15,439 research outputs found

    Optimum non linear binary image restoration through linear grey-scale operations

    Get PDF
    Non-linear image processing operators give excellent results in a number of image processing tasks such as restoration and object recognition. However they are frequently excluded from use in solutions because the system designer does not wish to introduce additional hardware or algorithms and because their design can appear to be ad hoc. In practice the median filter is often used though it is rarely optimal. This paper explains how various non-linear image processing operators may be implemented on a basic linear image processing system using only convolution and thresholding operations. The paper is aimed at image processing system developers wishing to include some non-linear processing operators without introducing additional system capabilities such as extra hardware components or software toolboxes. It may also be of benefit to the interested reader wishing to learn more about non-linear operators and alternative methods of design and implementation. The non-linear tools include various components of mathematical morphology, median and weighted median operators and various order statistic filters. As well as describing novel algorithms for implementation within a linear system the paper also explains how the optimum filter parameters may be estimated for a given image processing task. This novel approach is based on the weight monotonic property and is a direct rather than iterated method

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Airborne LiDAR for DEM generation: some critical issues

    Get PDF
    Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for DEM generation is becoming a standard practice in spatial related areas. However, the effective processing of the raw LiDAR data and the generation of an efficient and high-quality DEM remain big challenges. This paper reviews the recent advances of airborne LiDAR systems and the use of LiDAR data for DEM generation, with special focus on LiDAR data filters, interpolation methods, DEM resolution, and LiDAR data reduction. Separating LiDAR points into ground and non-ground is the most critical and difficult step for DEM generation from LiDAR data. Commonly used and most recently developed LiDAR filtering methods are presented. Interpolation methods and choices of suitable interpolator and DEM resolution for LiDAR DEM generation are discussed in detail. In order to reduce the data redundancy and increase the efficiency in terms of storage and manipulation, LiDAR data reduction is required in the process of DEM generation. Feature specific elements such as breaklines contribute significantly to DEM quality. Therefore, data reduction should be conducted in such a way that critical elements are kept while less important elements are removed. Given the highdensity characteristic of LiDAR data, breaklines can be directly extracted from LiDAR data. Extraction of breaklines and integration of the breaklines into DEM generation are presented

    Flat zones filtering, connected operators, and filters by reconstruction

    Get PDF
    This correspondence deals with the notion of connected operators. Starting from the definition for operator acting on sets, it is shown how to extend it to operators acting on function. Typically, a connected operator acting on a function is a transformation that enlarges the partition of the space created by the flat zones of the functions. It is shown that from any connected operator acting on sets, one can construct a connected operator for functions (however, it is not the unique way of generating connected operators for functions). Moreover, the concept of pyramid is introduced in a formal way. It is shown that, if a pyramid is based on connected operators, the flat zones of the functions increase with the level of the pyramid. In other words, the flat zones are nested. Filters by reconstruction are defined and their main properties are presented. Finally, some examples of application of connected operators and use of flat zones are described.Peer ReviewedPostprint (published version

    Unsupervised morphological segmentation for images

    Get PDF
    This paper deals with a morphological approach to unsupervised image segmentation. The proposed technique relies on a multiscale Top-Down approach allowing a hierarchical processing of the data ranging from the most global scale to the most detailed one. At each scale, the algorithm consists of four steps: image simplification, feature extraction, contour localization and quality estimation. The main emphasis of this paper is to discuss the selection of a simplification filter for segmentation. Morphological filters based on reconstruction proved to be very efficient for this purpose. The resulting unsupervised algorithm is very robust and can deal with very different type of images.Peer ReviewedPostprint (published version

    On morphological hierarchical representations for image processing and spatial data clustering

    Full text link
    Hierarchical data representations in the context of classi cation and data clustering were put forward during the fties. Recently, hierarchical image representations have gained renewed interest for segmentation purposes. In this paper, we briefly survey fundamental results on hierarchical clustering and then detail recent paradigms developed for the hierarchical representation of images in the framework of mathematical morphology: constrained connectivity and ultrametric watersheds. Constrained connectivity can be viewed as a way to constrain an initial hierarchy in such a way that a set of desired constraints are satis ed. The framework of ultrametric watersheds provides a generic scheme for computing any hierarchical connected clustering, in particular when such a hierarchy is constrained. The suitability of this framework for solving practical problems is illustrated with applications in remote sensing

    Grounding semantics in robots for Visual Question Answering

    Get PDF
    In this thesis I describe an operational implementation of an object detection and description system that incorporates in an end-to-end Visual Question Answering system and evaluated it on two visual question answering datasets for compositional language and elementary visual reasoning

    Algorithms for morphological profile filters and their comparison

    Get PDF
    Morphological filters, regarded as the complement of mean-line based filters, are useful in the analysis of surface texture and the prediction of functional performance. The paper first recalls two existing algorithms, the naive algorithm and the motif combination algorithm, originally developed for the traditional envelope filter. With minor extension, they could be used to compute morphological filters. A recent novel approach based on the relationship between the alpha shape and morphological closing and opening operations is presented as well. Afterwards two novel algorithms are developed. By correlating the convex hull and morphological operations, the Graham scan algorithm, original developed for the convex hull is modified to compute the morphological envelopes. The alpha shape method depending on the Delaunay triangulation is costly and redundant for the computation for the alpha shape for a given radius. A recursive algorithm is proposed to solve this problem. A series of observations are presented for searching the contact points. Based on the proposed observations, the algorithm partitions the profile data into small segments and searches the contact points in a recursive manner. The paper proceeds to compare the five distinct algorithms in five aspects: algorithm verification, algorithm analysis, performance evaluation, end effects correction, and areal extension. By looking into these aspects, the merits and shortcomings of these algorithms are evaluated and compared

    Investigating the impact of image content on the energy efficiency of hardware-accelerated digital spatial filters

    Get PDF
    Battery-operated low-power portable computing devices are becoming an inseparable part of human daily life. One of the major goals is to achieve the longest battery life in such a device. Additionally, the need for performance in processing multimedia content is ever increasing. Processing image and video content consume more power than other applications. A widely used approach to improving energy efficiency is to implement the computationally intensive functions as digital hardware accelerators. Spatial filtering is one of the most commonly used methods of digital image processing. As per the Fourier theory, an image can be considered as a two-dimensional signal that is composed of spatially extended two-dimensional sinusoidal patterns called gratings. Spatial frequency theory states that sinusoidal gratings can be characterised by its spatial frequency, phase, amplitude, and orientation. This article presents results from our investigation into assessing the impact of these characteristics of a digital image on the energy efficiency of hardware-accelerated spatial filters employed to process the same image. Two greyscale images each of size 128 × 128 pixels comprising two-dimensional sinusoidal gratings at maximum spatial frequency of 64 cycles per image orientated at 0° and 90°, respectively, were processed in a hardware implemented Gaussian smoothing filter. The energy efficiency of the filter was compared with the baseline energy efficiency of processing a featureless plain black image. The results show that energy efficiency of the filter drops to 12.5% when the gratings are orientated at 0° whilst rises to 72.38% at 90°
    • …
    corecore