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Complexity and entropy prevail in human behavior and social interaction because the
systems underlying behavior and interaction are, without a doubt, highly complex. The
human brain, body, language, society, and culture consist of vast numbers of components,
and the degrees of freedom in behavior, cognition, and experience are just as immense.
So why do we usually experience the world around us as structured and well-organized
instead of disorganized and random? How do the patterns emerge? We are witnessing self-
organization and pattern-formation processes, which organize and modulate complexity.

Increasingly, such processes are acknowledged as essential for human affairs and
are gradually coming to the fore in psychology and social science research. Research
informed by dynamical systems theory, synergetics, and complexity theory has introduced
concepts such as attractor, synchrony, and coupling to psychology. In psychotherapy
research, empirical findings show that regular patterns of interaction arise in all therapeutic
relationships. The therapist–patient alliance is a paradigmatic case to highlight further how
interactions evolve and can be changed and how humans can change. Attractors describe
the stable states of a process, e.g., the stability or instability of personalities and disorders.
They can be detected and described based on empirical time-series.

In the first paper, Orsucci [1] examines certain theoretical implications of empirical
studies developed over recent years by his research groups. These experiments have
explored the biosemiotic nature of communication streams from emotional neuroscience
and embodied mind perspectives. Information combinatorics analysis enabled a deeper
understanding of the coupling and decoupling dynamics of biosemiotics streams. They
investigated intraindividual and interpersonal relations as the coevolution dynamics of
hybrid couplings, synchronizations, and desynchronizations. Cluster analysis and Markov
chains produced evidence of chimera states and phase transitions. A probabilistic and
nondeterministic approach clarified the properties of these hybrid dynamics. As a result,
multidimensional theoretical models can better represent the hybrid nature of human
interactions.

In the second contribution, a study by Tomashin et al. [2], the authors consider how
fractal properties in time series of human behavior and physiology are ubiquitous, and
several methods to capture such properties have been proposed in the past decades. The
paper takes this suggestion as a point of departure to propose and test several approaches to
quantifying fractal fluctuations in synthetic and empirical time-series data using recurrence-
based analysis. They show that such measures can be extracted based on recurrence plots
and contrast the different approaches in terms of their accuracy and range of applicability.

In the third paper, Altmann et al. [3] compare eight algorithms that quantify synchro-
nization in time series. The authors use a benchmark dataset that describes body movement
in 30 dyadic interviews on somatic complaints conducted by medical students with 15 de-
pressed and 15 healthy interviewees. Twenty-one different synchrony measures are tested,
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derived from four classes of algorithms: (windowed) cross-correlations, local regressions
with or without peak-picking, mutual information, and cross-recurrence quantification.
The intercorrelations of the results show that synchrony estimations are highly divergent,
and no convergent validity is manifest. However, measures from the same class tend to
be correlated, and cross-correlation-based measures form a factor. In contrast, the mutual
information and the peak-picking measures load on a different factor. Most measures do
not support the assumption underlying predictive validity that depression should have
lowered synchrony measures. The authors conclude that more analyses and sensitivity
studies are needed to clarify the psychological meaning of synchrony.

In the fourth contribution, research by Stamovlasis et al. [4], the authors investigate
and propose a nonlinear model that might explain empirical data better than ordinary linear
ones and elucidate the role of depression in a financial capacity. Financial incapacity is one
of the cognitive deficits observed in amnestic mild cognitive impairment and dementia,
while the combined interference of depression remains unexplored. Cusp catastrophe
analysis was applied to the data, which suggested that the nonlinear model was superior
to the linear and logistic alternatives, demonstrating that depression contributes to a
bifurcation effect. Depressive symptomatology induces nonlinear effects, and a sudden
decline in financial capacity is observed beyond a threshold value. Implications for theory
and practice are discussed.

In the fifth contribution, Zubek et al. [5] reflected on the pandemic that forced our daily
interactions to move into the virtual world. People had to adapt to new communication
media that afford different ways of interaction. Remote communication decreases the
availability and salience of some cues but also may enable and highlight others. Importantly,
basic movement dynamics, which are crucial for any interaction as they are responsible for
the informational and affective coupling, are affected. It is therefore essential to discover
exactly how these dynamics change. In this exploratory study of six interacting dyads,
they used tradi-tional variability measures and cross recurrence quantification analysis to
compare the movement coordination dynamics in quasi-natural dialogues in four situations:
(1) re-mote video-mediated conversations with a self-view mirror image present, (2) remote
video-mediated conversations without a self-view, (3) face-to-face conversations with a
self-view, and (4) face-to-face conversations without a self-view. They discovered that in
remote interactions movements pertaining to communicative gestures were exagger-ated,
while the stability of interpersonal coordination was greatly decreased. The presence of
the self-view image made the gestures less exaggerated but did not affect the coordination.
The dynamical analyses clarified the interaction processes and may be useful in explaining
phenomena connected with video-mediated communication, such as “Zoom fatigue”.

In the sixth contribution, Laudańska et al. [6] clarify how infants’ limb movements
evolve from disorganized to more selectively coordinated during the first year of life as
they learn to navigate and interact with an ever-changing environment more efficiently.
However, how these coordination patterns change during the first year of life and across
different contexts is unknown. Here, they used wearable motion trackers to study the
developmental changes in the complexity of limb movements (arms and legs) at 4, 6, 9, and
12 months of age in two different tasks: rhythmic rattle-shaking and free play. They applied
multidimensional recurrence quantification analysis (MdRQA) to capture the nonlinear
changes in infants’ limb complexity. They show that the MdRQA parameters (entropy,
recurrence rate, and mean line) are task-dependent only at 9 and 12 months of age, with
higher values in rattle-shaking than free play. Infants’ motor system becomes more stable
and flexible with age, allowing for the flexible adaptation of behaviors to task demands.

The seventh contribution by Ganesh and Gabora [7] take a human dynamical sys-
tems approach to modeling therapeutic change, using reflexively autocatalytic food set-
derived (RAF) networks. RAFs have been used to model the self-organization of adaptive
networks associated with the origin and early evolution of both biological life and the
development of the kind of cognitive structure necessary for cultural evolution. The
RAF approach is applicable in these seemingly disparate cases because it provides a
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theoretical framework for formally describing under what conditions systems com-posed
of elements that interact and “catalyze” the formation of new elements collec-tively become
integrated wholes. This contribution develops in line with the growing recognition of the
role of embodiment, affect, and implicit processes in psychotherapy, and several recent
studies have examined the role of physiological synchrony in the process and outcome
of psychotherapy. This study aims to introduce partial directed coherence (PDC) as a
novel approach to calculating psychophysiological synchrony and examines its potential to
contribute to our understanding of the therapy process. The study adopts a single-case,
mixed-method design and examines physiological syn-chrony in one-couple therapy in
relation to the therapeutic alliance and a narrative analysis of meaning construction in
the sessions. The findings of this study point to the complex interplay between explicit
and implicit levels of interaction and the potential contribution of including physiological
synchrony in the study of interactional pro-cesses in psychotherapy.

The paper by Avdi et al. [8] addresses physiological synchrony in one family therapy
of fifteen sessions and two physiological measurement sessions in which cardiac measures
were recorded. The sessions concern a couple and two female psychotherapists. Phys-
iological data are transformed into an index of sympathetic activity, and synchrony is
computed using partial directed coherence. This method detects the direction of influence
(“pacing/leading”) in each pair of participants. In addition to the quantitative findings
on synchrony, rating scales depict therapeutic alliance, and qualitative coding separates
the measurement sessions into topical episodes that are semantically similar. Finally, the
therapy process is described by the percentage of time windows synchronized concerning
the couple’s sympathetic activity, which is found to be reduced in the second measurement
session, where the patterns of pacing and leading have changed towards a more balanced
embodied relatedness. The authors conclude that a mixed-methods approach allows the
linking of the quantitative synchrony findings to the qualitative clinical process in this
successful couple therapy.

In the ninth paper, a study by Nkomidio et al. [9], the authors investigate the response
characteristics of a two-dimensional neuron model exposed to an externally applied ex-
tremely low frequency (ELF) sinusoidal electric field and the synchronization of neurons
weakly coupled with gap junction. They find, by numerical simulations, that neurons can
exhibit different spiking patterns, which are well observed in the structure of the recurrence
plot (R.P.). Then they further study the synchronization between weakly coupled neurons
in chaotic regimes under the influence of a weak ELF electric field. In general, detecting
the phases of chaotic spiky signals is not easy when using standard methods. Recurrence
analysis provides a reliable tool for defining phases, even for noncoherent regimes or spiky
signals. Recurrence-based synchronization analysis reveals that, even in the range of weak
coupling, the phase synchronization of the coupled neurons occurs. By adding an ELF
electric field, this synchronization increases depending on the amplitude of the externally
applied ELF electric field. Authors further suggest a novel measure for RP-based phase
synchronization analysis, which better considers the probabilities of recurrences.

In the tenth contribution, Webber [10] clarifies how the recurrence analyses of dynami-
cal systems can only process the short sections of signals that may be infinitely long. By
necessity, the recurrence plot and its quantifications are constrained within a truncated
triangle that clips the signals at its borders. Recurrence variables defined within these
confining borders can be influenced by truncation effects depending on the system under
evaluation. In this study, the question being asked is, if the boundary borders were tilted,
what would be the effect on all recurrence variables? This question is examined by compar-
ing recurrence variables computed with the triangular recurrence area versus the boxed
recurrence area. Examples include the logistic equation (mathematical series), the Dow
Jones Industrial Average over a decade (real-world data), and a square wave pulse (toy
series). Good agreement among the variables in terms of timing and amplitude was found
for most, but not all, variables. These significant results are discussed.
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In the eleventh paper, Ciompi and Tschacher [11] develop an account of model-
ing schizophrenia based on four different but related complexity theories: affect-logic,
4E-cognition/embodiment, synergetics, and the free-energy principle. All theories have in
common that they are built on loop dynamics, so-called circular causality. In affect-logic,
the loop is given by circular interactions between emotion (‘affect’) and cognition (‘logic’),
where emotion is the energy source for cognitive dynamics. Such interactions occur at
the individual level, the level of micro-social interaction, and the societal level, which
are structurally coupled. In synergetics, emotions act as control parameters that drive
the system toward pattern formation. The embodiment and the free-energy principles
are likewise built on circular dynamics between mind and body, respectively, between a
generative model and sensory evidence. The article uses these commonalities for insights
into the dynamics of schizophrenia spectrum symptoms: overly strong emotional tension
then forces the cognitive system into dysfunctional patterns, which, however, are functional
insofar as free energy is reduced. Ideas for therapeutic guidelines, as in the Soteria model,
are also derived.

In the twelfth paper, Prinz et al. [12] compute the synchrony of electrodermal activity
in psychotherapy interventions, focusing on the technique of imagery rescripting. This
therapeutic technique was developed to modulate traumatic memories in a positive and
desired direction. The activation of such memories commonly also affects the therapist
involved in the session. Therefore, client-therapist synchrony based on cross-correlations is
explored in 50 clients. Client-led synchrony is differentiated from therapist-led synchrony
by the sign of the lags of cross-correlations. It is found that therapist-led synchrony is
significantly associated with clients’ emotional experiences of greater contentment, lower
anxiety, and lower depression. In contrast, client-led synchrony is linked to the clients’
more significant anxiety. The authors interpret their findings as supportive of the therapists’
role in regulating mood.

In their contribution, Gennaro et al. [13] introduce a novel lexical method called the
affective saturation index (ASI) to assess affectivity based on interview transcripts. Affect
is semiotically defined as a sign that makes sense of the world in terms of patterns of
bodily activation. Affect saturation in the ASI is then defined based on a “phase space
of meaning”. The ASI was correlated with several measures of semantic complexity,
students’ emotion regulation, and heart-rate variability in a sample of 40 students who
participated in semi-structured interviews on neutral issues. The study shows that affective
saturation is significantly and inversely linked to the semantic entropy index and heart-rate
variability, consistent with the expectation that the ASI can detect the lexical-syntactic
complexity of the interview text as well as physiological signs of affective arousal. It is
concluded that ASI thus has potential applicability in clinical and community interventions,
social communication, marketing, and media monitoring. Most approaches to computing
interpersonal coupling are dyadic in that they focus on bivariate synchrony, such as that
between client and therapist.

Meier and Tschacher [14] developed an algorithm for multivariate surrogate synchrony
(mv-SUSY), which is based on the eigen-decomposition of the correlation matrix of multiple
time series, like principal component analysis (mv-SUSY variant lambdamax). A further
variant labeled omega is derived from the determinant of the variance-covariance matrix
as a measure of actual entropy and standardized by potential entropy, the product of
all variances. Computation is carried out in time-series segments, and segment-shuffled
surrogate datasets are used as a control condition. The authors apply mv-SUSY to the
simulated multivariate time series that realize the various types of regularities (random
data, autocorrelations, trends, oscillatory behavior, intercorrelated random data) and to
empirical multivariate time series (motion capture data from persons dancing and from a
group discussion). It was found that mv-SUSY correctly identifies whether regular patterns
exist in the datasets. The results of the multivariate algorithms are additionally validated
by conventional dyadic synchrony methods.

4



Entropy 2022, 24, 1670

We believe that change is generally studied in phase transitions when the dynamics
move between different attractors, as evident in behaviors, mental states, and neurobiology.
Theoretical models can represent dynamical change maps in mathematical equations and
topological structures. Mapping theory to empirical research and vice versa is challenging
but heuristic. Nevertheless, it paves the road to a future discipline of a general complexity
theory of human change.

One feature of complexity and self-organization is the presence of scaling and fractal
dynamics with the emergence of higher-order organizations. Moreover, heterogeneous hu-
man networks present specific kinds of self-similarity in the embodied mind in individual
and social dynamics. Finally, translational processes and procedures from research to appli-
cations and vice versa are particularly relevant as they frequently include interdisciplinary
collaborations.

Based on these thoughts, the Special Issue “Complexity Science in Human Change”
has addressed an interdisciplinary community of scientists and practitioners interested
in dynamical systems theory, especially approaches considering complex systems and
applications to psychology and psychotherapy. Most of the contributions in this Issue
analyze empirical data, predominantly time series. Some contributions contain theoretical
models or methodological topics of complexity science.

This Special Issue closely represents the current work of complexity researchers in
human behavior and change. Psychotherapy and communication systems are the back-
grounds of six articles, mental health and psychopathology of four articles, and one paper
concerns developmental psychology. Six papers put forward methods for the computation
of interpersonal synchrony and innovations of existing synchrony algorithms. Regard-
ing methodology, recurrence quantification analysis is frequently applied in articles on
this topic. Four put forward correlation-based analyses of synchrony. Finally, network
modeling, catastrophe theory, and nonlinear regression are tackled in one article.

This Special Issue highlights achievements of complexity science in studying patterns
of organization and change in human dynamics. It also highlights new challenges that lie
ahead. First, it clarifies how complex systems present plural structural forms and varieties
of organization and disorganization [15,16]. These varieties are frequently distributed even
within any singular system, creating rugged dynamical landscapes. This applies more
specifically to human systems, which are hybrid by default [17]. They present multiple
scales and heterogeneous subsystems; synchronous and asynchronous interactions; stable,
unstable, and metastable states; and localized and generalized dynamics. Therefore, con-
sidering the hyper-complexity of the human dynamical landscapes, empirical studies can
use mixed methods with several different approaches (sometimes all at once). Accordingly,
multiple and varied interventions can induce change or facilitate its natural evolution and
emersion [18,19]. This can explain how multiple and different therapeutic techniques can
produce similar (though not identical) outcomes in the clinical field. It is the good old
equifinality principle of complex open systems still at work.

We hope that with this, new questions and new research might be incited, as Voltaire
once suggested: “The most useful books are those in which the readers themselves supply
half of the meaning”.

Author Contributions: Writing—original draft preparation, F.O. and W.T.; writing—review and
editing, F.O. and W.T. All authors have read and agreed to the published version of the manuscript.
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Abstract: We examine the theoretical implications of empirical studies developed over recent years.
These experiments have explored the biosemiotic nature of communication streams from emotional
neuroscience and embodied mind perspectives. Information combinatorics analysis enabled a deeper
understanding of the coupling and decoupling dynamics of biosemiotics streams. We investigated
intraindividual and interpersonal relations as coevolution dynamics of hybrid couplings, synchroniza-
tions, and desynchronizations. Cluster analysis and Markov chains produced evidence of chimaera
states and phase transitions. A probabilistic and nondeterministic approach clarified the properties of
these hybrid dynamics. Thus, multidimensional theoretical models can represent the hybrid nature
of human interactions.

Keywords: synchronization; semiotics; information; cognitive neuroscience; psychotherapy; conver-
sation; mapping; chimaera states; statistical dynamics; coupling

Science is built up with facts, as a house is with stones.

However, a collection of facts is no more a science than a heap of stones is a
house.

Henri Poincaré, Science and Hypothesis

1. Introduction. Complexity, Noise, and Orders

We will try to expand some theoretical outcomes of empirical and experimental re-
search on human interactions published by our laboratories in recent years. We built an ad-
vanced multidimensional methodology for analyzing human dynamics, mainly focusing on
synchronization in an embodied mind framework [1,2]. Patterns of synchronization form
the foundations of the cognition [3,4] continuum between healthy and disease states [5].
Structural coupling and synchronization arise in human dynamics in many ways, including
coordination in conversations: speech, movement, emotions, and physiology [6–12]. It is
a partially self-contained setting and practices to observe and facilitate transformation in
human conditions and relations. Psychotherapy has been described as “one of the most
complex bio-psycho-social systems in which patterns of language, cognition, emotion,
and behavior are formed and changed through the dynamics of therapist and patient
interactions” [13,14]. Beyond clinical research, studying such an exceptional human dy-
namics environment can lead to a general model of human dynamics, comprehending
the linguistic, behavioral, and physiological realms. The integration of communication,
action, bodies, and environments highlights our embodied interactions’ multimodality and
parallel multiactivity [15,16].

We started by focusing our studies on language. Language study is scaled in complex
structures: from informational systems to mesoscopic morphological patterns to semantic
and narrative streams. In verbal interactions, voice tonality, volume, pitch, cadence, rhythm,
and turn-taking are relevant. Shannon [17] built the foundations of the information theory
of texts and speech. His less famous work on the prediction and entropy of printed
English [18] is a resource for inspiring new research. It might be interesting to consider
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the distribution of information and organization in different living and nonliving systems
in the same perspective. In this perspective, a graph proposed by Schreiber [19] mapped
scattered areas of various forms of order, entropy and knowledge still interspersed with
regions of the unknown, as in old charts. Following his mapping, we can find periodic
and noisy oscillations, deterministic and stochastic areas of chaos, stochastic resonance,
self-organized criticality, nonlinearity, or noise. Then, there are a few other islands where a
connection between our knowledge models and real-world phenomena is yet to be well
established. This kind of dynamical mapping might be synchronic and diachronic, in
spatial distribution and time transitions.

The structure of different systems can be known and modified through the emergence
of self-organization or by external actions, by casual or planned perturbations, including
measurements. Some interactions can lead to coupling between systems, and if they
repeat in time, they might produce forms of synchronization. Maturana and Varela [20]
considered synchronization a form of structural coupling occurring when two systems
repeatedly perturb each other. “Synchronization is a nonlinear phenomenon discovered at
the beginning of the scientific revolution”, and in its classical definition, synchronization
refers to adjustment or entrainment in frequencies or phase of periodic oscillators due to
weak interactions that lead to structural coordination between systems" [21]. This process
can lead to the emergence of adaptive behavior between interacting systems. Pecora and
Carroll [22], Ott, Grebogi and Yorke [23], and Pyragas [24] found that synchronization can
be used to change the dynamic behavior of complex systems.

2. Materials and Methods. Biosemiotics Pattern Analysis

Our initial approach was different from most of the studies mentioned above. We chose
a method, Recurrence Quantification Analysis–RQA [25,26], that does not generate any
specific hypothesis on the form of data and does not need to consider time series produced
by a dynamic system. Our primary aim was to build a statistical tool for reliable quantitative
measures of the degree of organization (as expressed by the recurrence of patterns) of a
flow of signs. We demonstrated how this could be performed with a relatively simple
mathematical model. The analysis of the informational structure of a text (irrespective of
its meaning) could unveil the hidden matching of patterns between two speaking persons.
The hidden matching relates to the flow and forms of information linking partners in
conversation. Through the phonetic configuration of speech, as represented in orthography,
we can extract relevant patterns in the dynamic structures of human interactions.

We used Recurrence Quantification Analysis, a methodology that can reliably measure
the recurrence of patterns, determinism, and entropy. Recurrence Plots (RP) were first
pioneered in physics by Eckmann, Kamphorst and Ruelle [25,26]. Later, Webber, Zbilut,
Giuliani and Marwan augmented this technique by identifying nonlinear variables for the
quantitative assessment of RPs, thus creating RQA. Since then, RQA has been used in differ-
ent areas, from molecular dynamics [27,28] to physiology [29] and bioinformatics [30–32].
In performing RQA, the original time series must be placed into an embedding matrix by
converting the original n elements column vector correspondent to the symbol series into a
p-dimensional matrix with columns as the original Xn series plus its lagged copies Xn+1,
Xn+2, . . . , Xn+1, while p is the embedding dimension. The quantification of recurrences is
acquired by many different ‘counts’ of repetitions within the matrix.

While testing the robustness of this methodology on written language [33], we had
to set to three (letters) for dimensional embedding, as this amplifies its sensitivity while
avoiding noise from low-level statistical features (for example, asymmetrical distribution of
couplets of letters). We might notice that a three-letter dimension represents a mesoscopic
information level in natural language, just between single letters and whole words. We
will later see the theoretical implications of this seemingly technical specification. Our time
series analysis used RQA and CRQA (cross recurrence) to measure the synchronization in
conversations as semiotic interactions. These informational patterns represent a preverbal
and a-conscious communication channel revealed by the frequent emergence of patterns
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of prosodic structures (such as the musicality of phoneme sequences, stereotyped words,
pauses and phrases).

Other independent centers started developing research on social and clinical interac-
tions using a similar methodology based on recurrence analysis. For example, they studied
postural or verbal time series of interpersonal coordination during conversations [34–36].
These studies usually took one type of time series (i.e., movement, speech, or physiology)
while not considering the mutual influence between different kinds of interaction. How-
ever, as human relationship dynamics are naturally hybrid, one type of interaction can
influence the coupling or uncoupling of the other streams: motor, semiotic or physiological.

3. Results. Hybrid Couplings and Synchronizations

Human interactions constantly involve multiple streams (language, movement, emo-
tions) which undergo coupling, decoupling and synchronizing. These multiscale and
hybrid interactions are better comprehended within the biosemiotics, embodied mind
framework that we defined as Mind Force [37,38]. We built the empirical paradigm of this
approach as a multidimensional analysis of speech and emotions in patients and therapists
in psychotherapy [39]. We chose Galvanic Skin Response—GSR and verbal prosody, as
both variables reveal, in different flows, the expression of emotions [40,41]. Our new
experiments studied four signals: the therapist’s speech transcription, the patient’s speech
transcription, the therapist’s GSR, and the patient’s GSR. We focused on how those four
variables modulated, coupled, synchronized, or desynchronized with each other. First,
we considered the combinatorics and patterns of letters (phonemes) and morphemes (the
minor portion of words that communicate significance). As mentioned, we had established
this methodology in previous studies, which validated robust informational measures of
entropy and determinism. In this new study, we initially considered the synchronization
with standard correlation coefficients of Principal Components Analysis. Afterwards, we
clustered all four signals using k-means resulting in a model representing this complex
system’s phase space and state transitions. Then, using a Markov Transition Matrix (see
Figure 1), we disclosed phase transition probabilities between linguistic and physiological
time series.
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The complex dyadic system evolves between two attractors. In the first attractor, state
four, the therapist strives to attune and entrain with the patient presenting low values of
GSR recurrence and determinism. The therapist has high recurrence and determinism
in prosody with repetitive semiotic patterns, perhaps to direct the patient’s emotional
expressions. The second attractor, at state five, is characterized by a medium level of GSR
recurrence and determinism for both patient and therapist. We evidence semiotic medium
recurrence and determinism for the therapist and low recurrence and determinism for the
patient. Overall, this phase represents a state in which the patient’s physiological anxiety
becomes more manageable and linguistic expressions are more integrated. In short, while
state four is an erratic phase of the interaction in which semiotics seems independent from
passions, state five shows an integration. This sequence in human interactions is consistent
with the literature in psychotherapy and neuroscience research on the embodied mind.

4. Discussion. The Chimera States in Human Interactions

This data analysis and mapping highlight dynamical landscapes of mixed states of
coupling, with mixed zones of synchronization, noninteraction, and drift in uncoupling that
can change over time. The Japanese physicist Yoshiki Kuramoto (1984b, 1984a) proposed a
paradigmatic mathematical model to describe synchronization dynamics in a large set of
coupled oscillators. The most frequent form of the model has the following equation:

dθi
dt

= ωi +
K
N

N

∑
j=1

sin
(
θj − θi

)
, i = 1 . . . . N, (1)

where the system is formed of N limit-cycle oscillators with phase θi and coupling K.
Then, in November 2002, Yoshiki Kuramoto and Dorjsuren Battogtokh published the

paper “Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscilla-
tors” [42,43]. They observed the coexistence of coherence and incoherence in a network
of identical, nonlocally coupled, complex Ginzburg–Landau oscillators. While coupled
nonidentical oscillators were known to exhibit mixed complex behavior (frequency locking,
phase synchronization, partial synchronization, and incoherence), identical oscillators were
supposed to either synchronize in phase or incoherently drift. They showed that oscillators
that were identically coupled with similar natural frequencies could behave differently
from one another for specific initial conditions. Some could synchronize while others
remained incoherent in a stable state. They considered the following equation, which they
called the nonlocally coupled complex Ginzburg–Landau equation:

δ

δt
ψ(x, t) = ω(x)−

∫
G
(
x− x′

)
sin
(
ψ(x.t)− ψ

(
x′, t

)
+ α
)
dx′

with ω(x) = ω for all x.
Later, Abrams and Strogatz [44,45] named it a chimaera state, from the mythological

Greek creature made up of parts of different animals and introduced some theoretical
clarifications for such behavior. Finally, they studied the most straightforward system
presenting a chimaera state, a ring of phase oscillators governed by:

ϑφ

θt
ω−

∫ π

−π
G
(

x− x′
)

sin
[
φ(x, xt)− φ

(
x′, t

)
+ α
]
dx′

Here, φ(x′, t) is the phase of the oscillator at position x at time t. The space variable x
runs from −π to π with periodic boundary conditions. The frequency ω plays no role in
the dynamics; one can set ω = 0 by redefining φ→ φ + ωt without otherwise changing the
form of the equation.

Chimaera states were later found in limit-cycle oscillators, chaotic oscillators, chaotic
maps and in neuronal systems. In the beginning, chimaera patterns were observed in
nonlocally coupled networks, but afterwards, these states were also found globally and
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locally (nearest neighbor) coupled networks and in modular networks [46,47]. The usage
of Markov chains for mapping couplings and chimaera states was also explored ([48,49].
C.R. Laing studied chimaera state in heterogeneous networks, analyzing the influence of
heterogeneous coupling strengths. Of further interest for human dynamics is the emergence
of chimaera states in multiscale networks that result from the networking of different
networks [50,51]. The ubiquity of chimaera mapping of synchronization and its different
typologies extended its original definition to areas that might include nonidentical coupling
oscillators in hybrid networks and multiscale networking of networks that were already
known to present chimeralike dynamics before this definition started to be used.

Our studies’ dynamic mapping of heterogeneous synchronization indicates that sim-
ilar dynamics involving different brain areas related to emotional, motor, and verbal
interactions co-occur. Cognitive tasks constantly require a balance between segregated
and integrated neural processing with relevant consequences for cognitive performance.
Segregation enables efficient computations in specialized brain regions, while integrated
systems ensure coordinated, robust performance. Focused states tend to involve shorter,
local connections, while integration largely relies on subcortical regions and cortical hubs
with diverse connections to other brain regions [52,53]. “Recognizing chimaera dynamics
can help to clarify the hybrid complexity of synchronization in critical cognitive states
where a balance between integration and segregation is required for adaptive cognition
and social interactions” [54]. Brain chimaera dynamics might also be related to different
neuronal interactions mediated by different electrical or chemical synapses in the nervous
system.

Further neural interactions involve neuromodulators and hormones, faster or slower
action, and different time frames [55]. Various types of neural interaction are undoubtedly
an additional factor in the emergence of chimaera dynamically states in human hybrid
synchronization [51]. As separate regions interact to perform neurocognitive tasks, variable
patterns of partial synchrony form chimaera states [3].

5. Conclusions: From Determinism to Statistical Dynamics

Human dynamics are so complex and prone to indeterminacy and randomness that
even deterministic chaos might be considered, in many cases, as a reductionist simplifica-
tion. Therefore, we might consider probabilistic models including elements of randomness.
The previous study highlighted how biopsychosocial dynamics are hybrid, discontinuous,
and have many degrees of freedom. We also highlighted how cluster analysis and Markov
states could help to clarify the dynamics. However, our knowledge of the state of the
systems is always incomplete, and some uncertainty is part of the game. While standard
dynamics usually consider the behavior of a single state, statistical dynamics define the
statistical ensemble as a probability cloud of the possible conditions in the system [56]. The
ensemble probability can be interpreted in two main ways:

(a) Epistemic probability of all the possible states.
(b) Empirical probability in repeated experiments.

Following this perspective, we used a probabilistic approach in the study of em-
pathy [57]. Empathy plays a significant role in human coordination, collaboration, and
change, in human interactions. Most authors agree that forms of resonance in imitation,
emotions, and communication are relevant factors of empathy. Following the expanding
literature on relational physiology, we explored if empathy would present physiological
evidence. We applied a Principal Component Analysis (PCA) on simultaneous GSR and
HR signals from a patient-therapist dyad. PCA revealed a ‘shared’ component in signals,
and two ‘individual’ components of independent correlation. Regression analysis showed
that the shared component predicted a therapy outcome (R2 = 0.28). We further examined
the common component dynamics in a symbolic Markovian discrete model and cluster
analysis.

Several studies on cognitive neuroscience [58,59] established statistical dynamics in
biological systems focusing on the reciprocal correlations between system descriptors.
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This scientific position focuses on the mesoscopic level [60,61], potentially expanding
correlations among system variables. This is the midpoint between pure “bottom-up”
and “top-down” approaches. The crucial role of mesoscopic dynamics was validated in
our physiological analysis and semiotics, as highlighted by the robust evidence for our
mesoscopic embedding in RQA since the first experiments. In this way, we focused on the
level of morphemes as word subcomponents. Morphemes have meaning and grammatical
functions. They can be decomposed into smaller morphemes without losing these two
crucial properties. Morphemes can be considered as semiotic quanta of information
in natural language, as they are the basic lexical item in a language. They are usually
composed of more than one phoneme and several letters or informational units [62–64].
Therefore, we can consider morphemes as the information quanta structuring coupling
and synchronization in natural human language.

We explored informational patterns in human interactions. We investigated intraindi-
vidual and interpersonal relations as coevolution dynamics of hybrid couplings, synchro-
nizations, and desynchronization. Cluster analyses and Markov chains produced evidence
of chimaera states and phase transitions. A probabilistic and nondeterministic approach
can clarify relevant properties of human dynamics, focusing on the mesoscopic scale and
statistical dynamics. Theoretical models of human interactions should be founded on the
hybrid nature of human structural couplings.
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Abstract: Fractal properties in time series of human behavior and physiology are quite ubiquitous,
and several methods to capture such properties have been proposed in the past decades. Fractal
properties are marked by similarities in statistical characteristics over time and space, and it has
been suggested that such properties can be well-captured through recurrence quantification analysis.
However, no methods to capture fractal fluctuations by means of recurrence-based methods have
been developed yet. The present paper takes this suggestion as a point of departure to propose and
test several approaches to quantifying fractal fluctuations in synthetic and empirical time-series data
using recurrence-based analysis. We show that such measures can be extracted based on recurrence
plots, and contrast the different approaches in terms of their accuracy and range of applicability.

Keywords: recurrence quantification analysis; fractals; monofractals; fractal time series

1. Introduction

Since Gilden et al.’s [1] seminal paper, showing the presence of 1/f α -fluctuations
in human time estimation performance, a huge interest in the presence and meaning of
fractal fluctuations in human behavior has emerged. On the one hand, fractal patterns
have been found in virtually all aspects of human physiology and behavior across recent
studies [2–11]. On the other hand, their meaning has been intensely discussed [12–19].

Through the same period, the development and refinement of different time-series
analysis techniques gained momentum, so that fractal properties could be quantified with
a variety of methods, based on the power spectrum of a time series [20], their standard
deviation [21] or residual fluctuations [22]—each of which has particular advantages
and downsides, as well as requirements for preprocessing [21,23]. This was of central
importance, because methods that are suitable for special fractals, such as box counting,
are not equally applicable to time-series data [24].

In the current paper, we want to present another way of quantifying fractal fluctuations
in time-series data using recurrence quantification analysis [25,26]. Our motivation for
the present work is two-fold: firstly, to extend the use of recurrence plot-based methods
to capture fractal properties. This is something that recurrence plot-based analyses have
not been capable of. Further, to pave the way to provide an easy-to-use tool to compare
fractal dimensions of time series that are well-applicable to binary data, and in the future
also to multidimensional time series using multidimensional recurrence plot methods [27].
As has been suggested elsewhere [28], fractal properties in time-series data can be well-
captured by the concept of (imperfectly) recurring patterns over time, and this is—as the
name implies—what recurrence quantification analysis is about. Specifically, Webber [28]
encouraged researchers to explore RQA as a bridge to further understand fractal systems
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in various fields. However, Webber did not specify how to quantify fractal fluctuations by
means of recurrence plots.

Hence, the aim of the present paper is to take this next step and propose, as well as com-
pare, novel recurrence-based approaches that can be used to quantify fractal fluctuations. In
the following, each approach is introduced, tested on synthetic data, and evaluated; in addi-
tion, a Matlab (The MathWorks, Inc., Natick, MA, USA) implementation of the approaches
presented in this paper is available on GitHub: https://github.com/alontom/FARQA
(Accessed on 19 July 2022, see Appendix A). Finally, we discuss the individual strengths
and weaknesses of each approach and relate the results to those obtained from detrended
fluctuation analysis (DFA; [22]), as DFA is one of the most widely used methods with
accurate performance in capturing fractal fluctuations in time-series data [29–31].

2. Methods and Results
2.1. Synthetic Data

In this section, we show four new approaches to differentiate between the power-law
scaling exponent (α; 1/fα) based on several RQA properties. Each evaluation approach was
applied to synthetic data consisting of 1026 data points with different fractal dimensions
ranging from α = −1 (antipersistent) to 2 (persistent) generated by ‘power noise’ func-
tion [32] using Matlab version 2021b (The MathWorks, Inc.). For every fractal dimension,
100 time series were generated under two conditions: idealized fractal time series and a
noisy fractal time series (SNR 2:1). The noise component added was drawn from a normal
distribution with 50% of the SD of the idealized fractal time series. We conducted RQA
without embedding (delay and embedding parameters of 1, euclidean normalization of
the phase space, and radius = 0.4) on the z-scored generated time series and utilized its
properties to discriminate between signals with different 1/f values. As a benchmark
to compare against, alongside the true predetermined α, we also subjected the data to
detrended fluctuation analysis (DFA; [22]). In the next sections, we will describe each of the
methods and present the results of their application. After that, we will apply the methods
to empirical data of a time-estimation task. Finally, we will provide a summary of the
strengths and weaknesses of each method and the intercorrelations of their results.

2.1.1. Detrended Fluctuations Analysis (DFA)

First, we tested the fractal properties of the dataset by applying a detrended fluctuation
analysis [22]. To do so, we used the following DFA parameters: a minimum bin size of
10, a maximum of 510, linear detrending. The results are presented in Figure 1 and show
that the Hurst exponents H estimated via the DFA scale well with the true α-values of the
time series. In the absence of random noise, DFA distinguishes scaling relations well down
to antipersistent fluctuations with α = −1 (Figure 1, left panel, R2 = 0.997). When noise is
added, the capacity of DFA to distinguish among antipersistent was slightly compromised
(Figure 1, right panel, R2 = 0.965).

2.1.2. First Approach: Estimating Scaling Using the SD of %REC over a Range of Bin Sizes
(%REC SD)

To capture the change in fluctuations with scale, the RP was split into bins of various
sizes (powers of two). In each, we calculated the recurrence rate. Then, the SD of all the
bins of the same size was computed, and we fitted a linear line to the log–log plot of the SD
vs. the bin sizes. Figure 2 illustrates the approach.

The rationale behind this approach is that a time series of i.i.d. white noise will yield
a recurrence plot that is statistically uniformly populated by mostly isolated recurrence
points, while the correlation structure of persistent fluctuations will yield a more clustered,
nonuniform distribution, and will hence lead to a slower increase in SD compared to the
white noise case (Figure 3, α > 0). However, antipersistent fluctuations tend to systemat-
ically decluster recurrences, and the result is likewise a relatively uniformly distributed
recurrence plot (Figure 3, α = −1).
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Figure 1. Detrended fluctuation analysis (DFA) results: Left panel: Box plots of the true α-values on
the x-axis and the estimated Hurst exponents H on the y-axis from DFA. As can be seen, the DFA
H scales well with the true alpha values down to antipersistent fluctuations (α = −1). Right panel:
Box plots of the true α-values on the x-axis and the estimated Hurst exponents H on the y-axis from
DFA, when random noise is added (SNR = 2:1). DFA still scales well for persistent fluctuations
with the true α-values, but is relatively less sensitive to distinguishing between different types of
antipersistent fluctuations.
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rence plot (RP) where blue squares stand for recurrence points and blank squares for nonrecurrent 
ones. In (B,C) the RP is split into bins of 2 and 4 (respectively, marked in brown). With approach 1, 
one finds the %REC in every bin and computes the SD between the recurrence percentages. After-
ward, a linear trend is fitted to the log–log scaling plot (D) and the slope represents the scaling. 

The rationale behind this approach is that a time series of i.i.d. white noise will yield 
a recurrence plot that is statistically uniformly populated by mostly isolated recurrence 
points, while the correlation structure of persistent fluctuations will yield a more clus-
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Figure 2. Demonstration of approach 1 over a simple recurrence plot: (A) A hypothetic 8 × 8 recur-
rence plot (RP) where blue squares stand for recurrence points and blank squares for nonrecurrent
ones. In (B,C) the RP is split into bins of 2 and 4 (respectively, marked in brown). With approach 1, one
finds the %REC in every bin and computes the SD between the recurrence percentages. Afterward, a
linear trend is fitted to the log–log scaling plot (D) and the slope represents the scaling.
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Figure 4 shows the model coefficients for each α (n = 100 simulations each). This 
method seems appropriate for distinguishing among persistent signals (α > 0) for the ide-
alized, but also noise data. It does not work for antipersistent fluctuations (α < 0). Here, 
the method simply does not distinguish between α-values of 0 and −1. For the noisy time 
series, we fitted linear regressions between α values and the power-law coefficients sepa-
rately for the α ≥ 0 (R2 = 0.9) and α ≤ 0 (R2 = 0.04), which support the above statement. 

 

Figure 3. RP and scaling plots for different alpha values: Examples of univariate RP time series
generated with different α-values, and scaling plots demonstrate the association of bin sizes and
the SD of the recurrence rates between bins. As can be seen, from α = 0 the slope tends to decrease,
suggesting a lower fractal dimension (i.e., higher α).

Figure 4 shows the model coefficients for each α (n = 100 simulations each). This method
seems appropriate for distinguishing among persistent signals (α > 0) for the idealized, but
also noise data. It does not work for antipersistent fluctuations (α < 0). Here, the method
simply does not distinguish between α-values of 0 and −1. For the noisy time series, we fitted
linear regressions between α values and the power-law coefficients separately for the α≥ 0
(R2 = 0.9) and α ≤ 0 (R2 = 0.04), which support the above statement.
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sizes on the y-axis. As observed, the coefficient scales well with the true alpha values for the persistent
fluctuations (α > 0). Right panel: Box plots of the true alpha values on the x-axis and the power-law
coefficients for the association of SD of %REC between the bins and bin sizes on the y-axis, when
random noise (SNR 2:1) is added. Still, the resulted coefficients scale well for persistent fluctuations
with the true alpha values but are relatively insensitive to distinguishing between different types of
antipersistent fluctuations.

2.1.3. Second Approach: Estimating Scaling Using Laminarity (%LAM)

For this approach, we simply calculated the percentage of recurrence points that have
a vertical/horizontal neighbor (%LAM, laminarity; [33]) over the whole plot (Figure 5).
The rationale behind this approach is somewhat similar to the first approach, which is that
fractal fluctuations tend to be manifested by patches or squares in the recurrence plot (see
Figure 3). Hence, %LAM would represent the persistence of the data well.
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Figure 5. Quantifying laminarity: An 8 × 8 RP where colored squares represent recurrence points.
The orange-filled recurrence points have a vertical/horizontal neighbor, while the blue squares do
not. %LAM is the percentage of the recurrence points that have a vertical neighbor (orange) out of all
the recurrence points (colored).

The results corroborate this: persistent fractal fluctuations lead to increased laminarity
with and without noise (Figure 6). In addition, there was a tight connection between the
%LAM values and the true α-values, marked by a high R2 (0.96) quantifying correlation
between α and %LAM for the noise condition.
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for both persistent and antipersistent fluctuations (α > 0). Right panel: box plots of the true α-values
on the x-axis and the %LAM on the y-axis, when random noise (SNR 2:1) is added. Still, the resulted
coefficients scale well for every alpha value (−1 < α < 2).

While there is a mathematical relation between %LAM and autocorrelations in a time
series, the method has a downside in that it does not capture scaling relations within the
data per se, and hence represents more of a correlate of fractal fluctuations, albeit a very
useful one.

2.1.4. Third Approach: Estimating Scaling Relations via Diagonal Recurrence Rates
(Diag %REC)

The third approach is based on diagonal recurrence profiles of a time series. The
diagonal recurrence profile quantifies the number of recurrences at different lags, similar
to the autocorrelation function [34]. To obtain the diagonal recurrence profile, one simply
counts the proportion of recurrence points in the off-diagonals towards the lower-right
or lower-left of the recurrence plot and plots them as a function of distance from the
main diagonal; that is, lag [35]. Figure 7 illustrates the computation of the diagonal
recurrence profile.
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Figure 7. Approaches 3 and 4—diagonals in RP: An 8 × 8 RP presents the diagonal lines from 0 (main
diagonal) to 7; due to the univariate RP’s symmetrical characteristic, only the bottom triangle was
used. In approach 3, we counted the recurrence points in each diagonal and divided them by the
diagonal’s length. Additionally, approach 4 utilizes the ratio of recurrence percentage between every
two subsequent diagonal lines. Both approaches focused on the middle diagonals to avoid the main
diagonal’s 100% recurrence points and the short diagonals towards the edges of the recurrence plot.

The rationale behind the approach is that the diagonal recurrence profile is a model-
free type of autocorrelation [33,36], and hence captures the magnitude of autocorrelation
at different lags, which is related to fractal fluctuations in a time series [37]. Accordingly,
a scaling relation between the logarithm of the recurrence rate and the logarithm of the
diagonal number (reflecting the frequency spectra) should be related to fractal scaling. Here,
a sharper negative slope indicates dominance of lower frequencies. Hence, contrasting the
previous approaches, a lower power-law coefficient evidence a more persistent fluctuation.
Correspondingly to spectral scaling analysis, this method yielded a scaling exponent of
0 to white noise (α = 0)—a benchmark to determine whether the time series is persistent,
random, or antipersistent.

As can be seen in Figure 8, this approach distinguishes comparatively well between
the different exponents for persistent fluctuations, with and without noise, but is less
sensitive to the antipersistent fluctuations (however, the exponents are still increasing with
decreasing negative alpha-values). Moreover, the relation to the true α-values appears
strong for this range, even with noise (R2 = 0.88).
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Figure 8. Results of approach 3 (Diag %REC). (A) Left panel: box plots of the true alpha values on
the x-axis and the power-law coefficients for the association of diagonal %REC and the diagonal
index (distance from the main diagonal) on the y-axis. As can be seen, the coefficient scales well
with the true α-values for both persistent and antipersistent fluctuations (−1 < α < 2). Right panel:
box plots of the true alpha values on the x-axis and the power-law coefficients for the association of
diagonal %REC and the diagonal index on the y-axis when random noise (SNR = 2:1) is added. Still,
the resulted coefficients scale well with the true α-values for persistent and antipersistent fluctuations,
but are somewhat less sensitive to distinguishing between different types of antipersistent fluctuations
(α < 0). (B) Example of scaling plots demonstrating the association of diagonal %REC and diagonal
index for different α values.
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Another version of this approach is derived from Zbilut and Marwan’s [38] proposal,
which applied the Wiener–Khinchin theorem [38] to the analysis of diagonal recurrence
profiles. They show that one can detect (nonlinear) periodicities by applying a Fourier
transform to the diagonal recurrence profile of an RP (Figure 7). Just as with the raw
diagonal recurrence profile, we fitted a linear trend line to the log–log plot power spectrum
(obtained via the Fourier Transform) of the diagonal recurrence profile (Figure 9). The
results were similar to what we observed for the raw diagonal recurrence profile in that
the method distinguished between persistent (R2 = 0.68, α ≥ 0) fluctuations. However, the
standard errors were higher, and the method did not capture antipersistent fluctuations
(R2 = 0.002, α ≤ 0).
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index on the y-axis. As can be seen, the coefficient scales well with the true α-values for the persistent
fluctuations (α > 0). Right panel: box plots of the true α-values on the x-axis and the power-law
coefficients for the association of FT of the diagonal %REC and the diagonal index on the y-axis, when
random noise (SNR = 2:1) is added. The relation of the resulting coefficients to the true α-values is
not as good for persistent fluctuations (cannot differentiate α = 0 and 0.5) and is relatively insensitive
to distinguishing between different types of antipersistent fluctuations. (B) Example of scaling plots
demonstrating the association of FT of the diagonal %REC and diagonal index for different α values.

2.1.5. Fourth Approach: Consecutive Diagonals Recurrence Ratio (Diag ratio)

Until this point, the analysis techniques were more effective for persistence signals
and did not distinguish between antipersistent signals well. Approach number four
solves this issue to some degree. Similar to the third approach, we utilized the recurrence
percentage of the diagonal lines. Here, however, we calculate the ratio between each
couple of consecutive diagonal lines (Figure 7). The rationale behind the approach is that
antipersistent fluctuations will tend to yield oscillations at high frequencies, and the ratio
of recurrence rate of adjacent diagonals in the recurrence plot will capture the magnitude
of such oscillations. Just as with the laminarity measure, however, this method is more of a
correlate of antipersistent fractal scaling, and does not capture scaling properties directly.

As seen in Figure 10, with this measure, we can differentiate negative α-values (an-
tipersistent) from α = 0, both with and without external noise. However, the method does
not distinguish between the different alpha values of the persistent fluctuations.
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Figure 10. Results of approach 4 (consecutive diagonals %REC ratio). Left panel: box plots of the true
alpha values on the x-axis and the mean ratio between subsequent diagonals’ %REC on the y-axis. As
can be seen, the coefficient scales well with the true α-values for antipersistent fluctuations (α < 0)
and converges to 1 from α = 0. Right panel: box plots of the true α-values on the x-axis and the mean
ratio between subsequent diagonals’ %REC on the y-axis when random noise (SNR 2:1) is added.
Still, the resulted coefficients scale well for negative alpha value (R2 = 0.79).
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2.2. Empirical Example

The approaches were tested on a dataset of a tapping experiment during which
participants listened to a certain beat and were then instructed to tap according to the
tempo they had heard. Under one of the two within-participant conditions, participants
received visual feedback on every trial to help them align their tapping performance with
the target tempo, while in the other condition no such feedback was provided. The sample
was comprised of 36 time series from 18 participants with at about 1000 tapping intervals
per time series.

Drawing on previous research on cognitive processes, we expected the time series to
show persistent fractal fluctuation. Moreover, previous research showed that receiving
feedback would reduce long-range dependencies in the data related to cognitive-motor
processes of timing, and hence yield a more random (‘whiter’) noise manifested by a
lower α exponent [39]. Our findings, displayed in Figure 11, support these expectations
in several ways. Firstly, a negative power-law coefficient in approach 3 along with a
~1 ratio between subsequent diagonals (approach 4) indicate a persistent fluctuation in
both conditions and is supported by a Hurst exponent 1.0 > H > 0.5, suggesting a pinkish
noise. Further, approaches 1–3, as well as Wiener–Khinchin theorem’s results, imply a
lower α-exponent for the feedback condition (see Table 1). While SD %REC and %LAM
exhibit it by presenting a higher clustering characteristic for the no-feedback condition,
Diag %REC and the Wiener–Khinchin theorem display it with a stronger lower frequency
dominance when no feedback is given.
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Figure 11. Box plots illustrating the outcomes of feedback and no-feedback conditions: Six sets of
box plots represent a comparison between the outcomes of each approach for feedback (orange)
and no-feedback (blue) conditions. While the frame of the boxplot is defined by the interquartile
range, the notch represents a 95% confidence interval and the whiskers show the maximum and the
minimum of each distribution (except outliers). As expected, due to its persistent noise characteristics
(α > 0), behavioral data would be appropriately analyzed by approaches 1–3 but not approach 4.
Approaches 1 and 2, as well as DFA, yield higher results for the no-feedback condition, indicating a
larger α, meaning a more persistent behavior. Likewise, approach 3 and Wiener–Khinchin theorem
suggest a lower frequency dominancy in the no-feedback condition.
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Table 1. Paired t-test results comparing the outcomes of feedback and no-feedback conditions.

Approach t df p

1—SD %REC −5.12 17 >0.001
2—%LAM −3.33 17 0.004
3—Diag %REC 3.43 17 0.003
4—Diag ratio 0.82 17 0.42
Wiener–Khinchin
theorem 3.68 17 0.002

DFA −4.08 17 >0.001

2.3. Comparison of the Approaches

To evaluate the presented approaches in relation to the true alpha values of the
generated time series, we focus on three main parameters: (a) fractal dimension range,
(b) sensitivity to noise, and (c) summary of the quantitative relation to the true alpha values.
Furthermore, we investigated their applicability to empirical behavioral data.

2.3.1. Range

As presented above, approaches 1 (SD %REC) and the Wiener–Khinchin-based analy-
sis are sensitive to persistent fluctuations. Conversely, approach 4 (Diag ratio) differentiates
only antipersistent fluctuations, whereas approaches 2 and 3 (%LAM, Diag %REC) are
applicable throughout the whole tested range (−1 < α < 2), like DFA. Hence, with no
estimation of the time series’ fractal dimension, one should conduct an analysis according
to approaches 2 or 3, otherwise the researcher might prefer to pick the analysis technique
that best fits his data’s characteristics. On a similar note, one can try to detect whether there
are persistent fluctuations using approach 4, which yields a ~1 ratio for α ≥ 0.

2.3.2. Robustness to Noise

Most of the analysis techniques that were applied were robust to noise. Except for
the Wiener–Khinchin theorem approach, the rest distinguished between α-values within
their range comparably with and without noise. Nevertheless, antipersistent fluctuations
were less distinguishable by both approach 3 and DFA when i.i.d. noise (SNR = 2:1)
was introduced.

2.3.3. Quantitative Relation to True Alpha Values

Table 2 provides a summary of the R2-values that capture the relation between the
true α-values and the estimated parameters of the different approaches, separately for
persistent and antipersistent fluctuations. As DFA is the gold standard for fractal analyses
in time-series methods, the comparison of the recurrence-based approaches to DFA is of
particular interest here. Comparing the likelihoods of the linear models of each of our four
approaches to DFA, we found that the association between the true α values and Hurst
exponent is significantly stronger than in almost every other method (α < 0.05). On the
contrary, approaches 2 and 4 yielded significantly higher association (than DFA) with the
true α values for antipersistent fluctuation when noise is introduced, but somewhat below
DFA under the no-noise condition. Nevertheless, approaches 1–3 show similar R2 to DFA
when analyzing persistent noise. It has to be kept in mind that the sample sizes here are
quite large, and tests of significance are of limited value in this case.

2.3.4. Applicability

All approaches were found applicable to behavioral data and concluded conformally
despite the small sample size. The utilized data were most likely to behave persistently
and hence were out of the fourth approach range. Yet, we suggest using approach 4 to
confirm whether the time series is persistent or not (persistent fluctuations are indicated
by a 1:1 ratio between subsequent diagonals). Table 3 provides an overview of the R2

for the different approaches (including DFA) when comparing the two time-estimation
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groups (i.e., with and without feedback). In a model comparison, approaches 2–4 were less
predictive than DFA (α < 0.05), while approach 1 was not significantly lower.

Table 2. Comparison of approaches on simulated data.

Approach R2—Persistent (No Noise) R2—Antipersistent (No Noise) R2—Persistent (with Noise) R2—Antipersistent (with Noise)

1—SD %REC 0.9 0.08 0.9 0.04
2—%LAM 0.97 0.82 0.95 0.81
3—Diag %REC 0.93 0.38 0.93 0.33
4—Diag ratio 0.33 0.79 0.06 0.78
Wiener–Khinchin
theorem 0.7 0.01 0.68 0.002

DFA 0.99 0.99 0.98 0.68

Table 3. Comparison of approaches on empirical data.

Approach R2—with vs. without Feedback

1—SD %REC 0.33
2—%LAM 0.11
3—Diag %REC 0.25
4—Diag ratio 0
Wiener–Khinchin theorem 0.23
DFA 0.36

3. Conclusions

In the current paper, we presented and compared several recurrence-based approaches
to quantify the strength of monofractal autocorrelations in time-series data. This is a major
step forward for integrating the quantification of scaling properties into recurrence quan-
tification analysis, as previous research has suggested that such analyses are theoretically
possible (e.g., [28]), but did not point to concrete means for how to deduce such properties.
The proposed methods differ in quality, as well as in the range of applicability to particular
types of colored noise, as we have shown on synthetic and empirical data. Based on
our results, we recommend using approaches 3 and 4 to determine whether the data are
persistent, antipersistent, or white noise. Then, approaches 1, 2, and 3 would be suitable to
compare the fractal dimensionality of persistent data, while approaches 2 and 4 would fit
antipersistent time series.

Thus, the present work lays the foundations for integrating fractal analysis into
an RQA framework, and defining appropriate recurrence-based quantifies. Moreover,
these methods might be amenable to quantifying time-dependent fractal fluctuations of
not only univariate time series, but also strange attractor profiles, which possess fractal
properties and are readily analyzable within the framework of recurrence quantification
analysis [28]. In the future, these methods could be extended to capturing fractal dimensions
in multidimensional systems via multidimensional recurrence quantification analysis. In
addition, an evaluation and adaptation of these approaches to multifractals would be
valuable [40,41].
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Abstract: Background: Several algorithms have been proposed to quantify synchronization. However,
little is known about their convergent and predictive validity. Methods: The sample included 30 per-
sons who completed a manualized interview focusing on psychosomatic symptoms. The intensity
of body motions was measured using motion-energy analysis. We computed several measures of
movement synchrony based on the time series of the interviewer and participant: mutual infor-
mation, windowed cross-recurrence analysis, cross-correlation, rMEA, SUSY, SUCO, WCLC–PP
and WCLR–PP. Depressive symptoms were assessed with the Patient Health Questionnaire (PHQ9).
Results: According to the explorative factor analyses, all the variants of cross-correlation and all the
measures of SUSY, SUCO and rMEA–WCC led to similar synchrony measures and could be assigned
to the same factor. All the mutual-information measures, rMEA–WCLC, WCLC–PP–F, WCLC–PP–R2,
WCLR–PP–F, and WinCRQA–DET loaded on the second factor. Depressive symptoms correlated
negatively with WCLC–PP–F and WCLR–PP–F and positively with rMEA–WCC, SUCO–ES–CO,
and MI–Z. Conclusion: More standardization efforts are needed because different synchrony measures
have little convergent validity, which can lead to contradictory conclusions concerning associations
between depressive symptoms and movement synchrony using the same dataset.

Keywords: nonverbal communication; movement synchrony; time-series analysis; validity; depression

1. Introduction

Processes relevant in psychotherapy can be located on different time scales ranging
from neuronal processes that change within milliseconds, to affective and interpersonal
processes representing single sessions, to between-session changes of mood stages [1–3].
Both bottom-up effects (e.g., when patient–therapist interactions have impacts on patient’s
mood) and top-down effects (e.g., mood affecting the kind of interpersonal interaction)
are assumed [1]. The core of psychotherapy process is generally considered to rest in
the exchanges between the patient and therapist, which consist of verbal–semantic and
nonverbal aspects.

The nonverbal interaction of patient and therapist may be understood as a coupled
dynamical system [4–8]. Each sub-system (the patient’s or the therapist’s) obeys its own
eigen-dynamics and coupling dynamics. The eigen-dynamic is constituted by an actor’s
ability to perceive and process information and act accordingly (see Figure 1 left). The cou-
pling dynamic refers to the mutual influence between the patient and therapist, may be
asymmetrical (e.g., the therapist affecting the patient’s state more than vice versa) and may
change during the interpersonal interaction (e.g., at the beginning of a session, the patient
influences the therapist, whereas at the end the influence is reversed). There are two
different understandings of coupling dynamics. One is that the degree of coupling changes

Entropy 2022, 24, 1307. https://doi.org/10.3390/e24091307 https://www.mdpi.com/journal/entropy29
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more or less smoothly over time [9–11], the other regards the coupling dynamics as an
on–off process whereby phases with no or very weak coupling (no synchronization visible)
may alternate with strongly coupled phases [5,8]. The former dynamics may be assumed
in more stationary processes (e.g., physiological data), whereas the latter on–off dynamics
occur in behavioral processes with non-stationary bursts (e.g., movement activity). Phases
of strong coupling are characterized by a synchronization of sub-system states and are
hence called synchronization intervals [4,12] or mimicry episodes [13]. The person who
acts as the driver during the coupling is called leader, and the person who follows/imitates
is the driven (see Figure 1 right).
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Figure 1. Schematic illustration of a dyad as coupled dynamical system (left) and hypothetical
motion activity of two interactants with synchronization intervals (right).

1.1. Synchronization in Patient–Therapist Interaction

Psychotherapy research has investigated the synchronization of physiological pa-
rameters [14,15], body movements [5,11], facial expressions [16], prosodic cues [17–19],
and language style [20,21]. Many studies have investigated the relationship between (non-
verbal) synchronization and therapeutic success. According to the systematic review of
Wiltshire et al. [22], physiological synchrony was most frequently correlated with empathy
and language, vocal synchrony with therapeutic alliance, and movement synchrony with
psychotherapy outcomes. This review supported the InSync model of psychotherapy [3,23],
which assumes that (nonverbal) synchrony in patient–therapist interaction affects the emo-
tion regulation of patients (as a top-down effect at medium/tonic to longer/chronic time
scales) as well as the therapeutic relationship and, as a consequence, therapeutic success
(bottom-up effect at tonic and fast/phasic time scales).

Other psychotherapy studies have investigated (nonverbal) synchrony in interpersonal
interaction as a diagnostic feature of mental disorders. Multiple studies suggested, for exam-
ple, that attenuated nonverbal synchrony was linked with depressive symptoms [16,24–26].
These findings correspond with neurophysiological [27,28] and interpersonal models of
depression [29]. The former explains changes in emotion regulation and interpersonal
interaction (e.g., less smiling or movements) by disorder-related changes in neurophys-
iological processes (e.g., dysfunctions in the left frontal hemisphere of the brain) [30,31].
Interpersonal models of depression [29] assume that depressed persons induce a negative
mood in their conversation partners, thus provoking negative responses, which in turn
confirm the negative expectations of the depressed person. Accordingly, in interviews with
depressed patients, the interviewers synchronize their nonverbal behavior less often.

It may be noted, however, that the findings are not homogeneous. Some studies
did not find significant associations between synchrony and therapeutic outcome [17,32],
or even reported that higher synchrony was related to higher symptom levels [33,34].
This was also true for synchrony as a diagnostic feature, e.g., when more vocal synchrony
was correlated with higher anxiety symptoms in the study of [35].
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From a methodological point of view, an explanation of the conflicting results may be
that nonverbal synchrony was measured differently. Thus, researchers may have addressed
different aspects, or even different concepts, of synchrony, which may have resulted in
varying correlations between synchrony and therapeutic outcome as well as symptom
load [36]. This unsettled state of research has motivated the present study on the validity
of different synchronization measures.

1.2. Measures of Synchronization and Its Convergent Validity

Various statistical methods may be used to estimate the average degree of coupling
(e.g., [14,37]) or identify synchronization intervals (e.g., [12]). Despite multiple overviews
of methods applied in psychotherapy research [10,36,38] so far, there are only few studies
on the validity of synchrony measures.

First, it should be noted that synchrony measures depend on the parameter settings
of algorithms. Ramseyer and Tschacher [39], Schoenherr et al. [40] and Behrens et al. [41]
applied windowed cross-lagged correlation algorithms multiple times to the same bivariate
time series and varied parameters such as degree of smoothing, window size and maximum
time lag. Among other things, they showed that smaller windows [39–41], non-transformed
movement data and slight smoothing [40] lead to higher synchronization values and higher
correlations between synchrony and therapeutic alliance, respectively [39]. The application
of a pseudo-synchrony approach [42] also affects the measured synchrony. For each real-
world time-series pair, Moulder et al. [43] generated multiple artificial time-series pairs by
(a) shuffling participants, (b) shuffling time-series segments within a dyad, (c) shuffling
measurement points within a dyad and (d) reversing one of the time series in the pair. They
found that the decision as to whether synchrony was present in a time-series pair strongly
depended on the applied shuffling method. All these findings imply that the validity of
synchrony measures depends on the parameter settings of an algorithm.

Regarding the validity of synchrony measures, one should distinguish different kinds
of validity. Predictive validity is present when a synchrony measure predicts an external
criterion in accordance with theoretical expectations, as was investigated by [36,39,44,45].
Feniger-Schaal, Schoenherr, Altmann and Strauss [44] applied windowed cross-lagged
correlation (WCLC) with peak picking (PP) by [12] to motion time series that were captured
in a “mirror game”. In the first phase of the mirror game, the study assistant mirrored
the movements of a participant. In the second phase, the leading–following roles were
switched. In the third phase, these roles were not predetermined. In concordance with
instructions, the algorithm measured more synchrony with the participant leading in the
first study phase, and more synchrony with the assistant leading in the second phase. In the
study of Luehof [45], WCLC with PP by [9], windowed cross-lagged regression (WCLR)
with PP by [4,12], and recurrence quantification analysis (RQA) were able to discriminate
between interviews with rapport-trained interviewers and control interviewers, finding
more synchrony with the trained interviewers. The WCLR–PP showed the best discrim-
ination. Schoenherr et al. [36] used therapeutic success as the criterion to be predicted
by synchrony. They found that only windowed cross-correlation (WCC), WCLC–PP and
WCLR–PP correlated significantly in the expected direction with therapeutic success.

Schoenherr, Paulick, Deisenhofer, Schwartz, Rubel, Lutz, Strauss and Altmann [40]
studied the criterion validity of synchronization measures using artificially generated
time-series pairs that contained a single synchronization interval. The WCLC–PP and
WCLR–PP by [4,12] were applied to each time-series pair and correct identifications of the
synchronization interval (the criterion) were counted. The best concordance in terms of the
average Cohen’s κ was observed for both WCLC–PP and WCLR–PP with window widths
of 3 and 5 s, non-transformed movement data and slight smoothing. When applying the
algorithms to real motion time series with isolated synchronization intervals (no other
movement activity before or after the synchronization interval), the identification rate
varied between moderate and substantial Cohen’s κ, depending on the parameter settings.
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Validity defined as congruence between different measures was investigated by
Schoenherr, Paulick, Worrack, Strauss, Rubel, Schwartz, Deisenhofer, Lutz and Altmann [36],
Luehof [45] and Tschacher and Meier [14]. They applied multiple algorithms to naturalis-
tic bivariate time series and determined convergent validity by the correlations between
different synchrony measures. In their study of physiological synchrony, Tschacher and
Meier [14] found little or no inter-correlations between SUSY–ESabs, SUSY–ESnoabs and the
SUCO algorithm. In a study of movement synchrony, Luehof [45] found no concordance
between the synchrony measures of WCLC–PP by [9], WCLR–PP by [4,12], and recurrence
quantification analysis (RQA). In the study of Schoenherr, Paulick, Worrack, Strauss, Rubel,
Schwartz, Deisenhofer, Lutz and Altmann [36], cross-lagged correlation (CLC), cross-lagged
regression (CLR), windowed cross-correlation (WCC), windowed cross-lagged correlation
(WCLC) by [37], WCLC by [32], WCLC–PP and WCLR–PP by [4,12], and cross-recurrence
quantification analysis (CRQA) by [46] were conducted. The correlation between two
synchrony measures ranged from not present (r ≈ 0) to almost perfect (r ≈ 1). In a sub-
sequent exploratory factor analysis, CLC, WCLC by [37], and WCLC by [32] formed a
factor of highly correlated synchrony measures. The second factor loaded on average cross-
correlation within the synchronization intervals assessed with WCLC–PP and WCLR–PP
by [12]. The third factor consisted of non-linear synchrony such as CRQA and the frequency
of synchrony of WCLC–PP and WCLR–PP by [12]. Schoenherr et al. [36] concluded that
the examined algorithms did not measure the same kind of synchrony and that different
measures predicted different effects on therapeutic outcome.

1.3. Research Question

The present study explored the convergent validity and predictive validity of cross-
correlation- and entropy-based measures of movement synchrony. We used data from a pi-
lot study on nonverbal communication in depressive patients and healthy controls [16,47,48].
The primary study focused on the evaluation of feasibility of recruitment, assessment pro-
cedures, automatic coding of nonverbal behavior and provided first empirical results on
the differences between patients with depression and healthy controls in terms of body
motion, facial expressions and prosody. In the present secondary analysis, we addressed a
methodological question: the validity of movement synchronization measures. For this pur-
pose, multiple algorithms measuring synchronization were applied to motion times series
of participants and interviewers. The convergent validity was examined by correlations
between the synchrony measures. According to [36], we assume weak convergent validity
in terms of low correlations between different synchrony measures, and that some measures
can be assigned to different facets of synchrony measures. As in [36], we conducted an
exploratory factor analysis to identify the facets of synchronization. Due to the fact that the
distribution of synchrony measures is non-normal, we conducted a minimum rank factor
analysis, which is more appropriate for non-normally distributed data. The predictive
validity was investigated by comparing the synchrony measures in patients with major de-
pression and in healthy controls as well as by the correlation between synchrony measures
and symptom load, which was assessed with questionnaires. According to the literature
mentioned above, movement synchrony was expected to be lower in the interview dyads
with depressive patients.

To our knowledge, the present study is the second peer-reviewed study on the conver-
gent validity of synchronization measures applied in clinical research. In the first study [36],
the synchronization of the patient and psychotherapist in an early therapy session was
investigated. In comparison to [36], we applied additional synchronization measures, espe-
cially measures based on information theory, and the homogeneity of the interactions was
given (manual-guided interviews rather than therapy sessions addressing patient-specific
conversation topics in [36]), and predicted criterion and synchrony were much closer in
terms of time (the criterion—depression—was assessed before the interviews rather than
measured weeks after the sessions, as was true for the criterion—reduction of interpersonal
problems—in [36]).
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2. Materials and Methods
2.1. Sample of Participants

The sample included 15 inpatients with major depression and 15 healthy controls
matched by age and gender, thus groups did not differ regarding mean age and gender
distribution. The age range was 20 to 30 years. Of the 30 participants 40% were female.
Table 1 gives a short description of both groups, which showed no group differences
regarding further socio-demographic characteristics. Patients with depression reported
higher degrees of depressive and anxiety symptoms. For a detailed description of inclusion
criteria, recruitment, and group characteristics, see the primary study [16].

Table 1. Description of included study subjects.

All
(NPersons = 30)

Healthy
Controls

(NPersons = 15)

Depressive
Patients

(NPersons = 15)
p-Value

Socio-demographic characteristics
Age in years 25.2 (3.14) 25.5 (3.25) 24.9 (3.10) 0.6091
Gender 1.0000
Male 18 (60.0%) 9 (60.0%) 9 (60.0%)
Female 12 (40.0%) 6 (40.0%) 6 (40.0%)
Education 0.1686
No high-school degree 6 (20.0%) 1 (6.67%) 5 (33.3%)
High-school degree 24 (80.0%) 14 (93.3%) 10 (66.7%)
Partner status 0.6817
Without partner 22 (73.3%) 10 (66.7%) 12 (80.0%)
In steady relationship 8 (26.7%) 5 (33.3%) 3 (20.0%)

Questionnaires (pre interview)
Depressive symptoms (PHQ9) 9.43 (7.10) 3.40 (2.44) 15.5 (4.52) <0.0001
Anxiety symptoms (GAD7) 6.80 (5.76) 1.73 (1.71) 11.9 (3.29) <0.0001

Note: For continuous variables average and standard deviation are reported and for categorical variables frequency
and percentage. For categorical variables a chi-squared or exact Fisher test was applied (the latter, when one or
more expected cell frequencies were less than 5). For continuous variables we used a t-test or Kruskall–Wallis test
(the latter for non-normally distributed data). For more details see [16]. N denotes the number of persons.

2.2. Instruments

Prior to the interviews, several questionnaires were administered. We assessed the
degree of depressive symptoms using the corresponding scale of the Patient Health Ques-
tionnaire (PHQ9) [49]. A sum score of 0–4 is interpreted as no or minimal, 5–9 as mild,
10–14 as moderate, and 15–27 as severe depressive symptoms. The degree of anxiety symp-
toms was measured with the Generalized Anxiety Disorder Scale (GAD7) [49]. The values
0–4 are interpreted as no or minimal, 5–9 as mild, 10–14 as moderate, and 15–21 as severe
anxiety symptoms. Both sum scores have an acceptable internal consistency (Cronbach’s
α > 0.8). Further questionnaires were assessed in the primary study but not used in the
present study.

2.3. Interviews of Patients and Controls

The focus of the interviews was on somatic complaints, which may be present in
healthy participants as well, similar to anamnestic interviews regarding somatoform dis-
orders (SCID-I, section G) [50]. Example questions were: “Have you been ill during the
last few years?”, or “Have you had any significant problems with headaches?”. At the
beginning of interviews, the interviewer asked warm-up questions (e.g., “Did you find your
way to the site easily?”) to allow the interviewee to become accustomed to the recording
situation (cameras, etc.).

We used two cameras to record a frontal view of each person. Both recordings were
subsequently synchronized by means of a film clapperboard and merged into a split-screen
video. Interviews were held in a neutral counseling room where the interviewee and inter-
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viewer sat across each other at a table on identical chairs. The interviews were conducted
by two female medical students (age ~25 years) in their senior semester. Both interviewers
were trained and instructed to adopt a professional and neutral style. Further details on
interviews and video recording are reported in [16,48].

2.4. Coding of Motor Activity during the Interviews

Using the interview videos, the motor activity of the interviewees and interviewers
was captured using motion-energy analysis, or MEA [51]. We applied the MATLAB©
scripts developed by Altmann [4,12], where regions of interest (ROI) can be drawn by
hand [5] (free download at https://github.com/10101-00001/MEA, accessed on 15 July
2022). To capture motor activity, the MEA considers all changes of subsequent (t; t + 1)
video frames of the recording. First, for each person, a ROI is defined that covers the
region in which movements are visible. Inside the ROI, those pixels are counted whose
grayscale values change substantially from t to t + 1 (cut-off value: 12 of 256 grayscale
degrees). The number of such pixels defines the motion energy of the respective person’s
ROI at t. For each of the 30 interview videos, we thus generated a bivariate time series that
represents in detail (25 measures per second) the visible movement activity (movement
of torso, arm, hands, and head of each interlocutor were aggregated to one measure of
individual motion energy).

After the MEA, we applied several pre-processing steps. First, each time series was
standardized by the size of the corresponding ROI and multiplied by 100. Accordingly,
the values of time series ranged from zero (no motion) to 100 (entire ROI activated). Finally,
all the time series were smoothed using a moving median with a bandwidth of five frames.

Figure 2 shows, as an example, one pair of motion-energy time series to which
the aforementioned preprocessing steps were applied. The time axis is given in frames
(25 frames = 1 s). Some algorithms analyze the time series window-wise, e.g., in rMEA und
WinCRQA, 1500 frames, or in WCLR–PP, 125 frames. To illustrate what amount of motion
activity was captured during such intervals, in Figure 2 we plotted examples of time series
segments with length 1500 frames and 125 frames, respectively.
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The length of the time series ranged from 10,325 to 42,250 frames (from 413 to 1850 s,
respectively; median = 855 s). The interviews of the patients lasted longer than those of
controls (medianPatients = 1276 s, medianControls = 759 s, median test p = 0.001).

2.5. Measures of Movement Synchrony

The 30 bivariate time series originating from the interviews served as the data input for
the synchronization measures that we wished to assess. Features of the measures provided
by the algorithms introduced below are summarized in Table 2.

2.5.1. Cross-Correlation

The “simplest” measure of movement synchrony is the cross-correlation (CC) of both
time series describing the movements of interlocutors. Please note that in this approach no
time lag between both time series is modeled.

Some research has considered the sign problem when the averages of cross-correlations
are computed: For example, a time series may include sections with r = 0.5 and the
same number of sections with r = −0.5, so that the aggregated cross-correlation is zero,
leading to the conclusion that on average there is no interrelatedness, or no synchrony.
To avoid this problem, prior to aggregation, the signs of cross-correlations may be removed
by calculating the absolute values (e.g., [37,42,55]), or the coefficient of determination
(squaring the correlations) may be used (e.g., [12]). In the latter approach, large cross-
correlations will be weighted higher. Furthermore, sometimes Fisher’s Z-transformed
correlation is considered, because then values are approximately normally distributed.
Since a consensus has not been reached, we considered all the options in the present study:
raw values of cross-correlations (including negative and positive values when averaging;
CC–raw), the absolute values (CC–abs), Fisher’s Z-transformed (CC–Z), and squaring of
cross-correlations (CC–R2).

2.5.2. rMEA

The R package rMEA [37,52] is based on the work of Ramseyer and Tschacher [11,42]
and includes motion capture via MEA as well as (a variant of) windowed cross-lagged
correlation (WCLC) to compute the averages of local cross-correlations. Similar to the
approach of Boker, Rotondo, Xu and King [9], local associations of both time series
are quantified by the cross-lagged correlations of time-series segments—so-called win-
dows. When starting the algorithm, the user has to define the window size (default value:
b = 60 s, i.e. 60·25 = 1500 respective time points when the video frame rate per second
is 25) as well as the maximum time lag (default value: τmax = 5 s, 125 respective time
points) which defines the range of the considered time lags. The calculation of WCLC
contains three steps. First, a cross-correlation (time lag τ = 0) for a pair of windows with
the same starting point (t) is computed. Second, the start position of the reference window
is kept constant, whereas the start position of the second window is shifted up to the
maximum time lag. In the third phase, the position of the reference window is shifted
with an increment of 30 s (default value). Then, the algorithm repeats step 1 and 2 for this
start position of the reference window. The result is a matrix whose columns refer to the
time lag (−τmax, . . . , 0, . . . , τmax) and rows to the start position of the reference window
(1, . . . , L− b + 1; L: time-series length, b: window width). The values of this matrix are
the Fisher’s Z-transformed coefficients of WCLC (default setting). Before applying the
transformation, the absolute values of all cross-correlations are computed to remove the
signs (default setting).
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In the present study we considered two measures of the degree of synchrony provided
by the rMEA package: First, the average windowed cross-correlations (step 1 above; rMEA–
WCC), and second, the average windowed cross-lagged correlations (step 3 above; rMEA–
WCLC). The former only includes values of the column of the WCLC matrix referring to
τ = 0, whereas the latter considers all columns. In contrast to Boker, Rotondo, Xu and
King [9] and Altmann [4,12] there is no selection of WCLC maxima, thus no application of
a peak-picking algorithm.

Due to the fact that noise and non-stationarity can cause cross-lagged correlation,
a pseudo-synchrony approach [42,56] is conducted in the next step. The corresponding
bootstrap algorithm randomly recombines the time series of person A and person B of
another interview multiple times (default value: 100 times) and each time computes the
WCLC. Thus, the surrogate generation is based on person shuffling. In this way, a statistic
is produced to test whether the present WCLCs are different from the expected value of a
random distribution of WCLC values.

2.5.3. SUSY

Surrogate synchrony (SUSY) [53,55] is based on the cross-correlation function of
dyadic time series (the algorithm can be used online: https://www.embodiment.ch/,
accessed on 15 July 2022). The cross-correlations are computed across a range of lags L
(here −5 s ≤ L ≤ 5 s). The cross-correlation function is computed segment-wise, i.e., sepa-
rately in all non-overlapping segments of the time series (here segment-size = 30 s). It may
be noted that terminology differs in the rMEA package, where “window” is used to denote
segments. All cross-correlations are transformed using Fisher’s Z-transformation to allow
the aggregation of cross-correlations. The synchrony of any segment is then defined as
the mean of all (lagged) cross-correlations of this segment, and the synchrony of the time
series as the mean of segment means. Aggregation is performed using either absolute Z
cross-correlations (Zabs) or the original, negative or positive, cross-correlations (Znoabs).
The reason for taking the absolutes of correlations is that one may define synchrony irre-
spective of the direction of coupling, which may be negative (“anti-phase”) or positive
(“in-phase”); in Zabs, both are collapsed into one signature of synchrony. Znoabs differenti-
ates in-phase from anti-phase coupling. Then surrogate tests are performed to establish
a control condition for the Zabs and Znoabs values of each dyad. Surrogate time series
in SUSY are generated by randomly shuffling the sequence of segments, independently
for each dyad member (surrogate generation by segment shuffling). From a dyadic time
series with n segments, n(n − 1) surrogates can be produced. In the present analysis,
all n(n − 1) respective surrogates were used. The surrogate step produces effect sizes
(ES) as the final signatures of synchrony in SUSY, namely SUSY–ESabs and SUSY–ESnoabs.
SUSY–ESabs is derived using the mean surrogate Zabs and their standard distribution:
SUSY–ESabs = (Zabs − Zabs-surr)/SD(Zabs-surr). SUSY–ESnoabs is computed analogously.
The leading–following relationships of synchrony may further be operationalized by differ-
entiating between positive and negative lags L.

2.5.4. SUCO

Surrogate concordance (SUCO; online access https://www.embodiment.ch/,
accessed on 15 July 2022) [14,55] is based on the correlations of the local slopes of dyadic
time series (A,B). The slopes are determined by least-squares regression in windows (here,
window size was 3 s) of the time series, and the time series are again partitioned into seg-
ments of 30 s duration as in SUSY. The linear slopes are computed inside the first window
of segment i, the window is then shifted by an increment of 1 s and the slopes are again
computed; thus, overlapping windows are used. This is repeated until all windows in
segment i are covered. The slopes in segment i of time series A are Pearson-correlated with
those of the same segment of B. The resulting correlation ri denotes the relation between A’s
and B’s slopes in segment i of the time series. This is performed in all segments of the time
series A and B. The absolute values of all correlations ri are Fisher’s Z-transformed and
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aggregated, yielding Z’abs (with high comma to distinguish from SUSY). Segment-wise
shuffling is used, as in SUSY, to create surrogate time series, yielding the effect size of
Z’abs, labeled SUCO–ESabs. The concordance index (SUCO–CO) across all segments of the
client–therapist interaction is defined by the natural logarithm of the sum of all positive
correlations ri divided by the absolute value of the sum of all negative correlations ri, as
previously suggested by Marci and Orr [57]. Using surrogate analysis, an effect size SUCO–
ES–CO is computed by standardizing the concordance index by the mean and standard
deviation of the concordance indexes of surrogate data, in analogy to the procedure in
SUSY. The leading–following relationships of concordance synchrony are operationalized
by shifting of A’s windows with respect to B prior to computing ri, yet such lags were not
computed in the present analyses.

2.5.5. WCLC–PP and WCLR–PP

The algorithm by Altmann [4,12] (download at https://github.com/10101-00001/
sync_ident, accessed on 15 July 2022) combines three approaches: First, the computa-
tion of local associations proposed by Boker, Rotondo, Xu and King [9], Ramseyer and
Tschacher [11] and Watanabe [58]; second, the reduction of auto-correlation bias [59]
by a regression approach, e.g., as performed by Gottman and Ringland [60]; and third,
the differentiation between significant and non-significant local associations and their
selection by a peak-picking algorithm as proposed by Boker, Rotondo, Xu and King [9].
The algorithm is based on the assumptions that in interpersonal interaction, phases of
synchrony (high degree of coupling) alternate with phases of non-synchrony (no coupling),
and that within a phase of synchrony the data are sufficiently described by cross-lagged
regression. The validity and high detection rate of the algorithm has been shown in
multiple studies [36,40,44,45].

The computation consists of three steps. First, the local associations are computed.
This can be performed with windowed cross-lagged correlation (WCLC) or windowed
cross-lagged regression (WCLR). Similar to rMEA and SUSY, time-lagged windows of
both time series are considered. In WCLR, for each start position of a reference window
(e.g., of person A) and each possible time lag (τ), two cross-lagged regressions are applied.
In model 1, the window of person A beginning at t + τ is predicted by the window of
person A beginning at t. This means that only the auto-correlation is modeled. However,
in model 2, the window of person A beginning at t + τ is predicted by a window of
person A beginning at t (corresponding to the auto-correlation) as well as a window of
person B beginning at t (corresponding to the cross-correlation). Then, the coefficient
of determination is computed based on both models: ∆R2

t,τ = R2
M2,t,τ − R2

M1,t,τ (note:
M1: model 1; M2: model 2; t: start position of window; τ: time lag between “action”
and “response”). ∆R2

t,τ quantifies the proportion of variance of window A at t, which
is explained by cross-lagged correlation with time lag τ and which is unbiased by the
auto-correlation with time lag τ. The procedure described above is conducted for each
position of the reference window (t ∈ {1, . . . , L− b + 1}; L: length of time series; b: window
width) and each time lag of interest (τ ∈ {−τmax, . . . , τmax}). All resulting ∆R2

t,τ values
are stored in a matrix (so-called R square matrix; [12]). Similar to rMEA, the column
refers to the time lag (−τmax, . . . , 0, . . . , τmax) and the row to the start position of the
reference window (1, . . . , L − b + 1; L: time-series length; b: window width). However,
the values of matrix (∆R2

t,τ) are not correlation coefficients but the proportion of explained
variance by cross-correlation adjusted by auto-correlation with the same time lag (also
called R square or coefficient of determination). In contrast to WCLR, the WCLC by
Altmann [4,12] estimates the local associations between two time-series windows with cross-
lagged correlations. They can be confounded by auto-correlation. However, the process is
similar: The correlations computed for windows that are time-lagged and “moved” over
the time axis. The result is also a R square matrix. Its elements (R2

t,τ) are the squared
windowed cross-lagged correlations at a specific start position of reference window (t) and
a specific time lag (τ) of the interlocutor’s window.

38



Entropy 2022, 24, 1307

In the second step of the analysis, the R square matrix is analyzed by a peak-picking
algorithm (abbreviation: PP) [4,12]. For each start position of reference window at t, local
maxima of ∆R2

t,τ (R2
t,τ) values are detected (for illustrations see [12]). Next, local maxima

with equal time lag and directly consecutive in time are combined into intervals. When a
start position of the reference window is part of multiple intervals, then the interval with
the largest average ∆R2

t,τ is selected. These selected intervals are called synchronization
intervals [12]. The output of the peak-picking algorithm is a list of synchronization intervals
(abbreviation: LOSI). Based on this list, an interpersonal interaction can be described as a
process where phases of movement synchronization (synchronization intervals with a high
degree of cross-lagged correlation) alternate with phases without synchronization (without
significant cross-lagged correlation).

In the last step of WCLC–PP and WCLR–PP, various synchronization measures can
be quantified based on the LOSI. In the present study, we considered the frequency of
movement synchrony defined as the proportion of synchronization intervals in relation
to the duration of the time-series length (WCLC–PP–F and WCLR–PP–F) and the average
interrelatedness of both time series within the synchronization intervals quantified by the
average R square of the synchronization intervals (WCLC–PP–R2 and WCLR–PP–R2).

Before starting WCLC–PP and WCLR–PP, some parameter values have to be defined.
In the present study, the window width was 125 time points (5 s), the R2 cut-off was 0.25
(both values suggested by the simulation study of [40]), the increment was one frame
(resulting in overlapping windows), and the maximum time lag τmax = 125 frames (both rec-
ommended by [5,8]). According to the simulation study of [40], in the LOSI we considered
only synchronization intervals with average

(
∆R2) > 0.25, which led to better identification

rates and lower false positives.

2.5.6. Mutual Information

Mutual information (MI) [61] quantifies the amount of information that is shared by
two random variables and uses this as a measure of dependence. Shannon information
is closely linked with entropy [62]. In other terms, MI is the joint distribution of both
time series related to the marginal distributions of both time series under the assumption
of independence. In contrast to cross-correlation, which assumes continuous or interval-
scaled time series, mutual information can only be computed for categorical variables or
continuous variables binned into categories. A further difference is that MI does not rest on
the assumption of linear dependencies between time series.

In the present study, we estimated MI using the R package mpmi (command cmi.pw) [54]
which automatically calculates a vector of smoothing bandwidths for each of the dyadic
time series. It uses a kernel-smoothing approach to estimate the joint distribution and both
marginal distributions. The package provides three measures: an (uncorrected) raw value
of MI (MI–raw), a Jackknife bias-corrected MI (MI–cor), and a Z-score of bias-corrected MI
that provides a statistic for the null-hypothesis that the bias-corrected MI is zero (MI–Z).

2.5.7. Recurrence Techniques

Cross-recurrence quantification analysis (CRQA) [63–65] is based on a state–space
approach. Given time series of two coupled dynamical systems, in the first step, recur-
rence techniques identify the time points when both systems are in the same state (e.g.,
both interlocutors smile). This includes simultaneous and time-lagged states. The infor-
mation is stored in the recurrence matrix (illustrated as a recurrence plot). In continuous
data (e.g., movement intensity), a distance measure has to be defined (usually Euclidian
distance) and a recurrence threshold (radius: ε) has to be specified. Instead of same states,
the simultaneous and time-lagged similarity of continuous state parameters is identified
( ε <||xt − xt+τ ||).

The values of the recurrence matrix are zero or one, depending on the similarity of
values (in categorical time series, identity of values) at a specific time point of the reference
time series and time lag of the interlocutors’ time series. Based on the recurrence matrix,
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various parameters describing aspects of coupling can be computed, e.g., the percentage
of recurrence points in the recurrence plot (recurrence rate: RR in %), the percentage of
recurrence points forming diagonal lines (percentage of determinism: DET in %) or the
Shannon information entropy of the diagonal line length longer than the minimum line
(entropy: ENTR; entropy normalized by number of diagonal lines in the recurrence plot:
rENTR) [46,66]. Of these measures, WinCRQA–DET is often used as a synchrony measure,
e.g., in [40,67,68]. Please note that as in other algorithms, the result of the recurrence
analysis depends on the parameter values, especially on the recurrence threshold [69].

In the present study, we conducted the windowed cross-recurrence quantification
analysis (R command: wincrqa) implemented in the R package CRQA [46,66]. We trans-
formed all the time series to the unit-interval and used a Euclidian distance with ε = 0.05 as
recurrence threshold. The embedding dimension was three. As in rMEA, the window
width was 1500 frames (60 s), the overlap of windows was 750 and the maximal time lag
was 125 (5 s). The algorithms provided various outcome parameters for each window (e.g.,
RR, DET and ENTR). To obtain a measure for the entire conversation, we averaged these
values over all the windows.

2.6. Statistical Analysis of Synchrony Measures

After the video recording of the 30 interviews and the measurement of motion energy
during the interviews using the MEA, we applied the listed algorithms on the motion-
energy time series to quantify synchrony. We created a data matrix in which a column
refers to a specific synchrony measure and a line to an interview. Based on this table we
investigated the validity of synchrony measures.

First, the convergent validity of synchronization measures was examined by Pearson
and Spearman correlations. Thus, we assumed that all synchrony measures correlated with
each other. According to Cohen [70], r > 0.1 can be interpreted as small, r > 0.3 as moderate
and r > 0.5 as a large effect.

Due to the findings of [36], we explored facets of synchrony using factor analysis.
To determine the number of extracted factors, we applied a parallel test with 100 bootstraps.
We computed an exploratory factor analysis (EFA) with a maximum likelihood estimator
(ML) as well as a minimum rank factor analysis (MINRANK), which is more appropriate in
non-normally distributed data. In both factor analyses, the factors were allowed to correlate
(oblimin rotation). An acceptable model fit is given when the root-mean-square error of
approximation (RMSEA) is <0.08 and the Tucker Lewis Index (TLI) is >0.9.

Next, the predictive validity of synchronization measures was examined. We assumed
that in dyads of patients with major depression, less movement synchronization would
be observed than in the dyads of healthy controls. The synchronization measures of both
groups were compared using the Kruskall–Wallis tests. In significant group differences,
we reported Hedges g as an effect size measure. According to Cohen [70], g > 0.2 can be
interpreted as small, g > 0.5 as moderate and g > 0.8 as a large effect.

Furthermore, for the predictive validity we assumed that a higher symptom load
(assessed with PHQ9 and GAD7) would be related to less synchronization observed in the
interviews. We computed Pearson and Spearman correlations.

3. Results

First, we investigated the convergent validity with correlations between different
synchronization measures (Table 3). The three measures based on mutual information were
highly interrelated (all Pearson r > 0.845, p < 0.01). This also holds for the three measures
of the SUCO approach (all r > 0.718, all p < 0.05). Moderate correlations were found for
both measures of rMEA (r = 0.685, p < 0.05), both measures of SUSY (r = 0.502, p < 0.05),
both measures of WCLC–PP (r = 0.51, p < 0.05), and the four variants of cross-correlation
(all r > 0.69, all p < 0.05).
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Contrary to our expectation, no single synchrony measure significantly correlated
with all other synchrony measures. Synchrony quantified as cross-correlation (CC–raw,
CC–abs, CC–Z, and CC–R2) correlated with synchrony measures of SUSY, SUCO and
rMEA package moderately (most Pearson r > 0.5). In contrast, the synchrony measures of
WinCRQA correlated negatively with rMEA–WCLC (e.g., Pearson r(WinCRQA–RR, rMEA–
WCLC) = −0.41, p < 0.05), WCLC–PP–F (e.g., r(WinCRQA–DET, WCLC–PP–F) = −0.49,
p < 0.05), WCLR–PP–F (e.g., r(WinCRQA–DET, WCLR–PP–F) = −0.41, p < 0.05) and mutual
information (e.g., r(WinCRQA–DET, MI–Z) = −0.43, p < 0.05).

The parallel test suggested for EFA and the minimum rank factor analysis that two
factors best describe the considered movement-synchrony measures. The loadings of
both factor analyses were similar (Table 4). The variants of cross-correlation, all measures
of the SUSY package, all measures of the SUCO package, and the rMEA–WCC formed
a factor. The indicators of the second factor were all variants of mutual information
and rMEA–WCLC. In the minimum rank factor analysis, WCLC–PP–F, WCLC–PP–R2,
WCLR–PP–F, and WinCRQA–DET were also assigned to the second factor. WCLR–PP–R2,
WinCRQA–RR, and WinCRQA–ENTR had low loadings (<0.5) and were not assigned to
either factor. rMEA–WCLC, WCLC–PP–F, and WCLR–PP–F showed large cross-loadings
(>0.3). Accordingly, in both factor analyses the model fit described by RMSEA and TLI was
not acceptable.

Table 4. Loadings of exploratory factor analysis with maximum likelihood estimator (“ML”) and
minimum rank factor analysis (“MINRANK”).

ML MINRANK
Factor 1 Factor 2 Factor 1 Factor 2

CC–raw 1.00 0.01 0.93 −0.09
CC–abs 0.70 −0.05 0.86 0.05
CC–Z 1.00 0.01 0.93 −0.09
CC–R2 0.74 −0.12 0.88 −0.06
rMEA–WCC 0.74 0.15 0.88 0.24
rMEA–WCLC 0.23 0.53 0.38 0.74
SUSY–ESabs 0.73 0.02 0.80 0.02
SUSY–ESnoabs 0.73 −0.14 0.66 −0.14
SUCO–CI 0.84 0.04 0.88 0.03
SUCO–ESabs 0.71 0.11 0.80 0.06
SUCO–ES–CI 0.81 −0.04 0.87 −0.03
WCLC–PP–F −0.30 0.27 −0.30 0.68
WCLC–PP–R2 0.18 0.49 0.28 0.72
WCLR–PP–F −0.28 0.26 −0.31 0.62
WCLR–PP–R2 0.15 0.37 0.24 0.45
MI–raw −0.00 1.00 −0.04 0.81
MI–cor 0.00 0.99 −0.04 0.75
MI–Z −0.07 0.89 −0.06 0.82
WinCRQA–RR −0.07 −0.15 −0.05 −0.46
WinCRQA–DET 0.16 −0.31 0.12 −0.63
WinCRQA–ENTR 0.26 −0.16 0.34 −0.34

Variance explained by factor 32.8% 18.0% 37.4% 23.2%

Correlation of both factors −0.02 0.04

RMSR 0.16 0.12
RMSEA 0.266 0.301
TLI 0.367 0.189

Note: Ndyads = 30; oblimin rotation; loadings > 0.5 marked bold and cross-loadings > 0.3 italic; CC: cross-correlation;
SUSY: surrogate synchrony by Tschacher and Haken [53]; SUCO: surrogate concordance by Tschacher and Meier [14];
rMEA: R package for motion-energy analysis by Kleinbub and Ramseyer [37]; WCLC–PP and WCLR–PP: windowed
cross-lagged correlation and windowed cross-lagged regression with subsequent peak picking by Altmann [4,12];
MI: mutual information by Pardy [54]; WinCRQA: windowed cross-recurrence quantification analysis by Coco
and Dale [46], Coco, Mønster, Leonardi, Dale and Wallot [66]; RMSR: root mean square of the residuals; RMSEA:
root-mean-square error of approximation; TLI: Tucker Lewis Index of factoring reliability.
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Next, we examined the predictive validity based on the criterion whether the syn-
chronization measures predicted the assignment into the group of healthy controls or of
depressed patients. Table 5 reports the group averages of the different synchronization
measures as well as the p-value of group mean comparisons. When measuring synchrony
with rMEA–WCC (gHedges = 0.838, p = 0.0274), SUCO–ES–CO (gHedges = 0.771, p = 0.0473),
and MI–Z (gHedges = 0.882, p = 0.0197), we found that patients with depression had a
higher degree of synchrony (in terms of interrelatedness) than the healthy controls. Such an
association at a trend level was also found for SUSY–ESabs (gHedges = 0.620, p = 0.0918) and
SUCO–ESabs (gHedges = 0.664, p = 0.0754). In contrast, WCLC–PP–F and WCLR–PP–F (mea-
suring the frequency of synchronization intervals) indicated that patients with depression
synchronized less often than healthy controls (WCLC–PP–F: gHedges = −1.03, p = 0.008 and
WCLR–PP–F: gHedges = −0.994, p = 0.0114). All other synchrony measures were unrelated
to group assignment.

Table 5. Average synchronization depending on group assignment (averages and standard deviations,
the p-value to Kruskall–Wallis test) and Spearman correlations (r) between symptoms and synchrony
scores using the entire sample.

Entire
Sample

Healthy
Controls

Depressive
Patients

Group
Comparison r with r with

N = 30 N = 15 N = 15 p-Value PHQ9 GAD7

CC–raw 0.02 (0.09) 0.00 (0.06) 0.04 (0.10) 0.1677 0.24 0.39 *
CC–abs 0.06 (0.06) 0.05 (0.03) 0.08 (0.07) 0.1617 0.28 0.39 *
CC–Z 0.02 (0.09) 0.00 (0.06) 0.04 (0.10) 0.1654 0.24 0.39 *
CC–R2 0.01 (0.01) 0.00 (0.00) 0.01 (0.02) 0.1402 0.29 0.39 *
rMEA–WCC 0.11 (0.04) 0.09 (0.03) 0.13 (0.05) 0.0274 0.49 * 0.60 *
rMEA–WCLC 0.09 (0.02) 0.09 (0.02) 0.09 (0.01) 0.1835 0.29 0.36 *
SUSY–ESabs 0.59 (1.00) 0.28 (0.92) 0.90 (1.00) 0.0918 0.33 0.43 *
SUSY–ESnoabs −2.60 (9.02) −1.61 (4.66) −3.59 (12.0) 0.5588 −0.19 −0.02
SUCO–CI 0.39 (0.77) 0.21 (0.62) 0.58 (0.88) 0.1989 0.36 0.43 *
SUCO–ESabs 0.97 (1.92) 0.34 (1.25) 1.60 (2.29) 0.0753 0.46 * 0.49 *
SUCO–ES–CI 0.93 (1.48) 0.37 (1.06) 1.48 (1.67) 0.0473 0.49 * 0.56 *
WCLC–PP–F 0.41 (0.11) 0.46 (0.07) 0.36 (0.11) 0.0081 −0.43 * −0.40 *
WCLC–PP–R2 0.40 (0.02) 0.40 (0.02) 0.40 (0.02) 0.5902 −0.02 −0.02
WCLR–PP–F 0.45 (0.09) 0.49 (0.05) 0.41 (0.11) 0.0114 −0.47 * −0.39 *
WCLR–PP–R2 0.43 (0.02) 0.43 (0.02) 0.43 (0.03) 0.8538 0.01 0.04
MI–raw 0.70 (0.26) 0.64 (0.27) 0.75 (0.26) 0.2537 0.21 0.23
MI–cor 0.55 (0.21) 0.51 (0.22) 0.60 (0.20) 0.2508 0.20 0.22
MI–Z 64.3 (21.5) 55.3 (17.2) 73.3 (22.1) 0.0197 0.39 * 0.38 *
WinCRQA–RR 41.7 (10.7) 41.4 (12.9) 42.1 (8.32) 0.8581 0.03 −0.06
WinCRQA–DET 99.3 (0.45) 99.3 (0.49) 99.3 (0.42) 0.9594 0.03 −0.06
WinCRQA–ENTR 0.70 (0.02) 0.69 (0.02) 0.70 (0.02) 0.2987 0.19 0.14

Note: * p < 0.05; CC: cross-correlation, SUSY: surrogate synchrony by Tschacher and Haken [53]; SUCO: surrogate
concordance by Tschacher and Meier [14]; rMEA: R package for motion-energy analysis by Kleinbub and Ramseyer
[37]; WCLC–PP and WCLR–PP: windowed cross-lagged correlation and windowed cross-lagged regression with
subsequent peak picking by Altmann [4,12]; MI: mutual information by Pardy [54]; WinCRQA: windowed
cross-recurrence quantification analysis by Coco and Dale [46], Coco, Mønster, Leonardi, Dale and Wallot [66];
PHQ9: Depression Module of Patient Health Questionnaire; GAD7: Generalized Anxiety Disorder Scale.

To test predictive validity, we also examined the correlation between the degree of
symptom load and synchronization measures (see Table 5). Similar to the group comparison,
we found that rMEA–WCC (Spearman r = 0.49, p < 0.05), SUCO–ESabs (r = 0.46, p < 0.05),
SUCO–ES–CI (r = 0.49, p < 0.05), and MI–Z (r = 0.390, p < 0.05) correlated with the degree
of depressive symptoms (PHQ9 sum-score) in terms of more depression leading to more
synchrony. In contrast, the significant correlation coefficients of WCLC–PP–F (r = −0.43,
p < 0.05) and WCLR–PP–F (r = −0.47, p < 0.05) suggested that more depression is related
to less synchronization. Regarding the degree of anxiety (GAD7 sum-score), we found
more significant correlations than for depressive symptoms (see Table 5). Many of these
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correlations between anxiety symptoms and synchrony were larger than the corresponding
correlations between depressive symptoms and the synchrony measure (e.g., GAD7 and
rMEA–CC: r = 0.600 versus PHQ9 and rMEA–CC: r = 0.46). In contrast, the correlation
between the frequency measures of synchronization and anxiety symptoms were lower
than the corresponding correlation between synchrony and depressive symptoms (e.g.,
GAD7 and WCLR–PP–F: r = −0.39 versus PHQ9 and WCLR–PP–F: r = −0.47).

4. Discussion

Nonverbal interpersonal interaction can be regarded as a complex dynamical system
as it comprises a high number of elements, considers changes in time depending on external
parameters, and may form temporary self-organized patterns that decrease the initially
high entropy of these systems. One such pattern that has received considerable attention
in recent social and clinical psychology is movement synchrony. Sequences of movement
synchronization defined as temporally coordinated motor activity are characterized by a
reduced degree of complexity and entropy, respectively, and a high degree of interrelated-
ness between participants and their behavior. Currently, several synchrony measures are
available, some based on information theory (e.g., mutual information) and some on cross-
correlation (e.g., cross-lagged correlation or windowed cross-lagged correlation). Whereas
developers (or users) claim that their algorithms actually measure “synchrony”, there is
as yet very little simulation or empirical evidence regarding the validity of synchrony
measures, with few exceptions [40,55]. The present study therefore investigated two as-
pects of the validity of movement-synchrony measures: convergent validity and predictive
validity. We applied several algorithms to the same dataset of 30 bivariate time series
that represented the motor activity of both the interviewer and interviewee during clinical
interviews on somatic complaints. From each interview video, bivariate motion time series
were derived. Using these time series, we computed multiple synchronization measures
and investigated the correlations between different measures (convergent validity). We also
explored which synchrony measure predicted whether the interviewee belonged to the
depression group (predictive validity).

4.1. Convergent Validity

Regarding the convergent validity, we found that synchrony measures originating
from the same algorithmic approach were moderately to highly related. For instance,
the three measures of mutual information of the R package mpmi [54] correlated highly
among each other. The same was true to a moderate degree for measures of the SUCO
algorithm [53], the rMEA package [37], and WCLC–PP [4].

When considering measures originating from different algorithms, their convergent
validity (their correlation) varied considerably. The largest correlation was observed
between CC–raw and SUCO–ESabs (Spearman r = 0.78, p < 0.05). Many correlations,
however, were insignificant and some were significant and negative, e.g., the correlation
between MI–Z and WinCRQA–DET (Spearman r =−0.58, p < 0.05) or between WCLC–PP–F
and WinCRQA–RR (Spearman r = −0.46, p < 0.05). When analyzing different aspects or
facets of synchrony, research should consider synchrony measures of different algorithms
instead of different measures of the same algorithm.

In detail, there are differences to other studies. In the study of Schoenherr, Paulick,
Worrack, Strauss, Rubel, Schwartz, Deisenhofer, Lutz and Altmann [36], the correlation
between rMEA–WCLC and WCLC–PP–F was higher (Pearson r = 0.55, p < 0.05, see ([36],
Table 3, lower left triangle)) than in our study (Pearson r = 0.31, not significant). The same
holds for the correlation between WinCRQA–RR and WCLC–PP–F (Pearson r = 0.769,
p < 0.05, in ([36], Table 3, lower left triangle) versus r = −0.44, p < 0.05, in our study).
Furthermore, our correlations between different synchrony measures did not correspond
with the findings of Luehof [45] and Tschacher and Meier [14]. Depending on the kind of
physiological data, Tschacher and Meier [14] found little or no inter-correlations between
SUSY–ESabs, SUSY–ESnoabs and SUCO. Yet in the present study of body movements and

44



Entropy 2022, 24, 1307

their synchronization, these measures correlated to a moderate amount (all Pearson cor-
relations r > 0.5, all p < 0.05, see Table 2). Luehof [45] investigated body movements in
interviews and quantified movement synchrony with CRQA and WCLR–PP. The corre-
lation between CRQA–DET and WCLR–PP–F was r = −0.01 ([45] Table 4.40), whereas in
the present study WinCRQA–DET and WCLR–PP–F correlated with r = −0.41 (p < 0.05,
see Table 2, lower left triangle). However, it should be noted that in the discussed studies,
different parameter settings (e.g., window size) were applied, especially in the recurrence
techniques. Therefore, for each algorithm recommendations and guide lines for parame-
ter settings should be developed that can be applied across future studies [40]. Another
explanation for the heterogeneity may be that the kind of interaction (interviews versus
psychotherapy sessions) and/or the kind of data (cyclic physiological time series versus
movement time series characterized by bursts) affect the convergence of synchronization
measures. Future studies should therefore test the convergent validity of synchronization
measures with multiple and diverse datasets.

Next, we systematized the included synchrony measures using a data-driven approach:
Factor analyses suggested two facets of synchrony. Indicators of the first factor were rMEA–
WCC, all the variants of CC, and all the measures of SUSY and SUCO. These measures were
based on cross-correlations and did not consider a specific time lag between the time series. All
the MI measures, rMEA–WCLC, WCLC–PP–F, WCLC–PP–R2, WCLR–PP–F, and WinCRQA–
DET loaded on the second factor (when applying a minimum rank factor analysis). MI and
WinCRQA–DET are based on information theory and quantify a non-linear relationship in
continuous data. The other synchrony measures of this factor use cross-lagged correlations
(cross-lagged regression) to quantify a linear relationship between the time series. It should
be noted that Schoenherr et al. [36] found a three-factor structure in EFA. The difference to
our study may rest in that different synchronization measures were investigated and there
was a small dataset in the present study. However, consistent with Schoenherr et al. [36],
WCLC–PP–F, WCLR–PP–F, and WinCRQA–DET were assigned to the same factor.

In sum, we agree with Schoenherr et al. [36] by concluding that the convergent validity
across the considered algorithmic approaches is insufficient, if present at all. While the
mathematical justifications of all the approaches we tested here are clearly given, the quan-
tifications of synchrony they are offering are in most cases only loosely connected. The factor
analyses in Schoenherr et al. [36] and in the present study both suggest the presence of
multiple facets of synchrony, where one facet appears to summarize coupling in terms
of cross-correlation approaches, and the other relates to the frequency of synchronization
intervals and the information-theory-based measures.

Further research is needed that can differentiate these synchrony aspects from one
another. It would be straightforward to implement large studies with simulated datasets
of pairs of time series that represent clear types of coupling between the respective pairs.
The coupling may be locally restricted or globally present throughout the time series,
coupling may be linear or nonlinear, and time series may be auto-correlated and stationary
or not [71]. Such studies can ultimately elucidate which synchrony aspect is recognized by
which algorithm. In addition, it would be possible to tailor the parameter settings of the
algorithms to serve recognition.

A critical point to discuss is the convergent validity itself. Our study revealed that the
absolute value of cross-correlation (CC–abs) was moderately to highly correlated with all
the measures of rMEA, SUSY and SUCO (all Pearson r > 0.43, see Table 3). Accordingly,
these measures formed a separate facet of synchrony in the factor analysis. The cross-
correlation is one of simplest measures of synchrony by computing the linear relationship
between two time series, not considering any time lag and without segmentation (as in win-
dowed cross-correlations). The benefits of the more sophisticated algorithms rMEA, SUSY,
and SUCO lie in the inclusion of surrogate testing that allows the computation of effect
sizes and significance even in single-case time series. It remains to be seen how the various
correlation-based algorithms fare in heterogeneous and non-stationary data. On the other
hand, the measures that assess the frequency of synchronization intervals (WCLC–PP–F
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and WCLR–PP–F) were related only to cross-recurrence measures (WinCRQA) whereby
the signs of correlations were negative (both Pearson r ≈ −0.4, see Table 3). The question
is whether the validity is given when a measure appears somewhat idiosyncratic; future
research should explore in which conditions and in what kind of data the two facets of
synchrony may collapse into one factor.

Interestingly, a similar situation regarding convergent validity was present in the
measurement of adult attachment [71]. Possibly, the phenomenon of interest itself may
have multiple aspects (facets) that are not related in a linear manner and may be measured
currently only by one specific instrument (algorithm). Further methodological research
is necessary to build bridges between these facets of synchrony, e.g., by developing fur-
ther instruments (algorithms) or investigating non-linear relationships between the facets
of synchrony.

4.2. Predictive Validity

Second, we studied the predictive validity based on the assumption that the presence
of major depression as well as the degree of symptom load should result in a lower degree
of synchrony and fewer synchronization intervals, respectively. In the present naturalistic
dataset, more than half of the considered synchronization measures did not correlate with
the degree of depressive symptoms, e.g., rMEA–WCLC, all the variants of CC, all the
SUSY, and all the WinCRQA measures (see Table 5). The only synchrony measures that
corresponded with our hypothesis were WCLC–PP–F and WCLR–PP–F. There was a nega-
tive correlation between these synchrony measures and depressive symptoms (Spearman
r(WCLC–PP–F, PHQ9) = −0.43, r(WCLC–PP–F, PHQ9) = −0.47, respectively, both p < 0.05).
In contrast to our assumption, rMEA–WCC, SUCO–ES–CO, and MI–Z showed positive cor-
relations with depressive symptoms (all Spearman r > 0.46, all p < 0.05). These synchrony
measures suggested that interpersonal interactions with depressed patients are charac-
terized by a higher degree of movement synchrony. These results correspond with [36],
who studied predictive validity based on psychotherapy data, finding inconsistent correla-
tions with improvement of interpersonal problems in psychotherapy.

A possible explanation is that the algorithms measure different aspects of movement
synchrony, which then correlate differently with depressive symptoms. WCLC–PP–F and
WCLR–PP–F measure the frequency of synchronization intervals whereas rMEA–WCC,
SUCO–ES–CO, and MI–Z quantify the degree of interrelatedness of both time series. Nev-
ertheless, the present study revealed that in the diagnostic of depression, synchronization
measures can lead to contrary conclusions (depressed synchronized less than control versus
depressed synchronized more than controls). This raises the problem that the results of
different synchrony studies cannot be aggregated when different measures have been used.
A solution may be to measure movement synchrony with multiple algorithms, for example,
when the relationship between depressive symptoms and synchronization is investigated.
This would be comparable to studies on the efficacy of psychological treatment, in which
both primary and secondary outcomes are assessed.

4.3. Limitations

Our sample of interview videos (bivariate time series) was rather small. Accordingly,
the statistical analysis had low statistical power with limited generalizability. Future studies
on the validity of synchronization measures should investigate large and diverse samples
(e.g., free communication, structured interviews, and psychotherapy sessions) and consider
time series related to different behavior modalities (e.g., movement synchrony and facial
synchrony) and different contexts (e.g., mirror game and interviews). The present study
investigated only movement synchrony in structured interviews.

Previous studies [39–41,43] showed in various algorithms that synchronization mea-
sures depend on the parameter settings. In the present study, each algorithm was applied
with default parameter values recommended by the authors of the algorithms. Possibly,
the convergence of synchrony measures depends on equal settings of corresponding param-
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eters. In [36], WinCRQA and WCLR–PP were conducted with a window size of 5 frames
(5 s). The correlation of the resulting synchrony measures was r = 0.777 ([36], Table 3).
In the present study, the window size of WCLR–PP was 125 frames and the window
size of WinCRQA was 1500 frames. Both synchrony measures correlated with r = −0.41
(see Table 3).

Study designs must be discussed, too. In the present study, we did not control the
amount of synchrony in the experimental condition (patients versus controls) so that the
“true” synchrony or a proxy for that is not known. Our analysis of predictive validity
rested on the assumption that psychopathological symptom load should be linked to
movement synchrony during interviews on somatic complaints. There is some plausibility
for this assumption; yet it may be also true that both groups of participants were equally
synchronized, as the topic of somatic complaints is an engaging topic for depressive as
well as healthy interviewees. Additionally, as we discussed previously, the convergent
validity of published findings on psychopathology and synchrony is not yet sufficiently
robust because these findings originated from differing algorithms and differing parameter
settings. Thus, a possible conclusion is that it is too early to study predictive validity;
the (convergent) validity of the synchrony measures must be established in the first place.

At the very least, further studies building on the present one are necessary in the field
of synchronization research to clarify especially convergent, but also predictive validity.
On top of incorporating simulated data with known types of synchronized coupling
(in order to analyze convergent validity) [40], experimental data with covert instructions for
participants to synchronize (or not) [44,45], and sensitivity analyses on parameter settings
and their influences [39,40,43] must be performed.

5. Conclusions

To date, only a few comparisons between synchrony measures deriving from different
algorithms (frequency-, correlation-, information-based) have been performed systemati-
cally. Only recently and in the field of physics have such comparisons been performed on a
large scale [72]. In the present study, we pursued a similar goal using a small naturalistic
dataset that comprises psychological interaction processes.

Our study revealed that the convergent validity of synchronization measures applied
in clinical research range from non-existent to very good. As expected, factor analyses
suggested that the different convergence of the measures can be explained by the presence
of facets: on the one hand cross-correlation measures and on the other hand measures based
on information theory or describing the frequency of synchronization intervals. Moreover,
patients with depression and healthy controls can be distinguished by many synchrony
measures—which suggests predictive validity. However, some measures suggested that
patients and interviewer synchronize less often than dyads with controls, whereas other
measures suggested the opposite.

We believe the present study is a promising starting point for addressing the important
question of what psychological meaning may reside in synchronization measures. Given the
increasing number of synchrony studies in clinical, social, and developmental psychology,
these are also pressing open questions in the light of what has been called the “replication
crisis” in psychology and medicine.

Author Contributions: Conceptualization, U.A. and W.T.; methodology, U.A. and W.T.; data curation,
U.A.; formal analysis, U.A.; writing—original draft preparation, U.A.; writing—review and editing,
U.A., B.S. and W.T.; visualization, U.A.; supervision, B.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The primary study that generated the movement time series
was conducted in accordance with the World Medical Association Declaration of Helsinki. The ethical
approval was obtained from the Ethics Committee of Jena University Hospital, Jena, Germany
(ID 5043-01/17).

47



Entropy 2022, 24, 1307

Informed Consent Statement: Before inclusion, all participants provided informed consent. Their
participation was voluntary and unpaid.

Data Availability Statement: The data that support the findings of this study are available on request
from the corresponding author, U.A.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Altmann, U.; Hermkes, R.; Alisch, L.-M. Analysis of nonverbal involvement in dyadic interactions. In Verbal and Nonverbal

Communication Behaviours; Esposito, A., Faundez-Zanuy, M., Keller, E., Marinaro, M., Eds.; Springer: Berlin/Heidelberg, Germany,
2007; pp. 37–50. [CrossRef]

2. Orlinsky, D.E.; Ronnestad, M.H.; Willutzki, U. Fifty years of psychotherapy process-outcome research: Continuity and change.
In Bergin and Garfield’s Handbook of Psychotherapy and Behavior Change, 5th ed.; Lambert, M.J., Ed.; Wiley: Hoboken, NJ, USA, 2004;
Volume 5, pp. 307–389.

3. Koole, S.L.; Tschacher, W. Synchrony in Psychotherapy: A Review and an Integrative Framework for the Therapeutic Alliance.
Front. Psychol. 2016, 7, 862. [CrossRef] [PubMed]

4. Altmann, U. Synchronisation Nonverbalen Verhaltens [Synchronization of Nonverbal Behavior]; Springer: Berlin/Heidelberg, Germany, 2013.
5. Altmann, U.; Schoenherr, D.; Paulick, J.; Deisenhofer, A.-K.; Schwartz, B.; Rubel, J.A.; Stangier, U.; Lutz, W.; Strauss, B. Associations

between movement synchrony and outcome in patients with social anxiety disorder: Evidence for treatment specific effects.
Psychother. Res. 2020, 30, 574–590. [CrossRef] [PubMed]

6. Oullier, O.; de Guzman, G.C.; Jantzen, K.J.; Lagarde, J.; Kelso, J.A.S. Social coordination dynamics: Measuring human bonding.
Soc. Neurosci. 2008, 3, 178–192. [CrossRef]

7. Schmidt, R.C.; O’Brien, B. Evaluating the dynamics of unintended interpersonal coordination. Ecol. Psychol. 1997, 9, 189–206.
[CrossRef]

8. Schoenherr, D.; Paulick, J.; Strauss, B.; Deisenhofer, A.-K.; Schwartz, B.; Rubel, J.; Lutz, W.; Stangier, U.; Altmann, U. Nonverbal
synchrony predicts premature termination of psychotherapy for social phobic patients. Psychotherapy 2019, 56, 503–513. [CrossRef]
[PubMed]

9. Boker, S.M.; Rotondo, J.L.; Xu, M.; King, K. Windowed cross-correlation and peak picking for the analysis of variability in the
association between behavioral time series. Psychol. Methods 2002, 7, 338–355. [CrossRef]

10. Delaherche, E.; Chetouani, M.; Mahdhaoui, A.; Saint-Georges, C.; Viaux, S.; Cohen, D. Interpersonal synchrony: A survey of
evaluation methods across disciplines. IEEE Trans. Affect. Comput. 2012, 3, 349–365. [CrossRef]

11. Ramseyer, F.; Tschacher, W. Nonverbal synchrony in psychotherapy: Coordinated body movement reflects relationship quality
and outcome. J. Consult. Clin. Psychol. 2011, 79, 284–295. [CrossRef]

12. Altmann, U. Investigation of movement synchrony using windowed cross-lagged regression. In Analysis of Verbal and Nonverbal
Communication and Enactment: The Processing Issue; Esposito, A., Vinciarelli, A., Vicsi, K., Pelachaud, C., Nijholt, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 344–354. [CrossRef]

13. Bilakhia, S.; Petridis, S.; Nijholt, A.; Pantic, M. The MAHNOB Mimicry Database: A database of naturalistic human interactions.
Pattern Recognit. Lett. 2015, 66, 52–61. [CrossRef]

14. Tschacher, W.; Meier, D. Physiological synchrony in psychotherapy sessions. Psychother. Res. 2020, 30, 558–573. [CrossRef]
15. Kleinbub, J.R. State of the art of Interpersonal Physiology in Psychotherapy: A systematic review. Front. Psychol. 2017, 8, 2053.

[CrossRef] [PubMed]
16. Altmann, U.; Brümmel, M.; Meier, J.; Strauss, B. Movement synchrony and facial synchrony as diagnostic features of depression:

A pilot study. J. Nerv. Ment. Dis. 2021, 209, 128–136. [CrossRef] [PubMed]
17. Gaume, J.; Hallgren, K.A.; Clair, C.; Schmid Mast, M.; Carrard, V.; Atkins, D.C. Modeling empathy as synchrony in clinician and

patient vocally encoded emotional arousal: A failure to replicate. J. Couns. Psychol. 2019, 66, 341–350. [CrossRef] [PubMed]
18. Imel, Z.E.; Barco, J.S.; Brown, H.J.; Baucom, B.R.; Baer, J.S.; Kircher, J.C.; Atkins, D.C. The association of therapist empathy and

synchrony in vocally encoded arousal. J. Couns. Psychol. 2014, 61, 146–153. [CrossRef]
19. Schoenherr, D.; Strauss, B.; Stangier, U.; Altmann, U. The influence of vocal synchrony on outcome and attachment anxi-

ety/avoidance in treatments of social anxiety disorder. Psychotherapy 2021, 58, 510–522. [CrossRef] [PubMed]
20. Aafjes-van Doorn, K.; Müller-Frommeyer, L. Reciprocal language style matching in psychotherapy research. Couns. Psychother.

Res. 2020, 20, 449–455. [CrossRef]
21. Borelli, J.L.; Sohn, L.; Wang, B.A.; Hong, K.; DeCoste, C.; Suchman, N.E. Therapist–client language matching: Initial promise as a

measure of therapist–client relationship quality. Psychoanal. Psychol. 2019, 36, 9. [CrossRef]
22. Wiltshire, T.J.; Philipsen, J.S.; Trasmundi, S.B.; Jensen, T.W.; Steffensen, S.V. Interpersonal Coordination Dynamics in Psychother-

apy: A Systematic Review. Cogn. Ther. Res. 2020, 44, 752–773. [CrossRef]
23. Koole, S.L.; Atzil Slonim, D.; Butler, E.A.; Dikker, S.; Tschacher, W.; Wilderjans, T. In Sync with Your Shrink: Grounding

psychotherapy in interpersonal synchrony. In Applications of Social Psychology: How Social Psychology can Contribute to the Solution
of Real-World Problems; Forgas, J., Crano, W., Fiedler, K., Eds.; Routledge: New York, NY, USA, 2020; pp. 161–184.

48



Entropy 2022, 24, 1307

24. Kupper, Z.; Ramseyer, F.; Hoffmann, H.; Tschacher, W. Nonverbal synchrony in social interactions of patients with schizophrenia
indicates socio-communicative deficits. PLoS ONE 2015, 10, e0145882. [CrossRef]

25. Paulick, J.; Rubel, J.; Deisenhofer, A.-K.; Schwartz, B.; Thielemann, D.; Altmann, U.; Boyle, K.; Strauss, B.; Lutz, W. Diagnostic
features of nonverbal synchrony in psychotherapy: Comparing depression and anxiety. Cogn. Ther. Res. 2018, 42, 539–551.
[CrossRef]

26. Scherer, S.; Hammal, Z.; Yang, Y.; Morency, L.-P.; Cohn, J.F. Dyadic behavior analysis in depression severity assessment
interviews. In Proceedings of the 16th International Conference on Multimodal Interaction, Istanbul, Turkey, 12–16 November
2014; pp. 112–119.

27. Kaltenboeck, A.; Harmer, C. The neuroscience of depressive disorders: A brief review of the past and some considerations about
the future. Brain Neurosci. Adv. 2018, 2, 2398212818799269. [CrossRef] [PubMed]

28. Shenal, B.V.; Harrison, D.W.; Demaree, H.A. The neuropsychology of depression: A literature review and preliminary model.
Neuropsychol. Rev. 2003, 13, 33–42. [CrossRef] [PubMed]

29. Hames, J.L.; Hagan, C.R.; Joiner, T.E. Interpersonal Processes in Depression. Annu. Rev. Clin. Psychol. 2013, 9, 355–377. [CrossRef]
[PubMed]

30. Balsters, M.J.H.; Krahmer, E.J.; Swerts, M.G.J.; Vingerhoets, A.J.J.M. Verbal and nonverbal correlates for depression: A review.
Curr. Psychiatry Rev. 2012, 8, 227–234. [CrossRef]

31. Burton, C.; McKinstry, B.; Szentagotai Tătar, A.; Serrano-Blanco, A.; Pagliari, C.; Wolters, M. Activity monitoring in patients with
depression: A systematic review. J. Affect. Disord. 2013, 145, 21–28. [CrossRef]

32. Paulick, J.; Deisenhofer, A.-K.; Ramseyer, F.; Tschacher, W.; Boyle, K.; Rubel, J.; Lutz, W. Nonverbal Synchrony: A new approach
to better understand psychotherapeutic processes and drop-out. J. Psychother. Integr. 2018, 28, 367–384. [CrossRef]

33. Babl, A. Automatically Detected Nonverbal Synchrony between Patients and Therapists in Psychotherapeutic Dyads Assessed with Microsoft
Kinect; University of Bern: Bern, Switzerland, 2016.

34. Reich, C.M.; Berman, J.S.; Dale, R.; Levitt, H.M. Vocal synchrony in psychotherapy. J. Soc. Clin. Psychol. 2014, 33, 481–494.
[CrossRef]

35. Schoenherr, D.; Strauss, B.; Paulick, J.; Deisenhofer, A.-K.; Schwartz, B.; Rubel, J.; Boyle, K.; Lutz, W.; Stangier, U.; Altmann,
U. Movement synchrony and attachment related anxiety and avoidance in social anxiety disorder. J. Psychother. Integr. 2021,
31, 163–179. [CrossRef]

36. Schoenherr, D.; Paulick, J.; Worrack, S.; Strauss, B.; Rubel, J.; Schwartz, B.; Deisenhofer, A.-K.; Lutz, W.; Altmann, U. Quantification
of nonverbal synchrony using linear time series analysis methods: Convergent validity of different methods. Behav. Res. Methods
2019, 51, 361–383. [CrossRef]

37. Kleinbub, J.R.; Ramseyer, F.T. rMEA: An R package to assess nonverbal synchronization in Motion Energy Analysis time-series.
Psychother. Res. 2020, 31, 817–830. [CrossRef]

38. Gates, K.M.; Liu, S. Methods for Quantifying Patterns of Dynamic Interactions in Dyads. Assessment 2016, 23, 459–471. [CrossRef]
[PubMed]

39. Ramseyer, F.; Tschacher, W. Movement Coordination in Psychotherapy: Synchrony of Hand Movements is Associated with
Session Outcome. A Single-Case Study. Nonlinear Dyn. Psychol. Life Sci. 2016, 20, 145–166.

40. Schoenherr, D.; Paulick, J.; Deisenhofer, A.-K.; Schwartz, B.; Rubel, J.; Lutz, W.; Strauss, B.; Altmann, U. Identification of movement
synchrony: Validation of time series analysis methods. PLoS ONE 2019, 14, e0211494. [CrossRef]

41. Behrens, F.; Moulder, R.; Boker, S.; Kret, M. Quantifying physiological synchrony through windowed cross-correlation analysis:
Statistical and theoretical considerations. BioRxiv 2020. [CrossRef]

42. Ramseyer, F.; Tschacher, W. Nonverbal Synchrony or Random Coincidence? How to Tell the Difference. In Development of
Multimodal Interfaces: Active Listening and Synchrony; Esposito, A., Campbell, N., Vogel, C., Hussain, A., Nijholt, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2010; Volume 5967, pp. 182–196.

43. Moulder, R.G.; Boker, S.M.; Ramseyer, F.; Tschacher, W. Determining synchrony between behavioral time series: An application of
surrogate data generation for establishing falsifiable null-hypotheses. Psychol. Methods 2018, 23, 757–773. [CrossRef]

44. Feniger-Schaal, R.; Schoenherr, D.; Altmann, U.; Strauss, B. Movement synchrony in the Mirror Game. J. Nonverbal Behav. 2021,
45, 107–126. [CrossRef]

45. Luehof, S. Automatic Analysis of Synchrony in Dyadic Interviews; University of Utrecht: Utrecht, The Netherlands, 2019.
46. Coco, M.I.; Dale, R. Cross-recurrence quantification analysis of categorical and continuous time series: An R package. Front.

Psychol. 2014, 5, 510. [CrossRef]
47. Shugaley, A.; Altmann, U.; Brümmel, M.; Meier, J.; Strauß, B.; Schönherr, D. Der Klang der Depression. Zusammenhang zwischen

Depressivität und paraverbalen Merkmalen während der Anamnese depressiver Patient_innen und gesunden Probanden.
Psychotherapeut 2021, 67, 158–165. [CrossRef]

48. Altmann, U.; Knitter, L.A.; Meier, J.; Brümmel, M.; Strauß, B. Nonverbale Korrelate depressiver Störungen: Eine Pilotstudie.
Z. Für Klin. Psychol. Psychother. 2020, 49, 231–240. [CrossRef]

49. Löwe, B.; Spitzer, R.; Zipfel, S.; Herzog, W. Gesundheitsfragebogen für Patienten (PHQ D); Komplettversion und Kurzform,
Testmappe mit Manual, Fragebögen, Schablonen; Pfizer: Karlsruhe, Germany, 2002.

49



Entropy 2022, 24, 1307

50. Wittchen, H.-U.; Wunderlich, U.; Gruschwitz, S.; Zaudig, M. SKID I. Strukturiertes Klinisches Interview für DSM-IV. Achse I:
Psychische Störungen. Interviewheft und Beurteilungsheft [SCID I. Strutured Clinical Interview for DSM-IV. Axis I: Mental Disorder.
Manual]; Hogrefe: Goettingen, Germany, 1997.

51. Grammer, K.; Honda, M.; Juette, A.; Schmitt, A. Fuzziness of nonverbal courtship communication unblurred by motion energy
detection. J. Personal. Soc. Psychol. 1999, 77, 487–508. [CrossRef]

52. Kleinbub, J.R.; Ramseyer, F. R Package ‘rMEA’ Version 1.0.0—Synchrony in Motion Energy Analysis (MEA) Time-Series. 2018.
Available online: https://cran.r-project.org/package=rMEA (accessed on 15 July 2022).

53. Tschacher, W.; Haken, H. The Process of Psychotherapy: Causation and Chance; Springer Nature: Cham, Switzerland, 2019. [CrossRef]
54. Pardy, C. mpmi: Mixed-Pair Mutual Information Estimators, 0.43.1. 2020. Available online: https://cran.r-project.org/package=

mpmi (accessed on 15 July 2022).
55. Meier, D.; Tschacher, W. Beyond Dyadic Coupling: The Method of Multivariate Surrogate Synchrony (mv-SUSY). Entropy 2021,

23, 1385. [CrossRef] [PubMed]
56. Bernieri, F.J.; Reznick, J.S.; Rosenthal, R. Synchrony, pseudosynchrony, and dissynchrony: Measuring the entrainment process in

mother-infant interactions. J. Personal. Soc. Psychol. 1988, 54, 243–253. [CrossRef]
57. Marci, C.D.; Orr, S.P. The effect of emotional distance on psychophysiologic concordance and perceived empathy between patient

and interviewer. Appl. Psychophysiol. Biofeedback 2006, 31, 115–128. [CrossRef] [PubMed]
58. Watanabe, T. A study of motion-voice synchronization. Bull. JSME 1983, 26, 2244–2250. [CrossRef]
59. Dean, R.T.; Dunsmuir, W.T.M. Dangers and uses of cross-correlation in analyzing time series in perception, performance,

movement, and neuroscience: The importance of constructing transfer function autoregressive models. Behav. Res. Methods 2016,
48, 783–802. [CrossRef]

60. Gottman, J.M.; Ringland, J.T. The analysis of dominance and bidirectionality in social development. Child Dev. 1981, 52, 393–412.
[CrossRef]

61. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–666. [CrossRef]
62. Verdú, S. Empirical Estimation of Information Measures: A Literature Guide. Entropy 2019, 21, 720. [CrossRef]
63. Eckmann, J.-P.; Kamphorst, S.O.; Ruelle, D. Recurrence Plots of Dynamical Systems. Europhys. Lett. 1987, 4, 973–977. [CrossRef]
64. Fusaroli, R.; Konvalinka, I.; Wallot, S. Analyzing social interactions: The promises and challenges of using cross recurrence

quantification analysis. In Translational Recurrences. From Mathematical Theory to Real-World Applications; Marwan, N., Riley, M.,
Giuliani, A., Webber, C.L., Jr., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 103, pp. 137–155.

65. Wallot, S.; Leonardi, G. Analyzing multivariate dynamics using cross-recurrence quantification analysis (CRQA), diagonal-cross-
recurrence profiles (DCRQ), and multidimensional recurrence quantification analysis (MDRQA)—A tutorial in R. Front. Psychol.
2018, 9, 2232. [CrossRef]

66. Coco, M.I.; Mønster, D.; Leonardi, G.; Dale, R.; Wallot, S. Unidimensional and multidimensional methods for Recurrence
Quantification Analysis with crqa. arXiv 2020, arXiv:2006.01954. [CrossRef]

67. Kodama, K.; Tanaka, S.; Shimizu, D.; Hori, K.; Matsui, H. Heart rate synchrony in psychological counseling: A case study.
Psychology 2018, 9, 1858–1874. [CrossRef]

68. Konvalinka, I.; Xygalatas, D.; Bulbulia, J.; Schjødt, U.; Jegindø, E.-M.; Wallot, S.; Van Orden, G.; Roepstorff, A. Synchronized
arousal between performers and related spectators in a fire-walking ritual. Proc. Natl. Acad. Sci. USA 2011, 108, 8514–8519.
[CrossRef] [PubMed]

69. Marwan, N. How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurc. Chaos 2011, 21, 1003–1017.
[CrossRef]

70. Cohen, J. Statistical Power Analysis for The Behavioral Sciences, 2nd ed.; Erlbaum Associates: Hillsdale, NJ, USA, 1988.
71. Strauss, B.; Altmann, U.; Schönherr, D.; Schurig, S.; Singh, S.; Petrowski, K. Is there an elephant in the room? A study of

convergences and divergences of adult attachment measures commonly used in clinical studies. Psychother. Res. 2022, 32, 695–709.
[CrossRef]

72. Cliff, O.M.; Lizier, J.T.; Tsuchiya, N.; Fulcher, B.D. Unifying Pairwise Interactions in Complex Dynamics. arXiv 2022, arXiv:2201.11941.
[CrossRef]

50



Citation: Stamovlasis, D.; Giannouli,

V.; Vaiopoulou, J.; Tsolaki, M.

Catastrophe Theory Applied to

Neuropsychological Data: Nonlinear

Effects of Depression on Financial

Capacity in Amnestic Mild Cognitive

Impairment and Dementia. Entropy

2022, 24, 1089. https://doi.org/

10.3390/e24081089

Academic Editors: Franco Orsucci

and Wolfgang Tschacher

Received: 14 July 2022

Accepted: 5 August 2022

Published: 7 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Catastrophe Theory Applied to Neuropsychological Data:
Nonlinear Effects of Depression on Financial Capacity in
Amnestic Mild Cognitive Impairment and Dementia
Dimitrios Stamovlasis 1,*, Vaitsa Giannouli 2, Julie Vaiopoulou 3,4 and Magda Tsolaki 2,5,6

1 School of Philosophy and Education, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
2 1st Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of

Thessaloniki, 54634 Thessaloniki, Greece
3 Department of Education, University of Nicosia, Nicosia 2417, Cyprus
4 School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
5 Alzheimer Hellas, 54643 Thessaloniki, Greece
6 Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and

Innovation (CIRI-AUTh), Balkan Center, Buildings A & B, Thessaloniki, Aristotle University of Thessaloniki,
10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 54124 Thessaloniki, Greece

* Correspondence: stadi@edlit.auth.gr

Abstract: Financial incapacity is one of the cognitive deficits observed in amnestic mild cognitive
impairment and dementia, while the combined interference of depression remains unexplored. The
objective of this research is to investigate and propose a nonlinear model that explains empirical data
better than ordinary linear ones and elucidates the role of depression. Four hundred eighteen (418)
participants with a diagnosis of amnestic MCI with varying levels of depression were examined with
the Geriatric Depression Scale (GDS-15), the Functional Rating Scale for Symptoms of Dementia (FRSSD),
and the Legal Capacity for Property Law Transactions Assessment Scale (LCPLTAS). Cusp catastrophe
analysis was applied to the data, which suggested that the nonlinear model was superior to the linear
and logistic alternatives, demonstrating depression contributes to a bifurcation effect. Depressive
symptomatology induces nonlinear effects, that is, beyond a threshold value sudden decline in
financial capacity is observed. Implications for theory and practice are discussed.

Keywords: cusp catastrophe; complexity; nonlinear dynamics; financial capacity; amnestic mild
cognitive impairment; depressive symptoms

1. Introduction
1.1. The Psychocognitive Framework

This section focuses on explaining the psychocognitive framework that hosts the
present investigation, which has a predominately methodological orientation. Thus, from
the existing extensive literature on dementia, amnestic mild cognitive impairment, and
the factors involved in defining, measuring, and treating them, only the most relevant
pieces will be cited, which will adequately familiarize the reader with the phenomenon
under study.

An issue that has become crucial in modern societies, since it relates to legal impli-
cations, is the assessment of the financial capacity of older adults with psychocognitive
problems [1–3]. The matter concerns a number of specialists, including not only clinical
neuropsychologists and forensic psychiatrists, but also judges and lawyers, while there
is an increasing theoretical interest in proposing models for describing and predicting
empirical results. Although there is not a consensus among researchers about defining and
measuring financial capacity [4–6], a predominant model (Marson’s model) [7] proposes
an effective way to deal with the multidimensionality of the latent variable in question,
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and it is acceptable for the legal systems in most countries. Conceptually, the model in-
cludes two components: the first encompasses the financial activity of a general domain of
functioning, and the second takes into consideration specific financial abilities tasks. This
general model has inspired potential endeavors for developing assessment instruments in
different countries, given that the underlying process is culture-specific [8]. The interest
in developing such tools aims at their implementation in clinical assessments, as direct
measurements of relevant neuropsychological deficits. Analogous endeavors have been
realized in other domains by examining different mental resources, such as memory skills
or verbal fluency [9,10]. Given the abovementioned legal implications, the central idea con-
tinues to inspire a growing concern, specifically for the financial capacity, since it has been
proven highly susceptible to Alzheimer’s disease (AD) and related disorders [11]. In this
direction, lately, a financial capacity test for the Greek population, namely the Legal Capacity
for Property Law Transactions Assessment Scale (LCPLTAS), was developed and validated [12],
with psychometric properties that allow the performance of both healthy older adults and
those suffering from different types and stages of dementia to be investigated. It should
be noted that individuals with mild cognitive impairment (MCI) are also distinguished
via this test. Relevant diagnostic cognitive tests, such the Mini-Mental State Examination
(MMSE), were used to predict financial capacity performance, enhancing the validly of
the LCPLTAS. In addition, two more instruments, the Geriatric Depression Scale (GDS-15)
and the Functional Rating Scale for Symptoms of Dementia (FRSSD) were used as predictor
variables in order to associate LCPLTAS scores with the other scales.

1.2. The Effects of Psychocognitive Resources on Financial Capacity

Research on psychocognitive performance, based on empirical evidence, has estab-
lished a number of relationships among latent factors related to some mental deficits.

Patients with amnestic mild cognitive impairment (aMCI) are found to be inferior
performers in financial capacity tasks compared to healthy individuals [13,14], and the
anticipated decline over time in MCI converters is significantly greater than that of the
MCI non-converters or healthy control cases [13]. However, there are circumstances where
additional factors can concomitantly affect financial capacity, such as comorbid depression.
Research has shown that decline in financial capacity in Alzheimer’s Disease, Parkinson’s
Disease, and vascular dementia is observed, specifically when depression is identified
during neuropsychological assessment [15,16]. Moreover, studies have supported declining
and impaired financial capacity in aMCI individuals [13,14], while some empirical evidence
for financial capacity in aMCI with concurrent depressive symptomatology (aMCI-D) has
been provided [17].

Regarding methodological issues, all relevant research has been promoted via tradi-
tional approaches with linear statistical modeling, the limitations of which are already well
known [18]. The present endeavor, fostering the meta-theoretical framework of complexity
theory and nonlinear dynamics, aimed to test the nonlinear hypothesis in psychocognitive
performance by applying catastrophe theory and implementing financial capacity, GDS,
and FRSSD.

Any neuropsychological process is characterized by an inherent complexity. The
involved latent constructs, such as financial capacity, are also complex, involving a variety
of mental functions, which are operationalized by specific ability tests (e.g., arithmetic,
counting coins/currency, paying bills) and judgment decision-making skills [14,15]. All
involved mental resources (such as working memory and logical thinking) interact with
each other in time via a dynamical process where, in addition to the positively contributing
components, counteracting variables and inhibitory factors operate as moderators leading
to deteriorated outcomes. Based on the evidence, depression is a moderator factor, which,
when combined with additional deficits, leads to a worse performance. It is reasonable to
consider that depression not only in AD, but also in other neurocognitive disorders, is a
moderator factor for financial capacity [19,20]. This is a hypothesis though that hasn’t re-
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ceived systematic investigation providing a coherent and interpretable model that describes
the phenomenon.

To this end, the present article proposes a novel approach in exploring medical data in
this area by fostering complexity theory and nonlinear dynamics. It is a fundamental theo-
retical consideration that the latent constructs involved in neuropsychological processes are
dynamically interacting and the emergent behavior is described by the notion of complex
adaptive systems (CASs) [21]. In a CAS, the behavior is deemed as inherently nonlinear,
and changes can often be discontinuous and unpredictable. Complexity science has already
gained considerable attention in social sciences [22,23], behavioral sciences [24–28], and
life and medical sciences [29–32]. The present endeavor employs catastrophe theory for
modeling financial capacity as the state variable dependent measure, while the Geriatric
Depression Scale (GDS-15) and the Functional Rating Scale for Symptoms of Dementia
(FRSSD) are the predictor variables. Elements of catastrophe theory are presented in the
following section.

1.3. Catastrophe Theory

Catastrophe theory as a mathematical theory was founded on the works of Thom [33]
and Arnold [34] and concerns the classification of the equilibrium behavior of dynamical
systems in the neighborhood of singularities. It proves that, at these critical points, the
system can be locally modeled by seven elementary catastrophes, from which cusp catastro-
phe is the most known and applicable [35]. Catastrophe theory presupposes a dissipating
or potential-minimizing system, and the cusp model is expressed by the first derivative of
a potential function, U, with respect to the outcome, y, by Equation (1):

∂U(y, a, b)
∂y

= y3 − by − ay (1)

By setting ∂U(y, a, b)/∂y = 0, the resulting equilibrium function is represented by the
three-dimensional surface as a function of the two control parameters (α and b).

The development of stochastic catastrophe theory, which is based on the initial work
of Cobb [36], allows for testing the relevant models with empirical data. Catastrophe
theory is an area of complex dynamical systems and has shown high applicability in
behavioral science. The notion of a potential-optimization process is compatible with a
neuropsychological system, since it could be considered as pursuing the optimization of
some function, e.g., related to adaptation or cognitive dissonance. The description of the
cusp model is made via the response surface (Figure 1), where its fundamental features can
be observed, such as bimodality, hysteresis, inaccessibility area, divergence, bifurcation,
and sudden jumps [37]. The above phenomenology is interpreted via the underlying
self-organization processes [38] and is theoretically connected to other areas of nonlinear
sciences, such as Prigogine’s non-equilibrium [39,40] and Haken’s synergetics [41,42].
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The interpretation of the cusp model is facilitated by the three-dimensional response
surface (see Figure 1), which demonstrates the geometry of behavior. At the back region
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of the surface, where the bifurcation, b, has low values, the surface is smooth and a linear
relationship between the state variable (dependent measure) and the asymmetry, a, holds.
In the forward-facing part, the surface folds and the two regions, i.e., the upper and the
lower parts, appear, representing the two behavioral modes that in the language of CDS
are called attractors. At this region, the probability density function of the empirical data
becomes bimodal, whereas, in the area between the two modes, the behavior is unlikely
to occur, and it is called the inaccessibility area. Thus, in this region, changes can only
occur as jumps or transitions between the two behavioral attractors. Mathematically, these
changes are called discontinuities and the splitting of the system into two states or different
modes of behaviors consists of a bifurcation [43]. Looking from the front of the surface, a
sigma-like feature, the hysteresis effect, can be observed. These are dynamic effects occurring
when the bifurcation variable, b, goes beyond a critical value. It is pertinent to emphasize
that bifurcation characterizes only nonlinear systems and is considered as a fingerprint of
complexity [38].

2. Materials and Methods
2.1. Rationale and Research Hypotheses

In this research and for the relevant diagnoses, well-known neuropsychological as-
sessment tools, such as the GDS, FRSSD, MMSE, and LCPLTAS, were implemented. The
instruments operationalize specific psychological resources and are used concomitantly to
consolidate conclusions and to help make decisions. The validation of the LCPLTAS [12]
was supported with its functional relationships with the rest of the instruments, while the
statistical methodology was based on linear modeling. Considering the epistemological
and methodological limitations of the traditional linear approaches [18], this research was
initiated to examine the applicability of catastrophe theory in this area and to provide
insights about the theoretical and practical implications. This neuropsychological endeavor
is apparently inductive in nature, since it is a new application in the field, encompassing a
supplementary analysis of available data. However, it is also theory-driven, because it is
based on the theory of complex adaptive systems (CASs), which is used here to reexamine
the outcomes of dynamical processes, such as the neuropsychological processes taking
place in assessment procedures. The cognitive factors involved in financial problem solving
do not act as parts of a mechanical system, where the outcome can be expressed as a
linear function of the contributing mechanisms [18,44,45]. As parts of a CAS system, these
components act with no predetermined scenario, but execute their tasks via an iterative
dynamical process. The potential nonlinearity can lead to changes encompassing sudden
shifts, discontinuities, or transitions, which can be captured by catastrophe theory models.
In the present research framework, among the psychological resources involved, depression
is known as a moderator factor of financial capacity, competing against the positively
acting resources. As an inhibitory agent, depression is a potential factor for inducing
nonlinear effects.

To this end, the research hypotheses posited in this endeavor concern the potential
role of depression in financial capacity, along with testing the applicability of catastrophe
theory in neuropsychology, and are stated as follows:

(1) The effect of the GDS and FRSSD on the LCPLTAS can be described via a cusp
catastrophe model.

(2) The GDS is the main candidate for acting as a bifurcation factor.
(3) Both the FRSSD and GDS could contribute to both the asymmetry and the bifurcation factors.

2.2. Participants and Measures

The participants were 418 Greek adults (68.2% women), whose age ranged from 45
to 98 years (mean = 72.55, SD = 8.08, median = 72.0). The mean years of education was
8.61 years (SD = 4.41, median = 6.0). A total of 34.4% were healthy control individuals,
while the rest were diagnosed with varying degrees of AD and cognitive impairment.
This sample composition ensures large variances in the measured construct and facilitates
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the variable-centered analyses. The neuropsychological assessments were carried out at
the Memory Clinic of Papanikolaou General Hospital and elderly daycare centers during
2012–2016. Written informed consent from each participant was obtained and the study
was approved by the Ethics Committee of the Aristotle University of Thessaloniki (protocol
code 2.27/3/2013) [12], while the research was performed according to the Declaration
of Helsinki.

Financial capacity was assessed with the Legal Capacity for Property Law Transactions
Assessment Scale (LCPLTAS) short form [12]. The LCPLTAS consists of seven main do-
mains: (1) basic monetary skills, (2) cash transactions, (3) bank statement management,
(4) bill payment, (5) financial conceptual knowledge, (6) financial decision making, and
(7) knowledge of personal assets [12]. The depressive symptomatology was measured by
the Geriatric Depression Scale (GDS-15) [46], and the functionality evaluation was provided
by the Functional Rating Scale for Symptoms of Dementia (FRSSD), which measures activities
of daily living (ADLs) [47]. The above three instruments, along with the MMSE scale, are
commonly used by psychiatrists, neuropsychologists, and neurologists in Greece [12,48–51].
The reported scores were available for all participants in this sample, since they were im-
portant part of assessment protocols in medical settings. Note that in the data set there
were no missing values.

2.3. Method

Cusp analysis was carried out via a modeling procedure based on the probability
function, pdf, of the dependent measure (Equation (2)):

pd f (y) = ξ exp
[
−1

4
y4 +

1
2

by2 + ay
]

(2)

As the optimization method, the maximum likelihood [52] was used, while the pdf was
obtained from empirical data. The analysis was performed in R via the cusp package [53].
The cuspfit algorithm utilizes numerical procedures for parameter estimates by minimizing
a negative loglikelihood function, on which the model-fit evaluation is based, along with the
indices: AIC (Akaike’s information criteria), corrected AIC, and BIC (Bayesian information
criteria) and the statistically significant coefficients of the model. Moreover, a comparison
of the cusp with the linear and logistic alternative model is provided [53]. The literature
offers other modeling procedures as well, such as the GEMCAT methodology [54] and a
method implementing Equation (2) and least squares as the optimization method [55]. The
details of these methods could be found in a lucid review elsewhere [56].

In the cusp analysis, the financial capacity was the dependent measure (LCPLTAS),
known as the state variable, while the depressive symptomatology measured by the
Geriatric Depression Scale (GDS-15) and the Functional Rating Scale for Symptoms of Dementia
(FRSSD) were the two control variables. Results from a power analysis [57] (power levels
of 80%, a medium effect size, two-tailed test with alpha = 0.05, required sample size of 75)
showed that the available sample (N = 418) is adequate for testing the multivariate effects
under study.

Initially, the model was conceived with the FRSSD as the asymmetry factor and the
Geriatric Depression Scale (GDS-15) as the bifurcation. The conceptual and mathematical
model, however, considers that asymmetry and bifurcation factors that represent antag-
onistic processes can be operationalized by a combination of the proposed controls, and,
consequently, linear functions of the FRSSD and GDS scales were tested as contributing
factors to both the asymmetry and bifurcation. The alternative cusp catastrophe models
utilize rotated axes [58] and are analogous to the conflict cusp model that has been pro-
posed for Piaget’s conservation task [59]. This cusp model implements (FRSSD − GDS)
and (FRSSD + GDS) as asymmetry and bifurcation, respectively.
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3. Results

Table 1 presents the descriptive statistics (means, standard deviations, minimum and
maximum values) for the variables under study. For financial capacity, the LCPLTAS and
its short version sLCPLTAS were used.

Table 1. Descriptive statistics.

Mean Std. Deviation Minimum Maximum

LCPLTAS 160.605 63.550 0.000 212.000
sLCPLTAS 108.708 43.850 0.000 144.000

MMSE 24.892 6.538 0.000 30.000
GDS 2.725 3.561 0.000 21.000

FRSSD 4.641 6.454 0.000 32.000
Age 72.555 8.061 45.000 98.000

Table 2 depicts the correlation matrix for the above variables. Both tables include age
and measures of the MMSE, which, however, were not used in the present analysis. Note
that both the GDS (r = −0.220, p < 0.001) and FRSSD (r = −0.792, p < 0.001) are negatively
correlated with financial capacity.

Table 2. Pearson’s correlations.

Variable LCPLTAS sLCPLTAS FRSSD GDS MMSE Age

1. LCPLTAS 1
2. sLCPLTAS 0.998 *** 1

3. FRSSD −0.792 *** −0.789 *** 1
4. GDS −0.220 *** −0.223 *** 0.281 *** 1

5. MMSE 0.944 *** 0.942 *** −0.824 *** −0.201 *** 1
6. Age −0.288 *** −0.289 *** 0.246 *** −0.018 −0.291 *** 1

* p < 0.05, ** p < 0.01, *** p < 0.001.

Subsequently, cusp catastrophe analysis was carried out, testing a model with the
FRSSD and GDS as control variables (Cusp 1) and a model with the linear combination
of them (Cusp 2). Tables 3 and 4 show the slopes, standard errors, Z-tests, and model fit
statistics for the cusp and the alternative models.

Table 3. The cusp model estimated by maximum likelihood method: slopes, standard errors, Z-tests,
and model fit statistics for cusp and the alternative models. Financial capacity as a function of FRSSD
(asymmetry) and Geriatric Depression Scale (bifurcation variable).

Model b seb Z-Value

Cusp 1

a(Intercept) 1.0628 0.1248 8.52 ***
a[FRSSD] Functional Rating Scale for Symptoms of Dementia −1.4557 0.1468 −9.91 ***

b(Intercept) −1.5417 0.2165 −7.12 **
b[GDS] Depression Scale −0.3493 0.0912 −3.83 ***

w(Intercept) 0.8830 0.0355 24.87 ***
w(FC) Financial Capacity 1.2059 0.02921 41.28 ***

Models’ fit statistics (chi-square test of linear vs. cusp model: χ2 = 247.0, df = 2, p < 0.001)

Model Pseudo-R2 Npar AIC AICc BIC

Linear model 0.61 4 781.203 781.300 797.345
Logistic model 0.61 5 744.210 744.351 764.388

Cusp model 0.63 6 538.190 538.392 562.403
Note: *** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.05 (one-tailed); ns = non-significant.
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Table 4. The cusp model estimated by maximum likelihood method: slopes, standard errors, Z-tests,
and model fit statistics for cusp and the alternative models. Financial capacity as a function of (FRSSD
− GDS) as asymmetry and (FRSSD + GDS) as bifurcation variable.

Model b seb Z-Value

Cusp 2

a(Intercept) −0.1606 0.1096 −1.46 ns
a[FRSSD − GDS] Functional Rating Scale for Symptoms of Dementia 1.3450 0.2181 6.19 ***

b(Intercept) 0.98163 0.3388 2.90 **
b[GDS + FRSSD] Depression Scale 1.2804 0.1886 6.79 ***

w(Intercept) 0.02605 0.0528 0.50 ns
w(FC) Financial Capacity 1.02722 0.0472 21.75 ***

Models’ fit statistics (chi-square test of linear vs. cusp model: χ2 = 147.6, df = 2, p < 0.001)

Model Pseudo-R2 Npar AIC AICc BIC

Linear model 0.39 4 414.767 415.043 426.809
Logistic model 0.47 5 395.039 395.456 410.093

Cusp model 0.63 6 271.213 271.801 289.277
Note: *** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.05 (one-tailed); ns = non-significant.

3.1. Cusp 1

In Cusp 1 (Table 3), the FRSSD acts as the asymmetry factor (b = −1.4557, p < 0.001)
and the GDS acts as the bifurcation factor (b = −0.3490, p < 0.001). The chi-square test of
the linear vs. cusp model gives χ2 = 247.0, df = 2, and p < 0.001, and the model fit statistics
in terms of AIC, AICc, and BIC favor the cusp catastrophe model. The values for the cusp
model (AIC = 538.190, AICc = 538.392, and BIC = 562.404) are minimum compared to
the linear (AIC = 781.203, AICc = 781.300, and BIC = 797.345) and logistic (AIC = 744.210,
AICc = 744.351, and BIC = 764.388) models, respectively. The values of pseudo R2 are
close, but this index is not reliable, and it is not interpreted as the usual percentage of
variance explained.

Figure 2 is a visual display of the lower part of the cusp surface, where the shaded
region is the bifurcation area. If at least 10% of the observations fall within this area, it is
considered as evidence supporting the cusp model [60]. The size of the dots in Figure 2
is a function of the observed bivariate density of the bifurcation factor’s values at that
point’s location, and the color is evocative of their position relative to the distance between
the two parts of the surface (two attractors), i.e., the observations that are darker in color
indicate that they are on or closer to the upper attractor and the observations that are
lighter in color are on or closer to the lower attractor. Finally, Figure 3, which depicts the
three-dimensional cusp surface as a function of the two control variables, provides an
additional visual support for the cusp model, showing that the observations are located at
the upper and the lower surface, but not within the area of inaccessibility.

3.2. Cusp 2

This cusp catastrophe model utilizes rotated axes [58], analogous to the conflict cusp
model [59] using the axes m and n depicted in Figure 1. It implements a combination of
the initially proposed controls, specifically their difference (FRSSD − GDS) and their sum
(FRSSD + GDS), as asymmetry and bifurcation factors, respectively.

In Cusp 2 (Table 4), (FRSSD − GDS) acts as the asymmetry factor (b = 1.3450, p < 0.001)
and (FRSSD + GDS) as the bifurcation factor (b = 1.2804, p < 0.001). The chi-square test of
the linear vs. cusp model gives χ2 = 147.6, df = 2, and p < 0.001, and the model fit statistics
in terms of AIC, AICc, and BIC favor the cusp catastrophe model. The values for the cusp
model (AIC = 271.213, AICc = 271.801, and BIC = 289.277) are minimum compared to
the linear (AIC = 414.767, AICc = 415.043, and BIC = 426.809) and logistic (AIC = 395.039,
AICc = 395.456, and BIC = 410.093) alternatives. The values of pseudo R2 are 0.63, 0.39, and
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0.47 for the cusp, linear, and logistic models, respectively; however, they are not counted in
the assessment criteria.
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Figure 3. Three-dimensional cusp response surface financial capacity using maximum likelihood esti-
mation. FRSSD is the asymmetry factor and depressive symptomatology (GDS-15) is the bifurcation
factor. The gray dots represent observed values from empirical data.

Figure 4, as the visual display of the lower part of the cusp surface, shows that most
points are located within the shaded region, the bifurcation area, and in both attractors,
the upper and the lower. Figure 5, which depicts the three-dimensional cusp surface as a
function of the two control variables, clearly reveals the bifurcation structure with the two
diverging slops that are joined at the cusp point and are spreading in each attractor area,
while no observations are located in the area of inaccessibility.

3.3. Model Interpretation

For Cusp 1, which implements the FRSSD and GDS as control variables (Figure 3),
the interpretation of the model suggests that, at low values of depression, changes in the
state variable (the financial capacity) occur in a smooth and linear manner. In this region,
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the linear relationship between the state variable and the asymmetry factor, the FRSSD,
holds. At higher values of depression, that is, as approaching the forward-facing part of
the surface, where surface folds and two behavioral attractors appear, the changes occur
merely as transitions between the two attractors. In this region, people with the same
control-factor values can be found at the lower and/or at higher attractor regions. This
introduces unpredictability in the system and implies that changes in behavior occur as
sudden jumps between two modes.
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Cusp 2 has an analogous interpretation. Note that both the FRSSD and GDS are
negatively associated with the financial capacity. When their difference is large, the negative
effect is smaller, and as it increases the outcome increases as well. These changes are
expected to be smooth and linear compared to the effect of their sum (FRSSD + GDS). When
the net moderating effect of the combined high FRSSD and high GDS becomes unexpectedly
increased, in that scale, a threshold value is likely to exist, beyond which abrupt changes
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occur, inducing bifurcation effects. The present analysis supports the above-described roles
by providing empirical evidence and establishes catastrophe phenomena in this type of
neuropsychological data. It is imperative to repeat that bifurcations and hysteresis effects
are complex phenomena, due to the dynamics of the systems and due to self-organization
mechanisms.

4. Discussion

The present catastrophe theory model, to our knowledge, is the first application re-
ported in the domain of neuropsychology, and it has twofold implications. The first is
epistemological and regards the underlying theory, while the second concerns measure-
ment issues, classifications, and decision-making. The identification of bifurcation effects
challenges the epistemological assumptions that adhere to the linear and mechanistic
views of a neuropsychology system. Given that bifurcations only characterize CASs [38],
their detection indicates that the underlying system is ontologically a complex adaptive
system, and it should be investigated as such, i.e., the linear modeling is inadequate and
epistemologically incompatible to describe and interpret the system’s behavior [18]. The
cusp catastrophe model designated discontinuous changes in a neurocognitive system
under gradual changes in the two independent variables, the control factors, namely the
asymmetry and the bifurcation. The discontinuous changes occur as transitions between
two attractors, which for a neurocognitive system might represent qualitatively distinct
modes of behavior, such as a high or low/suboptimal level of performance.

Note that the present cusp analysis was applied to cross-sectional data, but the in-
terpretation of the model also needs to be extended for the dynamical path of the single
case. The individual’s mind involved in a cognitive task, ontologically acting as a CAS,
follows a trajectory driven by self-organization mechanisms and the outcome emerges via
a dynamical iterative process [21,61,62]. Bifurcations potently occur in those systems and
the interpretation of the present model suggests that, in the course of such a dynamical
process, even small random fluctuations in the parameters can induce sudden, unexpected
transitions from a state of high performance to a state of failure.

It is pertinent to mention here that bifurcations can be observed and captured analo-
gously when a single case (N = 1) is analyzed. Catastrophe phenomena might be relevant
and worth examining when dynamical processes are investigated via time series, where
nonlinear methods and tools should be employed. Complexity theory offers a theoretical
framework and a rich array of methodological tools to support research designs and data
analysis. Even though the present investigation used a large sample and cross-sectional
data to infer nonlinearity, the effective methodological approach to study CASs is time
series analysis [63,64]. This framework has been fruitfully applied in many process ap-
proaches [65–68], where bifurcation phenomena are theoretically anticipated and are worth
examining. In those cases, catastrophes of this kind represent changes: cognitive, attitu-
dinal, shifts to coherence, or therapeutic changes. Relevant also is the notion of ergodicity
in a time series of the analysis [69]. Sudden shifts, transitions, and discontinuities de-
note a non-ergodic process, and the present cusp catastrophe structure supports this idea in
neuropsychological data.

What has been learned for the AD and aMCI research, is that depression is not merely
a linear moderator of mental operators, but it also reacts with other neurocognitive re-
sources and prompts nonlinear effects. To further stimulate a discussion that will bridge the
mathematical/methodological domain with the theoretical premises of neuropsychology,
it would be pertinent to think and reflect on the role of other coexisting conditions (e.g.,
diabetes, heart disease) or other factors of biological and/or psychological origin. The com-
mon methodological thought suggests that, in addition to the present choices, additional
variables could be included in the cusp model specification and tested with empirical data.
The effect of additional candidates is an open issue for further research. However, there are
some more interesting aspects to reflect on.
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A pertinent epistemological remark is that a bifurcation effect should be perceived as a
process, where the relevant variables being tested, as factors contributing to the underlying
mechanism. Under the CAS perspective, this self-organization mechanism concerns the
evolution of an interaction system that possibly includes both biological and psychological
factors within a mutual causality connective state. The representation of such a system is
explicitly the ontology of networks, which is in line with complexity theory assumptions.
The proper methodology for this is the network analysis, where the latest advances offer a
better way to approach and understand those systems [70–72] compared to the traditional
methods. In addition, the network ontology explains the possibility of linear and nonlinear
changes, and thus catastrophe theory is on the scene.

Another interesting remark that is explicated by catastrophe theory is that in the
vicinity singularities, e.g., the bifurcations and discontinuities, the behavior could be
described merely by a small number of variables. In the present context, depression
is one of them. The levels of depression (GDS), even though might be affected by the
dynamic interplay of other factors (biological, medical, and/or psychological), contribute to
operationalization of the ensuing bifurcation mechanism, in conjunction with the functional
symptoms of dementia (FRSSD).

The existing cusp structure in the data and the operating critical points beyond which
nonlinear effects occur, directly concern the measurement issues and the relevant theory.
The determination of such thresholds is an open issue and of paramount importance in
the actual utilization of the Legal Capacity for Property Law Transactions Assessment Scale
(LCPLTAS) and financial decision-making. In addition, given that the actual bifurcation
process is induced by a composite variable, the determination of the critical point is a
challenge. The issue is important because it concerns the measurement processes, diagnosis,
and further prevention and treatment.

There are of course limitations in this study, originating from its exploratory character,
and since it is the first report with neuropsychological data, the findings should be replicated
and extended with other data sets. Cusp analysis could also be tried in other neurocognitive
assessments, such as for Parkinson’s disease, and in other neurocognitive assessment tools,
such as the MMSE or HoNOS and GAF, to extend the model to different socio-medical
inquiries. The present report sets a framework for the application of catastrophe theory
with neurocognitive resources in AD research and opens new avenues for investigations.

Last, but not least, the message that the present findings convey is mainly epistemolog-
ical and concerns the adoption of the meta-theoretical framework of CASs, the paradigm
shift that is gaining ground in interdisciplinary research.
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Abstract: The present pandemic forced our daily interactions to move into the virtual world. People
had to adapt to new communication media that afford different ways of interaction. Remote commu-
nication decreases the availability and salience of some cues but also may enable and highlight others.
Importantly, basic movement dynamics, which are crucial for any interaction as they are responsible
for the informational and affective coupling, are affected. It is therefore essential to discover exactly
how these dynamics change. In this exploratory study of six interacting dyads we use traditional
variability measures and cross recurrence quantification analysis to compare the movement coordina-
tion dynamics in quasi-natural dialogues in four situations: (1) remote video-mediated conversations
with a self-view mirror image present, (2) remote video-mediated conversations without a self-view,
(3) face-to-face conversations with a self-view, and (4) face-to-face conversations without a self-view.
We discovered that in remote interactions movements pertaining to communicative gestures were
exaggerated, while the stability of interpersonal coordination was greatly decreased. The presence
of the self-view image made the gestures less exaggerated, but did not affect the coordination. The
dynamical analyses are helpful in understanding the interaction processes and may be useful in
explaining phenomena connected with video-mediated communication, such as “Zoom fatigue”.

Keywords: remote communication; movement coordination; recurrence quantification analysis

1. Introduction

When two people engage in a dialogue, they do much more than just exchanging
strings of words. According to Fusaroli et al. [1], dialogue participants coordinate on
multiple levels, establishing a functional organization fit to a particular situation. Essen-
tially, they form a coupled system within which meanings are co-created, and interaction
dynamics are essential to this process [2]. The ability to coordinate movements during
interaction is already present in infancy [3] and constitutes the most basic form of bonding
with others [4]. Movement coordination allows the establishment of informational and
affective coupling [5,6]. This has consequences for various processes of social cognition.
As demonstrated by numerous empirical studies, spontaneous movement coordination of
people engaged in natural conversations can predict rapport [7], affiliation [8], empathic
accuracy [9], joint-action task performance [10,11] or psychotherapy outcomes [12]. The
connections between movement coordination and social interaction may go in both direc-
tions: particular patterns of movement coordination may be constitutive factors for the
interaction or they can be merely indicators of a successful interaction taking place [13]. In
any case, by analyzing interpersonal movement coordination, we can infer much regarding
the quality of an interaction.
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In the present pandemic, many social interactions have moved online. Remote video
calls are used as an alternative to face-to-face conversations, both in professional and casual
contexts. Video-mediated interactions indeed allow the use of visual cues (gestures, face
expressions, body posture) and the establishment of some form of functional movement
coordination between participants, which is not possible in audio-only interactions. Studies
comparing video-mediated communication to audio-only communication report benefits
such as increased effectiveness of group problem-solving, shorter discussion time, and
increased emotional bonding [14,15]. However, the experience with video-mediated inter-
actions is not always smooth. In some cases, people were more satisfied with audio-only
interactions than with video-mediated interactions, and audio-only interactions seemed
more efficient [16–18]. Recently, there have been discussions regarding “Zoom fatigue”,
a form of exhaustion experienced by participants of video conference meetings [19–22].
The possible causes of this phenomenon include both a lack of proper social cues (i.e., eye
contact, body language), leading to increased cognitive effort, and information overload
(i.e., self-image visible, multiple faces visible on the screen), leading to additional stress [23].

A deeper understanding of video-mediated communication can be gained by studying
the process of interaction itself [16,24]. Different media provide characteristic constraints
and afford specific communicative actions with different degrees of synchronicity. This
shapes the ongoing interaction process and, consequently, interaction outcomes. In the
case of video-mediated interactions, disrupted social cues and visual information overload
may affect the capabilities of nonverbal communication, leading to different coordination
dynamics than in face-to-face interactions. We suspect that altered coordination capabilities
in online communication may influence informational and affective couplings between
participants, may be a possible cause of decreased satisfaction with an interaction, as stated
in the recent literature, and may also cause decreased effectiveness of communication as
compared to face-to-face interactions.

1.1. Dynamics of Video-Mediated Interactions

Patterns of social interaction dynamics are emergent properties shaped by multiple
interrelated factors [13,25]. In the case of natural conversation, any change in a participant’s
impression of their interlocutor influences the way the participant responds, which in
turn influences the interlocutor. This ongoing feedback loop, constituting patterns of
interaction dynamics, may work differently in mediated interactions. A communication
medium—such as a video-conferencing setup—is one of the factors that may significantly
constrain interaction dynamics. In the language of dynamical systems, if a medium offers
fewer possibilities for interaction than the number of available options in unmediated
communication, the number of degrees of freedom of the system is reduced. On the one
hand, when the preferred interaction means are taken away, it may disrupt the interaction.
On the other hand, when the redundant modes of communication are reduced, it may
present a case of functional reduction in degrees of freedom facilitating the interaction.
Either way, the patterns of interaction dynamics are changed.

Constraints imposed by the communication medium can be traced through the analy-
sis of interactions between a person and the medium. In this case, the ecological psychology
notion of affordance is helpful [26]. Affordances are opportunities for action and perception
offered by the environment to an active subject. They are not simply objective properties
of the external objects (shape, size), but meaningful relations in which complementarity
between the subject and its environment manifests (graspability, possibility to sit upon). In
the social realm, affordances are created and used dynamically by each interactant “on the
fly” [27]. Introducing a video-based communication medium creates new possibilities for
actions and forms of interaction, while precluding others. The landscape of affordances
available for the individuals and the dyad changes, which changes their behavior and
cocreated meanings [28].

Affordances of video-mediated interaction are significantly changed by the presence
of video latency—a mean delay between the moment the movement is made, and the
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moment it is visible on another user’s screen. Another aspect is jitter—variability of the
delay, caused by the different length of time each data packet takes to arrive. If the jitter is
large, movement in the video is not smooth. Video latency during a high quality video call
may be 150 ms with 40 ms jitter [29], but these values may vary depending on the network
traffic, connection bandwidth and hardware configuration/quality. Since latency works
in both directions, the effective time between a communicative action and the perceived
response may double. Additionally, glitches in the form of video freezing or distorted
images are common during video calls. These factors modify the affordances of interaction
participants, for instance, by limiting the possibility of reacting quickly to each other thus
constraining their patterns of coordination. It is known that people are able to perceive
delays of 200 ms [30,31], which suggests that even relatively small video latency may
affect coordination in a video-mediated interaction. Boland et al. [32] studied turn-taking
during face-to-face and Zoom conversations and discovered that delays introduced by
the latter significantly disrupted the rhythm of conversation, increasing the average turn
transition time from 135 ms to 487 ms. Such altered coordination patterns may have further
consequences for communication. The length of the gap between turns may provide
information on the valence of the upcoming response, with preferred responses coming
quicker and taking simpler forms [33]. A gap as short as 300 ms may be sufficient to project
that a straightforward acceptance is less probable [34]. Because of the prolonged gaps
due to the video latency, speakers may erroneously expect more dispreferred reactions
than in face to face communication. Additionally, according to the studies on telephone
communication, the longer the delays are, the more interlocutors are perceived as less
attentive, less friendly, less extraverted and less conscientious [35].

Another aspect that differentiates video-mediated and face-to-face interactions is the
way the image of the conversation partner is presented to the interaction participant. In
natural face-to-face conversations, people typically face each other, moving their glances
between the face, body and hands of the interaction partner [36], which provides them
with specific means to fluently structure the interaction (see, e.g., Rączaszek-Leonardi
and Nomikou [37]). In contrast, in a typical video-mediated interaction (for instance,
using a laptop computer with a built-in camera), the captured field of vision is much
narrower, limiting visual cues concerning whole body movement and hand gestures.
This may severely limit nonverbal communication, as hand gestures play an important
role in supplementing speech with additional content, disambiguating expressions or
organizing turn-taking [38–40]. It is possible to compensate for this through the use of other
modalities such as head gestures, which are captured well in video-conferencing settings.
Head gestures are considered to be important for coordinating interaction, providing
confirmatory feedback for the speaker [41] and signaling turn claims [42]. In many cultures
head nodding and head shaking are associated with affirmative and negative responses,
respectively (Refs. [43–45], but with exceptions [46]). Being able to convey approval
through head gestures during conversation would be an important factor contributing to
the perceived naturalness of an interaction. Additionally, the need to fit within the field of
view of the camera may limit the overall movement and induce a feeling of being physically
trapped [21]. In face-to-face meetings, people can shift their position and stretch, but during
video communication their mobility is limited to a narrow space. This reduced mobility
may undermine cognitive performance [47], further disrupting communicative abilities.

Moreover, in many video conferencing programs, there is a setting in which a self-
image of the participant is displayed along with the image of their interaction partner.
This may be potentially disturbing in several ways. It may change the basic gaze dynam-
ics, which was claimed to serve as a “glue” for interaction [48], and introduce effects on
individuals’ behavior similar to the presence of a mirror. Research in social psychology
shows that seeing the self-image in a mirror can heighten self-focused attention, which
in the case of longer exposition can have negative psychological consequences, including
decreased mood or even depression ([19,49–51], but see [52,53]). In the interactive context,
self-focused attention was reported to decrease prosocial behavior in some contexts [54], al-
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though it is possible to find conditions in which it enhances prosocial behavior [55]. Finally,
seeing oneself in a mirror provides visual feedback—an additional affordance that might
be used for more precise control of one’s appearance and expression. Little is known about
the consequences of the visible self-image for coordination with a conversation partner.

Our investigation complements existing studies on the naturalness of online interac-
tions through the introduction of the movement coordination perspective and the dynami-
cal systems methodology, which goes beyond individual cognitive processes by focusing on
coupling. We show how the movements of individuals are constrained in video-mediated
interactions, and what patterns of interpersonal coordination emerge.

1.2. Current Study and Hypotheses

The goal of our study was to explore movement coordination dynamics shaped by
the affordances altered by video-mediated means of communication. We identified factors
such as: restricted mobility in front of the camera, video latency and jitter, and the optional
presence of one’s own mirror image. All these components potentially constrain move-
ment of the individual, modify adopted nonverbal communication strategies, and, finally,
reshape interactive patterns of interpersonal coordination. To disentangle the influences
of the video medium and the mirror image, we adopted an experimental design in which
casual, friendly conversations of the same dyads were recorded in four conditions: (I) video-
mediated remote conversation with the mirror image displayed, (II) video-mediated remote
conversation without the mirror image, (III) face-to-face conversation with the mirror image,
and (IV) face-to-face conversation without the mirror image. We expected the differences
to be manifested at the individual level and at the dyadic coordination level. At the
individual level:

Hypothesis 1. Overall movement will be more restricted in remote interactions, because of the
need to stay visible (in the field of view of the camera) and to see the interlocutor.

Hypothesis 2. Intentional communicative gestures will be exaggerated (in comparison to the
overall movement) in remote interactions to compensate for potential disruptions.

Hypothesis 3. The availability of the self mirror image in remote interactions will allow partici-
pants to calibrate their expressions, making the movement more natural and less exaggerated. No
such effect is expected for face-to-face interactions, where natural instantaneous feedback is available
through the partner’s reactions.

Regarding interpersonal movement coordination, we expected that:

Hypothesis 4. Coordination will be more stable in face-to-face interactions, and episodes of coordi-
nation will be longer.

Hypothesis 5. Coordination will be less stable with the mirror image present, as it presents an
additional distraction (participants captivated by their own movement may be less attentive to
their partners).

To operationalize our hypotheses, we tracked participants’ head movement during
conversations using OpenPose software [56]. We focused on head movements, as they
were important and visible both in face-to-face and remote conversations. According
to the existing literature, the dominant head gesture during conversations is nodding,
which is associated with vertical motion [40,41]. Head nodding (vertical motion) and head
shaking (horizontal motion) are typically distinguished as they are associated with positive
and negative responses, respectively [44]. Head nodding was reported to increase the
perceived likability and approachability of a person [43]. Following this logic, we decided
to differentiate between vertical and horizontal motion in our analyses. After watching the
collected video material, we discovered that there were multiple episodes of head nodding
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in response to the partner, but hardly any head shaking. This was consistent with the
friendly character of the conversations, where head nodding is expected to be much more
prominent than head shaking [57]. Horizontal head movements in our recordings seemed
to result not from head shaking, but mostly from body sways and position adjustments less
connected with the conversation dynamics. Thus, at the risk of oversimplification and with
the limits of cross-cultural generalization in mind, we interpreted vertical head movement
as an indicator of intentional communicative gestures expressing positive reaction to the
interlocutor, and horizontal head movement was treated as a control—an indicator of
general body movement.

When operationalizing interpersonal coordination, we decided to focus on the con-
gruence of head movement direction within the dyad. Two people moving their heads in
the same direction (nodding, tilting, turning, etc.) simultaneously or with a constant delay
examplify coordinated behavior. We quantified the coordination using cross-recurrence
quantification analysis (cRQA) [58], a nonlinear technique providing measures of coordina-
tion stability.

2. Materials and Methods
2.1. Participants and Setup

The examined material consisted of 24 recordings (137 min in total), collected from
interactions of two groups of three people: Group A consisted of three men, and Group
B consisted of three women (age 22–35). All participants were university students. The
study was approved by the ethics committee of the Faculty of Psychology, University of
Warsaw. Participants gave their consent to record their conversations and use them for
research purposes.

Participants were students in the same program. Their level of acquaintance was
assessed through a short interview. Participants from Group A were attending online
courses together and had a chance to get to know each other while doing a group project
together. Participants from Group B were engaged in research within the same research
group and spent some time socializing before participating in the study. They can be de-
scribed as colleagues, but there were no close friends within either group. All conversations
were held in English, which was the second language for all participants. All participants
had previous experience using videoconferencing software and were used to this form
of communication.

Within each group, everyone was paired up, therefore creating six dyads (three per
group) in total. Each dyad engaged in two conversations: one conducted remotely and
one face-to-face, and each of these conversations was divided into two parts: with the
mirror image and without. Each part lasted approximately five minutes. We briefed
the participants regarding the purpose of the study, length of the conversations and the
differences between experimental conditions. Participants knew that their movement
will be tracked and their coordination will be analyzed. They were not informed on the
detailed study hypotheses. Participants were instructed to keep the conversations casual
and choose the topic freely. Most of the conversations started with a general opening
question (“What’s up?”) and then developed spontaneously. Topics such as university
studies, work, vacations, hobbies, etc., emerged. All conversations were friendly in tone,
and no controversial topics or heated debates occurred.

Figure 1 presents the general schema of the four experimental conditions.
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Figure 1. General schema of experimental conditions. In Condition (1), “remote no-mirror”, the
participant sees their partner on the screen; in Condition (2), “remote mirror”, the participant sees their
partner and their own mirror image side by side. In Condition (3), the “live no-mirror” participant sits
in front of their partner with a dimmed smartphone screen placed in between, and in Condition (4),
the “live mirror” participant sits in front of their partner with a smartphone displaying mirror image
placed in between.

The remote conversations took place on the Google Meet platform. Two participants
engaged in the conversation, and the researcher joined the meeting and recorded the
interaction using OBS Studio software for screen recording. The researcher recorded the
meeting in a “gallery view” mode, where images of the two interlocutors were placed side
by side. Both participants were recorded with lag characteristic for the videoconferencing
platform. In the mirror condition (with self-view), the participants saw both the other
person and their own face, while in the no-mirror condition (without self-view) they could
only see their interlocutor. They conducted a single 10-min conversation starting without
self-view and switching self-view after 5 min. Participants used their own laptops with
built-in video cameras.

Before the actual recordings of remote conversations, trial recording sessions took
place during which participants were able to familiarize themselves with the setup. After
the trial sessions, participants were instructed to adjust their setup (position of the camera,
lighting) to improve the quality of the recordings.

Face-to-face conversations were recorded via a smartphone camera connected to a
laptop (using Droidcam OBS and OBS studio software). We connected two smartphones
to the same laptop via a local WiFi network and used OBS studio to combine the two
image streams into a single output video file in which images of two interlocutors were
placed side-by-side (as in the typical videoconference setup). We placed each smartphone
in front of one of the interlocutors, with the front camera filming one’s face and upper
body. The participants were given a few minutes to sit down and adjust their positions to
make them feel comfortable and ensure they fit into the video frame. The mirror condition
was reproduced by showing the person’s face and upper body position and movements in
real time on the smartphone screen. The participants had a single 10-min conversation, in
which smartphone screens were dimmed for the first half and were switched on for the
second half.

2.2. Movement Tracking

We converted the video recordings to a common video format with 20 FPS. Each video
frame contained the images of two participants side by side. We cropped the videos to
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obtain a separate video file for each participant during each conversation. The minimal
resolution of the cropped video was 530 × 304 pixels. All videos were downscaled to
this resolution. We processed the videos with OpenPose software [56] to obtain the x-y
coordinates of key body parts (see Figure 2). For our analyses we extracted coordinates
of points P0 (tip of the nose) and P1 (point in the middle of the torso on the shoulder
level). There were missing values due to the algorithm not identifying a keypoint on a
particular frame. In the recordings of one male dyad in the remote condition, the numbers
of missing values were particularly large (16–55%). We removed these two recordings from
the analysis. A small number (<5%) of missing values in other recordings were imputed
using linear interpolation. Afterward, we applied a running median filter with a window
size of five for each coordinate separately to remove possible outliers.

Figure 2. Output from OpenPose program: a video frame with detected key points marked. The two
key points used in our analysis are P0 (tip of the nose) and P1 (point in the middle of the torso on the
shoulder level).

2.3. Measures and Data Analysis Techniques

In our analyses, we focused on the movement of two points: the tip of the nose (point
P0), as an indicator of head movement, and the middle of the torso (point P1), as the
reference (see Figure 2). To normalize the data, we used the average P0-P1 distance for
each person as a natural scale of movement. To operationalize our hypotheses regarding
individual movement, we introduced the following measures:

• Horizontal mobility—standard deviation of the horizontal P0 coordinate divided by the
average P0-P1 distance. It is interpreted as a general indicator of participant mobility.

• Vertical mobility—standard deviation of the vertical P0 coordinate divided by the average
P0-P1 distance. It is interpreted as an indicator of communicative nodding gestures.

• Horizontal-vertical mobility ratio—ratio between horizontal and vertical mobility. It is
interpreted as a ratio between overall movement and communicative nodding gestures.

The described measures were calculated separately for each of the two members of
the six dyads in each of the four conditions, which should result in 48 data points. Since we
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excluded two recordings of the particular dyad in the remote condition (see Section 2.2),
the final number of analyzed data points was 44.

To analyze the properties of interpersonal coordination, we focused on the direction
of frame-to-frame movement of P0 point. For each frame we calculated a 2D vector,
representing the shift in position from the previous frame. All vectors were normalized
to have unit length. A low-pass Butterworth filter was used to smoothen the data. Then
we calculated the interpersonal coordination statistics using the methodology inspired by
multidimensional cross-recurrence quantification analysis [59]. We constructed separately
for x and y coordinates time-delayed embeddings using a delay of 7 frames and embedding
dimension 4 (values chosen using minimal mutual information heuristic for delay and
false nearest neighbors for dimension [60]). Embeddings for the two coordinates were
concatenated, resulting in a final dataset with eight columns. We constructed a recurrence
matrix by calculating distances between all pairs of 8-dimensional vectors and thresholding
them using a fixed value. All distances below the threshold formed recurrent points. We
chose the threshold value for each matrix separately to ensure that the fraction of recurrence
points was always 10%. In this way, RQA statistics were normalized across dyads and
experimental conditions (This methodology is different from some other studies using RQA
(e.g., Rączaszek-Leonardi et al. [11]), where threshold value is fixed across all samples and
the fraction of recurrent points (RR) was compared across conditions. In the case of our
data, differences in optimal threshold level were too large for this kind of comparison.).

In layman’s terms, a cross-recurrence matrix represents the temporal structure of
“meetings” of two evolving systems. A recurrent point with coordinates (i, j) means
that system A at time point i was in the same state as system B at time point j. In the
context of participants of our study, recurrence means that two participants moved in the
same direction relative to their cameras. Recurrent points on the main matrix diagonal
indicate that participants’ movements were synchronized, while recurrent points outside
the main diagonal indicate more complex kinds of coordination. We controlled for the
fraction of recurrent points—denoting the overall strength of coordination— and quantified
characteristic patterns of coordination through the analysis of diagonal and vertical lines
formed by recurrent points. We will use the following notation: l—length of diagonal line,
P(l)—probability of a diagonal line of length l occurring, v—length of vertical line, P(v)—
probability of a vertical line of length v occurring. Then, popular recurrence quantification
measures can be defined as follows:

• Determinism, fraction of recurrent points forming diagonal lines.

DET =
∑N

l=lmin
lP(l)

∑N
l=1 lP(l)

A large DET means that there are stable episodes of coordination and that coordination
is more predictable. In interaction it suggests that partners may anticipate each other’s
actions and successfully maintain coordination.

• Entropy of the distribution of diagonal line lengths.

ENTR = −
N

∑
l=lmin

P(l) ln P(l)

A large ENTR means that the coordination is more complex with more characteristic
patterns of coordination. This suggests that the interaction process is more varied.

• Average length of a diagonal line.

L =
∑N

l=lmin
lP(l)

∑N
l=lmin

P(l)

A large L means that the episodes of coordination are longer on average.
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• Lmax – maximum length of a diagonal line. A large Lmax means that it is possible to
maintain coordination for a longer time.

• Laminarity, fraction of recurrent points forming vertical lines.

LAM =
∑N

v=vmin
vP(v)

∑N
v=1 vP(v)

Vertical lines form when one participant remains in the same state (moving uniformly
or being still) for some time. A large LAM indicates that participants’ movement
is steadier.

• Trapping time, average length of a vertical line.

TT =
∑N

v=vmin
vP(v)

∑N
v=vmin

P(v)

A large TT means that the episodes of steady movement are longer on average.

We counted only diagonal and vertical lines of length 10 or more (lmin = vmin = 10
corresponds to episodes of coordination or steady movement lasting 0.5 s or more; this
value was chosen empirically to ensure sufficient variability of DET and LAM statistics).
RQA measures were calculated for each of the 6 dyads across 4 conditions, except for the
one dyad for which recordings of remote interactions were excluded from the analysis (see
Section 2.2). The final sample consisted of 22 observations.

We performed statistical analysis using mixed-effects linear models adequate for the
repeated measures experimental design. All analyses were performed in Julia programming
language using the packages DynamicalSystems.jl [61] and MixedModels.jl [62].

3. Results
3.1. Horizontal and Vertical Mobility

We started by comparing participants’ mobility along horizontal and vertical dimen-
sions across the experimental conditions (see Figure 3). The differences were quantified
using mixed-effects linear models, with model coefficients presented in Table 1.
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Figure 3. Average participants’ mobility in horizontal (a) and vertical (b) dimensions, and their ratio
(c) across experimental conditions. Mobility is defined as the standard deviation of the participant
position on the video frame. For each dyad, two lines are drawn: one for Participant A, and one for
Participant B (same color lines for participants in each dyad).
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Horizontal mobility was similar in all conditions, vertical mobility was larger in remote
conditions (p = 0.001), and the ratio was significantly larger in face-to-face conditions
(p < 0.001). Additionally, studying the plot (Figure 3b) suggested that vertical mobility
might be slightly larger in the “remote no-mirror” condition in comparison to the “remote
mirror” condition. To verify this, we applied an additional paired samples Student’s t-test
which compared the two conditions. We obtained t = −4.8922 (DF = 10) and p < 0.001,
which gives support to the hypothesis that the conditions differ.

Interpreting the results in the light of research hypotheses, we had to reject Hypothe-
sis 1, as neither horizontal nor vertical mobility was visibly restricted in remote interactions.
Hypothesis 2—stating that in remote interaction, participants exaggerate communicative
gestures—was confirmed by the differences in vertical mobility and horizontal-vertical
mobility ratio. Larger vertical mobility and a smaller ratio in remote conditions suggest
that participants increased their range of nodding movements while restricting other move-
ments. Finally, comparison of vertical mobility between the “remote mirror” and “remote
no-mirror” conditions supports Hypothesis 3: the presence of self-image in the mirror
condition reduced exaggerated nodding gestures.

Table 1. Coefficients of mixed-effects linear models comparing horizontal and vertical mobility across
experimental conditions.

Est. SE z p σ

Horizontal mobility

(Intercept) 0.1046 0.0126 8.27 <10−15 0.0398
remote 0.0088 0.0066 1.33 0.1825
no mirror 0.0015 0.0063 0.24 0.8104
Residual 0.0210

Vertical mobility

(Intercept) 0.0724 0.0123 5.87 <10−8 0.0374
remote 0.0235 0.0074 3.19 0.0014
no mirror 0.0024 0.0071 0.35 0.7295
Residual 0.0235

Horizontal-vertical mobility ratio

(Intercept) 1.6989 0.1281 13.27 <10−39 0.3627
remote −0.4709 0.0910 −5.18 <10−6

no mirror −0.0827 0.0876 −0.94 0.3450
Residual 0.2906

3.2. Interpersonal Movement Coordination

Figure 4 presents cRQA statistics for interactions in all four conditions, while Table 2
contains coefficients of mixed-effects linear regression models verifying the strengths of
effects for each statistic. As we can see, differences between remote and face-to-face
interactions are evident on all measures except TT, which is congruent with Hypothesis 4.
We found no visible effect of mirror image presence on movement coordination; there is no
support for Hypothesis 5.
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Figure 4. cRQA statistics describing properties of participants’ movement coordination across
experimental conditions. For each dyad a single line is drawn.

Table 2. Coefficients of mixed-effects linear models comparing various RQA measures across experi-
mental conditions.

Est. SE z p σ

ENTR

(Intercept) 2.5486 0.0362 70.41 <10−99 0.0000
remote −0.2672 0.0418 −6.39 <10−9

no mirror −0.0138 0.0418 −0.33 0.7408
Residual 0.1024

DET

(Intercept) 0.0429 0.0042 10.23 <10−23 0.0043
remote −0.0323 0.0044 −7.33 <10−12

no mirror −0.0001 0.0044 −0.03 0.9776
Residual 0.0108

L

(Intercept) 14.3208 0.1730 82.78 <10−99 0.1239
remote −1.1179 0.1910 −5.85 <10−8

no mirror −0.0553 0.1910 −0.29 0.7720
Residual 0.4679

Lmax

(Intercept) 59.5000 2.9122 20.43 <10−92 1.5260
remote −21.5000 3.2848 −6.55 <10−10

no mirror 2.8333 3.2848 0.86 0.3884
Residual 8.0462

LAM

(Intercept) 0.0593 0.0088 6.71 <10−10 0.0120
remote −0.0315 0.0085 −3.71 0.0002
no mirror 0.0024 0.0085 0.28 0.7764
Residual 0.0208
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Table 2. Cont.

Est. SE z p σ

TT

(Intercept) 13.0525 1.5470 8.44 <10−16 0.0000
remote 2.1017 1.7863 1.18 0.2394
no mirror −0.9629 1.7863 −0.54 0.5899
Residual 4.3755

4. Discussion

Our results show that shifting to remote communication changes the dynamics of
movement manifested by individuals and on the dyadic level. Our intuitions that partici-
pants move differently during remote and live interactions were confirmed by quantitative
analyses. During remote interactions, they exaggerated their nodding gestures, which may
stem both from the awareness of their lesser visibility by the partner and compensation for
the unnaturalness of the situation. This effect was reduced when the self-image was present.
One of the possible explanations is that in remote conversations participants lacked some
immediate feedback from their interlocutors and were unsure whether their gestures were
visible. The self-image might have provided compensatory feedback allowing them to
calibrate their expression.

On the dyadic level, we demonstrated that in video-mediated remote conversations
interpersonal coordination was less stable (smaller DET), less complex (smaller ENTR)
and occurred in shorter episodes (smaller L and Lmax). Our findings suggest that part-
ners interacting remotely do not form a coupled system with the same properties as in
natural face-to-face interactions. According to De Jaegher et al. [13], particular dynamics
of social interaction enable processes of social cognition. With the altered interaction dy-
namics, these processes might be disrupted, diminishing mutual understanding between
interaction partners.

Contrary to our expectations, the presence of the self-image in the mirror condition had
no visible effect on movement coordination. It is possible that the movements we captured
do not reflect the changes that might be induced by this presence—such as changes in gaze
behavior. In any case, these changes did not result in altered coordination. It is also possible
that the effects were too subtle to be detected in the current experimental design, e.g., due
to the brevity of five-minute conversations.

The study of movement coordination not only provided objectively measurable deter-
minants of the quality of communication but also allowed us to transfer the analysis from
the level of the individual to the level of dyad dynamics. This is in line with the embod-
ied and enacted perspectives on social interactions [2,13] and compatible with Burgoon’s
“principle of interactivity” [16], suggesting that the process of interaction afforded by a
communication medium should be characterized first before investigating interaction out-
comes. Our investigation of movement coordination complements individualistic studies
pertaining to individual satisfaction and cognitive load during online conversations [19,20].

The interactive perspective might potentially provide an alternative explanation of
the “Zoom fatigue” phenomenon. Our results demonstrate that interaction properties
deemed to enable social cognition [13] are altered, and the coordination is overall less
complex (smaller DET and ENTR) in remote interactions. In that case, what is missing
are not so much individual social cues (such as gestures or facial expressions) but rather
“interactive cues”—specific properties of the interaction dynamics that allow us to tell an
affiliative conversation from a quarrel, the continuation of an ongoing conversation topic
from the beginning of a new topic, etc. Lack of this interactional scaffolding might lead to
confusion and frustration. Further research could test this hypothesis by combining the two
perspectives and checking how the satisfaction reported by the respondents participating in
video-mediated interactions is reflected in their coordination. This would confirm whether
coordination properties are actually connected with the experienced fatigue. The results
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could also be compared with previous studies associating movement synchrony with
positive outcomes in face-to-face interactions [7,8,63].

Another intriguing perspective that may provide a framework for reflection on the
sources of perturbations in video communication is the comparison with audio-only com-
munication. From an information theory perspective, a video call offers a channel of greater
capacity—it allows transmitting more information than a phone call. However, despite
audio communication being more limited, we observe no “phone fatigue” phenomenon.
This may suggest that perhaps extra information provided by video communication is actu-
ally more cognitively demanding than helpful. For the “receiver”, the nonverbal message
might be more difficult to interpret because some contextual social cues facilitating the
interpretation are altered in remote interactions (for instance, response times allowing the
prediction of positive or negative reactions [34]). Increased channel capacity in the case of
video-mediated interactions may also be more demanding from the sender’s perspective.
For example, being aware that at least some parts of their body are visible to the partners
and therefore gestures are an important source of information on interaction, senders feel
obliged to use their body language in the same manner as in a normal face-to-face conver-
sation. This makes a difference with audio-only interactions, since the same body language
that is appropriate during a phone call is no longer appropriate within video conversation.
At the same time, remote communication limits the possibility of the natural use of body
language, as demonstrated by our result of more exaggerated nodding gestures, which
may lead to an experience of frustration or fatigue. Examination of the impact of these
factors in comparison between video and audio-only conversations is another interesting
line of further research, especially with an attempt to untangle the experience related to
sender and receiver perspectives.

Continuing the information-theoretic considerations, we should also discuss the role
of noise in the communication channel or the reliability of a medium. From the user point
of view, a tool that offers less functionality but is more predictable is still more effective
than a more powerful but unreliable tool [64]. A video call is a channel of greater capacity
than an audio-only call, but at the same time, it is more affected by noise due to latency
and jitter. Video calls are prone to image and audio lags and disturbances, which even if
they are minor and seemingly insignificant, may keep both sender and receiver in a state of
constant uncertainty about how much information is lost during the transmission. Shorter
episodes of stable coordination in video-mediated interaction discovered in the study may
be a sign of low reliability of this medium: whenever participants began to coordinate on a
nonverbal level, an unpredictable signal distortion might have destroyed the coordination.

Our small exploratory study does not allow us to formulate any strong recommenda-
tions concerning preferred forms of remote communication. Nevertheless, some cautious
observations can be formulated. Despite worries that the presence of the self-image makes
the conversation less natural, it may have its use as a source of compensatory feedback
during interaction. Using this option can thus be recommended. As coordination in remote
interaction is overall less stable, some conscious effort could be made to stabilize it. The
simplest idea would be to deliberately slow down and avoid fast gestures, which could be
misinterpreted due to video lag. Assessing such a strategy would require additional studies.

Limitations

Although our results confirmed that movement coordination is impaired in remote
communication, they do not allow us to draw conclusions as to the main factors that
contribute to this result. We note that our data are not conclusive on the effect of the
presence of the self-image in the mirror condition, which might be one possible source of
distraction. We observed no significant differences in movement coordination comparing
these two conditions of both live and remote conversations; the ineffectiveness of the
variable manipulation may be the underlying reason. The participants, being aware that
they were being recorded, might have a lower tendency to focus attention on their image
than in a natural environment. Additionally, looking in a mirror while talking to someone
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across the table is much less natural than seeing one’s own image during a video call, which
could have had an impact on our results in face-to-face conversations. Furthermore, as our
sample was very small, it did not allow us to study interindividual differences in responses
to online interactions.

The study can be extended through tracking whole body position during conversations
and including hand gestures, body positions, etc., in the analysis. It would be possible to
supplement coordination measures with the measure of behavior matching, that is body
position mirroring [9]. Specific gestures or expressions could be identified automatically
using machine learning techniques [65]. To better render the differences in coordination
in remote and live interactions it would be crucial to obtain measures on other “coupling
means” in dyadic conversations than the movement itself, such as gaze coordination and
vocal dynamics. Related to body movement coordination they would inform about the use
of the relevant cues as affordances for interaction and allow for forming a fuller picture of
the relevant differences.

5. Conclusions

The differences between video-mediated and face-to-face interactions cannot be ex-
plained by either the technical properties of the medium or individual cognitive processes
alone. In this study, we tried to apply an interactive perspective to identify key factors shap-
ing our experience of online interactions. In line with this perspective, our study revealed
significant differences in patterns of interlocutors’ coordination between video-mediated
remote and live interactions. We demonstrated that in video communication, the stability of
movement coordination is lower, which may have a negative impact on the overall quality
of interaction. The presence of the mirror image did not have a detectable effect on coordi-
nation; however, it seems that the mirror image helped to control one’s expression during
remote interactions, making the communicative gestures less exaggerated. Vast differences
in coordination patterns indicate that the remote medium radically alters the landscape of
affordances for communicative actions. It remains to be seen which affordances result in
those differences when they are altered.
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Abstract: Infants’ limb movements evolve from disorganized to more selectively coordinated during
the first year of life as they learn to navigate and interact with an ever-changing environment more
efficiently. However, how these coordination patterns change during the first year of life and across
different contexts is unknown. Here, we used wearable motion trackers to study the developmental
changes in the complexity of limb movements (arms and legs) at 4, 6, 9 and 12 months of age in
two different tasks: rhythmic rattle-shaking and free play. We applied Multidimensional Recurrence
Quantification Analysis (MdRQA) to capture the nonlinear changes in infants’ limb complexity. We
show that the MdRQA parameters (entropy, recurrence rate and mean line) are task-dependent only
at 9 and 12 months of age, with higher values in rattle-shaking than free play. Since rattle-shaking
elicits more stable and repetitive limb movements than the free exploration of multiple objects, we
interpret our data as reflecting an increase in infants’ motor control that allows for stable body
positioning and easier execution of limb movements. Infants’ motor system becomes more stable and
flexible with age, allowing for flexible adaptation of behaviors to task demands.

Keywords: complexity; motor development; multidimensional recurrence quantification analysis;
infants; limb movements

1. Introduction

One of the fascinating phenomena in human development is how quickly infants
learn new motor skills. Infants’ movements advance from being disorganized to having a
more recognizable adult-like pattern in the first years of life [1]. The development of motor
behavior involves learning through practice as infants improve their skills over time and
learn to optimize their actions to the demands of any specific task. However, how motor
coordination patterns emerge in development and across different actions is unknown.

Initially, reflexes and general movements are controlled at the spinal and brain stem
levels during the neonatal period. Later, motor control at the subcortical level of the central
nervous system emerges and matures mainly throughout the first year of life, followed
by the activation of the cortical level of motor control [2]. The increase in motor control
allows for body positioning and stability, which also facilitates the execution of limb
movements [3,4]. Initially, the pattern of spontaneous movements seems to involve all
the limbs simultaneously, and it refines to a more selective inter-limb coordination with
age [5,6]. The dissociation between arms and legs mainly emerges in the second half of the
first year [7], facilitating object manipulation and playing with toys [8]. Moreover, the leg
activity becomes more stable with age, while the inverse pattern is observed in the arms [9].
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Additionally, the increase in postural control allows for using upper limbs for purposes
other than the stabilization of body position. Infants aged 6 and 7 months present trunk
control mostly in the thoracic region [10], and the acquisition of trunk control in the lumbar
region between 4 and 6 months of age has a positive impact on the quality of reaching
behavior [11]. Full trunk control is presented by infants from 8 to 9 months of age [10].
The emerging postural control is also characterized by increasing complexity, where the
upper limbs become more involved in skilled manual reaching and less in stabilizing the
body posture [12]. During the first three or four months after birth, infants’ head and trunk
control are poor, and they mainly lie down if not supported. Around 6 months of age,
infants begin to gain sufficient stability to sit independently, allowing them to move their
arms more freely. Later, around 8–9 months of age, most infants learn the first ways of
locomotion, such as crawling. Finally, towards the end of their first year, infants stand
freely and walk around, opening new possibilities to explore the environment.

Motor control development always occurs in a rapidly changing environment consist-
ing of constant constraints (e.g., gravity) and variable and constantly changing elements,
such as objects or people. Thus, to understand the development of the complexity of limb
movements, we need to consider that they are embedded in a given context and constrained
by situational demands [13]. On the one hand, particular contexts may encourage highly
structured and repetitive patterns of limb movements—for example, rhythmic activities
such as drumming or rattle shaking. Infants’ movements during drumming become faster
and more regular with age [14], and the rhythmic synchronization is usually not limited to
arm movements but diffuses throughout the body [15]. This increase in the regularity of
movements may result in a developmental decrease in the complexity of limb movements.
On the other hand, the lack of structure in unconstrained free play may be related to a de-
velopmental increase in the complexity of limb movements as older infants can selectively
use hands in varied ways to manipulate objects while using legs to stabilize their position
or move around. Thus, the context and task demands are also important when evaluating
the complexity of limb movements.

The rapid evolution of wearable devices has opened new avenues for recording
and analyzing infant movement, which might help to understand the changes in the
complexity of infants’ spontaneous movements during different activities in greater detail.
Advanced wearable sensors—Inertial Motion Units (IMUs)—combine information from
accelerometers, gyroscopes and magnetometers, resulting in a more precise estimation
of the position and orientation of body parts. Given the portability, mobility, small size
and low weight of this wearable technology, it is becoming widely used in infant studies
(e.g., [16–21]). Although wearable sensors may cause some discomfort in clinical pediatric
populations (as suggested in [22]), studies in typically developing infants have reported that
wearables do not affect infant movement (e.g., [23]). An alternative method is using marker-
less algorithms to detect movements from videos (e.g., [24–28]). However, this approach
is challenging in multi-person set-ups with older infants that move around freely since
obtaining a clear view of them at all times remains difficult and the resulting occlusions
may significantly limit the accuracy of tracking ([26]). Therefore, the IMUs can currently
be considered a gold standard for quantifying infants’ 3D kinematics in multi-person and
unconstrained settings.

In this study, we use wearables to investigate the developmental changes in the
complexity of limb movements in two tasks that differ in the level of structuring—more
constrained rattle-shaking and free play with a larger set of toys. Parent–infant dyads
were invited to the lab four times: when infants were around 4, 6, 9 and 12 months age, as
these ages reflect significant changes in motor control and gross motor development. As
Abney et al. [9] demonstrated, infant development can be studied as a complex system with
the analytical tools derived from nonlinear dynamics. Studies on motor development have
traditionally focused on quantifying changes in individual limb movements (i.e., reaching
hand) or in pairs (either hands or legs). Since the pattern of spontaneous movements
initially involves all the limbs shifting simultaneously and it refines with age, in this paper,
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we focus on the changes in the movement complexity of all limbs together. To achieve this,
we use the Multidimensional Recurrence Quantification Analysis (MdRQA, [29]). Many
methods of inferring complexity measures from a time series allow for the inclusion of a
maximum one (e.g., fractals, recurrence quantification analysis, entropy measures) or two
(e.g., cross-recurrence quantification analysis) time series and cannot be used to determine
potential higher-level interactions in the movement of all limbs together. MdRQA, in
contrast to other methods, is a dynamical systems method that allows for quantifying the
dynamics of a multidimensional system at different levels of description by combining
information from multiple variables (n > 2) and can be used to infer the shared dynamics
of multiple time series [29]. Those shared dynamics are later summarized in a series of
parameters that provide information about the complexity of the time series (see description
in Section 2.5). Here, we combine wearable motion trackers and MdRQA to study the
developmental trajectories of the complexity of infants’ limb movements in two play
contexts: rattle-shaking and free play. To our knowledge, the coordination between all four
limbs has not been previously studied simultaneously in a longitudinal design and across
tasks that differ in their level of constraints. We hypothesize that the trajectories of the
complexity of limb movements will differ between the tasks, with the age-related decrease
in complexity in the rattles task and the increase in complexity in the free play task.

2. Materials and Methods
2.1. Participants

Participants were 26 mother–infant dyads from an ongoing longitudinal study. Par-
ticipants were invited to the lab when infants were around 4 (T1), 6 (T2), 9 (T3) and 12
(T4) months old. Four infants contributed data at all four time points, whereas nineteen
infants missed one visit (mostly due to COVID-19 related restrictions). Therefore, 12 infants
contributed data at T1, T2 and T3; 7 at T2, T3 and T4; and 3 at T1, T3 and T4 (see Table 1 for
an overview of sample characteristics). Participants were from predominantly middle-class
families living in a city with >1.5 million inhabitants. The majority of the mothers had
completed higher education: 22 held a master’s degree, 2 held a bachelor’s and 2 completed
high school. For their participation, infants received a diploma and a small gift (a baby
book). The study received clearance from the local institution’s ethics committee.

Table 1. Sample Characteristics.

Time Point N Mean Age in
Months (SD)

Min Age in
Months

Max Age in
Months

T1 19 4.41 (0.30) 4.00 5.20
T2 21 6.57 (0.36) 6.00 7.20
T3 26 9.14 (0.41) 8.60 10.20
T3 17 12.14 (0.46) 11.60 13.10

2.2. Equipment

Infants’ and caregivers’ movements were recorded at 60 Hz using wearable motion
trackers (MTw Awinda, Xsens Technologies B.V., Enschede, The Netherlands): an Awinda
station receiver (Xsens Technologies B.V.) and MT Manager Software (Xsens Technologies
B.V.). Overall, 12 sensors were used (on infant’s arms, legs, head and torso, see Figure 1,
and on caregiver’s arms, head and torso), but in this paper, we report data only from 4
sensors placed on infant’s arms and legs.
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Figure 1. Placement of infant’s motion trackers: legs, hands, torso, head. Signed permission of the
caregiver was acquired for the publication of the image.

2.3. Procedure

Interactions were recorded in a laboratory room on a carpeted play area. Upon the
family’s arrival, an experimenter explained the study protocol and obtained parental
consent. Once the infant was familiarized with the laboratory, the wearable motion trackers
attached to the elastic bands were put on the infant’s and caregiver’s bodies. Then, a set of
parent–child interaction tasks with different sets of age-appropriate toys took place. The
sets for infants aged 4 and 6 months were slightly different from those for infants aged 9 and
12 months to maintain their interest in a given task (see Figure 2). There were 6–7 different
tasks during each meeting, but here, we report data comparing two of them—free play and
rattle-shaking. In a rattle-shaking task, which lasted approx. 5 min, the dyads were given
two maracas rattles and two rattles of different types (the barbell rattles for younger infants
and teddybear rattles for older ones). In a free play task, which lasted approx. 10 min,
the younger infants were offered a large, standard set of toys that included baby books,
teethers, rattles, rubber blocks and plush toys. The set for older infants included block
sorter, cars, stackable cups, rubber blocks, puppets, rattles, plush toys and a wooden box
with a drawer and a ball. Caregivers were instructed to play with their infants using each
set of toys in their preferred way, as they usually do at home.

Figure 2. Photos of the toys used in the free play at T1 and T2 (a) and T3 and T4 (b) and the rattle-
shaking task at T1 and T2 (c) and T3 and T4 (d). Signed permission of the caregiver was acquired for
the publication of the images.
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2.4. Data Pre-Processing

IMU data from sensors placed on both wrists and ankles of an infant were processed
in Matlab (Mathworks, Inc., Natick, MA, USA) using in-house scripts. First, missing values
were identified and interpolated using the interp1 function with a Spline interpolation that
applies a cubic interpolation of the values at neighboring grid points. Then, we collapsed
the three-dimensional acceleration data obtained from the IMUs to a one-dimensional
overall acceleration time series by calculating the magnitude of acceleration for each three-
dimensional data point. Next, data were smoothed using the medfilt1 function that applies
a third-order median filter to remove one-point outliers by replacing each value with the
median of three neighboring entries (see Figure 3a for an example of the sensor time series).
Finally, to avoid the possibility that data from any limb with higher variance may bias
the outcome of the complexity analysis and because we were interested in the sequential
properties of the data, each individual time series was z-scored before further analysis.

IMUs record gyroscopic and magnetometer data, providing more detailed orienta-
tion information. Combining this information with accelerometer data, one can create
quaternions [30], an alternate way to describe orientation or rotations on limb movements.
Supplementary data using quaternions are included to test the robustness of the IMUs data
(see Supplementary Information 1.1–1.3).

Figure 3. Cont.
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Figure 3. Examples of the sensor time series for all limbs during a play with rattles (a) and its
correspondent recurrence plot (b). Recurrences in the plot are marked by a white dot, while non-
recurrences are marked by a black dot.

2.5. Complexity Analysis

We used MdRQA [29] to quantify the simultaneous coupling of four limbs’ time
series. MdRQA is a multivariate extension of Recurrence Quantification Analysis that
captures recurring patterns within a multidimensional time series. This is achieved by
calculating the distances between all coordinate pairs of data points (e.g., using Euclidean
distance norm) in a multidimensional time series and by thresholding this distance matrix,
where distances below the threshold are treated as recurrent, and distances exceeding the
threshold are treated as nonrecurrent [31]. That thresholded matrix is called the recurrence
plot, where values are coded as 1 or 0 depending on whether the values are recurrent or
not for each of the values within the all time series (see Figure 3b for an example). From
the final recurrence plot, we extracted three main measures:

• Entropy (Ent): it is the Shannon entropy of the distribution of the diagonal lines on
the recurrence plot, capturing repeating movement patterns;

• Recurrence Rate (RR): it is the density of recurrence points in a recurrence plot, and it
corresponds to the probability that a specific state will recur;

• Mean Line (ML): it is the average length of repeating patterns in the system, which
can be understood as a measure of overall system’s stability.

These three measures allow for describing different yet supplementary aspects of
the system’s behavior, such as stability and adaptability. When infants acquire a new
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motor skill, their repertoire becomes more complex allowing for increased adaptability
to situational demands (e.g., [32]). Furthermore, when infants master these new skills,
their motor coordination patterns become more stable over time. In this context, entropy
acts as a measure of the complexity or flexibility of limb movements. An unconstrained
movement signal will carry low entropy since the probability of finding recurrent patterns
would be lower than in a constrained situation with interaction-dominant dynamics, which
postulates that the system’s structure is emergent and context-dependent. In contrast,
component-dominant dynamics proposes that all components (in this case, infants’ limbs)
contribute to the system dynamics in a stable and independent way [33–35]. When infants
are playing in an unconstrained situation (free play task in our study), they adjust their
movements to the needs of the task at hand, i.e., perform various types of movement
(e.g., reaching, banging, touching) with different types of objects. Consequently, their
movements are less regular and form more random patterns. In this case, there will be low
variability in the length of the recurrent states, leading to lower entropy. In the constrained
situation (rattle-shaking task), infants move their arms in a rhythmic way to produce
the sound, and the rattles placed in their hands may reduce the number of degrees of
freedom of movement. Therefore, the rattle-shaking task decreases in complexity as infants
attempt to perform periodic/semi-periodic movements, introducing higher variability in
the patterns of recurrences and increasing the overall entropy. On the other hand, the
recurrence rate and mean line are measures of the stability of the limb movements. In
a constrained situation, such as rattle-shaking, the more the infants’ movements would
follow interaction-dominant dynamics (i.e., the infants learn with age how to move the
rattles synchronously), the more recurrence rate and mean line would increase.

Three critical parameters need to be set to calculate the recurrence plots (see [36]).
First, we estimated the delay of embedding using the mdDelay function, which estimates
the delay in a multidimensional time series using the average mutual information method.
Second, we estimated the embedding dimension using the mdFnn function, which applies
a false nearest neighbor estimation. We obtained an average value of 1 for the delay and 14
for the embedding dimension, which is consistent with the typical values recommended
for biological signals [37]. Finally, we adapted the radius for each infant individually. To
this end, we fixed the recurrence rate sufficiently low (i.e., RR = 5% [38] and used the
embedding dimension and delay previously computed. We carried this out for the first
visit data of each infant and fixed these parameters for the consequent visits to estimate the
changes in complexity over time.

Control analyses were performed using the same approach but with shuffling the
movement data in a random order within each time series. This allows us to compare the
results from the entropy and mean line and prove that temporal dynamics did not arise
randomly (e.g., [39]).

2.6. Statistical Analysis

To assess the repeated-measures effects of age (4) and task (2), we ran the General Esti-
mating Equations (GEEs) with a Bonferroni correction for pairwise comparisons. GEEs are
particularly adequate for longitudinal data because they take into account the dependency
and ordering of the data within subjects in repeated-measures designs. Furthermore, in
the GEE analysis, even if a subject is missing one or more of the repeated measurements,
the remaining data of that subject are used in the analysis (e.g., [40,41]). Data analysis was
conducted in IBM SPSS Statistics 26. Figure 4 was created using R [42] and RStudio [43]
and ggplot2 package [44].
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Figure 4. Boxplots showing entropy in each time point in rattle-shaking (red) and free play (blue).
Horizontal lines represent median value, boxes are drawn from the first quartile to the third quartile,
whiskers indicate min and max value and the dot indicates an outlier.

3. Results
3.1. Complexity Measures
3.1.1. Entropy

The GEE with age (4) and task (2) as within-subjects factors showed a significant
difference in entropy level between rattle-shaking and free play (Wald χ2(1) = 36.888,
p < 0.001; see Figure 4). There was no effect of time point (Wald χ2 (3) = 3.365, p = 0.339), but
the interaction between task and time point was significant (Wald χ2 (3) = 26.634, p < 0.001).
Post hoc pairwise comparisons revealed that there were no task-related differences at T1
and T2. The entropy was higher in rattle-shaking than free play at T3 (p < 0.001) and T4
(p = 0.010). Within free play, entropy was also higher at T2 than at T3 (p = 0.037). See Table 2
for descriptive data.

Table 2. Entropy (Ent), Recurrence Rate (RR) and Mean Line (ML) values at each time point and
each task.

T1 T2 T3 T4
Mean
(SD) Min Max Mean

(SD) Min Max Mean
(SD) Min Max Mean

(SD) Min Max

Rattles Ent 5.51
(0.30) 5.10 6.04 5.62

(0.44) 4.78 6.58 5.72
(0.45) 4.72 6.43 5.73

(0.37) 5.14 6.24

RR 5.03
(0.05) 4.93 5.09 7.28

(5.13) 2.07 19.14 9.17
(7.19) 0.69 27.55 7.78

(5.01) 0.95 15.60

ML 19.48
(6.61) 5.07 35.20 23.06

(8.59) 11.96 50.95 23.55
(9.02) 1.66 41.79 23.79

(5.78) 15.13 32.19

Free Play Ent 5.46
(0.20) 5.04 5.82 5.48

(0.42) 4.64 6.29 5.10
(0.59) 3.86 6.14 5.08

(0.42) 4.48 6.01

RR 5.05
(0.04) 4.98 5.09 5.47

(3.84) 0.14 14.54 4.51
(4.79) 0.02 16.26 2.99

(3.52) 0.17 13.28

ML 18.96
(2.75) 14.17 23.79 21.04

(7.36) 10.96 39.05 16.15
(6.28) 7.44 30.03 15.39

(4.53) 9.92 26.78

3.1.2. Recurrence Rate

There was a significant difference in the recurrence rate between rattle-shaking and
free play (Wald χ2 (1) = 11.281, p = 0.001). There was no effect of time-point (Wald
χ2 (3) = 4.353, p = 0.226), but the interaction between task and time-point was signifi-
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cant (Wald χ2 (3) =18.660, p < 0.001) as the recurrence rate in rattle-shaking at T3 was
significantly higher than in free play at T3 (p = 0.001) and T4 (p = 0.029).

3.1.3. Mean Line

There was a significant difference in the mean line between rattle-shaking and free
play (Wald χ2 (1) = 8.919, p = 0.003). The interaction effect between task and time-point
was also significant (Wald χ2 (3) =17.739, p < 0.001) as the mean line in free play at T3 was
lower than in rattle-shaking at T3 (p < 0.001). There was no effect of time-point (Wald χ2

(3) = 3.618, p < 0.306).

3.2. Control Analysis

To check whether the effects did not arise randomly, we compared observed and
shuffled versions using paired t-tests at each time point. At each time point, the observed
versions were significantly different from those shuffled for each measure. At T1: entropy
t(34) = 76.675, p < 0.001; recurrence rate t(34) = 162.090, p < 0.001; mean line t(34) = 21.334,
p < 0.001. At T2: entropy t(45) = 79.094, p < 0.001; recurrence rate t(45) = 9.841, p < 0.001;
mean line: t(45) = 19.053, p < 0.001. At T3: entropy: t(48) = 53.352, p < 0.001; recurrence rate
t(48) = 7.580, p < 0.001; mean line t(48) =16.382, p < 0.001. At T4: entropy t(22) = 43.767,
p < 0.001; recurrence rate t(22) = 5.331, p < 0.001; mean line t(22) =14.276, p < 0.001.

4. Discussion

In this paper, we showed that the complexity of limb movements changes across
infancy. In a longitudinal study, we recorded infants’ limb movements at around 4, 6, 9 and
12 months of age in two tasks that differed structurally—more constrained and repetitive
rattle-shaking and free play with a larger set of toys. To investigate the changes in the
complexity of all four limbs, we applied the Multidimensional Recurrence Quantification
Analysis (MdRQA, [29]). We showed that the complexity measures (entropy, recurrence
rate and mean line) are modulated by task at 9 and 12 months but not at 4 or 6 months
of age. We interpret this finding as reflecting an increase in infants’ motor control that
allows for stable body positioning and easier execution of limb movements. Increased
motor control is related to an overall increase in the motor system’s complexity as the
infant can adjust movements specifically to the task. In our case, higher entropy in the
rattle-shaking task may reflect the capacity to flexibly adapt behaviors to environmental
demands. Furthermore, a longer mean line and a higher recurrence rate suggest that
an infant’s motor system is more stable during rattle-shaking and has a more confined
attractor state.

Our results provide further insight into the early developmental organization of motor
actions. The global pattern of inter-limb coordination varies with changing contexts because
the behaviors are adapted and selected to fit a given task [1]. The motor action system
continues to specialize across infancy to respond to particular environmental pressures [45].
In our case, each task qualitatively required different acts—rhythmic body movements
to produce the rattling sound or various reaching and holding acts to explore different
objects—and infants learned how to adjust their behaviors to the specific context with age.
This suggests that limb movement organization becomes context-specific by the end of the
first year of life. This is in line with recent studies showing that less experienced infants
generate multiple inconsistent coordination patterns, while more experienced infants tailor
their coordination patterns to body–environment relations and flexibly switch solutions
(e.g., [32,46,47]).

This study is an important step in understanding changes in the complexity of limb
movements in infancy. We showed that the MdRQA measures are sensitive to changes in
the dynamics of limb movements between tasks and that the observed patterns do not form
randomly, as was shown in comparisons with the shuffled time series. This result is in line
with previous studies suggesting that infants’ development can be studied as a complex
system with the tools from nonlinear dynamics [9]. Moreover, MdRQA goes one step further
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than traditional methods as it allows estimating the complex dynamics of multiple effectors
(n > 2) and, therefore, characterizing the complexity of the developmental organization of
motor actions in more detail. Nevertheless, MdRQA can be further extended to assess the
coupling between multidimensional time series [48]. Therefore, methods such as MdRQA
open new possibilities to understand the role of limb movement for other domains of
development (e.g., vocal production or visual attention) or studying coupling and leader–
follower relationships during parent–infant interactions (e.g., parent limb movements vs.
infant limb movements or parent vocalizations vs. infant limb movements).

Several limitations arise from this study. First, there were some missing values in
the sensor data in 10.1% of cases. However, control analysis with excluded cases with
over 15% of missing data showed the same final pattern of the results (see Supplementary
Information 2.1–2.3). Second, we used only accelerometer data in this study, while IMUs
offer more possibilities (magnetometer and gyroscope data). To establish whether our
results are limited to accelerometric data only, we conducted a supplementary analysis
using quaternion data and showed a similar pattern of results with respect to task modula-
tion and age-related changes (see Supplementary Information 1.1–1.3), but further studies
should consider the possibility of expanding this work and explore not only changes in
acceleration but also rotational movements. Third, in this study, we compared tasks that
differed in overall duration (5 min in rattle-shaking vs. 10 min in free play). Variable length
of analyzed time series are commonly used in studies using RQA-based approaches (see,
for example, [24,49]) since capturing the overall dynamics of the phenomenon is more
important than task duration (and comparison of observed data with shuffled time series
allows checking whether the effects were not random). Fourth, although we observed
different age-related trajectories in the complexity of limb movements over the first year
of life, there is high variability in the way infants develop. Therefore, future longitudinal
studies with more time-points are necessary to more accurately depict the patterns of
variability and the shape of the developmental trajectories of inter-limb coordination. This
is especially important since stable execution of gross motor skills is usually preceded by
many transitions when the skills vacillate between occurrence and absence [50], which
could reflect phase transition periods when the entire motor system undergoes reorga-
nization. Thus, nonlinear methods combined with a more dense sampling of behavior
across development could shed more light on the developmental trajectories of movement
coordination and capture both phase transitions and periods of stability. Fifth, data were
collected in a laboratory room, and therefore, future studies could explore the possibil-
ities of continuous measurement of limb coordination across different contexts “in the
wild”. The wearable motion trackers can be worn for the entire day or multiple days
without the presence of an experimenter and record densely sampled data during infants’
everyday experiences [17,21]. A dense sampling of infants’ daily experiences would help
understand how caregivers scaffold infants’ actions and create “social affordances” [51]
and understand the influence of social influences in context-dependent changes in infants’
inter-limb coordination. Moreover, it could also help to identify atypical patterns of motor
development. Lower complexity of movements might represent more repetitive motor
behaviors, which are diagnostic symptoms of several neurodevelopmental disorders, such
as autism spectrum disorder [52] or developmental delay [53]. Finally, future studies
should investigate whether a similar pattern of results could be observed using other ways
of movement tracking, such as marker-less video-based algorithms (see [24–28]), to make
sure that wearing sensors does not affect infant movement.

5. Conclusions

Our study explored the developmental changes in the complexity of limb movements
in infancy using a multidimensional nonlinear approach (MdRQA). We showed that infants’
movements become more complex with age and that the age-related changes in complexity
are context-dependent. We interpret these changes in the complexity of the motor system
as an increase in motor control that allows the infant to adjust movements specifically to
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the task. These findings may have important implications for the study of atypical patterns
of motor development.
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Abstract: Psychotherapy involves the modification of a client’s worldview to reduce distress and
enhance well-being. We take a human dynamical systems approach to modeling this process, using
Reflexively Autocatalytic foodset-derived (RAF) networks. RAFs have been used to model the self-
organization of adaptive networks associated with the origin and early evolution of both biological
life, as well as the evolution and development of the kind of cognitive structure necessary for
cultural evolution. The RAF approach is applicable in these seemingly disparate cases because it
provides a theoretical framework for formally describing under what conditions systems composed
of elements that interact and ‘catalyze’ the formation of new elements collectively become integrated
wholes. In our application, the elements are mental representations, and the whole is a conceptual
network. The initial components—referred to as foodset items—are mental representations that are
innate, or were acquired through social learning or individual learning (of pre-existing information).
The new elements—referred to as foodset-derived items—are mental representations that result from
creative thought (resulting in new information). In clinical psychology, a client’s distress may be
due to, or exacerbated by, one or more beliefs that diminish self-esteem. Such beliefs may be
formed and sustained through distorted thinking, and the tendency to interpret ambiguous events as
confirmation of these beliefs. We view psychotherapy as a creative collaborative process between
therapist and client, in which the output is not an artwork or invention but a more well-adapted
worldview and approach to life on the part of the client. In this paper, we model a hypothetical
albeit representative example of the formation and dissolution of such beliefs over the course of
a therapist–client interaction using RAF networks. We show how the therapist is able to elicit
this worldview from the client and create a conceptualization of the client’s concerns. We then
formally demonstrate four distinct ways in which the therapist is able to facilitate change in the
client’s worldview: (1) challenging the client’s negative interpretations of events, (2) providing direct
evidence that runs contrary to and counteracts the client’s distressing beliefs, (3) using self-disclosure
to provide examples of strategies one can use to diffuse a negative conclusion, and (4) reinforcing the
client’s attempts to assimilate such strategies into their own ways of thinking. We then discuss the
implications of such an approach to expanding our knowledge of the development of mental health
concerns and the trajectory of the therapeutic change.

Keywords: autocatalytic network; creativity; conceptual network; psychotherapy; therapeutic change;
uncertainty; worldview

1. Introduction

While the efficacy of psychotherapy as a form of treatment has been clearly estab-
lished [1], there is uncertainty about why it works [2]. Statistical approaches model the
psychotherapeutic process using moderator and mediator variables [3,4], but this does
not go far toward explaining each mind’s unique, self-organizing network of associations,
how this structure took shape, and how it responds to psychotherapy. We have only a
hazy understanding of how specific elements of the psychotherapy process contribute
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to therapeutic change [5]. This paper aims to take a step forward toward a more precise
understanding of what happens in psychotherapy and what makes it effective using a
dynamical systems framework to model the interconnected, self-organizing nature of an
individual’s worldview, and its dynamical change over time. In so doing, we aim to both
strengthen the theoretical bases of psychotherapy, and sharpen our capacity to improve it
in practice.

We view psychotherapy as a creative collaborative process between therapist and
client, in which the output is not an artwork or invention, but an outlook and approach
to life on the part of the client. A client’s outlook and behavior flows from the web of
knowledge and experience that collectively constitute a way of seeing the world and being
in the world, i.e., a worldview. What makes network approaches to cognition particularly
promising is that this web of knowledge and experience can be described as a network
consisting of loosely connected clusters (i.e., the network has an intermediate degree of
modularity) that can be characterized using tools from network science [6–12]. Thus,
the network approach offers a novel way of understanding mental health concerns and
their treatment [13]. Psychotherapy (whether it be behavioral, cognitive, etc.) attempts to
‘destabilize’ a distressing or pathological mental state and shift the individual toward a
healthier mental state [13–15]. What distinguishes the ‘autocatalytic’ approach to cognition
taken here from other network-based models of cognition is its capacity to generate new
elements (such as mental representations or schemas) out of interactions between existing
ones. This makes it useful in the context of describing psychotherapeutic change, though the
approach has been applied more broadly to other forms of cognitive change as well [16–18].
Since therapy entails change in the structure and dynamics of this network, network science
seems a natural place to start in modeling the therapeutic process.

We note that it is not simply the case that positive interpretations (i.e., narratives that
make the individual feel good) are adaptive while negative interpretations (i.e., narratives
that make the individual feel bad) are maladaptive. It is often necessary that negative situa-
tions be acknowledged as such to spur action and find solutions; however, one worldview
may predispose the individual to overcoming challenges and finding opportunities, while
another leads to unnecessary distress and feelings of helplessness. Thus, the therapist
strives to help the client to ‘unravel’ their worldview just enough to ‘reweave’ it into one
that is, for that client, adaptive.

One’s society and culture provides stories, narratives, scripts, and schemas, as well
as larger conceptual frameworks (such as science or religion) that offer prescriptions for
integrating them into a worldview; however, since no one else is privy to an individual’s
entire repertoire of personal experiences and intimate observations, the worldview one
weaves is ultimately unique. Much as, for any given set of dots there are multiple ways
of connecting them, for any given set of experiences or mental representations, there may
be many ways of integrating them into a worldview. However, this sentence is not to be
interpreted as implying that mental representations are, indeed, anything like ‘dots’; they
clearly have a context-dependent inner structure. A worldview may selectively include,
or exclude, certain experiences and positively (or negatively) valenced items, (or weight
them more strongly). Some worldviews may be more adaptive than others, i.e., more
conducive to thriving, personal growth, and the well-being of the individual and their
social and environmental milieu.

We model the psychotherapeutic process using a certain kind of network referred to as
a Reflexively Autocatalytic foodset-derived (RAF) network. Though the term ‘autocatalytic
networks’ reflects their initial application to the origin of life [19,20], RAFs provide a
general mathematical setting for studying networks that arose out of earlier work in graph
theory [21]. The term reflexively is used in its mathematical sense, meaning that each part is
related to the whole. The term autocatalytic will be defined more precisely shortly, but for
now it refers to the fact that the whole can be reconstituted through interactions amongst its
parts. The term foodset refers to the elements that are initially present, as opposed to those
that are the products of interactions amongst them. As in other network science approaches,
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the nodes of the network represent units of information such as words, concepts, memories,
or mental representations of concrete or abstract knowledge, and connections between
nodes (by way of free association, shared features, or co-occurrences) are represented as
edges (For example, ‘chair’ and ‘wood’ are nodes, and the relationship between them,
i.e., wood can be used to create a chair, is represented as an edge).1

What differentiates RAFs from other approaches in network science is that the nodes
are not just passive transmitters of activation; they actively galvanize, or ‘catalyze’ the syn-
thesis of novel (‘foodset-derived’) nodes from existing ones (the ‘foodset’). The generalized
RAF setting is conducive to the development of efficient (i.e., polynomial time), algorithms
for questions that are computationally intractable (i.e., NP-hard. [30]). These features
make RAFs uniquely suited to model how new structure grows out of earlier structure,
i.e., generative network growth [30]. Such generativity may result in phase transitions to
a network that is self-sustaining and self-organizing [31–33], as well as potentially able
to evolve, i.e., exhibit cumulative, adaptive, open-ended change [34,35]. For this reason,
RAFs have been used to model the origins of evolutionary processes, both biological—the
origin of life (OOL) [36,37]—and cultural—the origin of culture (OOC), or more specifically,
the kind of cognitive structure capable of generating cumulative, adaptive, open-ended
innovation [17,38–41]. In a OOL context, RAFs were used to develop the hypothesis that
life began as, not as a single self-replicating molecule, but as a set of molecules that, through
catalyzed reactions, collectively reconstituted the whole [20]. Autocatalytic network theory
has successfully demonstrated—mathematically or using simulations [36,42], and with
real biochemical systems [37]—how self-maintaining structures that evolve and replicate
can emerge from nonliving molecules. Because RAF nodes modify network structure,
the RAF framework is consistent with the goal of understanding not just how networks are
structured but also how they dynamically restructure themselves in response to internal
and external pressures.

When autocatalytic models are applied in a cognitive context as they are here, they
model not just network structure, but how the network reconfigures itself on the fly in
response to changing needs and experiences. The observation that, similar to living organ-
isms, cognitive networks are self-sustaining, self-organizing, and self-reproducing [43–46]
suggests that cognitive networks constitute a second level of autocatalytic structure. By cog-
nitive network, we refer to an individual’s web of concepts, language terms, and their
associations, as well as knowledge and memories, and how they are structured. The self-
sustaining nature of a cognitive network is evident in the tendency to reduce cognitive
dissonance, resolve inconsistencies, and preserve existing schemas in the face of new in-
formation. Although the contents of a cognitive network change over time, it maintains
integrity as a relatively coherent whole. Its spontaneously self-organizing nature is evident
in the capacity to combine remote associates [47] (such as combining CHOCOLATE and
BUNNY to invent CHOCOLATE BUNNY).2 The cognitive autocatalytic network replicates
in a piecemeal manner through social learning and story-telling. Psychotherapeutic change
facilitates the piecemeal replication of adaptive perspectives and habits, as well as the
reorganization of relationships between elements of the client’s worldview, and the RAF
approach is well-suited to model this.

We begin with an introduction to the psychotherapeutic process. We then introduce
RAF networks, and elaborate how they are used in this paper. Next, we present A RAF
network model of therapeutic change facilitated by the therapist. The paper closes with
implications of the model for fostering a concrete understanding of psychotherapeutic
techniques, and suggestions for extending and testing it. A list of abbreviations, and a
glossary of terms and their definitions can be found in the Appendix A.

1 As explained elsewhere [16], the ‘autocatalytic’ approach taken here is consistent with distributed models of
mental representations in memory [22], and with quantum models of their interactions [23–29].

2 This proposed cognitive level of autocatalytic structure is not merely an extension of organismal needs; indeed,
the biological and cognitive/cultural levels of endogenous control can be at odds (e.g., a scientist immersed in
solving a problem may neglect offspring, or forget to eat).
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2. The Therapeutic Process

Psychotherapy, or ‘talk therapy’ is rooted in formal Western medicine since the late
1800s and practices to alleviate human distress through conversation, known as the ‘moral
cure’ has existed formally and informally for centuries [48]. Despite the fact that many
effective forms of psychotherapy have been developed, there is uncertainty regarding the
mechanisms of therapeutic change [2,5]. Different constructs across therapies show overlap,
leading to difficulty with defining their roles and relative importance in the therapeutic
process [49]. Thus, a paradigm shift towards dimensional, systemic, and interactional
approaches to understanding mental illness and psychotherapy is warranted [50–52].
Multi-modal, multi-perspective research methods that enable us to capture the process
of therapy in real-time are the future of psychotherapy research [53]. A complex systems
approach can thus help re-conceptualize mental health concerns and treatment to more
accurately represent the dynamic interactions involved [13], and help us understand
therapeutic change [54].

The collaborative nature of psychotherapy is dyadic, and each member of the dyad
influences the other through verbal, nonverbal, and physiological synchrony [55–58]. How-
ever, the client and therapist rarely have independently corroborative estimates of impor-
tant process variables such as the therapeutic alliance [59], and any conceptualization of
therapeutic change should make room for both perceptions. RAF networks can accom-
modate both perspectives within a single framework. The model presented in this paper
focuses more on the change in the client’s mind, but the approach has the potential to be
expanded to include the therapist, and thereby capture the bidirectional exchange more
comprehensively.

Clients generally enter therapy to alleviate distress and increase well-being. Sometimes
the decision is prompted by a specific problem, a troubling experience or belief, or some-
thing that is difficult to accept. A client may report symptoms of depression, such as
sadness, hopelessness, and decreased motivation due to, for example, difficulties with inter-
personal relationships. As such, the client’s approach towards such relationships, whether
it is the thoughts, emotions, or behaviors involved, are currently insufficient/ineffective in
helping them achieve their goals. Therapy may bring about modification of their cognitive
network, by enabling them to find a new perspective on a problem or a troubling experience
or belief, or come to terms with something they could not accept, thus integrating it into
their worldview.

There are significant parallels between the creative process involved in, say, inventing
something new, and the process of problem-solving in psychotherapy. Creativity flourishes
in situations that involve a tension between uncertainty and constraints [60], or what
has been referred to as enabling constraints [17,61]. We posit that the forging of a new,
healthy, integrated conception of the world and one’s place in it is a creative process, and by
cultivating a client-tailored therapeutic interaction, the therapist acts as the midwife of this
process.3

3. Rationale for the Approach

Similar to other cognitive network approaches, RAF networks are hierarchical yet
decentralized, and they can be analyzed with respect to density, connectedness, and size.
They also draw upon the conventional cognitive science notion of spreading activation
through nodes of a concept graph, and techniques such as shortest path distance and
clustering analysis. However, the RAF approach differs from other network approaches
used psychology and cognitive science in a number of respects:

3 Many describe the generative aspect of cognition as a ‘birthing’ of new ideas or attitudes, and this word
directly captures the therapist’s role in facilitating this process.
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3.1. ‘Reactions’ and ‘Catalysis’

A RAF consists of not just nodes connected by edges, but also reactions, or interactions
that trigger, or ‘catalyze’ new nodes. Thus, RAF nodes are not merely passive recipients
of spreading activation; they actively redirect it. For example, seeing a Superman movie
might spark a child who believes she is powerless to draw herself as a superhero. In this
example, the ‘reactants’ are the mental representation of herself as powerless, as well as her
drawing skills. The ‘catalyst’ is the Superman movie, and the ‘product’ is the drawing of
herself as a superhero.

In chemistry, and in applications of RAFs to the origin of life, the term ‘reaction’ refers
to an interaction between molecules. For consistency, in cognitive applications of RAFs,
the term reaction is used to refer to an interaction between mental representations (MRs)
in a cognitive network. It may involve representational redescription (RR): the re-coding
of information in working memory by modifying, restructuring, elaborating, and/or
performing mental operations upon it, or possibly in the absence of an external cue [62].
RR can also involve a shift of perspective, and it can result in a flash of insight, or a newly
perceived application for an old idea.4 The issue of which concepts participate in a given
reaction is discussed and mathematically modeled in [40].

RAFs also have two kinds of edges: reaction edges and catalysis edges. Reaction
edges are similar to the edges in conventional network science approaches. (They can be
thought of as the ‘anatomy’ of the network). Catalysis edges are more dynamic. (They
can be thought of as the ‘physiology’ of the network). MRs are catalytic because they not
only participate in certain reactions, but also facilitate—or catalyze—other reactions.5 In
chemistry, a catalyst speeds up a reaction that would otherwise occur very slowly if at
all. By endowing cognitive network models with the capacity for catalysis we can model
how one idea or environmental stimulus, triggers a mental operation (such as concept
combination, or RR) that would otherwise occur very slowly or not at all. For example,
realization of a novel or creative outcome (such as the drawing of a superhero version
of oneself) may not have occurred without the galvanizing or ‘catalyzing’ impact of the
experience of watching a Superman movie.

As in chemistry, the cognitive equivalent of a ‘catalyzed reaction’ may trigger another
reaction, and so forth, resulting in a reaction sequence. In cognitive models, this reaction
sequence is a stream of thought, which may ultimately have arisen from a problem, ques-
tion, or cognitive dissonance. For example, the ultimate source of the cognitive reaction
sequence culminating in the creation of a superhero character may be the desire never to
feel powerless.

The rationale for treating mental representations (MRs) as catalysts comes, in part,
from the literature on concepts, which provides extensive evidence that when concepts act
as contexts for each other, their meanings change [66,67]. For example, an ISLAND has the
property ‘surrounded by water’, but (hopefully) not a KITCHEN ISLAND. KITCHEN mo-
mentarily reconfigures the cognitive network, altering the perceived meaning of ISLAND.
Such alterations in meaning are often nontrivial, and defy classical logic [68]; however,
quantum models of concept interactions provided a means of formalizing the process by
which a context (such as the goal of creating a spot to cut food) spontaneously bridges
remote associates (such as KITCHEN and ISLAND) [23–25]. Although cognitive RAF
models are influenced by how context is modeled in these quantum models of concepts, it
is not committed to any formal approach to modeling context. Context is considered to be
anything in the external environment, or anything from long-term memory that influences
how a MR is instantiated in working memory. The extent to which one MR modifies the
meaning of another is referred to as its reactivity.

4 Creative insights often arise subconsciously from just beyond the bounds of working memory [63].
5 The use of the word ‘catalyze’ in a cognitive context extends beyond autocatalytic models of cognition [64,65],

though these other approaches are purely descriptive.
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In sum, the RAF approach incorporates not just cognitive change due to adjustments
in association strengths, but also cognitive change due to the prompting or ‘catalysis’ of
new nodes. The resulting network is dynamic both in terms of structure (e.g., new nodes
can be generated), and information flow (e.g., newly generated nodes can result in new
information pathways).

3.2. Foodset versus Foodset-Derived

Another key feature of RAF models is the distinction between foodset items, which
came into existence outside the network in question, and foodset-derived items, which come
about through ‘catalyzed reactions’ within the network in question. An individual’s ‘mental
foodset’, or simply, foodset includes memories of direct experiences, i.e., that came about
by way of the senses, including any knowledge that has come about through individual
learning (of pre-existing information) by way of direct experience in the world, or through
social learning processes such as imitation or classroom learning. The foodset may also
include innate responses, such as the fear of heights and corresponding inclination to back
away from a precipice. Together, these innate responses, direct experiences, and socially
transmitted knowledge constitute the raw materials from which the individual’s cognitive
network is built. Thus, the worldview is “grounded in perception” because it grows out
from this foodset.

Much as bricks and bags of mortar do not constitute a house, the foodset does not
constitute a mental model of the world, a worldview. The set of foodset-derived items consists
of mental contents that were generated by that individual from scratch (and constitute
new information) using foodset elements, or perhaps other foodset-derived elements,
as ingredients. The generation of foodset-derived items occurs by way of mental operations
such as problem solving, insight, deduction, induction, and abduction. Since the elements
of the worldview described by foodset-derived items are not grounded in perception, they
can be viewed as ‘useful fictions’. Thus, if the therapist responds to powerlessness in a
certain way, and the client learns and (later) copies that response, that way of responding is
an item in the client’s foodset; however, if the therapist acts as a midwife for the client’s
expression of emotions associated with powerlessness during a therapy session, the artwork
is a foodset-derived item6. The approach thereby distinguishes between conceptual shifts
originating within the mind of a given individual, and those that originated by others,
and were learnt or assimilated by that individual. What foodset items all have in common
is that they are raw materials the individual has at his/her disposal to work with in the
generation of new MRs, and this generation of new MRs is a key component of to the
conceptual change that occurs during psychotherapy.

In cognitive networks, the distinction between foodset and foodset-derived provides
a natural means of grounding abstract concepts in direct experiences; foodset-derived
elements emerge through ‘reactions,’ that can be traced back to foodset items. This enables
us to identify the necessary precursor ideas ideas for the emergence of new understandings,
and the mental operations a given individual carried out to generate a particular idea. This
capacity to model the reconfiguration of a cognitive network makes RAFs ideal for the
study of change that occurs in psychotherapy.

3.3. Generational Cognitive/Cultural Change

Because of the distinction between foodset and foodset-derived MRs it is possible to
tag new insights with their point of origin (i.e., keep track of whose mind did each idea
arose in), and track cumulative change step by step within and across individuals. We posit
that a mind can be described in terms of nested and overlapping RAFs, and these RAFs
are what evolve through culture. Thus, each human lifetime constitutes a small segment
of our collective cultural evolutionary lineage (see [34,38,39]). Each generation builds

6 This distinction is not as black and white as portrayed here, but for simplicity, we do not address that subtlety
for now.
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on the accomplishments of the previous generation, such that items that were foodset-
derived for one generation become elements of the foodset for the next, and this kind of
cumulative cultural evolution has also been modeled, both computationally [69–72], and
mathematically using RAFs [17,34,38–40]. For example, an early hominid invented the first
tool by realizing that repeatedly striking one stone with another can produce a stone that
is sharp, and the mental script of how to make this tool is described as a foodset-derived
item in that individual’s mind. This mental script was shared with peers, who in turn
transmitted it to others, and in their minds it was a foodset item. As a more psychological
example, ‘flattery makes friends’ constituted a foodset-derived item in the mind of the first
person to have this thought. He or she may have shared this notion with others, and in
their mind it is a foodset item, but one of them may build on it by realizing that imitation
can be flattering, and therefore a route to friendship, in which case this new version is a
foodset-derived idea (i.e., ‘imitation is the sincerest form of flattery’). Thus, our worldviews
consist largely of information that has already been preprocessed into scripts, schemas,
stories, and narratives by previous generations, and such ‘chunks’ constrain the shape of
one’s worldview.

3.4. Potential to Scale Up

In this initial application of RAF networks to the therapeutic process, the examples
used are fairly simple; however, a significant strength of the approach is that RAFs can scale
up. The RAF approach can be used to analyze and detect phase transitions in extremely
complex networks (such as the phase transition from no-RAF to RAF in Kauffman’s [20]
binary polymer model) that have proven intractable using other analytic approaches [37,73].

4. Reflextively Autocatalytic Foodset-Derived Networks (RAFs)

Let us now define the term Reflexively Autocatalytic and foodset-derived network (RAF)
more precisely [30–32,35,74]. The term reflexive is used in its mathematical sense to mean
that each component is related (directly or indirectly) to the whole. As mentioned in
Section 1, the term autocatalytic refers to the fact that the whole can be reconstituted through
interactions amongst its components. A network qualifies as A RAF network if it meets the
following two criteria:

(1) It is reflexively autocatalytic: each reaction r ∈ R′ is catalyzed by at least one element
type that is either produced by R′ or is present in the foodset F. This is sometimes
referred to as closure.

(2) It is F-generated: all reactants in R′ can be generated from the foodset F by using a
series of reactions only fromR′ itself.

Thus, an RAF is a non-empty subsetR′ ⊆ R of reactions that meets these two criteria:
it is reflexively autocatalytic, and F-generated.

The term catalytic reaction system refers to a network consisting of components that can
catalyze the generation of other components, and a catalytic reaction system can consist of
one or more RAFs. The largest RAF, which subsumes all other RAFs, is referred to as the
maxRAF. All other RAFs are referred to as subRAFs. A RAF that cannot be broken down
into smaller RAFs is referred to as an irreducible RAFs, or irrRAF. It is not necessarily the
case that a catalytic reaction system contains a RAF, but if it does contain one or more RAFs,
it has a unique maxRAF. To put this more formally, if the network contains a RAF, then
the collection of all its RAFs forms a partially ordered set (i.e., a poset) under set inclusion,
with the maxRAF as its unique maximal element. RAFs can evolve, as demonstrated both
mathematically and in simulation studies, through selective proliferation and drift acting
on possible subRAFs of the maxRAF [32,75].

The catalytic reaction system is a tuple Q = (X,R, C, F) consisting of a set X of types,
a set R of reactions, a catalysis set C indicating which molecule types catalyze which
reactions, and a subset F of X referred to as the foodset. A subsetR′ of the full reaction set
R of a catalytic reaction system Q forms a RAF if is both collectively autocatalytic (by the
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first criterion, because each of its reactions is catalyzed by some component in the system),
and self-sustaining (because of the F-generated criterion).

RAFs can enlarge and combine. The union of any two (or more) subRAFs forms a
RAF (which explains why there is a unique maximal RAF). These two subRAFs may be
disjoint, or they may have some reactions in common. A subRAFR′ can also expand by
combining with a ‘co-RAF’, where a co-RAF is any nonempty set of reactions that is not A
RAF but, when combined withR′, forms A RAF. RAF expansion can also be extrinsically
driven. For example, it can be due to social learning of a new story or skill, i.e., a change
in the foodset. External stimuli may even trigger a ‘reaction’; for example, the instruction
to ‘think creatively’ may ‘catalyze’ the generation of new ideas. In a therapeutic context,
this could take the form of of a question or suggestion, such as to try seeing a particular
interpersonal situation from the other person’s perspective.

RAFs emerge in a system of interacting components when their complexity passes
a critical threshold [20,33]. In applications of RAF networks to model the origin of life,
the components are polymers: molecules made up of repeated units called monomers. In ap-
plications of RAF networks to model cognitive networks, the components are MRs. The RAF
framework provides a means of analyzing the emergence of complex networks, identifying
how phase transitions might occur, and at what parameter values. The phase transition
from no RAF to A RAF has been analyzed (mathematically and through simulations),
and applied to biochemical [31–33,36,42], cognitive [38–40], and ecological [76], systems.

During childhood, the individual assimilates experiences, stories, narratives, scripts,
and schemas, and gradually weaves them into a network of understandings, and this
process has been analyzed using the RAF framework [16]. Eventually these pieces of
knowledge condense into a maxRAF, which grows and changes through childhood and
beyond. Once the maxRAF encompasses the majority of these fragments of knowledge
they are mutually accessible. At this point, the child no longer requires a cue or reminder in
the environment to access something from memory because the maxRAF provides a route
from any one idea to any other. The maxRAF enables the individual to make plans and
predictions, generate metaphors, and adapt old techniques or ideas to new circumstances;
however, while an integrated maxRAF network helps the individual think creatively and
effectively negotiate the environment, it may be conducive to distorted thinking, and other
biases that are emotionally dysfunctional, and result in mental health concerns.

An individual’s worldviews could be said to be self-contained in that there exists a
maxRAF—meta-RAF of sorts—that encompasses the majority of the individual’s subRAFs.
We have modeled not just how this maxRAF forms over the course of child develop-
ment [16], but how the capacity for such a maxRAF evolved over the course of human
history [34,38–40]. The worldviews of different individuals are interconnected in that and
subRAFs of one individual are mirrored in subRAFs of another, and indeed, RAF structure
can ‘flow’ and extend across individuals [17,18].

Cognitive RAFs

Whern RAFs are used to model cognition, all MRs in a given individual i are denoted
Xi, and a specific MR x = xi in Xi is denoted by writing x ∈ Xi. MRs are either foodset
MRs, or foodset-derived MRs. The foodset of individual i, denoted Fi, encompasses MRs
that are either innately present, or that are the result of direct experience in the world,
whether it be by way of social learning, or by way of natural or artificial stimuli. Thus, Fi
has multiple components:

• Si denotes the set of MRs arising through direct experience that have been encoded in
individual i’s memory. It includes:

– MRs obtained through social learning from the communication of an MR xj by
another individual j, denoted Si[xj].

– MRs obtained through individual learning, denoted Si[`].

• Any innate knowledge with which individual i is born, denoted Ii.
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Fi includes information obtained through social interaction with someone else who
acquired this knowledge as a result of their own creative or analytical thought processes.
(For example, if individual i learns from individual j that it is ok to say no, this is an instance
of social learning, and “it’s ok to say no” becomes a member of Fi. In contrast, if individual i
realizes on their own that it is ok to say no, then “it’s ok to say no” is not a member of Fi.) Fi
includes everything in individual i’s long-term memory that did not result from individual
i engaging in RR. Fi also includes pre-existing information obtained by i through individual
learning (which, as stated earlier, involves learning from the environment by non-social
means), so long as this information retains the form in which it was originally perceived
(and does not undergo redescription or restructuring through abstract thought). The
crucial distinction between foodset and non-foodset items is not whether another person
was involved, nor whether the MR was originally obtained through abstract thought (by
someone), but whether the abstract thought process originated in the mind of the individual
i in question.

Foodset-derived elements are denoted ¬Fi. Thus, ¬Fi refers to mental contents that are
not part of Fi (i.e. ¬Fi consists of all the products b ∈ B of all reactions r ∈ Ri). In particular,
¬Fi includes the products of any reactions derived from Fi and encoded in individual i’s
memory. Its contents come about through mental operations by the individual in question
on the foodset; in other words, foodset-derived items are the direct product of RR. Thus,
¬Fi includes everything in long-term memory that was the result of one’s own thought
processes. ¬Fi may include a MR in which social learning played a role, so long as the most
recent modification to this MR was a catalytic event (i.e., it involved RR).

A single instance of RR in individual i is referred to as a reaction, and denoted r ∈ Ri.
RR is often applied recursively, such that the output of one thought serves as the input
to the next. The set of reactions that can be catalyzed by a given MR x in individual i is
denoted Ci[x]. The entire set of MRs either undergoing or resulting from r is denoted A or
B, respectively, and a member of the set of MRs undergoing or resulting from reaction
r is denoted a ∈ A or b ∈ B. Thus, for example, if a client has the idea of expressing
her grief at the passing of her father by painting a scene in which the clouds evoke her
deceased father, the concepts FATHER and CLOUD are reactants in A, and the resulting
concept FATHER-CLOUD is a product in B. This conceptual shift, treated as a ‘reaction’, is
‘catalyzed’ by the client’s desire to process the death of her father. It is in this way that the
RAF approach tags novelty (in this case, the painting) with its point of origin (by showing
in which mind in a cultural lineage it was a foodset-derived item).

The set of all possible reactions in individual i is denoted Ri. The mental contents
of the mind, including all MRs and all RR events, is denoted Xi ⊕Ri. Recall that the set
of all MRs in individual i, including both the food set and the food set-derived items, is
denoted Xi. Ri and Ci are not prescribed up front; because Ci includes remindings and
associations on the basis of one or more shared features, different kinds of interactions are
possible between any given pair of MRs. Nonetheless, it makes sense mathematically to
refer toRi and Ci as sets.

5. Model

We now apply RAF theory to the modification of a client’s worldview in psychotherapy.
To make this more concrete, we explain our model using a hypothetical interaction between
a fictional yet representative therapist named Thera, and a client, named Clive. We show
how the therapist elicits adaptive change in a dysfunctional belief in the client’s worldview.

5.1. Intake Form and Thera’s Emerging Mental Model of Clive

Thera learns from an intake form that Clive is a young man with no strong friendships,
who has experienced debilitating social anxiety for years. His decision to start therapy was
prompted by a recent incident in which his wife called him a ‘moron’ during an intense
disagreement. This, in conjunction with several other earlier incidents, have forced him to
conclude that he is ‘stupid’.
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A portion of Thera’s mental model of her client after reading this report is shown
in the first panel (panel (a)) of Figure 1. For the relationship between Thera and Clive to
develop, they need to establish some form of psychological contact [77]. Thera welcomes
Clive to the room and sits down. As she introduces herself, her body posture is relaxed. She
provides several forms of non-verbal encouragement, such as smiling, nodding, supportive
interjections, and eye contact. This makes him feel like someone worthy of the attention of
another, which lifts his self-confidence, and allows him to speak more comfortably.

Figure 1. (a) RAF model of how client’s worldview is altered over the course of a psychotherapy
session. Initially, Thera’s conception of Clive consists solely of what she read on his intake form.
Following a ‘catalyzing incident’ in which his wife called him a “moron”, he been interpreting other
events as confirmation of the distressing belief, ‘I am stupid’. Collectively, these elements constitute a
stable RAF, as indicated by the thick blue line forming an oval around them. The thickness of this
line indicates that the RAF has a large impact on Clive’s thinking. (b) Thera praises Clive’s brilliant
problem solving ability, which generates a new foodset item, the notion that he is ‘brilliant’. Since
this is inconsistent with the belief ‘I am stupid’, it reduces the impact of that RAF, as indicated by
the fact that the width of the line forming a blue oval is now thinner. (c) Two more foodset items
are socially transmitted from Thera to Clive. (d) Making use of what Thera modeled for Clive about
diffusing negative feelings using humor, he makes a joke. The joke is catalyzed by Thera’s prompt to
explore alternate explanations for why he received a bad grade. The joke depletes negative feelings
associated with the bad grade, such that it is less able to serve as a ‘reactant’ to support the belief
that he is unintelligent, as illustrated by the further dissolution of the oval representing that RAF. His
joke constitutes a second RAF. (e) Thera’s laughter at Clive’s joke catalyzes a new belief, ‘I am funny’,
which enhances his self-esteem, and forms a third RAF. These first three RAFs, which are irr-RAFs
because they cannot be reduced further, interact with one another, and together form a maxRAF,
which encompasses them all. (f) A key describing the symbols used in the various panels.

106



Entropy 2022, 24, 547

As psychotherapy proceeds, Thera starts to unearth information about Clive’s world-
view using therapeutic techniques such as reflections, clarifications, and open-ended ques-
tions. Clive shares other significant life experiences that affected his self-esteem, such as
getting a D- in a high school math class, and not getting a job after working hard to prepare
for the interview. By asking questions such as, “Why do you think you received a poor
grade?”, and “How did that make you feel?”, Thera is able to gather information regarding
Clive’s interpretations of these events. From this, using her preexisting knowledge about
social anxiety and mental health, she extrapolates Clive’s concerns, and builds a mental
model of him in her mind.

While Clive’s belief that he is unintelligent is based in real-life adverse experiences—
modeled here as ‘foodset items’—it involves extrapolation, and possibly distortion. It
appears that the triggering incident in which his wife called him a moron served as
a ‘catalyzing incident’ that initiated a tendency toward confirmation bias, such that he
reinterprets other past and present events as confirmation of the belief, ‘I am stupid’.
This, in turn, is damaging his self-esteem. The confirmation bias has thus exacerbated his
preexisting concerns; his anxiety in social situations is now more severe due to his belief
that he is ‘stupid’, and he has become isolated and lonely.

We can view what is happening here from the perspective of Clive’s worldview as
a whole. The self-organizing, self-mending nature of a worldview can create a system
of internal feedback combined with external influences that can sustain and amplify an
existing (and in this case, negative) narrative [78]. Clive has come to interpret interactions
with others as consistent with his negative self-image, and his mistrust and withdrawal
have created a positive feedback system that reinforces his belief about social interactions.

To model this using the RAF approach and thereby understand it in more precise
terms, the client, Clive, is denoted C, the poor grade is denoted GC, and not getting the
position he applied for is denoted PC. These memories (and likely others) serve as the raw
materials, or reactants, for Clive’s confirmation bias. First we note that they are part of his
foodset, as follows:

GC, PC ∈ FC. (1)

GC and PC become reinterpreted as evidence for the belief “I am stupid”, denoted b1C.
The catalyzing event that initiates this, i.e., the fight with his wife where she called Clive a
‘moron’, is denoted by mC. Thus, this process is described as follows:

GC + PC
mc−→ b1C ∈ ¬FC, ¬FC 7→ ¬FC ∪ {b1C}. (2)

The catalysis of GC and PC by mC is Step 1a in Panel (a) of Figure 1. The resulting
formation of b1C is Step 1b in Panel (a) of Figure 1. The ¬ sign indicates that b1C is not part
of the foodset, i.e., it is a foodset-derived item. The portion of Equation (2) after the comma
simply tells us that the set of foodset-derived items has expanded to include b1C.

Note that this little cognitive network now satisfies the conditions for A RAF; (1) all
reactions (in this case, there is just r1) can proceed, because the needed catalyst is present,
and (2) the needed reactants (MRs of events that could be interpreted as confirmation of his
lack of intelligence) are also present. The greater the extent to which ambiguous experiences
are interpreted as evidence for the foregone conclusion that he is stupid, the greater to
which the MR ‘I am stupid’ constitutes a stable attractor state. (For discussion of attractor
states in psychology, see [14,79]). This attractor causes Clive emotional distress, and has an
adverse impact on his quality of life.

We now show how Thera extrapolates from what Clive says to build a mental model
of him in her mind. Thera interprets Clive’s statement as implying something more general
about how he views the world and his place in the world: specifically, that his self-concept
is increasingly dominated by the belief that he is (as his wife put it), “a moron”. We
use the subscript T to refer to Thera. Her foodset, denoted FT , includes knowledge of
psychopathology and the treatment options available, as well as her growing knowledge of
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Clive, CT . The formation of this knowledge from Clive’s discussion of himself, denoted CC,
is described as follows:

FT 7→ FT ∪ {CT}, CT ∈ ST [CC]. (3)

This equation tells us that her foodset now ‘maps to’ a foodset that includes knowledge
of Clive, and the part after the comma tells us that knowledge of Clive was socially
transmitted from Clive himself.

As Thera’s understanding of Clive’s concerns increases, she feels more emotionally
connected to him, which in turn impacts the quality of her responses to him. Clive feels
increasingly heard, and begins trusting her. Her reflections, statements, and questions may
more readily facilitate adaptive change in Clive that may not have occurred otherwise.
Thera’s interactions create perturbations in Clive’ s cognitive network that disrupt the ‘I
am stupid’ attractor state described above.

Elaborating on the ‘Clive and Thera’ example, we now show how the RAF model
brings to light four distinct ways in which a therapist such as Thera facilitates therapeutic
changes in the worldview of a client such as Clive.

5.2. Providing Counter-Evidence to Distressing Belief

During the session, Thera’s chair malfunctions. Clive is able to fix the problem by
adjusting the various knobs and gears on the chair. Thera says, “You’re a brilliant problem
solver—you fixed my chair!” This provides counter-evidence to the belief that he is
unintelligent. Her observation, which lifts his mood, temporarily decreases his distress,
and enhances his self-concept, is socially transmitted to him, resulting in the new MR:
‘Someone thinks I’m brilliant’. Transmission of the information that he is brilliant, denoted
BC, is described by Equation (4), as follows:

FC 7→ FC ∪ {BC}, where BC ∈ SC(BT) (4)

Thera’s observation becomes part of Clive’s ‘mental foodset’ because it did not come
into existence within Clive’s mind; it was ‘born’ in Thera’s mind, and socially transmitted
from Thera to Clive. His self-concept now contains both the constellation of experiences and
negative beliefs about his intelligence, described as A RAF, consisting of multiple mutually
consistent memories that support his belief that he is ‘stupid’, as well as a new experience
that is inconsistent with this RAF. This experience of being described as ‘brilliant’ by Thera
therefore has an inhibitory role on that RAF; it weakens the strength of that reaction, thereby
diminishing the proclivity to interpret ambiguous events as confirmation of the belief, “I
am stupid”. This is depicted in Panel (b) of Figure 1, where Step 2 refers to the social
transmission of words of praise from Thera to Clive, and Step 3 refers to its inhibitory role
on the existing RAF.

5.3. Modeling Adaptive Mindset through Self-Disclosure

Thera models how to consciously resist the tendency to interpret ambiguous evidence
in a negative manner through the use of self-disclosure regarding how she manages self-
critical thoughts in her own life. She also spontaneously models adaptive responses in her
interactions with him. She bumps her elbow on the desk, and then laughs at her clumsiness.
The laughter enables her to re-frame the thought ‘I am clumsy’ into something innocuous.
Thera’s social transmission of this to him is Step 4 in Panel (c) of Figure 1. Where the
socially transmitted laughter is denoted LC, this process is described as follows:

FC 7→ FC ∪ {LC}, where LC ∈ SC(LT) (5)

The possibility of responding to one’s inadequacies with laughter and/or self-
deprecating humor is a new and striking concept for Clive. As such, this experience
forms a foodset element in Clive’s mind. His decision to use this strategy himself (i.e.,
to incorporate it as a reactant in subsequent steps) depends on a number of variables, such
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as the degree to which he trusts and respects the therapist, his motivation to change, and so
forth. (Elaboration of these variables is beyond the scope of this discussion).

5.4. Catalyzing Alternative Explanations

Thera not only transmits existing knowledge that Clive can import, wholesale, into his
worldview, she also prompts the independent formation of new information, specifically
tailored to his personality, that are conducive to adaptive perspectives and behaviors,
and help him resolve or come to terms with the issues he faces. This could take the form of
asking Clive questions that prompt him to reconsider existing beliefs, or by challenging
Clive’s beliefs directly. For example, Thera might as him, “Might there be other reasons
that you didn’t do so well on that math test?” This question gently challenges Clive’s
forgone interpretation of the event. It prompts him to explore reasons other than that he is
unintelligent. This is depicted in panel (c) of Figure 1, as Step 5.

Clive responds, laughing, “Well yeah, I spent a lot of time playing video games”. This
alternative interpretation does not play into the notion that Clive is unintelligent, and it
shows that he has assimilated her proclivity to diffuse a negative conclusion with humor. It
generates a new interpretation. This is depicted in Panel d of Figure 1, where Step 6a shows
the catalyzing event (i.e., the search for an alternate explanation), and Step 6b shows the
product of this ‘reaction’, Clive’s joke.

We describe this in terms of RAFs as follows. Clive’s memory of getting a bad grade on
the test, denoted GC, undergoes change, so it serves as a reactant that transforms through
RR to the product, the joke about video games, denoted VC. This new interpretation is
provoked, or ‘catalyzed’ by Thera’s question, denoted qT . We describe this as follows:

GC
qT−→ VC ∈ ¬FC, ¬FC 7→ ¬FC ∪ {VC}. (6)

This conceptual shift transforms one or more element(s) of the foodset FC into a new
foodset-derived MR, VC, i.e., a member of ¬FC. Clive’s self-concept now contains a new
MR—the joke he made—represented as a new node in his cognitive network.

5.5. Catalyzing a New Belief That Is Adaptive

When Clive dilutes the potency of this once-distressing memory with humor, Thera
laughs. This laughter, denoted as lT catalyzes a new belief in Clive’s mind, ‘I am funny’,
denoted as b2C. This new belief buoys his self-esteem, and reduces his distress. The joke,
denoted as JC serves as a reactant. Thus, the reaction is described as follows:

JC
lT−→ b2C ∈ ¬FC, ¬FC 7→ ¬FC ∪ {JC}. (7)

This is depicted in Panel (e) of Figure 1, where Step 7a refers to the catalyzing event,
i.e., Thera’s laughter, and Step 7b refers to the resulting formation of the new belief, ‘I
am funny’.

Using these four distinct methods, Thera simultaneously reduces the strength of a
distressing belief that was damaging his self-concept, and facilitate the creation of a new
belief that enhances Clive’s self-concept, as illustrated by the relative thickness of the RAFs
in Figure 1.

We note there are now hierarchical levels of RAF structure, composed of interacting
RAFs that collectively form a maxRAF (panel (e) of Figure 1) (The nodes in the therapist’s
mind associated with Steps 2, 4, and 5 in Figure 1 can either be included in this maxRAF
or not, since from the RAF point of view they are merely copies of the corresponding
elements in the client’s worldview). We note also that RAF structure extends across the
two individuals, providing a means of formally describing the dyadic relationship between
therapist and client, and the emergence of a therapeutic alliance between them.
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6. Discussion and Conclusions

We presented a RAF model of how a therapist fosters self-esteem and well-being in
the client. The model illustrated four distinct ways by which a therapist accomplishes this:
(1) providing direct examples/evidence contrary to a client’s distressing belief about them-
selves, (2) challenging the client’s existing interpretations of events, (3) using self-disclosure,
provide examples of strategies for diffusing the potency of a negative belief, (4) reinforcing
the client’s attempts to assimilate such strategies in their own ways of thinking.

As discussed in Sections 3 and 4, RAF networks have been used to model the origins
of evolutionary processes, biological (the origin of life) as well as cultural (the origin of
cumulative innovation). We think this is not coincidental; indeed, elsewhere, we showed
that both the evolution of early life and cultural evolution are instantiations of a primitive
form of evolution—i.e., cumulative, adaptive, open-ended change—referred to as Self-
Other Reorganization (SOR) [34,80,81]. Instead of replication using a self-assembly code,
SOR entails internal self-organizing and self-maintaining processes within entities, as well
as interaction between entities. The argument for SOR bolsters the argument that they share
a deep structure, and thus strengthens the rationale for applying RAFs in both domains.
In any case, the RAF approach to modeling therapeutic change is consistent with the
theory that humans possess two levels of complex, adaptive, self-organizing structure:
an organismal level, and a psychological level [43,45,82]. Psychological research tends to
be data rich and theory poor [83], and psychological theorizing remains fragmented [84].
Psychotherapy research relies on momentary snapshots of the perceptions of client and
therapist; it is vague about the nature of psychotherapeutic change, i.e., what happens at the
level of mental representations and their interrelations and interactions, and how this kind
of micro-level change alters the global structure of the client’s worldview [5]. We take a first
step towards such a global understanding in this paper. We posit that psychotherapeutic
processes affect people not just at the individual level but at the society level, by providing
a means to the creative transformation and cultural evolution of human worldviews.

Traditional methods for studying psychotherapeutic change have limitations [54]
that the complex systems approach is well positioned to overcome [85–88], by enabling
psychotherapy to be modeled and understood more precisely, using tools that embed it
in a larger framework that includes other systems and disciplines. The above model of
the therapeutic process provides a framework for empirical data collection and analysis.
A next step is to incorporate into such a model specific factors that affect therapeutic out-
comes (such as the degree of trust in the therapist). The impact of the therapeutic alliance
between therapist and client on the therapy outcome is well-known [54,89]. It would be
interesting to analyze psychotherapy sessions to track cognitive change, and the emer-
gence of a therapeutic alliance, and its impact on this change. Our model accommodates
the perspectives of both the therapist and client. While we have chosen to emphasize
the client in this interaction, the RAF approach can also model potential changes in the
therapist’s worldview. The RAF approach could also be used to investigate a number
of other issues related to psychopathology and treatment, such as the development of
mental illness, the trajectory of various mental health concerns, and whether there are
differences in the conceptual frameworks of individuals experiencing depression and those
with anxiety. It could also be used to model the impact of different types of psychotherapy
on conceptual network structure, and the impact of this structure on mental health and
well-being. One promising possibility is to study whether individual differences in reliance
on foodset versus foodset-derived information sources (i.e., the propensity to think things
through for oneself) culminate in different kinds of conceptual networks, which might
differentially affeact therapeutic progress. In addition, using RAF networks to precisely
model the psychotherapeutic process could be informative in the design and execution
of computerized psychotherapies [90,91], or as an aid to the human psychotherapist for
keeping track of, and visually depicting, specific interactions in the psychotherapy process
and their outcome. We are a long way from this, but in keeping with the adage “a picture
is worth a thousand words”, the RAF framework for psychotherapy could form the basis
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for a software program that enables the therapist to visualize and identify change in RAF
structure as it occurs over the course of psychotherapy, and to visualize desired possible
future states of their clients’ worldviews.

The RAF approach offers an established mathematical framework for integrating
research on creative cognition, semantic networks, and the kinds of structures that ex-
hibit cumulative, adaptive, open-ended change, i.e., that evolve, with a similarly dynamic
process of psychotherapy. Though still in its infancy, it has the potential to provide a
new way of understanding how the therapeutic alliance works, one that embeds psy-
chotherapy research in the formal study of self-organizing structures and their role in
evolutionary processes.
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Abbreviations
The following abbreviations are used in this manuscript:

CRS Catalytic reaction system
RAF Reflexively Autocatalytic foodset-derived network
MR Mental representation
RR Representational redescription
SOC Self-organized criticality

Appendix A. Glossary of Terms

Abstract thought: the processing of internally sourced mental contents.
Autocatalytic: the whole can be reconstituted through interactions amongst its parts.
Catalyst: facilitates a transition that would otherwise be highly unlikely to occur. Here,
the role of catalyst is played by a problem, desire, or need, or a realization or external stimuli
that trigger a thought that would be highly unlikely to occur otherwise. For example, if a
stranger on the street reminds you of a deceased relative, and this triggers a memory of
being with that person, the strange (or more precisely, your mental representation of the
stranger plays the role of a catalyst.)
Catalytic reaction system: a network of interrelated parts, such as a conceptual network.
Closed RAF: A RAF that is stable unless the foodset changes or the reactions they take part
in changes. (Formally, a closed RAF is A RAF that contains every reaction in the network
that has each of its reactants and at least one catalyst present either in the foodset or as a
product of some reaction in the RAF.) The maxRAF is always closed. The closure of any
subRAF will contain the original subRAF, and be larger (unless the original subRAF was
already closed).
Conceptual network: a web of shared properties, contexts, associations, and relationships
of logic, causation, and so forth, that bind them together.
Co-RAF: a nonempty set of reactions that is not A RAF on its own, but that forms A RAF
when combined with an existing set of reactions.
Catalytic reaction system: a network of components, such as a network of catalytic
molecules, or a conceptual network.
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Foodset, F: the elements that are initially present, as opposed to those that are the products
of interactions amongst them.
foodset-derived (sometimes called F-generated, or foodset-derived), ¬F: an element that
can be generated from the foodset F through a series of reactions in R′ itself. That is,
an element of the network that is not part of the foodset. The term ‘foodset-derived’ is more
often used in the cognitive application of RAFs.
Individual learning: obtaining pre-existing information from the environment by nonso-
cial means through direct perception.
IrrRAF: A RAF that is irreducible, i.e., cannot be broken down into smaller RAFs.
MaxRAF: the largest RAF in the network. It includes all other RAFs.
Mental representation (MR). Items in declarative or procedural memory composed of one
or more concepts or percepts, and which came about through individual learning, social
learning, or abstract thought. The set of all mental representations in individual i is denoted
Xi. (As mentioned in the text, we emphasize that although we use the terms ‘mental
representation’, we are sympathetic with the view that what we call mental representations
do not ‘represent’, but act as contextually elicited bridges between the mind and the world.)
Reflexive: each part is related to the whole.
Reflexively autocatalytic: each reaction r ∈ R′ is catalyzed by at least one element type
that is either produced byR′ or is present in the foodset F.
Phase transition: rapid transition from one state to another.
Reactant: a mental representation that participates in a given ‘reaction’, i.e., an event that
alters the structure of the conceptual network.
Reaction: a change of state or interaction between existing elements that results in a new
element. The set of all possible reactions in individual i is denoted Ri.
Representational redescription (RR): conceptual restructuring that causes a mental repre-
sentation to change. In the RAF framework this is modeled as a reaction.
Self-organized criticality (SOC): a phenomenon wherein, through simple local interac-
tions, complex systems tend to find a critical state poised at the cusp of a transition between
order and chaos, from which a single small perturbation occasionally exerts a dispropor-
tionately large effect.
SubRAF: A RAF that is not the maxRAF. It is a component of the maxRAF.
Transient RAF: a subRAF that is not closed. A transient RAF may add additional reactions
until it becomes closed.
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Abstract: In line with the growing recognition of the role of embodiment, affect and implicit processes
in psychotherapy, several recent studies examine the role of physiological synchrony in the process
and outcome of psychotherapy. This study aims to introduce Partial Directed Coherence (PDC)
as a novel approach to calculating psychophysiological synchrony and examine its potential to
contribute to our understanding of the therapy process. The study adopts a single-case, mixed-
method design and examines physiological synchrony in one-couple therapy in relation to the
therapeutic alliance and a narrative analysis of meaning construction in the sessions. Interpersonal
Physiological Synchrony (IPS) was calculated, via a windowed approach, through PDC of a Heart
Rate Variability-derived physiological index, which was measured in the third and penultimate
sessions. Our mixed-method analysis shows that PDC quantified significant moments of IPS within
and across the sessions, modeling the characteristics of interpersonal interaction as well as the
effects of therapy on the interactional dynamics. The findings of this study point to the complex
interplay between explicit and implicit levels of interaction and the potential contribution of including
physiological synchrony in the study of interactional processes in psychotherapy.

Keywords: physiological synchrony; heart rate; therapeutic alliance; psychotherapy process;
couple therapy

1. Introduction

This study rests on the assumption that psychotherapy relies on both implicit and
explicit processes and that both need to be taken into account when studying clinical
process [1,2]. It focuses on one aspect of implicit interaction, interpersonal physiological
synchrony (IPS), and introduces the use of Partial Directed Coherence as a metric for op-
erationalizing IPS in psychotherapy sessions. Using a single-case, mixed-method design
on one couple therapy, physiological synchrony is examined in relation to the therapeu-
tic alliance and a qualitative analysis that draws upon narrative principles of meaning
reconstruction in the sessions.

Synchrony is observed in many complex biological systems and is assumed to occur
through nonlinear dynamic processes rather than simple causal links. In social interaction,
synchrony concerns the temporal covariation of behavior or internal states in interacting
partners and can be broadly defined as ‘the social coupling of two (or more) individuals in
the here-and-now of a communication context that emerges alongside, and in addition to,
their verbal exchanges’ [3] (p. 558).
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A key concept in the literature on interactional synchrony is interpersonal coordination,
which refers to the degree to which the behaviors of interacting partners are nonrandom,
patterned or synchronized in timing and form [4]. There is ample evidence that behavioral
matching and interactional synchrony are ubiquitous features of human interaction, on
both verbal (e.g., vocal tone, word choice, laughter, speech accent, syntax, intonation) and
nonverbal (e.g., posture, gesture, facial expression, orientation, etc.) levels. Interpersonal
coordination emerges early in life and is an automatic, non-conscious process that is
associated with liking, affiliation, rapport, cooperation, self–other merging, perspective
taking, empathy, smoothness of interaction, prosocial behaviors, compassion and increased
performance in tasks that rely on joint actions [5–7].

In the context of psychotherapy, ‘being in sync’ has been examined primarily in relation
to nonverbal behaviors and has been shown to be associated with important psychotherapy
processes, such as rapport [8], therapist empathy, the therapeutic alliance [6,7], session
quality and therapy outcome [9–11], as well as mental state in relation to attachment [12–14].
Drawing upon developmental research, several authors have proposed that synchronous
behaviors between therapist and client are crucial for the formation of the therapeutic
alliance, which in turn promotes affect regulation in the client and fosters therapeutic
change [7]. Similarly, research on infant development suggests that repeated experiences of
biobehavioral synchrony between infants and their parents are central to the development
of affect regulation capacities in the infant and security of attachment [15–18]. There is
some evidence that synchrony is associated with affect regulation in adulthood as well, as
interacting partners in close relationships coregulate their arousal around a homeostatic
optimal level [19,20].

1.1. Interpersonal Physiological Synchrony

In addition to studying synchrony in observable behavior, in recent years, there has
been a growing interest in the role of synchrony in physiological arousal in psychotherapy.
This is in line with the recognition that psychological and social processes cannot be
isolated from embodiment and affect [21,22]. The inclusion of affective and embodied
aspects of interaction is arguably particularly relevant to psychotherapy, given that affect
is intimately linked with meaning construction and forms an integral part of the work
of therapy [23]. The Autonomic Nervous System (ANS) plays a key role in cognition,
emotion and behavior [24], and although ANS activation is not specific to affect, most
emotions are associated with increased physiological arousal [25,26]. As such, several
recent studies include psychophysiological measures in psychotherapy process research
and treat physiological activation, and particularly its arousal component, as an index of
affect [27,28]. In this literature, it is assumed that measures of psychophysiology enable the
study of aspects of the therapy process that may not be accessible through self-report or
observation, and can therefore add another layer of information on clinical process [29]. In
other words, psychophysiological measures may reflect non-conscious, implicit affective
processes and can then be used as correlates of implicit intra- and interpersonal processes in
therapy [23,30]. In addition to these theoretical developments, technological advances make
the continuous recording of physiological states in therapy relatively easy and unobtrusive.

Research on interpersonal physiology concerns the temporal coregulation of phys-
iological activation in interacting partners, using continuous measures of physiological
activity. The indices of ANS arousal most commonly used include electrodermal activity
(EDA), considered to reflect sympathetic arousal, and variables associated with heart rate
(e.g., heart rate variability), which are associated with both sympathetic and parasympa-
thetic activity. Due to the sufficient time resolution of these variables [31], their outcome
may be used to estimate the influence that one person’s physiological indices exert over
another’s, through a model of physiological interactions or coupling [32,33]. In this context,
interpersonal physiological synchrony (IPS) is defined as ‘any interdependent or associated
activity identified in the physiological processes of two or more individuals’ [34] (p. 2).
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Recent reviews of studies of IPS in different interactional contexts suggest that physiological
synchrony is a robust phenomenon identifiable through different methods [11,34].

In the context of psychotherapy, physiological synchrony between therapists and
clients was first examined in a series of studies in the 1950s in relation to rapport and
empathy [35]. More recently, the role of IPS in the psychotherapy process has been ex-
amined in several studies of psychotherapy sessions [3,23,30,36–40], as well as simulated
sessions [13,38,41]. In a recent review of this literature, Kleinbub [14] concluded that physi-
ological synchrony in psychotherapy is an established fact, although its clinical meaning is
far from known.

Physiological synchrony in psychotherapy has primarily been associated with
empathy [11,16,42,43]. However, research in interactional contexts other than psychother-
apy suggest that physiological synchrony is not uniquely associated with empathy and is not
necessarily positive for interactions. For example, research on infant development [17,18]
shows that attachment security is associated with medium-range synchrony in parent–
infant interaction and that ‘too much’ synchrony is predictive of attachment insecurity.
Similarly, findings regarding the role of physiological linkage in the quality of adult ro-
mantic relationships are mixed, with several studies showing that increased physiological
linkage in couples tends to be associated with poorer relationship satisfaction and the esca-
lation of negative affect [44]. The evidence to date suggests that, in the context of negative
interactions, IPS is associated with relationship dissatisfaction and conflict, whereas in
positive interactions, it is primarily associated with empathy and rapport [34]. In addition
to the affective valence of interactions, the degree of emotional arousal may also moderate
physiological synchrony; for example, in studies of mother–infant interactions, higher
maternal heart rate, thought to reflect increased affective arousal, has been associated with
lower physiological synchrony with her infant [45]. Drawing upon these findings, it seems
important for future research to take into account the characteristics of the relational context
when studying the role of IPS in psychotherapy.

A related issue concerns the way IPS is conceptualized, operationally defined and
calculated. The majority of studies to date of IPS in psychotherapy examine only positive
correlations, i.e., in-phase synchrony, where the therapist’s and client’s arousal covary in
the same direction, and assume that negative correlations, or anti-phase synchrony, reflect
lack of synchrony. Other studies, however, suggest that anti-phase synchrony, where one
partner’s physiological arousal decreases as the other partner’s increases, reflects processes
of coregulation or complementarity [46,47]. For example, in one study implicating a sto-
rytelling task, it was found that the narrator’s autonomic arousal decreased when the
listener’s increased and he or she displayed affiliation; this was interpreted as reflecting
a process of ‘sharing the emotional load’, whereby the listener’s engagement regulated
the teller’s physiological arousal [48]. Similarly, in a study of ANS activation in psychoan-
alytic therapy, the therapists’ empathic displays were associated with increased arousal
in the therapist and decreased arousal in the client, whereas sequences of the therapists’
challenges were associated with increases in both participants’ arousal [49]. In line with
these findings, Butler & Randell [19] suggest that asynchrony may be associated with stress
buffering, whereby one individual moderates the stress level of another. Based on the
above, including both in-phase and anti-phase synchrony in studies of IPS in psychother-
apy is likely to provide a more nuanced approach to understanding this multifaceted
interactional phenomenon.

The metric employed to estimate interaction is also of importance. Most studies inves-
tigating IPS use correlation-derived estimates, which are sensitive to spurious correlations
and do not address causality or directionality in the interaction [14]. In order to overcome
this issue, approaches that employ specific causality tests, such as Granger causality, ad-
justed for estimating the information flow between multivariate time series can be used
in the frequency domain [50]. Combined with surrogate testing of the parameters used to
estimate interactions [11], such approaches may be combined with a windowed analysis to
reach a stable and fine-grained temporal resolution that can also provide directionality.
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Another important issue when examining physiological synchrony in psychotherapy
relates to the timescales employed in the analysis. Most studies calculate IPS over whole
sessions, despite the fact that IPS is likely to be a transient phenomenon that fluctuates
through sessions [1,34]. Similarly, recent studies approach the therapeutic alliance as a
dynamic phenomenon and show that therapy sessions contain several periods characterized
by ruptures in the alliance, often followed by interactive repair [51]. Indeed, several authors
suggest that it is precisely such repairs that are important for optimal development and
therapeutic change [51–53]. Therefore, examining synchrony on a more micro-level of
interaction can shed light on processes that may not be apparent at the session level.

In sum, research on physiological synchrony in psychotherapy suggests that it can
add important information regarding the psychotherapy process; given that IPS may reflect
different interactional processes—including empathy, affect coregulation and conflict—
caution is needed when interpreting findings. Moreover, the field is fragmented on both
conceptual and methodological levels, as reflected in the prevalent lack of agreement on
terminology, data collection methods, research designs and statistical analyses [11,34,54].
Recent reviews suggest that, given how little we know about the context-specific factors
that affect IPS, it may be preferable to use idiographic designs and theoretically informed
analyses of the therapy process. Since the publication of these reviews, a few such studies
have been published that shed light on the different functions of physiological synchrony
in psychotherapy [23,30,37,42,55–57].

Before turning to the current study, we briefly discuss the concept of the therapeutic
alliance, with a focus on couple therapy, given that it is a key clinical concept that has been
associated with physiological synchrony.

1.2. The therapeutic Alliance in Couple Therapy

Several contemporary approaches to psychotherapy adopt a discursive and narrative
perspective and conceptualize the process of change in psychotherapy in terms of meaning
reconstruction [58]. In this framework, psychotherapy is described as a semantic process
that relies on the creation of a dialogical space, which facilitates the reconstruction of
clients’ life narratives so that they become more complex, polyphonic, emotionally salient,
inclusive and flexible [59]. The therapist’s receptive and relationally responsive attitude
towards the clients’ storytelling and expression of affect are considered crucial elements in
this process [60]. There is ample evidence that different therapist actions associated with
responsiveness play an important role for the process and outcome of psychotherapy [61],
with the therapeutic alliance being a key relational aspect in this process.

The therapeutic alliance is a pan-theoretical concept that is associated with the col-
laborative aspects of the therapeutic relationship and has been extensively studied as an
important process variable in psychotherapy. It is usually conceptualized as compris-
ing three interlinked aspects: a strong emotional bond between clients and therapists,
and agreement and collaboration on the goals and the tasks of therapy [62]. The quality
of the therapeutic alliance has consistently been shown to be a predictor of outcome in
individual psychotherapy across different modalities [63], as well as couple and family
therapy (CFT) [64–69]

In conjoint treatments, such as couple therapy, the therapeutic alliance consists of a
web of interlinked relationships between participants and the various subsystems thus
formed [63,66]. Several factors—such as power dynamics, conflict, trust, loyalties and
secrets in the couple or family—affect the formation of the alliance in CFT [69–71]. A
strong overall alliance in couple therapy requires a balanced alliance between the therapist
and each partner, as well as agreement in the couple on the problems, goals and values
of therapy; as such, the therapist is encouraged to foster an alliance with each partner,
avoiding ‘split alliances’, and to promote within-couple alliance [66].
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The current study is a mixed-method, single-case study aiming to illustrate the poten-
tial of the PDC metric as a useful way of examining IPS in relation to the therapy process; it
assumes a theoretically driven idiographic design and examines whether the therapeutic
alliance maps onto IPS findings.

2. Materials and Methods

The research material in this study is drawn from one-couple therapy, conducted in an
outpatient Family Therapy Department in Greece, in the context of a wider naturalistic,
multisite research study [30,39,72]. The treatment in this service follows systemic principles
and includes the use of reflective conversations with a co-therapist. In usual clinical
practice, sessions are provided monthly; a second therapist watches the session between the
primary therapist and the couple behind a one-way mirror and joins them for a reflective
conversation towards the end of each session [73]. Participating couples were informed
about the study by a graduate researcher at the end of their first session. Participation
in the project was voluntary, and ethical approval was granted by the Family Therapy
Department’s Scientific Board. Both clients and therapists gave permission for the data to
be used for research purposes.

2.1. The Case

This therapy consisted of 15 sessions spanning 14 months. The couple, Costas and
Demetra, is a white heterosexual couple in their mid-thirties. Demetra is a law graduate
with a successful professional career. Costas has no university education; he worked as a
technician in the past and is currently unemployed. The couple had been in a long-term
relationship of over 10 years when they came to therapy. They sought therapy because
of increasing tension in their relationship following the birth of their baby 10 months
earlier. Two experienced female clinical psychologists and systemic family therapists in
their fifties participated in this therapy. The therapy centered on Demetra’s distress in her
role as a mother, the expression of anger and conflict between the spouses, and Costas’ low
self-esteem associated with periods of unemployment. At the end of treatment, the couple
reported an improvement in their personal lives and their relationship.

2.2. Procedure

All sessions were video-recorded in split-screen mode with four web-cameras. In
addition, in two sessions (sessions 3 and 14), physiological measures of the participants’
heart rates were recorded for the duration of the session. Within 24 h of the measurement
sessions, a graduate researcher conducted separate Stimulated Recall interviews [74,75]
with each client and therapist, each lasting approximately 30 min.

2.3. Measures
2.3.1. Autonomic Nervous System Responses

The participants’ autonomic nervous system (ANS) responses were recorded via
Firstbeat Bodyguard (Firstbeat Technologies, Jyväskylä, Finland) [76] mobile heart rate
(HR) monitors. Ag/AgCl electrodes, connected to the Firstbeat Bodyguard, were attached
on two sites on the skin of the chest before the start of each measurement session and were
removed the next day, with the guidance of a graduate researcher. HR was continuously
recorded during this period.

2.3.2. Clinical Outcomes in Routine Evaluation–Outcome Measure (CORE-OM)

The outcome of therapy was examined using the CORE-OM, administered at the
start and end of therapy. The CORE-OM is a widely used, 34-item self-report measure
that examines psychological distress in four domains: wellbeing, problems, functioning
and risk [77].
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2.3.3. Session Rating Scale (SRS)

The SRS is a four-item, ultra-brief visual analogue instrument to assess the global
strength of the alliance, designed to be used in routine outcome monitoring [78]. The four
items measure the therapist–client emotional bond, agreement on goals, agreement on
tasks and overall rating of the alliance. It is scored by summing the marks measured to the
nearest centimeter on each of the four lines. Based on a total possible score of 40, any score
lower than 36 overall, or 9 on any scale, could be a source of concern.

2.3.4. System for Observing Family Therapy Alliances (SOFTA-o)

The SOFTA-o is an observer-based measure developed to study the therapeutic al-
liance in couple and family therapy [79]. It examines the contribution of each participant
to the alliance by coding specific behaviors in four dimensions: Emotional connection,
Engagement in the therapeutic process, Safety within the therapeutic system and Shared
sense of purpose. The first three dimensions concern the therapist(s)–clients relationship,
whereas the fourth concerns the couple sub-system. Following the coding of specific items,
global ratings are provided for each dimension on a 7-point ordinal scale, ranging from
-3 (extremely problematic) to +3 (extremely strong), with 0 denoting an unremarkable
or neutral alliance. These dimensions are conceptually interdependent and moderately
correlated and can be combined in a composite score [66].

2.4. Data Analysis
Interpersonal Physiological Synchrony

Data from the ANS were analyzed using Firstbeat PRO Wellness Analysis Software®

version 1.4.1. This software uses neural network modeling to calculate Heart Rate Variabil-
ity (HRV) indices second-by-second. This is achieved using a short-time Fourier Transform
method (STFT) combining data from HR- and HRV-derived variables that describe respi-
ration rate and oxygen consumption (VO2). In addition, the absolute stress vector (ASV)
is calculated from the HR, high-frequency power (HFP), low-frequency power (LFP) and
HRV-derived respiratory variables, as an index of the activity of the sympathetic nervous
system. The ASV grounds on detecting sympathetic reactivity that exceeds the momentary
metabolic requirements of the ANS. Hence, the ASV is high when the heart rate is elevated,
HRV is low and respiration rate is low relative to HR and HRV [80]. The ASV is calculated
at a 1 Hz rate.

2.5. Partial Directed Coherence within Sessions

Within-session, directed, interpersonal physiological synchrony based on ASV was
estimated using Partial Directed Coherence (PDC) [50]. PDC analysis transforms the
ASV time series into the frequency domain and provides time-lagged associations be-
tween two participants’ multivariate signals, assessing their statistical independence or
predictability [50]. Specifically, grounded on instantaneous Granger causality, it implies
that, knowing the previous states of the first signal (the leading signal), one may achieve a
better prediction of the second signal (the pacing signal), than just knowing the previous
states of the second signal. Hence, it describes the direction of information flow between
isolated pairs of time series, in a frequency-domain representation of the notion of Granger
causality. This approach has recently been proposed as a method of choice for estimating
IPS in psychotherapy by Kleinbub [54], due to its ability to establish direction, and thus
causality, in interactions. Due to the time-varying conditional variance of HRV signals [81],
PDC as a frequency-domain method for identifying causal interactions between the signals
was preferred over the classical Granger causality, which estimates interactions in the time
domain. In addition, PDC has previously been used to successfully estimate the frequency-
domain causality in cardiovascular time series with Instantaneous Interactions [82].

The second-by-second ASV data of the measurement sessions were imported into
Matlab (MathWorks Inc., Natick, MA, USA) as time series. The ASV time series were
segregated into time-windows of 50 s, and the PDC for each window was estimated
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independently for each pair of participants in each session via an in-house script based on
the work of Baccalá and Sameshima [50]. The length of the time-window was empirically
determined on the basis of a series of tests comparing the number of significant PDC
time-windows within independent sets of surrogate data generated via Matlab, aiming
to achieve the best possible balance between the resolution of the analysis (i.e., smallest
time-window) and the absence of false-positive significant PDC time-windows. Hence,
for each 50 s time-window of the session, we retrieved two PDC values for each pair of
participants (one for each direction, i.e., one in which participant 1 leads and participant
2 paces, and one in which participant 2 leads and participant 1 paces). Additionally, a
statistical test based on Monte Carlo iterations of the corresponding data was performed
for each pair, in order to identify time-windows with a significant PDC. The threshold of
significance was defined as p = 0.05/3, accounting for the total number of comparisons
in which the same set of data participated, thereby effectively controlling for multiple
comparisons. Only significant PDC values were taken into account.

2.6. Partial Directed Coherence between Sessions

The number of significant PDC time-windows for each pair of participants was com-
pared between sessions 3 and 14 as an index of the overall effect of therapy on interpersonal
physiological synchronization. The aim was to identify differences in the global characteris-
tics of IPS between sessions at the start and end of therapy.

2.7. Qualitative Analysis of the Therapy Process
2.7.1. Topical Episodes

The measurement sessions were segmented into topical episodes, i.e., periods of time
during which a specific topic was discussed [83]. This coding was initially carried out by
two graduate researchers and was checked by third researcher, and any discrepancies were
resolved through discussion. This initial thematic coding provides a description of the
main themes discussed in a session. Session 3 was segmented into 14 topical episodes,
ranging from 2 to 15 min’ duration, and session 14 was segmented into 12 topical episodes,
ranging from approximately 1 to 9 min’ duration.

2.7.2. Therapeutic Alliance

Two graduate psychologists, trained in using the SOFTA-o, coded each session. The
raters coded the sessions independently and then discussed any discrepancies until consen-
sus was reached. Next, in order to gain a more fine-grained coding of the development of the
alliance through the session, the strength of the alliance was coded for each topical episode.

3. Findings and Discussion

With regards to the outcome of therapy, the clients’ CORE-OM scores decreased
significantly over the course of therapy, suggesting a clinically significant reduction in
psychological distress (Table 1). At the onset of therapy, both partners reported a medium
level of distress, and, importantly, Costas scored on items concerning the risk of harming
himself. At the end of therapy, Demetra’s CORE-OM score decreased to the cut-off point
for clinical distress (<10), and Costas’ showed clinically significant change (>5 clinical score
points) [77]. In terms of the therapeutic alliance, Costas’ scores indicated a positive alliance
in session 3, which further increased in the penultimate session, whereas Demetra’s scores
indicated a problematic alliance in session 3, which improved in the penultimate session.

Table 1. Clients’ CORE-OM and SRS scores.

CORE-OM CORE-OM RISK SRS

Session 1 Session 15 Session 1 Session 15 Session 3 Session 14

Demetra 12 10 0 1.6 5.6 8.0
Costas 19 11 5 0 8.9 9.8
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Next, we present the key quantitative findings regarding interpersonal physiological
synchrony (IPS) within and across the two measurement sessions. Then, the potential of
PDC analysis as a useful way of examining the process of therapy is explored through a
mixed-method analysis of session 3.

The physiological activity of the couple, as reflected in their ASV, in the two sessions
is presented in Figure 1. In both sessions, Demetra’s autonomic arousal decreased as the
session progressed, whereas Costas’ remained relatively constant through. It is worth
noting that Demetra’s mean ASV score in the penultimate session was significantly higher
than in the third session, and her arousal shows higher variance. The clinical relevance of
this observation would require further investigation and lies beyond the scope of this study.
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3.1. Interpersonal Physiological Synchrony
3.1.1. IPS in Session 3

The PDC analysis identified 29 time-windows in which the participants’ ASV were
synchronized in session 3, out of a total of 93 time-windows (Table 2 and Figure 2). This
corresponds to at least two participants’ physiological arousal being synchronized in 31,2% of
the total session time. More specifically, Demetra’s ASV values led Costa’s ASV in one time-
window, and the therapist’s ASV in four. In contrast, Costa’s ASV led Demetra’s ASV in eight
time-windows, and the therapist’s ASV in nine. Lastly, the therapist’s ASV led Demetra’s
ASV in six time-windows, and Costas’ in eight. Overall, in session 3, Costas’ autonomic
arousal was found to lead IPS to a greater degree than Demetra’s; moreover, the therapist had
a leading role in several parts of the session, while Demetra primarily had a pacing role.

Table 2. Number of time-windows showing significant PDC synchronization between clients and
therapist in session 3.

Leading Role

Demetra Costas Therapist

Pacing role
Demetra 8 6
Costas 1 8

Therapist 4 9
Note: Number of time-windows in session = 93. Time-windows in which at least two participants show significant
PDC = 29.
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In addition, in session 3, several time-windows showed increased IPS; we use this
term to describe time-windows in which more than one of the six possible directed syn-
chronizations were observed. We consider these time-windows as particularly significant.
Specifically, four time-windows showed increased physiological synchrony. Notably, in
one time-window, all three participants were physiologically synchronized, with a mutual
IPS between the clients and both clients’ arousal also leading the therapist’s ASV. Moreover,
as can be seen in Figure 2, the time-windows with IPS tended to cluster around specific
points in the session. We consider this clustering of IPS as reflecting time periods in the
session that are significant for the process of therapy.

3.1.2. IPS in Session 14

The PDC analysis of the penultimate session identified 10, out of a total of 58, time-
windows in which the participants’ ANS arousal was synchronized (Table 3 and Figure 3).
This corresponds to at least two participants’ physiological arousal being synchronized in
17.2% of the total session time. More specifically, Demetra’s arousal led Costas’ ASV in
four time-windows, and the therapist’s ASV in one. Costas’ arousal led Demetra’s ASV
in one time-window, and the therapist’s in two. Lastly, the therapist’s ASV led Demetra’s
ASV in four time-windows, and Costas’ in one. Overall, IPS in the penultimate session was
equally led by Demetra and the therapist, and both clients had similar pacing roles, with
Demetra pacing the therapist’s ASV and Costas pacing Demetra’s. Three time-windows
showed increased physiological synchrony in this session, and again, time-windows with
PDC tended to cluster together.

Table 3. Number of time-windows showing significant PDC synchronization between clients and
therapist in the penultimate session.

Leading Role

Demetra Costas Therapist

Pacing role
Demetra 1 4
Costas 4 1

Therapist 1 2
Note: Number of time-windows in session = 58. Time-windows in which at least two participants show significant
PDC = 10.
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3.1.3. IPS between Sessions

A comparison of the PDC values between the two measurement sessions shows that
(i) the total time spent in interpersonal physiological synchrony was significantly lower
in session 14 as compared to session 3, and (ii) the global architecture of the interpersonal
physiological synchrony network was reorganized to become more balanced as therapy
progressed (Figure 4). As mentioned above, the percentage of the total session time with IPS
decreased from 31.2% in session 3 to 17.2% in session 14. The IPS between the therapist and
each of the clients showed the most marked decrease, from twenty-seven time-windows
(28.1% of the session time) in session 3 to eight time-windows (13.7% of total session time)
in session 14. This reduction in IPS over the course of therapy can be seen to reflect the
clients’ reduced affective arousal and their gradual disengagement from the process. As
therapy progressed, the clients’ difficult feelings and conflicts were expressed, elaborated
upon and gradually reconstructed, and the physiological synchrony between the clients
and the therapist decreased. This is in line with the characteristics of the closing stages of
therapy, which entail less affectively charged and more reflective conversations, as well
as a process of gradual disengagement from the therapeutic relationship and the work
of therapy.
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Furthermore, IPS in a multi-actor setting such as couple therapy is more complex,
as there are six possible pairs of participants. A shift was observed in how the IPS was
distributed between participants; in session 3, the IPS was mainly driven by Costas, who
led Demetra’s and the therapist’s ASV in seventeen time-windows and paced the therapist
in eight. In contrast, in session 14, the overall synchrony was more equally driven by all
participants, producing a more balanced or ‘democratic’ network structure (Figure 4). This
finding points to the co-creation of a more equally distributed and balanced embodied
relatedness between participants as therapy was reaching termination.

3.2. Physiological Synchrony and Clinical Process

In order to deepen our understanding of the relational meaning of IPS as it fluctuated
through a session, the clinical process in session 3 was qualitatively analyzed drawing
upon narrative principles, and the findings were subsequently examined in relation to
the PDC analysis. In brief, the session was segmented into topical episodes [83]; this
thematic coding allows researchers to identify key themes in a session and track the
process of meaning co-construction, thus obtaining a relatively fine-grained description
of meaning making through the session. Next, a qualitative analysis was performed
to identify the significant moments in the session, which were defined as those topical
episodes where: (a) important issues in the couple’s life were introduced and narratively
elaborated; (b) associated emotions were recognized, explored and expressed; and (c) the
meaning of these key issues began to be reconstructed. The central theme in this session
concerned Demetra’s low mood and her strong ambivalent feelings regarding her role as a
mother. Two topical episodes were identified through the qualitative analysis as entailing
the elaboration of this theme, accompanied by intense emotional expression; these are
briefly described below.

The theme of Demetra’s conflicts in her role as a mother was first introduced in
TE4, approximately ten min into the session (duration 10′40′ ′). This episode started with
the therapist asking how the couple would choose to spend their time together if they
had the finances and caretaking support. Costas made several suggestions that Demetra
firmly rejected as she felt ‘bored’ with everything. Through the therapist’s gentle curiosity
and empathic questioning, Demetra’s boredom was gradually reconstructed as entailing
intense sadness; Demetra cried as she described her low mood, exhaustion, and sense of
suffocation in her role as a mother. Towards the end of the episode, Costas gently talked
about Demetra’s lack of interest in sex, and this led to the expression of more sadness by
Demetra. This episode contained the elaboration of the key theme of the session along with
nonverbal displays of affect, as well as several markers of a moderately strong therapeutic
alliance; this was particularly evident in the relationship between Demetra and the therapist,
as well as within the couple (Table 4). The PDC analysis for this episode shows a cluster
of five time-windows with IPS, accounting for 39% of the episode time; two of these time-
windows show increased IPS, whereby more than two participants are in-sync (Figure 3).
In other words, the findings from the PDC analysis concur with those of the narrative
analysis and with the coding of the therapeutic alliance, suggesting that this topical episode
was important for the therapy process on both semantic and embodied levels.

The same theme was further elaborated with increased emotional expression in TE7.
This long episode (duration 14′40”) took place in the middle of the session. It started with
Demetra crying as she described feeling trapped and suffocating in her relationship with
their baby; she vividly described her frustration and rage towards their baby, the wish to
hurt him that she sometimes experienced, her angry outbursts towards him, and the intense
guilt that she felt after such outbursts. As she listened to Demetra’s emotional narrative, the
therapist displayed many nonverbal signs of affiliation and empathy. She also introduced
the hypothesis that Demetra’s difficulties and sense of failure result from comparing herself
to an idealized version of motherhood; this was followed by a productive conversation that
challenged Demetra’s idealization of her own mother, as well as the dominant discourse
of ideal motherhood [60]. In terms of the alliance, this episode contained markers of a
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moderately strong alliance between Demetra and the therapist, whereas Costas displayed
some markers of difficulty in the alliance. Based on the PDC analysis, there were five
time-windows with IPS in this episode (including two windows with increased IPS), and
these account for 28% of the episode time. Notably, this topical episode contained one
time-window during which all three participants were physiologically synchronized. This
corresponds to the point in the session where Demetra cried as she talked about the rage
and guilt she felt towards their baby. A cluster of time-windows with IPS can be seen at the
end of the episode, as Demetra’s sadness and sense of suffocation in her maternal role were
expressed. Once again, in this topical episode, the PDC analysis identified a period in the
session that entailed intense affective expression by Demetra, empathic responsiveness by
the therapist and a strong therapeutic alliance.

Table 4. Comparison of SOFTA scores and number of PDC identified significant time-windows for
each Topical Episode.

TE
SOFTA Scores Time-Windows

with PDC
% Episode

Time in PDCCostas Demetra Therapist SSP Composite Score

1 2 1 0 0 3 2 47.6
2 1 1 2 0 4 1 26.3
3 −1 0 1 2 3-1 0 0
4 1 2 1 2 6 5 39
5 0 0 0 1 1 1 15.4
6 1 0 0 0 1 0 0
7 −1 2 2 0 4-1 5 28
8 0 1 1 2 4 2 19.2
9 1 0 1 2 4 1 17.9

10 0 1 1 1 3 2 28.6
11 0 0 0 1 1 1 31.2
12 0 1 1 0 2 5 66
13 1 2 1 2 6 1 34.5
14 1 0 1 1 3 0 0

Next, we examined a topical episode identified as significant through the PDC, but not
through the qualitative analysis: TE12 contained a cluster of time-windows with IPS that
account for 66% of the episode time. The episode took place towards the end of the session
(duration 5′20”) and focused on Demetra’s lack of sexual desire, a delicate and affectively
charged issue in the couple’s relationship. In this instance, the PDC analysis identified a
part of the session that was not identified as important from a qualitative perspective, but
which proved to be significant later in the treatment.

In sum, the two topical episodes that were identified as important for the process of
therapy through the qualitative analysis also entailed increased IPS and increased ratings
of the therapeutic alliance, as compared to the rest of the session. These findings are in
line with the literature that points to the role of IPS in empathy, affiliation, rapport and the
therapeutic alliance [7,11,43]. At the same time, PDC analysis proved useful in identifying
significant moments in the session.

In order to explore the relational significance of IPS, we examine the findings from
the PDC analysis in relation to the interactions between participants in session 3. With
regards to the therapist–client(s) interaction, periods of physiological synchrony between
the therapist and Demetra account for 10.1% of the session time (corresponding to 27.8%
of the total time with IPS); IPS between the therapist and Costas is significantly higher,
accounting for 18.3% of the total session time (corresponding to 47% of the total time with
IPS). This points to the presence of a more intense affective connection between Costas
and the therapist, and this is in line with the clients’ respective SRS scores (Table 1). This
finding reflects the complex interplay between explicit and implicit aspects of interaction in
psychotherapy. More specifically, the therapist was very responsive to Demetra’s distress
on an explicit level, as she openly expressed empathy and affiliation with Demetra’s painful
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conflicts regarding motherhood. At the same time, she was significantly more in-sync with
Costas on an embodied level. This is in line with findings that behavioral and physiological
synchrony seem to be independent processes that do not always co-occur [84]. The therapist
was able to maintain a balanced therapeutic alliance with both members of the couple,
and this was achieved through different modalities. In other words, implicit and explicit
modalities of interaction were used to manage different interactional goals [30]. This is
important, as split alliances, i.e., situations where the therapist takes sides by colluding
with one partner, have a negative impact on the outcome of therapy [79]. In addition, there
is some evidence that the therapeutic alliance with the male partner is critical for therapy
outcome in heterosexual couples [70].

With regards to the couple’s relationship, Costas’ physiological arousal led Demetra’s
ASV significantly more than the opposite. Thus, although Demetra’s difficulties were
central on the level of talk, on an implicit embodied level, Costas had a more powerful
influence on the interaction. Again, this is an observation that illustrates the complex
interplay between the verbal and embodied aspects of psychotherapeutic interaction. A
possible interpretation of this observation is that of affect co-regulation, where Costas’
presence could be seen to regulate Demetra’s affective arousal, as often happens in comple-
mentary, i.e., homeostatic, couple relationships [36]. A closer examination of the level of
both partners’ arousal, the valence of their affective displays, and an examination of the
talk in these episodes would help contextualize and interpret these observations more fully.

4. Conclusions

The findings of this study point to the complex interplay between explicit and implicit
levels of interaction and the potential added value of including physiological synchrony in
the study of interactional processes in couple therapy [36,55,72,85,86]. In line with contem-
porary theories of therapeutic change, a key assumption of this work is that psychotherapy
entails processes of intersubjective meaning making that take place through different
modalities and, presumably, with different degrees of conscious awareness [23]. From this
perspective, including measures of physiological activation in the study of psychotherapy
sessions can help examine implicit, embodied interactional processes that contribute signif-
icantly to the formation of the therapeutic alliance, the co-creation of new meanings and,
ultimately, therapeutic change. Although several research methods have been developed
to study the talk in interaction [48,58], these methods generally fail to grasp the implicit,
procedural level of interaction. Our attempt to include measures of autonomic arousal
in studies of the therapy process and to operationalize implicit interactional processes of
embodied responsiveness are in the spirit of exploring ways to include the implicit realm
when studying the psychotherapy process [23].

Research to date suggests that IPS reflects different interactional processes, and these
need to be disentangled for the field to progress [11,34,54]. In our study, we propose the
use of a windowed Partial Directed Coherence-based approach as a metric to calculate
physiological synchrony, as this allows a more nuanced examination of the dynamic nature
of IPS in psychotherapy sessions. PDC analysis allows us to examine the therapy process
in specific interactional events in the session, and this micro-focus provides a more fine-
grained description of interactional dynamics as they develop, thus allowing a more
nuanced interpretation of the role of IPS in the therapy process. Importantly, PDC analysis
allows us to examine the directionality of synchronous interactions, which again adds
another layer of complexity to our understanding of the role of physiological synchrony in
the therapy process. Therefore, the proposed approach models the couple’s interactions
within the setting of a therapy as a self-organizing system, a system that is both open and
complex, exchanging energy and information between its component parts and with its
surroundings [87]. This exchange may be synchronic and diachronic, in spatial distribution
and time transitions, therefore demanding multidimensional theoretical models to represent
its hybrid nature [88].
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A key aim of this study was to explore the links between a quantitative approach to
the study of IPS and the characteristics of interactional dynamics and the clinical process,
and this mixed-method analysis produced promising initial findings. More specifically,
it examined shifts in IPS between the start and end of therapy in a successful couple
therapy and identified a reduction in IPS as therapy progressed. This decrease primarily
concerned the therapist–client(s) interaction and was interpreted as a reflection of progress,
in the sense of a decrease in the intensity of negative affects expressed by the clients and
the need for therapist empathy, as well as the couple’s gradual disengagement from the
process of therapy in line with the termination phase. In addition, the network of IPS
between the three participants became more balanced. Both these findings are in line with
a good therapy outcome, and as such, they provide support for the clinical validity of
PDC analysis.

The main limitation, inherent in this approach, is that only one couple is included;
hence, the descriptive outcome of the study cannot be generalized. Nonetheless, we
propose that this detailed analysis provides a necessary step for evaluating the usefulness
of employing PDC analysis to examine IPS in therapy sessions, which can now be further
elaborated. Studying IPS via a windowed PDC approach may lead to an even more detailed
identification of the underlying processes if the characteristics of the ANS signals during
significant time-windows are further investigated. In addition, calculating positive vs.
negative correlations of ANS activity or specific patterns of ANS reactivity within the
significant time-windows may be used in future studies to examine their associations with
different intersubjective processes, such as empathy, alliance or affect contagion. We hope
that future work in this field will exploit the strengths of the PDC analysis and further our
understanding of the embodied, relational aspects of the therapy process.
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Abstract: We investigate the response characteristics of a two-dimensional neuron model exposed to
an externally applied extremely low frequency (ELF) sinusoidal electric field and the synchronization
of neurons weakly coupled with gap junction. We find, by numerical simulations, that neurons can
exhibit different spiking patterns, which are well observed in the structure of the recurrence plot (RP).
We further study the synchronization between weakly coupled neurons in chaotic regimes under the
influence of a weak ELF electric field. In general, detecting the phases of chaotic spiky signals is not
easy by using standard methods. Recurrence analysis provides a reliable tool for defining phases
even for noncoherent regimes or spiky signals. Recurrence-based synchronization analysis reveals
that, even in the range of weak coupling, phase synchronization of the coupled neurons occurs
and, by adding an ELF electric field, this synchronization increases depending on the amplitude of
the externally applied ELF electric field. We further suggest a novel measure for RP-based phase
synchronization analysis, which better takes into account the probabilities of recurrences.

Keywords: neuron; electric field; weak coupling; gap junction; synchronization; recurrence plot

1. Introduction

Action potentials, or spikes, are responsible for the transmission of information
through the nervous system [1]. A neuron can generate various temporal patterns of
spike signals when it is driven by stimuli or noise from both internal or external envi-
ronments. Therefore, analyzing spiking patterns of neurons under different stimulations
plays an important role in the exploration of the encoding and decoding mechanism of
information for neurons. External environmental stimuli in the brain can be of various
origins, such as a wide utilization of power lines or electrical equipment. Electromagnetic
exposure in the environment today is nearly one hundred times stronger than in previous
centuries and many neuronal diseases are probably caused by electromagnetic exposure,
as reported by Huang et al. [2]. Experiments with transcranial electrical stimulation have
shown that electric field magnitudes in the cortex can be as high as 0.4 mV/mm for a 1 mA
stimulation current. For typical electrode configurations used in clinical trials, maximal
field intensities of up to 0.8 mV/mm were found when applying 2 mA. More extended
areas can reach values of 0.28 mV/mm (95th percentile) under 2 mA stimulation [3–5].

An electromagnetic field can affect the neuron sensibility [6–9]. It also exhibits the
excitability of many nerve cells, such as hippocampal cells, or cortical neurons [10,11].
Neurons exposed to an electromagnetic field can change the normal firing properties,
which may lead to many neural diseases such as amyotrophic lateral sclerosis, senile
dementia, Parkinson’s disease, and Alzheimer’s disease [7,12–14].

Entropy 2022, 24, 235. https://doi.org/10.3390/e24020235 https://www.mdpi.com/journal/entropy135
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On the other hand, neurons are strongly coupled in the brain, and they need to
synchronize information to encode and decode. Synchronization is a universal concept
of nonlinear dynamics [15]. In the brain system, synchronization is a typical form of
group motion rhythm, which means the neurons discharge at the same time or their
discharge rhythms have at least some kind of relationship [16,17]. Neuronal synchrony
activities can be found not only among coupled neuron groups in the same brain region
but also among uncoupled neuron groups in the same brain region or among different
cortical areas; moreover, synchronization can cross over two hemispheres of the brain [18].
Synchronization processes are crucially important for the neuronal system, and well-
coordinated synchrony within and between neuronal populations appears to play an
important role in neuronal signaling and information processing.

To study synchronization between neurons, different models of neuron dynamics have
been developed, such as the Hodgkin–Huxley (HH) model and all the models derived
from it. One of the derived models is the Morris–Lecar (ML) model [19,20]. It has the
advantage of exhibiting class I and II neurons. Most studies on neuron synchronization
use the Morris–Lecar model under an external electric field. For example, Kitajima and
Kurths [21] investigated forced synchronization of electrically coupled class I and class II
neurons under different coupling strengths. It was found that class II neurons have a wide
parameter region of forced synchronization. However, in general, such studies did not
consider the effect of small variations of the coupling strength between neurons.

The assumption of weak neuronal connection is based on the observation that the
typical size of a postsynaptic potential is less than 1 mV, which is small in comparison to the
mean potential necessary to discharge a cell or the average value of the action potential [22].
In a study of synaptic organization and dynamical properties of weakly connected neuronal
oscillators, Hoppensteadt and Izhikevich [23] showed some phase synchronization between
neurons in this range of coupling. Moreover, Izhikevich [24] studied the synchronization
of elliptic bursters in a range of weak connectivity and found that such weakly connected
bursters need few bursts to synchronize and synchronization is possible for bursters having
quite different quantitative features. These phenomena were found in different neuron
models, such as the FitzHugh–Rinzel, ML, and HH models.

The important question is if, even in the range of small coupling strength, a pair
of neurons weakly coupled with gap junction are able to synchronize under the effect
of an electric field (EF). Because electromagnetic stimulation can cause many disorders
in the neural system, the theoretical investigation of the impact of an external EF on
the synchronization of weakly coupled neurons is an important step to understand what
happens in the brain during this exposure. Thus, in this work, we study the synchronization
of a pair of ML neurons weakly connected with gap junction under an externally applied
extremely low frequency (ELF) EF. Here, extremely low frequency means a frequency
range between 0 and 10 Hz. Mammalian neurons show intrinsic resonance with frequency
selectivity for inputs within the range from 4 to 10 Hz [25–30]. Gap junctions (channels that
physically connect adjacent cells) provide an efficient and extremely fast way to propagate
those signals between neurons [31,32]. In contrast, signal transmissions via chemical
synapses have a significant delay (in the order of milliseconds) [33] and are not fast enough
to respond to the EF. Therefore, we consider here coupling via gap junction, allowing direct
response to the ELF EF. Using recurrence plot-based time series analysis, we investigate
how the applied EF affects the condition of synchronization of the coupled neurons. This
specific method has the advantage of being able to compare the phases of chaotic weakly
coupled systems, even within noncoherent regimes or for spiky signals [34].

Recurrence plots (RPs) represent manifold recurrence features of a dynamical system
in phase space [35] and are widely applied in the field of neuroscience [36–42]. For exam-
ple, RPs can differentiate the stochastic and deterministic dynamics of irregularly firing
cortical neurons [43] and show the average dynamics within a network of synchronized
neurons [44] or spontaneous activity in neuronal in vitro cultures [45]. They are also pow-
erful tools to study inter-relationships, coupling directions, phase synchronization, and
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generalized synchronization [34,46–48] and have been applied in different fields, such as
chemistry, engineering, physiology, financial markets, and climatology [41,49–53]. Based
on EEG measurements, the joint recurrence and the correlation of probability of recurrence
were used to reconstruct brain networks [54,55]. A similar approach was used to study the
synchronization between neurons based on the Hindmarsh–Rose model [39].

The correlation of probability of recurrence is a commonly used measure for recurrence-
based phase synchronization analysis [34,50]. However, this measure is based on Pearson
correlation and, thus, has a methodological concern because of the spiky nature of the
probability of recurrence.

In this study, we first formulate the mathematical modeling of a single ML neuron and
present typical neuron bursting patterns under varying ELF EFs and their corresponding
recurrence features as obtained by RPs. We then study the synchronization of two weakly
coupled chaotic bursting neurons with and without the influence of an ELF EF. We present
the effect of EFs on the mismatch of the mean frequencies of both neurons, even when
they are weakly connected. For this purpose, we suggest a slight modification of the
recurrence-based phase synchronization measure.

2. Model
2.1. Morris–Lecar Neuron Model under an Extremely Low Frequency Electric Field

The ML neuron model is a model for electrical activity in the barnacle muscle fiber [19].
It is a simplified version of the HH neuron model for describing the discharge and the refrac-
tory properties of real neurons. It can explain the dynamical and biophysical mechanisms
of the action potential initiation. This model is chosen as a compromise between a realistic
representation of neuronal dynamics and an analytically tractable system. Furthermore,
it has an advantage in that the excitability of types I and II can be obtained with a single
parameter change. It can also exhibit a variety of bursting types involving regular bursting
or irregular bursting and complex bifurcation structures [20,56–58].

The ML model has a fast activation variable v (membrane voltage) and a slower
recovery variable w. v represents voltage (expressed in mV) and controls the instantaneous
activation of fast currents (ifast); w is a function of v and controls the activation of slower
currents (islow). c dv

dt is the current flowing through the capacitor related to the variation of
ionic density between external and internal faces of the membrane. ifast, islow, and ileak are
ionic currents characterizing the movement of charged particles through the ion channels.
This movement of charged particles is due to the opening and closing of each ion channel.
istim and c are the external input current and the membrane capacity, respectively. Finally,
this model is given by the following equations:

c
dv
dt

= istim − ifast − ileak − islow (1)

dw
dt

= ϕ
m2(v)− w

b(v)
(2)

with the currents

ifast = gfastm1(v)(v− eNa)

islow = gsloww(v− eK)

ileak = gleak(v− eleak).

The parameters eNa, eK, and eleak represent the equilibrium potentials of Na+, K+,
and leak ions, respectively, and gfast, gslow, and gleak are the maximal conductances of the
corresponding ion currents. They reflect the ion channels’ densities distributed over the
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membranes. Control parameter ϕ is used to control the rate of change of w. The steady
states m1 and m2 are nonlinear functions of v, given by

m1(v) = 0.5
(

1 + tanh
v− u1

u2

)
(3)

m2(v) = 0.5
(

1 + tanh
v− u3

u4

)
(4)

b(v) =
1

cosh v−u3
2u4

. (5)

u1 and u3 are the activation midpoint potentials at which the corresponding currents are
half activated. u2 and u4 denote the slope factors of the activation. The time constant
of the potassium activation is b. When a time-varying ELF EF is applied to the brain,
it can induce a charge movement in the brain tissue; in which case, the current flow
occurs mostly in the extracellular medium [59]. Therefore, an external EF will induce a
membrane depolarization ∆v which will modulate neuronal bursting behavior. For the
sake of simplicity, we consider a steady external sinusoidal electrical field

ve =
A
ω

sin ωt + VE (6)

where VE is the direct voltage, A the amplitude, and ω the frequency of the ELF EF. The
field-induced membrane depolarization ∆v can be expressed by [60]

∆v =
A
ω

sin ωt− cos ωt

1 + (ωt1)
2 + VE (7)

with t1 significantly small and the frequency in the extremely low frequency area ωt1 � 1.
Thereby, Equation (7) can be simplified to

∆v =
A
ω

sin ωt + VE. (8)

According to Equation (8), the sinusoidal EF ve equals its field-induced membrane
depolarization ∆v. Considering that ∆v acts as an additive perturbation to the membrane
potential, the dynamics of a neuron during exposure can be described by [61]

c
dv
dt

= istim −
d∆v
dt
− ifast − ileak − islow (9)

dw
dt

= ϕ
m2(v)− w

b(v)
(10)

with

ifast = gfastm1(v)(v + ∆v− eNa)

islow = gsloww(v + ∆v− eK)

ileak = gleak(v + ∆v− eleak).

We assume that the synaptic input current istim = 0 in order to study the response of a
cortical neuron model exposed to an external sinusoidal field. Throughout this paper, we
use the same parameter values for the ML model as explained in Table 1 [62].
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Table 1. Parameters used for the ML model.

u1 −1.2 mV gfast 20 mS/cm2 eNa 50 mV ϕ 0.15
u2 18 mV gslow 20 mS/cm2 eK −100 mV c 2 µ
u3 −13 mV gleak 2 mS/cm2 eleak −70 mV VE −17.63 mV
u4 10 mV

2.2. Bursting Patterns of a Neuron

To explore how the neuron model responds to the externally applied ELF EF, we
study the dynamics described by Equations (9) and (10) under the sinusoidal stimulus ve,
Equation (6). The simulations are implemented using the 4th-order Runge–Kutta method
with a time step of 0.01 ms. Initial conditions are chosen as the resting values of membrane
voltage in the absence of stimuli, that is, v(0) = −65 mV and w(0) = 0. The length of
the time series is 2000 ms. The response of a neuron induced by an EF depends on the
EF’s frequency ω (Figure 1 for ω in the range 0 ≤ ω ≤ 0.5 rad/ms). The amplitude of the
external EF is set very small, A = 0.1.

The firing pattern of a neuron stimulated by an external EF varies when changing the
frequency ω (Figures 1 and 2). For an ELF EF with very low frequency, the neuron fires
periodically. We find n spike bursting states, and the number n can be large. n spike bursting
means that we have n action potentials in every stimulus period (Figures 1A–D and 2) for
ω = [0.001, 0.120] rad/ms. After this range ω of n-periodic bursting, the neuron bursts
synchronously to the stimulus ω = [0.121, 0.280] rad/ms. After this range of ω, the
neuron exhibits a chaotic response (Figure 1E) with ω = [0.281, 0.320] rad/ms where the
membrane potential responses are aperiodic and irregular. As ω is further increased, a
mode locking pattern of bursting appears (Figure 1F), finally followed by synchronized
firing with only one action potential in every stimulus, which can maintain this state for a
long-term frequency band (Figure 1G). Neuron dynamics are obviously very sensitive to
the frequency of the stimulus by the ELF EF.
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Figure 1. Spiking patterns of ML neuron membrane voltage under an external EF for different
frequencies: (A) ω = 0.02 rad/ms, (B) ω = 0.05 rad/ms, (C) ω = 0.06 rad/ms, (D) ω = 0.10 rad/ms,
(E) ω = 0.286 rad/ms, (F) ω = 0.32 rad/ms, and (G) ω = 0.5 rad/ms.
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Figure 2. Bifurcation diagram of ML neuron dynamics under an external EF for varying frequencies
ω (based on interspike intervals of the membrane voltage). For better visibility of the dynamics for
larger ω, the y-axis was bounded to 250 ms.

3. Recurrence Quantification Analysis (RQA)

In the following, neuron dynamics will be studied using recurrence quantification
analysis (RQA). This method quantifies certain recurrence features of the dynamical system
in its corresponding phase space [35,63]. We define a recurrence of a trajectory ~x(t) ∈ Rm

(with m the dimension of the system) of a dynamical system by saying that the trajectory
has returned at time t = j to the former point in phase space visited at t = i (with i ∈ [1, N]
and N the length of time series) if

Ri,j = Θ
(

ε−
∥∥~x(i)−~x(j)

∥∥
)

(11)

where ε is a pre-defined threshold and Θ(·) is the Heaviside function. We have a matrix of
(0, 1), where 1 at (i, j) means that ~x(i) and ~x(j) are neighbors and 0 means that they are not.
The resulting black and white representation of this binary matrix is called a recurrence
plot (RP). For the selection of the recurrence threshold ε, different strategies are available,
depending on the research question [64–69]. Here, we use an approach to select ε in a way
that ensures a certain recurrence point density. This allows a better comparability between
RPs of different systems [68].

The RP method has been intensively studied and applied in the last years. Different
measures of complexity have been proposed that can classify different dynamics, identify
dynamical transitions, or detect couplings, causality, or synchronization [35].

If not all state variables of the state vector ~x are available, a phase space reconstruction
has to be applied. Here, we use the recently proposed PECUZAL method to reconstruct
the phase space trajectories [70]. This method allows us to use multiple embedding delays
τ. The embedding parameters are listed in Table 2.

Table 2. Embedding parameters indicated by the PECUZAL algorithm.

Time Series Dimension Delay

4 spike burst (ω = 0.05 rad/ms) 3 17, 22
2 spike burst (ω = 0.10 rad/ms) 2 16, 20

chaos (ω = 0.286 rad/ms) 2 20
1 spike (ω = 0.5 rad/ms 2 19

RPs of the different bursting neurons represent a typical pattern (Figure 3, using an
ε that ensures a recurrence point density of 0.15). Each “dashed-dotted” diagonal line in
the RPs corresponds to a spike. For the alternating spiking behavior, we have a set of
dashed lines followed by an extended black region (Figure 3A,B). The set of n spikes is
well distinguished by the number of dashed lines (see some orange boxes marked in the
figure). The block-like black region represents the silent state between each stimulus, which
is a period for which the neuron cannot respond to a stimulus. On the small scale, the
diagonal lines show some additional patterns, i.e., small structures sitting perpendicularly
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at these lines or thickenings, similar to bumps or knobs. This is a typical feature of slow–fast
systems [71].
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Figure 3. RPs of the membrane voltage v of selected bursting neurons: (A) 4 spike burst (ω =

0.05 rad/ms), (B) 2 spike burst (ω = 0.10 rad/ms), (C) chaos (ω = 0.286 rad/ms), and (D) 1 spike
(ω = 0.5 rad/ms). Diagonal lines represent the spikes, the larger extended structures represent the
“silent” epochs, and the structures perpendicular to the diagonal lines and small thickenings represent
the slow–fast dynamics (blue circle in (D)). The orange boxes in (A,B) mark a sequence of diagonal
lines. The number of diagonal lines counted from the main diagonal of such a box towards the corner
of this box represents the number of spikes within this period. Recurrence threshold ε is selected to
ensure a recurrence point density of 0.15.

In order to go beyond the visual impression of the RP, we use recurrence quantification
analysis (RQA) [35,72]. The RQA measures are based on the recurrence point density
and the diagonal and vertical line structures of the RP. For example, the recurrence point
density 1

N2 ∑ Ri,j corresponds to the probability that a state will recur. The calculation of
this measure can also be restricted to a diagonal-wise calculation, i.e., the recurrence point
density along a diagonal with distance τ from the main diagonal Ri,i = 1 [35]. This gives
us an estimator of the probability that the system returns to a previous state after time τ
and is called the τ-recurrence rate,

RRτ =
1

N − τ

N−τ

∑
i=0

Ri,i+τ (12)

where τ is the set time and N the total number of points in the phase space. The distance
between the peaks in an RRτ plot corresponds to the period length of oscillations or the
interspike intervals of spike trains similar to the neuron’s spiking/bursting patterns.
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The spike trains of 4 spikes, 2 spikes, chaos, and 1 spike have their specific probability
distributions for recurrence after lag τ (Figure 4). Where the 1-periodic spike occurrence is
clearly visible for 1 spike (Figure 4D), the 2 and 4 spikes produce more subtle probability
distributions, revealing different periodicities and large blocks between the bursting periods
(Figure 4A,B). The RRτ of the chaotic bursting exhibits a more complicated distribution of
peaks corresponding to the unpredictable occurrence of spikes (Figure 4C).
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Figure 4. Probability of recurrence after time τ (τ-recurrence rate) for the bursting neurons as shown
in Figure 3: (A) 4 spike burst, (B) 2 spike burst, (C) chaos, and (D) 1 spike. The n bursts are visible as
the rather thin side peaks of the main peaks (in addition to the main peak).

4. Coupling of Two Bursting Neurons
4.1. Model and Numerical Simulation

A coupling between ML neurons is realized by a gap junction. We suppose that
the two neurons are slightly different by considering different values of u2 and u3 in
Equations (4) and (5), i.e., u2,1 = −18.0 mV and u2,2 = −18.1 mV, and u3,1 = −12.8 mV
and u3,2 = −10 mV for neurons 1 and 2, respectively. Moreover, both neurons start using
different initial conditions v1(0) = −65.6 mV and v2(0) = −60 mV. We integrate the model
for 50,000 time steps (with dt = 0.05) and remove the first 10,000 points as transients. Using
the ELF EF frequency that leads to chaotic bursting ω = 0.286 rad/ms, the coupled chaotic
bursting ML neurons under ELF EF exposure can be expressed as

c
dv1

dt
= istim −

d∆v1

dt
− i1,fast − i1,slow − i1,leak − g(v1 − v2) (13)

dw1

dt
= ϕ

m2(v1)− w1

b(v1)
(14)

c
dv2

dt
= istim −

d∆v2

dt
− i2,fast − i2,slow − i2,leak − g(v2 − v1) (15)

dw2

dt
= ϕ

m2(v2)− w2

b(v2)
, (16)

where g is the gap which represents the electrical junction between the neurons. With these
two different chaotic neurons, we will now study the phase synchronization between them
and focus on the range of weak coupling, i.e., with 500 values of g within the interval
g = [0, 0.15] (Figure 5).

142



Entropy 2022, 24, 235

550 600 650 700 750 800 850 900
Time (ms)

–80

–60

–40

–20

0

20

40

Vo
lta

ge
 (m

V)

A

550 600 650 700 750 800 850 900
Time (ms)

–80

–60

–40

–20

0

20

40

Vo
lta

ge
 (m

V)

B

Figure 5. Spiking pattern in the membrane voltage of two weakly coupled neurons in an ELF EF in
chaotic regime (ω = 0.286) with (A) no synchronization with g = 0.01 and (B) phase synchronization
with g = 0.04.

When bursting begins at the same time in the coupled neurons, we have bursting
synchronization irrespective of the neurons’ spiking behaviors within a given burst event.
From a dynamical point of view, since we assign a phase that increases by 2π at each
burst event, we regard bursting synchronization as a kind of phase synchronization [73].
Thus, first we will determine the phase of each chaotic bursting neuron. A frequently used
approach to calculate the phase of a signal is using the Hilbert transformation [15]

φ(t) = arctan 2
(
vH(t), v(t)

)
(17)

where vH is the complex part of the Hilbert transform of the membrane voltage v(t) and
φ(t) increases continually with time. Since chaotic neurons have chaotic spikes, the phase
of chaotic neurons changes also chaotically. Unfortunately, this approach does not work
well for spiky signals and can cause slipping of the instantaneous phases. Nevertheless, for
long-term averages, it provides useful results.

To detect phase synchronization of chaotic coupled neurons and to evaluate the ef-
fect of an ELF EF on this synchronization, we first consider the absolute phase difference
between the membrane voltage of both neurons without and with applied EF. Phase syn-
chronization occurs if the difference φ1(t)− φ2(t) between the phases of the two neurons
does not grow with time [74]. This means that the two neurons, on average, generate spikes
almost simultaneously. With the knowledge of the phase φ(t), the frequency ω̄(t) = dφ(t)

dt

and the mean frequency Ω =
〈

dφ(t)
dt

〉
can be defined. A weaker form of synchroniza-

tion is frequency locking. Frequency locking between coupled systems can be measured
by the mismatch between the average frequencies ∆Ω = Ω1 − Ω2, with ∆Ω → 0 for
phase locking.

The weakly coupled neurons show frequency locking without ELF EF when the
coupling exceeds a critical value (Figure 6). The frequency mismatch ∆Ω between both
neurons is constant between g = 0 (no coupling) and g = 0.025. After this value, ∆Ω
is decreasing and vanishes around g = 0.066, indicating the onset of synchronization
frequency locking between the neurons.

With ELF EF applied, the frequency difference is smaller, even for g = 0, and decreases
much faster than without EF; the neurons become frequency-locked for g = 0.037 (Figure 6).
Thus, in a range of weakly connected neurons, applying an external ELF EF on the chaotic
coupled ML neurons enhances frequency-locked synchronization. This confirms earlier
findings of synchronized neurons using a different model of weakly connected bursters [24].
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Figure 6. Frequency mismatch between chaotic coupled neurons for increasing coupling g without
external EF (red) and with external EF where A = 0.1 and ω = 0.286 (blue).

Since the firing pattern strongly depends on the amplitude of the ELF EF, we expect
that the occurrence of frequency locking also depends on this external stimulus amplitude.
In fact, we find that an amplitude value of A = 0.15 is strong enough to cause a complete
synchronization of two neurons even without coupling (Figure 7). Therefore, we select a
lower amplitude value of A = 0.1, where we still have a significant frequency mismatch
between the uncoupled neurons. A weak coupling between the neurons leads, finally, to
frequency-locked synchronization for lower ELF EF amplitudes.
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Figure 7. Frequency mismatch between chaotic coupled neurons for increasing amplitude A and for
different coupling strengths g.

To test for phase synchronization, i.e., whether the difference φ1(t)− φ2(t) remains
constant, we will use an alternative method which can derive the phases of spiky signals in
a more reliable way.

4.2. Phase Synchronization Analysis Using Recurrence Features

Phase synchronization is related to recurrence of states. Therefore, RPs are a natural
tool to study phase synchronization [35]. The spiking pattern causes regular and almost
periodic occurrence of diagonal line structures in the RPs (Figure 8). Here, we use a recur-
rence threshold ε to ensure a recurrence point density of 0.1. Although we notice a certain
amount of similarity between the RPs of neuron 1 and neuron 2 in the nonsynchronized
regime, we still see deviations in the line patterns of the RP of neuron 2 (Figure 8A,B). In
contrast, the RPs of neuron 1 and neuron 2 for the in-phase synchronized regime show a
striking similarity (Figure 8C,D).
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Figure 8. Recurrence plots of the membrane voltage for weakly coupled neurons as shown in Figure 5
for (A,B) no synchronization, g = 0.01, and (C,D) phase synchronization, g = 0.04. Embedding
parameters were estimated using the PECUZAL method [70]; the recurrence threshold is selected to
ensure a recurrence rate of RR = 0.1.

The vertical distance between these diagonal line structures is related to the phase.
Therefore, we can use the density of recurrence points along diagonals parallel to the main
diagonal, the τ-recurrence rate RRτ , Equation (12), as an estimator of the phase distribution
and compare it between different systems. For two nonsynchronized systems, the recur-
rence probabilities should differ significantly (Figure 9A). During phase synchronization,
RRτ should have high probabilities at the same τ values; thus, the shape of RRτ should be
very similar (Figure 9B). Therefore, RRτ has been used to construct a measure for phase
synchronization between two signals x1 and x2 by calculating the Pearson correlation of
probability of recurrence (CPR) between RRx1

τ and RRx2
τ [34]

CPRP =
cov(RRx1

τ , RRx2
τ )

σRR
x1
τ

σRRx2
τ

, (18)

with σRRτ the standard deviation of the corresponding RRτ series. CPR values of 1 would
then correspond to phase synchronization and 0 to no synchronization. Here, it is important
to remove the first peak in RRτ close to τ = 0 because these values correspond to the main
diagonal in the RP present in all systems [50]. Therefore, this first peak would indicate
some kind of similarity between RRτ(x1) and RRτ(x2) even for completely desynchronized
systems. Such exclusion of the first part of the RRτ series corresponds to applying a Theiler
window [75]. Here we used a Theiler window of 25 mS.
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Figure 9. τ-recurrence rate for weakly coupled neurons as shown in Figures 5 and 8 for (A) no
synchronization, g = 0.01, and (B) phase synchronization, g = 0.04. For phase synchronization, the
τ-recurrence rate series for both neurons are almost completely overlapping.

Another concern on calculating the CPR measure using Equation (18) is the spiky
shape of the RRτ series, biasing the Pearson correlation estimation. As an alternative, we
could use the Spearman rank correlation instead of the Pearson correlation,

CPRS =
cov
(
R(RRx1

τ ), R(RRx2
τ )
)

σR(RR
x1
τ )

σR(RRx2
τ )

, (19)

with the RRτ series converted to the ranks R(RRτ). This correlation measure is expected to
work better for non-normal distributed data, as the RRτ series would be.

Both CPR measures clearly show the onset of phase synchronization at g = 0.066 for
neurons without ELF EF and at g = 0.037 for neurons with ELF EF (Figure 10). There are
some differences between CPRP and CPRS. During phase synchronization, CPRP is almost
1, but CPRS is slightly below 1, even more obvious for the coupled neurons without ELF EF.
However, for phase synchronization, we would expect to have a CPR value of 1. Moreover,
the transition from a nonsynchronized regime to a synchronized regime is not as abrupt
as indicated by ∆Ω (Figure 6), but CPRS changes almost abruptly from very low values
to very large values, whereby CPRP shows a more gradual increase (and even step-wise
increase for A = 0). This finding indicates that the Spearman-based CPR is obviously not a
better choice than the Pearson-based CPR measure.
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Figure 10. Correlation of probability of recurrence CPR based on Pearson (dotted) and Spearman
(line) correlations indicating the onset of phase synchronization between chaotic coupled neurons
without external EF (red) and with external EF where A = 0.1 and ω = 0.286 (blue).

The RRτ series represents probabilities of recurrence. Therefore, it seems more natural
to use a measure that can directly quantify the difference between probability populations,
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such as Kullback–Leibler distance [76] or Hellinger distance [77]. Here we test the use of
the Hellinger distance

H(RRx1
τ , RRx2

τ ) =
1√
2

∥∥∥∥
√

RRx1
τ −

√
RRx2

τ

∥∥∥∥, (20)

which corresponds to the Euclidean norm of the square root distances between the RRτ

series of the two signals. Values of H close to 0 indicate phase transition, whereas values
close to 1 indicate nonsynchronized regimes.

To assess whether the variation of H indeed reveals phase synchronization, we use
a simple block shuffling approach to test the null hypothesis that the signals are not
synchronized. Block shuffling splits a time series into a number of blocks (here, we used
five blocks) of equal width at random indices and randomly concatenates these blocks to
create a new surrogate time series. Such surrogates preserve short-term temporal properties
but destroy long-term dynamical information and, thus, correlations when compared with
another signal. The distribution p(H) derived from the ensemble of surrogates is then
used to define the confidence limit of 95% (simply by using the 95% quantile of this test
distribution p(H)). Considering A = 0, we find the confidence limit by H0.95 as 0.17. Values
of H below this value can be considered to represent phase synchronization.

The measure H indicates the transition from the nonsynchronous to the phase syn-
chronization regime of the two weakly coupled neurons (Figure 11). The change in H is
significant. Moreover, the variation in H over increasing coupling strength g reveals the
more gradual change to the phase synchronization as well as the step-like transition to
phase synchronization for the situation without ELF EF caused by phase jumps.
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Figure 11. Hellinger distance of the τ-recurrence rate indicating the onset of phase synchronization
between chaotic coupled neurons without external EF (red) and with external EF where A = 0.1
and ω = 0.286 (blue). A drop of H below the confidence limit of 95% (dotted line) represents the
significance of this finding.

5. Conclusions

The synchronization of weakly coupled Morris–Lecar neurons under common external
forcing has been studied previously. For example, Kitajima and Kurths [21] used interspike
intervals (to study frequency locking) and Yi et al. [62] considered the average firing rate. In
general, the numerical calculation of the phases of spiky signals using the Hilbert transform
is problematic. An alternative way to identify the phases in dynamical systems is to use
recurrence plots [34]. This method can find phases for noncoherent and spiky signals. We,
therefore, used a recurrence-based approach, which decodes the phase in terms of specific
recurrence patterns in the recurrence plot, and demonstrated its potential for the study of
spiking patterns of neurons.

In this work, the spiking patterns of Morris–Lecar neurons under ELF sinusoidal EF
and the synchronization of two neurons weakly coupled with gap junction under ELF
EF were investigated using this recurrence-based approach. The representation of the
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dynamics of the neurons’ membrane voltages by recurrence plots provided a convenient
approach to compare the recurrence features of their spiking patterns. Various spiking
patterns, such as periodic and chaotic bursting and periodic spikes, were observed. The
spiking patterns were found to be very sensitive to changes of the stimulus frequency.

Moreover, the recurrence approach allows us to consider phase differences between
the spiking patterns in a more robust way than the frequently used Hilbert transform.
We have introduced an alternative measure for testing phase synchronization using re-
currences. Instead of comparing the probabilities of recurrences (as represented by the
τ-recurrence rate) by correlation coefficients, we suggest to use the Hellinger distance as
a more natural measure because it quantifies the differences between probabilities. The
typically used Pearson correlation is biased because the τ-recurrence rate does not follow a
normal distribution. The Spearman rank correlation could be an alternative, but we found
additional bias due the large number of zeros in the τ-recurrence rate series.

By using recurrence-based synchronization measures, we found that even without
external EF, phase synchronization of two ML neurons can occur for a range of values of
coupling strength. Moreover, phase synchronization can be enhanced by an additional
external EF. This physiological behavior might be of importance for the functioning of the
brain when exposed to electromagnetic fields, such as by power lines, electrical equipment,
or cellular radio towers.
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Abstract: In practicality, recurrence analyses of dynamical systems can only process short sections
of signals that may be infinitely long. By necessity, the recurrence plot and its quantifications are
constrained within a truncated triangle that clips the signals at its borders. Recurrence variables
defined within these confining borders can be influenced more or less by truncation effects depending
upon the system under evaluation. In this study, the question being asked is what if the boundary
borders were tilted, what would be the effect on all recurrence variables? This question was prompted
by the observation that line entropy values are maximized for highly periodic systems in which the
infinitely long line elements are truncated to different unique lengths. However, by redefining the
recurrence plot area to a 45-degree tilted box within the triangular area, the diagonal lines would
consequently be truncated to identical lengths. Such masking would minimize the line entropy to
0.000 bits/bin. However, what new truncation influences would be imposed on the other recurrence
variables? This question is examined by comparing recurrence variables computed with the triangular
recurrence area versus boxed recurrence area. Examples include the logistic equation (mathematical
series), the Dow Jones Industrial Average over a decade (real-word data), and a square wave pulse
(toy series). Good agreement among the variables in terms of timing and amplitude was found for
most, but not all variables. These important results are discussed.

Keywords: nonlinear dynamics; recurrence quantifications; line entropy; recurrence matrix masking

1. Introduction

As an extension of recurrence plots [1], recurrence quantification analysis (RQA) was
introduced by Zbilut and Webber [2,3] almost three decades ago and Marwan et al. [4]
two decades ago. These quantifications include eight recurrence variables extracted from
recurrence plots [5] which have proven to have utility in general-purpose data analyses for
linear and nonlinear systems alike [6]. The most challenging aspect of recurrence analyses
is the setting of the multiple recurrence parameters [7]. What may be less appreciated is the
effect border truncations have on all recurrence variables.

The fundamental feature of recurrence plots, which distinguishes deterministic from
stochastic systems, is the presence of diagonal line structures. Since the traditional re-
currence plot is symmetrical on either side of the line of identity (LOI), only the upper-
triangular half of the plot is utilized. The ubiquitous LOI is excluded. Three recurrence
quantification variables are directly derived from these diagonals. First, percent determin-
ism (DETERM) is defined as the ratio of points forming diagonal line structures to the
total number of recurrent points. Second, the diagonal maximum (DMAX) is defined as
the integer number of points constructing the longest diagonal line. Third, information or
line entropy (ENT) is defined as the Shannon entropy [8] of the histogram distribution of
all diagonal line lengths within the triangular recurrence window. Because long diagonal
lines are necessarily truncated at the borders of the recurrence plot, the question arises
how much the truncation effect influences the accuracy of DETERM, DMAX and ENT
computations, not to mention the remaining recurrence variables. This is the same question
formerly asked by Kraemer and Marwan [9].
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This paper will focus on the effect recurrence borders have on the computation of line
structures and other features of the recurrence plot. Two types of borders are examined:
traditional triangular recurrence borders and novel tilted box recurrence borders. The latter
represents a smaller area masked off within the larger triangular area. System studied
include a mathematical system, a real-world financial system, and a contrived toy system
to clearly illustrate time and amplitude shifts in all compared variables.

2. Disparity between Recurrence Line Entropy Values and Lyapunov Exponents

When this author [10] was studying the logistic equation by recurrence analysis, it
was noted that when the equation was in period 1, period 2, period 4, etc., periodic modes,
the line entropy values were maximized when the Lyapunov exponents were low. This
counterintuitive relationship is easily explained by the differing lengths of diagonal lines
which were truncated by the triangular borders into unique lengths. Censi et al. [11] also
realized this effect and introduced a correction by assigning all diagonals to the same length
as the central LOI. This method effectively minimized the line entropy values but carried
with it the assumption that all lines are of equal length. Eroglu et al. [12] took a different
approach using weighted recurrence plots. Entropic measures were redefined according to
the distribution of return times, not line lengths. Indeed, Shannon entropy values became
positively correlated with the largest Lyapunov exponent. More sophisticated approaches
for quantifying recurrence entropy are based on matrix microstates [13] and categorical
time series [14]. Finally, Kraemer and Marwan [9] described another method similar to the
one introduced in this paper. That is they recomputed entropy by masking the recurrence
plot such that the square recurrence matrix was windowed within a diamond pattern
overlaying the traditional plot. Thus, for fully periodic systems, all diagonal lines were
truncated to identical lengths, minimizing line entropy values to 0.000 bits/bin.

Because the auto-recurrence plot is symmetrical, in this paper, only the upper triangle
was masked with the best fitting square (not half-diamond or rectangle as in the Kraemer-
Marwan case). The box-masking will be fully described. The masking gives low entropy
values for periodic systems and high entropy values for chaotic systems. It was necessary
to compare these boxed entropy values against the traditional triangular entropy values for
several different cases and situations. Indeed, performance testing was accomplished for
all eight recurrence variables. The necessary comparisons include amplitude and timing
characteristics of the recurrence variables for both triangular and boxed recurrences.

3. Redefinition of Recurrence Plot Boundary Conditions

The boxed recurrence masking can be best be illustrated graphically. Figure 1 presents
the 400-point recurrence plot of a simple repeating sinewave consisting of 16 cycles or
waves as computed by traditional recurrence programs RQD and RQC, and new boxed
programs RQDB and RQDC (see Appendix A). Because all 16 sinewaves are identical across
the time series (green), 15 border-to-border lines excluding the LOI (black) are inscribed
within the triangular recurrence plot (blue and red). Each one of these deterministic lines is
truncated to a unique (different) length spanning from the west border to the north border.
That is, the further the line is removed from the LOI, the shorter that line is. This has
ramifications for line entropy calculations as described below.

Another approach to this sinewave truncation issue is to fashion a tilted box within
the recurrence triangle parallel to the LOI (45-degree, clockwise tilt) as is illustrated by the
black square (Figure 1). All recurrent points within this smaller boxed area (red) are simply
shorter parts of the longer lines within the larger triangular area (blue). The advantage
of this system is that the 10 diagonal line structures within the box are each truncated to
identical lengths.
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Figure 1. Recurrence plot of a sinewave with no added noise. The 16 noise-free sinewave cycles 
represent a 100 Hz sinewave digitized at 2500 Hz (25 points/cycle). The boxed recurrences (red lines) 
are constrained within the tilted box. The triangular recurrences (blue lines + red lines) are con-
strained with the upper half of the recurrence plot (above the LOI). Parameter settings: DELAY = 1; 
EMBED = 2; NORM = Euclid; WINDOW = 400; RESCALE = max distance; RADIUS = 1%; LINE = 2. 
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Figure 1. Recurrence plot of a sinewave with no added noise. The 16 noise-free sinewave cycles
represent a 100 Hz sinewave digitized at 2500 Hz (25 points/cycle). The boxed recurrences (red
lines) are constrained within the tilted box. The triangular recurrences (blue lines + red lines) are
constrained with the upper half of the recurrence plot (above the LOI). Parameter settings: DELAY = 1;
EMBED = 2; NORM = Euclid; WINDOW = 400; RESCALE = max distance; RADIUS = 1%; LINE = 2.

Then, when 5% random noise is added to the pure sinewave, the long diagonal line
structures are chopped up into shorter segments as shown in Figure 2. In this case, the noise
mitigates the influence of the truncation effects of the triangular borders insofar that the
line structures within the tilted box and triangle appear very similar. Are they in reality? By
the way, the embedding dimension was set to 2 for both the pure sinewave with a radius of
1% of the maximum distance. Using these parameter settings there was no false thickening

155



Entropy 2022, 24, 16

of the diagonal lines as discussed by Thiel et al. [15]. That is, the selected radius was high
enough to include the noisy points, but not so high as to thicken the lines.
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Figure 2. Recurrence plot of a sinewave with 5% added noise. The 16 noise-free sinewave cycles
represent a 100 Hz sinewave digitized at 2500 Hz (25 points/cycle). The boxed recurrences (red
lines) are constrained within the tilted box. The triangular recurrences (blue lines + red lines) are
constrained with the upper half of the recurrence plot (above the LOI). DELAY = 1; EMBED = 2;
NORM = Euclid; WINDOW = 400; RESCALE = max distance; RADIUS = 1%; LINE = 2.
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4. Tilted Box Boundaries and Line Entropy Modifications

Figure 3 is key to understanding the differences of the boxed entropies over the
triangular entropies computed from the histogram distribution of diagonal lines within
the recurrence plot. The upper histogram is the distribution of diagonal lines within the
noise-free sinewave (Figure 1) and the lower histogram is the distribution of diagonal
lines within the sinewave with 5% added noise (Figure 2). Note that both horizontal and
vertical scales are base-10 logarithmic. In the first case (blue lines), all 15 line lengths are
of differing lengths (375, 350, 325, 300, . . . , 100, 75, 50 25 points) and there is but one
unique line length of each. However, for the second case (red line), the 10 diagonal lines
are all of identical length (133 points) and fall into a single histogram bin. Consequently,
the triangular entropy computes as 3.907 bits/bin, whereas the box entropy computes as
0.000 bits/bin (see below).

Entropy 2022, 24, x FOR PEER REVIEW 5 of 18 
 

 

constrained with the upper half of the recurrence plot (above the LOI). DELAY = 1; EMBED = 2; 
NORM = Euclid; WINDOW = 400; RESCALE = max distance; RADIUS = 1%; LINE = 2. 

4. Tilted Box Boundaries and Line Entropy Modifications 
Figure 3 is key to understanding the differences of the boxed entropies over the tri-

angular entropies computed from the histogram distribution of diagonal lines within the 
recurrence plot. The upper histogram is the distribution of diagonal lines within the noise-
free sinewave (Figure 1) and the lower histogram is the distribution of diagonal lines 
within the sinewave with 5% added noise (Figure 2). Note that both horizontal and verti-
cal scales are base-10 logarithmic. In the first case (blue lines), all 15 line lengths are of 
differing lengths (375, 350, 325, 300,…, 100, 75, 50 25 points) and there is but one unique 
line length of each. However, for the second case (red line), the 10 diagonal lines are all of 
identical length (133 points) and fall into a single histogram bin. Consequently, the trian-
gular entropy computes as 3.907 bits/bin, whereas the box entropy computes as 0.000 
bits/bin (see below). 

 
Figure 3. Histograms of diagonal line length distributions for noise-free sinewave (upper panel) and 
sinewave with 5% added noise (lower panel). Diagonal line lengths and their counts are shown for 
triangular recurrences (blue) versus boxed recurrences (red). Corresponding, color-coded entropy 
values are also given. Note that entropy values in the top panel are very different, but entropy val-
ues in the lower panel are very similar. 

Figure 3. Histograms of diagonal line length distributions for noise-free sinewave (upper panel) and
sinewave with 5% added noise (lower panel). Diagonal line lengths and their counts are shown for
triangular recurrences (blue) versus boxed recurrences (red). Corresponding, color-coded entropy
values are also given. Note that entropy values in the top panel are very different, but entropy values
in the lower panel are very similar.
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Computation of line entropy follows the generalized formula used for Shannon in-
formation entropy [8] as shown in Equation (1). The entropy value is maximized when
each non-zero bin has the same number of counts (identical probabilities) as computed by
Equation (2). Conversely, the entropy value is minimized if bin counts are restricted to
a single bin. In this case, the entropy falls out as 0.000 bits/bin as given by Equation (3).
So from Figure 3, where 15 bins are each filled with the count of one (blue) the entropy
maximized (−log2(1/15) = 3.907 bits/bin). However, for the 10 boxed lines (red), each line
is 133 units long and the entropy is minimized (−log2(1/1) = 0.000 bits/bin).

ENTgen = −Σ(Pbin)log2(Pbin) (1)

ENTmax = −log2(1/Nbin) (2)

ENTmin = −log2(1/1) = 0.000 bits/bin (3)

So for noise-free sinewaves, at least, the computed values for line entropy range from
maximal entropy (triangular recurrence area) to minimal entropy (tiled box recurrence
area). It is the tilted box masking that makes all the difference. Both entropy values
are mathematically correct, but the boxed entropy makes more sense with respect to the
complexity of the signal. This is not globally true for all situations and signals.

With the jostling of the pure sinewave with 5% random noise, the long diagonal
lines both within the boxed area and within the triangular area get parceled (chopped up)
into shorter segments (Figure 2). Quantitatively, the distributions of these shortened line
segments are very similar (Figure 3), which is why the information entropy values for both
the triangular recurrences and boxed recurrences are likewise very similar (3.000 versus
2.807 bits/bin, respectively). Since noise is ubiquitous in real-world systems, possibly the
two methods of entropy computations are not that much different after all. However, such
a (good) conclusion has yet to be verified using experimental data.

5. Boundary Details of the Tilted Recurrence Box within the Recurrence Triangle

The edges of the recurrence box are not smooth, and the shape of the box is not
perfectly square as implied by Figures 1 and 2. For example, let us construct the largest
5 × 5 tilted square within a 14 × 14 recurrence matrix, half of which is shown in the upper
panel of Figure 4. Here, the edges of the tilted square box are marked with black dots. As
can be seen, each side of the box is 5 units in length. However, the area of this square is
not 25 square units (dark pink pixels) but must include all gap spaces as well (light pink
pixels). Secondly, the length of the diagonal must all be the same unit length (5 pixels here)
increasing the box area to 45 square units (Equation (4)). Thirdly, the area of the triangle
includes the box area plus all other empty pixels (white pixels) excluding the LOI (green
pixels) (Equation (5)). Taking the ratio of box to rectangle areas computes the percentage of
the recurrence plot occupied by the tilted box (Equation (6)).

Areabox = Sidebox · Sidebox + Sidebox · (Sidebox − 1) (4)

Areatriangle = (Sidetriangle · Sidetriangle − Sidetriangle)/2 (5)

%Box = 100 · Areabox/Areatriangle (6)

Now, if the 14 × 14 recurrence matrix size is increased to 15 × 15 square units or even
to 16 × 16 square units, the shape and area of the tilted recurrence box as defined above
remain the same. This is proven graphically in panels 2 and 3, respectively, in Figure 4.
At the same time, however, the area of the triangles increases as more empty pixels are
added. Consequently, the ratios of box area to triangle area (%Box) must necessarily
decrease. For this trio of pairs (Figure 4) the ratios decrease from 49.5% to 42.9% to 37.5%
as indicated. However, by incrementing the size of the recurrence matrix up by one step
to 17 × 17 square units, the legal tilted-box size likewise increases from 5 × 5 to 6 × 6
(not shown).
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Figure 4. Tilted recurrence box of 5 × 5 units (dark and light pink pixels) fits within 3 recurrence
matrices of 14 × 14 units (top), 15 × 15 units (middle), and 16 × 16 units (bottom). %Box is the
ratio of the box areas to the triangle areas (excluding the green LOI) which progressively decreases
as the size of the recurrence matrix increases. The blue arrow designates the middle third of five
input points (e.g., P5–P9) from which the mean and standard deviation are computed. The red arrow
indicates the left shift in the boxed recurrence variables by 4 points (P5–P1) for alignment with the
triangular recurrence variables.
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Clearly, the “square” tilted boxes can fit within 3threeincremental sizes of recurrence
matrices. To compute the integer length of the box side one needs only to divide the
number of points in the triangular recurrence window by 3. Thus, for our trio example:
14/3 = 4.667 (round up to 5); 15/3 = 5.000 (retain as 5); 16/3 = 5.333 (round down to 5).
Now the question arises, what happens to %Box (area ratios) as the number of points in the
recurrence window increases? This answer is shown graphically in Figure 5 for multiple
sets of triplets. The 5 × 5 example is indicated in red. The slope of each trio decreases as
the number of points increases. For example, for set 1001-1002-1003, the area ratios are
45.51%, 44.42% and 44.33%; for set 2000-2001-2002, the area ratios are 44.48%, 44.43% and
44.39%; for set 2999-3000-3001, the area ratios are 44.47%, 44.44% and 44.41%. In the limit
for large set numbers, the area ratios converge on 44.44% for all trios. All this means is that
the area of the new tilted box is approximately 44% of the area of the traditional recurrence
triangle.
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6. Logistic Equation

At least three studies have examined the logistic map in terms of entropy over a range
of control parameter a values [10,12,16] (Equation (7)). Each takes a different perspective
on entropy calculations with pros and cons. The present study followed the procedures of
the earlier study [10] in which parameter a was incremented on each iterated cycle in steps
of 0.00001 from a = 2.8 to 4.0 yielding 120,001 points. This series of points was subjected
to 800-point moving-window recurrence analyses using the traditional recurrence and
boxed recurrence programs (program3 RQE and RQEB). The results for all eight recurrence
variables are superimposed in Figure 6 with blue representing the traditional values and
red indicating the boxed values. As shown by the tilted blue arrow in Figure 4, the mean
and standard deviation values were computed from the middle third of time series points.
Additionally, as shown by the horizontal red arrow in Figure 4, the boxed recurrence
variables were shifted left by one-third of the window size (267 points = 800 points/3) to
better align with the triangular recurrence variables.

Xn+1 = a · Xn · (1 − Xn) (7)
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In most cases, the red traces overwrite the blue traces, proving excellent agreement
with both approaches. However, there are three notable exceptions. First, the ENT values
are widely divergent when the logistic system was in its fully periodic modes (period 1,
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period 2, period 4, period 8, etc.) over the approximate range of a = 2.8 to 3.6 with spikes
just over a = 3.2. Additionally, during the period 3 window (a = 3.83) the 2 entropy
values diverge.

Second, the DMAX values superimposed nicely, save during the sliding periodic
windows. Because the window size was selected as 800 points, the traditional DMAX
peaks at 799 diagonal points (just next to the LOI). However, the boxed window was only
one-third the size of 800 which is why the boxed DMAX is clipped at 267 diagonal points.

7. Radius versus Embedding

In RQA, one of the most difficult parameters to select is the radius. If the radius is too
low, the number of recurrent points will be too sparse; if radius is too high, the number
of recurrence points will be too dense. Indeed, when the radius equals or exceeds the
maximum distance in the distance matrix, the recurrence plot will completely saturate
(RECUR = near 100% and DETER = near 100% for LINE = 2). Taking advantage of this
principle, it is possible to increment the radius and see at which point the entropy values
for the triangular RQA and boxed RQA diverge. This was accomplished by using the new
boxed RQA program RQSB. Secondly, these divergent points must be a function of the
embedding dimension. To quantify these ideas, a single 800-point window was selected
from the logistic map (a = 3.9074 to 3.9873) as shown in Figure 7. This window represents a
purely chaotic window with no regular periodicities present. The signal looks stochastic,
but because it is derived by iterating a nonlinear equation it is actually fully deterministic.
This does not mean that the DETERM is 100%, however, because the various orbits are not
equally close to one another. Increasing the radius, includes more and more orbits within
the recurrence zone.
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The computational results are shown in Figure 8, where traditional entropy calcu-
lations are displayed by the blue lines and the boxed entropy calculations are displayed
by the red lines (programs RQS and RQSB). As can be seen, both entropy values track
very closely until the density of the recurrence plots becomes too great at very high radius
values. At these turning points the two entropy values begin to diverge as identified by
the black dots in each trace. As the embedding dimension increases the turning point
shifts to the left. For the five increasing embedding dimensions, the five decreasing radius
values at the turning points are, respectively: RADIUS = 94.94%, 85.44%, 80.95%, 79.04%
and 77.86%. At the various turning points, all entropy values, triangular and boxed, are
bunched within a rather tight or narrow range (ENT = 7.438 to 7.913 bits/bin) albeit at high
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values. Additionally, as expected, when the radius value reaches 100% of the maximum
distance, the two entropy values depart to their separate corners: regular entropies to their
maxima of 9.64 bits/bin; boxed entropies to their minima of 0.00 bits/bin. What can be
concluded from these results is that the triangular and boxed entropy values are so similar
that the triangular RQA computations for entropy remain valid just as long as the systems
under study are not fully periodic in the absence of noise.
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8. Dow Jones Industrial Averages

As shown above, the noise-free sinewave signal presented above represents an extreme
example of divergent entropy computations for verses triangular recurrences verses boxed
recurrences (ENT = 3.907 vs. 0.000 bits/bin). Adding noise to the sinewave converges the
two entropy values (ENT = 3.000 vs. 2.807 bits/bin). However, what happens to all eight
recurrence variables when the recurrence area is constrained (masked) to the tilted box as
compared against the standard recurrence triangular recurrence area?

To answer this question, real-world data (noisy) were studied by both recurrence
methods and the results were compared. The input time series consisted of downloaded
scores of the Dow Jones Industrial Average for over a decade [17]. Recurrence quantifica-
tions were computed within a sliding window (programs RQE and RQEB) and the results
are shown in Figure 9. Since the window size was 500 points, the length of the box side
was 167 points (500/3) and %Box was 44.58% (see Equations (4)–(6)). Again the mean
and standard deviation were computed for the middle third of the time series within each
window, and the recurrence variables were left time shifted as explained in Figure 4.

1. RECUR: Recurrence rates for triangular and boxed recurrence areas are very com-
parable, not with exact value matching, but by their directional shifts while moving
through the Dow Jones scores.

2. DETERM: Determinism scores are very comparable, quantitatively and qualitatively
for the most part, save for dips (red) surrounding trading days 1000 and 2000.

3. DMAX: the longest line lengths with the moving window have minimal agreement.
Both series are flat-topped around days 300 to 500 and days 1400 to 1500. The
triangular measurement peaks at 499 points, but the boxed measurement peaks at
167 points because its area is lower by 44%.

4. ENTROPY: Despite some variability the two entropy traces track very nicely with
each other. In one sense this is proof of concept that the presence of noise in the time
series actually has entropy values converging.

5. TREND: This variable quantitates the paling of the recurrence plot away from the LOI.
The two traces are almost superimposed save points surrounding trading day 1500.

6. LAMINAR: This variable reports the percentage of recurrent points that form vertical
line structures. Qualitatively, the two curves match nicely. Quantitatively, the two
curves also match nicely except for dips (red) near days 1000 and 1800.

7. VMAX: This variable is analogous to DMAX, but it measures the length of the longest
vertical line. There is some qualitative agreement between both traces, but these
results are more difficult to interpret.

8. TRAPTIME: This variable defines the average vertical line lengths which are rather
identical for triangular and boxed recurrences.

164



Entropy 2022, 24, 16

Entropy 2022, 24, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 9. The mean values (left) and standard deviation values (right) are plotted for both the trian-
gular area (blue) and tilted-box area (red). The means line up nicely, but there is less agreement for 
the standard deviation values. The raw Dow Jones scores are superimposed in the graph of means 
(green). Second, nonlinear descriptors of the Dow Jones scores are shown in the remaining eight 
panels (Figure 9). Each recurrence variable will be reviewed one by one, remembering that blue 
curves refer to triangular recurrences while red curves refer to tilted-box recurrences. 

  

Figure 9. The mean values (left) and standard deviation values (right) are plotted for both the
triangular area (blue) and tilted-box area (red). The means line up nicely, but there is less agreement
for the standard deviation values. The raw Dow Jones scores are superimposed in the graph of means
(green). Second, nonlinear descriptors of the Dow Jones scores are shown in the remaining eight
panels (Figure 9). Each recurrence variable will be reviewed one by one, remembering that blue
curves refer to triangular recurrences while red curves refer to tilted-box recurrences.
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9. Square Wave Pulse

To better understand timing and amplitude relationships among all eight recurrence
variables computed by the standard RQA versus the boxed RQA, the two methods were
compared using a simple square wave input signal. This signal consisted of 7500 points in
which the first 1500 points and last 4000 points were set to 0, but the middle 2000 points were
set to 10. The first and second transitions were abrupt (pulse up: 0 to 10; pulse down: 10 to
0, respectively). Figure 10 presents the results of this square wave as processed by both the
traditional RAQ and boxed RQA computations for all eight recurrence variables (programs
RQE and RQEB). The sliding window approach was taken at the highest sensitivity (only
1 point between epochs) to allow for clear timing delineations. Again It should be noted
that the boxed recurrences were aligned with the regular recurrences, plotting both time
series from point 1. That is the boxed recurrences were plotted from point 1, not point 167
(or 500/3). Additionally, the double vertical green lines in each panel show the exact onset
and offset of the square wave pulse.

The first observation is that width of the means and standard deviations are broader
for the standard RQA than for the boxed RQA. This is because the tilted box spans fewer
pulse points than the triangular space. Both means start from the same base (0.0) and rise to
the same height (10.0), but the rise in the boxed mean begins later and has a greater slope.
It can also be noted that the two standard deviations both reach identical maxima.

Second, prior to the onset and offset of the square pulse, the paired recurrence variables
have peaks or nadirs that line up in time. Additionally, as is necessary, the interval between
peaks or nadirs is exactly 2000 points which is the width of the square wave pulse.

Third, the contours and amplitudes of the paired recurrence variables are not the same.
This is explained by the fact that the boxed recurrence area consists of only 55,611 pixels
which is but 44.58% of the triangular recurrence area (124,750 pixels) (see Equations (4)–(6)).

Fourth, during the steady-state phases of the input signal (string of 0 s pre- and post-
pulse; string of 10 s during the pulse), the regular entropy is pegged at 8.963 bits/bin
(incorrect) whereas the boxed entropy is minimized to 0.000 bits/bin (correct). Only during
the two transition phases do the two entropy values approach each other, but never meet.
With the exception of these two entropy values and possibly the LAMINAR and TRAPTIME
variables, the other five RQA variables exhibit similar directional changes during the two
transition phases.
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Figure 10. Comparison of traditional and boxed recurrences on a single square wave of 7500 points
for 2 linear and 8 nonlinear recurrence variables. Triangular RQA computations (blue traces) and
boxed RQA computations (red traces) are performed within a sliding window of 500 points offset
by a single point between epochs for a total of 6977 epochs. However, only the first 5000 epochs are
plotted. The onset of the rising square wave is indicated by the first vertical green line (pulse on); the
end of the falling square wave is indicated by the second vertical green line (pulse off). Both time
series were aligned to point 1 (see text). Parameter settings: DELAY = 1; EMBED = 5; NORM = Euclid;
WINDOW = 500; SHIFT = 1; RESCALE = maximum distance; RADIUS = 10%; LINE = 2.
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10. Discussion and Conclusions

Back in 2015, Marwan and Webber [18] discussed in detail the mathematical and
computational foundations of recurrence quantifications. However, no mention was made
about masking the recurrence matrix to modify the triangular border truncations of diago-
nal lines. Later, both of these authors independently posited a tilted rectangle [9] or tilted
box (present paper) masking of the recurrence matrix such that long diagonal lines are
clipped to identical lengths thereby minimizing the line entropy computations. It should
be emphasized that both entropy calculations, triangular entropies and boxed entropies,
are accurate, but have different meanings. In the traditional case, line-entropy values really
describe the actual probability distributions of truncated lines. However, in the tilted box
case, line-entropy values better correspond to the underlying dynamic itself. That is, low
entropy values are related to simple (or random) systems, whereas high entropy values are
usually correlated with more complex systems, but not necessarily always. As mentioned
previously, Censi et al. [11], Eroglu et al. [12], Corso et al. [13] and Leonardi [14] all have
thoughts about revised entropy computations. The question is not which method is the
best, but rather, based upon the assumptions of each approach, how do the various entropy
computations perform on systems of all sorts. This becomes an invitation for performing
comparative studies applying these differing methodologies to representative systems of
interest (beyond the scope of this paper).

For example, Leonardi [14] has a very nice summary description of the meaning of
entropy, especially the information entropy of Shannon [8]. Information entropy values
approaching maximum entropy (such as for random systems) contain high levels of in-
formation, are complex in nature, and unpredictable in principle. However, information
entropy values approaching minimum entropy (such as for highly periodic systems) con-
tain low levels of information, are simple in construct, and can be very predictable. This
last statement is qualified for white-noise processes which present with very sort line struc-
tures which translate to very low entropy values as well. In short, the higher the entropy
value, the more interesting is the system. Conversely, the lower the entropy value, the less
interesting, even boring, is the system (excepting white noise). So for the sinewave, which
is definitely periodic, very linear, and very repetitive (if you have seen one, you have seen
them all), the entropy minimum of 0.000 bits/bin best describes the diagonal-line entropy.
The tentative conclusion is that boxed recurrence entropies may have an advantage over
triangular recurrence entropies. However, confirmation of such a claim must be verified by
other correction schemes [9].

Many observations in this paper suggest that entropy values, if not most other re-
currence variables, computed from triangular and boxed recurrences may not necessarily
be that different after all. First, the addition of subtle noise to a pure sine wave collapses
both entropies to nearly the same values insofar that long diagonal lines are disallowed
(Figures 1–3). Second, the logistic equation in its non-periodic and chaotic modes assigns
very similar quantitative (overlapping) values to all recurrence variables (Figure 6). Third,
both entropies track together for the chaotic state of the Logistic system until breaking
points of separation occur only at very high radius values (Figure 8). Additionally, fourth,
moving-window recurrence analyses of the Dow Jones Industrial Average data reveal cor-
relations between triangular and boxed recurrence variables that have similar qualitative
(REC, DET and LAM) or quantitative (ENT, TREND and TRAPTIME) profiles. With the
exception of two poorly correlated variables (DMAX and VMAX), such patterns would
lead to singular, not diverse, interpretations of the underlying dynamic (Figure 9).

As an aside, it will be appreciated that the two tilted maskings of the recurrence matrix
are qualitatively similar for both Kramer and Marwan [9] and the present paper. What
distinguishes the two approaches quantitatively, however, is that the area of the masked
rectangular recurrence plot is a full 50% in the limit of the triangular matrix whereas the
masking of the tilted box is only 44%. This 8% difference may constitute an advantage
for the former insofar that it captures a greater proportion of recurrent points. This slight
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edge may be a fine tune difference between masked versus unmasked recurrence plots and
quantifications. This hypothesis could be studied using various signals.

Finally, the moving-window recurrence analyses of the square wave pulse are provided
basically for heuristic purposes alone (Figure 10). The input signal is very clean (noise-free)
and two instantaneous jumps occur in the time series (pulse on and pulse off). One can
visualize the unmasked triangular window and the masked boxed window both moving
through the vertical lines. The responses in all eight recurrence variables reflect the two
transitional state changes encountered. In addition, the effect of the left shift of the boxed
recurrence variables can also be studied clearly. These plots can assist in learning how to
read recurrence plot variables when using masked versus unmasked methodologies.

Perhaps the most surprising conclusion of this paper is that box masking of the
recurrence matrix is not necessarily called for in most practical situations. Nevertheless,
this study reveals that border truncation effects are real when dealing with long (even
infinite) time series. If this observation can be verified for different systems it would mean
that all previous studies relying on the traditional entropy calculations for systems that
are even near periodic, the entropy values and other recurrence variables computed and
reported are valid. A good example is one recent master’s thesis on which the conclusions
relied heavily on traditional triangular entropy values to come to consistent and meaningful
conclusions [19].
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Appendix A

The new software programs used in this paper, all written by the author, are bundled
within the suite of RQA 2021 programs. These new programs include RQDB (recurrence
display) RQEB (recurrence epoch), and RQES (recurrence scale) which were run to compute
the boxed recurrences in this paper. They correspond to traditional triangular recurrence
programs RQD, RQE and RQS. All RQA programs are embedded within a single ZIP
file [20] which is easily downloaded at no cost. C-source codes will be made available to
anyone for the asking.
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Abstract: This theoretical paper explores the affect-logic approach to schizophrenia in light of the
general complexity theories of cognition: embodied cognition, Haken’s synergetics, and Friston’s
free energy principle. According to affect-logic, the mental apparatus is an embodied system open to
its environment, driven by bioenergetic inputs of emotions. Emotions are rooted in goal-directed
embodied states selected by evolutionary pressure for coping with specific situations such as fight,
flight, attachment, and others. According to synergetics, nonlinear bifurcations and the emergence of
new global patterns occur in open systems when control parameters reach a critical level. Applied
to the emergence of psychotic states, synergetics and the proposed energetic understanding of
emotions lead to the hypothesis that critical levels of emotional tension may be responsible for the
transition from normal to psychotic modes of functioning in vulnerable individuals. In addition, the
free energy principle through learning suggests that psychotic symptoms correspond to alternative
modes of minimizing free energy, which then entails distorted perceptions of the body, self, and
reality. This synthetic formulation has implications for novel therapeutic and preventive strategies in
the treatment of psychoses, among these are milieu-therapeutic approaches of the Soteria type that
focus on a sustained reduction of emotional tension and phenomenologically oriented methods for
improving the perception of body, self, and reality.

Keywords: schizophrenia; phase transition; emotions; embodiment; self-organization

1. Introduction

During recent decades, several comprehensive theoretical accounts have emerged
that are potentially relevant for a better understanding of schizophrenia, among them
are the concepts of affect-logic [1–3], embodiment [4], synergetics [5,6], and the free en-
ergy principle [7]. These theories were developed largely independent of each other and
remained only loosely connected in spite of interesting commonalities. The goal of the
present paper is to explore shared features of these four concepts by focusing on common
or complementary elements with the hope of identifying novel therapeutic approaches to
schizophrenia.

Affect-logic is a comprehensive metatheory of cognition that focuses on the interac-
tions between emotions (affectivity) and cognition (logic). Affect-logic is rooted in psy-
chology, psychiatry, neurobiology, and evolutionary theory, adopting a systems-theoretical
perspective, including the theory of nonlinear dynamics in complex open systems. The
original German term, Affektlogik, points to omnipresent circular interactions between
emotion and cognition, where affect (Latin afficere, i.e., “arousing”, “attuning”) is un-
derstood as a global bioenergetic and psychophysical state of varying quality, duration,
and degree of awareness. Here, affect is an umbrella term that comprises all variants of
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overlapping emotion-near phenomena such as feelings, sensations, or moods. Affective
and cognitive elements interact in all mental processes, where processes seemingly charac-
terized by neutrality or indifference are likewise affective states in the sense mentioned.
Simultaneously active emotions, cognitions, and behaviors are memorized as integrated
“programs” for feeling, thinking, and behaving (FTB-programs). FTB-programs are learned
schemas that form the essential building blocks of the psyche and are reactivated in similar
situations. Conscious and unconscious emotions related to past or present experiences
guide and connect all cognitive functions, such as perception, attention, memory, thought,
and decision-making. In this, affect-logic concurs with Damasio’s somatic marker hypothe-
sis that cognitive decisions are guided by emotions [8]. Emotions have focusing, selecting,
and filtering “operator effects” on cognition. They tend to focus on cognitions with sim-
ilar emotional tuning and to ignore cognitions with dissimilar tuning. Initially intense
conscious emotions related to new, exciting, difficult, or potentially dangerous situations
gradually become automated and largely unconscious yet may still continue to exert their
operator effects on cognition, including in seemingly non-emotional situations. This is
true even in scientific or mathematical activities, where initially intense “eureka-feelings”,
which have accompanied a new discovery or solution, may gradually turn into easy-going
“highways” for semi-automatized mental operations.

One aspect of emotion is, as we will see below, of particular importance for the dy-
namics of psychosis: their energetic aspect. Emotional phenomena are rooted in embodied
bioenergetic states, which drive and motivate, sometimes also block and freeze, all motor
and cognitive behaviors. These states were selected by evolution to cope adequately with
situations relevant to survival, such as exploration, fight, flight, attachment, or loss, which
are eventually experienced as curiosity, rage, fear, pleasure, or mourning [9]. The notion of
“energy” is not just a metaphor but corresponds to the measurable allocation of energy in
the form of sympathetic/parasympathetic activations of the organism in specific situations.
In terms of systems theory, emotional energies provide the dynamics (the “fuel”), whereas
cognitive distinctions provide the structure (the “channels”) for all kinds of mental and
social systems and activities.

The concept of affect-logic postulates, furthermore, that affective-cognitive interac-
tions have a scale-free (so-called fractal or self-similar) architecture, as they are formally
similar on individual, microsocial, and macrosocial levels [10]. The levels interact through
structural coupling [11]. Self-similar selecting and filtering operator effects of emotions on
attention, perception, memory, and thought act on various individual or collective levels
(Figure 1), in local and short-term as well as in extended and long-lasting mental and social
processes [12,13].

The affect-logic approach was developed and elaborated to serve as a metatheoretical
background, especially for a better understanding of the outbreak of psychosis in the
context of schizophrenia spectrum disorder. In the present theoretical overview, we wish
to compare the affect-logic approach with further theoretical ‘approaches’ in the sense of
encompassing theories and paradigms of cognition. We focused on systems approaches that
aim at modelling the temporal dynamics of mental processes as a complex system. Three
general dynamical-systems approaches were identified: embodied cognition (recently
extended to 4E cognition: [14]), Haken’s synergetics, and Friston’s free energy principle.
These theories, described in the following, have remained only loosely connected with
each other in spite of apparent commonalities. In the following, we will explore their
commonalities to derive implications and novel perspectives for the modelling of psychosis
in schizophrenia-spectrum disorder and arrive at inspirations for treatment.
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Figure 1. Affect-logic: cognition and emotion interact in a circular way on individual, microsocial,
and macrosocial levels. Levels are linked by structural coupling. Cognitions provide the structure,
whereas emotions provide the dynamics (energy, motivation) of complex mental and social systems.

2. Embodied Cognition

The core tenet of embodiment is that mental processes, including feelings and thoughts,
are anchored in the body, whether through the release of hormones, neural activity, or
through behaviors (“body language”). In the process of communication between two (or
more) persons, non-verbal synchronies occur regularly, as for example in the unconscious
mimicry of gestures, postures, tone of voice, and facial expressions of people we interact
with. Interacting individuals also tend to synchronize their physiological processes, such
as skin conductance, respiration, or heart rate [15]. A characteristic of embodiment is
bidirectionality, which emphasizes that the connections between mind and body go in
both directions (Figure 2). In terms of the broad concept of 4E cognition, we focus here
on just 2 E’s, Embodied and Enactive. Enactivism [16] encompasses mind, body and the
environment; cognition is to be understood as the active continuous interplay between
sensory perception (“environment”), the contingent adaptation of motor behavior (“body”),
and cognitive models of the environment (“mind”). This is symbolized by the upper loop
in Figure 2. Such enactive sensory-motor loops are the basis of phenomena of nonverbal
synchrony in social interaction and psychotherapy, specifically [17].
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Figure 2. Embodiment: the mind is anchored in the body (lower loop: embodied). Body and mind are
embedded in the environment (upper loop: enactive) and interact circularly in all mental activities.
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An example for the Embodied loop is as follows: We smile when we feel joy, but joy
can also be induced by the activation of smile-related facial muscles under a pretext. In
the first case, the emotion is expressed in the body, while in the second the body expresses
itself, so to speak, in the perceived emotion. For instance, the manipulation of the motor
system by a “depressive” or “happy” gait on a conveyor belt correspondingly changes
mental processes and influences the memory of previously learned words. Depressive
walkers were found to show a bias in favor of recalling words with negative emotional
content [18].

In schizophrenia, sensorimotor and physiological synchronizations are often deficient
or completely absent [19]. This phenomenon, called disembodiment, may also be the source
of a number of disordered bodily sensations commonly observed in schizophrenia. Such
symptoms have been extensively described as so-called basic schizophrenic disorders by
Süllwold [20] and Huber [21]. According to current phenomenological research, many of
these disturbing body sensations may be at the origin of the distorted perception of reality
and self [22–24]. Other mainly somatic manifestations of psychosis, such as catatonia,
psychomotor agitation, or mutism-negativism, are closely related to the phenomenon of
disembodiment.

The concepts and fields of embodiment/disembodiment and affect-logic are largely
overlapping. The first and main reason for their correspondence is that, according to
affect-logic, all emotional phenomena are somatically rooted and thus embodied. Secondly,
the synchronies studied by embodiment research are crucial for the emergence of emo-
tional contagion [25] and, hence, for the mentioned self-similar effects of emotions at the
microsocial and macrosocial levels as proposed by affect-logic.

3. Synergetics

The concepts that underwrite synergetics were developed in the context of the
dynamics of complex open systems (or complexity theory) by the physicist Hermann
Haken [5,6,26]. Synergetics is an interdisciplinary theory that models processes and mecha-
nisms of pattern formation in physical and chemical, but also biological, mental, and social
systems. Spontaneous pattern formation through self-organization depends on a system
being driven by external energy sources (hence “open” system). The pattern that arises has
dynamical stability and thus can be described as an “attractor”. A core phenomenon of
synergetics is that sudden nonlinear bifurcations from one global pattern of functioning
into another, corresponding to a transition from one basin of attraction to another, occur in
complex systems of different kinds when the input of energy to the system reaches a critical
level [27,28]; for visual illustrations [29]. In the terminology of synergetics, the energy input
acts as a control parameter that determines the moment of bifurcation. The new pattern of
functioning is shaped by a new so-called order parameter (or “nucleus of crystallization”)
around which the new functional dynamic is organized. This order parameter is often a
formerly peripheral structural element that suddenly becomes dominant and “enslaves”
the dynamics of the whole system (Figure 3). An example from physics is the sudden
transition of a random mixture of light waves into a highly ordered laser beam at a certain
critical threshold of the energy supply.
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Figure 3. Synergetics: the complex patterns of self-organizing systems, symbolized by disordered
wave lines, are synchronized, and coordinated by structural elements, the order parameters. These
patterns can be disturbed and globally altered by critically increasing energetic tensions, when the
input of energy (=control parameter) reaches a critical level.

Examples from the biological domain include the change of a horse’s gait from trot to
gallop (both are attractors of movement coordination) under increasing energetic stimu-
lation. In the psychosocial context, it is a common observation that critically increasing
emotional tensions can provoke sudden shifts between one global pattern of feeling, think-
ing, and behaving into another. Thus, an initially merely verbal argument may turn into
a raging brawl, a diffuse fear into a collective panic, a festering conflict into open war-
fare. Tschacher and Haken [30] have also applied synergetic modelling approaches to
psychotherapy, distinguishing between different types of intervention in the framework
of the Fokker–Planck equation (FPE). The FPE defines the change of the probability of a
state variable x depending on time t. In the simplest case, x(t) is represented by Gaussian
normal distribution. The probability of this distribution can be changed by a deterministic
“drift” term of the equation and a stochastic “diffusion” term, hence by causation and/or
chance: “change = causation + chance”. Causation can shift the location of the Gaussian
distribution, whereas the stochastic diffusion term of the FPE (chance) can be expressed
by changing the variance of the Gaussian. The FPE combines both dynamics and thus
integrates causation with chance in a change model.

Considering the energetic properties of emotions under affect theory, we hypothesize
that such bifurcations are also at work during the emergence of psychotic symptomatology.
Emotional tensions can overburden a vulnerable coping system and enforce a transition
from normal patterns of feeling, thinking, and behaving into psychotic patterns. The level
of emotional tension is the relevant control parameter here. This tension can turn a formerly
marginal structural element, such as a vague suspicion or odd behavior, into the new order
parameter around which a psychotic pattern (e.g., a structured system of persecutory
delusions) emerges. This hypothesis is supported both by classical clinical observations
during psychotic breaks [31,32] and by the research on so-called high-expressed emotions,
which has shown significant associations between the outbreak of psychosis and excessive
emotional tensions in and around individuals at risk [33,34]. Emotional tensions related
to traumatic experiences such as sexual abuse, migration, painful separations, or other
unfavorable life events, can contribute to the progressive destabilization of a genetically
vulnerable “premorbid terrain” [1,3]. In addition, they also play a crucial role in the
occurrence of acute relapses during chronic long-term evolution dominated by negative
symptoms [35,36].
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4. Free Energy Principle

The free-energy principle was proposed by the neuroscientist Karl Friston. He postu-
lated that self-organizing biological systems have the fundamental tendency of continually
striving for an equilibrated energy flow with minimal losses of free energy in the service
of autopoiesis [7]. In terms of systems theory, this corresponds to the minimum of the
potential of an attractor, and in everyday language to the smoothest possible functioning
without unpleasant surprises (where surprises can be read as states that are not part of
the attracting set). Not only the single neuron but also the brain and the organism as
a whole are understood as devices for improving predictions regarding the behavior of
their respective environment. Mathematically, the free energy in question here stands
in as an upper boundary on the likelihood of states a particular system encounters and
plays the role of a potential function. Or in everyday language: free energy arises when
the predictions made by the system are wrong. However, unlike thermodynamic free
energy that is related to heat, the free energy in question here is a function of sensations
and (Bayesian) beliefs about the causes of those sensations. Free energy minimization in
biological systems operates by improving the prediction of environmental reactions on the
basis of experience (Figure 4). It can then be construed as “active inference”, in which both
action and perception try to minimize “surprise” (also known as a prediction error). This
is equivalent to maximizing the marginal likelihood (i.e., the goodness of fit) of sensory
inputs (also known as model evidence) under a generative model that is embodied by the
system in question. In this setting, a prediction (i.e., generative model) generates predicted
sensory consequences from inferred causes (i.e., model evidence).
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Figure 4. Free energy principle: biological systems continuously work on the discrepancies between
predictions and perceptions, corresponding to free energy. Thus, minimizing free energy optimizes
their fit with the environment, reducing surprise and uncertainty.

Improved predictions are achieved by actively adapting the implicit model of the real
world through structural and functional changes—from fast changes in neuronal activity
through to the slow growth of new connections in the neuronal network—and through
acting on the environment itself (e.g., by simply moving one’s eyes, or by moving one’s
entire body to a more appropriate environment). Any movement changes both what is
perceived and what can be predicted, thus influencing the generative models and the model
evidence with the goal of improving adaptation to the environment. Expressed in statistical
terms, the organism strives to maximize the likelihood of its continuous modelling loops so
as to minimize free energy. According to Friston, the minimization of free energy underlies
many biological phenomena. A striking example is the emergence of rhythmic oscillations
in the brain known as alpha, beta, and gamma rhythms in the EEG [37,38]. All learning
processes, too, can be cast as the minimization of free energy.
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Friston’s ideas have predecessors in the reafference principle [39] and are also rem-
iniscent of the interplay between assimilation and accommodation during cognitive de-
velopment described by Jean Piaget [40]. Konrad Lorenz similarly postulated that every
development of life is in itself equivalent to an accumulation of knowledge about the
surrounding world [41]. The free energy principle shares the fundaments of affect-logic,
embodiment, and synergetic formulations: For example, all rest upon a circular causality
that lies at the heart of synergetics. In the case of the free energy principle, it is minimizing
surprise or prediction errors to attune an individual’s implicit model of the world (the
generative model) with the embodied world that supplies the sensory evidence for that
model. The free energy principle is quintessentially “embodied” in the sense that the
generative model is embodied or entailed by both the brain and body. Mathematically,
the free energy formulation rests upon the solution to the Fokker–Planck equation and
on the very existence of a random dynamical attractor, where “random” pertains to the
stochastic term of the equation and “attractor” to its deterministic term. This attractor
is constituted by states which the organism is actively striving to attain in the context of
exogenous (deterministic) forces and (random) fluctuations that endow nonequilibrium
steady states with the dynamical itinerancy evinced by bifurcations and phase transitions.
Finally, the existential imperative of minimizing surprise and uncertainty speaks directly
to the affective nature of self-organized, autopoietic behavior and the dynamic role of
excessive emotional tensions featured in affect-logic theory.

Friston’s concepts complete and deepen the approaches of affect-logic and synergetics
in an interesting way. They suggest, in particular, that the anxiety, insecurity, and critical
emotional tension, which usually precede the outbreak of psychosis, may represent a
clinical manifestation of increased free energy (i.e., ego-dystonic unpredictability and
uncertainty). The production and perception of psychotic symptoms such as delusions,
hallucinations, catatonia etc. may thus correspond to attempts of the mental apparatus to
control and minimize free energy through the creation of an “alternative reality” in the
service of autopoiesis. This interpretation is supported by clinical observations, which
show that the emergence of a coherent system of delusions, or of negative psychotic
symptoms such as indifference and social isolation, is often accompanied by a decrease
of overt emotional tension and anxiety [31,32]. The inference aspect of active inference
manifests clearly in this reading of the free energy principle in terms of false inference:
namely, inferring things are there when they are not (e.g., hallucinations and delusions) or
inferring things are not there when they are (e.g., dissociative symptoms, derealization,
depersonalization).

Tschacher, Giersch, and Friston [19] assume that psychotic interpretations of reality
are based on erroneous predictions possibly related to disturbed perceptions of the en-
vironment and, in particular, the embodied self. Erroneous predictions may also be the
consequence and, simultaneously, the cause of the “loss of normal self-evidence” and
disembodiment emphasized by phenomenologists such as Blankenburg and Fuchs. The
blurred boundaries between self and others focused on by psychoanalysts [42] point in
the same direction. Similarly, unfamiliar environments and conflicting or contradictory
life experiences (“double-binds”), which were found to be related to the outbreak of psy-
chosis [43,44], may contribute to false inferences and ensuing (erroneous) predictions.

5. Discussion: Towards a Translational Understanding of Psychosis

A translational, that is to say, multi-conceptual, understanding of schizophrenia arises
on the basis of the above, and this translational view can be integrated into the generally
accepted vulnerability–stress model of psychiatry, which postulates that acute psychotic
symptoms can arise in both genetically and/or biographically vulnerable individuals
when emotional tensions induced by stress—surprise or uncertainty—reach a critical
level [1,45–47]. These tensions correspond to a clinical manifestation of unbound free
energy, which is eventually minimized by a nonlinear phase transition from normal to
psychotic patterns of feeling, thinking, and behaving.
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In synergetics and the free energy approach, the dynamics of phase transitions is
viewed as the process of moving through bifurcations. In other words, the currently active
attractor becomes unstable and increasingly weakened before the critical point of the
control parameter or free energy is reached [6]. The signature of this destabilization of the
old pattern/attractor is called critical slowing down, which can be observed empirically as
the system needs more time to relax into its attractor after some perturbation. At the exact
point of bifurcation, the system “chooses” between two (new) quasi-attractors, which choice
often occurs through a chance event. This means, however, that exactly this period in the
development of the system is most accessible for (even small) deterministic interventions
that can guide the trajectory into the preferred specific attractor.

This innovative view has the advantage of not only integrating the four theoretical
approaches in question. It also better explains the enormous variability of long-term out-
comes revealed by follow-up studies over several decades [48–51]. Furthermore, psychotic
symptoms such as delusions, hallucinations, emotional indifference, and social withdrawal
do not appear, in this light, merely as deficits in the sense of the standard medical model
but also as active and productive coping strategies. Symptoms are thus understood as
instrumental in the service of free energy minimization and autopoiesis, as symptoms
decrease the critical emotional tensions. Over time, these defensive mechanisms may
become ingrained, habitual, and hard-wired by neural plasticity—thus partly explain-
ing certain functional and structural modifications found in the brains of persons with
schizophrenia [52,53].

6. Therapeutic Implications

The proposed understanding of schizophrenia in the context of complexity science
has both therapeutic and preventive implications. We consider the following of particu-
lar interest:

We noted above that, according to complexity theory, the critical time of phase transi-
tions are particularly sensitive for interventions. The critical slowing down of a system, the
signature of being close to imminent bifurcation, is in principle clinically observable and
can thus inform about the optimal time for deterministic interventions towards desired
new cognition or behavior.

If excessive emotional tensions do indeed play the postulated key role at the onset of
psychosis, then systematically reducing emotional tensions in and around acute patients
should be a main therapeutic focus. Many elements of conventional medical interventions,
however, rather increase than decrease emotional tensions, among them the often chaotic
circumstances of hospitalization, the unfamiliar and opaque atmosphere of psychiatric
hospitals, size of wards, architecture, lack of staff continuity, overstimulation by excessive
noise, and sometimes also violence. Small, family-like, stimulus-protecting environments
should therefore be much more appropriate. In terms of the Fokker–Planck Equation
(FPE), such interventions relate to the stochastic term of the FPE. Stochastic interventions
can be implemented to protect existing patterns from random fluctuations by boundary
regulation [30].

This is realized in therapeutic environments of the Soteria type, which were first
created in the 1970s in California [54] and have been functioning successfully since 1984,
with some conceptual modifications, in the therapeutic community Soteria Bern in Switzer-
land [55,56]. An increasing number of similar institutions were recently founded across
Europe, especially in Germany. In this approach, sustained emotional relaxation is not
mainly obtained by neuroleptic medication, but rather by continual personal support, by
“being with” and “doing with” the psychotic patient, creating a trusting therapeutic alliance
between specially selected and trained caregivers and the patient. The Soteria milieu is
designed to ward off overtaxing external inputs when the patient initially lives in the “soft
room”, which corresponds to boundary regulation. Further ingredients of the treatment
philosophy are the systematic inclusion of the patient’s family or other important persons
of reference into the therapeutic process and participation in appropriately dosed every-
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day activities such as cooking, shopping, and housekeeping. According to comparative
empirical research, two-year results were obtained that are equivalent to, and subjectively
rather better than, standard treatment. Soteria-type environments use significantly fewer
neuroleptics and can partly also be run with lower costs [56–59].

A stable, transparent, and securing therapeutic environment of the Soteria type may
also improve patients’ predictions about the behavior of their environment and, thus,
reduce the need for “crazy” alternative explanations. According to a recent pilot study
conducted by Soteria Konstanz (Germany), disturbed feelings of reality and self can be
significantly improved by flexibly integrating specific behavior–therapeutic elements into
everyday contacts and activities [60].

Similar goals are pursued by body-centered therapeutic methods recently proposed in
connection with the disembodiment in schizophrenia, such as interventions from dance
and movement therapy. These approaches emphasize the significance of sensorimotor
experience and body motion for cognition, affect, and social interaction and strive to
enhance emotional processing and self-regulation [61,62]. Such methods appear especially
effective for reducing negative symptoms such as passivity and social withdrawal [63].

Innovative therapeutic strategies may also be based on the previously mentioned
productivity of psychotic symptoms, e.g., by valorizing the creative aspects of the involved
emotional energies and eventually steering them towards more constructive directions.
An example is Milton Erickson’s imitating the incomprehensible artificial language of a
chronically psychotic patient and regularly “speaking” with him in this language until the
patient suddenly started to speak normally, gradually accepted a friendly relationship and
progressively normalized his behavior [64].

Finally, the multifocal understanding of psychosis proposed here strongly argues for
restructuring long-term psychotherapy. Conventional long-term neuroleptic medication is
not only unable to consolidate the underlying structural vulnerability of the patient but
is also burdened by severe long-term side effects. Among the many currently proposed
psychotherapeutic methods, the following two are particularly close to the proposed
understanding of psychosis: The approach practiced by the Swiss family therapist Ursula
Davatz, who describes psychosis as the result of an “emotional tsunami” in the family
system [65], and the integrative approach developed by the Italian therapist Giovanni
Ariano [66,67]. Since, as we believe, emotions do play a decisive role in the outbreak of
psychoses, it may also be worth considering interventions developed in psychotherapies
for other disorders, such as depression. For instance, it was found that emotion regulation
plays a role in depressive disorders, where some patients are emotionally over-regulated
whereas others are under-regulated. It is thus important to take the type of emotion
regulation into account in the choice of therapeutic strategies [68], which appears reasonable
also in psychotherapy with schizophrenia patients.

7. Open Questions

The synopsis of the concepts of affect-logic, embodiment, synergetics, and free energy
minimization appears capable of opening up new ways of understanding and also treating
schizophrenia. In this view, embodied emotions and emotional energies play a more
important role in the genesis and long-term evolution of schizophrenia than hitherto
admitted. Unbounded (“free”) emotional energies related to traumatic life experiences not
only contribute to further destabilizing a vulnerable “premorbid terrain” but are probably
also responsible both for the outbreak of acute psychotic decompensations, as well as for
acute relapses during long-term clinical progression characterized by negative symptoms.
This same view also stimulates a number of lingering open questions:

• Why do certain people react to critically rising emotional tensions with psychotic symp-
toms, whereas others respond with violence, fall into panic, or become depressed?

• Is there a specific schizophrenogenic vulnerability, and what does it consist of? It
was long suspected by the affect-logic perspective, with special reference to Eugen
Bleuler’s concept of “loose associations” (cf. disembodiment!), that there may be a
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partly genetically and partly biographically determined instability of the links between
feeling and thinking. Of particular importance are those links that regulate basic inter-
personal relations (in psychoanalytic terminology, the object representations). This
hypothesis is at least partly supported by recent neurobiological findings revealing
disturbed neuronal connections between frontal cortical and subcortical areas, the
amygdalae [69].

• Does the labilization of the psyche that is physically manifest in terms of functional
disconnections in the brain result as a direct consequence of aberrant (i.e., false)
learning and inference [70,71]?

• There is yet no direct quantitative evidence for the hypothesis that emotional tensions
can lead to a phase transition into psychosis, as is proposed by affect-logic. It would
be desirable to have objective physiological markers for emotional tension at hand.

• Why does the psychotic phenomenology differ so much from case to case that Eugen
Bleuler, the creator of the term schizophrenia in 1911, used to speak of “the group of
schizophrenias” [72]? Is this related to the changing influence of a great number of
environmental variables or to some genetic or other biological variables?

• As a final and perhaps most important, but to our knowledge astonishingly neglected,
question: How do both “spontaneous” and therapy-induced improvements and recov-
eries arise? According to long-term follow-up studies over several decades [48,50,73],
full and lasting recoveries comprise, in the long run, at least one fourth of cases and
may even amount to roughly two thirds under especially favorable conditions [51,74].

It is obvious that all these questions and hypotheses, while quite plausible in our eyes
and also consistent with a number of clinical observations and empirical findings, need
much more specification and confirmation—or rejection—by further research. The goal of
the present explorative (and perhaps provocative) overview was to stimulate such research.

8. Endnotes

1. The Fokker-Planck equation plays a central role in nearly all of physics. It describes
the evolution of the probability density of a system’s states when they are subject to random
fluctuations and deterministic impacts. Common variants of the Fokker-Planck equation
include the master equation for discrete systems and the Schrödinger wave equation in
quantum electrodynamics. It also manifests in theoretical biology as a model of population
density dynamics (e.g., the Wright-Fisher model). The solution of the Fokker-Planck
equation for any random dynamical system—in a nonequilibrium steady state—also forms
the basis of the free energy principle.

2. Mathematically on the background of the Fokker-Planck equation, uncertainty
can be read as an expected surprise. In information theory, surprise (or surprisal) corre-
sponds to self-information, while expected surprise or uncertainty is known as entropy.
Minimizing expected free energy by choosing appropriate actions can then be read as
reducing uncertainty in anticipation of familiar, unsurprising outcomes. From a physi-
cist’s perspective, this would look like self-organization to a nonequilibrium steady state.
From a psychiatrist’s perspective, this would look like an active search for synchrony and
predictability and the active avoidance of existential fear.

3. We use ‘unbound’ here deliberately to conflate Freudian notions of unbound energy
with the role of variational free energy as a bound on surprise or marginal likelihood [75].
Indeed, in machine learning, variational free energy is known as an evidence bound [76].
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Abstract: Imagery rescripting (IR), an effective intervention technique, may achieve its benefits
through various change mechanisms. Previous work has indicated that client–therapist physiological
synchrony during IR may serve as one such mechanism. The present work explores the possibility
that therapist-led vs. client-led synchrony may be differentially tied to clients’ emotional experiences
in therapy. The analyses were conducted with data taken from an open trial of a brief protocol
for treating test anxiety (86 IR sessions from 50 client–therapist dyads). Physiological synchrony
in electrodermal activity was indexed using two cross-correlation functions per session: once for
client leading and again for therapist leading (in both cases, with lags up to 10 s). The clients’
and therapists’ in-session emotions were assessed with the Profile of Mood States. Actor–partner
interdependence models showed that certain client (but not therapist) in-session emotions, namely
higher contentment and lower anxiety and depression, were tied to therapist-led (but not client-
led) physiological synchrony. The results suggest that therapist-led synchrony (i.e., clients’ arousal
tracking therapists’ earlier arousal) is tied to more positive and less negative emotional experiences
for clients.

Keywords: imagery rescripting; physiological synchrony; electrodermal activity; actor–partner
interdependence models

1. Introduction

Over the past two decades, psychotherapy researchers have demonstrated that
imagery-based techniques are a very effective means of intervention for various disor-
ders [1]. Because emotions are more strongly associated with images than with verbal
thoughts, imagery-based techniques appear to activate emotions more strongly than sim-
ple conversation [1,2]. Much of the work on imagery-based techniques has centered on
imagery with rescripting (i.e., imagery rescripting (IR)), an approach which was originally
developed for work with clients who had undergone traumatic experiences (e.g., [3,4]). In
IR, imagery is used to activate distressing memories replete with vivid sensory and emo-
tional and cognitive content, an activation which also helps clarify unmet needs that still
plague the client (e.g., [5]). The reactivated experience is then “rescripted” (i.e., changed in
the imagination in a positive, desired direction) so that the unmet needs of the vulnerable
or traumatized self are satisfied, at least in part. To accomplish this, the client is asked to
imagine the scene from the perspective of their present self and step into the image to do
whatever is necessary to satisfy the needs of their vulnerable selves [6–8].

Mental images simulate perceptual processes and elicit reactions that are quite similar
to real experiences [9,10]. Consequently, as numerous laboratory studies have shown,
imagery can activate strong physiological responses (e.g., [11–13]). To date, however, the
role of physiological arousal vis-à-vis emotional activation in IR has received little attention.

Entropy 2021, 23, 1556. https://doi.org/10.3390/e23121556 https://www.mdpi.com/journal/entropy185



Entropy 2021, 23, 1556

This appears to be an important lacuna. After all, physiological data can serve as an
objective measure of the arousal component of participants’ emotional responses, particu-
larly those of anxiety and stress [14,15]. They can be collected with minimal client burden
and disruption to the treatment itself [14]. Unlike self-reports, physiological measures can
be recorded continuously with a high temporal resolution and are therefore able to capture
important nuanced responses. Consequently, physiological measures may open a window
into identifying additional mechanisms of change in IR that go beyond cognitive accounts
(e.g., [6,16,17]) and may allow us to detect beneficial emotional processes.

The evocative potency of IR often leads to emotional activation (and to its attendant
physiological reactions) in the therapist alongside the client. It is quite possible that
this synchronous activation could serve as a mechanism of change by increasing the
sense of a shared experience within the dyad and by catalyzing the client’s intrapersonal
emotional processes.

To date, interpersonal processes in IR have received mostly theoretical attention.
Rafaeli et al. [18] hypothesized that therapists’ emotional activation during IR may serve
as a mechanism of change having to do with shared emotions, shared focus and greater
empathy or attunement. More generally, Koole and Tschacher’s In-Sync model [19] postu-
lated that synchronous (i.e., shared) emotions and experiences from clients and therapists
lead to a shared experience and better client emotion regulation.

Several studies have investigated the dynamics and clinical meaning of client–therapist
physiological synchrony (for a review, see [20]). As a group, these studies generally demon-
strate positive associations between synchrony on the one hand and adaptive processes
(e.g., empathy or attachment) on the other. To our knowledge, only two studies have
examined physiological synchrony specifically during imagery interventions (with or with-
out rescripting). Both studies involved multiple sessions and used electrodermal activity
(EDA) as an index of arousal (based on extensive work demonstrating the sensitivity of
EDA to emotional and cognitive processing, such as in [21,22]). Additionally, both studies
compared client–therapist EDA synchrony during imagery vs. cognitive behavioral (CB)
segments of sessions and found the former (but not the latter) to be tied to therapeutic
bond ratings [23] and to the next session’s (as well as overall treatment’s) outcome [24].

Notably, both studies utilized an overall synchrony index (namely cross-correlation
functions computed using ±10-s lags on the dyads’ residualized EDA time series). As such,
they do not allow us to distinguish between synchronous experiences that are led by one
party (e.g., the client) or by the other (e.g., the therapist). In other words, these studies’ re-
sults could not be used to identify which party typically drives the physiological synchrony,
nor could they tell us whether both therapist-driven and client-driven synchrony—or only
one of the two—were tied to adaptive therapeutic processes.

To begin answering these questions, we may draw on the study of synchrony pro-
cesses within other dyadic contexts. In developmental psychology, for example, studies
on caregiver–infant interactions have demonstrated that both parties co-regulate their
physiology and emotions in a dynamically responsive way to each other [25]. Feldman
(e.g., [26,27]; see also [28]) described caregiver–infant synchrony as reciprocal processes
(on the sensory, hormonal and physiological levels) and suggested that it serves as an
important part in infant’s development, such as in self-regulation capacity.

Several authors (e.g., [29]) have argued that synchrony between therapists and clients
is likely to lead to similar self-regulation benefits. This may be particularly true for syn-
chrony experienced during emotionally charged therapeutic moments, such as IR segments.

Specifically, in IR, the client and the therapist deliberately activate a memory or an
experience which elicits an emotional reaction. Sharing and processing this experience, as
well as communicating the emotions that accompany it, often generates emotional reactions
in both parties, setting off dynamic dyadic affective processes [29]. Such processes may be
characterized by synchrony or asynchrony, as well as by leading or following. Synchrony
may exert its benefits best when a therapist tracks their client’s arousal levels—which may
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suggest empathic accuracy or a shared experience (e.g., [30])—or when the client tracks
their therapist’s arousal level, which may suggest that co-regulation is occurring (e.g., [31]).

To examine these two (not necessarily incompatible) possibilities, the present study
used EDA data from 50 client–therapist dyads who participated in a 6-session imagery-
based treatment addressing test anxiety. Sessions 3 and 4 of the protocol use the tradi-
tional IR of past situations. We used the EDA data from these two sessions to investigate
the associations between a client’s emotional experience during these sessions and both
therapist-led and client-led physiological synchrony. Specifically, we calculated two syn-
chrony indices. Therapist-led synchrony was defined as the cross-correlation within a lag
of 0–10 s with the therapist preceding the client, while client-led synchrony was defined
as the cross-correlation within a lag of 0–10 s with the client preceding the therapist. We
expected our data to provide a conceptual replication of the positive associations between
physiological synchrony and adaptive therapy processes found previously [23,24]. More-
over, our central (though exploratory) goal was to distinguish between therapist-led and
client-led physiological synchrony and determine whether either or both are associated
with adaptive emotional experiences (i.e., lower negative emotions and higher positive
ones) in IR sessions.

2. Materials and Methods
2.1. Clients

A total of 90 potential participants were recruited using flyers and a campus newsletter.
The following inclusion criteria were applied: (1) a score higher than 54 on the Test Anxiety
Inventory (TAI [32]); (2) absence of an imminent risk for suicide; and (3) currently no
other psychological treatment for test anxiety. Based on these criteria, three participants
were excluded. Twelve additional participants dropped out after the intake examination
because of timing or setting concerns. Seventy-five clients met the inclusion criteria and
began treatment. Of these, 11 clients dropped out during the treatment period. Thus,
64 clients completed the entire 6-session protocol. The present study utilized data solely
from Sessions 3 and 4, in which traditional IR techniques were used. Physiological data
from 14 clients (or their therapists) were lost due to poor signals or technical problems;
thus, the final sample consisted of 50 clients (44 female, MAge = 25.3, SDAge = 6.17). The
clients differed in terms of their academic fields, with psychology, law, education, business
and computer science being the most frequent ones. Table 1 provides additional client
information.

Table 1. Client characteristics.

M SD

Academic Year 4.82 3.82
TAI 65.24 7.78
Marital Status N %

Single 35 70
In a Relationship 12 24
Married 2 4
Divorced 1 2

Degree Being Pursued
Bachelor 36 72
Master 6 12
Other 8 16

Written informed consent was obtained from all clients. Other than receiving the treat-
ment at no cost, participants were not compensated in any way. All procedures performed
in this study involving human participants were in accordance with the ethical standards of
the institutional or national research committee and with the 1964 Declaration of Helsinki
and its later amendments or comparable ethical standards. This study was approved by
the local research ethics committee (Nr. 01/2020, ethics committee of Trier University).
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2.2. Therapists, Treatment, Training and Supervision

Twenty-two therapists treated between one and six clients each (M = 2.27 clients,
SD = 1.09). The therapists were either psychotherapy trainees with at least one year
of experience as clinicians (N = 5) or masters students in clinical psychology with no
prior clinical experience (N = 17). All therapists received intensive training in using
the treatment protocol and were supervised by a senior therapist in weekly video-based
group supervision.

The treatment used was based on a six-session protocol integrating different cognitive
behavioral (CB) as well as imagery-based techniques (for the full protocol, see www.osf.
io/hraqd (accessed on 21 November 2021)). This protocol’s effectiveness for the treatment
of test anxiety has been previously reported [33]. The protocol’s CB components include
psychoeducation at the beginning of treatment, discussion of present and elaboration of
alternative perceptions, feelings, behaviors and cognitions in past and future learning and
exam situations and the optimization of learning strategies and procedures in exams. The
protocol’s imagery-based components differ from session to session. The present study
uses data from Sessions 3 and 4, in which the traditional IR of past situations was used.

2.3. Measures
2.3.1. POMS

To assess the clients’ and therapists’ in-session emotions, we used a shortened version
of the Profile of Mood States [34]. Each of the seven mood variables (contentment, vigor,
calmness, anxiety, depression, anger and fatigue) was assessed by three items (e.g., for
depression: hopeless, discouraged and sad). Clients and therapists were asked to rate the
extent to which they had felt these feelings during the session on a five-point Likert scale
(“1” = “not at all” and “5” = “extremely”). The POMS has been validated and applied in
several previous studies (e.g., [34,35]), and it demonstrated excellent internal consistency
in present study (α ranged from 0.80 (Session 3) to 0.81 (Session 4)).

2.3.2. Client–Therapist EDA Synchrony

EDA was monitored simultaneously for the client and therapist. Two Ag/AgCl
electrodes were attached to the third and fourth digits of the non-dominant hand. The signal
was recorded at a sampling rate of 500 Hz using a Becker Meditec EDA module amplifier
(Karlsruhe, Germany; with 0–100 µS, sensitivity: 25 mV/µS) connected to the acquisition
computer via a Cesys C028149 USB-ISOLATOR and downsampled to 25 Hz. Several
preprocessing steps were conducted before the cross-correlation functions (CCFs) were
applied. First, the raw data were screened, and any artifacts were removed. Nonresponsive
signals (EDA > 1 µs in at least 10% of the time series) were excluded from the analyses.
Second, the signal was recorded in 1-s intervals and averaged across 2-min segments.
Third, the auto.arima function (forecast package for R [36]) was applied to remove the
autocorrelated component for each EDA time series. (For a similar approach, see [23,24])

Two CCFs were computed per session, one in which the client led (with a maximum
lag of +10 s) and one in which the therapist led (with a maximum lag of −10 s). The maximal
positive (in-phase) correlations (one for each CCF) were used as the two synchrony indices.

A total of 86 sessions (out of 50 × 2 = 100) were analyzed. Three sessions were not
recorded due to technical problems. An additional 11 sessions were excluded because of
non-responsive signals from either the clients or the therapists.

2.4. Data Analysis
Actor–Partner Interdependence Models

Given the dyadic nature of our data, we used a series of actor–partner interdependence
models (APIMs; see Figure 1), with one for each POMS scale. The two dependent variables
(client’s POMS ratings and therapist’s POMS ratings) are modeled on four independent
variables (client-led and therapist-led physiological synchrony, as well as lagged client and
therapist POMS ratings from the previous session). Paths marked as “a” represent actor
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effects (i.e., the degree to which the client-led or therapist-led synchrony predicts their own
post-session POMS ratings). Paths marked as “p” represent partner effects (i.e., the degree
to which the client-led or therapist-led synchrony predicts their partner’s post-session
POMS ratings). The actor and partner paths are estimated simultaneously while adjusting
for each actor’s lagged POMS ratings, and U and U’ denote the residual error terms for the
two dependent variables.

Figure 1. The Actor–Partner Interdependence Model. Note: U = residual error for client; U’ = residual
error for therapist; a = actor effect; p = partner effect.

The models were estimated using the two-intercept approach to multilevel model-
ing [37] with the following equation:

POMStp/cd = b0cd + b1cd × POMS(t−1)cd
+ b2cd × Client-led Synchronytcd + b3cd × Therapist-led Synchronytcd + etcd
+ b4pd + b5pd × POMS(t−1)pd
+ b6pd × Therapist-led Synchronytpd + b7pd × Client-led Synchronytpd + etpd

Here, the POMS score in each session (t) for the client (c) or psychotherapist (p) in
each dyad (d) is modeled using their own lagged (t − 1) POMS score, as well as the two
(client-led and therapist-led) synchrony scores (which serve as actor and partner effects,
interchangeably) and a within-person residual error score. This model was run seven times:
once for each POMS emotion (contentment, vigor, calmness, anxiety, depression, anger
and fatigue).

3. Results

The results from the three APIM analyses predicting positive emotions showed that
only therapist-led synchrony was associated with clients’ emotional experience, signifi-
cantly so for contentment and marginally for vigor and calmness. Client-led synchrony
was not significantly associated with therapists’ or clients’ emotional experiences. All
results are presented in Table 2.
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Table 2. APIMs of therapist- and client-led synchrony as predictors of both actor and partner positive
POMS ratings.

POMS Emotion Synchrony Predictors Estimate Std. Error p

Contentment
Therapist-Led Actor 6.048 3.891 0.122
Client-Led Actor −3.428 3.859 0.376
Therapist-Led Partner 10.083 3.893 0.010
Client-Led Partner 1.993 3.859 0.606

Vigor
Therapist-Led Actor 3.169 3.122 0.313
Client-Led Actor 1.420 3.087 0.646
Therapist-Led Partner 5.557 3.113 0.076
Client-Led Partner 3.928 3.085 0.205

Calmness
Therapist-Led Actor 4.747 3.093 0.143
Client-Led Actor −2.400 3.057 0.441
Therapist-Led Partner 5.840 3.087 0.075
Client-Led Partner −0.009 3.057 0.997

Note: Actor effects involve therapist-led or client-led synchrony predicting the actor’s own emotional experience
as the outcome. Partner effects involve therapist-led or client-led synchrony predicting the partner’s emotional
experience as the outcome.

Negative Emotions as Outcomes

The results from the four APIM analyses predicting negative emotions showed that
higher therapist-led synchrony was significantly associated with a lower client emotional
experience of anxiety and depression, as well as marginally lower fatigue. No associations
were found for the emotional experience of anger. In addition, client-led synchrony was
significantly associated with the higher client emotional experience of anxiety. All results
are presented in Table 3.

Table 3. APIMs of therapist- and client-led synchrony as predictors of both actor and partner negative
POMS ratings.

POMS Emotion Synchrony Predictors Estimate Std. Error p

Anxiety
Therapist-Led Actor −2.924 3.172 0.358
Client-Led Actor 9.383 3.120 0.003
Therapist-Led Partner −8.439 3.147 0.008
Client-Led Partner −0.299 3.142 0.924

Depression
Therapist-Led Actor −1.872 3.618 0.606
Client-Led Actor 3.790 3.580 0.292
Therapist-Led Partner −10.499 3.616 0.004
Client-Led Partner 1.976 3.564 0.580

Anger
Therapist-Led Actor −0.792 3.109 0.799
Client-Led Actor 2.298 3.058 0.454
Therapist-Led Partner −0.999 3.084 0.746
Client-Led Partner 0.151 3.079 0.961

Fatigue
Therapist-Led Actor −3.586 3.276 0.275
Client-Led Actor 0.192 3.244 0.953
Therapist-Led Partner −5.908 3.272 0.073
Client-Led Partner −3.012 3.268 0.358

Note: Actor effects involve therapist-led or client-led synchrony predicting the actor’s own emotional experience
as the outcome. Partner effects involve therapist-led or client-led synchrony predicting the partner’s emotional
experience as the outcome.
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4. Discussion

The present study aimed to identify specific EDA dynamics in client–therapist dyads
during IR that are associated with in-session emotional experiences. To our knowledge,
this is the first study examining physiological synchrony in regard to a leading or following
partner in IR. Therapist-led synchrony was significantly associated with clients’ in-session
emotional experiences of greater contentment, lower anxiety and lower depression and
marginally associated with the experience of greater vigor and calmness and lower fatigue.
In addition, client-led synchrony was significantly associated with their own greater
feelings of anxiety. No association was found between either synchrony score and the
emotional experience of anger.

As expected, the results highlight the importance of distinguishing between therapist-
led and client-led synchrony. Therapist-led synchrony was associated with more positive
and less negative in-session client emotional experiences. In contrast, with one exception
(i.e., greater anxiety), client-led synchrony was unrelated to the clients’ emotional experi-
ences.

These results are in line with the previous literature conferring a mood-regulatory
role on the therapist (e.g., [29]). Specifically, the results of the present study indicate that
beneficial emotion regulation occurs not only because clients share their emotions with
their therapists (as has been predicted, for example, by the social baseline theory [38]) but
also because they synchronize their arousal levels with those of their therapists (but only
when the temporal sequence has the therapist in the lead and is client-following). This
is particularly interesting because this process typically happens outside of awareness.
During the emotionally intensive IR segments, therapists often empathize with their clients’
narratives [23] and, presumably, the more this occurs, the better they are able to help the
client process and regulate their emotions. The present results suggest that more effective
therapists may actually be “guiding” their clients through the emotions that arise during
IR, with the therapists being slightly ahead of their clients’ emotional responses.

In the present study, only certain emotions were significantly associated with therapist-
led synchrony. This finding may have to do with the specific distress with which clients in
this study were contending, namely test anxiety. Test anxiety is characterized by negative
thoughts about consequences or failure in exams or other evaluation-related situations.
Its symptoms include both emotional ones (e.g., fear and anxiety) and behavioral ones
(e.g., sleep disturbance, procrastination, impaired motivation and rumination). Notably,
these behavioral symptoms are quite similar to depressive reactions. This may explain
why therapist-led physiological synchrony was associated most strongly with feelings of
anxiety and depression.

Methodologically, the marginal findings (with fatigue, vigor and calm) and the non-
significant finding (with anger) may be attributable to floor effects, namely ratings that
were low and lacked much variability. Such ratings make the detection of significant effects
nearly impossible.

Strengths, Limitations and Future Directions

The current study is novel in several respects. To our knowledge, it is the first study to
examine leading and following with regard to physiological synchrony in psychotherapy,
rather than simply examining the overall cross-correlations. Its use of multiple (in this
case, two) sessions per dyad is an additional strength, as it its focus on IR segments (in
which emotional activation tends to be most consequential). By focusing on IR, a technique
without eye contact, our results demonstrate that the observation of others’ emotional
responses is not needed for synchronization or its benefits.

These strengths notwithstanding, several limitations of this study are noteworthy. The
POMS items were used to assess emotions experienced during the entire session and not
only during the IR segments. Even though the CB segments, which tended to be more
conversational and less experiential, are likely generate lower emotional activation than
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the IR segments (see also [1,2]), these segments may have also influenced the post-session
POMS ratings.

Additionally, prior research on IR mechanisms has mostly relied on laboratory studies,
which induce memories or feelings in a controlled setting (e.g., [39,40]). To better under-
stand how IR can address the emotional beliefs and dysfunctional schemas that underlie
emotional disorders, we chose to examine IR mechanisms in a more ecologically valid
treatment setting. However, our choice robs us of the possibility (available in lab studies)
to control both the content and the temporal aspects of the experience.

Another shortcoming of the present study is its focus on sympathetic arousal. Our use
of EDA, an indicator of sympathetic activation, is considered to be positively associated
with emotional arousal and specifically with emotions such as anger, anxiety and fear [41].
The use of alternative measures which were unavailable to us (e.g., heart rate variability
(HRV), a measure of parasympathetic functioning) may have painted a different picture,
as such measures are more strongly associated with self-regulation [42]. Indeed, our non-
significant results (with most positive emotions) may stem from this limitation, as our EDA
responses did not capture parasympathetic functioning. Furthermore, the indexation of
synchrony as a maximum positive (in-phase) correlation only reflected co-regulation to a
limited extent. Future studies could benefit from the collection of both the EDA and HRV
channels as well as the separate investigation of in-phase and anti-phase correlations.

5. Conclusions

The present study adds to the growing body of research investigating IR mechanisms,
and the findings highlight the importance of examining physiological processes. The
results provide the first evidence that therapists’ physiological reactions—and their clients’
subsequent synchronization with these reactions—may be tied to better session-level
outcomes, at least with respect to client anxiety and depression. Methodologically, this
study provides further evidence for the importance of assessing leading vs. following in
physiological synchrony.
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Abstract: Affect plays a major role in the individual’s daily life, driving the sensemaking of experience,
psychopathological conditions, social representations of phenomena, and ways of coping with
others. The characteristics of affect have been traditionally investigated through physiological,
self-report, and behavioral measures. The present article proposes a text-based measure to detect
affect intensity: the Affective Saturation Index (ASI). The ASI rationale and the conceptualization
of affect are overviewed, and an initial validation study on the ASI’s convergent and concurrent
validity is presented. Forty individuals completed a non-clinical semi-structured interview. For each
interview transcript, the ASI was esteemed and compared to the individual’s physiological index
of propensity to affective arousal (measured by heart rate variability (HRV)); transcript semantic
complexity (measured through the Semantic Entropy Index (SEI)); and lexical syntactic complexity
(measured through the Flesch–Vacca Index (FVI)). ANOVAs and bi-variate correlations estimated
the size of the relationships between indexes and sample characteristics (age, gender), then a set
of multiple linear regressions tested the ASI’s association with HRV, the SEI, and the FVI. Results
support the ASI construct and criteria validity. The ASI proved able to detect affective saturation in
interview transcripts (SEI and FVI, adjusted R2 = 0.428 and adjusted R2 = 0.241, respectively) and
the way the text’s affective saturation reflected the intensity of the individual’s affective state (HRV,
adjusted R2 = 0.428). In conclusion, although the specificity of the sample (psychology students)
limits the findings’ generalizability, the ASI provides the chance to use written texts to measure affect
in accordance with a dynamic approach, independent of the spatio-temporal setting in which they
were produced. In doing so, the ASI provides a way to empower the empirical analysis of fields such
as psychotherapy and social group dynamics.

Keywords: affect; affective saturation index; meaning; text analysis; physiology; heart rate variability

1. Introduction

The measurement of the level of affective intensity is a relevant issue for both theo-
retical and practical reasons. Affect plays a central role in how individuals make sense of
experience [1–3] as well as in how executive [4] and higher-order cognitive processes [5] op-
erate. A high level of affect intensity is associated with psychopathological conditions [6–8]
as well as maladjusted forms of behaviors, such as gambling [9–12] or academic drop-
out [13]; again, the elaboration of affect and the mode of variation of its intensity within
and throughout sessions is a core focus of the analysis of the psychotherapeutic process
and clinical change [14–18]. Affect is also involved in psychosocial and socio-political
phenomena. Social representations of forms of alterity have proven to frame their objects
in terms of affect-laden meanings—e.g., the securitization frame, i.e., the view of alter-
ity as an incumbent radical threat, is the most common way migration is conveyed by
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Western media [19]. In/out-group polarization, populism, xenophobia, hate speech, and
conspiracy theories are phenomena that, though different in content and determinants, are
all characterized by the role played by affect, and, more specifically, by the affect-laden
friend–foe schema [20–22]. More generally, affective activation has been considered a
major response by which individuals and social groups cope with uncertainty [23–26];
accordingly, the analysis of the impact and design of social communication (in contexts
such as politics, media, but also health, education, marketing, security, urban planning,
and civic engagement) benefit from understanding the capacity of the message to pander
to and/or oppose the target’s affective response [27].

Due to the relevance of the topic to so many areas of psychological investigation, it is
not surprising that numerous attempts have been made to measure the main characteristics
of affect. Measures can be collected in three broad clusters: physiological, self-report, and,
behavioral measures.

Physiological measures focus on both central (e.g., electroencephalography) and
peripheral (e.g., electrodermal conductance, heart rate variability (HRV)) signals to estimate
bodily affective activation (for a review, see [28]). The validity of these indexes is generally
robust, given that they can be considered direct measures of the intensity of the body’s
physiological activation. However, physiological measures are generally not easy to use,
given that, in most cases, their application and computation require technical devices and
skilled researchers. Moreover, they often require implementation in controlled conditions,
and this limits their ecological validity.

Self-report measures skip some of these limitations. Yet, although these kinds of
measures are widely used in many domains of investigation, their validity is considerably
jeopardized by the subjects’ inherently low capability to reliably detect their own inner
state [29,30]. This limitation is reflected in the weak association with both psychophysio-
logical [31] and behavioral measures [32].

Behavioral measures offer an alternative to self-report. Many aspects of overt behavior
—such as vocal fundamental frequency [33], speech rate [34], facial expressions [35], and
whole-body posture [36]—have been proposed, conceived as markers of one or more
features of the intensity of the affective state. However, these measures have been criticized
because the association between behavior and affective states is not invariant but depends
on contextual conditions [37–43]. Above all, it must be considered that it is not always
possible to involve participants in individual tasks, or even that certain analyses are not
based on participants as direct sources of data. For instance, in many areas of investigation—
e.g., psychotherapy process, media representations of social objects (migration, Islam,
COVID-19, etc.), organizational dynamics, and marketing communication—many studies
cannot but be based on textual data such as verbatim transcripts of sessions, interviews,
focus groups, newspaper articles, etc. Thus, the estimation of affect in research contexts of
this kind requires a measure based on textual data, rather than on behavioral responses.

The present paper intends to address this need. It presents the Affective Saturation
Index (ASI), a textual-based measure of the intensity of affect. To this end, we first present
the ASI, the definition of affect it is grounded on, and its rationale; then, an initial validation
study is reported. Three aspects of the ASI make it relevant from a dynamic systems theory
standpoint. First, the ASI is based on a semiotic interpretation of affect, which is in turn
grounded on a field-dynamic conception of meaning, which models it as an emergent
property of sensemaking [44]. Second, dynamic systems theory informs the methodological
framework on which the ASI’s computation is based (in particular, the dimensional model
of meaning). Third, the ASI is designed to detect the ongoing flow of meaning-making,
enabling the application of strategies for data analysis (e.g., Time Series Analysis) aimed at
modeling the dynamic evolution of communication and cognitive processes.
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2. The Affective Saturation Index
2.1. The Semiotic Definition of Affect at the Basis of the ASI: Affect as Meanings

The ASI is based on the view of affect as global embodied meanings [1–3,44–46]
—namely, patterns of activation of the whole body that provide the individual with a
global experience of the world as a totality. For instance, when a person is happy—though
they may be so because of something—their sense of pleasantness radiates over and
fills their whole current experience of the world. As proposed by Feldman Barrett [29]
(p. 30), affect is the “neurophysiological barometer” thanks to which the body maps the
ongoing, immediate coupling with the world and, in so doing, prepares itself to address
its variations.

It is worth underscoring that it is this function of dynamic mapping that makes affect
a meaning—albeit of an embodied kind. Indeed, insofar as one assumes the pragmatist
view of meaning—i.e., a response triggered in the interpreter by something in order to
interpret that something [47] (p. 228)—then affect is meaning because it consists precisely
of a response activated in the (body of the) interpreter by something, in order to interpret
that something. Thus, as Peirce claims explicitly [48], affect can be conceived as a specific
type of sign—namely, signs that make sense of the world in terms of basic patterns of
bodily activation [49].

This semiotic interpretation of affect is framed in, and fully consistent with, the bodily
nature of the cognitive process recognized by embodied cognition theories over the last
quarter-century [50–53]. Moreover, it finds further support in psychoanalytic theory [54,55]
and in semiotic-oriented cultural psychology [3,55,56]. Incidentally, this view enables affect
to be distinguished from emotions, where the latter are discrete inner states (e.g., anger, joy)
combining the state of body activation (i.e., the affect) with its categorization, occurring in
accordance with contextual cues [29].

For the current discussion, it is worth highlighting the specificity of affective meaning.
Given its embodiment and globality, affect is a (a) hypergeneralized, (b) homogenizing,
(c) bipolar, (d) asemantic, and (e) basic class of meaning. It refers to the relationship with
the whole environment, rather than with specific objects (hypergeneralization [29]; from
a psychoanalytic perspective, [57]). In so doing, the discrete aspects of the context are
assimilated to the whole affective meaning, as in all cows being black at night (homogeniza-
tion [58]). Moreover, the fact that affect is a hypergeneralized global pattern implies that it
works in dichotomous mode, namely as the juxtaposition of opposite states—e.g., pleas-
antness/unpleasantness (bipolarism [21,59–61]). Again, it has to be underlined that these
characteristics make affective meaning-making work differently from the rule-based ratio-
nal mode of thought. Indeed, the fact that affect works as a single, global, hypergeneralized,
homogenizing class of meaning entails it establishing relationships between elements in
spite of semantic, logical, and functional differences—e.g., from the standpoint of affective
meaning-making, that which is beautiful is good and trustworthy (asemanticity [62]). Fi-
nally, affect is an embodied form of the organization of experience that emerges from early
ontogenetic stages, and therefore comes before, paves the way for, frames, and channels
the subsequent rule-based processing of the semantic content (basicity [29,45,63,64]).

Several streams of thought converge in providing support to the characterization of
affective meaning proposed above. First, one can refer to classical studies [65,66] that have
shown that the prime effect works also when the association between the prime and the
stimulus consists of the sharing of an affective value (e.g., pleasantness) in the absence of
any semantic linkage. Similarly, the Emotional Categorization Theory (ECT [67]) states
that the meaning-maker tends to assimilate objects that have the same emotional valence
for him/her into the same class, regardless of their semantic relationships. The Homog-
enization of Classification Function Measure (HOCFUN [63]) is a method of measuring
affective intensity, based on a generalization of the ECT; it assumes that affective meaning
is not limited to assimilating objects, but also properties and qualities—i.e., propositional
functions (e.g., an object which is seen as pleasant tends to also be seen as important).
Accordingly, HOCFUN estimates the affective intensity in terms of the degree to which
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the individual in an evaluation task uses two semantically independent evaluation criteria
(pleasantness and relevance) in a homogeneous way. Second, the psychoanalytic theory
of the unconscious, more specifically the tradition triggered by Freud’s Interpretation of
Dreams [68], has conceptualized the unconscious as a mode of thinking (rather than a place
within the mind) characterized by a specific logic, that of the primary process ([45,59]; for a
review of this tradition, see [55]). This tradition emphasizes that affective meaning-making
is a mode of interpreting reality (affective semiosis, see [44]) that has its own specific logic
(the primary process), which is different from rational, rule-based logic, but still systematic
and endowed with inner consistency. Third, the copious literature on the semantic differen-
tial [69,70] has shown that semantic representation is grounded in three basic dimensions of
meaning—evaluation, power, and activity. With few exceptions, these dimensions emerge
systematically from hundreds of studies focused on a great many objects, adopting many
different semantic scales, carried out in many cultural contexts, over more than half a
century. Due to their generality and transversality, the three dimensions have been inter-
preted as basic affective meanings—for instance, the evaluation dimension channels the
meaning of semantic scales as pleasant/unpleasant, beautiful/ugly, good/bad, making
people use these scales in quite a similar way, despite their semantic differences. Fourth, the
transversality and basicity of affect are further supported by the fact that affective meaning
appears to be shared among cultures [71] and is active within all human languages [72].
Finally, framed by the Semiotic Cultural Psychology Theory, Salvatore and colleagues [5,21]
have recently identified five global beliefs about life (symbolic universes, as defined by the
authors) that are active in the cultural milieu of various European societies. As underscored
by the authors, each symbolic universe is an implicit generalized meaning providing a
global vision of what the world is/should be, which channels the way of feeling, thinking,
and acting of those who identify with it. Like the semantic differential framework, sym-
bolic universes have been considered forms of affective meaning, because each of them
comprises a set of beliefs lacking semantic linkage, while associated with each other by
reason of the same basic affective values (e.g., the connotation of the world as an enemy
one must protect oneself from) [21].

2.2. ASI Rationale
2.2.1. Saturation and Intensity

The ASI is designed to detect the contribution of affective meanings—as defined above:
hypergeneralized, homogenizing, bipolar, asemantic, and basic classes of meaning—to
the whole semantic content of the text under investigation (e.g., individual interviews,
focus groups, newspaper articles, or verbatim transcripts of psychotherapy sessions). The
ASI calls the extent of this contribution affective saturation—the more the affective meaning
contributes to the whole text’s meaning, the greater the affective saturation of the text.
Thus, affective saturation is like the chromatic saturation of an image—the more a given
color contributes to the image, the more that image is saturated by that color.

The ASI assumes that the saturation reflects, at the level of textual output, the intensity
of the meaning-maker’s affective state, associated with and influencing the cognitive
process underlying the production of the text. The higher the intensity of the affective
state, the more power it has to influence the meaning-making, and therefore the greater the
affective saturation of the meaning-making’s textual output (see [44,64,73] for a discussion
of this tenet in the context of the analysis of the psychotherapy process). In terms of the
previous analogy, if an image is saturated by a given color, this is expected to be because
that color plays a major role in the painter’s aesthetic desire and taste.

In summary, the ASI assumes that the affective state promotes affective saturation as
a function of its intensity. On this basis, the ASI considers affective saturation the textual
marker of the level of affective intensity that characterizes the meaning-maker during the
production of the text.

198



Entropy 2021, 23, 1421

2.2.2. A Geometric Model of Affective Saturation

The ASI’s estimation of affective saturation is based on a geometrical model of mean-
ing [45]. According to this view, meaning (e.g., an attribute, a belief, or a representation)
can be modeled as a point in a semiotic space—the Phase Space of Meaning [PSM], as mod-
eled by Venuleo and colleagues [74]. The PSM is made up of dimensions, each of which
maps a relevant component of environmental variability. Accordingly, the meaning is
represented by the coordinates of the corresponding point in the space. For instance, the
meaning of “orange” could be represented as the point in the semiotic space composed
of the dimensions: form, color, and function, and with the coordinates: almost spherical,
orange, food. To give a topical example, Salvatore and colleagues [20] found that the five
symbolic universes they identified are framed within a semiotic space composed of three
dimensions: (1) connotation of the world (polarities: friend vs. foe); (2) direction of the
desire (polarities: passivity vs. engagement); and (3) form of the demand (demand for
systemic resources vs. demand for community identity). Incidentally, one can see that
the first two of these dimensions overlap, similar to many dimensions emerging from the
semantic differential [63], providing further evidence as to the basicity of affective meaning.

Two core points of the PSM are relevant here (for a theoretical discussion, cf. [45]; for a
computational model, see [6]). First, PSM dimensionality requires modulation as a function
of the contextual conditions. Indeed, in any circumstance, most of the environmental
sources of variation—therefore of the PSM dimensions—are not relevant, and therefore
must be backgrounded to enable the cognitive system to make the relevant information
pertinent and thus process it. For instance, when driving, one should focus on the aspects of
the car and road that are relevant to the regulation of the vehicle, while other non-pertinent
aspects should be backgrounded as dangerous sources of control loss.

Second, the PSM dimensions can be divided into two broad classes—primary and
secondary dimensions. The former consists of affective meanings, each of which cor-
responds to a specific semantic component that maps a given quality/property of the
environment, to achieve the fine attunement with the environment needed for action to be
regulated. As discussed above, the affective dimensions are basic; that is, they tend to be
stable, both within cultures and between individuals—namely, they work as the grounds
of any meaning-making process, regardless of contextual conditions. This means that the
modulation of PSM dimensionality is due to secondary dimensions, that is, to the semantic
components that are activated in order to elaborate the pockets of information required to
regulate action in contingent circumstances.

The above points give rise to the view of affective saturation as the relative weight of
the primary over the secondary dimensions within the PSM. A PSM that is highly saturated by
primary dimensions models a text whose global meaning is largely defined by basic affec-
tive meanings, with little room left for further semantic components. For instance, various
media and political discourses provide a representation of the concept of migration almost
completely saturated by the securitization frame, an expression of the friend–foe affective
meaning [21], with very little room for any other meaning. Thus, framed in the geometric
model of meaning, the ASI computes affective saturation in terms of the contribution of
the affective meanings to the text compared to the other semantic components.

The geometric view of meaning and the related definition of affective saturation are
supported by growing evidence, even if this is mostly indirect. At the level of the individual,
low dimensional semiotic spaces have proven to be associated with proxies of affective
activation—e.g., higher response speed to evaluation tasks and a tendency to characterize
semantically distinct social objects in homogeneous ways [63]; a high need for closure
and a highly negative attitude towards foreigners [21]; and a lower tendency to explore
the marginal area of the attentional perception field [63]. Finally, the geometrical model
of meaning outlined above was recently used by some of the present authors to frame a
computational model of the form of meaning-making underpinning psychopathology—the
Harmonium Model [6]. In a subsequent work, the Harmonium Model was tested by means
of a simulation based on a neural network deep learning procedure. Findings showed that
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the neural networks simulating psychopathological meaning-making were characterized
by a lower dimensional micro-dynamic compared to the neural networks simulating non-
psychopathological meaning-making. At a psycho-social level, symbolic universes whose
content was characterized by connotations of the social world that were positively (very
high trust in people and the future, very high satisfaction, or idealization of interpersonal
bonds) or negatively (very high distrust, fatalism, or rejection of rules) polarized, reactive,
and generalized—in that sense affect-laden—showed a lower dimensionality than symbolic
universes whose content was characterized by moderate, differentiated beliefs [20].

2.3. Relation to Other Text-Based Measures of Affect

The ASI shares the interest of other measures in the measurement of affect in text.
The Therapeutic Cycle Model [16] focuses on the interplay of two lexical measures, based
on vocabularies estimating the Emotional Tone (ET)—i.e., the affective level of the text,
as detected by the use of emotion-laden words—and the Abstraction (AB)—the abstract
thought underpinning the text, as estimated by the use of abstract nouns or words—
respectively. Similarly, the Discourse Attribute Analysis Program (DAAP [75]) is based
on dictionaries and measures the text producer’s mental activity of connecting affective
and cognitive domains. Furthermore, the Linguistic Inquiry and Word Count (LIWC [76])
detects specific keywords assumed as the marker of relevant characteristics of cognitive
processing (e.g., emotions, cognitions, or perceptions). However, in spite of their validity,
reliability, and spread, these measures imply an invariant value of the words composing
the dictionaries. Thus, they do not take into due account the indexicality of meaning [44],
due to the field-dynamic nature of meaning-making.

3. Aims and Hypotheses

A preliminary version of the ASI was used in a recent study analyzing the evolution of
meaning characterizing the dreams of a patient through the course of psychotherapy [77].
In the context of that study, the ASI proved successful in estimating the saturation of
the affect-laden meanings in the patient’s dreams. Analyses showed that the saturation
followed a meaningful, though nonlinear, trajectory, globally indicative of the progressive
increase in the patient’s capacity to elaborate unconscious, affectively relevant areas of
her mental landscape. Such findings can be viewed as encouraging, preliminary, indirect
evidence in support of the ASI; however, results are based on a single case study and do
not provide information on the relationship between the ASI and other measures of affect.

The present study starts from these preliminary findings and is aimed at providing an
initial validation of the ASI, with a specific focus on its validity as a measure of affective
intensity. More particularly, it intends to test the two core assumptions underlying the ASI:
(i) the ASI is able to detect the affective saturation of a text, and (ii) the affective saturation
of the text reflects the intensity of the affective state characterizing the meaning-maker
involved in producing the text. This gives rise to the following three hypotheses.

First, an association between the ASI and an independent, content-based textual index
of the affective saturation of the text is expected. Given that no other direct measure of
a text’s affective saturation was found in the literature, we developed an ad hoc indirect
index of this characteristic, not related to the ASI: semantic complexity. Semantic complexity
is the degree of variability of textual content, namely the heterogeneity of the spectrum
of content active within the text—the more heterogeneous it is, the greater its semantic
complexity. We assume that semantic complexity is inversely associated with affective
saturation: the lower the former, the higher the latter. This assumption derives from the
definition of affective saturation; insofar as one assumes that affective saturation consists of
the magnitude of the contribution of affective meaning compared to other meanings, then
the greater the affective saturation, the less the contribution provided by other semantic
components, and therefore the lower the global variability of the text. Two studies provide
support for the interpretation of semantic complexity as a proxy of affective saturation.
First, in the context of the analysis of a therapist–patient exchange, the semantic complexity
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of narratives proved to be associated inversely with an index of the relevance of generalized
affective meanings [78]. Second, in the context of a study of European societies’ cultural
milieus, secondary quali-quantitative analyses highlighted that the semantic richness of
the cultural worldviews identified proved to be inversely associated with their affective
saturation [20] (see above paragraph, A geometric model of affective saturation). An analysis of
the association between the ASI and semantic complexity was carried out, paying attention
to checking the potential effect of the lengths of the texts under investigation (estimated in
terms of the number of words).

Second, the ASI is expected to be associated with an independent measure of the
intensity of the meaning-maker’s affective state related to text production. To this end, a
physiological index of propensity to engage in context-appropriate affective responses or
affective arousal was adopted: heart rate variability (HRV), a measure of parasympathetic
autonomic nervous system function. The relationship between the ASI and HRV was
estimated by parsing out the potential effect of the individual’s capacity for affective
regulation. This was done because it is plausible to think that the impact of the intensity of
the affective state on the meaning-making underpinning the production of the text, namely
the affective saturation, is moderated by the meaning-maker’s capacity to “filter” her/his
affective activation. One can expect that the lower the capacity for affective regulation, the
weaker the elaborative filter, and, therefore, the stronger the relationship between affective
intensity and saturation.

Third, the ASI is expected to be associated with an independent, content-unrelated im-
pact of the affective intensity on the text. To this end, we implemented lexical-syntactic com-
plexity as a proxy of that impact. This choice is based on the combination of the following
ideas. First, the lexical-syntactic complexity reflects the efficiency of the meaning-making
underpinning the text production [79,80]. The production of lexically and syntactically
complex texts (e.g., texts comprising long sentences, based on networks of multi-level
hierarchized statements) requires computational efficiency (e.g., working memory and
abstract conceptualization); correspondingly, low-efficiency meaning-making reduces the
text’s lexical-syntactic complexity. Second, affective intensity prevents the computational
and functional efficiency of meaning-making—e.g., it reduces metacognitive processes, the
availability of working memory, and access to abstract reasoning [4,81,82]. Thus, affective
intensity has a negative impact on syntactic complexity, via the reduction in the efficiency
of the underpinning meaning-making. There is already indirect empirical evidence of
the inversely proportional association between lexical-syntactic complexity and affective
mental state. (A) It has been shown that in patients with schizophrenia—i.e., patients who
are characterized by overwhelming affective states—the number of words per sentence
in spontaneous speech is significantly lower than in patients with less severe psychiatric
diseases and in non-clinical samples. It is worth adding that this is not due to an im-
pairment in the global production of narratives, as shown by the fact that individuals
with schizophrenia produce narratives with approximately the same number of words
as control groups do [83]. (B) DePaulo and colleagues [84] reviewed empirical studies
of deception cues. They moved from the well-supported premise that lie-telling is more
emotionally challenging than telling the truth [85]. On this basis, they highlighted that
research converges on the finding that the self-presentations of liars, in their free verbal
narratives, are characterized by shorter responses and simpler syntactical configurations.
(C) In the context of the Terror Management Theory [86], it was found that individuals
who received prime activating meanings related to one’s death—assumed to trigger deep
states of anxiety—generated shorter (in terms of fewer words and fewer letters per word)
autobiographical narratives compared to controls. The analysis of the relationship between
the ASI and syntactic complexity was carried out while paying attention to controlling
the level of affective regulation. This control is expected to address potential bias due to
the fact that the affective saturation measured by the ASI and syntactic complexity can be
influenced by differing abilities to regulate affect. In summary, the alternative hypotheses
tested against the null hypotheses were:
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Hypothesis 1 (H1). ASI is negatively associated with text semantic complexity.

Hypothesis 2 (H2). ASI is positively associated with affective intensity.

Hypothesis 3 (H3). ASI is negatively associated with lexical-syntactic complexity.

The first hypotheses concern the ASI’s convergent validity; the others concern concur-
rent validity.

4. Method
4.1. Sample

The study used a convenience sample of 42 academic students with Italian as their
mother tongue. Participants were excluded in the case of self-reported (current or past) psy-
chiatric diagnoses or if they reported psychopathological symptoms over the threshold of
clinical relevance (the SCL-R’s GSI index was adopted to this end, see below Section 4.3.1).
As a result, 2 participants were not included in the analysis. Thus, the sample consisted of
N = 40 (34 F; age: M = 25.33; SD = 2.77).

4.2. Procedure

Participants, screened as to the exclusion criterion (presence of current or past psy-
chiatric diagnoses), were contacted through a snowballing procedure. Each participant
was invited to the laboratory, provided with a description of the study, informed about
the procedure, and asked to sign a written informed consent (Ethical Committee of the
Department of Dynamic and Clinical Psychology and Health studies, Sapienza, University
of Rome; Prot. n. 0000453). Then, ECG electrodes were attached, and a 5 min assessment
at rest was obtained. After that, the participant was asked to fill out the questionnaire
(SCL-90-R and DERS) and to undergo the semi-structured interview.

The semi-structured interview was carried out by a trained clinical psychologist,
unaware of the aims of the study. The interview focused on neutral issues concerning
participants’ involvement in their academic course as well as on life and lifestyle matters.
It ended after 10 min. In Table 1, some examples of the questions asked to participants are
reported. Interviews were audio-recorded and then subjected to verbatim transcription,
from which the textual-based indexes (ASI, SEI, and FVI) were derived.

Table 1. Examples of questions used in the semi-structured interview.

Which degree program are you enrolled in?
What is the subject that you are most passionate about?
Whom do you live with?
Are you still with your family or do you live alone?
Do you have any brothers or sisters?
What do you like to do together?
What do you like to do in your free time?
Do you have any friends?
Do you have any hobbies?

The choice of basing the interview on neutral issues responded to the aim of focusing
on the participants’ baseline levels of affective activation. This was done with the twofold
purpose of controlling for potential bias due to the between-subject variability in ways of
coping with higher levels of affective activation and of avoiding a potential ceiling effect,
reducing data variance.

4.3. Measures

The study implemented the following measures:

(a) Symptom CheckList-90-Revised (SCL-90-R; [87]), to assess the presence of psychopatho-
logical symptoms, considered the exclusion criterion.
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(b) Difficulties in Emotion Regulation Scale (DERS; [88]), used to measure the partici-
pant’s capability for affective regulation.

(c) Affective Saturation Index (ASI).
(d) Semantic Entropy Index (SEI), used to measure the text’s semantic complexity.
(e) Flesch–Vacca Readability Index (FVI; [89]), used to measure the text’s syntactic complexity.
(f) Resting Heart Rate Variability, (indexed by the root mean square of the successive

differences between normal heartbeats; rMSSD [90]) an index of parasympathetic
control of the heart, used to measure the participant’s propensity for affective arousal.

4.3.1. Symptom Check List 90-Revised (SCL-90-R)

The SCL-90-R [87] is a widely used self-report multidimensional inventory, measuring a
broad range of symptoms. The SCL-90 has been validated over various populations [91–93].
The SCL-90 measures the symptomatic intensity of mental and physical impairment over
the last 7 days. It consists of 90 items answered on a five-point Likert scale with a score
of 0 (not at all) to 4 (extremely). The inventory fits a 9-factor structure (Cronbach’s al-
phas ranging from 0.77 for psychoticism to 0.90 for depression) and provides a Global
Severity Index (GSI), which is considered a reliable indicator of the current level of overall
psychological distress [94,95]. In the present study, we adopted a GSI of <60 as the ex-
clusion criterion. This threshold is, in fact, indicative of clinically relevant conditions of
psychological distress [93–96].

4.3.2. Difficulties in Emotion Regulation Scale (DERS)

The DERS [88] is a 36-item self-report measure developed to assess multiple facets
of emotion regulation, including abilities to identify, differentiate, and accept emotional
experiences, engage in goal-directed behavior, inhibit impulsive behavior in the context of
negative emotions, and use effective emotion modulation strategies.

The DERS’ items are rated on a five-point Likert scale ranging from 1 (almost never) to 5
(almost always). Despite the fact that the original 6-factor structure is debated [97–101], there
is agreement on the DERS total score as an index of emotional impairment or dysregulation
(Cronbach’s alpha = 0.93) [89,101–105]. Higher scores in the DERS indicate more difficulties
in emotion regulation [106]. The DERS is proven to have high internal consistency and test–
retest reliability and good predictive and construct validity [103]. The DERS is proven to be
sensitive to change due to successful clinical intervention [106,107] and to be correlated with
behavioral measures of emotion dysregulation [103]. Based on these results, the measure
has gained wide acceptance as a reliable and valid measure of emotion dysregulation in
adults [107].

In the present study, we adopted the total DERS scores as an independent measure of
the individual’s capability for affective regulation, introduced to control the effect of this
facet on the relationship between the ASI and independent measures of affective activation
and as well as text syntactic complexity.

4.3.3. Affective Saturation Index (ASI)

The ASI estimates affective saturation by computing the contribution of the primary
dimensions of the semiotic space, which models the meaning of the textual corpus under
analysis (see above, Section 2.2). The ASI does this through the automated procedure of
textual analysis (ACASM [108,109]) described below.

ACASM Procedure

ACASM is a computer-based procedure of textual analysis. ACASM can be imple-
mented by several kinds of software. The current analysis used T-Lab [110,111]. T-Lab
is appliable to any text based on the Latin alphabet. For several languages (e.g., English,
Italian, French, Spanish, German) T-Lab is able to perform both text preprocessing (e.g.,
the disambiguation of words) and all computations in a fully automatized way. However,
these computations are inspectable, their parameters (e.g., the number and type of words
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under analysis) can be modulated, and their outputs adjusted by the researcher in view of
the specific aim of the investigation.

Below, the main steps of the ACASM procedure are described, as it is implemented by
the T-Lab software.

(A) The text is automatically segmented into Elementary Context Units (ECUs) ac-
cording to the following criteria: (i) each ECU begins just after the end of the previous
ECU; (ii) each ECU ends with the first punctuation mark (“.” or “!” or “?”) occurring after
a threshold of 250 characters from the first character; and (iii) if an ECU is longer than
500 characters, it ends with the last word within this length, even if there is no punctuation
mark.

(B) The software builds a list of all lexical forms (i.e., any string of characters comprised
between two blank spaces) present in the transcripts.

(C) The lexical forms are subjected to lemmatization, namely any lexical form is
tracked back to the lemmas it belongs to (e.g., lexical forms “I go,” “you went,” and “they
are going” are classified as the lemma “to go”). For many languages, T-lab can perform
this step in a fully automatized way.

(D) Instrumental lexical forms (e.g., “to,” “and,” “of,” etc.), as well as lexical forms
devoid of meaning (e.g., due to typos) are excluded. This operation, too, is carried
out automatically.

(E) ACASM procedures set T-Lab to exclude from the analysis the first 5% of the
most frequent lemmas. This is because very high-frequency lemmas tend to co-occur
in too many different ECUs, thus reducing their ability to discriminate among different
patterns of co-occurrence. Then, only 10% of the most frequent lemmas of the remaining
list are selected. This choice is aimed at reducing the dispersion of information within the
dataset. In sum, the analysis is limited to lemmas comprised between the fifth and fifteenth
percentile of frequency distribution.

(F) A digital matrix of the text is generated, with the segments of text produced in step
A (i.e., the ECUs) as rows and the selected lemmas as columns. The ij-th cell assumes a
value of 1 if the j-th lemma is contained in the i-th ECU; a value of 0 is assigned otherwise.
Appendix A reports an example of such a digital matrix.

(G) The ECU ∗ lemma matrix is subjected to a Lexical Correspondence Analysis
(LCoA). The output of the LCoA is a factorial space, each factorial dimension of which
maps a component of the meaning active within the whole textual corpus (in the current
analysis, the whole set of interviews). Moreover, the LCoA output provides the coordinate
on the factorial space of each ECU, as well as of any super-ordered categories in terms
of which the ECUs are classified (in the current analysis, the interview). Henceforth, the
object of the factorial coordinate (i.e., ECU or super-ordered category) is denoted as a text
unit. The factorial coordinate is the measure of the degree of association between the text
unit and the factorial dimension—the higher the coordinate, the higher the association,
therefore the higher the contribution of that factorial dimension to the meaning of that
text unit. In the current study, we focus on the factorial coordinates of the interviews as
text units. However, depending on the researcher’s aim, the ASI can also be computed
by taking the ECU as a text unit. In doing so, a more fine-grained map of the ASI trends
throughout the text would be obtained, with a value of ASI for each ECU—i.e., for each
sentence. For instance, take the case of a text comprising the verbatim transcript of a whole
psychotherapy course. The ASI can be computed either by adopting each session as a text
unit (i.e., at the level of super-ordered category) or at the level of a single ECU as a text unit.
In the former case, the ASI trend would concern the whole psychotherapy course; in the
latter case, the focus would be on the moment-by-moment within-session ASI evolution.
Incidentally, the fine-grained focus could be used to analyze the interplay between the
participants of the exchange (note that the latter kind of analysis requires the researcher’s
intervention to differentiate the ASI trends of the interlocutors).

(H) Factorial coordinates are used to compute the ASI. More specifically, the ASI is
calculated for each unit (in the current analysis, each interview) as its Euclidean distance
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from the origin of the factorial space. It is worth highlighting that the Euclidean distance is
computed by using the coordinates of the first two factorial dimensions only, as in Equation
(1). This is so because the ASI assumes that the first two dimensions are the computational
equivalent of the PSM primary dimensions (see Section 2.2):

ASIt =
√

CF1(t)
2 + CF2(t)

2 (1)

where ASIt is the Affective Saturation Index of the textual unit t and CF1(t) and CF2(t) are
the factorial coordinates of the textual unit t on the first and second factorial dimension,
respectively.

From Equation (1), it can be seen that the ASI increases when one or both of the
factorial coordinates increase. Accordingly, the ASI can be interpreted as a measure of
the magnitude of the contribution of the two first dimensions of the factorial space to the
meaning of the textual unit—the higher the ASI, the greater the contribution. Therefore,
the ASI can be considered an index of the degree of saturation of the affective meanings
comprising the textual unit.

4.3.4. Semantic Entropy Index (SEI)

To estimate the semantic complexity, we used an ad hoc index: the Semantic Entropy
Index (SEI). The SEI is derived from the Information Entropy formula [112], applied to the
text’s thematic contents. However, previous studies which applied Informative Entropy to
text analysis focused on lexical features [113], language comprehension, meaning repre-
sentation [114,115], and associative strengths among words [111,115]. Different from these
studies, the SEI is aimed at detecting the amount of semantic variability in the text. The
higher the SEI, the higher the content variability (i.e., the complexity) of the text under
analysis is. In the current study, the SEI was applied to each interview.

The SEI was estimated in accordance with the following procedure. First, the digital
matrix of the textual corpus (i.e., the same matrix used in the first stage of the computa-
tion of the ASI, i.e., the LCoA) was subjected to a Lexical Cluster Analysis (LClA). The
LClA groups sentences (Elementary Context Units, ECUs) that tend to share the same
co-occurring lemmas. In this way, each cluster can be considered indicative of a thematic
content active in the textual corpus and characterized semantically by the pattern of co-
occurring lemmas making those ECUs similar to each other (for details, see [108,109]). The
number of clusters in which the text is segmented is established in accordance with an
iterative algorithm [110,111]; the procedure of clustering stops when further partitions
produce no significant improvement of the inter-/intra-cluster ratio, which means that
increasing the number of clusters does not produce an appreciable increment of informa-
tion. In the current analysis, the LClA generated 5 clusters/thematic contents as optimal
partitions. Accordingly, each interview was characterized by the relative frequency of each
cluster/thematic content within it—i.e., the proportion of ECUs covered by each cluster
within the interview.

The SEI was computed in accordance with the following formula:

SEI = −
n

∑
i=1

p(xi) ln p(xi) (2)

where SEI is the degree of the Semantic Entropy Index of the interview I, n is the number of
clusters (i.e., thematic contents) obtained by the LClA, and p(xi) stands for the probability
that a cluster xi occurs.

According to Equation (2), the entropy consists of the homogeneity of the probability
of the occurrence of clusters/thematic content. The more each cluster has an occurrence
probability similar to that of others, the more the thematic variability of the text, thus its
complexity. This means that, in the context of the current analysis, the highest SEI is given
if each cluster/thematic content has f = 0.2 (i.e., 1/5) of relative frequency. In that case,
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indeed, the text could be characterized by one or more specific clusters; rather, all clusters
need to be considered to represent its content.

4.3.5. Flesch–Vacca Index (FVI)

The FVI is a measure of text readability [89]. Text readability is the extent to which
a text can be understood by a reader as a result of its lexical and syntactic characteristics.
Specifically, the FVI is an Italian language adjustment of the Flesch [116,117] Reading Ease
formula. The FVI assumes that long words are typically used less frequently than short
ones and that long sentences are usually more complex, from a syntactical point of view,
than short ones.

The FVI was computed for each interview separately, in accordance with the following
formula (see Equation (3)):

FVIt = 217 − (1.3 ∗ ASLt) − 0.6 ∗ AWLt (3)

where ASLt is the length of sentences of the text unit t, measured as the average number
of syllables in 100 words, and AWLt denotes the length of the sentences, expressed as the
average mean of words per sentence.

4.3.6. Heart Rate Variability (HRV)

HRV is the variability of the time between adjacent heartbeats, resulting from the
dynamic interplay between the fast-acting parasympathetic nervous system and the rel-
atively slower sympathetic nervous system [118]. A higher resting-state HRV reflects
better adaptive and flexible prefrontal inhibition to meet various situational demands [119].
In contrast, a lower resting HRV has been related to hypoactive prefrontal regulation,
leading to hyperactive subcortical structures and the release of physiological defensive
responses [120,121]. Tonic HRV was assessed through the following procedure. A 5 min
baseline was started, during which time the participants browsed a gardening magazine
(i.e., “vanilla baseline” [122–124]), while their beat-to-beat intervals were recorded using
the Bodyguard 2 (Firstbeat). The device has been shown to provide reliable measures of
beat-to-beat intervals [124].

HRV analyses were performed using Kubios HRV software [125]. This software uses
an advanced detrending method based on smoothness priors formulation in which the
filtering effect is attenuated at the beginning and the end of the data, thus avoiding the
distortion of data end-points. Moreover, the frequency response of the method is adjusted
with a single smoothing parameter, selected in such a way that the spectral components of
interest are not significantly affected by the detrending [126]. Kubios HRV includes two
methods for correcting any artifacts and ectopic beats: (1) a threshold-based correction,
in which these are simply corrected by comparing every RR interval value against a local
average interval; and (2) automatic correction, in which artifacts are detected from a time
series consisting of differences between successive RR intervals.

HRV was mapped by means of the rMSSD, which reflects the vagal regulation of
HR [126]. A higher resting rMSSD reflects better psychological and emotional flexibility
and the capability to engage in context-appropriate responses [127–129]. Accordingly,
we used the rMSSD as an index of the individual’s disposition for affective arousal—the
lower the rMSSD, the higher the propensity to be subjected to affective arousal (for a
similar interpretation of the index, see [118,130,131]). As the distribution of the rMSSD was
non-normal, the variable was transformed into its natural logarithms.

4.4. Data Analysis

A set of one-way ANOVAs and bivariate correlations were first used to estimate
the size of the relationships among indexes and sample characteristics (age, gender) and
between them. Then, three multiple linear regressions (standard multiple regression
method) were performed, one for each hypothesis:
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1. H1 was tested by means of a regression model, with the index of saturation (SEI) as
the dependent variable and the ASI and the length of the interview (measured by the
number of words) as predictors. The latter was introduced in order to control for its
effect on the SEI–ASI relationship.

2. H2 was tested by means of a regression model, with the physiological measure
(rMSSD) as the dependent variable and the ASI as the predictor. The DERS was
introduced in the model as a further predictor, in order to estimate the rMSSD–ASI
association and the net effect of the individual’s capacity for emotion regulation.

3. H3 was tested by means of a regression model, with the index of syntactic complexity
(FVI) as the dependent variable and the ASI as a predictor. We introduced the length
of the interview (in number of words) and the DERS as further predictors, to control
for their effects on the SEI–ASI relationship.

5. Results

Table 2 reports descriptive statistics of the variables adopted. As shown by the
values of kurtosis and skewness, the indexes (in the case of the rMSSD, after logarithmic
transformation) proved to approximate the normal distribution (the distribution of ASI is
shown in Figure 1).

Table 2. Descriptive statistics of the measures under analysis.

N Mean Min Max Std. Dev. Skewness SE Kurtosis SE

Age 39 25.107 21 31 2.80784 0.348 0.378 −0.879 0.741
SCL90-R 40 44.025 33 75 11.226 1.252 0.374 0.498 0.733

ASI 40 0.124 0.01 0.34 0.08 1.134 0.374 1.391 0.733
SEI 40 1.456 1.081 1.592 0.133 −1.358 0.374 1.091 0.733

rMSSD 40 3.846 2.25 4.94 0.62 −0.885 0.374 0.242 0.733
FVI 40 70.651 54 80 6.133 −0.79 0.374 0.683 0.733

Words 40 1362.43 988 1746 170.569 0.035 0.374 −0.021 0.733
DERS 40 85.75 49 128 21.584 0.367 0.374 −0.651 0.733

Note. Age N = 39 given that 1 participant had unknown age; SCL90-R = Symptom Checklist-90 Revised; ASI = Affective Saturation Index;
SEI = index of saturation; rMSSD = log-transformed root mean square of the successive differences between normal heartbeats; FVI = index
of syntactic complexity; DERS = Difficulties in Emotion Regulation Scale.
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Figure 1. Affective Saturation Index (ASI) distribution in the sample under analysis.

No significant differences resulted between males and females as to the level of the
ASI (ANOVA test: F [1,38] = 0.337, p = 0.565). Accordingly, and considering that the sample
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is characterized by a higher proportion of women than men, we did not carry out separate
analyses. The length of the interview (in number of words) did not correlate with any
of the indexes examined. However, we have used this as a control variable in regression
models 1 and 3, given that these models have a text-based index as the dependent variable.

Table 3 reports the correlations between the main variables of the study. The ASI
proved to be negatively associated with the SEI (r = −0.657), rMSSD (r = −0.468), and FVI
(r = −0.426). No significant correlations emerged for Age, Words, DERS, and SCL-90R. The
log-transformed rMSSD and the FVI proved to correlate robustly (r = 0.489).

Table 3. Pearson correlations between the measures under analysis.

SEI rMSSD FVI Age Words DERS SCL-90R

ASI −0.657 * −0.468 * −0.426 * 0.288 −0.084 0.023 0.047
SEI 0.464 * 0.388 * −0.247 0.213 −0.012 −0.053

rMSSD 0.489 * −0.064 −0.012 0.178 0.156
FVI −0.452 * 0.026 −0.034 −0.59
Age −0.212 0.155 0.147

Words 0.133 0.084
DERS 0.653 *

* significant correlations at 0.01 level two-tailed. ASI = Affective Saturation Index; SEI = index of saturation; rMSSD = log-transformed root
mean square of the successive differences between normal heartbeats; FVI = index of syntactic complexity; DERS = Difficulties in Emotion
Regulation Scale; SCL-90 = Symptom Check List-90 Revised.

All three multiple regression models proved to be significant (p < 0.001, p < 0.004,
and p < 0.005, respectively; cf. Table 4). Tables 5 and 6 report the main parameters of
regression model 1, with SEI as the dependent variable and the ASI and Words (i.e., the
number of words in the interview) as predictors. The model did not suffer from problems
of collinearity (VIF = 1.007); the adjusted R square was 0.428 (std. err. of estimation = 0.101).
The inclusion of Words did not modify the parameters of the model significantly (change
of R from model 1 and model 2: p = 0.199; cf. Table 5). The ASI beta coefficient was −0.644
(t = −5.296, p < 0.000); the Words beta coefficient (0.159) was not significant (cf. Table 6).
The distribution of residuals approximated the normal distribution (Figure 2).

Table 4. Regression models. ANOVA test.

Sum of Squares df Mean Square F Sig.

Regression Model 1: Dependent Variable: SEI; Predictors: ASI, Words
Regression 0.315 2 0.158 15.58 0.001
Residual 0.375 37 0.010
Total 0.691 39

Regression Model 2: Dependent Variable: rMSSD; Predictors: ASI, DERS
Regression 3.813 2 1.907 6.313 0.004
Residual 11.175 37 0.302
Total 14.988 39

Regression Model 3: Dependent Variable: FVI; Predictors: ASI, DERS, age
Regression 441.309 3 147.103 5.028 0.005
Residual 1023.922 35 29.255
Total 1465.231 38

Note. ASI = Affective Saturation Index; SEI = index of saturation; rMSSD = log-transformed root mean square of
the successive differences between normal heartbeats; FVI = index of syntactic complexity.

Table 5. Regression model with the index of saturation (SEI) as the dependent variable. Summary of the model.

Model * R R2 Adjusted R2 Std. Error F Change df1 df2 Sig. F Change

1 0.657 0.432 0.417 0.101
2 0.676 0.457 0.428 0.101 1.714 1 37 0.199

* Model 1 predictor: Affective Saturation Index (ASI); Model 2 predictors: ASI, Words.
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Table 6. Regression model with the index of saturation (SEI) as the dependent variable (model 2,
with all predictors included).

B Stand. Error Beta t Sig. VIF

Constant 1.42 0.135 10.55
ASI −1.064 0.201 −0.64 −5.3 0 1.007

Words 0 0 0.159 1.309 0.199 1.007
Note. ASI = Affective Saturation Index.
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Tables 7 and 8 report the main parameters of regression model 2, with the rMSSD as
the dependent variable and the ASI and DERS as the predictors. The model did not suffer
from problems of collinearity (VIF = 1.001); the adjusted R square was 0.214 (std. err. of
estimation = 0.549). The inclusion of the DERS did not modify the parameters of the model
significantly (change of R from model 1 and model 2: p= 0.192; cf. Table 7). The ASI beta
coefficient was −0.472 (t = −3.325; p < 0.002); the DERS beta coefficient was not significant
(0.189; cf. Table 8). The distribution of residuals approximates the normal distribution
(Figure 3).

Table 7. Regression model with the log-transformed root mean square of the successive differences between normal
heartbeats (rMSSD) as the dependent variable. Summary of the model.

Model * R R2 Adjusted R2 Std. Error F Change df1 df2 Sig. F Change

1 0.468 0.219 0.198 0.55506
2 0.504 0.254 0.214 0.54956 1.764 1 37 0.192

* Model 1 predictor: Affective Saturation Index (ASI); Model 2 predictors: ASI, Difficulties in Emotion Regulation Scale (DERS).
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Table 8. Regression model with the log-transformed root mean square of the successive differences
between normal heartbeats (rMSSD) as the dependent variable (model 2, with all predictors included).

B Stand. Error Beta t Sig. VIF

Constant 3.835 0.382 10.03 0.001
ASI −3.636 1.093 −0.47 −3.33 0.002 1.001

DERS 0.005 0.004 0.189 1.328 0.192 1.001
Note. ASI = Affective Saturation Index; DERS = Difficulties in Emotion Regulation Scale.
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Tables 9 and 10 report the main parameters of regression model 3, with the FVI as the
dependent variable and the ASI, DERS, and age as the predictors (we included age as a
covariate, due to its high correlation with the FVI; this means that in this case the model
was calculated on n = 39 group, given that 1 participant had unknown age). The model
did not suffer from problems of collinearity (VIFs close to 1); the adjusted R square was
0.241 (std. err. of estimation = 5.409). The inclusion of the DERS and age did not modify
the parameters of the model significantly (p = 0.064; cf. Table 9). The ASI beta coefficient is
−0.301 (t = −2.187; p < 0.035); the age beta coefficient is also significant (−0.364, p < 0.002).
The DERS beta coefficient (.029) was not significant; (cf. Table 10). The distribution of
residuals approximates the normal distribution (Figure 4).

Table 9. Regression model with the index of syntactic complexity (FVI) as the dependent variable. Summary of the model.

Model * R R2 Adjusted R2 Std. Error F Change df1 df2 Sig. F Change

1 0.427 0.182 0.16 5.691
2 0.549 0.301 0.241 5.409 2.978 2 35 0.064

* Model 1 predictor: Affective Saturation Index (ASI); Model 2 predictors: Affective Saturation Index (ASI), Difficulties in Emotion
Regulation Scale (DERS), age.
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Table 10. Regression model with the index of syntactic complexity (FVI) as the dependent variable
(model 2, with all predictors included).

B Stand. Error Beta t Sig. VIF

Constant 93.251 8.251 11.3 0.001
ASI −24.958 11.41 −0.32 −2.19 0.035 1.091

DERS 0.008 0.041 0.029 0.204 0.839 1.025
age −0.804 0.331 −0.36 −2.43 0.02 1.118

Note. ASI = Affective Saturation Index; DERS = Difficulties in Emotion Regulation Scale.
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6. Discussion and Conclusions

As hypothesized, the ASI proved to be significantly and inversely associated with
the SEI, the independent proxy of affective saturation. The association was robust, in
the expected direction (ASI beta = −0.644), and was not weakened by the control of the
potential effect of the length of the interviews.

Second, the ASI was significantly and inversely correlated with the rMSSD, the physi-
ological index of the disposition for affective arousal. This relationship was in the expected
direction (once one considers that a lower rMSSD indicates higher arousal), and robust,
both when estimated directly (r = −0.468) and once the index of affective regulation (DERS)
was introduced in the regression model (ASI beta = −0.472). This finding suggests that the
ASI is able to detect the intensity of the affective state of the meaning-making involved in
the production of the text, in a way that is not influenced by the individual’s capability to
regulate affective arousal.

Finally, these findings are consistent with the idea that the ASI is able to detect the
lexical-syntactic complexity of the text, assumed as an independent correlate of the affective
intensity. As to this latter assumption, it is worth highlighting that it was supported by the
high correlation between the index of lexical-syntactic complexity (FVI) and the rMSSD
(r = 0.489). These results are consistent with and further support lines of thinking that
view lexical-syntactic complexity as a property of the textual output that is subject to the
influence of the affective state over the meaning-making underpinning its production. The
ASI proved to be associated with the FVI (ASI beta = −0.323), in the expected direction.
Moreover, in this case, the effect was estimated after the individual’s capability for affective
regulation was checked.

Taken as a whole, the present findings support both the aspects of the ASI construct
and the criterion validity investigated. The ASI proved to be a measure capable of detecting
the structural organization of textual meaning—more specifically, of estimating to what
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extent the text is saturated by affective meaning. Moreover, the ASI’s measurement of
affective saturation proved to be a valid estimator of the producer’s physiological affective
state at rest as well as of the impact of affective intensity on meaning-making (as marked
by the text’s syntactic complexity).

These findings are promising for their theoretical, methodological, and practical impli-
cations. From a theoretical standpoint, they enforce the semiotic framework upon which
the ASI is based. What needs to be highlighted here is that the intensity of the meaning-
maker’s affective state proved to be associated not only with the efficiency of the cognitive
process underpinning the text production—as signaled by the relationship between af-
fective intensity and lexical-syntactic complexity—but also with the inherent structural
organization of the textual meaning—i.e., the relevance of the primary dimensions of
meaning over the others, which is the specific property on which the ASI focuses. This
legitimates the semiotic view of affect—namely, the idea that affect is an embodied form of
meaning that, due to its nature, operates directly on the text’s semantic organization. In
other words, the findings are consistent with the ASI viewpoint, which does not see affect
as an exogenous factor influencing the text from the outside. Rather, it conceives affect as an
inherent characteristic of the text; affect does not work on meaning-making by constraining
or channeling it but is part and parcel of it [20]. From a methodological standpoint, the ASI
opens new opportunities for measuring affect. Two characteristics of the ASI are worth
mentioning here. First, the ASI is almost completely insensitive to the size of the data—this
means that it can be implemented on a large textual dataset, therefore enabling large-scale
studies that can link individual and social levels of analyses as well as studies based on
the density of units of observation required for dynamic time series. Second, the affective
meaning is frozen, as it were, in the text. Therefore, the ASI’s use of texts as a source of
the measurement of affective intensity enables the off-line detection of that dimension,
namely the possibility for measuring affect in an independent spatio-temporal setting with
respect to the setting in which it was activated. The combination of these characteristics
envisages thrilling new opportunities—e.g., large-scale retrospective time-series analyses,
to model the dynamics of affective activation characterizing the socio-cultural historical
evolution of given social groups, and time-series analyses to map the dynamic evolution of
meaning-making over the psychotherapy process [77]. The ASI’s methodological flexibility
has practical implications, too. One can envisage a plurality of applications of the method,
in the many fields where the measurement of affect and its impact on meaning-making can
be relevant for both interpretative and interventional aims—e.g., fields such as clinical and
community interventions, social communication, marketing, and media monitoring (on
the role of affective sensemaking in society [27]).

However, the fact that the findings are encouraging must not lead us to underestimate
the limitations of the study. There are three main shortcomings to highlight. First, the study
was based on a convenience sample of Italian students in a degree course in psychology
characterized by homogeneous age and a higher proportion of women. This made it
impossible to test the role of language, age, and gender on the relationship between the
ASI and other indexes and therefore generalize the findings beyond this specific group.

Second, the study adopted a psychophysiological index (rMSSD) assessed at rest,
which is a trait measure. It was implemented before the interview to estimate the partici-
pants’ baseline disposition to a given level of affective intensity and capacity for affective
regulation, respectively. Thus, it is not a direct measure of the level of affective intensity—
and its variation—during the interview. We did this because the adoption of a state mea-
sure, mapping the ongoing physiological state of the participants alongside the interview,
would have involved a level of computational complexity (e.g., the necessity to match the
ASI values that took the whole interview as a unit of analysis and the instant-by-instant
physiological values) which would have been outside the scope of the current study, which
is aimed at the first stage of the validation of the ASI. Furthermore, while it must be recog-
nized that the HRV index only partially captures the affective state occurring during the
interview, it must also be highlighted that the use of this index is a conservative choice,
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which underestimates the relationship between the ASI and the participants’ affective
intensity manifested during the interview. This is because it is plausible to think that,
in response to the interview, individuals would differ in how much their affective state
varies from the baseline, as a result of individual differences in personality and other
psychological characteristics. Thus, insofar as the ASI is a measure of the current affective
intensity on the text, the use of a trait measure weakens the chance to detect the capacity of
the ASI to estimate the physiological state underpinning text production.

The third hypothesis was based on an indirect proxy of the impact of affective intensity
on meaning-making—the text’s lexical-syntactic complexity. Thus, hypothesis 3 of the
study—i.e., the fact that the ASI is able to detect the impact of affective intensity on meaning-
making—must be considered only indirectly tested, insofar as one accepts the assumption
that lexical-syntactic complexity is a valid marker of the efficiency of meaning-making.
This assumption is fostered by the findings of the study (i.e., the high correlation between
the FVI and the rMSSD), but is not systematically supported by the literature, which lacks
specific studies on this issue.

These issues need to be addressed by the next steps of the ASI’s validation. Further
studies will be implemented to test the ASI’s validity on other groups (e.g., lower educated
people and clinical populations) and other kinds of texts (e.g., highly affect-laden commu-
nications and texts characterized by positive vs. negative affective valence). Finally, deeper
analyses of the specific mechanisms underpinning the relationship between the textual and
physiological components of affect, as well as the role played by the regulative cognitive
processes in that relationship, will be brought into focus.
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Abstract: Measuring interpersonal synchrony is a promising approach to assess the complexity of
social interaction, which however has been mostly limited to dyads. In this study, we introduce
multivariate Surrogate Synchrony (mv-SUSY) to extend the current set of computational meth-
ods. Methods: mv-SUSY was applied to eight datasets consisting of 10 time series each, all with
n = 9600 observations. Datasets 1 to 5 consist of simulated time series with the following character-
istics: white noise (dataset 1), non-stationarity with linear time trends (dataset 2), autocorrelation
(dataset 3), oscillation (dataset 4), and multivariate correlation (dataset 5). Datasets 6 to 8 comprise
empirical multivariate movement data of two individuals (datasets 6 and 7) and between members
of a group discussion (dataset 8.) Results: As hypothesized, findings of mv-SUSY revealed absence
of synchrony in datasets 1 to 4 and presence of synchrony in dataset 5. In the empirical datasets,
mv-SUSY indicated significant movement synchrony. These results were predominantly replicated
by two well-established dyadic synchrony approaches, Surrogate Synchrony (SUSY) and Surrogate
Concordance (SUCO). Conclusions: The study applied and evaluated a novel synchrony approach,
mv-SUSY. We demonstrated the feasibility and validity of estimating multivariate nonverbal syn-
chrony within and between individuals by mv-SUSY.

Keywords: surrogate synchrony; multivariate analysis; simulation; movement synchrony

1. Introduction

Interpersonal synchrony has become a growing field of empirical research in social
psychology and psychotherapy. Synchrony, composed of the Greek words syn (together)
and chronos (time), denotes the coordination of variables that each represent the temporal
evolution of the momentary state of a system. The bulk of applications has focused on
the synchrony of two individuals A and B in social interaction. If these individuals act
“together in time”, it is expected that their behavior is coupled and mutually entrained to a
degree exceeding random correlations: A and B are then said to be in synchrony. The basic
level of synchrony occurs at a phasic time scale of a few seconds; this is the time scale of the
“Now”, the experienced present moment, during which present-time consciousness of the
“here-and-now” arises [1]. This “Now” has a temporal duration, which provides a reason
for including lagged correlations. At this time scale, synchrony can be detected in A and
B’s body movement [2,3], neural activity [4], or physiological activations [5,6]. Accordingly,
to quantify synchrony the variable of interest is observed continuously over time and the
corresponding time series must be sampled at high temporal resolution. Temporal delays
(lags) of the time series may be considered to account for the durational aspects of the
“Now” as well as the psychological reality of response times in social interaction.

Various fields of psychological research have used synchrony measures. Since each
field has its own terminology, several synonyms for the phenomenon of synchrony are
used, such as attunement, interpersonal physiology, concordance, coupling or entrainment.
The largest number of applications is in clinical psychology, where the coordination of
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therapist and patient in a therapy session is a phenomenon of major interest. Many stud-
ies were conducted addressing nonverbal measures, as participants’ body movements
can be economically sampled by Motion Energy Analysis [7,8], a software package for
automated motion capture from video recordings. Generally, studies have found that
levels of movement synchrony significantly exceeded random control conditions [8–10].
It was often reported that synchrony had pro-social effects [11], predicted better outcomes,
such as reduced interpersonal problems of patients, and was associated with the qual-
ity of the therapeutic alliance. Prosodic aspects of speech, especially the attunement of
pitch and loudness of verbal utterances, can also be monitored in a non-invasive way
in psychotherapy sessions [12]. Increasingly, synchrony is studied also on the basis of
physiological variables of two participants. For an extensive literature review see Palumbo
et al. [13]. This field has seen early forerunners in DiMascio’s group, who focused on
interpersonal synchrony of heart rate in psychiatric interviews [14]. Marci & Orr [15] found
concordance of electrodermal activity in clinical interviews, and this approach was also
chosen in a setting of naturalistic couple therapies with two therapists [16]. Tschacher and
Meier [6] investigated the synchrony of heart rate, heart-rate variability and respiration in
psychotherapy sessions.

Fields of research outside clinical applications concerned social psychology [17],
such as instructing dyads to have topical conversations [3], or cooperation tasks [18].
Synchrony of team performance has been studied, for instance, by Guastello, Mirabiti,
and Peressini [19]. Findings have been that synchrony, also labeled mimicry, arises un-
intentionally between interacting participants, and increases the smoothness of social
interactions, mutual liking, and positive affect. Furthermore, researchers in the field of syn-
chrony have focused on close relationships such as romantic couples [20,21], co-parenting
spouses [22], and mother-infant dyads [23]. Some applications have addressed music
psychology and analyzed movement synchrony of musicians in concerts [24], physiological
synchrony in concert audiences [25] and audiences of dance performance [26].

Synchrony was analyzed using a variety of computational methods, which generally
consider the synchrony between two univariate time series. There are three clusters of
such methods: Correlational methods (time-based), Fourier analysis (frequency-based) and
cross-recurrence quantification (nonparametric). The time-based and frequency-based ap-
proaches are mathematically related because Fourier spectra in the limit can be transformed
to correlational terms. Frequency-based methods have made use of wavelet transforms of
the dual time series, and cross-wavelet coherence was then used as a synchrony measure,
e.g., by Fujiwara and Daibo [2]. Cross-recurrence plots illustrate the dyadic time series A,
B in the two-dimensional coordinate system, where the axes are given by ‘A plus/minus a
time lag’ and ‘B plus/minus a time lag’. Regular behavior of A and B such as correspond-
ing oscillations then generates regular patterns in the cross-recurrence plot that can be
quantified to provide a measure of synchrony [27]. Published research on the quantification
of multivariate synchrony is very limited. Multivariate methods include phase synchro-
nization based on Kuramoto order [28,29], multidimensional recurrence quantification
analysis [30], and matrix calculations to determine the “driver” and “empath” of a group
of interacting persons, and based on this, to estimate a synchronization coefficient [31].

Correlational methods underlie a majority of applications in the synchrony literature;
they are either based on the cross-correlation function (CCF) of A and B, which denotes
the correlation between A and B depending on their lags, or on the correlation of A and
B’s local slopes, which defines the concordance measure [15]. An elaborated variant of
the cross-correlational approach is computing the CCF segment-wise to account for non-
stationarity due to overarching trends or seasonality of the time series, which may lead to
inflated correlations. This principle forms the core of windowed cross-correlation (WCC)
analysis, where “segment-wise” is referred to as “windowed”. WCC analysis requires
the specification of multiple parameters: segment size, segment increment, maximum lag,
and lag increment. For statistical and theoretical considerations in WCC analysis see for
example Behrens et al. [32]. Accordingly, differences in results between computational
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approaches often arise from different choices of one or more of these parameters. In this
respect, surrogate synchrony (SUSY) has fixed segment increment and lag increment,
which keeps the dependency on parameter settings low. In SUSY the time series is cut into
segments (e.g., of 30 s duration) and all cross-correlations of this segment’s CCF within
a certain range of lags (e.g., lags of up to ±3 s) are computed. Aggregation is done by
transforming cross-correlations to (absolute) values of Fisher’s Z and computing the mean
Z for each lag across segments. Aggregation is repeated across all lags, thus delivering a
signature of synchrony by the mean Z (Znoabs) or by the mean of all absolute values of Z
(Zabs). SUSY does not use overlapping segments (hence, segment increment = segment
size) or lag increment (hence, lag increment is determined by the sampling rate of the
time series).

Well-established approaches share the common characteristic of keeping parameter
settings constant throughout the analysis. Thus, these methods do not interfere with the
equidistance between time points. A very recent approach, dynamic time warping, is based
on varying lags which allows stretching the time series to accordingly estimate synchrony [33].
Since parameter settings have the potential to influence the results to a considerable degree,
researchers in the field of synchrony aimed to define universal guidelines [34].

Surrogate analysis is an appropriate tool to establish the significance of aggregated
cross-correlations, which indicate the measured ‘real’ synchrony, by comparing this syn-
chrony to a control condition, called surrogate synchrony. Measured synchrony may be due
to random fluctuations, and surrogate controls help to determine the level of randomness.
Measured synchrony may even be inflated because of trends and/or autocorrelation in the
time series. For example, we would expect to estimate a certain level of synchrony in the res-
piration of individuals, even though they did not even interact. This would be simply due
to the periodic rhythm of inhaling and exhaling. Furthermore, elevated synchrony levels
may derive from coordinated dynamics in human interaction (e.g., linguistic turn-taking)
and therefore merely reflect patterns of shared task context, whereas we are interested in
the unique levels of synchrony above what can be expected due to that particular task.
Segment shuffling tests the null hypothesis that there is no synchrony difference between
the measured time series and the sample of randomly shuffled time series, where the
temporal intercorrelations are lost. Assuming the null hypothesis is rejected, temporal
intercorrelations between the measured time series exist above chance level. Surrogate
analysis must be adapted to the respective null hypothesis [35]. Accordingly, surrogate
data may be generated by various methods such as data shuffling, segment shuffling,
data sliding, or participant shuffling [36].

With the present study, we aim to extend the synchrony methodology to multivariate
time series and thus go beyond the predominant analysis of dyadic synchronies toward
more complex datasets. To do this, we will propose different methods of multivariate
surrogate synchrony (mv-SUSY), and all methods use segment shuffling for surrogate
analysis. The extension to multivariate time series was motivated by the need for synchrony
measures when more than just two variables are considered coupled. In interpersonal
contexts, we may be interested in analyzing the synchrony in groups of people rather than
dyads only; in the single person, we may be interested in the joint coupling of several
physiological variables at the same time, or in the coordinated movement of several body
parts of the same person. To demonstrate its validity, mv-SUSY must accurately indicate
the existence or non-existence of the synchrony phenomenon it is supposed to capture.

The goals of the validity tests conducted in the present study were threefold: First,
we aimed to establish the validity of mv-SUSY in simulated data. We hypothesized (H1a)
to demonstrate the absence of multivariate synchrony in stationary random time series
(dataset 1), non-stationary random time series with linear trends (dataset 2), autocorre-
lated time series (dataset 3), and time series of regular oscillations (dataset 4). We further
hypothesized (H1b) that the presence of synchrony would be detected and confirmed
in mutually correlated time series (dataset 5). Second, we extended the application of
mv-SUSY to examples of empirical movement data. We hypothesized (H2) to demonstrate
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multivariate synchrony in movement time series captured using Kinect (datasets 6 and 7)
and motion energy analysis (dataset 8). Third, well-established methods for dyadic syn-
chrony (Surrogate Synchrony; SUSY, Surrogate Concordance; SUCO) were applied as a
control methodology. We hypothesized (H3) that the repeated application of dyadic SUSY
and SUCO would validate the mv-SUSY findings of the first and second goals.

2. Materials and Methods
2.1. Simulated Multivariate Datasets

To illustrate the estimation of multivariate synchrony, we generated five datasets
that simulate different types of temporal behavior. Each dataset comprises 10 time series,
ym (1 ≤ m ≤ 10), each consisting of 9600 observations ymt (1 ≤ m ≤ 10; 1 ≤ t ≤ 9600).

Dataset 1 was constructed to represent stationary random time series, i.e., white noise.
The time series ym consist of normally distributed random values, and time series are
independent of each other. The distributions of values have mean = 0 and standard
deviation = 1.

Dataset 1: ymt~N(0,1) (1)

The next three datasets simulate characteristics and non-stationarities frequently
found in empirical time series, such as stable time trends, autocorrelated evolutions,
and oscillatory behavior. These characteristics can lead to increased levels of detected
synchrony, which should be identified as spurious by the respective surrogate analyses
leading to support of null hypotheses.

Dataset 2 was generated to express white noise data with varying but stable trends
(positive and negative), thus non-stationary time series. We simulated 9600 observa-
tions as a linear function of time. For each time series in dataset 2 the respective inter-
cepts, β0, and slope coefficients, β1, were sampled individually, where β0~N(0,25) and
β1~N(0,0.000001). We added some noise, εt, which was sampled from a distribution with
mean = 0 and standard deviation = 1.

Dataset 2: ymt = β0 + β1t + εt (2)

Dataset 3 comprises autocorrelated time series with high lag 1 correlations between
observations (so-called AR(1) processes). Again, we added an error term, where εt~N(0,1).

Dataset 3: ymt = 0.9 × yt−1 + εt (3)

Dataset 4 consists of oscillatory time series produced by sine functions of varying
frequencies and vertical shifts. For each time series in dataset 4, periods given by 2π/b
were individually sampled with b~N(0.4,0.0064) and vertically shifted with d~N(0,1).

Dataset 4: ymt = sin(b × t) + d (4)

Dataset 5: Multivariate correlations among time series in this dataset were realized by
creating a white noise baseline time series, y1, for which we assumed y1~N(0,1). Based on
y1, nine dependent time series, y2 to y10, were generated by repeatedly adding a certain
degree of noise, where εt~N(0,0.25). The intercorrelated times series of this dataset was
expected to entail rejection of null hypotheses.

Dataset 5: yt = y1 + εt (5)

Visualizations of these datasets are given in Figure 1. The left panels correspond to the time
series plots. The first five rows are time series plots of short sections (100 observations) of the
simulated time series. The time series plot of dataset 2 shows 7000 observations to illustrate
the long-range trends. The right panels of Figure 1 provide the ten autocorrelation functions
(ACF) of each dataset up to lag 10. Autocorrelations indicate the different patterns of tempo-
ral dependence between single observations of the time series. Across datasets, time series
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were not autocorrelated (datasets 1 and 5), had stable autocorrelations (dataset 2). Dataset 3
showed the slowly decaying autocorrelation functions of autoregressive processes, dataset
4 the regular cyclical autocorrelation patterns of periodic data. Furthermore, the mean inter-
correlations rm between the respective ten time series of each dataset demonstrated varying
degrees of relationship within these samples: rm= 0.002 (dataset 1), rm = 0.12 (dataset 2),
rm = 0.002 (dataset 3), rm = −0.00009 (dataset 4), and rm = 0.82 (dataset 5). Higher values for
mean absolute intercorrelations indicated positive and negative pairwise correlations (dataset 1:
rm = 0.01, dataset 2: rm = 0.65, dataset 3: rm = 0.03, dataset 4: rm = 0.002, dataset 5: rm = 0.82).
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Figure 1. Multivariate datasets, each consisting of m = 10 time series (left panels, characteristic cutout plots) and 
autocorrelation functions (ACF, right panels). From top to bottom: simulated data (datasets 1 to 5), empirical data (datasets 
6 to 8). 

Figure 1. Multivariate datasets, each consisting of m = 10 time series (left panels, characteristic cutout plots) and autocorrelation
functions (ACF, right panels). From top to bottom: simulated data (datasets 1 to 5), empirical data (datasets 6 to 8).
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2.2. Empirical Multivariate Datasets

Datasets 6 to 8 represent empirical movement data. The Kinect datasets 6 and 7
originated from an experimental study, in which two participants were instructed to have a
conversation exclusively with nonverbal expressions and dance movements in order “to try
to get to know each other without words” [37]. Two previously unacquainted adults were
allocated two non-overlapping areas marked on the floor, in which they could move freely
without touching. All movements during the 5:20 minutes of this “body conversation task”
were motion-captured using Kinect cameras, and time series consisted of 10 limb positions
per person (head, chest, both upper arms, both lower arms, both upper legs, and both
lower legs) at a sampling rate of 30 Hz.

The Zoom video data (dataset 8) consists of movement data recorded during an on-
line group discussion among 10 individuals, whose body movements were captured by
the automatized method MEA. MEA was based on pixel changes in assigned regions of
interest of the Zoom video recording. The regions chosen were the panels that showed the
respective head and upper body of the participants of the group discussion. Thus, the time
series (sampling rate: 25 Hz) represent nonverbal movements of head, face, and upper
body. The scholarly discussion was on the topic of “Embodiment, Physical Distancing and
Treatment” (Virtual Structured Discussion, organized by the special interest group “Com-
plexity in Psychotherapy” of the Society for Psychotherapy Research (SPR), 26 June 2020).
All subjects agreed to the video recording. We selected the especially engaging final section
of the Zoom discussion for further analysis. The section had a duration of 6 min 24 s
(i.e., 9600 data points in the time series).

Visualizations of the empirical datasets are provided in Figure 1 (rows 6 to 8). On the
left panels, there are time series plots of short sections (100 observations) of the empirical
datasets. The right panels of Figure 1 provide the autocorrelation functions up to lag 10.
Autocorrelations functions of the Kinect data (rows 6 and 7) resemble those of AR(1)
autoregressive processes, whereas the Zoom dataset (row 8) had a pattern of smaller
autocorrelations. The mean intercorrelations between the time series of each dataset were
rm = 0.47 (dataset 6), rm = 0.48 (dataset 7), and rm = 0.01 (dataset 8). Negative correlations
were only found in dataset 8, where the mean absolute intercorrelations rm = 0.02.

2.3. Dyadic Synchrony Computation

Surrogate Synchrony (SUSY, cf. www.embodiment.ch, accessed on 11 October 2021)
estimates dyadic synchrony defined as cross-correlations between two time series A and B.
The core procedure lies in the control of real synchrony by surrogate synchrony. Therefore,
time series A and B are cut into segments according to ‘segment size’. First, SUSY computes
cross-correlations within each segment across a certain range of lags. For example, for a
parameter setting ‘maximum lag’ = ±3 s, all cross-correlations within a six-second window
are considered. Twofold aggregation of these cross-correlations (across all segments and
lags) yields a measure for real synchrony. Beforehand, cross-correlations are Fisher’s Z-
transformed to allow for aggregation. SUSY provides two indices based on absolute and
non-absolute Z values: Znoabs (SUSY) and Zabs (SUSY). Whereas Zabs (SUSY) indicates
overall synchrony, Znoabs (SUSY) distinguishes between in-phase and anti-phase synchrony.
The complete procedure of dyadic SUSY generates a surrogate control condition for Znoabs
and Zabs by shuffling the sequence of segments of the original time series, so that segments
of A are ‘falsely’ aligned with segments of B. Shuffling can be repeated and produces many
different surrogates. Then Znoabs−surr (SUSY) and Zabs−surr (SUSY) as markers of surrogate
synchrony are computed. Mathematical details of SUSY methodology were described by
Tschacher and Haken [38] and Tschacher and Meier [6].

Surrogate Concordance (SUCO, cf. www.embodiment.ch, accessed on 11 October 2021) has
its origins in the concordance approach by Marci and Orr [15] and was first implemented
in Tschacher and Meier [6]. SUCO requires four basic parameters: ‘segment size’, ‘window
size’, ‘lag’, and ‘increment’. A local slope is computed inside a window by least squares
regression in the corresponding segments of A and B. Each window is shifted according to
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‘increment’ until all windows per segment are taken into account. Synchrony is defined as
correlation of A’s and B’s local slopes. Then, after Fisher’s Z transformation of correlations,
these are aggregated across all segments of the time series. All procedures can be performed
with lagged windows. SUCO yields two dyadic synchrony indices, Zabs (SUCO) and Znoabs
(SUCO) representing real synchrony. Again, surrogate analysis is performed by random
shuffling of segments, defining the indices for surrogate synchronies.

2.4. Multivariate Surrogate Synchrony Computation

Multivariate Surrogate Synchrony (mv-SUSY) estimates the synchrony within datasets
that contain more than two time series. The number of time series is denoted by m.
mv-SUSY was adapted and extended from SUCO and SUSY with respect to implementing
the surrogate controls [3,8]. As in dyadic synchrony, two computation steps are conducted
to compare synchrony of the time series to surrogate synchrony of segment-shuffled
surrogate time series. According to ‘segment size’, all m time series of the m-variate dataset
are cut into equal-sized segments. The number of segments follows from the duration
(number of observations divided by sampling rate) for each time series divided by segment
size. For example, a dataset with m = 10 time series of 5 min (9000 observations at 30 Hz)
and ‘segment size’ set to five seconds contains 60 segments. Each segment renders one
synchrony value.

We developed two methods to assess mv-SUSY: omega and lambdamax. omega is
a measure of multivariate synchrony that makes use of the actually measured degree of
entropy Hact (actual entropy). Entropy is a measure of disorder of a dataset in thermody-
namics, with its equivalent Shannon information in information theory [39]. Landsberg [40]
suggested to normalize entropy by the maximum entropy possible in a system Hpot (poten-
tial entropy), thus Hact/Hpot. As this ratio assumes values between 0 and 1, ‘Landsberg
order’ consequently becomes omega = 1 − Hact/Hpot. Banerjee et al. [41] proposed to esti-
mate these entropies based on the variance-covariance matrix, which avoids specific prob-
lems of assessing entropies in psychological and biological systems [42,43]. Thus, entropies
are derived from the covariance matrix of a dataset. We used the absolute values of all
covariances to indicate that also negative covariances contribute positively to the overall
covariance of the dataset. The variance-covariance matrix is a m × m symmetrical matrix
whose cells contain the covariance coefficients, measures of linear relationship, of each pair
of variables, and whose main diagonal represents the univariate variances of each variable.
Hact is estimated from the determinant of this matrix as a measure of generalized variance.
The normalized entropy is therefore the actual entropy in relation to the maximum poten-
tial entropy of a system. Maximum entropy corresponds to a state of total independence
between the elements of a system, where the covariance coefficients would be zero and
the determinant becomes the product of the diagonal. Thus, maximum entropy Hpot is the
product of all univariate variances. In mv-SUSY, omega is computed as 1 − (Hact/Hpot) in
each segment of the dataset, and these values are aggregated across all segments.

The second mv-SUSY method, lambdamax, is computed by eigendecomposition of
the correlation matrix for each segment. The correlation matrix is a m × m matrix where
m corresponds to the number of dimensions of a dataset, in the present case the number
of time series. The correlation matrix contains the correlation coefficients between two
variables (−1 ≤ r ≤ 1) in the upper and lower triangle. All diagonal elements are equal
to 1, the correlation of each variable with itself. The m × m correlation matrix can be
decomposed into m eigenvalues λ, and m corresponding eigenvectors v. For details on
the calculation of eigenvalues and eigenvectors see for example Fischer [44]. Eigenvalues
are associated with the variances of the variables on which the correlation matrix is based.
Geometrically, eigenvectors are orthogonal vectors scaled by their corresponding eigenval-
ues, indicating the multidimensional dispersion of the data. In detail, the proportion of
variance associated with a particular dimension is equal to the corresponding eigenvalue
divided by the sum of all eigenvalues. The sum of the eigenvalues refers to the sum of the
diagonal elements, which in the case of the correlation matrix is always m [45]. We propose
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that multivariate synchrony can be defined by one or a few large eigenvalues, when the
remaining eigenvalues are small. In this case, there are only a few dominant dimensions
that account for most of the variance in the data. Thus, lambdamax in mv-SUSY is com-
puted by the proportion of the largest eigenvalue to the sum of all eigenvalues for each
segment. Eigenvalues and eigenvectors are also the fundament of principle component
analysis (PCA). PCA prioritizes key dimensions, so-called principal components, for the
use of dimensionality reduction. In the field of self-organization, Tschacher and Grawe [46]
previously used the variance explained by the first component as a measure of order in
continuously rated therapy session reports.

Finally, the estimated multivariate synchronies of both omega and lambdamax are con-
trolled for random or spuriously inflated synchrony using surrogate analysis. Time series
segmentation formed the base of surrogate analysis (step two) in order to reduce potential
effects of non-stationarity of time series data. In the surrogate step, mv-SUSY randomly
shuffles the segments of all m time series independently of each other. Only those sur-
rogates are allowed that do not include segments that matched in the original dataset.
From m time series with s segments, s!/(s − m)! surrogates can be generated. The parame-
ter ‘number of surrogates’ determines the number of surrogates randomly drawn from the
pool of surrogates to limit processing time. Randomized shuffling in step two provides
surrogate time series that share important characteristics with the measured time series
segments such as the length of segments, their means and standard deviations.

Synchrony of surrogates is computed in the same way as real synchrony, using the
methods omega or lambdamax. Finally, to obtain global measures for synchrony, we compute
effect sizes, ES (mv), of omega and lambdamax as the difference between the respective
synchrony and mean surrogate synchrony standardized by the standard deviation of
surrogate synchronies.

2.5. Statistical Analysis

To investigate the first goal, mv-SUSY was applied to simulated datasets 1 to 5.
The segment size parameter was set to five seconds. Assuming a sampling rate of 30 Hz,
each segment comprised 1500 observations. The number of surrogates was limited to
1000. Addressing the second goal, we estimated synchrony for the empirical datasets 6 to
8, using mv-SUSY. The same parameter settings as for the simulated data were adopted
for datasets 6 and 7. To account for the lower sampling rate in dataset 8, segment size
was set to six seconds, thus the number of observations per segment was kept stable
across datasets. Again, we randomly chose 1000 surrogate segments as a control for
real synchrony. For goal one and two, we tested the null hypotheses that there were no
differences between synchrony of the original time series and synchrony of surrogates
using Wilcoxon rank tests.

To explore the third goal of the present article, dyadic SUCO and dyadic SUSY were
applied to all datasets. To account for the multivariate nature of the datasets, we computed
synchronies of all dyadic combinations of the m time series of each dataset (for m = 10,
this yields (10 × 9)/2 = 45 dyads). With regard to parameter settings, a segment size of
20 s (datasets 1 to 7) and 24 s (dataset 8) was chosen for both dyadic approaches. We set
the number of surrogates to the maximum (240 surrogates). The lag parameter in dyadic
SUSY was fixed at ±3 s across datasets. For SUCO, linear slopes were computed within
a three-second window, and the increment was one second. To obtain global synchrony
measures, absolute and non-absolute effect sizes were aggregated across all 45 dyads for
both approaches yielding ESabs (SUCO), ESnoabs (SUCO), ESabs (SUSY), and ESnoabs (SUSY).
The general formula for effect sizes is ES = (mean(Z) − mean(Zsurr))/SD(Zsurr). For each
dataset, we performed one-sample t-tests against the null hypothesis that the respective
aggregated effect sizes, ESnoabs, were not different from zero. Paired t-tests of Zabs and
Zabs−surr were conducted to test whether synchrony was present based on absolute values.
In the case of negative absolute effect sizes, additional paired t-tests were considered
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redundant because surrogate synchrony exceeded real synchrony if ESabs < 0. Statistical
analyses and plots were performed using the software environment R [47].

3. Results
3.1. Simulated Data

The simulated data in datasets 1 to 5 were analyzed using the synchrony algorithms
mv-SUSY, SUSY, and SUCO. Results are presented in Table 1.

Table 1. Synchrony results for simulated data (datasets 1 to 5).

Dataset 1: stationary random time series

mv-SUSY SUCO SUSY

method lambdamax omega window-wise slopes cross-correlation
Hertz 30 30 30 30

number of
surrogates 1000 1000 240 240

segment size [s] 5 5 20 20
window size [s] 3

lag [s] –3 ≤ lag ≤ 3

real synchrony 14.22 0.23 Zabs = 0.23,
Znoabs = 0.01

Zabs = 0.03,
Znoabs = 0.00

surrogate synchrony 14.26 0.23 Zabs−surr = 0.23,
Znoabs−surr = 0.00

Zabs−surr = 0.03,
Znoabs−surr = 0.00

ES (mv) −0.05, W = 33315.00 (ns) −0.03, W = 33379.00 (ns)
ESnoabs (SUCO) 0.02, t = 0.11 (ns)
ESabs (SUCO) 0.09

ESnoabs (SUSY) 0.01, t = 0.19 (ns)
ESabs (SUSY) −0.03

Dataset 2: non-stationary time series with linear trends

mv-SUSY SUCO SUSY

method lambdamax omega window-wise slopes cross-correlation
Hertz 30 30 30 30

number of
surrogates 1000 1000 240 240

segment size [s] 5 5 20 20
window size [s] 3

lag [s] –3 ≤ lag ≤ 3

real synchrony 14.31 0.23 Zabs = 0.24,
Znoabs = 0.01

Zabs = 0.04,
Znoabs = 0.01

surrogate synchrony 14.26 0.23 Zabs−surr = 0.23,
Znoabs−surr = 0.00

Zabs−surr = 0.04,
Znoabs−surr = 0.01

ES (mv) 0.07, W = 31310.00 (ns) 0.03, W = 30965.00 (ns)
ESnoabs (SUCO) 0.10, t = 0.55 (ns)
ESabs (SUCO) 0.17

ESnoabs (SUSY) 0.05, t = 0.42 (ns)
ESabs (SUSY) −0.01

Dataset 3: lag 1 autocorrelated time series

mv-SUSY SUCO SUSY

method lambdamax omega window-wise slopes cross-correlation
Hertz 30 30 30 30

number of
surrogates 1000 1000 240 240

segment size [s] 5 5 20 20
window size [s] 3

lag [s] –3 ≤ lag ≤ 3

real synchrony 24.77 0.87 Zabs = 0.27,
Znoabs = 0.00

Zabs = 0.09,
Znoabs = 0.00

surrogate synchrony 24.84 0.88 Zabs−surr = 0.25,
Znoabs−surr = 0.01

Zabs−surr = 0.01,
Znoabs−surr = 0.00

ES (mv) −0.02, W = 32714.00 (ns) −0.14, W = 33537.00 (ns)
ESnoabs (SUCO) −0.06, t = −0.34 (ns)
ESabs (SUCO) 0.42

ESnoabs (SUSY) 0.25, t = 0.98 (ns)
ESabs (SUSY) −0.10
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Table 1. Cont.

Dataset 4: sine oscillations

mv-SUSY SUCO SUSY

method lambdamax omega window-wise slopes cross-correlation
Hertz 30 30 30 30

number of
surrogates 1000 1000 240 240

segment size [s] 5 5 20 20
window size [s] 3

lag [s] –3 ≤ lag ≤ 3

real synchrony 24.79 0.98 Zabs = 0.22,
Znoabs = 0.01

Zabs = 0.04,
Znoabs = 0.00

surrogate synchrony 24.83 0.98 Zabs−surr = 0.22,
Znoabs−surr = 0.00

Zabs−surr = 0.04,
Znoabs−surr = 0.00

ES (mv) −0.01, W = 32178.00 (ns) 0.13, W = 31729.00 (ns)
ESnoabs (SUCO) −0.20, t = −0.19 (ns)
ESabs (SUCO) −0.04

ESnoabs (SUSY) −0.02, t = −0.25 (ns)
ESabs (SUSY) 0.00

Dataset 5: correlated random time series

mv-SUSY SUCO SUSY

method lambdamax omega window-wise slopes cross-correlation
Hertz 30 30 30 30

number of
surrogates 1000 1000 240 240

segment size [s] 5 5 20 20
window size [s] 3

lag [s] –3 ≤ lag ≤ 3

real synchrony 83.67 1.00 Zabs = 1.19,
Znoabs = 1.19

Zabs = 0.04,
Znoabs = 0.01

surrogate synchrony 14.33 0.24 Zabs−surr = 0.23,
Znoabs−surr = 0.04

Zabs−surr = 0.03,
Znoabs−surr = 0.00

ES (mv) 96.47, W = 0.00 **** 17.33, W = 0.00 ****
ESnoabs (SUCO) 11.93, t = 38.19 ****
ESabs (SUCO) 23.78

ESnoabs (SUSY) 2.06, t = 46.04 ****
ESabs (SUSY) 4.12

Note. **** p < 0.0001; ns, non-significant.

Dataset 1 comprised stationary random time series. Multivariate synchrony estimated
by the standardized differences between real synchrony and surrogate synchrony, ES (mv),
was close to zero for lambdamax and omega. This was further confirmed by Wilcoxon
rank tests revealing non-significant differences between real synchrony and surrogate
synchrony for both mv-SUSY methods. Analysis of aggregated dyadic synchrony with
SUSY and SUCO required paired t-tests (absolute values) and one-sample t-tests (non-
absolute values). Paired t-testing for Zabs and Zabs−surr revealed that real synchrony did
not significantly exceed surrogate synchrony for SUCO (t(44) = −1.04, ns). Negative ESabs
(SUSY) showed that surrogate synchrony was even higher compared to real synchrony.
Thus, comparison of means by paired t-testing was redundant. Both non-absolute effect
sizes, ESnoabs (SUSY) and ESnoabs (SUCO), did not differ from zero. Accordingly, mv-SUSY,
SUSY, and SUCO did not indicate synchrony in dataset 1.

The same procedure was used to investigate non-stationary time series with linear
trends (dataset 2). With regard to mv-SUSY, Wilcoxon rank tests revealed no significant
differences between real synchrony and surrogate synchrony (lambdamax and omega).
SUCO and SUSY confirmed these results for dyadic synchrony. Non-absolute effect sizes
revealed absence of synchrony. This was found for synchrony based on window-wise
slopes (SUCO) as well as for synchrony estimated by cross-correlations (SUSY). Results
were the same for absolute values. The difference between real synchrony and surrogate
synchrony was not significant in SUCO (t(44) = 1.51, ns) and SUSY (t(44) = 0.68, ns).
Thus, the multivariate approaches as well as the dyadic approaches did not indicate
presence of synchrony.
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We evaluated autocorrelated time series in dataset 3. Results demonstrated no syn-
chrony estimated by the mv-SUSY approach. In synchrony aggregated across dyads a less
clear picture emerged. For SUCO, surrogate synchrony was significantly higher compared
to real synchrony (t(44) = 2.34, p = 0.02). However, this was only the case for absolute
values. ESnoabs (SUCO) did not indicate synchrony. SUSY showed absence of synchrony
consistently. Absolute effect size, ESabs (SUSY), was negative and non-absolute effect size,
ESnoabs (SUSY), did not significantly differ from zero. Hence, we did not find synchrony
for autocorrelated time series with one exception, namely SUCO (absolute values).

The SUCO, SUSY and mv-SUSY approaches were used to investigate the presence
of synchrony in oscillatory time series (dataset 4). Both mv-SUSY methods, lambdamax
and omega, revealed high values for real synchrony. Effect sizes remained small and
non-significant due to high surrogate synchrony. SUCO and SUSY showed similar results.
Non-absolute effect sizes did not differ from zero for both approaches. Negative absolute
effect sizes in SUCO indicated that real synchrony was lower compared to surrogate
synchrony. Furthermore, real synchrony did not differ from surrogate synchrony estimated
by SUSY (t(44) = 0.56, ns). For dataset 4, mv-SUSY, SUSY and SUCO demonstrated
no synchrony.

Analysis of dataset 5 addressed multivariate correlation among time series. Difference
of real synchrony and surrogate synchrony was significant for lambdamax and omega
indicated by high, positive effect sizes. The non-absolute effect size for SUCO did signifi-
cantly differ from zero. In addition, the difference between real synchrony and surrogate
synchrony estimated by SUCO was highly significant (t(44) = 43.80, p < 0.0001). Higher
absolute effect sizes suggest that positive and negative correlations canceled each other out
in the non-absolute effect sizes. Aggregated real synchrony exceeded surrogate synchrony
in SUSY as well (t(44) = 47.52, p < 0.0001). The mean effect sizes across dyads differed
significantly from zero (absolute values). Thus, all approaches demonstrated substantial
synchrony for dataset 5.

In sum, hypothesis 1a (“no spurious synchrony detection with mv-SUSY in datasets 1
to 4”) was supported. Hypothesis 1b (“synchrony detection with mv-SUSY in correlated
dataset 5”) was also supported. Hypothesis 3 (“validation of mv-SUSY by dyadic SUSY
and SUCO”) was supported in four of the five datasets. In dataset 3 the absolute effect
size values and further t-test indicated significant differences between real synchrony and
surrogate synchrony (SUCO).

3.2. Empirical Data

In Table 2, we present findings of mv-SUSY, SUSY, and SUCO for datasets 6 to 8.
Results of synchrony analysis in dataset 6 (Kinect intraindividual movement data) showed
significant differences between real synchrony and the surrogate synchrony using the
mv-SUSY approach. This was found for both lambdamax and omega. SUSY and SUCO
suggested presence of high synchrony as well. The dyadic-based approaches revealed
large and positive non-absolute effect sizes, which differed significantly from zero. Further-
more, paired t-tests revealed significant differences between real synchrony and surrogate
synchrony for absolute values estimated by SUCO (t(44) = 8.23, p < 0.0001) as well as SUSY
(t(44) = 14.65, p < 0.0001). Accordingly, presence of synchrony in intraindividual movement
data (participant 1) was confirmed by mv-SUSY, SUSY and SUCO.

With regard to the second Kinect movement dataset, dataset 7, the same pattern
emerged. mv-SUSY methods omega and lambdamax showed lower synchrony in surro-
gates. Wilcoxon rank tests revealed that this difference was significant. As in dataset 6,
multivariate synchrony reached a maximum with aggregated synchrony = 1 for omega.
Non-absolute effect sizes pointed toward high synchrony based on window-wise slopes
(SUCO) as well as the windowed cross-correlation approach (SUSY). Paired t-tests for
absolute values indicated synchrony in SUCO (t(44) = 8.80, p < 0.0001). So did the results
for SUSY comparing real synchrony to surrogate synchrony (t(44) = 18.74, p < 0.0001).
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The findings for the intraindividual movement data (participant 2) consistently indicated
multivariate synchrony across all approaches.

Table 2. Synchrony results for empirical movement data (datasets 6 to 8).

Dataset 6: Kinect, coordinated intraindividual movement (participant 1)

mv-SUSY SUCO SUSY

method lambdamax omega window-wise slopes cross-correlation
Hertz 30 30 30 30

number of
surrogates 1000 1000 240 240

segment size [s] 5 5 20 20
window size [s] 3

lag [s] –3 ≤ lag ≤ 3

real synchrony 47.38 1.00 Zabs = 0.92,
Znoabs = 0.90

Zabs = 0.12,
Znoabs = 0.07

surrogate synchrony 21.01 0.69 Zabs−surr = 0.23,
Znoabs−surr = −0.01

Zabs−surr = 0.08,
Znoabs−surr = 0.00

ES (mv) 9.77, W = 51.00 **** 2.97, W = 0.00 ****
ESnoabs (SUCO) 14.80, t = 10.63 ****
ESabs (SUCO) 12.29

ESnoabs (SUSY) 13.02, t = 15.34 ****
ESabs (SUSY) 8.35

Dataset 7: Kinect, coordinated intraindividual movement (participant 2)

mv-SUSY SUCO SUSY

method lambdamax omega window-wise slopes cross-correlation
Hertz 30 30 30 30

number of
surrogates 1000 1000 240 240

segment size [s] 5 5 20 20
window size [s] 3

lag [s] –3 ≤ lag ≤ 3

real synchrony 47.46 1.00 Zabs = 0.89,
Znoabs = 0.88

Zabs = 0.13,
Znoabs = 0.08

surrogate synchrony 21.28 0.69 Zabs−surr = 0.23,
Znoabs−surr = 0.00

Zabs−surr = 0.09,
Znoabs−surr = 0.00

ES (mv) 9.49, W = 0.00 **** 2.91, W = 0.00 ****
ESnoabs (SUCO) 12.56, t = 10.86 ****
ESabs (SUCO) 15.15

ESnoabs (SUSY) 18.40, t = 25.24 ****
ESabs (SUSY) 11.69

Dataset 8: Zoom motion energy, group discussion

mv-SUSY SUCO SUSY

method lambdamax omega window-wise slopes cross-correlation
Hertz 25 25 25 25

number of
surrogates 1000 1000 240 240

segment size [s] 6 6 24 24
window size [s] 3

lag [s] –3 ≤ lag ≤ 3

real synchrony 16.14 0.36 Zabs = 0.22,
Znoabs = 0.04

Zabs = 0.05,
Znoabs = 0.01

surrogate synchrony 15.59 0.31 Zabs−surr = 0.21,
Znoabs−surr = 0.01

Zabs−surr = 0.04,
Znoabs−surr = 0.00

ES (mv) 0.39, W = 25525.00 ** 0.51, W = 22495.00 ****
ESnoabs (SUCO) 0.52, t = 2.82 **
ESabs (SUCO) 0.25

ESnoabs (SUSY) 1.86, t = 3.69 ***
ESabs (SUSY) 0.58

Note. ** p < 0.01; *** p < 0.001; **** p < 0.0001.

Synchrony measures mv-SUSY, SUSY and SUCO were applied to dataset 8 (movement
coordination of participants of a group discussion). Findings indicated higher effect sizes
for omega compared to lambdamax. Nevertheless, both methods clearly showed presence
of synchrony. Whereas the one-sample t-test revealed significant non-absolute effect sizes,
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the paired t-test of absolute values did not reach significance for SUCO (t(44) = 1.38, ns).
SUSY results presented an unambiguous picture. Non-absolute effect sizes against zero as well
as real synchrony compared to surrogate synchrony reached significance (t(44) = 2.14, p < 0.05).

Taken together, hypothesis 2 (“synchrony detection with mv-SUSY in empirical
datasets 6 to 8”) was accepted. In 2 of 3 datasets we further confirmed hypothesis 3
(“validation of mv-SUSY by dyadic SUSY and SUCO”). In dataset 8 the absolute effect size
values and further t-test showed that real synchrony did not significantly exceed surrogate
synchrony (SUCO).

4. Discussion

The methodology of synchrony research should move beyond dyadic measures alone.
Dyadic synchronies are of course well-justified as signatures of the relationship between
therapist and client, or spouses of a couple, or the participants of conversation between two
people. Yet, how may we address the synchronization of more complex phenomena such
as groups, multi-person therapies, or generally dynamical systems that comprise more
than just two variables? The present article therefore introduced a multivariate approach
to quantify synchrony in more complex multidimensional systems. We presented the novel
mv-SUSY methodology to estimate multivariate synchrony, and examined its functionality
in eight datasets that exemplify different types of longitudinal patterns.

Our first goal was to investigate the performance of mv-SUSY in five simulated
time series. Analysis of simulated time series in the context of synchrony has been used
before. This was done to introduce new computational methods [48] or in surrogate
analysis [36]. The time series in the current study comprised autocorrelation, trends,
and seasonality which are common properties of empirical time series, for example in phys-
iology (e.g., electrodermal activity, respiration, heart beats) and movement data. Results
confirmed the hypothesized detection and rejections of synchrony. Both mv-SUSY meth-
ods, lambdamax and omega, revealed similar patterns of real and surrogate synchrony
across datasets. We found that real synchrony (cf Table 1) was rather low in stationary
random time series (dataset 1) and non-stationary time series with linear trends (dataset 2).
In dataset 1, small real synchrony values resulted from intercorrelations close to zero
among white noise data (see intercorrelations in the methods section). Dataset 2 time
series correlated substantially because of their stable linear trends. Segment-wise computa-
tion of real synchrony allowed to account for these overarching trends. Thus, we found
comparable degrees of real synchrony in white noise and non-stationary linear trends of
otherwise unrelated time series. mv-SUSY did correctly reject synchrony for stationary
random data as well as non-stationary linear trend data despite its temporal dependency.
Autocorrelated (dataset 3) and oscillation time series (dataset 4) showed higher levels of
real synchrony compared to the first two datasets. The lack of significance here resulted
from similarly high levels of synchrony in the surrogates. This finding can be explained
by the covariance respectively correlation-based nature of mv-SUSY. Autocorrelation and
oscillation represent high dependency between observations at different time points thus
provoking substantial segment-wise correlations. Surrogate testing controlled successfully
for these reoccurring data properties, thus avoiding false-positive synchrony findings for
uncorrelated time series. Not only the absence but also the presence of synchrony was
found as assumed. In concordance with our hypothesis, mv-SUSY indicated a considerable
degree of synchrony in multivariate correlated data (dataset 5).

We examined mv-SUSY for movement data in goal two. Synchrony was present in a
dyadic body conversation task. This experimental task was designed to limit interactive
dynamics to one single modality, dance-like movements, while allowing focusing on the
whole body [37]. Both participants (dataset 6 and dataset 7) demonstrated significant
coordination between their limbs, respectively, which was also found in the original
study. There, Galbusera and colleagues [37] investigated interpersonal and intrapersonal
synchrony and its association with self-regulation of emotion in 66 adults undergoing the
body conversation task. In the present study, mv-SUSY further revealed synchrony in body
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movement (upper body region) in a virtual group discussion of 10 individuals. Accordingly,
we found above-random coordination between the members of this discussion.

The third goal was to compare mv-SUSY performance with well-established dyadic
synchrony approaches. SUSY and SUCO replicated mv-SUSY findings to a large ex-
tent. There were few cases of divergent results that did not support the hypotheses.
First, SUCO indicated synchrony for dataset 3 (autocorrelated time series). However,
this was only the case for absolute values. Since we did not find similar results in oscilla-
tion or trend data, which also showed a reasonable degree of autocorrelation, there is little
evidence that SUCO is prone to autocorrelation. Second, SUCO did not find synchrony
in dataset 8. Again, this was only the case for absolute values. As surrogate synchrony
was lower compared to real synchrony, the difference pointed toward synchrony but it did
not reach significance. Overall, analysis based on mv-SUSY, SUSY, and SUCO resulted in
similar estimations of synchrony. Rather than competing with each other, each algorithm
covers unique aspects with regard to synchrony analysis. One main feature of SUSY is
the computation of cross-correlations. Accordingly, delayed responses in a predefined
window are taken into account. SUSY and SUCO allow differentiating between in-phase
and anti-phase synchrony. This is of considerable relevance in social contexts where each
member has a specific role, e.g., in patient-therapist interaction.

Findings of the present study underline the feasibility of estimating synchrony within
groups of individuals by mv-SUSY. Multi-person synchrony, although based on the aggrega-
tion of dyadic synchrony, has been investigated across disciplines. For example, researchers
found physiological synchrony in audience members of classical concerts [25], brain-to-
brain synchrony in a classroom [49], and physiological synchrony in teams of three during
a cooperative production task [50]. Other studies investigated the effects of experimentally
manipulated synchrony compared to control conditions. In a meta-analysis of 42 studies,
synchrony in groups was associated with prosocial behavior, perceived social bonding,
social cognition, and positive affect with effect sizes ranging from 0.11 to 0.28 [51]. Recently,
multivariate synchrony approaches have been proposed, yet these have limitations such as
the absence of surrogate controls that should be addressed. mv-SUSY complements the
available methods by providing two novel synchrony measures (lambdamax and omega),
which are applicable to oscillatory, non-oscillatory, and non-stationary time series, and are
adequately controlled by surrogate analysis.

Analysis of synchrony corresponds to dynamical systems theory, which originated
from mathematics and physics, but is increasingly used to focus on the change over time in
biological, cognitive, or social systems [39,52]. At its core, the theory assumes that collective
behavior may result from self-organization in interacting components of the respective
system and thus exhibit processes of emergence. In line with these ideas, the study of
synchrony accounts for the time-evolving pattern in individuals’ time series. For an
overview regarding complex dynamical systems in social and personality psychology,
see for example Richardson et al. [53]. Furthermore, the meaning of nonverbal synchrony is
associated with the embodiment concept. The embodiment paradigm is a vibrant field that
can be seen as the preliminary endpoint of the historical development from behaviorism to
cognitivism to embodied cognition. According to the 4E paradigm, cognition is embodied,
enactive, embedded and extended [54]. Taken together, to study social interaction between
individuals, one has to consider dynamic processes, i.e., change over time. These may
lead to coordinated, self-organized patterns of behavior, where individuals form a coupled
emerging system which is said to be coordinated.

4.1. Strengths and Limitations

Several strengths and limitations of the study are noteworthy. The methodological
approach was appropriate to the research questions and allowed (a) the application of
mv-SUSY to simulated and empirical data, and (b) the comparison of the results with
established dyadic approaches. mv-SUSY is based on general mathematical principles,
namely order analysis and eigendecomposition. These concepts are of widespread use in
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statistical analysis, for example in principle component analysis, which is commonly used
for dimensionality reduction in large datasets.

Further strengths and weaknesses of the study are closely linked to the differentiation
of dyadic and multivariate synchrony analysis. Analysis of multivariate time series with
dyadic synchrony approaches generates increased number of comparisons and further
leads to a hierarchical data structure. Yet mv-SUSY provides one global measure of syn-
chrony for multiple variables thus minimizing the number of aggregation steps. In future
research implementations, mv-SUSY however still allows for estimating the degree of
individual contributions to group synchrony, for instance by stepwise exclusion of the
respective group member.

In line with other dyadic approaches such as SUSY and SUCO, mv-SUSY provides
an appropriate control condition to determine above-random synchrony. According to a
recent systematic review, “To validate findings, a null hypothesis determining the potential
for chance findings of PS [physiological synchrony] in contextually matched, randomized
data is often necessary. Otherwise, it may be unclear whether results are valid, or due to
chance” [13]. Since surrogate analysis based on segment shuffling uses inherent character-
istics of the respective data set, it is a conservative form of a surrogate synchrony control
condition. In contrast to participant shuffling, the procedure in mv-SUSY, SUSY, and SUCO
does not require additional data.

A limitation of the presented approach lies in the dependency on parameter settings.
mv-SUSY adds group size to the current set of parameters. The effect of group size needs
to be investigated in future studies.

4.2. Implications and Future Research

The present study emphasizes the importance of considering multiple variables in
synchrony research, whether these variables are assessed within or across individuals.
Recent technological advances allow researchers to record behavior or physiology of more
than two individuals to obtain high-frequency multivariate time series. We introduced
mv-SUSY as a computational approach to estimate synchrony based on such multivariate
datasets. This complements current auto- or cross-correlational methods, which were
limited to two variables.

The application to multivariate time series makes mv-SUSY a versatile method-
ology. mv-SUSY can be used to investigate nonverbal synchrony across modalities.
Current research mainly addresses traditional measures such as movement behavior or
physiology (e.g., cardiac activity) in synchrony analysis. Other modalities have not re-
ceived that much attention yet, for example, there is limited but promising evidence on
hormonal synchrony [55] or synchrony in eye gaze [56]. These measures represent potential
starting points to quantify multivariate synchrony by mv-SUSY. Future studies should not
only focus on different measures but should strive for an integration of synchrony across
multiple levels. Such studies would help to gain deeper insights in the embodiment of
social interaction.

Furthermore, mv-SUSY can be applied to a variety of research fields to expand our
understanding of interpersonal coordination. Future research might focus on the role of
multivariate synchrony in clinical psychology and psychotherapy. Nonverbal synchrony
has been associated with so-called common factors that represent the underlying change
mechanisms in psychotherapy, such as the working alliance [57]. Advancing empirical
work in this area includes shifting the perspective from single patients to multi-person
settings (e.g., couple therapy, support groups). This will have important practical implica-
tions for group-based therapies leading to improved mental health care. In general, future
studies should not only go beyond dyads but also beyond disciplines. At the intersection of
psychology, musicology, and cultural studies particularly fruitful options arise. mv-SUSY
may be applied to explore the presence of synchrony in ecological valid settings (e.g., school,
sports, concerts). For example, mv-SUSY can help identify synchrony in concert audiences
enriching the exploration of aesthetic experiencing [25]. Experimental research designs
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may also be used to investigate the association between synchrony measured by mv-SUSY
and work-team cooperation under different cooperative task conditions.

In summary, with the introduction of mv-SUSY, we have provided a valid method
based on the theoretical framework of dynamical systems theory to estimate intrapersonal
and interpersonal synchrony in complex data.
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