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Introduction

Dynamical systems theory is a classical branch of mathematics which began with
Newton around 1665. It provides mathematical models for systems which evolve
in time according to a rule, originally expressed in analytical form as a system
of equations. Dynamical systems theory is a rapidly growingarea, which plays
an important role in almost all disciplines of science and engineering including
physics, finance, geology, biology and chemistry, to name a few. Dynamical sys-
tems as models for physical or biological systems have parameters which must be
determined by measurement or data fitting.

In the 1880s, Poincaré studied continuous dynamical systems in connection
with a prize competition on the stability of the solar system. He found it conve-
nient to replace the continuous flow of time with a discrete analogue, in which
time increases in regular, saltatory jumps. These systems are now called discrete
dynamical systems. So, for over a century, dynamical systems have come in two
flavors:

• Continuous time differential equations.

• Discrete-time maps.

In this study we will follow the latter route, i.e. we consider discrete dynamical
systems expressed as the iteration of a map of the general form: x 7−→ f(x, α)
wherex ∈ R

n andα ∈ R
p are vectors of state variables and parameters, respec-

tively. Usually, it is convenient to introduce a discrete-time dynamical system
when events occur or are accounted for only at discrete time periods. For in-
stance, when developing a population model, it may be convenient to work with
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viii Introduction

annual population changes, and the data is normally available annually rather than
continually.

As parameters are varied in a dynamical model, the system mayundergo qual-
itative changes or bifurcations. Bifurcation analysis wasintroduced by Poincaré
and developed to a high art by mathematicians such as Hopf, Andronov, and many
others during the 20th century. It allows us to identify and predict changes or
metamorphoses in the dynamics of a system, such as stabilitychanges, abrupt
transitions, hysteresis, the onset of oscillations, changes in the types of oscilla-
tions (such as period-doubling), or extinction. Bifurcation analysis is a very prac-
tical science, because it allows us to characterise all of the dynamical behaviour
that a process is capable of, and therefore make useful designs and predictions.
Many physical and biological systems include free parameters, and bifurcation
analysis can help us understand how the behaviour of these systems varies as the
parameters change.

There are in essence two approaches to defining bifurcationsin smooth sys-
tems, analytical and topological. In the analytical approach a bifurcation is defined
as the branching, folding or creation of additional paths ofsolutions of a certain
class within a bifurcation diagram, e.g. [53, 20]. In the topological sense, a bifur-
cation is a parameter value within a class of systems at whichthe phase portrait is
not structurally stable, e.g [49, 62]. A universal unfolding (or topological normal
form) of the bifurcation includes a minimal number of terms and parameters to al-
low all possible structurally stable bifurcation diagramsto be seen at small values
of the unfolding parameters.

The main goal in the study of a dynamical system is to find a complete char-
acterization of the geometry of the orbit structure and the change in orbit structure
under parameter variation. An aspect of this study is to identify the invariant ob-
jects and the local behaviour around them. This local information then needs to be
assembled in a consistent way by means of geometric and topological arguments,
to obtain a global picture of the system. The aim is to find qualitative and often
also quantitative representations of the different types of behaviour that the sys-
tem may exhibit in dependence on parameters. The main resultof such effort is
a bifurcation diagram, that is, information on the divisionof the parameter space
into regions of topologically different behaviour together with representatives of
phase portraits.
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When it comes to study in an explicitly given model how the behaviour changes
as a function of parameters, the tool of choice is numerical continuation methods,
as opposed to simulation methods in which many orbits are computed by starting
from various initial points. The basic idea is to compute a curve that is implicitly
defined by a suitable system of equations that defines the dynamical object under
consideration.

The codimension (codim for short) of a (sub-)manifold is thedifference in
dimension between full parameter-space and the (sub-)manifold. The codim of
a bifurcation is the highest codim of the (sub-)manifolds that exhibit the bifurca-
tion. In a more practical definition, the codim of a bifurcation is the number of
independent conditions determining the bifurcation.

At local bifurcations, the number of steady states can change, or the stability
properties of a steady state may change. To study this we compute the Jacobian
matrix of the system and compare the behaviour of nonlinear and linear systems
in the vicinity of the bifurcation points. The eigenvalues of the Jacobian are called
multipliers. These are exponential rates of growth and decay for solutions to the
linear system. The geometry of linear and nonlinear systemsis similar to one
another near a hyperbolic fixed point, i.e. a point with no multipliers on the unit
circle in the complex plane. In particular, there are stableand unstable manifolds
tangent to the eigendirections of decaying and growing eigenvalues that consist
of those trajectories that approach the fixed point in the forward and backward
iteration of the map, respectively. By means of center manifold theory, reduction
of dimensionality, and the method of normal forms, a dynamical system near a
nonhyperbolic fixed point, can be simplified. The computational analysis of local
bifurcations usually begins with an attempt to compute the coefficients that appear
in the normal form after coordinate transformation. These coefficients, called
critical normal form coefficients, determine the directionof branching of new
objects and their stability near the bifurcation point.

After locating a codim 1 bifurcation point, the logical nextstep is to consider
the variation of a second parameter to enhance our knowledgeabout the system
and its dynamical behaviour. When system parameters are varied simultaneously,
they usually generate a bifurcation curve which can be drawnin a two-parameter
plane. We refer to these curves as codim 1 bifurcation curves. These curves can
be computed using a minimally extended system which consists of a fixed point
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condition and a certain singularity condition.
We often encounter a nongeneric situation in one-parameterproblems where

the implicit function theorem cannot be applied to ensure the existence of a unique
smooth branch of fixed points. It is encountered often in practical problems that
exhibit some form of symmetry (equivariance). Usually, such points are simple
branch points. The smooth curve that emanates from a branch point can be con-
tinued by computing the tangent vector along the new branch.

In codim 2 bifurcation points branches of various codim 1 bifurcation curves
are rooted. The problem of branch switching is thus to specify one starting point
near the curve from which the continuation code converges toa point on the curve.
This can be done by a combination of parameter-dependent center manifold reduc-
tion and asymptotic expressions for the new emanating curves.

There are several computational software packages that aidin the bifurcation
analysis of cycles of a map. Orbits of maps and one-dimensional invariant man-
ifolds of saddle fixed points can be computed and visualized using DYNAMICS

[76, 108, 109] and DsTool [10, 58, 60]. Location and continuation of fixed-point
bifurcations is implemented inAUTO [28] and the LBFP-version ofLOCBIF [54].
The latter program computes the critical normal form coefficient at LP points and
locates some codim 2 bifurcations along branches of codim 1 fixed points and
cycles. CONTENT [61] was the first software that computed the critical normal
forms coefficients for all three codim 1 bifurcations of fixedpoints and cycles
and allowed to continue these bifurcations in two parameters and to detect all
eleven codim 2 singularities along them. Branch switching at PD and BP points is
also implemented inAUTO, LOCBIF, andCONTENT. However, only trivial branch
switching is possible at codim 2 points and only for two (cuspand 1:1 resonance)
of eleven codim 2 bifurcations the critical normal form coefficients are computed
by the current version ofCONTENT. No software supports switching at codim 2
points to the continuation of the double- , triple- and quadruple-period codim 1
bifurcation curves.

We discuss new and improved algorithms for the bifurcation analysis of fixed
points and periodic orbits (cycles) of maps and their implementation in the MAT-
LAB software package CL MATCONTM. This includes the numerical continuation
of fixed points of iterates of the map with one control parameter, detecting and lo-
cating their bifurcation points (i.e. LP, PD and NS), and their continuation in two
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control parameters, as well as detection and location of allcodim 2 bifurcation
points on the corresponding curves. For all bifurcations ofcodim 1 and 2, the
critical normal form coefficients are computed with finite directional differences,
automatic differentiation and symbolic derivatives of theoriginal map. Using a
parameter-dependent center manifold reduction, explicitasymptotics are derived
for bifurcation curves of double and quadruple period cycles rooted at codim 2
points of cycles with arbitrary period. These asymptotics are implemented into
the software and allow one to switch at codim 2 points to the continuation of the
double and quadruple period bifurcations.

In Chapter1 we introduce CL MATCONTM, a MATLAB toolbox for contin-
uation and bifurcation analysis of discrete dynamical systems, and describe its
functionalities. We first give an overview of the continuation methods used in the
software, test functions of bifurcations, and the singularity matrices. We proceed
with a short review of software packages for bifurcations ofcycles of maps. We
continue to consider some specific features of CL MATCONTM and discuss some
components of a continuation process. We give detailed descriptions of the ini-
tializations of different curves and the global structurescorresponding to different
continuation curves, the information flow in the continuation of a solution curve
and the initializers of the switching curves.

Chapter2 is devoted to the analytical study of bifurcations of cyclesof a map
with one and two parameters. All codim 1 and codim 2 bifurcations are listed. A
review of these results are given in [69] and references therein.

In Chapter3 we describe some techniques to compute bifurcation curves.This
includes bifurcation analysis of codim 2 bifurcation points, continuation of codim
1 curves, detection and location of their bifurcation points. We proceed with the
branch switching techniques to compute curves of codim 1 bifurcations emanating
in codim 2 points. All codim 1 and codim 2 bifurcation points along with their
possible branch switchings are depicted in detection and switching diagrams.

In Chapter4 we present the recursive formulas to compute multilinear forms
up to the fifth order and algorithms to compute tensor-vectorand vector-tensor-
vector products, which are needed not only for the continuation but also for the
computation of the critical normal form coefficients at codim 1 and 2 bifurca-
tion points and for branch switching. We proceed this chapter by considering fi-
nite difference directional derivatives (FD) and automatic differentiation (AD). If
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symbolic derivatives (SD) of the original map are not available, as an alternative
finite differences can be used. However not the full tensors are needed, but the
multilinear forms evaluated on vectors which can be computed with directional
derivatives and central finite differences.

As an alternative to symbolic derivatives and finite differences for computing
normal form coefficients, we have implemented automatic differentiation tech-
niques, to compute derivatives of an iterated map, w.r.t state variables. As AD is as
accurate as symbolic derivatives, it can be used when SD is not available. Another
advantage of using AD is to speed up the computation of critical normal form co-
efficients for higher iteration numbers of a map. We discuss the technique of au-
tomatic differentiation and its implementation in the software CL MATCONTM.
We close this chapter by a comparison of elapsed time and accuracy of the three
different differentiation strategies.

Among other things, dynamical systems are used to model biological phe-
nomena. A major goal of biological modeling is to quantify how things change.
The combination of nonlinear dynamics and biology has brought about significant
advances in both areas, with nonlinear dynamics providing atool for understand-
ing biological phenomena and biology stimulating developments in the theory of
dynamical systems [106]. A very common and useful tool for investigating future
demographics is the age-structured population model in which populations are not
tracked in their totality, but rather according to their ageclass. By means of bifur-
cation theory, we can examine the effect of the parameters tomake quantitative
predictions.

In Chapter5 we consider two age-structured populations, namely a Leslie-
Gower competition model for the interaction of two different species of the flour
beetle Tribolium and a cod stock model. The Leslie-Gower model is a discrete
time analog of the competition Lotka-Volterra model and is known to possess the
same dynamic scenarios of that famous model. The Leslie-Gower model played
a key historical role in laboratory experiments that helpedto establish the com-
petitive exclusion principle in ecology and in its application to classic laboratory
experiments of two competing species of flour beetles. In this model by means of
bifurcation analysis, we find that there is an interior region in which the coexis-
tence fixed points are unstable. This region is bounded by a PDcurve, where the
stability changes. By branch switching we compute the branches of fold curves
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of the second iterate that emanate at the GPD points. From theapplications point
of view, this is the most interesting region because it showsthat indeed the two
species can coexist even when the competition is strong.

The second model is an age-structured cod stock model in which competi-
tive interactions pass through different physiological stages during their devel-
opment progresses and therefore competition occurs not only within species, but
also within and between stages of different species. Age-structured competitive
interactions have always been of interest to ecologists as they have been shown
to have important dynamical consequences for intra- and interspecific popula-
tion interactions. We compute the stability domains of the map and its iterates.
We consider the second, third and fourth iterates of the map and their relation
to period-doubling, R3 and R4 points. In particular, we compute two different
branches of fold curves of the fourth iterate emanating froma R4 point. These
curves form stability boundaries of 4-cycles in which the population oscillates
between different values.

In economic dynamics, discrete-time models have steadily been gaining in
popularity. Discrete-time economic models may be thought of as providing a bet-
ter framework for economic analysis. The first and still one of the most widely
cited models of noncooperative oligopoly behaviour is the Cournot model, devel-
oped by the French mathematician Augustin Cournot in 1838. The Cournot model
is the fundamental model used to study strategic interactions among quantity-
setting firms in an imperfectly competitive market. In the last two decades, there
has been an explosion of Cournot-based models of strategic behaviour to analyze
various real-world phenomena ranging from horizontal mergers to intra-industry
trade. A proper understanding of the Cournot model of imperfect competition and
strategic interactions among firms in various contexts is thus essential. In Chapter
6 we study two map models in economics. First we consider two-dimensional
(duopoly) and three-dimensional (oligopoly) Cournot models. We compute a
closed NS curve in the parameter region of the original map asthe stability bound-
aries of the fixed points. The normal form coefficient changessign when crossing
the Chenciner (CH) bifurcation points. The economically relevant stability region
is bounded by the lines, derived by the feasibility condition of the Cournot points,
and subcritical parts of the NS curve.

In the second economics model, we consider a two-dimensional map proposed
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by M.Kopel that models a nonlinear Cournot duopoly consisting of a market struc-
ture between the two opposite cases of monopoly and competition. Synchroniza-
tion of two dynamics parameters of the Cournot duopoly is obtained in the com-
putation of stability boundaries formed by parts of codim 1 bifurcation curves.
We study the dynamics of the map by computing numerically thecritical normal
form coefficients of all codim 1 and codim 2 bifurcation points and computing
the associated two-parameter codim 1 curves rooted in some codim 2 points. It
enables us to compute the stability domains of the low-orderiterates of the map.
We compute regions of the parameter space in which there is multistability of a
symmetric 4-cycle, a non-symmetric 4-cycle, a 2-cycle and fixed points of the
original map.

Stable and unstable manifolds of invariant manifolds of saddle-type, in partic-
ular saddle fixed points, play important roles in organizingthe global dynamics.
It is well-known that the stable manifolds can form boundaries between different
basins of attraction. These manifolds are global, often noncompact objects that
can have a very complicated structure. Furthermore, the transverse intersection
of stable and unstable manifolds leads to homoclinic or heteroclinic tangles, as-
sociated with chaos [80]. Only in special situations it is possible to find stable
and unstable manifolds analytically. In general they need to be computed with
numerical methods.

In Chapter7, we discuss the implementation of computational algorithms for
one-dimensional invariant manifolds [32, 58] and their transversal intersections to
obtain initial connections of homoclinic and heteroclinicorbits. We implement
an algorithm to compute the stable manifold of a saddle pointof a planar map,
without requiring any knowledge of its inverse map, either explicitly or approxi-
mately. We use the so calledSEARCH CIRCLEalgorithm [32] which uses the idea
of growing a one-dimensional manifold in steps by adding newpoints according
to the local curvature properties of the manifold and findinga new point close to
the last computed point that maps underF to a piece of the manifold that was
already computed. The idea for computing an unstable manifold, similar to the al-
gorithm for computing the stable manifold, is to grow the manifold independently
of the dynamics in steps as a list of ordered points [58]. At each step a new point
is added at a prescribed distance from the last point. New points are found asf -
images of suitable points from the part we already computed.The algorithm starts
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with a linear approximation of the local manifold and grows the manifold up to a
prespecified arclength with a speed depending on the curvature of the manifold.

Transversal intersection of these manifolds provides initial approximations for
the homoclinic and heteroclinic connections. We use an improved algorithm for
locating and continuing connecting orbits, homo- and heteroclinic, which includes
an algorithm for the continuation of invariant subspaces (CIS) as described in
[25, 27]. The software then supports the continuation of these connections in one
parameter as well as detection and location of limit points along these orbits. Next
the software allows one to continue curves of limit points intwo parameters, i.e.
computing homoclinic and heteroclinic tangencies. We illustrate the algorithms
by computing invariant manifolds of the generalized Hénonmap. We compute
homoclinic and heteroclinic orbits in one parameter and curves of homoclinic and
heteroclinic tangencies in two parameters.

Finally, in chapter8 we discuss open problems and directions for further re-
search.

The results of this thesis were published, accepted for publication or submitted
in several specialized journals or proceedings, see [39], [56], [40], [41], [42], [55].

CL MATCONTM is freely available at http://www.matcont.UGent.be. A user
manual is also provided there [43].
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Chapter 1

Features of CL MATCONTM

To fix the notation, we consider a discrete map of the general form

x 7→ f(x, α), (1.1)

wherex ∈ R
n is a state variable vector andα ∈ R

p is a parameter vector. We
assume thatf is sufficiently smooth so that all partial derivatives are well defined.
TheK-th iterate of (1.1) at some parameter value is defined by

x 7→ f (K)(x, α), f (K) : R
n × R

p → R
n, (1.2)

where
g(x, α) := f (K)(x, α) = f(f(f(· · · f︸ ︷︷ ︸

K times

(x, α), α), α), α). (1.3)

For eachx0, the iteration (1.3) generates a sequence of points definingthe orbit, or
trajectory ofx0, under the mapg. The bifurcation analysis of (1.3) usually starts
with fixed points. Numerically we continue fixed points of this map, i.e. solutions
to the equation

F (x, α) ≡ g(x, α) − x = 0, (1.4)

with one control parameter. While varying the parameter, one may encounter
codim 1 bifurcations of fixed points, i.e. critical parameter values where the sta-
bility of the fixed point changes. The eigenvalues of the Jacobian matrixJ of
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2 Features of CL MATCONTM

f (K) are called multipliers. Fixed points can be classified according to the orbit
behavior of points in their vicinity. A fixed pointx is said to be asymptotically
stable (or an attractive point ofg), if for increasingK, trajectories of points near
the asymptotically stable fixed point tend toward it. A fixed point is asymptot-
ically stable if |λ| < 1 for every multiplierλ. The multipliers ofg govern the
contracting and expanding directions of the mapg in a vicinity of x. Eigenvalues
larger in absolute value than1 lead to expansions, whereas eigenvalues smaller
than1 correspond to contractions. If there exists a multiplierλ with |λ| > 1, then
the fixed point is unstable. If all the multipliers are outside the unit circle,x is
a repulsive point. The trajectories of points from a neighborhood of a repulsive
point move away from it. If some multipliers ofJ are inside and some are outside
the unit circle,x is said to be a saddle point.

While following a curve of fixed points, three codimension 1 singularities re-
lated to stability changes can generically occur, namely alimit point (fold, LP), a
period-doubling(flip, PD) and aNeimark-Sacker(NS) point. Encountering such a
bifurcation one may use the formulas for the normal form coefficients derived via
the center manifold reduction to analyse the bifurcation. Anongeneric situation
occurs at a branch point (BP) where the Jacobian matrix[Fx(x, α), Fα(x, α)] of
(1.4) is rank deficient. Here the implicit function theorem cannot be applied to
ensure the existence of a unique smooth branch of solutions.However, it is en-
countered often in practical problems that exhibit some form of symmetry (equiv-
ariance).

This chapter is organized as follows: We first give a review ofthe existing soft-
ware packages for numerical bifurcations of maps. We proceed with some aspects
of numerical methods, test functions for bifurcations and the singularity matrix.
Then we describe the MATLAB toolbox CL MATCONTM and its functionalities.

1.1 Software for bifurcations of maps

There are several standard software packages supporting bifurcation analysis of
iterated maps. Orbits of maps and one-dimensional invariant manifolds of saddle
fixed points can be computed and visualized usingDYNAMICS [76] and DsTool
[10]. Location and continuation of fixed-point bifurcations is implemented in
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1.2 Some aspects of numerical continuation methods 3

AUTO [28] and the LBFP-version ofLOCBIF [54]. The latter program computes
the critical normal form coefficient atLP points and locates some codim 2 bi-
furcations along branches of codim 1 fixed points and cycles.CONTENT [61]
was the first software that computed the critical normal formcoefficients for all
three codim 1 bifurcations of fixed points and cycles and allowed to continue
these bifurcations in two parameters and to detect all eleven codim 2 singulari-
ties along them. Branch switching atPDandBP points is also implemented in
AUTO, LOCBIF, andCONTENT. However, only trivial branch switching is possi-
ble at codim 2 points and only for two (cusp and 1:1 resonance)of eleven codim
2 bifurcations the critical normal form coefficients are computed by the current
version ofCONTENT. No software supports switching at codim 2 points to the
continuation of the double- and quadruple-period bifurcation curves.

1.2 Some aspects of numerical continuation methods

Numerical continuation

In general, numerical continuation methods are used to compute solution mani-
folds of nonlinear systems of the form:

G(X) = 0, (1.5)

whereX ∈ R
n+p andG : R

n+p → R
n is a sufficiently smooth function. The

solutions of this equation consist of regular pieces, whichare joined at singular
solutions. The regular pieces are curves whenp = 1, surfaces whenp = 2 and
p-manifolds in general.

We use numerical continuation methods for analyzing the solutions of (1.5)
when restricted to the casep = 1. In fact, we construct solution curvesΓ in

{X : G(X) = 0} , (1.6)

by generating sequences of pointsXi, i = 1, 2, ... along the solution curveΓ sat-
isfying a chosen tolerance criterion. The general idea of a continuation method is
that of a predictor-corrector scheme [7]. Starting with an initial point on the con-
tinuation path, the goal is to trace the remainder of the pathin steps. At each step,
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4 Features of CL MATCONTM

the algorithm first predicts the next point on the path, and subsequently corrects
the predicted point towards the solution curve. A variant ofNewton’s method
is used for the corrector step. For details of the continuation method used in
CL MATCONTM, we refer to [29, 30]. We note that these publications deal with
the original ODE work, but the continuation method is identical.

Test functions for bifurcations

Let X = X(s) be a smooth, local parameterization of a solution curve of (1.5)
wherep = 1. Suppose thats = s0 corresponds to a bifurcation point. A smooth
scalar functionψ : R

n+1 → R
1 defined along the curve is called a test function, a

tool to detect singularities on a solution branch, for the corresponding bifurcation
if g(s0) = 0, whereg(s) = ψ(X(s)). The test functionψ has a regular zero ats0
if dg

ds (s0) 6= 0. A bifurcation point is detected between two successive pointsX0

andX1 on the curve ifψ(X0)ψ(X1) < 0. To solve the system

{
G(X) = 0
ψ(X) = 0

(1.7)

we use a one-dimensional secant method to locateψ(X) = 0 along the curve.
Notice that this involves Newton corrections at each intermediate point.

1.3 CL MATCONTM

1.3.1 Functionalities

CL MATCONTM is a continuation toolbox in MATLAB [68], to continue fixed
points of an iterated map. It supports the following functionalities:

• continuation of fixed points of maps and iterates of maps withrespect to a
control parameter

• detection of fold, flip, Neimark-Sacker and branch points oncurves of fixed
points
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1.3 CL MATCONTM 5

• computation of normal form coefficients for fold, flip and Neimark-Sacker
bifurcations

• continuation of fold, flip and Neimark-Sacker bifurcationsin two control
parameters

• detection of all eleven codim 2 fixed point bifurcations on curves of fold,
flip and Neimark-Sacker bifurcations

• computation of normal form coefficients for all codim 2 bifurcations of
fixed points

• switching to the period doubled branch in a flip point

• branch switching at branch points of fixed points

• switching to branches of codim 1 bifurcations rooted in codim 2 points

• computation of one-dimensional invariant manifolds of saddle fixed points.
We remark that these manifolds are grown by special algorithms which are
not related to the continuation process

• continuation of homoclinic and heteroclinic connections and detection and
location of fold points along these connections

• continuation of fold curves of homoclinic connections (homoclinic tangen-
cies) in two parameters

• continuation of fold curves of heteroclinic connections (heteroclinic tangen-
cies) in two parameters

• automatic differentiation for normal form coefficients of codim 1 and codim
2 bifurcations

We proceed now to describe the computational kernel of the software
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6 Features of CL MATCONTM

1.3.2 Continuer

A solution curve can be continued by using acontinuerwith the syntax:

[x , v , s, h, f ] = cont(@curve, x0 , v0 , options)

curveis a MATLAB m-file where the problem is specified, cf.§1.3.3.
x0andv0are respectively the initial point and the tangent vector atthe initial point
where the continuation starts.
optionsis a structure as described in§1.3.4.
The function returns:
x andv, i.e. the points and their tangent vectors along the curve. Each column in
x andv corresponds to a point on the curve.
s is an array whose structure contain information on detectedsingularities. This
structure has the following fields:
s.index index of the singularity point inx.
s.label label of the singularity.
s.data any kind of extra information.
s.msg a string containing a message for this particular singularity.

A special point on a bifurcation curve that is specified by a user function has a
structure as follows:
s.index index of the detected singular point defined by the user function.
s.label a string that is inUserInfo.label, label of the singularity.
s.data an empty tangent vector, values of the test and user functions in

the singular point.
s.msg a string that is set inUserInfo.name.

h is used for output of the algorithm, currently this is a matrix with for each point
a column with the following components (in that order) :

• Stepsize:
Stepsize used to calculate this point (zero for initial point and singular
points).

• Half the number of correction iterations, rounded up to the next integer
For singular points this is the number of locator iterations
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1.3 CL MATCONTM 7

• User function values :
The values of all active user functions.

• Test function values :
The values of all active test functions.

In general,f can be anything depending on which curve file is used. However, in
CL MATCONTM, f always contains the multipliers if they were computed during
the continuation. Multipliers are computed whenoptionsis set by :

options=contset(options,’Multipliers’,1),

see§1.3.4 for more details.
It is also possible to extend the most recently computed curve with the same op-
tions (also the same number of points) as it was first computed. The syntax to
extend this curve is:

[x, v, s, h, f] = cont(x, v, s, h, f, cds)

x, v, s, h and f are the results of the previous call to the continuer andcds is the
global variable that contains the curve description of the most recently computed
curve. The function returns the same output as before, extended with the new
results.

1.3.3 Curve file

The continuer uses special m-files where the type of the solution branch is defined.
CL MATCONTM contains eight curve files namelyfixedpointmap.m,
limitpointmap.m, perioddoublingmap.m, neimarksackermap.m, heteroclinic, ho-
moclinic, heteroclinicT, homoclinicTin which defining systems for fixed points,
fold, flip and Neimark-Sacker, heteroclinic orbits, homoclinic orbits, heteroclinic
and homoclinc tangencies of cycles of maps are defined, respectively.

A curve file contains some sections ascurve func, jacobian, hessians, adapt,. . . etc.
In some cases the problem definition uses auxiliary entitieslike bordering vectors
and it may be needed to adapt them during the continuation. Inadaptthese enti-
ties are adapted. Ifcds.options.Adapthas a valuen, then aftern computed points
a call to[reeval,x,v]=feval(cds.curveadapt,x,v)will be made.
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8 Features of CL MATCONTM

1.3.4 Options

In the continuation we use theoptions structure which is initially created with
contset:
options = contset
will initialize the structure. The continuer stores the handle to the options in the
variablecds.options. Options can then be set using
options = contset(options, optionname, optionvalue),
whereoptionname is an option from the following list.

InitStepsize the initial stepsize (default:0.01)

MinStepsize the minimum stepsize to compute the next point on the curve (de-
fault: 10−5)

MaxStepsize the maximum stepsize (default:0.1)

MaxCorrIters maximum number of correction iterations (default:10)

MaxNewtonIters maximum number of Newton-Raphson iterations before switch-
ing to Newton-Chords in the corrector iterations (default:3)

MaxTestIters maximum number of iterations to locate a zero of a test function
(default:10)

Increment the increment to compute first-order derivatives numerically (default:
10−5)

FunTolerance tolerance of function values:||F (x)|| ≤ FunTolerance is the
first convergence criterium of the Newton iteration (default: 10−6)

VarTolerance tolerance of coordinates:||δx|| ≤ V arTolerance is the second
convergence criterium of the Newton iteration (default:10−6)

TestTolerance tolerance of test functions (default:10−5)

Singularities boolean indicating the presence of singularities (default: 0)
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1.3 CL MATCONTM 9

MaxNumPoints maximum number of points on the curve (default:300)

Backward boolean indicating the sense of the continuation (sense of the initial
tangent vector)v0 (default:0)

CheckClosed number of points indicating when to start to check if the curve is
closed (0 = do not check) (default:50)

Adapt number of points indicating when to adapt the problem while computing
the curve (default:1=adapt always)

IgnoreSingularity vector containing indices of singularities which are to be ig-
nored (default: empty)

Multipliers boolean indicating the computation of the multipliers (default: 0)

Userfunctions boolean indicating the presence of user functions (default: 0)

UserfunctionsInfo is an array with structures containing information about the
user functions. This structure has the following fields:
.label label of the user function (must consist of four

characters, including possibly trailing spaces)
.name name of this particular user function
.state boolean indicating whether the user function has to be

evaluated or not

AutDerivative boolean indicating the use of automatic differentiation inthe com-
putation of normal form coefficients (default:1)

AutDerivativeIte an integer number that indicates the use of automatic differen-
tiation when the iteration number of the map equals or exceeds this number
(default:24)

For the options MaxCorrIters, MaxNewtonIters, MaxTestIters, Increment, Fun-
Tolerance, VarTolerance, TestTolerance and Adapt the default values are in most
cases good.

Optionsalso contains some fields which are not set by the user but frozen or
filled by calls to the curvefile, namely:
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10 Features of CL MATCONTM

MoorePenrose boolean indicating the use of the Moore-Penrose continuation as
the Newton-like corrector procedure (default:1)

SymDerivative the highest order symbolic derivative which is present (default:
0)

SymDerivativeP the highest order symbolic derivative with respect to the param-
eter(s) which is present (default:0)

Testfunctions boolean indicating the presence of test functions and singularity
matrix (default:0)

WorkSpace boolean indicating to initialize and clean up user variablespace (de-
fault: 0)

Locators boolean vector indicating the user has provided his own locator code to
locate zeroes of test functions. Otherwise the default locator will be used
(default: empty)

ActiveParams vector containing indices of the active parameter(s) (default: empty)

1.3.5 Singularity matrix

Suppose we have two singularitiesS1 andS2, and test functionsψ1 andψ2. As-
sume thatψ1 vanishes at bothS1 andS2 whileψ2 generically vanishes only atS2.
Then we need to require thatψ2 does not vanish atS1, i.e. we need the possibility
to require that in some singularities certain test functions do not vanish. To rep-
resent all singularities we use a singularity matrix, i.e. acompact way to describe
the relation between the singularities and the test functions. Suppose we havens

singularities andnt test functions. Then the singularity matrixS is anns × nt

matrix, such that:

Sij =





0 for singularity i testfunction j must vanish
1 for singularity i testfunction j must notvanish
otherwise for singularity i ignore test function j

(1.8)
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1.3 CL MATCONTM 11

1.3.6 Directories

To start CL MATCONTM the MATLAB main directory must be the root directory
of CL MATCONTM whereinit.m is set. The files of the toolbox are organized in
the following subdirectories

• Continuer
Here are all the main files for the continuer which are needed to calculate
and plot any curve.

• FixedPointMap
Here are all files needed to do a continuation of fixed points ofiterates of
a map. This includes in particular the initializers and the fixed point curve
definition file.

• LimitPointMap
Here are all files needed to do a fold continuation. This includes in particu-
lar the initializers and the fold curve definition file.

• PeriodDoublingMap
Here are all files needed to do a flip continuation. This includes in particular
the initializers and the flip curve definition file.

• NeimarkSackerMap
Here are all files needed to do a Neimark-Sacker continuation. This includes
in particular the initializers and the Neimark-Sacker point curve definition
file.

• MultilinearForms
Here are all files needed to compute the critical normal form coefficients
for all codim 1 and codim 2 bifurcation points both numerically with finite
directional differences and using symbolic derivatives ofthe original map.

• AD
Contains all files needed to use automatic differentiation in the computation
of multilinear forms.
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12 Features of CL MATCONTM

• Homoclinic
Here are all files needed to continue a homoclinic connection.

• Heteroclinic
Contains all files needed to continue a heteroclinic connection.

• HomoclinicT
Here are all files needed to continue a fold curve of homoclinic connections.

• HeteroclinicT
Here are all files needed to continue a fold curve of heteroclinic connections.

• InvManifolds
Contains the files to compute one-dimensional stable and unstable mani-
folds.

• Systems
Here are all example system definitions.

• Testruns
Here are all example testruns.

The only files which are not in any of these directories areinit.m andcpl.m. The
functioninit.mmust be called before any continuation in the toolbox, so that MAT-
LAB can find all the needed functions. The functioncpl.mis used to plot the results
obtained in a continuation run. It can provide2D or 3D plots. For instance the
commandscpl(x24,v24,s24,[3 1])andcpl(x4,v4,s4,[3 1 2])create the 2D and 3D
plots of Figure 2.1 and Figure 2.2, respectively.
A sketch of the data flow in CL MATCONTM is visualized in Figure 1.1.

1.3.7 The mapfile of the map

A solution curve must be initialized before doing a continuation. Each curve file
has its own initializers which use amapfile where the map is defined, see for
instance§ 2.1.1. Amapfile contains at least the following sections:
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CURVE DEFINITION

CURVE INITIALIZERCONTINUER

MATLAB PROMPT

MAPFILE

Figure 1.1: Continuation process in CL MATCONTM.

init, fun eval, jacobian, jacobianp, hessians, hessiansp, der3, der4 , der5.
A mapfilemay also contain one or more sections that describe user functions.
In order to illustrate the elements of amapfile, we give two m-files forMTN , the
map of a truncated normal form defined by:

MTN :

(
ξ1
ξ2

)
7−→

(
−1 1
β1 − 1 + β2

)(
ξ1
ξ2

)
+

(
0

Cξ31 +Dξ21ξ2

)
,

(1.9)
using symbolic and numeric derivatives respectively. These files were created
using MATCONT for ODEs by defining the problem in the ’System’ window
and then choosing the options symbolically or numerically to use symbolic or
numeric derivatives, respectively. However, amapfile can also be defined in
CL MATCONTM using the MATLAB editor. The user function sections can be
created and added to amapfileusing the menu ’User function’ in MATCONT or
just by defining the user functions in the body of amapfile. We note that user
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14 Features of CL MATCONTM

functions, like test functions, must be scalar functions.
First we give the mapfile ofMTN using symbolic derivatives.

%-------------------------------------------------
%The mapfile of the truncated normal form map
% with symbolic derivatives
%-------------------------------------------------
function out = Tnfmap
out{1} = @init;
out{2} = @fun_eval;
out{3} = @jacobian;
out{4} = @jacobianp;
out{5} = @hessians;
out{6} = @hessiansp;
out{7} = @der3;
out{8} = @der4;
out{9} = @der5;
out{10}= @userf1;
out{11}= @userf2;
%-------------------------------------------------
function dydt = fun_eval(t,kmrgd,beta1,beta2,CC,DD)
dydt=[-kmrgd(1)+kmrgd(2);; beta1 * kmrgd(1)+(-1+beta2) *
kmrgd(2)+CC * kmrgd(1)ˆ3+DD * kmrgd(1)ˆ2 * kmrgd(2);;];

%-------------------------------------------------
function [tspan,y0,options] = init
handles = feval(Tnfmap);
y0=[0,0];
options = odeset(’Jacobian’,handles(3),’JacobianP’,
handles(4),’Hessians’,handles(5),’HessiansP’,handle s(6));
tspan = [0 10];

%-------------------------------------------------
function jac = jacobian(t,kmrgd,beta1,beta2,CC,DD)
jac=[[-1,1];[beta1+3 * C* kmrgd(1)ˆ2+2 * DD* kmrgd(1) *

kmrgd(2),-1+beta2+DD * kmrgd(1)ˆ2]];
%-------------------------------------------------
function jacp = jacobianp(t,kmrgd,beta1,beta2,CC,DD)
jacp=[[0,0,0,0];[kmrgd(1),kmrgd(2),kmrgd(1)ˆ3,
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1.3 CL MATCONTM 15

kmrgd(1)ˆ2 * kmrgd(2)]];
%--------------------------------------------------
function hess = hessians(t,kmrgd,beta1,beta2,CC,DD)
hess1=[[0,0];[6 * CC* kmrgd(1)+2 * DD* kmrgd(2),
2* DD* kmrgd(1)]];
hess2=[[0,0];[2 * DD* kmrgd(1),0]];
hess(:,:,1) =hess1;
hess(:,:,2) =hess2;
%-------------------------------------------------
function hessp = hessiansp(t,kmrgd,beta1,beta2,CC,DD)
hessp1=[[0,0];[1,0]];
hessp2=[[0,0];[0,1]];
hessp3=[[0,0];[3 * kmrgd(1)ˆ2,0]];
hessp4=[[0,0];[2 * kmrgd(1) * kmrgd(2),kmrgd(1)ˆ2]];
hessp(:,:,1) =hessp1;
hessp(:,:,2) =hessp2;
hessp(:,:,3) =hessp3;
hessp(:,:,4) =hessp4;
%--------------------------------------------------
function tens3 = der3(t,kmrgd,beta1,beta2,CC,DD)
tens31=[[0,0];[6 * CC,2* DD]];
tens32=[[0,0];[2 * DD,0]];
tens33=[[0,0];[2 * DD,0]];
tens34=[[0,0];[0,0]];
tens3(:,:,1,1) =tens31;
tens3(:,:,1,2) =tens32;
tens3(:,:,2,1) =tens33;
tens3(:,:,2,2) =tens34;
%-------------------------------------------------
function tens4 = der4(t,kmrgd,beta1,beta2,CC,DD)
tens41=[[0,0];[0,0]];
tens42=[[0,0];[0,0]];
tens43=[[0,0];[0,0]];
tens44=[[0,0];[0,0]];
tens45=[[0,0];[0,0]];
tens46=[[0,0];[0,0]];
tens47=[[0,0];[0,0]];
tens48=[[0,0];[0,0]];
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16 Features of CL MATCONTM

tens4(:,:,1,1,1) =tens41;
tens4(:,:,1,1,2) =tens42;
tens4(:,:,1,2,1) =tens43;
tens4(:,:,1,2,2) =tens44;
tens4(:,:,2,1,1) =tens45;
tens4(:,:,2,1,2) =tens46;
tens4(:,:,2,2,1) =tens47;
tens4(:,:,2,2,2) =tens48;
%-------------------------------------------------
function tens5 = der5(t,kmrgd,beta1,beta2,CC,DD)
tens51=[[0,0];[0,0]];
tens52=[[0,0];[0,0]];
tens53=[[0,0];[0,0]];
tens54=[[0,0];[0,0]];
tens55=[[0,0];[0,0]];
tens56=[[0,0];[0,0]];
tens57=[[0,0];[0,0]];
tens58=[[0,0];[0,0]];
tens59=[[0,0];[0,0]];
tens510=[[0,0];[0,0]];
tens511=[[0,0];[0,0]];
tens512=[[0,0];[0,0]];
tens513=[[0,0];[0,0]];
tens514=[[0,0];[0,0]];
tens515=[[0,0];[0,0]];
tens516=[[0,0];[0,0]];
tens5(:,:,1,1,1,1) =tens51;
tens5(:,:,1,1,1,2) =tens52;
tens5(:,:,1,1,2,1) =tens53;
tens5(:,:,1,1,2,2) =tens54;
tens5(:,:,1,2,1,1) =tens55;
tens5(:,:,1,2,1,2) =tens56;
tens5(:,:,1,2,2,1) =tens57;
tens5(:,:,1,2,2,2) =tens58;
tens5(:,:,2,1,1,1) =tens59;
tens5(:,:,2,1,1,2) =tens510;
tens5(:,:,2,1,2,1) =tens511;
tens5(:,:,2,1,2,2) =tens512;
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1.3 CL MATCONTM 17

tens5(:,:,2,2,1,1) =tens513;
tens5(:,:,2,2,1,2) =tens514;
tens5(:,:,2,2,2,1) =tens515;
tens5(:,:,2,2,2,2) =tens516;
%-------------------------------------------------
function userfun1=userf1(t,kmrgd,beta1,beta2,CC,DD)
userfun1=beta2-2;
%-------------------------------------------------
function userfun2=userf2(t,kmrgd,beta1,beta2,CC,DD)
userfun2=beta2-0.5;
%-------------------------------------------------

A mapfile ofMTN without symbolic derivatives is given by:

%-------------------------------------------------
%The mapfile of a truncated normal form map
% without symbolic derivatives
%-------------------------------------------------
function out = Tnfmap1
out{1} = @init;
out{2} = @fun_eval;
out{3} = [];
out{4} = [];
out{5} = [];
out{6} = [];
out{7} = [];
out{8} = [];
out{9} = [];
out{10}= @userf1;
out{11}= @userf2;
%-------------------------------------------------
function dydt = fun_eval(t,kmrgd,beta1,beta2,CC,DD)
dydt=[-kmrgd(1)+kmrgd(2);;
beta1 * kmrgd(1)+(-1+beta2) * kmrgd(2)+CC * kmrgd(1)ˆ3+
DD* kmrgd(1)ˆ2 * kmrgd(2);;];

%-------------------------------------------------
function [tspan,y0,options] = init
handles = feval(Tnfmap1);
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18 Features of CL MATCONTM

y0=[0,0];
options = odeset(’Jacobian’,[],’JacobianP’,[],
’Hessians’,[],’HessiansP’,[]);
tspan = [0 10];

%-------------------------------------------------
function jac = jacobian(t,kmrgd,beta1,beta2,CC,DD)
%-------------------------------------------------
function jacp = jacobianp(t,kmrgd,beta1,beta2,CC,DD)
%-------------------------------------------------
function hess = hessians(t,kmrgd,beta1,beta2,CC,DD)
%-------------------------------------------------
function hessp = hessiansp(t,kmrgd,beta1,beta2,CC,DD)
%-------------------------------------------------
function tens3 = der3(t,kmrgd,beta1,beta2,CC,DD)
%-------------------------------------------------
function tens4 = der4(t,kmrgd,beta1,beta2,CC,DD)
%-------------------------------------------------
function tens5 = der5(t,kmrgd,beta1,beta2,CC,DD)
%-------------------------------------------------
function userfun1=userf1(t,kmrgd,beta1,beta2,CC,DD)
userfun1=beta2-2;
%-------------------------------------------------
function userfun2=userf2(t,kmrgd,beta1,beta2,CC,DD)
userfun2=beta2-0.5;
%-------------------------------------------------
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Chapter 2

Local bifurcation analysis

We consider (1.3) at some fixed parameter values and assume that it has a fixed
pointx0. If the Jacobian matrixA of (1.3) atx0 has no eigenvalueλ with |λ| = 1,
thenx0 is called a hyperbolic fixed point. In this case, the dynamicsnearx0 is
topologically equivalent to that of the linear mapx 7−→ Ax (Grobman - Hartman
Theorem). If eigenvalues with|λ| = 1 are present thenx0 is called a nonhy-
perbolic fixed point. In this case, the Center Manifold Theorem [101, 50] guar-
antuees the existence of stable, unstable and center manifolds near the fixed point.
The center manifold is an invariant manifold of the a map which is tangent at the
fixed point to the eigenspace of the neutrally stable eigenvalues. We determine
the reduced dynamics on the center manifold, study its stability and then conclude
about the stability of the original system. This theory combined with the normal
form approach of Poincaré was used extensively to study parameterized dynami-
cal systems exhibiting bifurcations [49, 62]. On the stableand unstable manifolds,
the local dynamics is still determined by the linear part of the map. In contrast, the
dynamics in the center manifold depends on both linear and nonlinear terms. Not
all nonlinear terms are equally important, since some of them can be eliminated
by an appropriate smooth coordinate transformation that puts the map restricted
to its center manifold into a normal form.

Assuming sufficient smoothness ofg, we write the Taylor expansion ofg about
(x0, α0)
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20 Local bifurcation analysis

g(x0 + x, α0 + α) = x0 +Ax+ 1
2B(x, x) + 1

6C(x, x, x)

+ 1
24D(x, x, x, x) + 1

120E(x, x, x, x, x)

+ J1α+ 1
2J2(α,α)

+A1(x, α) + 1
2B1(x, x, α)

+ 1
6C1(x, x, x, α) + 1

24D1(x, x, x, x, α)

+ 1
2A2(x, α, α) + 1

4B2(x, x, α, α) + 1
12C2(x, x, x, α, α)

+ . . . ,
(2.1)

where all functions are multilinear forms of their arguments and the dots denote
higher order terms inx andα. In particular,A = gx(x0, α) and the components
of the multilinear functionsB andC are given by

Bi(u, v) =
n∑

j,k=1

∂2gi(x0, α0)

∂xj∂xk
ujvk, Ci(u, v,w) =

n∑

j,k,l=1

∂3gi(x0, α0)

∂xj∂xk∂xl
ujvkwl,

(2.2)
for i = 1, 2, . . . , n. From now on,In is the unitn×nmatrix and‖x‖ =

√
〈x, x〉,

where〈u, v〉 = ūT v is the standard scalar product inC
n (or R

n).
This chapter starts with the bifurcation analysis of fixed points of maps and

their implementation in CL MATCONTM. We proceed with the computation of
the secondary branch of fixed points emanating from a branch point followed by a
detailed study of the normal form coefficients of codim 1 bifurcation points. The
chapter ends with a bifurcation study of a truncated normal form map.

Parts of this chapter were published or accepted in [40].

2.1 Bifurcation analysis of codim 1 bifurcations of maps

There are three generic codim 1 bifurcations that can be detected along a curve of
fixed points of theK-th iterate, namely NS, LP and NS. Also, there can be branch
points BP. We consider them in this order. To detect these singularities, we define
4 test functions.

φ1(x, α) = det(A⊙A− Im), (2.3)
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2.1 Bifurcation analysis of codim 1 bifurcations of maps 21

φ2(x, α) = det(A+ In), (2.4)

φ3(x, α) = vn+1, (2.5)

φ4(x, α) = det

(
FX

vT

)
. (2.6)

Herev is the tangent vector along the curve,⊙ is the bialternate matrix product
wherem = n(n−1)

2 (cf. [38], §4.4.4),F (X) = g(x, α) − x andA is the Jacobian
matrix of g.

The following codimension1 bifurcations and branch points can be detected
and located as regular zeroes of the above test functions:

• NS:φ1 = 0.

• PD:φ2 = 0.

• LP: φ3 = 0, φ4 6= 0.

• BP:φ4 = 0.

We notice thatφ1 is also zero if there is a pair of real multipliers with product
1. Such points are called neutral saddles. We have to take careof these when
processing the NS points. The singularity matrix is :

S =




0 − − 0
− 0 − −
− − 0 1
− − − 0


 . (2.7)

2.1.1 Fixed point initializations

Numerical continuation of a curve of fixed points (1.4), starts from an initial point
along with its tangent vector on the fixed point curve. These data are provided
by the routines, initializers, that correspond to each continuation curve. The fixed
point initializers areinit FP FP.m, init PD FP2.mand init BP FP.m. To start
from a known fixed point of theK-th iterate one first gives the following curve
initializer statement:
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22 Local bifurcation analysis

[x0 , v0 ] = init FP FP(@mapfile, x , p, ap,K ).

Heremapfileis the mapfile to be used,x is a vector containing the starting values of
the state variables,p is the vector containing the starting values of the parameters
andap is the index of the active parameter. This routine stores itsoutput partly
in the global structurefpmds. The output ofinit FP FP contains a vectorx0 with
the state variables and the active parameter and an empty vector v0.
To explain the meaning offpmdswe run the fixed point initializer using themapfile
that is defined in§1.3.7 where symbolic derivatives are used. The global structure
fpmdsis set using:

[x0 , v0 ] = init FP FP(@Tnfmap, [0 ; 0 ], [−1 ; 0 ; 1 ; 1 ], 2 , 1 )

Some important fields offpmdsare given by:

P0: [4x1 double]
ActiveParams: 2

mapfile: @Tnfmap
func: @fun_eval

Jacobian: @jacobian
JacobianP: @jacobianp

Hessians: @hessians
HessiansP: @hessiansp

Der3: @der3
Der4: @der4
Der5: @der5

Niterations: 1
nphase: 2

To start the continuation of2K-cycles from a period-doubling point detected dur-
ing a fixed point ofK-th iterate continuation one first gives the following curve
initializer statement:

[x0 , v0 ] = init PD FP2 (@mapfile, xnew , p, ap, s(j ), h,K )
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2.1 Bifurcation analysis of codim 1 bifurcations of maps 23

Heremapfile is the mapfile to be used,xnew is a vector containing the starting
values of the state variables,p is the vector containing the starting values of the
parameters andap must be the index of the active parameter. In the most natural
situation wherex is the vector returned by the previous fixed point curve continu-
ation one starts to buildxnewby the statementxnew=x(1:nphase,s(j).index).
s(j) is the special point structure of the detected period doubling point on the fixed
point ofK-th iterate curve continuation andnphaseis the number of state vari-
ables.

Next, the statementp(ap old) = x (end , s(j ).index ); replaces the old value
of the free parameter in the previous run by the parameter value at the PD point.
The output ofinit PD FP2 contains a vectorx0 with the state variables and the
active parameter and a tangent vectorv0. If xPD is the PD point on the original
branch andq is the right eigenvector of the multiplier−1 in xPD thenx0 = xPD+
hq andv0 = q; the scalarh is called the amplitude. The routineinit PD FP2
stores its output partly in the global structurefpmds.

2.1.2 Output of a fixed point continuation

The fixed point curve is continued by calling:

[x, v, s, h, f ] = cont(@fixedpointmap, x0, v0, opt)

This call returns :x andv: points and their tangent vectors along the fixed point
curve, respectively.
The arrays contains information about the computed singular points, including
zeros of user functions, with the following fields:

s.index index of the point inx.

s.label label of the singularity, may be00, NS, PD, LP, BP,99 or the label of a
user function.The strings00 and99 indicate the first and the last point on
the fixed point curve, respectively.

s.data extra information.
For the first and last points this is only an empty tangent vector. For ze-
roes of user functions an empty tangent vector is given, plusthe values of
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24 Local bifurcation analysis

all active user functions and test functions. For bifurcation points see the
respective cases in§2.3.1,§2.3.2,§2.3.3,§2.2.

s.msga string containing a message for this particular singularity. For the first and
last points these are the strings ‘This is the first point of the curve’ and ‘This
is the last point of the curve’, respectively. For zeroes of user functions the
name of the user function is given. For bifurcation points see the respective
cases.

h andf were described in§1.3.2

2.2 Branch switching at a branch point

In this section we consider the approximation of a new cycle curve that emanates
from a branch point BP for (1.4). The same algorithm is used toswitch at a PD
point for the period-K cycle to the period-2K cycle, since it corresponds to a
branch point forf (2K)(x, α) − x = 0. The method is similar to that for branch
points of equilibria and is presented here only for completeness; it is also used in
CONTENT.

A solutionX0 = X(s0) of

F (X) = g(x, α) − x = 0, (2.8)

is called asimple singular pointif FX(X0) has rankn− 1 . For system (2.8), we
haveF 0

X = [gx(x0, α0)− In, gα(x0, α0)], andX0 = (x0, α0) is a simple singular
point if and only if, either

dimN(gx(x0, α0) − In) = 1, gα(x0, α0) ∈ R(gx(x0, α0) − In),

or
dimN(gx(x0, α0) − In) = 2, gα(x0, α0) /∈ R(gx(x0, α0) − In).

The first case is a codimension 2 situation, the second case has codimension 4, so
in practice we only expect the first case.

Suppose we have a solution branchX(s) and letXs0 = (x0, α0) be a simple
singular point. ThenN(F 0

X) is two-dimensional and can be written as
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2.3 Normal form coefficients of codim 1 bifurcation points 25

span {φ1, φ2} whereφ1, φ2 ∈ R
n+1 are linearly independent. Also,N([F 0

X ]T )
is one-dimensional and is spanned by a vectorψ ∈ R

n. Let F 0
Y Y be the bilinear

form in the Taylor expansion ofF aboutX0. If Y (s) is any solution branch of
(2.8) withY (s0) = X0, thenYs(s0) can be written asYs(s0) = αφ1 + βφ2 for
someα, β ∈ R. Differentiating the identityF (Y (s)) = 0 twice and computing
the scalar product withψ ats0, we get

〈ψ,F 0
Y Y (αφ1 + βφ2)(αφ1 + βφ2)〉 = 0,

or, equivalently,
c11α

2 + 2c12αβ + c22β
2 = 0, (2.9)

wherecjk = 〈ψ,F 0
Y Y φjφk〉 for j, k = 1, 2.

Equation (2.9) is called thealgebraic bifurcation equation(ABE). The case
c212 − c11c22 < 0 is impossible, since at least one branch goes throughX0. Thus,
generically,c212 − c11c22 > 0, and equation (2.9) has two real nontrivial, indepen-
dent solution pairs,(α1, β1) and(α2, β2), which are unique up to scaling. In this
case we have asimple branch point, where two distinct branches pass throughX0.

The above procedure allows one to compute the normalized tangent vectors
Y1s(s0), Y2s(s0) of the two branches that pass throughX0. Now if

|〈Y1s(s0),Xs(s0)〉| < |〈Y2s(s0),Xs(s0)〉|,
then we conclude thatY1s(s0) is the tangent vector to the new branch; otherwise,
Y2s(s0) is the tangent vector.

2.3 Normal form coefficients of codim 1 bifurcation points

When a limit point, period doubling point or Neimark-Sackerpoint is detected on
a curve of fixed points, then the processing of these points includes computation
of the corresponding normal form coefficients. What followsis the normal form
analysis of the codim 1 bifurcation points.

2.3.1 Limit point

At a fold point the matrixA of (1.3) (Jacobian of theK-th iterate) has a simple
eigenvalueλ1 = 1 and no other multipliers on the unit circle, while the restriction
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26 Local bifurcation analysis

of (1.3) to a one dimensional center manifold at the criticalparameter value has
the form

w 7−→ w + aw2 + O(w3), w ∈ R (2.10)

if a 6= 0, where for the coefficienta we have the expression:

a =
1

2
〈p,B(q, q)〉 , (2.11)

whereAq = q, AT p = p, and〈q, q〉 = 1 , 〈p, q〉 = 1.
A generic unfolding of (2.10) is

w 7−→ α+ w + aw2 + O(w3), w ∈ R (2.12)

whereα is the control parameter with critical value0. When the control parameter
crosses0, two fixed points collide and disappear. So the fixed point curve has a
turning point with respect to the control parameter.

2.3.2 Period doubling

At a PD point the matrixA has a simple eigenvalueλ1 = −1 and no other mul-
tipliers on the unit circle. The restriction of (1.3) to a onedimensional center
manifold at the critical parameter value can be transformedto the normal form

w 7−→ −w + bw3 + O(w4), w ∈ R (2.13)

if b 6= 0, whereb is given by

b =
1

6

〈
p,C(q, q, q) + 3B(q, (I −A)−1B(q, q))

〉
, (2.14)

whereI is the unitn× n matrix,Aq = −q,AT p = −p, 〈q, q〉 = 1,〈p, q〉 = 1.
A generic unfolding of (2.13) is

w 7−→ −w(1 + α) + bw3 + O(w4), w ∈ R (2.15)

whereα is a control parameter. When the control parameter crosses the critical
value0, a cycle of period2 bifurcates from the fixed point. Ifb > 0 then this
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2.4 Example: A truncated normal form map 27

period two cycle is stable and found for thoseα - values where the fixed point of
the map is unstable; this is called a supercritical PD. Ifb < 0 then the period two
cycle is unstable and found for thoseα - values where the fixed point of the map
is stable; this is called a subcritical PD point.

2.3.3 Neimark-Sacker

At a NS point the matrixA has simple critical multipliersλ1,2 = e±iθ0 (0 ≤
θ ≤ π) and no other multipliers on the unit circle. Assume thateikθ0 6= 1, k =
1, 2, 3, 4 (these special cases are thestrong resonances). Then the restriction of
(1.3) to the two dimensional center manifold at the criticalparameter value can be
transformed to the normal form

w 7−→ weiθ0(1 + d|w|2) + O(|w|4), w ∈ C

wherew is now a complex variable andd is a complex number. Ifc = Re(d) 6=
0, then a unique closed invariant curve around the fixed point appears when the
parameter crosses the critical value. One has the followingexpression ford:

d =
1

2
e−iθ0 〈p,C(q, q, q̄) + 2B(q, h11) +B(q̄, h20)〉 , (2.16)

where

h11 = (In −A)−1B(q, q̄), h20 = (e2iθ0In −A)−1B(q, q),

andAq = eiθ0q, AT p = e−iθ0p and〈q, q〉 = 〈p, q〉 = 1.
If c < 0 then a stable invariant curve branches off the NS point and isfound for
values of the control parameter for which the fixed point of the map is unstable. If
c > 0 then an unstable invariant curve branches off the NS point and is found for
values of the control parameter for which the fixed point of the map is stable.

2.4 Example: A truncated normal form map

2.4.1 The map and some analytical normal form coefficients

In this example we consider the two - dimensional map, introduced in [62],§9.9,
(unfolding of an R2 point to which it reduces forβ1 = β2 = 0)
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28 Local bifurcation analysis

MTN :

(
ξ1
ξ2

)
7→
(

−1 1
β1 − 1 + β2

)(
ξ1
ξ2

)
+

(
0

Cξ31 +Dξ21ξ2

)
.

(2.17)
For all parameter values, this map has a trivial fixed point(0, 0)T . If (ξ1, ξ2) is a
nontrivial fixed point then we have:

ξ2 = 2ξ1, ξ2 = β1ξ1 + (−1 + β1)ξ2 + Cξ31 +Dξ21ξ2. (2.18)

It is easy to see that if
4 − (β1 + 2β2)

C + 2D
> 0,

then nontrivial real fixed points(ξ1, 2ξ1) exist and are given by

ξ1 = ±
√

4 − (β1 + 2β2)

C + 2D
, ξ2 = 2ξ1. (2.19)

If
4 − (β1 + 2β2)

C + 2D
= 0,

then these points collide with the trivial fixed point. If this happens withβ1 or β2

as a free parameter in a continuation of trivial fixed points,then clearly we have a
pitchfork bifurcation of fixed points.
The characteristic equation of the Jacobian in the trivial fixed point is:

λ2 + (2 − β2)λ+ 1 − β1 − β2 = 0. (2.20)

We first note that the product of the two multipliers is1 if and only ifβ1 +β2 = 0.
In particular, NS points can only be found ifβ1 + β2 = 0. In this case,∆ =
(2 − β2)

2 − 4 = β2(β2 − 4). So we have true NS points ifβ2 ∈]0, 4[, β1 = −β2;
we have neutral saddles ifβ2 /∈ [0, 4], β1 = −β2.

In particular we consider the following three special casesof the NS bifurca-
tion:

(i) β1 = −1, β2 = 1, (θ = 2π
3 )

(ii) β1 = −2, β2 = 2, (θ = π
2 )

(iii) β1 = −3, β2 = 3, (θ = π
3 )

(2.21)



i

i

“main” — 2008/2/28 — 17:19 — page 29 — #49
i

i

i

i

i

i

2.4 Example: A truncated normal form map 29

We note that that cases(i) and(ii) are cases with a strong resonance.
Also, it is easy to see that (2.20) has a root−1 if and only ifβ1 = 0. The other

root then is−1 + β2. We will also consider the case :

(iv)β1 = 0, β2 = 1. (2.22)

One can obtain analytically the normal form coefficients. The results are as fol-
lows:

• in the case of (i), i.e.θ = 2π
3 : c = −1

8(6C + 4D)

• in the case of (ii), i.e.θ = π
4 : c = − 1

12(6C + 6D)

• in the case of (iii), i.e.θ = π
3 : c = − 1

16(6C + 8D)

• in the case of (iv), i.e.θ = π : b = −C

2.4.2 Numerical continuation of fixed points

Theoretically computed values of the normal form coefficients can now be checked
numerically when continuing the fixed point curve. In themapfile (cf. §1.3.7)
the order of state variables and parameters is(ξ1, ξ2) and(β1, β2, C,D), respec-
tively. For illustration purposes we defined two user functions, namelyβ2−2 with
label ′B2 ′ andβ2 − 0.5 with label ′B3 ′.

First we continue the fixed point curve numerically to detectthe NS point in
case(i) in Run 1, where we use the mapfile that uses symbolic derivatives.

> global opt cds fpmds
>> ap=2; p=[-1;0;1;1];
>> opt = contset;
>> [x0,v0]=init_FP_FP(@Tnfmap,[0;0], p, ap);
>> opt=contset;opt=contset(opt,’MaxNumPoints’,50);
>> opt=contset(opt,’Singularities’,1);
>> opt = contset(opt,’Multipliers’,1);
>> [x1,v1,s1,h1,f1]=cont(@fixedPointmap,x0,[],opt);
first point found
tangent vector to first point found
label = B3 , x = ( 0.000000 0.000000 0.500000 )



i

i

“main” — 2008/2/28 — 17:19 — page 30 — #50
i

i

i

i

i

i

30 Local bifurcation analysis

label = NS , x = ( 0.000000 0.000000 1.000000 )
normal form coefficient of NS = -1.250000e+000
label = B2 , x = ( 0.000000 0.000000 2.000000 )
label = BP , x = ( 0.000000 0.000000 2.500000 )
elapsed time = 0.7 secs
npoints curve = 50

Our theoretical outcome is confirmed by the numerical value for d obtained
in Run 1. Indeed, in this case the theoretically obtained value of the normal form
coefficientc is

c = −1

8
(6C + 4D) = −1.25,

sinceC = D = 1 .
By (2.19) the nontrivial fixed points collide with the trivial fixed point when

4 − (β1 + 2β2) = 0, (2.23)

The fixed parameter inRun 1is β1 = −1, this implies that in a BPβ2 = 2.5 in
(2.23). This confirms the result inRun 1concerning the BP point.

The Jacobian is given by:

[(MTN )x − I|(MTN )β2 ] =

(
−2 1 0
β1 − 2 + β2 0

)
. (2.24)

If β1 = −1 andβ2 = 2.5, then this reduces to:

[(MTN )x − I|(MTN )β2 ] =

(
−2 1 0
−1 0.5 0

)
. (2.25)

Clearly [(MTN )x − I|(MTN )β2 ] is rank deficient as expected.
Now we compute the new branch in the BP point ofRun 1; we refer to this as

Run 2:

>> global x1 v1 s1 opt cds fpmds
>> opt = contset;
>> opt = contset(opt,’Multipliers’,1);
>>>>> Branch switching at BP >>>>>>>
>> xx2=x1(1:2,s1(3).index);p1=p;
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2.4 Example: A truncated normal form map 31

>> p1(fpmds.ActiveParams)=x1(3,s1(3).index);
>> opt=contset(opt,’backward’,0);
>>opt=contset(opt,’MaxNumPoints’,50);
>>[x2,v2]=init_BP_FP(@Tnfmap,xx2,p1,s1(3),0.01);
>>[x21,v21,s21,h21,f21]=cont(@fixedPointmap,xx2,[], opt);
first point found
tangent vector to first point found
label = PD, x = ( 0.377964 0.755929 2.285714 )
normal form coefficient of PD = 4.392157e+000
elapsed time = 0.6 secs
npoints curve = 50
>> cpl(x21,v21,s21,[3 1]);
>>opt=contset(opt,’backward’,1);;
>> [x22,v22,s22,h22,f22]=cont(@fixedPointmap,x2,[],o pt);
first point found
tangent vector to first point found
label = BP, x = ( -0.000000 -0.000000 2.500000 )
label = PD, x = ( -0.377964 -0.755929 2.285714 )
normal form coefficient of PD = 4.392157e+000
elapsed time = 0.9 secs
npoints curve = 50
>> cpl(x22,v22,s22,[3 1])

The branch inRun 2is a nontrivial one and we remark that for the singular
points ξ2 = 2ξ1 holds. In fact the curve of nontrivial fixed points in (2.19 ) in
(β2, ξ1) space is a parabola. A picture of the continued trivial fixed points ofRun
1 and nontrivial fixed points computed inRun 2is given in Figure 2.1.

In Run 3we continue a fixed point curve to detect the NS point in case(ii) :

>>global opt cds fpmds
>>ap=2; p=[-2;0;1;1];
>>opt = contset;
>>[x0,v0]=init_FP_FP(@Tnfmap,[0;0], p, ap,1);
>>opt=contset;opt=contset(opt,’MaxNumPoints’,300);
>>opt=contset(opt,’Singularities’,1);
>>opt=contset(opt,’Backward’,0);



i

i

“main” — 2008/2/28 — 17:19 — page 32 — #52
i

i

i

i

i

i

32 Local bifurcation analysis
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Figure 2.1: Continuation of trivial and nontrivial fixed point ofMTN in (β2, ξ1) space .

>>opt = contset(opt,’Multipliers’,1);
>>[x3,v3,s3,h3,f3]=cont(@fixedPointmap,x0,[],opt);
first point found
tangent vector to first point found
label = NS , x = ( 0.000000 0.000000 2.000000 )
normal form coefficient of NS = -1.000000e+000
label = BP , x = ( 0.000000 0.000000 3.000000 )
elapsed time = 1.1 secs
npoints curve = 300
>> cpl(x3,v3,s3,[3 1])

Again the numerically obtained value for the normal form coefficient d in Run
3 confirms the theoretical result. Indeed, the theoretical value is

d = − 1

12
(6C + 6D) = −1,

sinceC = D = 1.
By (2.19) we have a BP point if4− (β1 + 2β2) = 0. By subsitutingβ1 = −2, we
getβ2 = 3. This confirms the result inRun 3concerning the BP point.

Now we perform branch switching in this point inRun 4:
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2.4 Example: A truncated normal form map 33

>>global x3 v3 s3 opt cds fpmds
>>opt = contset;
>>xx2=x3(1:2,s3(3).index);p1=p;
>>p1(fpmds.ActiveParams)=x3(3,s3(3).index);
>>opt=contset(opt,’backward’,0);
>>opt=contset(opt,’MaxNumPoints’,300);
>>[x2,v2]=init_BP_FP(@Tnfmap,xx2,p1,s3(3),0.001);
>>opt = contset(opt,’Multipliers’,1);
>>[x41,v41,s41,h41,f41]=cont(@fixedPointmap,xx2,[], opt);
first point found
tangent vector to first point found
label = PD, x = ( 0.534523 1.069045 2.571429 )
normal form coefficient of PD = 3.733333e+000
elapsed time = 1.4 secs
npoints curve = 300
>>cpl(x41,v41,s41,[3 1 2]);
>>opt=contset(opt,’backward’,1);;
>>[x42,v42,s42,h42,f42]=cont(@fixedPointmap,x2,[],o pt);
first point found
tangent vector to first point found
label = BP, x = ( -0.000000 -0.000000 3.000000 )
label = PD, x = ( -0.534523 -1.069045 2.571429 )
normal form coefficient of PD = 3.733333e+000
elapsed time = 1.5 secs
npoints curve = 300
>> cpl(x42,v42,s422,[3 1 2])

The BP point is the same as inRun 3, and the PD point on the new branch
satisfiesξ2 = 2ξ1. A picture of the new branch computed inRun 4is given in
Figure 2.2.

In Run 5we continue a fixed point curve to detect the NS point in case(iii) :

>>global opt cds fpmds
>>ap=2; p=[-3;0;1;1];
>>opt = contset;
>>[x0,v0]=init_FP_FP(@Tnfmap,[0;0], p, ap,1);
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Figure 2.2: The fixed point curve of the second iterate in(β2, x1, x2) space.

>>opt=contset;opt=contset(opt,’MaxNumPoints’,300);
>>opt=contset(opt,’Singularities’,1);
>>opt = contset(opt,’Multipliers’,1);
>>[x5,v5,s5,h5,f5]=cont(@fixedPointmap,x0,[],opt);
first point found
tangent vector to first point found
label = NS, x = ( 0.000000 0.000000 3.000000 )
normal form coefficient of NS = -8.750000e-001
elapsed time = 1.4 secs
npoints curve = 300
>> cpl(x5,v5,s5,[3 1])

Here also the numerically obtained value confirms the theoretical result
c = − 1

16 (6C + 8D) = −0.875 whereC = D = 1.
Since the normal form coefficient inRun 5 is negative, the invariant curves

nearby the NS point must be stable. In fact the characteristic polynomial (2.20)
whenβ1 = −3, is

λ2 + (2 − β2)λ+ 4 − β2 = 0. (2.26)
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Figure 2.3: Stable invariant curve ofMTN started fromξ1 = ξ2 = 0.01 for β2 = 2.99.

The multipliers forβ2 nearby 3 are

λ1,2 = −β2 − 2

2
± i

√
3 − β2

2

4
.

Also
|λ2

1,2| = 4 − β2.

So the fixed point ofMTN is stable forβ2 > 3 and unstable forβ2 < 3, i.e. the
invariant curve is stable whenβ2 < 3 and unstable whenβ2 > 3. A picture of the
stable invariant curve nearby the NS point is given in Figure2.3. It was created
by simulation ofMTN for the parameter values indicated in Figure 2.3.

The nextRun 6will detect the PD point in case (iv):

>>global opt cds fpmds
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>>ap=1; p=[-1;1;1;1];
>>opt = contset;
>>[x0,v0]=init_FP_FP(@Tnfmap,[0;0], p, ap,1);
>>opt=contset;opt=contset(opt,’MaxNumPoints’,300);
>>opt=contset(opt,’Singularities’,1);
>>opt = contset(opt,’Multipliers’,1);
>>[x6,v6,s6,h6,f6]=cont(@fixedPointmap,x0,[],opt);
first point found
tangent vector to first point found
label = NS, x = ( 0.000000 0.000000 -1.000000 )
normal form coefficient of NS = -1.250000e+000
label = PD, x = ( 0.000000 0.000000 0.000000 )
normal form coefficient of PD = -1
label = BP, x = ( 0.000000 0.000000 2.000000 )
elapsed time = 1.3 secs
npoints curve = 300

Clearly the result of the continuation inRun 6is consistent with the theoretical
statement for case(iv), that isb = −2C = −2 sinceC = 1.

By (2.19) we have a BP point when4 − (β1 + 2β2) = 0. Sinceβ2 = 1 in
Run 6, the BP point must be found forβ1 = 2. This confirms the result inRun 10
concerning the BP point.

Now we compute the curve of fixed points of the second iterate in the PD point
of Run 6. We call thisRun 7:

>>global x6 v6 s6 opt cds fpmds
>>opt = contset;
>>>>> switching at PD >>>>>>>
>>xx2=x6(1:2,s6(3).index);p1=p;
>>p1(fpmds.ActiveParams)=x6(3,s6(3).index);
>>opt=contset(opt,’backward’,0);
>>opt=contset(opt,’MaxNumPoints’,300);
>>[x2,v2]=init_PD_FP(@Tnfmap,xx2,p1,s6(3),0.01,1);
>>opt = contset(opt,’Multipliers’,1);
>>[x7,v7,s7,h7,f7]=cont(@fixedPointmap,x2,[],opt);
first point found
tangent vector to first point found
label = BP, x = ( -0.000000 0.000000 -0.000000 )
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2.4 Example: A truncated normal form map 37

label = NS, x = ( -0.577350 0.000000 -0.333333 )
Neutral saddle
label = BP, x = ( -0.707107 -0.000000 -0.500000 )
elapsed time = 2.0 secs
npoints curve = 300

The first BP point inRun 7is the PD point inRun 6. The second BP point
corresponds withβ1 = −0.5 and is clearly not a fixed point ofMTN . For the
parameters values inRun 7, we have:

MTN :

(
−

√
2

2
0

)
7→
(

−1 1
0 0

)(
−

√
2

2
0

)
+

(
0
0

)
=

( √
2

2
0

)
, (2.27)

and

MTN :

( √
2

2
0

)
7→
(

−1 1
0 0

)( √
2

2
0

)
+

(
0
0

)
=

(
−

√
2

2
0

)
. (2.28)

So indeedM2
TN maps the point(−

√
2

2 , 0)
T to itself.

We further remark that inRun 10the trivial fixed point is stable for negative
values ofβ1 close to0 and unstable for positive values ofβ1 close to zero. Also,
the normal coefficient of the PD point is negative.

Further computations show that the multipliers ofMTN andM2
TN in the PD

pointx = (0, 0, 0) are(−1, 0)T and(1, 0)T respectively.
A nearby point on the curve of fixed points of the second iterate is

x = (−0.0129710, 0.0000000,−0.0001683). For the same parameter value the
fixed point of the map is stable, as could be expected from the sign of the normal
form coefficient in the PD point inRun 6. The multipliers ofMTN andM2

TN

in the same point are(−1.0003363, 0.0005046)T and(1.0006728, 0.0000003)T

respectively. So the fixed points of the second iterate are unstable, as could also
be expected from the sign of the normal form coefficient in thePD point inRun 6.

A survey of the runs of the example is given in the Table (2.1).
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38 Local bifurcation analysis

Run Continuation Detected bifurcation(s)
1 Fixed point B3, NS, B2, BP
2 New branch of fixed points at the BPPD, BP, PD
3 Fixed point NS, BP
4 New branch of fixed points at the BPPD, BP, PD
5 Fixed point NS
6 Fixed point NS, PD, BP
7 Fixed point of the second iterate BP, NS, BP

Table 2.1: A survey of the runs ofMTN .
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Chapter 3

Continuation of codim 1
bifurcations; branch

switching

Once a codim 1 bifurcation has been located, it can be continued in two param-
eters. We give details on this continuation for curves of fold, period-doubling,
and Neimark-Sacker bifurcations of period-K cycles that are computed by the
mentioned Gauss-Newton continuation algorithm applied tominimally extended
defining systems, cf. [38]. These systems were first implemented, together with
the standard extended defining systems, in CONTENT [44]. We have adopted in
CL MATCONTM the most robust and efficient methods tested there.

Near a codim 2 bifurcation point there are often other branches of codim 1
bifurcation points and it is, therefore, highly desirable to be able to switch from
one bifurcation curve to another one and then follow the new branch. The key
problem here is to find a good approximation of the new curve from information
on the old bifurcation curve. Branch switching is based on the predictor-corrector
approach. The predictor calculates a good initial guess to an emanating solution
curve. Then this initial guess serves as prediction to tracethe new branch.

This chapter is outlined as follows. We start by studying thecontinuation of
fold, flip and Neimar-Sacker points and its implementation in CL MATCONTM.
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40 Continuation of codim 1 bifurcations; branch switching

Then we discuss branch switching followed by the initializer routines correspond-
ing to the different branches. Finally, we present the detection graph indicating
all codim 1 and codim 2 bifurcation points and their interconnections as well as
switching graphs demonstrating possible switching at codim 1 and codim 2 bifur-
cation points.

Parts of this chapter were published in [42].

3.1 Continuation of fold and flip curves

Thelimit point curveandperiod-doubling curveare both defined by the following
system {

g(x, α) − x = 0,
s(x, α) = 0,

(3.1)

where(x, α) ∈ R
n+2, g is given by (1.3), whiles is obtained by solving one of

the algebraic systems
(
gx(x, α) ∓ In wbor

vT
bor 0

)(
v
s

)
=

(
0n

1

)
, (3.2)

wherewbor, vbor ∈ R
n are chosen such that the matrix in (3.2) is nonsingular. One

should take the “−” sign in (3.2) for the LP-curve and the “+” sign for the PD-
curve. Ifvbor is close to the nullvector ofgx(x, α) − In andgx(x, α) + In on the
LP- and PD-curve, respectively, andwbor is close to the nullvector of(gx(x, α)−
In)T and(gx(x, α)+ In)T on the LP- and PD-curve, respectively, then the matrix
in (3.2) is nonsingular at(x, α). In practical computations,vbor andwbor are the
nullvecrors ofgx ∓ I and(gx ∓ I)T , respectively, on the corresponding fold and
flip curves.

The derivatives ofs can be obtained easily from the derivatives ofgx(x, α):

sz = −wT (gx)zv, (3.3)

wherez is a state variable or an active parameter andw is obtained by solving
(
gT
x (x, α) ∓ In vbor

wT
bor 0

)(
w
s

)
=

(
0n

1

)
. (3.4)
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3.1 Continuation of fold and flip curves 41

We note that the quantities calleds in (3.2) and (3.4) are the same since they
are both equal to the bottom right element of the inverse of the square matrix in
(3.2). The the resonance cases of 1:1 (R1) and 1:2 (R2) wheregx has a double
eigenvalue+1 and−1 respectively, deserve special attention. We can makes in
(3.1) dependent on a new parameterλ if we consider the bordered system

(
gx(x, α) ∓ λIn wbor

vT
bor 0

)(
v
s

)
=

(
0n

1

)
, (3.5)

Then in the case of R1 the Jacobian matrixgx has a double eigenvalueλ = 1 iff
both g(x, α, λ) andgλ(x, α, λ) vanish forλ = 1. Similarly, in the case of R2
the Jacobian matrixgx has a double eigenvalueλ = −1 iff both g(x, α, λ) and
gλ(x, α, λ) vanish forλ = −1.

Derivatives ofs with respect toλ can be computed by differentiating (3.5).
Then
(
gx(x, α) ∓ λIn wbor

vT
bor 0

)(
vλ

gλ

)
+

(
∓In 0
0 0

)(
v
s

)
=

(
0n

0

)
, (3.6)

vλ, sλ can be found by solving the system
(
gx(x, α) − λIn wbor

vT
bor 0

)(
vλ

sλ

)
=

(
v
0

)
, (3.7)

Multiplying (3.7) from the left by(wT , s) and settingλ = 1 gives

sλ = wT v. (3.8)

We use (3.8) to define the test function forR1 on a LP-curve.
By multiplying (3.7) from the left by(wT , s) and settingλ = −1 we obtain

gλ = −wT v. (3.9)

We use (3.9) to define the test function forR2 on a PD-curve.
We remark that our formulas (3.8) and (3.9) are consistent with the well known

result from linear algebra that a geometrically simple eigenvalue is algebraically
double if and only if the associated left and right eigenvectors are orthogonal.
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42 Continuation of codim 1 bifurcations; branch switching

3.1.1 Bifurcations and test functions for LP curves

There are four generic codim 2 bifurcations that can be detected along the limit
point curve:

• 1:1 resonance. We will denote this bifurcation with R1

• Fold+Flip point, denoted as LPPD

• Fold+Neimark-Sackerpoint, denoted as LPNS

• Cusppoint, denoted as CP

To detect these singularities, we first define4 test functions:

• φ1 = wT v.

• φ2 = det(A(x, α) + In).

• φ3 = det(A⊙A− Im).

• φ4 = 〈w,B(v, v)〉.

In these expressionsA = gx(x, α), v andw are the vectors computed in (3.2) and
(3.4), respectively. The singularity matrix is:

S =




0 − 0 −
− 0 − −
1 − 0 −
− − − 0


 . (3.10)

3.1.2 Bifurcations and test functions for PD curves

In discrete maps there are four generic codim 2 bifurcationsthat can be detected
along the period doubling curve:

• 1:2 resonancepoint, denoted as R2

• Fold+Flip point, denoted as LPPD



i

i

“main” — 2008/2/28 — 17:19 — page 43 — #63
i

i

i

i

i

i

3.2 Continuation of NS curves 43

• Flip+Neimark-Sackerpoint, denoted as PDNS

• Generalized flippoint, denoted as GPD

To detect these singularities, we define4 test functions:

• φ1 = wT v.

• φ2 = det(A(x, α) − In).

• φ3 = det(A⊙A− Im).

• φ4 = 〈w,C(v, v, v)〉 + 3〈w,B(v, (In −A−1B(v, v))〉.
In these expressionsv andw are the vectors computed in (3.2) and (3.4), respec-
tively. The singularity matrix is:

S =




0 − 0 −
− 0 − −
1 − 0 −
− − − 0


 . (3.11)

3.2 Continuation of NS curves

TheNeimark-Sackerandneutral-saddle curvesare defined by the following sys-
tem 




g(x, α) − x = 0
si1j1(x, α, κ) = 0
si2j2(x, α, κ) = 0,

(3.12)

i.e. byn + 2 equations for the(n + 3) unknownsx ∈ R
n, α ∈ R

2, κ ∈ R. Here
(i1, j1, i2, j2) ∈ {1, 2} andsi,j are the components ofS:

S =

(
s11 s12
s21 s22

)
,

which is obtained by solving
(

(gx)2(x, α) − 2κgx + In Wbor

V T
bor O

)(
V
S

)
=

(
0n,2

I2

)
, (3.13)
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44 Continuation of codim 1 bifurcations; branch switching

whereVbor,Wbor ∈ R
n×2 are chosen (and can be adapted) so that the matrix in

(3.13) is nonsingular. Along the Neimark-Sacker curve,κ is the real part of the
critical multipliers e±iθ. The derivatives ofsij can be obtained easily from the
derivatives ofgx(x, α) as before.

3.2.1 Bifurcations and test functions for NS curves

The bifurcations that can be detected along the Neimark-Sacker curve are:

• Chencinerpoint, denoted as CH:φ1 = 0

• Flip+Neimark-Sackerpoint, denoted as PDNS:φ2 = 0; φ6 6= 0

• Fold+Neimark-Sackerpoint, denoted as LPNS:φ3 = 0; φ4 6= 0

• 1:1 resonance. We will denote this bifurcation with R1 :φ3 = φ4 = 0

• Double Neimark-Sackerpoint, denoted as NSNS:φ5 = 0

• 1:2 resonancepoint, denoted as R2:φ2 = φ6 = 0

• 1:3 resonancepoint, denoted as R3:φ7 = 0

• 1:4 resonancepoint, denoted as R4 :φ8 = 0

To detect these singularities, we define 8 test functions:

• φ1 = Re(d). (see formula (2.16))

• φ2 = det(A+ In).

• φ3 = det(A− In).

• φ4 = k − 1.

• φ5 = det(A|NC ⊙A|NC ).

• φ6 = k + 1.

• φ7 = k + 1
2 .
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3.3 Bifurcation analysis of codim 2 bifurcations of maps 45

• φ8 = k.

In these formulaeA = gx(x, α) and the vectorsp, q ∈ C
n satisfy

Aq = eiθq, AT p = e−iθp, 〈Re q, Im q〉 = 0, 〈q, q〉 = 〈p, q〉 = 1.

The subspaceNC of R
n is the orthogonal complement of the critical two-dimensional

left eigenspace associated with the pair of multipliers with unit product.A|NC ⊙
A|NC is anm×m matrix where2m = (n− 2)(n − 3).

In this case the singularity matrix is:

S =




0 − − − − − − −
− 0 − − − 1 − −
− − 0 1 − − − −
− − 0 0 − − − −
− − − − 0 − − −
− 0 − − − 0 − −
− − − − − − 0 −
− − − − − − − 0




. (3.14)

3.3 Bifurcation analysis of codim 2 bifurcations of maps

When two system parameters are allowed to vary, one may encounter the follow-
ing eleven codim 2 bifurcations of period-K orbits in generic families of maps
(1.3) where curves of codim 1 bifurcations intersect or meettangentially [42].
The critical multipliers with modulus1 are generally denoted byλ1 andλ2.
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46 Continuation of codim 1 bifurcations; branch switching

D1 : λ1 = 1, a = 0 (cusp, CP);
D2 : λ1 = −1, b = 0 (generalized flip, GPD);
D3 : λ1,2 = e±iθ0 , c = 0 (Chenciner bifurcation, CH);
D4 : λ1 = λ2 = 1 (1:1 resonance, R1);
D5 : λ1 = λ2 = −1 (1:2 resonance, R2);
D6 : λ1,2 = e±iθ0 , θ0 = 2π

3 (1:3 resonance, R3);
D7 : λ1,2 = e±iθ0 , θ0 = π

2 (1:4 resonance, R4);
D8 : λ1 = 1, λ2 = −1 (fold-flip LPPD);
D9 : λ1 = 1, λ2,3 = e±iθ0 (fold-NS, LPNS);
D10 : λ1 = −1, λ2,3 = e±iθ0 (flip-NS, PDNS);
D11 : λ1,2 = e±iθ0 , λ3,4 = e±iθ1 ( double NS, NSNS).

In 6 out of 11 cases, branches of local codim 1 bifurcations ofhigher period are
rooted at codim 2 bifurcation points and for these cases we also incorporate the
parameter-dependent part of the normal form and provide asymptotic expressions
for the new curves. In Section 3.4 we specify how we switch to the continuation
of those branches.

In the next11 subsubsections we give the normal forms of the codim 2 bifur-
cations. TheO-symbol denotes higher order terms in phase-variables, thecoef-
ficients of which may also depend on parameters. But the qualitative picture is
determined by the lowest order terms listed below. We refer to [62], Ch. 9, and
[63, 64] for more details, including explicit expressions for all critical normal form
coefficients. If a complex critical eigenvalueλ is involved, it is always assumed
that λν 6= 1 for ν = 1, 2, 3, 4. In some cases, we combine two real unfolding
parameters(β1, β2) into one complex parameterβ = β1 + iβ2 ∈ C.

3.3.1 Cusp (CP)

The critical smooth normal form on the center manifold at acusp bifurcationis

w 7→ w + a2w
3 + O(|w|4), w ∈ R, (3.15)

where, generically,a2 6= 0. Under this condition, a generic two-parameter un-
folding of this singularity has two fold curves in the parameter plane which form
a cuspidal wedge. For nearby parameter values, the mapg has up to three fixed
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3.3 Bifurcation analysis of codim 2 bifurcations of maps 47

points that pairwise collide along the fold curves. In the direct product of the state
and the parameter spaces, there is one smooth fold curve, so no branch switching
is needed. CL MATCONTM reports the value ofa2 at the bifurcation.

3.3.2 Generalized flip (GPD)

Near ageneralized flipbifurcation the restriction of the mapg to the parameter-
dependent center manifold is smoothly equivalent to the normal form

w 7→ −(1 + β1)w + β2w
3 + b2(β)w5 + O(|w|6), w ∈ R, (3.16)

where, generically, the coefficientb2(0) 6= 0, while the components ofβ =
(β1, β2) are smooth functions ofα, which can serve as new unfolding parame-
ters. The value ofb2(0) is reported by CL MATCONTM. The fixed pointw = 0
of the map (3.16) exhibits a flip bifurcation forβ1 = 0. It is well-known that from
the pointβ = 0, corresponding to the generalized flip bifurcation, a fold curve of
double-period cycles emanates. The asymptotic expressionfor this curve in (3.16)
is given by

(w, β1, β2) = (ε,−b2ε4 + O(ε5),−2b2ε
2 + O(ε3)). (3.17)

3.3.3 Chenciner (CH)

If eiνθ0 6= 1 for ν = 1, 2, . . . , 6, the critical smooth normal form on the center
manifold at theChenciner bifurcationcan be written as

z 7→ zeiθ0(1 + d1|z|2 + d2|z|4 + O(|z|6), z ∈ C, (3.18)

wherec1 = ℜ(d1) = 0 but, generically,c2 = ℜ(d2) + 1
2ℑ(d1)

2 6= 0 and is
reported to the user. A generic two-parameter unfolding of this singularity has a
complicated bifurcation set due to the “collision” and destruction of two closed
invariant curves of different stability born via the sub- and super-critical Neimark-
Sacker bifurcations, respectively. There are no cycle bifurcation curves rooted at
this bifurcation.
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48 Continuation of codim 1 bifurcations; branch switching

3.3.4 1:1 resonance (R1)

The restriction of the map at a 1:1resonanceto the corresponding center manifold
can be written in the form

(
w1

w2

)
7→
(

w1 + w2

w2 + a1w
2
1 + b1w1w2

)
+ O(‖w‖3), w ∈ R

2. (3.19)

Generically, a Neimark-Sacker bifurcation curve of fixed points meets tangentially
the fold bifurcation curve. CL MATCONTM reports the sign ofa1(b1−2a1) giving
the first Lyapunov coefficient along the NS curve near the bifurcation. The local
branch switching problem is trivial here, since both curvescorrespond to fixed
points ofg. The full bifurcation diagram near the codim 2 point is complicated
and involves global bifurcations, e.g. tangencies of stable and unstable invariant
manifolds of saddle fixed points ofg and destruction of a closed invariant curve
born via the Neimark-Sacker bifurcation.

3.3.5 1:2 resonance (R2)

Near a 1:2resonancethe restriction of the mapg to the parameter-dependent
center manifold is smoothly equivalent to the normal form

(
w1

w2

)
7→

(
−w1 + w2

β1w1 + (−1 + β2)w2 + C1(β)w3
1 +D1(β)w2

1w2

)

+ O(‖w‖4), w ∈ R
2,

(3.20)
that depends on two unfolding parameters(β1, β2). If C1(0) < 0, then there is a
Neimark-Sacker curve of fixed points ofg with double period that emanates from
the flip bifurcation curveβ2 = 0 of fixed points. It has the following asymptotic
expression

(w2
1, w2, β1, β2) =

(
− 1

C1
, 0, 1,

(
2 +

D1

C1

))
ε+ O(ε2). (3.21)

There are also global bifurcations associated with the destruction of closed invari-
ant curves. CL MATCONTM reports the values of4C1(0) and−2D1(0)−6C1(0),
(relevant for the flow approximation) to the user.
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3.3 Bifurcation analysis of codim 2 bifurcations of maps 49

3.3.6 1:3 resonance (R3)

At a 1:3resonance, the restriction of the mapg to the parameter-dependent center
manifold is smoothly equivalent to the normal form

z 7→ (e2iπ/3 + β)z +B1(β)z̄2 + C1(β)z|z|2 + O(|z|4), z ∈ C, (3.22)

whereβ = β1 + iβ2 ∈ C. A generic unfolding of this singularity has a period-
3 saddle cycle that does not bifurcate for nearby parameter values, although it
merges with the primary fixed point as the parameters approach R3. Only global
bifurcations related to the destruction of a closed invariant curve born via the pri-
mary Neimark-Sacker bifurcation occur in a neighborhood ofthis codim 2 point.

Note that the period-3 cycle becomes neutral near this bifurcation. Recall that
a saddle cycle is calledneutral if the corresponding fixed point has a pair of real
eigenvalues with product1. This singularity is important in analyzing global bifur-
cations of invariant manifolds of cycles. Moreover, the curve of neutral period-3
saddle cycles may turn into a true Neimark-Sacker bifurcation at R1 or R2. There-
fore, we give here an asymptotic of this curve.

First we need a vector field for which the time-1 flow approximates the third
iterate of the map, i.e.

g̃(η, β̃) = β̃η + η̄2 + C0(β)η2η̄ + O(|η|4), (3.23)

where

β̃ = 3e−2iπ/3β, z =
1

|B1(β)|e
i arg(B1(β))/3η,

and

C0(β) =
1

3

(
C1(β)

|B1(β)|2 e−2iπ/3 − 1

)
.

We writeC0 = a + ib, where upon detectiona is reported, so that forη = ρeiφ

the neutral saddle curve has the following asymptotic expression

(ρ, φ, β1, β2) =
(
ε, s(π/6 − aε/3),−2aε2, sε− bε2

)
+ O(ε3), (3.24)

wheres = ±1.
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50 Continuation of codim 1 bifurcations; branch switching

3.3.7 1:4 resonance (R4)

Near a 1:4resonancethe restriction of the mapg to the parameter-dependent
center manifold is smoothly equivalent to the normal form

z 7→ (i+ β)z + C1(β)z2z̄ +D1(β)z̄3 + O(|z|4), z ∈ C, (3.25)

whereβ = β1 + iβ2 ∈ C. For this bifurcation we do not only need this parameter-
dependent normal form, but also an approximation of its 4th iterate by a unit-time
shift along orbits of a vector field

g̃(η, β̃) = β̃η +A0(β)η2η̄ + η̄3 + O(|η|4), (3.26)

whereη ∈ C andβ̃ = β̃1 + iβ̃2, β̃i ∈ R. Here we use

z =
1√

|D1(β)|
ei arg(D1(β))/4η, A0(β) = −i C1(β)

|D1(β)| .

Moreover, we have

(
β̃1

β̃2

)
=

(
0 4
−4 0

)(
β1

β2

)
. (3.27)

There are three possible branch switches for this bifurcation. Denote the re-
ported values bya = ℜ(A0(0)) andb = ℑ(A0(0)). If ∆ ≡ a2 + b2 − 1 > 0,
then there are two half-linesl1,2 of a limit-point curve of cycles with four times
the original period. If

|b| > (1 + a2)√
1 − a2

,

then there is a curven1 along which a cycle of four times the primary period
exhibits a Neimark-Sacker bifurcation. Usingη = reiφ we have the following
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approximations

l1,2 : (r2, φ, β̃1, β̃2) =

(
ε,

1

4
arctan

(
ab±

√
∆

b2 − 1

)
+ O(ε),

−a∆ ∓ b
√

∆

a2 + b2
ε,

−b∆ ± a
√

∆

a2 + b2
ε

)
+ O(ε2)

n1 : (r2, φ, β̃1, β̃2) =
(
ε+ O(ε2), sign(b) arccos(a)/4 + O(ε),

−2aε+ O(ε2),−(b− sign(b)
√

1 − a2)ε+ O(ε2)
)
.

(3.28)
Taking into account (3.27), we obtain expressions for the unfolding parame-

tersβ1 andβ2. If, in the formula forn1, we replacesign(b) by−sign(b), then this
gives the asymptotic for a neutral saddle singularity of theperiod-4 cycle.

Generically, there are also global bifurcations near R4.

3.3.8 Fold–Neimark-Sacker (LPNS)

For a fold – Neimark-Sackerbifurcation, the critical normal form on the center
manifold is given by

(
w
z

)
7→
(
w + szz̄ + w2 + cx3

eiθ0z + awz + bzw2

)
+O(‖(w, z)‖4), (w, z) ∈ R×C. (3.29)

The critical coefficientss, a, b, c are reported. Depending on their values, several
bifurcation scenarios are possible in parameter-dependent unfoldings, which all
involve global phenomena.

3.3.9 Fold–Flip (LPPD)

Near afold–flipbifurcation, the restriction of the mapg to the parameter-dependent
center manifold is smoothly equivalent to the normal form
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52 Continuation of codim 1 bifurcations; branch switching

(
w1

w2

)
7→

(
β1 + (1 + β2)w1 + a(β)w2

1 + b(β)w2
2 + c1(β)w3

1 + c2(β)w1w
2
2

−w2 + e(β)w1w2 + c3(β)w2
1w2 + c4(β)w3

2

)

+ O(‖w‖4), w ∈ R
2. (3.30)

3.4 Branch switching at codim 2 bifurcation points

Here we address the problem of branch switching at codim 2 bifurcation points
of maps, when the emanating curve corresponds to a local bifurcation. This in-
volves the generalized flip, 1:2 resonance, 1:3 resonance, 1:4 resonance, fold-flip
and flip-Neimark-Sacker bifurcations only. To obtain appropriate initial continua-
tion data for the original map, we combine parameter-dependent center-manifold
reduction with asymptotic expressions for the new curves given in Section 3.3.

Although we know that in several cases also global bifurcations are involved,
we will not try to switch to those branches as the continuation of these global
bifurcations is out of the scope of this thesis.

3.4.1 Parameter-Dependent Center-Manifold Reduction

In all our cases, the mapg(x, α) : R
n × R

2 → R
n, whereg is defined by (1.3),

satisfiesg(x0, α0) = x0, and its Jacobian matrixA = gx(x0, α0) has at most
3 multipliers on the unit circle. Furthermore we know a parameter-dependent
smooth normal formG(w, β) for the corresponding bifurcation, see Section 3.3.
Then we assume a relation

α− α0 = V (β) = v10β1 + v01β2 + O(‖β‖2), (3.31)

between the original and the unfolding parameters. Note that V incorporates lin-
ear scalings. Occasionally, we interpretβ1 = β̄2 as one parameterβ ∈ C; in such
cases:v01 = v̄10 ∈ C

2.
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3.4 Branch switching at codim 2 bifurcation points 53

To find a parameter-dependent center-manifold as the graph of x = x0 +
H(w, β) we make a Taylor expansion of thehomological equation

g(x0 +H(w, β), α0 + V (β)) = H(G(w, β), β), (3.32)

in w andβ at (w, β) = (0, 0), where we expandg as in (3.34) and write

H(w, β) =
∑

|µ|+|ν|≥1

hµ,νw
µβν , (3.33)

andµ, ν are multi-indices. All coefficients must vanish and this leads to a solution
forH andV . Below we will focus only on the parameter-dependent computations
and assume full knowledge of the critical center-manifold and the critical normal
form coefficients, see [62, 63, 64]. The solvability conditions imposed coincide
with the transversality of the original family to the bifurcation manifold. A sim-
ilar technique was introduced in [14],§11, to switch at codim 2 bifurcations of
equilibria in ODEs.

Initial data for the new curve is now provided by substituting forw andβ the
asymptotic expression inε of Section 3.3 intoH andV up to a certain order inε,
usually 2.ε can be adjusted to obtain a starting point near the emanatingcurve for
which the continuation code converges to a point on the new curve.

It will be convenient to introduce some notation. Letp denote an eigenvector
of AT corresponding to the eigenvalue−1 of A. We will then writeΓ : R

n+2 →
R

n for Γ(q, v) = 〈p,A1(q, v) +B(q, (In − A)−1J1v)〉 andγi = Γ(q, ei) for the
evaluation ofΓ on the standard basis vectors inR

2. If γi 6= 0 for i = 1, 2 then
s1 = 1

(γ2
1+γ2

2 )
(γ1, γ2)

T ands2 = (−γ2, γ1)
T compose a new orthogonal basis in

R
2.
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54 Continuation of codim 1 bifurcations; branch switching

g(x0 + x, α0 + α) = x0 +Ax+ 1
2B(x, x) + 1

6C(x, x, x)

+ 1
24D(x, x, x, x) + 1

120E(x, x, x, x, x)

+ J1α+ 1
2J2(α,α)

+A1(x, α) + 1
2B1(x, x, α)

+ 1
6C1(x, x, x, α) + 1

24D1(x, x, x, x, α)

+ 1
2A2(x, α, α) + 1

4B2(x, x, α, α) + 1
12C2(x, x, x, α, α)

+ . . . ,
(3.34)

Generalized flip

The homological equation (3.32) provides the following systems to be solved

(A− In)[h010, h001] = −J1[v10, v01], (3.35)

(A+ In)[h110, h101] = −[q, 0] −A1(q, [v10, v01]) (3.36)

−B(q, [h010, h001]),

where[a, b] is ann× 2-matrix with columnsa, b ∈ R
n. The higher orders give

(A− In)h210 = 2h200 − [B1(q, q, v10) +B(h200, h010) +A1(h200, v10)

+ 2B(q, h110) + C(q, q, h010)] ,

(A− In)h201 = − [B1(q, q, v01) +B(h200, h001) +A1(h200, v01)

+ 2B(q, h101) + C(q, q, h001)] , (3.37)

(A+ In)h310 = − 3h300 − [D(q, q, q, h010) + 3C(q, q, h110) + C1(q, q, q, v10)

+ 3B(h110, h200) +B(h300, h010) + 3B1(h200, q, v10)

+A1(h300, v10) + 3C(h200, q, h010) + 3B(h210, q)] ,

(A+ In)h301 = 6q − [D(q, q, q, h001) + 3C(q, q, h101) + C1(q, q, q, v01)

+ 3B(h101, h200) +B(h300, h001) + 3B1(h200, q, v01)

+A1(h300, v01) + 3C(h200, q, h001) + 3B(h201, q)] . (3.38)

The linear part ofV involves 4 unknowns to be found from equations with
singular left hand sides, i.e. Eqs. (3.36), (3.37), (3.38).For the solution we
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3.4 Branch switching at codim 2 bifurcation points 55

start with substitution of[h010, h001] = (In − A)−1J1[v10, v01] from (3.35) into
(3.36). As the LHS of (3.36) is singular, the RHS must be orthogonal to the adjoint
eigenvectorp. Application of the Fredholm Alternative leads to

〈p, (A+ In)[h110, h101]〉 = −〈p, [q, 0] +A1(q, [v10, v01])

+B(q, (In −A)−1J1[v10, v01])〉.

We see that the operatorΓ(q, v) appears naturally and rewrite it as

[γ1, γ2][v10, v01] = [−1, 0].

The general solution is given by

v10 = −s1 + δ1s2, v01 = δ2s2, δ1, δ2 ∈ R.

Sincev10, v01 appear linearly in these equations (via the multilinear functions),
application of the Fredholm Alternative to (3.37), (3.38) results in a linear system
for the constantsδ1, δ2.

1:2 resonance

As before, we first list the necessary equations obtained from the homological
equation

(A− In)[h0010, h0001] = −J1[v10, v01], (3.39)

(A+ In)[h1010, h1001] = [q1, 0] −A1(q0, [v10, v01]) −B(q0, [h0010, h0001]),
(3.40)

(A+ In)[h0110, h0101] = [h1010, q1 + h1001] −A1(q1, [v10, v01])

−B(q1, [h0010, h0001]). (3.41)

As for the generalized flip, we substitute[h0010, h0001] = (In−A)−1J1[v10, v01]
into (3.40). As (3.40) is similar to (3.36), the solution forv10 andv01 is now

v10 = s1 + δ1s2, v01 = δ2s2, δ1, δ2 ∈ R.
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56 Continuation of codim 1 bifurcations; branch switching

We substitute thesi into (3.41) and write

Q1 = 〈p1, A1(q0, s1) +B(q0, (A − In)−1J1s1)〉, Q2 = Γ(q1, s1)

Q3 = 〈p1, A1(q0, s2) +B(q0, (A − In)−1J1s2)〉, Q4 = Γ(q1, s2).

A little algebra shows that

δ1 = −
(
Q1 +Q2

Q3 +Q4

)
, δ2 =

1

Q3 +Q4
.

1:3 resonance

We follow a slightly different procedure here. We want to findV (β) = vβ + v̄β̄,
whereβ = β1+iβ2. Then we treatβ andβ̄ as independent variables which makes
it slightly easier to find the solutions. As the finalV (β) should be real, it follows
thatv = v10 = v̄01.

Let λ = e2iπ/3 and introduceAq = λq, AT p = λ̄p, 〈p, q〉 = 1.
As before, the first linear systems resulting from (3.32) aregiven by

(A− In)[h0010, h0001] = −J1[v10, v01],

(A− λIn)[h1010, h1001] = [q, 0] −A1(q, [v10, v01]) −B(q, [h0010, h0001]),

and two complex conjugated systems forh0101 andh0110. With the same approach
we will now find complexγi and rewriting the system forv = v10 = v̄01 we have
(γ1, γ2)v = 1, (γ1, γ2)v̄ = 0, with v = (γ̄2,−γ̄1)/(γ1γ̄2 − γ2γ̄1) as solution.

1:4 resonance

Replacingλ = i we can repeat the procedure for the case of 1:3 resonance.

Fold-Flip

Let Aq1,2 = ±q1,2, A
T p1,2 = ±p1,2, 〈p1, q1〉 = 〈p2, q2〉 = 1. The necessary

systems to solve from the homological equation (3.32) are

(A− In)[h0010, h0001] = [q1, 0] − J1[v10, v01], (3.42)
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(A− In)[h1010, h1001] = [h2000, q1] −A1(q1, [v10, v01]) (3.43)

−B(q1, [h0010, h0001]),

(A+ In)[h0110, h0101] = [h1100, 0] −A1(q2, [v10, v01]) (3.44)

−B(q2, [h0010, h0001]).

First remark that all matrices in the left-hand sides are singular. If we take
(γ1, γ2) = pT

1 J1, we can define the orthogonal vectorss1 ands2 as before and
thenv10 = s1 + δ1s2 andv01 = δ2s2 solve system (3.42) for arbitraryδ1, δ2. Bor-
dering the singular matrix(A − In) one can solve forh0010 andh0001. Any mul-
tiple of q1 can be added toh0010 andh0001, so we useh0010 = (A− In)INV (q1 −
J1v10) + δ3q1 andh0010 = −(A− In)INV (J1v01) + δ4q1. We will use this free-
dom to solve equations (3.43) and (3.44) simultaneously forall δ’s. Note that
h2000 andh1100 are also found using bordered systems chosen, but such that
〈p1, h2000〉 = 〈p2, h1100〉 = 0.

Then we obtain the following4−dimensional system

(
L 02×2

02×2 L

)



δ1
δ3
δ2
δ4


 =




−〈p1, A1(q1, s1) +B(q1, (A− In)INV (q1 − J1s1))〉
−〈p2, A1(q2, s1) +B(q2, (A− In)INV (q1 − J1s1))〉

1
0


 , (3.45)

whereL is defined by

L =

(
〈p1, A1(q1, s2) +B(q1, (In −A)INV J1s2)〉 〈p1, B(q1, q1)〉
〈p2, A1(q2, s2) +B(q2, (In −A)INV J1s2)〉 〈p2, B(q1, q2)〉

)
.

(3.46)
Notice that2a(0) = 〈p1, B(q1, q1)〉 and thatq1 can be chosen such thate(0) =
〈p2, B(q1, q2)〉 = 1. The conditionγ1γ2 det(L) 6= 0 is equivalent with the
transversality to the bifurcation manifold of the familyg(x, α).
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58 Continuation of codim 1 bifurcations; branch switching

Flip-Neimark-Sacker

IntroduceAq1 = q1, A
T p1 = p1, 〈p1, q1〉 = 1, andAq2 = eiθ0q2, A

T p2 =
e−iθ0p2, 〈p2, q2〉 = 1. The linear systems obtained from the homological equation
(3.32) are

(A− In)[h00010, h00001] = −J1[v10, v01],

(A+ In)[h10010, h10001] = [−q1, 0] −A1(q1, [v10, v01]) −
B(q1, [h00010, h00001]),

(A− eiθ0In)[h01010, h01001] = [0, q2e
iθ0 ] −A1(q2, [v10, v01])

−B(q2, [h00010, h00001]).

The same approach as for the generalized flip and 1:2-resonance cases is to sub-
stitute the formal solution of the first equation into the second and we write

v10 = −s1 + δ1s2, v01 = δ2s2,

where the constantsδi are to be found from the last equation. We compute

Qi = 〈p2, A1(q2, si) +B(q2, (In −A)−1J1si)〉,

for i = 1, 2. To obtain the derivative of the modulus and not the argumentof the
complex multiplier, we proceed similar to [94], Appendix, but adapt to the case of
maps. Then we find the following real solutions

δ1 =
ℜ(e−iθ0Q1)

ℜ(e−iθ0Q2)
, δ2 = − 1

ℜ(e−iθ0Q2)
. (3.47)

A new branch predicted by (3.30) for a generic mapg is a Neimark-Sacker of
double period that exists ifbe > 0 and has the asymptotic expression

(x, y2, β1, β2) =

(
−c4
e
, 1,−b,−2b + ec2 − 2(a+ e)c4

e

)
ε+ O(ε2). (3.48)

CL MATCONTM reports the coefficientsae andbe and the sign of the Lyapunov
coefficient if applicable. As for the majority of the considered cases, there are also
global bifurcations near this codim 2 point.
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3.5 Initializations of branch switching 59

3.4.2 Flip – Neimark-Sacker (PDNS)

Near aflip – Neimark-Sackerbifurcation, the restriction of the mapg to the
parameter-dependent center manifold is smoothly equivalent to the parameter-
dependent normal form

(
w
z

)
7→

(
−w(1 + β1 + c1(β)w2 + c2(β)|z|2)
zeiθ(β)(1 + β2 + c3(β)w2 + c4(β)|z|2)

)
+ O(‖(w, z)‖4),

(w, z) ∈ R × C,
(3.49)

whereℜ(ci(0)) are reported andθ(0) = θ0. Besides global bifurcations, a Neimark-
Sacker bifurcation curve of double period forg is rooted atβ = 0; it is always
present. The asymptotic expression of this curve is given by

(w2, z, β1, β2) = (1, 0,−c1,−sign(c1)ℜ(c3) ε+ O(ε2). (3.50)

3.4.3 Double Neimark-Sacker (NSNS)

For adouble Neimark-Sacker bifurcation, providedlθ0 6= jθ1 for integerl andj
with l + j ≤ 4, the critical normal form on the center manifold is

(
z1
z2

)
7→
(
z1(e

iθ0 + c1|z1|2 + c2|z2|2)
z2(e

iθ1 + c3|z1|2 + c4|z2|2)

)
+ O(‖z‖4), z ∈ C

2. (3.51)

Depending on the values ofℜ(ci), which are reported, several bifurcation sce-
narios are possible in parameter-dependent unfoldings, which all involve global
phenomena. To analyse some of them, one has to take into account fourth- and
fifth-order terms.

3.5 Initializations of branch switching

For each switch to a codim 1 curve an initializer m-function is constructed, the
syntax is as follows :
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60 Continuation of codim 1 bifurcations; branch switching

[x0,v0] = init_GPD_LP2(@mapfile, eps, x, p, ap, n);
[x0,v0] = init_R2_NS2(@mapfile, eps, x, p, ap, n);
[x0,v0] = init_R3_NS3(@mapfile, eps, x, p, ap, n);
[x0,v0] = init_R4_LP41(@mapfile, eps, x, p, ap, n);
[x0,v0] = init_R4_LP42(@mapfile, eps, x, p, ap, n);
[x0,v0] = init_R4_NS4(@mapfile, eps, x, p, ap, n);
[x0,v0] = init_LPPD_NS2(@mapfile, eps, x, p, ap, n);
[x0,v0] = init_PDNS_NS2(@mapfile, eps, x, p, ap, n);

The arguments are

- mapfile An m-file containing the specifications of the map.

- eps The (positive) amplitude of the initial step.

- x The coordinates of the bifurcating fixed point.

- p The parameters at which the codim 2 bifurcation occurs.

- ap The active parameters which are used.

- n The number of iterates of the bifurcating fixed point.

In some cases it depends on the critical normal form coefficients whether branch
switching is possible. If it is not, we stop. If it is, then we specify a new coordinate
x̃ and parameter̃p and returnx0 = (x̃, p̃). So, for example, for the generalized
flip bifurcation x̃ = x+ ǫq andp̃ = p− 2c2v01ǫ

2 + (−c2v10 + 2c22v02)ǫ
4, where

only the parameters specified by ap are updated. If the amplitude ǫ is small, it
is enough to use only the leading terms of the asymptotic expressions. For the
definition ofv02 see [69], pp. 109-110.

3.6 Detection and switching graphs

In the detection graph Figure 3.1, we present all codim 1 and codim 2 bifurcation
points and their interconnections that can be detected on curves of fixed points
and codim 1 bifurcation curves. The graph demonstrates the CL MATCONTM
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3.6 Detection and switching graphs 61

continuation strategy. For example, it shows three arrows which connect FP with
LP, PD and NS, respectively. They mean that when tracing a fixed point curve FP,
the bifurcations LP, PD and NS may be detected and located. Each bifurcation
point found may be used to start tracing the corresponding codim 1 curve. All
bifurcations in the graph are ordered in accordance with thenumber of control
parameters needed for their continuation.

In the switching graphs Figure 3.2 and Figure 3.3, possible switchings at
codim 1 and codim 2 bifurcation points are indicated graphically.

The arrows emanating from a bifurcation point indicate the possible branches
that emanate from the bifurcation point. The solid arrows mean that the indi-
cating bifurcation curve is generically present. The dashed arrows mean that the
presence of the new bifurcation curve is subjected to inequality conditions on the
normal form coefficients. The notation×2, ×3 and×4 refers to the period of the
emanating bifurcation curves. For example we consider theR4 point in Figure
3.3. There are four possible branches emanating form this bifurcation point. A
NS curve of the original period is always present (indicatedby a solid arrow) and
a NS curve of the quadruple period depends on the normal form coefficientb, see
§3.3.7 (indicated by a dashed arrow). This NS curve exists ifb satisfies

|b| > (1 + a2)√
1 − a2

,

There are also two half-line limitpoint curves of cycles with four times the original
period emanating from the R4 point . These curves are presentif the normal form
coefficientsa andb , see§3.3.7, satisfy∆ ≡ a2 + b2 − 1 > 0.
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62 Continuation of codim 1 bifurcations; branch switching

P

FP

CP GPD CH R1 R2 R3 R4 LPPD LPNS NSNSPDNS BP

LP NS PD

Figure 3.1: Detection graph.

LP NS PD

CP GPD CH R1 R2 BP

FP

×2

×2

×2

Figure 3.2: Switching graph 1: dashed lines indicate switching subjectto constraints and
×2 indicates curve of double period.
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3.6 Detection and switching graphs 63

R4 LPPD PDNSLPNSR3 NSNS

NSLP PD

×4

×4 ×4

×2

×2

×3

Figure 3.3: Switching graph 2: dashed lines indicate switching subjectto constraints,×2
and×4 indicate curves of double and quadruple periods, respectively.
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Chapter 4

Algorithmic and numerical
details

This chapter starts with computation of a Neimark-Sacker curve, defined by (3.12),
which includes a detailed description of the continuation variables, defining sys-
tem, initialization and adaptation corresponding to a NS-curve. We proceed with
the computation of the derivatives ofg, in (3.12), tensor-vector and vector-tensor-
vector products, which are not only needed for the continuation, but also for the
computation of the critical normal form coefficients at codim 1 and 2 bifurca-
tion points and for branch switching. We introduce the recursive formulas for
derivatives ofg w.r.t a state variable and a parameter. Then we present recursive
formulas for derivatives of the defining systems for the continuation of codim 1
bifurcation curves. We continue with the numerical computation of finite differ-
ence directional derivatives that are used in the computations of the normal form
coefficients of codim 1 and codim 2 bifurcations. We describethe implementa-
tion of automatic differentiation to compute the multilinear forms that appear in
the normal form coefficients. At the end we perform a comparison of the speed
and accuracy of the three differentiation strategies.

Parts of this chapter were accepted for publication or submitted in [56, 42].



i

i

“main” — 2008/2/28 — 17:19 — page 66 — #86
i

i

i

i

i

i

66 Algorithmic and numerical details

4.1 Computation of a Neimark-Sacker curve

As an example, we now discuss the implementation of a NS curve, defined by
(3.12), starting from a fixed pointx. LP and PD curves are implemented in a
similar way.

• Continuation variables
The continuation variables are stored in a(n+ 3)-vector, containing:

– An n-vector with the coordinates of the fixed pointx.

– A scalarκ, that is the real part of the critical multiplierse±iθ.

– Two active parametersap.

• Defining system
The defining system consists ofn + 2 equations contaning the fixed point
constraintg(x, α) − x = 0, and the two equationssi1j1(x, α, κ) = 0 and
si2j2(x, α, κ) = 0 defined by (3.12) in the mimimally extended system.

• Initialization
To implement the computation of a NS curve in CL MATCONTM, we need
to initialize the NS curve. We set the parameter vectorα, the fixed pointx.
We also set a global structurensmdscontaining the following fields:

– Dimension of the state space (nsmds.nphase).

– The iteration number of the mapK (nsmds.Niterations)

– Mapfile where the map is defined (nsmds.func)

– Vector of starting values of parameters and index of the active param-
eters (nsmds.P0 andnsmds.ActiveParams, respectively)

– The bordering2×n-matricesVbor andWbor in (3.13) (nsmds.borders.v
andnsmds.borders.w, respectively).

– The2-vectorsnsmds.index1andnsmds.index2for keeping the auxil-
iary indexes(i1, j1) and(i2, j2) , respectively.
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4.1 Computation of a Neimark-Sacker curve 67

Before continuation of a NS curve, the bordering matricesVbor andWbor in
(3.13) must be initialized in the fileinit NSmNSmsuch that the matrix

M =

(
(gx)2(x, α) − 2κgx + In Wbor

V T
bor O

)
, (4.1)

in (3.13) is nonsingular. To this end, supposeA = gx(x, α) is the Jacobian
matrix at a NS point where the eigenvectorq corresponds to the multiplier
eiθ. We perform the decomposition[Q,R,E] = qr(ℜ(q),ℑ(q)) (QR de-
composition with column pivoting). The bordered matrixVbor is given by
Vbor = Q(:, 1 : 2). The bordered matrixWbor can be computed similarly.
Supposep is an eigenvector that corresponding to the multipliereiθ of AT .
We use[Q,R,E] = qr(ℜ(p),ℑ(p)). Then we haveWbor = Q(:, 1 : 2).

From (3.12) and (3.13), we get four equationssij = 0 ((i, j) ∈ {1, 2}).
We only need two of these equations. We explain the computation of these
indicies during the intitialization. LetA = (jac − In jacp 0)T where
jac andjacp are the Jacobian matrices w.r.t state variables and parameters
respectively andIn is ann×n identity matrix. To select the two indices we
start with theQR factorization[Q1, R1] = qr(A). Extending the equality
ATQ1 = RT

1 by adding rows that correspond to the four components ofS,
defined by (3.2), we obtain the decomposition




jac− In jacp 0
(s11)x (s11)α (s11)κ
(s12)x (s12)α (s12)κ
(s21)x (s21)α (s21)κ
(s22)x (s22)α (s22)κ



Q1 =




∗ 0 . . . 0 0 0 0
∗ ∗ . . . 0 0 0 0

. . . . . .
∗ ∗ . . . ∗ 0 0 0

∗ ∗ . . . ∗ JT
res



,

(4.2)
whereJres is a3×4 matrix with rank2. We want to choose two among four
rows of the right-hand-side of (4.2) to make the right-hand-side as well con-
ditioned as possible. We perform the decomposition[Q,R,E] = qr(Jres).
So

JT
resE2 = (q1 q2 q3)




∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗


 . (4.3)
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68 Algorithmic and numerical details

The righmost matrix in this expression isR, hence its first two diagonal
elements are nonzero. From this it follows that the first two columns of
JT

resE2 are linearly independent. This means that the columns ofJT
res we

need to use ( equivalently, whichsij we need to choose), are those where
the first or second columns ofE2 contains an entry equal to1.

• Adaptation
It is necessary to adapt the auxiliary variables used in (3.12) while gener-
ating a NS curve. The bordering matricesVbor andWbor require updating,
since during the continuation they must make sure that the matrix in (3.13)
is nonsingular. The border matrixVbor is adapted by replacing it by the nor-
malized and orthogonalized vectorV in (3.13). Similarly, the border matrix
Wbor is adapted by replacing it by the normalized and orthogonalized vector
W obtained from solving a system transpose to that in (3.13). Accordingly,
during the continuation of a NS curve the new indexesi1, j1, i2 andj2 must
be adapted in the same way as in the initializer.

4.2 Recursive formulas for derivatives of iterates of maps

4.2.1 Derivatives with respect to phase variables

The iteration of (1.2) gives rise to a sequence of points

{x = x1, x2, x3, . . . , xK+1},

wherexJ+1 = f (J)(x1, α) for J = 1, 2, . . . ,K. Suppose that symbolic deriva-
tives off up to order 5 can be computed at each point. We write

A(xJ)i,j =
∂fi

∂xj
(xJ)B(xJ)i,j,k =

∂2fi

∂xj∂xk
(xJ), C(xJ)i,j,k,l =

∂3fi

∂xj∂xk∂xl
(xJ),

and similarly forD(xJ) andE(xJ).
We want to find recursive formulas for the derivatives of the composition (1.2),

i.e. the coefficients of the multilinear functions in (3.34)that we now denote by
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4.2 Recursive formulas for derivatives of iterates of maps 6 9

A(J), B(J), andC(J) to indicate the iterate explicitly:

(A(J))i,j =
∂(f (J)(x1))i

∂xj
,

(B(J))i,j,k =
∂2(f (J)(x1))i
∂xj∂xk

,

(C(J))i,j,k,l =
∂3(f (J)(x1)i
∂xj∂xk∂xl

,

andD(J) andE(J) are analogously defined. What follows is a straightforward
application of the Chain Rule.

For J = 1 we haveA(1) = A(x1), B
(1) = B(x1) andC(1) = C(x1) and

these are known. Now,

A
(J)
i,j =

∑

k

∂fi

∂xk
(f (J−1)(x1))

∂(f (J−1)(x1))k
∂xj

=
∑

l

A(xJ)i,kA
(J−1)
k,j

= (A(xJ )A(xJ−1) . . . A(x1))i,j . (4.4)

We see that

(F (x, α))x = A(xK)A(xK−1) · · ·A(x1) − In, (4.5)

whereF (x, α) = f (K)(x, α) − x.
For the second order derivatives we first writeB(J) in coordinates

B
(J)
i,j,k =

∂

∂xj

∂

∂xk
fi(f

(J−1)(x))

=
∑

l,m

∂2fi

∂xl∂xm
(xJ)

∂(f (J−1))m
∂xj

∂(f (J−1))l
∂xk

+
∑

l

∂fi

∂xl
(xJ )

∂2(f (J−1))l
∂xj∂xk

.

For any two vectorsq1 andq2, we can multiply the previous expression by(q1)j(q2)k
and sum over(j, k) to obtain

B(J)(q1, q2) = B(xJ)(A(J−1)q1, A
(J−1)q2) +A(xJ)B(J−1)(q1, q2). (4.6)
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70 Algorithmic and numerical details

As A(xJ ) andB(xJ) are known, (4.6) allows to compute the multilinear form
B(K)(q1, q2) recursively.

Let qi, i = 1, 2, 3, 4, 5, be given vectors. Multilinear forms with higher order
derivatives can be computed with

C(J)(q1, q2, q3) = C(xJ)(A(J−1)q1, A
(J−1)q2, A

(J−1)q3)

+B(xJ)(B(J−1)(q1, q2), A
(J−1)q3)

∗

+A(xJ)(C(J−1)(q1, q2, q3)),

(4.7)

where ∗ means that all combinatorially different terms have to be included, i.e.,

B(xJ)(B(J−1)(q1, q2), A
(J−1)q3)

∗ = B(xJ)(B(J−1)(q1, q2), A
(J−1)q3)

+B(xJ)(B(J−1)(q1, q3), A
(J−1)q2)

+B(xJ)(B(J−1)(q2, q3), A
(J−1)q1).

ForD(J) we get

D(J)(q1, q2, q3, q4) = D(xJ)(A(J−1)q1, A
(J−1)q2, A

(J−1)q3, A
(J−1)q4)

+C(xJ)(B(J−1)(q1, q2), A
(J−1)q3, A

(J−1)q4)
∗

+B(xJ)(B(J−1)(q1, q2), B
(J−1)(q3, q4))

∗

+B(xJ)(C(J−1)(q1, q2, q3)), A
(J−1)q4)

∗

+A(xJ)D(J−1)(q1, q2, q3, q4).
(4.8)

Finally, forE(J) we have

E(J)(q1, q2, q3, q4, q5) =

E(xJ )(A(J−1)q1, A
(J−1)q2, A

(J−1)q3, A
(J−1)q4, A

(J−1)q5)

+D(xJ)(B(J−1)(q1, q2), A
(J−1)q3, A

(J−1)q4, A
(J−1)q5)

∗

+C(xJ)(B(J−1)(q1, q2), B
(J−1)(q3, q4), A

(J−1)q5)
∗

+C(xJ)(C(J−1)(q1, q2, q3), A
(J−1)q4, A

(J−1)q5)
∗

+B(xJ)(C(J−1)(q1, q2, q3), B
(J−1)(q4, q5))

∗

+B(xJ)(D(J−1)(q1, q2, q3, q4))(A
(J−1)q5)

∗

+A(xJ )(E(J−1)(q1, q2, q3, q4, q5)).

(4.9)

The multilinear formsA(K)(q1), B(K)(q1, q2), C(K)(q1, q2, q3),
D(K)(q1, q2, q3, q4) andE(K)(q1, q2, q3, q4, q5) are used in the computations of
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4.2 Recursive formulas for derivatives of iterates of maps 7 1

normal form coefficients for codim 1 and codim 2 bifurcationsof period-J cycles
and also in branch switching.

4.2.2 Derivatives with respect to parameters

In the continuation of codimension 1 bifurcation curves (§3.1, §3.2), we need

derivatives of the form∂f(J)

∂αk
and ∂2f(J)

∂αk∂x whereαk is a parameter. If enough sym-
bolic derivatives off are available, then CL MATCONTM computes these ex-
pressions symbolically. The idea is as follows. Taking the derivative of (1.5) with
respect toαk, gives

∂(f (J)(x1, α))

∂αk
=

∂f

∂αk
(xJ , α) +

∂f

∂x
(xJ , α)

∂(f (J−1)(x1, α))

∂αk
, (4.10)

which is recursively computable. Also mixed derivatives, which are necessary for
continuation and branch switching, can be found recursively:

∂2(f (J)(x1, α))

∂αk∂x
=

∂2f

∂αk∂x
(xJ , α) +

∂2f

∂x2
(xJ , α)

∂(f (J−1)(x1, α))

∂αk
. (4.11)

In fact, the recursion is not applied to (4.11) itself, but toits product with a fixed
vector.

This is sufficient for all continuations of fixed points and their codimension 1
bifurcations. It is also sufficient for all cases of branch switching from codimen-
sion 2 points, except for the case of generalized flip. For this case, we fall back to
a finite difference approximation. Since it is only used in the prediction step for
which high accuracy is not needed, this seems acceptable.

4.2.3 Recursive formulas for derivatives of the defining systems for
continuation

For the continuation of fixed points and cycles we need the derivatives of (1.5)
which can be computed from (4.5) and (4.10). Now, we considerthe derivatives
of s (as defined in (3.1)) with respect toz, a state variable or parameter. The flip
and Neimark-Sacker cases can be handled in a similar way. LetM be the matrix
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in (3.2). By taking derivatives of (3.2) with respect toz we obtain

M

[
vz

sz

]
+

[
A

(K)
z 0
0 0

][
v
s

]
= 0. (4.12)

Using (3.4) we obtain

sz = −wT (A(K))zv. (4.13)

If z represents one of the state variables, then

sxi
= −〈w,B(K)(ei, v)〉, (4.14)

as computed in section 4.2. Whenz is a parameterαk we can write

sαk
=

K∑

J=1

CJ , (4.15)

where

CJ = −wT fx(xK) · · · (fx(xJ))αk
fx(xJ−1) · · · fx(x1)v, (4.16)

whereJ = 1, . . . ,K. In this expression

(fx(xJ))αk
= [fx(f (J)(x1, α))]αk

= fxα(xJ , α) +B(xJ)TJ , (4.17)

whereTJ is a vector, that can be recursively defined by

TJ = fαk
(xJ−1, α) +A(xJ−1)TJ−1, T1 = 0. (4.18)

Summarizing, for the computation ofsα we need to computefx, fαk
, fxx, fxαk

in all iteration pointsx1, . . . , xK , and given these computeTJ for J = 1, . . . K.
Then

CJ = −wTA(xK) · · · (fxαk
(xJ) +B(xJ)TJ)A(xJ−1) · · · A(x1)v, (4.19)

andsαk
is computed via (4.15).
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4.3 Computing the vector-Hessian-vector and Hessian-
vector products

To define the Jacobian system of fold, flip and Neimark-Sackercontinuations
we need to compute terms of the form vector-Hessian-vector and Hessian-vector
where Hessian is an × n × n tensor and vector is an-vector. These can be
computed symbolically by using the recursive formulas derived in Section 4.2.3.
Computation of vector-Hessian-vector by using (4.14) and (4.15) are implemented
in the fileslpvecthessvectand lpvecthesspvect. These files are used in fold con-
tinuation and contained in the folderLimitPointMap. The same computations
are implemented inpdvecthessvectandpdvecthesspvectfor flip continuation and
nsvecthessvectand nsvecthesspvectfor Neimark-Sacker continuation. Further-
more, in switching of some codim 2 bifurcation points, we need to compute ex-
pressions of the form Hessian-vector symbolically, where Hessian is an× n× n
tensor w.r.t state variables and parameters. This computation can be done by us-
ing the recursive formula (4.15) and is implemented inlphesspvect, pdhesspvect
andnshesspvectwhich are contained in the foldersLimitPointMap, PeriodDou-
blingMap, NeimarkSackerMap, respectively.

4.4 Finite difference approximation of directional deriva-
tives

For a general discussion of directional derivatives we refer to [62], §10.3.4, where
it is shown that all computations can be reduced to computingexpressions of the
form

fxq, fxxqq, fxxxqqq, fxxxxqqqq , fxxxxxqqqqq.

Here we only discuss how we choose the incrementh in the directional deriva-
tives for a given functionf(x). In fact, we want to chooseh to minimize the com-
bination of truncation and roundoff error in the computation of the multilinear
functionsA, B, C,D andE.
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To computefxq we start from

f(x+ hq) = f(x) + hfxq +
h2

2
fxxqq +

h3

6
fxxxqqq +O(h4), (4.20)

whereq is a unit vector. Similarly,

f(x− hq) = f(x) − hfxq +
h2

2
fxxqq −

h3

6
fxxxqqq +O(h4). (4.21)

Subtracting these two expressions we obtain

f(x+ hq) − f(x− hq) = 2hfxq +
h3

3
fxxxqqq +O(h5). (4.22)

Dividing (4.22) by2h and rearranging, we find the following expression for the
first order derviative:

fxq =
f(x+ hq) − f(x− hq)

2h
− h2

6
fxxxqqq +O(h4). (4.23)

An unavoidable consequence of using numerical differentiation formulas like (4.23)
is roundoff error. By taking into account this error and ignoring theO(h4) term,
the approximation formula (4.23) can be written as

fxq = (
f(x+ hq) − f(x− hq)

2h
)fl + et(h) + er(h), (4.24)

whereer(h) is roundoff error,et(h) is the truncation error and

(
f(x+ hq) − f(x− hq)

2h
)fl,

is the floating point approximation. The total errorE(h) is given by

E(h) = et(h) + er(h). (4.25)

We can bound the norm ofE(h) by

||E(h)|| ≤ er
2h

+
h2M

6
, (4.26)
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whereer is a bound for the roundoff error made in the subtraction

f(x+ hq) − f(x− hq),

and
|fxxxqqq| ≤M.

The roundoff errorer is of orderKǫm whereK is the magnitude off andǫm is
machine precision. So we can rewrite (4.26)

||E(h)|| ≤ CKǫm
2h

+
h2M

6
, (4.27)

whereC is a modest constant. To minimize the error with respect toh, we require

d

dh
(
CKǫm

2h
+
h2M

6
) = 0. (4.28)

Calculating this derivative gives

−CKǫm
2h2

+
2hM

6
= 0. (4.29)

If we assume thatf andfxxxqqq have almost similar size then the optimal choice
h1min resulting in a minimum error, is of order

h1min ≈ (ǫm)
1
3 . (4.30)

When we use double precision, i.e. 16-digit accuracy in the representation of a
given numberǫm ≈ 10−16 thenh1min ≈ 10−5.

A similar procedure can be carried out for evaluating the optimal step size for
the second order derivative. We have

fxxqq =
f(x+ hq) − 2f(x) + f(x− hq)

h2
) − h2

12
fxxxxqqqq +O(h4). (4.31)

By taking into account the roundoff error and bounding the absolute value of
the total errorE(h), we have

||E(h)|| ≤ CKǫm
h2

+
h2

12
M, (4.32)
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whereK andǫm are defined as before,C is a small number and|fxxxxqqqq| < M .
Assuming thatf andfxxxxqqqq have almost similar size, the optimal choice of
h2min = h2 is given by

h2min ≈ (ǫm)
1
4 . (4.33)

This process can be continued to find the optimal step-size for the third order
derivative, we have

fxxxqqq = f(x+3hq)−3f(x+hq)+3f(x−hq)−f(x−3hq)
8h3

−237
960h

2fxxxxxqqqqq +O(h4).
(4.34)

By taking into account the roundoff error and bounding the absolute value of
total errorE(h), we have

||E(h)|| ≤ CKǫm
8h3

+
237h2

960
M, (4.35)

whereC,K andǫm are defined as before, and|fxxxxxqqqqq| < M .
Assuming thatf and fxxxxxqqqqq have almost similar size, then the optimal
choice ofh3min is given by

h3min ≈ (ǫm)
1
5 . (4.36)

Similarly, for the fourth and fifth order derivatives we have

h4min ≈ (ǫm)
1
6 . (4.37)

and
h5min = (ǫm)

1
7 . (4.38)

In CL MATCONTM the default values of the incrementh for the first, second,
third, fourth and fifth order derivatives are defined as follows:

• Increment = (ǫm)
1
3 .

• hessIncrement = (ǫm)
1
4 .
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• tens3Increment = (ǫm)
1
5 .

• tens4Increment = (ǫm)
1
6 .

• tens5Increment = (ǫm)
1
7 .

whereǫm is the machine precision; we useǫm = 10−15. However, theIncrement
can be adjusted by the user by settingcds.options.Increment. The increments
of the higher-order derivatives are then adapted accordingly.

4.5 Automatic differentiation

We now discuss our experience in using automatic differentiation techniques as
an aid in the numerical continuation and bifurcation of cycles. In particular, we
consider the computation of the multilinear forms in the Taylor expansion up to
the fifth order of an iterated map. For our application, due tothe needed high
accuracy of differentiation, one is forced to turn to automatic differentiation or
symbolic approaches. Methods based on finite differences are inaccurate for such
computations.

In this section we first give a brief background on Automatic Differentiation
(AD) followed by a discussion of the techniques to compute the derivatives of a
given function. Then, we present a detailed description of the usage of AD in the
computation of multilinear forms that arise in the computation of the normal form
coefficients of codim 1 and codim 2 bifurcation of cycles. At the end, we present
some numerical results and present a comparison of time complexity using AD
and SD (Symbolic Differentiation) in our application.

4.5.1 Automatic differentiation background

In the standard reference for the subject, Griewank [45] states that Algorithmic, or
Automatic Differentiation (AD) is concerned with the accurate and efficient eval-
uation of derivatives for functions defined by computer programs. AD uses the
systematic application of the chain rule for differentiation applied to the floating
point representation of a variables value and its derivatives. Unlike in the finite-
difference approximation, no discretization or cancellation errors occur, and the
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resulting derivative values are accurate to within floating-point round-off. Since
only floating point values are used (unlike differentiationwithin symbolic alge-
bra packages such as Mathematica or Maple), good efficiency may be obtained.
Additionally, AD permits the use of control structures (loops, branches, and sub-
functions) common to modern computer languages but not easily amenable to
symbolic differentiation. To compute derivatives symbolically using computer al-
gebra software, an enormous expression growth normally occurs due to a repeated
evaluation of common sub-expressions. On the other hand, with finite difference
approximations, the accuracy of the derivatives is restricted because of cancella-
tion and truncation errors, particularly, for high-order derivatives.

4.5.2 Forward mode and implementation of AD

The technique of automatic differentiation is conceptually based on first trans-
forming a given computer code into a straight-line code. That is, after this prepro-
cessing step, the code is a finite sequence of elementary operations without loops,
conditionals, branching, or subroutines.

Take as an example a functionf : R
5 7→ R

5 mapping a five-dimensional
vectorx to a five-dimensional vectory. For the sake of simplicity, assume that
the corresponding straight-line code takes an arrayx(1 : 5) as input and produces
an output arrayy(1 : 5) making use of an eight-dimensional arrayt(1 : 8) to
store intermediate values. The straight-line code is givenin Figure 4.1, where
an independent variablex(i) is initialized with a valueci and the symbol⊙ is
used to denote any binary elementary function available in agiven programming
language, for instance multiplication or addition (example taken from [18]).

Notice that we assume that the straight-line code is given insingle-assignment
form, i.e., each intermediate variable has only one assignment. This assumption
may lead to tremendous growth of the number of intermediate variables but pre-
serves uniqueness of the left-hand sides.

A straight-line code is commonly represented by a directed acyclic graph as
follows. A node is associated with every statement of the straight-line code or,
equivalently, with every left-hand side variable. There isan edge from nodei to
j whenever variablei is an input to variablej. This computational graph rep-
resents the data dependence when evaluating the code for a given set of inputs.
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t(1)←− x(1)⊙ x(2)
t(2)←− t(1)⊙ x(3)

x(1)←− c1 t(3)←− x(2)⊙ x(4) y(1)←− t(2)⊙ t(2)
x(2)←− c2 t(4)←− x(2)⊙ x(5) y(2)←− t(2)⊙ t(7)
x(3)←− c3 t(5)←− t(3)⊙ t(4) y(3)←− y(2)⊙ t(7)
x(4)←− c4 t(6)←− t(2)⊙ t(5) y(4)←− t(6)⊙ t(8)
x(5)←− c5 t(7)←− t(2)⊙ t(6) y(5)←− t(5)⊙ t(8)

t(8)←− t(5)⊙ t(7)

Table 4.1: The straight-line code of a simple function withn = 5 independent scalar vari-
ablesx(1), x(2), . . . , x(5) andm = 5 dependent scalar variablesy(1), y(2), . . . , y(5).

Think of the computational graph as a visualization of the data transmitted along
its edges in the direction indicated by its arrows. The rootsof the graph repre-
sent the independent variables and the leaves represent thedependent variables.
An example of the computational graph associated with the straight-line code of
Table 4.1 is depicted in Figure 4.1. From a practical point ofview, the number of
nodes roughly corresponds to the number of floating point operations⊙ used to
evaluate the function. This is the reason why computationalgraphs in automatic
differentiation are typically quite large. In AD, the edgesof the computational
graph are suitably weighted by partial derivatives. From this initial scenario, the
Jacobian may be calculated by eliminating the intermediatevertices of the com-
putational graph one at a time according to certain rules manipulating the edge
weights. Eventually, the graph will be bipartite with edgesexclusively connecting
independent and dependent variables. A final weight of an edge connecting the
independent variablei with the dependent variablej corresponds to the partial
derivative of variablej with respect to variablei.

Two standard elimination sequences are known. The Forward Mode elimi-
nates the intermediate vertices starting from the verticesnext to the independent
variables, escorting the data flow of the computation of the function along the
direction of the edges of the computational graph, and reaching the intermediate
vertices next to the dependent variables at last.

The Reverse Mode will not be used in this thesis, so we do not further describe
it.
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t(1)

x(1)

t(6) t(8)

y(2)

y(3)

y(4)

y(5)

x(3)

x(4)

x(5)

t(2)

t(3)

t(4)

t(7)

t(5)

y(1)

x(2)

Figure 4.1: The computational graph associated with the code given in Table 4.1.

AD is implemented in one of two ways: operator overloading orsource transfor-
mation, Griewank [45], Ch 5. The operator overloading approach takes advantage
of the facility to define new classes (or types) within moderncomputer languages
such as Fortran 95, C++ orMATLAB . Objects of the new AD class are defined
to have a component which stores their value and components to store derivative
information. Arithmetic and intrinsic functions are extended to the AD class mak-
ing use of operator and function overloading. In typed languages, such as Fortran
or C++, all that remains is for the user to redefine the classesof all relevant ob-
jects within the function and all subfunctions to that of theAD class, initialize
appropriate values and derivatives, invoke the function, and then extract the val-
ues of the derivatives. Representative examples of such implementations are the
packages ADO1, [87] and ADOL-C, [46]. InMATLAB there are a variety of intrin-
sic classes with associated functions and operations. We use the object-oriented
programming features ofMATLAB to introduce new classes.

We use the known formulae for differentiating elementary functions, together
with the chain rule, to build up the needed derivatives of an arbitrary f (f is
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expressed by a computer program). We assumef is a vector functiony = f(x)
over the reals withn real inputs, or independent variables,x = (x1, . . . , xn) and
m real outputsy = (y1, . . . , ym). The code forf may contain branches and
loops. However, each evaluation off at given inputsx can be written as acode
list, which is a finite sequence of assignments of the simple form

vi = ei(previously definedvj ’s, or constants), i = 1, 2, . . . , p+m, (4.39)

where eachei is one of the elementary functions. Thevi are calledvariables. In
(4.39) it is convenient to usev1−n, . . . , v0 as aliases for the inputsx1, . . . , xn and
vp+1, . . . , vp+m as aliases for the outputsy1, . . . , ym, following the notation of
[45]. The remaining variablesv1, . . . , vp are calledintermediate.

Theforward modeof AD is the simplest, and is appropriate to our application.
Eachvi is represented by an objectvi of a data type that holds not just the value
but some needed set of derivatives. For our purposes:

• There is (at any one point) just one variable being treated asindependent:
we call it t. Thus each variablevi is regarded as a function oft.

• The data structure holdsTaylor coefficients(TCs), that is the coefficients of
the truncated Taylor series ofvi, up to some orderp, expanded about some
point t = a. Changing to a new independent variables = t− a:
vi holds(vi,0, vi,1, . . . vi,p) where

v(a+ s) = vi,0 + vi,1s+ · · · + vi,ps
p +O(sp+1).

We call the data typeadtayl . It is helpful to think of anadtayl object as
representing aninfinite power series which is only known up to the orderp term.
The Taylor coefficients are of course just scaled derivatives, and are simpler to
manipulate than are derivatives.

When evaluating a code list, each elementary operation on real arguments
is replaced by the corresponding operation onadtayl arguments regarded as
power series known up to a certain order. Consider first the four basic arithmetic
operations. Agree thata holds(a0, a1 . . .), and so on for other named variables.
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Let a be defined to orderp, andb to orderq. Thenc = a + b andd = a × b are
defined to orderr = min(p, q) by

ci = ai + bi,

di = a0bi + a1bi−1 + · · · + aib0,

and similarly fora− b, and fora÷ b providedb0 6= 0.
For example, supposey = (2 + t)(3 + t2) and we wish to obtain the power

series ofy up to orderp = 2, expanded about the pointt = 1. We initialise the
process by creating the object representing the independent variable expanded to
order 2 in terms ofs = t− 1:

t = (t0, t1, t2) = (1, 1, 0) representing1 + 1s+ 0s2 ,

We create objectsc2 andc3 representing the constant functions 2 and 3 respec-
tively. The whole computation is shown in the following table.

Computation Holds Represents
t=indep (1, 1, 0) t = 1 + s

c2=const (2, 0, 0) 2
c3=const (3, 0, 0) 3

v1=c2 + t (3, 1, 0) 2 + t = 3 + s
v2=t ∗ t (1, 2, 1) t2 = 1 + 2s+ s2

v3=c3 + v2 (4, 2, 1) 3 + t2 = 4 + 2s+ s2

outputy=v1 ∗ v3 (12, 10, 5) (2 + t)(3 + t2) = 12 + 10s + 5s2 +O(s3)

For applying the standard functionsexp, cos, . . . to power series there are var-
ious formulas in the literature. We have aimed to choose onesthat can be made
reasonably fast inMATLAB , especially when the argument is a vector of power
series, not just a single one. This is not the place for details but we give a few
examples.

First, multiplication of power series is a convolution, which can be realised by
the very fast built-infilter function ofMATLAB .

Second, the method forexp(a) exploits the fact that ifc(t) = exp(a(t)) then
c′(t) = a′(t)c(t), which is converted to the integral form

c(t) = c0 +

∫ t

0
a′(s)c(s)δs,
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wherec0 = ea0 . In terms of the coefficients this reduces to a triangular linear
system, which is fast inMATLAB .

Third, for sin(a) andcos(a), it is convenient to compute both simultaneously
as the real and imaginary parts ofexp(i a), and to record both results, along with
the argumenta, in persistent storage. Each time a newa is given, it is checked
against the recorded one. If they are equal, the result can bereturned at once.
Sincecos andsin at the same argument often occur together in applications, this
reduces the cost for these functions by nearly half.

Regarding previous work to provide AD facilities inMATLAB , Rich and Hill
[93] provided a limited facility forMATLAB that enabled AD of simple arith-
metic expressions defined by a character string. Such strings, together with nec-
essary values of variables were passed to an external routine, written in turbo-C,
for differentiation. However, the first significant work wasthat of Coleman and
Verma [21, 22], and Verma [22] who produced an operator-overloading AD pack-
age named ADMAT that provides facilities for forward and reverse mode AD for
both first and second derivatives and run-time Jacobian sparsity detection. The
MAD package, see [100], facilitates the evaluation of first derivatives of multidi-
mensional functions that are defined by computer codes written inMATLAB . The
underlying algorithm is the well-known forward mode of automatic differentia-
tion implemented via operator overloading on variables. However, none of these
tools handles Taylor series.

4.6 The Taylor series class

We use the object-oriented programming features ofMATLAB to introduce the
new classadtayl in the bifurcation software CL MATCONTM. A MATLAB class
consists of a set of functions that create and manipulate objects of this class. Here
the manipulations that concern us are extending the arithmetic operations ofMAT-
LAB to those that calculate both an object’s value and an associated directional
derivative. WheneverMATLAB encounters objects of these classes, for example
when two such objects are matrix-multiplied, it will not usethe standard times
function designed for objects of class double, but instead will use the times func-
tion defined in our new class.
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4.6.1 TheMATLAB adtayl class

Theadtayl data type was implemented as aMATLAB class of the same name.
An adtayl object x has one fieldtc . Herex can be a scalar, a vector or a
matrix. In the scalar case,tc is a row vector of length(p + 1) holding the TCs
x0, x1, ...xp of a variablex = x(t) around a pointt = a. MATLAB arrays are
numbered from 1, soxr is in positionr+1 of tc for eachr. In general,tc holds
anm × n × (p+1) array with the obvious meaning, with the TCs always along
the third dimension. Thusm = n = 1 for the scalar case, andm = 1 or n = 1
for a row vector or column vector respectively.

One cannot create a general series (1) directly.adtayl creates the TS of the
independent variable t, that is

t = a+ 1s + 0s2 + ...+ 0sp,

and all other functions must be calculated from that.
One can create constant-functions, after creating the independent variable.

Supposecval holds the numeric valuec. Then

c = adtayl(cval);

setsc to theadtayl object representingc+0s+...+0sp, wherep comes from the
current (most recently created) independent variable.cval can be a scalar or a
one or two dimensional array, creating anadtayl object of the same shape. Such
named constants are not needed often, as real constants in arithmetic expressions
are converted automatically. For instance the calculationin the example given
above can be done by theMATLAB statements

>> t = adtayl(1,2);
>> (2+t) * (3+t * t)

and the result will be displayed in the command window:

Coefficients of orders 0 to 2 are:
12 10 5

>>
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All the operations are element-wise, so multiplication anddivision are the
MATLAB operations. * and ./ (there is no.\ ). Matrix operations are not sup-
ported at all: the matrix multiplication operator* only works for scalar objects,
being just a case of. * , and similarly for matrix division, power etc.

The following MATLAB standard functions are implemented for theadtayl
class:

sqrt , exp , log , log10 , sin , cos , tan , cotan , sec , csec ,
asin , acos , atan , acotan , asec , acsec , sinh , cosh , tanh ,
cotanh , sech , csech , asinh , acosh , atanh , acotanh ,asech ,
acsech .

They do not all handle vector/matrix arguments efficiently,and in some cases do
not do so at all. For the applications to date, only scalar values were needed.
However, the followingMATLAB housekeeping functions are implemented for
vector/matrix arguments.

• display prints an object in the command window.

• The class supports standardMATLAB array subscripting for referencing
(subsref ) and assigning (subsasgn ) elements, or sections, of arrays,
and assembling arrays usingMATLAB ’s square bracket notation (horzcat ,
vertcat ). E.g.[t y; 1+t y * y] creates a 2 by 2 matrix of Taylor se-
ries. Higher-dimensional arrays are not supported, and subscripting applies
to them andn directions only.

• Functionssize , numel , andend are overloaded to give the correct be-
haviour of array accesses.

• By design, one cannot access the TC dimension with the above functions.
There is anorder function that returns the orderp of an object; and atcs
function that extracts its TCs as an[m,n, p+1] array. Ifm or n is 1, the
singleton dimension is “squeezed” out to give a normal 2D array, which is
easier to manipulate and display.
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4.6.2 Theadtayl constructor function

Below, we show theadtayl constructor function. The calladtayl (a,p) calcu-
lates Taylor series coefficients up to orderp. This function takes two inputsa and
p and returns an object of theadtayl class. The inputa is a constant scalar or
array where the Taylor series is computed arounda, while p is a constant integer
or constant string ’const’ wherep indicates the order of the Taylor series.

function obj = adtayl(a, p)

global ADTAYLORDER
switch nargin

case 0
%Not documented: system can use it for anonymous initialisi ng.
if isempty(ADTAYLORDER)

error(’Invalid use of ADTAYL constructor: no order p was set ’)
else

tc = zeros(1,1,ADTAYLORDER+1);
end

case 1
if isa(a,’adtayl’) %Not documented: just copies an ADTAYL o bject

obj = a;
return

elseif ˜(isnumeric(a) && ndims(a)==2) || isempty(ADTAYLO RDER)
error(’Wrong use of ADTAYL constructor with one argument’)

else %Set a constant
[m,n] = size(a); % A is now a constant scalar or array
p = ADTAYLORDER;
tc = reshape([a(:); zeros(m * n* p,1)], [m,n,p+1]);

end
case 2

if ˜(isnumeric(p) && isnumeric(a) ...
&& isscalar(a) && isscalar(p) && p==fix(p) && p>=0)

error(’Invalid input A or P to construct independent variab le’)
else

% Store chosen Taylor order as a global variable:
ADTAYLORDER = p;
if p==0

tc = a;
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else
tc = [a, 1, zeros(1,p-1)];

end
tc = reshape(tc, [1 1 p+1]);

end
otherwise

error(’Wrong number of arguments to ADTAYL’)
end

obj = class(struct(’tc’,tc),’adtayl’);

4.7 Computing multilinear forms

In this section, we describe how to use theadtayl class to calculate the mul-
tilinear forms that arise in the normal form coefficients of codim 1 and codim 2
bifurcation of cycles. The sign and size of these coefficients determine the bifur-
cation scenario near a local bifurcation point. We considerthe multilinear forms
B(q1, q2), C(q1, q2, q3),D(q1, q2, q3, q4) andE(q1, q2, q3, q4, q5) of order 2, 3 , 4
and 5, respectively, as they are defined in section 2.1. Thesemultilinear forms can
be computed by using theadtayl class and computing directional derivatives
that are stored as an array of classdouble.

4.7.1 Computing the forms by AD

These multilinear forms can be computed by using theadtayl class and com-
puting directional derivatives that are stored as an array of classdouble . We
first define a function that iterates the mapf a desired number of times. Here the
argumentfunc is (the function-handle of) the mapf .

function y1 = Tmap(func,x0,h,par,taylorder,J)
s = adtayl(0,taylorder); %Base point & Taylor order
y1= x0 + s * h;
for i=1:J

y1 = func(0, y1, par{:});
end

We now give the code formultilinear1AD and multilinear2AD ,
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which computeA(J)(q1) andB(J)(q1, q2) respectively, usingTmap. In their input
lists, q1 andq2 are then-vectorsq1, q2, wheren depends on the map.x0 and
par are the vector of state variables and of parameter values respectively, at the
bifurcation point.J is the iteration number for the map. Similar code can be used
for the higher-order multilinear forms.

function ytayl1 = multilinear1AD(func,q1,x0,par,J)
taylorder = 1;
y1 = Tmap(func,x0,q1,par,taylorder,J);
ytayl1 = tcs(y1);

function ytayl2 = multilinear2AD(func,q1,q2,x0,par,J)
taylorder = 2;
if q1==q2

y1 = Tmap(func,x0,q1,par,taylorder,J);
else

y11 = Tmap(func,x0,q1+q2,par,taylorder,J);
y12 = Tmap(func,x0,q1-q2,par,taylorder,J);
y1 = 1/4.0 * (y11-y12);

end
ytayl2 = tcs(y1);

At the end,A(J)(q1) is the last column ofytayl1 , that isytayl1(:,end) ;
andB(J)(q1, q2) is twice the last column ofytayl2 , namely2* ytayl2(:,end) .

In the definition ofytayl2 we used the polarization identity

B(u, v) =
1

4
(B(u+ v, u+ v) −B(u− v, u− v)).

whereB is any bilinear form. Similar identities exist for the higher order forms,
see [62],§10.3.4.

It only remains to provide code for a specific mapf . The “Cod Stock”model
in Test case2 in §4.8 may be coded as follows:

function y = CodStockFunc(t,x,F,P,beta1,beta2,beta3,mu 1,mu2)
x1 = x(1); x2 = x(2);
y = [ F * exp(-beta1 * x2) * x2 + (1-mu1) * exp(-beta2 * x2) * x1;

P* exp(-beta3 * x2) * x1 + (1-mu2) * x2 ];
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To evaluateA(J)(q1) at specificq1 andq2 one can type the following at the
MATLAB command line. Noteq1 andx0 are ordinary column vectors, whilepar
is aMATLAB cell-array, which is transformed into part of the list of arguments to
the map; it holdsF,P, β1, β2, β3, µ1, µ2 in that order.@CodStockFunc is the
function-handle for theCodStockFunc function.

>> par={399.5681,0.5, 1,1,1, 0.5,0.444715}
>> x0=[26.0; 3.0]
>> q1=[1;2]
>> q2=[3;4]
>> J=15
>> ytayl1=multilinear1AD(@CodStockFunc,q1,x0,par,J)
>> ytayl2=multilinear2AD(@CodStockFunc,q1,q2,x0,par, J)
>> A=ytayl1(:,end)
>> B=2* ytayl2(:,end)

When the above was run it produced these results:

ytayl1 =
2.3896e+01 7.7278e+01
3.0477e+00 -3.1623e-01

ytayl2 =
0 7.7688e+01 1.9340e+03
0 -3.1796e-01 7.4153e-01

A =
7.7278e+01

-3.1623e-01
B =

3.8680e+03
1.4831e+00

>>

4.7.2 Comparison with symbolic derivatives

If the symbolic toolbox of MATLAB is available then we can compute derivatives
of (1.2), using recursive formulas, see§4.2. Here follows a brief description of the
recursive formulas, since we need to refer to them. The iteration of (1.2) gives rise
to a sequence of points

{x1, x2, x3, . . . , xK+1},



i

i

“main” — 2008/2/28 — 17:19 — page 90 — #110
i

i

i

i

i

i

90 Algorithmic and numerical details

wherexJ+1 = f (J)(x1, α) for J = 1, 2, . . . ,K. Suppose that symbolic deriva-
tives of f up to order 5 can be computed at each point. Suppose that symbolic
derivatives off up to order5 can be computed at each point. A drawback of using
these recursive formulas is the nonlinear growth rate of thetime complexity when
the iteration numberJ increases. To make it clear, we usee1, e2, e3, e4 ande5 to
indicate the complexity of computation of the multilinear functions, i.e.

e1 = e(Aq),

e2 = e(B(q1, q2)),

e3 = e(C(q1, q2, q3)),

e4 = e(D(q1, q2, q3, q4)),

e5 = e(E(q1, q2, q3, q4, q5)).

Then complexity for the multilinear forms up to the fifth order using the re-
cursive formulas (4.4), (4.6), (4.7), (4.8) and (4.9), respectively, is given by:

e(A(J)q) = Je1
e(B(J)(q1, q2)) = (J − 1)(J + 1)e1 + Je2 = J2e1 + Je2 + l.o.t,
e(C(J)(q1, q2, q3)) = J3e1 + J2e2 + Je3 + l.o.t,
e(D(J)(q1, q2, q3, q4)) = J4e1 + J3e2 + J2e3 + Je4 + l.o.t,
e(E(J)(q1, q2, q3, q4, q5)) = J5e1 + J4e2 + J3e3 + J2e4 + Je5 + l.o.t,

where l.o.t stands for ’lower order terms’.

4.8 Test cases

In this section, we present test cases to compare the accuracy and speed of AD and
SD in the computation of the normal form coefficients of bifurcations of cycles in
CL MATCONTM.

4.8.1 Test case 1

We consider a 2-dimensional difference equation with 3 parameters:

MK :

(
x
y

)
7→
(
Sx− y − (ǫy2 + x2)

Lx− (y2 + x2)/5

)
(4.40)
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J bifurcation point
3 (0.375974,−0.627941, 1.335343)
6 (0.349755,−0.948447, 1.436871)
12 (0.336832,−0.881886, 1.463676)
24 (0.330787,−0.857379, 1.469354)
48 (0.329173,−0.852556, 1.470561)
96 (0.3391975,−0.925268, 1.470819)
192 (0.339223,−0.925734, 1.470874)

Table 4.2: PDbifurcation points of iterates ofMK . The left column contains the iteration
numbers.

whereǫ, L andS are parameters (unpublished PhD thesis of A. Yu. Kuznetsova,
Saratov university).

M
(3)
K has a fixed point at(x∗, y∗) = (0.37588802742303,−0.62783638474655)

when the parameter values are given by(ǫ, L, S) = (1, 1.3353,−0.799600). Con-
tinuation of fixed points of the third iterate, withǫ free and keepingL,S fixed,
leads to a supercritical flip bifurcation point whenǫ = 1.335343. The mapM (3)

K

has a cascade of flip points that can be computed by switching to the new branches
of double period at thePDpoints. We compute thePDpoints of the order 3, 6, 12,
24, 48, 96, 192 and then compute their successive NFCs. The coordinates of the
PDpoints(x, y, ǫ) are given in Table 4.2. The computed values and elapsed time
are given in Table 4.3 and depicted in Figure 4.2.

In the case ofAD, the elapsed time grows linearly with the iteration number
whereas in the case ofSD the elapsed time grows much faster. However, for the
iterates of low order 3, 6, 12,SD is still faster thanAD, with crossover at around
iteration 24.

We continue the flip bifurcation curves ofMK starting from the computed
PD point with L andS as bifurcation parameters, keepingǫ fixed, and detect
codimension-2 bifurcation points (LPPD). Their coordinates(x, y, L, S) are given
in Table 4.4. The computed NFCsa(0) andb(0) and elapsed time are given in
Table 4.5 and depicted in Figure 4.2. It is clear from Figure 4.2 that the growth of
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J SD t AD t FD t
3 5.662603e+3 0.041 5.6662603e+3 0.074 -3.590146e+4 0.041
6 8.753606e+1 0.047 8.753606e+1 0.086 8.753396e+1 0.045
12 5.807277e+2 0.080 5.807277e+2 0.135 5.800071e+2 0.046
24 2.080773e+4 0.225 2.080773e+4 0.222 8.347385e+3 0.054
48 6.023199e+5 1.13 6.023199e+5 0.401 -6.915118e+4 0.072
96 4.881335e+6 8.00 4.881335e+6 0.764 -5.112090e+5 0.107
192 1.969764e+8 66.6 1.969764e+8 2.90 -15.55230e+7 0.269

Table 4.3: Computed NFCb and elapsed time in the computation for a cascade ofPD
points.

J bifurcation point
3 (−0.089643,−0.664722, 1.249136,−1.474424)
6 (0.297387,−0.923383, 1.468821,−0.746244)
12 (0.310548,−0.873006, 1.504478,−0.731940)
24 (0.316667,−0.855444, 1.510727,−0.729198)
48 (0.317656,−0.850743, 1.512561,−0.728413)
96 (0.296337,−0.907914, 1.512765,−0.728324)

Table 4.4: LPPD bifurcation points(x, y, L, S) of iterates ofMK . The left column
contains the iteration numbers.

elapsed time in the computation of NFCs of theLPPDpoints is apparently linear
for AD and far more rapid for SD, again with crossover at around iteration 24.

We remark that the finite difference approximations toa(0) andb(0) are rather
good; this is probably due to the fact thata(0) andb(0) depend only on second
and lower order derivatives off (J), while b in Table 4.3 depends on third order
derivatives.

4.8.2 Test case 2

The roots of the present map (4.41) can be found in [19, 24, 26]. It is two-
dimensional with seven parameters described in [104], as follows.

MCS :

(
x1

x2

)
7→
(
Fe−β1x2x2 + (1 − µ1)e

−β2x2x1

Pe−β3x2x1 + (1 − µ2)x2

)
, (4.41)
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10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

J

t

 

 

AD
SD
FD

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

J

t

 

 

AD
SD
FD

Figure 4.2: Elapsed times, in seconds, as a function of the iteration number, for normal
form computations using SD, AD, and FD. Left: for thePDpoints. Right: for theLPPD
points.

wherex1 andx2 are the immature and mature parts of the cod stock (at some time
t) respectively andF,P, β1, β2, β3, µ1 andµ2 are dynamics parameters. Overall
dynamical behavior ofMCS is studied in§5.2.

M
(3)
CS has a fixed point atX∗ = (x∗1, x

∗
2) = (26.16934, 3.04173) for F =

399.5861, µ1 = 0.5, µ2 = 0.444715, β1 = β2 = β3 = 1 andP = 0.5. We
continue the fixed point ofM (3)

CS starting fromX∗ with free parameterµ2 and
find a cascade of period doubling points that can be computed by switching to
new branches of period 6, 12, 24, etc. We compute the NFC of thePDpoints of
iterates 3, 6, 12, 24, 48, 96 and compare the speed ofSDandAD. The results are
given in Figure 4.3. As in test case 1, the elapsed time grows apparently linearly
for AD and much faster for SD, with crossover at around iteration 24.
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J SD t AD t FD t

3
2.715094e+0
1.173625e+0

0.077
2.715094e+0
1.173625e+0

0.186
2.715093e+0
1.173625e+0

0.048

6
3.814972e+0
1.275108e+1

0.088
3.814972e+0
1.275108e+1

0.330
3.814978e+0
1.275108e+1

0.059

12
1.783747e+0

–7.907552e+1
0.272

1.783747e+0
–7.907552e+1

0.604
1.783765e+0

–7.907370e+1
0.073

24
7.404406e–1
2.184766e+3

1.36
7.404406e–1
2.184766e+3

1.18
7.404697e–1
2.185171e+3

1.081

48
3.603919e–1

–8.539430e+4
8.86

3.603919e–1
–8.539430e+4

2.25
3.601789e–1

–8.542193e+4
0.184

96
1.337659e–1
8.791200e+5

73.7
1.337659e–1
8.791200e+5

4.73
1.340109e–1
8.802758e+5

0.325

Table 4.5: Computed coefficients and elapsed time in the computation ofnormal form
coefficients of iterates ofMK at LPPD bifurcation points.

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

J

t

 

 

AD
SD

Figure 4.3: Elapsed time in the computation of normal forms ofPDpoints, using SD and
AD for the mapMCS.
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Chapter 5

Applications in biology

Population dynamics is the study of marginal and long-term changes in the num-
bers, individual weights and age composition of individuals in one or several pop-
ulations, and biological and environmental processes influencing those changes.
Applications of discrete dynamical systems experienced enormous growth in this
area, see e.g. [71]. Software tools play an important role inthe numerical study
of these systems.

In this chapter we study two population models, namely a Leslie-Gower com-
petition model for the interaction of two different speciesof the flour beetle Tri-
bolium and an age-structured cod stock model. By using CL MATCONTM we
study the dynamical behavior of these systems. In particular, we compute stabil-
ity domains of the low-order iterations of corresponding maps.

Results from this chapter were published or accepted for publication in [41,
42].

5.1 A Leslie-Gower competition model in biology

5.1.1 Introduction

The classic principle of competitive exclusion requires, for the coexistence of
two species, that competitive interference be low. In competition models this
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requirement generally means that those coefficients which measure the intensity
of the inter-specific competition, the competition betweentwo or more differ-
ent species for some limited resource, be sufficiently small(usually in relation to
the coefficients measuring intraspecific, same species, competition). Put another
way, large values of inter-specific competition coefficients imply that one of the
species necessarily goes extinct. This form of the principle finds its most forceful
and straightforward expression in the famous Lotka-Volterra system of differen-
tial equations [11]. In the early development of competition theory, controlled
laboratory experiments played a significant role in establishing the competitive
exclusion principle. Among these were the famous experiments performed by G.
F. Gause [36] and by T. Park [81, 82, 83, 84]. Both worked within the framework
of the dynamic scenarios of Lotka-Volterra theory.

The Leslie-Gower model is a discrete time analog of the competition Lotka-
Volterra model and is known to possess the same dynamic scenarios as that fa-
mous model. The Leslie-Gower model played a significant rolein the history of
competition theory in its application to classic laboratory experiments of two com-
peting species of flour beetles. While these experiments generally supported what
became the Competitive Exclusion Principle, Park observedan anomalous coex-
istence case. Recent literature has discussed Parks coexistence case by means
of non-Lotka-Volterra model with life cycle stages. We study this dynamics by
means of a model involving only two species each with two lifecycle stages, i.e.,
juvenile and adult classes.

5.1.2 The model and its fixed points

The roots of the present model can be found in [65], [66] and [31]. Roughly
speaking, it was found in biological experiments that two species of flour beetles
can coexist under strong inter-specific competition. This was rather unexpected
at the time and several models were built to explain this phenomenon. One of the
ideas in [31] and [102] is to use an age-structured competition model. For general
background we refer to [16].

The model that we use is a four-dimensional mapMLG (5.1) with14 parame-
ters described in [102]. It is a Leslie-Gower competition model for the interaction
between the juveniles (j) and adults (a) of one species of the flour beetle Tribolium
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and the juveniles (y) and adults (z) of another species for the same food.

MLG :




j
a
y
z


 7−→




j+
a+

y+

z+


 =




b1at

1 + cjjjt + cjaat + cjyyt + cjzzt
(1 − µj)jt + (1 − µa)at

b2zt
1 + cyjjt + cyaat + cyyyt + cyzzt

(1 − µy)yt + (1 − µz)zt




.

(5.1)
Each species has its own juvenile recruitment rateb1 > 0, b2 > 0, juvenile

death rateµj andµy, and adult death rateµa andµz. For biological reasons we
have

0 < µj, µa, µy, µz < 1. (5.2)

The other coefficientscjj, cja, cjy, cjz andcyj , cya, cyy, cyz describe the compe-
tition. They are all strictly positive. By assumption, competition does not affect
the adults of either species. In the present study, as in [102], we will study the
influence of the coefficientscyj andcjy on the behavior ofMLG in a case where
all other parameters are fixed. In other words, we study the influence of the com-
petition between juveniles if all other parameters are fixed.

We first look for the fixed points(j∗, a∗, y∗, z∗) of the map (5.1), i.e. solutions
of:




j∗

a∗

y∗

z∗


 =




b1a
∗

1 + cjjj∗ + cjaa∗ + cjyy∗ + cjzz∗

(1 − µj)j
∗ + (1 − µa)a

∗

b2z
∗

1 + cyjj∗ + cyaa∗ + cyyy∗ + cyzz∗

(1 − µy)y
∗ + (1 − µz)z

∗




, (5.3)

From the second and last equations of this system we obtain the relations:

a∗ =
1−µj

µa
j∗,

z∗ =
1−µy

µz
y∗.

(5.4)
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As a consequence,j∗, a∗ are either both zero or both nonzero. Similarly,
y∗, z∗ are both zero or both nonzero. The trivial vector(0, 0, 0, 0)T is always a
solution of (5.3) but is of little interest.

We first consider ’horizontal’ fixed points, i.e. fixed pointsof the form
(j∗, a∗, 0, 0). From (5.3) it follows easily that they must satisfy

j∗ =
b1(1 − µj) − µa

µacjj + cja(1 − µj)
, (5.5)

a∗ =
1 − µj

µa
j∗ =

b1(1 − µj)
2 − µa(1 − µj)

µa(µacjj + cja(1 − µj))
, (5.6)

with (j∗, a∗) > 0 (i.e. j∗, a∗ are biologically meaningful) iff

b1
1 − µj

µa
> 1. (5.7)

Similarly, there are unique ’vertical’ fixed points of the form (0, 0, y∗, z∗)
given by

y∗ =
b2(1 − µy) − µz

µzcyy + cyz(1 − µy)
, (5.8)

z∗ =
1 − µy

µz
j∗ =

b2(1 − µy)
2 − µz(1 − µy)

µz(µzcyy + cyz(1 − µy))
. (5.9)

These are biologically meaningful if(y∗, z∗) > 0, i.e. iff

b2
1 − µy

µz
> 1. (5.10)

The general form of the Jacobian matrix of our model is:




−b1cjja∗

β2
1

b1β1−b1a∗cja

β2
1

−b1cjya∗

β2
1

−b1cjza∗

β2
1

1 − µj 1 − µa 0 0
−b1cyjz∗

β2
2

−b2cyaz∗

β2
2

−b1cyyz∗

β2
2

b2β2−b2z∗cyz

β2
2

0 0 1 − µy 1 − µz



, (5.11)
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where

β1 = 1 + cjjj
∗ + cjaa

∗ + cjyy
∗ + cjzz

∗, (5.12)

β2 = 1 + cyjj
∗ + cyaa

∗ + cyyy
∗ + cyzz

∗. (5.13)

We now study the stability of the ’axis’, i.e. horizontal or vertical fixed points.
First we consider the horizontal fixed points. So we considerthe Jacobian matrix
evaluated at(j∗, a∗, 0, 0):




−b1cjja∗

β2
1

b1β1−b1a∗cja

β2
1

−b1cjya∗

β2
1

−b1cjza∗

β2
1

1 − µj 1 − µa 0 0

0 0 0 b2
β2

0 0 1 − µy 1 − µz


 . (5.14)

Because of the2×2 block of zeros in the lower left corner, the eigenvalues of this
4 × 4 matrix are the eigenvalues of the2 × 2 block in the upper left corner, and
those of the2 × 2 block in the lower right corner.

The eigenvalues of the upper left block determine whether ornot the horizon-
tal fixed point is stable in the absence of competition by the second species. The
coefficients related to the second species or to the competition between the two
species do not appear in the entries of this block.

The eigenvalues of the lower right block determine if a fixed point that is stable
within the axis will remain stable in the presence of an invading small number of
the second species.

The characteristic polynomial of the lower right block is

λ2 − (1 − µz)λ− (1 − µy)
b2
β2
. (5.15)

We first establish the conditions under which the rootsλ1 andλ2 of (5.15) are
inside the unit circle. By (5.2), it is necessary and sufficient that:

1

2
[(1 − µz) +

√
(1 − µz)2 + 4(1 − µy)

b2
β2

] < 1. (5.16)
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This is equivalent to:

√
(1 − µz)2 + 4(1 − µy)

b2
β2

< 1 + µz, (5.17)

and also to:
(1 − µy)b2
µzβ2

< 1. (5.18)

By substituting the value ofβ2 in (5.13) into (5.18), and evaluating at(j∗, a∗, 0, 0),
we have :

b2(1 − µy)

µz(1 + cyjj∗ + cyaa∗)
< 1. (5.19)

So if the eigenvalues of the upper left2 by 2 block in (5.14) are inside the unit
circle, then (5.19) is a necessary and sufficient condition for the stability of the
horizontal fixed points.

A similar analysis shows that a vertical axis fixed point is stable if

b1(1 − µj)

µa(1 + cjyy∗ + cjzz∗)
< 1. (5.20)

We now consider the coexistence fixed points, i.e. solutionsof (5.3) which have
no zero components. By substituting (5.4) in (5.3), we have asystem of two linear
equations forj∗ andy∗:

j∗(cjj + cja
1−µj

µa
) + y∗(cjy + cjz

1−µy

µz
) = b1

1−µj

µa
− 1,

j∗(cyj + cya
1−µj

µa
) + y∗(cyy + cyz

1−µy

µz
) = b2

1−µy

µz
− 1.

(5.21)

For convenience we denote the coefficients of this system as follows:

α =
1 − µj

µa
, β =

1 − µy

µz
,

ǫ = cjj + cjaα, γ = cjy + cjzβ,

δ = cyj + cyaα, η = cyy + cyzβ.



i

i

“main” — 2008/2/28 — 17:19 — page 101 — #121
i

i

i

i

i

i

5.1 A Leslie-Gower competition model in biology 101

Then the system (5.21) can be rewritten as:

j∗ǫ+ y∗γ = b1α− 1,
j∗δ + y∗η = b2β − 1.

(5.22)

It has a unique solution if :

H ≡ det

(
ǫ γ
δ η

)
6= 0, (5.23)

which is then given by:

j∗ =
γ(b2β − 1) − (b1α− 1)η

δγ − ǫη
, (5.24)

y∗ =
−ǫ(b2β − 1) + (b1α− 1)δ

δγ − ǫη
. (5.25)

By substitutingj∗ andy∗ in (5.4), we finda∗ andz∗:

a∗ = α(
γ(b2β − 1) − (b1α− 1)η

δγ − ǫη
), (5.26)

z∗ = β(
−ǫ(b2β − 1) + (b1α− 1)δ

δγ − ǫη
). (5.27)

The Jacobian matrix evaluated in(j∗, a∗, y∗, z∗) is:




b1cjja∗

β2
1

−b1β1−b1a∗cja

β2
1

−b1cjya∗

β2
1

−b1cjza∗

β2
1

1 − µj 1 − µa 0 0
−b1cyjz∗

β2
2

−b2cyaz∗

β2
2

−b1cyyz∗

β2
2

−b2β2−b2z∗cyz

β2
2

0 0 1 − µy 1 − µz



. (5.28)

The resulting eigenvalue equation is quartic, but we can compute the eigenvalues
numerically in CL MATCONTM if the actual values of state variables and param-
eters are known. In this way we will be able to determine the stability of fixed
points numerically. We will now study the overall dynamics of the model for the
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Table 5.1: Parameter values for the Leslie–Gower model.

b1 = 20 cjj = 0.36 b2 = 18 cja = 0.55 cjz = 0.23 µj = 0.23

µa = 0.72 cya = 0.08 cyy = 0.18 cyz = 0.26 µy = 0.29 µz = 0.98

fixed model parameter values in Table 5.1. We perform a numerical continuation
of the fixed points ofMLG under variation of the control parameterscyj andcjy.
First we consider the horizontal fixed point

FH = (21.50285631, 22.99611022, 0, 0),

which remains unchanged sincecjy andcyj do not appear in (5.5) and (5.6). Since

b1
1 − µj

µa
= 20 × (1 − 0.23)/0.72 = 20.2778 > 1, (5.29)

by (5.7), the horizontal fixed point is biologically meaningfull. Also, the free
parameters do not enter in the entries of the upper left blockmatrix of (5.14). We
first show that all the eigenvalues of this block are inside the unit circle. The2 by
2 upper left block is:

( −b1cjja∗

β2
1

b1β1−b1a∗cja

β2
1

1 − µj 1 − µa

)
. (5.30)

Evaluation of this matrix inFH and substitution of the values of the model param-
eters gives: (

−0.3619 0.3821
0.77 0.28

)
. (5.31)

The eigenvalues of this matrix are−0.6712 and0.5893, with absolute values less
than1. That means that in a continuation of the horizontal fixed points with either
cyj or cjy free, the eigenvalues of the upper left block of (5.14) are inside the
unit circle. Now we consider the stability condition (5.19). For the given model
parameters, the horizontal fixed point is stable if :

12.78

21.0728 × cyj + 2.7829
< 1. (5.32)
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This is equivalent to

cyj > cyj0,

wherecyj0 ≈ 0.474477674. HenceFH is unstable if0 ≤ cyj < cyj0 and stable
if cyj0 < cyj ≤ 1. It is biologically plausible that the horizontal fixed point is
stable only if the juveniles of the first species suppress thejuveniles of the second
species to a sufficient degree.

We will study the overall dynamics of the model for the parameter values
specified in Table 5.1. The parameterscjy andcyj will vary.

5.1.3 Numerical continuation of the horizontal and vertical fixed points

First we consider the horizontal and the vertical fixed points and their stability.
For all values ofcjy andcyj , the fixed point obtained from (5.5) and (5.6)

FH = (21.50285631, 22.99611022, 0, 0),

remains unchanged sincecjy and cyj do not appear in (5.5) and (5.6). For the
given model parameters, the horizontal fixed point is stableif cyj > cyj0, where
cyj0 = 0.474408 and loses stability at a branch point

label = BP,
x = ( 21.502856 22.996110 0.000000 0.000000 0.474408 )

It is biologically plausible that the horizontal fixed pointis stable only if the
juveniles of the first species suppress the juveniles of the second species to a suf-
ficient degree.

Now we consider the vertical fixed point

FV = (0, 0, 32.68698060, 23.68138391)T .

FV is stable ifcjy > cjy0, wherecjy0 = 0.4571312026. It loses stability via the
branch point

label = BP,
x = ( 0.000000 0.000000 32.686981 23.681384 0.457129 )
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5.1.4 Numerical continuation of the coexistence fixed points

Now we consider the coexistence fixed point(j∗, a∗, y∗, z∗), starting the continu-
ation from

FC = (16.42912, 17.570032, 28.871217, 20.916902),

wherecyj = cjy = 0. This fixed point bifurcates into vertical and horizontal fixed
points respectively, when one ofcjy and cyj is varied and the other variable is
fixed at0. In the model this means that one species drives another to extinction.
Continuation of the coexistence fixed points, wherecjy is the free parameter leads
to BP and PD bifurcations atcjy = cyj0 andcjy = 0.170849, respectively. The
coexistence fixed points bifurcate into vertical fixed points at the BP. The coexis-
tence fixed point is stable before the BP and unstable afterwards, this reconfirms
the above analytical results. If we continue the coexistence fixed points with the
free parametercyj , it bifurcates into the horizontal fixed point at another BP.The
coexistence fixed point is stable before this BP and unstableafterwards.

The solutions to the equationH = 0, whereH is given by (5.23), are the
parameter values for which the existence and uniqueness of the coexistence fixed
point are not guaranteed. In the present context, where onlycyj andcjy vary, this
leads to the condition

cyjcjy + acyj + bcjy − c = 0, (5.33)

wherea = 0.1666326531, b = 0.0855555552, andc = 0.3350275226, which
defines a hyperbola in(cyj , cjy) space. It is not hard to prove that the point
(cyj0, cjy0) lies on the hyperbola.

Now we return to the stability of the coexistence fixed points. The coexistence
fixed point is unstable outside the rectangle

S1 = {(cyj , cjy) : 0 ≤ cyj ≤ cyj0, 0 ≤ cjy ≤ cjy0} .

Figure 5.1 shows the hyperbolaH = 0 and the rectangleS1.
InsideS1 the stability properties of the coexistence fixed point are more com-

plicated. By numerical continuation we find that there is an interior region in
which the coexistence fixed points are unstable. This regionis bounded by the
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PD curve, where the stability changes. The projection of thePD curve on the
(cyj , cjy)-plane goes twice through the point(cyj0, cjy0). Indeed, the PD curve
has two fold-flip points, where(cyj , cjy) = (cyj0, cjy0). Moreover, there are two
gereralized period-doubling points GPD on the PD curve:
(cyj , cjy) = (0.210138, 0.383143) and(cyj , cjy) = (0.454279, 0.297779). These
points along with the corresponding normal form coefficients are:

label = GPD ,
x = ( 19.463734 20.815382 4.163299 3.016267
0.297779 0.454279 )

Normal form coefficient of GPD = 5.271115e-006
label = LPPD,

x = ( 20.354989 21.768530 1.744899 1.264162
0.457129 0.474408 )

Normal form coefficient for LPPD :
[a/e , be]= -1.329134e-009, -5.060725e-005,

label = GPD ,
x = ( 4.771088 5.102414 28.857159 20.906717

0.383143 0.210138 )
Normal form coefficient of GPD = 4.494110e-008
label = LPPD,
x = ( 1.297714 1.387833 30.714296 22.252194

0.457129 0.474408 )
Normal form coefficient for LPPD :
[a/e , be]= -1.076502e-008, -2.619423e-006,

The branches of fold curves of the second iterate can be computed by switch-
ing at the GPD points. These curves emanate tangentially to the PD curve and
form the stability boundary of the 2-cycles that are born when crossing the PD-
curve.

More precisely, the region where there are stable fixed points of the second
iterate is bounded by the two fold curves of the second iterate and the lower left
part of the PD curve. From the applications point of view, this is the most interest-
ing region because it shows that indeed the two species can coexist even when the
competition is strong. We note that if bothcyj andcjy are larger than0.5 then the
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Figure 5.1: The flip curvePD1, the fold curve of the second iterateLP 2, the hyperbola
H = 0 and the rectangleS1 in (cyj , cjy)-plane.

horizontal fixed points, the vertical fixed points and the fixed points of the second
iterate are all stable. The PD curve and the fold curves of thesecond iterate are
given in Figure 5.1.

It can be shown analytically that there is a straight line of coexistence fixed
points for the fixed parameter values(cyj , cjy) = (cyj0, cjy0) which bifurcates to
the horizontal and vertical fixed points wherecjy = cjy0 andcyj = cyj0 respec-
tively. This straight line can be found numerically by switching to the fold curve
in the fold-flip ( LPPD) points of the flip curve since technically it is a curve of
(generalized) fold points of the original Leslie-Gower map.

5.2 An age-structured cod stock model

We study the long-term dynamics of a two-dimensional stage-structured popula-
tion model for the Barents Sea cod stock with nonlinear cannibalism terms in-
troduced by A. Wikan and A. Eide (2004). The model is represented by a two-
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dimensional system of difference equations for two stages of population. Follow-
ing Wikan and Eide we consider three special cases of the original model with
different ranges of cannibalism pressures on the new born, immature and the old-
est part of immature. Using CL MATCONTM, we discuss mathematical features
of the model, that were not considered heretofore. This includes the continuation
of curves of codimension 1 bifurcations of fixed points, and normal form analysis
of codim 1 and codim 2 bifurcations. In this way we can computethe stability
domains of the map and its iterates. We concentrate in particular on the third and
fourth iterates of the map and their relation to the 1:3 and 1:4 resonant Neimark-
Sacker points.

5.2.1 Introduction

In [104] Wikan and Eide discuss the highly oscillatory year to year behavior of
fish population biomasses of commercial interest. This is well documented in [70]
where data for several North Atlantic fish stocks are presented. Among them, the
Barents Sea Cod stock is known as a heavily fluctuating stock biomass, see [37].
Four principal reasons may serve to explain these fluctuations, see [71]:

• Environmental changes: variation in temperature, salinity, current system
etc.

• Ecosystem dynamics: multispecies dynamics, change in preyand predator
biomasses.

• Changes in fishing pattern: open access dynamics, fisheries regulations.

• Cod stock dynamics: including recruitment and cannibalismdynamics.

There is no established understanding of which of the above factors is the most
dominant as they probably all contribute to the observed fluctuations. The aim of
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the study in [104] is to concentrate on the last factor. Intraspecific predation or
cannibalism is a well known behavioral trait found in a variety of animal popula-
tions, see [33] and [85]. This biological phenomenon is alsoexpected to play a
crucial role in the population dynamics of cod stocks, see [67].

We will consider a discrete nonlinear stage structured model with seven pa-
rameters taken from [104]. In previous studies [104, 105] only a one-parameter
bifurcation analysis is performed and the analysis of the supercritical nature of
the found bifurcation points was possible only in very special situations. We ex-
tend this by numerical means to a two-parameter analysis with computation of all
relevant normal form coefficients, which leads to several new results.

5.2.2 The model, its fixed points and their stability properties

The roots of the present model can be found in [47, 24, 26]. Themodel that we use
is a two-dimensional difference equation (5.34) with sevenparameters described
in [104] as follows

MCS :

(
x1

x2

)
7→
(
Fe−β1x2x2 + (1 − µ1)e

−β2x2x1

Pe−β3x2x1 + (1 − µ2)x2

)
, (5.34)

wherex1,t andx2,t are the immature and mature parts of the population at timet
respectively.F is the fecundity ( that is the number of newborns per adult), and
P , 0 < P ≤ 1, is the fraction of the immature population that survive andenter
the mature stage one time later.µ2 may be interpreted as natural death rate.µ1

combines natural death and maturation, soµ1 ≥ P . The corresponding param-
etersβi, i = 1, 2, 3 will be referred to as cannibalism parameters. Thus,F is
reduced by the factore−β1x2 due to cannibalism practised by the mature part of
the population. In a similar way the remaining part of the immature population
(1 − µ1) is reduced by the factore−β2x2, and finally the survival from immature
stage to the mature stage is reduced by the factore−β3x2 due to cannibalism prac-
tised by individuals in the mature stage. In the model (5.34)we do not consider
cannibalism within the stages.
The basic analytical results are given in [104]. We summarize them briefly. The
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general form of the Jacobian of (5.34) is:
(

(1 − µ1)e
−β2x2,t −F.β1e

−β1x2,tx2,t + Fe−β1x2,t − (1 − µ1).β2e
−β1x2,tx1,t

P.e−β3x2,t −P.β3e
−β3x2,tx1,t + (1 − µ2)

)
.

(5.35)
Clearly, the vector(x∗1, x

∗
2) = (0, 0) is a trivial fixed point of (5.34). Evaluation

of (5.35) at the trivial fixed point gives,
(

1 − µ1 F
P 1 − µ2

)
. (5.36)

The characteristic polynomial of (5.36) is given by,

λ2 + aλ+ b = 0, (5.37)

wherea = µ1 + µ2 − 2 andb = (1 − µ1)(1 − µ2) − FP . The roots of (5.37) ,
eigenvalues of (5.36), are given by:

1

2

(
2 − (µ1 + µ2) ±

√
(µ1 + µ2)2 + 4µ2

(
F.P + (1 − µ1)µ2

µ2
− 1

))
.

(5.38)
We denote the inherent net productive number,R, by

R =
F.P + (1 − µ1)µ2

µ2
, (5.39)

It is clear that the trivial fixed point(0, 0) becomes unstable whereR > 1, i.e.,
F.P > µ1µ2. In the rest of this study we assumeR > 1. A nontrivial fixed point
(x∗1, x

∗
2) of the model must satisfy:

x∗1 = F.e−β1x∗

2x∗2 + (1 − µ1)e
−β2x∗

2x∗1,

x∗2 = P.e−β3x∗

2x∗1 + (1 − µ2)x
∗
2.

(5.40)

By the second equation of (5.40), we have

x∗1 =
µ2

P
eβ3x∗

2x∗2. (5.41)
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Moreover, by substituting (5.41) into the first equation of (5.40) we find thatx∗2
must satisfy the nonlinear equationg(x∗2) = 0, where

g(x∗2) =
F.P

µ2
e−(β1+β3)x∗

2 + (1 − µ1)e
−β2x∗

2 − 1, (5.42)

Evidentlyx∗2 is uniquely determined from (5.42) sinceǵ(x∗2) < 0 , g(0) = R−1 >
0 andg(x∗2) < 0 whenx∗2 is sufficiently large. The characteristic polynomial of
(5.35) evaluated at(x∗1, x

∗
2) is given by

P (λ) = λ2 + a1λ+ a2, (5.43)

where

a1 = (1 + β3x
∗
2)µ2 − 1 − (1 − µ1)e

−β2x∗

2 ,

a2 = (1 − µ1)e
−β2x∗

2(1 − (β1 − β2 + β3)µ2x
∗
2) − (1 − β1x

∗
2)µ2.

(5.44)

The nontrivial fixed point(x∗1, x
∗
2) is stable if the roots of (5.43) are both in]−1, 1[.

We use the stability conditions in the form of the Jury criteria, see [71],§A2.1, i.e.,
P (1) > 0, P (−1) > 0 anda2 < 1.
Stability conditionP (1) > 0 holds when

1 + a1 + a2 > 0,

i.e., (
β1 + β3 − (1 − µ1)(β1 − β2 + β3)e

−β2x∗

2

)
µ2x

∗
2 > 0. (5.45)

It is clear thatP (1) = 0 is a criterion to detect a fold bifurcation (LP), where a
multiplier +1 crosses the unit circle. Moreover, it should be noticed that the left
hand side of (5.45) is always positive for any nontrivial fixed point (x∗1, x

∗
2), so

there can be no transition from stability to instability through a fold bifurcation.
The second stability conditionP (−1) > 0 gives

1 − a1 + a2 > 0,

i.e.,

(1−µ1)e
−β2x∗

2(2−(β1−β2+β3)µ2x
∗
2)+2(1−µ2)+(β1−β3)µ2x

∗
2 > 0. (5.46)
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EvidentlyP (−1) = 0 is a criterion to detect a flip bifurcation(PD).
Finally, if λ1,2 = e±iθ, then the stability conditionλ1λ2 < 1 or equivalently

a2 < 1 leads to

1 + (1 − β1x
∗
2)µ2 − (1 − µ1)e

−β2x∗

2(1 − (β1 − β2 + β3)µ2x
∗
2) > 0. (5.47)

It is clear thata2 = 1 is a criterion to detect a Neimark-Sacker bifurcation, where
a conjugate pair of complex multipliers crosses the unit circle.

5.2.3 Numerical bifurcation analysis of the model

Following [104] we consider three special parameter rangesof (5.34). In each
case, we first discuss analytically the stability of the reduced model by using the
stability conditions (5.46) and (5.47) derived in the previous section. Then, we
use CL MATCONTM for bifurcation analysis of the map. We note that all normal
form coefficients in our computations are small in absolute value; this is caused
by the exponentials in the definition of the map and does not indicate that the sign
of the coefficients cannot be trusted.

Case 1

We consider the case where the cannibalism pressures on the newborns, immature
population and those on the threshold of entering the maturestage are equal, i.e.,
β1 = β2 = β3 = β. Thus, the model (5.34) is rewritten as

(
x1

x2

)
7→
(
F.e−βx2x2 + (1 − µ1)e

−βx2x1

P.e−βx2x1 + (1 − µ2)x2

)
. (5.48)

The nontrivial solution of this model can be expressed by

(x∗1, x
∗
2) = (

µ2

β.P
K. lnK,

1

β
lnK), (5.49)

where

K =
1

2
(1 − µ1) +

√
F.P

µ2
+

(1 − µ1)2

4
=

1 − µ1

2
+

√
(1 − µ1)2 + 4(R− 1)

2
.

(5.50)
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We note that

K ≥ 1

2
(1 − µ1) +

√
µ1 +

(1 − µ1)2

4
≥ 1

2
(1 − µ1) +

1

2
(1 + µ1) = 1. (5.51)

The characteristic polynomial (5.43) can be reduced to

P1(λ) = λ2 + b1λ+ b2 = 0, (5.52)

where

b1 = µ2(1 + βx∗2) − 1 − 1 − µ1

K
,

b2 =
1 − µ1

K
(1 − βµ2x

∗
2) − (1 − βx∗2)µ2.

(5.53)

Accordingly, the stability conditions (5.46) and (5.47) become

1 − µ1

K
(2 − µ2 lnK) + 2(1 − µ2) > 0, (5.54)

(µ2 lnK − 1)(
1 − µ1

K
− 1) + µ2 > 0. (5.55)

In the stability conditions (5.54) and (5.55), the interaction parameterβ dropped
out. Denoting the left hand side of (5.54) and (5.55) byB andC respectively, it

is clear thatB is positive ifK ≤ e
2

µ2 andC is positive ifK ≤ e
1

µ2 . Thus, on

the common domainK ≤ e
1

µ2 both (5.54) and (5.55) hold, hence in this part of
parameter space(x∗1, x

∗
2) is a stable fixed point. In [104] it is shown by qualitative

arguments that loss of stability is possible through eithera NS or PD bifurcation
but that the latter is possible only in a small parameter range. We will make this
more precise by numerical computations.
We do a numerical bifurcation analysis of (5.48) by startingfrom the model pa-
rametersβ = 1, P = 0.5, µ1 = 0.5, F = 120 andµ2 = 0.9. For the above
parameter set the nontrivial fixed point(x∗1, x

∗
2) = (32.2814, 2.1305) is computed

from (5.49) and is stable. We do a numerical continuation of fixed points back
and forth whereF is the free parameter, we refer to this asRun 1. We obtain the
following CL MATCONTM output:
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34.29 34.295 34.3

2.1714
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2.1718

2.1719

2.172

2.1721

x
1

x 2

Figure 5.2: The invariant curve forβ1 = β2 = β3 = 1, µ1 = P = 0.5, µ2 = 0.9,F =
130.65.

label = BP,x = ( 0.00000 0.00000 0.90000 )
label = NS,x = ( 34.287724 2.171557 130.609334 )
normal form coefficient of NS = -5.721873e-004

Two bifurcation points are detected along the fixed point curve, a branch point
(BP) and a supercritical Neimark-Sacker point (supercriticality follows from the
fact that the normal form coefficient of the NS point is negative). The nontrivial
fixed point is stable only for0.9 < F < 130.609334. The dynamics beyond
the upper threshold is a stable invariant curve which surrounds the unstable fixed
point. Such a curve is shown in Figure 5.2.
The new branch of fixed points that was encountered inRun 1for F = 0.9 is
computed inRun 2and gives the following CL MATCONTM output:

label = BP, x = ( -0.00000 -0.00000 0.90000 )
label = PD, x = ( 0.000000 0.000000 3.300000 )
normal form coefficient of PD = 8.753732e-002

Clearly, the new branch is the trivial branch of fixed points.The trivial fixed
point is stable before the BP point and unstable afterwards where the reproductive
numberR in (5.39) becomes larger than 1.
Now we compute the Neimark-Sacker bifurcation curve forth and back, by start-
ing from the NS point ofRun 1, with two free parametersF andµ2. We call this
Run 3:
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Figure 5.3: An exact 3-cycle close to theR3 point, whereF = 399.5861 andµ2 =
0.444715 .

label = R3,
x = ( 61.127825 3.001853 399.586101 0.505977 -0.500000 )
Normal form coefficient of R3 :

Re(c_1) = -1.080111e-000
label = R2,
x = ( 32.714248 2.069443 117.303643 0.997942 -1.000000 )
Normal form coefficient of R2 :
[c , d] = -1.518117e-004, -3.075159e-003

In Run 3, we find a resonance 1:3 point. Since its normal form coefficient is
negative, the bifurcation picture near theR3 point is qualitatively the same as
presented in [62], Fig. 9.12. In particular, there is a region near theR3 point
where a stable invariant closed curve coexists with an unstable equilibrium. For
parameter values close to theR3 point, the map has a saddle cycle of period three.
An exact 3-cycle near theR3 point isC3 = {X1,X2,X3} where

X1 = (58.66425, 2.31385), X2 = (94.32305, 4.18521), X3 = (26.16934, 3.04173).

This cycle and the parameter values are given in Figure 5.3. The multipliers of the
fixed point of the third iterate inX1 areλ1 = 1.03980469 andλ2 = 0.356852,
thus confirming the saddle character.
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If we continue the fixed point of the third iterate of the map starting fromX3 for
decreasing values ofµ2 then it gains stability at a fold point forµ2 = 0.444666.
This stable 3-cycle loses its stability again at a PD point for µ2 = 0.499060
after which a series of successive period doubling bifurcations occur such that
new orbits of period3.2k, k = 1, 2, ..., are created. A 6-cycle is given byC6 =
{X1,X2,X3,X4,X5,X6} where

X1 = (49.79841, 1.68883),X2 = (129.26567, 5.43071)

X3 = (9.78778, 2.95507), X4 = (61.74516, 1.70878)

X5 = (1.29237, 6.43133), X6 = (4.24233, 3.26836).

This cycle is depicted in Figure 5.4. A 12-cycle with parameter values is given in
Figure 5.5.

We note that forµ2 ∈ [0.444666, 0.499060] we have bistability of a fixed
point of the map and a fixed point of the third iterate.

We now consider the map near the detectedR2 point computed inRun 3. Since
the normal form coefficientsc andd are both negative, we are precisely in the sit-
uation of [62], Fig. 9.10 (cases = −1). For a region of parameter values close
to theR2 point the map has an unstable 2-cycle that coexists with a stable closed
invariant curve. Crossing a bifurcation curve, the 2-cyclesimultaneously under-
goes a NS bifurcation. By branch switching in theR2 point, we compute the NS
branch of the second iterate, which corresponds toH(2) in [62], Fig. 9.10. Fur-
ther, from theR2 point a flip curve originates. Computing the flip curve, reveals
that a flip bifurcation exists in a small vicinity of the parameterµ2 = 0.997942.
This is consistent with the analysis in [104] of the reduced model in Case 1. A
figure of the Neimark-Sacker curve inRun 3, the flip curve through theR2 point
and the branch of NS points of the second iterate is given in Figure 5.6. A mag-
nified picture of these curves is given in Figure 5.7. This Figure can be compared
(qualitatively, of course) with [62], Fig. 9.10.
We now continue the fixed point(x∗1, x

∗
2) = (15.360; 13.183289) along the straight

line F = 114 with P = µ1 = 0.5, µ2 = 0.1 andβ = 1 and varyingµ2. We note
that the fixed point is initially stable, and call thisRun 4:

label = PD, x = ( 32.053569 2.055439 0.998335 )
normal form coefficient of PD = 2.952412e-003
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Figure 5.4: An exact 6-cycle forF = 399.5861, P = µ1 = 0.5, µ2 = 0.508 andβ = 1.

The flip points in Figure 5.6 below theR2 point have a positive normal form
coefficient. Hence a supercritical stable 2-cycle is born when crossing the flip
curve, which coexists with an unstable fixed point of the map.A point on this
stable 2-cycle forF = 114 andµ2 = 0.999831 is given by

C2 = {X1,X2} = {(40.608284, 2.598127); (23.550936, 1.511325)} .

The 2-cycle exists for0.998335 < µ2 < 1.

Case 2

Now we turn to the case where the cannibalism pressure on the newborn is dom-
inating and decreases as age increases, i.e.,β1 > β2 > β3. Clearly, the left hand
sides of (5.46) and (5.47) are positive for small values ofx∗2, i.e., in this part of
parameter space the fixed point(x∗1, x

∗
2) is stable. A qualitative reasoning in [104]

leads to the conclusion that both a NS and a PD bifurcation arepossible, but the
latter only in a small parameter region.
For the numerical stability analysis of the fixed point we consider the parameter
setµ1 = µ2 = P = 0.5, F = 55 andβi = 4− i, i = 1, 2, 3. For these parameters
the fixed point(x∗1, x

∗
2) = (2.8213, 1.01868) is numerically computed from (5.41)

and (5.42). We note that it is an unstable fixed point. Now, inRun 5, we continue
fixed points whereF is the free parameter.
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Figure 5.5: An exact 12-cycle forF = 399.5861, P = µ1 = 0.5, µ2 = 0.52 andβ = 1.

label = NS, x = ( 2.718282 1.00000 50.903622 )
normal form coefficient of NS= -3.717346e-002
label = BP, x = ( -0.00000 -0.00000 0.50000 )

Run 5shows that the fixed point is stable for small values of the fecundity, i.e.,
between BP and NS. WhenF exceeds the thresholdFc = 50.903622, i.e., when
the inequality sign in (5.47) is reversed, we find a stable invariant curve.
Now we continue with free parameterβ1 . We refer to this asRun 6:

label = NS, x = ( 3.132638 1.072181 2.793847 )
normal form coefficient of NS = -2.864118e-002
label = PD, x = ( 60.897776 3.007941 0.332657 )
normal form coefficient of PD = 1.075561e+001
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Figure 5.6: Neimark-Sacker bifurcation curve ofRun 3and the flip curve through theR2

point.

The fixed point is stable between the PD and NS points, i.e., whereβ1 ∈ [2, 2.7987],
β2 = 2, β3 = 1. We proceed with the numerical investigation of stability where
β2 is free, inRun 7:

label = NS, x = ( 2.932052 1.038207 1.258253 )
normal form coefficient of NS = -3.139363e-002

We find that the fixed point is unstable before NS and stable afterwards, i.e.,
whereβ1 = 3, β2 ∈ [1, 1.258201] , β3 = 1. Next, we continue withβ3 free, in
Run 8:

label = NS, x = ( 2.926588 1.001660 1.070402 )
normal form coefficient of NS = -3.266591e-002
label = PD, x = ( 8.864167 0.362921 8.805179 )
normal form coefficient of PD =1.186472e+000

By monitoring the multipliers inRun 8it is found that the fixed point is stable
between the NS and PD points, i.e., the fixed point is stable whereβ1 = 3, β2 =
2, β3 ∈ [1.070402, 2]. Since the normal form coefficient of the PD point is pos-
itive, a stable 2-cycle is born forβ3 > 8.805179. Moreover, it can be seen that
increasingβ3, the cannibalism of the immature on the threshold of entering the
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Figure 5.7: Close up of the flip curve and the NS curve of the second iteraterooted in the
R2 point.

mature age, results in a wider range of stability than increasingβ1.
For a further analysis we ignore the conditionβ1 > β2 > β3 and compute the
Neimark-Sacker curve, by starting at the NS point inRun 6, with free parameters
F andβ3, this isRun 9:

label = R4, x =( 3.119219 1.003084 58.799673 1.131015 0 )
normal form coefficient of R4 : A= -4.610753e+00 +
-1.142472e+00 i

Since|A| > 1 in theR4 point in Run 9, two cycles of period 4 of the map
are born. The fixed pointsFk, k = 1, 2, 3, 4 of the fourth iterate of the map
which are closer to the original fixed point are saddles, while the remote ones
Sk, k = 1, 2, 3, 4 are attractors. An exact stable 4-cycle forβ3 = 1.131015 and
F = 58.9 is given byC4 = {X1,X2,X3,X4} where
X1 = (3.21494, 1.035797);X2 = (2.93066, 1.01606),
X3 = (3.031476, 0.97239);X4 = (3.31453, 0.99085)
We present this cycle in Figure 5.8. The multipliers of the fourth iterate of the
map inX1 areλ1 = 0.999819 andλ2 = 0.996348, confirming the stability of the
4-cycle.
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Figure 5.8: An exact 4-cycle forµ1 = µ2 = P = 0.5, β1 = 3, β2 = 2, β3 =
1.131015, F = 58.9.

To compute the stability domain of the 4-cycle we note that since |A| > 1,
there are two half-lines of fold bifurcation curves of the fourth iterate that emanate
from theR4 point. We present these lines in Figure 5.9.

For each set of parameter values in the wedge between the two half-lines both
a stable 4-cycle and an unstable 4-cycle exist. For fixed values ofF larger than
that of theR4 point the fixed points of the fourth iterate form a closed curve that
changes stability in two fold curves. We note that the stable4-cycles exist in a
wide parameter region but there is no bistability with fixed points of the original
map.

The Neimark-Sacker curve, starting from the NS point inRun 8, whereµ2 andβ3

are free parameters is computed inRun 10:

label = R4 , x = ( 3.011107 0.988367 0.511112 1.104883
-0.000000 )
Normal form coefficient of R4 : A = -4.675831e+000 +
-1.079711e+000 i
label = R3 , x = ( 5.026676 0.735955 0.910954 1.795572
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Figure 5.9: Two half-lines of fold bifurcation points emanate from anR4 point.

-0.500000 )
Normal form coefficient of R3 : Re(c_1) = -1.581503e+000
label = R2 , x = ( 6.126237 0.627511 1.395201 1.995804
-1.000000 )
Normal form coefficient of R2 : [c , d] = 6.737115e-002,
-1.789198e-001

Case 3

In the last case we assumeβ1 < β2 < β3. It is clear that the left hand sides of
(5.46) and (5.47) are positive ifx∗2 is small enough, i.e., there exists a parameter
interval where(x∗1, x

∗
2) is stable. Ifβ1 ≈ β2 ≈ β3 (but β1 < β2 < β3 ), then the

left hand side of (5.47) is approximately equal to1+(1−β1x
∗
2)µ2−(1−µ1)e

−β2x∗

2

and can be negative for some parameter values. That means that there exists a
parameter region where a Neimark-Sacker bifurcation may occur. We note that in
Case 3 whenβ3 becomes large compared toβ1, then(β1−β3)µ2x

∗
2 inB (left hand

side of (5.54)) becomes the dominating negative term which strongly suggests that
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in this case there will be a flip bifurcation at the instability threshold. We remark
that in the next runs, we are interested only in the rangeβ1 < β2 < β3.

We consider the parameter setµ1 = µ2 = P = 0.5, F = 200 andβi = i, i =
1, 2, 3. The fixed point

(x∗1, x
∗
2) = (72.8206, 1.33341). (5.56)

is computed from (5.41) and (5.42). We note that this is an unstable fixed point.
Now we continue the fixed point (5.56) whereF is the free parameter, we call this
Run 11:

label = PD, x = ( 25.184229 1.056945 64.424674 )
normal form coefficient of PD = 1.910721e-001

In Run 11there is a supercritical flip bifurcation at the instabilitythreshold,
hence a stable 2-cycle is born forF > 64.424674. The fixed point is unstable
before the PD point and stable afterwards. The new branch of fixed points of the
second iterate is given in Figure 5.10.

We proceed with the continuation of fixed points whereβ1 is free, we call this
Run 12:

label = PD, x = ( 49.555931 1.231597 1.337322 )
normal form coefficient of PD = 4.476680e-003
label = NS, x = ( 6.567122 0.731554 4.410725 )
normal form coefficient of NS = -7.669904e-003

The fixed point is stable between the PD and NS points, i.e., when
β1 ∈ [1.337322, 2] , β2 = 2, β3 = 3. Due to the positive sign of the normal form
coefficient of the PD point, a stable 2-cycle coexists with the unstable fixed point
of the map forβ1 < 1.337322.

The fixed point(x∗1, x
∗
2) in (5.56), remains unstable under variation of the

parameterβ2, hence increasing the cannibalism pressure on the immaturepart is
not stabilizing factor from a dynamical point of view. We nowcontinue with the
free parameterβ3, we call thisRun 13:

label = PD, x = ( 64.840130 1.640192 2.241879 )
normal form coefficient of PD = 2.750335e-003
label = NS, x = ( 29.976635 2.996639 0.768503 )
normal form coefficient of NS = -4.177821e-004
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The fixed point is stable between the PD and NS points, i.e., when β1 =
1, β2 = 2, β3 ∈ [2, 2.241879]. From the sign of the normal form coefficient of
the PD point, we see that a stable 2-cycle is born whenβ3 exceeds the threshold
stabilityβ3 = 2.241879. An exact stable 2-cycle forP = µ1 = µ2 = 0.5, β1 = 1,
β2 = 2, β3 = 2.2510715 andF = 200 is given by

C2 = {X1,X2} = {(66.459403, 1.69537); (63.349999, 1.578968)} .

We proceed with computing the Neimark-Sacker curve encountered inRun 13,
whereF andβ3 are free in the continuation, we call thisRun 14:

label = R3 , x = ( 60.356868 2.997515 402.928800
1.001660 -0.500000 )
Normal form coefficient of R3 :
Re(c_1) = -1.095285e+000
label = R4 , x = ( 8.161668 2.995002 54.393960

0.334726 0.000000 )
Normal form coefficient of R4 :

A = -5.155721e+000 + -1.411666e+000 i

TheR3 point has the same characteristics (i.e. normal form coefficients with
the same sign) as that inRun 3. TheR4 point has the same characteristics (absolute
value and sign of real and imaginary part) as that inRun 9. By Run 14there are
unstable 3-cycles and stable 4-cycles of fixed points near theR3 andR4 points,
respectively. We continue by computing the Neimark-Sackercurve forth and back
whereµ2 andβ3 are the free parameters, we call thisRun 15:

label = R3 , x = ( 36.106260 2.711598 0.582753
0.898279 -0.500000 )
Normal form coefficient of R3 :
Re(c_1) = -1.141700e+000
label = R2 , x = ( 49.265517 2.192296 0.835266
1.185576 -1.000000 )
Normal form coefficient of R2 :

[c , d] = -5.112120e-004, -1.100939e-003
label = R4 , x = ( 16.751436 3.820439 0.354409
0.476980 -0.000000 )
Normal form coefficient of R4 :
A = -3.921588e+000 + -2.056128e+000 i
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Figure 5.10: Branch of fixed points of the second iterate and of the original map in
(F, x1) space.

TheR3 andR2 points have the same characteristics (i.e. normal form co-
efficients with the same sign) as those inRun 3. TheR4 point has the same
characteristics (absolute value and sign of real and imaginary part) as that inRun
9.
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Chapter 6

Applications in economics

Many mathematical models of economics try to obtain their goals by adaptive
processes, based on trial and error or learning by doing methods. This implies
that the mathematical modeling of these processes, where decisions are repeatedly
taken over time, are formulated as determininistic discrete maps.

The Cournot-based models are the most frequently discussedmodels in the
economics literature. The pioneering work of Cournot (1838) has initiated a large
sequence of studies on static and dynamic models. A comprehensive summary
of results on single-product models and a literature reviewcan be found in [77],
whilst their multi-product extensions are discussed in [78].

In this chapter, we first consider a duopoly and its extensionto an oligopoly
model and study their dynamical behaviour under variation of one and two control
parameters. We proceed with a general case of a Cournout duopoly model of
Kopel and compute stability domains of the first, second, third and fourth iterates
of the model.

A part of this chapter was accepted for publication in [39].

6.1 A Cournot duopoly

Economics recognizes different market structures:
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• Pure Competition: many competing firms producing the same product

• Monopoly: market controlled by a single seller

• Oligopoly: market dominated by a few large suppliers

• Duopoly: an oligopoly with exactly two firms

In the case of monopoly one single firm dominates the whole market. Its sup-
ply influences the market price appreciably, and it can take advantage of this to
increase its profits by deliberately limiting the supply. Anoligopoly is a market
form in which a market or industry is dominated by a small number of sellers
(oligopolists). Oligopolistic markets are characterizedby interactivity. The deci-
sions of one firm influence the decisions of other firms. There are two principal
duopoly models, Cournot duopoly and Bertrand duopoly. In the Cournot model,
two firms know each others output and treat this as a fixed amount, and produce
in their own firm according to this.

The Cournot duopoly model, see [88], Ch. 5 and see [89], Ch. 7,shows
two firms that react to one another’s output changes until they eventually reach a
position from which neither would wish to depart. Both firms eventually expand
to such a degree that they have constant shares in the market and secure only
normal profits.

The market demand is assumed to be isoelastic such that the price p is recip-
rocal to the total demandQ, i.e;p = 1

Q .
There are two firms, denoted byX andY , that produce the amounts of goods

x and y with constant marginal costsa and b, respectively. Goods are perfect
substitutes so that, provided demand equals supply, the total demand equals the
total supplies,Q = x+ y. Their expected profits become accordingly,

U(x, y) =
x

x+ y
− ax, (6.1)

V (x, y) =
y

x+ y
− by. (6.2)

The usual procedure to maximize profit leads to unimodal reaction functions which
construct the following dynamic process under the naive expectation formation
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{
xt+1 = f(yt),
yt+1 = g(xt),

(6.3)

wheref(y) is the reaction function of firmX andg(x) is the reaction function of
firm Y . Both are specified as

f(yt) =

√
yt

a
− yt, (6.4)

g(xt) =

√
xt

b
− xt. (6.5)

f(y) has its maximum value14a at y = 1
4a , and its domain should be restricted

to the interval[0, 1
a ] for nonnegative values of output, and so doesg(x) with

replacinga with b. When the dynamic process is designed to map the maximum
point to an interior point of the interval, it always generates positive productions to
both firms. Solvingg( 1

4a) ≤ 1
a andf( 1

4b ) ≤ 1
b gives the upper and lower bounds

of the marginal costb in terms of the marginal costa, 4
25a ≤ b ≤ 25

4 a.
If these inequalities are violated, the dynamic system (6.3) induces negative

output values.

6.1.1 Stability analysis of the fixed points of a duopoly model

The fixed point of (6.3), which we call theCournot point, is the intersection of the
reaction functions (6.4) and (6.5), see Figure 6.1, i.e.

√
y
a − y = x,

√
x
b − x = y,

(6.6)

or
y
a = (x+ y)2,
x
b = (x+ y)2.

(6.7)

That gives

y =
a

b
x. (6.8)
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Figure 6.1: Intersection of the reaction curves defined by (6.4) and (6.5) defines the
Cournot point of duopoly model.

By substituting (6.8) into the first and second equation of (6.6), respectively, we
obtain the quadratic equations:

y2(1 + b
a)2 − y

a = 0, x2(1 + a
b )2 − x

b = 0. (6.9)

Thus the Cournot point is given by:

x = b
(a+b)2

,

y = a
(a+b)2

.
(6.10)

Substituting these Cournot coordinates in the profit functions (6.1) and (6.2) gives
the profits earned at the Cournot point,

∏
x = ( b

a+b )
2,∏

y = ( a
a+b )

2.
(6.11)

Taking ratios of Cournot outputs (6.10) and Cournot profits (6.11) gives
x
y = b

a ,∏
x∏
y

= ( b
a)2.

(6.12)
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The ratios (6.12) reveal that at the Cournot point, a firm withlower marginal cost
produces more output and makes more profit than a firm with higher marginal
cost.

We call a firm with lower marginal cost an efficient firm and one with higher
marginal cost an inefficient firm. An efficient firm dominates the market and is
more profitable than an inefficient firm.

To examine the stability of the Cournot point, we make a linear approxima-
tion of the dynamic process (6.3) at the Cournot point and construct the Jacobian
matrix,

J =

(
0 b−a

2a
a−b
2b 0

)
. (6.13)

The characteristic polynomial of (6.13) is given by:

λ2 +
(b− a)2

4ab
= 0. (6.14)

The eigenvalues, roots of (6.14), are given by:

λ1,2 = ±i( b− a

2
√
ab

), a, b > 0, (6.15)

The Cournot point is stable if

|λj| < 1, j = 1, 2. (6.16)

This is equivalent to:
|b− a|
a

< 2

√
b

a
, (6.17)

or

(
b

a
)2 − 6(

b

a
) + 1 < 0. (6.18)

This holds if(3−2
√

2) < b
a < (3+2

√
2). We note that loss of stability occurs via

a Neimark-Sacker bifurcation whenab crosses the thresholds(3 ± 2
√

2), where a
conjugate pair of complex eigenvalues (6.15) crosses the unit circle ate±iθ, θ =
π
4 .
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Figure 6.2: A curve of fixed points starting from the Cournot point(1
4 ,

1
4 ).

Now we do a numerical continuation of Cournot points starting from the fixed
point (x, y) = (1

4 ,
1
4), obtained from (6.10),(a, b) = (1, 1). The control pa-

rameter isb while a is fixed in the continuation. The fixed point loses stability
via the NS points(x, y) = (0.125000, 0.728553) whereb = 0.171573, and
(x, y) = (0.125000, 0.0214475.828427) whereb = 5.828427. We note that in
the computed NS pointsba = 0.171573 = 3−2

√
2 and b

a = 5.828427 = 3+2
√

2.
At the NS points (6.13) has the multipliers±i, i.e. the point is a resonanceR4

point. Near the NS points the system (6.3) oscillates between 4 different values,
i.e. (6.3) has a 4-cycle.

A 4-cycle is given byC4 =
{
X4

1 ,X
4
2 ,X

4
3 ,X

4
4

}
where

X4
1 = (0.132780, 0.746921),X4

2 = (0.117325, 0.746921),

X4
3 = (0.117325, 0.709596),X4

4 = (0.132771, 0.709597).

This 4-cycle with the parameter values is depicted in Figure6.3.
We remark that our analytical and numerical results show that the Cournot

point (6.11) loses stability via a NS point. However, our results conflict with
the bifurcation analysis that is given, in [88] and [89], Figures 5.3 and 7.3, respec-
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Figure 6.3: A 4-cycle near the NS point for the parameter values(a, b) = (1, 0.171578) .

tively, where the Cournot point is said to lose stability viaa flip point and becomes
chaotic via a cascade of flip bifurcations.

6.2 Cournot oligopoly with three firms

We keep the notation introduced up to now, but add a third firm,whose profit is
W , whose output is denoted byz and whose marginal cost isc. The profits of the
three oligopolists become:

U(x, y, z) = x
x+y+z − ax,

V (x, y, z) = y
x+y+z − by,

W (x, y, z) = z
x+y+z − cz.

(6.19)
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The reaction function of this model is given by

xt+1 = f(xt, yt, zt) =
√

yt+zt

a − yt − zt,

yt+1 = g(xt, yt, zt) =
√

xt+zt

b − xt − zt,

zt+1 = s(xt, yt, zt) =
√

yt+xt

c − yt − xt.

(6.20)

6.2.1 Stability analysis of the fixed points of the oligopolymodel

Similar to the Duopoly Cournot model, the Cournot point of (6.20) is given by:

x = 2(b+c−a)
a+b+c

2
,

y = 2(c+a−b)
a+b+c

2
,

z = 2(a+b−c)
a+b+c

2
,

(6.21)

and is economically meaningful ifx ≥ 0, y ≥ 0 andz ≥ 0. Subsituting (6.21)
into (6.20), we find the profits in the Cournot point:

∏
x = (b+c−a)2

(a+b+c)2 ,∏
y = (c+a−b)2

(a+b+c)2
,

∏
z = (a+b−c)2

(a+b+c)2
.

(6.22)

The Jacobian matrix of (6.20) at the Cournot point (6.21) is:

J =




0 b+c−3a
4a

b+c−3a
4a

c+a−3b
4b 0 c+a−3b

4b
a+b−3c

4c
a+b−3c

4c 0


 . (6.23)

The characteristic polynomial of (6.23) is given by:

p(λ) = −λ3 +Aλ+B = 0, (6.24)

where

A =
6(a3 + b3 + c3) − 5(a2 + b2 + c2)(a+ b+ c) + 30abc

16abc
, (6.25)
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B =
(a+ b− 3c)(a + c− 3b)(b + c− 3a)

32abc
. (6.26)

The coefficientsA andB depend only on the ratios of marginal costsh = b
a and

k = c
a . These coefficients then take the forms:

A =
6(1 + h3 + k3) − 5(1 + h2 + k2)(1 + h+ k) + 30hk

16hk
, (6.27)

B =
(1 + h− 3k)(1 + k − 3h)(h + k − 3)

32hk
. (6.28)

Let λi, i = 1, 2, 3 be the roots of (6.24). A Cournot point is stable when
|λi| < 1, i = 1, 2, 3.
Suppose (6.24) has a root1. Then we get:

p(1) = A+B − 1 = 0, (6.29)

which is a criterion to detect a fold point. Substituting from (6.27) and (6.28),
we get:

A+B − 1 =
(h+ k + 1)3

32hk
= 0, (6.30)

which cannot be fulfilled for positiveh andk, i.e. there can be no transition from
stability to instability through a fold bifurcation.

Similarly, let (6.24) has a root−1. Then we get:

p(−1) = A−B = 1, (6.31)

which is a criterion to detect a flip bifurcation which definesa curve in(h, k)-
space. The solution curve was computed numerically and is depicted in Figure
6.4. We note that along this curve, the Cournot point has a negative coordinate.
So, the flip curve (6.31) is not economically meaningful.

Now we suppose the Cournot point loses stability via a NS bifurcation. The
characteristic equation (6.24) can be decomposed in terms of its roots, i.e.

(λ1 − λ)(λ2 − λ)(λ3 − λ) = 0. (6.32)
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Equating the coefficients of (6.24) and (6.32), leads to:

λ1 + λ2 + λ3 = 0, (6.33)

λ1λ2 + λ1λ3 + λ2λ3 = −A, (6.34)

λ1λ2λ3 = B. (6.35)

Supposeλ1 is real andλ2,3 = α± iβ is a conjugate pair of complex eigenvalues.
By (6.33), we haveλ1 = −2α. Substitutingλ1 in (6.34) and (6.35), we obtain:

A = 3α2 − β2, (6.36)

B = −2α(α2 + β2). (6.37)

The complex pairλ2,3 crosses the unit circle when|λ2,3| = 1, or equivalently
α2 + β2 = 1. Substitutingβ2 = 1 − α2 into (6.36) and (6.37), gives:

A = 4α2 − 1, (6.38)

and
B = 2α. (6.39)

By eliminatingα between (6.38) and (6.39), we finally obtain:

B2 −A = 1. (6.40)

This is a criterion to detect a NS bifurcation point. A plot of(6.40), using
CL MATCONTM is given in Figure 6.4.

We now do a numerical continuation of the Cournot point. For the given
parameter set(h, k) = (1, 1), the Cournot point(x, y, z) = (2

9 ,
2
9 ,

2
9) is stable. We

do a numerical continuation when the control parameter ish. The Cournot point
loses stability via a subcritical NS pointx = (0.102701, 0.678395, 0.102701)
whenh = 0.262966. We continue the NS curve with two control parametersh
andk, starting from the detected NS point:

tangent vector to first point found
label = CH, x =( 0.005416 0.766126 0.223011 0.230936

0.780015 -0.208045 )
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Normal form coefficient of CH = -1.641210e+000
label = CH, x =( 0.005416 0.223011 0.766126 0.780015

0.230936 -0.208045 )
Normal form coefficient of CH = -1.641210e+000
label = CH, x =( 0.173952 0.004225 0.597590 1.282026

0.296066 -0.208045 )
Normal form coefficient of CH = -4.433548e+000
label = CH, x =( 0.176926 0.001251 0.051501 4.330198

3.377621 -0.208045 )
Normal form coefficient of CH = -5.770253e+002
label = CH, x =( 0.176926 0.051501 0.001251 3.377621

4.330198 -0.208045 )
Normal form coefficient of CH = -5.770254e+002
label = CH, x =( 0.173952 0.597590 0.004225 0.296066
1.282026 -0.208045 )
Normal form coefficient of CH = -4.433547e+000

The continuation leads to a closed curve. The normal form coefficients along
this curve change sign when crossing theCH bifurcation points. The Cournot
point is economically relevant ifx ≥ 0, y ≥ 0 and z ≥ 0 in (6.21). These
conditions define the region in parameter space that is bounded by the linesb+c ≥
a, c+a ≥ b anda+b ≥ c, respectively. These lines intersect the NS curve at some
of theCH points. The stability region of the Cournot point that is economically
relevant, is given in Figure 6.5. It is bounded by the three straight lines and the
subcritical parts of the NS curve.

We remark that the NS bifurcation curve that is obtained by numerical contin-
uation, Figure 6.5, coincidences with the NS curve defined by(6.40) and depicted
in Figure 6.4. However, this curve differs from the NS curve that is given in [88]
and [89], Figure 5.7 and 7.16, respectively.

6.3 A Cournot duoploy model of Kopel

6.3.1 Introduction

The first well-known model which gives a mathematical description of competi-
tion in a duopoly market dates back to the French economist Antoine Augustin
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lines x=0, y=0 and z=0

   flip curve A−B=1

Figure 6.4: The flip bifurcation curve (6.31), the NS bifurcation (6.40)and the straight
linesx = 0, y = 0 andz = 0 defined by (6.21), in(h, k) space.

Cournot [23] (1838) with the highlighted characteristics:

• Competing firms produce goods that are perfect substitutes.

• Both firms must consider the actions and reactions of the competitor.

• Each firm forms expectations of the other firm’s output in order to deter-
mine a profit maximizing quantity to produce in the next time period (this
situation is called strategic interdependence)

The model that he presented has been much studied for its ability to generate com-
plex dynamics and also because of its more general foreshadowing of game theory.
It has often been noted that the Cournot equilibrium is but a special case of the
Nash-Equilibrium [72], the more general formulation used by modern industrial
organization economists in studying oligopoly theory.
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Figure 6.5: Economically relevant stability region of the Cournot point in (h, k) space.

Recently, several works have shown that the Cournot model may lead to com-
plex behaviors such as cyclic and chaotic, see, for example [1, 57, 90, 91, 92].
Among the first to do this was Puu [90, 91] who found a variety ofcomplex dy-
namics arising in the Cournot duopoly case including the appearance of attractors
with fractal dimension. Dynamics of a Cournot game by players with bounded
rationality has been studied in [5]. Local stability of a duopoly game with het-
erogeneous expectation has been studied in [4]. Multistability, cyclic and chaotic
behaviour of a Cournot game have been studied in [15], where in the model the
reaction functions have the form of the logistic map. Some preliminary results on
the local bifurcations of a Kopel map were obtained in [57]. Explicit boundaries of
local stability of the fixed point of a Kopel map have been derived in [2]. Basins of
attraction in a Kopel map have been studied in [9]. Other studies on the dynamics
of oligopoly models with more firms and other modifications include Ahmed and
Agiza [6], Agiza [1] and Agiza et al. [3]. The development of complex oligopoly
dynamics theory has been reviewed in [95].
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In this study we consider the general case of a duopoly model,see [2], intro-
duced in [57] with positive adjustment coefficientρ. The main aim is to investigate
the overal dynamic behaviour of the model whenρ > 0 and to compute stability
domains of the first, second, third and fourth iterates of themap. In Section 2 we
introduce the model and discuss the general stability and branching of the fixed
points. In particular, we compute analytically the critical normal form coefficients
in the case of period doubling bifurcations to reveal sub- orsupercriticality. In
Section 3 we concentrate on the economically relevant caseρ ≤ 1 and numerically
compute curves of codim 1 bifurcations and the critical normal form coefficients
of codim 2 bifurcation points, using the CL MATCONTM. These tools enable us
to compute stability boundaries of 2, 3 and 4-cycles. Furthermore, by considering
the critical normal form coefficients of the R4 resonance point, we determine the
bifurcation scenario of the map near this point.

In Section 4 we briefly describe R3 and R2 bifurcation points in the region
ρ > 1 which is of no interest for the economic model.

6.3.2 The map and the local stability analysis of its fixed points

The model that we use is a two-dimensional map described in [57, 2]. Two firms
are homogeneous with regard to their expectation formationand the action effect
on each other. The duopoly Kopel model assumes that at each discrete timet the
two firms produce the quantitiesx1(t) andx2(t) respectively, and decide their
productions for the next periodx1(t+1) andx2(t+1). The time evolution of the
model is determined by the two-dimensional mapTK :

TK :

(
x1

x2

)
7→
(

(1 − ρ)x1 + ρµx2(1 − x2)
(1 − ρ)x2 + ρµx1(1 − x1)

)
. (6.41)

whereρ andµ are two model parameters. The positive parameterµ measures
the intensity of the effect that one firm’s actions has on the other firm. Firms
do not change their productions according to the computed optimal productions
(i.e. the ’logistic’ reaction functions) but they prefer tochoose a weighted average
between the previous production and the computed one, with weights1 − ρ and
ρ respectively;ρ is called the adjustment coefficient. The meaning of the model
implies that the parameterρ ∈ [0, 1]. However it is best to ignore this restriction
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in a first global study of the properties of the model, cf. [2].
The fixed points of (6.41) and their stability were studied analytically in [2],

§2.1-4. We summarize the obtained results briefly. Forρ 6= 0, the fixed points of
(6.41) are the solutions to:

x∗1 = µx∗2(1 − x∗2), x
∗
2 = µx∗1(1 − x∗1). (6.42)

Besides the trivial solutionE1 : (x∗1, x
∗
2) = (0, 0), a positive symmetric fixed

point exists forµ > 1, given byE2 : (x∗1, x
∗
2) = (µ−1

µ , µ−1
µ ).

Two further nonsymmetric Nash-Equilibria, given by

E3 : (x∗1, x
∗
2) = (

µ+ 1 +
√

(µ+ 1)(µ− 3)

2µ
,
µ+ 1 −

√
(µ+ 1)(µ − 3)

2µ
),

(6.43)
and its(x1, x2) 7→ (x2, x1) reflectionE4, exist forµ ≥ 3.

The study of the local stability of fixed points is based on thelinearization of
(6.41). In an equilibrium point the JacobianJ(x1, x2) of (6.41) has the eigenval-
ues:

λ1,2 = (1 − µ) ± ρµ
√

(1 − 2x1)(1 − 2x2). (6.44)

Depending on the values ofx1 andx2, these may be real or form a conjugate
complex pair. A fixed point of (6.41) is stable if

|λj| < 1, j = 1, 2. (6.45)

Proposition 6.3.1.The equilibrium solutionE1 is asymptotically stable for(µ, ρ) ∈
ΩS(E1) where

ΩS(E1) =

{
(µ, ρ)|0 < µ < 1, 0 < ρ < ρ1(µ) =

2

1 + µ

}
.

It loses stability via a flip bifurcation when crossing the thresholdρ1(µ), 0 < µ <
1 and via branching alongµ = 1.

Proof. The stability boundaries ofE1 can be derived by imposing the stability
conditions (6.45). These boundaries were computed in [2] and are presented in
Figure 6.6 (ΩS(E1)).
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What remains to be proved is thatE1 loses its stability and bifurcates to a new
branch of fixed points atµ = 1. To do this we show that the discriminant of the
algebraic branching equation(ABE), §2.2, is positive. We consider the Jacobian
matrixFX = [Tx − I|Tµ], evaluated inE1 that is:

(
−ρ ρµ 0
ρµ − ρ 0

)
. (6.46)

This matrix is clearly rank deficient alongµ = 1. We first compute vectors
φ1, φ2 andψ which form a basis for the null space ofN([(TK)x − I|(TK)µ])
andN([(TK)x − I|(TK)µ]∗) respectively. Possible choices are:

φ1 = (
1√
2
,

1√
2
, 0)T , φ2 = (0, 0, 1)T , ψ = (

1√
2
,

1√
2
)T .

Now we consider the ABE :

c11α
2 + 2c12αβ + c22β

2 = 0, (6.47)

wherecjk = 〈ψ,F 0
Y Y φjφk〉, for j, k = 1, 2. Here the2 × 3 × 3 tensorF 0

Y Y is
given by:

F 0
Y Y (:, :, 1) =

(
0 0 0

−2µρ 0 ρ(1 − x1) − ρx1

)
, (6.48)

F 0
Y Y (:, :, 2) =

(
0 −2µρ ρ(1 − x2) − ρx2

0 0 0

)
, (6.49)

F 0
Y Y (:, :, 3) =

(
0 ρ(1 − x2) − ρx2 0

ρ(1 − x1) − ρx1 0 0

)
. (6.50)

We now obtainc11 = −
√

2ρ, c12 = ρ, c22 = 0. So the discriminant of (6.47),
c212 − c11c22 = ρ2 > 0 is clearly positive. This shows that we have a branch point
whenµ = 1.

Proposition 6.3.2.E2 is asymptotically stable for(µ, ρ) ∈ ΩS(E2) = ΩS(E21)∪
ΩS(E22) where:

ΩS(E21) =

{
(µ, ρ)|1 < µ < 2, 0 < ρ < ρ21(µ) =

2

3 − µ

}
,
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and

ΩS(E22) =

{
(µ, ρ)|2 < µ < 3, 0 < ρ < ρ22(µ) =

2

µ− 1

}
.

It loses stability via a flip bifurcation point on the boundaries of:

(i) ρ = ρ21(µ), 1 < µ < 2.

(ii) ρ = ρ22(µ), 2 < µ < 3.

Furthermore, it loses stability via a branch point whenµ = 1 andµ = 3.

Proof. The stability domain ofE2 is given in [2] and presented in Figure 6.6
(ΩS(E2)). By the same procedure as in Proposition 6.3.1, we can show thatE2

bifurcates to the branches of fixed pointsE1 andE3 (E4) at µ = 1 andµ = 3,
respectively.

Proposition 6.3.3. E3 (E4) is asymptotically stable for(µ, ρ) ∈ ΩS(E3) =
ΩS(E31) ∪ ΩS(E32) where

ΩS(E31) =

{
(µ, ρ)|3 < µ < 1 +

√
5, 0 < ρ < ρ31(µ) =

2

1 +
√

5 − (µ− 1)2

}
,

and

ΩS(E32) =

{
(µ, ρ)|µ > 1 +

√
5, 0 < ρ < ρ32(µ) =

2

(µ− 1)2 − 4

}
.

It loses stability :

(i) via a flip point whenρ = ρ31(µ), 3 < µ < 1 +
√

5.

(ii) via a Neimark-Sacker bifurcation point whenρ = ρ32(µ), µ > 1 +
√

5.

Moreover, it loses stability and bifurcates to the branch ofE2 fixed points along
µ = 3.

Proof. The stability boundaries ofE3 were computed in [2] and are sketched
in Figure 6.6 (ΩS(E3,4)). It is easy to prove thatE3 bifurcates to a branch of fixed
pointsE2 atµ = 3, by the same procedure as in Proposition 6.3.1.
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Proposition 6.3.4. The flip bifurcation in Proposition 6.3.1 is subcritical.

Proof. We show thatE1 undergoes a subcritical flip bifurcation whenρ =
2

1+µ , 0 < µ < 1. It is sufficient to show that the critical normal form coefficient b,

b =
1

6

〈
p,C(q, q, q) + 3B(q, (I −A(1))−1B(q, q))

〉
, (6.51)

derived by the parameter-dependent center manifold reduction is negative, see
§2.3.2, whereA(1) is the Jacobian of (6.41) atE1, B(., .) andC(., ., .) are the
second and third order multilinear forms respectively,p and q are the left and
right eigenvectors ofA(1) for the eigenvalue−1, respectively. These vectors are
normalized by〈p, q〉 = 1, 〈q, q〉 = 1, where〈., .〉 is the standard scalar product in
R

2. We obtain:

q =

(
q1
q2

)
= p =

(
p1

p2

)
=

(
1√
2

− 1√
2

)
, (6.52)

[B(q, q)]1 =
n∑

j,k=1

∂2((1 − ρ)x1 + ρµx2(1 − x2))

∂xj∂xk
qjqk = −2ρµq2q2 = −ρµ,

(6.53)

[B(q, q)]2 =
n∑

j,k=1

∂2((1 − ρ)x2 + ρµx1(1 − x1))

∂xj∂xk
qjqk = −2ρµq1q1 = −ρµ.

(6.54)

Let ζ = (I −A(1))−1B(q, q), then we haveζ =

(
µ

µ−1
µ

µ−1

)
and find

[B (q, ζ)]1 = −ρµq2ζ2 =
√

2
ρµ2

µ− 1
, [B (q, ζ)]2 − ρµq1ζ1 = −

√
2
ρµ2

µ− 1
.

(6.55)
Since the third order multilinear formC(q, q, q) is zero, the critical normal form

coefficientb is given byb = ρµ2

µ−1 . It is clear thatb < 0, since0 < µ < 1 and

ρ > 0 in ΩS(E1).
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Proposition 6.3.5. The flip point in Proposition 6.3.2 is sub- or supercritical in
the cases (i) and (ii) respectively.

Proof. First we consider the case (i) and show that the flip point is subcritical.
It is sufficient to show thatb < 0 whereb is defined in (6.51). The normalized left
and right eigenvectors forA(2) are given by:

q =

(
q1
q2

)
= p =

(
p1

p2

)
=

(
1√
2

− 1√
2

)
, (6.56)

whereA(2) is the Jacobian of (6.41) atE2. B(q, q) is given by:

[B(q, q)]1 = −2ρµq2q2 = −ρµ, [B(q, q)]2 = −2ρµq1q1 = −ρµ. (6.57)

We proceed with the computation ofζ = (I −A(2))−1B(q, q) and obtain:

ζ =

(
µ

1−µ
µ

1−µ

)
, b =

ρµ2

1 − µ
. (6.58)

Sob < 0, since1 < µ < 2 andρ > 0 in ΩS(E2).

In case (ii ) we obtainb = ρµ2

3(µ−1) . Sob > 0, since2 < µ < 3 andρ > 0 in

ΩS(E2).

Proposition 6.3.6. The flip bifurcation in Proposition 6.3.3 is subcritical.

Proof. Similar to the previous cases we show that the critical normal form
coefficientb < 0. The Jacobian matrix (6.41) atE3 (E4) is:

A(3) =

(
1 − ρ − ρ(1 +

√
(µ+ 1)(µ− 3))

−ρ(1 −
√

(µ+ 1)(µ − 3)) 1 − ρ

)
,

(6.59)
and has a multiplier−1 whenρ = 2

1+
√

5−(µ−1)2
, 3 < µ < 1 +

√
5. The left and

right eigenvectors associated to the eigenvalue−1 are given by:

q =

(
−
√

4 − µ2 + 2µ

−1 +
√

−3 + µ2 − 2µ

)
, p =

(
−1 +

√
−3 + µ2 − 2µ

−
√

4 − µ2 + 2µ

)
. (6.60)
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To avoid complicated computations we do not normalizep andq, since rescaling
does not change the sign ofb provided〈p, q〉 > 0 (it can be proved easily that this
is the case).B(q, q) is computed as:

B(q, q) =




4µ(−1+
√

(−3+µ2−2µ)2)

(1+
√

4−µ2+2µ)(−4+µ2−2µ)

− 4µ

(1+
√

4−µ2+2µ)


 . (6.61)

The vectorζ = (I −A(3))−1B(q, q), is given by:

ζ =




2µ(−1+
√

(−3+µ2−2µ)2)

(µ+1)(µ−3)(−4+µ2−2µ) +
2(1+

√
(µ+1)(µ−3))

(µ+1)(µ−3)

2(−1+
√

(µ+1)(µ−3))µ(−1+
√

(−3+µ2−2µ)2)

(µ+1)(µ−3)(−4+µ2−2µ)
− 2µ

(µ+1)(µ−3)


 . (6.62)

B(q, ζ) can be computed from (6.60) and (6.62):

B(q, ζ) =




−8(12−4µ2+8µ+
√

(−3+µ2−2µ)µ2−2
√

(−3+µ2−2µ)µ)(−1+
√

(−3+µ2−2µ))µ2

(4−µ2+2µ)
3
2 (µ−3)(µ+1)(1+

√
(4−µ2+2µ))

−8(−6−6
√

(−3+µ2−2µ)+2µ2−4µ+
√

(−3+µ2−2µ)µ2−2
√

(−3+µ2−2µ)µ)µ2

(−4+µ2−2µ)(µ−3)(µ+1)(1+
√

4−µ2+2µ)


 .

(6.63)
Finally the normal form coefficientb can be computed:

b = −576(µ2 − 2µ− 2
√

−3 + µ2 − 2µ− 2)µ2

(1 +
√

4 − µ2 + 2µ)(−4 + µ2 − 2µ)2
. (6.64)

We will prove that the factorh1(µ) = µ2 − 2µ − 2(
√

−3 + µ2 − 2µ + 1) in
(6.64) is positive when3 < µ < 1 +

√
5. Equivalently we have to prove that

(µ2−2µ−2)2−4(µ2−2µ−3) ≥ 0. Sincedh1
dµ (µ) = 4(µ−1)(µ2−2µ−4) < 0,

h1(3) = 1 andh1(1 +
√

5) = 0, we concludeh1 ≥ 0. Sob < 0.
We remark that our numerical evidence indicates that the Neimark-Sacker bi-

furcation in Proposition 6.3.3 is supercritical. This is based on the numerical
computation of the normal form coefficientd, §2.3.3. However, we were not able
to prove this analytically.
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Figure 6.6: Stablility regions ofEi, i = 1, 2, 3, 4.

6.3.3 Numerical bifurcation in the economically relevant region

In this section we concentrate on the regionρ ≤ 1 which is economically rele-
vant. Since a complete analytical bifurcation study of the iterates of (6.41) is not
feasible, we perform a numerical bifurcation analysis by using CL MATCONTM.

Numerical bifurcation of E2

By continuation ofE2 with µ = 2.5 andρ free, we see thatE2 loses stability
via a supercritical PD point when crossing the hyperbolaρ = ρ22(µ). A stable
2-cycle is given byC2 =

{
X2

1 ,X
2
2

}
whereX2

1 = (0.658212, 0.658212),X2
2 =

(0.527341, 0.527341), for ρ = 1.366229. This 2-cycle loses stability at a super-
critical PD point (of the second iterate) forρ = 1.490763. A stable 4-cycle is
given byC4 =

{
X4

1 ,X
4
2 ,X

4
3 ,X

4
4

}
whereX4

1 = (0.3851221, 0.479532), X4
2 =

(0.745563, 0.649279), X4
3 = (0.479532, 0.385122),X4

4 = (0.649279, 0.745563).
The multipliers of the fixed point of the fourth iterate inX4

1 are0.406438 and
0.129274. This 4-cycle with the parameter values is depicted in Figure 6.7. We
note that the 4-cycle is invariant under the reflection(x1, x2) 7→ (x2, x1). This
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Figure 6.7: A stable 4-cycle forρ = 1.509191 andµ = 2.5.

4-cycle loses stability via a supercritical Neimark-Sacker bifurcation.
Stability regions of the 2-cycles (ΩS,i

2 , i = 1, 2, 3) and 4-cycles (ΩS,i
4 , i =

1, 2, 3) are given in Figure 6.8. They stretch into the economicallyrelevant region
ρ ≤ 1. In this figure the regionsΩS,2

2 andΩS,2
4 indicate bistability of 2- and 4-

cycles withE3 (E4), respectively. We note that the stability region of the 2-cycle
is bounded by thePD2 curve and a curve of branch points of the second iterate,
whenµ ≥ 3. This curve of branch points bifurcates from the LPPD point on
the PD curve of the original map. This curve is shown by∗ in Figure 6.8 and is
completely in the economically relevant region. We note that the LPPD point is
on the boundary of the economically relevant region.

Numerical bifurcation study of E3 (E4)

We now do a continuation of the fixed pointE3 starting fromµ = 4, ρ = 0.1 in
the stable region bounded by the curveρ = ρ32(µ). The parameterρ is free, we
call thisRun 1:

label = NSm, x = ( 0.904508 0.345492 0.400000 )
normal form coefficient of NSm = -7.372800e+000

A supercritical Neimark-Sacker bifurcation point is detected for ρ = 0.4.
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Thus, the fixed pointE3 (E4) is transformed from stable to unstable through a
NS point at which a closed invariant curve is created around the unstable fixed
pointE3 (E4). We now compute the Neimark-Sacker curve, by starting fromthe
NS point inRun 1, with free parametersµ andρ, this isRun 2:

label = R4 ,
x = ( 0.849938 0.439960 1.000000 3.449490 0.0000 )
normal form coefficient of R4 :
A = -3.000000e+000 + -2.019371e-017 i
label = R3 ,

x =( 0.825542 0.476627 1.500000 3.309401 -0.500)
normal form coefficient of R3 :
Re(c_1) = -1.333333e+000
label = R2 ,
x =( 0.809017 0.500000 2.000000 3.236068 -1.00 )
normal form coefficient of R2 :

[c , d] = 1.340433e+003, -3.351046e+003

A picture of the Neimark-Sacker curve ofRun 2is given in Figure 6.8.
Since the R2 and R3 points are not in the regionρ ≤ 1 we postpone their study

to §6.3.4. We now consider the R4 point inRun 2. Since|A| > 1, two cycles of pe-
riod 4 of the map are born. A stable 4-cycle forρ = 0.990844 andµ = 3.466353
is given byC4 = {X1,X2,X3,X4} whereX1 = (0.841774, 0.407047), X2 =
(0.836685, 0.461186), X3 = (0.861140, 0.473539),
X4 = (0.864133, 0.4150395). We present this cycle in Figure 6.9. We note that
it is not invariant under the reflection(x1, x2) 7→ (x2, x1). The multipliers inX1

areλ1 = 0.901140 andλ2 = 0.675526, confirming the stability of the 4-cycle.
To determine the stability domain of the 4-cycle we compute in Run 3two

branches of fold curves of the fourth iterate, emanating from theR4 point, by
switching at the R4 point. These fold curves exist because|A| > 1, whereA is
the normal form coefficient of the R4 point. The stable fixed points of the fourth
iterate exist in the wedge between the two fold curves. We note that there is no
bistability with fixed points of the original map.

label = CP,
x = ( 0.849982 0.439945 0.999745 3.449889 )

normal form coefficient of CP s= 4.009280e+002
label = LPPD ,
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Figure 6.8: The Neimark-Sacker curve ofRun 2, the flip curve ofRun 6of Section 6.3.4
and the curve of branch points of the second iterate, the stability regions ofΩS

2 andΩS
4 in

(µ, ρ) space.

x = ( 0.841586 0.354516 0.935299 3.566686 )
normal form coefficient of LPPD :
[a/e , be]= 2.574002e+000, -5.829597e+001,
label = CP ,

x = ( 0.849982 0.439945 0.999745 3.449889 )
normal form coefficient of CP s= 4.009280e+002
label = LPPD ,

x = ( 0.836428 0.522216 1.071080 3.486079 )
normal form coefficient of LPPD :
[a/e , be]= 3.733856e+000, -2.471512e+001,

Two cusps, CP, and two LPPD bifurcation points are detected on the fold
branches of the fourth iterate. The CP points are merely the R4 point from which
we started. We can further compute the stability boundariesof the 4-cycle by
computing the flip curve of the fourth iterate rooted at the detected LPPD points.
The stable regionΩS

4 of C4 is bounded by two fold curves and a flip curve of the
fourth iterate, see Fig 6.10. Furthermore, if we continue the fixed point of the
fourth iterate starting fromX1, it loses stability via a supercritical PD point where
µ = 3.545530. It means that a stable 8-cycle is born whenµ > 3.545530.
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Figure 6.9: A stable 4-cycle forρ = 0.9999617 andµ = 3.449802.

We note that we have bistability of three different 4-cyclesin a region bounded
by the curves of the PD of the second iterate, a fold and the PD curve of the fourth
iterate. This region is shown asΩS

4,4 in Figure 6.11. Furthermore, we have a small
bistability region of two 4-cycles and a 2-cycle. This bistability region is shown
asΩS

2,4 in Figure 6.11.

6.3.4 Bifurcations ofE3 (E4) in the region ρ > 1

Now we consider the R2 point computed inRun 3of Section 6.3.3. Since the first
component of the normal form coefficientc = 1.340433e + 003 is positive, the
bifurcation scenario near the R2 point is analogous to [62],Fig. 9.9 (cases = 1).
For the parameter values in the wedge between the PD (ρ31) and NS (ρ32) curves,
the map has an unstable 2-cycle that coexists with a stable fixed point.

Next we consider the resonance 1:3 point inRun 3of Section 6.3.3. Since
its normal form coefficient is negative, the bifurcation picture near the R3 point
is qualitatively the same as presented in [62], Fig. 9.12. Inparticular, there is a
region near the R3 point where a stable invariant closed curve coexists with an
unstable equilibrium. For parameter values close to the R3 point, the map has a
saddle cycle of period three.

Furthermore, a Neutral Saddle bifurcation curve of fixed points of the third
iterate emanates. We compute this curve by branch switchingat the R3 point of
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Figure 6.10: Two fold bifurcation curves of the fourth iterate emanate from the R4 point
in (µ, ρ) space.

Run 5. This curve is presented in Figure 6.12. Further, a stable 3-cycle exists not
far from theR3 point( this is not guaranteed by the theory but it is found in many
examples, e.g [41]). The stability region of this cycle is bounded byfold and NS
bifurcation curves of the third iterate of the map (ΩS

3 ). These boundary curves are
given in Figure 6.12. We have bistability of the fixed pointE3 (E4) with the fixed
point of the third iterate of the map in the region that is bounded by the fold and
NS curves and the hyperbolaρ = ρ32(µ).
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Figure 6.11: Bistability regions of 4-cycles, 2-cycles and fixed points.
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Figure 6.12: Two stability boundary curves ( LP and NS) for the stable 3-cycle, together
with the NS curve ofRun 3and the curve of Neutral Saddle bifurcation points of the third
iterate.
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Chapter 7

Numerical continuation of
connecting orbits of maps

The accurate computation of orbits connecting fixed points of an iterated map,
and the study of associated topological properties have long been recognized as
a very important problem both in the theory of nonlinear dynamical systems and
in a variety of applied problems, e.g. in models for economical, biological, and
physical phenomena. Indeed, as discovered by Poincaré andBirkhoff, such orbits
may generate rich dynamics. For example, an orbit that connects a hyperbolic
fixed point to itself (a homoclinic orbit) generically implies the existence of an
infinite number of periodic orbits nearby, see [99, 74, 98] and tutorial presenta-
tions in [51, 103, 79]. As discovered in [34, 35, 48], the appearance of a pair of
such homoclinic orbits is accompanied by an infinite sequence of fold and period-
doubling bifurcations of periodic orbits, for more detailssee [75, 86], as well
as [62]. Moreover, since a homoclinic orbit of a planar map belongs to the in-
tersection of the stable and the unstable invariant curves of a saddle fixed point,
such orbits can be involved in the destruction of a closed invariant curve which is
born, for example, at a Neimark-Sacker bifurcation [73, 96,97]. This destruction
mechanism has been studied in [8, 17].

Numerical methods for bifurcation analysis of maps have received consider-
able attention recently and are supported by existing software. Algorithms for
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the computation of the one-dimensional manifolds are implemented inDSTOOL

[58, 32] andDYNAMICS [108, 109], while those for the continuation of homoclinic
orbits and their tangencies [12] are implemented in anAUTO-driver [107].

This chapter starts with the basic concepts of the connecting orbits of a map.
Then we introduce continuation of invariant subspaces in a novel way, using only
linear algebra arguments. We continue with the continuation of heteroclinic con-
nections and its implementation in CL MATCONTM. We proceed with the com-
putation of the symbolic Jacobian of the defining systems of the connecting orbits
and continuation of homoclinic connections. We continue this chapter with the
computation of one-dimensional stable and unstable manifolds. Finally, to illus-
trate the implemented techniques, we consider a generalized Hénon map. We
compute branches of heteroclinic connections of the seconditerate, and continue
the corresponding heteroclinic tangencies in two parameters. We also consider
continuation of a homoclinic connection and the continuation of the correspond-
ing homoclinic tangencies.

A part of this chapter was submitted for publication [55].

7.1 Continuation of heteroclinic connections

We consider theJ-th iterate of a map at some parameter as follows:

x 7→ f (J)(x, α), f : R
n × R

p → R
n, (7.1)

where
f (J)(x, α) = f(f(f(· · · f︸ ︷︷ ︸

J times

(x, α), α), α), α).

A sequence(xk)k∈Z is called aconnecting orbitof the mapf (J)(·, α) atα = ᾱ if

lim
k→−∞

xk = x−∞,

f (J)(xk, ᾱ) = xk+1, for all k ∈ Z

lim
k→+∞

xk = x+∞.
(7.2)

It is calledhomoclinicif x−∞ = x+∞ andheteroclinicotherwise. From a geo-
metrical point of view, the connecting orbit lies in the intersection of the unstable
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manifoldW u
−∞ of x−∞ and the stable manifoldW s

+∞ of x+∞. A connecting or-
bit is regular if x−∞ andx+∞ are hyperbolic and the stable manifoldW u

+∞ and
the unstable manifoldW s

−∞ have transversal intersections atxk for all k ∈ Z.
Degenerate cases occur when either the orbit loses transversality or one of

its fixed points becomes nonhyperbolic. We will deal only with the former case,
i.e. the case of nontransversality. In the latter case the unstable and center-stable
manifolds have a transversal intersection, which producesa connecting orbit with
a singular endpoint. In the simplest case there is preciselyone multiplier1 or
−1, or one conjugate pair of multipliers off (J)(x, α) on the unit circle. This
gives us thesaddle-fold, saddle-flip, saddle-Neimark-Sackerconnecting orbits,
respectively, see e.g. [52, 13].

The corresponding numerical problem, for a regular heteroclinic connection
between hyperbolic fixed pointsx1 andxN of (7.1), is that of finding a solution
(xk)k=1,2,...,N of the following system [12]:

x1 = f (J)(x1, α),

xk+1 = f (J)(xk, α), k = 2, . . . ,N − 2

xN = f (J)(xN , α)

(7.3)

such that(xk)k=2..,N−1 leavex1 along its unstable manifold and enterxN along
its stable manifold. These requirements are then substituted byprojection bound-
ary conditionswhich placex2 andxN−1 into the corresponding tangent spaces
[12].

We use an improved algorithm for locating and continuing connecting orbits,
which includes an algorithm for the continuation of invariant subspaces (CIS) as
described in [25, 27]. Assume the eigenvalues of(f (J)(x1, α))x and(f (J)(xN , α))x
are ordered, respectively, as follows:

|λU
n | ≤ . . . ≤ |λU

nU+1| < 1 < |λU
1 | ≤ . . . ≤ |λU

nU
|,

|λS
1 | ≤ . . . ≤ |λS

nS
| < 1 < |λS

nS+1| ≤ . . . ≤ |λS
n |.

The algorithm requires the evaluation of various projections associated with the
eigenspaces of(f (J)(x1, α))x and (f (J)(xN , α))x. These projections are con-
structed using the real Schur factorizations.

(f (J)(x1, α))x = Q1R1Q
T
1 , (f (J)(xN , α))x = Q2R2Q

T
2 .
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whereQ1, R1, Q2 andR2 aren× n-matrices.
The first factorization has been chosen so that the firstnU columnsqU

1 , . . . , q
U
nU

ofQ1 form an orthonormal basis of the right invariant subspaceS1 of (f (J)(x1, α))x,
corresponding toλU

1 , . . . , λ
U
nU

and the remainingn−nU columnsqU
nU+1, . . . , q

U
n

of Q1 form an orthonormal basis of the orthogonal complementS⊥
1 . Similarly,

the firstnS columnsqS
1 , . . . , q

S
nS

of Q2 form an orthonormal basis of the right
invariant subspaceSN of (f (J)(xN , α))x, corresponding toλS

1 , . . . , λ
S
nS

and the
remainingn−nS columnsqS

nS+1, . . . , q
S
n ofQ2 form an orthonormal basis of the

orthogonal complementS⊥
N .

The problem of heteroclinic connections is to find a connection {xn} with:

• Stationary state conditions for the initial fixed point:

f (J)(x1, α) − x1 = 0, (7.4)

• The iteration conditions

f (J)(xk, α) − xk+1 = 0, k = 2, 3, . . . ,N − 2, (7.5)

• Stationary state conditions for the final fixed point:

f (J)(xN , α) − xN = 0, (7.6)

• The left boundary conditions

〈(x2 − x1), q
U
nU+i

〉 = 0, i = 1, . . . , n− nU , (7.7)

• The right boundary conditions

〈(xN−1 − xN ), qS
nS+i

〉 = 0, i = 1, . . . , n− nS , (7.8)

A regular zero of a system of equations (7.4), (7.5), (7.6), (7.7) and (7.8) cor-
responds to a transversal heteroclinic orbit. Thus, a zero for this system can be
continued in one parameter.
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In the computational process the conditions in (7.7) and (7.8) imply that we
need to access the unstable and stable eigenspaces of the map(7.1) at the fixed
pointsx1 andxN at each step of the continuation, respectively. It is not efficient
to recompute these spaces from scratch in each continuation-step. In the next
section we explain an algorithm for continuing the invariant subspacesS1 andS2

effectively. Contrary to [25, 27], our algorithm is purely based on linear algebra
arguments.

7.1.1 Continuation of invariant subspaces

Let A(α) ∈ R
n×n denote(f (J)(x1, α))x. The basic continuation algorithm re-

quires at each continuation step the computation of the orthogonal complement of
the right invariant (unstable)nU -dimensional subspaceS(α) of A(α). In general,
the functionA is smooth inα, and it is important thatS(α) be smooth also, as
otherwise convergence difficulties can be expected.

We show how to constructively obtain smooth bases for the unstable eigenspace
and its orthogonal complement.

Continuation of invariant subspaces was introduced in [25]. We introduce it
in a novel way, using only linear algebra arguments. To justify our construction,
we recall that in our continuation procedure we parameterize a solution branch
in terms of so called pseudo-arclength; lets denote the pseudo-arclength vari-
able. Thus, both fixed pointsx1 andxN as well as the parameter(s)α are smooth
functions ofs. The matrix-valued functionA : α ∈ R

nα 7−→ R
n×n can thus

be viewed as a smooth function froms ∈ R 7−→ R
n×n. As a consequence, we

consider the continuation of invariant subspaces with respect to the scalar pseudo-
arclength variables. For this reason, we use the notationA(s) for A(α).

We first considerx1 and its unstable eigenspace. Suppose that initially we
have the (real) block Schur factorization

A(0) = Q(0)R(0)QT (0), Q(0) = [Q1(0) Q2(0)], (7.9)

whereA(0), R(0) andQ(0) aren × n-matrices,Q(0) is orthogonal,Q1(0) has
dimensionsn× nU andR(0) is block upper triangular

R(0) =

[
R11(0) R12(0)
0 R22(0)

]
, (7.10)
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158 Numerical continuation of connecting orbits of maps

whereR11(0)andR22(0) arenU ×nU - and(n−nU)×(n−nU)-matrices, respec-
tively. Rii(0), i = 1, 2, are not required to be triangular. The columns ofQ1(0)
span the unstable invariant subspaceS(0) ofA(0), and the columns ofQ2(0) span
the orthogonal complementS⊥(0). We want to obtain a block Schur factorization
for the matrixA(s), close toA(0).

Suppose that the matrixA(s) has two groups of eigenvalues,Λ1(s) (with mod-
ulus> 1) andΛ2(s) (with modulus< 1), which stay disjoint for all s around0.
Then, in an interval abouts = 0, we need a smooth factorization

A(s) = Q(s)R(s)QT (s), Q(s) = [Q1(s) Q2(s)], (7.11)

whereR(s) is in block Schur form

R(s) =

[
R11(s) R12(s)
0 R22(s)

]
, (7.12)

Here,R11 has eigenvaluesΛ1(s) andR22 has eigenvaluesΛ2(s). As shown in
[27], it is always possible to obtain a smooth path of block Schur factorizations
that satisfies (7.11) and (7.12). However, this smooth path is usually not unique.

Thus we can write

Q(s) = Q(0)U(s), with U(0) = I, (7.13)

so that we only need to compute then × n-matrix U(s). PartitioningU(s) in
blocks of the same size asR(0) in (7.10):

U(s) = [U1(s) U2(s)] =

[
U11(s) U12(s)
U21(s) U22(s)

]
, (7.14)

soU11(s) andU22(s) arenU×nU - and(n−nU)×(n−nU )-matrices, respectively.
We now show that we can always assume thatU11(s) andU22(s) are symmet-

ric positive-definite by redefiningQ(s) andR(s) if necessary and that this defines
Q(s) andR(s) in a unique way.

Proposition 7.1.1. SupposeQ(0), R(0) are chosen such that (7.9) and (7.10)
hold. Then for alls sufficiently close to0 there exist a unique orthogonal matrix
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Q(s) = [Q1, Q2] of sizen × n such that the columns ofQ1 span the unstable in-
variant subspace ofA(s) and the columns ofQ2 span the orthogonal complement
of the unstable eigenspace, and a unique block triangular matrix

R(s) =

[
R11(s) R12(s)
0 R22(s)

]
, (7.15)

of sizen × n whereR11 has eigenvaluesΛ1(s) with modulus> 1 andR22 has
eigenvaluesΛ2(s) with modulus< 1, such that

A(s)Q(s) = Q(s)R(s), (7.16)

and

Q−1(0)Q(s) =

[
U11 U12

U21 U22

]
, (7.17)

where the blocksU11 andU22 are symmetric positive definite (SPD).

Proof. Suppose thatQ(s) andR(s) satisfy (7.15) and (7.16). LetQ
′

(s) and
R

′

(s) be any other pair that satisfies (7.15) and (7.16). Then we must have

Q
′

(s) = Q(s)T (s) = Q(s)

[
T1 0
0 T2

]
, (7.18)

whereT is orthogonal, and also block diagonal.
Suppose also that in

Q−1(0)Q
′

(S) =

[
U

′

11 U
′

12

U
′

21 U
′

22

]
, (7.19)

bothU
′

11 andU
′

22 are SPD. By (7.18) and (7.19), we have

Q−1(0)Q
′

(s) = Q−1(0)Q(s)

[
T1 0
0 T2

]
=

[
U

′

11 U
′

12

U
′

21 U
′

22

]
, (7.20)

Or, equivalently
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Q−1(0)Q(s) =

[
U

′

11T
−1
1 U

′

12T
−1
2

U
′

21T
−1
1 U

′

22T
−1
2

]
. (7.21)

According to the polar decomposition of matrices [37],§4.2.10,A1 andA2, the
upper left and lower right blocks ofQ−1(0)Q(s) respectively, are uniquely pre-
sented as a product of an SPD matrix and an orthogonal matrix.This implies that
T1 andT2 are uniquely defined.

SinceU(0) = I, there is an open interval about0, call it I0, where we can
require thatU1 has the structure

U1(s) =

[
I

U21U
−1
11

]
U11. (7.22)

Next, for alls ∈ I0, we define

YU(s) = U21(s)U
−1
11 . (7.23)

Using the orthogonality relationUT
1 U1 = I, we get:

UT
1 (s)U1(s) = UT

11(s)U11(s) + UT
21(s)U21(s) = I. (7.24)

Using (7.24), we obtain

I + Y T
U YU = I + U−T

11 (s)UT
21(s)U21(s)U

−1
11 (s)

= I + U−T
11 (s)

[
I − UT

11(s)U11(s)
]
U−1

11 (s)

= I + U−T
11 (s)U−1

11 (s) − I

= U−T
11 (s)U−1

11 (s).

Now becauseU11 is symmetric positive definite,U−1
11 is the unique square root of

I+Y T
U YU . This implies that we can rewrite (7.22) in terms ofYU and chooseU11

symmetric, to obtain

U1 =

[
I
YU

]
(I + Y T

U YU )−
1
2 . (7.25)
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In a similar way, forU2 we useUT
2 U2 = I andUT

1 U2 = 0, to eventually obtain,
for everys ∈ I0,

U(s) =

[(
I
YU

)
(I + Y T

U YU )−
1
2

(
−Y T

U

I

)
(I + YUY

T
U )−

1
2

]
. (7.26)

Hence the columns of

QU (0)

[
I
YU

]
, (7.27)

form a base for the unstable eigenspace atx1 and the columns of

Q⊥
U (s) = QU (0)

[
−Y T

U

I

]
. (7.28)

form a base for the orthogonal complement of the unstable eigenspace. We note
that these bases are in general not orthogonal.

Thus, we need to find the matrixYU ∈ R
(n−nU )×nU in (7.26). For any given

s ∈ I0, defineR̂11, R̂12, E21 andR̂22 by

QT (0)A(s)Q(0) =

[
R̂11 R̂12

E21 R̂22

]
, (7.29)

whereR̂11 is of sizenU × nU andR̂22 is an(n− nU) × (n− nU) matrix.
By (7.11) and (7.12) we obtain the invariant subspace relation,

QT
2 (s)A(s)Q1(s) = 0. (7.30)

Now we substituteQ(s) given by (7.13), (7.26), andA(s) obtained from (7.29)
into (7.30)

[−YU I]QT (0)Q(0)

[
R̂11 R̂12

Ê21 R̂22

]
QT (0)Q(0)

[
I
YU

]
= 0, (7.31)

to obtain the following algebraic Riccati equation forYU :

F (YU ) = 0, F (YU ) := R̂22YU − YUR̂11 + E21 − YU R̂12YU . (7.32)
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We now look atxN . In the same way we can compute a right invariant (stable)
nS-dimensional subspaceS(α) of A(α).

First we considerQ(α) = [Q1(α) Q2(α)] ∈ R
n×n, Q1(α) ∈ Rn×nS , Q2(α) ∈

Rn×(n−nS) so thatQ1(α) spansS(α) andQ2(α) spans the orthogonal comple-
mentS⊥(α).

Using the same procedure, as used in the computation of the unstable subspace
for x1, we can obtain the relations

Q(s) = Q(0)U(s), with U(0) = I, (7.33)

and

U(s) =

[(
I
YS

)
(I + Y T

S YS)−
1
2

(
−Y T

S

I

)
(I + YSY

T
S )−

1
2

]
, (7.34)

and eventually the algebraic Riccati equation forYS :

F (YS) = 0, F (YS) := R̂22YS − YSR̂11 + E21 − YSR̂12YS. (7.35)

Solving (7.35) forYS of size(n−nS)×nS, enables us to compute the span of the
stable invariant subspace ofxN and its orthogonal complement. IfQS(0) is the
orthogonal matrix from the starting heteroclinc orbit, related to the stable invariant
subspace, then a basis for the stable eigenspace in the new step atxN is given by
the columns of

QS(0)

[
I
YS

]
. (7.36)

A basis for the orthogonal complement of the subspace in the new stepQ⊥
S , is

given by the columns of

Q⊥
S (s) = QS(0)

[
−Y T

S

I

]
. (7.37)

These bases are in general not orthogonal.
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7.1.2 Implementation

We now discuss the implementation of the algorithm in CL MATCONTM to con-
tinue the heteroclinic connection from the fixed pointx1 to the fixed pointxN .

• Continuation variables

The continuation variables are stored in aK-vector, whereK = Nn+(n−
nU)nU + (n− nS)nS + 1, contaning:

– A n-vector with the coordinates of the initial fixed point.

– (N−2) n-vectors with the coordinates of the mesh pointsx2, . . . , xN−1.

– A n-vectorxN with the coordinates of the final fixed point.

– The vectorY v
U , i.e. columnwise vectorizedYU .

– The vectorY v
S , i.e. columnwise vectorizedYS.

– An active parameterap.

• Defining system
The defining systems consists ofNn+(n−nU )nU +(n−nS)nS equations:

– The initial fixed point constraintf (J)(x1, α) − x1 = 0.

– The constraintsf (J)(xj−1, α) − xj = 0, j = 3, . . . ,N − 1.

– The final fixed point constraintf (J)(xN , α) − xN = 0.

– The rowwise vectorized Riccati equation (7.32) forYU .

– The rowwise vectorized Riccati equation (7.35) forYS .

– The initial boundary conditions (7.7).

– The final boundary conditions (7.8).

• Initialization

To implement the algorithm in CL MATCONTM, we need to initialize the
connection curve, i.e. we set the problem parameter vectorα, mesh points
x1, . . . , xN , computeQ1(0) andQ2(0) corresponding tox1 andxN by (7.9)
and initialize the vectorYU = 0 andYS = 0 corresponding to the unstable
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164 Numerical continuation of connecting orbits of maps

and stable eigenspaces ofx1 andxN of sizes((n − nU) × nU) and((n −
nS)× nS), respectively. We also set a global structurehetdscontaining the
following fields:

– Dimension of the state space (hetds.nphase).

– Number of mesh points, including the two fixed end points (hetds.npoints)

– The iteration number of the mapJ (hetds.niteration)

– Mapfile where the map is defined (hetds.mapfile)

– Vector of starting values of parameters and index of the active param-
eter (hetds.P0 andhetds.ActiveParams)

– Dimensions of the stable and unstable manifolds (hetds.nuandhetds.ns)

– The matricesQU andQS, bases for unstable and stable subspaces
respectively (hetds.QU andhetds.QS )

• Adaptation
At each continuation point a basis for the unstable eigenspace ofx1 is given
by

hetds.QU

[
I
YU

]
,

and for its orthogonal complement by

hetds.QU

[
−Y T

U

I

]
.

However, these bases are not orthogonal. To restore orthogonality we must
adaptQU from time to time. The baseQU can be adapted using thesingular
value decomposition(SVD)

[U,S, V ] = svd

(
hetds.QU

[
I
YU

])
, (7.38)

whereU andV are unitary matrices of sizesn×n andnU×nU , respectively,
andS is a diagonal matrix of sizen × nU . An adapted orthogonal base of
the unstable subspace is given byU . Then, the vectorYU is set to zero.

By using a similar procedure we can adapt the matricesQS andYS .
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7.1.3 Computing the Jacobian matrix

To continue a connecting orbit, we need to compute the Jacobian matrix of the
corresponding defining system. The Jacobian matrix can be computed by a fi-
nite difference approximation or by symbolic derivatives.However, using finite
differences leads to an inaccurate orbit. Moreover, continuation that uses finite
differences is much slower in comparison with the symbolic Jacobian.

To compute the Jacobian matrix we first initialize the Jacobian matrixJ as a
zero sparse matrix of sizek×(k+1), wherek = Nn+(n−nU)nU +(n−nS)nS .
We then compute the nonzero entries ofJ by taking the derivatives of thedefining
systemequations with respect to the continuation variables.

• For the constraints in (7.4) we setJ(1 : n, 1 : n) = A(x1) − I where
A(x1) is the Jacobian of (7.1) atx1 andI is an identity matrix of sizen.
For derivatives of (7.4) w.r.t the control parameter we setJ(1 : n, k + 1) =
(Aα)1(:,hetds.ActiveParams), where(Aα)1 is the Jacobian off (J) w.r.t
parameter atx1.

• For the(N − 3) constraints defined in (7.5), we get forj = 3, . . . ,N − 1,
J((j − 2)n + 1 : (j − 1)n, (j − 2)n + 1 : (j − 1)n) = A(xj−1) and
J((j − 2)n + 1 : (j − 1)n, (j − 1)n+ 1 : jn) = −I.

For derivatives of (7.5) w.r.t the control parameter we setJ((j − 2)n + 1 :
(j − 1)n, k+ 1) = (Aα)j(:,hetds.ActiveParams), wherej = 3, . . . ,N − 1
and(Aα)j is the Jacobian w.r.t the control parameter atxj .

• For the final fixed point constraint (7.6),J is computed as:J((N−2)n+1 :
(N − 1)n, (N − 1)n+ 1 : Nn) = A(xN )− I. For derivatives of (7.6) w.r.t
the control parameter we setJ((N−2)n+1 : (N−1)n, k+1) = (Aα)N (:
,hetds.ActiveParams), where(Aα)N is the Jacobian off (J) w.r.t parameter
atxN .

• Now we compute the entries ofJ corresponding to (7.32) atx1. First we
consider the derivatives with respect to the components ofYU . For sim-
plicity of the computations we divide (7.32) into3 termsD1 = R̂22YU ,
D2 = −YUR̂11,D3 = −YU R̂12YU .
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166 Numerical continuation of connecting orbits of maps

We start withD1 whose derivatives with respect to the components ofYU

are written into a block matrix of size((n − nU ) × nU ) × ((n − nU ) ×
nU ). D1 is an (n − nU ) × nU matrix with general form(D1)(j,i) =∑n−nU

l=1 (R̂22)(j,l)(YU )(l,i), j = 1, . . . , n− nU , i = 1, . . . , nU . Hence all
nonzero derivatives arise from the fact that the derivativeof (D1)(j,i) with

respect to(YU )(s,i) is (R̂22)(j,s), 0 ≤ s ≤ n − nU . Now if l = n(N − 1)
andh = Nn, then

– (D1)(j,i) is at row positionl + i+ (j − 1)nU .

– (YU )(s,i) is at column positionh+ s+ (i− 1)(n − nU ).

Therefore we update

J(l + i+ (j − 1)nU , h+ s+ (i− 1)(n − nU )) := (R̂22)(j,s),

whenever1 ≤ j ≤ n− nU , 1 ≤ i ≤ nU and1 ≤ s ≤ n− nU .

The following MATLAB command lines compute the nonzero entries of the
Jacobian matrixJ corresponding toD1

for j = 1 : n− nU

for i = 1 : nU

idx1 = l + i+ (j − 1) ∗ nU ;
idx2 = h+ 1 + (i− 1) ∗ (n− nU);
idx3 = h+ (n− nU) + (i− 1) ∗ (n− nU );

J(idx1, idx2: idx3) = J(idx1, idx2: idx3) + R̂22(j, 1 : n− nU );
end

end

• D2 is an(n − nU ) × nU matrix with general form

(D2)(j,i) = −
nU∑

l=1

(YU )(j,l)(R̂11)(l,i), j = 1, . . . , n− nU , i = 1, . . . , nU

Hence all nonzero derivatives arise from the fact that the derivative of(D2)(j,i)
with respect to(YU )(j,s) is (−R̂11)(s,i), 1 ≤ s ≤ nU . Now if l = n(N − 1)
andh = Nn, then
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– (D2)(j,i) is at row positionl + i+ (j − 1)nU .

– (YU )(j,s) is at column positionh+ j + (s− 1)(n − nU).

Therefore we update

J(l + i+ (j − 1)nU , h+ j + (s− 1)(n − nU )) :=

J(l + i+ (j − 1)nU , h+ j + (s− 1)(n − nU )) − (R̂11)(s,i),

whenever1 ≤ j ≤ n − nU , 1 ≤ i ≤ nU and1 ≤ s ≤ nU . The follow-
ing MATLAB command lines compute the nonzero entries of the Jacobian
matrixJ corresponding toD2

for j = 1 : n− nU

for s = 1 : nU

idx1 = l + 1 + (j − 1) ∗ nU ;
idx2 = l + nU + (j − 1) ∗ nU ;
idx3 = h+ j + (s − 1) ∗ (n− nU );

J(idx1 : idx2, idx3) = J(idx1 : idx2, idx3) − (R̂11(s, 1 : nU ))
′

;
end

end

• D3 = −YUR̂12YU is an (n − nU) × nU matrix. We introduceD31 =
−YUR̂12 andD32 = −R̂12YU . With this notation, we have

D
′

3 = D31Y
′

U + Y
′

UD32, (7.39)

First we considerD31Y
′

U that is a(n − nU) × nU matrix with the general
form

(D31Y
′

U)(j,i) =

n−nU∑

l=1

(D31)(j,l)(Y
′

U )(l,i)

This contributes to the derivative with respect to(YU )(r,s) if i = s with the
term(D31)(j,r). Now if l = n(N − 1) andh = Nn, then
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– (D31Y
′

U )(j,i) is at row positionl + i+ (j − 1)nU .

– (YU )(r,i) is at column positionh+ r + (i− 1)(n − nU ).

Therefore we update

J(l + i+ (j − 1)nU , h+ r + (i− 1)(n − nU )) := (D31)(j,r),

whenever1 ≤ j ≤ n− nU , 1 ≤ i ≤ nU and1 ≤ r ≤ n− nU .

The following MATLAB command lines compute the nonzero entries of the
Jacobian matrixJ corresponding toD3

for j = 1 : n− nU

for i = 1 : nU

idx1 = l + i+ (j − 1)nU ;
idx2 = h+ 1 + (i− 1)(n − nU);
idx3 = h+ n− nU + (i− 1)(n − nU);
J(idx1, idx2 : idx3) = J(idx1, idx2 : idx3) +D31(j, 1 : n− nU);

end
end

Now we considerD32Y
′

U that is a(n−nU)×nU matrix with general form

(Y
′

UD32)(j,i) = −
nU∑

l=1

(Y
′

U )(j,l)(D31)(l,i)

This contributes to the derivative with respect to(YU )(r,s) if r = j with the
term(D32)(s,i). (YU )(j,s) is (D32)(s,i). Now if l = n(N − 1) andh = Nn,
then

– (Y
′

UD32)(j,i) is at row positionl + i+ (j − 1)nU .

– (YU )(j,s) is at column positionh+ j + (s− 1)(n − nU ).
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Therefore we update

J(l + i+ (j − 1)nU , h+ j + (s− 1)(n − nU) :=

J(l + i+ (j − 1)nU , h+ j + (s− 1)(n − nU) + (D32(s, i))
′,

whenever1 ≤ j ≤ n− nU , 1 ≤ i ≤ nU and1 ≤ s ≤ nU .

The following MATLAB command lines compute the nonzero entries of the
Jacobian matrixJ corresponding toD32

for j = 1 : n− nU

for s = 1 : nU

idx1 = l + 1 + (j − 1) ∗ nU ;
idx2 = l + nU + (j − 1) ∗ nU ;
idx3 = h+ j + (s− 1) ∗ (n− nU );
J(idx1 : idx2, idx3) = J(idx1 : idx2, idx3) + (D32)(s, 1 : nU ))′;
end

end

• We compute the derivatives ofF (YU ) in (7.32) with respect to the compo-
nents ofx1. If 1 ≤ i ≤ n, then the derivative ofQT (0)A(s)Q(0) w.r.t
x1,i is given byDi = QT (0)hess(:, :, i)Q(0) wherehess is the Hessian of
f (J). ThenD1i = Di(1 : nU , 1 : nU ), D2i = Di(1 : nU , nU + 1 : n),
D3i = Di(nU + 1 : n, 1 : nU ) andD4i = Di(nU + 1 : n, nU + 1 : n) are
derivatives ofR̂11, R̂12,E21 andR̂22, w.r.tx1,i, respectively. Derivatives of
F (YU ) w.r.t x1,i are hence given by

(F (YU ))x1,i
= D1iYU − YUD2i +D3i − YUD4iYU

All nonzero derivatives arise from the fact that the derivative of (F (YU ))(j,s)
w.r.t tox1,i is

(D1i)(j,:)(YU )(:,s)− (YU)(j, :)(D2i)(:,s) +(D3i)(j,s)− (YU )(j,:)(D4iYU )(:,s)

Now if l = n(N − 1), then
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– (F (YU ))(j,s) is at row positionl + s+ (j − 1)nU .

– x1,i is at column positioni.

Therefore we update

J(l + s+ (j − 1)nU , i) :=

(D1i)(j,:)(YU )(:,s) − (YU )(j, :)(D2i)(:,s) + (D3i)(j,s) − (YU )(j,:)(D4iYU )(:,s),

whenever wherej = 1, . . . , n− nU , s = 1, . . . , nU , i = 1, . . . , n.

The following MATLAB command lines compute the nonzero entries of the
Jacobian matrixJ corresponding toF (YU ) w.r.t the components ofx1

for i = 1 : n
D = QT (0) ∗ hess(:, :, i) ∗Q(0);
D1 = D(1 : nU , 1 : nU);
D2 = D(1 : nU , nU + 1 : n);
D3 = D(nU + 1 : n, 1 : nU );
D4 = D(nU + 1 : n, nU + 1 : n);
for j = 1 : n− nU

for s = 1 : nU

idx = l + s+ (j − 1) ∗ nU

J(idx, i) = D4(j, :) ∗ YU (:, s) − YU(j, :) ∗D1(:, s) +D3(j, s);
for k = 1 : nU

J(idx, i) = J(idx, i) − YU (j, k) ∗ (D2(k, :) ∗ YU (:, s));
end

end
end

end

• We now compute the derivatives ofF (YU ) in (7.32) with respect to the
control parameter,αa. The derivative ofQT (0)A(s)Q(0) w.r.t the control
parameter is given byD = QT (0)hessp(:, :,ActiveParams)Q(0) where
hessp is the Hessian off (J) w.r.t αa. ThenD1 = D(1 : nU , 1 : nU),
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D2 = D(1 : nU , nU + 1 : n), D3 = D(nU + 1 : n, 1 : nU) and
D4 = D(nU +1 : n, nU +1 : n) are derivatives ofR̂11, R̂12,E21 andR̂22,
w.r.tαa, respectively.

Derivatives ofF (YU ) w.r.t the control parameter are hence given by

(F (YU ))αa = D1YU − YUD2 +D3 − YUD4YU

All nonzero derivatives arise from the fact that the derivative of (F (YU ))(j,s)
w.r.t toαa is

(D1)(j,:)(YU )(:,s) − (YU )(j, :)(D2)(:,s) + (D3)(j,s) − (YU )(j,:)(D4YU )(:,s)

Now if l = n(N − 1), then

– (F (YU ))(j,s) is at row positionl + s+ (j − 1)nU .

– αa is at column positionk + 1.

Therefore we update

J(l + s+ (j − 1)nU , k + 1) :=

(D1)(j,:)(YU )(:,s) − (YU )(j, :)(D2)(:,s) + (D3)(j,s) − (YU )(j,:)(D4YU)(:,s),

whenever wherej = 1, . . . , n− nU , s = 1, . . . , nU

The following MATLAB command lines compute the nonzero entries of the
Jacobian matrixJ corresponding toF (YU ) w.r.t the components ofαa
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D = QT (0) ∗ hess(:, :,ActiveParams) ∗Q(0);
D1 = D(1 : nU , 1 : nU);
D2 = D(1 : nU , nU + 1 : n);
D3 = D(nU + 1 : n, 1 : nU );
D4 = D(nU + 1 : n, nU + 1 : n);
for j = 1 : n− nU

for s = 1 : nU

idx = l + s+ (j − 1) ∗ nU ;
J(idx, k + 1) = D4(j, :) ∗ YU (:, s) − YU (j, :) ∗D1(:, s) +D3(j, s);
for k = 1 : nU

J(idx, k + 1) = J(idx, i) − YU (j, k) ∗ (D2(k, :) ∗ YU (:, s));
end

end
end

• We now look atxN and compute the nonzero entries ofJ corresponding
to (7.35). For simplicity of the computations we divide (7.35) into 3 terms
D1 = R̂22YS,D2 = −YSR̂11,D3 = YSR̂12YS .

We first considerD1 whose derivatives with respect to the components
of YS are written into a block matrix of size((n − nS) × nS) × ((n −
nS) × nS). D1 is an(n − nS) × nS matrix with general form(D1)(j,i) =∑n−nS

l=1 (R̂22)(j,l)(YS)(l,i), j = 1, . . . , n − nS , i = 1, . . . , nS . Hence all
nonzero derivatives arise from the fact that the derivativeof (D1)(j,i) with

respect to(YS)(s,i) is (R̂22)(j,s). Now if l = n(N − 1) + nU(n − nU) and
h = Nn+ nU (n− nU), then

– (D1)(j,i) is at row positionl + i+ (j − 1)nS .

– Y(s,i) is at column positionh+ s+ (i− 1)(n − nS).

Therefore we update

J(l + i+ (j − 1)nS , h+ s+ (i− 1)(n − nS)) := (R̂22)(j,s),
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whenever1 ≤ j ≤ n− nS , 1 ≤ i ≤ nS and1 ≤ s ≤ n− nS.

The following MATLAB command lines compute the nonzero entries of the
Jacobian matrixJ corresponding toD1

for j = 1 : n− nS

for i = 1 : nS

idx1 = h+ 1 + (i− 1) ∗ (n − nS);
idx2 = h+ (n − nS) + (i− 1) ∗ (n− nS);

J(l + i+ (j − 1) ∗ nS, idx1:idx2) = R̂22(j, 1 : n− nS);
end

end

• D2 is an(n− nS) × nU matrix with general form

(D2)(j,i) = −
nS∑

l=1

(YS)(j,l)(R̂11)(l,i), j = 1, . . . , n − nS , i = 1, . . . , nS

Hence all nonzero derivatives arise from the fact that the derivative of(D2)(j,i)
with respect to(YS)(j,s) is (R̂11)(s,i). Now if l = n(N − 1) + nU (n− nU )
andh = Nn+ nU(n− nU ), then

– (D2)(j,i) is at row positionl + i+ (j − 1)nS .

– (YU )(j,s) is at column positionh+ j + (s− 1)(n − nS).

Therefore we update

J(l + i+ (j − 1)nS , h+ j + (s− 1)(n − nS)) :=

J(l + i+ (j − 1)nS , h+ j + (s− 1)(n − nS)) − (R̂11)(s,i),

whenever1 ≤ j ≤ n− nS , 1 ≤ i ≤ nS and1 ≤ s ≤ nS.

The following MATLAB command lines compute the nonzero entries of the
Jacobian matrixJ corresponding toD2
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for j = 1 : n− nS

for s = 1 : nS

idx1 = l + 1 + (j − 1) ∗ nS;
idx2 = l + nU + (j − 1) ∗ nS ;
idx3 = h+ j + (s− 1) ∗ (n− nS);

J(idx1 : idx2, idx3) = J(idx1 : idx2, idx3) − (R̂11(s, 1 : nS))
′

;
end

end

• D3 = −YSR̂12YS is an(n−nS)×nS matrix. We introduceD31 = −YSR̂12

andD32 = −R̂12YS. With this notation, we have

D
′

3 = D31Y
′

S + Y
′

SD32, (7.40)

First we considerD31Y
′

S that is a(n − nS) × nS matrix with the general
form

(D31Y
′

S)(j,i) =

n−nS∑

l=1

(D31)(j,l)(Y
′

S)(l,i)

This contributes to the derivative with respect to(YS)(r,s) if i = s with the
term(D31)(j,r). Now if l = n(N−1)+nU(n−nU) andh = Nn+nU(n−
nU ), then

– (D31Y
′

S)(j,i) is at row positionl + i+ (j − 1)nS .

– (YS)(r,i) is at column positionh+ r + (i− 1)(n − nS).

Therefore we update

J(l + i+ (j − 1)nS , h+ r + (i− 1)(n − nS)) := (D31)(j,r),

whenever1 ≤ j ≤ n− nS, 1 ≤ i ≤ nS and1 ≤ r ≤ n− nS.

The following MATLAB command lines compute the nonzero entries of the
Jacobian matrixJ corresponding toD3
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for j = 1 : n− nS

for i = 1 : nS

idx1 = l + i+ (j − 1)nS ;
idx2 = h+ 1 + (i− 1)(n − nS);
idx3 = h+ n− nS + (i− 1)(n − nS);
J(idx1, idx2 : idx3) = J(idx1, idx2 : idx3) +D31(j, 1 : n− nS);

end
end

Now we considerD32Y
′

S that is a(n− nS) × nS matrix with general form

(Y
′

SD32)(j,i) = −
nS∑

l=1

(Y
′

S)(j,l)(D31)(l,i)

This contributes to the derivative with respect to(YS)(r,s) if r = j with the
term(D32)(s,i). (YS)(j,s) is (D32)(s,i). Now if l = n(N −1)+nU (n−nU )
andh = Nn+ nU(n− nU ), then

– (Y
′

SD32)(j,i) is at row positionl + i+ (j − 1)nS .

– (YS)(j,s) is at column positionh+ j + (s − 1)(n− nS).

Therefore we update

J(l + i+ (j − 1)nS , h+ j + (s− 1)(n − nS) :=

J(l + i+ (j − 1)nS , h+ j + (s− 1)(n − nS) + (D32(s, i))
′,

whenever1 ≤ j ≤ n− nS , 1 ≤ i ≤ nS and1 ≤ s ≤ nS.

The following MATLAB command lines compute the nonzero entries of the
Jacobian matrixJ corresponding toD32
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for j = 1 : n− nS

for s = 1 : nS

idx1 = l + 1 + (j − 1) ∗ nS ;
idx2 = l + nS + (j − 1) ∗ nS ;
idx3 = h+ j + (s− 1) ∗ (n− nS);
J(idx1 : idx2, idx3) = J(idx1 : idx2, idx3) + (D32)(s, 1 : nS))′;
end

end

• We now compute the derivatives ofF (YS) in (7.35) with respect to the
components ofxN . If 1 ≤ i ≤ n, then the derivative ofQT (0)A(s)Q(0)
w.r.t x(N,i) is given byDi = QT (0)hess(:, :, i)Q(0) wherehess is the
Hessian off (J). ThenD1i = Di(1 : nU , 1 : nU ),D2i = Di(1 : nU , nU +
1 : n),D3i = Di(nS +1 : n, 1 : nS) andD4i = Di(nS +1 : n, nS+1 : n)
are derivatives ofR̂11, R̂12,E21 andR̂22, w.r.tx(N,i), respectively.

Derivatives ofF (YS) w.r.t x(N,i) are hence given by

(F (YS))x1,i
= D1iYS − YSD2i +D3i − YSD4iYS

All nonzero derivatives arise from the fact that the derivative of (F (YS))(j,s)
w.r.t tox(N,i) is

(D1i)(j,:)(YS)(:,s) − (YS)(j, :)(D2i)(:,s) + (D3i)(j,s) − (YS)(j,:)(D4iYS)(:,s)

Now if l = n(N − 1) + nU(n− nU ), then

– (F (YS))(j,s) is at row positionl + s+ (j − 1)nS .

– x(N, i) is at column positionN(N − 1) + i.

Therefore we update

J(l + s+ (j − 1)nS , N ∗ (N − 1) + i) :=

(D1i)(j,:)(YS)(:,s) − (YS)(j, :)(D2i)(:,s) + (D3i)(j,s) − (YS)(j,:)(D4iYS)(:,s),
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whenever wherej = 1, . . . , n− nS, s = 1, . . . , nS , i = 1, . . . , n.

The following MATLAB command lines compute the nonzero entries of the
Jacobian matrixJ corresponding toF (YS) w.r.t the components ofxN

for i = 1 : n
D = QT (0) ∗ hess(:, :, i) ∗Q(0);
D1 = D(1 : nS , 1 : nS);
D2 = D(1 : nS , nS + 1 : n);
D3 = D(nS + 1 : n, 1 : nS);
D4 = D(nS + 1 : n, nS + 1 : n);
for j = 1 : n− nS

for s = 1 : nS

idx = l + s+ (j − 1) ∗ nS ;
J(idx, N ∗ (N − 1) + i) = D4(j, :) ∗ YS(:, s) − YS(j, :) ∗D1(:, s) +D3(j, s);
for k = 1 : nU

J(idx, N ∗ (N − 1) + i) = J(idx, i) − YS(j, k) ∗ (D2(k, :) ∗ YS(:, s));
end

end
end

end

• We now compute the derivatives ofF (YS) in (7.35) with respect to the
control parameter,αa. The derivative ofQT (0)A(s)Q(0) w.r.t the control
parameter is given byD = QT (0)hessp(:, :,ActiveParams)Q(0) where
hessp is the Hessian off (J) w.r.t αa. ThenD1 = D(1 : nS, 1 : nS),
D2 = D(1 : nS, nS + 1 : n), D3 = D(nS + 1 : n, 1 : nS) and
D4 = D(nS + 1 : n, nS + 1 : n) are derivatives ofR̂11, R̂12,E21 andR̂22,
w.r.tαa, respectively.

Derivatives ofF (YS) w.r.t the control parameter are hence given by

(F (YS))αa = D1YS − YSD2 +D3 − YSD4YS

All nonzero derivatives arise from the fact that the derivative of (F (YS))(j,s)
w.r.t toαa is

(D1)(j,:)(YS)(:,s) − (YS)(j, :)(D2)(:,s) + (D3)(j,s) − (YS)(j,:)(D4YS)(:,s)
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Now if l = n(N − 1), then

– (F (YS))(j,s) is at row positionl + s+ (j − 1)nS .

– αa is at column positionk + 1.

Therefore we update

J(l + s+ (j − 1)nS , k + 1) :=

(D1)(j,:)(YS)(:,s) − (YS)(j, :)(D2)(:,s) + (D3)(j,s) − (YS)(j,:)(D4YS)(:,s),

whenever wherej = 1, . . . , n− nS , s = 1, . . . , nS

The following MATLAB command lines compute the nonzero entries of the
Jacobian matrixJ corresponding toF (YS) w.r.t the components ofαa

D = QT (0) ∗ hess(:, :,ActiveParams) ∗Q(0);
D1 = D(1 : nS, 1 : nS);
D2 = D(1 : nS, nS + 1 : n);
D3 = D(nS + 1 : n, 1 : nS);
D4 = D(nS + 1 : n, nS + 1 : n);
for j = 1 : n− nS

for s = 1 : nS

idx = l + s+ (j − 1) ∗ nS;
J(idx, k + 1) = D4(j, :) ∗ YS(:, s) − YS(j, :) ∗D1(:, s) +D3(j, s);
for k = 1 : nS

J(idx, k + 1) = J(idx, i) − YS(j, k) ∗ (D2(k, :) ∗ YS(:, s));
end

end
end

• We consider conditions (7.7) which consists of(n − nU) equations of the
form

Bi =
n∑

k=1

(x2 − x1)(1,k)(q
U
(nU+i))k, i = 1, . . . , n− nU = 0
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– All nonzero derivatives are of the formBi w.r.t x1,s is −(q(nU +i))s.
Now if l = n(N − 1) + nU (n− nU) + nS(n− nS), then

∗ B(1,i) is at row positionl + i.

∗ x1,s is at column positions.

Therefore we update

J(l + i, s) := −(qU
(nU+i))(s),

whenever1 ≤ i ≤ n− nU and1 ≤ s ≤ n.

The following MATLAB command lines compute the nonzero entries
of the Jacobian matrixJ

for i = 1 : n− nU

J(l + i, 1 : n) = −(qU
(nU +i))

′;

end

– All nonzero derivatives are of the formBi w.r.tx(2, s) is (qU
(nU +i))(s).

Now if l = n(N − 1) + nU (n− nU) + nS(n− nS), then

∗ Bi is at row positionl + i.

∗ x2,s is at column positionn+ s.

Therefore we update

J(l + i, n + s) := (qU
(nU+i))(s),

whenever1 ≤ i ≤ n− nU and1 ≤ s ≤ n.

The following MATLAB command lines compute the nonzero entries
of the Jacobian matrixJ

for i = 1 : n− nU

J(l + i, n+ 1 : 2 ∗ n) = (qU
(nU +i))

′;

end
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– We now compute derivatives of (7.7) w.r.t the components ofQU . The
equations (7.7) have the following form

Bi = (x2 − x1)
T qU

nU+i = 0, for i = 1, . . . , n− nU (7.41)

HereqU
nU+i are precisely the columns ofQU(0)

[
−Y T

U

I

]
. Therefore

it is best to introduce the new vectorH = (x2 − x1)
TQ(0). With this

notation thei-th equation becomes

−
nU∑

j=1

Hj(Y
T
U )ji + terms without components ofYU = 0

Or

−
nU∑

j=1

Hj(Y
T
U )ji + . . .

This means that thei-th equation has derivatives with respect to(YU )ji
equal to−Hj (i = 1 . . . , n − nU , j = 1, . . . , nU ).
Let l = n(N − 1) + nU (n − nU ) + nS(n − nS), h = nN . Then
thei-th equation is at column positionl + i. The variable(YU )ji is at
column positionh+ j + (n − nU)(i− 1). So we have to set

J(l + i, h+ j + (n− nU )(i− 1)) := −Hj, for the relevanti, j.

Or equivalently, in MATLAB code we have

for i = 1 : n− nU

idx1 = h+ 1 + (n− nU ) ∗ (i− 1);
idx2 = h+ hetds.nU + (n− nU ) ∗ (i− 1);
J(l + i, idx1 : idx2) = −(H)′;

end

• We consider conditions (7.8) which consists of(n − nS) equations of the
form

Bi =
n∑

k=1

(xN−1 − xN )(1,k)(q
S
(nS+i))(k) = 0, i = 1, . . . , n− nS .
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– All nonzero derivatives are of the formBi w.r.tx(N−1, s) is (qS
(nS+i))s.

Now if l = n(N − 1) + nU (n− nU) + nS(n− nS) + n− nU , then

∗ Bi is at row positionl + i.

∗ xN−1,s is at column positionn(N − 2) + s.

Therefore we update

J(l + i, n(N − 2) + s) := (qS
(nS+i))(s),

whenever1 ≤ i ≤ n− nS and1 ≤ s ≤ n.

The following MATLAB command lines compute the nonzero entries
of the Jacobian matrixJ

for i = 1 : n− nS

J(l + i, 1 : n) = (qS
(nU+i))

′;

end

– All nonzero derivatives are of the formBi w.r.tx(N, s) is−(qS
(nS+i))(s).

Now if l = n(N − 1) + nU (n− nU) + nS(n− nS), then

∗ Bi is at row positionl + i.

∗ x2,s is at column positionn(N − 1) + s.

Therefore we update

J(l + i, n(N − 1) + s) := (qS
(nS+i))(s),

whenever1 ≤ i ≤ n− nS and1 ≤ s ≤ n.

The following MATLAB command lines compute the nonzero entries
of the Jacobian matrixJ

for i = 1 : n− nS

J(l + i, n(N − 1) + 1 : N ∗ n) = (qS
(nS+i))

′;

end
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– We now compute derivatives of (7.8) w.r.t the components ofQS . The
equations (7.8) have the following form

Bi = (xN−1 − xN )T qS
nS+i = 0, for i = 1, . . . , n− nS (7.42)

HereqS
nS+i are precisely the columns ofQS(0)

[
−Y T

S

I

]
. Therefore

it is best to introduce the new vectorH = (xN−1 − xN )TQ(0). With
this notation thei-th equation becomes

−
nS∑

j=1

Hj(Y
T
S )ji + terms without components ofYS = 0

Or

−
nS∑

j=1

Hj(Y
T
S )ji + . . .

This means that thei-th equation has derivatives with respect to(Y S)ji
equal to−Hj (i = 1 . . . , n − nS , j = 1, . . . , nS).
Let l = n(N − 1) + nU(n − nU ) + nS(n − nS) + n − nU , h =
nN +nU(n−nU). Then thei-th equation is at column positionl+ i.
The variable(Y S)ji is at column positionh + j + (n − nS)(i − 1).
So we have to set

J(l + i, h+ j + (n− nS)(i− 1)) := −Hj, for the relevanti, j.

In MATLAB code we have

for i = 1 : n− nS

idx1 = h+ 1 + (n− nS) ∗ (i− 1);
idx2 = h+ nS + (n− nS) ∗ (i− 1);
J(l + i, idx1 : idx2) = −(H)′;

end
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7.2 Continuation of homoclinic connections

Assume that the eigenvalues of(f (J)(x1, α)x are ordered as follows:

|λ1| ≤ . . . ≤ |λk| < 1 < |λk+1| ≤ . . . ≤ |λn|

The procedure to continue a homoclinic connection tox1 is similar to the pro-
cedure used in§7.1. The algorithm now requires the evaluation of two projec-
tions associated with the eigenspaces of(f (J)(x1, α)x. These projections are con-
structed using the real Schur factorizations.

(f (J)(x1, α))x = Q1R1Q
T
1 , (f (J)(x1, α))x = Q2R2Q

T
2

whereQ1, Q2, R1 andR2 aren× n-matrices.
The first factorization has been chosen so that the firstk columnsqS

1 , . . . , q
S
k of

Q1 form an orthonormal basis of the right invariant subspaceS1 of (f (J)(x1, α)x,
corresponding toλ1, . . . , λk and the remainingn − k columnsqU

k+1, . . . , q
U
n of

Q1 form an orthonormal basis of the orthogonal complementS⊥
1 . Similary the

first l = n − k columnsqU
1 , . . . , q

U
l of Q2 form an orthonormal basis of the right

invariant subspaceU1 of (f (J)(x1, α))x, corresponding toλk+1, . . . , λn and the
remainingn − l = k columnsqU

l+1, . . . , q
U
n of Q2 form an orthonormal basis of

the orthogonal complementU⊥
1 .

The problem ofhomoclinicconnection is to find a connection{xm}m=1,...,N

with

• Stationary state condition

f (J)(x1, α) − x1 = 0, (7.43)

• The iteration conditions

f (J)(xm, α) − xm+1 = 0, m = 2, 3, . . . ,N − 2, (7.44)

• The left boundary conditions

〈(x2 − x1).q
U
k+i(α)〉 = 0, i = 1, . . . , n− k (7.45)
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• The right boundary conditions

〈(xN−1 − x1), q
S
l+i(α)〉 = 0, i = 1, . . . , n− l (7.46)

A regular zero of a system of equations (7.43), (7.44), (7.45) and (7.46) corre-
sponds to a transversal homoclinic orbit. Thus, a zero for this system can be
continued in one parameter.

In the continuation process the conditions in (7.45) and (7.46) imply that we
need to access the stable and unstable eigenspaces of the map(7.1) at the fixed
pointsx1 at each step of the continuation. Using the same procedure, as in the
computation of the unstable subspace forx1, we can obtain relations analogous to
(7.13), (7.26) and (7.32) to compute the stable invariant subspace and its orthog-
onal complement forxN . Solving (7.32) forYU of size(n − k) × k, enables us
to compute the stable invariant subspace forx1 and its complement. IfQU (0) is
the orthogonal matrix from the initial or adaptation step, related to the unstable
invariant subspace, then a basis for the orthogonal subspace in the new stepQ⊥

U ,
is given by

QU (s) = QU(0)

[
I
YU

]
. (7.47)

A basis for the orthogonal complement of the subspace in the new stepQ⊥
U , is

given by

Q⊥
U (s) = QU (0)

[
−Y T

U

I

]
. (7.48)

As in §7.1, we can also continue the stable eigenspace and its orthogonal comple-
ment.

7.3 Invariant manifolds of planar maps

Invariant manifolds give information about the global structure of phase space.
For example, a codimension 1 manifold may separate several basins of attraction.
Invariant manifolds are also used to simplify dynamical systems. The phase por-
trait near the manifold may be trivial, so restricting the dynamical system to the
manifold effectively reduces the dimension of the system.
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Our main motivation for computing stable and unstable manifolds of a saddle
point is the role that they play in the computation of connecting orbits. Inter-
sections of stable and unstable manifolds may form homoclinic or heteroclinic
tangles. Stable and unstable manifolds are global objects that cannot normally be
found analytically and, hence, must be computed numerically. These manifolds
must be grown from local knowledge, for example from linear information near a
fixed point.

We concentrate here on the simplest case that these manifolds are one-
dimensional. Most algorithms use the idea of computing the manifold by starting
from a local approximation near the saddle point. The map that arises in a partic-
ular application does not necessarily have an explicit inverse or may not even be
invertible, meaning that there may be several branches of inverses. Consequently,
the standard algorithms requiring the inverse cannot be used to compute stable
manifolds of saddle points in this case.

First we present an algorithm to compute the stable manifoldof a saddle point
of a planar map, without requiring any knowledge of its inverse map, either ex-
plicitly or approximately. In particular, the algorithm can also be used in the case
where the map is noninvertible, so that multiple pre-imagesmay exist.

We recall some definitions, mostly to fix the notation. We consider (7.1) when
n = 2 and assume thatf has a fixed pointx0 = f (J)(x0) and thatf is differen-
tiable in a neighborhood ofx0, but may not have a unique inverse. The fixed point
x0 of f is a saddle if the Jacobian matrixD(f (J))(x0) has one stable eigenvalue
λs and one unstable eigenvalueλu. The stable manifold theorem [79] guarantees
that there exist local stable and unstable manifoldsW s

loc(x0) andW u
loc(x0) tangent

atx0 to the stable and unstable eigenspacesEs(x0) andEu(x0), respectively. The
stable manifoldW s(x0) of x0 is defined as the set of points that converge tox0

under forward iteration off ,

W s(x0) =
{
x ∈ R

2 : f (J)(x) → x0 as J → ∞
}
. (7.49)

Similarly, the unstable manifoldW u(x0) of x0 consists of points that converge
to x0 under backward iteration of the mapf . In terms of forward iterates, this is
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defined as

W u(x0) =

{
x ∈ R

2 : ∃ {qk}∞k=0 , q0 = x and f (J)(qk+1) = qk, and lim
k→∞

qk = x0

}
.

(7.50)
The global stable manifoldW s(x0) is similarly defined as the union of the suc-
cessive pre-images ofW s

loc(x0). However, if multiple inverses exist, then all pre-
images, even if disjoint from the main branch, are part of thestable manifold.
Hence the stable manifold may or may not be simply connected in phase space.

7.3.1 Computing a stable manifold

To compute the one-dimensional stable manifold of a planar map at a saddle point,
we use the algorithm described in [32]. We briefly explain thesearch circle (SC)
algorithm. SC algorithm uses the idea of growing a one-dimensional manifold
in steps by adding new points according to the local curvature properties of the
manifold and finds a new point close to the last computed pointthat maps under
f to a piece of the manifold that was already computed. SC produces a piecewise
linear approximation ofW s(x0) by computing an ordered list of pointsM =
{p0, p1, . . . , pn} at varying distance from each other. The first pointp1 is taken
a small distanceδ > 0 from p0 = x0 alongEs(x0). The distance between
consecutive points is adjusted according to the curvature of the manifold. To
ensure an acceptable resolution of the curve according to pre-specified accuracy
parameters, we monitorαk, the angle betweenpk−1, pk andpk+1, and the product
αk∆k, where∆k = ‖pk+1 − pk‖. Theαk is approximated by

αk = 2sin−1(
‖p̄− pk−1‖

2‖pk − pk−1‖
) ≈ ‖p̄− pk−1‖

‖pk − pk−1‖
(7.51)

where

p̄ = pk +
‖pk − pk−1‖
‖pk − pk+1‖

(pk − pk+1) (7.52)

is the point on the line throughpk andpk+1 that lies at the same distance frompk

aspk−1. We check the conditions

αk < αmax (7.53)
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∆k

f

p

p1

pi−2

pi−1

pi

pend

ptry

pk−1

2α

f(pk+1)

f(pend)

f(ptry)
pstart

pk+1

C(pk, ∆k)
f(C(pk, ∆k))

f(pstart)

pk

Figure 7.1: A graphical illustration of the SC algorithm. A new pointPk+1 is found on
the circleC(pk,∆K) centered atpk with radius∆k such thatf(pk+1) lies on a previously
computed part ofWS

x0
.

αk∆k < (α∆)max (7.54)

Condition (7.53) ensures that the resolution of the curve ismaintained and condi-
tion (7.54) controls the local interpolation error. The newpoint pk+1 is accepted
if it satisfies the above criteria. If one of the criteria is not satisfied, then we re-
place∆k by 1

2∆k and repeat the procedure to find a new candidate forpk+1. We
set∆k+1 = 2∆k if both αk > αmin andαk∆k > (α∆)min for a user-specified
choice of parametersαmin and(α∆)min. This ensures that the number of points
used to approximate the manifold is in some sense optimized for the required
accuracy constraints, see [59] for more details.

A graphical illustration of the SC algorithm is given in Figure 7.1.
A pseudo-code representation, as described in [32], of how the branch is

grown, is given below:
Grow-Manifold
(Fixed point:p0, first point alongEs(p0) : p1, target arclength: A)
M = {p0, p1};
pleft = p0;
pright = p1;
arclength = ‖p1 − p0‖;
while (arclength < A)
pk andpk−1 last and next to the last point inM ;
(pcandidate, pi−1, pi) = Search Circle(M,pleft, pright);
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([pi−1, pi] is the interval in whichf(pcandidate) lies)
αk = ∠(pk−1, pk, pcandidate)

i f ((αk < αmax and ∆kαk < (∆α)max) or ∆k < ∆min);
(Accept point)
Pk+1 = pcandidate;
appendPk+1 toM
arclength = arclenght+ ∆k;
pleft = pi−1, pright = pi;
i f ((αk < αmin and ∆kαk < (∆α)min))

(Increase∆k for the next step)
∆k = 2∆k;

end if
else
(Accuracy conditions not satisfied. Reject point and decrease∆k.)

end if
end while
r eturnM ;
end

TheSearch Circle algorithm is given in pseudo code, as described in [32]:
SearchCircle (M,pleft, pright)

do
(pcandidate, τ) = Find Point On Line(pleft, pright);
(If τ < 0 or τ > 1, point is on line, but not on segment).
i f (τ < 0) (move backward)
(pleft, pright) = (pleft−1, pleft);
else if (τ > 0) (move forward)
(pleft, pright) = (pright, pright+1);

end if
while (τ /∈ [0, 1])

r eturn (pcandidate, pleft, pright);
end.

Find Point On Line (pleft, pright)

L(τ) = line[pleft, pright] = {(1 − τ)pleft + τpright|τ ∈ R};
θstart = −αmax; θend = αmax;
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pstart = point on circle at angleθstart;
pend = point on circle at angleθend;
p̄ = point on circle at angle0;
V~

start = f(pstart) − pright;
V~

end = f(pend) − pright;
W~ = normal vector topleft − pright;
i f (
〈
V~

start,W
~
〉
∗
〈
V~

end,W
~
〉
) > 0

(f(pstart) andf(pend) do not lie on opposite sides of L.)
Increaseαmax

end if
do
(Bisection to find point onL(τ))
θtry = (θstart+θend)

2 ;
ptry = point on circle at angleθtry from p̄− pk;
V~ = f(ptry) − pright;
i f(
〈
V~

end,W
~
〉
∗
〈
V~,W~

〉
) > 0

(f(ptry) is on same side as andf(pend).)
θend = θtry;

else
(f(ptry) is on same side as andf(pendstart).)
θstart = θtry;
end if

while (|
〈
V~

end,W
~
〉
| < ǫB)

Normal distance between L andf(ptry) < ǫB,
Accept as candidate.

r eturn(ptry, τ);
end.

7.3.2 Computing an unstable manifold

We use the algorithm for computing the global one-dimensional unstable manifold
of a saddle point of a map as described in [32]. To keep the exposition simple,
we consider a planar diffeomorphism and supposef is orientation preserving,
otherwise we consider its second iterate. Letx0 be a saddle point off . The
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unstable manifold ofx0 is defined as

W u(x0) =
{
x ∈ R2 : f (−J)(x) → x0 as J → ∞

}
. (7.55)

Note that, sincef is a diffeomorphism, the stable manifoldW s(x0) is simply the
unstable manifold off−1 at x0. The unstable manifold theorem [79] guarantees
the existence of the local unstable manifold

W u
loc(x0) =

{
x ∈W u(x0) : f (−n)(x) ∈ U for all n ∈ N

}
. (7.56)

in a suitable neighborhoodU of x0. Furthermore, it states thatW u
loc(x0) is tangent

to the unstable eigenspaceW u(x0) of λu.
Similar to the algorithm that is used for computing the stable manifold, the idea is
to grow the manifold independently of the dynamics in steps as a list of ordered
points. At each step a new point is added at a prescribed distance∆k from the
last point. New points are found asf -images of suitable points from the part we
already computed. The algorithm starts with a linear approximation of the local
manifold and grows the manifold up to a prespecified arclength l with a speed
depending on the curvature of the manifold.

We now briefly describe a single step of the algorithm and suppose that the
manifoldM = {p0, p1, . . . , pk} is already computed, wherep0 = x0 and the point
p1 is at a small distanceδ from x0 in the unstable eigenspaceEu(x0). The next
point pk+1 should have the property that the line segment[pk, pk+1] accurately
approximatesEu(x0). In order to achieve a good approximation, the distance
betweenpk andpk+1, ∆k, must be adjusted from step to step according to the
curvature of the manifold.

We want to findpk+1 in a small annulus around the circle atpk with radius
∆k. To this end, we search inW u

loc(x0) from the lineL that is mapped byf to
a curve which intersects the circle with centerpk and radius∆k. We start with
the line segment inW u

loc(x0) that contains the preimage ofpk and move linearly
throughW u

loc(x0). OneceL is found, we use bisection to find a pointq ∈ L such
that

(1 − ǫ)∆k < ‖f(q) − pk‖ < (1 + ǫ)∆k

The pointpk+1 = f(q) is a candidate for the next point inM , see Figure 7.2. If
∆k is acceptable thenpk+1 = f(q) is added toM , [pk, pk+1] is added toW u

loc(x0),
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L

q

pk−1

pk

∆k

f(q)

W u(x0)

Figure 7.2: The next pointpk+1 = f(pk) is chosen at distance∆k from pk.

and step is completed. However, if∆k was too large then we rejectf(q), half the
estimate∆k, and repeat the procedure. This algorithm is presented in pseudo-
code, as described in [59], as follows:

Globalized1D
Input: f, x0, v, f(x0) = x0, Eu(x0)=span(v)

δ, initial distance fromx0

∆, first estimate for∆k

αmin, αmax, (∆α)min, (∆α)max tolerances forαk and∆kαk

larc total arclength to be computed
output M , l ist of points
Begin

Add (M,x0); pk = x0 + δν, Add (M,pk);
arclength = δ; ∆k = ∆;

while arclength < larc do
while ‖f(pcan) − pk‖ < ∆k do
L contains the preimage ofpk

q = BISECT(L,∆k);
now (1 − ǫ)∆k < ‖f(q) − pk‖ < (1 + ǫ)∆k
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pk+1 = f(q); αk = ∠pk−1, pk, pcandidate;
i f (αk < αmax) and(∆kαk < (∆α)max) t hen
i f (αk < αmin) and(∆kαk < (∆α)min) t hen

∆k = 2∆k;
arclength = arclength+ ‖pk+1 − pk‖
Add (M,pk+1);
else
∆k = 1

2∆k;
end

7.4 Continuation of heteroclinic and homoclinic tangen-
cies

Let F (X,α) = 0 be the defining system of the heteroclininc connection, thena
heteroclinic tangency satisfies the following conditions:

{
F (X,α) = 0,

det(FX (X,α)) = 0,
(7.57)

which is a system ofK1 = n(N−1)+nU(n−nU)+nS(n−nS)+2n−nU−nS+1
equations in aK2 = nN +nU(n−nU)+nS(n−nS)+ #ap-dimensional space
with coordinates(X,α). We recall thatX = (x1, . . . , xN , YU , YS , ap).
If nU + nS = n and #ap = 2, then (7.57) defines a continuation problem.
This system is natural from of a theoretical perspective butmay lead to numerical
scaling problems. If the Jacobian has eigenvalues of large magnitude, then these
eigenvalues contribute to the determinant (which is the product of all eigenvalues)
and may make it difficult to satisfy the defining equations to adesired tolerance.
The larger the system, the worse this problem becomes. Thus we seek alternate
defining equations that avoid calculation of the determinant. Bordered matrices
allow us to find a substitute function of the determinant.

We define a curve of heteroclinic tangencies by the followingsystem

{
F (X,α) = 0,
g(X,α) = 0,

(7.58)
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whereg(X,α) is computed as the last component of the solution vector in the
K1-dimensional bordered system:

(
FX(X,α) b

cT 0

)(
v
g

)
=

(
0(K1−1)

1

)
, (7.59)

for suitable vectorsb, c ∈ R
K1−1.

If c is close to the nullvector ofFX(X,α) andb is close to the nullvector of
F T

X(X,α), then the matrix

M =

(
FX(X,α) b

cT 0

)
(7.60)

is nonsingular at(X,α) and (7.59) has a unique solution. In practical computa-
tions,c andb are approximations of the null vectors ofFX(X,α) andF T

X(X,α),
respectively.

In the continuation of heteroclinic tangenciesb and c are computed in the
curve initializerinit HetT HetTand stored in the fieldshetTds.bandhetTds.cof
the global variablehetTds.

The vectorsb andc must be adapted during the continuation of hetereoclinic
tangencies to keep the matrixM nonsingular. Towards this end we use theSVD
decomposition[U,S, V ] = svd(full(FX(X,α))) whereU, V are orthogonal ma-
trices andS is a diagonal matrix, andFX(X,α) = USV

′

. Using the fact thatc is
normalized right nullvector ofFX we have:

FX(X,α)c = USV
′

c = 0.

By the orthogonality ofU , we getSV
′

c = 0. The only possibility for the null
vector ofS is V

′

c = [0, . . . , 0, 1]T . SineV is an orthogonal matrix, we finally
obtain:c = V [0, . . . , 0, 1]T . That meansc is the last column ofV .

For the left nullvectorb, we have

bTFX(X,α) = bTUSV
′

= 0.

By the orthogonality ofV , we getbTUS = 0. The only possibility for the null
vector ofS is bTU = [0, . . . , 0, 1]. SinceU is an orthogonal matrix, we finally
obtain:b = U [0, . . . , 0, 1]T . That meansb is the last column ofU .

By now it is fairly clear that homoclinic tangencies can be computed in essen-
tial the same way.
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7.5 Examples and applications

We consider the generalized Hénon map (GHM)

F :

(
x1

x2

)
7→
(

x2

α− βx1 − x2
2 +Rx1x2 + Sx3

2

)
, (7.61)

which appears in numerous theoretical studies of homoclinic bifurcations. For
α = 0.3, β = −1.057, R = −1.057 andS = 0, F 2 has two fixed points, namely

X0 = (0.4666170238049, 0.4666170238049)T

and
X1 = (−0.4286170238049,−0.4286170238049)T

with multipliers2.76261564, 0.24558887 atX0 and multipliers3.18306252 and
0.50775797 atX1.

7.5.1 Heteroclinic connections and tangencies

We use the algorithm as described in§7.3.2, to compute the one-dimensional un-
stable manifold of the saddle pointX0, by calling the MATLAB functionUmani-
fold.m. To this end, first we set the accuracy parametersamax, amin, dmax, dmin,
damax, damin, dkand epsbcorresponding to parametersαmax , αmin, ∆max,
∆max, (∆α)max, (∆α)min,∆k andǫb, respectively, as described in§7.3.2. We
use the routines:

epsb=1e-10;Arc=8.6;dk=1e-3;amax=0.6;amin=0.2;
dmin=0.001;damax=0.07;damin=0.0001;dmax=0.2;
p0=[0.46661702380495;0.46661702380495];
p=[0.3;-1.057;-0.5;0];%alpha,beta,R,S
lamb=2.76261564458262;
del=1e-2;
v=[0.51553133957551;-0.85687072415592];
MM=Umanifold(p0,Arc,amax,amin,dmax,dmin,damax,
amin,dk,p,epsb,lamb,del,v);
for i=1:size(M,2) hold on,
plot(M(1,i),M(2,i),’-r.’), end
hold on
plot(0.46661702380495,0.46661702380495,’--sg’)
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Figure 7.3: The transversal intersection of unstable and stable manifolds ofF atX0 and
X1, respectively.

wherep0 represents the saddle pointX0, p is the vector of parameters(α, β,R, S),
λ is the multiplier ofF corresponding toX0 andArc is the total length of the un-
stable manifold to be computed.
The plot of the unstable manifold is given in Figure 7.3.

We now use the algorithm for computing the stable manifold asdescribed in
§7.3.1, to compute the stable manifold ofX1. The routine is given by:

epsb=1e-7;Arc=5;dk=e-4;amax=0.5;amin=0.2;
dmin=0.01;damax=0.7;damin=1e-3;dmax=1e-2;
p0=[-0.42861702380495;-0.42861702380495];
p=[0.3;-1.057;-0.5;0];
p1=p0-1e-3 * [-0.81439328674458;0.58031334165721];
MM=Smanifold(p0,p1,Arc,amax,amin,dmax,dmin,damax,
damin,dk,p,epsb);

The plot of the stable manifold is given in Figure 7.3.
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Figure 7.4: The transversal intersection of the unstable and stable manifolds of F atX0

andX1, respectively.

The transversal intersection of the unstable and stable manifolds, depicted in Fig-
ure 7.4, provides an initial approximation of a heteroclinic connection.

We continue the heteroclinic orbit in CL MATCONTM, using the transversal in-
tersection of invariant manifolds atX0 andX1, as an initial approximation. As
indicated in Figure 7.4, the set of intersection points{x5, x6, . . . , x10} is an initial
approximation. However, to get a more accurate heteroclincorbit we extend the
initial approximation set by adding more points. To this end, we use iterations of
F andF−1 and project the resulting points onW u(x0) andW s(x1), respectively.

We start fromx5 and compute the pointF−1(x5). By projecting the resulting
point onW u(x0), we computex4 as an approximation of a new intersection point
of W u(x0) andW s(x1). We then applyF−1 on x4 and by projecting the new
point onW u(x0) we computex3. We proceed with the same steps to compute the
pointsx2 andx1.

We now use the same procedure by applyingF on x10. By projecting the
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resulting point onW s(x1) we computex11 as an approximation of an intersection
point ofW u(x0) andW s(x1). We repeat the same steps to compute the points
x12, x13, . . . , x16.

The resulting initial approximation is given by

C = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16}

where

x1 = (0.4666171; 0.4666171), x2 = (0.519502; 0.376394)
x3 = (0.483172; 0.439158), x4 = (0.4731169; 0.456962)
x5 = (0.612300; 0.206700), x6 = (0.841195;−0.276064)
x7 = (1.229904;−1.332700), x8 = (0.641982;−1.093020)
x9 = (0.134731;−0.799843), x10 = (−0.143457;−0.623386)
x11 = (−0.333799;−0.495162), x12 = (−0.380621;−0.462550)
x13 = (−0.404242;−0.445916), x14 = (−0.416213;−0.437437)
x15 = (−0.422303;−0.433111), x16 = (−0.428617;−0.428617)

The code below is the implementation in CL MATCONTM:

C={x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,
x14,x15,x16};
p=[0.3;-1.057;-0.5;0];ap=[2];
opt = contset;
[x0,v0]=init_HE_HE(@Ghmap,C, p, ap,2);
opt=contset(opt,’MaxNumpoints’,30);
opt=contset(opt,’Singularities’,1);
opt=contset(opt,’Backward’,1);
[xhet,vhet,shet,hhet,fhet]=
cont(@heteroclinic,x0,[],opt);

We detect two limit points (LP) on the heteroclinic orbit:

first point found
tangent vector to first point found
label = LP , x = ( 0.450332 0.450332 0.464235

0.427916 0.486124 0.391578 0.542144 0.295162
0.680067 0.035058 0.973257 -0.628904 1.192852
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-1.382567 0.417078 -0.981090 -0.036976 -0.709741
-0.254175 -0.571162 -0.355358 -0.504248 -0.402531
-0.472468 -0.424600 -0.457463 -0.434950 -0.450395
-0.439810 -0.447070 -0.444117 -0.444117 -0.004369
-0.005812 -1.009322 )

label = LP , x = ( 0.471227 0.471227 0.487755
0.443527 0.517117 0.392578 0.597800 0.245433
0.806172 -0.186179 1.203153 -1.234826 0.805668

-1.173190 0.258458 -0.870745 -0.069068 -0.666717
-0.241453 -0.552315 -0.330135 -0.491249 -0.375727
-0.459196 -0.399232 -0.442484 -0.411379 -0.433796
-0.417667 -0.429288 -0.424423-0.424423 0.000138

0.000184 -1.070206 )

elapsed time = 1.8 secs
npoints curve = 30

In the computed LP points the first 32 components indicate thecoordinates
of the mesh pointsx1, . . . , x16, the following 2 indicateYU andYS in the Riccati
equations (7.32) and (7.35), respectively and the last component is the value of
the control parameterβ. A picture of the computed branch of heteroclinic orbits
is given in Figure 7.6.

As a comparison, we also continued the branch of heteroclinic connections
using the numeric Jacobian computed by finite differences. The continuation us-
ing finite differences lead to the same branch of heteroclinic connections as well
as the same LP bifurcations. However, the elapsed time usingfinite differences
was13.2 (for 30 points). That means, using the symbolic Jacobian speeds up the
continuation by a factor7 times compared with the case when finite differences
were used.

For the parameter values of the fold points, i.e.α = 0.3, β = −1.009322, R =
−0.5, S = 0 andα = 0.3, β = −1.070206, R = −0.5, S = 0, we have a tangen-
tial intersection of the invariant manifolds. A tangentialintersection of invariant
manifolds is shown in Figure 7.5.
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Figure 7.5: Tangential intersection of the invariant manifolds of (7.61) for α = 0.3;β =
−1.009322;R = −0.5;S = 0

Next we continue the limit points in two parameters, starting from the LP on the
heteroclinic connections. This curve is given in Figure 7.7.

7.5.2 Homoclinic connections and tangencies

Now we consider the parameter valuesα = −0.4, β = 1.03, R = −0.1 and
S = 0. F has fixed pointX0 = (−1.62114638486,−1.62114638486) with the
multipliers0.2775591559 and3.1268482523.

We computeW u(X0) andW s(X0) and determine their intersection points
to be used as initial data for the homoclinic continuation. Figure (7.8) depicts
W u(X0) andW s(X0) along with their intersection points. We continue the ho-
moclinic orbit in CL MATCONTM, using the transversal intersection of invariant
manifolds atX0, as an initial approximation. The initial approximation isgiven
by

C = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}

where
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−1.08 −1.07 −1.06 −1.05 −1.04 −1.03 −1.02 −1.01 −1 −0.99
−1.1

−1.05

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

LP  

LP  

β

x 1

Figure 7.6: Fold points on the
branch of heteroclinic connections
of (7.61)
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Figure 7.7: Branch of heteroclinic
tangencies of (7.61)

x1 = (−1.6211464;−1.62114638), x2 = (−1.56200000;−1.44300000)

x3 = (−1.4430000;−1.09878560), x4 = (−1.09878560;−0.27959456)

x5 = (−0.27959456; 0.62285460), x6 = (0.62285460;−0.48255079)

x7 = (−0.48255079;−1.24433961), x8 = (−1.24433961;−1.51139945)

x9 = (−1.51139945;−1.59072793), x10 = (−1.59072793;−1.61409646)

We detect two limit points (LP):

label = LP , x = ( -1.704631 -1.704631 -1.668284 -1.584880
-1.584880 -1.324870 -1.324870 -0.606436 -0.606436 0.6221 63

0.622163 -0.076364 -0.076364 -1.091525 -1.091525 -1.5150 17
-1.515017 -1.649326 -1.649326 -1.688864 -0.002296 -0.001 094

1.109749 )

label = LP , x = ( -1.586188 -1.586188 -1.559729 -1.505309
-1.505309 -1.345718 -1.345718 -0.912761 -0.912761 -0.014 305
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Figure 7.8: Transversal intersec-
tion of the invariant manifolds of
(7.61) for α = −0.4, β = 1.03,
R = −0.1 andS = 0
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Figure 7.9: Closed invariant curve
of (7.61) forα = −0.4, β = 1.03,
R = −0.1 andS = 0, superposed
on Figure 7.8

-0.014305 0.508497 0.508497 -0.643580 -0.643580 -1.28843 3
-1.288433 -1.501341 -1.501341 -1.562917 0.000551 0.00025 2

0.996984 )

elapsed time = 1.3 secs
npoints curve = 35

In the computed LP points the first 20 components indicate thecoordinates
of the mesh pointsx1, . . . , x10, the following 2 indicateYU andYS in the Ri-
catti equations (7.32) and (7.35), respectively and the last component is the value
of the control parameterβ. The computed branch of homoclinic connections is
presented in Figure 7.10.

Now we can continue the curve of limit points in two parameters, starting
from theLP on the homoclinic connections. This curve is given in Figure7.11.

In Figure 7.9 we present a closed invariant curve, obtained by simulation, for
α = −0.4;β = 1.03;R = −0.1;S = 0 superposed on Figure 7.8. This invariant
curve is destructed at the tangency.
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Figure 7.10: Fold points on the
branch of homoclinic connections
of (7.61)
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Figure 7.11: Branch of homoclinic
tangencies of (7.61)
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Chapter 8

Future work

There is a clear need for further development of the work described in the present
thesis. An important goal is to provide an interactive environment, i.e. a graphical
user interface (GUI), for CL MATCONTM, in order to take advantage of the GUI
capabilities ofMATLAB . The GUI for CL MATCONTM should be similar to that
of MATCONT, in many aspects. It would differ in some aspects, especially in
branch switching. For an iterated map one key element is to consider the iteration
number of the map, e.g. for the branches of different periodsthat emanate from
codim 1 and codim 2 bifurcation points.

As an alternative to symbolic derivatives, we implemented automatic differ-
entiation to compute the critical normal form coefficients that appear in the nor-
mal form, in order to compute derivatives accurately when symbolic derivatives
are not available, and to speed up the computations. With AD the elapsed time
grows linearly whereas it grows nonlinearly when using symbolic derivatives. AD
should also be implemented in MATCONT for computing the critical normal form
coefficients of codim l and codim 2 bifurcations of an ODE.

In Chapter 7 we implemented numerical algorithms for the continuation of
branches of connecting orbits of a map in one parameter, which includes an im-
proved algorithm for the continuation of invariant subspaces. In the continuation
we need to compute the Jacobian matrix of the defining system.Depending on the
number of initial approximation points, we may have a large number of equations
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in the defining system. To speed up the continuation we implemented algorithms
to compute the symbolic Jacobian of connecting orbits. It uses a sparse matrix
as opposed to the full Jacobian used in the finite differences. However, it should
be possible to improve the implementation of the symbolic Jacobian significantly
by converting loops into array operations, i.e. vectorizing the code.MATLAB is
optimized for performing operations on arrays and providesa rich set of functions
and many expressive indexing schemes that make it possible to vectorize code. So
we should vectorize the code for the symbolic Jacobian by converting loops into
array operations.

The next aim in connecting orbits is to analyze the bifurcation of transversal
heteroclinic orbits, when one end point loses its hyperbolicity at a critical param-
eter, while transversality remains valid. This non-hyperbolic situation arises, for
example, when one fixed point undergoes a fold or a flip bifurcation, while the
second fixed point stays hyperbolic. In this case, every point of a connecting orbit
is lying in the intersection of an unstable manifold, and a center-stable manifold.
Since the bifurcation of fixed points is well understood, we are interested in the
continuation of the saddle to fold and saddle to flip orbits ina neighborhood of
the critical parameter and also detection and location of the corresponding bifur-
cations along these orbits.

We implemented algorithms for computing one-dimensional stable and un-
stable manifolds of a saddle point of a planar map. These algorithms should
be generalized to compute two-dimensional stable and unstable manifolds in a
higher-dimensional state space.
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Het uitgangspunt van deze thesis is een afbeeldingf : R
n × R

p → R
n, (x, α) →

f(x, α), waarbij wex een toestandsvector noemen enα een parametervector. Een
vast punt van de afbeelding is een puntx for waarvoorf(x) = x; een cykel
met periodeJ is eenJ− tal vectoren{x1, x2, . . . , xJ} waarvoorf(xj) = xj+1,
j = 1..J − 1, f(xJ) = x1.

Een connectie is een tweezijdig oneindige familie{. . . , xj−1, xj , xj+1, . . . }
met de eigenschap datf(xj) = xj+1 voor allej en datxj nadert tot een vast punt
x−∞ alsj nadert tot−∞, en tot een vast puntx∞ alsj nadert tot∞.

De connectie heet homoclinisch alsx−∞ = x∞ en heteroclinisch alsx−∞ 6=
x∞. Vaste punten en cykels zijn generieke fenomenen voor afbeeldingen; het is
wellicht minder evident dat dit ook waar is voor homoclinische en heteroclinische
connecties.

De thesis behoort tot het brede domein van dynamische systemen, maar eve-
neens tot dat van de numerieke algoritmen en van de toegepaste wiskunde. De
toepassingen die wij expliciet vermelden behoren tot de economie, speltheorie en
biologie maar het potentieel is ruimer.

In Hoofdstuk 1 (Aspecten van CL MATCONTM) geven we een overzicht van
de structuur van het softwarepakket CL MATCONTM (Command line Matlab
Continuation for Maps). Ruwweg gezegd is dit een universeelcontinuatie - al-
goritme toegepast op types van krommen die specifiek zijn voor afbeeldingen.
Alhoewel er enige gelijkenissen zijn met het corresponderende pakket MATCONT

voor gewone differentiaalvergelijkingen, is de hele structuur grondig verschillend.
Een basisingredient voor alle routines is demapfilevan de afbeelding, d.w.z.

een stel van computationele routines die de basisinformatie verschaffen over hoe
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de afbeelding wiskundig gedefinieerd is, of er symbolische afgeleiden beschik-
baar zijn, welke functies de gebruiker eventueel wenst te monitoren tijdens de
verschillende continuaties, enzoverder.

In Hoofdstuk 2 (Locale bifurcatieanalyse) frissen we de wiskundige achter-
grond op waarvoor de numerieke algoritmen ontwikkeld werden. We geven een
breed overzicht van het bifurcatiegedrag van discrete dynamische systemen, vaste
punten, cykels en heteroclinische en homoclinische banen.Daarbij geven we de
normaalvormen van alle codimensie 1 en codimensie 2 bifurcaties van cykels. Dit
bevat in wezen geen origineel werk maar wordt hier voor het eerst op die manier
samengevat en is fundementeel voor de rest van de thesis.

Hoofdstuk 3 (Continuatie van codimensie 1 bifurcaties; takwisseling) beschri-
jft de numerieke algoritmen die we gebruikten om de continuatie van codimensie
1 bifurcaties van afbeeldingen te continueren, d.w.z. van limietpunten (folds),
periodeverdubbelingspunten (flip, perioddoubling) en torusbifurcaties (Neimark-
Sacker). In de laatste bladzijden van dit hoofdstuk geven wegrafische represen-
taties van de bifurcatiestructuur van cykels van afbeeldingen tot en met codimen-
sie 2. De detectiegraaf toont welke bifurcatiepunten van hogere codimensie gede-
tecteerd kunnen worden op krommen met een lagere codimensie. De vertakkings-
graaf toont welke bifurcatiekrommen van lagere codimensiekunnen opgestart
worden vanaf punten met een hogere codimensie. De volledigeinformatie be-
vat in deze grafen is numeriek geimplementeerd en in vele gevallen gebeurt dit
voor de eerste keer in dit werk.

In Hoofdstuk 4 geven we algoritmische en numerieke details.In sectie 4.1
geven we vooreerst de computationele details over het definierend systeem, de
initializatie en de adaptatie van de Neimark-Sacker krommen. Dit is het meest
gecompliceerde van de drie codimensie 1 gevallen; de twee andere (limietpunten
en periodeverdubbeling) zijn wat eenvoudiger.

In de secties 4.2-3 geven we recursieve formules voor de eerste en tweede orde
afgeleiden van cykels met betrekking tot ofwel de toestandsvariabelen ofwel de
parameters. Deze worden systematisch gebruikt in het computationele kader van
CL MATCONTM. Men kan ze berekenen met behulp van symbolische afgeleiden
(SD) als deze voorzien zijn in demapfile; anders worden ze benaderd met be-
hulp van eindige differenties (FD). In sectie 4.4 beschrijven we meer bepaald hoe
eindige differenties van directionele afgeleiden van ordeten hoogste 5 berekend
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kunnen worden. Men moet er wel rekening mee houden dat voor orde hoger dan
3 deze afgeleiden niet erg betrouwbaar zijn. Dit wordt verder duidelijk gemaakt
in sectie 4.8.

In secties 4.5-7 beschrijven we de implementatie van automatische differen-
tiatie (AD) in CL MATCONTM, hetgeen we beschouwen als een van de meest
originele bijdragen in deze thesis. Het onderliggend idee is de introductie van
een Matlab klasse van Taylor veeltermen (van een zekere orde) van functies van
een enkele variabele. We overladen dan de standaardfuncties in Matlab met op-
eraties van deze klasse, hetgeen toelaat multilineaire uitdrukkingen te berekenen
van bijvoorbeeld de vorm(f (J))xxxxx(q, q, q, q, q) in het puntx0 voor de Taylor
expansie vamf (J)(x0 + tq) tot orde5. Hierbij is f de afbeelding gedefinieerd
op de vectorvariabelex en geëvalueerd inx0. Verder ist de onafhankelijk vari-
abele in de Taylorontwikkeling,q is een richtingsvector enJ is het iteratiege-
tal. De polarizatie - identiteiten kunnen dan gebruikt worden om het geval van
(f (J))xxxxx(q1, q2, q3, q4, q5) (met verschillende vectorenq1, q2, q3, q4, q5) te her-
leiden tot het gevalq1 = q2 = q3 = q4 = q5.

Op deze manier kunnen we afgeleiden van hogere orde exact berekenen, zelfs
zonder te beschikken over symbolische afgeleiden. We merken op dat afgeleiden
van orde tot en met vijf nodig zijn voor het berekenen van de normaalvormcoef-
ficienten en dat de exactheid van deze coefficienten essentieel is voor de beschri-
jving van het gedrag van het dynamische systeem in de omgeving van het bifur-
catiepunt en voor computationele algoritmen zoals takwisseling.

In Sectie 4.8 vergelijken we de drie strategieën voor differentiatie (SD,FD,AD).
Het is geen verrassing that SD en AD dezelfde accuraatheid hebben terwijl FD
onbetrouwbaar is voor afgeleiden van orde hoger dan 2. Interessanter is dat AD
sneller is dan SD for cykels van voldoend hoge orde. In sommige gevallen geven
we dus de voorkeur aan AD, zelfs als SD beschikbaar is.

De Hoofdstukken 5 (Toepassingen in de biologie) en 6 (Toepassingen in de
economie) vormen het gedeelte ”toegepaste wiskunde” van dethesis. We bestud-
eren vier afbeeldingen, twee uit de biologie en twee uit de economie. We nemen
telkens een afbeelding uit de bestaande literatuur in deze vakgebieden en bestud-
eren het met de computationele methoden die beschikbaar zijn in CL MATCONTM,
na enige voorbereidende analytische studie. We vinden telkens nieuwe resultaten,
meestal betreffende de berekening van stabiliteitsgrenzen maar ook voor wat be-
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treft de detectie en berekening van dynamisch belangrijke aspecten zoals multista-
biliteit van cykels met dezelfde of met verschillende periodes. In enkele gevallen
vonden we zelfs echte fouten in de gepubliceerde literatuur.

In Hoofdstuk 7 beschrijven we de implementatie, als deel vanCL MATCONTM,
van algoritmen voor de continuatie (in een parameter) van heteroclinische en ho-
moclinische connecties van zadelpunten, detectie van de limietpunten van deze
connecties (tangencies) en de continuatie (in twee parameters) van deze limiet-
punten. Afgezien van de implementatie in Matlab bestaat hetorigineelste deel
van dit werk enerzijds uit een nieuwe wiskundige beschrijving van de continuatie
van invariante deelruimten (gebaseerd op alleen maar argumenten uit de lineaire
algebra) en anderzijds uit een randingsmethode voor de continuatie van de limiet-
punten.

In Hoofdstuk 8 (Toekomstig werk) beschrijven we aan de gang zijnde of ge-
plande extensies van het werk beschreven in dit proefschrift. Hiertoe behoort
het bouwen van een GUI voor CL MATCONTM (uiterst nuttig), het invoeren van
AD methoden in MATCONT (de ODE tegenhanger van CL MATCONTM), en het
vectorizeren van de Matlab code voor homoclinische en heteroclinische connec-
ties en hun limietpunten. Misschien is het vectorizeren ooknuttig voor andere
delen van de code, inbegrepen alle bifurcaties van cykels. Afgezien hiervan is er
ook behoefte aan verdere wiskundige studie van homoclinische en heteroclinische
connecties, in het bijzonder voor wat betreft de situatie waarbij de hyperboliciteit
in een of beide eindpunten verloren gaat. Een verwant algoritmisch en numeriek
probleem is de continuatie van zadel-tot-limietpunt en vanzadel-tot-flip connec-
ties.
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