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ABSTRACT

ON IMPROVING ROBUSTNESS OF HARDWARE
SECURITY PRIMITIVES AND RESISTANCE TO

REVERSE ENGINEERING ATTACKS

SEPTEMBER 2021

VINAY CHANDRAKANTH PATIL

B.E., VISVESVARAYA TECHNOLOGICAL UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sandip Kundu

The continued growth of information technology (IT) industry and prolifera-

tion of interconnected devices has aggravated the problem of ensuring security and

necessitated the need for novel, robust solutions. Physically unclonable functions

(PUFs) have emerged as promising secure hardware primitives that can utilize the

disorder introduced during manufacturing process to generate unique keys. They can

be utilized as lightweight roots-of-trust for use in authentication and key generation

systems. Unlike insecure non-volatile memory (NVM) based key storage systems,

PUFs provide an advantage – no party, including the manufacturer, should be able to

replicate the physical disorder and thus, effectively clone the PUF. However, certain

practical problems impeded the widespread deployment of PUFs. This dissertation

addresses such problems of (i) reliability and (ii) unclonability. Also, obfuscation

techniques have proven necessary to protect intellectual property in the presence of

vi



an untrusted supply chain and are needed to aid against counterfeiting. This disser-

tation explores techniques utilizing layout and logic-aware obfuscation. Collectively,

we present secure and cost-effective solutions to address crucial hardware security

problems.
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CHAPTER 1

INTRODUCTION

Worldwide spending on Information Technology (IT) has been projected to reach

$3.76 trillion in 2019, according to the latest forecast by Gartner, Inc [37]. De-

spite saturation in certain markets such as mobile devices or PCs, IT spending is

set to further increase due to growth in younger sectors like cloud services, neural

networking applications and, most of all, Internet of Things (IoT). The ubiquitous-

ness of large, interconnected digital ecosystems, in critical areas such as banking or

healthcare, presents an ever-growing attack surface for malicious entities to exploit.

The complexity of the supply chain for the production and deployment of IT infras-

tructure also presents a security problem. Potential breaches in security can prove

very costly in terms of loss of privacy, safety and revenue. Hence, developing robust

solutions to ensure security of information being stored or exchanged, ability to iden-

tify/authenticate users or devices numbering in the millions and intellectual property

(IP) protection in an untrusted supply chain has become vital.

1.1 Physically Unclonable Functions

Secure authentication and identification is crucial for many interconnected sys-

tems with, potentially, millions of users or edge devices. Often, a system’s security

goals have to be serviced using the deployed hardware and hence, integrating roots-

of-trust into the design becomes essential. For example, resource-constrained systems

like Smartcards or RFID tags can implement lightweight authentication via locally

stored secret digital keys. However, such traditional non-volatile memory (NVM)

1



based storage of secret keys is susceptible to various forms of attacks when an at-

tacker is able to gain physical access to the device. Side-channel attacks using power

measurements, fault injection via overclocking or even invasive attacks such as de-

capsulation, de-layering and probing can be utilized to access the stored secret keys

[21, 47]. An alternative to NVM-based secret key storage are physically unclonable

functions (PUFs), which can generate secret keys when desired instead of storing

them. In principle, PUFs leverage the physical disorder, say introduced during the

complex manufacturing process for integrated circuits (ICs), and translate it into

unique binary outputs. It is assumed that no one, including the PUF manufacturer,

will be able to replicate the exact disorder of a PUF system and that any invasive

attack will upset the disorder to render the PUF unusable.

Extensive research has explored construction of PUFs by exploiting various sources

of physical disorder such as Optical PUF [93], coating PUF [121], phosphor PUF [63],

RF COA [38] and LC-PUF [51]. Silicon transistor-based PUFs were first introduced

by Gassend et al.[47]. Since then, a large number of silicon based PUFs like Arbiter

PUF [75] and SRAM PUF [55] have been proposed.

Definition: A PUF P implements a unique mapping function f(c) that maps

any m-bit input challenge c ∈ {0, 1}m to an n-bit output response r ∈ {0, 1}n. The

tuple (c, r) is termed as a challenge-response pair (CRP).

Depending on the number of unique CRPs that a PUF system is able to generate,

we can classify PUFs into Weak or Strong PUFs.

1.1.1 Weak PUFs

PUFs which can produce only a limited set of unique CRPs are classified as Weak

PUFs. This limitation requires that the generated responses be secret as an attacker

can clone the PUF easily if the CRPs are exposed. Weak PUFs are primarily useful
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Figure 1.1: A six transistor SRAM cell

for generation of secret keys and can replace NVM-based key storage due to the

previously mentioned security against invasive attacks.

The most widely studied Weak PUFs are SRAM PUFs [50, 55, 57] which utilize

SRAMs in embedded memories. An SRAM cell typically consists of two cross coupled

inverters whose outputs are connected to the bitlines via access transistors. Figure 1.1

shows a typical 6-transistor SRAM cell. Due to intrinsic process variations, the

power-up state of an SRAM cell can randomly settle into either a logic-0 or logic-1

value. The state is determined by mismatch due to the process variations in the cell

transistors from the manufacturing process. Settlement to consistent, yet random

states allows processing multiple cells’ outputs to be used as a key or identifier. Post-

manufacturing, the Weak PUF key is recorded during the enrollment phase and this

key becomes the reference once the device is deployed in the field.

Ideally, an SRAM PUF will produce the same key each and every time it is queried.

However, noise can impact the SRAM state during start up and thus, make the PUF

unreliable. Specifically, cells with low process variation induced mismatch between

the cross-coupled inverters are highly sensitive to noise and their outputs can flip
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from the correct value. Cells with greater mismatch produce sufficient differential

drive to overcome any impact from noise. The sources of noise can be variations

in environmental conditions, supply voltage changes and parametric changes due to

aging of the transistors. Since Weak PUF outputs have to be reliable for use as secret

keys, error correction techniques are critical for ensuring proper operation.

1.1.2 Strong PUFs

Strong PUFs, in contrast to Weak PUFs, are capable of producing an extremely

large number of CRPs due to the more complex mapping between the challenges and

responses. The large set of unique CRPs makes Strong PUFs a good candidate for

authentication applications as an attacker, ideally, cannot clone the PUF by inter-

cepting a few CRPs. Further, the authenticator need not repeat the same challenge

between successful authentication events, preventing a replay attack using previously

recorded CRPs. Also, the authentication is more resilient in the presence of unreliable

responses as more responses can be queried and a threshold operation used to decide

the outcome of the event. Ideally, the Strong PUF response from a previously unseen

challenge cannot be predicted by an attacker. In practice, research has shown that

utilizing machine learning (ML) algorithms on a limited set of CRPs, it is possible to

build a prediction model which can simulate the PUF and output responses [107]. If

the prediction accuracy is sufficiently high, the software model has successfully cloned

the Strong PUF and can authenticate itself as the legitimate PUF with a large prob-

ability of success. This breaks the ‘unclonability’ property of a PUF. Hence, ensuring

low learning accuracy is important for a Strong PUF.

One of the earliest Strong PUFs proposed was the Arbiter PUF [75], as shown in

Figure 1.2. It consists of multiple delay elements in each stage, challenge inputs to

select the signal path and an Arbiter at the end that outputs a 0/1. When a challenge

is applied, two unique paths are chosen by the challenge bits at the switches of each
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Figure 1.2: Arbiter PUF

stage and a common signal is allowed to race through these paths to the final Arbiter.

The Arbiter resolves the response to logic-0 or logic-1 depending on which signal

arrives first. An exponential number of path pairs can be created based on the input

challenge and hence, produce an exponential number of unique challenge-to-response

mappings are possible. As each delay element is affected by process variation, the

same challenge can produce different outputs across different instances of the PUF.

It should be noted that the final delay of the signals that arrive at the Arbiter is a

linear sum of individual stage delays. Hence, machine learning techniques were able to

model the Arbiter PUF with high accuracy [107]. A more complex challenge-response

mapping is needed to protect against modeling attacks.

1.1.3 Quintessential PUF Properties

Irrespective of the PUF classification, PUF circuits are expected to exhibit certain

salient features in terms of uniqueness, reliability and unpredictability. Along with

these PUF related metrics, other standard circuit metrics such as area, power and

speed should also be satisfied.

1.1.3.1 Uniqueness

Each PUF implementation has to exhibit a high degree of uniqueness across var-

ious PUF instances and across various challenges to the same PUF. Failure to do

so can adversely affect the ability to identify a PUF uniquely among a large num-

ber of instances. Low uniqueness can stem from systematic bias and from the PUF
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circuit’s inability to harness the process variations effectively. However in practice,

ensuring high uniqueness can incur a high yield loss for a manufacturer as bias in the

manufacturing process cannot be completely eliminated.

1.1.3.2 Reliability

The circuit characteristics of a PUF can be affected by sources of noise such as

environmental variations. This can result in erroneous responses to the same chal-

lenge across different queries. The reliability of a PUF response in the presence of

noise is critical for Weak PUFs. In Strong PUFs, susceptibility to noise increases the

number of responses needed to successfully authenticate a device and the authentica-

tion threshold will have to be less than 100%. Further, the accuracy requirements for

machine learning algorithms is reduced for a more unreliable Strong PUF, adversely

impacting the security of the PUF.

1.1.3.3 Unpredictability

Unpredictability or unclonability is the most important requirements for PUFs.

In Weak PUFs, the generated key should not be exposed to unauthorized parties. In

Strong PUFs, the security of the PUF is dependent on the complexity of modeling

the challenge-response mapping using learning algorithms. If the mapping is easy to

model, a software clone can be created to act as a rogue PUF, indistinguishable from

the authentic PUF.

1.2 Hardware Obfuscation

Increasing costs for manufacturing has led to rise of fabless companies that design

Integrated Circuits (ICs) and outsource manufacturing to foundries. Typically, for an

IC, there is a non-recurrent design cost, incurred by the designer, and manufacturing

cost, for as long as the IC is in production. The manufacturing cost is kept manageable

as the foundry manufactures multiple designs from different intellectual property (IP)
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owners for improved efficiency. Also, many products can contain multiple IPs from

different vendors on the same die.

This fabless structure of the industry has led to an increased risk of IP theft as the

designer has to reveal the complete design to a foundry for manufacturing. Another

source of concern is that to further reduce costs the foundries are located in countries

with inexpensive labor but, with ambiguous IP protection laws. Hence, this creates

a situation for malicious actors to steal the IP, cutting down on design costs, and

produce counterfeits for profit. Also, rival companies may attempt to learn about

proprietary designs to gain advantage in the market. This leads to a significant loss

of revenue for the designer. Current assessments estimate this loss to be to the tune of

$4 billion annually [10]. There is also an increased security risk as the attackers may

corrupt the original design for their own purposes before sale. Such a harmful black-

market product can severely damage the reputation of the design company leading

to further losses.

To protect their revenue stream and their products from tampering, fabless com-

panies have proposed many solutions for increased security. On the manufacturing

side, fabless companies and government agencies like Intelligence Advanced Research

Projects Agency (IARPA) [13] have proposed using split manufacturing to secure

against attacks. The design layout is split into Front End Of Line (FEOL) and Back

End Of Line (BEOL) layers. FEOL layers are fabricated by foundries with advanced

feature capabilities. The wafers are shipped to a trusted foundry where BEOL layers

are fabricated. The trusted foundry costs less to build and maintain. Hence, it can be

in-house or shared among a group of fabless companies. Many other solutions have

been proposed like hardware metering[106], watermarking or tamper-proofing. One

area of IP security research that has received much attention is hardware obfuscation.

The goal of obfuscation is to hide the true functionality of a design. Obfuscation

techniques have been proposed at various levels of design abstraction and can vary
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from introduction of additional gates to lock a circuit [106] to system level techniques

[31]. Obfuscation can also involve the creation of camouflaged cells [33, 101] whose

function can be hard to determine.

1.3 Scope of this Work

In this dissertation, we seek to explore improved PUF designs with particular

focus on reliability of Weak PUFs and on unpredictability for Strong PUFs. We

also explore hardware obfuscation techniques to aid in the prevention of theft of

intellectual property.

In particular, our contributions include:

� Designed alternatives to simple SRAM PUFs that exhibit greater reliability in

the presence of thermal noise. This results in significant savings in terms of

error correction circuitry required to create the final robust keys.

� Proposed an intelligent accelerated aging methodology to further aid in increas-

ing reliability of Weak PUFs while reducing the aging time overhead.

� Leveraged Weightless Neural Network (WNN) architecture and Weak PUFs to

create a Strong PUF. Multiple variants were created and analyzed to realize

a Strong PUF that exhibits a high resilience to machine learning attack while

maintaining high uniqueness and reliability.

� Identified various avenues for visual information leakage from a physical IC

layout and proposed techniques to obfuscate visual circuit information.

� Leveraged advantageous, intrinsic properties of FinFETs to create camouflaged

cells capable of implementing multiple logic functions without change in cell

layout and being resistant to reverse engineering.
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1.4 Dissertation Outline

The dissertation is organized as follows: in Chapter 2, we discuss the SRAM

circuit alternatives for increased reliability. In Chapter 3, an efficient accelerated

aging methodology for increasing the reliability of multiple Weak PUF designs is

explored. Chapter 4 illustrates various Strong PUF architectures based on Weightless

Neural Networks and Weak PUFs and analyzes the proposed variants against PUF

metrics. Chapter 5 describes a Strong PUF system built on reliable Weak PUFs

as an entropy source and linear-feedback shift register (LFSR) based mechanism to

provide a large set of robust keys. In Chapter 6, we explore protection against design

reverse-engineering using visual information in physical layouts. Chapter 7 explores

the utilization of multiple threshold FinFETs to create lightweight camouflaged cells.

Finally, chapter 8 provides a conclusion for this dissertation work
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CHAPTER 2

IMPROVING RELIABILITY OF WEAK PUFS VIA
CIRCUIT TECHNIQUES

2.1 Introduction

As mentioned in Section 1.1, in practical applications, PUF characteristics are

influenced by environmental factors and aging. The PUF outputs are susceptible to

noise and hence, the reliability of a PUF cell must be addressed. As the principal

use of Weak PUFs is in key generation/identification, post-processing is typically

employed to create extremely reliable keys from PUF outputs. A host of techniques

have been proposed, ranging from temporal majority voting [85] to fuzzy extraction

and error correction schemes [80, 81]. These techniques come with significant costs

in terms of additional circuitry like counters (majority voting), or require decoding

blocks and a large number of initial Weak PUF cells to produce a stable 128-bit

key (fuzzy extractors). These strategies for handling errors are often layered atop

standard SRAM cell designs to generate reliable keys, but the basic SRAM cell error

rate is treated as a given and unchangeable.

In this chapter, we explore alternative cross-coupled designs that can provide a

greater sensitivity to intrinsic process variations and thereby, enhance the mismatch

between the coupled elements. Enhancing the imbalance makes the design less sus-

ceptible to noise. We highlight the significant savings that can be achieved for ECC

implementations on account of modifying the Weak PUF cells to be more reliable. We

study circuit thermal noise as the main error mechanism as it can affect the circuit

in a differential manner, causing an error in the outputs. We present results on the
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reliability impacts of environmental factors such as supply voltage and temperature

variations, and we show the advantages of using our designs.

2.2 Background

In this section, we discuss previous research into improving the reliability of keys

generated by SRAM-based Weak PUFs that involve algorithmic and circuit-based

error correction mechanisms.

2.2.1 Fuzzy Extraction and Error-Correction Codes

Fuzzy extraction was initially proposed to derive stable keys from biometric data

and also, to authenticate such data [40]. Application of error-correction codes (ECCs)

and fuzzy extractors to correct errors in SRAM PUFs involves the generation and use

of helper data [28,39,80,81,83], which is made public. While the helper data aids in the

recovery of a key from original data in the presence of noise, a stable key of specified

length requires the use of a long starting string [28]. As a technology node matures,

process mismatch reduces and this increases the intrinsic error of any SRAM PUF

implemented in the mature technology node. Hence, the overhead of a longer initial

string and larger amount of helper data for fuzzy extraction and error correction to

compensate the high error rate becomes increasingly expensive in mature technologies.

Thus, reducing the inherent error rate of SRAM cells can accrue significant area and

computation savings by reducing reliance on costly error-correction.

2.2.2 Circuit and Fabrication Techniques

Alternatives to ECC involve the pursuit of circuit and device-level technology

solutions that either improve the SRAM cell reliability or implement more efficient

error detection and compensation schemes. Hofer et al.proposed pre-selecting SRAM

cells that possess a greater degree of mismatch in the cell transistor threshold volt-

ages [54]. However, this approach also involved the need for expensive Non-Volatile
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Random-Access Memory (NVRAM). Bhargava et al.have proposed technique to im-

prove reliability through Hot carrier injection (HCI) aging [26]. Similarly, effect of

aging on PUF reliability has been explored by Garg et al.[46] and Maes et al.[82].

Jang and Ghosh [61] proposed an 8T SRAM PUF with PMOS latch and a low-power

7T SRAM cell with embedded Magnetic Tunnel Junction (MTJ) to enhance the re-

liability of the PUF in the presence of environmental fluctuations. Su et al. [116]

proposed the use of SRAM-like cells with a common centroid layout and resettable

logic to reduce the influence of systematic process variations.

The use of temporal majority voting (TMV), burn-in and dark bits evaluation

for the purpose of reducing error rates was showcased by Mathew et al.[85]. De-

sign changes were required to enable voting and synchronous design helped improve

uniqueness. However, the approach can only correct error rates of < 8 % and addi-

tional techniques are necessary for practical applications. Adapting voltage ramp-up

time to ambient temperature to reduce the error rate of memory PUFs has been pro-

posed by Cortez et al.[36]. The drawbacks are that the auxiliary circuits needed for

voltage ramp-up can be area intensive and shaping supply voltage is expensive for

designs with large power delivery network.

Ganta and Nazhandali explore alternate configurations of the inverters in the

SRAM cell to improve the stability of SRAM cells with respect to variations in tem-

perature and reduce the number of unreliable bits to save on ECC area [45]. Our goal

is to study the PUF cell performance at a given temperature in the presence of thermal

noise that can cause errors in its output. We seek to explore alternative configurations

of the PUF cell that increase process sensitivity and hence, provide greater mismatch

between the cross-coupled elements. Bucci and Luzzi [30] presented a differential

circuit that captures the process mismatch and amplifies it to reduce the effect of

noise. Once the difference has been sufficiently amplified, the differential outputs are
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latched to generate stable bits. Our work seeks to create simpler differential circuit

design alternatives that can also immunize the cells to noise.

2.3 Weak PUF Design

In this section, the process variation and noise modeling parameters utilized for

this work are detailed. Next, we discuss a simple SRAM-like cell design consisting of

two-cross coupled inverters and then, explore alternatives that have a greater process

variation sensitivity.

2.3.1 Modeling Process Variation

We model manufacturing induced process variations as random parametric varia-

tions in threshold voltage (V TH) and channel length of each transistor in a circuit.

Also, the parameters are random across PUF instances. The values are obtained from

a normal distribution, N(µ, σ2), where the mean (µ) and standard deviation (σ) are

determined based on the technology node used. The geometry of a transistor decides

the susceptibility of a device to process variations with larger devices experiencing

lesser fluctuations. In terms of threshold voltage, the mean is the default transistor

model value and the standard deviation is given by,

σV TH =
σV TH0√

W∗L
Wmin∗Lmin

(2.1)

where (Wmin,Lmin) are the minimum possible width and length of a device, respec-

tively, and (W ,L) are the sizes used in the design. σV TH0 is the standard deviation

of threshold voltage for the minimum sized device.

In this work, we instantiate the PUF cell designs with 45 nm NCSU FreePDK45

models [6]. Typically, for 45 nm node, a standard deviation of 53 mV for threshold

voltage and 10 % channel length variation are considered [4]. However, one of our

goals is to analyze PUF performance for low process variation corner where cells
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have high error rates, providing a significant challenge for PUF design. The low

variation scenario is also of great practical importance as it is representative of mature

technology nodes which exhibit low manufacturing process variations. Hence, to

obtain the amplified mean error rate for each design, only the threshold voltage for

each transistor is varied with the base value provided by transistor models as the

mean and the standard deviation of a minimum sized device set to 5 mV (chosen by

us). Equation (2.1) is then used to calculate the standard deviation for any arbitrary

sized transistor.

2.3.2 Thermal noise errors

Thermal noise in a transistor occurs due to the random motion of the charge carri-

ers from thermal excitation and can create a random voltage fluctuation in conductors

[64,92]. Thermal noise has no correlation among different sample across time and has

a near uniform power spectral density. In advanced CMOS technology nodes, short

channel effects [49] exacerbate the effects of thermal noise and significantly impact

transistor noise performance [119]. The magnitude of thermal noise at any given

node can be represented in terms of a normal distribution with 0 mean and standard

deviation given by [111],

σNOISE(T ) =

√
kB ∗ T
C

(2.2)

where kB is the Boltzmann constant, T is the absolute temperature (Kelvin) and C

is the node capacitance (Farads).

2.3.3 Simple SRAM-like Weak PUF (Ref )

PUF cells produce random outputs due to mismatch in the cross-coupled inverters’

strengths due to manufacturing process variations and noise during evaluation. A

Weak PUF cell needs to have reliably identical behavior across multiple evaluations.

However, thermal noise affects each node in the circuit differently and hence, can drive

one of the cross-coupled inverter’s NMOS to an ON state, inducing a logic-0 state
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Figure 2.1: Standard cross-coupled inverter PUF cell (Ref )

its output. Across multiple evaluations, a cell with inadequate mismatch between

the cross-coupled inverters can produce different results and hence, be unreliable as

a Weak PUF.

In this work, to facilitate a resettable PUF, we make minor modifications to the ba-

sic cross-coupled devices by implementing additional pre-charge/discharge circuitry,

as shown in Figure 2.1. The enable signal (EN ), at logic-0, first pre-charges the OUT

and OUT to Vdd while keeping the footer NMOS (M7) in OFF state. The evaluation

phase begins by setting EN to logic-1 and depending on process variation, the cell

will settle into a particular state. To mimic thermal noise effects, we set the OUT and

OUT to Vdd,1 and Vdd,2. The voltages are obtained from a Gaussian distribution with

a mean of Vdd and variance given by (2.2). This design is an adaptation of similar

circuits proposed to enable TMV [85], Sense-Amplifier PUF [25], and a PUF based

on cross-coupled NOR cells [116].
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Figure 2.2: PUF cell with only pull-down network and active resistive loads (D1)

2.3.4 Study of various Cell designs

Here, we explore alternative PUF cell designs that are more sensitive to process

variations, resulting in greater mismatch between the cell cross-coupled elements. The

salient features and drawbacks of each alternative are also discussed. Only the cross-

coupled elements (dashed boxes) are altered with respect to Ref while the overall

circuit operation remains same.

2.3.4.1 Simple active loads (D1)

The first alternative we consider modifies the PUF cell pull-up network of the

previous inverter configuration by connecting a DC source, Vbias, to the PMOS gate

terminals. This converts the PMOS transistors into active loads whose current out-

puts depend on their threshold and input voltages. Figure2.2 shows this cross-coupled

design, but omits the precharge transistors for conciseness.
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In a simple inverter configuration, the currents in both the pull-up and pull-

down networks are affected by the inputs and process variation. In a low process

variation scenario, thermal noise will affect both networks in a differential manner

and has a greater chance of introducing error. By removing the input dependence

in one of the networks of each cross-coupled element (M1 or M3 in Figure 2.2), we

make the current through that network purely dependent on the process variation.

The constant source, Vbias, is shared by both cross-coupled elements and any noise

associated with this source will become common mode noise. The complimentary

network is used to drive the feedback loop. Hence, the circuit becomes more process

sensitive. Additionally, the footer NMOS prevents high static current flow due to the

pull-up network by breaking connection to the ground when the cell is not in use.

2.3.4.2 Parallel active loads (D2,D3)

We study the case of using parallel active loads, as shown in Figure 2.3. Applying

Kirchhoff’s Current Law (KCL) at the output node, OUT , we see a linear additive

relationship for the currents through the active loads. Taking a case of two active loads

in parallel at OUT node, let the currents in the two loads have a normal distribution

with unique means (µ1, µ2) and variances (σ2
1, σ2

2), due to process variations, across

a population of PUF cells. The addition of such currents at OUT realize a current

with a variance that is the sum of the two variances (σ2
1 + σ2

2). This concept can be

extended to multiple parallel loads. Hence, theoretically, this approach provides a

greater sensitivity to process variation than just a single active load (D1), which is

the simplest case of the parallel active loads configuration.

The size of the input connected NMOS transistors may need to be larger to ef-

fectively sink enough current to drive one of the outputs to a logic-0 in the presence

of multiple parallel PMOS loads. Also, complex biasing for the active loads may be

needed to further reduce the current that the pull-down network needs to handle.
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Figure 2.3: PUF cell with parallel active loads (D2,D3)

The multiple parallel loads and the need for a larger pull-down transistor adds to the

area overhead compared the simple case (D1).

2.3.4.3 Current Mirror loads (D4)

A current mirror has the property of providing a multiplier effect based on the

sizing of the mirror transistors. Hence, we explore replacing the simple load with a

current mirror load, as shown in Figure 2.4. The current mirror provides two addi-

tional venues to boost the process variation effects in the PUF cell: (a) the process

variation in the mirror transistors (say Mx1, Mx2 in Figure 2.4) affects the current

mirroring factor; (b) the process variation of the bias transistor (Mx3) of the current

mirror influences the base current that will be mirrored. These combined effects can

help increase the mismatch between the cross-coupled elements of the PUF cell and

hence, reduce error.
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Figure 2.4: PUF cell with current mirror loads (D4)

Similar to the aforementioned active load configurations, we need to generate the

appropriate bias voltages.

2.4 Results and Discussion

In this section, we will first contrast the reliability performance of various alterna-

tives explored in section 2.3.4 with the simple cross-coupled inverter PUF cell using

error rate as the metric. Then, the design Ref and select configurations (D2, D4) are

analyzed in greater detail illustrating the advantages of our approach, specifically, in

terms of reduction in ECC complexity and the associated area savings.

2.4.1 Error rate comparison

Our primary goal is to compare the reliability of each proposed alternative (D1→

D4) with respect to Ref. For this purpose, we assume room temperature (25 ◦C) and

obtain the output node capacitance for the cross-coupled elements of each design and
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calculate the standard deviation of thermal noise to be used for simulation according

to (2.2).

We simulate a cell instance over 1, 000 thermal noise value pairs to mimic 1, 000

power-ups of an SRAM-based Weak PUF cell. The output voltages are then classified

as either logic-0 or logic-1 based on a certain threshold, Vdd

2
V in our case. The error

rate for each instance is the percentage of trials in which the logic output of the cell

flipped compared to the base case with no thermal noise.

The footer NMOS is sized larger allowing the circuits to achieve near ground-

level voltage. The pull-up and pull-down transistor are sized to maximize process

sensitivity, according to (2.1), and the sizes for each design configuration are listed

in Table 2.1. The bias voltage, Vbias, is set to 0 V for design D1 and the bias is Vdd

2
V

for the rest.

The mean error rates obtained by simulating 10, 000 instances of each design, are

given in Table 2.1. As explained in Section 2.3.1, we use a low process variation

scenario (σV TH = 5 mV) to generate the results. All the design alternatives perform

significantly better than the design Ref with 4× to 9× reduction in error rates.

Furthermore, the parallel active loads designs (D2, D3) showcase the gains from

increasing the number of parallel transistors.

2.4.2 Flipping point analysis

To further illustrate the improvements afforded by the new designs over the simple

cross-coupled inverter cell, we conduct an experiment to compare the Ref design

against the alternatives D2 and D4, in terms of the amount of noise needed to change

the base state of a cell. First, we find the state of the cell outputs without the presence

of noise and then, add a DC offset to the corresponding pre-charge supply of one side

until finding the minimum voltage that can flip the cell outputs. We term this voltage

as the flipping voltage. We repeat the experiment for each design across 10, 000 cell
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Table 2.1: Mean Error Rate of PUF cell configurations considering Low Process
Variation

Configuration (Identifier)

Transistor Sizing
(nm)

Mean
Error Rate

(%)PMOS NMOS

Simple (Ref ) 90 90 20.79

Single Active Load (D1 ) 90 180 5.14

Parallel Loads
2 (D2 ) 90 180 4.53

3 (D3 ) 90 180 2.23

Current Mirror Load (D4 ) 180
M(x,y)3: 90
Mn(1,2): 180

3.79

instances using the full process variation parameters and a 300 mV maximum offset

threshold. The histogram of the recorded flipping voltages for both Ref, D2 and D4

designs are shown in Figure 2.5. The distributions highlight that, on average, a much

larger noise perturbation is needed to affect the output states of D2 and D4 than

the Ref design. Consequently, more instantiated cells of D2 and D4 are likely to

have zero or very low error rates compared to Ref case. We should note that this

experiment offers more of a qualitative insight into the noise resilience of the circuits

as it is extremely unlikely that the differential thermal noise values will reach over

20 mV for any of the instantiated designs.

2.4.3 Voltage and Temperature Variations

To assess the impact of variations in supply voltage and temperature, we instan-

tiate 100, 000 instances, each, of Ref, D2 and D4 using the full process and channel

length variation parameters [4]. For each design, we consider 25◦C and 1 V as the

nominal temperature and supply voltage settings, respectively. The outputs are ob-

tained by sweeping either the temperature or the voltage, keeping the other constant.

We do not introduce circuit thermal noise in these simulations in order to sensitize the
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Figure 2.5: Flipping voltage comparison between Ref, D2 and D4

outputs only to variations in voltage/temperature. For each design, the 100, 000-bit

binary result at each temperature/voltage is compared to the binary string obtained

under nominal conditions. The percentage of errors for temperature and voltage

sweeps are plotted in Figure 2.6. We see that D2 and D4 have a lower number of

bit errors compared to Ref design across various voltages/temperatures. In addi-

tion to being highly resistant to thermal noise, this result shows the proposed PUF

alternatives to perform better than the Ref design under environmental variations.

2.4.4 Reducing ECC circuitry overhead

As the inherent cell error rate is reduced considerably by using the alternative cell

designs, we can make appreciable gains by reducing the amount of post-processing

required to make a highly reliable Weak PUF implementation (error rate ≤ 10−6). To

obtain an idea of the amount of savings to be expected, we examine the Ref, D2 and
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Figure 2.6: Percentage of bit errors in 100, 000-bit strings for Ref, D2 and D4, com-
pared with (25◦C, 1 V) case

D4 designs. We instantiate 10, 000 different cells of each design and obtain the error

rates as described in section 2.4.1 under thermal noise and with full process variation.

Bösch et al.[28] have conducted extensive studies on the implementation of ECC

in hardware for the purpose of extracting stable keys from SRAM-based Weak PUFs.

The authors explore the use of various error correction codes to correct errors in a

binary string with certain error probability (pb). However, Roel Maes presented a

new 2-parameter error model that highlighted the fact that a population of SRAM

cells will possess a distribution of error rates [78]. The author shows that the more

accurate 2-parameter model can produce surprisingly different results from the simple

homogeneous error rate assumed in earlier works when used to estimate the key failure

rates for an SRAM-based Weak PUF to generate a stable 128-bit key. Following the

same procedures detailed in their work, we estimate the parameters of the 2-parameter

error model by using the error rates obtained from the selected cell designs. The curve-

fitted probability mass functions (PMFs) are shown in Figure 2.7, using continuous

lines for clarity. We see that D2 and D4 each have over 95 % of the cells producing

0 errors in 1000 trials, compared to 83 % for Ref design.
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Figure 2.7: Curve-fitted PMFs for Ref, D2 and D4

Our final target is to obtain a robust key of 128 bits (with error rate ≤ 10−6).

We consider the Reed-Muller (RM) ECC codes for which we can estimate the corre-

sponding areas using gate counts provided by Bösch [28] and the areas of the relevant

gates from the Nangate 45 nm cell library [5]. By simulating 1 million key genera-

tion systems and altering the ECC code parameters we found the smallest codes that

would enable more than 99 % of the simulated keys to have an error rate ≤ 10−6.

Then, the areas are calculated for the best code implementations. The unit PUF cell

area for the Ref, D2 and D4 designs were found to be 1µm2, 1.25µm2 and 1.5µm2,

respectively. The final results and relevant details are tabulated in Table 2.2. The

alternatives are able to reduce the area requirements by more than 60 %.

The above simulation demonstrates the advantages of our approach in terms of

ECC implementations. It may be possible to achieve better results with different
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Table 2.2: Area savings from ECC implementations

Design
ECC
code

[n,k,t ]

# PUF cells
needed

Area
(µm2)

Area
Savings

(%)

Ref RM[64,7,15] 1408 2286.3 —

D2 RM[16,5,3] 352 824.1 63.96

D4 RM[16,5,3] 352 912.1 60.11

ECC implementations. Although different error correction schemes and codes may

be used, the results shown are not unique to this scheme, and it is expected that the

increase in cell reliability should produce similar area savings in any such techniques.

2.5 Conclusion

Weak PUFs, especially SRAM-based, have gained popularity for application in key

generation. However, such keys can suffer from reliability issues due to system noise.

To address this, various ECC and fuzzy extraction techniques have been proposed.

These schemes depend on a large number of initial bits sourced from Weak PUFs

to generate stable keys due to the unreliability of the PUF cells. In this work, we

address and improve the Weak PUF reliability by presenting new designs that harness

inherent process variations to a greater degree than conventional SRAM-like cells.

Our designs perform well in mature technology nodes with low process variations,

and with respect to various noise sources. Also, lowering the error rate of the PUF

cell allows us to scale down ECC resources required to generate a stable key.
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CHAPTER 3

IMPROVING RELIABILITY OF WEAK PUFS VIA
INTELLIGENT ACCELERATED AGING

3.1 Introduction

Among the prior approaches to improve PUF reliability, accelerating device aging

or burn-in has received increasing attention [26, 46, 85]. To accelerate aging, devices

are subjected to temperature and voltage stress in a burn-in chamber. For SRAM-

like Weak PUFs, the burn-in process can be beneficial towards increasing the inherent

mismatch between the cross-couple inverters so that a PUF output attains greater

immunity to noise.

While burn-in is beneficial, it can significantly inflate production costs due to

long baking times to maximize the number of reliable integrated circuit (ICs). The

straight-forward way to determine the bake times is to account for the worst-case

design corners. This can prove detrimental to utilization of PUFs in low-cost ap-

plications, like Smart Cards, and for high volume manufacturing. Hence, there is a

compelling need to reduce the burn-in time. Integrating a mechanism for the IC to

provide certain information to the manufacturer to aid in calculating the minimum

burn-in time, without compromising the security of the PUF, can prove advantageous

and offer considerable increase in manufacturing throughput.

In this chapter, we present a method to reduce the burn-in time by quantifying the

minimum burn-in requirements for each Weak PUF cell. A low-cost proxy is used to

represent the inherent cross-coupled inverter mismatch in terms of the PUF error rate.

The error rates of the instantiated PUFs in an IC are measured and used to decide
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the burn-in requirements. A low-overhead architecture is presented to automate the

collection of necessary data. Also, the effect of alternate SRAM-like PUF designs and

different transistor technology implementations on the burn-in process are analyzed.

3.2 Background and Motivation

In this section, we discuss some relevant background with regards to device aging

and burn-in. We also discuss temporal majority voting (TMV) technique in detail as

it will be utilized in our methodology. Prior research regarding previous techniques

for improving Weak PUF reliability has been discussed in Section 2.2.

3.2.1 Temporal Majority Voting

The area overhead from implementing traditional ECC blocks and the number of

initial PUF bits required scales superlinearly as the error rate increases. A simple,

circuit-based way to reduce the error rate using Temporal Majority Voting (TMV)

has been explored by Mathew et al.[85] and Xiao et al.[129]. Mathew et al.[85] also

explored burn-in and dark bits evaluation for the purpose of reducing error rates.

Design changes were required to enable voting and synchronous design helped im-

prove uniqueness. However, the approach can only correct error rates of < 8 % and

additional techniques are necessary for practical applications.

In this work, we will assume a simple counter-based TMV for error correction

during regular operation of the PUF. As an example, a simple 4-bit counter based

TMV counts from 0 to 15 and hence, can be used for 15-way voting. If the resultant

value after 15 evaluations of the cell’s response is greater than 8, then the final value

can be classified as 1 or else it can be classified as 0. The mathematical model of the

TMV is a binomial counting process and hence, the reduction in error rate can be

calculated analytically. For example, a PUF cell whose error rate is 1− p produces a

final error rate Pe(N) given by,
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Figure 3.1: Error rate reduction due to Temporal Majority Voting

Pe(N) =
N∑

m=k

(
N

k

)
pm(1− p)N−m (3.1)

where k = (N + 1)/2 (as N is odd) when an N -way voting is used [74]. The circuit

implementation of the TMV typically consists of an n-bit counter where N = 2n − 1

. The counter is incremented by 1 if the response from the PUF cell is 1.

Using (3.1), we plot the initial and final error rates for 4-bit (15-way), 5-bit (31-

way) and 6-bit (63-way) TMVs in Figure 3.1. The selection of the TMV would be

based on the maximum error rate that the system needs to correct (final error rate

≤ 10−6). For this work, we utilize a 4-bit TMV for regular operation, noting that it

can correct a maximum error of 6 %.

3.2.2 Negative Bias Temperature Instability

Transistor aging has become a significant reliability concern for current CMOS

technology. Among various aging mechanisms, Bias Temperature Instability (BTI)
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is considered the dominant aging mechanism, causing the threshold voltage of the

transistor to increase. There are two BTI mechanisms: (i) Negative BTI (NBTI)

affecting the PMOS transistors and (ii) Positive BTI (PBTI) affecting the NMOS

transistors. NBTI results from continuous trap generation in Si-SiO2 interface when

a negative voltage is applied to the PMOS gate (stress). Under stressed operating

conditions (i.e., On-state, negative gate bias at elevated temperature and supply

voltage), Si-H bonds near the interface continue to break and generate interfacial

traps which contribute to an increase in Vth. Due to the Vth degradation, NBTI

results in poor drive current, lower noise margin and shorter device lifetime.

The NBTI-induced threshold voltage shift is a function of supply voltage, tem-

perature and many technology parameters. Various models have been proposed in

the literature to accurately estimate the threshold voltage degradation ∆Vth due to

NBTI. Kang et al.proposed a compact threshold voltage degradation model consid-

ering the temporal NBTI variation in short channel devices [67]. Paul et al.showed

that the maximum circuit delay degradation due to NBTI closely follows the same

fractional power dependency to time as the Vth degradation with an appropriate scale

factor [97]. Kumar et al.have proposed an efficient AC NBTI model for circuit sim-

ulations [73]. Vattikonda et al.have proposed a further improved circuit compatible

NBTI model to consider AC relaxation effects and technology dependent parameters

[123].

FinFET : The NBTI model for FinFETs is the same as (3.2.2). The effect of NBTI

and mitigation techniques for FinFET SRAMs has been explored in detail by Wang

et al.[128].

According to the Reaction-Diffusion (RD) model [23], the BTI-induced threshold

voltage shift is:
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∆Vth(t) =

(√
K2

vαTclk

1− β1/2n
t

)2n

βt = 1−
2ξ1te +

√
ξ2C(1− α)Tclk

2tox +
√
Ct

(3.2)

Kv = f(Vdd − Vth, T )

where α is the duty cycle, T is the temperature, Tclk is the clock cycle, and other

parameters are technology parameters previously defined in [23].

3.2.3 Burn-In (Accelerated Aging)

IC designers and manufacturers are concerned about quality and reliability over a

product’s lifetime. To ensure economic viability, it is desirable to remove defective de-

vices from the population before shipping them to the customer. Consequently, many

ICs undergo a burn-in process after fabrication to accelerate failures that manifest in

early-life which are primarily caused by process and manufacturing defects. However,

under burn-in conditions, increased junction temperature (average temperature of the

silicon substrate) increases the leakage current and increased leakage current further

increases the junction temperature. Thus, manufacturers try to control the junction

temperature by removing the heat from the IC. If the rate of heat generation be-

comes greater than the rate of heat removal, junction temperature starts increasing.

This condition is called thermal runaway [122]. It has been shown that the setup for

burn-in conditions must evolve by reducing either the ambient temperature or the

thermal resistance or a combination of both of them. For example, in 130 nm process

technology, the junction temperature should be kept below 110 °C with a thermal

resistance of 0.5 °C/W and ambient temperature of 80 °C to avoid thermal runaway

[122].

In the case of a Weak PUF, the response can be made more reliable by increasing

the magnitude of the difference in the threshold voltages of the two PMOS devices in
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the cross-coupled inverters (M1, M3), in Figure 3.4. One such method of improving

the reliability is to exploit NBTI aging effects to reinforce the desired (or “golden”)

response of the PUF cell. This is done by finding the golden outputs (OUT, OUT ) of

the PUF cell and forcing the opposite values onto them via the access transistors (M5,

M6). Increasing the temperature and/or applying voltage stress for a certain amount

of time accelerates the aging of the devices in a beneficial manner [26,46,85]. Hence,

by improving the PUF reliability via burn-in, the number of defective ICs are reduced.

3.2.4 PUF Reliability using accelerated aging

The aging effect on PUF reliability has been studied extensively by Garg et al.[46]

and Maes et al.proposed techniques to counter the effects [82]. Bhargava et al.[26]

utilized aging via Hot Carrier Injection (HCI) aided PUF reliability.

3.3 Methodology

In this section, we discuss the PUF system design to enable the IC to output the

maximum error rate observed. Later, we elaborate on a mechanism to correlate the

error rate to the inherent mismatch in the PUF cell that allows us to find the burn-in

time required to make all the PUF cells reliable.

3.3.1 Weak PUF System Design

In Figure 3.2, we describe the proposed system to measure the maximum error

rate in a PUF. This was initially described in our paper [59]. The system consists

of a PUF cell array that is connected to an array of multiplexers (Muxes). These

muxes will direct the PUF outputs to the relevant counters based on the mode of

operation. A Central Control unit oversees the entire operation of the PUF system.

The circuit operates in two modes: (i) Design for Reliability (DfR) mode and (ii)

Regular Operation (OP) mode.
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Figure 3.2: Block Diagram of the proposed reliability enhancement scheme (from [59],
our earlier paper)

(i) Design for Reliability (DfR) mode: Prior to burn-in, the circuit is initialized

into (DfR) mode to obtain the maximum error rate among the PUF cells. The control

unit directs each PUF output via the MUX array to a 10-bit counter and performs

1024 pre-charge and evaluations cycles on each cell. During every evaluation, the

counter increments if the output is logic-1. The large counter allows us to get an

accurate measurement of the error rate of a cell. Also, a single 10-bit counter is

enough as this process is carried out prior to burn-in and is not time intensive like

burn-in. Even if a PUF cell takes 1 ns for each evaluation, then each cell error rate is

obtained in ≈ 1µs.

The counter value is fed to the Burn-in Optimizer unit that first determines the

correct PUF cell output. If the count is below 512 (ideally 0), then the correct
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output is determined to be logic-0. If the counter is between 0 and 512, then this

count becomes the error rate for the cell (out of 1023). For logic-1, the count would

be > 512 (ideally 1023). To find the error rate, we subtract the current count from

1023. The estimated logic value (PUF value) of the PUF cell is fed back to Central

Control unit which then writes the opposite value to the PUF cell for the purpose of

burn-in.

The Burn-in Optimizer also maintains an internal register that stores the current

maximum error rate (initialized to 0 on start-up). Each calculated error rate is

compared to current maximum using a comparator and set as the new maximum if

the error rate is greater. All PUF cells are processed to obtain the final maximum

error rate. A further optimization is possible by utilizing the maximum error, 6 %,

that a 4-bit TMV can correct. The Error Threshold can be set to ≈ 62 (6 % of 1023)

and each calculated error rate is compared against this before comparing with the

stored maximum. The final IC output (Max Error Rate) is the maximum error only

if it is greater than the error threshold and otherwise, output is a 0. Such ICs would

not need burn-in as the TMV is sufficient.

In certain cases, the designer may wish to account for an acceptable yield loss and

use more PUF cells than required. Hence, the Mask Array can be utilized to select

the most reliable PUF cells. The Burn-in Optimizer is used to set the mask bits to

indicate reliable cells. It can also possess an additional counter to keep track of cells

with error rates of ≤ 6 % (for TMV). In case the system finds the required number of

cells, it can output a 0 max error rate to further reduce burn-in requirements. After

burn-in, the Burn-in Optimizer can be reused to set the final mask bits. Masking

has been shown to help improve the reliability of the Weak PUF system [85]. The

entire operation of the Burn-in Optimizer is illustrated as a flowchart, as shown in

Figure 3.3.
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Figure 3.3: Flowchart illustrating the operation of Burn-in Optimizer
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Figure 3.4: SRAM-like cross-coupled inverter PUF cell (Ref ) [126]

(ii) Regular Operation (OP) mode: In this mode, the control unit queries and

directs the PUF outputs to the 4-bit TMVs. We can use multiple TMVs to speed up

the PUF evaluations for convenient real-time operation. As the burn-in process will

have increased the mismatch of the PUF cells by an appropriate amount, the TMVs

should be able to correct any observed errors as they will be well below the TMV

threshold.

3.3.2 Process Variation and Error Rate

We utilize the SRAM cell design, whose operation is detailed in Section 2.3.3 and

re-illustrated in Figure 3.4 as the reference design, termed Ref.

Utilizing the maximum error rate produced by a PUF system, we aim to find the

current inherent mismatch, in terms of threshold voltages, that exists between the

PMOS transistors (M1, M3), in Figure 3.4. This acts as a proxy that represents the

inherent mismatch between the cross-coupled elements in the actual PUF cell and

will aid us in determining the amount of NBTI aging needed to make the cell reliable.
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Figure 3.5: Error rate correlation with PUF cell threshold voltage mismatch

To correlate the error rate with a threshold voltage mismatch value, we perform a

set of SPICE simulations on the Weak PUF cell. Circuit thermal noise is considered

as the source of errors in the PUF output. The noise is applied to the circuit in a

differential manner at Vdd,1 and Vdd,2, as shown Figure 3.4. The inherent mismatch

of a PUF cell is approximated by varying the threshold voltage in one of the PMOS

transistors (M3 in our case) in steps of 1 mV up to a certain maximum. A large

number of evaluations are performed under varying thermal noise for each step and

the error rate is calculated by comparing the values with the output for zero thermal

noise.

An example, as shown in Figure 3.5, plots the error rates against the increasing

threshold voltage mismatches for a PUF cell, as shown in Figure 3.4, in 45 nm tech-

nology [6] using minimum sized transistors. This gives us an approximate correlation

between the error rate of a cell and the inherent PMOS transistors mismatch. Know-

ing that a 4-bit (15-way) TMV can correct a maximum of 6 % error, we see that any
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cell with an inherent mismatch of ≥ 19 mV can be handled by the TMV. The cells

with lower mismatch are not TMV-correctable and become the target of our burn-

in efforts. The worst-case threshold voltage shift, when the maximum error rate is

50 %, for the burn-in process is set at a higher value than 19 mV to account for the

approximations made in our analysis. This value becomes the total target mismatch

required to create a fully reliable PUF system. We also note that an error rate of

50 % would represent the ideal true random number generator (TRNG). Based on the

observed maximum error, which represents the lowest mismatch observed among the

PUF cells of a particular IC, we can calculate the threshold voltage shift required from

the burn-in process to reach the target mismatch. In a real-world scenario, the maxi-

mum observed error rates are likely to be below 50 % and hence, the needed threshold

voltage shift from burn-in will be less than the set target value. This translates into

significant savings with regards to burn-in time.

3.4 Burn-in time reduction

In this section, we explore the advantage of using the proposed solution presented

in Section 3.3 considering Weak PUF systems that need to generate 128 reliable bits.

The reported results consider a cumulative burn-in time where we assume that only a

single IC undergoes the accelerated aging at a time. In practical situations, different

manufacturers can utilize different ways. Hence, it is difficult to assume just one

arbitrary process.

3.4.1 Weak PUF Designs

Along with the simple SRAM-like Weak PUF design (Ref ), we extend the analysis

using other PUF designs proposed in Chapter 2. It was shown that connecting either

the pull-up or pull-down transistors of the cross-coupled inverters in the PUF to a

bias voltage can provide significant benefits towards reliability. Since we consider
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Table 3.1: Implementation details for various Weak PUF design configurations

Configuration
(Identifier)

Transistor
Sizing

2-parameter
model values [78]

PMOS NMOS λ1 λ2
Cells with
0 error (%)

Simple (Ref ) 90 nm 90 nm 0.292 1.906 83

Two Parallel Loads (D1 ) 180 nm 90 nm 0.188 2.395 96

Current Mirror Load (D2 ) 180 nm 90 nm 0.191 2.491 97

FinFET (F1 ) 1 fin 1 fin 0.413 1.595 60

NBTI as the aging mechanism of interest for the burn-in process, we modify the

circuits so that the pull-down transistors are connected to bias voltages while the

pull-up transistor are cross-coupled to form the inverters. For this work, we choose

the parallel active loads design with two parallel NMOS transistors (D1 ), as shown in

Figure 3.6, and the current mirror-based design with NMOS current mirrors (D2 ), as

shown in Figure 3.7. The access transistors and the pre-charge voltages connected to

OUT and OUT are the same as the Ref design, shown in Figure 3.4, and are omitted

in the circuit diagrams for clarity. The transistors are sized to allow maximum process

variation sensitivity except for the footer (M2), which is sized larger to allow proper

operation of the circuit. Vbias was set to 0.5 V for D1 and 0 V for D2.

Conventional CMOS scaling beyond the 45nm technology node is severely con-

strained by pronounced threshold voltage (Vth) fluctuations resulting from Short

Channel Effects (SCE) and Random Dopant Fluctuations (RDF) due to process vari-

ations [41, 105, 115, 120]. Hence, FinFETs were developed to facilitate the continued

scaling of technology nodes. FinFET devices exhibit better electrostatic character-

istics with respect to SCE as the gate, or fin, wraps around a thin slice of silicon

(channel) [104]. The greater control over the channel allows FinFETs to have lower
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Figure 3.6: Modified parallel active loads-based PUF design (D1 ) [96]

Figure 3.7: Modified current mirror-based PUF design (D2 ) [96]

leakage current and power consumption over bulk CMOS. We wished to study the

effect on burn-in requirements when using FinFETs as the basis for constructing the
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Weak PUF. We considered only the Ref design, as shown in Figure 3.4, and instan-

tiated the PUF, termed as F1, using 20 nm FinFETs using predictive technology

models [7]. The number of fins were fixed at 1 for all transistors except the footer

(M7 in Ref ) which had 2 fins for proper current sinking. The supply voltage was set

at 0.9 V.

The specifications for the various designs are tabulated in Table 3.1.

3.4.2 Thermal Noise Errors

The random motion of the charge carriers from thermal excitation induces thermal

noise in transistors and can create random voltage fluctuations in conductors [64,92].

Thermal noise has a near uniform power spectral density and there is no correlation

among different samples across time. Short channel effects [49] can exacerbate the

effects of thermal noise in advanced CMOS technology nodes, causing significant

impact on transistor noise performance [119]. The magnitude of thermal noise at any

given node can be represented in terms of a normal distribution with 0 mean and

standard deviation given by [111],

σNOISE(T ) =

√
kB ∗ T
C

(3.3)

where kB is the Boltzmann constant, T is the absolute temperature (Kelvin) and C

is the node capacitance (Farads).

We record the node capacitances at OUT and OUT in each design (Ref, D1, D2,

F1 ), under no process variation condition, to determine the amount of thermal noise

to be added to Vdd,1 and Vdd,2.

3.4.3 Error Rate vs Mismatch

Using the procedure described in section 3.3.2, we seek to find the correlation

proxies for each of the designs being considered. For the planar MOSFETs (Ref, D1,
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Figure 3.8: Error rate correlation with PUF cell threshold voltage mismatch for
alternate Weak PUF designs ({D1,D2}) based on [96]

D2 ), we utilized the 45 nm technology [6] to instantiate the cells. The supply voltage

(Vdd) is set to 1 V. We shift the threshold voltage of one of the PMOS transistors

(M3) in steps of 1 mV up to a maximum of 150 mV. This represents the proxy for

the total mismatch and helps simplify further analysis. At each step, we perform

2000 evaluations of the cell under varying thermal noise conditions, using (3.3), and

calculate the error rates. Figure 3.8 shows the results which highlight the fact that

the alternate designs (D1 and D2 ) have a greater process sensitivity than Ref as

every step increase in mismatch reduces the observed error significantly and the error

rate reaches 0 % with lower amount of mismatch.

In cases where incorporating the alternate designs may not be desired, we sought

to explore a technique to improve the performance of the existing SRAM-based PUF

(Ref ). Boosting the supply voltage has been shown to be beneficial for the operation

of an SRAM [98]. However, we must also be aware of increase in leakage power. For
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Figure 3.9: Error rate correlation with PUF cell threshold voltage mismatch for Ref
under nominal and boosted supply voltage (1.2 V)

this work, we study the performance of Ref when the supply voltage is boosted to

1.2 V. The results, as shown in Figure 3.9, do indicate that there is a decrease in the

error rate with increased mismatch under higher supply voltage. A designer can gen-

erate any number of such proxies at different voltages and use the data to adaptively

choose what supply voltage needs to be set for the PUF block, which in turn decides

the burn-in time. This is due to the fact that we only output the maximum error

rate from an IC which is later used with the correlation data. However, such supply

adaptability increases the complexity of the overall system design.

Replacing the planar MOSFET based PUF (Ref ) with FinFET-based design (F1 )

provides better performance in cases where the inherent mismatch is higher, as shown

in Figure 3.10. It should be noted that the FinFETs are more susceptible to thermal

noise (from (3.3)) as the node capacitances are lower due to the smaller technology
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Figure 3.10: Error rate correlation with PUF cell threshold voltage mismatch for
planar MOSFET (Ref ) and FinFET (F1 ) designs

node (20 nm) compared to the planar MOSFET. The results show that FinFET based

implementations can be viable as Weak PUFs even with the higher noise.

3.4.4 Modeling Process Variation

3.4.4.1 Planar MOSFET

Manufacturing induced process variations are modeled as random parametric vari-

ations in the threshold voltage (V TH) and channel length (L) of each transistor in

a circuit. The values are obtained from a normal distribution, N(µ, σ2), where the

mean (µ) and standard deviation (σ) are determined based on the technology node

used. Transistor geometry has an impact on the susceptibility of a device to process

variations with larger devices experiencing less fluctuations. In terms of threshold

voltage, the mean is the default transistor model value and the standard deviation is

given by,
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σV TH =
σV TH0√

W∗L
Wmin∗Lmin

(3.4)

where (Wmin,Lmin) are the minimum possible width and length of a device, respec-

tively, and (W ,L) are the sizes used in the design. σV TH0 is the standard deviation

of threshold voltage for the minimum sized device.

In this work, we instantiate the planar MOSFET PUF cell designs (Ref, D1, D2 )

with 45 nm NCSU FreePDK45 models [6]. Typically, for 45 nm node, a standard devi-

ation of 53 mV for threshold voltage and 10 % channel length variation are considered

[4]. Equation (3.4) is used to calculate the standard deviation for threshold voltage

of any arbitrary sized transistor.

3.4.4.2 FinFET

While FinFETs are not affected by RDF due to undoped channel, they are suscep-

tible to Work Function Variation (WFV) caused by irregularities in fin surface from

the manufacturing process [86]. Hence, WFV has the greatest impact on thresh-

old voltage variation. For this work, we consider a standard deviation of 30 mV for

threshold voltage to represent the process variation in FinFET transistors [86].

3.4.5 Heterogeneous Error Model

In realistic scenarios, a collection of Weak PUF cells would have a distribution

of errors. This heterogeneous error model is advantageous in modeling real PUF

systems as a homogeneous error model can overestimate the required ECC resources

[78]. Also, the homogeneous model would provide no useful information for driving

the burn-in process as all cells would be assumed to have the same error rate and

hence, the same amount of process mismatch.

For this work, 10, 000 instances of the PUF cell, for each design, were simulated

with the relevant process variation parameters, as described in sections 3.4.4. Each

cell was evaluated 1000 times under varying thermal noise (as determined in section
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3.4.2) at 25 °C. The error rate was obtained by comparing with a simulation with no

noise. Utilizing the resulting data with the mathematical framework for the hetero-

geneous error model [78], we can generate error rates for an arbitrary number of PUF

cells for each given design. The relevant 2-parameter model details for each PUF

design are tabulated in Table 3.1. We also list the percentage of cells among an arbi-

trary population that would possess 0 % error for each design, given the 2-parameter

model data. Due to the higher thermal noise susceptibility, FinFET implementation

(F1 ) offers the lowest amount of 60 %. This is an indication that the FinFET based

design will offer less savings than a comparable planar MOSFET design in terms of

total burn-in time.

3.4.6 Cumulative Burn-in Time

Since our target is to obtain 128 stable bits from a PUF system, we first consider

the system has 128 initial PUF cells and all the cells need to be made reliable. Next,

we considered a scenario where a 2 % yield loss might be acceptable and masking is

used. For this case, we reused (3.1) with {k = 128, p = 0.98} to find the value of N

that would result in Pe(N) ≤ 10−6 (failure rate of 1 ppm). The result showed that we

needed 144 initial PUF cells.

For all the designs considered in this paper (Ref, D1, D2, F1 ), we assume that

the burn-in temperature is 100 °C and the stress voltage is 1.1 V and utilize (3.2.2) to

calculate the time required. The relevant device parameters for the NBTI equation

are obtained from the NCSU FreePDK models [6] for planar devices and from PTM

models for the FinFET [7].

For obtaining the cumulative burn-in time, 1million PUF systems were generated

for the 128 and 144 cells/system cases for each Weak PUF design using the heteroge-

neous error model. For each PUF system, the threshold voltage mismatch was found

using the methodology described in section 3.3. To find necessary increase in device
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mismatch in each system, the data from section 3.4.3 and the mismatch representing

the 6 % error rate (for 4-bit TMV) were used. Our target threshold voltage shift (also

the worst-case shift) was set by increasing the TMV mismatch found for each design

by 30 %. This is to account for the approximations in our methodology for correlating

error rate and inherent mismatch. Table 3.2 also lists the amount of time needed to

increase the PMOS threshold voltage due to NBTI by the target mismatch value.

For each system, the max error rate indicates the lowest amount of inherent mis-

match and decides the amount of threshold voltage shift needed to reach the target.

The shift needed is used in (3.2.2) to calculate the burn-in time. The cumulative

burn-in time (Optimized) for 1million PUF systems with 128 and 144 initial cells

are recorded in Table 3.2 for each design. We also note that without the proposed

solution, a manufacturer might need to assume that each IC needs to undergo the

maximum burn-in for each design.

From the results, in Table 3.2, we see that intelligent burn-in offers significant

savings compared to constant worst-case scenario driven burn-in. Also, using extra

bits (144) and masking results in reduced burn-in time compared to using just 128

cells/system. D2 offers the best results for any PUF system as the burn-in required is

negligible compared to other designs. Additionally, combining the alternate designs

(D1 and D2 ) with masking and extra bits can allow us to forgo burn-in entirely.

Consequently, these designs are attractive for low-cost applications where dedicated

PUF circuits would make more sense in terms of resource utilization. The FinFET

(F1 ) results show that we need to use extra bits for greater reliability, but the lower

cell area for the technology allows us to easily incorporate more cells.

The results discussed here show the relative performance of various designs, but

are ultimately dependent on the amount of error correction afforded to us by the

TMVs used during regular operation. Vijayakumar et al.have shown that using an

Up-Down counter [126] allows them to correct twice the error compared to a similarly
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sized regular TMV. In actual designs, using better error correction reduces the target

mismatch required by the burn-in process, but such considerations must be weighed

by a designer against various constraints such as available area, power requirements

and so on.

Resource Overheads : We considered a 144-PUFs system and calculated the area

overhead from the Burn-in Optimizer, Central Control, Mask Array and 10-bit counter

described in section 3.3. The rest of the circuitry, for TMV-based reliable bit gen-

eration is assumed to already be present in the system. Using the 45 nm standard

cell library from Nangate [5], the area overhead was found to be 500µm2 (Burn-

in optimizer costs 149µm2). This is a small overhead as the majority of the area

(≈ 2500µm2) for an efficient implementation is occupied by the TMV counters, PUF

cells and the mux arrays.

The primary testing time overhead is from obtaining the maximum error rate

which entails serially querying each PUF cell 1024 times (10-bit counter) and pro-

cessing the results. For a 144-PUFs system, this requires ∼ 150, 000 cycles in total.

At a test frequency of 10 MHz, for example, each chip will need 15 ms to generate the

results. However, in the cases where no burn-in is required, the designer can directly

proceed to final key enrollment phase. The Burn-in Optimizer is only used to set the

Mask Array and the system operates at its final intended frequency, which is greater

than the test frequency.

3.5 Conclusion

Weak PUFs have been extensively proposed for security applications such as

key/ID generation. Such applications require the PUFs to be highly reliable even

in the presence of noise. To ameliorate the noise susceptibility of the PUF outputs,

many different techniques have been proposed. One such method is to utilize burn-

in/accelerated aging for improving PUF reliability. Our work focuses on a method-
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ology to create a PUF system that enables the calculation of minimum burn-in time

for an IC. We obtain results for various SRAM-like Weak PUF designs which show a

significant reduction in burn-in times, providing large savings during the post-silicon

stages of the manufacturing process. Further, results show that FinFET based im-

plementations can also be viable as Weak PUFs even in the presence of significant

noise.
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CHAPTER 4

REALIZING ROBUST STRONG PUFS USING
WEIGHTLESS NEURAL NETWORKS

4.1 Introduction

As discussed in Section 1.1.2, Strong PUFs provide an exponential number of

CRPs and can be suitable for authentication applications as lightweight hardware

roots-of-trust. Ideally, PUFs need to possess high uniqueness and reliability (espe-

cially Weak PUFs) to provide robust security. Furthermore, Strong PUFs can be

targeted with model-building attacks using machine learning techniques and thus,

need to be resilient against cloning.

Unfortunately, practical Strong PUF implementations can suffer from reliability

issues [65,124] and also, can be cloned with high accuracy by machine learning attacks

[107, 125]. For use in applications like IoTs, unreliability can affect the number of

CRPs required to properly distinguish a PUF-equipped integrated circuit (IC) from

billions of other such devices [103]. Hence, there is still a need to design Strong PUFs

that can be fully reliable and offer high resistance to machine learning attacks.

Artificial neural networks mimic biological neuron functions for the purpose of

achieving effective pattern recognition capabilities. Weightless Neural Networks (WNNs)

are a class of artificial networks that utilize excitatory/inhibitory signaling to simulate

a neuron’s dendritic tree. Wilkie, Stonham & Aleksander’s Recognition Device (WiS-

ARD) was the first WNN model to be distributed commercially [17]. It provides an

efficient and simple implementation that can be realized using random-access memory

(RAM).
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This chapter explores adapting the simple WNN architecture and reliable Weak

PUFs to create reliable Strong PUFs that can also exhibit high uniqueness and provide

a high level of machine learning resistance. SRAM cells have persistent, yet random

power-up values and are the most promising choice for creating Weak PUFs [50, 57].

Reliability of a Weak PUF is critical and has received extensive attention in research

[29, 39, 80, 81, 85, 126]. In this work, we first combine the WiSARD WNN model

and SRAM’s PUF properties to realize Strong PUFs and later, utilize bits produced

from an initial entropy source, consisting of a set of highly reliable Weak PUFs, to

load the contents of the WiSARD WNN RAMs in order to provide a robust Strong

PUF architecture. Since the initial Weak PUF bits are made reliable, this enables

us to extend the reliability to the final Strong PUF. Using the WNN classification

phase, we can conceive a Strong PUF by providing the challenge as the input pattern

and extracting the output from the WNN as the response. We illustrate various

architectures based on the WiSARD model to showcase multiple Strong PUF designs.

Each architecture is analyzed to obtain uniqueness, reliability and machine learning

resistance metrics. This work shows that it is possible to build a Strong PUF using

neural networks obtaining high machine learning resistance while maintaining good

uniqueness and reliability. Additionally, we explore the minimum size of the initial

reliable Weak PUF entropy source that can still offer high uniqueness and machine

learning resistance.

4.2 Background

In this section, we briefly explore the relevant background regarding PUFs, their

reliability and machine learning resistance. Later, we discuss previous work on

Weightless Neural Networks. The relevant prior research into improving the relia-

bility of Weak PUFs has been detailed in Section 2.2.
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4.2.1 PUFs

Pappu et al.introduced Physically Unclonable Function (PUF) as an one-way func-

tion to map challenges to unique responses [93]. The promise of Strong PUFs arose

from the supposed complexity of the challenge-response mapping in each PUF and

the uniqueness of such mappings across chips, which would ideally make the PUFs

resistant to model building attacks. One of the earliest PUFs, called the Arbiter PUF

[75], did not exhibit the salient properties and could be easily cloned [107]. Multiple

alterations were proposed, like using XOR operations, to increase the resistance and

yet, were still broken [107].

Unlike digital PUFs, analog circuits were proposed to harness non-linear behavior

of CMOS transistors under certain operating conditions as a means to increase the

attack resistance of Strong PUFs. Current-based [65,71] and voltage-based techniques

[124] have been shown to be resistant against Support Vector Machine (SVM) learning

algorithm, which had broken the previous digital PUF implementations. However,

Vijayakumar et al.showed that ensemble meta-algorithms were a new class of machine

learning algorithms that could effectively model even the analog PUFs with great

accuracy [125]. Further, side-channel and fault based attacks have also been utilized

to increase the modeling accuracy to break PUFs [70,72,130].

Irrespective of the Strong PUF models proposed, they all had reliability issues.

While this can be mitigated by the fact that we have an exponential number of

CRPs available and we can set a threshold of acceptable responses for practical use in

authentication, the threshold level increases with a decrease in PUF reliability. This

increases the number of CRPs needed to authenticate a device in real-world scenarios

and thus, raises resource costs [103].

SRAM-based Weak PUFs have been studied extensively in previous research [50,

57]. In contrast, Holcomb and Fu proposed a Strong PUF using SRAM cells in

a column of a memory block which are pre-loaded with values based on an input
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challenge. The PUF output is generated by reading multiple cells in a column at

once to create a contention at the sense amplifier, which produces the final response

[56]. Bhargava et al.also explored the application of Weak PUFs to create Strong

PUFs by extracting a stable secret key from Weak PUFs as an input to an AES

block. The plain text input is considered as the challenge and the response is the

cipher text generated by the AES block [24]. In this chapter, we utilize a similar

concept of generating stable Weak PUF bits. The wealth of techniques available to

improve the reliability of Weak PUFs, as detailed in Section 2.2, allows us to create

an efficient implementation that yields the desired number of stable bits for later use

in neural network architectures to realize robust Strong PUFs.

4.2.2 Weightless Neural Networks

Weightless Neural Networks (WNNs) [17] are abstract models of biological neu-

rons where each neuron is represented by a Random Access Memory (RAM) node.

This model offers an attractive practical solution to pattern recognition and artificial

consciousness applications, due to its representation of neurons in a binary format and

due to the capability to implement such networks using existing memory resources in

devices.

WiSARD (Wilkie, Stoneham and Aleksander’s Recognition Device) was one of

the first WNN model developed [16] and was inspired by the n-tuple classifier [27].

Each class is represented by a structure called Discriminator, which comprises of a

set of RAMs, composed of one-bit words, to store the relevant information during the

training phase which will be used during the classification phase. The Discriminator

inputs can be from an arbitrary source and only need to be converted to binary for

use. A binary input of N ·M bits is split in N tuples of M bits. Each Discriminator

consists of multiple RAM blocks (= N), each containing 2M locations, addressed by

their respective M -bits. Tuples are connected to the binary input in a biunivocal
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pseudo-random mapping and provide the address to each RAM block. A WiSARD

system can have any number of such Discriminators and hence, any number of desired

classes.

During the training phase, all RAMs of the WNN are initialized to zero (0). The

training input is sent to each Discriminator, where the accessed RAM positions are

set to one (1). During classification, an input is sent to all Discriminators and the

Discriminator which presents the highest response is selected as representative class

for the input. The discriminator response is calculated by summing all accessed RAM

values.

The structure of WiSARD can be readily implemented in hardware using standard

SRAM memory and address decoding to provide high generalization capabilities and

real-time performance. The classification phase of WiSARD will be utilized to realize

the PUFs in this work.

4.3 Strong PUFs based on Weightless Neural Network

In this section, we present a Strong PUF design inspired by the WiSARD model

and examine some extended versions with the objective of improving the machine

learning resistance. All architectures produce a 1-bit output response, given an m-bit

input challenge.

4.3.1 WiSARD PUF

The first design is termed as WiSARD PUF and depicted in Figure 4.1. It is

composed of a single Discriminator containing multiple RAM blocks. The input is a

challenge string, which is sliced in a pseudo-randomic way into multiple tuples. Each

tuple forms the address of a unique RAM block, Ri, and decides the size of the block.

The 1-bit memory locations from the RAM blocks are accessed according to the input

challenge and passed to a counter that accumulates the number of 1’s. The final 1-
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Figure 4.1: Example of WiSARD PUF architecture [108].

bit response is generated through the majority voting over the counter value. For

the proper majority voting functionality, an odd number of RAM blocks are required.

The challenge to tuple mapping is adapted accordingly to create odd number of RAM

blocks, as shown in Figure 4.1 where 16-bits input challenge is mapped to three 4-bit

tuples and two 2-bit tuples to complete the total of 5 RAM blocks.

The process to produce the final output response from Strong PUF is similar to

the WiSARD classification phase, that applies counting to the accessed RAM bits

instead of summing those bits as Discriminator response. Different from conventional

WiSARD, there is no training phase. The RAM blocks consist of SRAM cells whose

process variation dependence ensures to store the random values in each RAM content

when powered on, like SRAM PUFs [50,57]. Two WiSARD PUFs can have their own

random RAM contents and also pseudo-randomic mapping of challenge to tuples.

SRAMs outputs are susceptible to noise resulting in erroneous behavior upon

multiple power-ons [79]. This can affect the reliability of the WiSARD PUF which
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comprises multiple SRAM cells. Consequently, it is crucial to consider the intra-class

Hamming distance and ensure that the Strong PUF reliability is acceptable.

It is possible to have unique input-to-tuple mapping for each PUF. However, this

can prove costly in terms of actual hardware implementation as it involves imple-

menting additional circuitry to create the mapping. Multiple mapping techniques

can be used, but are considered beyond the scope of this work. For simplicity, we will

assume a case where the mapping is fixed across all WiSARD PUFs by the designer,

as presented in Figure 4.2. All subsequent architectures that will be discussed assume

a fixed mapping of the input challenge to tuples across all PUFs.

4.3.2 Extensions to WiSARD PUF architecture

Since using a WiSARD PUF with simple majority voting on the RAM block

outputs can be sufficient to create a Strong PUF, we also explore possible extensions

to the original design with the hope of improving machine learning resistance in
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Figure 4.3: Example of WiSARD PUF architecture with extra bits and tuple rotations
(circular shifts) [108].

comparison to the WiSARD PUF. In particular, we investigate to affect either the

tuple generation for addressing the RAM blocks or the output process of the blocks

in different ways to generate the final output response.

4.3.2.1 Fuzzy logic based address generation

A popular way to deal with noisy data is to harness fuzzy extractor, as evidenced

by its advantageous use in deriving stable keys from biometric data [40, 76]. Fuzzy

logic has also been extensively used to improve reliability of Weak PUF in the pres-
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ence of noise [29, 39, 80, 83]. Fuzzy extractor is usually split into enrollment and

reconstruction phases. During enrollment, helper data is created manipulating the

input data, say PUF response bits, in a trusted environment. Reconstruction as-

sumes that the received data is noisy and uses the proper helper data to retrieve the

error-free response originally used in the enrollment phase.

We utilize fuzzy extractor concepts to first generate more data from RAM blocks

than in a normal WiSARD PUF, akin to helper data generation and then, reduce

this data to obtain the final PUF response (Reconstruction). Two approaches were

utilized to affect the challenge tuples so as to collect multiple outputs from each RAM

block – (a) add extra bits in random locations to each tuple; (b) perform rotation (or

circular shift) operation on each tuple.

In extra bits approach, we add e extra bits to each tuple allowing to generate all

2e combinations of the extra bits and correspondingly, the same number of addresses

and outputs from each RAM block. All combinations can be generated internally

using a simple counter. For the second approach, the original challenge tuple is

used to obtain the output from the corresponding RAM block. Then, we perform a

predefined number of right circular shift (or rotation) operations on the tuple and

generate multiple outputs using the new addresses.

Both methods help access more of the system entropy for the same input challenge

to further help inoculate the PUF against machine learning attacks. An example for

16-bit input challenge and 2 extra bits (or 2 tuple rotations) is illustrated in Figure 4.3.

Each RAM block generates 3 outputs which undergo majority voting to produce a

single output. The new outputs undergo a second majority voting process to produce

the final 1-bit response. We ensure that an odd number of inputs are utilized for the

majority voting either by performing an even number of tuple rotations, or by adding

(2e)−1 combinations of the extra bits, and using odd number of RAM blocks, similar

to the basic WiSARD architecture.
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Figure 4.4: Example of RM-WiSARD PUF architecture [108].

4.3.2.2 Concatenated codes based response generation

The response generation in the basic WiSARD architecture, as shown in Fig-

ure 4.1, utilizes majority voting, which is akin to using a repetition code. Other

error-correcting codes (ECC) can also be implemented for the purpose of generating

the final response from the RAM block outputs. Based on the code scheme, it is

possible to introduce a non-linear relationship between the RAM outputs and the re-

sponse, in contrast to the linear relationship exhibited by majority voting. This can

greatly benefit the machine learning resistance of the final Strong PUF. Christoph

Bösch illustrated the advantages of using concatenated error-correcting codes (ECC)

to improve Weak PUF reliability and also provided detailed hardware implementation

of various ECC schemes [29]. We employ one of the concatenated ECC schemes and

present an alteration to the basic WiSARD architecture discussed previously.

In this work, Reed-Muller (RM) code-based decoding is applied to the RAM block

outputs, as illustrated in Figure 4.4. The final response is generated by using the

repetition code on the output bits of the RM decoder. The new design is termed
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Figure 4.5: Example of RM-WiSARD PUF architecture with concatenated code (tu-
ple rotations)[108].

as the RM-WiSARD architecture. The RM decoder used in our design accepts an

input of length 2m and generates an (m + 1)-bit output. The decoder is referred to

as RM(1,m) Decoder. The architecture is changed to contain 2m RAM blocks to

produce the necessary outputs. The Hadamard transform algorithm is implemented

by the decoder with a simple modification to extract a final code of odd length. A

Reed-Muller decoder hardware implementation scales with the chosen value of m and

has been detailed by Christoph Bösch [29].

RM-WiSARD implementation can be further modified to utilize extra bits or tuple

rotations, similar to basic WiSARD architecture. The RM decoder is appropriately

modified to accommodate the final PUF response generation. Figure 4.5 illustrates

an example of the RM-WiSARD implementation where repetition code is applied to

the outputs from tuple rotation of each RAM block. Then, the results are passed

to the RM decoder which produces an output with odd number of bits. We use the

repetition code again to get the final 1-bit response, as desired.
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4.4 WNN PUF - Experimental Setup and Results

In this section, we evaluate the proposed designs in Section 4.3 to identify which

one can provide the highest machine learning resistance. We also analyse the inter-

class (uniqueness) and intra-class (reliability) Hamming distance metrics to further

compare and contrast the suitability of various designs as Strong PUFs.

4.4.1 Setup

All PUF experiments are simulated in Python and the relevant SRAM circuit

data is obtained from SPICE simulations using 45 nm transistor models [6]. Each

PUF receives a 64-bit input challenge to produce a 1-bit response. The Discriminator

SRAM cells of each PUF instance are filled with the random power-on states such

that the average number of 1’s and 0’s are equal. The general details about the

WNN designs are tabulated in Table 4.1. For designs that have 9 RAM blocks, 7 are

addressed by 8-bit tuples while the remaining two use 4-bit tuples. The extended

address generation designs assume 2 extra bits and 2 rotations for the respective

implementations. All RM-WiSARD PUF design variants utilize the RM(1, 3) decoder

for response generation. Except original WiSARD PUF, all the designs assume a fixed

input-to-tuple mapping across PUFs, as depicted in Figure 4.2.

4.4.2 Uniqueness

Uniqueness is a property wherein each PUF generates different responses com-

pared to the others PUFs for the same challenge. Inter-class Hamming distance

(HD) is the metric used to determine uniqueness. We calculate the Hamming dis-

tances between the responses of each pair of PUFs for the same challenge and average

the results over many challenges and PUF instances. The average of inter-class HD,

dinter, can be defined as:

dinter =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

HD(ri, rj)

n
(4.1)
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Table 4.1: WiSARD PUF design architectures for 64-bit challenges [108]

#RAM
Blocks

#Addresses #SRAMs

WiSARD PUF 9 7 · 28 + 2 · 24 1, 824

WiSARD PUF
(fixed tuple)

9 7 · 28 + 2 · 24 1, 824

RM-WiSARD PUF 8 8 · 28 2, 048

WiSARD PUF + 2
Extra bits

9 7 · 210 + 2 · 26 7, 296

WiSARD PUF + 2
rotations

9 7 · 28 + 2 · 24 1, 824

RM-WiSARD PUF
+ 2 Extra bits

8 8 · 210 8, 192

RM-WiSARD PUF
+ 2 rotations

8 8 · 28 2, 048

where k is amount of PUFs, n is the total of bit responses and HD(ri, rj) is Hamming

distance between responses of the PUF instances i and j to a particular challenge. A

PUF is considered ideal when the normalized inter-class HD = 0.5.

For this experiment, (k =) 1000 PUF instances were evaluated for each design,

(n =) 1000 challenges were applied to each PUF to produce the total of 1000 response

bits. Table 4.2 summarizes the uniqueness results for the several PUF designs.

We notice that every designs have the mean close to the ideal 0.5 and the original

WiSARD PUF (random input-to-tuple mapping) resulted in the highest normalized

HD. Considering the extended tuple generation designs, the tuple rotation offered

better results in comparison to extra bits scheme. Lastly, while we consider fixed
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input-to-tuple mapping for the majority voting of the WiSARD PUF variants, it may

be beneficial to explore efficient random challenge mapping in hardware in order to

extract greater uniqueness from the system.

4.4.3 Reliability

Reliability is the PUF property to produce the correct response given the same

challenges even in the presence of noise. Intra-class Hamming distance is the metric

used to evaluate reliability. We calculate the intra-class HD by extracting the correct

responses (ri) from a PUF under ideal conditions and obtain a set (m) of noisy re-

sponses (r′i) by introducing errors in RAM locations across multiple power-ons. Then,

the Hamming distance between the correct and the noisy responses for each challenge

is performed. An ideal PUF should have intra-class HD = 0 for any challenge, rep-

resenting 100 % reliability. The average of intra-class HD, dintra, is calculated as:

dintra =
1

m

m∑
t=1

HD(ri, r
′
i,t)

n
(4.2)

where n is the number of CRPs collected from each PUF and HD(ri, r
′
i,t) is Hamming

distance between responses of the right PUF instance i and its t-th noisy instance to

a particular challenge.

To simulate the noisy conditions, we consider that each SRAM cell has an em-

bedded inherent error rate across multiple power-ons. Roel Maes introduced hetero-

geneous error modeling with cell-specific error probabilities to evaluate the reliability

of PUFs with high accuracy [79]. We utilized the proposed 2-parameter error model

to assign the error rates to our SRAM cells. 10, 000 SRAM cells were simulated in

45 nm CMOS technology [6] in the presence of thermal noise and the error rates for

each instance were obtained across 1000 power-ons. The data was curve-fitted to

obtain the relevant parameters, found to be λ1 = 0.2916 and λ2 = 1.9062. Utilizing
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Table 4.2: Uniqueness and Reliability results for WiSARD PUF variants [108]

PUF Type
Uniqueness

(dinter)
Reliability (dintra)

WiSARD PUF 0.4995 0.0375

WiSARD PUF
(fixed tuple)

0.4917 0.0385

RM-WiSARD PUF 0.4855 0.0477

WiSARD PUF +
Extra bits

0.4771 0.0415

WiSARD PUF +
Tuple rotation

0.4957 0.054

RM-WiSARD PUF
+ Extra bits

0.4775 0.0573

RM-WiSARD PUF
+ Tuple rotation

0.4861 0.0687

the methodology proposed by Maes [79], we can generate error rates for an arbitrary

number of SRAM cells that will constitute the WNN PUFs.

The WiSARD PUF designs are simulated to obtain the responses across multi-

ple power-ons applying the same challenges. For each design, 100 PUF instances

were analyzed where each one received (n =) 1000 challenges and for each challenge

(m =) 100 noisy responses were generated by simulating multiple power-ons for the

SRAM cells. Table 4.2 presents the reliability results for the various PUF designs. We

notice that the original WiSARD PUF performs better than all the other variants.

Furthermore, in the extended tuple generation designs, the extra bits offered better

reliability in comparison to tuple rotation scheme, in contrast with the uniqueness

results. Possibly, utilizing different processing schemes for the RAM block outputs

can further improve reliability. Those schemes will be targeted in the future works.
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4.4.4 Machine Learning Resistance

Popular techniques like Logistic Regression (LR) and Support Vector Machine

(SVM) have demonstrated the ability to model previous digital Strong PUF designs

[107]. Sophisticated machine learning (ML) based on ensemble meta-algorithms, like

Gradient Boosting, were shown to break even analog Strong PUFs, that were initially

resistant to SVM, by Vijayakumar et al.[125]. In this work, we consider LR, SVM

and Gradient Boosting (Grad Boost) to measure the attack resilience of the proposed

designs.

The machine learning algorithms were implemented in Python using the scikit-

learn tools [9]. Gradient Boosting was configured with the number of estimators

set at 128 and learning rate of 0.01. For LR, we set the inverse of the regularization

strength to a value of 10−5. SVM utilizes radial basis function (RBF) kernel machines

to model non-linearly separable functions as linearly separable in higher dimensions.

We analyze 100 PUF instances for each design and collect 150, 000 CRPs for each

PUF instance of which 100, 000 CRPs were used for training to obtain the cloned

PUF model and 50, 000 CRPs were applied for testing the machine learning accuracy.

An ideal Strong PUF will have machine learning accuracy of 50 %, which is akin to

random guessing.

The mean and standard deviation of machine learning accuracy obtained through

discussed ML algorithms for each PUF architecture are tabulated in Table 4.3. Gra-

dient Boosting offered the best learning accuracy and all RM-WiSARD PUF variants

showed high machine learning resistance across the various learning algorithms with

’RM-WiSARD PUF with Tuple rotation’ providing the best results. We also observed

that applying extra bits or tuple rotation modifications to the original WiSARD PUF

worsened the mean modeling attack resistance for those PUFs. However, these results

were generated for a fixed challenge-to-tuple mapping. It is possible that changing
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Table 4.3: Machine Learning results for WiSARD PUF variants [108]

PUF Type

Machine Learning Accuracy

Grad
Boost

SVM LR

µ σ µ σ µ σ

WiSARD PUF 0.79 0.016 0.690 0.020 0.637 0.246

WiSARD PUF
(fixed tuple) 0.790 0.017 0.687 0.026 0.630 0.032

RM-WiSARD
PUF

0.612 0.028 0.585 0.01 0.583 0.048

WiSARD PUF
+ Extra bits

0.815 0.018 0.722 0.028 0.652 0.033

WiSARD PUF
+ Tuple rotation

0.822 0.019 0.662 0.017 0.600 0.023

RM-WiSARD
PUF + Extra

bits
0.667 0.047 0.61 0.04 0.602 0.039

RM-WiSARD
PUF + Tuple

rotation
0.594 0.011 0.584 0.008 0.584 0.008

this mapping may affect the distribution of accuracies across the variants of WiSARD

PUF. However, the mapping was not one of the control variables in our experiments.

4.4.5 Hardware Analysis

As all presented the designs in Section 4.3 integrate a Weightless Neural Network

hardware and extra resources for concatenated code and fuzzy logic versions, the
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main resource costs originate from the number of SRAM cells, area cost of final

response bit generation and challenge-to-tuple mapping. The fixed mapping, shown

in Figure 4.2, can be achieved with minimal resources and most designs require ≤ 2K

SRAM bits aside from extra-bits schemes which require large number of SRAM bits,

as seen in Table 4.1. Unit SRAM cell size of 0.346µm2 , quoted by Intel [89], in

45 nm technology node gives us an area of 710µm2 for 2K SRAMs with additional

area coming from interface circuitry. If an IC has the option of also utilizing the

WNN for neural network applications, then we can amortize their resource costs

over both applications. Reed-Muller decoder hardware implementation detailed by

Bösch [29] achieved 248.976µm2 area for RM(1, 3) and the repetition code decoder

31.92 µm2 area, both costs determined by 45 nm standard cell library [5]. These

resources represent a small overhead in comparison to the size of the RAM blocks

and further reduction can be achieved by sharing decoder hardware and serializing

the PUF operation.

4.5 Reliable Strong PUF Implementation

In this section, we explore the construction of a Strong PUF using reliable Weak

PUFs as the initial entropy source and combining them with Weightless Neural Net-

works (WNNs), using the WiSARD model. Further, we explore alterations to the

basic WNN architecture, presented in Section 4.3, with the intention of improving

the machine learning resistance of the Strong PUF. All presented architectures pro-

duce a 1-bit output response, given an m-bit input challenge.

4.5.1 Reliable Weak PUF Entropy Source

To construct a reliable Strong PUF, we utilize Weak PUFs as the sources of

entropy in the PUF system. Such an approach allows us to harness the extensive

research carried out into making Weak PUFs reliable, as discussed in Section 2.2.

67



EntropyEntropy Source

Response

Register

0/1

Challenge

WNN PUF

256

128
64

32

R0

R1

R2

R3

256

Counter/
RM

Figure 4.6: Reliable Strong PUF implementation

Using potent Weak PUF designs [96], robust error correction mechanisms [126] and

techniques such as accelerated aging and masking [85] allows us to create a highly

reliable binary string (or secret key) from an array of Weak PUFs. Such a binary

string represents the process variation dependence of the final Strong PUF design and

is unique to each IC.

In this work, we seek to find the smallest length of the binary string required for

creating a Strong PUF that possesses high uniqueness and machine learning resis-

tance. Having a smaller entropy source results in smaller area for the Strong PUF.

For our work, we study the case where we have 256, 128, 64 or 32 initial reliable Weak

PUF bits that will be used to fill the WNN RAM cells.

4.5.2 Complete Strong PUF architecture

The complete Strong PUF implementation requires that the RAM contents be

filled with the reliable Weak PUF bits in an equi-probable manner to reduce bias
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in the system. For example, if there are 210 total RAM locations in the WNN and

we obtain 28 reliable bits from Weak PUFs, then each bit needs to be randomly

mapped to 210/28 (= 4) unique locations. The random mapping can be implemented

in hardware by either using a crossbar network or hard-wiring each Weak PUF bit to

the appropriate RAM cell.

The complete Strong PUF, as illustrated in Figure 4.6, assumes a 256-bit register

is used to store the Weak PUF bits. The register itself obtains its data from an

initial number of reliable Weak PUFs, ranging from 32 to 256 bits. When considering

smaller number of initial reliable bits, we make the relevant number of copies to get

a total of 256 bits. The contents of the register are, then, used to load the WNN

RAM locations. The WNN processes the input challenges to produce the final 1-bit

response.

4.6 Reliable Strong PUF - Experimental Setup and Results

In this section, we evaluate the proposed reliable designs discussed in Section 4.5

to find out how the size of the initial entropy source in the form of reliable Weak PUF

bits influences the Strong PUF machine learning resistance and uniqueness. Next, we

provide an analysis of the results with the purpose of identifying the minimum entropy

source size that can provide higher machine learning resistance and high uniqueness.

Since in Section 4.5 the Weak PUFs have high reliability, for these experiments we

consider all architectures with 100% reliability.

4.6.1 Setup

All PUF experiments in this section are simulated in Python and the relevant

SRAM circuit parameters are obtained from SPICE simulations using 45 nm transistor

models [6]. Each PUF receives a 64-bit input challenge and produces a 1-bit response.

The Discriminator SRAM cell contents are filled with the contents of the 256-bit
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Table 4.4: Reliable WiSARD PUF Architectures with 64-bit Challenges

#RAM
Blocks

# Addresses # SRAMs

WiSARD PUF 9 7 · 28 + 2 · 24 1, 824

RM-WiSARD PUF 8 8 · 28 2, 048

WiSARD PUF +
Tuple rotation

9 7 · 28 + 2 · 24 1, 824

RM-WiSARD PUF
+ Tuple rotation

8 8 · 28 2, 048

register which, in turn, is loaded by the Weak PUF entropy source, as described in

Section 4.5.2. The Weak PUFs in the entropy source are assumed to have equal

number of 1s and 0s and are unique across PUF instances.

The general details about WNN designs simulated in this section are tabulated in

Table 4.4. Note that the extra bits schemes were not included for these experiments

due to worst results discussed in Section 4.4. For designs that have 9 total RAM

blocks, 7 are addressed by 8-bit tuples while the remaining two use 4-bit tuples. The

designs with tuple rotations assume 2 rotations and both RM-WiSARD PUF design

variants utilize the RM(1, 3) decoder for response generation. Finally, all the designs

assume a fixed input-to-tuple mapping across PUFs, as depicted in Figure 4.2.

4.6.2 Uniqueness

Uniqueness was defined in Section 4.4.2. For this experiment, 100 entropy source-

to-WNN random mappings were generated for each PUF architecture. For each

instantiated Strong PUF of any architecture, (n =) 1000 challenges were applied and

(k =) 100 such instances were evaluated. The entropy size was varied to 32, 64, 128

and 256 Weak PUF bits in each PUF instance, as illustrated in Figure 4.6.
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Table 4.5: Uniqueness Standard Deviation results for PUF architectures with varying
Entropy Source sizes

PUF Type

Standard Deviation of Uniqueness
(σ)

32 64 128 256

WiSARD PUF
(fixed tuple)

0.0869 0.0586 0.0412 0.0314

RM-WiSARD PUF 0.0238 0.0194 0.0173 0.0164

WiSARD PUF +
Tuple rotation

0.1413 0.0905 0.0581 0.0417

RM-WiSARD PUF
+ Tuple rotation

0.0319 0.0222 0.0185 0.0170

The mean inter-class HD was found to be close to the ideal 0.5 ranging between

0.4661 to 0.5001 for all designs and entropy source sizes. The minimum standard

deviation results for the various PUF designs are tabulated in Table 4.5, representing

the best entropy source random mapping among the 100 generated mappings. We

observe that standard deviation decreases as the entropy source size increases in any

given design. The original RM-WiSARD PUF with a 256-bit entropy source offered

the lowest standard deviation with the mean inter-class HD of 0.4858.

4.6.3 Machine Learning Resistance

Machine Learning Resistance was defined in Section 4.4.4. In this experiment, we

use Gradient Boosting (Grad Boost) to estimate the attack resistance of the proposed

reliable designs as it consistently outperforms LR and SVM.

Gradient Boosting was implemented in Python using the scikit-learn tools [9] with

the number of estimators set at 128 and learning rate of 0.01. For each scenario, the 10

best entropy source mappings were selected from the uniqueness results, representing
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the 10 smallest standard deviations. These mappings help shortlist the candidates

for machine learning analysis and reduce the number of experiments. 150, 000 CRPs

were applied to each PUF instance out of which 100, 000 CRPs were used for training

a model with Gradient Boosting. The trained model was tested using 50, 000 CRPs to

measure the machine learning accuracy of the cloned PUF. For each selected design,

100 PUF instances were simulated.

Figure 4.7 presents the distributions of machine learning accuracies for varying

entropy sizes for the RM-WiSARD PUF implementation considering the best map-

ping of the 10 shortlisted entropy source mappings. This implementation provided

the best machine learning accuracy results compared to the other architectures. As

with the uniqueness results, an increase in the entropy source size results in decreased

machine learning accuracy and also, a smaller standard deviation. The average ma-

chine learning accuracy for each PUF architecture with varying entropy source sizes

is summarized in Table 4.6. For faster analysis, the random entropy mapping is cho-

sen for each design by considering the results from an entropy source size of 256 bits

and then, changing the size while keeping the same mapping. We see that the RM-

WiSARD PUF variants offered higher machine learning resistance than the simple

WiSARD variants. Moreover, we see that we are still able to get ≤ 65 % machine

learning accuracy by considering just 32 initial reliable Weak PUF bits. Hence, the

RM-WiSARD PUF with an entropy size of 32 can offer high machine learning resis-

tance while still exhibiting good uniqueness. This aids us in realizing a smaller Strong

PUF.

4.7 Discussion

In this section, we discuss certain aspects of our PUF implementations and also,

detail possible future improvements to the system.
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(a) Entropy size = 32 (b) Entropy size = 64

(c) Entropy size = 128 (d) Entropy size = 256

Figure 4.7: Gradient Boosting machine learning accuracy distributions for RM-
WiSARD PUF

Attack Scenario: For our work, we assume that the PUF is a black box from the

perspective of an attacker and only the PUF CRPs can be intercepted for use in model

building attacks. This requires that the designer take the necessary precautions:

ensure that RAM block contents, required in the neural network implementation, are

not accessible outside the system and prevent any data leakage from PUF system,

especially the Weak PUF bits.

Further, the black box perspective offers protection, when utilizing just 32 initial

reliable Weak PUF bits, against brute-force guessing of possible bit values. In reality,

a designer may choose to have a larger entropy source to increase security. Future

works will focus on studying the security of the PUF in case an attacker has knowledge
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Table 4.6: Gradient Boosting-based Machine Learning Accuracy for WiSARD PUF
variants

PUF Type
Machine Learning Accuracy (%)

32 64 128 256

WiSARD PUF 82.60 81.87 81.74 81.26

RM-WiSARD PUF 60.93 60.17 59.39 59.00

WiSARD PUF +
Tuple rotation

85.22 83.40 82.32 81.74

RM-WiSARD PUF
+ Tuple rotation

64.87 62.44 60.93 59.15

of the PUF architecture due to possession of a physical device. Possible fault injection

attacks will also be explored.

Hardware Implementation: One of the major resource costs for the reliable designs

is the number of WNN memory cells required. As seen from Table 4.4, the WNN

implementations require a maximum of 2K bits and the details of hardware resources

is discussed in Section 4.4.5.

The other major area intensive unit is the Weak PUF block required to generate

the reliable bits for the WNN. From Table 4.5 and Table 4.6, we can see that the RM-

WiSARD PUF architectures allow us to achieve both high uniqueness and machine

learning resistance by considering just 32 initial reliable Weak PUF bits. Using the

details provided in the work by Vijayakumar et al.[126] and assuming a 45 nm stan-

dard cell library [5], we assume the 16 : 1 mux implementation and a 5 % observable

yield loss that necessitates we use 48 (∈ 16Z) to obtain the final reliable 32 bits. This

gives us an area of ≈ 550µm2, which is significantly less than the area that the WNN

memory cells need.
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Figure 4.8: Combinational logic-based implementation of Strong PUF

We note that it is possible to use keyed hash functions, like Keccak [48], with

Weak PUF bits to obtain a Strong PUF implementation. The area for an efficient

hash implementation was found to be 2280 gate-equivalents [48] or ≈ 1900µm2 in

45 nm standard cell library [5]. To make a comparison with our designs, the area

needed to generate the initial stable Weak PUF bits can be considered necessary

to both the keyed hash and our PUF design and hence, excluded from comparison.

Further, as noted in Section 4.4.5, the area for the RAM-based version of our design

is highly dependent on practical implementation considerations.

An alternative PUF implementation is based on two mapping operations. The first

mapping is between the input challenge to the tuple for addressing the RAM blocks.

The second mapping is for the RAM content based on the Weak PUF entropy source.

These maps can be implemented as a 2D crossbar or as combinational logic. Figure 4.8

shows the schematic for a combinational system. The RAM Select is used for virtual
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Table 4.7: Combinational Logic implementations of PUF with varying Entropy
Sources

Entropy Source (bits) Area (µm2)

32 1710

64 2060

128 2400

256 2650

RAM block (Ri) selection while the specific bit is selected via Bit Select control.

Table4.7 summarizes the silicon areas, in 45 nm standard cell library [5], for varying

sizes of the entropy source. We see that the randomly mapped implementation of the

proposed Strong PUF compares favorably with the optimized Keccak design.

4.8 Conclusion

Strong PUFs have been promised to provide a low cost alternative to cryptography-

based authentication. However, unreliability in Strong PUFs can increase the number

of CRPs needed for proper authentication and low resistance against model building

attacks using machine learning techniques can create a security risk. Hence, it is ad-

vantageous to develop a Strong PUF architecture that possesses high reliability and

also, offers greater resistance to machine learning attacks. In this work, we seek to

leverage the extensive work done to obtain high reliability for Weak PUFs and inte-

gration of neural networks in hardware to create new Strong PUF designs that can

offer high reliability while maintaining high machine learning resistance and unique-

ness. This work proposes a novel Strong PUF architecture composed of WiSARD

Neural Network (WNN) and further explores variations of such a design. To obtain

greater reliability, we extend the designs by using an initial, reliable Weak PUF en-

tropy source mapped into the WNN and analyze the minimum entropy source needed

to ensure a Strong PUF. Our results show that it is possible to create highly reliable
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Strong PUFs with < 65 % ML accuracy by using as few as 32 reliable Weak PUF

bits.
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CHAPTER 5

REALIZING ROBUST, LIGHTWEIGHT, MODELING
ATTACK RESISTANT STRONG PUFS FROM WEAK

PUFS

5.1 Introduction

Building on the work in Chapters 2 and 3, in this chapter, we propose a Strong

PUF system that utilizes reliable SRAM-based Weak PUFs as the initial entropy

source against which the states of a linear-feedback shift register (LFSR) are compared

using Hamming distance (HD) as the metric. We find the LFSR state that is closest

to the Weak PUF string, i.e. the state which yields the minimum HD. The number

of iterations, termed the index, needed by the LFSR to reach the target state from

its initial seed state is recorded as the output response. The LFSR seed state is

set by an external challenge and this, in turn, changes the observed indices for the

same Weak PUF source against different challenges. Our scheme handles a large

Weak PUF string by dividing it into substrings of the length of a smaller LFSR and

collecting a set of indices. A concatenation of these indices forms the output response

of our PUF system. We also extend our mechanism to incorporate rounds where the

response output of the first round becomes the challenge seed for the next round.

Our results show that it is possible to create a lightweight, robust key generation

system that exhibits ideal Strong PUF characteristics with respect to uniqueness and

modeling-attack resistance while maintaining the high degree of robustness offered by

the Weak PUFs. Our proposed system has small area overhead and produces large

set of responses with the same length as the initial Weak PUF string. Also, the Weak

PUF source is never exposed to unauthorized parties.
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5.2 Motivation

We have explored relevant research relating to the reliability of Weak PUFs and

on Strong PUFs with particular focus on modeling-attack resistance in Sections 2.2,

3.2 and 4.2. In this section, we briefly discuss the motivation for this work.

Paral and Devadas proposed a pattern matching key generation (PMKG) scheme

that could alleviate the effects of noise on PUF outputs without the need for error

correction codes, while providing a strong key that does not expose the PUF bits.

Pattern matching is done using Hamming distance (HD). The initial PUF output

is divided into substrings which are accessed based on input challenge. A substring

is associated with an index and a set of indices are used to generate the final key

while the PUF substrings are stored as helper data to aid in error correction [94].

Komano et al.proposed a more optimized PMKG solution offering greater security

[68]. However, these PMKG schemes have significant area overheads and storage

requirements for auxiliary data to produce a robust key.

Our goal is to utilize the lightweight hardware-based Weak PUF reliability en-

hancements to generate an initial set of robust bits. Then, we utilize the concepts

from the previously discussed PMKG schemes to design a system that can utilize the

robust Weak PUF bits and produce secure responses to input challenges without ex-

posing the initial Weak PUF bits. We show that it is possible to implement a reliable

and secure Strong PUF that is also lightweight compared to previous designs. Also,

our design takes an n-bit input challenge and produce an n-bit output response.

5.3 Proposed Method

In this section, we will first explore the basic implementation of the LFSR-based

key generation system. Based on this foundation, we will next discuss various modi-

fications and extensions to the system to make it more robust in terms of security.
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Figure 5.1: Illustration of the basic key generation system

5.3.1 Basic System

Figure 5.1 illustrates the operation of a basic LFSR-based key generation system

with an initial n-bit Weak PUF entropy source. An m-bit Galois LFSR (m <= n) is

used to generate the various states used for comparison with the Weak PUF entropy

source. We record all the shift registers in the LFSR to produce the m-bit output or

state per cycle. Using a smaller LFSR necessitates that the PUF string be divided

into substrings of size m, which are then processed individually. For simplicity, we

assume that m is a divisor of n. The seed to the LFSR is derived from an n-bit

challenge input. Hence, multiplexers are used to select and forward the relevant

seed/PUF substring to the LFSR during operation. If the seed input to the LFSR

contains all zeros, we add 1 to the input LSB to prevent the LFSR from locking up.

Substring selection is done by the Control Unit, which also produces the clock for the

system.
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In our work, we choose a primitive polynomial, or taps, for the LFSR feedback so as

to ensure a unique output sequence of maximal length, i.e. 2m−1 states. An iteration

during operation is defined as obtaining the next m-bit LFSR state. An m-bit counter

is used to track the number of iterations and is used to obtain the index. Once the

LFSR is initialized with the seed, we obtain the next state for comparison with the

PUF substring. Also, an index register is initialized to 0. Hamming distance (HD)

between the LFSR state and the PUF substring is calculated and stored as the initial

minimum HD in an HD register. During the subsequent iterations, the calculated HD

is compared with the previously stored minimum HD and updates are made to the

stored HD and index registers if the new HD is lower. As we use a maximal-length

LFSR, the number of iterations needed to process all states is 2m − 1 and is checked

using the Last Iteration condition. Using a maximal-length LFSR allows the index to

cover the full range of values, i.e. ∈ {0, . . . , 2m− 1}. Otherwise, the LFSR states will

have a cycle length < 2m − 1, producing repeating states. Since we only update the

index when a new HD lower that the current minimum is found, the final index can

have most significant bits that are always 0. In contrast, updating the index register

whenever the calculated HD ≤ minHD introduces bias in the least significant bits as

the minimum state is likely to repeat at least once before the counter goes through

all 2m − 1 cycles. Such bias is translated to the final output, reducing the entropy in

the system.

Once each PUF substring is processed, the index output is directed towards the

Final Key register using demultiplexers. Control Unit selects the next PUF substring

and corresponding LFSR seed bits from the Challenge input. At the end of the key

generation operation, we obtain an n-bit key after processing all the substrings.

In the aforementioned design, an attacker can recover the circuitry by reverse-

engineering the hardware and figure out the taps utilized in the LFSR. Since the

LFSR is a linear system, observing the input challenge seed and the output key can

81



allow the attacker to recover the initial Weak PUF bits, breaking the system. Even

without hardware reverse-engineering, an attacker might be able to figure out the

LFSR taps using the Berlekamp–Massey algorithm by just observing the inputs and

outputs to the system. Hence, we need to modify our basic design to improve its

robustness.

5.3.2 Key Generation with Rounds

A simple modification is to perform multiple rounds of the entire operation by

using the key generated from one round as the input challenge in the next. The

final output key will have a significantly high degree of non-linearity regarding its

relationship with the initial Weak PUF entropy source and input challenge. Such re-

cursive operations have been proven to be highly advantageous in the implementation

of many cryptographic functions, such as Advanced Encryption Standard (AES). In

such a case, the challenge input register can be re-used to store the key from the

current round for the next round. For example, in the first round, once a particular

challenge substring has been processed, the resulting index output can be written

back to the location of that challenge substring. This allows us to save area needed

for additional registers.

5.3.3 Tap Selection

The first possible modification is to introduce the ability to change the taps of

the LFSR. An LFSR can have multiple primitive polynomials or tap selections that

results in maximal length sequences and the order of states is unique to a sequence.

Hence, we can choose between the polynomials based on certain conditions to realize

different LFSRs. The LFSR is suitably modified to allow for such an operation. Given

our goal that the initial Weak PUF entropy source bits should not be exposed to the

outside world when a device is being authenticated, these secret bits can be used as

inputs to a selection function that chooses one of the maximal-length LFSR taps.
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Figure 5.2: Illustration of the LFSR tap selection system

Hence, the LFSR behavior is now dependent on the system’s secret and an attacker

would have to guess the Weak PUF bits to find out the taps used in the LFSR,

increasing the complexity of the attack. We note that the tap selection is specific to

the PUF substring and does not change with respect to any other input. We term

this as a static tap selection.

For the basic system described in Section 5.3.1, Figure 5.2 illustrates how we

implement the tap selection system for m = 8. An 8-bit LFSR has 16 primitive

polynomials. We take the first 4 bits (or nibble) and the last 4 bits of the 8-bit PUF

substring and process them by performing bitwise exclusive OR operation to get a

4 bit output. Thus, we need 4 XOR gates in hardware. This becomes the input to

the selection function, represented by a multiplexer array. The 8 bit output of this

function sets the taps of the LFSR for that particular 8-bit PUF substring.

While the aforementioned tap selection process is static with respect to the input

of a particular round, it is possible to make it dynamic by making the tap selection
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input dependent on both the PUF substring and the input seed substring. As we

perform rounds, the input seed changes and hence, will influence the selected taps

for a particular substring. Here, the PUF substring can be considered as providing

the secret static offset to the tap selection input. We process the seed substring in

the same manner as in Figure 5.2 to get a 4-bit string which is then combined with

the 4-bit string obtained from the PUF substring to get the final tap selection input.

Hence, we will need 12 (or 3 sets of 4) XOR gates in total to realize the dynamic tap

selection.

5.3.4 Coupling the Index output and Seed

Another possible modification is to perform bitwise exclusive or operation between

the m-bit index output from processing one PUF substring and the m-bit LFSR seed

input used for processing the next selected PUF substring. This affects the next

substring’s index output as the initial state of the LFSR is changed compared to

using the initial seed bits directly. The attacker will need to know the order of PUF

substring selection and then, work their way backwards. Combined with tap selection

and employing multiple rounds, this increase the attack complexity significantly by

introducing significant interdependence between the output bits.

The selection sequence of the next PUF substring to process during a given round

can be set by the designer. In this work, we analyze two types of selection sequences.

5.3.4.1 Consecutive Selection

The simplest sequence is to select consecutive PUF substrings for processing. For

the round-based scheme, the output of the last substring processed in a particular

round influences the seed utilized for the first substring selected in the next round.

In the first round, the seed for processing the first substring is taken directly from

the challenge inputs as there is no previous index output to use.
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5.3.4.2 AES-type Selection

We explore an alternate selection scheme to see if the byte selection order has an

effect on the PUF metrics. In particular, the byte selection order of the ShiftRows step

of the AES is used as a reference. In a 128-bit AES, 16 bytes need to be processed in a

round. If the bytes are numbered as {0, 1, 2, . . . , 15}, then we can use (5.1) to produce

the necessary byte sequence in any round. Each round will select all 16 bytes in a

unique order. Such an approach has the advantage of the selection sequence changing

in each round compared to consecutive selection.

selecti+1 = (selecti + 1 + round ∗ 4) mod 16 (5.1)

where selecti+1 indicates the next substring to choose based on the current substring

selecti and the round number (∈ {0, 1, 2, . . . }). The pattern generated in a particular

round repeats every 4 rounds.

For processing 8 substrings, (5.1) can be modified by replacing 16 with 8 and 4

with 2. This will also have a 4 rounds cycle.

5.3.5 Multi-word Entropy Source

Previously, both the input challenge and the initial Weak PUF entropy source

were considered to be of the same length, n bits. Now, we consider a case where

the entropy source affords us a larger number of bits than the input challenge such

that we can split the entropy source into multiple n-bit words, as shown in Figure 5.3.

This allows us to select a different word from the entropy source in each consecutive

round, further increasing the complexity for an attacker. If we can split the entropy

source into k n-bit words, then it is possible to use an n-bit input challenge to create

n× k-bit output key in k rounds while utilizing the entire entropy source instead of

having to re-use it as in the case of basic system with rounds. We can also output a

regular n-bit key after each round if so desired.
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Figure 5.3: Illustration of the key generation system with Multi-word Entropy Source

5.4 Experimental Setup and Results

In this section, we describe the PUF system specifications used for generating

the results. Next, we analyze the results from implementation and simulation of our

system with respect to uniqueness and modeling attack resistance.

5.4.1 Setup

In this work, we first assume that the initial Weak PUF entropy source can produce

(n =) 64 reliable bits. We utilize an (m =) 8-bit Galois LFSR to generate the

states for Hamming distance (HD) comparison. So, the 64-bit initial Weak PUF

and input challenge strings are divided into 8 8-bit sub-strings. Using a maximal-

length/primitive polynomial provides us with 255 unique states and there are 16 such

polynomials that can be utilized. The mapping function, as described in Section 5.3.3,

takes a 4-bit input to select among the 16 possible tap combinations and outputs one

such combination as an 8-bit vector to configure the LFSR.
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For utilizing rounds-based scheme, as described in Section 5.3.2, we chose to con-

sider a total of 4 rounds and record the outputs at the end of each round as a possible

key for a particular challenge input. This allows us to analyze the effect of rounds on

the PUF metrics. For all the analyzed design schemes, we perform the round-based

operation. Consequently, the results for the first round will represent a design that

does not use rounds.

For the results, the basic system, describe in Section 5.3.1, is termed as Basic.

The byte selection schemes detailed in 5.3.4 are studied with the consecutive selec-

tion scheme termed as Consec and the AES-based scheme termed as AESshift in the

results. For the byte selection schemes, we include the static tap selection modifica-

tion, as discussed in Section 5.3.3 as part of the design. For the Consec variant, we

also explore using dynamic tap selection, described in Section 5.3.3, instead of static

selection and call this variant Consec DynTap in the results.

5.4.1.1 Multi-word Entropy Source

For the case of a PUF system with a multi-word entropy source, as shown in

Figure 5.3, we consider the sizes of the input challenge and a word to be n = 32.

This allows us to analyze how our design scales compared to the 64-bit version. The

value of k ∈ {1, 2, 4} allows us to create keys with (n × k) ∈ {32, 64, 128} bits,

respectively. For brevity, we analyze this design for the consecutive selection scheme

with dynamic taps. We obtain results for k + 1 rounds and concatenate the results

as necessary to obtain the final key. The rest of the parameters remain the same as

for the aforementioned 64-bit design.

5.4.2 Attack Scenario

For our work, we assume that the attacker has knowledge of the PUF system

design, but does not know the Weak PUF bits. Information about the Weak PUFs is

only known to the authentication agent and can only be accessed once, during post-
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manufacturing PUF testing. So, a man-in-the-middle type attacker has to rely on

using machine learning algorithms to try and guess the internal Weak PUF bits using

the observed challenge-response pairs (CRPs). Additionally, we assume the attacker

can feed challenges to the system and observe the responses.

5.4.3 Uniqueness

Uniqueness is a property wherein, for the same challenge, each PUF generates

unique responses compared to others PUFs. Inter-class Hamming distance (HD) is

used for determining uniqueness. We calculate the Hamming distances between the

responses of a pair of PUFs for the same challenge and average the results over many

challenges and all possible PUF instance pairs. The average of inter-class HD, dinter,

can be defined as:

dinter =
2

s(s− 1)

s−1∑
i=1

s∑
j=i+1

HD(ri, rj)

t
(5.2)

where s is number of PUFs, t is the total number of 64-bit responses and HD(ri, rj)

is Hamming distance between responses of the PUF instances i and j to a particular

challenge. A PUF is considered ideal when the normalized inter-class HD = 0.5 or

50 %.

For this work, (s =) 1000 64-bit strings were randomly generated and designated

as the initial Weak PUF entropy source utilized in 1000 Strong PUF instances for each

design variant considered. A set of 1000 (= t) challenges were randomly generated and

applied across all PUFs. Hence, each PUF produces a total of 1000 64-bit responses.

For the purpose of analysis, we consider two uniqueness metrics. As we generate

a 64-bit response string for each challenge, first we calculate the string uniqueness

between pairs of response strings by performing bitwise exclusive-or operation on

the strings. Next, we consider the bitwise uniqueness by considering each bit of a

response separately to obtain 64 values representing the uniqueness metric for each

bit. Then, we analyze the uniqueness of each bit individually across all challenges
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Table 5.1: String Uniqueness Mean (%) for 64-bit Strong PUF design variants

Round 1 Round 2 Round 4

Basic 50.09 49.87 49.88

Consec 49.98 49.99 49.99

AESshift 49.98 49.99 49.99

Consec DynTap 49.99 50.01 50.02

and the entire PUF population. The bitwise uniqueness provides a fine-grained metric

that can highlight potential biases in our PUF system by mirroring such biases in the

bit positions.

Table 5.1 tabulates the normalized string uniqueness results, obtained using (5.2),

for the first, second and last rounds. These results show that our basic design and all

variants maintain a close to ideal inter-class HD across multiple rounds for a 64-bit

signature response. Bitwise uniqueness, as illustrated in Figure 5.4, represents the

normalized average inter-class HD for each bit in the selected rounds. The Basic

design experienced a greater variation across bit positions compared to other design

variants in the first round. Subsequent rounds served to smooth the variations closer

to the ideal value of 50 %. The design variants were able to produce all bits with the

same uniqueness across all rounds. Hence, we conclude that it is desirable to use a

minimum of two rounds and that our design variants can realize a Strong PUF with

high uniqueness.

5.4.3.1 Multi-word Entropy Source

For the 32-bit input challenge PUF system with varying k, as described in section

5.4.1.1, we generate 1000 keys of size = {32, 64, 128} using 1000 randomly generated

32-bit input challenges. The population of PUFs is 1000 for each case.

The bitwise uniqueness results, as shown in Figure 5.5, show that our proposed

design produces a normalized uniqueness close to the ideal value of 50 % across all bit
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Figure 5.4: Bitwise Uniqueness across select Rounds

positions. Furthermore, for the case of k = 1 where the final key is of the same length

as the input challenge (32-bit), we observe that our design scales well compared to

the 64-bit PUF system described previously.
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(a) Source = 32 bits

(b) Source = 64 bits

(c) Source = 128 bits

Figure 5.5: Bitwise Uniqueness for PUF with 32-bit Challenge and varying Entropy
Source sizes

5.4.4 Machine Learning Accuracy

Popular techniques like Logistic Regression (LR) and Support Vector Machine

(SVM) have demonstrated the ability to model previous digital Strong PUF designs

[107]. However, they fail to target more resilient designs.
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5.4.4.1 Gradient Boosting

Sophisticated machine learning (ML) based on ensemble meta-algorithms, like

Gradient Boosting, were shown to provide significantly better machine learning ac-

curacy by Vijayakumar et al.[125] and Santiago et al.[109]. Boosting algorithms it-

eratively learn several weak classifiers and assign weights to them based on their

performance in terms of learning accuracy. This helps build the final strong classifier.

Once a weak classifier has been weighted and assigned towards the final classifier,

the misclassified datapoints are given higher priority while correct ones have lowered

priority. Hence, future classifiers will focus on the misclassified points. With each

iteration, the final classifier is strengthened and the prediction accuracy increases

significantly.

Furthermore, the work by Ganji [44] has shown that Boosting algorithms can

efficiently achieve probably approximately correct (PAC) learning of PUFs without

explicit knowledge of their mathematical model. Hence, in this work we consider only

Gradient Boosting as the primary choice for an attacker to clone the PUF.

The Gradient Boosting algorithm was implemented in Python using the scikit-

learn [9] and lightgbm [14] tools . Gradient Boosting was configured with the number

of estimators set at 200 and learning rate of 0.01. Since we have a 64-bit response

output, we build 64 machine learning models to separately attack each bit. This is

due to the fact that the full 64-bit response cannot be analyzed by current machine

learning algorithms as this involves the algorithm being able to build a model that

can output 264 possible classes during Training, which is infeasible.

We create a subset of 100 instance from the 1000 Weak PUF instances used in

Section 5.4.3. For each design, we collect 150, 000 CRPs for each PUF instance of

which 100, 000 CRPs were used for training to obtain the cloned PUF model and

50, 000 CRPs were utilized for testing to obtain the machine learning accuracy. We

obtain the accuracy metric for each bit position using the cloned model and the testing
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Figure 5.6: Machine Learning accuracy statistics for 4 rounds

CRP set. Hence, we get 64 distributions of accuracies over the entire population of

PUFs considered for each design variant. Furthermore, such metrics are obtained

separately for each round. An ideal Strong PUF will have a bitwise machine learning

accuracy with a distribution possessing µ = 50 % and σ = 0, which represents a truly

random entropy system.

As shown in Figure 5.6, we see that the Basic design variant performs the worst

across all bits and across rounds in terms of the mean and standard deviation ob-
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served. All variants perform poorly for the first 8-bit substring processed in the first

round. This illustrates that the coupling mechanism, described in Section 5.3.4, is

crucial to ensure greater security as the first substring in the first round does not

couple with any prior output. The order of byte selection is shown to not have an ad-

verse effect of PUF metrics. Also, we note that we need to perform a minimum of two

rounds to get close to the ideal machine learning accuracy metrics across all response

bits. Particularly, we should not expose the response from the first round during

authentication due to low ML resilience. We note that performing more rounds does

not adversely affect the accuracy of the obtained response. Hence, to further improve

security, the system can output the responses from every two rounds instead of every

round. This will prevent an attacker from gleaning any useful information by trying

to correlate the responses across rounds as they will be missing the responses from

intermediate rounds.

5.4.4.2 Multi-word Entropy Source

Similar to the 64-bit PUF system, we consider a population of 100 PUFs each for

32-bit input challenge designs with varying Weak PUF entropy sizes ∈ {32, 64, 128}.

We collect 150K keys, of which 100K are used for training and 50K are used for testing.

Gradient Boosting was used a the machine learning algorithm and the parameters

remain the same as for the 64-bit version.

The simulations were run for k + 1 rounds to ensure that we can skip recording

the output of the first round due to its greater susceptibility to attack, as discussed

in section 5.4.4. The bitwise machine learning accuracy results are presented in Fig-

ure 5.7. We see that the normalized mean and standard deviation of the accuracy

distribution for the designs with varying entropy sizes remains close to the ideal of

50 % and and 0, respectively. Hence, our design performs well regardless of the size

of the input challenge or the entropy source.
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(a) Source = 32 bits

(b) Source = 64 bits

(c) Source = 128 bits

Figure 5.7: Machine Learning Accuracy for PUF with 32-bit Challenge and varying
Entropy Source sizes

5.4.4.3 Neural Network (NN) Attacks

Multiple recent works have focused on using Multi-layer Perceptron (MLP) based

neural networks to successfully attack PUFs, especially n-XOR PUFs [20, 22, 58, 90,

110]. The work by Mursi et al.[90] was able to reduce both the number of CRPs

required and the training times by more than an order of magnitude each while
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achieving ≥ 98 % accuracy for upto 9-XOR PUF. Furthermore, the authors proposed

an architecture where the number of neurons varies based on the number of PUFs

being XOR’ed (n-XOR).

In this work, we utilize the 5-layer (3 hidden layers) neural network proposed by

Mursi et al.[90] to attack the 64-bit Consec DynTap design variant utilizing a 64-bit

entropy source. For this purpose, we simulated 10 such PUFs and collected 4 million

CRPs each. In particular, we focused on the responses from Round 2 as our primary

outputs for analysis. 64 separate models are generated to attack each PUF response

bit. We utilize the parameters recommended for 9-XOR PUFs [90] while setting the

number of epochs to 200. The total CRP dataset size is varied by 1, 2 and 4 million

and we set training to test dataset ratio to 9 : 1.

Figure 5.8 illustrates the average mean and standard deviation of the accuracy

across all 64 PUF response bits, across the population and for the various dataset

sizes. The results show that our PUF design is still resilient with 4 million CRPs

being exposed. In practice, since we do not need to store the CRPs in a database

server, the attacker needs to spend time to collect such a large population of CRPs

and hence, expend considerable resources for a single device under attack.

5.4.5 Hardware Implementation

The 64-bit design variants were synthesized using 45 nm Nangate open cell library

[5] to obtain the area. Consec variant resulted in the smallest implementation with

≈ 750µm2 as it does not have the complex byte selection sequence generation require-

ment like the AESshift variant. Adding the necessary sequence generation and extra

control circuitry results in an area ≈ 850µm2 for the AESshift variant. Furthermore,

the core circuitry involving the LFSR, tap selection and Hamming Distance calcula-

tion only takes up ≈ 30 % of the total area, with the rest needed for control and data
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Figure 5.8: Learning Accuracy metrics for Neural Network Attack on 64-bit Con-
sec DynTap PUF design variant

movement/storage. Hence, these areas represent the overhead needed to implement

a Strong PUF given a set of stable Weak PUF bits.

For comparison with alternate key generation schemes, a keyed hash, such as

Keccak [48], would require 2280 gate-equivalents or ≈ 1900µm2. Additionally, the

area overhead for the 64-bit entropy source variant of the weightless neural network

(WNN) based PUF design by Santiago et al.[109] is quoted as ≈ 2060µm2. Hence,

we see that our system is comparably lightweight and can be easily implemented in

resource-constrained devices.

The quoted area numbers do not include the area needed to generate the initial

stable Weak PUF bits, as this area is dependent on the mechanisms implemented to

increase PUF reliability. However, as an example, the lowest area for a robust 128-bit

Weak PUF key quoted by Patil et al.is ≈ 824µm2 [96]. For such a system, our design

overheads would be ≈ 950µm2 and ≈ 1050µm2 for Consec and AESshift variants,

respectively.
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5.4.6 Latency

Once the input challenge is available, it can be divided into 8 substrings for pro-

cessing. For each substring, we need 255 iterations to fully cover all possible states of

the maximal-length LFSR and find the index with the minimum HD, as described in

Section 5.3.1. We utilize an additional cycle for selecting the next pair of challenge

input/PUF substrings to process and to perform the tap selection. In this cycle,

we also write the obtained 8-bit index output back to the correct location in the

input register for use in later rounds as we reuse the input register. Hence, we need

8 ∗ 256 = 2048 cycles to process one round. From our results, we see that we need to

perform a minimum of 2 rounds and so, the latency for obtaining a response from our

system is 4096 cycles. From performing a timing analysis on our implementations in

45 nm Nangate open cell library [5], we find that the fastest clock we can use is 1 GHz.

Including the time to shift in the 64-bit challenge and shift out the 64-bit response

serially, we can obtain a response every ≈ 4.25µs. Using more rounds increase the

time linearly. This translates to a throughput of ≈ 15 Mbps.

It is possible to reduce the latency further by utilizing two 8-bit LFSRs where

each LFSR processed a set of 4 substrings in a round. This reduces the number

of cycles/round by half. However, we note that we trade latency for greater area

overhead from the LFSRs and additional control circuitry required.

For the 32-bit input challenge PUF design with a multi-word entropy source, it

is possible to output the responses of each round (except the first) for the case of

k > 1 as the entropy source is different in each round. We need 4 ∗ 256 = 1024 cycles

to process one round. Including the time required for serially shifting in the 32-bit

challenge and shifting out a 32-bit response from each round, we get a throughput

of ≈ 26 Mbps. For generating larger keys, we need to wait to record outputs from

k rounds to obtain the final key. However, if we transmit the output of each round

(except first) as a partial key, we can maintain the higher throughput.
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5.5 Conclusion

Strong PUFs have shown potential for providing a low cost alternative to cryptography-

based authentication for application in resource-constrained devices. However, unre-

liability in Strong PUFs is of great concern as this can increase the number of CRPs

needed for proper authentication, especially in the presence of millions of devices.

Also, low modeling attack resistance can pose a significant security risk due to the

large attack surface in applications such as IoT systems. Hence, it is desirable to

explore Strong PUF architectures that provide a high level of robustness by lever-

aging the extensively researched reliability enhancements for Weak PUFs. In this

work, we propose a Strong PUF system that utilizes an initial, robust Weak PUF

entropy source along with a pattern-matching scheme based on Hamming distance

comparisons between Weak PUF bits and the states of a linear-feedback shift register

(LFSR). We also explore variants of the basic design to increase security and achieve

close to ideal metrics in terms of uniqueness and modeling attack resistance. Our

designs are shown to be lightweight and hence, can be incorporated into a large array

of devices with varying resource constraints.
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CHAPTER 6

META-OBFUSCATION OF PHYSICAL LAYOUTS

6.1 Introduction

One area of hardware intellectual property (IP) security research, to combat IC

counterfeiting, that has received much attention is hardware obfuscation. The goal

of obfuscation is to hide the true functionality of a design. Techniques have been

proposed at various levels of design abstraction and can vary from introduction of

additional gates to lock a circuit [106] to system level techniques [31]. Obfuscation

can also involve the creation of camouflaged cells [33,101] whose function can be hard

to determine.

However, most of the design is driven by automatic place and route tools whose

algorithms can result in structural information about a circuit that can aid a reverse

engineer in forming a hypothesis about the function of the circuit. For example,

flip flops and latches can easily be identified by following clock signals and SRAM

is apparent by its regular structure. Hierarchy in chip integration can also reveal

information. Hard IP is typically confined to lower metal layers, and signals in upper

metal layers can be identified as inter-block signals. Buses or on-chip networks can

be relatively easy to identify as wide collections of wires running together between a

common set of agents.

So along with standard obfuscation certain additional processing is required to re-

duce such information leakage. With this as motivation, we propose meta-obfuscation

techniques. These are complimentary to standard obfuscation and aim to prevent

leakage of visual information to an attacker. The purpose of these techniques is to
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break any identifying features of a circuit and allow for the creation of a generic struc-

ture. Along with the obfuscation mechanisms already employed this will enhance the

security of the circuit against reverse engineering.

The salient contributions of this work are:

� We introduce a taxonomy of various visual information leakage avenues for

circuits based on standard cell design.

� We discuss custom techniques, termed meta-obfuscation, for reducing visual

information leakage.

� We explore iterative design algorithms based on the custom techniques to im-

prove the quality of meta-obfuscation.

In this chapter, we concentrate on studying the feasibility of meta-obfuscation

using a benchmark circuit as an example and do not explore the performance impact.

More complex techniques that do take timing efficiency and additional overheads into

account will be explored in future works.

6.2 Background

In this section, we will discuss research into methods for securing design IP in a

supply chain using split manufacturing. Later, hardware obfuscation techniques that

have been proposed in previous literature are discussed. We will explore hardware

obfuscation at various levels of design abstraction. Lastly, we explore relevant works

on reverse engineering of ICs.

6.2.1 Split Manufacturing

Karri et al. explore the security offered by split manufacturing and list the chal-

lenges that accompany such an approach [102]. Split manufacturing requires that the

wafers be transported from the FEOL foundry to the BEOL foundry. These wafers
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are thin and can crack or delaminate during transportation. Also, BEOL foundry

will face alignment issues that need to be addressed properly. It is also shown that

the well known heuristics used in typical floorplanning, placement and routing tools

can be used by the attacker to predict the missing BEOL connections.

6.2.2 Hardware Obfuscation

Extensive surveys on protecting hardware intellectual property (IP) have been

performed. A robust understanding of various aspects of hardware security and trust

can be obtained via the work by Tehranipoor and Wang [118]. Colombier and Bossuet

[35] provide an exhaustive survey of previous research into hardware protection. Guin

et al. [52] perform a detailed study of counterfeiting and appropriate security mea-

sures including obfuscation.

6.2.2.1 System-level obfuscation

Many reverse engineering techniques engage in component recognition. Techniques

have been proposed to increase the complexity of delineating components through

various techniques such as combining two modules or replacing entire circuit with

obfuscated equivalent [87,88,95].

Alkabani et al. [18, 19] have proposed using FSM modification to lock a chip by

obfuscating its power-up state and only the correct key unlocks the IC. Chakraborty

and Bhunia [31] propose a methodology to perform simultaneous obfuscation and

authentication of an SoC design netlist. Rajendran et al. [100] propose a solution to

secure against untrusted supply chain and trojan insertion by malicious insider at a

fabless company. The various methods of securing the design include instruction set

randomization and additional security modules in the processor pipeline. A related

application is logic encryption, where additional gates are added to the design such

that only the correct input values allow the circuit to work properly [69,106].
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Hardware-Software co-design based security : The work by Schrittwieser et al. fo-

cuses on protecting software vendor from piracy by the creation of a strong hardware-

software binding [113]. Zheng et al. propose a scheme where they utilize PUFs for

instruction obfuscation [133]. In their scheme, each instruction is stored in memory in

two parts: the obfuscated instruction and a challenge word to the PUF device. The

PUF responses produce the actual opcode to decode the instruction within the in-

struction pipeline. Our work introduces more flexibility into the use of PUF responses

in the instruction pipeline and describes additional security considerations.

6.2.2.2 Circuit-level obfuscation

Circuit-level obfuscation methods create or modify cell libraries to hide gate func-

tions and adding non-essential structures to the design. These approaches add extra

complexity to reverse-engineering the logic.

Camouflaging of cells can be achieved through custom design to either mimic

other cells or to allow for post-manufacturing programmability to customize gate

functions. Certain companies have specialized in creating camouflaged cell libraries

[117]. Rajendran et al.[101] have studied how to efficiently deploy a small number

of camouflaged cells to maximize the hardness of reverse engineering at minimal

overhead. Filler cells may also be used for the purpose of obfuscation [32, 33]. Some

of the cells can connect to functional logic without hampering operation. This leads

to an increase in the amount of data that an attacker will need to sort through during

reverse engineering in order to extract the underlying logic.

6.2.3 Reverse Engineering

Numerous reverse engineering attacks have been showcased over the last few years

[66, 91, 114]. Moreover, support for reverse engineering by CAD tools such as Chip-

works’ ICWorks and the open-source tool Degate [112] has resulted in attackers being

able to steal IP with relative ease.
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6.3 Taxonomy of Visual Information Leakage

In this section, we will classify the various avenues for visual information leakage,

with relevant examples, that aid an attacker in reverse engineering the design. Later,

we will concentrate on the specific issues in the presence of sequential circuits.

6.3.1 Standard cell types and sizes

Fabless designers depend on using commercially available cell libraries, often from

the foundries like TSMC where the designs will be manufactured. A vast library

of standard cells with different types and sizes allow a design to be optimized for

performance, power and area. However, these libraries are also available to attackers

to assist with their reverse engineering efforts. In case a designer chooses to use

custom obfuscated cells, these can stand out allowing attacker to focus more on the

locations of these cells.

The types and sizes of cells used allow an attacker to figure out the nature of a

circuit [91]. For example, a 8 × 8 multiplier instantiated with a full Nangate 45nm

library [5] has recognizable full adder cells, as highlighted (in green) in Figure 6.1.

The number of such cells also gives an attacker clues to this circuit being a multiplier

of a particular size.

6.3.2 Size of the module

An attacker can distinguish the boundaries of a design module through various

methods like observing the interconnects in higher metal layers to identify connec-

tions between modules; the power grid, where some modules are surrounded by ring

structures; and whitespace between modules. Different design modules can have dis-

tinct sizes. This, along with other visual information, allows the attacker to formulate

hypotheses on the nature of a particular large module.

For example, comparing the sizes of an 8×8 adder (37.2µm2) and a 8×8 multiplier

(379.5µm2) instantiated using Nangate 45nm cell library [5], we see that the multiplier
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Figure 6.1: Floorplan of 8× 8 multiplier with highlighted full adders (green)

is ∼ 10× larger. This size variance can be used by an attacker to clearly recognize a

multiplier. The attacker can then focus on the particular module to infer its function.

6.3.3 Structural information

Certain designs can leak information due to the observable structure of placed

components. This includes location of certain large cells, identifiable repeating unit

blocks (SRAMs), placement of pins and so on. Also, placement algorithms used

in commercial tools can become a crucial method for extracting information about

a design. An attacker can separate the design into sub-blocks and focus effort on

understanding the function of each sub-block instead of trying to tackle the whole

design at once.

6.3.4 Routing and metal density

Automated reverse engineering tools allow an attacker to retrieve the routing and

metal density information of a design with relative ease [112]. The use of metal layers

in a design is quite well-defined, for example the topmost metal layers used for routing
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power lines. Even if the design was affected to hide placement information, routing

can be used by an attacker to identify clusters and logical neighbors in a design and

delineate the circuit into sub-blocks. Hence, it becomes crucial to address this for the

protection of a particular design.

6.3.5 Leakage in sequential circuits

6.3.5.1 Clock Paths

Typically, clock is distributed in a design via H-trees [42]. Tracing these clock

paths is one of the primary goals of an attacker as these readily identify the flip-flops,

located at the leaf nodes of the tree, in a design. Using this information, the attacker

will be able to divide the design into manageable parts for analysis. The attacker

can then apply SAT techniques [62] along with knowledge of other visual information

discussed in this section to identify the functions implemented between flip-flops.

6.3.5.2 Design for Test logic

Tracing of scan chains provides another avenue for an attacker to identify flip-

flops. Since the flip-flops on a scan chain may be accessible through the scan pins

of an IC, the attacker can use this knowledge to aid in the deciphering of a circuit’s

functionality.

6.4 Meta-obfuscation techniques

In this section, we discuss the potential solutions to address the problems discussed

in the previous section. Concentrating on a single circuit (ISCAS C432 [53]), we

illustrate the solutions to highlight the changes made for each case. We explore how

these techniques will compliment existing obfuscation mechanisms in confusing the

attacker.
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(a) C432
with
full cell
library

(b) C432 with
only universal
gates

(c) C432 ex-
panded in
y-direciton

(d) C432 with
dummy cells
(red)

Figure 6.2: Meta-obfuscation techniques applied to ISCAS C432 [53]

6.4.1 Standard cell types and sizes

One possible way to complement obfuscation techniques is to affect the standard

cells used in the design. It is vital to restrict the circuit to use only universal gates

(NAND, NOR and Inverter) as much as possible to make sure that the standard cells

themselves do not reveal any information. Also, constraining their sizes allows us to

visually make the cells look the same and forces an increase in reverse engineering

effort to distinguish the cells.

For the purpose of illustration, we instantiate the ISCAS C432 using the full

Nangate 45nm standard cell library [5] using Synopsys Design Compiler and carried

out placement in Cadence Encounter [1], shown in Figure 6.2a. Next, we re-compiled

the design and restricted the standard cells to universal gates and of comparable sizes

(especially for the inverter). The design placement was carried out again, as shown

in Figure 6.2b.

However, just the use of universal gates may not be enough to protect the design.

We still need to address the presence of structural information. Also, in case a designer

needs to utilize more cell types, we need to address this through the usage of dummy

cells. These issues will be dealt with in detail below.
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6.4.2 Size of the module

Certain obfuscation techniques allow us to affect the size of a module by combining

it with other neighboring modules [95]. Most other techniques can also incur an

increase the design area. Scaling the design further may prove beneficial as it allows

us the flexibility to institute further changes. Additionally, depending on the nature

of scaling we can affect the module’s shape. This can prove useful by making the

current design look similar to its larger neighbors. Affecting the size of the module

incurs the most expense in terms of design resources.

For our purpose, we expanded C432 by a 100% in the y-direction changing its

shape. We need to account for the standard cell height during expansion for proper

placement of cells by the tools. The new module, with the cell locations also scaled,

is shown in Figure 6.2c.

While affecting the size of the module may prove useful, we still need to account

for the placement tool behavior which may introduce certain structural information

that can still aid the attacker.

6.4.3 Structural information

To account for the issues discussed in section 6.3.3, we systematically modify a

design placement to make it look more generic. This can involve the use of dummy

cells to introduce a uniformity to the cell placement. Also, the addition of dummy

cells gives us the option of utilizing more of the available standard cells in a cell

library than just the universal gates.

For C432, while scaling the module in the y-direction changed its size, the cells

were placed in alternate rows, as shown in Figure 6.2c. To fill up all the rows, we

shifted every other cell in each row to the next empty row. We also introduce dummy

cells (NAND gates) with the express purpose of equalizing the number of cells in each

row. Lastly, we spaced the cells in each row equally resulting in a uniform layout,
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as shown in Figure 6.2d. It should be noted that we are not concerned about the

logical proximity of the cells in a design as further steps will target such proximity to

enhance meta-obfuscation achieved.

Such a layout effectively breaks up clustering of cells reducing the attacker’s ability

to form hypotheses as to the nature of such clusters in a larger design. A point to note

is that if the designer does choose to incorporate more cells types, including custom

obfuscated gates, then it becomes imperative to utilize more dummy cells of the new

types to shift focus away from the cells used for the circuit logic. This may incur a

cost in terms of area. Also, hiding structural information becomes a more complex

problem as we have to account for more cell sizes in the layout.

6.4.4 Routing and metal density

Intricately connected to structural regularity is the net routing and metal density

information. To hide the leakage of cell proximity and module boundary information

via the routing of a design, we need to affect the cell placement and its corresponding

routing. The designer needs to be aware that the methods used to increase complexity

in this step will affect the performance of the design, increase the metal resources

needed, and adapt accordingly.

A possible solution is to change the cell positions in a design and increase the

distance between logical neighbors. This will force the place and route tools to utilize

more of the upper metal layers for the new longer connections. Also, the presence

of dummy cells introduced previously affords us the option of controlling their input

and output connections which will affect routing.

A metric is needed to provide a quantifiable measure of quality of meta-obfuscation

for a design. Wire lengths in various metal layers and their density can be considered

a good starting point. However, swapping of cells greatly affects the metal layers
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Figure 6.3: Representation for classification of nets as small, medium and long

used and the lengths of wires in each layer. Hence, for the purpose of driving an

optimization algorithm we consider a different approach.

We divide the design into various grids and classify the nets, i.e. connection

between cells irrespective of metal layers used, as either small, medium or long nets,

as illustrated in Figure 6.3. For each grid, we find the number of these nets present

in the grid or passing through it and classify them into the 3 categories. This results

in a distribution of nets of varying lengths for each grid. Our goal is to increase the

number of long and medium nets for each grid with greater emphasis on longer nets.

Section 6.5 will explore the use of the above metric for C432 circuit in greater

detail and quantify the results obtained. The results will highlight the effectiveness

of this approach.
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6.4.5 Sequential circuits

One possible mechanism to hide the clock distribution network is to utilize clock

grid instead of identifiable H-trees. Obfuscation techniques like secret vias [101] would

allow us to hide the locations where the clock in connected to a design. Addition of

dummy flip-flops also can enhance security by confusing attackers while not affecting

the primary circuit. This will be explored in greater detail in the future.

6.5 Methodology for meta-obfuscation

In this section, we detail the various methods considered to improve the meta-

obfuscation of a circuit. We first start with a general description of the proposed

method and then, objective function used to drive the optimization is detailed. Then,

we focus on the various models used for obtaining a solution. As with section 6.4, we

illustrate the results with ISCAS C432 circuit.

6.5.1 Proposed Method

We randomly chose one of the inputs to each dummy cell from the primary and

intermediate nets present in the design and the output of a previously processed

dummy cell as the other input. The first dummy cell’s inputs were assigned using

the primary inputs and the last dummy’s output was turned into a dummy primary

output. This increases the number of pins for the design but, does not affect any of

the valid logic. The relevant files were modified accordingly.

We take the design floorplan from Figure 6.2d and output a Design Exchange

Format (DEF) file. This is modified by the various algorithms discussed below which

select the cells to swap and how many swaps to perform. The new intermediate DEF

file is then forwarded to Encounter for full routing. The final routed design is again

output in DEF format and is processed.
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The designer can choose the number of grids for analysis and their sizes. For our

purpose, we chose 3× 3 grids of equal size. Grid (0, 0) contained the floorplan origin

and (2, 2) was the farthest grid. The nets were classified as explained in section 6.4.4.

The distribution of nets obtained was then used to generate the score, explained

below, which drove the algorithms described subsequently.

All approaches used were only limited by the routing time of Cadence Encounter

tool [1] and not the methods themselves.

6.5.2 Objective function

In section 6.4.4, we chose to divide the design into grids and classify nets into small,

medium and long (Figure 6.3). Using the distribution of such nets in each grid, we

can derive an objective function for use in optimization. The initial distribution of

medium and long nets for each grid for C432 is shown in Figure 6.5a. Our target

is to increase the amount of long and medium nets designated to each grid. It is

entirely possible that an algorithm may end up increasing the number of long nets for

a particular grid while reducing it for another if we just consider maximizing the mean

for all long (µlong) net values across all grids. So, we need to consider the standard

deviation across the grids (σlong) and seek to reduce it. To achieve both an increase

for mean and smallest standard deviation we express the objective as a fraction as

shown in (6.1). Similar objective is defined for medium nets.

Objlong =
µlong

σlong
(6.1)

The final score, as given by (6.2), is the sum of the two objectives with long nets

given 70% weight and 30% weight for the medium nets. These values can be changed

depending on the design requirements. Longer nets may degrade performance and
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Figure 6.4: Comparison of performance for Greedy, Simulated Annealing and Genetic
algorithms for varying number of swaps

hence, the designer may choose to give medium nets greater priority. The initial

design is processed and its score is used as a starting point.

Score = 0.7 ∗Objlong + 0.3 ∗Objmedium (6.2)

6.5.3 Greedy algorithm

First, we tried a greedy approach by randomly swapping pairs of cells and checking

the score. The swaps are only accepted if the new score is greater than the previous

maximum. An iteration limit is set to terminate the program and return the final

obtained score.

We set the program limit to 20 iterations and varied the number of swaps per-

formed between 10 → 50. For each case, the experiment was conducted multiple

times and the best improvement obtained over base score was plotted, as shown in
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Figure 6.4. Due to the random nature of the swaps, greedy algorithm is not able

to provide a consistent results. There is no guarantee that increasing the number of

swaps will have any beneficial effect on the solution. Hence, we next try simulated

annealing.

6.5.4 Simulated Annealing

Next, simulated annealing [11] was utilized to study its performance. Initially,

bad results were accepted with a probability of 0.5 reducing acceptance probability

(to 0) as the simulation iteration limit was reached. A quartic function was used

to calculate the probability. Similar to the greedy approach, we plot the results, in

Figure 6.4, for swaps varying between 10→ 50 with a 20 iterations limit. We see that

simulated annealing performed more consistently than greedy algorithm. However,

we observed that increasing the iteration limit made the acceptance probability curve

decline more steeply and negatively affected the results.

6.5.5 Genetic Algorithm

We consider the use of genetic algorithms (GA), a subset of evolutionary algo-

rithms (EA). They imitate natural evolution utilizing analogous concepts like muta-

tion, reproduction, crossover and selection. The genetic algorithm produces a popu-

lation of candidates for whom a score/fitness is calculated and children are selected

for the next generation based on some internal heuristics. We make use of the open-

source toolkit, Pyevolve [8] to implement the genetic algorithm.

Initially, we set a population size of 20 and observe the best candidate for a

single generation while varying the number of swaps between 10→ 50, similar to the

previous approaches. The objective function that calculates the fitness is the same

as before, given by (6.2). The results for medium and long nets, from Figure 6.4

show that, GA performs quite well and gives significant improvement over greedy

and simulated annealing approaches.
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(a) Grid Metrics before optimization

(b) Grid Metrics after optimization

Figure 6.5: Genetic Algorithm Results ISCAS C432 [53]

We reset the population size to the default, 80 in Pyevolve, and increased the

number of generations to 10. This gave us an improvement of 87.5% in the metric.

We plot the number of small, medium and long nets in each grid of the design before

and after applying the genetic algorithm in Figure 6.5. The results show an increase

in the medium and long nets while also keeping the variation across the grids low.

The initial and final floorplans with dummies (red) and select net (blue) highlighted

for comparison is shown in Figure 6.6. This shows that some shorter nets become

long during optimization and improve the score. Also, the metal lines in metal layer

M3 have been plotted in Figure 6.7 before and after optimization. We see that the

metal lines are more spread out after processing compared to the original.
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(a) Floorplan before optimization (b) Floorplan after optimization

Figure 6.6: Genetic Algorithm Results for ISCAS C432 [53]
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(a) M3 before optimization (b) M3 after optimization

Figure 6.7: Comparison of metal lines in M3 layer for ISCAS C432 [53]

6.6 Conclusion

Obfuscation techniques have been proposed to counter reverse engineering with an

intent to steal IP from legal parties by malicious actors. However, the physical layout

of a design can still leak visual information. In this work, we explore the various

ways in which such information can be leaked and provide mechanisms, termed as

meta-obfuscation, to address them. We also discuss a metric that can be used to

quantify the quality of meta-obfuscation. A methodology to maximize the metric is

also discussed. The results show that a significant improvement can be achieved via

the use of evolutionary algorithms.
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CHAPTER 7

ON LEVERAGING MULTI-THRESHOLD FINFETS FOR
DESIGN OBFUSCATION

7.1 Introduction

Robust hardware obfuscation, on a circuit-level, can be achieved by leveraging

the intrinsic characteristics, such as threshold voltage, of transistors instead of just

relying on physical structures for creating camouflaged gates. Such characteristics

are not susceptible to imaging techniques and analyzing the chemical composition of

individual transistors in advanced nodes is exceedingly difficult as the characteristic

is determined by just a few hundred doping atoms. Specifically, we leverage the large

number of threshold voltages supported by FinFETs, which have been conventionally

targeted towards enabling increased optimization for power and performance [2]. For

example, commercial FinFET process development kits (PDKs) from TSMC offer four

transistor threshold options in 16 nm technology node [12]. In contrast, MOSFETs

could support one or two threshold voltages. Furthermore, FinFETs permit larger

transistor stacking height in a cell design [3] and hence, can support greater number

of inputs and hence, implement more functions efficiently compared to MOSFETs.

In this chapter, we propose a simple n-input gate design that utilizes 4 thresh-

old voltage transistor options available from a commercial vendor’s 16 nm process

development kit (PDK). We analyze 2-, 3- and 4- input variants of the design and

show that it is possible to implement a large number of functions using the same

structure and different threshold voltage assignments. Our designs are shown to be

stable across different process, voltage and temperature (PVT) ranges. Further, we
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explore SAT-based attacks [77] that can reverse engineer the functionality of a circuit

by observing the outputs during operation and possessing basic layout details, such

as the number of gates and interconnection information. Our designs are shown to

increase the effort required to de-obfuscate the circuit by an order of magnitude com-

pared to designs synthesized with commercial cell libraries for ISCAS-85 benchmarks

[53]. Lastly, we explore certain special functions whose outputs are only dependent

on the state of a subset of the inputs and study the effect of their incorporation on

de-obfuscation.

7.2 Background

Previously, we briefly explored obfuscation techniques that have been proposed in

previous research at various levels of design abstraction in Section 6.2. In this section,

we further explore previous research on circuit-level obfuscation techniques and also,

discuss works on reverse engineering obfuscated designs, with focus on SAT-based

attacks.

7.2.1 Hardware Obfuscation

Circuit-level obfuscation techniques involve creation/modification of cell designs

with the goal of hiding the true functionality of the camouflaged gate. Rajendran

et al.[101] have proposed a cell design that can implement a variety of Boolean func-

tions by utilizing programmable dummy contacts. However, their design realizes a

limited number of functions while incurring large area and power overheads ( 4−5×).

While previous techniques require layout modifications to achieve their goal, it is

possible to use the intrinsic properties of transistors to realize hardware obfuscation.

Transistor doping-based camouflaging was explored by Malik et al.[84] to create an

obfuscated cell. Multiple such cells are combined to obtain obfuscated gates. Thresh-

old voltage-based camouflaging techniques include leveraging pass transistors [34,60]
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or employing sense amplifier-based (SABL) logic and changing the threshold of tran-

sistors post-fabrication [15]. These techniques also do not realize a large array of

functions with SABL logic-based technique incurring even greater overheads (> 6×).

7.2.2 Reverse Engineering Attacks

Extensive surveys of state-of-the-art hardware reverse engineering techniques at

varying levels of attacker capabilities have been conducted [43, 99]. In this work, we

assume that the attacker is capable of extracting most layout information and so, we

focus on SAT-based attacks.

Many of the previously proposed obfuscation techniques are susceptible to SAT

solver-based attacks where the attacker is capable of querying the IP and obtaining

its outputs for a set of given inputs. The camouflaged gates can be represented as ab-

stractions, such as a MUX or switch network with programming inputs, and the SAT

algorithms utilized to guess the function of camouflaged gates by finding the program-

ming inputs [131,132]. In this work, we utilize the SAT-based de-obfuscation scheme

proposed by Yu et al.[132] as it is shown to perform significantly better compared to

other SAT approaches.

7.3 Multi-threshold FinFET Camouflaged Cell

In this section, we first describe the basic design of the FinFET camouflaged cell

and analyze the performance of the camouflaged cells under environmental variations.

Next, we explore the requirements to realize an exclusive-or function with our design.

Lastly, we create a custom cell library and synthesize various ISCAS-85 benchmark

circuits and compare them against the same circuits synthesized using a commercial

cell library.
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Figure 7.1: General structure of Multi-Vt FinFET camouflaged cell

7.3.1 Basic Cell Design

Our design goal was to be able to realize as many functions as possible for an

n-input gate without changing its physical structure. Ideally, 22n logic functions are

possible with an n-input gate design. Additionally, we sought a scalable cell design

that could implement an n + 1-input gate with simple, limited modification to an

n-input gate. Towards achieving these ends, we propose the cell design as shown in

Figure 7.1.

The n-type FinFET pull-down network (PDN), in Figure 7.1, consists of tran-

sistors (Mnx) comprising two stacks of height n. Therefore, the total number of

transistors in the PDN is 2n. For example, a 2-input cell will have 4 transis-

tors ({Mn0 . . .Mn3}) in the PDN with Mn2 and Mn3 connected to ground. The

source/drain nodes of any two transistors at the same level, like {Mn0,Mn1} or

{Mn2,Mn3}, in each stack are shorted. The inputs to one stack are the original gate in-

puts ({a, b, . . . }) while the other stack receives the complimented inputs ({a, b, . . . }).
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As can be seen from Figure 7.1, such a ladder structure allows all possible paths be-

tween the output node, out, and the ground for various input combinations. The

pull-up network consists of a p-type FinFET, Mp, connected to an enable input, EN.

An inverter at the output of the PDN is used to restore the signal voltage levels and

generate the final gate output, Y.

When EN is logic-1, the circuit is gated and saves power. Switching EN to logic-0

allows the current to flow into the PDN network. Based on the threshold voltage

(Vt) parameters of the transistors, certain paths to the ground will be dominant. The

PDN circuit acts as a voltage-controlled resistive divider. Combined with the input

signal combinations to the cell, we can realize different functions. To implement

various logic functions, we permutate through the available threshold voltage options

for the PDN transistors and all possible 2n input combinations and perform SPICE

simulations to generate the truth tables for each set of transistor permutations. The

transistors sizes, in terms of the number of fins (nFin), are chosen accordingly. We

note that multiple sets of PDN transistor Vt assignments may implement the same

logic function. This provides us flexibility in selecting the most stable assignment

after analyzing the effect of environmental variations.

In our work, we consider a commercial 16 nm PDK that supports 4 threshold

voltage options, having a nominal voltage of 0.8 V and analyze 2-, 3- and 4-input

gate designs. The available threshold voltage options will be designated as ulvt, lvt,

svt (standard) and hvt in increasing order of threshold voltage, respectively. For an

n-input cell, the total number of possible multi-threshold assignments and hence, the

number of SPICE circuits analyzed is 42n. This gives us 256, 4096 and 65536 distinct

circuits to analyze for 2-, 3- and 4-input gates, respectively. The p-type FinFET,

Mp, has width, nFin = 2. For the 2-input and 3-input cells, the PDN transistors

have a width of nFin = 3, while the 4-input PDN transistors are sized nFin = 4.

In the physical layout, we note that each transistor with a different threshold voltage
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Table 7.1: Number of Stable Logic Functions for Camouflaged gate with varying
fan-in

Fan-in (n)
# Unique Logic Combinations

Possible Realized

2 16 12

3 256 96

4 65536 1096

requires a minimum area, while two transistors of the same threshold voltage type

could share the same area. For our gate area calculations, we assume each transistor

assignment is different to get the upper bound.

We note that a second inverter can be used to generate the compliment, Y , using

the input Y. This allows us to generate both the necessary input signals needed by

any subsequent fan-out gate for the current cell’s output. An added advantage is the

reduction in the total cell size. For example, a 4-input camouflaged cell would need

to include 4 inverters to generate the complementary signals for all its inputs if the

previous fan-in camouflaged cells did not generate a pair of signals, adding significant

area overhead. Only the primary inputs (PIs) to the netlist would need an explicit

set of inverters to generate their complements. However, this approach does increase

the routing density for the entire design.

7.3.1.1 Environmental variations

Given the usage of transistors with differing threshold voltages, it is critical to

ensure that the particular transistor permutation selected to implement a function

is stable in the presence of supply voltage noise and temperature variations. Due to

the undoped channel in a FinFET, its threshold voltage is not susceptible to Random

Dopant Fluctuations (RDF) like conventional MOSFETs. However, irregularities in
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the fin surface introduced due to manufacturing process variation can have an impact

in the form of metal-gate work function variation (WFV) [86]. Hence, we need to

consider the effect of process variations while making the final selection of threshold

voltage assignments.

First, we seek to find the maximum number of unique logic functions that can be

realized in the presence of supply voltage variations. Towards this end, we analyze

each design with a specific set of PDN transistor Vt assignments for supply voltage

variations of nominal± 10%. The nominal voltage is set at 0.8 V for the commercial

16 nm PDK used in this work. Synopsys HSPICE was used for all simulations. Ta-

ble 7.1 lists the number of observed stable logic functions across all supply voltages

and the total possible logic functions for 2-, 3- and 4-input camouflaged gate designs.

Since a logic function may be realized with more than one set of PDN Vt assignments

and some assignments may change the circuit behavior under supply voltage noise,

we need to ensure that we record only the assignments that result in a stable output

function.

Once we obtain a database of possible output functions for an n-input gate and

the corresponding PDN Vt assignments, we run further simulations on these designs

only. We analyzed their performance across a temperature range of 273 K to 373 K

and applied the PDK vendor recommended process variations. For process variations,

1000 Monte Carlo simulations were performed for each design and we check which

PDN assignments were able to maintain their functionality the most. This further

whittles down the number of PDN Vt assignment sets for a given output function.

Hence, we see that the total number of unique functions reduces significantly as n

increases, as indicated in Table 7.1.

In Table 7.2, we compare the area, delay and power performance of 2-, 3- and

4-input NAND gates implemented using complimentary logic and our camouflaged

design. For area and delay, our camouflaged version of the NAND gate see a maximum
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Table 7.2: Comparison of Area, Delay and Power characteristics between Regular
(Reg) and Camouflaged (Camo) NAND cells

NAND2 NAND3 NAND4

Reg Camo Reg Camo Reg Camo

Area
(µm2)

0.17 0.35 0.22 0.5 0.28 0.65

Delay
(ps)

6.10 15.56 8.39 24.62 11.83 26.78

Power
(µW)

294.7 69.55 391.77 69.30 482.98 69.31

overhead of 2.32× and 2.93×, respectively. However, with regards to power, we see a

minimum reduction of 4.24×. Furthermore, all n-input camouflaged gates consumed

similar amounts of power. This is due to the fact that our circuit does not see a

full-rail voltage swing due to the fact that p-type FinFET, Mp, is active when the

PDN evaluates the output. Hence, there is a reduction in the power consumed at

the expense of reduction in the output noise margin at node out, with the minimum

noise margin observed being 200 mV. However, the output inverter ensures that the

voltages are restored at node Y.

7.3.1.2 Implementing XOR/XNOR with via manipulation

We note that our camouflaged cells are not able to realize XOR/XNOR logic func-

tions for any n-input gate considered. This is due to the shorting of the internal nodes

to create the ladder structure, as shown in Figure 7.1. For implementing a regular

2-input XOR/XNOR function, there needs to be an exclusive path to the ground

only when both inputs are the same (XOR) or both are complementary (XNOR).

This is not possible with our camouflaged structure. Furthermore, for gates with

n > 2 inputs, the XOR/XNOR functions are even more complex and cannot be

implemented.
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One possible method to implement XNOR function for 2-input camouflaged cell

by disconnecting the drain nodes Mn2 and Mn3 in the PDN shown in Figure 7.1

via manipulation techniques to introduce dummy via contacts in the physical layout

to make it appear as if a connection exists [101, 127]. Furthermore, we can utilize

dummy vias and create a layout that can implement the XOR function. We can route

the nets from an input (say b) to both the transistors (Mn2, Mn3). We can add a

legitimate via between the input and the desired gate (Mn2) and adding a dummy via

for the other gate (Mn3). Repeating the same for the complementary input (b) we can

confuse an attacker and increase reverse-engineering effort. However, such a layout

modification would need to be made for all the 2-input gate functions implemented

to prevent differentiation between XOR and other gates. Hence, XNOR may be

easier to implement in practical use. If such techniques are available, then we only

need to use svt option for the PDN transistors {Mn0 . . .Mn3} to achieve XOR/XNOR

functionality.

7.3.2 Camouflaged Cell Library

We perused the stable logic functions for 2-, 3- and 4-input camouflaged gates

and constructed a camouflaged cell library with a total of 62 logic gates. We included

a basic inverter to allow proper design synthesis and assume that we have 2-input

XOR/XNOR available, using modifications described in Section 7.3.1.2. We selected

one cell design with a particular PDN Vt assignment set for each logic function. The

selection process was driven with the aim of matching as many available functions as

possible in a commercial 16 nm standard cell library. We note that our cell library

is not exhaustive with respect to possible 3- and 4-input logic functions and other

designers may choose to implement an even larger cell library, including more than

one cell design for a logic function.
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Table 7.3: Area estimates for ISCAS-85 Benchmark circuits

Circuit

Commercial Cell
Library

Camouflaged Cell
Library

Area
Over-
head
(%)# Gates

Area
(µm2)

# Gates
Area
(µm2)

c17 3 0.88 4 1.7 92.15

c432 88 20.68 78 37.2 79.88

c499 154 54.19 178 62.7 15.70

c1908 176 55.52 191 75.7 36.35

c2670 354 90.52 471 149.2 64.83

c3540 454 124.58 551 239.8 92.48

c6288 1492 356.60 1505 660.6 85.25

c7552 768 242.64 999 387.6 59.74

We compare our camouflaged cell library and the commercial cell library by syn-

thesizing a set of ISCAS-85 [53] benchmark circuits using Synopsys Design Compiler.

It should be noted that in practical scenarios, a designer may choose to camouflage

only part of the design and hence, the area overhead will be much lower. Table 7.3

lists the number of gates in the synthesized netlist for each cell library and the area

estimates. The area overhead depends on the logic functions utilized in a particular

benchmark circuit. However, our camouflaged netlist is generally larger due to the

basic 2- and 3-input cells being larger than the standard cell versions, while 4-input

function cells were comparable in size. Also, there is no variation in size among cam-

ouflaged cells with a particular number of inputs due to the common physical layout

while the standard cell library would have different areas. Lastly, certain functions

were not available for the camouflaged cell library due to their instability in the pres-

ence environmental variations. Also, the unavailability of XOR/XNOR functionality

for gates with more than 2 inputs adversely affects the netlist area.
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7.4 SAT Solver based De-obfuscation

In this section, we explore the resilience of our camouflaged cell design against

SAT solver attacks. We, first, describe the capabilities of an attacker seeking to

reverse engineer our design. Then, we compare the performance of our camouflaging

against utilizing a limited gate camouflaging technique [101] with respect to the de-

obfuscation time for ISCAS-85 benchmark circuits. Lastly, our camouflaged cells can

realize certain functions where the output is decided by only a subset of the inputs

while the rest of the inputs can be considered as dummies. We explore the utilization

of such cells in a design and their effect on de-obfuscation performance.

7.4.1 Attacker Capabilities

Due to the chip manufacturer (foundry) having perfect information about the

layout, we assume the manufacturer is a trusted vendor. Our attacker is a third-party

who wishes to reverse engineer our protected IP and is able to obtain multiple chips

containing our design. The attacker is capable of reverse-engineering the layout of the

IP using imaging and de-layering techniques and extract basic physical information

such as the number of primary inputs/outputs, gates and their interconnections. The

attacker can identify non-camouflaged gates readily. The attacker can differentiate

between different sized camouflaged gates and can easily identify inverters. However,

we make the assumption that the attacker cannot distinguish between legitimate and

dummy vias. Also, the attacker does not have information about the logic functions

implemented in our camouflaged cell library. The attacker is also able to query our

IP block without restrictions and obtain the outputs for usage in the Oracle-guided

Incremental SAT solver technique [132].

7.4.2 SAT Attack

The main advantage of our proposed camouflaging is the large number of possible

logic functions that can be realized with the same physical layout for a given n-

128



Figure 7.2: General structure of Multi-Vt FinFET camouflaged cell for SAT Solver
[132]

input gate. To illustrate the increased de-obfuscation effort, we compare against a

camouflaging technique with a cell design implements a limited set of functions like

NAND/NOR/XOR [101].

An attacker using the powerful Oracle-guided SAT based de-obfuscation scheme

[132] can model an n-input camouflaged cell as a 2n : 1 Mux with n select inputs, as

shown in Figure 7.2. The programming vector bits, {p0, p1, . . . , p2n−1} are utilized by

the SAT solver to guess the output functions based on querying the circuit multiple

times and making observations about the internal functionality. For example, solving

a 2-input NAND gate with inputs {AB} taking the values {00, 01, 10, 11} would

output {p0, p1, p2, p3} = {1, 1, 1, 0}. For the limited NAND/NOR/XOR scheme, the

attacker would have to guess only 3 sets of values to distinguish between the possible

gates. There is no increased effort when using camouflaged gate with greater number

of inputs as this information is readily available in the layout and the number of logic

functions implemented is still the same. However, since our camouflaged cell design

can implement a large array of functions (22n possible), the SAT solver would have

to consider all possible combinations for the programming vector bits.

For the limited camouflaging technique, we synthesized the ISCAS-85 benchmark

circuits using the commercial 16 nm standard cell library while allowing the design
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to only utilize 2-, 3- and 4-input versions of NAND, NOR and XOR gates. The total

number of gates in the final netlist is tabulated in Table 7.4 and is noted to be greater

than the number of gates needed by our camouflage technique (listed in Table 7.3).

However, the maximum increase in the number of gates is less than 24%.

To obtain the de-obfuscation effort for both techniques, we assume that 25% of

the gates in a the synthesized netlist are obfuscated to the attacker and need to

be solved for using SAT. We select the gates to be camouflaged randomly and for

each benchmark circuit/camouflaging technique, 10 iterations are performed with a

specified Timeout of 24 hours (86400 s). Such a scenario can be considered practical,

as a designer may only choose to obfuscate part of the IP to keep the area overhead

to a minimum.

Table 7.4 lists the highest de-obfuscation time observed for each benchmark circuit

and camouflaging technique. The results indicate a minimum of 10× increase in the

de-obfuscation effort for the attacker when using our camouflaged cells with 2 orders

of magnitude increase being more likely.

7.4.3 Dummy-input Gates

Among the available logic functions from our camouflaged cells, there are certain

functions whose output is determined only by a subset of inputs. For example, in a

function Y = a · (b+ b), the input b is redundant and can be considered as a dummy

input while the function implements a buffer for a. For gates with n > 2 inputs, more

complex functions with more redundant inputs can exist.

For our work, we explore the effect of leveraging such functions to further increase

the reverse-engineering effort for SAT attacks. Specifically, we will consider a 2-input

buffer with one dummy input and 3-input buffer with two dummies. This allows us

to add such gates anywhere in the design without changing the functionality of the

downstream logic. Once inserted, we can connect a dummy input to an arbitrary
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Table 7.4: De-obfuscation effort for limited and Multi-Vt FinFET Camouflaging with
[Timeout] of 24 hours

Circuit

Limited
Camouflaging Multi-Vt FinFET

Camouflaging
NAND/NOR/XOR

# Gates
Attack Time

(s)
Attack Time (s)

c432 120 53 14088

c499 150 41 30169

c1908 225 201 [Timeout]

c2670 536 2990 33843

c3540 749 259 12385

c7552 1233 1376 [Timeout]

output generated in a previous logic level or to a primary input. This prevents the

possibility of creating logic loops.

We chose to analyze 3 designs - c432, c499 and 2670. We consider the full design

to be de-obfuscated and only add the camouflaged dummy-input gates. This allows

us to only observe the effect of adding such gates. We perform the gate insertion

in stages to find the minimum number of dummy-input gates that can provide the

maximum increase in SAT attack effort. The number of dummy-input gates added

in each subsequent stage increases by 5% of the total number of gates in the original

netlist and we choose either the 2- or 3-input version with equal probability. We

generate 10 netlists with randomly inserted dummy-input gates and run the SAT

attack for each netlist with a timeout of 24 hours.

From the results in Table 7.5, we can see that it is possible to significantly increase

the reverse-engineering effort by multiple orders of magnitude with just inserting
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Table 7.5: Resilience of Dummy-input gate insertion to SAT attacks (Timeout = 24
hrs)

Circuit
Dummy inserted (%

of #Gates)
Attack Time (s)

c432 15 [Timeout]

c499 10 25310

c2670 5 [Timeout]

dummy-input gates in a design. In practical usage, such gates would be included in

the cell library and the dummy connections would be made after design synthesis.

7.5 Conclusion

Hardware obfuscation is a promising approach for protecting intellectual property

against reverse engineering attacks. In this chapter, we proposed an n-input circuit

design that can realize a vast number of unique output functions just by changing

the threshold voltage options used for certain FinFET transistors, while keeping the

physical layout the same. We compared our camouflaged gates to regular gate de-

signs and while our designs due incur an overhead in terms of area and delay, they

performed better in terms of power. However, we show that the structurally identical

camouflaged cells are able to increase the reverse engineering effort by an order of

magnitude for a SAT-based attack. Furthermore, we demonstrated that the reverse

engineering effort can further be increased by utilizing dummy-input gates which do

not change the logic functionality, but appear to be legitimate to an attacker.
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CHAPTER 8

CONCLUSION

Physically Unclonable Functions (PUFs) have shown promise as lightweight hard-

ware security primitives with various applications ranging from key-generation and

authentication to IP protection. The salient properties of PUFs are – Uniqueness,

Reliability and Unpredictability/Security. Hence, improving these core properties of

PUFs is essential for their deployment in practical applications. The first half of this

dissertation focused on solutions to improve reliability and unpredictability of PUFs.

Weak PUFs have been primarily utilized for cryptographic key generation appli-

cations and thus, are required to have very high reliability (¡ 1 failure in 106 key

generations). Typically, Weak PUF bits undergo post-processing to generate error-

free keys. However, such an approach can incur significant area and power overheads,

reducing viability for usage in resource-constrained environments. In this disserta-

tion, we explored new circuit designs to better harness inherent process variations

to create a more robust Weak PUF bit. This reduces the post-processing resources

needed to generate highly reliable keys. Furthermore, we proposed an intelligent

burn-in/accelerated aging system to further improve the reliability of the Weak PUF

cells. Our system provides relevant feedback, in an automated fashion, to allow man-

ufacturers to reduce the burn-in time required and hence, increase manufacturing

throughput.

Strong PUFs can provide a low cost alternative to cryptography-based authentica-

tion. However, unreliability in Strong PUFs can increase the cost of proper authenti-

cation and low resistance against model building attacks using machine learning tech-

133



niques creates a security risk. In this dissertation, we address the problem of machine

learning resistance by proposing new Strong PUF architectures utilizing WiSARD,

a simple Weightless Neural Network (WNN) model. Furthermore, the WNN Strong

PUF architectures were extended to utilize a reliable Weak PUF entropy source to

realize a robust Strong PUF. The concept of utilizing reliable entropy source was

further explored to generate Strong PUF system based on pattern-matching schemes

that compare the Weak PUF bits and states of a linear-feedback shift register (LFSR)

to generate robust and secure keys. All of our proposed Strong PUF designs are

lightweight and hence, can be incorporated into a large array of devices with varying

resource constraints. Further research includes fine-tuning the proposed designs for

fabrication and testing for real-world applications.

Obfuscation techniques have been proposed, at various levels of design abstraction,

to counter reverse engineering with an intent to steal IP from legal parties by malicious

actors. In this dissertation, we focused on system-level meta-obfuscation techniques

to prevent information leakage from the physical layout and developed metrics to

measure the quality of obfuscation. Our methodology maximized the obfuscation

metrics utilizing evolutionary algorithms. This dissertation also explored circuit-

level obfuscation by leveraging multi-threshold FinFETs to create n-input circuit

design that can realize a vast number of unique output functions by just changing

the assigned FinFET, without any changes in physical layout. These camouflaged

gates were compared against regular gate designs in terms of area, power and latency

overheads and performed favorably. Furthermore, their resilience against reverse-

engineering attacks were demonstrated utilizing standard benchmark circuits.

With Internet-of-Things (IoTs) being touted as a major future technology revo-

lution, securing these systems against various forms of attack is of paramount im-

portance. Low cost security solutions will be of great necessity to fully realize the

potential of IoTs. PUFs show promise in implementing lightweight security features
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and the solutions proposed in this dissertation will make them viable for widespread

deployment. Also, intellectual property theft is a universal problem and this disser-

tation provides hardware-based solutions to prevent reverse-engineering of valuable

design IPs.
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[48] Ghoreishizadeh, S. S., Yalçın, T., Pullini, A., Micheli, G. De, Burleson, W., and
Carrara, S. A Lightweight Cryptographic System for Implantable Biosensors. In
2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings
(Oct 2014), pp. 472–475.

[49] Goo, Jung-Suk, Choi, Chang-Hoon, Abramo, A., Ahn, Jae-Gyung, Yu, Zhiping,
Lee, T. H., and Dutton, R. W. Physical origin of the excess thermal noise in
short channel MOSFETs. IEEE Electron Device Letters 22, 2 (Feb 2001), 101–
103.

[50] Guajardo, Jorge, Kumar, Sandeep S., Schrijen, Geert-Jan, and Tuyls, Pim.
FPGA Intrinsic PUFs and Their Use for IP Protection. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2007, pp. 63–80.
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