
sensors

Article

Multi-Robot Preemptive Task Scheduling with Fault Recovery:
A Novel Approach to Automatic Logistics of Smart Factories

Vivian Cremer Kalempa 1,2,* , Luis Piardi 1,3 , Marcelo Limeira 1 and André Schneider de Oliveira 1

����������
�������

Citation: Kalempa, V.C.; Piardi, L.;

Limeira, M.; de Oliveira, A.S.

Multi-Robot Preemptive Task

Scheduling with Fault Recovery: A

Novel Approach to Automatic

Logistics of Smart Factories. Sensors

2021, 21, 6536. https://doi.org/

10.3390/s21196536

Academic Editors: Hilde Perez, Javier

Díez-González and Rubén Álvarez

Received: 20 August 2021

Accepted: 21 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal do Paraná
(UTFPR), Av. Sete de Setembro, 3165, Curitiba 80230-901, PR, Brazil; piardi@ipb.pt (L.P.);
limeira@alunos.utfpr.edu.br (M.L.); andreoliveira@utfpr.edu.br (A.S.d.O.)

2 Department of Information Systems, Universidade do Estado de Santa Catarina (UDESC), Luiz Fernando
Hastreiter St., 180, São Bento do Sul 89283-081, SC, Brazil

3 Research Center in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança (IPB),
Campus de Santa Apolónia, 5300-253 Bragança, Portugal

* Correspondence: vivian.kalempa@udesc.br

Abstract: This paper presents a novel approach for Multi-Robot Task Allocation (MRTA) that intro-
duces priority policies on preemptive task scheduling and considers dependencies between tasks, and
tolerates faults. The approach is referred to as Multi-Robot Preemptive Task Scheduling with Fault
Recovery (MRPF). It considers the interaction between running processes and their tasks for manage-
ment at each new event, prioritizing the more relevant tasks without idleness and latency. The benefit
of this approach is the optimization of production in smart factories, where autonomous robots are
being employed to improve efficiency and increase flexibility. The evaluation of MRPF is performed
through experimentation in small-scale warehouse logistics, referred to as Augmented Reality to
Enhanced Experimentation in Smart Warehouses (ARENA). An analysis of priority scheduling, task
preemption, and fault recovery is presented to show the benefits of the proposed approach.

Keywords: Multi-Robot Task Allocation; Multi-Robot Preemptive Task Scheduling; fault recovery;
smart factories; warehouse logistics

1. Introduction

Industrial processes are changing with the introduction of new technologies, aiming
to improve productivity and create more flexible products. This modernization is not
standard static automation, but advanced manufacturing through interconnected dynamic
agents. Smart factories are composed of a group of agents (i.e., robots, machines, sensors)
with machine-to-machine connectivity that can exchange information and make decisions
without compromising production, ensuring continuous flexible manufacturing in a Cyber-
Physical System (CPS) [1].

Flexible manufacturing is achieved with the introduction of dynamic agents that
can adapt to new demands and requirements [2]. Robots are the most flexible agents of
manufacture, directing interactions with other active agents, such as conveyors, storage,
and production machines. In this context, smart factories are sharply increasing the use of
mobile robots, enabling a new class of automation based on multi-robot systems.

Multi-robot systems (MRS) can be understood as the cooperation, coordination, or
interaction of a group of mobile robots to achieve a single task or a distinct set of tasks [3].
A large group of mobile robots is known as a robot swarm [4]. The MRS has different
definitions; for example, in [5,6] the swarm was defined as the coordination between large
groups of relatively simple robots through the use of local rules. Gerardo Beni [7] stated
that a group of robots has some unique characteristics, also found in swarms of insects:
decentralized control, lack of synchronization, and simple and (almost) identical mem-
bers. All these definitions are based on groups of primitive robots with elementary skills,
precisely the opposite of mobile robots with advanced abilities used in smart factories.

Sensors 2021, 21, 6536. https://doi.org/10.3390/s21196536 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9733-7352
https://orcid.org/0000-0003-1627-8210
https://orcid.org/0000-0002-8295-366X
https://doi.org/10.3390/s21196536
https://doi.org/10.3390/s21196536
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196536
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196536?type=check_update&version=2

Sensors 2021, 21, 6536 2 of 26

MRS has been introduced in industries to improve production and increase flexibility.
Thus, robots must work as operators in dynamically assigned tasks. The task is a sub-
goal that is necessary to achieve the overall purpose of the system, which can be made
independently of other sub-objectives [8]. However, task allocation should not only ensure
that the whole mission is achieved, but also that the tasks are productively and efficiently
distributed among the robots. A useful task allocation approach must consider available
resources, the factors to be optimized, and the capacity of the robots [9].

Benefits of MRS employment are dependent on an efficient decomposition of pro-
duction tasks because each robot or group is responsible for accomplishing a sub-task.
Task allocation in MRS is not trivial, especially when considering unreliable heterogeneous
robots, equipped with different resources, designed to execute several distinct tasks with
various requirements and constraints [10]. Multi-Robot Task Allocation (MRTA) is widely
discussed [11–16], where the challenges are the allocation of complex tasks, allocation of
dynamic tasks, allocation of highly restricted tasks, and heterogeneous allocation.

In addition, other challenges need to be addressed for MRS application to be effec-
tive [17], such as

1. Big Data: it remains a challenge to use big data in MRS, which has computational and
communication limitations;

2. Internet of Things (IoT): issues such as communication, consensus, information flow,
and security are IoT challenges in robotics;

3. Task Complexity: in dynamic environments, it is important to allow task decomposi-
tion automatically in order to perform the re-planning as the environment changes;

4. Autonomous Machine Learning: enables MRS agents to work better in dynamic
environments;

5. Scalability and Heterogeneity Tradeoff: dynamic environments make this topic a chal-
lenge;

6. Coalition Formation and Task Allocation: coalitions may have to change during the
performance of tasks and need to plan some form of fault tolerance;

7. Human-in-the-Loop: it can be challenging due to additional communication over-
head;

8. Transfer Learning: this topic needs to be tested on real-world systems with com-
plex tasks;

9. Unified Framework: many works have developed modules separately and made
developing an automated MRS challenging.

10. Other challenges: communication limitations, uncertain connectivity, and lack of an
evaluation standard are examples of open MRS problems.

This work discusses challenges three and six. The task complexity issue is addressed
through an approach that breaks down system processes into more simple tasks to the
distributed execution through multiple autonomous robots. For the problem of coalition
formation and task allocation, we present a new approach to subgroup formation and
cooperative accomplishment, which composes the complex logistic process.

This paper presents a novel approach for MRTA that introduces priority policies on
preemptive task scheduling, considering the dependencies between tasks, and tolerating
faults, called MRPF. The proposed approach contains four main elements. (1) Allow
processes with dependency or resource constraints, requiring more effort in coordinating
robots, to achieve the objective with independent tasks. (2) Provide a method for forming
subgroups (coalitions) of robots for the cooperative accomplishment of priority processes
with significant resource requirements. As such, several groups of robots can perform
different tasks at the same time. (3) Preemptive scheduling of tasks, allowing tasks with
higher priorities to be completed as soon as they enter the task queue while delaying lower
priority tasks. (4) Present a multi-robot scheduler supporting fault recovery, allowing a
robot to be replaced in case of failure.

Concerning challenge six, the proposed approach has the prerogative of being a fault-
resilient scheduler that ensures the correct and continuous operation in automatic logistics

Sensors 2021, 21, 6536 3 of 26

systems. The main purpose is to support failures so that the logistic process remains
operational without requiring the classification of failures.

The rest of this paper is organized as follows. Section 2 discusses the related work.
Section 3 presents the problem statement and the assumptions for MRTA. Section 4 ex-
plains the technical challenge and inspiration. Section 5 presents the proposed approach
to MRPF. Section 6 discusses the experimentation and evaluation in real warehouse logis-
tics. Section 7 presents a comparison with other approaches. Finally, Section 8 presents
the conclusions.

2. Related Work

MRTA is complex because tasks are dynamic and continuously changing. Each
task has specific requirements and distinct time constraints, and the task distribution is
very heterogeneous. In attempting to solve the MRTA problem, several approaches have
emerged. Primarily, these are: (1) behavioral approaches, (2) market-based approaches,
and (3) optimization-based approaches.

Behavioral approaches focus on acting patterns incorporated into the agents that are
activated or deactivated as a reaction, according to the stimuli received. If the behavior is
enabled, the robot will perform some pre-programmed actions. Multiple behaviors may be
active at the same time, so there must be rules for combination or prioritization [18]. The
most prominent behavioral algorithms are: ALLIANCE [19], Broadcast of Local Eligibility
(BLE) [20], and ASyMTRe-D [21]. Behavioral approaches are best suited to consider time
constraints in MRTA; however, they are still only a small part of a “conceptual solution”
because they are only locally optimal [22].

Market-based approaches to the MRTA problem, such as [23,24], involve explicit
communications between robots. Robots bid on tasks based on their capabilities. Trading
between robots is based on the market theory, where the objective is to optimize an objec-
tive function, taking into account the utility values of the robots [25]. As a disadvantage,
this approach presents the possibility of overly demanding a lot of computing and commu-
nication [26]. The algorithms with the most prominence based on market laws are: M+ [27],
Murdoch [28], TraderBots [29], and S+T (Services and Tasks) [30]. This approach, however,
can fail if task allocation requires a high cost of communication between robots. Only
theoretically can this approach guarantee optimal task allocation. Therefore, market-based
approaches fit the allocation of small-scale and medium-scale tasks [22,31].

Optimization-based approaches are designed to find the ideal solution from a set of
available solutions. Optimization methods have a set of constraints, and the ideal solution
is chosen according to a certain criterion, which defines the objective function. Because bio-
inspired stochastic approaches are best suited to work with distributed systems for multiple
robots, many researchers have developed studies in this area, such as: Refs. [32–35], with
genetic algorithms; Refs. [22,36], with ant colony optimization; and [37–39], with particle
swarm optimization. These approaches have the advantages of flexible behavior in relation
to environmental changes and the ability to self-organize. However, as a disadvantage, it
can have a very long execution time in cases where the problem is scaled up, making them
unsuitable when a solution is needed in real-time [40].

Finally, MRS, with the ability to address constraints such as the dynamic nature and
unpredictability of environments, time-consuming tasks, and robot failures, still faces
significant challenges.

3. Problem Statement and Assumptions

The conceptual task distribution into a group of autonomous robots is not necessarily
a pure task allocation. Approaches to MRTA team managing always aim to ensure the
accomplishment of a global task through the resolution of sub-tasks. Some concepts can
be mistakenly considered as part of the allocation. In this context, these concepts are
rigorously defined below.

Sensors 2021, 21, 6536 4 of 26

Definition 1. ASSIGNMENT is the method of task allotment to a single worker or staff.

Definition 2. SCHEDULING is the arrangement of tasks or sub-tasks in time, taking into account
restrictions, dependencies, and priorities.

Definition 3. ALLOCATION assures that scheduled sub-tasks will be assigned to a single worker
or group, taking into account the symmetry of workload.

The task management layer allows the proper characterization of task arrangement
in MRS and clarifies that allocation is one piece of the global problem, which will be
accomplished only if assignment and scheduling are working together.

The MRTA problem can also be interpreted as a scheduling problem [41]. In this man-
ner, the terms job and task and the terms machine and robot are equivalent. The advantage
of formalizing MRTA problems as scheduling is that it improves the solution with more
specific requirements, resulting in more effective benefits.

The scheduling approach aims to design the distribution of multi-robots taking into
account robot restrictions, task constraints, job priority, and resource dependence. Pure task
allocation does not address these areas because it is only an instantaneous analysis of robots
and groups; the dynamic interaction between tasks is not considered. However, scheduling
approaches are always seeking job distribution, managing the job interactions, oversee-
ing the shared resources, and introducing new dynamic features, such as precedence,
preemptability, and batching of jobs.

4. Warehouse Logistics

This work is inspired by a real Brazilian warehouse that needs a complete automa-
tion process. All sectors of this actual warehouse were reproduced on our warehouse
floor plan, shown in Figure 1. In this warehouse, the processes are organized into seven
sectors: Incoming Cargo, Checking, Warehouse, Outgoing Cargo, Staging, Maintenance,
and Charging Station. In addition, this warehouse has forklifts that can perform various
activities such as loading and unloading trucks or shelves. Each white circle, shown in
Figure 1, represents a state that can be occupied by only one forklift at a time. Furthermore,
transitions between these states, represented by arrows, indicate the direction that forklifts
can travel, avoiding collisions.

Figure 1. Floor plan of the warehouse logistics with the following sectors: Maintenance, Charging
Station, Warehouse, Checking, Staging, Incoming Cargo, and Outgoing Cargo [42] (© 2020 IEEE).

In this warehouse, when trucks arrive with new goods, they need to park in the
Incoming Cargo sector. The forklifts unload the goods, taking them to the Checking sector.

Sensors 2021, 21, 6536 5 of 26

In the Checking sector, the conditions of the products are checked, and then they are
organized to determine where they will be stored. It is the forklifts that carry the Checking
packages to the warehouse. The warehouse is organized into four aisles, according to the
type of goods, which can be: automotive items, pharmaceutical items, food items, and
miscellaneous items.

On the other hand, to make a delivery to the customer, the goods are first taken
from the Warehouse and made available in the Staging sector. In this sector, the goods
are packaged for delivery. The next step is to transport these packages by forklift to the
Outgoing Cargo sector. Figure 2 presents the interaction between warehouse processes in a
simplified manner.

Figure 2. Summary of warehouse logistics process [43] (© 2019 IEEE). Arrows indicate the flow
direction of the Incoming Cargo and Outgoing Cargo processes.

In warehouse logistics, the entry and exit of goods can coincide, setting up a dynamic
process. In addition, the number of forklifts that perform tasks changes dynamically
according to the number of packages that need to be transported at each entry and exit of
goods. Some requests need to be carried out urgently due to consumer contracts or storage
conditions such as refrigerated goods.

5. Multi-Robot Preemptive Task Scheduling with Fault Recovery (MRPF)

The proposed approach is the expansion of multi-robot management to the scheduling
level, allowing task prioritization and fault-tolerance, referred to as MRPF.

Figure 3 illustrates this approach where two tasks named A and B need to be sched-
uled. The scheduler then determines which robots will serve them according to their
requirements: priority and number of boxes to be transported. However, tasks A and B,
when starting their execution, can be interrupted if new processes with a higher priority
appear. As in the example in Figure 3, task B had to undergo preemption due to the
appearance of tasks C and D with higher priority. Another situation dealt with in the MRPF
approach is regarding fault recovery. As an example, Figure 3 presents the situation where,
at some point in time, a robot from task A fails and is replaced by an available robot after
completing some steps of task D.

MRPF arranges tasks and sub-tasks in time, taking into account restrictions, dependen-
cies, and priorities, updating the arrangement at each changing event. The scheduling cycle
is prompted by these events to determine which tasks will be forwarded to the coalition
formation, which allocates the tasks to a group of robots to execute.

Tasks are introduced into the warehouse environment with different priorities. The
scheduler has the role of determining the execution of each task according to its priority.
That is, a low-priority task must be executed after a high-priority task. If a high-priority
task comes up and needs to be run at any point, a lower priority task will need to stop
running and resume later. The scheduler’s preemption mechanism is activated to stop the
execution of the low-priority task, storing its context for future continuation and switching
to the execution of the high-priority task.

Sensors 2021, 21, 6536 6 of 26

Figure 3. Overview of the MRPF with priority scheduling, task preemption, and fault recovery.

The interaction between parallel tasks constantly changes the coalitions to prioritize
tasks and maintain their requirements. However, the distributed system is susceptible to
different fault sources, e.g., low battery and error. In fault occurrence, the robot that failed
must communicate with the nearest free robot to initiate a replacement. This mechanism
prioritizes the closest robot in accord with its battery state. The replacement can be
immediate if there is a free robot or later if it is necessary to wait for a robot to be delocalized
to perform the substitution. In any case, the robot that has failed goes to Maintenance.

5.1. Characterization of the Tasks

Warehouse logistics are responsible for collection, storage, distribution, delivery, and
inventory management of items, as illustrated in Figure 1. The logistics are composed of
several specific processes and tasks as detailed in Figure 4.

The Receiving task is responsible for managing the receipt of goods. When a receipt
event occurs, a collection process is started to unload goods in the trucks parked in the
Incoming Cargo sector. In this case, forklifts must handle goods from Incoming Cargo and
take them to Checking, to be checked and registered in the inventory database, designated
as a Checking task. After being reviewed, the load must be organized and stored; this is the
Sorting task. Finally, the Storage task addresses storing the cargo in the warehouse.

The Picking task begins when there is a customer order to be delivered, which requires
withdrawal of the goods from the warehouse and placement in the Staging sector. The
Staging task performs the preparation or packing of goods for delivery. Finally, the cargo
dispatching occurs in the Outgoing Cargo sector, which is a function of the Delivery task.

Sensors 2021, 21, 6536 7 of 26

Figure 4. Description of processes, Incoming Cargo and Outgoing Cargo, and their tasks in warehouse
logistics [42] (© 2020 IEEE).

The logistics scheduler understands the whole operation as the decomposition into
processes with high abstraction level (HAL), Incoming Cargo and Outgoing Cargo. These
processes are a sequence of standard tasks (shown in Figure 4). The Incoming Cargo process
is the sequence of Receiving → Checking → Sorting → Storage. The Outgoing Cargo process
is the sequence of Picking → Staging → Delivery.

A coalition formation is made for each standard task of HAL processes; that is, groups
of different robots can execute these processes. In the execution of tasks, it may be necessary
to change a robot because it presents a low battery or an error. A robot will always be
replaced by another robot. A coalition can have more than one robot and can also be
re-assigned when other robots are closest to the next sub-task to be executed.

5.2. Task Scheduling

The MRPF approach maintains a queue of processes, categorized as Incoming Cargo or
Outgoing Cargo. Each process is assigned a priority to determine its importance, which is
equally distributed to its tasks. A process is composed of a set of tasks, shown in Figure 4.
The Incoming Cargo process consists of the following tasks: Receiving, Checking, Sorting, and
Storage. The Outgoing Cargo process consists of the following tasks: Picking, Staging and
Delivery. MRPF is designed with four classes of priorities, defined as:

Priority 1. Minor: These are nonessential processes that do not inhibit the staff functionality or
primary purpose of the warehouse. The jobs are executed when possible or by idle workers.

Sensors 2021, 21, 6536 8 of 26

Priority 2. Normal: These processes are not Critical or Major, with isolated impact, and may have
workarounds (variable staff). They do not have special requirements but must be executed when
created. At minimum, one autonomous robot should be made available.

Priority 3. Major: This priority is used for processes that are not critical but have a significant
impact on warehouse staff. For example, an incoming or outgoing truck with many boxes. This kind
of process requires at least two autonomous robots.

Priority 4. Critical: These processes must be initiated immediately and completed as soon as
possible. This requirement is commonly associated with refrigerated cargo, emergency deliveries, or
time-restricted truck stops. At least three autonomous robots are required to execute critical pro-
cesses.

The scheduler is designed to perform up to three parallel processes, redirecting
resources to new processes with higher priority. The limitation also aims to guarantee
the flow of mobile robots in the warehouse, avoiding queues in a crowded environment.
Robot distribution is based on priority restrictions. If a given task needs fewer robots than
expected, the remaining robots are redistributed, giving preference to the highest priority
tasks, or if they have the same priority, to the oldest.

Algorithm 1 briefly presents the operation of the MRPF scheduling process. The
scheduling function receives the list of all processes that are being executed or waiting to
be served. This function is called within a loop, as the list may undergo new additions to
processes to be executed. In line 2, the function get_priority_process() selects the process
with the highest priority from the list of processes in the waiting status. If no processes
were waiting, the function ends its processing on line 4. The loop for on line 8 checks with
which of the three nodes it is possible to execute the process with the highest priority. In
line 9, it is verified if the process that is being executed in node i has finished its tasks. In
this case, the node will have the status free (line 10). In line 12, if the node is free, the node
receives the process with the highest priority to be executed, updates its status (line 14) to
executing and the process status also to executing (line 15). The execute() function is called,
which receives a parameter on which node and which process should run on that node.
The entire coalition formation and allocation procedure are completed in this function.
Finally, in line 17, it is indicated in the flag_execute that the process found a node to execute
it. In line 19, if the process has not been able to run on that node, the value of the process
running with the lowest priority is stored. Finally, on line 26, it is verified that the process
has not been executed (flag_execute == false) and that its priority is higher than the process
running with the lowest priority. If so, the process running with the lowest priority goes
to waiting status (line 27) and suffers preemption, where its information is saved for later
resumption (line 28). Then, the process with the highest priority is executed on line 29.

5.3. Task Preemption

A preemption mechanism is adopted to prioritize more important processes, allowing
interruption of an active lower priority process. In this case, a lower priority process is
stopped and re-enters the process queue. When it is selected again for execution, the
process resumes from the point where it stopped.

For example, if an Incoming Cargo process has started loading boxes for the Checking
sector, the process will only be preempted at the end of this step. Upon retake, the process
that was preempted will perform the next step, loading into the Warehouse sector. The
process will only be preempted when the step that is running is finished, not leaving boxes
in inappropriate places of the warehouse, which can introduce obstacles to other processes.
However, if the robots have not yet started loading, the process will be preempted before
it starts.

Sensors 2021, 21, 6536 9 of 26

Algorithm 1: MRPF Scheduling function.

1 Function mrpf_scheduling(process_list)
2 process_choose = get_priority_process(process_list,“WAITING”);
3 if process_choose == NULL then
4 return;
5 end
6 smaller = 999;
7 flag_execute = false;
8 for i = 0; i < 3; i ++ do
9 if process_node[i].status == “EXECUTING” AND

get_process_status(process_node[i].process) == “FINISH′′ then
10 process_node[i].status = “FREE”;
11 end
12 if process_node[i].status == “FREE′′ then
13 process_node[i].process = process_choose.process_id;
14 process_node[i].status = “EXECUTING”;
15 update_process_status(process_choose.process,“EXECUTING”);
16 execute(i, process_choose);
17 flag_execute = true;
18 end
19 else
20 if process_node[i].priority < smaller then
21 index_smaller = i;
22 smaller = process_node[i].priority;
23 end
24 end
25 end
26 if f lag_execute == f alse AND process_choose.priority > smaller then
27 update_process_status(process_node[index_smaller].process,“WAITING”);

28 preempt(process_node[index_smaller].process);
29 execute(index_smaller,process_choose);
30 end
31 end

5.4. Fault Recovery

During the execution of tasks, robots may fail. In this case, a robot stops executing
its task and goes to the Maintenance sector. If the failed robot was performing a task, it
chooses a new robot to replace it. The criterion of choice for replacement is the closest
available robot to the point of failure. The failed robot, if it had cargo, leaves its box where
it failed and proceeds to the Maintenance sector. The substitute robot proceeds to the fault
location and continues the interrupted task. If the replacement robot fails, the procedure is
repeated.

If at any point a robot fails and cannot be replaced, the remaining robots move to the
current stage of the task. Upon completion, it is checked if any robot can replace the failed
robot. At this point, a robot that was performing another task may be free. Again, the
nearest robot will be chosen as the replacement.

6. Experimental Evaluation of MRPF

The proposed approach to MRPF is evaluated in a small-scale warehouse called
ARENA, which is a physical warehouse that represents a real small warehouse, as shown
in Figure 5. The inspiration warehouse is not automated and needs human assistance
and control. The goal is to use ARENA with an MRS and augmented reality (AR) to
demonstrate an autonomous warehouse system. More details can be obtained at [43].

Sensors 2021, 21, 6536 10 of 26

Figure 5. The ARENA, a small-scale warehouse, only with real elements [44] (© 2019 IEEE).

Mobile robots replicate the forklift actions of a real warehouse. The tiny robot, called
WsBot [44] (Figure 6), was developed for experimentation in small-scale warehouses to
evaluate intelligent behavior in smart factories.

Figure 6. Main components of WsBot: a tiny, low-cost swarm robot [44] (© 2019 IEEE).

The evaluation of the proposed MRPF is planned in three experiments. The first
experiment demonstrates an example of priority scheduling. The second experiment
illustrates a condition of task preemption. The third experiment analyzes fault detection
and recovery.

6.1. Experiment 1: Priority Scheduling

The first experiment is a demonstration of MRPF ability in priority scheduling. In
this case, three Incoming Cargo processes are performed, as described in Table 1. The three
processes are of the Incoming Cargo type; that is, they will perform the Receiving, Checking,
Sorting and Storage tasks. In other words, it aims to transport the boxes that are in the
Incoming Cargo sector to the Warehouse. The main scenes of this experiment are shown in
Figure 7, and can be seen on YouTube (https://youtu.be/OhSUsAR8kIw, accessed on 19
September 2021).

Table 1. Description of Experiment 1: Priority Scheduling.

Type of Process Priority Number of Boxes Initial State Warehouse Aisle

Process-1 Incoming Cargo 4 5 I1 1

Process-2 Incoming Cargo 3 3 I2 2

Process-3 Incoming Cargo 2 1 I3 3

At the beginning of the experiment, the highest priority process is the only one running.
It employs the five robots it needs to load its five boxes, i.e., robots 0–4. The second process
receives the remaining three robots, robots 5–7. However, the third process cannot allocate
robots immediately and must wait until one of the two processes completes the first step,
taking boxes from Incoming Cargo to Checking.

https://youtu.be/OhSUsAR8kIw

Sensors 2021, 21, 6536 11 of 26

Figure 7a illustrates this moment where the highest priority process robots appear
in yellow, and the second-highest priority process robots appear in dark blue. Figure 7b
shows the moment when the robots in the first process begin to take boxes from Incoming
Cargo to Checking.

Figure 7. Main scenes from experiment 1: Priority Scheduling. Scene (a) being the initial, scene (i)
the final and scenes (b–h) the intermediate.

A critical moment occurs when the highest priority process robots finish delivering
their boxes to the Checking sector (Figure 7c). At this point, robots appear in black to
indicate they have been deallocated. The scheduler decides which robots to allocate to
the next step of the process, moving the boxes from the Checking sector to the Warehouse.
However, because there is a third process waiting for robots, a new distribution is made. In
this case, robot 0 (shown in light blue) is allocated to the third process.

Figure 7d shows the moment when the robots that have completed the first process
are re-allocated (robots 1–4). The moment when the highest priority process robots begin
to retrieve boxes from the Checking sector to take to the Warehouse is shown in Figure 7e.
All nine boxes are not visible because they are represented one on top of the other.

In sequence, the highest priority process robots begin delivering the boxes in the
Warehouse (robots 1–4), as illustrated in Figure 7f. Next, the robots of the highest priority
process are deallocated and appear in black (Figure 7g). In Figure 7h, robot 1 was reassigned
to complete the highest priority process, appearing in yellow. It was the robot closest to the
Checking sector exit. At this moment, the delivery of boxes by robots 5–7 of the second
process is occurring in the second aisle of the Warehouse, and robot 0 of the third process is
about to deliver on the third aisle.

The final scene is presented in Figure 7i, with five boxes in the first aisle of the
Warehouse, three boxes in the second aisle of the Warehouse, and one box in the third aisle
of the Warehouse. The robots turn black to indicate they are free and return to Maintenance
or the Charging Station to be parked.

Sensors 2021, 21, 6536 12 of 26

The process execution is represented through a Gantt chart (Figure 8), where the
number on the chart indicates the priority of each process and the time specified by
scheduler cycles, called ticks. The yellow color indicates the period in which the processes
were running. The process with the highest priority was the first to be attended, but
owing to the high number of boxes, it was the last to be completed. The process with the
second-highest priority was the second process to be attended and the first process to be
completed. The process with the lowest priority was the last to be executed, but because it
had only one box, it was the second process to be completed.

Figure 8. Gantt chart of Priority Scheduling with three processes active throughout the experiment.

6.2. Experiment 2: Preemption

The second experiment is an example of preemption when an active process is inter-
rupted in favor of another process with higher priority. The scenario is designed with four
Incoming Cargo processes, as described in Table 2. The four processes are of the Incoming
Cargo type; that is, the purpose of these processes is to transport the boxes that are in the
Incoming Cargo sector to the Warehouse. The main scenes of this experiment are shown in
Figure 9, and can be seen on YouTube (https://youtu.be/RBGzdplPd7w, accessed on 19
September 2021).

Table 2. Description of Experiment 2: Preemption.

Type of Process Priority Number of Boxes Initial State Warehouse Aisle

Process-1 Incoming Cargo 4 2 I1 4

Process-2 Incoming Cargo 3 3 I2 3

Process-3 Incoming Cargo 2 2 I3 1

Process-4 Incoming Cargo 3 4 I4 2

https://youtu.be/RBGzdplPd7w

Sensors 2021, 21, 6536 13 of 26

Figure 9. Main scenes from experiment 2: Preemption. Scene (a) being the initial, scene (i) the final
and scenes (b–h) the intermediate.

The initial scene of this experiment is shown in Figure 9a, where robots 0–1 are
allocated to the first process, robots 2–4 are assigned to the second process, and robots 5–6
are allocated to the third process. Figure 9b shows the moment when the robots of the first
process deliver their boxes to the Checking sector, and the robots of the second process
take their boxes out of Incoming Cargo to transport them to the Checking area.

The robots of the third process (robots 5–6) begin to transport their boxes to the
Checking sector, shown in Figure 9c. At this time, robots of the first process were already
deallocated (robots 0–1), and new robots were allocated (robots 0 and 7), according to the
proximity of the next state of transport, which is the exit of the Checking sector.

In the sequence, the fourth process enters the state I4 (Figure 9d). This process has a
higher priority than the third process and considers four boxes that must be delivered to
the second aisle of the Warehouse. The state of the third process is saved to be resumed
later, when there are no processes running or when it is next by priority. The minimum
number of robots that the fourth process could allocate would be two robots, but as the
other two processes do not need more robots, the fourth process ends up receiving three
robots (robots 4–6). Figure 9e shows the time at which a fourth robot (robot 4) is allocated
to load the last box of the fourth process, and robots 5 and 6 are deallocated. It is also the
time when the first process robots begin to transport their boxes to the Warehouse (robots 0
and 7).

When the second process robots deliver their boxes in the third aisle of the Warehouse
(robots 1–3), as shown in Figure 9f, the first process finishes its execution and deallocates
its robots 0 and 7. Thus, Figure 9g shows the moment when robots 0 and 7 are allocated to
continue the second stage of the third process.

Next, the third and fourth process robots deliver their boxes into the Warehouse
(Figure 9h). However, a box is still missing for the fourth process. The time when a fourth
robot is allocated to finish the last transport is shown in Figure 9i (robot 5). Finally, the last

Sensors 2021, 21, 6536 14 of 26

scene includes two boxes of the first process in the fourth aisle, three boxes of the second
process in the third aisle, two boxes of the third process in the first aisle, and four boxes of
the fourth process in the second aisle, as expected.

The Gantt chart of the preemption experiment is presented in Figure 10. The period
in which the processes were being executed is indicated in yellow; the period in which a
process was preempted is indicated in gray. Processes 1 and 2 were the first to be attended.
The process with priority 2 was the third process to be attended and was preempted at
time 17. However, the fourth process with priority 3 began to run only in period 19, which
was when the third process ended the step that was in progress. At the end of the highest
priority process at time 33, the third process resumed and was no longer preempted.

Figure 10. Gantt chart of Preemption, where process 3 was preempted because of process 4, with
higher priority.

6.3. Experiment 3: Fault Recovery

The third experiment is an example of fault recovery, where the scheduler reorganizes
the coalition to ensure priority execution. In this case, two Incoming Cargo processes and
one Outgoing Cargo process are performed (Table 3). Processes 1 and 3 are of the Incoming
Cargo type and process 2 is of the Outgoing Cargo type. That is, the objective of processes 1
and 3 is to transport the boxes that are in the Incoming Cargo sector to the Warehouse. The
objective of process 2 is to transport the boxes from the Warehouse to the Outgoing Cargo
sector. The main scenes of this experiment are presented in Figure 11, and can be seen on
YouTube (https://youtu.be/kxyLgmSGJnY, accessed on 19 September 2021).

Table 3. Description of Experiment 3: Fault Recovery.

Type of Process Priority Number of Boxes Initial State Warehouse Aisle

Process-1 Incoming Cargo 4 3 I1 2

Process-2 Outgoing Cargo 4 3 O1 2

Process-3 Incoming Cargo 3 4 I1 1

https://youtu.be/kxyLgmSGJnY

Sensors 2021, 21, 6536 15 of 26

Figure 11. Main scenes from experiment 3: Fault Recovery. Scene (a) being the initial, scene (i) the
final and scenes (b–h) the intermediate.

It is assumed that the first process has already been executed, so Figure 11a shows three
boxes already in the second aisle. The second and third processes happen simultaneously;
the three yellow robots (0–2) are selected for the second process, and the four dark blue
robots (3–6) are assigned to the third process. Figure 11b shows the robots of the second
process beginning to transport boxes from the Warehouse to the Staging sector. Figure 11c
shows the moment the boxes start arriving at Staging.

After delivering the boxes to the Staging sector, the second process robots are deal-
located (Figure 11d). A new allocation is made for the second stage of the process, the
removal of boxes from the Staging sector and delivery to the Outgoing Cargo sector. The
scheduling chooses the robots closest to the exit of the Staging sector, keeping robots 0–2,
as shown in Figure 11e. Figure 11e also shows the start of the third process, box loading for
the Checking sector.

Robots may experience random errors while performing their processes. In this case,
a robot must communicate with the nearest robot for replacement. An example is a fault
presented by robot 0 of the second process, shown in red in Figure 11f. Robot 0 is replaced
by robot 7, which now appears in yellow. At this point, robot 0 goes to Maintenance for
repair, as shown in Figure 11g. Furthermore, note in Figure 11f that robot 3 of the third
process begins delivery of its box to the Checking sector.

In Figure 11g, the boxes of the second process begin to arrive at the Outgoing Cargo
sector in state O1. Figure 11h shows the three boxes of the second process in the Outgoing
Cargo sector and the first box of the third process being transported to the Warehouse.
Figure 11i presents the final scene of the simulation, with four boxes referring to the third
process, in the first aisle of the Warehouse.

The Gantt chart is presented in Figure 12, showing that initially, only the first process
was executed. The second and third processes were run simultaneously, and even if a robot
of the second process failed and needed to be replaced, it did not hinder progress.

Sensors 2021, 21, 6536 16 of 26

Process 1

Process 2

Process 3

Figure 12. Gantt chart of Fault Recovery for process 2.

6.4. Accuracy and Precision

The accuracy of Multi-Robot Preemptive Task Scheduling with Fault Recovery (MRPF)
is evaluated through four distinct experiments that aim to quantify the results. In this
case, three Incoming Cargo processes and two Outgoing Cargo processes are performed, as
described in Table 4, where it is assumed that the first process has already been executed.

Table 4. Description of Experiments.

Type of Process Priority Number of Boxes Initial State Warehouse Aisle

Process-1 Incoming Cargo 4 4 I1 1

Process-2 Outgoing Cargo 4 1 O1 1

Process-3 Incoming Cargo 1 3 I2 2

Process-4 Incoming Cargo 3 2 I3 3

Process-5 Outgoing Cargo 2 2 O2 1

Processes 2, 3, and 4 are reported to the system simultaneously. Process 5, which has
a higher priority than process 3, is informed as soon as process 3 is started. In this case,
preemption handling of process 3 is essential to turn process 5. As process 3 starts, the
third robot chosen to execute it fails. This situation exemplifies the treatment that should
occur in such cases.

The experiments aim to compare the MRPF approach with standard methods, where
all cases are evaluated in pure MRTA, MRTA with fault treatment (MRTA + Fault), MRTA
with process preemption (MRTA + Preemption), and the proposed MRPF. In addition, four
distinct experiments were performed for comparison between these methods.

Table 5 presents the results of the four experiments performed for the MRTA and
MRTA + Fault methods, and Table 6 presents the results of the four experiments performed
for the MRTA + Preemption and MRPF. Each process has its creation time, in this case, a
certain scheduler cycle called tick (Creation tick column). In addition, the start tick of each
process (Start tick column) is stored to obtain the delay time to fulfill the process (Delay
tick column). In the case of MRTA and MRTA + Fault, the Delay ticks and Total delay ticks
column will have the same meaning. However, for MRTA + Preemption and MRPF, the
Total delay ticks column only considers the active process periods for the summation. The
End tick column indicates the tick that the process was completed so that the Elapsed ticks
column can be calculated. For MRTA and MRTA + Fault, Elapsed ticks, and Running ticks
columns have the same meaning. However, for the MRTA + Preemption and MRPF, the
sum presented in Running ticks considers only the active periods of the processes.

Sensors 2021, 21, 6536 17 of 26

Table 5. MRTA and MRTA + Fault schedulers experiments.

MRTA Scheduler MRTA + Fault Scheduler

Ex
pe

ri
m

en
t

Pr
oc

es
s

C
re

at
io

n
Ti

ck

St
ar

tT
ic

k

D
el

ay
Ti

ck
s

To
ta

lD
el

ay
Ti

ck
s

En
d

Ti
ck

St
at

us

El
ap

se
d

Ti
ck

s

R
un

ni
ng

Ti
ck

s

C
re

at
io

n
Ti

ck

St
ar

tT
ic

k

D
el

ay
ti

ck
s

To
ta

lD
el

ay
Ti

ck
s

En
d

Ti
ck

St
at

us

El
ap

se
d

Ti
ck

s

R
un

ni
ng

Ti
ck

s

1

Process-1 2 2 0 0 36 Running 34 34 2 2 0 0 40 Running 38 38
Process-2 43 43 0 0 57 Running 14 14 51 51 0 0 66 Running 15 15
Process-3 43 45 2 2 85 Running 40 40 51 53 2 2 87 Running 34 34
Process-4 44 44 0 0 72 Running 28 28 51 52 1 1 84 Running 32 32
Process-5 50 57 7 7 81 Running 24 24 58 66 8 8 86 Running 20 20

2

Process-1 2 2 0 0 36 Running 34 34 2 2 0 0 35 Running 33 33
Process-2 45 45 0 0 59 Running 14 14 44 44 0 0 58 Running 14 14
Process-3 45 47 2 2 88 Running 41 41 44 46 2 2 79 Running 33 33
Process-4 45 46 1 1 78 Running 32 32 45 45 0 0 75 Running 30 30
Process-5 51 59 8 8 92 Running 33 33 51 58 7 7 81 Running 23 23

3

Process-1 2 2 0 0 41 Running 39 39 2 2 0 0 38 Running 36 36
Process-2 50 50 0 0 65 Running 15 15 48 48 0 0 62 Running 14 14
Process-3 50 52 2 2 95 Running 43 43 48 50 2 2 85 Running 35 35
Process-4 51 51 0 0 81 Running 30 30 49 49 0 0 81 Running 32 32
Process-5 57 65 8 8 83 Running 18 18 55 62 7 7 88 Running 26 26

4

Process-1 2 2 0 0 36 Running 34 34 2 2 0 0 36 Running 34 34
Process-2 44 44 0 0 57 Running 13 13 45 45 0 0 59 Running 14 14
Process-3 45 46 1 1 87 Running 41 41 45 47 2 2 79 Running 32 32
Process-4 45 45 0 0 77 Running 32 32 45 46 1 1 75 Running 29 29
Process-5 51 57 6 6 80 Running 23 23 52 59 7 7 83 Running 24 24

Sensors 2021, 21, 6536 18 of 26

Table 6. MRTA+Preemption and MRPF schedulers experiments.

MRTA + Preemption Scheduler MRPF Scheduler

Ex
pe

ri
m

en
t

Pr
oc

es
s

C
re

at
io

n
Ti

ck

St
ar

tT
ic

k

D
el

ay
Ti

ck
s

To
ta

lD
el

ay
Ti

ck
s

En
d

Ti
ck

St
at

us

El
ap

se
d

Ti
ck

s

R
un

ni
ng

Ti
ck

s

C
re

at
io

n
Ti

ck

St
ar

tT
ic

k

D
el

ay
ti

ck
s

To
ta

lD
el

ay
Ti

ck
s

En
d

Ti
ck

St
at

us

El
ap

se
d

Ti
ck

s

R
un

ni
ng

Ti
ck

s

1

Process-1 2 2 0 0 36 Running 34 34 2 2 0 0 33 Running 31 31
Process-2 44 44 0 0 58 Running 14 14 40 40 0 0 53 Running 13 13

Process-3 45
46 1

14
52 Running 6

44 40
42 2

15
47 Running 5

3752 - 58 Preemption 6 47 - 53 Preemption 6
58 13 96 Running 38 53 13 85 Running 32

Process-4 45 45 0 0 74 Running 29 29 40 41 1 1 68 Running 27 27
Process-5 52 54 2 2 74 Running 20 20 47 49 2 2 68 Running 19 19

2

Process-1 2 2 0 0 36 Running 34 34 2 2 0 0 35 Running 33 33
Process-2 46 46 0 0 66 Running 20 20 42 42 0 0 61 Running 19 19

Process-3 46
48 2

22
53 Running 5

41 43
44 1

19
48 Running 4

3753 - 66 Preemption 13 48 - 61 Preemption 13
66 20 102 Running 36 61 18 94 Running 33

Process-4 46 47 1 1 75 Running 28 28 43 43 0 0 69 Running 26 26
Process-5 53 55 2 2 71 Running 16 16 48 50 2 2 68 Running 18 18

3

Process-1 2 2 0 0 36 Running 34 34 2 2 0 0 33 Running 31 31
Process-2 44 44 0 0 58 Running 14 14 40 40 0 0 58 Running 18 18

Process-3 44
46 2

16
51 Running 5

41 41
42 1

18
46 Running 4

3251 - 58 Preemption 7 46 - 58 Preemption 12
58 14 94 Running 36 58 17 86 Running 28

Process-4 45 45 0 0 76 Running 31 31 41 41 0 0 67 Running 26 26
Process-5 51 53 2 2 76 Running 23 23 46 48 2 2 64 Running 16 16

4

Process-1 2 2 0 0 34 Running 32 32 2 2 0 0 34 Running 32 32
Process-2 41 41 0 0 59 Running 18 18 41 41 0 0 60 Running 19 19

Process-3 41
43 2

20
47 Running 4

41 42
43 1

19
48 Running 5

3947 - 59 Preemption 12 48 - 60 Preemption 12
59 18 96 Running 37 60 18 94 Running 34

Process-4 42 42 0 0 66 Running 24 24 42 42 0 0 68 Running 26 26
Process-5 47 49 2 2 68 Running 19 19 48 50 2 2 65 Running 15 15

Sensors 2021, 21, 6536 19 of 26

Table 5 shows that for MRTA and the MRTA + Fault, process 5 is created after process
3, and, despite having higher priority than process 3, it only starts its execution after the
termination of process 2. Remembering that, it is only possible to execute three processes
simultaneously, as seen in Section 5.2. In Table 6, it can be noted for both the MRTA +
Preemption and the MRPF that after process 5 is created, process 3 is preempted, giving
way to process 5, which has higher priority. The delay ticks of each process emphasize
the treatment of preemption. This is more clearly presented in Table 7, where it is noted
that the average delay ticks of process 5 in MRTA + Preemption and MRPF is two ticks,
while in MRTA and MRTA + Fault it is 7.25 ticks. Consequently, in MRTA + Preemption
and MRPF, the average delay ticks of process 3 are longer, as shown in Table 7. However,
in MRTA and MRTA + Fault, the delay ticks of process 5 are conditional on the running
time of active processes.

Table 5 also shows that the running ticks of process 3 are longer in MRTA scheduler
than in MRTA + Fault. This information is also summarized in Table 8. While the average
running ticks for process 3 on the MRTA is 41.25 ticks, on the MRTA + Fault it is 33.5 ticks.
This is because the third allocated robot to service process 3 fails, and a failure handling
mechanism is not provided in the MRTA. Without replacement of the failed robot, the
remaining robots need to service the process alone. In the MRTA + Fault, the failed robot
is replaced, ensuring that process 3 ends in a shorter time. The same comparison can be
made between methods MRTA + Preemption and MRPF. The running ticks of process 3
are longer in the MRTA + Preemption scheduler that has no-fault handling than in the
MRPF scheduler.

Tables 7 and 8 present, respectively, a statistical analysis of the total ticks delay and
the total running ticks of the data in Tables 5 and 6. Table 7 presents information on the
maximum (max), minimum (min), population mean value (avg), and population standard
deviation (sd) of the performed experiments, referring to the total ticks delay. Table 8
also presents this information; however, it is referring to the total running ticks. This
information summarizes the discussion presented for the data in Tables 5 and 6.

Table 7. Total ticks delay information.

#
MRTA MRTA + Fault MRTA + Preemption MRPF

max min avg sd max min avg sd max min avg sd max min avg sd

Process-1 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00
Process-2 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00
Process-3 2 1 0.75 0.43 2 2 2.00 0.00 22 14 18.00 3.16 19 15 17.75 1.64
Process-4 1 0 0.25 0.43 1 0 0.50 0.50 1 0 0.25 0.43 1 0 0.25 0.43
Process-5 8 6 7.25 0.83 8 7 7.25 0.43 2 2 2.00 0.00 2 2 2.00 0.00

Table 8. Running ticks information.

#
MRTA MRTA + Fault MRTA + Preemption MRPF

max min avg sd max min avg sd max min avg sd max min avg sd

Process-1 39 34 35.25 2.17 38 33 35.25 1.92 34 32 33.50 0.87 33 31 31.75 0.83
Process-2 15 13 14.00 0.71 15 14 14.25 0.43 20 14 16.50 2.60 19 13 17.25 2.49
Process-3 43 40 41.25 1.09 35 32 33.50 1.12 44 41 41.75 1.30 39 32 36.25 2.59
Process-4 32 28 30.50 1.66 32 29 30.75 1.30 31 24 28.00 2.55 27 26 26.25 0.43
Process-5 33 18 24.50 5.41 26 20 23.25 2.17 23 16 19.50 2.50 19 15 17.00 1.58

Sensors 2021, 21, 6536 20 of 26

6.5. Threats to the MRPF

Some threats are present in the validation of the proposed MRPF approach. The
main one is the possibility that all robots fail to complete a task. In that case, the entire
multi-robot system would need repair and replacement.

Another situation is that a low-priority task needs to be stopped and saved in case
a higher priority task appears to be serviced. When being serviced again, the process
with the lowest priority, if it is taking longer than necessary to run, runs the risk of being
interrupted again. The aggravation of this situation is related to the importance of the task
that has the lowest priority. If the task is from a process with a priority of 1, there is no
problem, as this type of process is not essential. However, if it is priority 2 or 3, there will
be a problem. In this case, the other processes that need to be included in the system must
be rethought as to their urgency and importance, or the less critical process needs to have
its priority changed.

7. Comparison with Other Approaches

In this section, the MRPF approach is compared to the methods proposed by the
authors Hoenig et al. (2018) [45] and Das et al. (2015) [46]. These methods were chosen for
comparison because they have code available for evaluation and are easy to adapt to the
warehouse scenario.

Hoenig et al. (2018) [45] present some methods based on the Conflict-Based Search (CBS)
algorithm, named: Conflict-Based Search—Task Assignment (CBS-TA), Enhanced Conflict-Based
Search (ECBS), Enhanced Conflict-Based Search—Task Assignment (ECBS-TA), and prioritized
planning using Safe Interval Path Planning (SIPP). These solutions are designed for collision-
free path configuration and task assignment. However, in this paper, the comparison is
made only with the CBS-TA and ECBS-TA methods that include assigning tasks. Hoenig et
al. (2018) [45] do not address fault recovery.

Das et al. (2015) [46] presents an approach called Consensus-Based Parallel Auction and
Execution (CBPAE), focused on task allocation in a heterogeneous and autonomous multi-
robot system deployed in medical institutions based on auction principles and consensus.
However, the CBPAE approach also does not address fault recovery.

Comparison of the MRPF approach with the works by Hoenig et al. (2018) [45] and
Das et al. (2015) [46] considers two objective functions:

• the sum of the travel costs of all robots; that is, the sum of all transitions in the
warehouse state machine, as shown in Figure 13. The warehouse state machine
displays transitions between states that represent the direction the robots can travel,
avoiding collisions between them. Each state can only be occupied by one robot;

• the makespan; that is, the time elapsed between the completion of the first and the
last task [47].

ARENA was used for comparison and adapted to the Hoenig et al. [45] and Das et al. [46]
approaches. Experiments were carried out with a task involving three boxes for the
Incoming Cargo and Outgoing Cargo processes, presented, respectively, in Tables 9 and 10.

Sensors 2021, 21, 6536 21 of 26

Version September 19, 2021 submitted to Sensors 20 of 24

M1 M2 M3 M4

Maintenance

H1 H2 H3 H4

Charging Station

C6

C5

C4

Checking output

S6

S5

S4

Staging input

C1

C2

C3

Checking input

I1

I2

I3

I4

I5

Incoming cargo

O1

O2

O3

O4

O5

Outgoing cargo

S3

S2

S1

Staging output

W11

W12

W13

Rack 1

W23

W22

W21

Rack 2

W31

W32

W33

Rack 3

W43

W42

W41

Rack 4

W51

W52

W53

Rack 5

W63

W62

W61

Rack 6

W71

W72

W73

Rack 7

W83

W82

W81

Rack 8

Warehouse

Figure 13. State machine of warehouse logistic process [43].

8. Conclusions578

This paper presented MRPF, an approach to designing the distribution of multi-579

robots, taking into account robot restrictions, task constraints, job priority, and resource580

dependence. The MRPF approach is focused on distribution during execution, managing581

the jobs interaction, overseeing the shared resources, introducing new dynamic features,582

such as precedence, preemptability, and batching of processes.583

Another issue addressed was fault recovery. If a robot fails, it must communicate584

with the nearest free robot for replacement. The replacement can be immediate if there585

are robots free or later if it is necessary to wait for a robot to be delocalized to perform586

the substitution. In any case, the robot that has failed goes to Maintenance.587

A small-scale physical warehouse called ARENA was used to evaluate the proposed588

MRPF approach. ARENA is a physical warehouse that represents a real small warehouse,589

with real physical robots called WsBots and using augmented reality to represent the590

boxes to be transported. The evaluation of the MRPF approach was made through591

Figure 13. State machine of warehouse logistic process [43] (© 2019 IEEE).

Table 9 presents the information demonstrating that the MRPF approach presented
lower total cost and makespan in all tasks of the Incoming Cargo process. This happens
because, in the MRPF approach, each robot knows which collision-free graph it must travel,
and this graph is one-way.

Table 10 provides the information that the MRPF approach presents the same results
as the CBS-TA, ECBS-TA, and CBPAE methods for the picking task, that is, transporting
boxes from the Warehouse to the entrance of the Staging sector. For the next step, which
is for the robot to move from the entrance of the Staging sector to the exit of the Staging
sector, the MRPF approach presented the best result both for the total cost and for the
makespan. Finally, for the delivery task, which is to transport the boxes from the Staging
sector to the Outgoing Cargo sector, the MRPF approach has the lowest total cost. However,
it has the same result as the CBPAE approach of Das et al. (2015) [46] in makespan. For
situations where the MRPF approach has better results, the robots know the previously
collision-free graph.

Sensors 2021, 21, 6536 22 of 26

Table 9. Comparison of the MRPF approach with other works for the tasks of the Incoming Cargo process.

Incoming Cargo/Checking (Entry) Checking (Entry)/Checking (Exit) Checking (Exit)/Warehouse

Method MRPF CBS-TA ECBS-TA CBPAE MRPF CBS-TA ECBS-TA CBPAE MRPF CBS-TA ECBS-TA CBPAE

Cost of
Robot #0 5 10 13 10 26 27 27 27 17 23 25 22

Cost of
Robot #1 5 10 13 10 27 28 28 28 16 22 25 21

Cost of
Robot #2 5 10 12 10 28 29 29 29 15 22 25 20

Total Cost 15 30 38 30 81 84 84 84 48 67 75 63
Makespan 5 10 13 10 28 29 29 29 17 23 25 22

Table 10. Comparison of the MRPF approach with other works for the tasks of the Outgoing Cargo process.

Warehouse/Staging (Entry) Staging (Entry)/Staging (Exit) Staging (Exit)/Outgoing Cargo

Method MRPF CBS-TA ECBS-TA CBPAE MRPF CBS-TA ECBS-TA CBPAE MRPF CBS-TA ECBS-TA CBPAE

Cost of
Robot #0 15 15 15 15 10 16 16 16 7 8 8 8

Cost of
Robot #1 16 16 16 16 10 17 17 17 8 9 9 8

Cost of
Robot #2 17 17 17 17 11 18 18 18 7 10 10 8

Total Cost 48 48 48 48 31 51 51 51 22 27 27 24
Makespan 17 17 17 17 11 18 18 18 8 10 10 8

Sensors 2021, 21, 6536 23 of 26

The methods were compared in terms of the total cost of robot displacement and
process makespan in terms of the Incoming and Outgoing Cargo processes, as shown in
Table 11. The MRPF method showed an improvement in relation to the displacement cost
of 20.20% compared to CBS-TA, 24.15% compared to ECBS-TA, and 18.33% compared to
CBPAE. Regarding makespan, the improvement was 19.63% compared to CBS-TA, 23.21%
compared to ECBS-TA, and 17.31% compared to CBPAE.

Table 11. Summary of comparison of the MRPF with similar methods.

COST

CBS-TA ECBS-TA CBPAE MRPF

Mean cost in Incoming Cargo 60.33 65.67 59.00 48.00

Mean cost in Outgoing Cargo 42.00 42.00 41.00 33.67

Mean cost of both processes 51.17 53.83 50.00 40.83

Additional cost to the MRPF 20.20% 24.15% 18.33% -

MAKESPAN

Mean makespan in Incoming Cargo 20.67 22.33 20.33 16.67

Mean makespan in Outgoing Cargo 15.00 15.00 14.33 12.00

Mean makespan of both processes 17.83 18.67 17.33 14.33

Additional makespan to the MRPF 19.63% 23.21% 17.31% -

Figure 14 shows the mean cost obtained by comparing the CBS-TA, ECBS-TA, CB-
PAE, and MRPF methods. In all situations presented, the MRPF method had the lowest
mean cost.

Figure 14. Graphical analysis of the comparison of MRPF with similar methods for Incoming Cargo
and Outgoing Cargo processes.

8. Conclusions

This paper presented MRPF, an approach to designing the distribution of multi-robots,
taking into account robot restrictions, task constraints, job priority, and resource depen-
dence. The MRPF approach is focused on distribution during execution, managing the jobs
interaction, overseeing the shared resources, and introducing new dynamic features, such
as precedence, preemptability, and batching of processes.

Another issue addressed was fault recovery. If a robot fails, it must communicate
with the nearest free robot for replacement. The replacement can be immediate if there are

Sensors 2021, 21, 6536 24 of 26

robots free, or later if it is necessary to wait for a robot to be delocalized to perform the
substitution. In any case, the robot that has failed goes to Maintenance.

A small-scale physical warehouse called ARENA was used to evaluate the proposed
MRPF approach. ARENA is a physical warehouse that represents a real small warehouse,
with real physical robots called WsBots and using augmented reality to represent the boxes
to be transported. The evaluation of the MRPF approach was made through three experi-
ments to prove the benefits of the proposed method. The first experiment demonstrated
priority scheduling, with several simultaneous processes run according to priority level.
The second experiment explained preemption, i.e., a more critical process can interrupt the
execution of a less critical process. Finally, the third experiment studied fault recovery, or
how robot faults can be recovered with a new coalition formation. All these features are
introduced in MRS to increase efficiency in the industry, improving the production process.

Author Contributions: Conceptualization, V.C.K. and A.S.d.O.; Methodology, V.C.K., L.P. and
A.S.d.O.; Software, V.C.K.; Validation, V.C.K. and M.L.; Formal Analysis, A.S.d.O.; Investigation,
V.C.K. and L.P.; Resources, A.S.d.O.; Data Curation, V.C.K. and M.L.; Writing—Original Draft
Preparation, V.C.K., L.P. and M.L.; Writing—Review and Editing, V.C.K. and A.S.d.O.; Visualization,
V.C.K. and A.S.d.O.; Supervision, A.S.d.O.; Project Administration, A.S.d.O.; Funding Acquisition,
A.S.d.O. All authors have read and agreed to the published version of the manuscript.

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brasil (CAPES)—Finance Code 001 and in part by Conselho Nacional de Desen-
volvimento Científico e Tecnológico (CNPq).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ARENA Augmented Reality to Enhanced Experimentation in Smart Warehouses
CBPAE Consensus Based Parallel Auction and Execution
CBS Conflict-Based Search
CBS-TA Conflict-Based Search—Task Assignment
CPS Cyber-Physical System
ECBS Enhanced Conflict-Based Search
ECBS-TA Enhanced Conflict-Based Search—Task Assignment
MRPF Multi-Robot Preemptive Task Scheduling with Fault Recovery
MRS Multi-robot systems
MRTA Multi-Robot Task Allocation
SIPP Safe Interval Path Planning

References
1. Villarreal-Cervantes, M.G.; Sanchez-Santana, J.P.; Guerrero-Castellanos, J. Periodic Event-Triggered Control strategy for a (3.0)

mobile robot network. ISA Trans. 2020, 96, 490–500. [CrossRef]
2. Mohammadi, E.K.; Shirazi, B. Toward high degree flexible routing in collision-free FMSs through automated guided vehicles’

dynamic strategy: A simulation metamodel. ISA Trans. 2020, 96, 228–244
3. Dai, Y.; Kim, Y.; Wee, S.; Lee, D.; Lee, S. A switching formation strategy for obstacle avoidance of a multi-robot system based on

robot priority model. ISA Trans. 2015, 56, 123–134. [CrossRef] [PubMed]
4. de Almeida, J.P.L.S.; Nakashima, R.T.; Neves, F., Jr; de Arruda, L.V.R. Bio-inspired on-line path planner for cooperative exploration

of unknown environment by a Multi-Robot System. Robot. Auton. Syst. 2019, 112, 32–48. [CrossRef]
5. Navarro, I.; Matia, F. An Introduction to Swarm Robotics. ISRN Robot. 2013, 2013, 608164. [CrossRef]
6. Sharkey, A.J.C.; Sharkey, N. The Application of Swarm Intelligence to Collective Robots. Adv. Appl. Artif. Intell. 2006, 157–185.
7. Beni, G. From Swarm Intelligence to Swarm Robotics. In Swarm Robotics; Springer: Berlin, Germany, 2005; pp. 1–9.
8. Gerkey, B.P.; Mataric, M.J. A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems. Int. J. Robot. Res. 2004,

23, 939–954. [CrossRef]

http://doi.org/10.1016/j.isatra.2019.07.005
http://dx.doi.org/10.1016/j.isatra.2014.10.008
http://www.ncbi.nlm.nih.gov/pubmed/25497595
http://dx.doi.org/10.1016/j.robot.2018.11.005
http://dx.doi.org/10.5402/2013/608164
http://dx.doi.org/10.1177/0278364904045564

Sensors 2021, 21, 6536 25 of 26

9. Yogeswaran, M.; Ponnambalam, S.G. Swarm Robotics: An Extensive Research Review. In Advanced Knowledge Application in
Practice; Fuerstner, I., Ed.; InTech: London, UK, 2010.

10. Khamis, A.; Hussein, A.; Elmogy, A. Multi-robot Task Allocation: A Review of the State-of-the-Art. In Cooperative Robots and Sensor
Networks 2015; Koubâa, A., Martínez-de Dios, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 31–51.

11. Dai, W.; Lu, H.; Xiao, J.; Zheng, Z. Task Allocation Without Communication Based on Incomplete Information Game Theory for
Multi-robot Systems. J. Intell. Robot. Syst. 2018, 94, 841–856. [CrossRef]

12. Wu, D.; Zeng, G.; Meng, L.; Zhou, W.; Li, L. Gini coefficient-based task allocation for multi-robot systems with limited energy
resources. IEEE/CAA J. Autom. Sin. 2018, 5, 155–168. [CrossRef]

13. Chen, X.; Zhang, P.; Du, G.; Li, F. A distributed method for dynamic multi-robot task allocation problems with critical time
constraints. Robot. Auton. Syst. 2019, 118, 31–46. [CrossRef]

14. Zhang, X.; Liu, K.; Ji, Z. Bipartite Consensus for Multi-Agent Systems With Time-Varying Delays Based on Method of Delay
Partitioning. IEEE Access 2019, 7, 29285–29294. [CrossRef]

15. Bischoff, E.; Meyer, F.; Inga, J.; Hohmann, S. Multi-Robot Task Allocation and Scheduling Considering Cooperative Tasks and
Precedence Constraints. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
Toronto, ON, Canada, 11–14 October 2020; pp. 3949–3956. [CrossRef]

16. Zitouni, F.; Harous, S.; Maamri, R. A Distributed Solution to the Multi-robot Task Allocation Problem Using Ant Colony
Optimization and Bat Algorithm. In Advances in Machine Learning and Computational Intelligence; Patnaik, S., Yang, X.S., Sethi, I.K.,
Eds.; Springer: Singapore, 2021; pp. 477–490.

17. Rizk, Y.; Awad, M.; Tunstel, E.W. Cooperative Heterogeneous Multi-Robot Systems: A Survey. ACM Comput. Surv. 2019,
52, 29:1–29:31. [CrossRef]

18. Chagoyen, A.R.M. Multi-Robot Task Allocation for Service Robotics: From Unlimited to Limited Communication Range. Ph.D.
Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2010.

19. Parker, L.E. ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 1998, 14, 220–240.
[CrossRef]

20. Werger, B.B.; Mataric, M.J. Broadcast of Local Eligibility: Behavior-based Control for Strongly Cooperative Robot Teams. In
Proceedings of the Fourth International Conference on Autonomous Agents, Barcelona, Spain, 3–7 June 2000; ACM: New York,
NY, USA, 2000; pp. 21–22.

21. Tang, F.; Parker, L.E. Distributed multi-robot coalitions through ASyMTRe-D. In Proceedings of the 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 2606–2613.

22. Wang, J.; Gu, Y.; Li, X. Multi-robot Task Allocation Based on Ant Colony Algorithm. JCP 2012, 7, 2160–2167. [CrossRef]
23. Lee, D.H. Resource-based task allocation for multi-robot systems. Robot. Auton. Syst. 2018, 103, 151–161. [CrossRef]
24. Nanjanath, M.; Gini, M. Repeated auctions for robust task execution by a robot team. Robot. Auton. Syst. 2010, 58, 900–909.

[CrossRef]
25. Zlot, R.; Stentz, A. Market-based Multirobot Coordination for Complex Tasks. Int. J. Robot. Res. 2006, 25, 73–101. [CrossRef]
26. Koubaa, A.; Bennaceur, H.; Chaari, I.; Trigui, S.; Ammar, A.; Sriti, M.F.; Alajlan, M.; Cheikhrouhou, O.; Javed, Y. General

Background on Multi-robot Task Allocation. In Robot Path Planning and Cooperation: Foundations, Algorithms and Experimentations;
Springer International Publishing: Cham, Switzerland, 2018; pp. 129–144.

27. Botelho, S.C.; Alami, R. M+: A scheme for multi-robot cooperation through negotiated task allocation and achievement. In
Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA,
10–15 May 1999; Volume 2, pp. 1234–1239.

28. Gerkey, B.P.; Mataric, M.J. Murdoch: Publish/subscribe task allocation for heterogeneous agents. In Proceedings of the
Autonomous Agents (Poster), Barcelona, Spain, 3–7 June 2000.

29. Zlot, R.; Stentz, A.; Dias, M.B.; Thayer, S. Multi-robot exploration controlled by a market economy. In Proceedings of the 2002
IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), Washington, DC, USA, 11–15 May 2002;
Volume 3, pp. 3016–3023.

30. Viguria, A.; Maza, I.; Ollero, A. S+T: An algorithm for distributed multirobot task allocation based on services for improving
robot cooperation. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, Pasadena,
CA, USA, 19–23 May 2008; pp. 3163–3168.

31. Zhu, Z.; Tang, B.; Yuan, J. Multirobot task allocation based on an improved particle swarm optimization approach. Int. J. Adv.
Robot. Syst. 2017, 14. [CrossRef]

32. Cardon, A.; Galinho, T.; Vacher, J.P. Genetic algorithms using multi-objectives in a multi-agent system. Robot. Auton. Syst. 2000,
33, 179 – 190. [CrossRef]

33. Muhuri, P.K; Rauniyar, A. Immigrants Based Adaptive Genetic Algorithms for Task Allocation in Multi-Robot Systems. Int. J.
Comput. Intell. Appl. 2017, 16. [CrossRef]

34. Padmanabhan Panchu, K.; Rajmohan, M.; Sundar, R.; Baskaran, R. Multi-objective Optimisation of Multi-robot Task Allocation
with Precedence Constraints. Def. Sci. J. 2018, 68, 175 – 182. [CrossRef]

35. Fang, Z.; Wang, J.; Jiang, C.; Zhang, Q.; Ren, Y. AoI Inspired Collaborative Information Collection for AUV Assisted Internet of
Underwater Things. IEEE Internet Things J. 2021, 1. [CrossRef]

http://dx.doi.org/10.1007/s10846-018-0783-y
http://dx.doi.org/10.1109/JAS.2017.7510385
http://dx.doi.org/10.1016/j.robot.2019.04.012
http://dx.doi.org/10.1109/ACCESS.2019.2902378
http://dx.doi.org/10.1109/SMC42975.2020.9283215
http://dx.doi.org/10.1145/3303848
http://dx.doi.org/10.1109/70.681242
http://dx.doi.org/10.4304/jcp.7.9.2160-2167
http://dx.doi.org/10.1016/j.robot.2018.02.016
http://dx.doi.org/10.1016/j.robot.2010.03.011
http://dx.doi.org/10.1177/0278364906061160
http://dx.doi.org/10.1177/1729881417710312
http://dx.doi.org/10.1016/S0921-8890(00)00088-9
http://dx.doi.org/10.1142/S1469026817500250
http://dx.doi.org/10.14429/dsj.68.11187
http://dx.doi.org/10.1109/JIOT.2021.3049239

Sensors 2021, 21, 6536 26 of 26

36. Wu, H.; Li, H.; Xiao, R.; Liu, J. Modeling and simulation of dynamic ant colony’s labor division for task allocation of UAV swarm.
Phys. A Stat. Mech. Its Appl. 2018, 491, 127–141. [CrossRef]

37. Xing, X.; Fan, D.; Zhao, Y.; Huang, L. PSO-based multi UCAVs cooperative attack tasks allocation and its simulation. In
Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD), Changsha, China, 13–15 August 2016; pp. 598–601.

38. Mouradian, C.; Sahoo, J.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A coalition formation algorithm for Multi-Robot Task
Allocation in large-scale natural disasters. In Proceedings of the 2017 13th International Wireless Communications and Mobile
Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 1909–1914.

39. Wei, C.; Ji, Z.; Cai, B. Particle Swarm Optimization for Cooperative Multi-Robot Task Allocation: A Multi-Objective Approach.
IEEE Robot. Autom. Lett. 2020, 5, 2530–2537. [CrossRef]

40. Koubaa, A.; Bennaceur, H.; Chaari, I.; Trigui, S.; Ammar, A.; Sriti, M.F.; Alajlan, M.; Cheikhrouhou, O.; Javed, Y. Different
Approaches to Solve the MRTA Problem. In Robot Path Planning and Cooperation: Foundations, Algorithms and Experimentations;
Springer International Publishing: Cham, Switzerland, 2018; pp. 145–168.

41. Dahl, T.S.; Mataric, M.; Sukhatme, G.S. Multi-robot task allocation through vacancy chain scheduling. Robot. Auton. Syst. 2009,
57, 674–687. [CrossRef]

42. Kalempa, V.C.; Piardi, L.; Limeira, M.; De Oliveira, A.S. Fault-Resilient Collective Ternary-Hierarchical Behavior to Smart
Factories. IEEE Access 2020, 8, 176905–176915. [CrossRef]

43. Piardi, L.; Kalempa, V.C.; Limeira, M.; de Oliveira, A.S.; Leitão, P. ARENA—Augmented Reality to Enhanced Experimentation in
Smart Warehouses. Sensors 2019, 19, 4308. [CrossRef]

44. Limeira, M.A.; Piardi, L.; Kalempa, V.C.; de Oliveira, A.S.; Leitão, P. WsBot: A Tiny, Low-Cost Swarm Robot for Experimentation
on Industry 4.0. In Proceedings of the 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics
(SBR) and 2019 Workshop on Robotics in Education (WRE), Rio Grande, Brazil, 23–25 October 2019; pp. 293–298.

45. Hoenig, W.; Kiesel, S.; Tinka, A.; Durham, J.; Ayanian, N. Conflict-Based Search with Optimal Task Assignment. In Proceedings
of the International Joint Conference on Autonomous Agents and Multiagent Systems, Estoril, Portugal, 12–16 May 2018.

46. Das, G.P.; Mcginnity, T.M.; Coleman, S.A.; Behera, L. A Distributed Task Allocation Algorithm for a Multi-Robot System in
Healthcare Facilities. J. Intell. Robot. Syst. 2015, 80, 33–58. [CrossRef]

47. Zitouni, F.; Harous, S.; Maamri, R. A Distributed Approach to the Multi-Robot Task Allocation Problem Using the Consensus-
Based Bundle Algorithm and Ant Colony System. IEEE Access 2020, 8, 27479–27494. [CrossRef]

http://dx.doi.org/10.1016/j.physa.2017.08.094
http://dx.doi.org/10.1109/LRA.2020.2972894
http://dx.doi.org/10.1016/j.robot.2008.12.001
http://dx.doi.org/10.1109/ACCESS.2020.3026946
http://dx.doi.org/10.3390/s19194308
http://dx.doi.org/10.1007/s10846-014-0154-2
http://dx.doi.org/10.1109/ACCESS.2020.2971585

	Introduction
	Related Work
	Problem Statement and Assumptions
	Warehouse Logistics
	Multi-Robot Preemptive Task Scheduling with Fault Recovery (MRPF)
	Characterization of the Tasks
	Task Scheduling
	Task Preemption
	Fault Recovery

	Experimental Evaluation of MRPF
	Experiment 1: Priority Scheduling
	Experiment 2: Preemption
	Experiment 3: Fault Recovery
	Accuracy and Precision
	Threats to the MRPF

	Comparison with Other Approaches
	Conclusions
	References

