236 research outputs found

    Nano-scale TG-FinFET: Simulation and Analysis

    Get PDF
    Transistor has been designed and fabricated in the same way since its invention more than four decades ago enabling exponential shrinking in the channel length. However, hitting fundamental limits imposed the need for introducing disruptive technology to take over. FinFET - 3-D transistor - has been emerged as the first successor to MOSFET to continue the technology scaling roadmap. In this thesis, scaling of nano-meter FinFET has been investigated on both the device and circuit levels. The studies, primarily, consider FinFET in its tri-gate (TG) structure. On the device level, first, the main TCAD models used in simulating electron transport are benchmarked against the most accurate results on the semi-classical level using Monte Carlo techniques. Different models and modifications are investigated in a trial to extend one of the conventional models to the nano-scale simulations. Second, a numerical study for scaling TG-FinFET according to the most recent International Technology Roadmap of Semiconductors is carried out by means of quantum corrected 3-D Monte Carlo simulations in the ballistic and quasi-ballistic regimes, to assess its ultimate performance and scaling behavior for the next generations. Ballisticity ratio (BR) is extracted and discussed over different channel lengths. The electron velocity along the channel is analyzed showing the physical significance of the off-equilibrium transport with scaling the channel length. On the circuit level, first, the impact of FinFET scaling on basic circuit blocks is investigated based on the PTM models. 256-bit (6T) SRAM is evaluated for channel lengths of 20nm down to 7nm showing the scaling trends of basic performance metrics. In addition, the impact of VT variations on the delay, power, and stability is reported considering die-to-die variations. Second, we move to another peer-technology which is 28nm FD-SOI as a comparative study, keeping the SRAM cell as the test block, more advanced study is carried out considering the cell‘s stability and the evolution from dynamic to static metrics

    Radiation Hardened by Design Methodologies for Soft-Error Mitigated Digital Architectures

    Get PDF
    abstract: Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies. Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques. A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Cache memory design in the FinFET era

    Get PDF
    The major problem in the future technology scaling is the variations in process parameters that are interpreted as imperfections in the development process. Moreover, devices are more sensitive to the environmental changes of temperature and supply volt- age as well as to ageing. All these influences are manifested in the integrated circuits as increased power consumption, reduced maximal operating frequency and increased number of failures. These effects have been partially overcome with the introduction of the FinFET technology which have solved the problem of variability caused by Random Dopant Fluctuations. However, in the next ten years channel length is projected to shrink to 10nm where the variability source generated by Line Edge Roughness will dominate, and its effects on the threshold voltage variations will become critical. The embedded memories with their cells as the basic building unit are the most prone to these effects due to their the smallest dimensions. Because of that, memories should be designed with particular care in order to make possible further technology scaling. This thesis explores upcoming 10nm FinFETs and the existing issues in the cache memory design with this technology. More- over, it tries to present some original and novel techniques on the different level of design abstraction for mitigating the effects of process and environmental variability. At first original method for simulating variability of Tri-Gate Fin- FETs is presented using conventional HSPICE simulation environment and BSIM-CMG model cards. When that is accomplished, thorough characterisation of traditional SRAM cell circuits (6T and 8T) is performed. Possibility of using Independent Gate FinFETs for increasing cell stability has been explored, also. Gain Cells appeared in the recent past as an attractive alternative for in the cache memory design. This thesis partially explores this idea by presenting and performing detailed circuit analysis of the dynamic 3T gain cell for 10nm FinFETs. At the top of this work, thesis shows one micro-architecture optimisation of high-speed cache when it is implemented by 3T gain cells. We show how the cache coherency states can be used in order to reduce refresh energy of the memory as well as reduce memory ageing.El principal problema de l'escalat la tecnologia són les variacions en els paràmetres de disseny (imperfeccions) durant procés de fabricació. D'altra banda, els dispositius també són més sensibles als canvis ambientals de temperatura, la tensió d'alimentació, així com l'envelliment. Totes aquestes influències es manifesten en els circuits integrats com l'augment de consum d'energia, la reducció de la freqüència d'operació màxima i l'augment del nombre de xips descartats. Aquests efectes s'han superat parcialment amb la introducció de la tecnologia FinFET que ha resolt el problema de la variabilitat causada per les fluctuacions de dopants aleatòries. No obstant això, en els propers deu anys, l'ample del canal es preveu que es reduirà a 10nm, on la font de la variabilitat generada per les rugositats de les línies de material dominarà, i els seu efecte en les variacions de voltatge llindar augmentarà. Les memòries encastades amb les seves cel·les com la unitat bàsica de construcció són les més propenses a sofrir aquests efectes a causa de les seves dimensions més petites. A causa d'això, cal dissenyar les memòries amb una especial cura per tal de fer possible l'escalat de la tecnologia. Aquesta tesi explora la tecnologia de FinFETs de 10nm i els problemes existents en el disseny de memòries amb aquesta tecnologia. A més a més, presentem noves tècniques originals sobre diferents nivells d'abstracció del disseny per a la mitigació dels efectes les variacions tan de procés com ambientals. En primer lloc, presentem un mètode original per a la simulació de la variabilitat de Tri-Gate FinFETs usant entorn de simulació HSPICE convencional i models de tecnologia BSIMCMG. Després, es realitza la caracterització completa dels circuits de cel·les SRAM tradicionals (6T i 8T) conjuntament amb l'ús de Gate-independent FinFETs per augmentar l'estabilitat de la cèl·lula

    Comparing the impact of power supply voltage on CMOS-and FinFET-based SRAMs in the presence of resistive defects

    Get PDF
    CMOS technology scaling has reached its limit at the 22 nm technology node due to several factors including Process Variations (PV), increased leakage current, Random Dopant Fluctuation (RDF), and mainly the Short-Channel Effect (SCE). In order to continue the miniaturization process via technology down-scaling while preserving system reliability and performance, Fin Field-Effect Transistors (FinFETs) arise as an alternative to CMOS transistors. In parallel, Static Random-Access Memories (SRAMs) increasingly occupy great part of Systems-on-Chips’ (SoCs) silicon area, making their reliability an important issue. SRAMs are designed to reach densities at the limit of the manufacturing process, making this component susceptible to manufacturing defects, including the resistive ones. Such defects may cause dynamic faults during the circuits’ lifetime, an important cause of test escape. Thus, the identification of the proper faulty behavior taking different operating conditions into account is considered crucial to guarantee the development of more suitable test methodologies. In this context, a comparison between the behavior of a 22 nm CMOS-based and a 20 nm FinFET-based SRAM in the presence of resistive defects is carried out considering different power supply voltages. In more detail, the behavior of defective cells operating under different power supply voltages has been investigated performing SPICE simulations. Results show that the power supply voltage plays an important role in the faulty behavior of both CMOS- and FinFET-based SRAM cells in the presence of resistive defects but demonstrate to be more expressive when considering the FinFET-based memories. Studying different operating temperatures, the results show an expressively higher occurrence of dynamic faults in FinFET-based SRAMs when compared to CMOS technology

    Digital and analog TFET circuits: Design and benchmark

    Get PDF
    In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same footprint between the vertical TFETs and the lateral FinFETs and the same static power. In spite of the asymmetry between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDDlower than 0.4 V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS solutions

    Digital and analog TFET circuits: Design and benchmark

    Get PDF
    In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same footprint between the vertical TFETs and the lateral FinFETs and the same static power. In spite of the asymmetry between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDDlower than 0.4 V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS solutions

    Sensor de envelhecimento para células de memória CMOS

    Get PDF
    Dissertação de Mestrado, Engenharia e Tecnologia, Instituto Superior de Engenharia, Universidade do Algarve, 2016As memórias Complementary Metal Oxide Semiconductor (CMOS) ocupam uma percentagem de área significativa nos circuitos integrados e, com o desenvolvimento de tecnologias de fabrico a uma escala cada vez mais reduzida, surgem problemas de performance e de fiabilidade. Efeitos como o BTI (Bias Thermal Instability), TDDB (Time Dependent Dielectric Breakdown), HCI (Hot Carrier Injection), EM (Electromigration), degradam os parâmetros físicos dos transístores de efeito de campo (MOSFET), alterando as suas propriedades elétricas ao longo do tempo. O efeito BTI pode ser subdividido em NBTI (Negative BTI) e PBTI (Positive BTI). O efeito NBTI é dominante no processo de degradação e envelhecimento dos transístores CMOS, afetando os transístores PMOS, enquanto o efeito PBTI assume especial relevância na degradação dos transístores NMOS. A degradação provocada por estes efeitos, manifesta-se nos transístores através do incremento do módulo da tensão de limiar de condução |ℎ| ao longo do tempo. A degradação dos transístores é designada por envelhecimento, sendo estes efeitos cumulativos e possuindo um grande impacto na performance do circuito, em particular se ocorrerem outras variações paramétricas. Outras variações paramétricas adicionais que podem ocorrer são as variações de processo (P), tensão (V) e temperatura (T), ou considerando todas estas variações, e de uma forma genérica, PVTA (Process, Voltage, Temperature and Aging). As células de memória de acesso aleatório (RAM, Random Access Memory), em particular as memórias estáticas (SRAM, Static Random Access Memory) e dinâmicas (DRAM, Dynamic Random Access Memory), possuem tempos de leitura e escrita precisos. Quando ao longo do tempo ocorre o envelhecimento das células de memória, devido à degradação das propriedades dos transístores MOSFET, ocorre também uma degradação da performance das células de memória. A degradação de performance é, portanto, resultado das transições lentas que ocorrem, devido ao envelhecimento dos transístores MOSFET que comutam mais tarde, comparativamente a transístores novos. A degradação de performance nas memórias devido às transições lentas pode traduzir-se em leituras e escritas mais lentas, bem como em alterações na capacidade de armazenamento da memória. Esta propriedade pode ser expressa através da margem de sinal ruído (SNM). O SNM é reduzido com o envelhecimento dos transístores MOSFET e, quando o valor do SNM é baixo, a célula perde a sua capacidade de armazenamento, tornando-se mais vulnerável a fontes de ruído. O SNM é, portanto, um valor que permite efetuar a aferição (benchmarking) e comparar as características da memória perante o envelhecimento ou outras variações paramétricas que possam ocorrer. O envelhecimento das memórias CMOS traduz-se portanto na ocorrência de erros nas memórias ao longo do tempo, o que é indesejável especialmente em sistemas críticos. O trabalho apresentado nesta dissertação tem como objetivo o desenvolvimento de um sensor de envelhecimento e performance para memórias CMOS, detetando e sinalizando para o exterior o envelhecimento em células de memória SRAM devido à constante monitorização da sua performance. O sensor de envelhecimento e performance é ligado na bit line da célula de memória e monitoriza ativamente as operações de leitura e escrita decorrentes da operação da memória. O sensor de envelhecimento é composto por dois blocos: um detetor de transições e um detetor de pulsos. O detetor de transições é constituído por oito inversores e uma porta lógica XOR realizada com portas de passagem. Os inversores possuem diferentes relações nos tamanhos dos transístores P/N, permitindo tempos de comutação em diferentes valores de tensão. Assim, quando os inversores com tensões de comutações diferentes são estimulados pelo mesmo sinal de entrada e são ligados a uma porta XOR, permitem gerar na saída um impulso sempre que existe uma comutação na bit line. O impulso terá, portanto, uma duração proporcional ao tempo de comutação do sinal de entrada, que neste caso particular são as operações de leitura e escrita da memória. Quando o envelhecimento ocorre e as transições se tornam mais lentas, os pulsos possuem uma duração superior face aos pulsos gerados numa SRAM nova. Os pulsos gerados seguem para um elemento de atraso (delay element) que provoca um atraso aos pulsos, invertendo-os de seguida, e garantindo que a duração dos pulsos é suficiente para que exista uma deteção. O impulso gerado é ligado ao bloco seguinte que compõe o sensor de envelhecimento e performance, sendo um circuito detetor de pulso. O detetor de pulso implementa um NOR CMOS, controlado por um sinal de relógio (clock) e pelos pulsos invertidos. Quando os dois sinais de input do NOR são ‘0’ o output resultante será ‘1’, criando desta forma uma janela de deteção. O sensor de envelhecimento será ajustado em cada implementação, de forma a que numa célula de memória nova os pulsos invertidos se encontrem alinhados temporalmente com os pulsos de relógio. Este ajuste é feito durante a fase de projeto, em função da frequência de operação requerida para a célula, quer pelo dimensionamento do delay element (ajustando o seu atraso), quer pela definição do período do sinal de relógio. À medida que o envelhecimento dos circuitos ocorre e as comutações nos transístores se tornam mais lentas, a duração dos pulsos aumenta e consequentemente entram na janela de deteção, originando uma sinalização na saída do sensor. Assim, caso ocorram operações de leitura e escrita instáveis, ou seja, que apresentem tempos de execução acima do expectável ou que os seus níveis lógicos estejam degradados, o sensor de envelhecimento e performance devolve para o exterior ‘1’, sinalizando um desempenho crítico para a operação realizada, caso contrário a saída será ‘0’, indicando que não é verificado nenhum erro no desempenho das operações de escrita e leitura. Os transístores do sensor de envelhecimento e performance são dimensionados de acordo com a implementação; por exemplo, os modelos dos transístores selecionados, tensões de alimentação, ou número de células de memória conectadas na bit line, influenciam o dimensionamento prévio do sensor, já que tanto a performance da memória como o desempenho do sensor dependem das condições de operação. Outras soluções previamente propostas e disponíveis na literatura, nomeadamente o sensor de envelhecimento embebido no circuito OCAS (On-Chip Aging Sensor), permitem detetar envelhecimento numa SRAM devido ao envelhecimento por NBTI. Porém esta solução OCAS apenas se aplica a um conjunto de células SRAM conectadas a uma bit line, não sendo aplicado individualmente a outras células de memória como uma DRAM e não contemplando o efeito PBTI. Uma outra solução já existente, o sensor Scout flip-flop utilizado para aplicações ASIC (Application Specific Integrated Circuit) em circuitos digitais síncronos, atua também como um sensor de performance local e responde de forma preditiva na monitorização de faltas por atraso, utilizando por base janelas de deteção. Esta solução não foi projetada para a monitorização de operações de leitura e escrita em memórias SRAM e DRAM. No entanto, pela sua forma de atuar, esta solução aproxima-se mais da solução proposta neste trabalho, uma vez que o seu funcionamento se baseia em sinalização de sinais atrasados. Nesta dissertação, o recurso a simulações SPICE (Simulation Program with Integrated Circuit Emphasis) permite validar e testar o sensor de envelhecimento e performance. O caso de estudo utilizado para aplicar o sensor é uma memória CMOS, SRAM, composta por 6 transístores, juntamente com os seus circuitos periféricos, nomeadamente o amplificador sensor e o circuito de pré-carga e equalização, desenvolvidos em tecnologia CMOS de 65nm e 22nm, com recurso aos modelos de MOSFET ”Berkeley Predictive Technology Models (PTM)”. O sensor é devolvido e testado em 65nm e em 22nm com os modelos PTM, permitindo caracterizar o sensor de envelhecimento e performance desenvolvido, avaliando também de que forma o envelhecimento degrada as operações de leitura e escrita da SRAM, bem como a sua capacidade de armazenamento e robustez face ao ruído. Por fim, as simulações apresentadas provam que o sensor de envelhecimento e performance desenvolvido nesta tese de mestrado permite monitorizar com sucesso a performance e o envelhecimento de circuitos de memória SRAM, ultrapassando os desafios existentes nas anteriores soluções disponíveis para envelhecimento de memórias. Verificou-se que na presença de um envelhecimento que provoque uma degradação igual ou superior a 10%, o sensor de envelhecimento e performance deteta eficazmente a degradação na performance, sinalizando os erros. A sua utilização em memórias DRAM, embora possível, não foi testada nesta dissertação, ficando reservada para trabalho futuro

    A statistical study of time dependent reliability degradation of nanoscale MOSFET devices

    Get PDF
    Charge trapping at the channel interface is a fundamental issue that adversely affects the reliability of metal-oxide semiconductor field effect transistor (MOSFET) devices. This effect represents a new source of statistical variability as these devices enter the nano-scale era. Recently, charge trapping has been identified as the dominant phenomenon leading to both random telegraph noise (RTN) and bias temperature instabilities (BTI). Thus, understanding the interplay between reliability and statistical variability in scaled transistors is essential to the implementation of a ‘reliability-aware’ complementary metal oxide semiconductor (CMOS) circuit design. In order to investigate statistical reliability issues, a methodology based on a simulation flow has been developed in this thesis that allows a comprehensive and multi-scale study of charge-trapping phenomena and their impact on transistor and circuit performance. The proposed methodology is accomplished by using the Gold Standard Simulations (GSS) technology computer-aided design (TCAD)-based design tool chain co-optimization (DTCO) tool chain. The 70 nm bulk IMEC MOSFET and the 22 nm Intel fin-shape field effect transistor (FinFET) have been selected as targeted devices. The simulation flow starts by calibrating the device TCAD simulation decks against experimental measurements. This initial phase allows the identification of the physical structure and the doping distributions in the vertical and lateral directions based on the modulation in the inversion layer’s depth as well as the modulation of short channel effects. The calibration is further refined by taking into account statistical variability to match the statistical distributions of the transistors’ figures of merit obtained by measurements. The TCAD simulation investigation of RTN and BTI phenomena is then carried out in the presence of several sources of statistical variability. The study extends further to circuit simulation level by extracting compact models from the statistical TCAD simulation results. These compact models are collected in libraries, which are then utilised to investigate the impact of the BTI phenomenon, and its interaction with statistical variability, in a six transistor-static random access memory (6T-SRAM) cell. At the circuit level figures of merit, such as the static noise margin (SNM), and their statistical distributions are evaluated. The focus of this thesis is to highlight the importance of accounting for the interaction between statistical variability and statistical reliability in the simulation of advanced CMOS devices and circuits, in order to maintain predictivity and obtain a quantitative agreement with a measured data. The main findings of this thesis can be summarised by the following points: Based on the analysis of the results, the dispersions of VT and ΔVT indicate that a change in device technology must be considered, from the planar MOSFET platform to a new device architecture such as FinFET or SOI. This result is due to the interplay between a single trap charge and statistical variability, which has a significant impact on device operation and intrinsic parameters as transistor dimensions shrink further. The ageing process of transistors can be captured by using the trapped charge density at the interface and observing the VT shift. Moreover, using statistical analysis one can highlight the extreme transistors and their probable effect on the circuit or system operation. The influence of the passgate (PG) transistor in a 6T-SRAM cell gives a different trend of the mean static noise margin
    corecore