19 research outputs found

    Propagação de sinais de rádio sobre fibra no contexto de NG-PON2

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesHoje em dia todas os pessoas estão ligadas em rede, e devido a proliferação de diversos serviços torna-se cada vez mais imprescindvél arranjar novas opções para fornecer a maior largura de banda possvél, para responder as necessidade geradas. As redes oticas passivas de próxima geração surgem como a solução fornecendo ritmos de transmissão na ordem dos Terabits/s e um alcance na ordem dos milhares de kilometros. Neste contexto será falado dos sinais de rádio na fibra, que trazem vantagens ao nível da simpli ficação das estações base, possibilitando poupança nos custos, isto ao integrar a tecnologia de rádio com a tecnologia de fibra existente Neste trabalho iniciou-se pelo estudo da literatura existente das arquitectura existentes de radio-sobre- fibra, bem como as suas limitações. De seguida, procedeu-se ao desenvolvimento de uma plataforma de simulação para estudar os fenomenos que o sinal de rádio sofre ao ser transportado no sistema otico. Por ultimo, foram realizadas experiências laboratoriais, primeiro com um transceiver NG-PON2 e depois com um sistema rádio-sobre-fibra, consistindo o objectivo em caracterizar estes sistemas.Nowadays all the people are connected on a network, and due to the proliferation of several services it becomes indispensable to nd new option to provide as more bandwidth as possible to answer to necessity. The next generation passive optical networks rise as a solution to supply transmission rate on the Terabits/s order and a reach on the order of the thousands kilometers. On this context, the radio-over- ber signals are going to be spoken about, which o er advantages by the simpli cation of base stations, allowing lower costs, and this by composing the radio technology with the already existent ber technology. This work initiated by the study of the existent literature of the radio-over- ber architectures, as well as their limitations. Then, proceeded on the development of a simulation platform to study the phenomenons that a radio-over- ber su ers while going through the optical system. For last, laboratory experiments were carried out rst with a NG-PON2 transceiver and then with a radio-over- ber system, being the objective of characterizing these systems

    Interference cancellation and network coding for underwater communication systems

    Get PDF
    It is widely believed that wider access to the aquatic environment will enhance human knowledge and understanding of the world's oceans which constitute the major part of our planet. Hence, the current development of underwater sensing and communication systems will produce scientific, economic and social benefits. New applications will be enabled, such as deeper ocean observation, environmental monitoring, surveying or search and rescue missions. Underwater communications differ from terrestrial communications due to the unpredictable and complex ocean conditions, relying on acoustic waves which are affected by many factors like large propagation losses, long latency, limited bandwidth capacity and channel stability, posing great challenges for reliable data transport in this kind of networks. The aim of this project is to design a future underwater acoustic communication system for dense traffic situations investigating the possibility of Medium Access with Interference Cancellation and Network Coding. The main efforts focus on reliability, low energy consumption, storage capacity, throughput and scalabilit

    Analog Radio-over-Fiber for 5G/6G Millimeter-Wave Communications

    Get PDF

    A Class-E Inductive Powering Link with Backward Data Communications for Implantable Sensor Systems

    Get PDF
    The design and implementation of a wireless power and data transfer system based on inductive coupling, having the potential to be used in numerous implantable bio-medical sensors and systems, is presented. The system consists of an external (primary) unit and an internal (secondary) unit. The external unit incorporates a high-efficiency switch-mode Class-E amplifier operating at ~200 kHz for driving the primary coil. The secondary unit consists of a parallel resonant coil followed by the power recovery circuitry. Means for backward data communication from the internal to the external unit over the same pair of coils has been realized using a simple FSK-based modulation scheme incorporated into the internal unit. FSK demodulation and associated filtering are integrated with the base inductive powering system. Prototype system test results indicate the inductive link efficiency can exceed 80% under optimum operating conditions with the overall power transfer efficiency of approximately 30%. The communication system is capable of transmitting up to 10kbps of data with the FSK carrier frequency (i.e., middle-frequency) being only 120kHz. The complete system functions reliably over an inter-coil distances exceeding 2.5cm with a 5V dc supply

    Power utility remote device communications using a Low Power Wide Area Network (LPWAN) based on the LoRa communications standard

    Get PDF
    Electricity distributors currently face heavily reduced operating and capital investment budgets in an effort to reduce household power bills. With the predicated high growth rate of the Internet of Things the following project has researched the possibility of sing this wireless technology for use in an electrical distribution network. The low cost and long range ability of LoRaWAN system provides numerous opportunities to provide distributors and customer’s information about power usage as well as provide access to once un‐financially viable communications. The project researches the LoRaWAN specification and where the technology currently sits in Australia. It will define possible uses for the technology in the electrical distribution industry and also examine the types of devices to establish a LoRaWAN network. Most of the objects and devices that will connect to the LoRaWAN network will only require low data rates/response times and small packet data. After conducting a literature review which details the LoRaWAN specification, LoRa modulation techniques and system architecture the project methodology then identified possible devices to use for the design and implementation of a LoRaWAN network. Theoretical analysis of coverage plots and expected range was completed which was then used for testing the live system. Lab testing of the LoRaWAN system was completed together with line of sight drive testing using various data rates in urban and rural environments. Data rates were chosen from some typical devices that may be used in the network such as smart meters. The system functioned in line of sight applications as specified with objects having a range of 20km. Lastly limitations and recommendations have been made for the system to be used in a real life application

    Interference cancellation and network coding for underwater communication systems

    Get PDF
    It is widely believed that wider access to the aquatic environment will enhance human knowledge and understanding of the world's oceans which constitute the major part of our planet. Hence, the current development of underwater sensing and communication systems will produce scientific, economic and social benefits. New applications will be enabled, such as deeper ocean observation, environmental monitoring, surveying or search and rescue missions. Underwater communications differ from terrestrial communications due to the unpredictable and complex ocean conditions, relying on acoustic waves which are affected by many factors like large propagation losses, long latency, limited bandwidth capacity and channel stability, posing great challenges for reliable data transport in this kind of networks. The aim of this project is to design a future underwater acoustic communication system for dense traffic situations investigating the possibility of Medium Access with Interference Cancellation and Network Coding. The main efforts focus on reliability, low energy consumption, storage capacity, throughput and scalabilit

    The Design, Testing, and Analysis of a Constant Jammer for the Bluetooth Low Energy (BLE) Wireless Communication Protocol

    Get PDF
    The decreasing cost of web-enabled smart devices utilizing embedded processors, sensors, and wireless communication hardware have created an optimal ecosystem for the Internet of Things (IoT). IEEE802.15.4, IEEE802.11ah, WirelessHART, ZigBee Smart Energy, Bluetooth (BT), and Bluetooth Low Energy (BLE) are amongst the most commonly used wireless standards for IoT systems. Each of these standards has tradeoffs concerning power consumption, range of communication, network formation, security, reliability, and ease of implementation. The most widely used standards for IoT are Bluetooth, BLE, and Zigbee. This paper discusses the vulnerabilities in the implementation of the PHY and link layers of BLE. The link layer defines the scheme for establishing a link between two devices. Scanning devices are able to establish communication with other devices that are sending advertising packets. These advertising packets are sent out in a deterministic fashion. The advertising channels for BLE, specified by the PHY layer, are Channels 37, 38, and 39, at center frequencies 2.402, 2.426, and 2.480 GHz, respectively. This scheme for establishing a connection seems to introduce an unintentional gap in the security of the protocol. Creating and transmitting tones with center frequencies corresponding to those of the advertising channels, a victim BLE device will be unable to establish a connection with another BLE device. Jamming a mesh network of BLE devices relies on this same concept. The proposed jamming system is an inexpensive one which utilizes the following hardware. Three individual synthesizers, a microcontroller (MCU), Wilkinson power combiner, power amplifier, and antenna, integrated on a single PCB, are used to transmit a 3-tone signal. Due to the unprecedented nature of the COVID-19 pandemic, necessary adjustments were made to the jammer system design. In the first modified jamming scheme, a single synthesizer evaluation board, power amplifier, and antenna, are used to transmit jamming tones in the form of a frequency hop. Limitations of the frequency hop approach necessitated a second modified scheme. In this second scheme a synthesizer and two Software Defined Radios (SDR), connected to a personal computer, continuously generate three individual jamming tones. The proposed jammer and the modified ones all classify as constant jammers as the transmission of jamming signals is continuous. Both modified jamming schemes are tested. The results of jamming using the second modified scheme validate the objective of simultaneous jamming of the advertising channels of BLE devices. The success of the modified scheme enables the original goal of creating a relatively inexpensive custom PCB for BLE advertising channel jamming. By exploiting the weakness of the BLE protocol, the hope is to have the governing body for Bluetooth, Bluetooth Special Interest Group (SIG), improve security for the future releases of BLE

    Millimetre-Wave Fibre-Wireless Technologies for 5G Mobile Fronthaul

    Get PDF
    The unprecedented growth in mobile data traffic, driven primarily by bandwidth rich applications and high definition video is accelerating the development of fifth generation (5G) mobile network. As mobile access network evolves towards centralisation, mobile fronthaul (MFH) architecture becomes essential in providing high capacity, ubiquitous and yet affordable services to subscribers. In order to meet the demand for high data rates in the access, Millimetre-wave (mmWave) has been highlighted as an essential technology in the development of 5G-new radio (5G-NR). In the present MFH architecture which is typically based on common public radio interface (CPRI) protocol, baseband signals are digitised before fibre transmission, featuring high overhead data and stringent synchronisation requirements. A direct application of mmWave 5G-NR to CPRI digital MFH, where signal bandwidth is expected to be up to 1GHz will be challenging, due to the increased complexity of the digitising interface and huge overhead data that will be required for such bandwidth. Alternatively, radio over fibre (RoF) technique can be employed in the transportation of mmWave wireless signals via the MFH link, thereby avoiding the expensive digitisation interface and excessive overhead associated with its implementation. Additionally, mmWave carrier can be realised with the aid of photonic components employed in the RoF link, further reducing the system complexity. However, noise and nonlinearities inherent to analog transmission presents implementation challenges, limiting the system dynamic range. Therefore, it is important to investigate the effects of these impairments in RoF based MFH architecture. This thesis presents extensive research on the impact of noise and nonlinearities on 5G candidate waveforms, in mmWave 5G fibre wireless MFH. Besides orthogonal frequency division multiplexing (OFDM), another radio access technology (RAT) that has received significant attention is filter bank multicarrier (FBMC), particularly due to its high spectral containment and excellent performance in asynchronous transmission. Hence, FBMC waveform is adopted in this work to study the impact of noise and nonlinearities on the mmWave fibre-wireless MFH architecture. Since OFDM is widely deployed and it has been adopted for 5G-NR, the performance of OFDM and FBMC based 5G mmWave RAT in fibre wireless MFH architecture is compared for several implementations and transmission scenarios. To this extent, an end to end transmission testbed is designed and implemented using industry standard VPI Transmission Maker® to investigate five mmWave upconversion techniques. Simulation results show that the impact of noise is higher in FBMC when the signal to-noise (SNR) is low, however, FBMC exhibits better performance compared to OFDM as the SNR improved. More importantly, an evaluation of the contribution of each noise component to the overall system SNR is carried out. It is observed in the investigation that noise contribution from the optical carriers employed in the heterodyne upconversion of intermediate frequency (IF) signals to mmWave frequency dominate the system noise. An adaptive modulation technique is employed to optimise the system throughput based on the received SNR. The throughput of FBMC based system reduced significantly compared to OFDM, due to laser phase noise and chromatic dispersion (CD). Additionally, it is shown that by employing frequency domain averaging technique to enhance the channel estimation (CE), the throughput of FBMC is significantly increased and consequently, a comparable performance is obtained for both waveforms. Furthermore, several coexistence scenarios for multi service transmission are studied, considering OFDM and FBMC based RATs to evaluate the impact inter band interference (IBI), due to power amplifier (PA) nonlinearity on the system performance. The low out of band (OOB) emission in FBMC plays an important role in minimising IBI to adjacent services. Therefore, FBMC requires less guardband in coexistence with multiple services in 5G fibre-wireless MFH. Conversely, OFDM introduced significant OOB to adjacent services requiring large guardband in multi-service coexistence transmission scenario. Finally, a novel transmission scheme is proposed and investigated to simultaneously generate multiple mmWave signals using laser heterodyning mmWave upconversion technique. With appropriate IF and optical frequency plan, several mmWave signals can be realised. Simulation results demonstrate successful simultaneous realisation of 28GHz, 38GHz, and 60GHz mmWave signals

    Indoor Visible Light Communication:A Tutorial and Survey

    Get PDF
    Abstract With the advancement of solid-state devices for lighting, illumination is on the verge of being completely restructured. This revolution comes with numerous advantages and viable opportunities that can transform the world of wireless communications for the better. Solid-state LEDs are rapidly replacing the contemporary incandescent and fluorescent lamps. In addition to their high energy efficiency, LEDs are desirable for their low heat generation, long lifespan, and their capability to switch on and off at an extremely high rate. The ability of switching between different levels of luminous intensity at such a rate has enabled the inception of a new communication technology referred to as visible light communication (VLC). With this technology, the LED lamps are additionally being used for data transmission. This paper provides a tutorial and a survey of VLC in terms of the design, development, and evaluation techniques as well as current challenges and their envisioned solutions. The focus of this paper is mainly directed towards an indoor setup. An overview of VLC, theory of illumination, system receivers, system architecture, and ongoing developments are provided. We further provide some baseline simulation results to give a technical background on the performance of VLC systems. Moreover, we provide the potential of incorporating VLC techniques in the current and upcoming technologies such as fifth-generation (5G), beyond fifth-generation (B5G) wireless communication trends including sixth-generation (6G), and intelligent reflective surfaces (IRSs) among others
    corecore