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Abstract
In this paper, we study qualitative properties of solutions of the following nonlinear
third order difference equation:

xn+1 = axn + bxn–1 + f (xn – xn–1) + g(xn–1 – xn–2).

In economics, this equation was known as Metzler equation. We study the stability of
the solutions and existence of bifurcations.
We prove that there exist two bifurcations for this system by analyzing the

characteristic equation: (1) Neimark-Sacker bifurcation, (2) period doubling (flip)
bifurcation.
Next we investigate the direction of these bifurcations by using normal form theory.
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1 Introduction
We consider the third order difference equation

xn+ = axn + bxn– + f (xn – xn–) + g(xn– – xn–), (.)

where a, b ∈ (, ), a + b <  and f : R → R, g : R → R are the continuous real functions
with f () = , g() = , f (x) �= , g(x) �=  for x �=  and x, x–, x– are given real numbers
(initial conditions).

Metzler equation is a fundamental equation in economics. Particular cases of this equa-
tion have appeared in mathematical models of macroeconomics, see [, ]. Equations of
the form

xn+ = axn + f (xn – xn–) (.)

are considered and studied extensively by [–].
In studying the behavior of the solutions of an equation, we often need to consider that

its solutions are stable and attractive. Therefore, in Section , we study the relation of
attractivity and stability of the equilibrium point of this equation and some related equa-
tions. In Section , we study the existence of Neimark-Sacker and period doubling (flip)
bifurcation for this system by analyzing the characteristic equation. Furthermore, we in-
vestigate the direction of these bifurcations by using normal form theory.
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2 Attractivity
In this section we study global attractivity and stability of the equilibrium point of (.).
Equation (.) can be transformed to another form which has equivalent properties. Let

un = xn – xn–. (.)

Then (.) is reduced to

un+ = aun + bun– + f (un) – f (un–) + g(un–) – g(un–), (.)

which has the unique equilibrium u = .
At first we show the following result.

Theorem . The equilibrium point x =  is globally attractive (respectively asymptoti-
cally stable) in (.) if and only if u =  is globally attractive (respectively asymptotically
stable) in (.).

Proof Equation (.) can be written as

xn+ = (a + b)xn – bun + f (un) + g(un–) for n = , , , . . . . (.)

Hence we see that

x = (a + b)x – bu + f (u) + g(u–),

x = (a + b)x – bu + f (u) + g(u)

= (a + b)x – b(a + b)u – bu + (a + b)
(
f (u) + g(u–)

)
+ f (u) + g(u),

x = (a + b)x – bu + f (u) + g(u)

= (a + b)x – b(a + b)u – b(a + b)u – bu + (a + b)(f (u) + g(u–)
)

+ (a + b)
(
f (u) + g(u)

)
+ f (u) + g(u).

Using induction we have that

xn = (a + b)nx – b
n∑

i=

(a + b)n–iui– +
n∑

i=

(a + b)n–i(f (ui–) + g(ui–)
)
, (.)

let

un =
n∑

i=

(a + b)n–i|ui–|, vn =
n∑

i=

(a + b)n–i∣∣f (ui–) + g(ui–)
∣∣.

We prove that

lim
n→∞ un = , lim

n→∞ vn = .

We distinguish two cases for un.
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Case .
∑∞

i= |ui–|/(a + b)i < ∞. In this case

lim
n→∞ un = lim

n→∞(a + b)n
n∑

i=

|ui–|
(a + b)i = .

Case .
∑∞

i= |ui–|/(a + b)i = ∞. In this case, by using the Stolz theorem, we have that

lim
n→∞ un = lim

n→∞

∑n
i=

|ui–|
(a+b)i


(a+b)n

= lim
n→∞

∑n+
i=

|ui–|
(a+b)i –

∑n
i=

|ui–|
(a+b)i


(a+b)n+ – 

(a+b)n

= lim
n→∞

|un|
 – (a + b)

= .

Now we distinguish two cases for vn.
Case .

∑∞
i= |f (ui–) + g(ui–)|/(a + b)i < ∞. In this case

lim
n→∞ vn = lim

n→∞(a + b)n
n∑

i=

|f (ui–) + g(ui–)|
(a + b)i = .

Case .
∑∞

i= |f (ui–) + g(ui–)|/(a + b)i = ∞. In this case, by using the Stolz theorem, we
have that

lim
n→∞ un = lim

n→∞

∑n
i=

|f (ui–)+g(ui–)|
(a+b)i


(a+b)n

= lim
n→∞

∑n+
i=

|f (ui–)+g(ui–)|
(a+b)i –

∑n
i=

|f (ui–)+g(ui–)|
(a+b)i


(a+b)n+ – 

(a+b)n

= lim
n→∞

|f (un) + g(un–)|
 – (a + b)

.

Using the continuity of f , g we see that if limn→∞ un =  then limn→∞ un = , limn→∞ vn =
, which implies that limn→∞ xn = . �

By using weak contractions introduced in [], we obtain the following sufficient condi-
tions for attractivity of solutions of (.).

Proposition .
() If |f (t) + g(s)| ≤ c|t + s| for all t, s and  < c < –(a+b)

 , then the origin is globally
attractive in (.).

() If  ≤ f (t) + g(s) ≤ c|t + s| for all t, s and  < c <  – (a + b), then every positive
solution of (.) converges to zero.

Proof For the proof of (), define F(y, y, y) = ay + by + f (y – y) + g(y – y) and notice
that

∣
∣F(y, y, y)

∣
∣ ≤ a|y| + b|y| +

∣
∣f (y – y) + g(y – y)

∣
∣

≤ a|y| + b|y| + c|y – y|
≤ (a + b + c) max

{|y|, |y|, |y|
}

.
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Since a + b + c < , it follows that F is a weak contraction on the entire space, and therefore
by [], the origin is globally attractive.

() For y, y, y ≥ , notice that

F(y, y, y) ≤ ay + by + f (y – y) + g(y – y)

≤ ay + by + c|y – y|
≤ (a + b + c) max{y, y, y}.

Now, since a + b + c < , it follows that F is a weak contraction on [,∞), and since
[,∞) is invariant under VF (y, y, y) = (F(y, y, y), y, y), [] implies that the origin is
exponentially stable relative to [,∞), hence every positive solution of (.) converges to
zero. �

Now we study stability properties. Let xn be a solution of (.). We define the vector
y(n) = (y(n), y(n), y(n)) ∈R

, where

yj(n) = xn+j–, j = , , . (.)

Using this notation the delay equation (.) is transformed to the following D system:

y(n + ) = h
(
y(n)

)
, (.)

where h(y) = (y, y, ay + by + f (y – y) + g(y – y)), which has the unique equilibrium
point (, , ).

Now we study the relation of the stability properties of the delay equation (.) to those
of the associated nondelay equation

xn+ = f (xn), n ≥ –. (.)

First we prove the following lemma which will be used in the next results.

Lemma . Let y(n) be a solution of system (.). Then, for n ≥  – j, the following state-
ments are true:

∣∣yj(n)
∣∣ ≤ an+j–∣∣y()

∣∣ + b
n+j–∑

i=

an+j–i–∣∣y(i – )
∣∣

+
n+j–∑

i=

an+j–i–∣∣f
(
y(i – ) – y(i – )

)∣∣

+
n+j–∑

i=

an+j–i–∣∣g
(
y(i – ) – y(i – )

)∣∣.

Furthermore, for  ≤ n ≤  – j,

yj(n) = yj+n(). (.)
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Proof From (.) we have that for j = , , ,

yj(n) = xn+j– = x(n–)+(j+)– = yj+(n – ), (.)

yj(n) = xn+j– = x+(n+j)– = yn+j(). (.)

Now, by using these relations and induction, we see that

y(n) = any() + b
n∑

i=

an–iy(i – )

+
n∑

i=

an–if
(
y(i – ) – y(i – )

)
+

n∑

i=

an–ig
(
y(i – ) – y(i – )

)
.

Furthermore,

yj(n) = xn+j– = x(n+j–)+– = y(n + j – ). (.)

By using this relation, we have that

yj(n) = y(n + j – )

= an+j–y() + b
n+j–∑

i=

an+j–i–y(i – )

+
n+j–∑

i=

an+j–i–f
(
y(i – ) – y(i – )

)

+
n+j–∑

i=

an+j–i–g
(
y(i – ) – y(i – )

)
. �

Theorem . Assume that f , g satisfy

∣∣f (x + y)
∣∣ ≤ ∣∣f (x)

∣∣ +
∣∣f (y)

∣∣,
∣∣g(x)

∣∣ ≤ c|x| (.)

for all x, y ∈R, c < . If the equilibrium point of (.) is stable, then the equilibrium point of
(.) is also stable.

Proof It is sufficient to prove the stability of the equilibrium of (.) because of the equiv-
alence of (.) and (.). Let ε >  be arbitrary. Since the equilibrium point of (.) is
stable, there exists δ >  such that |x–| < δ implies |xn| < (–a)ε

 for all n ≥ –. Choose
δ = min(δ, (–a)ε

 ), since y() = (y(), y(), y()) = (x–, x–, x), we have that

∥
∥y()

∥
∥ = max

(∣∣y()
∣
∣,

∣
∣y()

∣
∣,

∣
∣y()

∣
∣) = max

(|x–|, |x–|, |x|
) ≤ δ ≤ δ.

Now, for n ≥ –,

|xn| ≤ ( – a)ε


, (.)
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which implies that

∣∣f (xn)
∣∣ ≤ ( – a)ε


(.)

for all n ≥ –. Therefore, for n ≥ ,

∣
∣f

(
y(n – )

)∣∣ ≤ ( – a)ε


,
∣
∣f

(
y(n – )

)∣∣ ≤ ( – a)ε


. (.)

And hence

∣∣f
(
y(n – ) – y(n – )

)∣∣ <
∣∣f

(
y(n – )

)∣∣ +
∣∣f

(
y(n – )

)∣∣

<
( – a)ε


+

( – a)ε


=
( – a)ε


.

Now ‖y()‖ ≤ δ implies that |yj()| < δ < (–a)ε
 < ε for j = , , . Hence

∣∣yj(n)
∣∣ =

∣∣yj+n()
∣∣ < ε for  ≤ n ≤  – j,

and from the previous lemma we have

∣∣yj(n)
∣∣ ≤ an+j–∣∣y()

∣∣ + b
n+j–∑

i=

an+j–i–∣∣y(i – )
∣∣

+
n+j–∑

i=

an+j–i–∣∣f
(
y(i – ) – y(i – )

)∣∣

+
n+j–∑

i=

an+j–i–∣∣g
(
y(i – ) – y(i – )

)∣∣

< an+j–ε +
b( – a)ε


an+j–

n+j–∑

i=

a–i

+
( – a)ε


an+j–

n+j–∑

i=

a–i +
c( – a)ε


an+j–

n+j–∑

i=

a–i

< an+j–ε +
bε


(
 – an+j–)

+
ε


(
 – an+j–) +

cε


(
 – an+j–)

< an+j–ε + ε
(
 – an+j–) = ε.

Therefore, for arbitrary ε > , there exists δ >  such that ‖y()‖ < δ implies that ‖y(n)‖ < ε

for n ≥ , and hence the equilibrium point of (.) is stable. �

3 Existence of bifurcations
Now we study bifurcations of (.), for this aim we suppose that f , g ∈ C. First we prove
the existence of bifurcations. Dynamics of system (.) is described by the mapping

h(y, y, y) =
(
y, y, ay + by + f (y – y) + g(y – y)

)
. (.)
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The Jacobian matrix of h at O is

H = Dh|O =

⎡

⎢
⎣

  
  

–q n m

⎤

⎥
⎦ ,

in which n = b – p + q, m = a + p that p = f ′(), q = g ′(). The characteristic equation of H
is

λ – mλ – nλ + q = . (.)

By Jury’s conditions, the necessary and sufficient conditions for all eigenvalues of the
characteristic equation (.) lying inside the unit circle are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m – n +  – q > ,

q – m – n +  > ,

|q| < ,

n – mq – q +  > ,

mq – n – q +  > .

We consider the following curves:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L: m – n +  – q = ,

L: n – mq – q +  = , q > ,

L: q – m – n +  = ,

L: |q| = .

(.)

On L, a + b = , which is impossible.
Wen et al. in [, ] proved the following two lemmas which will be used in the next

theorem.

Lemma . In the characteristic polynomial equation λ + aλ
 + aλ + a = , one of the

eigenvalues will be – and other eigenvalues will be inside the unit circle if and only if the
following relations hold:

(b) |a| < ,
(b) a + a =  + a,
(b) |a – aa| <  – a

.

Lemma . The characteristic polynomial equation λ + aλ
 + aλ + a =  has a pair

of complex conjugate lying on the unit circle, and the third eigenvalue lies inside the unit
circle if and only if the following relations hold:

(c) |a| < ,
(c) |a + a| <  + a,
(c) a – aa =  – a

.

We show in the following theorem the occurrence of bifurcations on the curves L, L.
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Theorem . For system (.), the following conditions hold:
() Flip bifurcation occurs when (m, n, q) ∈ L and |q| <  and |mq – n| <  – q.
() Neimark-Sacker bifurcation occurs when (m, n, q) ∈ L and p, q >  and |q| <  and

|q – m| <  – n.

Proof First, we show the existence of flip bifurcation. Because (m, n, q) ∈ L, we have the
characteristic equation

(λ + )
(
λ – ( + m)λ + q

)
= , (.)

which has eigenvalues λ = –, λ, = ( +m±
√

(+m)–q
 ). So Y = (, –, ) is an eigenvector of

H with corresponding eigenvalue λ = –, and  is not the eigenvalue. A straightforward
calculation shows that

Range
(
I + Dh

(
X∗))

|m–n+–q=
= Span

(
x + y, y + z, –qx + ny + ( + m)z

)T ,

in which (x, y, z) ∈R
. Now

d
dq

Dh
(
X∗)

|m–n+–q=
=

⎡

⎢
⎣

  
  

–  

⎤

⎥
⎦

and

d
dq

Dh
(
X∗)

|m–n+–q=
Y = (, , –) /∈ Range

(
I + Dg

(
X∗))

|m–n+–q=
.

Therefore by Theorem .. of [], the flip bifurcation occurs.
Now we show the existence of Neimark-Sacker bifurcation. Because (m, n, q) ∈ L, we

have

(λ + q)
(
λ – (m + q)λ + 

)
= . (.)

By using Lemma ., the characteristic equation (.) has complex conjugate roots λ, =
e±iθ , therefore � = (m + q) –  <  or |m + q| < .

By separating the real and imaginary parts, we have
⎧
⎨

⎩
cos θ – (m + q) cos θ = –,

sin θ – (m + q) sin θ = .

Squaring and adding both equations, we have

cos θ =
m + q


.

Since f , g are investment functions, we can assume that p = f ′() > , q = g ′() > ; there-
fore, a + p + q = m + q >  or  < m + q <  and we obtain

 < cos θ =
m + q


< , (.)

which refers to argλ �= ,±π
 ,± π

 ,±π . Thus λk �=  for k = , ,  and .
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On the other hand, we have

(
d|λ|

dq

)

|n–mq–q+=

=
(

λ
dλ

dq
+ λ

dλ

dq

)

|n–mq–q+=

=
(– cos θ + (m + ) cos θ + (n – m) cos θ – n)

|eiθ – meiθ – n| .

Also, cos θ =  cos θ –  cos θ and cos θ =  cos θ – , hence we have

– cos θ + (m + ) cos θ + (n – m) cos θ – n

= – cos θ + (m + ) cos θ + (n – m + ) cos θ – m – n – .

Hence
(

d|λ|
dq

)

|n–mq–q+=

=
( – cos θ )( cos θ – (m – ) cos θ – (n + m + ))

|eiθ – meiθ – n| .

Assume that ( d|λ|
dq )|n–mq–q+=

= , that is, cos θ =  or  cos θ – (m – ) cos θ – (n +
m + ) = . In the previous discussion, we have obtained  < cos θ < , hence cos θ �= . In
 cos θ – (m – ) cos θ – (n + m + ), we substitute m+q

 instead of cos θ , and we obtain

 cos θ – (m – ) cos θ – (n + m + ) = m + q + mq + m + q – n – . (.)

Case .  < m + q < . In equation (.), we replace –n –  with –q – mq and q + mq – 
with n, then we obtain

m + q + mq + m + q – n –  = (m + q) –  + m + n + q.

Since m + n + q = a + b + q > , then we obtain

 < (m + q) –  + m + n + q.

Thus, in the case  < m + q < , we get that ( d|λ|
dq )|n–mq–q+=

�= .
Case .  < m + q ≤ . We claim that m + q + mq + m + q – n –  �= .
We consider m + q + mq + m + q – n –  =  and define h = b – p + ,

 = m + q + mq + m + q – n –  = (m + q) + q(m + q) + (m + q) + q – h – .

Since q >  and (m, n, q) ∈ L, i.e., q(m + q) = n +  = h + q, we have

m + q =
h + q

q
.

We substitute h+q
q instead of m + q and obtain

 = m + q + mq + m + q – n –  = (m + q) + q(m + q) + (m + q) + q – h – 

=
(

h + q
q

)

+ q
(

h + q
q

)
+

(
h + q

q

)
+ q – h – ,
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thus

 = (h + q) + q(h + q) + q(h + q) + q – qh – q = h + qh + qh + q,

hence

h + q + h
(
q + q) = .

Since q > , we have

h + q > , q + q > ,

therefore h <  or b – p +  < ,

b – p +  <  �⇒ p > b +  > 

�⇒ a + p + q > 

�⇒ m + q > .

Thus if m + q + mq + m + q – n –  = , then m + q > .
Using contrapositive law, we get if m + q ≤ , then m + q + mq + m + q – n –  �= .
From the above discussion it can be inferred that if  < m + q < , then m + q + mq +

m + q – n –  �=  and if m + q ≤ , then m + q + mq + m + q – n –  �= . Thus

(
d|λ|

dq

)

|n–mq–q+=

�= .

Therefore, by the generic Neimark-Sacker bifurcation theorem [, ], the Neimark-
Sacker bifurcation occurs, that is, system (.) has a unique closed invariant curve bifur-
cating from the equilibrium X∗. �

4 Direction of the bifurcations
In the previous section, we have shown that system (.) undergoes a flip (period-doubling)
bifurcation when (p, q) ∈ L and a Neimark-Sacker bifurcation when (p, q) ∈ L at the equi-
librium point X∗. In this section, by using the normal form method for discrete systems,
as studied by Sacker, Kuznetsov and Wiggins, we shall study the direction of the two bi-
furcations and stability of the bifurcating invariant curves. We can write the system as

Un+ = DUn + G(Un), Un ∈ R
, (.)

where G(U) = O(‖U‖) is a smooth function and its Taylor expansion is

G(U) =



B(U , U) +



C(U , U , U) + O
(‖U‖), (.)

where

B(U , U) =
(
, , b(U , U)

)
, C(U , U , U) =

(
, , c(U , U , U)

)
,
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in which
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(φ,ψ) = f ′′()(φψ – φψ + φψ – φψ)

+ g ′′()(φψ – φψ – φψ + φψ),

c(φ,ψ ,η) = g ′′′()(φψη – φψη – φψη + φψη

+ φψη – φψη + φψη – φψη)

+ f ′′′()(φψη – φψη + φψη – φψη

– φψη + φψη – φψη + φψη).

For φ = (φ,φ,φ) ∈R
, ψ = (ψ,ψ,ψ) ∈R

 and η = (η,η,η) ∈ R
. At the beginning,

we study the direction of period-doubling bifurcation and the stability of period-doubling
cycle. Let w ∈R

 be the eigenvector of H with respect to eigenvalue –, that is, Hw = –w;
let v ∈ R

 be the adjoint eigenvector of HT , that is, HT v = –v, where HT is the transposed
matrix, and 〈v, w〉 = , where 〈·, ·〉 is the standard scalar product in R

. So we have

⎧
⎨

⎩
w = (–, , –),

v = –
+m+q (q, –( + m), ).

Following the algorithms given in Kuznetsov [], the critical normal form coefficient
c(), that determines the nondegeneracy of period-doubling bifurcation and the stability
of period-doubling cycle, is given by the following formula:

c() =



〈
v, C(w, w, w)

〉
–



〈
v, B

(
w, (H – I)–B(w, w)

)〉
. (.)

From the above relations we have
⎧
⎨

⎩
〈v, B(w, (H – I)–B(w, w))〉 = ,

〈v, C(w, w, w)〉 = –f ′′′()+g′′′()
+m+q ,

and therefore

c() =



–f ′′′() + g ′′′()
 + m + q

.

Applying the general theory for the direction of flip bifurcation and the stability of period
doubling cycle (see Wiggins [] or Kuznetsov []), we derive the following result.

Theorem . For system (.), a flip bifurcation occurs in X∗ when m – n +  – q = , and if
f ′′′() < g ′′′(), the flip bifurcation is supercritical and if f ′′′() > g ′′′(), the flip bifurcation
is subcritical.

Now, we are going to study the direction of the Neimark-Sacker bifurcation and the
stability of the bifurcating invariant curve in X∗. In the above section, we see that H has
simple eigenvalues on the unit circle

λ, = e±iθ , θ = arccos
m + q


.
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Let α be a complex eigenvector corresponding to eiθ and β be a complex eigenvector of
the transposed matrix HT corresponding to e–iθ , i.e., Hα = eiθα, HTβ = e–iθβ . By com-
putation we obtain the following eigenvectors:

α =
(
, eiθ , eiθ

)T , β =

q
(
q, me–iθ – e–iθ , –e–iθ

)T .

Normalize α with respect to β such that

〈β ,α〉 = ,

where 〈·, ·〉 means the standard scalar product in C
 defined by 〈β ,α〉 = βα +βα +βα,

we have

α =
(
, eiθ , eiθ

)T , β =


q + meiθ – eiθ

(
q, me–iθ – e–iθ , –e–iθ

)T .

Following the algorithms given in Kuznetsov [], the critical normal form coefficient
a(), that determines the nondegeneracy of Neimark-Sacker bifurcation and allows us to
predict the stability of bifurcating invariant curve, is given by the following formula:

a() =



Re
(
e–iθ

[〈
β , C(α,α,α)

〉
+ 

〈
β , B

(
α, (I – H)–B(α,α)

)〉

+
〈
β , B

(
α,

(
eiθ I – H

)–)B(α,α)
〉])

.

Furthermore, in this case we have

〈
β , C(α,α,α)

〉
=

f ′′′()(–eiθ + eiθ – eiθ + eiθ ) + g ′′′()(eiθ – eiθ –  + eiθ )
q + me–iθ – e–iθ

,

〈
β , B

(
α, (I – H)–B(α,α)

)〉
= ,

〈
β , B

(
α,

(
eiθ I – H

)–)B(α,α)
〉

=
(g ′′())(–eiθ +  + eiθ + eiθ – eiθ + eiθ )
(eiθ – meiθ – neiθ + q)(q + me–iθ – e–iθ )

+
(f ′′())(–eiθ + eiθ + eiθ + eiθ – eiθ + eiθ )

(eiθ – meiθ – neiθ + q)(q + me–iθ – e–iθ )

+
(f ′′()g ′′())(eiθ – eiθ – eiθ + eiθ – eiθ – eiθ + eiθ )

(eiθ – meiθ – neiθ + q)(q + me–iθ – e–iθ )
,

which yields the following formula for a():

a() =
f ′′′()A + g ′′′()A + (g ′′())A + (f ′′())A + f ′′()g ′′()A

A
 + B


,

in which

A = q cos θ + (m – mq) cos θ –  cos θ

–
(
m + nq – mq

)
cos θ + (m + n – q) cos θ,
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B = q sin θ + (m – mq) sin θ –  sin θ

–
(
m + nq – mq

)
sin θ + (m + n – q) sin θ,

A = (q + mq + ) cos θ – q cos θ + (n – mq – q – m) cos θ

+ ( + m + q – n) cos θ +
(
m + nq –  – m + mq + n

)
cos θ

+
(
 – m – nq – m – mq

)
cos θ +

(
m + m + nq – 

)
,

A = q cos θ – q cos θ – (q + m – mq) cos θ

+ (q +  + m – mq) cos θ +
(
m + nq – m –  + n – q

)
cos θ

+
(
mq – n + q +  – m – nq – m

)
cos θ

+
(
m + m + nq –  + n – mq

)
cos θ +

(
–m – n – m – nq

)
,

A = –q cos θ + (mq + q) cos θ + (n + m – mq) cos θ

+ (mq – q – n –  – m) cos θ +
(
m – m – nq + q +  + n

)
cos θ

+
(
m + nq – m –  – mq – q + n

)
cos θ

+
(
mq – m –  + m + nq

)
cos θ +

(
m – mq + n +  – m – nq

)
,

A = –q cos θ + (mq + q) cos θ + (n – q – mq) cos θ

+ (mq – q – n) cos θ + (m + n + q + mq) cos θ

+
(
n – mq – q – m – nq – m

)
cos θ +

(
m + nq + mq

+ m – n –  + q
)

cos θ +
(
m – mq – mn – nq +  – q

)
cos θ

+
(
–m – m – nq –  + mq + m + q

)
cos θ

+
(
m + nq –  + mq + q + m + q – 

)
cos θ

+
(
 + m – mq – m – nq – q

)
,

A = (mq + q) cos θ + (q – mq + n) cos θ + (–q – mq – n) cos θ

+ (mq – n + m) cos θ – q cos θ

+
(
–mq + q – m + n – m – nq

)
cos θ

+
(
– – m + q – n + m + nq

)
cos θ

+
(
 + m + mq – q – m – nq – n

)
cos θ

+
(
m +  – m – nq – q + n – mq

)
cos θ

+
(
m + nq –  – m + mq + q

)
.

From the theory of the direction of Neimark-Sacker bifurcation and the stability of the
bifurcating invariant curve (see Sacker [, ], Wiggins [] or Kuznetsov []), we have
the following theorem.

Theorem . For system (.), if q + mq – n –  =  holds, then a() <  (respectively > )
implies that a unique and stable (respectively unstable) closed invariant curve bifurcates
from X∗, and the Neimark-Sacker bifurcation in X∗ is supercritical (respectively subcriti-
cal).
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