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Abstract—Non-linear image processing operators give 
excellent results in a number of image processing tasks such 
as restoration and object recognition. However they are 
frequently excluded from use in solutions because the system 
designer does not wish to introduce additional hardware or 
algorithms and because their design can appear to be ad hoc. 
In practice the median filter is often used though it is rarely 
optimal. 

This paper explains how various non-linear image 
processing operators may be implemented on a basic linear 
image processing system using only convolution and 
thresholding operations.  

The paper is aimed at image processing system developers 
wishing to include some non-linear processing operators 
without introducing additional system capabilities such as 
extra hardware components or software toolboxes. It may also 
be of benefit to the interested reader wishing to learn more 
about non-linear operators and alternative methods of design 
and implementation. The non-linear tools include various 
components of mathematical morphology, median and 
weighted median operators and various order statistic filters.  

As well as describing novel algorithms for implementation 
within a linear system the paper also explains how the 
optimum filter parameters may be estimated for a given 
image processing task. This novel approach is based on the 
weight monotonic property and is a direct rather than 
iterated method. 
 

Index Terms—Non-linear filter design, Non-linear filter 
implementation, morphology, WOS, weighted median filters.  

I. INTRODUCTION 
ATHEMATICAL morphology [1]-[3] consists of a 
powerful set of tools for image processing which 

may be used for many tasks including noise reduction and 
object recognition. However its definition in terms of set 
theory and subsequently in terms of lattices can make it 
appear remote from more mainstream operations such as 
linear filtering. 

Other non-linear methods such as order statistic and 
weighted order statistic (WOS) [4], [5] filters are excellent 
for removing noise and preserving image structure but only 
the special case of the median appears to be in widespread 
use. The sorting operations are thought to be 
computationally expensive and the hardware 
implementation is perceived as comparator based and 
inherently incompatible with linear multiply-accumulate 
architectures.  

Frequently in assembling a large hardware or software 
solution to an image processing problem the system 

 
Manuscript received July 7, 2002; revised May 8, 2003. 
The author is with the Department of Electronic and Electrical 

Engineering, University of Strathclyde, Glasgow, G1 1XW, UK (e-mail: 
s.marshall@eee.strath.ac.uk). 

Publisher Item Identifier S 1682-0053(03)0163 

designer chooses to discount non-linear operations as they 
require additional hardware or software extensions. For 
example they may not have purchased the morphological 
toolbox for their package or do not wish to incur the cost of 
additional comparator hardware components. In order to 
compare the results presented, a brief summary of 
specialized hardware techniques for the implementation of 
morphological processing is given. For a fuller description 
the reader is referred to [6]. 

A.  Summary of Specialized Hardware for 
Morphological Processing  

Several general approaches have been developed for the 
efficient implementation of mathematical morphology and 
other non-linear operators. These include methods based on 
threshold decomposition [7]-[10], bit serial approaches 
[11]-[17], systolic implementations [18]-[21] and 
asynchronous techniques [22]. For the purposes of this 
paper the comparisons will be limited to implementation 
through digital electronic hardware, though it is worth 
noting that both analogue [23]-[25] and optical [26], [27] 
morphological processors have been reported. More 
recently FPGA hardware has been used to implement 
morphological filters [28]. 

A key factor in grayscale morphological processing is 
whether or not the structuring element is flat. If it is flat 
then this makes life much easier, if not then there are a 
number of ways to overcome the problem. Threshold 
decomposition of the input signal presents a simple 
solution to grayscale processing, in the cases where the 
structuring element is flat. However for non-flat structuring 
elements it too must be thresholded. This causes the 
complexity to increase rapidly with the resolution of the 
data. An ASIC solution has been reported [7] but is limited 
to only 4 bit data because of this problem. The complexity 
can be contained by adding/subtracting the structuring 
element values prior to thresholding which saves on 
hardware at the expense of speed [8].  

The implementation of standard morphological operators 
reduces to the problem of identifying the max (and min) 
over a large number of inputs. Bit serial techniques are 
attractive as the MSB of each number may be analysed and 
only those for which it is 1 (or 0) need be considered as 
candidates for max (min). The search then proceeds 
through each bit in turn until the max (min) is located. 
Whilst this approach was developed to implement dilation 
and erosion, a simple modification [12] can be employed to 
compute closing and openings. Several variations to 
identify the median [29] and general ranks [30] may be 
used to implement WOS [4], [5] and soft morphological 
filters [15]. 
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B. Binary Image Processing 

Many documents including pages of text and faxed items 
may be adequately represented by only two intensity levels. 
The non-linear image processing techniques mentioned 
above may be used for a number of common tasks 
including restoration of degraded text, noise removal, 
optical character recognition (OCR), and object 
recognition. 

For binary morphological image processing a key issue 
is whether or not to unpack the one bit data into 8, 16 or 32 
bit words for simpler processing or to handle the data in its 
packed form. Two strategies are possible, source word 
accumulation (SWA), and destination word accumulation 
(DWA). The first approach indexes single source pixels 
and distributes and accumulates them into the destination 
image. The second approach, which is the preferred 
strategy, indexes single destination pixels and gathers the 
source pixels which contribute to their output value. Other 
approaches involve the decomposition of structuring 
elements in various ways. These techniques are described 
by Bloomberg [31]. 

The work reported in this paper demonstrates strategies 
for decomposing a number of non-linear operators so that 
they may be implemented through standard linear hardware 
and software configurations. In particular mathematical 
morphology, rank order statistic filters including the 
median and weighted median operators will be discussed. 
As well implementing the operators, the approaches 
described provide simple non-iterative methods of selecting 
the optimum filter parameters. 

A brief introduction to the type of filters covered is 
provided in the next section. 

II. OVERVIEW OF NON-LINEAR FILTERS  

A. Order Statistic Filters 

All analysis in this paper will be based on sampled 
values on a 2D Euclidean grid. It involves processing an 
image ),( nmI  by a filter defined within an overlapping 
sliding window ),( lkB . The size of the filtering window is 
expressed as B . 

For the basic rank order filter rψ  applied to a set of 
input values )...,,,( 120 −= Bxxxx  the output is defined as 
follows: 

 )(setinlargestth)x 120 -B.x,,xxr(rψ …−=  (1) 

Well known special cases of rank order filters are the 
minimum when 1=r , the maximum when Br =  and the 
median [32], [33] when 2/)1( += Br . For simplicity it is 
assumed that B  always remains odd. More complex 
examples of rank order filters can be formed by (a) 
duplicating the input variables which results in weighted 
order statistic (WOS) filters [4], [5] and (b) forming 
functions of the ordered variables which results in filters 
such as the Huber [34] and alpha trimmed mean [35]. 
Further details of these filters can be found in the 
references.  

Where the filter is applied to binary image pixels, it 
reduces to a simple count and threshold operation as shown 
in (2). 





 ≥++

=
∑
∈

otherwise0

),(if1
)( ),(),( lkBlk

rlnkmI
Irψ  (2) 

B. Mathematical Morphology 

1) Erosion 

The basic morphological operations of erosion and 
dilation are defined in terms of set theory and Minkowski 
subtraction and addition [1]. In the case of morphological 
operations the filter window ),( lkB  forms the region of 
support of the structuring element.  

A binary erosion is defined by Serra [1] as  

b
Bb

IBI
∈
∩  (3) 

This original definition is placed in terms of the 
intersection of the translation of the image by every point 
in the structuring element. However the image and 
structuring element may be interchanged so that the output 
of an erosion is 1, for all translations of the structuring 
element which “fit” inside the image. This means that the 
count of foreground pixels of the image, I , lying within 
the window, B , must be equal to B . 

The erosion operator can be rewritten as  

BBI ψ= . (4) 

Binary erosion therefore reduces to a counting operation 
requiring that all the image pixels within the window are 
equal to 1 for the filter output to be 1 otherwise it is 0. 
Erosion by a single structuring element is only capable of 
removing foreground pixels and cannot add them, therefore  

IBI ⊆ . (5) 

Operators which possess this property are said to be 
antiextensive. Whilst erosion by a single structuring 
element is antiextensive, the union of a number of erosions 
may be used to implement any morphological operation or 
any positive Boolean logic function. For more details of 
morphological operators see [2]. 

2) Dilation 

Dilation is defined by Serra [1] as 

y
By

IBI (U
(

∈
=⊕ . (6) 

The definition is placed in the context of the union of 
translations of the image by every point in the structuring 
element. However, it means the output of the dilation is 
equal to 1 for all the points at which the translation of the 
structuring element, B , intersects the foreground of the 
image, I , by one or more pixels. It should be noted here 
that the definition uses a reflection of the structuring 
element. Where the structuring element is symmetrical, i.e. 

),(),( lkBlkB −−=  this reversal has no effect. The 
remainder of the paper will assume that the structuring 
elements are symmetrical and hence the reflection issues 
can be ignored. 

The dilated version of an image includes (or is 
equivalent to) the pre-dilated image I  

IBI ⊇⊕ . (7) 

Operators which possess this property are said to be 
extensive. 

- 

- 

- 
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(a) (b)    

 

 
(c) 

 
Fig. 1.  (a) Original image, 0I , (b) noisy image, I , (c) resulting grayscale image thresholded at each level (H) and convolution of noisy image with binary 
window then thresholded to give 5 output images including the erosion ( 5=t ), dilation ( 1=t ) and median ( 3=t ). 

 

III. IMPLEMENTATION VIA LINEAR OPERATIONS 
Having set out the basic definition of some simple 

morphological and rank order filters the paper will now 
consider alternative methods of implementation which may 
be carried out via linear processing techniques.  

Consider the following statement: 
All rank order filters including the median and a 
number of the fundamental SSP (set-set processing) 
tasks within mathematical morphology may be 
implemented simultaneously for binary images via a 
single linear (multiply-accumulate) operation carried 
out between the original image, I , and the filter 
window, B , followed by thresholding at an appropriate 
level. 

The convolution operator is central to all linear software 
and hardware image-processing systems. The convolution 

),( nmH  between an image I  and window B  is defined 
as follows: 

∑ ∑
−= −=

−−=∗=
K

Kk

L

Ll

lnkmIlkBBInmH ),(),(),(  (8) 

The above operator is used in edge detection, linear 
smoothing and sharpening. 

In order to implement the morphological operators and 
rank order filters, the image I  and the filter window, B , 
are convolved to produce a single image, H . Although 
both I  and B  are binary, the result of their convolution, 
H , is a grayscale image with pixel values in the range, 0 
to B . The image, H , will be shown to consist of a stack 
of all the outputs of the rank order filter ψr, for every value 
of r . The required rank order filtered output image, 

)(Irψ , may be obtained by thresholding the image, H , at 
the appropriate value of r . 

The convolution of the image, I , with the window, B , 
is equivalent, in the binary case, to an operation which 
counts the number of pixels within the window, B , for 
which =I 1, and sets the corresponding pixel in image H , 
to this value.  

∑
=∈

−−=∗=
1),(),(

),(),(
lkBlk

lnkmIBInmH  (9) 

This leads to the graylevel image H , in which the  
pixel values reflect the extent of window occupancy in the 
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 (a)                       (b) 
 

 
 

 (c)                       (d) 
 

 
 

 (e)                       (f) 
 

Fig. 2.  The example shows a text image corrupted with 10% additive impulsive noise, then filtered with every 5 point rank order filter. It can be seen that 
rank 4=r  gives a lower MAE than the median. (a) Noisy image, (b) 1=r  dilated image, MAE= 0.392, (c) 2=r  MAE= 0.087, (d) 3=r  median filtered, 
MAE= 0.012, (e) 4=r , MAE= 0.008 * optimum, (f) 5=r  eroded image, MAE= 0.029. 
 
original image I . 

The binary images resulting from filtering by rψ , i.e. the 
rank order, morphological and median filters are obtained 
by thresholding H  at the appropriate level, r . The 
following filters may be obtained.  

• Rank order filter 

[ ]BIT r
r ∗=ψ  (10) 

• Median Filter 

( ) ( ) [ ]BITIMed B
B ∗= + 2/1  (11) 

• Dilation 

[ ]BITBI ∗=⊕ 1  (12) 

• Erosion 

[ ]BITBI B ∗=  (13) 

where ][NT t  is a thresholding function defined as 



 ≥

=
otherwise0
if1

][
tN

NT t . 

An example is shown in Fig. 1. Fig. 1(a) shows a simple 
original image and Fig. 1(b) shows a noise corrupted 
version. The objective is to filter the noisy image in order 
to recover the original or an image which is as close as 
possible to it. As can be seen in Fig. 1(c) the resulting 
grayscale image contains, at each level, every rank order 
filter including the erosion, the dilation and the median. In 
this simple case the median is the best filter as it recovers 
the original image precisely. 

Fig. 2 shows a text image corrupted with 10% additive 
noise. It is then convolved with a 5 point window and 
thresholded at each level to create the various rank order  
 - 
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         (a)            (b)           (c)             (d) 

 
Fig. 3.  (a) The labeling of the pixels within a 33×  window, (b) location of the window at a corner pixel (there are 4 black foreground (=1) and 5 white 
background pixels (=0) in the window), (c) removal of the corner pixel by a standard median filter (median filter list [1, 1, 1, 1, 0, 0, 0, 0, 0] output 0, 
therefore the output is 0 and the corner is removed), and (d) preservation of the corner by a weighted median filtering (weighted median filter ( 3=W ) list 
is [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], therefore the output is 1 and the corner is preserved). 
 
filtered images. In this case the optimum filter is 4ψ  which 
outperforms the median, 3ψ  by a further 33% in terms of 
the mean absolute error (MAE).  

IV. WEIGHTED MEDIAN FILTER 
Another type of filter which may be implemented within 

the linear framework is the weighted median filter [36]-
[38]. The filters described so far are essentially counting 
filters which give an output dependent on the number of 
pixels within the window which equal 1. The disadvantage 
of this approach, particularly for larger windows, is that it 
treats all pixels in the window with the same importance. In 
order to preserve finer image structure such as corners and 
straight lines it is necessary to give the pixels at some 
locations within the window a greater weighting.  

A modification of the median filter is the weighted 
median (or center weighted median) in which the pixel 
derived from the central location of the window is included 
in the pixel list w times compared to the other pixels. 
Consider the case of a 33×  weighted median filter. The 
output of this filter with weighting W  and window 
locations labeled as in Fig. 3(a) is given by  

),,,,times
 repeated,,,,()(

87654

43210med

xxxxxW

xxxxxW

>
<=x

. 

Assuming that the weighting is an odd number and again 
that the inputs are binary the rank ordered list will form a 
group of 1s followed by a group of 0s. The length of the 
list will be 8+W  pixels so the median value will be 
located at position 2/)9( +W  in the list. Therefore if the 
number of 1s in the list is greater than this value the output 
of the weighted median will be 1 otherwise it will be 0.  

The pixel value at location 4x  is counted W  times so 
the output of the weighted median filter will be, 







 +
≥+

= ∑
≠

otherwise0

2
)9(if1

)( 4
4

med

W
xWx

W i
i

x  (14) 

where ∑∑∑
=

=

=

=≠

+=
8

5

3

04

i

i
i

i

i
i

i
i xxx . 

In the same way as the standard median filter was 
applied to binary images through linear convolution and a 
threshold function, the weighted median filter can also be 
implemented in the same way. The only modification 
required is to set the window values to the appropriate 
weightings so in the case above =)0,0(B W and =),( lkB 1 

for all 0≠k  and 0≠l . The filter output can then be 
written as, 

( ) ( ) [ ]W
B

B BITI W

W
∗= + 2/1Med  (15) 

where WB  is the filter window including the weighted 
values and WB  is the sum of all the values in the window. 

So although the weighting, W , applied in the weighted 
median filter refers to the number of times the center pixel 
is repeated, in the binary case the same output may be 
achieved by using, W , as a multiplicative weighting of the 
center pixel in the overall summation shown in (14). 
Therefore in the binary case, not only does the sorting 
operation simplify to a basic count, but also the repetition 
operator is replaced by a multiplicative weighting.  

A. Weighting Factor Range 

A problem in the application of the weighted median 
filter is the selection of the weighting value to be applied to 
the center pixel. The value of the weighting can be critical 
as will be seen in later examples. 

B. Structural Considerations 

The weighting may be chosen in order to preserve 
certain structures within the image. It is a simple matter to 
show that a basic 33×  median filter will remove the corner 
pixel from a 90º angle. However by giving the center value 
a weighting of 3, the corner pixel will be preserved. This is 
demonstrated in Figs. 3(b) to 3(d). Similar variations may 
be introduced to preserve one pixel wide straight lines. In 
general the larger the weighting of the center pixel, the less 
change will result from filtering.  

Consider the variation in window weighting for a 33×  
center weighted median: 

From (14) the output of the filter =)(med xW 1 if the 
following inequality holds, 

2
)9(

4
4

+
≥+∑

≠

W
xWx

i
i . (16) 

Letting 12 += cW  as W  is odd, reduces (16) to  

5)12(
4

4 +≥++ ∑
≠

cxxc
i

i . (17) 

So even though the weighted median is a non-linear 
operator based on sorting in the binary case it may be 
reduced to a weighted sum of the center pixel ( 4x ) and the 
eight surrounding pixel values ( 4, ≠ixi ). This is followed 
by thresholding at the median value of the weights. 
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It is easier to analyze the weighted median filter by 
considering the conditions under which the center pixel in 
the window switches state, either from 0 to 1 or vice versa. 
This is done by redefining medW  in terms of a differencing 
filter )(xD  

)()( 4med xDxW ∆=x  (18) 

where 



 ≠

=
otherwise0

)(if1
)( med4 xWx

xD  (19) 

and ∆  is the set difference (XOR) operator. 
The differencing filter )(xD  is 1 where the pixel value 

at the center of the window is changed by filtering. It can 
easily be shown that there are only four valid filter weights 
for the filter defined in a 33×  window and that these are 1, 
3, 5, 7. The weighting can be related directly to the number 
of neighboring pixels of opposite value required to cause 
the pixel at the center of the window to switch state. As the 
WMF is self dual the conditions for it to switch in either 
direction are the same. 

For center weightings greater than, 7>W  the 33×  
filter becomes the Identity filter which is neither extensive 
nor antiextensive.  

When the weighting is 1=W , the filter is identical to the 
standard median. For a 33×  window it requires at least 5 
neighboring pixels to possess the opposite value to the 
center pixel in order to cause it to switch state. For each 
increase in center weight, one further neighboring pixel is 
required to trigger a switch. This is shown in Table I.  

Further generalizations to these filters may be applied by 
giving all pixels a weighting and by choosing ranks other 
than the median as the output. It is even possible with a 
small modification to have non-integer weightings though 
this is beyond the scope of this paper. The interested reader 
may wish to refer to [39].  

V. OPTIMUM FILTER DESIGN 
So far a number of non-linear filters which may be 

implemented through linear operators have been described. 
When one of these filters is employed for a specific task 
such as noise reduction, the problem of filter design 
becomes one of selecting the optimum set of parameters for 
the task required. Usually the optimum is the filter which 
minimizes some measure such as the Mean Absolute Error, 
MAE, between the filtered image and some ideal version. 
As an ideal version is required the technique uses a training 
set from which the optimum parameters are determined. 
Provided that the training set is representative then the 
filter found will also be optimal (or very close to optimal) 
for further data sets to which it is applied.  

One way to determine the optimum filter optψ  from all 
possible filters is to carry out an exhaustive search by 
testing every filter rψ . This is effectively what has been 
carried out in Figs. 1 and 2 but it is computationally 
expensive for larger filters. An alternative approach is to 
minimize the MAE by estimating the conditional 
expectation of the output value [40].  

For simplicity we define ),...,,( 110 −= Bxxxx  as the 
observations of the noisy image, ),( nmI  within the 
window  B  and  ),(0 nmIy =   as  the  corresponding pixel  

TABLE I 
SWITCHING STRENGTH OF WEIGHTED MEDIAN FILTER FOR VARIOUS 

CENTER WEIGHTINGS 
Center 

weight, W  
Number of neighbors of opposite state 

required to cause center pixel to switch state 
1 5  
3 6  
5 7  
7 8  

>7 Not possible 
 

value in the ideal image. The conditional expectations 
)|0( x=yP  and )|1( x=yP  are the probabilities that the 

filter output is 0 or 1 respectively for a given input x . 
The MAE may be expressed as 

∑

∑

=∈

=∈

=

+=>=<

)0)((

)1)((
0

)|1()(

)|0()()(,MAE

xx

xx

xx

xx

r

r

yPP

yPPII r

ψ

ψ

ψ
 (20) 

where )(xP P(x) is the prior probability of x. 
The total error consists of all the pixels where the filter 

output is 1 and the ideal image is 0 or vice versa. These 
quantities are then summed over the image.  

A. Optimum Rank Order Filters 

For a window of size n , each vector x  can take on n2  
values, which makes finding the optimal MAE filter 
extremely data intensive, especially for larger windows. 
Suppose, however, a filter is defined based on the 
Hamming weight of the vector, x . Then filters are of the 
form )(xφ , and there are only 1+n  possible inputs for 
which it is required to determine the filter value. These 
filters will be called weight filters, and the optimal weight 
filter is given by 







<=
≥=

=
5.0)|1( if,0
5.0)|1( if,1

)(opt x
x

x
YP

YP
φ . (21) 

The filter will be correct for at least 50% of the inputs. 
The MAE of the optimum weight filter is summed over the 
cases where it gives the incorrect output: 

)|1(),|0(min

)()(,MAE opt0

xx

x
x

==

×>=< ∑
yPyP

PII φ
 (22) 

The weight filter, )(opt xφ , is sub-optimal compared to 
the optimal of all filters defined in the window n . This is 
because it has been constrained to consider only the weight 
of the input vector, x . There is, therefore an increase in 
error for each input x  for which the output of the )(opt xφ  
differs from the overall optimum filter.  

Comparing optφ  with rψ  and rewriting (2), as 



 ≥

=
 otherwise,0

|| if,1
)(

r
r

x
xψ  (23) 

then optφ  and rψ  depend only on the weight |x|, so they 
can be written as )(opt xφ  and )( xrψ . Since optφ  is 
optimal with respect to weight-based filters, its MAE 
cannot exceed the MAE of rψ , which means that rank-
order filters are poorer than optimal weight filters. Indeed, 

rψφ =opt  if and only if 5.0)|1( ≥= WYP  for rW ≥  and 
5.0)|1( <= WYP  for rW < . Now suppose the ideal and 

observed images possess the following weight-monotonic 
property: 
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(a)                    (b) 

 

 
 

(c)                    (d) 
 

Fig. 4.  (a) The noisy and ideal image observations, (b) the probability estimates with the optimum rank order filter 6opt =r , (c) the noisy image filtered at 
6=r , and (d) the noisy image filtered at median 5=r . 

 

jijyPiyP >==≥== for)|1()|1( xx . (24) 

Then 
optopt rψφ = , where  =optr minimum value of r  for 

which 5.0)|1( >== ryP x . 
The weight-monotonic property states loosely that the 

more black pixels in the observation window, the more 
likely it is that the ideal pixel at the window center is black. 
The model is not unreasonable for ideal images in which 
the micro-geometry is somewhat random and the noise is 
white and symmetric. Simulation show that these 
assumptions hold for restoration type problems where the 
noisy and ideal images have similar pixel values, but they 
do not hold for inverted or edge detected images. Rank 
order filters would not be applicable for the latter type of 
images. 

The difficulty in this general approach to filter design is 
in obtaining a good estimate of the conditional and prior 
probabilities )|1( x=yP  and )(xP  respectively for each 
value of x . In restricting the class of functions to that 

corresponding to rank order filters, a smaller set of 
conditional and prior probabilities )|1( x=yP  and )( xP  
must be estimated. This is carried out through the 
collection of observations of a representative training 
sequence. 

An example of optimum filter design within a 33×  
window, is shown in Fig. 4. Fig. 4(a) shows the 
observations for a pixel in the ideal image, where =yN ( 0) 
and =yN ( 1) indicates the number of times the ideal value 
corresponded to either 0 or 1 for the various values of x  
in the noisy image. Fig. 4(b) shows the estimates of the 
prior and conditional probability calculated from these 
values. For this image the optimum rank order filter is 
where 6opt =r , as this is the minimum value of r  for 
which 5.0)|1( >= xyP . This gives an MAE of 0.0068, 
which equates to 444 pixels in error. This figure is 
equivalent to summing the minimum value of either 

=yN ( 0) or =yN ( 1) from each line in the table of 
Fig. 4(a).  
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(a)                     (b) 
 

              
 

(c)                     (d) 
 

 
(e) 

 
Fig. 5.  (a) The detail in noisy image containing very thin text, (b) the probability estimates gives the optimum weighted median, (c) the filtered image using 
the standard median filter, (d) the filtered image using the weighted median filter with 5=W  (equivalent to 7=′cx ), and (e) the implementation of 
weighted median filter. The noisy image I  is linearly convolved with the window, B  shown to produce the grayscale image H , which is then thresholded 
at level 7 to give the weighted median filter with 5=W . 
 

If the median (i.e. 5=r ) were used instead of using the 
optimum filter then the increase in MAE would be 
0.00036. This Fig. which is equivalent to a further 24 
pixels in error can be obtained directly from the table of 
observations, as 308 pixels would be in error for 5=x  
instead of 284 pixels, i.e. )5|0( == xyN  instead of 

)5|1( == xyN . 

B.  Optimum Weighted Median Filter Design 

The design of the optimum weighted median filter within 
a window B , reduces to the problem of determining the 
pixel weighting, W , for which the MAE is a minimum. As 
explained earlier this problem may be placed in the context 
of a difference filter, )(ID .  

For simplicity let )(IDd = . Then )|1( cdP ′= x  is the 
probability that cx  will switch value when c′x  of its 
neighbors have the opposite value. Similarly 

)|0( cdP ′= x  is the probability that cx  will remain 
unchanged under the same conditions. The prior 
probability |xc'| is given by )( cP ′x . 

Assuming that the weight-monotonic property holds, 
then the probability that a pixel will switch state increases 
monotonically with the number of neighbors it has with the 
opposite value. 

The optimum differencing filter )(opt ID  is determined 
by optd ′  the minimum value of c′x  for which 

5.0)|1( >= ′cdP x .  
Similarly the total MAE  
 

H
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The conditional and prior probabilities may be estimated 
from observations of representative training images. 
Fig. 5(a) shows an image containing very thin text. The 
probability estimates in Fig. 5(b) show that a value of 

7opt =′d  gives the optimum weighted median. This 
corresponds to a weight of 5=W . In contrast applying the 
standard median results in the destruction of most of the 
text as shown in Fig. 5(c). The result of applying the 
optimum weighted filter is shown in Fig. 5(d) and it can be 
seen that most of the text is preserved. The filters with 
weights on either side of the optimum, i.e. 3=W  and 7 
give very poor results, which suggests that the selection of 
the optimum weight is critical. 

Fig. 5(e) shows an overview of the algorithm used to 
implement the optimum weighted median filter. It can been 
seen that the sorting stage has been replaced by a linear 
convolution with mask 5)0,0( =B  and 1),( =lkB  for all 

0≠k  or 0≠l . This is followed by thresholding at 
72/)9( =+W . 

C.  Error Estimates 

Clearly in practical situations the ideal image is not 
available. Where the process is repeatable such as 
transmission error it is possible to transmit a number of test 
images to build the training set. In other cases it is 
necessary to model the noise in some way. A vitally 
important part of these methods lies in using the correct 
size of training set. Where a training set is too small an 
additional error known as the precision error is introduced. 
This quantity is a random function as it depends on the 
training set.  

For a basic 33×  filtering window, the 9 input variables 
means that there are 1542 102

9
≈  different logic functions 

which may be implemented. For larger windows the 
number of functions grows rapidly. The training set 
required to estimate the conditional probabilities in order to 
determine the optimum function out of all these 
combinations may be impossibly large. In this work the 
number of functions has been reduced to the set of 
functions which implement rank order, morphological and 
weighted median functions. The optimum parameters for 
these filters have been obtained from a training set of a few 
test images with negligible estimation error. A full 
discussion of the problems of estimation error in this type 
work is given in [41]. 

VI. CONCLUSIONS 
Many researchers and engineers reject morphological 

and other non-linear image processing because of the need 
to introduce additional hardware or software functions to 
their system. This work has shown how a useful subset of 
non-linear operations may be implemented using linear 
image processing tools to obtain median, rank, 

morphological and weighted median filters. Analysis and 
examples have been included to show the reader how to 
estimate the optimum filter parameters for these various 
types of filter. The work in this paper has been limited to 
binary image processing but it is also possible to use a 
similar framework for the implementation of grayscale 
functions. This will be the subject of a future paper.  

ACKNOWLEDGEMENT 
The author would like to thank Professor E. R. 

Dougherty of University of Texas A&M, for his helpful 
comments on an earlier draft of this manuscript. 

REFERENCES 
[1] J. Serra, Image Analysis and Mathematical Morphology, Academic 

Press, London, 1982. 
[2] G. Matheron, Random Sets and Integral Geometry, John-Wiley, 

New-York, 1975.  
[3] P. Maragos and R. Schafer, "Morphological filters - part I: their set 

theoretic analysis and relations to linear shift-invariant filters," IEEE 
Trans. on Acoustics, Speech, and Signal Processing, vol. 35, no. 8, 
pp. 1153-1169, Aug. 1987. 

[4] A. C. Bovik, T. S. Huang, and D. C. Jr. Munson, "Nonlinear filtering 
using linear combinations of order statistics," in Proc. IEEE Int. 
Conf. on Acoustics, Speech and Signal Processing, pp. 2067-2070, 
Paris, May 1982. 

[5] A. C. Bovik, T. S. Huang, and D. C. Jr. Munson, "A generalization 
of median filtering using linear combinations of order statistics," 
IEEE Trans. Acoust., Speech, Signal Processing, vol. 31, no. 6, 
pp. 1342-1350, Dec. 1983. 

[6] A. Gasteratos, Specialized Hardware Structures for Morphological 
Image Processing, http://argo.lira.dist.unige.it/antonis/morphology/ 
morphological_hardware%20_files/iv.htm. 

[7] I. Andreadis, A. Gasteratos, and P. Tsalides, "An ASIC for fast gray-
scale dilation," Microprocessors and Microsystems, vol. 20, no. 2, 
pp. 89-95, Apr. 1996. 

[8] R. Lin and E. K. Wong, "Logic gate implementation for gray-scale 
morphology," Pattern Recognition Letters, vol. 13, no. 7, pp. 481-
487, Jul. 1992. 

[9] C. C. Pu and F. Y. Shih, "Threshold decomposition of gray-scale soft 
morphology into binary soft morphology," CVGIP-Graphical 
Models and Image Processing, vol. 57, no. 6, pp. 522-526, 
Nov. 1995. 

[10] F. Y. Shih, and O. R. Mitchell, "Threshold decomposition of gray-
scale morphology into binary morphology, IEEE Trans. on Pattern 
Analysis and Machine Intelligence, vol. 11, no. 1, pp. 31-42, 
Jan. 1989.  

[11] C. Chen and D. L. Yang, "Realisation of morphological operations," 
IEE Proceedings: Circuits Devices and Systems, vol. 142, no. 6, 
pp. 364-368, Dec. 1995. 

[12] I. Diamantaras and S. Y. Kung, "A linear systolic array for real-time 
morphological image processing," Journal of VLSI Signal 
Processing, vol. 17, no. 1, pp. 43-55, Sep. 1997. 

[13] A. Gasteratos, I. Andreadis, and P. Tsalides, "Improvement of the 
majority gate algorithm for gray-scale dilation/erosion," Electronics 
Letters, vol. 32, no. 9, pp. 806-807, Apr. 1996. 

[14] A. Gasteratos, I. Andreadis, and P. Tsalides, "Extension and very 
large scale integration implementation of the majority-gate algorithm 
for gray-scale morphological operations," Optical Engineering, 
vol. 36, no. 3, pp. 857-861, Mar. 1997. 

[15] A. Gasteratos, I. Andreadis, and P. Tsalides, "Realisation of soft 
morphological filters," IEE Proceedings: Circuits Devices and 
Systems, vol. 145, no. 3, pp. 201-206, Jun. 1998. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 2, SUMMER-FALL 2003 102 

[16] S. J. Ko, A. Morales, and K. H. Lee, "A fast implementation 
algorithm and a bit serial realization method for grayscale 
morphological opening and closing," IEEE Trans. on Signal 
Processing, vol. 43, no. 12, pp. 3058-3061, Dec. 1995. 

[17] L. Luck and C. Chakrabaty, "A digit-serial architecture for gray-
scale morphological filtering," IEEE Trans. on Image Processing, 
vol. 4, no. 3, pp. 387-391, Mar. 1995. 

[18] L. Abbott, R. M. Haralick, and X. Zhuang, "Pipeline architectures for 
morphologic image analysis," Machine Vision and Applications, 
vol. 1, no. 1, pp. 23-40, Spring 1988. 

[19] I. Diamantaras, K. H. Zimerman, and S. Y. Kung, "Integrated fast 
implementation of mathematical morphology operations in image 
processing", in Proc. IEEE International Symposium on Circuits and 
Systems, pp. 1442-1445, New Orleans, May 1990. 

[20] A. Gasteratos and I. Andreadis, "Non-linear image processing in 
hardware," Pattern Recognition, vol. 33, no. 6, pp. 1013-1021, 
Jun. 2000. 

[21] S. Kojima and T. Miyakawa, "One-dimensional processing 
architecture for gray-scale morphology," Systems and Computers in 
Japan, vol. 27, no. 12, pp. 1-9, Nov. 1996. 

[22] F. Robin, M. Renaudin, G. Privat, and N. v.d. Bossche, "Functionally 
asynchronous array processor for morphological filtering of 
greyscale images," IEE Proceedings: Computers and Digital 
Techniques, vol. 143, no. 5, pp. 273-281, Sep. 1996. 

[23] S. Siskos, S. Vlassis, and I. Pitas, "Analog implementation of fast 
min-max filtering," IEEE Trans. on Circuits and Systems II: Analog 
and Digital Signal Processing, vol. 45, no. 7, pp. 913-918, Jul. 1998. 

[24] K. Urahama and T. Nagao, "Direct analog rank filtering," IEEE 
Trans. on Circuits and Systems I: Fundamental Theory and 
Applications, vol. 42, no. 7, pp. 385-388, Jul. 1995. 

[25] S. Vlassis, S. Siskos, and I. Pitas, "Analog implementation of an 
order statistics filter", in Proc. 9th Mediterranean Electrotechnical 
Conference, MELECON’98, pp. 649-653, May 1998. 

[26] E. C. Botha and D. P. Casasent, "Applications of optical 
morphological transformations," Optical Engineering, vol. 28, no. 5, 
pp. 501-505, May 1989. 

[27] D. Casasent, "General-purpose optical pattern recognition image 
processors," Proceedings of the IEEE, vol. 82, no. 11, pp. 1724-
1734, Nov. 1994. 

[28] N. Woolfries, S. Marshall, and P. Lysaght, "Non-linear image 
processing on field programmable gate arrays," Noblesse Workshop 
on Non-linear Model based Image Analysis, NMBIA98, Glasgow, 
1998. 

[29] K. Chen, "Bit-serial realizations of a class of nonlinear filters based 
on positive Boolean functions," IEEE Trans. on Circuits and 
Systems, vol. 36, no. 6, pp. 785-794, Jun. 1989. 

[30] A. Gasteratos, I. Andreadis, and P. Tsalides, "Realization of rank-
order filters based on majority gate," Pattern Recognition, vol. 30, 
no. 9, pp. 1571-1576, Sep. 1997. 

[31] D. S. Bloomberg, "Implementation efficiency of binary 
morphology," in Proc. Int. Symp. for Mathematical Morphology VI, 
ISMM2002, pp 209-218, Sydney, Australia, Apr. 2002.  

[32] J. W. Tukey, "Nonlinear (nonsuperposable) methods for smoothing 
data," in Congr. Rec. EASCO -74, p. 673, 1974. (Abstract only.) 

[33] J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, Reading, 
MA, 1977 (197071: preliminary edition). 

[34] P. J. Huber, Robust Statistics, John-Wiley, New York, 1981. 
[35] J. B. Bednar and T. L. Watt, "Alpha-trimmed means and their 

relationship to median filters," IEEE Trans. Acoust., Speech, Signal 
Processing, vol. 32, no. 1, pp. 145-153, Feb. 1984. 

[36] L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo, "Weighted median 
filters: a tutorial", IEEE Trans on Circuits and Systems-II: Analog 
and Digital Signal Processing, vol. 43, no. 3, pp. 157-192, 
Mar. 1996. 

[37] D. R. K. Brownrigg, "The weighted median filter", Commun. ACM, 
vol. 27, no. 8, pp. 807-818, Aug. 1984. 

[38] B. I., Justusson, "Median filtering: statistical properties", Topics in 
Applied Physics, Two-Dimensional Digital Signal Processing II, T. 
Huang, Ed., Springer-Verlag, Berlin, vol. 43, pp. 161-196, 1981. 

[39] J. Astola and P. Kuosmanen, Fundamentals of Non-linear Digital 
Filtering, CRC Press, New York, 1997. 

[40] E. R. Dougherty and J. Barrera, "Logical image operators" in E. R. 
Dougherty and J. T. Astola, Non-linear Filters for Image Processing, 
pp. 1-58, SPIE, Washington, 1999, 

[41] E. R. Dougherty and R. Loce, "Precision of morphological-
representation estimators for translation invariant binary filters: 
Increasing and non increasing," Signal Processing, vol. 40, no. 2-3, 
pp. 129-145, Nov. 1994. 

 
Stephen Marshall was born in Sunderland, England in 1958. He received 
a first class honors degree in Electrical and Electronic Engineering from 
the University of Nottingham in 1979 and a PhD in Image Processing from 
University of Strathclyde in 1989. In between he worked at Plessey Office 
Systems, Nottingham, University of Paisley and the University of Rhode 
Island, USA. He is currently a Reader in the Department of Electronic and 
Electrical Engineering at the University of Strathclyde. His interests are 
non-linear image processing techniques, including mathematical 
morphology, genetic algorithms and novel image coding. He has published 
over 100 conference and journal papers on these topics; these include 
SPIE Journal of Electronic Imaging, SIAM, IEEE ICASSP and EUSIPCO. 
He has also been a reviewer for these and other journals and conferences. 

Dr Marshall has participated in the NAT and Noblesse European 
Projects in non-linear image processing techniques. He has chaired various 
workshops and special sessions and been a guest editor for SPIE 
Electronic Imaging Journal. He edited the proceedings of the NMBIA 
workshop on Non-linear Model Based Image Coding in Glasgow, 1998 of 
which he was General Chairman. 

He is a former Director and Chairman of the Scottish Chapter of the 
British Machine Vision Association and also of the IEE Professional 
Group E4 in Vision, Image and Signal Processing. He is a founder 
member of the NSIP (Non-linear signal and Image Processing) board and 
an executive team member of the IEE Professional Network on Visual 
Information Engineering (VIE).  

www.SID.ir


