x, 0)y,






(7.2)
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with (x, y) : R → R4 × R4 where the vector field f is given by (6.7). Exemplarily we have chosen the

parameters a = 2 and b = 5. With this the leading eigenvalues at λ = 0 read µs(0) = −3 and µu(0) = 7.

With the initial point x0 = (1, 0, 0, 0) we ensure that the solution x(·) = γ1(·). Thus the second part

of the system (7.2) represents the variational equation (7.1) along γ1. Then, for a certain ϕ ∈ [0, π] the

solution y(·) with y0 = y(0) = (0, cos(ϕ), 0, sin(ϕ)) ∈ Fix⊥1 converges to zero for t → ∞. In that case y(0)

represents the direction of W+
1 .

When solving the initial value problem (7.2) with x(0) = (1, 0, 0, 0) and y(0) = (0, cos(ϕ), 0, sin(ϕ))

numerically with a Matlab ODE-solver the solution for x will not be exactly the homoclinic one, but

only one within a neighbourhood. Also the solution for y will only be an approximation. Therefore,

we restrict the numerical investigation to finite intervals in which the solutions still go monotonically

towards zero. We have minimized the sum of the squares of the solution components of y at the end

point of the interval depending on the starting angle ϕ. That way we have approximated the value of

ϕ∗ = 1.86091 for which the y-components are closest to zero. On the left hand side in Figure 7.1 the

non-zero components - namely these are x1, x3, y2 and y4 - of the obtained solutions for ϕ∗ are displayed

over the time interval [0, 1]. Recall in this respect that the other components remain zero for all time,

since we start with (x0, y0) in the product space of the fixed point spaces Fix1 and Fix2 which is invariant

with respect to the flow of (7.2).
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Figure 7.1: Non-zero solution components of the initial value problem (7.2), x(0) = (1, 0, 0, 0) and y(0) =
(0, cos(ϕ∗), 0, sin(ϕ∗)) with ϕ∗ = 1.86091 over the time t ∈ [0, 1] (left), integrand term of B(0) displayed over the time
t ∈ [−1, 0] (right)

After we have determined the direction of W+
1 we go on with displaying the integrand term of B1(0). To

this end we now consider the system

ẋ = f(x, 0),

ẏ = D1f(x, 0)y,

ż = −[D1f(x, 0)]
T z,







(7.3)

for t < 0. Again with x0 = (1, 0, 0, 0) we obtain x(·) = γ1(·). With y0 = (0, cos(ϕ∗), 0, sin(ϕ∗)), ϕ∗ as

determined above, we obtain with y(·) a solution that lies within span{R−
1 (0, ·)ηsκi−1

(0)}, κi−1 ∈ {2, 4}.
Note that the solution y and R−

1 η
s
κi−1

may differ in size, since we do not know the precise value of

‖R−
κi
(0, 0)ηsκi−1

(0)‖. Finally with z0 = (1, 0, 0, 0) ∈ Z1 we calculate the term Φ1(0, ·)TP−
1 (0, 0)Tψ1, since

ψ1 ∈ Z1 is transported backwards in time by the transition matrix Ψ(t, 0) = Φ(0, t)T of the adjoint

variational equation ẋ = −[D1f(γ1, 0)]
Tx.
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Again we solve this initial value problem with Matlab, this time on a negative time interval. After that

we build the weighted scalar product from the obtained solution in the following form

e2µ
st〈z(t), D2

1f(x(t), 0)[y(t), y(t)]〉,

and plot the result over time t < 0, cf. the right side in Figure 7.1. It is obvious that the integral of

the displayed curve over time is different from zero. In fact, it turns out that for the system (6.7) B(0)

has a positive sign. Since B(·) is continuous in λ = 0, the value B(λ) is different from zero for all |λ|
sufficiently small.

7.2 Finding certain periodic solutions by using AUTO

In this section we introduce a numerical method for looking for periodic trajectories within the neigh-

bourhood of a homoclinic cycle by using the software package AUTO. The idea behind the method is

neither new nor innovative. We merely want to confirm the analytic results by verifying the existence of

certain periodic trajectories numerically using the example system (6.7). In particular we investigate the

existence of the trajectories that are determined by the following periodic sequences κ:

12, 123, 121, 1243, 1234 and 1214.

To this end we simply used existing AUTO demo-files from [DoeOld12] by adapting them adequately.

The scripts were written in collaboration with David Lloyd (personal contact, April 2014). Especially

we want to stress that our method is not a numerical implementation of Lin’s method. On the contrary

it is fitted into the specific situation of a D4-equivariant vector field having 2-dimensional flow invariant

fixed point spaces.

For an introduction to the usage of AUTO we refer to the tutorial [SaLl12]. AUTO is a continuation

code that finds solution curves of systems of the form F (U) = 0, where F : Rn+1 → Rn is a given smooth

function, starting from an initial value U∗ by basically using Newton’s method. The problem also can be

given as boundary-value problem of the form

du

dt
= f(u, λ), 0 < t < 1, (u, λ) ∈ Rn × Rp

g(u(0), u(1), λ) = 0, g maps into Rnbc

1∫

0

h(u(t), λ)dt = 0, h maps into Rnint .







(7.4)

A necessary condition for the correct operating of the continuation - apart from a sufficiently accurate

initial guess - is the validity of the following equation

n+ p− (nbc + nint) = 1. (7.5)

That is the dimension of the phase and parameter space minus the number of the boundary conditions

needs to be one, so that there remains one extra dimension for continuation.
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7 Numerical investigation of an example system

7.2.1 Idea and Implementation

Our approach is divided into three steps. First we look for initial data as approximation to each homoclinic

solution γ1, . . . , γ4 the homoclinic cycle Γ consists of. We need those for both fixed λ > 0 and fixed λ < 0,

λ sufficiently small.

Proceeding from these initial data we can build the pathway of a trajectory for any periodic sequence κ

by attaching the initial data to each other. Thereby we obtain jumps at each coupling point. In contrast

to Lin’s method the jumps appear near the equilibrium. In the second step we try to get all the jumps

equal to zero. The idea for the procedure in this second step is due to Thomas Wagenknecht (personal

contact, January 2011).

Finally, if the second step was successful for a fixed κ (for either λ greater or smaller than zero), we need

to check that the obtained solution really is a periodic trajectory of the system. We do this by simply

continuing this trajectory in the parameters λ and the time period T .

During the whole numerical investigation we consider the vector field (6.7) with the parameters a = −2

and b = −5 which implies for λ = 0 the eigenvalues µs(0) = −7 and µu(0) = 3. Hence, in contrast

to our analytic considerations within the previous sections, the unstable eigenvalue µu is the leading

eigenvalue since it lies closer to the imaginary axis. In fact, we simply achieve a time reversal by this

choice of parameters, because f4(x, λ;−a,−b) = −f4(x,−λ; a, b). So this only changes the flow directions

of the trajectories which means that our analytical results still apply on this example - appart from a

reversal of the sign of λ. The choice of the parameters a and b was made in view of the stability of

the homoclinic trajectories for positive time. To be precise, any solution starting in a fixed point space

within the inner neighbourhood of a homoclinic trajectory (for λ = 0) converges towards that homoclinic

trajectory. In contrast to the situation depicted in Figure 6.2, we find with this constellation that the

1-periodic trajectories (κ ∈ {1, 2, 3, 4}) are within the fixed point spaces stable and appear for λ > 0,

the 2-periodic trajectories (κ ∈ {13, 24}) that trace the figure-eight shape are also stable within the fixed

point spaces and appear for λ < 0, cf. [SSTC01, Theorem 13.11]. Recall on that behalf that the fixed

point spaces are 2-dimensional.

Within each of the three steps we consider the task as a boundary value problem (7.4). All of them

are solved with the continuation package AUTO in the flavour Auto07p, [DoeOld12]. As is common, we

consider the vector field in the time rescaled form

u̇ = Tf(u, λ),

where any trajectory segment is parameterized over the unit interval [0, 1]. The associated integration

time T appears as the separate parameter PAR(11).

Step one - Generating initial data

First we need to find initial data as approximation to the homoclinic solutions γ1 to γ4 for fixed λ. To this

end we use a simple shooting method that is used for finding saddel-node connections as it can be find

in [DoeOld12, Section 18.1 AUTO Demos: fsh]. That is, we solve the differential equation u̇ = Tf(u, λ),

u ∈ R4, f given by (6.7), for either λ = 1e−5 or λ = −1e−5 starting near the equilibrium within the

1-dimensional intersection of the unstable subspace and one of the fixed point spaces. Then we follow

the solution curve with the aim to approach again the equilibrium.
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7.2 Finding certain periodic solutions by using AUTO

To be more precise, we solve the boundary value problem u̇ = Tf(u, λ) with

(i) f(u(1) + εv, λ) = 0, (ii) D1f(u(1) + εv, λ)v − µv = 0 and (iii) ‖v‖ − 1 = 0, (7.6)

with the further parameters µ ∈ R and v ∈ R4 and a constant ε ∈ R close to zero. Initially the parameter µ

is set equal to the unstable eigenvalue µu(λ) and v is set equal to one of the two corresponding eigenvectors

vu lying within one of the fixed point spaces. Further we start with the initial guess u∗ ≡ −εvu and a

sufficiently small integration time T . Then we ask AUTO to continue the solution in the parameter T ,

whose absolute value shall be increasing, and the additional parameters µ and v. With the dimension

of the phase space n = 4, the number of continuation parameters p = 6 = dim(T ) + dim(µ) + dim(v)

and the numbers of boundary conditions nbc = 9 and nint = 0, cf. (7.6), the necessary condition (7.5) is

satisfied.

For sufficiently small integration time T and |ε|, the initial guess of u ≡ −εvu is sufficiently accurate

to satisfy the boundary-value problem. In the following continuation AUTO is searching for a solution

along the same trajectory by increasing the time |T |. To this end u(1) remains fixed and finally after

some iterations we reach with u(0) the neighbourhood of the equilibrium again. So effectively, only the

integration time T changes during the continuation. Due to the invariance of the fixed point spaces with

respect to the flow of the differential equation we remain in the same fixed point space we have started

in. Hence we have traced the pathway of one of the homoclinic trajectories. By varying the fixed point

space we start in and the sign of the constants ε we determine the homoclinic solution we are tracing.

Figure 7.2 displays the results of this step for λ < 0.
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Figure 7.2: Approximations of the homoclinic trajectories γ1, . . . , γ4 for a = −2, b = −5 and λ = −1e−5.
In the first row the solutions within the fixed point spaces are shown, followed in the other rows by each corresponding
component (x1, y1, x2, y2) plotted over the time t ∈ [0, 1].
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7 Numerical investigation of an example system

Step two - Continuation for finding periodic solutions

We start with the initial data generated in step one. These initial data are given for fixed λ as matrices

[t x∗
1], . . . , [t x∗

4] of dimension D× (1+4), t ∈ [0, 1], where D is the number of the calculated time-steps.

Due to the symmetry of the system the time column is identical in all four cases. So is the integration

time T ∗. Now, to find a N -periodic orbit given by the sequence κ, κi ∈ {1, 2, 3, 4}, we put the starting

solutions [t x∗
κi
], i ∈ {1, . . . , N}, together to a D × (1 + 4N) matrix of the form [t x∗

κ1
. . . x∗

κN
].

Then we continue from this initial solution trying to find the N -periodic orbit. That is, we solve for all

i ∈ {1, . . . , N} the boundary value problem

ẋκi
= Tf(xκi

, λ)

with the 4N boundary conditions

xκi
(1) = xκi+1

(0).

Recall that AUTO automatically scales the time to the interval [0, 1].

In order to solve this task we set xκi
= (u4(i−1)+1, . . . , u4(i−1)+4) ∈ R4, i ∈ {1, . . . , N} and set the initial

time value PAR(11) = T ∗. Then we further introduce the 4N parameters PAR(12), . . . , PAR(4N +11),

whose initial values are given by

PAR(12) = u∗
1(1)− u∗

5(0)

PAR(13) = u∗
2(1)− u∗

6(0)
...

PAR(4N − 1 + 11) = u∗
4N−1(1)− u∗

3(0)

PAR(4N + 11) = u∗
4N (1)− u∗

4(0).

Hence in the beginning the parameters PAR(12), . . . , PAR(4N+11) are different from zero and we write

the 4N boundary conditions as follows

u1(1)− u5(0)− PAR(12) = 0, etc.

Note that the dimension of the system here is n = 4N . With nbc = 4N and nint = 0 we need exactly one

parameter (p = 1) to satisfy (7.5). Then each parameter can be chosen as single continuation parameter.

Now, through continuation we get the parameters PAR(12), . . . , PAR(4N + 11) step by step to become

zero. At first we start from the initial guess [t u∗] = [t x∗
κ1

. . . x∗
κN

] and choose one parameter as

continuation parameter. After the continuation was successful we use the obtained solution u∗
new as new

initial guess and replace the initial value of the corresponding parameter with the new value which is now

close to zero. After that we choose the next parameter for continuation and repeat the procedure.

Obviously the order of the parameters is very important. The following order did work for our examples

PAR(12), PAR(16), . . . , PAR(4(N − 1) + 1 + 11),

PAR(13), PAR(17), . . . , PAR(4(N − 1) + 2 + 11),

PAR(14), PAR(18), . . . , PAR(4(N − 1) + 3 + 11).

Now, since we are searching for N -periodic trajectories at fixed λ the time period T needs to be adjusted.

That means, when it finally comes to the last N parameters PAR(15), . . . , PAR(4N + 11) we need

to consider the time period PAR(11) as continuation parameter as well. Otherwise we will not get the
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7.2 Finding certain periodic solutions by using AUTO

remaining parameters to become zero. However, adding another continuation parameter requires another

boundary or integral condition so that (7.5) still holds true. To this end we include the usual phase

condition as integral condition,
1∫

0

〈u̇old(t), u(t)− uold(t)〉dt = 0 (7.7)

additionally to the other boundary conditions. Here uold denotes the solution of the previous continuation

step, or the initial guess at the beginning of the continuation.

Then we continue in PAR(11) and one of the remaining N parameters PAR(15), . . . , PAR(4N + 11) to

the end that PAR(15), . . . , PAR(4N + 11) become zero. We do this exactly in the same way as before,

only this time we also need to update the initial value for the parameter of integration time PAR(11)

after each successful continuation.

If each continuation in AUTO was successful and all 4N parameters PAR(12), . . . , PAR(4N + 11) are

nearly zero, we get a solution of the form [t xκi
. . . xκN

] with t ∈ [0, 1] and a corresponding time period

T . Now we can rewrite this solution into









T · t xκ1

T (t+ 1) xκ2

...
...

T (t+ (N − 1)) xκN









(7.8)

and due to the construction it should represent a periodic solution of (6.7), defined by the sequence κ.

Step three - Verification of the solution

Finally we need to verify the existence of the found trajectory. Therefore we continue solution (7.8) in λ

and the period NT to make sure the orbit really does exist. To be more precise we consider the problem

u̇ = NTf(u, λ), u ∈ R4 with the boundary conditions ui(1)− ui(0) = 0 for all i ∈ {1, 2, 3, 4}. The initial

values for T and the function u are given by the final result of step two. Since the dimension of the system

is again n = 4 and we consider nbc = 4 boundary conditions and wish to continue in p = 2 parameters

we need a further integral condition to satisfy (7.5). Again we use the phase condition (7.7).

If the solution (7.8) of step two is indeed a periodic solution of (6.7) we will be able to continue it in

the parameters λ and T and with decreasing |λ| the time period T should be increasing and the periodic

solution is growing closer to the homoclinic cycle. If (7.8) is not a solution of (6.7), AUTO will break up

the continuation immediately.

7.2.2 Results

Figure 7.2 displays the results of the first step for λ < 0. Also for λ > 0 we were able to trace the pathway

of the homoclinic trajectories in order to generate initial guesses for the second step.

Starting from these solutions we tried to find the periodic trajectories corresponding to the sequences

κ ∈ {1, 13, 12, 121, 123, 1234, 1243, 1214}.

We did start with the trivial periodic trajectories 1 and 13 whose existence is already known and which

are situated in the 2-dimensional fixed point space Fix1. For λ < 0 we found the trajectories 13 and for

λ > 0 we found 1, cf. Figure 7.3.
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Figure 7.3: 1-periodic trajectories κ = 1 (violet and yellow) and 2-periodic trajectories κ = 13 (blue and red) for a = −2,
b = −5 displayed for several λ and corresponding transition times T

At λ < 0 we did find the periodic trajectories 12, 123, 1234, 1243 and 1214. That is, we could in each

case complete step two, where the jumps at each coupling point was calculated to be of the order 1e−12.

Further, after feeding the results into step three we were able to continue the data in the parameters

λ and T . Therefore we conclude that the named periodic trajectories do exist for λ < 0. Figure 7.4

exemplarily displays the obtained result for the periodic trajectory κ = 1243.

What is more, we failed to find these trajectories for λ > 0. To be precise, we already had to break up

during the continuations in step two. The first 3N − 1 parameters we could continue till they became

zero. But after that AUTO failed to satisfy the remaining boundary conditions. We also tried some

different ordering of the parameters PAR(12), . . . , PAR(4N + 11) and we even increased the values for

the convergence criteria but still AUTO did not get all the parameters to become zero.

The same was true in case of the 3-periodic trajectory given by κ = 121, only here we failed to find it for

both, λ > 0 and λ < 0.

Indeed these results correspond to our expectations based on Theorem 5.3.3. In Section 6 we have already

proven that the system (6.7) satisfies the Hypotheses (H5.1) - (H5.4), apart from (H5.4)(i), whose validity

was only proven for extremely small values of |a|. In Section 7.1 we further verified numerically that

B(0) 6= 0 for this system. The numeric results now show that additionally the relation |B(λ)| > C(λ)

holds true, since the periodic trajectory κ = 12 ∈ K2 exists for the same sign of λ as κ = 1234 ∈ K4, cf.

Remark 5.3.6. Further we can once more conclude that the sign of B(λ) is positive, since the periodic

trajectory κ = 1243 exists instead of for example the trajectory κ = 121. Therefore we obtain for the in

Theorem 5.3.3 mentioned matrices A− and A+

A− =









0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0









and A+ =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









.

Due to the fact that in our numerical considerations the unstable eigenvalue is the leading one the

assignment of the matrices A− and A+ is reversed to that in (1.6).
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Figure 7.4: 4-periodic trajectory κ = 1243 for a = −2, b = −5 and λ = −1e−5

There is another result that is verified by the numeric calculations: when examining the top left panel of

Figure 7.4 one easily notices the different transition times that are needed to move from one homoclinic

trajectory to another one. We see that it takes around twice the time when staying in the same fixed point

space than to move to a homoclinic trajectory lying in an orthogonal fixed point space. This conforms

with the calculated transition times in (5.40).
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List of Notations

————– ———————————–

C, R, N, Z set of all complex, real, natural numbers and integer

L(Rn,Rn) set of all linear mappings A : Rn → Rn

Cl(X,Y ) set of all l-times continuous differentiable functions f : X → Y ,

l ∈ N ∪ {0}
〈·, ·〉 scalar product in Rn, invariant with respect to G

| · | absolute value of an element in R

‖ · ‖ norm of an element in Rn induced by the scalar product, or matrix

norm in Rn×n induced by the vector norm in Rn, or supremum norm of

an elements x ∈ C0(I ⊂ R,Rn) over a finite interval I ⊂ R:

‖x‖ := sup
t∈I

‖x(t)‖

AT transposed of a linear mapping A with respect to 〈·, ·〉

U⊥ orthogonal complement of a linear subspace U ⊆ Rn with respect to

〈·, ·〉
imA, kerA image and kernel of a linear mapping A

σ(A) spectrum of A, that is set of all (complex) eigenvalues µ of A

σcµ complementary spectrum of A with respect to µ, σcµ := σ(A) \ {µ}

EA(µ), EA(σ) generalized eigenspace of A with respect to the eigenvalue µ or the

specrum σ, respectively, sometimes E(µ), E(σ) for short

————– ———————————–

λ system parameter

f(·, λ) vector field

D1f(·, λ), Dk
1f(·, λ) first and k-th derivativ of f with respect to the first argument,

k ∈ N, k > 2, sometimes Df(·) and Dkf(·) for short
p hyperbolic equilibrium

ν natural number satisfying Dk
1f(p, λ) = 0 and Dν

1f(p, λ) 6= 0 for all

k ∈ {0, . . . , ν − 1} \ {1}, Definition 3.4.2

µs(λ), µu(λ) leading stable and unstable eigenvalue of D1f(p, λ)

αs, αu, αss, αuu, βs, βu real constants satisfying

αss < βs < Re(µs(λ)) < αs < 0 < αu < Re(µu(λ)) < βu < αuu

αw real constant, (3.90)

————– ———————————–

W s(p), Wu(p) stable and unstable manifold of equilibrium p, (2.33)

W s
loc(p), W

u
loc(p) local stable and unstable manifold of equilibrium p,

W
s/u
loc (p) := W s/u(p) ∩ U(p, ε) for some neighbourhood U of p, ε > 0
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W ss(p), Wuu(p) strong stable and strong unstable manifold of equilibrium p, (2.42)

W s,lu(p), W ls,u(p) extended stable and unstable manifold of equilibrium p, Remark 2.2.8

Fss(x0) strong stable fibre in x0 ∈ W s(p) within the strong stable foliation F ss,

Remark 2.2.9, Figure 2.1

TqM tangent space of the manifold M in point q ∈ M

M ⋔ P the manifolds M and P intersect transversally, Definition 2.6.1

O orientation index, Corollary 2.6.7, Remark 2.6.8

F(W s
γ ) fibre bundle of tangent directions of the stable manifold, that are

complementary to γ̇, along the homoclinic trajectory γ, Remark 2.6.8

————– ———————————–

{ϕt(·)} the flow of ẋ = f(x)

Φ(·, ·), Ψ(·, ·) transition matrices of the linear equation ẋ = A(t)x or ẋ = −[A(t)]Tx,

respectively, possibly A(t) = Df(ϕt(x0)) for some x0 ∈ Rn

Es
A(·)(τ), E

u
A(·)(τ) stable and unstable subspace at time τ of ẋ = A(t)x defined via a

projection corresponding to an exponential dichotomy on R+ or R−,

respectively, Definition 2.1.5, Lemma 2.2.3

Ess
A(·)(τ), E

uu
A(·)(τ) strong stable and strong unstable subspace at time τ of ẋ = A(t)x

defined via a projection corresponding to an exponential dichotomy on

R+ or R−, respectively, Lemma 2.2.7

————– ———————————–

γ(·) solution of ẋ = f(x, λ) homoclinic to p

Γ homoclinic cycle Γ = G(γ)

κ biinfinite sequence of natural numbers

Γκ heteroclinic chain defined by κ, Definition 1.0.3

α(γ) α-limit of the heteroclinic connection γ: α(γ) = lim
t→−∞

γ(t)

ω(γ) ω-limit of the heteroclinic connection γ: ω(γ) = lim
t→∞

γ(t)

————– ———————————–

ω = (ωi)i∈Z transition time, ωi ∈ R+

Ξi(ω, λ, κ) jump, Ξi = Xi+1(−ωi+1)−Xi(ωi)

ξ∞κi
(λ) first part of jump Ξi, measures the distance of the stable and unstable

manifold

ξi(ω, λ, κ) second part of jump Ξi, exponentially small with increasing inf ω

M Melnikov integral, (3.60)

T j
κi

j = 1, 2, equation (3.64) et seqq

Ri(ω, λ, κ) residual terms of ξi(ω, λ, κ)

————– ———————————–
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γ±
κi
(λ)(·) particular solution of ẋ = f(x, λ) within the stable or unstable

manifold of pκi+1
or pκi

, respectively, Lemma 3.1.1, Figure 3.1

Φ±
κi
(λ)(·, ·) transition matrix of the variational equation ẋ = D1f(γ

±
κi
(λ)(t), λ)x

Ψ±
κi
(λ)(·, ·) transition matrix of the adjoint variational equation

ẋ = −[D1f(γ
±
κi
(λ)(t), λ)]Tx

P±
κi
(λ, ωi) projection of exponential dichotomy of ẋ = D1f(γ

±
κi
(λ)(t), λ)x, (3.16),

(3.17)

P̃κi
(λ, ·) projection onto imP+

κi−1
(λ, ωi) along imP−

κi
(λ,−ωi), Lemma 3.3.2

Sκi
(λ, ωi) invertible linear mapping used for defining P̃κi

, (3.30)

Pκi
(λ) spectral projection of D1f(pκi

, λ), (3.26)

Fκi
projection onto U+

κi
⊕ Z−

κi
along W+

κi
⊕W−

κi
, (3.38)

————– ———————————–

Uκi
, Zκi

,W+
κi
,W−

κi
subspaces of the direct sum decomposition of Rn, equations (3.4), (3.5)

ψκi
element in Zκi

, ‖ψκi
‖ = 1

Sκi
cross-section of γκi

, (3.7)

X = (Xi)i∈Z Lin trajectory, Xi : [0, 2ωi] → Rn solves ẋ = f(x, λ), Figure 3.2, (3.56)

x±
i (ω, λ, κ)(·) Lin trajectories Xi(t) :=

{

x+
i−1(t), t ≤ ωi

x−
i (t− 2ωi), t ≥ ωi

, Theorem 3.2.2

v±i (ω, λ, κ)(·) part of x±
i , Equations (3.11), (3.12), (3.13)

h±
κi
(·, v, λ) non-linearity, (3.14)

H = (H+
i , H

−
i )i∈Z sequence of Nemyzki operators defined via h±

κi
, Definition 3.3.5

g (g+i , g
−
i )i∈Z ∈ Vω, (3.15)

vω element in Vω, Lemma 3.2.4

v̂ω element in Vω, Lemma 3.2.5

v̄ω element in Vω, Lemma 3.2.6

v̄(ω, λ, κ) v̄(ω, λ, κ) := v̄ω(λ, κ)

d = (di(ωi, λ))i∈Z sequence in l∞
Rn describing the coupling of x+

i−1(ωi) and x−
i (−ωi) in the

neighbourhood of pκi
, (3.13)

a = (ai)i∈Z sequence in l∞
Rn helping to handle the coupling of x+

i−1(ωi) and

x−
i (−ωi), Lemma 3.2.4

a+i , a
−
i a+i = P+

κi−1
(ωi)ai, a

−
i = P−

κi
(−ωi)ai, (3.34)

v±,si , v±,ui , h±,s
κi

, h±,u
κi

Definition 3.3.4

v±,sui , v±,ssi v±,si (t) = v±,ssi (t) + v±,sui (t), (3.85)

l∞U space of all bounded sequences x := (xi)i∈Z, xi ∈ U , endowed with the

supremum norm ‖ · ‖l∞U , Definition 3.2.1
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Vω space of all sequences v := (v+i , v
−
i )i∈Z where v+i ∈ C([0, ωi+1],Rn) and

v−i ∈ C([−ωi, 0],Rn), equipped with the norm ‖ · ‖Vω
, Definition 3.2.1

————– ———————————–

GL(n,R) general linear group of Rn

G finite group

ϑ(g) linear acting (representation) of group element g ∈ G, Definition 4.0.2

Dk symmetry group of the regular k-gon in the plane

Gq, Gγ isotropy subgroup of q ∈ Rn or of a solution γ, respectively,

Definition 4.0.3

FixH fixed point space of subgroup H ⊆ G, Definition 4.0.3

G(q), G(A) group orbit of q ∈ Rn or of A ⊂ Rn, respectively, Definition 4.0.3

Zk(h) cyclic subgroup of an element h ∈ G of order k, Definition 4.0.4

θk rotation element of Dk

ζ reflection element of Dk

————– ———————————–

γgκi
, Ugκi

, Zgκi
, W±

gκi
shortened notation for gγκi

, gUκi
, gZκi

, gW±
κi
, g an element of a

symmetry group G, Section 4.3.1

Φ±
gκi

, Ψ±
gκi

, P±
gκi

transition matrices and projections defined with respect to

γgκi
:= gγκi

, Section 4.3.1

————– ———————————–

esi , e
u
i cf. Definition (1.9) and (2.58)

e+i , e
−
i cf. Definition (1.10) and (2.59)

ηsκi
(λ), η−κi

(λ) ηsκi−1
(λ) ∈ span{esκi−1

} and η−κi
(λ) ∈ span{e−κi

}

Fixi := FixGγi fixed point space of isotropy subgroup Gγi ⊆ G

Jκ index set Jκ := {j ∈ Z | Fixκj−1
⊥Fixκj

}

Ai(λ, κ) leading term of ξi(ω, λ, κ), Ai(λ, κ) = 〈η−κi
(λ), ηsκi−1

(λ)〉, Lemma 4.3.14

Bi(λ, κ) first leading term of residual terms of ξi(ω, λ, κ) in case that i ∈ Jκ,

Lemma 4.3.20

Ci(λ, κ) second leading term of residual terms of ξi(ω, λ, κ) in case that i ∈ Jκ,

Lemma 4.3.22

B(λ), B, Ci(λ), C shortened notation for Bi(λ, κ), B(0), Ci(λ, κ) and |Ci(0)|

S±(s), R±(s) leading terms of Φ(λ)(t, s)P±(λ, s) or Φ(λ)(s, t)(id− P+(λ, t)),

respectively, Lemma 2.5.2, Remark 2.5.4

S±
κi
(λ, s), R±

κi
(λ, s) leading terms of Φ+

κi
(λ)(t, s)(id− P+

κi
(λ, s)) or Φ−

κi
(λ)(s, t)P−

κi
(λ, t),

respectively, Lemma 4.3.17

RS
κi
, RR

κi
residual terms corresponding to S±

κi
, R±

κi
, Lemma 4.3.17
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RAj
κi , RBj

κi , RCj
κi j ∈ N, residual terms appearing in the proofs of Lemmata 4.3.14,

4.3.20, 4.3.22, respectively

————– ———————————–

C = (cij) connectivity matrix of a heteroclinic network

ΣA Markov chain defined by matrix A, Definition 1.0.1

σ left shift operator on ΣA, Definition 1.0.1

A−, A+ matrices that describe the nonwandering dynamics near the homoclinic

cycle via the corresponding Markov chain ΣA+
or ΣA− , respectively,

A− = − 1
2 (M − |M |) and A+ = 1

2 (M + |M |)
M = (mi,j)i,j∈{1,...,4m} matrix for defining A− and A+, (5.16)

K2, K4 set of all two- or four-periodic κ defining trajectories having only

right-angled transitions where Ci never changes sign, (5.9) and (5.10)

Πλ first return map on the collection of cross sections ∪kj=1Sj

Dλ subset of ∪kj=1Sj

Φλ homeomorphism that constitutes the topological conjugation between

(Dλ,Πλ) and (ΣA+
, σ), Section 5.4.3

̺, ˆ̺ metric in ΣA or l∞, respectively, ̺(κ1, κ2) =
∑

i∈Z

1
2|i|

|κ1
i − κ2

i |,
ˆ̺(ω1,ω2) =

∑

i∈Z

1
2|i|

|ω1
i − ω2

i |
————– ———————————–

r̂ = (r̂i)i∈Z, r = (ri)i∈Z shortened notation r̂i := e2µ
s(λ)ωi , (5.18), rescaling (5.21) and (5.41) in

case that λ is greater or smaller than zero, respectively

R̂i(r̂, λ, κ), R̃i(r, λ, κ),

Ři(r, λ, κ)

residual terms of the jump ξi(ω, λ, κ) that arise from Ri(ω, λ, κ)

accordingly, Sections 5.4.1, 5.4.2, Ři(r, λ, κ) :=
1
λ R̃i(r, λ, κ)

χ right hand side of (5.22) and (5.23) after factoring out λ interpreted as

operator χ : l∞ × R× ΣA → l∞, (r, λ, κ) 7→ χ(r, λ, κ), (5.25)

rκ solution of χ(r, λ, κ) = 0 at λ = 0

J+
κ , J−

κ subsets of Jκ satisfying Ci(0, κ) > 0 or Ci(0, κ) < 0, respectively, (5.74)

S+
κ (i), S

−
κ (i) sequences of consecutive indices j ∈ Jκ, j ≥ i with j ∈ J+

κ or j ∈ J−
κ ,

respectively, (5.75)

————– ———————————–

fk, fk,C constructed vector field in R4 that is Dk-equivariant and its related

vector field in complex coordinates, Section 6.2

f̂k, f̂k,C constructed vector fields in R2 as basis for a Dk-equivariant vector

fields fk in R4 and its related vector field in complex coordinates,

Section 6.2

Ck curves in R2 whose zero-level set describes the course of a homoclinic

loop, Section 6.2.1 and Figure 6.1

————– ———————————–
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Zusammenfassung in Deutscher Sprache

Kurzbeschreibung

Das Thema dieser Arbeit ist eine detaillierte Beschreibung der Dynamik in der Nähe von D4m-symmetri-

schen relativen homoklinen Zykeln mit Hilfe von Lins Methode.

Die homoklinen Zykel haben die Kodimension-1, d.h. wir beobachten ihre generische Entfaltung inner-

halb einer einparametrigen Familie. Sie bestehen aus mehreren Trajektorien, die sowohl für positive

als auch negative Zeit derselben hyperbolischen Gleichgewichtslage zustreben (Homokline Trajektorien)

und die alle durch die von einer endlichen Gruppe induzierten Symmetrie voneinander abhängig sind.

Wir nehmen reelle führende Eigenwerte und homokline Trajektorien an, die sich der Gleichgewichtslage

entlang führender Richtungen nähern. Die Homoklinen befinden sich in flussinvarianten Unterräumen.

Insbesondere für solche homoklinen Zykel in Differentialgleichungen mit Dk-Symmetrie (Dk ist die Sym-

metriegruppe eines regelmäßigen k-Ecks in der Ebene), bei denen k ein Vielfaches von 4 ist, stehen einige

dieser flussinvarianten Unterräume senkrecht zueinander. Dies impliziert das Verschwinden der typischer-

weise auftretenden Terme führender exponentieller Konvergenzordnung in einigen der aus Lins Methode

gewonnenen Bestimmungsgleichungen. Um eine genaue Beschreibung der nichtwandernden Dynamik

eines solchen homoklinen Zykels zu geben, d.h. eine Beschreibung der Lösungen, die in der Umgebung

des Zykels sowohl im Phasen- als auch im Parameterraum verbleiben, sind weitere Informationen über

die Restterme in den Bestimmungsgleichungen erforderlich.

In dieser Arbeit stellen wir eine verfeinerte Darstellung der Restterme in den Bestimmungsgleichungen vor

und identifizieren zwei weitere Terme mit nächsthöheren exponentiellen Konvergenzraten. Darauf auf-

bauend diskutieren wir die Lösbarkeit der resultierenden Bestimmungsgleichungen für homokline Zykel in

R4. Dabei sind zwei Fälle zu unterscheiden, die vom Größenverhältnis der beiden neuen Terme abhängen.

In einem Fall beobachten wir einen endlichen Subshift. Im anderen Fall erweist sich die Analysis als

schwieriger, so dass wir die Untersuchung auf periodische Lösungen beschränken.

Einleitung

Die Bifurkationstheorie ist eines der großen Themen in der modernen Theorie dynamischer Systeme. Grob

gesagt untersucht sie eine plötzliche Änderung des dynamischen Verhaltens bei Änderung der Parameter in

einer Familie dynamischer Systeme. Dies kann von der Veränderung der Anzahl der Gleichgewichtslagen

bis hin zum Übergang von zahmer zu wilder (chaotischer) Dynamik reichen. Die Wurzeln der Bifurka-

tionstheorie gehen zurück auf Poincaré, [P1890], aber sie ist immer noch ein lebendiges Forschungsthema

mit vielen Anwendungen in verschiedenen wissenschaftlichen Disziplinen.

Dabei spielt die Bifurkationstheorie der heteroklinen und homoklinen Lösungen eine Schlüsselrolle für das

Verständnis komplexer (chaotischer) Dynamik. Eine Zusammenfassung der aktuellen Ergebnisse und der

Literatur zur Bifurkationstheorie homokliner und heteroklinen Orbits wird von Homburg und Sandstede

[HomSan10] gegeben. Eine Einführung in die Welt der chaotischen Dynamik findet sich in [Dev89].

Die moderne Bifurkationstheorie heterokliner und homokliner Lösungen ist maßgeblich von der grundle-

genden Arbeit von Shil’nikov aus den 1960er Jahren beeinflusst. Ein Überblick ist in den Monographien

[SSTC98, SSTC01] zu finden. Shil’nikovs Ansatz zur Untersuchung von homoklinen Bifurkationsproble-

men basiert auf Poincarés erster Rückkehrabbildung. Dies ist zur Standardtechnik der Behandlung dieser

Art von Bifurkationsproblemen geworden.

Zu Beginn der 1990er Jahre entwickelte Lin eine Methode zur Konstruktion von Orbits in Umgebungen
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von heteroklinen Ketten, [Lin90]. Heutzutage ist dieses Verfahren auch als Lins Methode bekannt. Im

Wesentlichen basiert es auf einer Liapunov/Schmidt-Reduktion. Im Laufe des Reduktionsprozesses gehen

Informationen über die Dynamik verloren (z.B. Stabilitätsaussagen). Allerdings kann in einigen Fällen die

Existenz bestimmter Orbits leichter nachgewiesen werden. Für chaotische Dynamiken ist es sogar möglich,

mit dieser Methode die Existenz einer invarianten Menge zu beweisen, auf der die Dynamik topologisch

konjugiert zu einem endlichen Subshift auf einer endlichen Anzahl von Symbolen ist, [HJKL11].

Von wachsendem Interesse ist die Untersuchung heterokliner Zykel oder, allgemeiner, heterokliner Net-

zwerke. Im einfachsten Fall bestehen solche Netzwerke aus Gleichgewichtslagen und Orbits, die diese

Gleichgewichtslagen verbinden (heterokline Orbits). Solche Netzwerke sind als ”Quelle” nicht-trivialer

Dynamik identifiziert worden und treten unter anderem in physikalischen Problemen wie Konvektion

[GuHo88, Ruc01], in der Populationsdynamik [Hof94, Hof98, MaLe75] oder auch in neuronalen Netz-

werken [AOWT07] auf.

Die Untersuchung solcher Netzwerke ist im allgemeinen jedoch nur in entsprechend vielparametrigen

Familien von Differentialgleichungen sinnvoll. Anders verhält es sich bei symmetrischen Differential-

gleichungen. Die Symmetrie kann flussinvariante Unterräume erzwingen, in denen heterokline Trajek-

torien robust oder zumindest von geringer Kodimension sind, [Kru97]. Dies kann zu komplizierten he-

teroklinen Netzwerken mit niedriger Kodimension oder sogar Kodimension-Null führen. Das heißt die

Untersuchung solcher Netzwerke benötigt nur wenige bis gar keine Parameter. Insbesondere Netzwerke

mit Kodimension-Null sind robust - sie bleiben auch bei Störungen der zugrunde liegenden Differential-

gleichung bestehen.

Symmetrien von Differentialgleichungen bzw. Vektorfeldern werden mit Hilfe von Gruppenaktionen

beschrieben – ein Vektorfeld hat eine bestimmte Symmetrie oder ist äquivariant unter der (linearen)

Wirkung (Darstellung) einer Gruppe G, wenn es mit den Darstellungsoperatoren von G kommutiert. In

diesem Sinne wird G auch als Symmetriegruppe des Vektorfeldes bezeichnet. Die Lehrbücher [Van82,

GSch85, GSS88, ChoLau00, Fie07] enthalten allgemeine Abhandlungen zur äquivarianten Bifurkations-

theorie. In [Fie96] werden u.a. auch symmetrische heterokline Netzwerke betrachtet.

Von besonderem Interesse sind heterokline Netzwerke, die sich als Gruppenorbit der Symmetriegruppe

einer einzelnen heteroklinen Trajektorie ergeben. In gewissem Sinne definiert diese Trajektorie das Netz-

werk. Dann kann die Kodimension des Netzwerkes mit der Kodimension der definierenden Trajektorie

übereinstimmen. Überraschenderweise können solche Netzwerke eine sehr komplexe Dynamik erzeugen.

Robuste heterokline Netzwerke werden seit den 90er Jahren verstärkt untersucht, vgl. [AgCaLa05,

AgLaRo10, HomKno10, KLPRS10, KruMel04]. Ein ausführlicher Überblick über robuste heterokline

Zykel bietet [Kru97]. Teil II dieser Veröffentlichung beschreibt detailliert den Stand der mathematischen

Forschung, während in Teil III Experimente und numerische Anwendungen diskutiert werden.

In jüngerer Zeit sind Bifurkationsprobleme von nichtrobusten symmetrischen heteroklinen Netzwerken in

den Fokus gerückt. Selbst einfache Netzwerke dieser Art können eine sehr komplexe Dynamik erzeugen.

Dies ist z.B. der Fall bei einem Netzwerk, das aus zwei Homoklinen besteht, die durch Spiegelsymmetrie

auseinander hervorgehen und sich einer hyperbolischen Gleichgewichtslage entlang der gleichen Richtung

nähern – ein sogenannter Z2-symmetrischer Bellows. Man beachte, dass Z2-symmetrische Bellows min-

destens einen relativen homoklinen Zykel der Kodimension-1 bilden. Sie erzeugen Shiftdynamik (voller

Shift auf zwei Symbolen), [Hom93].

In [Mat99] zeigt Matthies, dass im Verlauf einer D3-Takens-Bogdanov-Bifurkation D3- symmetrische rel-

ative homokline Zykel entstehen, die einen endlichen Subshift erzeugen. Sowohl in [Hom93] als auch in
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[Mat99] wurden Rückkehrabbildungen verwendet, um die Dynamik des Netzwerkes zu untersuchen.

Problemstellung

In [HJKL11] wird die Dynamik in der Nähe von Kodimension-1 homoklinen Zykeln durch Anwendung

von Lins Methode betrachtet. Unter offenen Bedingungen und in einer Vielzahl von Fällen wurden

Bifurkationsszenarien erstellt, die beschreiben, wie Shift Dynamik in der Bifurkation erscheint oder ver-

schwindet. Es stellte sich heraus, dass die Analysis in [HJKL11] bei homoklinen Zykeln mit bestimmten

Symmetrien versagt. Die prototypische Bifurkation, bei der die Analysis versagt, tritt bei homoklinen

Zykeln in Differentialgleichungen mit Dk-Symmetrie auf, bei denen k ein Vielfaches von 4 ist.

In dieser Arbeit wird die Analysis in [HJKL11] so erweitert, dass wir eine genauere Beschreibung der nicht-

wandernden Dynamik in der Umgebung eines homoklinen Zykels erhalten, wo die Analysis in [HJKL11]

unzureichend ist. Darüber hinaus geben wir eine Anleitung zur Konstruktion von Beispielvektorfeldern

in R4, die einen homoklinen Zykel mit Dk-Symmetrie enthalten und für numerische Untersuchungen ver-

wendet werden können. Eines dieser Beispiele betrachten wir numerisch, um die analytischen Ergebnisse

zu verifizieren.

Zunächst skizzieren wir die zentralen Ergebnisse und Lösungsansätze aus [HJKL11] und beschreiben kurz

die Gründe für das Scheitern der Analysis im Fall von D4m-symmetrischen homoklinen Zykeln.

Genau wie in [HJKL11] betrachten wir eine einparametrige Familie von Differentialgleichungen

ẋ = f(x, λ), (D.1)

mit x ∈ Rn, λ ∈ R, wobei f hinreichend glatt sei. Wir nehmen ferner an, dass (D.1) äquivariant

(symmetrisch) bezüglich der linearen Darstellung einer endlichen Gruppe G sei, vgl. [GSS88]:

gf(x, λ) = f(gx, λ), ∀g ∈ G. (D.2)

Zusätzlich verlangen wir, dass die Gleichung (D.1) für λ = 0 eine heterokline Trajektorie γ besitzt, die

zwei hyperbolische Gleichgewichtslagen p und hp mit h ∈ G verbindet. Das heißt, γ ist eine Lösung von

(D.1) für λ = 0 mit

lim
t→−∞

γ(t) = p and lim
t→∞

γ(t) = hp.

Als Folge der Symmetrie finden wir für jede Lösung q von (D.1), dass gq auch eine Lösung von (D.1)

für alle g ∈ G ist. Da γ eine heterokline Trajektorie ist, die p und hp verbindet, ist also auch gγ eine

heterokline Trajektorie, die gp und g(hp) verbindet. Mit Γ bezeichnen wir den von γ erzeugten relativen

homoklinen Zykel:

Γ = G(γ). (D.3)

Mit anderen Worten: Γ ist der Gruppenorbit des Abschlusses einer einzelnen heteroklinen Trajektorie γ.

Er besteht aus der hyperbolischen Gleichgewichtslage p, der heteroklinen Trajektorie γ und allen weiteren

G-Bildern von γ und p.

Der Hauptsatz von [HJKL11] verwendet die Notation für topologische Markovketten, die wir nachfolgend

aufgreifen, vgl. auch [Shu86, Definition 10.1]. Dabei sei

Σk = {1, . . . , k}Z

die Menge der biinfiniten Folgen κ : Z → {1, . . . , k}, i 7→ κi, ausgestattet mit der Produkttopologie.
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Ferner sei A = (aij)i,j∈{1,...,k} eine 0-1-Matrix, also ai,j ∈ {0, 1}. Mit

ΣA = {κ ∈ Σk | aκiκi+1
= 1}

bezeichnen wir die durch A definierte topologische Markov-Kette. Die Linksverschiebung σ wirkt auf Σk

durch

σ : Σk → Σk, (σκ)i = κi+1

und lässt ΣA invariant. Das Paar (ΣA, σ) wird als endlicher Subshift bezeichnet.

Von besonderem Interesse ist die KonnektivitätsmatrixC = (cij) eines heteroklinen Netzes (mit heterokli-

nen Trajektorien γi), eine 0-1 Matrix bei der cij = 1 ist, wenn der Endpunkt (das ω-Limit ω(γi)) der

heteroklinen Verbindung γi gleich dem Anfangspunkt (dem α-Limit α(γj)) der heteroklinen Verbindung

γj ist.

Das folgende Theorem ist die Hauptaussage in [HJKL11].

Theorem D.1 ([HJKL11], Theorem 1.1). Sei ẋ = f(x, λ) eine einparametrige Familie von Differ-

entialgleichungen, welche äquivariant bezüglich einer endlichen Gruppe G ist, vgl. (D.2). Bei λ = 0

habe ẋ = f(x, λ) einen relativen homoklinen Zykel Γ mit hyperbolischer Gleichgewichtslage wie in (D.3)

definiert. Ferner gelten einige allgemeine Bedingungen, die die minimale Schnittmenge der Tangen-

tialräume an den stabilen und instabilen Mannigfaltigkeiten entlang γ sowie die Eigenschaften des Nicht-

Orbit-Flips und des Nicht-Inklinations-Flips betreffen. Wir schreiben γ1, . . . , γk für die verbindenden

Trajektorien, die Γ erzeugen.

Es gibt eine explizite Konstruktion von (k× k)-Matrizen A− und A+ mit Koeffizienten in {0, 1} und den

von Null verschiedenen Koeffizienten an zueinander disjunkten Positionen, so dass für jede generische

Familie, die einen relativen homoklinen Zykel wie oben entfaltet, das Folgende gilt.

Man nehme Querschnitte Si transversal zu γi und schreibe Πλ für die erste Rückkehrabbildung auf der

Vereinigung von Querschnitten ∪kj=1Sj. Für λ > 0 gibt es für Πλ eine invariante Menge Dλ ⊂ ∪kj=1Sj
so dass für jedes κ ∈ ΣA+

ein eindeutiges x ∈ Dλ mit Πiλ(x) ∈ Sκi
existiert. Außerdem ist (Dλ,Πλ)

topologisch konjugiert zu (ΣA+
, σ). Eine analoge Aussage gilt für λ < 0 mit ΣA− anstelle von ΣA+

.

Die obige Beschreibung der Dynamik liefert ein vollständiges Bild der lokalen nichtwandernden Dynamik

in der Nähe von Γ genau dann, wenn

A+ +A− = C (D.4)

gilt, wobei C die Konnektivitätsmatrix des relativen homoklinen Zykels bezeichnet.

Aufgrund der topologischen Konjugation zwischen (Dλ,Πλ) und dem endlichen Subshift (ΣA+
, σ) spricht

man von Shiftdynamik.

Zunächst wollen wir die Aussage des Satzes D.1 am Beispiel eines D4 symmetrischen relativen homoklinen

Zykels erläutern, wie er in Abbildung D.1 dargestellt ist, vgl. auch [HJKL11, Table 1, Case 6]. Hier

wird der Gruppenorbit Γ aus einer einzigen homoklinen Trajektorie asymptotisch zu einer G-invarianten

hyperbolischen Gleichgewichtslage p gewonnen. Die Konnektivitätsmatrix dieses homoklinen Zykels ist

gegeben als C = 1, die Matrix, in der alle Einträge gleich eins sind. Da Dk die Symmetriegruppe eines

regelmäßigen k-Ecks in der Ebene ist, wird sie durch zwei Elemente erzeugt, der Spiegelung ζ, welche eine

zyklische Untergruppe der Ordnung zwei erzeugt, und der Drehung θk, die eine zyklische Untergruppe der
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Ordnung k erzeugt. Den Ausführungen in [HJKL11] zufolge, sind die Matrizen A−, A+ gegeben durch

A− =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









, A+ =









0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0









. (D.5)

Offensichtlich ist A+ + A− 6= 1. Das bedeutet, dass Theorem D.1 keine vollständige Beschreibung der

nichtwandernden Dynamik in der Umgebung des betrachteten homoklinen Zykels liefert.

In der Tat verifiziert Theorem D.1 für dieses Beispiel lediglich bekannte Tatsachen: Wenn λ < 0 ist,

besteht die nichtwandernde Menge aus vier 1-periodischen Lösungen, die dem Verlauf der einzelnen

Homoklinen γi (i = 1, 2, 3, 4) folgen. Ist λ > 0, so besteht die nichtwandernde Dynamik aus zwei

2-periodischen Orbits, die jeweils der Achterkonfiguration folgen, die aus den Paaren homokliner Tra-

jektorien besteht, die sich gegenüberliegen. Dabei ist zu beachten, dass sich diese Paare in invarianten

Unterräumen befinden. Daher gilt für jedes Paar [HomSan10, Theorem 5.79].

Eu

p
Es

γ = γ1
γ2

γ4
γ3

Abbildung D.1: Ein relativer homokliner Zykel, der als Gruppenorbit des Abschlusses der Homoklinen γ aufgebaut ist. Die
zugrunde liegende Symmetriegruppe ist D4. In diesem speziellen Beispiel ist D4 die Isotropiegruppe der Gleichgewichtslage
p, und Z2 ist die Isotropiegruppe der homoklinen Trajektorie γ. Die einzelnen Homoklinen befinden sich in invarianten
Unterräumen. Darüber hinaus sind die Unterräume benachbarter homokliner Trajektorien orthogonal zueinander.

Bevor wir unsere Ergebnisse präsentieren, wollen wir die Ursache dafür aufzeigen, warum die Analysis in

[HJKL11] nur eine unvollständige Beschreibung der nicht wandernden Dynamik liefert. Zu diesem Zweck

seien γ1, . . . , γk, wie oben, die verbindenden Trajektorien, die den relativen homoklinen Zykel Γ bilden.

In [HJKL11] werden die Matrizen A± im Wesentlichen dadurch konstruiert, dass man zeigt, dass eine

bestimmte Folge von verbindenden Trajektorien γi ⊂ Γ, oder mit anderen Worten eine Reiseroute entlang

Γ, von einer tatsächlichen Trajektorie von (D.1) nachverfolgt werden kann oder nicht. Zu diesem Zweck

wurde der folgende Begriff eingeführt.

Definition D.2. Sei κ ∈ Σk fest. Eine heteroklinische Kette Γκ ist eine biinfinite Folge von verbindenden

Trajektorien γκi
, i ∈ Z derart, dass ω(γκi−1

) = α(γκi
).

Mit Hilfe von Lins Methode, [Lin90, San93, Kno04], wird eine stückweise kontinuierliche Trajektorie

X = (Xi)i∈Z, die sogenannte Lin-Trajektorie, konstruiert, die der Folge von Γκ, κ fix, folgt. Die

Xi : [−ωi, ωi] → Rn selbst sind Lösungen von (D.1) und zwischen dem Endpunkt jedes Xi und dem

Anfangspunkt seines Nachfolgers Xi+1 tritt der endliche Sprung Ξi auf. Die Lin Trajektorie X ist genau

dann eine tatsächliche Trajektorie von (D.1), wenn alle Sprünge Ξi gleich Null sind. Genauer gesagt,
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wenn es eine biinfinite Folge von Übergangszeiten ω = (ωi)i∈Z, ωi ∈ R+ gibt, die für gegebene λ und κ

das Gleichungssystem Ξi(ω, λ, κ) = 0 löst, i ∈ Z, ist die Existenz einer Trajektorie X, die dem Verlauf

von Γκ folgt, nachgewiesen.

Wie wir dank Sandstede [San93] wissen, kann der Sprung in zwei Teile unterteilt werden:

Ξi(ω, λ, κ) = ξ∞κi
(λ) + ξi(ω, λ, κ).

Der erste Teil, ξ∞κi
, ist ein Maß für den Abstand von der stabilen zur instabilen Mannigfaltigkeit und

wird somit nur durch den Systemparameter λ beeinflusst. Unter geeigneten Voraussetzungen kann ξ∞κi

selbst als Systemparameter gewählt werden. Der zweite Teil des Sprungs, ξi, wird mit wachsendem ωi

exponentiell klein.

Im Fall des hier diskutierten homoklinen Zykels finden wir, vgl. [HJKL11, Proposition 3.7 und (4.1)],

Ξi(ω, λ, κ) := λ− e2µ
s(λ)ωi〈ηsκi−1

(λ), η−κi
(λ)〉+Ri(ω, λ, κ) = 0, (D.6)

für alle i ∈ Z. Dabei genügen die Restterme der Form Ri(ω, λ, κ) = O(e2µ
s(λ)ωi+1δ) + O(e2µ

s(λ)ωiδ) für

ein δ > 1. Dieses Gleichungssystem bezeichnen wir als Bestimmungsgleichung.

Wenn nun für gegebenes κ alle Skalarprodukte 〈ηsκi−1
, η−κi

〉 von Null verschieden sind, ist das System

(D.6) genau dann lösbar, wenn alle diese Produkte das gleiche Vorzeichen wie λ haben. (An dieser Stelle

sei erwähnt, dass für festes κ das Vorzeichen des Skalarprodukts nicht von λ abhängt.) Das heißt, mit

der Matrix M = (mi,j)i,j∈{1,...,k} mit mi,j := sgn〈ηsi , η−j 〉 finden wir

A− =
1

2
(|M | −M) und A+ =

1

2
(|M |+M). (D.7)

Wenn κ jedoch zulässt, dass einige Produkte 〈ηsκi−1
, η−κi

〉 zu Null werden, ist eine aufwendigere Analysis

als die in [HJKL11] notwendig, um die Gleichung (D.6) zu lösen. Genauer gesagt, um zu entscheiden,

ob (D.6) lösbar ist oder nicht, braucht man Wissen über die Terme führender Ordnung der Restterme

Ri(ω, λ, κ).

Wenden wir uns also kurz der Frage zu, ob und wann das Skalarprodukt 〈ηsκi−1
, η−κi

〉 Null werden kann.

Zu diesem Zweck definieren wir

esi := lim
t→∞

(γi(t)− p)/‖γi(t)− p‖,

d.h. esi definiert die Richtung, in der sich die Homokline γi der Gleichgewichtslage p für positive Zeit

nähert. Weiter definieren wir

e−j := lim
t→−∞

ψj(t)/‖ψj(t)‖ (D.8)

wobei ψj(t) eine Lösung der adjungierten Variationsgleichung entlang γj(t) ist

ẋ = −[D1f(γj(t), λ)]
Tx, x(0) = ψj .

Dabei ist ψj ein Einheitsvektor, der der folgenden Bedingung genügt

span{ψj} =
(
Tγj(0)W

s(ω(γj)) + Tγj(0)W
u(α(γj))

)⊥
.

Das orthogonale Komplement ist durch ein G-invariantes Skalarprodukt 〈·, ·〉 definiert. Aufgrund der
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im Theorem D.1 genannten minimalen Schnittbedingung, die auf alle verbindenden Trajektorien des

Zykels übertragen wird, ist der Vektor ψj bis auf skalare Vielfache eindeutig definiert. Die Existenz des

Grenzwertes in (D.8) wird durch die Überlegungen in [HJKL11, Abschnitt 3] sichergestellt.

Wenn wir uns nun die Herleitung von (D.6) mit Hilfe von Lins Methode genauer ansehen, stellen wir fest,

dass unter geeigneten Annahmen (ohne das Auftreten von Inklination- und Orbit-Flip Konstellationen),

ηsκi−1
(λ) ∈ span{esκi−1

} und η−κi
(λ) ∈ span{e−κi

}

gilt und demnach

〈ηsκi−1
(λ), η−κi

(λ)〉 = Ãi(λ, κ)〈esκi−1
, e−κi

〉

mit Ãi(λ, κ) > 0. Das Skalarprodukt 〈esi , e−i 〉 ist wegen der Symmetrie gleich 〈es1, e−1 〉. Natürlich hängt

das Vorzeichen von 〈es1, e−1 〉 von der Wahl von ψ1 ab. Wir wählen ψ1 so, dass

〈es1, e−1 〉 < 0.

In Bezug auf den oben eingeführten D4-symmetrischen homoklinen Zykel, vgl. auch Abbildung D.1,

stellen wir nun fest, dass sich die einzelnen Homoklinen γi in invarianten Unterräumen befinden. Folg-

lich liegen auch die entsprechenden ηsi und η−i in diesen Unterräumen. Da die D4 die Symmetriegruppe

des Quadrats ist, stehen einige dieser Unterräume senkrecht zueinander. Dies impliziert 〈ηsi , η−i+1〉 = 0,

i = 1, 2, 3, 4. Dies liefert letztlich die Nullstellen der Nebendiagonalen in der Matrix A+, die in (D.5)

gegeben ist. Mit anderen Worten: Mit Hilfe der Ergebnisse in [HJKL11] kann nicht entschieden werden,

ob eine heterokline Kette Γκ mit κ derart, dass es für ein i ∈ Z ein j ∈ {1, . . . , 4} gibt, so dass κi = j

und κi+1 = j + 1, eine nachverfolgende tatsächliche Trajektorie hat.

Resultate
Im Folgenden listen wir die Voraussetzungen, unter denen wir die Restterme Ri(ω, λ, κ) untersuchen,

deren Terme führender Ordnung identifizieren und der Frage nach der Existenz von verfolgenden Trajek-

torien nachgehen, für die mindestens ein i ∈ Z existiert, so dass 〈ηsκi−1
(λ), η−κi

(λ)〉 = 0.

Die Gruppe, welche wir dabei betrachten, ist die Diedergruppe D4m, die Symmetriegruppe eines regel-

mäßigen 4m-Ecks in der Ebene. Sie wird erzeugt von der Spiegelung ζ und der Drehung θ4m, welche

selbst Generatoren der entsprechenden zyklischen Untergruppen, der Spiegelungsgruppe Z2(ζ) und der

Rotationsgruppe Z4m(θ4m), sind.

Wir konzentrieren uns im Wesentlichen auf den homoklinen Zykel, der durch folgende Hypothesen charak-

terisiert ist.

(H.D.1).

(i) Das Vektorfeld f : Rn × R → Rn sei glatt, d.h. f ∈ Cl+3(Rn × R,Rn), l ≥ max{3, ν}, und f(·, λ)
ist äquivariant bezüglich der Diedergruppe D4m für alle λ ∈ R.

(ii) Für λ = 0 existiert ein homokliner Zykel Γ = G(γ), der gleich dem Abschluss des Gruppenorbits

einer homoklinen Trajektorie γ an die hyperbolische Gleichgewichtslage p ist. Wir fordern, dass

Gp = D4m.

Die Konstante ν ∈ N, ν ≥ 2 ist dabei derart definiert, dass für alle k ∈ {0, . . . , ν−1}\{1} giltDk
1f(p, λ) = 0

undDν
1f(p, λ) 6= 0. Da p eine hyperbolische Gleichgewichtslage des Vektorfeldes f ist, gilt f(p, λ) = 0 und
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D1f(p, λ) 6= 0. Damit gilt im Allgemeinen für ν = 2. Für ν > 2 wird das Verschwinden der Ableitungen

des Vektorfeldes f an der Gleichgewichtslage p von der zweiten bis zur (ν − 1)-ten Ordnung verlangt.

Der Einfachheit halber nehmen wir an

(H.D.2). Die Dimension des Vektorfeldes sei n = 4.

Weiterhin gelte

(H.D.3).

(i) Der Eigenraum E(µs(λ)) zum führenden stabilen Eigenwert µs(λ) von D1f(p, λ) ist zwei-dimensional.

(ii) Gp = D4m wirkt auf E(µs(λ)) als D4m.

(iii) Gp = D4m wirkt auf den Eigenraum E(µu(λ)) zum führenden instabilen Eigenwert µu(λ) von

D1f(p, λ) als D4m.

(iv) 0 < | Re(µs(λ))| < Re(µu(λ)).

(v) Die Homokline γ besitzt die Isotropiegruppe Gγ = Z2(ζ).

Aufgrund der Hypothese (H.D.3)(v) besteht der homokline Zykel aus 4m homoklinen Trajektorien von

denen sich jede im Fixraum einer Spiegelung befindet. Aus (H.D.3)(i) und (ii) folgt, dass µs(λ) reell

und halbeinfach ist und dim(FixZ2(ζ) ∩E(µs(λ))) = 1. Die durch die Hypothesen (H.D.1) und (H.D.3)

beschriebene Situation wird in der Abbildung D.1 im Falle der D4-Symmetrie dargestellt. Weiterhin

ist auch E(µu(λ)) zweidimensional, µu(λ) ist reell und halbeinfach und dim(FixZ2(ζ) ∩ E(µu(λ))) = 1.

(Wir möchten darauf hinweisen, dass (H.D.3)(iii) keine Entsprechung in [HJKL11] hat). Das bedeutet

insbesondere, dass D1f(p, 0) weder stark stabile noch stark instabile Eigenwerte hat: σ(D1f(p, 0)) =

{µs, µu}. Daher müssen wir uns keine Gedanken über Inklination und Orbit Flip machen.

Aus den Hypothesen (H.D.1) - (H.D.3) folgt weiterhin, dass f(−x, λ) = −f(x, λ) gilt für alle x ∈ R4.

Daraus folgt D2
1f(p, λ) = 0 und somit gilt ν ≥ 3. Dies ist eine wichtige Voraussetzung für die Gültigkeit

der unten aufgeführten Darstellung des Sprungs Ξi.

In Bezug auf die homokline Trajektorie fordern wir weiterhin:

(H.D.4).

(i) Die Homokline γ ist nicht-degeneriert, das heißt Tγ(0)W
s(p, 0) ∩ Tγ(0)W

u(p, 0) = span{γ̇(0)}.

(ii) Ferner entfalten sich die Einschränkungen der stabilen und instabilen Mannigfaltigkeiten auf den

Fixraum FixGγ , W
s
FixGγ

(p) und Wu
FixGγ

(p), generisch in Bezug auf den Parameter λ, das heißt mit

einer Geschwindigkeit ungleich Null.

Die obigen Hypothesen (H.D.1) - (H.D.4) implizieren die in [HJKL11] geforderten Bedingungen.

Unter diesen Voraussetzungen haben die Sprünge die folgende Gestalt. Dafür führen wir für festes κ die

Indexmenge Jκ ein, mit

Jκ = {j ∈ Z | Fixκj−1
⊥Fixκj

}. (D.9)

Dabei bezeichnet Fixκj
den Fixraum, in welchem die Homokline γκj

liegt.
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Theorem D.3. Es gelten die Hypothesen (H.D.1)-(H.D.4). Seien αu und βs Konstanten, die −µu(λ) <

−αu < βs < µs(λ) erfüllen. Dann gibt es ein δ > 1, so dass der Sprung Ξi als eine der folgenden

Alternativen geschrieben werden kann:

(i) Ist i ∈ Z \ Jκ, dann gilt Ξi(ω, λ, κ) = λ−Ai(λ, κ)e
2µs(λ)ωi +Ri(ω, λ, κ), mit

Ri(ω, λ, κ) = O
(
e8/5µ

s(λ)δ(ωi−1+ωi)
)
+O

(
e16/5µ

s(λ)δωi
)

+







O
(
e2µ

s(λ)δωi+1
)
, i+ 1 ∈ Z \ Jκ

O
(
e8/5µ

s(λ)δωie2µ
s(λ)δωi+1)

)

+O
(
e4µ

s(λ)δωi+1
)
+O

(
e2µ

s(λ)δ(ωi+1+ωi+2)
)

}

, i+ 1 ∈ Jκ.

(ii) Ist i ∈ Jκ, dann ist Ξi(ω, λ, κ) = λ−B(λ)e4µ
s(λ)ωi − Ci(λ, κ)e

2µs(λ)(ωi−1+ωi) +Ri(ω, λ, κ), mit

Ri(ω, λ, κ) = O
(
e8/5µ

s(λ)δ(ωi−1+ωi)[e8/5µ
s(λ)δωi−2 + e4/5µ

s(λ)δωi−1 + eµ
s(λ)δωi ]

)

+O
(
e4µ

s(λ)δωi
)
+O

(
e16/5µ

s(λ)δωieµ
s(λ)δωi+1

)

+







O
(
e2µ

s(λ)δωi+1
)
, i+ 1 ∈ Z \ Jκ

O
(
e2

−βs

αu µs(λ)δωie2
αu

−βs µ
s(λ)δωi+1)

)

+O
(
e4µ

s(λ)δωi+1
)

+O
(
e2µ

s(λ)δ(ωi+1+ωi+2)
)







, i+ 1 ∈ Jκ.

Die Koeffizienten Ai(λ, κ) := 〈η−κi
(λ), ηsκi−1

(λ)〉 sind verschieden von Null für alle i ∈ Z \ Jκ. Ferner

hängen die Koeffizienten B(λ) nicht von i ∈ Jκ ab. Schließlich gibt es ein C(λ) > 0, so dass |Ci(λ, κ)| =
C(λ) für alle i mit i− 1, i ∈ Jκ.

Für i, i − 1 ∈ Jκ ergibt sich die Größe Ci(0, κ) aus dem Skalarprodukt von η−κi
(0) auf der einen und

einer Richtung innerhalb span{esκi−2
} auf der anderen Seite. Die zweite Richtung resultiert aus ηsκi−2

(0)

durch den Transport entlang der Homoklinen γκi−1
(t) mittels der adjungierten Variationsgleichung ẋ =

−[D1f(γκi−1
(t), 0)]Tx von −ωi−1 nach ωi, vgl. Abbildung D.2. Demnach liegen η−κi

und ηsκi−2
für

i, i− 1 ∈ Jκ im selben eindimensionalen Unterraum und es stellt sich heraus, dass alle Ci(λ, κ) denselben

Betrag C(λ) := |Ci(λ, κ)| haben und von Null verschieden sind. Das Vorzeichen von Ci(λ, κ) hängt von

der topologischen Struktur des Faserbündels

F(W s
γ ) :=

⋃

t∈R

(
Tγ(t)W

s(p) ∩ [ span{γ̇(t)}]⊥
)
,

welches vereinfacht ausgedrückt der stabilen Mannigfaltigkeit innerhalb einer röhrenförmigen Umgebung

der homoklinen Trajektorie γ entspricht, ab und davon, ob κi = κi−2 oder nicht.

Für alle anderen Fälle als i, i − 1 ∈ Jκ spielt der Term Ci(λ, κ) in den Bestimmungsgleichungen keine

Rolle.

Die Gestalt des Terms B(λ) ist zu kompliziert, als dass wir hierfür eine geometrische Interpretation

geben können. Es lässt sich jedoch zeigen, dass B(λ) nicht als Folge der Symmetrie des Vektorfeldes

verschwindet. Leider konnten wir das mögliche Verschwinden des Terms B aus anderen Gründen als der

Symmetrie nicht analytisch ausschließen. Die Annahme B(λ) 6= 0 ist jedoch möglich und sinnvoll, wie

die numerische Untersuchung eines von uns konstruierten Beispielvektorfeldes zeigt. Wir nehmen dies als

Rechtfertigung für eine entsprechende Annahme über B(λ) in unserer durchgeführten Analysis.
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es

γκi−1

γκi−1

eu

es

eu

ηsκi−2
ηsκi−2

W s(p) W s(p)a) b)

Abbildung D.2: Transport der Richtung ηsκi−2
entlang der homoklinen Trajektorie γκi−1 mittels der Übergangsmatrix der

Variationsgleichung entlang γκi−1 für den Fall, dass F(W s
γκi−1

) a) die topologische Struktur eines Möbiusbandes und b)

die topologische Struktur eines Ringes hat.

Mit der genaueren Darstellung des Sprungs können wir eine detailliertere Beschreibung der nichtwan-

dernden Dynamik des betrachteten Systems geben. Dazu erinnern wir uns, dass wir für den Nachweis der

Existenz einer Lösungstrajektorie die zugehörigen Sprünge Ξi(ω, λ, κ), i ∈ Z, gleich Null setzen müssen.

Dabei ist die Form der Ξi gegeben durch Theorem D.3. Die Lösbarkeit der so entstandenen Bestim-

mungsgleichung (Ξi(ω, λ, κ))i∈Z = 0 kann dann in Abhängigkeit von der Wahl von κ und λ diskutiert

werden. Im gegenwärtigen Kontext kann es Sequenzen von aufeinanderfolgenden Homoklinen geben, die

in zueinander orthogonalen Fixpunkträumen liegen. Die Darstellung der zugehörigen Sprünge ist gegeben

durch Theorem D.3(ii). Die Null in den zugehörigen Bestimmungsgleichungen muss dabei im Grunde von

dem Term erzeugt werden, der B(λ) enthält. In den Gleichungen, bei denen die aufeinanderfolgenden

Homoklinen nicht in zueinander orthogonalen Fixpunkträumen liegen, siehe Theorem D.3(i), wird die

Null durch den Term erzeugt, der Ai(λ, κ) := 〈η−κi
(λ), ηsκi−1

(λ)〉 enthält.

Die Struktur des Systems der Bestimmungsgleichungen ist also erheblich komplizierter geworden. Dies

spiegelt sich auch in der resultierende Dynamik wieder, was sich insbesondere an den Übergangszeiten

ω = (ωi)i∈Z zeigt, die das System für gegebene λ und κ lösen. Die Untersuchungen in [HJKL11] zeigen,

dass, wenn (D.6) für alle i ∈ Z gilt, die lösenden Übergangszeiten ωi für feste λ ungefähr gleich groß sind.

Genauer gesagt erfüllen sie die Gleichung ωi(λ, κ) =
1

2µs(0) (ln(|λ|)+ln(ri)), mit gleichmäßig beschränkten

Termen ri, vgl. [HJKL11, (4.8)].

Bei der Untersuchung der erweiterten Bestimmungsgleichungen aus Theorem D.3 sind zwei grundlegende

Fälle zu unterscheiden, die durch das Größenverhältnis von |B(0)| zu C(0) gekennzeichnet sind. In beiden

Fällen gilt für die Lösung ωi die Gleichung

ωi(λ, κ) =







1
2µs(0) (ln(|λ|) + ln(ri(λ, κ))), i ∈ Z \ Jκ,

1
4µs(0) (ln(|λ|) + ln(r2i (λ, κ))), i ∈ Jκ,

(D.10)

wie sich bei der Lösungsdiskussion herausstellt. Die Eigenschaften der Terme ri unterschieden sich jedoch

in den beiden Fällen, wie wir im folgenden noch genauer ausführen werden.

Bislang ist nicht bekannt, ob die Geometrie des Systems ein beliebiges Verhältnis von |B(0)| zu C(0)

zulässt oder ob ein bestimmtes Verhältnis erzwungen wird. Daher ist es denkbar, das Verhältnis von

|B(0)| und C(0) durch einen weiteren Systemparameter zu steuern. In diesem Sinne ist die vollständige

Beschreibung der lokalen nichtwandernden Dynamik in der Umgebung eines D4m-symmetrischen homok-

linen Zyklus möglicherweise kein reines Kodimension-1 Problem mehr.
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1. Fall: |B(0)| > C(0)

In diesem Fall, finden wir, ähnlich wie bei [HJKL11], dass die in (D.10) genannten ri gleichmäßig

beschränkt sind. Das bedeutet, dass die Schranken von ri unabhängig von λ gewählt werden können

und, abgesehen von der Unterscheidung, ob i ∈ Z \ Jκ oder i ∈ Jκ, auch unabhängig vom Verlauf von κ

sind. Für hinreichend kleine λ dominiert ln(|λ|) den anderen Summanden in (D.10), der ri enthält, und

es stellt sich heraus, dass die Übergangszeiten im Wesentlichen gleich groß sind (bei festem λ) und sich

nur um den Faktor 2 unterscheiden, je nach Verlauf der Trajektorie:

ωi(λ, κ) ≈







1
2µs(0) ln(|λ|), i ∈ Z \ Jκ,

1
4µs(0) ln(|λ|), i ∈ Jκ.

Genauer gesagt benötigt man für den Übergang von der Homoklinen γi zur Homoklinen γj nur halb so

viel Zeit, wenn sie in zueinander orthogonalen Fixräumen liegen, wie in allen anderen Fällen.

Folglich kann das dynamische Verhalten in der Umgebung des homoklinen Zykels für den Fall |B(0)| >
C(0) in der gleichen Weise beschrieben werden, wie es in [HJKL11, Theorem 1.1] getan wurde, vgl.

Theorem D.1, also durch Shiftdynamik.

Zu diesem Zweck definieren wir die folgende Matrix M durch

M = (mij)i,j∈{1,...,4m}, mij :=







sgn〈ηsi (λ), η−j (λ)〉, sgn〈ηsi (λ), η−j (λ)〉 6= 0,

sgnB(λ), sgn〈ηsi (λ), η−j (λ)〉 = 0.
(D.11)

In diesem Zusammenhang wollen wir anmerken, dass sgn〈ηsi (λ), η−j (λ)〉 genau dann Null ist, wenn

Fixi⊥Fixj und dass weder sgn〈ηsi (λ), η−j (λ)〉 noch sgnB(λ) von λ abhängen.

Theorem D.4. Sei ẋ = f(x, λ) eine einparametrige Familie von Differentialgleichungen welche äqui-

variant bezüglich der endlichen Gruppe D4m ist und bei λ = 0 einen relativen homoklinen Zykel Γ

der Kodimension-1 mit hyperbolischer Gleichgewichtslage gemäß der Definition in Hypothesen (H.D.1) -

(H.D.4) besitzt. Weiterhin sei |B(0)| > C(0).

Mit den (4m × 4m)-Matrizen A− = − 1
2 (M − |M |) und A+ = − 1

2 (M + |M |), M gegeben durch (D.11),

gilt für jede generische Familie, die einen relativen homoklinen Zykel wie oben beschrieben entfaltet,

Folgendes:

Man nehme Querschnitte Si transversal zu γi und schreibe Πλ für die erste Rückkehrabbildung auf der

Menge der Querschnitte ∪4m
j=1Sj. Für λ > 0 gibt es eine invariante Menge Dλ ⊂ ∪4m

j=1Sj für Πλ so dass

für jedes κ ∈ ΣA+
ein eindeutiges x ∈ Dλ mit Πiλ(x) ∈ Sκi

existiert. Außerdem ist (Dλ,Πλ) topologisch

konjugiert zu (ΣA+
, σ). Eine analoge Aussage gilt für λ < 0 mit ΣA− anstelle von ΣA+

.

Die obige Beschreibung der Dynamik liefert ein vollständiges Bild der lokalen nichtwandernden Dynamik

in der Nähe von Γ in dem Sinne, dass A− +A+ = 1 erfüllt ist. Nach der Definition von M , vgl. (D.11),

finden wir

B(λ) > 0, dann mij =

{

1, |i− j| ≥ m,

−1, |i− j| < m,
und B(λ) < 0, dann mij =

{

1, |i− j| > m,

−1, |i− j| ≤ m.

Die Differenz i− j wird in Z4m berechnet wobei |i− j| := min{i− j, j − i}.
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Für m = 1 und sgnB(λ) = 1 haben die Matrizen A− und A+ also die Form,

A− =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









, A+ =









0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0









. (D.12)

Nach diesem A+ für λ > 0 besteht die nichtwandernde Dynamik aus allen Trajektorien, die vermeiden,

zweimal derselben Homoklinen hintereinander zu folgen. Für m = 1 und sgnB(λ) = −1 sehen diese

Matrizen hingegen wie folgt aus

A− =









1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 1









, A+ =









0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0









.

2. Fall: |B(0)| ≤ C(0)

Dieser Fall lässt sich nicht in den Kontext von Theorem D.1 einbetten. Die Analysis erweist sich als

diffiziler und erfordert die Unterscheidung weiterer Unterfälle wie die Unterteilung nach der topolo-

gischen Struktur des Faserbündels F(W s
γ ). In dieser Hinsicht ist eine vollständige Beschreibung der nicht-

wandernden Dynamik nicht unsere Absicht. Weitere Untersuchungen könnten zeigen, dass es notwendig

ist, noch mehr Systemparameter einzuführen. Wir beschränken die Untersuchung daher auf periodische

Lösungen. Dabei meinen wir mit Periodenlänge die Länge der wiederkehrenden Folge in κ und nicht die

Übergangszeit der entsprechenden periodischen Trajektorie.

In dem nachfolgendem Theorem werden die Mengen K2 und K4 genannt, welche wir hier definieren und

kurz erklären:
K2 := {κ ∈ Σ4m|∀i ∈ Z : i ∈ Jκ und κi = κi−2},

K4 := {κ ∈ Σ4m|∀i ∈ Z : i ∈ Jκ und κi = 2m+ κi−2}.






(D.13)

Da jedes zweite Symbol in κ ∈ K2 für alle i ∈ Z gleich ist, enthält K2 alle κ, die den Trajektorien

entsprechen, die abwechselnd dem Verlauf zweier verschiedener Homoklinen folgen. Die entsprechenden

Trajektorien sind also 2-periodisch. Ferner liegen die verfolgten Homoklinen in zueinander orthogonalen

Fixpunkträumen, da i ∈ Jκ für alle i ∈ Z. In einem D4-äquivarianten Vektorfeld ist z.B. κ = 12 ∈ K2,

also die 2-periodische Trajektorie, die dem Weg der Homoklinen γ1 und γ2 folgt, vgl. Abbildung D.1.

Mit κi = 2m + κi−2 für alle i ∈ Z finden wir, dass κi = 2m + 2m + κi−4 = κi−4. Somit ist jedes

vierte Symbol in κ gleich und K4 besteht nur aus 4-periodischen Trajektorien. Auch hier liegen die

nachverfolgten Homoklinen in zueinander orthogonalen Fixpunkträumen. Als Beispiel für eine Trajektorie

in einem D4-äquivarianten Vektorfeld sei κ = 1234 ∈ K4 genannt, die 4-periodische Trajektorie, die γ1,

γ2, γ3 und γ4 folgt, bevor sie sich schließt.

Theorem D.5. Sei ẋ = f(x, λ) eine einparametrige Familie von Differentialgleichungen, welche äqui-

variant bezüglich der endlichen Gruppe D4m ist und die bei λ = 0 einen relativen homoklinen Zykel Γ

der Kodimension-1 mit hyperbolischer Gleichgewichtslage gemäß der Definition in Hypothesen (H.D.1) -

(H.D.4) hat. Weiterhin sei |B(0)| ≤ C(0) und F(W s
γ ) habe die topologische Struktur eines Ringes.

Mit den (4m × 4m)-Matrizen A− = − 1
2 (M − |M |) und A+ = − 1

2 (M + |M |), M gegeben durch (D.11),

gilt für jede generische Familie, die einen relativen homoklinen Zykel wie oben beschrieben entfaltet,
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Folgendes:

(i) Es sei B(0) > 0. Für alle N ∈ N gibt es ein hinreichend kleines λ̂(N) > 0, so dass für alle λ ∈ (0, λ̂)

und alle periodischen κ ∈ ΣA+
\ K2 mit einer Periodenlänge kleiner oder gleich N eine eindeutige

periodische Trajektorie x(λ, κ) : R → R4 als Lösung von ẋ = f(x, λ) existiert, die sich in der Nähe

des homoklinen Zykels Γ befindet.

Für λ < 0 hinreichend klein gibt es eine solche eindeutige Trajektorie für jedes periodische κ ∈
ΣA− ∪ K2, wenn |B(0)| < C(0), oder für κ ∈ ΣA− , wenn |B(0)| = C(0).

(ii) Es sei B(0) < 0. Für alle N ∈ N gibt es ein hinreichend kleines λ̂(N) < 0, so dass für alle λ ∈ (λ̂, 0)

und alle periodischen κ ∈ ΣA− \ K4 mit einer Periodenlänge kleiner oder gleich N eine eindeutige

periodische Trajektorie x(λ, κ) : R → R4 als Lösung von ẋ = f(x, λ) existiert, die sich in der Nähe

des homoklinen Zykels Γ befindet.

Für λ > 0 hinreichend klein gibt es eine solche eindeutige Trajektorie für jedes periodische κ ∈
ΣA+

∪ K4, wenn |B(0)| < C(0), oder für κ ∈ ΣA+
, wenn |B(0)| = C(0).

Hat F(W s
γ ) die topologische Struktur eines Möbiusbandes, so gelten analoge Aussagen zu (i) und (ii) mit

der Vertauschung der Mengen K2 und K4.

Wir möchten an dieser Stelle kurz auf den Hintergrund des beschriebenen Verhaltens der Dynamik einge-

hen.

Im Gegensatz zum ersten Fall, wo |B(0)| > C(0), zeigt sich hier, dass die Folge κ einen starken Einfluss

auf die Größe der Übergangszeiten ωi haben kann, welche die Bestimmungsgleichung lösen. Der Grund

dafür ist, dass die ri in (D.10) nicht mehr gleichmäßig beschränkt sind, sondern je nach Verlauf der

Trajektorie, die durch κ gegeben ist, enorme Größenunterschiede aufweisen können. Somit kann der

zweite Summand in (D.10) einen nicht zu vernachlässigenden Einfluss auf die Übergangszeiten ωi haben.

Als problematisch erweisen sich die Sprünge, die der Darstellung

Ξi(ω, λ, κ) = λ− e4µ
s(λ)ωiB(λ)− e2µ

s(λ)(ωi−1+ωi)Ci(λ, κ),+Ři(ω, λ, κ),

mit sgn(Ci(λ, κ)) 6= sgn(B(λ)) entsprechen. Nehmen wir zum Beispiel B(λ) > 0 an und diskutieren wir

kurz die Lösbarkeit von Ξi(ω, λ, κ) = 0 (unter Vernachlässigung der Restterme) für feste λ > 0. Ist

Ci(λ, κ) < 0, so muss der Term e4µ
s(λ)ωiB(λ) beide Terme λ und e2µ

s(λ)(ωi−1+ωi)|Ci(λ, κ)| ausgleichen.
Da B(λ) < |Ci(λ, κ)| kann dies nur geschehen, indem man die Übergangszeit ωi im Verhältnis zu ωi−1

verringert und damit e2µ
s(λ)ωi im Verhältnis zu e2µ

s(λ)ωi−1 erhöht. Wenn beim nächsten Sprung wieder

Ci+1 < 0 gilt, muss erneut die entsprechende Übergangszeit ωi+1 gegenüber ωi verringert werden. Dies

geht immer so weiter bis zum nächsten Index j mit entweder j ∈ Z \ Jκ oder Cj > 0. Dann kann die

Bestimmungsgleichung Ξk = 0 wieder für ein viel größeren ωk gelöst werden: ωi−1 > ωi > ωi+1 > · · · >
ωk−1, ωk >> ωk−1.

Wenn nun die Sequenzen von aufeinanderfolgenden Sprüngen, für die Ci(λ, κ) < 0 gilt, endlich sind,

kann die Bestimmungsgleichung bei λ > 0 für das gleiche, zumindest periodische, κ wie in Theorem 5.3.3

gelöst werden. Je nach Länge dieser Sequenzen können die Übergangszeiten jedoch stark in ihrer Größe

variieren. Um sicherzustellen, dass inf(ω) noch groß genug ist, um unserer Analysis zu genügen, muss

der Wert von λ mitunter sehr klein werden. Es zeigt sich, dass λ <
(
|B(0)|/C(0)

)2L
e4µ

s(0) inf ω erfüllen

muss, wobei L die Länge der längsten Kette von aufeinanderfolgenden Indizes i in κ bezeichnet, für die

Ci(λ, κ) < 0 gilt. Folglich existieren einige Trajektorien nur für kleinere λ als andere.
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Für diejenigen periodischen κ, die Ci(λ, κ) < 0 für alle i ∈ Z erfüllen, existieren keine Lösungen bei λ > 0.

Für den Fall aber, dass |B(0)| < C(0), kann die Bestimmungsgleichung für diese κ für λ < 0 gelöst wer-

den. Während also alle anderen periodischen Trajektorien, die Homoklinen in zueinander orthogonalen

Fixpunkträumen folgen, für λ > 0 existieren, finden wir diese Ausnahme für das entgegengesetzte Vorze-

ichen von λ. Wenn |B(0)| = |Ci(0, κ)| gilt, existieren periodische Trajektorien, die diesen κ entsprechen,

weder für positive noch für negative λ. Daher erfüllt die Existenz dieser Trajektorien nicht die Regel, die

eine Markov-Kette impliziert.

Die periodischen κ für die sgnCi(λ, κ) 6= sgnB(λ) für alle i ∈ Z gilt, sind nun gerade die, welche in den

in (D.13) definierten Mengen K2 oder K4 liegen, je nachdem, welche topologische Struktur F(W s
γ ) besitzt.

Diskussion

Mit dem Vektorfeld

f4(x, λ) =









ax1 +bx2 −ax3
1 + 3ax1y

2
1

ay1 +by2 +3ax2
1y1 − ay31

bx1 +ax2 −2bx3
1 + 6bx1y

2
1 −2ax2

1x2 + 2ay21x2 + 4ax1y1y2

by1 +ay2 +6bx2
1y1 − 2by31 +4ax1y1x2 + 2ay2(x

2
1 − y21)









+λ









2x1 −4x3
1 + 12x1y

2
1

2y1 +12x2
1y1 − 4y31

−2x2

−2y2









.

(D.14)

haben wir für a, b ∈ R\{0}, a2 < b2 ein Beispielsystem konstruiert, welches bei λ = 0 einen relativen

D4-symmetrischen homoklinen Zykel besitzt, wie er in den Hypothesen (H.D.1) - (H.D.4) beschrieben

wird. Die Gültigkeit der Hypothese (H.D.4)(i) haben wir allerdings nur für extrem kleine Werte von |a|
analytisch zeigen können. Wir gehen jedoch davon aus, dass (H.D.4)(i) auch für sehr viel größere Werte

von |a| gilt.

Für dieses System haben wir numerisch mit MATLAB gezeigt, dass der Term B(0) verschieden von Null

ist. Weiterhin haben wir mit der Verfolgungs-Software AUTO die Existenz verschiedener periodischer

Orbits in der Umgebung des Homoklinen Zykels untersucht. Aus Konvergenzgründen haben wir hierbei

jedoch die Forderung (H.D.3)(iv) invertiert und den führenden instabilen Eigenwert als den dominanten

Eigenwert gewählt. Tatsächlich bewirkt dies einfach eine Zeitumkehr, wodurch sich nur die Durchlaufrich-

tungen aller Trajektorien ändert. Die Gültigkeit der analytischen Ergebnisse bleibt dabei im Wesentlichen

- bis auf eine Vertauschung des Vorzeichens von λ - für das Beispielsystem erhalten.

Im Ergebnis konnten wir die durch die Sequenzen κ = 12, 13, 123, 1234, 1243 and 1214 charakterisierten

periodischen Trajektorien für λ < 0 finden. Für λ > 0 ließen sich diese Trajektorien nicht detektierten,

dafür aber die 1-periodische Trajektorie κ = 1. Weder für λ > 0 noch für λ < 0 ließ sich die Trajektorie

κ = 121 finden.

Diese Ergebnisse entsprechen unseren Erwartungen, die wir aufgrund des Theorems D.4 hatten. Sie

zeigen, dass die Beziehung |B(0)| > C(0) gilt, da die periodischen Trajektorien κ = 12 ∈ K2 und

κ = 1234 ∈ K4 für dasselbe Vorzeichen von λ existieren. Weiterhin können wir schlussfolgern, dass das

Vorzeichen von B(0) positiv ist, da die periodische Trajektorie κ = 1243 existiert, anstelle beispielsweise
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der Trajektorie κ = 121. Daher erhalten wir für die in Theorem D.4 genannten Matrizen A− und A+

A− =









0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0









and A+ =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









.

Da in unseren numerischen Betrachtungen der instabile Eigenwert der führende ist, ist die Zuordnung

der Matrizen A− und A+ umgekehrt zu derjenigen in (D.12).

Zudem konnten wir die unterschiedlichen Übergangszeiten erkennen, die benötigt werden, um von einer

homoklinen Trajektorie zu einer anderen zu gelangen. Es ließ sich ablesen, dass es etwa doppelt so lange

dauert, im gleichen Fixraum zu bleiben, als zu einer homoklinen Trajektorie zu wandern, die in einem

orthogonalen Fixraum liegt. Dies stimmt mit den berechneten Übergangszeiten in (D.10) überein.
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