235 research outputs found

    Effects of municipal smoke-free ordinances on secondhand smoke exposure in the Republic of Korea

    Get PDF
    ObjectiveTo reduce premature deaths due to secondhand smoke (SHS) exposure among non-smokers, the Republic of Korea (ROK) adopted changes to the National Health Promotion Act, which allowed local governments to enact municipal ordinances to strengthen their authority to designate smoke-free areas and levy penalty fines. In this study, we examined national trends in SHS exposure after the introduction of these municipal ordinances at the city level in 2010.MethodsWe used interrupted time series analysis to assess whether the trends of SHS exposure in the workplace and at home, and the primary cigarette smoking rate changed following the policy adjustment in the national legislation in ROK. Population-standardized data for selected variables were retrieved from a nationally representative survey dataset and used to study the policy action’s effectiveness.ResultsFollowing the change in the legislation, SHS exposure in the workplace reversed course from an increasing (18% per year) trend prior to the introduction of these smoke-free ordinances to a decreasing (−10% per year) trend after adoption and enforcement of these laws (β2 = 0.18, p-value = 0.07; β3 = −0.10, p-value = 0.02). SHS exposure at home (β2 = 0.10, p-value = 0.09; β3 = −0.03, p-value = 0.14) and the primary cigarette smoking rate (β2 = 0.03, p-value = 0.10; β3 = 0.008, p-value = 0.15) showed no significant changes in the sampled period. Although analyses stratified by sex showed that the allowance of municipal ordinances resulted in reduced SHS exposure in the workplace for both males and females, they did not affect the primary cigarette smoking rate as much, especially among females.ConclusionStrengthening the role of local governments by giving them the authority to enact and enforce penalties on SHS exposure violation helped ROK to reduce SHS exposure in the workplace. However, smoking behaviors and related activities seemed to shift to less restrictive areas such as on the streets and in apartment hallways, negating some of the effects due to these ordinances. Future studies should investigate how smoke-free policies beyond public places can further reduce the SHS exposure in ROK

    Erfassung und Evaluierung von Teilentladungen in Leistungstransformatoren mit speziellen Sensoren und Diagnoseverfahren

    Get PDF
    Transformers are key elements of the power grid. Due to their importance and high initial cost, asset managers utilize monitoring and diagnostic tools to optimize their operation and extend their service life. The main objective of this thesis is to develop new methods in the field of monitoring and diagnosis of transformers in order to reduce maintenance costs and decrease the frequency of forced outages. For this purpose, two concepts are proposed. Small generator step-up transformers are essential in wind and photovoltaic parks. The first presented concept entails an online fault gas monitoring system for these transformers, specially hermetically-sealed transformers. The developed compact, maintenance-free and cost-effective monitoring system continuously tracks the level of the key leading indicators of transformer faults in the gas cushion. The second presented concept revolves around partial discharge (PD) assessment by the UHF measurement technique, which is based on capturing the electromagnetic (EM) waves emitted in case of PD in the insulation of a transformer. In this context, the complex EM system established when probes are introduced into the tank of a transformer and with PD as the excitation source is analyzed. Drawing on this foundation, a practical approach to the detection and classification of PD with the focus on the selection of the optimal frequency range for performing UHF measurements depending on the device under test is presented. The UHF measurement technique also offers the possibility of PD localization. Here, the determined arrival time (AT) of the captured signals is critical. A PD localization algorithm, based on a multi-data-set approach with a novel AT determination method, is proposed. The methods and algorithms proposed for the detection, classification and localization of PD are validated by means of practical experiments

    Securing IoT Applications through Decentralised and Distributed IoT-Blockchain Architectures

    Get PDF
    The integration of blockchain into IoT can provide reliable control of the IoT network's ability to distribute computation over a large number of devices. It also allows the AI system to use trusted data for analysis and forecasts while utilising the available IoT hardware to coordinate the execution of tasks in parallel, using a fully distributed approach. This thesis's  rst contribution is a practical implementation of a real world IoT- blockchain application, ood detection use case, is demonstrated using Ethereum proof of authority (PoA). This includes performance measurements of the transaction con-  rmation time, the system end-to-end latency, and the average power consumption. The study showed that blockchain can be integrated into IoT applications, and that Ethereum PoA can be used within IoT for permissioned implementation. This can be achieved while the average energy consumption of running the ood detection system including the Ethereum Geth client is small (around 0.3J). The second contribution is a novel IoT-centric consensus protocol called honesty- based distributed proof of authority (HDPoA) via scalable work. HDPoA was analysed and then deployed and tested. Performance measurements and evaluation along with the security analyses of HDPoA were conducted using a total of 30 di erent IoT de- vices comprising Raspberry Pis, ESP32, and ESP8266 devices. These measurements included energy consumption, the devices' hash power, and the transaction con rma- tion time. The measured values of hash per joule (h/J) for mining were 13.8Kh/J, 54Kh/J, and 22.4Kh/J when using the Raspberry Pi, the ESP32 devices, and the ESP8266 devices, respectively, this achieved while there is limited impact on each de- vice's power. In HDPoA the transaction con rmation time was reduced to only one block compared to up to six blocks in bitcoin. The third contribution is a novel, secure, distributed and decentralised architecture for supporting the implementation of distributed arti cial intelligence (DAI) using hardware platforms provided by IoT. A trained DAI system was implemented over the IoT, where each IoT device hosts one or more neurons within the DAI layers. This is accomplished through the utilisation of blockchain technology that allows trusted interaction and information exchange between distributed neurons. Three di erent datasets were tested and the system achieved a similar accuracy as when testing on a standalone system; both achieved accuracies of 92%-98%. The system accomplished that while ensuring an overall latency of as low as two minutes. This showed the secure architecture capabilities of facilitating the implementation of DAI within IoT while ensuring the accuracy of the system is preserved. The fourth contribution is a novel and secure architecture that integrates the ad- vantages o ered by edge computing, arti cial intelligence (AI), IoT end-devices, and blockchain. This new architecture has the ability to monitor the environment, collect data, analyse it, process it using an AI-expert engine, provide predictions and action- able outcomes, and  nally share it on a public blockchain platform. The pandemic caused by the wide and rapid spread of the novel coronavirus COVID-19 was used as a use-case implementation to test and evaluate the proposed system. While providing the AI-engine trusted data, the system achieved an accuracy of 95%,. This is achieved while the AI-engine only requires a 7% increase in power consumption. This demon- strate the system's ability to protect the data and support the AI system, and improves the IoT overall security with limited impact on the IoT devices. The  fth and  nal contribution is enhancing the security of the HDPoA through the integration of a hardware secure module (HSM) and a hardware wallet (HW). A performance evaluation regarding the energy consumption of nodes that are equipped with HSM and HW and a security analysis were conducted. In addition to enhancing the nodes' security, the HSM can be used to sign more than 120 bytes/joule and encrypt up to 100 bytes/joule, while the HW can be used to sign up to 90 bytes/joule and encrypt up to 80 bytes/joule. The result and analyses demonstrated that the HSM and HW enhance the security of HDPoA, and also can be utilised within IoT-blockchain applications while providing much needed security in terms of con dentiality, trust in devices, and attack deterrence. The above contributions showed that blockchain can be integrated into IoT systems. It showed that blockchain can successfully support the integration of other technolo- gies such as AI, IoT end devices, and edge computing into one system thus allowing organisations and users to bene t greatly from a resilient, distributed, decentralised, self-managed, robust, and secure systems

    Electronic Devices for the Combination of Electrically Controlled Drug Release, Electrostimulation, and Optogenetic Stimulation for Nerve Tissue Regeneration

    Full text link
    [ES] La capacidad de las células madre para proliferar formando distintas células especializadas les otorga la potencialidad de servir de base para terapias efectivas para patologías cuyo tratamiento era inimaginable hasta hace apenas dos décadas. Sin embargo, esta capacidad se encuentra mediada por estímulos fisiológicos, químicos, y eléctricos, específicos y complejos, que dificultan su traslación a la rutina clínica. Por ello, las células madre representan un campo de estudio en el que se invierten amplios esfuerzos por parte de la comunidad científica. En el ámbito de la regeneración nerviosa, para modular su desarrollo y diferenciación el tratamiento farmacológico, la electroestimulación, y la estimulación optogenética son técnicas que están consiguiendo prometedores resultados. Es por ello por lo que en la presente tesis se ha desarrollado un conjunto de sistemas electrónicos para permitir la aplicación combinada de estas técnicas in vitro, con perspectiva a su aplicación in vivo. Hemos diseñado una novedosa tecnología para la liberación eléctricamente controlada de fármacos. Esta tecnología está basada en nanopartículas de sílice mesoporosa y puertas moleculares de bipiridina-heparina. Las puertas moleculares son electroquímicamente reactivas, y encierran los fármacos en el interior de las nanopartículas, liberándolos ante un estímulo eléctrico. Hemos caracterizado esta tecnología, y la hemos validado mediante la liberación controlada de rodamina en cultivos celulares de HeLa. Para la combinación de liberación controlada de fármacos y electroestimulación hemos desarrollado dispositivos que permiten aplicar los estímulos eléctricos de forma configurable desde una interfaz gráfica de usuario. Además, hemos diseñado un módulo de expansión que permite multiplexar las señales eléctricas a diferentes cultivos celulares. Además, hemos diseñado un dispositivo de estimulación optogenética. Este tipo de estimulación consiste en la modificación genética de las células para que sean sensibles a la radiación lumínica de determinada longitud de onda. En el ámbito de la regeneración de tejido mediante células precursoras neurales, es de interés poder inducir ondas de calcio, favoreciendo su diferenciación en neuronas y la formación de circuitos sinápticos. El dispositivo diseñado permite obtener imágenes en tiempo real mediante microscopía confocal de las respuestas transitorias de las células al ser irradiadas. El dispositivo se ha validado irradiando neuronas modificadas con luz pulsada de 100 ms. También hemos diseñado un dispositivo electrónico complementario de medida de irradiancia con el doble fin de permitir la calibración del equipo de irradiancia y medir la irradiancia en tiempo real durante los experimentos in vitro. Los resultados del uso de los bioactuadores en procesos complejos y dinámicos, como la regeneración de tejido nervioso, son limitados en lazo abierto. Uno de los principales aspectos analizados es el desarrollo de biosensores que permitiesen la cuantización de ciertas biomoléculas para ajustar la estimulación suministrada en tiempo real. Por ejemplo, la segregación de serotonina es una respuesta identificada en la elongación de células precursoras neurales, pero hay otras biomoléculas de interés para la implementación de un control en lazo cerrado. Entre las tecnologías en el estado del arte, los biosensores basados en transistores de efecto de campo (FET) funcionalizados con aptámeros son realmente prometedores para esta aplicación. Sin embargo, esta tecnología no permitía la medición simultánea de más de una biomolécula objetivo en un volumen reducido debido a las interferencias entre los distintos FETs, cuyos terminales se encuentran inmersos en la solución. Por ello, hemos desarrollado instrumentación electrónica capaz de medir simultáneamente varios de estos biosensores, y la hemos validado mediante la medición simultánea de pH y la detección preliminar de serotonina y glutamato.[CA] La capacitat de les cèl·lules mare per a proliferar formant diferents cèl·lules especialitzades els atorga la potencialitat de servir de base per a teràpies efectives per a patologies el tractament de les quals era inimaginable fins fa a penes dues dècades. No obstant això, aquesta capacitat es troba mediada per estímuls fisiològics, químics, i elèctrics, específics i complexos, que dificulten la seua translació a la rutina clínica. Per això, les cèl·lules mare representen un camp d'estudi en el qual s'inverteixen amplis esforços per part de la comunitat científica. En l'àmbit de la regeneració nerviosa, per a modular el seu desenvolupament i diferenciació el tractament farmacològic, l'electroestimulació, i l'estimulació optogenética són tècniques que estan aconseguint prometedors resultats. És per això que en la present tesi s'ha desenvolupat un conjunt de sistemes electrònics per a permetre l'aplicació combinada d'aquestes tècniques in vitro, amb perspectiva a la seua aplicació in vivo. Hem dissenyat una nova tecnologia per a l'alliberament elèctricament controlat de fàrmacs. Aquesta tecnologia està basada en nanopartícules de sílice mesoporosa i portes moleculars de bipiridina-heparina. Les portes moleculars són electroquímicament reactives, i tanquen els fàrmacs a l'interior de les nanopartícules, alliberant-los davant un estímul elèctric. Hem caracteritzat aquesta tecnologia, i l'hem validada mitjançant l'alliberament controlat de rodamina en cultius cel·lulars de HeLa. Per a la combinació d'alliberament controlat de fàrmacs i electroestimulació hem desenvolupat dispositius que permeten aplicar els estímuls elèctrics de manera configurable des d'una interfície gràfica d'usuari. A més, hem dissenyat un mòdul d'expansió que permet multiplexar els senyals elèctrics a diferents cultius cel·lulars. A més, hem dissenyat un dispositiu d'estimulació optogenètica. Aquest tipus d'estimulació consisteix en la modificació genètica de les cèl·lules perquè siguen sensibles a la radiació lumínica de determinada longitud d'ona. En l'àmbit de la regeneració de teixit mitjançant cèl·lules precursores neurals, és d'interés poder induir ones de calci, afavorint la seua diferenciació en neurones i la formació de circuits sinàptics. El dispositiu dissenyat permet obtindré imatges en temps real mitjançant microscòpia confocal de les respostes transitòries de les cèl·lules en ser irradiades. El dispositiu s'ha validat irradiant neurones modificades amb llum polsada de 100 ms. També hem dissenyat un dispositiu electrònic complementari de mesura d'irradiància amb el doble fi de permetre el calibratge de l'equip d'irradiància i mesurar la irradiància en temps real durant els experiments in vitro. Els resultats de l'ús dels bioactuadors en processos complexos i dinàmics, com la regeneració de teixit nerviós, són limitats en llaç obert. Un dels principals aspectes analitzats és el desenvolupament de biosensors que permeteren la quantització de certes biomolècules per a ajustar l'estimulació subministrada en temps real. Per exemple, la segregació de serotonina és una resposta identificada amb l'elongació de les cèl·lules precursores neurals, però hi ha altres biomolècules d'interés per a la implementació d'un control en llaç tancat. Entre les tecnologies en l'estat de l'art, els biosensors basats en transistors d'efecte de camp (FET) funcionalitzats amb aptàmers són realment prometedors per a aquesta aplicació. No obstant això, aquesta tecnologia no permetia el mesurament simultani de més d'una biomolècula objectiu en un volum reduït a causa de les interferències entre els diferents FETs, els terminals dels quals es troben immersos en la solució. Per això, hem desenvolupat instrumentació electrònica capaç de mesurar simultàniament diversos d'aquests biosensors i els hem validat amb mesurament simultani del pH i la detecció preliminar de serotonina i glutamat.[EN] The stem cells' ability to proliferate to form different specialized cells gives them the potential to serve as the basis for effective therapies for pathologies whose treatment was unimaginable until just two decades ago. However, this capacity is mediated by specific and complex physiological, chemical, and electrical stimuli that complicate their translation to clinical routine. For this reason, stem cells represent a field of study in which the scientific community is investing a great deal of effort. In the field of nerve regeneration, to modulate their development and differentiation, pharmacological treatment, electrostimulation, and optogenetic stimulation are techniques that are achieving promising results. For this reason, we have developed a set of electronic systems to allow the combined application of these techniques in vitro, with a view to their application in vivo. We have designed a novel technology for the electrically controlled release of drugs. This technology is based on mesoporous silica nanoparticles and bipyridine-heparin molecular gates. The molecular gates are electrochemically reactive and entrap the drugs inside the nanoparticles, releasing them upon electrical stimulus. We have characterized this technology and validated it by controlled release of rhodamine in HeLa cell cultures. For combining electrostimulation and controlled drug release we have developed devices that allow applying the different electrical stimuli in a configurable way from a graphical user interface. In addition, we have designed an expansion module that allows multiplexing electrical signals to different cell cultures. In addition, we have designed an optogenetic stimulation device. This type of stimulation consists of genetically modifying cells to make them sensitive to light radiation of a specific wavelength. In tissue regeneration using neural precursor cells, it is interesting to be able to induce calcium waves, favoring the cell differentiation into neurons and the formation of synaptic circuits. The designed device enable the obtention of real-time images through confocal microscopy of the transient responses of cells upon irradiation. The device has been validated by irradiating modified neurons with 100 ms pulsed light stimulation. We have also designed a complementary electronic irradiance measurement device to allow calibration of the irradiator equipment and measuring irradiance in real time during in vitro experiments. The results of using bioactuators in complex and dynamic processes, such as nerve tissue regeneration, are limited in an open loop. One of the main aspects analyzed is the development of biosensors that would allow quantifying of specific biomolecules to adjust the stimulation provided in real time. For instance, serotonin secretion is an identified response of neural precursor cells elongation, among other biomolecules of interest for the implementation of a closed-loop control. Among the state-of-the-art technologies, biosensors based on field effect transistors (FETs) functionalized with aptamers are promising for this application. However, this technology did not allow the simultaneous measurement of more than one target biomolecule in a small volume due to interferences between the different FETs, whose terminals are immersed in the solution. This is why we have developed electronic instrumentation capable of simultaneously measuring several of these biosensors, and we have validated it with the simultaneous pH measurement and the preliminary detection of serotonin and glutamate.Monreal Trigo, J. (2023). Electronic Devices for the Combination of Electrically Controlled Drug Release, Electrostimulation, and Optogenetic Stimulation for Nerve Tissue Regeneration [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19384

    Ferrimagnetic rare-earth-transition-metal heterostructures: implications for future data storage, sensors, and unconventional computing

    Get PDF
    In this work, different ferrimagnetic rare-earth-transition-metal heterostructures are investigated. The findings provide implications for future data storage, sensor, and unconventional computing devices. In the first part, ferri- and ferromagnetic films are exchange-coupled and studied as potential composite media for magnetic recording technologies. For this, the underlying individual layers are examined, too. Within this study, the influence of Pd and Pt insertion layers in ferromagnetic Co/Ni multilayers is investigated. In these systems, the maximum effective magnetic anisotropy is more than doubled by the introduced insertion layers, while the initial saturation magnetization and Curie temperature are reduced. Further, amorphous Tb-FeCo alloys and multilayers are studied as the second building block of the desired composite medium. In particular, the structural and magnetic properties are analyzed upon post-annealing. At temperatures above 400 K, irreversible effects on the structural properties are found, which also influence the magnetic properties. It is shown that these changes in properties cannot be prevented by tuning the composition or by a multilayer structure of the film. However, key insights on the structural and magnetic properties upon annealing are provided for future high-temperature devices. Afterward, the exchange-coupled ferrimagnetic/ferromagnetic bilayer is studied. Measurements on the dependency on temperature, the ferrimagnetic composition, and the thickness of the ferromagnet are carried out. Two distinct magnetic reversal mechanisms are revealed. The reversal characteristics depend critically on the thickness of the ferromagnetic layer. The underlying microscopic origin is revealed by high-resolution magnetic force microscopy. Above a certain thickness of the ferromagnet, the switching process is driven by in-plane domain wall propagation. In contrast, thinner ferromagnetic layers exhibit a nucleation-dominated reversal due to grain-to-grain variations in magnetic anisotropy. Although the realization of an exchange-coupled composite medium for magnetic recording can not be achieved, insights for the future realization of sub micron high energy density permanent magnets and spintronic devices are gained. In the second part of this work, topologically protected spin structures, including skyrmions and antiskyrmions, are investigated in Fe/Gd-based multilayers. Particularly in coexisting phases, different topologically protected magnetic quasi-particles may show fascinating physics and potential for spintronic devices. While skyrmions are observed in a wide range of materials, until now, antiskyrmions have been exclusive to materials with D2d or S4 symmetry. In this work, first and second-order antiskyrmions are stabilized for the first time by magnetic dipole-dipole interaction. Using Lorentz transmission electron microscopy imaging, coexisting first- and second-order antiskyrmions, Bloch skyrmions, and type-2 bubbles are observed, and the range of material properties and magnetic fields where the different spin objects form and dissipate is determined. The discovered phase pocket of metastable antiskyrmions for low saturation magnetization and uniaxial magnetic anisotropy values is confirmed by micromagnetic simulations and represents a recipe, which has to be satisfied for the stabilization of antiskyrmions by dipole-dipole interaction in other material systems. Furthermore, the nucleation process of the spin objects and the influence of an in-plane magnetic field are studied. Additionally, post-deposition techniques are employed to locally change the anisotropy of the samples and influence the nucleation and stability range of the spin objects. The gained knowledge significantly simplifies future investigations of antiskyrmions. Moreover, the coexisting phases of different topologically protected spin objects and their controlled nucleation provide great potential for further studies on magnetic quasi-particle interactions, spin dynamics, as well as for possible future applications in spintronics, namely the racetrack memory, skyrmionic interconnections, skyrmion-based unconventional computing, and sensor devices

    Function Implementation in a Multi-Gate Junctionless FET Structure

    Get PDF
    Title from PDF of title page, viewed September 18, 2023Dissertation advisor: Mostafizur RahmanVitaIncludes bibliographical references (pages 95-117)Dissertation (Ph.D.)--Department of Computer Science and Electrical Engineering, Department of Physics and Astronomy. University of Missouri--Kansas City, 2023This dissertation explores designing and implementing a multi-gate junctionless field-effect transistor (JLFET) structure and its potential applications beyond conventional devices. The JLFET is a promising alternative to conventional transistors due to its simplified fabrication process and improved electrical characteristics. However, previous research has focused primarily on the device's performance at the individual transistor level, neglecting its potential for implementing complex functions. This dissertation fills this research gap by investigating the function implementation capabilities of the JLFET structure and proposing novel circuit designs based on this technology. The first part of this dissertation presents a comprehensive review of the existing literature on JLFETs, including their fabrication techniques, operating principles, and performance metrics. It highlights the advantages of JLFETs over traditional metal-oxide-semiconductor field-effect transistors (MOSFETs) and discusses the challenges associated with their implementation. Additionally, the review explores the limitations of conventional transistor technologies, emphasizing the need for exploring alternative device architectures. Building upon the theoretical foundation, the dissertation presents a detailed analysis of the multi-gate JLFET structure and its potential for realizing advanced functions. The study explores the impact of different design parameters, such as channel length, gate oxide thickness, and doping profiles, on the device performance. It investigates the trade-offs between power consumption, speed, and noise immunity, and proposes design guidelines for optimizing the function implementation capabilities of the JLFET. To demonstrate the practical applicability of the JLFET structure, this dissertation introduces several novel circuit designs based on this technology. These designs leverage the unique characteristics of the JLFET, such as its steep subthreshold slope and improved on/off current ratio, to implement complex functions efficiently. The proposed circuits include arithmetic units, memory cells, and digital logic gates. Detailed simulations and analyses are conducted to evaluate their performance, power consumption, and scalability. Furthermore, this dissertation explores the potential of the JLFET structure for emerging technologies, such as neuromorphic computing and bioelectronics. It investigates how the JLFET can be employed to realize energy-efficient and biocompatible devices for applications in artificial intelligence and biomedical engineering. The study investigates the compatibility of the JLFET with various materials and substrates, as well as its integration with other functional components. In conclusion, this dissertation contributes to the field of nanoelectronics by providing a comprehensive investigation into the function implementation capabilities of the multi-gate JLFET structure. It highlights the potential of this device beyond its individual transistor performance and proposes novel circuit designs based on this technology. The findings of this research pave the way for the development of advanced electronic systems that are more energy-efficient, faster, and compatible with emerging applications in diverse fields.Introduction -- Literature review -- Crosstalk principle -- Experiment of crosstalk -- Device architecture -- Simulation & results -- Conclusio

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Degradation Models and Optimizations for CMOS Circuits

    Get PDF
    Die Gewährleistung der Zuverlässigkeit von CMOS-Schaltungen ist derzeit eines der größten Herausforderungen beim Chip- und Schaltungsentwurf. Mit dem Ende der Dennard-Skalierung erhöht jede neue Generation der Halbleitertechnologie die elektrischen Felder innerhalb der Transistoren. Dieses stärkere elektrische Feld stimuliert die Degradationsphänomene (Alterung der Transistoren, Selbsterhitzung, Rauschen, usw.), was zu einer immer stärkeren Degradation (Verschlechterung) der Transistoren führt. Daher erleiden die Transistoren in jeder neuen Technologiegeneration immer stärkere Verschlechterungen ihrer elektrischen Parameter. Um die Funktionalität und Zuverlässigkeit der Schaltung zu wahren, wird es daher unerlässlich, die Auswirkungen der geschwächten Transistoren auf die Schaltung präzise zu bestimmen. Die beiden wichtigsten Auswirkungen der Verschlechterungen sind ein verlangsamtes Schalten, sowie eine erhöhte Leistungsaufnahme der Schaltung. Bleiben diese Auswirkungen unberücksichtigt, kann die verlangsamte Schaltgeschwindigkeit zu Timing-Verletzungen führen (d.h. die Schaltung kann die Berechnung nicht rechtzeitig vor Beginn der nächsten Operation abschließen) und die Funktionalität der Schaltung beeinträchtigen (fehlerhafte Ausgabe, verfälschte Daten, usw.). Um diesen Verschlechterungen der Transistorparameter im Laufe der Zeit Rechnung zu tragen, werden Sicherheitstoleranzen eingeführt. So wird beispielsweise die Taktperiode der Schaltung künstlich verlängert, um ein langsameres Schaltverhalten zu tolerieren und somit Fehler zu vermeiden. Dies geht jedoch auf Kosten der Performanz, da eine längere Taktperiode eine niedrigere Taktfrequenz bedeutet. Die Ermittlung der richtigen Sicherheitstoleranz ist entscheidend. Wird die Sicherheitstoleranz zu klein bestimmt, führt dies in der Schaltung zu Fehlern, eine zu große Toleranz führt zu unnötigen Performanzseinbußen. Derzeit verlässt sich die Industrie bei der Zuverlässigkeitsbestimmung auf den schlimmstmöglichen Fall (maximal gealterter Schaltkreis, maximale Betriebstemperatur bei minimaler Spannung, ungünstigste Fertigung, etc.). Diese Annahme des schlimmsten Falls garantiert, dass der Chip (oder integrierte Schaltung) unter allen auftretenden Betriebsbedingungen funktionsfähig bleibt. Darüber hinaus ermöglicht die Betrachtung des schlimmsten Falles viele Vereinfachungen. Zum Beispiel muss die eigentliche Betriebstemperatur nicht bestimmt werden, sondern es kann einfach die schlimmstmögliche (sehr hohe) Betriebstemperatur angenommen werden. Leider lässt sich diese etablierte Praxis der Berücksichtigung des schlimmsten Falls (experimentell oder simulationsbasiert) nicht mehr aufrechterhalten. Diese Berücksichtigung bedingt solch harsche Betriebsbedingungen (maximale Temperatur, etc.) und Anforderungen (z.B. 25 Jahre Betrieb), dass die Transistoren unter den immer stärkeren elektrischen Felder enorme Verschlechterungen erleiden. Denn durch die Kombination an hoher Temperatur, Spannung und den steigenden elektrischen Feldern bei jeder Generation, nehmen die Degradationphänomene stetig zu. Das bedeutet, dass die unter dem schlimmsten Fall bestimmte Sicherheitstoleranz enorm pessimistisch ist und somit deutlich zu hoch ausfällt. Dieses Maß an Pessimismus führt zu erheblichen Performanzseinbußen, die unnötig und demnach vermeidbar sind. Während beispielsweise militärische Schaltungen 25 Jahre lang unter harschen Bedingungen arbeiten müssen, wird Unterhaltungselektronik bei niedrigeren Temperaturen betrieben und muss ihre Funktionalität nur für die Dauer der zweijährigen Garantie aufrechterhalten. Für letzteres können die Sicherheitstoleranzen also deutlich kleiner ausfallen, um die Performanz deutlich zu erhöhen, die zuvor im Namen der Zuverlässigkeit aufgegeben wurde. Diese Arbeit zielt darauf ab, maßgeschneiderte Sicherheitstoleranzen für die einzelnen Anwendungsszenarien einer Schaltung bereitzustellen. Für fordernde Umgebungen wie Weltraumanwendungen (wo eine Reparatur unmöglich ist) ist weiterhin der schlimmstmögliche Fall relevant. In den meisten Anwendungen, herrschen weniger harsche Betriebssbedingungen (z.B. sorgen Kühlsysteme für niedrigere Temperaturen). Hier können Sicherheitstoleranzen maßgeschneidert und anwendungsspezifisch bestimmt werden, sodass Verschlechterungen exakt toleriert werden können und somit die Zuverlässigkeit zu minimalen Kosten (Performanz, etc.) gewahrt wird. Leider sind die derzeitigen Standardentwurfswerkzeuge für diese anwendungsspezifische Bestimmung der Sicherheitstoleranz nicht gut gerüstet. Diese Arbeit zielt darauf ab, Standardentwurfswerkzeuge in die Lage zu versetzen, diesen Bedarf an Zuverlässigkeitsbestimmungen für beliebige Schaltungen unter beliebigen Betriebsbedingungen zu erfüllen. Zu diesem Zweck stellen wir unsere Forschungsbeiträge als vier Schritte auf dem Weg zu anwendungsspezifischen Sicherheitstoleranzen vor: Schritt 1 verbessert die Modellierung der Degradationsphänomene (Transistor-Alterung, -Selbsterhitzung, -Rauschen, etc.). Das Ziel von Schritt 1 ist es, ein umfassendes, einheitliches Modell für die Degradationsphänomene zu erstellen. Durch die Verwendung von materialwissenschaftlichen Defektmodellierungen werden die zugrundeliegenden physikalischen Prozesse der Degradationsphänomena modelliert, um ihre Wechselwirkungen zu berücksichtigen (z.B. Phänomen A kann Phänomen B beschleunigen) und ein einheitliches Modell für die simultane Modellierung verschiedener Phänomene zu erzeugen. Weiterhin werden die jüngst entdeckten Phänomene ebenfalls modelliert und berücksichtigt. In Summe, erlaubt dies eine genaue Degradationsmodellierung von Transistoren unter gleichzeitiger Berücksichtigung aller essenziellen Phänomene. Schritt 2 beschleunigt diese Degradationsmodelle von mehreren Minuten pro Transistor (Modelle der Physiker zielen auf Genauigkeit statt Performanz) auf wenige Millisekunden pro Transistor. Die Forschungsbeiträge dieser Dissertation beschleunigen die Modelle um ein Vielfaches, indem sie zuerst die Berechnungen so weit wie möglich vereinfachen (z.B. sind nur die Spitzenwerte der Degradation erforderlich und nicht alle Werte über einem zeitlichen Verlauf) und anschließend die Parallelität heutiger Computerhardware nutzen. Beide Ansätze erhöhen die Auswertungsgeschwindigkeit, ohne die Genauigkeit der Berechnung zu beeinflussen. In Schritt 3 werden diese beschleunigte Degradationsmodelle in die Standardwerkzeuge integriert. Die Standardwerkzeuge berücksichtigen derzeit nur die bestmöglichen, typischen und schlechtestmöglichen Standardzellen (digital) oder Transistoren (analog). Diese drei Typen von Zellen/Transistoren werden von der Foundry (Halbleiterhersteller) aufwendig experimentell bestimmt. Da nur diese drei Typen bestimmt werden, nehmen die Werkzeuge keine Zuverlässigkeitsbestimmung für eine spezifische Anwendung (Temperatur, Spannung, Aktivität) vor. Simulationen mit Degradationsmodellen ermöglichen eine Bestimmung für spezifische Anwendungen, jedoch muss diese Fähigkeit erst integriert werden. Diese Integration ist eines der Beiträge dieser Dissertation. Schritt 4 beschleunigt die Standardwerkzeuge. Digitale Schaltungsentwürfe, die nicht auf Standardzellen basieren, sowie komplexe analoge Schaltungen können derzeit nicht mit analogen Schaltungssimulatoren ausgewertet werden. Ihre Performanz reicht für solch umfangreiche Simulationen nicht aus. Diese Dissertation stellt Techniken vor, um diese Werkzeuge zu beschleunigen und somit diese umfangreichen Schaltungen simulieren zu können. Diese Forschungsbeiträge, die sich jeweils über mehrere Veröffentlichungen erstrecken, ermöglichen es Standardwerkzeugen, die Sicherheitstoleranz für kundenspezifische Anwendungsszenarien zu bestimmen. Für eine gegebene Schaltungslebensdauer, Temperatur, Spannung und Aktivität (Schaltverhalten durch Software-Applikationen) können die Auswirkungen der Transistordegradation ausgewertet werden und somit die erforderliche (weder unter- noch überschätzte) Sicherheitstoleranz bestimmt werden. Diese anwendungsspezifische Sicherheitstoleranz, garantiert die Zuverlässigkeit und Funktionalität der Schaltung für genau diese Anwendung bei minimalen Performanzeinbußen

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing
    corecore