research

Investigating the impact of image content on the energy efficiency of hardware-accelerated digital spatial filters

Abstract

Battery-operated low-power portable computing devices are becoming an inseparable part of human daily life. One of the major goals is to achieve the longest battery life in such a device. Additionally, the need for performance in processing multimedia content is ever increasing. Processing image and video content consume more power than other applications. A widely used approach to improving energy efficiency is to implement the computationally intensive functions as digital hardware accelerators. Spatial filtering is one of the most commonly used methods of digital image processing. As per the Fourier theory, an image can be considered as a two-dimensional signal that is composed of spatially extended two-dimensional sinusoidal patterns called gratings. Spatial frequency theory states that sinusoidal gratings can be characterised by its spatial frequency, phase, amplitude, and orientation. This article presents results from our investigation into assessing the impact of these characteristics of a digital image on the energy efficiency of hardware-accelerated spatial filters employed to process the same image. Two greyscale images each of size 128 × 128 pixels comprising two-dimensional sinusoidal gratings at maximum spatial frequency of 64 cycles per image orientated at 0° and 90°, respectively, were processed in a hardware implemented Gaussian smoothing filter. The energy efficiency of the filter was compared with the baseline energy efficiency of processing a featureless plain black image. The results show that energy efficiency of the filter drops to 12.5% when the gratings are orientated at 0° whilst rises to 72.38% at 90°

    Similar works