965 research outputs found

    A general framework of multi-population methods with clustering in undetectable dynamic environments

    Get PDF
    Copyright @ 2011 IEEETo solve dynamic optimization problems, multiple population methods are used to enhance the population diversity for an algorithm with the aim of maintaining multiple populations in different sub-areas in the fitness landscape. Many experimental studies have shown that locating and tracking multiple relatively good optima rather than a single global optimum is an effective idea in dynamic environments. However, several challenges need to be addressed when multi-population methods are applied, e.g., how to create multiple populations, how to maintain them in different sub-areas, and how to deal with the situation where changes can not be detected or predicted. To address these issues, this paper investigates a hierarchical clustering method to locate and track multiple optima for dynamic optimization problems. To deal with undetectable dynamic environments, this paper applies the random immigrants method without change detection based on a mechanism that can automatically reduce redundant individuals in the search space throughout the run. These methods are implemented into several research areas, including particle swarm optimization, genetic algorithm, and differential evolution. An experimental study is conducted based on the moving peaks benchmark to test the performance with several other algorithms from the literature. The experimental results show the efficiency of the clustering method for locating and tracking multiple optima in comparison with other algorithms based on multi-population methods on the moving peaks benchmark

    Multi-robot preemptive task scheduling with fault recovery: a novel approach to automatic logistics of smart factories

    Get PDF
    This paper presents a novel approach for Multi-Robot Task Allocation (MRTA) that introduces priority policies on preemptive task scheduling and considers dependencies between tasks, and tolerates faults. The approach is referred to as Multi-Robot Preemptive Task Scheduling with Fault Recovery (MRPF). It considers the interaction between running processes and their tasks for management at each new event, prioritizing the more relevant tasks without idleness and latency. The benefit of this approach is the optimization of production in smart factories, where autonomous robots are being employed to improve efficiency and increase flexibility. The evaluation of MRPF is performed through experimentation in small-scale warehouse logistics, referred to as Augmented Reality to Enhanced Experimentation in Smart Warehouses (ARENA). An analysis of priority scheduling, task preemption, and fault recovery is presented to show the benefits of the proposed approach.This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).info:eu-repo/semantics/publishedVersio

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Dynamic Scheduling for Maintenance Tasks Allocation supported by Genetic Algorithms

    Get PDF
    Since the first factories were created, man has always tried to maximize its production and, consequently, his profits. However, the market demands have changed and nowadays is not so easy to get the maximum yield of it. The production lines are becoming more flexible and dynamic and the amount of information going through the factory is growing more and more. This leads to a scenario where errors in the production scheduling may occur often. Several approaches have been used over the time to plan and schedule the shop-floor’s production. However, some of them do not consider some factors present in real environments, such as the fact that the machines are not available all the time and need maintenance sometimes. This increases the complexity of the system and makes it harder to allocate the tasks competently. So, more dynamic approaches should be used to explore the large search spaces more efficiently. In this work is proposed an architecture and respective implementation to get a schedule including both production and maintenance tasks, which are often ignored on the related works. It considers the maintenance shifts available. The proposed architecture was implemented using genetic algorithms, which already proved to be good solving combinatorial problems such as the Job-Shop Scheduling problem. The architecture considers the precedence order between the tasks of a same product and the maintenance shifts available on the factory. The architecture was tested on a simulated environment to check the algorithm behavior. However, it was used a real data set of production tasks and working stations

    QoS multicast routing protocol oriented to cognitive network using competitive coevolutionary algorithm

    Get PDF
    The human intervention in the network management and maintenance should be reduced to alleviate the ever-increasing spatial and temporal complexity. By mimicking the cognitive behaviors of human being, the cognitive network improves the scalability, self-adaptation, self-organization, and self-protection in the network. To implement the cognitive network, the cognitive behaviors for the network nodes need to be carefully designed. Quality of service (QoS) multicast is an important network problem. Therefore, it is appealing to develop an effective QoS multicast routing protocol oriented to cognitive network. In this paper, we design the cognitive behaviors summarized in the cognitive science for the network nodes. Based on the cognitive behaviors, we propose a QoS multicast routing protocol oriented to cognitive network, named as CogMRT. It is a distributed protocol where each node only maintains local information. The routing search is in a hop by hop way. Inspired by the small-world phenomenon, the cognitive behaviors help to accumulate the experiential route information. Since the QoS multicast routing is a typical combinatorial optimization problem and it is proved to be NP-Complete, we have applied the competitive coevolutionary algorithm (CCA) for the multicast tree construction. The CCA adopts novel encoding method and genetic operations which leverage the characteristics of the problem. We implement and evaluate CogMRT and other two promising alternative protocols in NS2 platform. The results show that CogMRT has remarkable advantages over the counterpart traditional protocols by exploiting the cognitive favors

    Softwarization of Large-Scale IoT-based Disasters Management Systems

    Get PDF
    The Internet of Things (IoT) enables objects to interact and cooperate with each other for reaching common objectives. It is very useful in large-scale disaster management systems where humans are likely to fail when they attempt to perform search and rescue operations in high-risk sites. IoT can indeed play a critical role in all phases of large-scale disasters (i.e. preparedness, relief, and recovery). Network softwarization aims at designing, architecting, deploying, and managing network components primarily based on software programmability properties. It relies on key technologies, such as cloud computing, Network Functions Virtualization (NFV), and Software Defined Networking (SDN). The key benefits are agility and cost efficiency. This thesis proposes softwarization approaches to tackle the key challenges related to large-scale IoT based disaster management systems. A first challenge faced by large-scale IoT disaster management systems is the dynamic formation of an optimal coalition of IoT devices for the tasks at hand. Meeting this challenge is critical for cost efficiency. A second challenge is an interoperability. IoT environments remain highly heterogeneous. However, the IoT devices need to interact. Yet another challenge is Quality of Service (QoS). Disaster management applications are known to be very QoS sensitive, especially when it comes to delay. To tackle the first challenge, we propose a cloud-based architecture that enables the formation of efficient coalitions of IoT devices for search and rescue tasks. The proposed architecture enables the publication and discovery of IoT devices belonging to different cloud providers. It also comes with a coalition formation algorithm. For the second challenge, we propose an NFV and SDN based - architecture for on-the-fly IoT gateway provisioning. The gateway functions are provisioned as Virtual Network Functions (VNFs) that are chained on-the-fly in the IoT domain using SDN. When it comes to the third challenge, we rely on fog computing to meet the QoS and propose algorithms that provision IoT applications components in hybrid NFV based - cloud/fogs. Both stationary and mobile fog nodes are considered. In the case of mobile fog nodes, a Tabu Search-based heuristic is proposed. It finds a near-optimal solution and we numerically show that it is faster than the Integer Linear Programming (ILP) solution by several orders of magnitude

    Variational Autoencoder Based Estimation Of Distribution Algorithms And Applications To Individual Based Ecosystem Modeling Using EcoSim

    Get PDF
    Individual based modeling provides a bottom up approach wherein interactions give rise to high-level phenomena in patterns equivalent to those found in nature. This method generates an immense amount of data through artificial simulation and can be made tractable by machine learning where multidimensional data is optimized and transformed. Using individual based modeling platform known as EcoSim, we modeled the abilities of elitist sexual selection and communication of fear. Data received from these experiments was reduced in dimension through use of a novel algorithm proposed by us: Variational Autoencoder based Estimation of Distribution Algorithms with Population Queue and Adaptive Variance Scaling (VAE-EDA-Q AVS). We constructed a novel Estimation of Distribution Algorithm (EDA) by extending generative models known as variational autoencoders (VAE). VAE-EDA-Q, proposed by us, smooths the data generation process using an iteratively updated queue (Q) of populations. Adaptive Variance Scaling (AVS) dynamically updates the variance at which models are sampled based on fitness. The combination of VAE-EDA-Q with AVS demonstrates high computational efficiency and requires few fitness evaluations. We extended VAE-EDA-Q AVS to act as a feature reducing wrapper method in conjunction with C4.5 Decision trees to reduce the dimensionality of data. The relationship between sexual selection, random selection, and speciation is a contested topic. Supporting evidence suggests sexual selection to drive speciation. Opposing evidence contends either a negative or absence of correlation to exist. We utilized EcoSim to model elitist and random mate selection. Our results demonstrated a significantly lower speciation rate, a significantly lower extinction rate, and a significantly higher turnover rate for sexual selection groups. Species diversification was found to display no significant difference. The relationship between communication and foraging behavior similarly features opposing hypotheses in claim of both increases and decreases of foraging behavior in response to alarm communication. Through modeling with EcoSim, we found alarm communication to decrease foraging activity in most cases, yet gradually increase foraging activity in some other cases. Furthermore, we found both outcomes resulting from alarm communication to increase fitness as compared to non-communication
    corecore