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Abstract 
Morphological filters, regarded as the complement of mean-line based filters, are useful in the analysis of 

surface texture and the prediction of functional performance. The paper first recalls two existing algorithms, 

the naive algorithm and the motif combination algorithm, originally developed for the traditional envelope 

filter. With minor extension, they could be used to compute morphological filters. A recent novel approach 

based on the relationship between the alpha shape and morphological closing and opening operations is 

presented as well. Afterwards two novel algorithms are developed. By correlating the convex hull and 

morphological operations, the Graham scan algorithm, original developed for the convex hull is modified to 

compute the morphological envelopes. The alpha shape method depending on the Delaunay triangulation is 

costly and redundant for the computation for the alpha shape for a given radius. A recursive algorithm is 

proposed to solve this problem. A series of observations are presented for searching the contact points. Based 

on the proposed observations, the algorithm partitions the profile data into small segments and searches the 

contact points in a recursive manner. The paper proceeds to compare the five distinct algorithms in five 

aspects: algorithm verification, algorithm analysis, performance evaluation, end effects correction, and areal 

extension. By looking into these aspects, the merits and shortcomings of these algorithms are evaluated and 

compared. 

 

Keywords: Morphological filter, alpha shape, motif combination, Graham scan, contact point 

 

1. Introduction 
In the analysis of the surface texture, filtration techniques are widely used as a pre-process tool to 

evaluate the characteristics of surfaces. They play critical roles in several respects. For instance, the 

separation of different scales of features on surfaces is performed by filters. Furthermore filters help to 

remove noises derived from the surface roughness or measurement interruptions in order to achieve more 

stable data sets for further processes. Filters also help in functional simulation and performance prediction. 

Among various filtering techniques, the envelope filter depends on the geometrical features of surfaces 

[1] and thus is believed to give better results for functional prediction. With the introduction of 

morphological operations [2], morphological filters emerged as the evolution of the traditional envelope 

filter, offering more tools and capabilities. Acting as the complement of the mean-lines filters (e.g. the 

Gaussian filter), morphological filters have found many applications in practices over the last decade. They 

were applied to simulate the conformable interface of two mating surfaces [3] and analyze the inner surface 

of the cylinder liner comprising of deep valleys superimposed on the plateax roughness [4]. 

As to the implementation of morphological filters, several approaches are of concern. Following Von 

Weingraber’s work, Shunmugam & Radhakrishnan [5] developed a direct algorithm for the traditional 

envelope filter. Scott [6] proposed a general mathematical theory for motifs and motif combination. 

Meanwhile an efficient algorithm based on the motif combination was constructed to calculate the profile 

envelope and perform the functional simulation. Recently we [7] proposed a novel method for 

implementation of morphological filters, which is based on the alpha shape. 

This paper first recalls two existing algorithms for the traditional envelope filter and the alpha shape 

method for morphological filters. Afterward we propose two novel algorithms, the modified Graham scan 

algorithm and the recursive algorithm. The five algorithms are further analyzed and compared in various 

aspects, thus advantages and disadvantages of these algorithms are illustrated. Section 2 reviews the 

algorithm proposed by Shunmugam & Radhakrishnan and ISO 16610. We call it the “naive” algorithm for 

convenience in that this algorithm is a direct implementation to morphological operations as it will be seen in 

the section. Scott’s motif combination algorithm is given in Section 3. Section 4 presents the algorithm for 
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morphological filters based on the alpha shape. In Section 5 we introduce the computational geometry 

technique into morphological operations calculation. Based on the correlation between the convex hull and 

morphological operations, the Graham scan algorithm, original developed for the convex hull computation is 

modified and adapted to calculate morphological envelopes. Section 6 presents another algorithm. Aiming to 

the deficit of the alpha shape method, a recursive algorithm is developed based on a series of observations 

concerning with the search of the contact points. The comparison of the five algorithms is conducted in 

Section 7 in five aspects: algorithm verification, algorithm analysis, performance evaluation, end effects 

correction, and areal extension. Finally Section 8 gives the conclusions.  

 

2. Naive algorithm 

The naive algorithm was original developed to compute the covering envelope of the disk as it rolls over 

the profile. The envelope is the locus of the center of the rolling disk, usually compensated by the disk radius. 

The uncompensated envelope is in essence the morphological dilation of the profile data. If the disk rolls 

over the profile from below, the envelope of the rolling disk is the erosion of the profile. Thus according to 

the definition of morphological operations [8], morphological closing and opening could be obtained by 

combining the dilation and erosion pairs in sequence, either dilation followed by erosion or vice versa. 

 The naive algorithm takes discrete representation of the input profile and the structuring element as 

illustrated in Figure 1 (The structuring element is a disk in this example). The disk ordinates 
i

e  are computed 

from the disk center to the two ends. These ordinates are placed over the profile ordinates with the disk 

ordinate 1e  over the profile point 
j

p   with height ordinate 
j

z . The ordinate where the mapping pair 

( ) ( ){ }, |
i j

e z i j=  gives the maximum value max( )
i j

e z+ determines the height of the disk center. The 

envelope ordinate is given by ( )1max( )
i j

e z e+ − . This procedure is repeated for all the profile ordinates to 

obtain the whole envelope. In this sense, the naive algorithm conforms to the definition of the morphological 

dilation and erosion which are defined as the Minkowski addition and subtraction of the input set and the 

structuring element respectively [9]. 

 

 
Figure 1. Computation of the profile upper envelope. 

 

ISO 16610 Part 41 [10] presents a basic method to compute discrete morphological filters either. It puts 

the origin of the structuring element at every point of the input profile, as illustrated for a few positions of a 

circular structuring element for dilation in Figure 2. Extreme value at each position is collected and they 

form the output envelope. The extreme heights for input points are the results of adding the ordinates of input 

profile points with the ordinates of sample points on the disk, as marked by the top-most stars at vertical 

lines in the figure. 
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Figure 2. Dilation of the profile with a circular structuring element [10]. 

 

Essentially the basic approach presented by ISO 16610 is equivalent to the one proposed by Shunmugam 

& Radhakrishnan. They both take discrete forms of the input profile and the structuring element and compute 

the envelope ordinate at each sampling position. Figure 3 presents the pseudocode of the naive algorithm for 

morphological dilation. Due to the duality of morphological dilation and erosion, the erosion of opening 

profiles could be easily computed by first flipping the structuring element and later flipping the dilation 

results, i.e.,  

( , ) ( , )Erosion X B Dilation X B= − − .                                                   (2.1) 

Combining morphological dilation and erosion in two opposite sequences results in morphological 

closing and opening. Figure 4 illustrates an example of applying the closing filter to a profile using the naive 

algorithm. The experimental profile consists of 250 sample data with sampling interval 5 µm. The profile is 

filtered by a 0.5 mm disk. 

 

 

Figure 3. Naive algorithm for morphological dilation operation. 
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Figure 4. Closing envelope computed by the naive algorithm. 

Algorithm Dilation(X, B) 

{Given a profile data set S with n points and the structuring} 

{element B, compute the dilation D of  X  by B.} 

 

j = 1; 

m = B.length/2; 

while j <= n do 

D(j) = max(z(j-m) : z(j+m) + B); 
end while; 

return D; 
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3. Motif combination algorithm 
Scott [6] proposed an alternative way to calculate the profile envelope using the motif combination. 

Couple of definitions were given as the data type used in the algorithm. 

Events: an event splits the profile into a number of discrete sections. The events might be the highest 

points on all the local peaks or all the upcrossing of the profile through a reference line or even every sample 

point of the profile. They are numbered in order along the profile. The initial set of events is all the sample 

points on the profile. 

Motif: a motif ( ),i j , where i j< , consists of that section of the profile between the i th and j th events. 

Motif Combination Test: it is performed on two adjacent motifs (say, two motifs ( ),i j and ( ),j k ) with 

the common event (say, j ) to determine if the common event is significant or not. If the event is not 

significant, two adjacent motifs to that event are combined (say, motifs ( ),i j and ( ),j k are combined to 

form a new motif ( ),i k ) and thus the event is eliminated. For rolling a disk on the profile, the functional 

motif combination test is to check if the disk is possible to contact the common event by placing the disk on 

two adjacent motifs. 

The motif combination algorithm starts with the set of all events, namely all the sample data on the 

profile, and then it eliminates the insignificant events by repeatedly applying the motif combination test until 

all adjacent motifs pass the test. Scott found a set of criteria that the motif combination had to satisfy so that 

the order of the motif combinations did not matter, they all resulted in the same final answer. Both the rolling 

disk and the sliding line segment satisfy these criteria. The pseudocode of the motif combination algorithm is 

presented in Figure 5. 

 

 

Figure 5. Motif combination algorithm for morphological filters. 

 

The profile motif combination method results in a sequence of final motifs which are significant. The set 

of events specifying these motifs are the points which may contact the disk while it is traversing the profile. 

With the significant motifs, the envelope ordinates of the circular structuring element are computed by 

interpolating points on the arcs determined by the motifs at each sampling position. For the line segment 

Algorithm MotifCombination(X, B) 

{Given a data set X with n points and the structuring} 

{element B, compute the final motifs motifs } 

 

Chain list motifs= {(p1, p2), (p2, p3), …, (pn-1, pn)};  

while 1 

if CombineMotifs(motifs, B) 

break; 

end if; 

end while; 

return motifs; 

       

Procedure CombineMotifs(motifs, B) 

flag = false; 

motif1 = motifs(1); 

for i = 2 to motifs.length 

motif2 = motifs(i); 

        if CombineTest(motif1, motif2, B) 

motif1 = {motif1.Start, motif2.End}; 

motifs.Remove(motif2); 

flag = true; 

end if; 

end for; 

return flag; 
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structuring element, the profile envelope ordinates are given by the smaller one of the two events of each 

final motif. Using this method, the same experimental profile data used in the previous section is filtered by 

morphological closing filter with the disk of the same radius. Figure 6 illustrates the closing envelope along 

with the significant motifs marked by the line segments. 
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Figure 6. Closing envelope and final significant motifs computed by the motif combination algorithm. 

 

4. Alpha shape algorithm 
Recently we [7] proposed a novel method for morphological filters based on the link between the alpha 

hull and morphological operations. The alpha shape was introduced by Edelsbrunner [11] aiming to describe 

the specific “shape” of a finite point set with a real parameter α  controlling the desired level of details. The 

alpha hull is the boundary formed by rolling a ball (disk) with the given radius over the point set. 

There exists a theoretical link between the alpha hull and morphological operations: the alpha hull is 

equivalent to the closing of the point set X  with a generalized ball of radius 1 α−  and that from the duality 

of closing and opening the alpha hull is the complement of the opening of  
cX  (complement of X ) with the 

same ball as the structuring element [12]. This relationship provides the theoretical basis of using the alpha 

shape to compute morphological filters. 

The basic idea of this approach is to compute the alpha shape of the data set and utilize it to calculate 

morphological opening and closing envelopes. The calculation of the alpha shape is based on the Delaunay 

triangulation. For a finite planar point set X , the Delaunay triangulation ( )DT X  results in a series of 

triangles. These triangles are connected by the points in the set as their vertices and the circumscribed circles 

of these triangles are all empty. The relationship between the Delaunay triangulation and the alpha shape is 

that the boundary of the alpha shape ( )S Xα∂ is contained in the Delaunay triangulation ( )DT X , namely 

( ) ( )S X DT Xα∂ ⊆ . ( )S Xα∂  is a collection of simplices (triangles and edges) in ( )DT X  satisfying two 

properties: (i) the radius of the smallest circumcircle of the simplex is smaller than the disk radius α  and the 

circumcircle is empty; (ii) the simplex is a face of super simplex of the alpha shape. 

The algorithm to compute the alpha shape boundary facets is illustrated in Figure 7. Following the 

Delaunay triangulation of the point set X , the algorithm loops to check the edges of the triangles in two 

steps. First, calculate the circumcircle of its super simplex, namely a triangle. If the radius of the circumcircle 

is smaller than the given disk radius α  and the edge has an unique super triangle, then it belongs to the 

boundary facets. Otherwise, go to the second step. Compute the smallest circumcircle of the edge and 

compare with α . If smaller than α , continue to check whether the circumcircle is empty. If all these 

conditions are satisfied, then the edge is a boundary facet either. 
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Figure 7. Alpha shape algorithm for morphological filters. 
 

With the boundary facets of the alpha shape, the envelope ordinates are computed in a manner similar to 

the motif combination algorithm, i.e. interpolating point on the arcs determined by the alpha shape facets for 

each sampling position. Since there may exists overlap facets for a certain sampling position, only the 

extreme ordinate is retained. For instance, only the highest ordinates are retained for the closing envelope, 

and vice versa for the opening envelope. 

Again the alpha shape algorithm was performed on the same experimental profile data with a 0.5 mm 

disk. Figure 8 shows the resultant closing envelope as well as the alpha shape boundary facets marked by the 

line segments. 
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Figure 8. Closing envelope and alpha shape facets computed by the alpha shape algorithm. 

 

5. Modified Graham scan algorithm 
Morphological operations, as it were created, were first utilized to examine the geometrical structure of 

rock cross sections [13]. It then led to a new quantitative approach in image analysis. The central idea of 

morphological operations is to examine the geometrical structure of an image by matching it with small 

patterns at various locations in the image. By varying the size and the shape of the matching patterns, called 

Algorithm AlphaShape (X, α) 

{Given a point set X and the chosen disk radius α, computes} 

{the list f  of the boundary facets of the alpha shape of X.} 

 

triangle = DT(X); 

i = 1;  

for each edge do 

R = CircumCircle(triangle); 

if R < α 

if Unique(triangle) 

f(i) = edge; 

i = i + 1; 

end if; 

continue; 

end if; 

R = CircumCircle(edge); 

if R < α 

if IsCircleEmpty(edge) 

f(i) = edge; 

i = i + 1; 

continue; 

end if; 

end if; 

end for; 

return f; 
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structuring elements, useful information about the shape of the different part of an image and their 

interrelation could be extracted. In general this procedure results in non-linear image operations which are 

well suited for the analysis of the geometrical and topological structure of an image [14]. 

This image processing method was introduced into the surface texture analysis as a non-linear filtering 

technique [2]. The measured data uniformly sampled on the surface are treated as the image pixels. In fact 

the naive algorithm is a typical image processing method. It however has some limitations by dealing the 

measured data as image pixels. Image has to be planar, unable to rotate in space, while the workpiece surface 

is a physical object existing in space, invariant under translation and rotation. It is thus more reasonable to 

view the sampled data as the point set in space rather than image pixels. As illustrated in Figure 9, the 

closing envelope is obtained by rolling a disk over profile from above and taking the lower boundary of the 

disks [15]. Consider the set of sample points as the discrete representation of the physical profile, it is 

equivalent to roll the disk over these discrete points. This operation turns to be a computational geometry 

problem instead of an image processing issue. 

 

 
Figure 9. Closing envelope obtained by rolling a disk over the profile [15]. 

 

In computational geometry, the convex hull is the most ubiquitous structure, playing a central role in 

many engineering computations. Intuitively the convex hull of a point set in 2D is obtained by pivoting an 

infinite extending line around the point set (See Figure 10). The line-segment envelope bounding the point 

set is called the convex hull. In the mathematical morphology point of view, the point set is equivalent to the 

image being processed and the infinite extending line serves as the structuring element. If replacing the 

infinite extending line by the desired geometrical object, for example, a disk, the convex hull turns to the 

morphological envelopes. In this sense, the convex hull could be viewed as a special morphological envelope 

with the infinite extending line being the structuring element. Based on that, it is able to correlate the convex 

hull computation technique with the morphological envelope calculation. 

 

 
Figure 10. Pivoting the infinite extending line around the point set yields the convex hull. 

 

Among various convex hull calculation methods, the Graham scan algorithm was a very efficient method 

for planar point set [16]. As illustrated in Figure 11, the algorithm sorts the points by angle counter-

clockwise firstly. Then the algorithm proceeds to consider each of the sorted point in sequence. It maintains a 

stack structure to hold the points on the convex hull found so far. For each point, it is determined whether 

moving from the two previously considered points to this point is a "left turn" or a "right turn". If it is a 

"right turn", it means that the second-to-last point is not part of the convex hull and should be removed from 

the stack. For example, in Figure 11, 3p , 4p  and 5p  forms a “right turn”, thus 4p  is pop out from the stack. 
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Then the renewed chain, 2p , 3p  and 5p , forms a “left turn”, and 5p  is pushed into the stack. This process is 

continued as long as the set of the last three points is a "right turn". As soon as a "left turn" is encountered, 

the point is pushed into the stack and the algorithm moves on to the next point in the sorted array. In the end, 

the points contained in the stack are all the convex hull points. 

 

 
Figure 11. Graham scan algorithm for convex hull. 

 

To compute morphological profile envelopes, we modify the Graham scan algorithm with aim of 

searching the contact points, namely the points on the profile which may contact the structuring element. The 

modified algorithm does not sort the data as is required in the convex hull computation in that the profile 

points are naturally “sorted” in the sequence of sampling, but directly searches the contact points on the 

profile. Similar to the original convex hull method, the modified algorithm maintains a stack structure to 

contain the contact points. 

The algorithm pseudocode is presented in Figure 12. At beginning the stack keeps the first two sample 

points as the initial elements. Then it processes the rest of points incrementally. Each time the coming point 

is evaluated with the top element 
t

p  and the second top element 1t
p −  in the stack. The chain composed by 

the three points is checked whether the structuring element could contact the middle point 1t
p − . If it is 

unable to touch 1t
p − , the point in evaluation is pushed into the stack, otherwise the top element of the stack 

is popped out. The contact test is performed repeatedly until the test succeeds. Thus in this manner when all 

the points are processed, the points in the final stack are all the contact points. 

 

 
Figure 12. Modified Graham scan algorithm for morphological filters. 

 

Similar to the motif combination algorithm in Section 3, the envelope ordinates for the circular 

structuring element are achieved by interpolating points on the arcs determined by the adjacent contact point 

Algorithm GrahamScan(X, B) 

{Given a point set {pi|i<n} and the structuring} 

{ element B, computes the contact points.} 

 

Stack stack = (p1, p2); t indexes top. 

i = 3; 

while i <= n do 

if  t < 2 

Push(stack, pi); 

continue; 

end if; 

if CheckContact(pt-1, pt, pi, B) 

 Push(stack, pi); 

 i = i + 1; 

else 
 Pop(stack); 

end if; 

end while; 

return stack; 
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pairs at each sampling position. Likewise, for the line segment structuring element, the envelope ordinates 

are achieved by interpolating points on the horizontal line that pass through the lower contact point in the 

contact point pair. Figure 13 demonstrates the closing envelope of the experimental profile with disk radius 

0.5 mm, computed by the modified Graham scan algorithm. The star marks in the figure are the contact 

points on the profile. 
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Figure 13. Closing envelope and contact points computed by the Graham scan algorithm. 

 

6. Recursive algorithm 
As already presented in Section 4, the alpha shape is extracted from the Delaunay triangulation. In fact 

the Delaunay triangulation could generate the whole family of alpha shapes. Therefore the Delaunay 

triangulation data is reusable for multiple trails of ball radii for the same data set. It is a merit for 

computation in that there is no need to perform the Delaunay triangulation for various radii attempts on the 

same data set. It however could be a drawback in the meanwhile because the Delaunay triangulation is costly 

for large data sets. Given a specific radius, the Delaunay triangulation contains much more information than 

the necessity to generate the corresponding alpha shape related with the given radius. Thus in this sense there 

is no need to achieve the desired alpha shape with redundant computations. A solution to this problem is to 

find the alpha shape boundary facets without performing the Delaunay triangulation. In fact the vertices of 

the alpha shape boundary facets are those points on the surface that contact the ball as it is rolling over the 

surface, namely the contact points. By investigating the contact points and their composition, it is possible to 

find the alpha shape boundary facets and afterward compute the morphological envelopes. 

Supposing to use an infinite large ball (α → ∞ ) to roll over the point set X , the boundary of the alpha 

shape ( )S Xα∂  turns to the convex hull ( )Conv X∂ , i.e. lim ( ) ( )S X Conv Xα
α→∞

∂ = ∂ . In essence the infinite 

extending line used in the context of the convex hull as mentioned in Section 5 could be viewed as a part of 

the infinite large ball. In this case, the boundary facets of the alpha shape of the point set are the facets of 

convex hull. Therefore the convex hull points are all the contact points with the infinite large ball as the 

structuring element. 

Given two difference ball radius, 1α  and 2α  with 1 2α α< , it could be found that the alpha shape of 1α   

is contained in the alpha shape of 2α , i.e. 
1 21 2 ( ) ( )S X S Xα αα α< ⇒ ⊆  [17]. Since the contact points are 

the vertices of the boundary alpha shape facets, the contact point set of the ball 2α , 2( )P α  must be 

contained in the contact point of 1α , 1( )P α , namely 1 2 2 1( ) ( )P Pα α α α< ⇒ ⊆ . This indicates that the 

contact points obtained from the big radius ball must be the contact points derived from the smaller radius 

ball. Since the convex hull is obtained using the ball with infinite large radius (α → ∞ ), the convex hull 

point must be the contact points for arbitrary radius. 

For morphological envelope of the opening profile, the disk is rolling from either above or below 

depending on whether it is a closing operation or an opening operation. Thus only half of the convex hull 

points are desired for a certain morphological operations. For the closing envelope, only the upper convex 

hull points are the contact points. See Figure 14. These points naturally partition the profile data into small 

segments. In each segment, we search other possible contact points. 
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Figure 14. The upper convex hull of the profile data. 

 

Couples of observations are listed as follows concerning with the search of contact points. For 

convenience of explanation, we take the morphological closing envelope and the disk structuring element for 

demonstration. The opening envelope can be easily obtained by Formula 2.1 and the envelope using the line 

segment structuring element could also be achieved in a similar but easier manner. 

Given two contact points a  and b  and the disk radius r ,  

(1) If there are sample points lying above the simplex 
ab

σ  (left/positive side of ab
���

), then the contact point 

is the furthest point orthogonal to ab
���

.  

In Figure 15, 1p ,  c , 3p  are three points between the two known contact points a  and b . The furthest 

point c  is the convex hull point for the point set 1 3{ , , , , }a b p c p  [18]. c  therefore is the contact point. 

 

 

Figure 15. Search the furthest point orthogonal to ab
���

 on positive side. 

 

(2) If there are no points lying above 
ab

σ and there exist points { }
i

p  inside the circular section �ab  of the 

disk with radius 1
2max{ , }r ab  below 

ab
σ , then the contact point c  is the one among the points { }

i
p , 

which satisfied the condition: The circumscribed circle of  
abc

σ  have the largest radius among the 

circumscribed circles of { }
iabp

σ .  

Figure 16 (a) and (b) illustrates the case of 2ab r≤ and the case of 2ab r>  respectively. In the first 

case, it is clear that the alpha ball with radius r  is not α -exposed, thus 
ab

σ  is not the alpha shape 
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facets. However the circumcircle of 
abc

σ  which has the largest radius among { }
iabp

σ  must be empty. 

Thus c  is the contact point. For the later case, we could find the similar result. 

 

  (b)  
 

Figure 16. Search the contact point in the circular section below 
ab

σ . (a): 2ab r≤ . (b): 2ab r> . 

 

(3) If 2ab r> and there are no points lying above 
ab

σ  and also no points in the circular section �ab  of the 

disk with radius 1
2 ab below 

ab
σ , then the contact point is the one c  that satisfies the condition: the 

circumscribe circle of 
abc

σ  have the smallest radius among the circumscribed circle of  { }
iabp

σ .  

See Figure 17. It could be noticed that among the circumcircle of { }
iabp

σ , the circumcircle of 
abc

σ , 

which has the smallest radius, is empty. Thus in this case, the contact point is c . 

 

 

Figure 17. Search the contact point outside the circular section below 
ab

σ  with 2ab r> . 

 

(4) If 2ab r≤ and there are no points lying above 
ab

σ  and also no points in the circular section �ab  of the 

disk with radius r  below 
ab

σ , then there is no contact point between a  and b , and 
ab

σ  is a boundary 

facet of the alpha shape. 
 

With these observations, all of the contact point can be found in a recursive manner. Figure 18 presents 

the pseudocode of the recursive algorithm. At the beginning, two end points of the profile data are selected 

as the initial contact points for the recursive process. Then the whole profile is divided into two segments by 

the partition point, i.e. the contact point found by the two initial points. This procedure is repeated in each 

profile segment until two end points in recursion could hold on the disk without containing any other points, 

namely the disk is empty. The final points result from the recursive procedure are all the contact points on 

the profile and the envelope could be obtained by interpolating point on the arcs determined by two adjacent 

contact points.  
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Figure 18. Recursive algorithm for morphological filters. 

 

Figure 19 illustrates an example of the closing envelope using the recursive algorithm. It employs the 

same experimental data and the disk radius as used in the previous sections. The contact points are circled in 

the figure. 
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Figure 19. Closing envelope and contact points computed by the recursive algorithm. 

 

7. Discussion 
In preceding sections five different algorithms have been presented for morphological profile filters, 

namely the naive algorithm, the motif combination algorithm, the alpha shape method and the modified 

Graham scan algorithm and the recursive algorithm. These five algorithms achieve the same goal, whereas 

they are derived from distinct origins and have their respective advantages and disadvantages. Thus in order 

to expose their merits and shortcomings, we proceed to discuss these algorithms in following perspectives: 

algorithm verification, algorithm analysis, performance evaluation, end effects correction and area extension. 

 
7.1 Algorithm verification 

To verify the accuracy of these algorithms, they are applied on a milled surface profile. The profile 

contains 1000 points with sampling interval 10 µm. The profile is filtered by the morphological closing filter 

with disk radius 500 mm. The results from the five algorithms are graphed in Figure 20. It is clear from the 

figure that the five envelopes overlap except at the two ends of the profile. It indicates that the algorithms are 

in agreement with each other. The edge distortion is caused by the end effect of filtration on the open surface 

data. The traditional algorithm has the end effect corrected while the other algorithms do not. The end effect 

correction will be discussed later. 

 

Algorithm CheckContactPnt(X, r) 

{Given a point set X and the chosen disk} 

{ radius r,  computes the contact points.} 

 

a ← the left end point of X. 

b ← the right end point of X. 

Partition(a, b, r); 

 

Procedure Partition (a, b, r) 

c ← contact point. 

if c exist 

Partition (a, c, r); 

Partition (c, b, r); 

else 
 record a, b; 

 return; 

end 
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Figure 20. Morphological closing envelopes generated by the five algorithms. 

 

7.2 Algorithm analysis 

The naive algorithm, being a direct approach following the definition of morphological dilation and 

erosion, combines them to yield morphological closing and opening. This algorithm, may be improved by 

some techniques [19], is widely used in image processing. However it has some fatal limitations. For one 

thing, it is time-consuming for large data set and large structuring elements. The maximum size of the 

structuring element is limited due to the huge computation requirement, while for many real applications 

they may desire the structuring element size much larger than the profile length. For another, it is impossible 

for this algorithm to handle non-uniform sampled data. 

The motif combination algorithm emphasises the elimination of the insignificant motifs and obtains only 

the significant ones. It is an iterative process in that the motifs are merged repeatedly until no more 

combination occurs. The final events are the contact points on the profile. This algorithm is consistent with 

the functionality of morphological filters that the features on the profile smaller than the structuring element 

in size are removed by the filter. By defining the motif combination test criterion, i.e. how two adjacent 

motifs are combined, various types of structuring elements are available, for instance, circular disks and line 

segments. Although the structuring element is restricted to the convex object and is not allow to tilt, it could 

satisfy most of the applications [6]. 

The approach based on the alpha shape utilizes the relationship between the alpha hull and 

morphological operations that the boundary of the hull obtained by rolling the alpha ball over the point set is 

identical to the closing/opening envelope. Therefore the algorithm for computing the alpha shape could be 

used to calculate morphological closing and opening filters. This algorithm is based on the Delaunay 

triangulation. The triangulation data could be reused for multiple attempts of various disk radii. It could save 

a great deal of computing time since in real practice a multitude of trails may be made for an appropriate disk 

radius. Another merit is that it works for non-uniform sampled data, bringing more generality over the naive 

algorithm. Although the link puts the restriction that the structuring element must be circular, the circular 

disk is most commonly used and is regarded as the default structuring element in ISO 16610. 

In comparison to the naive algorithm as a typical image processing technique, which treats the measured 

data as image pixels, the modified Graham scan algorithm views the data as the point set in space. Regarding 

the measured data as the input set and the infinite extending line as the structuring element, the convex hull 

could be viewed as a special morphological envelope. It links computational geometry techniques with the 

calculation of morphological envelopes. The Graham scan algorithm original developed for the convex hull 

computation is modified and adapted to calculate morphological envelopes. The method is an incremental 

algorithm in that the profile data is processed in sequence and a new dealing data will cause the correction of 

the processed data. It simulates moving the structuring element over the profile and obtains the contact points. 

In this aspect it resembles the motif combination approach though they compute the contact points in a 

different manner.  

The alpha shape method depends on the Delaunay triangulation. The triangulation provides the 

information for generating the whole family of alpha shapes. It saves time for multiple trails of ball radii. 

However the Delaunay triangulation is costly for large data set. For a given radius, the Delaunay 

triangulation is redundant for the computation of the desired alpha shape related with the given radius. The 

recursive algorithm solved this problem. It searches the contact points based on a series of observations. The 
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algorithm partitions the profile into small segments and searches the contact point recursively until the two 

ends of the profile segment in evaluation could hold an empty disk with the given radius. 

 

7.3 Performance evaluation 

To evaluate the performance of the five algorithms, it is necessary to analysis the time complexity of the 

algorithms. For the naive algorithm, the worse case is that the size of the structuring element is equal to or 

larger than twice of the profile length. The calculation of each envelope ordinate involves the whole profile 

data, thus its time complexity is 
2( )O n . The alpha shape method depends on the Delaunay triangulation 

with time complexity ( log )O n n , therefore its time complexity is ( log )O n n . For the motif combination 

approach, the iterative process has the time complexity ( )O n . As to the Graham scan algorithm, since it 

does not need data sorting as required in the computation of the convex hull which may cost ( log )O n n  

time, the computation of the contact points is also in ( )O n  time. The Graham scan algorithm has the same 

time complexity as the motif combination algorithm, however it requires less memory because it is 

incremental and does not need to handle all the data simultaneously. As to the recursive algorithm, in the 

worse case that each set of divided segments of data is as skewed as possible, the time complexity is 
2( )O n  

although it rarely occurs in real practice. Its expected time complexity is ( log )O n n . 

To verify the actual performance, experiments are carried out on the profile data with the point amount 

varying from 1000 points to 80,000 points. The profile data is sampled from a metal sheet surface in form of 

the propeller blade. The evaluation length is 80 mm with sample interval 1 µm. The morphological closing 

filter with disk radius 5 mm was performed on the profiles using the five algorithms. These algorithms were 

implemented by Visual Studio C++ and ran on a computer with 3.16 GHz Intel Core Duo CPU and 3 GB 

RAM. The performance data are listed in Table 1. 

 

Table 1. Algorithm running times over various amount of profile data with same disk radius. 

5,000 10,000 40,000 80,000 

Naive algorithm 0.0010s 1.0294s 4.8391s 9.9274s 

Motif Combination algorithm 0.0076s 0.0157s 0.0609s 0.1238s 

Alpha Shape algorithm 0.0124s 0.0508s 1.0112s 2.1531s 

Modified Graham Scan algorithm 0.0079s 0.0158s 0.0636s 0.1253s 

Recursive algorithm 0.0010s 0.0025s 0.0916s 0.1038s 

 

The running time data presented in Table 1 verifies the theoretical analysis of the time complexity of the 

algorithms. The naive algorithm is most time consuming, spending nearly 10 seconds for the 80,000 data set. 

The alpha shape method is more efficient than the naive algorithm reducing the running time to about 2 

seconds for the 80,000 data set. The alpha shape method is dependent on the Delaunay triangulation which 

could be costly in its data structure support, compared with other algorithms. The motif combination 

algorithm and the modified Graham scan algorithm are much more efficient, only spending 0.1 second. The 

recursive algorithm runs slower than the motif combination algorithm and the Graham scan algorithm, but is 

more efficient than the alpha shape algorithm and the naive algorithm. 

Another experiment was carried out with aim to assess the algorithm performances with the variation of 

disk radii. The experiment was performed on the 80,000 data set with the disk radius varying from 0.5 mm to 

10 mm. The experimental data is presented in Table 2 and plotted in Figure 21. It is evident in the figure that 

the running time of the naive algorithm grows rapidly as the disk radius increases. The alpha shape algorithm 

and the recursive algorithm behave in an opposite manner: their running time decreases as the disk radius 

grows. It is reasonable considering the number of the alpha shape boundary facets decreases as the disk 

radius increases. And for the recursive algorithm, the recursion number reduces either with increase of the 

disk radius. As to the motif combination approach and the modified Graham scan approach, the disk radius 

variation has little impact on their performances. 

Data amount 

Algorithm 



Table 2. Algorithm running times with various disk radii and the same profile data. 

0.5mm 1mm 5mm 10mm 

Naive algorithm 1.0167s 2.0086s 9.9274s 19.3092s 

Motif Combination algorithm 0.1537s 0.1386s 0.1238s 0.1200s 

Alpha Shape algorithm 2.4061s 2.2214s 2.1531s 2.0540s 

Modified Graham Scan algorithm 0.1293s 0.1302s 0.1253s 0.1259s 

Recursive algorithm 2.2728s 1.5197s 0.1038s 0.0190s 

 

 

 
Figure 21. Algorithm running times on the same profile data using various disk radii. 

 

7.4 End effects correction 

End effects are common in the filtration of open profiles. Mean-line based filters, for example the 

Gaussian filter, have distortion at both ends of the profile for half cut-off wavelength. A common solution for 

mean-line filters is to add sufficient zeros to the ends of the profile, referred as zero-padding [20]. 

Morphological filters have similar problems. The distortion is confined to two ends of the profile 

maximum for half size of the structuring elements. The solution to correct the distortion varies for specific 

algorithms. The naive algorithm calculates the dilation and erosion and combines them in pairs. Both of 

dilation and erosion need to correct end effects. The solution is similar to the zero-padding as used in mean-

line filters: the profile is assumed to drop down to the negative/positive infinity outside of the profile for 

dilation/erosion respectively, known as infinity padding. It pads sufficient extreme ordinates for half size of 

the structuring element on both ends. Fig. 22 illustrates the infinity padding for dilation with circular 

structuring element.  Since the closing and the opening are combined using the dilation and the erosion, end 

effects are automatically handled [10]. 

Other algorithms are different from the naive algorithm in this aspect. They yield the closing and the 

opening directly without combining dilation and erosion. Zero-padding does not work for them because these 

algorithms depend on the geometrical properties of the profile. Thus the padded part of the profile cannot be 

geometrically viewed as flat. Instead it should reflect the geometrical features of the profile ends. Therefore 

padding should be made by reflection as Figure 23 presents [7]. 

 

  
Figure 22. Infinity padding on two ends of the profile. 

 

Data amount 

Algorithm 
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Figure 23. Reflective padding on two ends of the profile. 

 

7.5 Areal extension 

All the five algorithms work for morphological profile filters. It naturally leads to investigate whether 

they could be extended to areal data. It could be easily recognized that the naive algorithm could apply to 

areal data by replacing the profile structuring element with its areal counterpart. For instance, the disk used 

in profile data becomes the ball in areal data. In this case, extreme points are achieved by evaluating the 

vector sum of the ball and the areal data in range overlapped by the ball. 

The alpha shape method is also possible to extend to the areal data if replacing the disk with the ball. 

Instead of a series of 2-simplexes resulted by the 2D Delaunay triangulation, the 3D Delaunay triangulation 

yields a series of 3-simplexes. Subsequently by checking the smallest circumsphere of these 3-simplexes, the 

facets of the alpha shape could be obtained. Then the spatial envelope ordinates can be achieved by 

interpolating points on the caps determined by the alpha shape boundary facets. 

As to the motif combination algorithm, it has no obvious extension to the areal data because the motif 

combination test could be complex in the spatial case. For the modified Graham scan algorithm, there is no 

existing extension for 3D data. An algorithm called the ball pivoting algorithm [21] was developed to 

reconstruct the surface from the discrete point cloud. It simulates rolling a ball over the areal point set. In this 

sense this method could be viewed as the extension of the modified Graham scan algorithm for profile data. 

Obviously it is possible to extend the recursive algorithm to areal data. For example, the disk could be 

replaced by the ball and the partition are assumed to be done by intersecting three planes passing through the 

contact point and three vertices of the base triangle face respectively. 

 

8. Conclusion 

In this paper two existing algorithms, the naive algorithm and the motif combination algorithm, are first 

recalled, which were originally developed for the traditional envelope filter. With minor extension, they 

could be applied to morphological filters. A recent approach based on the alpha shape is presented as well. It 

makes use of the link between the alpha hull and morphological closing and opening that the alpha hull is 

theoretically equivalent to the closing and opening. Afterward two novel algorithms are developed, namely 

the modified Graham scan algorithm and the recursive algorithm. By correlating the convex hull and the 

morphological operation, the Graham scan algorithm for the convex hull computation is modified and 

adapted to compute the morphological operations. The alpha shape method depends on the Delaunay 

triangulation which is costly and redundant for the computation for a given radius. The recursive algorithm 

solved this problem. A series of observations are presented for searching the contact points. Based on these 

observations, the algorithm partitions the profile data into small segments and searches the contact points in a 

recursive manner. 

The comparison of the five algorithms is further discussed in five aspects: algorithm verification, 

algorithm analysis, performance evaluation, end effects correction, and areal extension. The experimental 

results show that the five algorithms are in agreement with each other except at two ends of the profile. The 

naive algorithm is a direct implementation to morphological operations but it is time consuming for large 

data set and large structuring element. It has several limitations, such as the size of the structuring elements 

is restricted and unable to handle non-uniform sampled data. Opposed to these limitations, the alpha shape 

algorithm provides more feasibility and flexibility as well as easy extension to areal data. The motif 

combination approach and the Graham scan approach are most efficient in performance with the linear time 

complexity. However they are hard to extend to areal data. The recursive algorithm is slower than the motif 

combination algorithm and the modified Graham scan algorithm, but more efficient than the naive algorithm 

and the alpha shape algorithm. A great merit of the recursive algorithm is that it is easy to extend to areal 

data which would be efficient for large areal data sets and large structuring elements. The correction of end 
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effects varies for specific algorithms. Infinity padding works for the naive algorithm while the other four 

algorithms use reflective padding. 
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