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Abstract

Individual based modeling provides a bottom up approach wherein interactions give

rise to high-level phenomena in patterns equivalent to those found in nature. This

method generates an immense amount of data through artificial simulation and can

be made tractable by machine learning where multidimensional data is optimized and

transformed. Using individual based modeling platform known as EcoSim, we mod-

eled the abilities of elitist sexual selection and communication of fear. Data received

from these experiments was reduced in dimension through use of a novel algorithm

proposed by us: Variational Autoencoder based Estimation of Distribution Algorithms

with Population Queue and Adaptive Variance Scaling (VAE-EDA-Q AVS).

We constructed a novel Estimation of Distribution Algorithm (EDA) by extending

generative models known as variational autoencoders (VAE). VAE-EDA-Q, proposed

by us, smooths the data generation process using an iteratively updated queue (Q)

of populations. Adaptive Variance Scaling (AVS) dynamically updates the variance

at which models are sampled based on fitness. The combination of VAE-EDA-Q

with AVS demonstrates high computational efficiency and requires few fitness evalu-

ations. We extended VAE-EDA-Q AVS to act as a feature reducing wrapper method

in conjunction with C4.5 Decision trees to reduce the dimensionality of data.

The relationship between sexual selection, random selection, and speciation is a

contested topic. Supporting evidence suggests sexual selection to drive speciation.
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Opposing evidence contends either a negative or absence of correlation to exist. We

utilized EcoSim to model elitist and random mate selection. Our results demonstrated

a significantly lower speciation rate, a significantly lower extinction rate, and a sig-

nificantly higher turnover rate for sexual selection groups. Species diversification was

found to display no significant difference.

The relationship between communication and foraging behavior similarly features

opposing hypotheses in claim of both increases and decreases of foraging behavior in

response to alarm communication. Through modeling with EcoSim, we found alarm

communication to decrease foraging activity in most cases, yet gradually increase

foraging activity in some other cases. Furthermore, we found both outcomes resulting

from alarm communication to increase fitness as compared to non-communication.
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Chapter 1

Introduction

The standard process of study within behavioral ecology is to first observe and inter-

pret animal behavior and then form subsequent testable hypotheses [1]. Behavioral

ecology, as a subset of all biological disciplines, additionally pays distinct considera-

tion to interactions between organisms and the environment [2]. As animal behaviors

and ecosystems, in addition to their inter-lying interactions, have the propensity to

become exponentially complex, a bottom-up approach of study based on individual

traits and behaviors is essential [3]. Individual based modeling facilitates the intri-

cate study of discrete organisms as well as their involvement with other organisms

and environmental conditions, such as food and predation. Through the creation of

an artificial ecosystem, an entire set of interactions gives rise to high-level phenomena

that emerge generating the same patterns observed in nature. Speciation, extinc-

tion, population migration, and the shape of spatial distribution of individuals are all

observable events within artificial ecosystems [4].

Providing a foundation suitable to handling the complexities involved in the char-

acterization of major ecosystem dynamics, in addition to developing predictions re-

garding behavior [3], is ecological modeling – an emerging hybridization of theoretical
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ecology, mathematics, and computer science [5]. Within ecological modeling, artifi-

cial ecosystems offer benefits distinct from field studies as they illuminate large-scale

views of evolution of systems; this enables a deep understanding of theoretical con-

cepts concerning evolutionary process, speciation, and extinction [6]. In this respect,

ecosystem simulations could also provide a vast amount of data related to each partic-

ular individual. Such insights may be difficult to measure or even infeasible in nature

and, thus, the generation of this raw multidimensional data can be invaluable for use

in analysis. Data analysis involves collecting, processing, cleaning, transforming, and

modeling data in order to produce useful knowledge from which conclusions can be

drawn [7], [8].

Machine learning, an approach of data analysis, could be used to extract useful

knowledge from large datasets and propose insights. By learning from raw input

data, machine learning could also aid in the decision making process [9]. Machine

learning methods include regression, classification, feature selection, and rule extrac-

tion. Presence of irrelevant features (containing irrelevant, superfluous, and redundant

information) affects the reliability and interpretability of knowledge processed by ma-

chine learning methods [10]. A class of algorithms known as feature selection aims to

ameliorate this issue by identifying and removing datasets of irrelevant features prior

to the construction of the predictive model.

Wrapper methods are a type of feature selection algorithm with a key distinction

from other feature selection approaches – the feature selection step is concomitantly

integrated with the model building step [11]. Some wrapper methods can be de-

fined as a combinatorial optimization search procedure in the complete feature space

producing features conforming to the predictive model. The produced subsets of fea-

tures are then utilized in the evaluation phase to train and test specific classification

models. Subsequently, a decision model is generated and the resulting accuracy of
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this model determines the suitability of the feature subset. Therefore, the search is

wrapped around the classification model in the search of the feature space for the

optimal subset.

Estimation of distribution algorithms (EDA) are metaheuristics that assist in com-

binatorial optimization by modeling and maintaining a population of favorable can-

didate solutions [12–14]. The candidate solutions with the best fitness are selected

and utilized to generate a probabilistic generative model. This model produces the

next generation of promising candidates, and the process repeats until the optimal

solution is determined or fitness of the current best solution is deemed as sufficient.

Fitness is defined as problem specific criteria applied to the candidate as a whole with

a foundation based upon values of each constituent feature in the candidate solution.

Thus, the fitness function can be defined, for example, by the accuracy of the pre-

dictive model. Nevertheless, the precise combination of assignments to variables in

the selection of higher fitness can be difficult to determine. EDAs have demonstrated

favorable outcomes when applied as wrapper methods for classification [15] and [16].

Authors in [16] applied Constrained Model Search Space Bayesian Optimization Al-

gorithm (CMSS-BOA) [17] as a wrapper method with C4.5 decision trees, and the

resulting fitness was evaluated based upon the predictive accuracy of the classifier. We

have proposed a new variant of EDA - Variational Autoencoder EDA with Population

Queue (VAE-EDA-Q) which is an approach that utilizes variational autoencoders to

model the EDA population and has demonstrated efficacy in exploring latent con-

tinuous search spaces [18], [19]. VAE-EDA-Q was utilized as a wrapper method to

discover relevant features in multidimensional data within two areas of research using

EcoSim [20], which is a tri-trophic ecosystem simulator. Applications of individual

based modeling in conjunction with machine learning provide the opportunity to shed

some light on real world debates in the area of biology and ecology.
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Within biological literature, the distinction between sexual selection and pan-

mixia (random mating) is undisputed, yet the implications of sexual selection remain

a subject of discussion. Demonstration of the presence of panmixia is presented by a

number of studies, including [21]. However, the relationship between random mating

and speciation and extinction rates is not universally understood based upon exist-

ing empirical study alone. Further, empirically based dialogue within the concept of

sexual selection, specifically, also lacks concordance. Authors in [22] propose sexual

selection to involve variance due to mating success, and natural selection to involve

variance with respect to other aspects of fitness. And while the authors of [22] define

sexual selection as intra-specific reproductive competition, they also admit it to be a

poorly understood concept. Within sexual selection, the concept known as the good

genes hypothesis is another fundament that remains open to debate. This concept is

based upon the assumption that females who select males with phenotypic traits pre-

sumed to manifest good genes will produce fit offspring [23]. While the meta-analysis

performed by [23] revealed a correlation between male secondary traits that attract

females during mating and offspring survival, authors in [24] determined the role of

male secondary traits to be minor in the selection for good genes within Pronghorn.

By departing from labor intensive field study and instead focusing on simulative

study, we have propose to examine sexual selection as related to speciation and ex-

tinction rates using a tri-trophic ecosystem simulator named EcoSim [20], [25]. In our

control group of runs we allowed female prey to select their mates randomly. While in

our test runs the females were given the faculty to pick mating partners with highest

strength. We have chosen to employ VAE-EDA-Q in combination with decision trees

to build predictive models for the examination of the aspects of rates of speciation

and rates of extinction population wide. By creating these models, we propose to

gain a deeper understanding of the longstanding literary debates described above.
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Furthermore, the data garnered from our study can be translated to valuable insight

reaching far beyond the original empirical queries.

The subject of behavioral influence of animal communication displays discordance

similar to that of sexual selection. Evidence exists to support that communication

influences behavior, as described by [26] in his study of the influence of honey bee

waggle dances upon foraging behavior. However disagreement exists over the direction

to which the influence is an effector (increase versus decrease). Within the scope of

foraging behavior, there is a high level of empirical corroboration for predator alarm

cues and presence of predation decreasing foraging behavior in prey, with specific

cases presented in the studies of hard clams, coral reef fish, termites, and crabs [27],

[28], [29], [30]. However, ample opposition exists in support of a gradual, long run

increase in foraging behavior due to sustained predation and communication of alarm

cues – this is known as the predation risk allocation hypothesis. This view employs a

cost-benefit analysis to reason that the cost of vulnerability to predation is outweighed

by the benefits of acquiring food necessary for survival [31]. Additional corroboration

of this theory is presented by a number of studies including [32], [33], [34]. Despite

this evidence, authors in [35] and [36] have expressed skepticism.

We examined animal communication of fear and safety related to foraging behavior

and fitness using EcoSim. The individuals were given the ability to communicate their

feelings of fear (potentially due to nearby predators) to their neighbors and then we

observed the effects of the same on the population of prey, to shed some light on the

ongoing debates. We also utilized a wrapper method combining c4.5 algorithm with

VAE-EDA-Q, as a combinatorial optimizer for feature selection, to determine rules

that specified the conditions related to alarm communication.
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Chapter 2

Background

2.1 Individual Based Modeling

2.1.1 Need for Individual Based Modeling

Models, in general, are simplified representations of real systems and universally share

the challenge of proving their predictive capabilities [1]. Ecological models, however,

have the unique requirement of depicting relevant spatial and temporal scales in tan-

dem with a multitude of processes representative of the system observed [2]. Eco-

logical models support environmental decision making in ways that corresponding

experiments cannot as conclusions drawn from descriptive studies have the potential

of failing to fully represent processes [3]. While the study of ecology involves entire

populations, communities, and ecosystems, the properties of the system are princi-

pally determined by the properties and behavior of the individuals from which they

are composed. Therefore, individuals are the foundation of ecological models [4].

Authors in [4] extrapolate this further by drawing comparison to the field of

physics: many physics topics may be addressed without referring distinctly to atoms,

despite the concept that atomic properties and interactions determine the foundations
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of matter. This illuminates a key difference – individual organisms have biotic proper-

ties that atoms lack. The principles of life cycles, growth, development, reproduction,

and death are conserved throughout ecological systems despite the transient nature of

the individuals to which they belong. Additionally, individuals modify their environ-

ments through interaction with resources; even within the same species, differences

allow individuals to modify the environment in distinctive ways. Most important,

though, is the concept of adaptation wherein individuals are able to grow, mature,

obtain resources, reproduce, and interact depending upon intrinsic and extrinsic fac-

tors [4]. This notion highlights the difference between atomic theory and ecology –

individual organisms are adaptive because their response to biotic and abiotic factors

determines their ability to pass their genes on to future generations (fitness). Fur-

thermore, fitness-seeking adaptation does not occur to advance the population as a

whole; behavioral adaptation occurs at the level of the individual.

2.1.2 What is Individual Based Modeling?

Individual based models are capable of handling the high degree of complexity in the

representation of individuals and interactions among individuals. This approach (also

known as agent based models) is described to simulate populations and systems with

respect to each individual organism [5]. Individuals have their own set of state vari-

ables, which include spatial location and physiological or behavioral traits. Attributes

such as growth, habitat selection, foraging, reproduction, and dispersal are able to

differ among individuals and change over time [6].

Traditional differential equation population models use top-down population pa-

rameters like birth rates and death rates. Also known as EBM (Equation-based

modeling), traditional methods use equation-based simulations and are unable to ac-

curately depict life histories of individuals [7]. Individual based models instead employ
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a bottom-up approach where interactions among discrete, autonomous individuals, as

well as among their abiotic environments, drive the population level behaviors [8]

and [9]. These interactions are the foundation of emergent properties like species

distribution at the population and ecosystem levels [7]. By employing discrete units,

the incorporation of individual level mechanisms can be represented. This is in direct

contrast to traditional models where complexity and interactions cannot be repre-

sented to this degree. IBM makes possible the examination of variation of individuals

at life cycle stages, variation among individuals, local interactions among individuals,

and adaptive behaviors such as energy budgets and physiology [6]. Authors in [7] sug-

gest that the distinguishing characteristics amount to four keys: degree of complexity

of individual life cycles, variation of resources used, quantities measured in discrete

numbers versus real numbers, and variation among individuals of the same age.

IBMs account for differences among individuals by categorizing increasing lev-

els of mechanistic details along five axes; this embodies the spirit of inclusion of

variation among individuals, while also reflecting a balance between parsimony and

detail. Categories of axes include: spatial variability, life cycle and ontogenetic de-

velopment, phenotypic variability, cognitive variability, and genetic variability/evolu-

tion [8]. Variability in space refers to the physical space in which interactions occur.

Within IBM, predator-prey models may have metapopulation or reaction-diffusion

foundations. Space variability under metapopulation models is reflected by taking

into consideration the distances between patches, while population density spread

through space is represented by reaction-diffusion models. Life cycle and ontogenetic

development can be differentially represented in terms of demographics, spatial struc-

ture, and temporal variability. Within matrix models, details such as these would

be organized into a large number of subclasses; therefore, the use of IBMs is highly

expedient. Phenotypic variability is represented with a greater magnitude through
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IBMs as the unique experiences of each individual, in addition to variation caused by

ontogenetic changes, can be used to determine trajectory. Using plants as an example,

it is possible to illustrate how the inclusion of details such as soil, water, nutrients,

and light gives rise to an incredibly more precise history. Cognitive variability shares

a similar foundation with phenotypic variability within individual based modeling –

experience and learning are derived from individual experiences. Memories of past

experiences are considered to be an internal state and give rise to learning, which

can arise from the environment of another organism. Genetic variability and evolu-

tion studies have classically focused on the individual. Mutations, genetic drift, and

founder effects are examples of evolutionary genetic concepts that involve a small

number of individuals yet create a profound effect. IBM also uses an individualistic

foundation, which makes the concept of stochasticity significant. IBMs have a higher

degree of flexibility than classical models, which allows for the analogous representa-

tion of true population change.

2.1.3 Harnessing the power of IBM for Ecological and Evo-

lutionary Processes

Within individual-based models, two models exist to serve two separate aims [10].

Pragmatic models center on the notions that representing individuals explicitly is

essential in the simulation of specific populations, communities, or ecosystems and

that simple mathematical models cannot address these problems. Queries addressed

within these models are generally management related. Paradigmatic models, on the

other hand, address queries regarding the underlying cause of ecological phenomena.

These models assume a paradigm shift from traditional physics style modeling to

models based on emergence and evolutionary principles is necessary [6], [11], and [12].

Six major ecological processes have been highlighted as main categories served by
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paradigmatic IBMs [8].

i Local interactions and movement - The examination of movement through space

entails modeling a vast grouping of detailed active movement behaviors from local

interaction with animals and landscapes to development of home ranges.

ii Formation of patterns among individuals - Formation of patterns among indi-

viduals describes the study of how social forces, environmental factors, and individual

decisions give rise to swarms or other aggregations.

iii Interactions of exploitative species - When considering exploitative species,

spatial movement patterns have been shown to radically affect the stability of the

interaction through the diffusion and mixing of populations in predator-prey and

host-parasitoid interactions.

iv Community dynamics and local competition - When examining sessile organ-

isms, focus on emergent phenomena and community dynamics are of great interest

and are studied using grid cells or continuum models. Competition-colonization trade

off, effects of conspecific density, and niche differences are all able to interact in spatial

context to illustrate factors that control species richness and diversity.

v Population dynamics with focus on foraging and bioenergetics - Individual vari-

ation as related to population dynamics is studied by examining foraging and bioen-

ergetics. Frequency-dependent selection and variance in growth are two parameters of

foraging models that may be used to highlight a predator’s preference (which would

examine the effects in variation of prey). Foraging decisions in birds have been ex-

amined with complex models that use artificial life approaches. These methods have

shown that spatial memory is a key to successful foraging as it relates to resource

distribution. Foraging models in combination with physiological facilities/constraints

are used to study bioenergetics as they consider time and energy budgets to make

precise predictions in regards to individual decisions.
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vi Evolutionary process - Evolutionary process modeling seeks to answer a mul-

titude of queries, which range from comparisons of trait values to genetic algorithms

examining optimal traits for foraging, avoidance of predators, reproduction, and dis-

persal. While they do not replicate mechanisms of evolution, these models do conserve

genetic diversity and have even predicted settings in which polymorphisms could be

maintained within populations.

Through a radical departure from classical mathematical approaches to ecological

theory, IBM has established a new philosophical paradigm. By requiring the inclusion

of individual detail into models, the term IBM is considered tantamount to an explicit

examination of individuals and their complex responses to their environments [8]. The

rule-based simulations employed by IBM are optimal for responses such as phenotypi-

cal change and learning than are their mathematical model counterparts. Population

and community level behaviors arise from adaptive behaviors of individuals. Future

developments will focus on further sophistication of representations of internal states

and increased autonomy. This will shed light on the decisions of individuals and on

behaviors such as mating. Pattern oriented modeling will allow the comparison of

model behavior to natural systems [13]. Authors in [9] uphold that a formally docu-

mented model is sufficient in terms of rigor and that mathematical notation is not a

requisite. The future development of individual based modeling will play a great role

in paradigmatic ecology and may provide understanding for the basis of evolution [10].
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2.2 Estimation of Distribution Algorithms: Ma-

chine Learning Approaches

2.2.1 Introduction to Machine Learning Based EDA

Estimation of Distribution Algorithms (EDA) [1], [2] are algorithms that employ meta-

heuristics to aid in combinatorial and continuous non-linear optimization [3]. Within

EDA, an efficient probabilistic model guides the search towards solutions of higher

fitness, compared to solutions of the previous generation. The model is generated

by encoding the probability distribution of admissible solutions based on their fitness

values [4]. EDA performs a random sampling of the probabilistic model to yield new

solutions representative of the population as a whole, while maintaining a similar

or desirably better solution quality than the present solutions of the population. In

order to discover the optimal solution, EDA initiates a population of uniformly and

randomly generated candidate solutions. This population of candidate solutions is

iteratively improved upon over consecutive generations. EDA estimates the possibil-

ity of a candidate to lead to an optimal offspring over subsequent generations while

also discerning the hidden interdependencies between the constituent features in the

candidate.

Models based on factorizations of univariate frequencies, such as the Univariate

Marginal Distribution Algorithm (UMDA) [1], produce estimates from a given popu-

lation very quickly but fail to model the interdependencies between decision variables.

Hence, EDAs that model univariate frequencies independently cannot solve complex,

real-world problems. There are alternative approaches that consider interdependen-

cies between variables. Bayesian Networks, as in the Bayesian Optimization Algorithm

(BOA) [5] [6], are complex models that learn Bayesian networks as a probabilistic
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model of the population. These models solve problems composed of subproblems of

overlapping variables that cannot be decomposed into independent subproblems due

to inter-dependency. This method facilitates the solving of very complex problems;

however, estimating the model from a population can be very computationally de-

manding. The production of a probabilistic model that is both flexible and efficient

in terms of estimation and sampling is of prime importance. Parallel research in the

field of Machine Learning algorithms shares the same focus, for example unsupervised

machine learning algorithms for generative neural networks [3]. These algorithms are

able to accept high dimensional data as input, from which they are able to learn

complex patterns. Generative neural networks produce models from a population of

samples in an unsupervised manner and are capable of generating from them com-

pletely new solutions having the same likelihood distribution. This makes them very

useful for EDA applications as they perform better exploration of the search space

while using less time and computational resources. These generative neural network

models can be stacked upon each other in layers and provide building blocks for use

in deep learning.

2.2.2 Restricted Boltzmann Machine EDA

A Restricted Boltzmann machines based method (RBM) [7] has been proposed by

authors in [3] to model the population of EDAs. RBMs are stochastical neural net-

works with a basic structure consisting of a visible or input layer of nodes (V) and a

hidden or output layer (H) called feature detectors; the hidden layer models patterns

in the data. During the sampling step, a particular configuration of the network is

sampled with the joint probability distribution P(V, H). The authors compared RBM-

EDA to BOA on OneMax, concatenated (4, 5 and 6) traps, and NK Landscapes for

various problem sizes. Their results shown that a greater number of fitness evalua-
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tion is required for RBM-EDA than BOA, which would indicate that the population

model of RBM-EDA was less accurate than the statistical model of BOA. However,

the authors also stipulated that the quality of the model was compensated for by the

shorter model building time for RBM-EDA. They also found that the CPU time for

RBM-EDA grew at a slower rate than BOA with an increase in problem sizes; and

for difficult problems, the performance of RBM-EDA was similar or superior to BOA.

2.2.3 Denoising Autoencoder EDA

Autoencoders [8–10] are neural networks that learn an abstract representation of the

input through an encoder model and later performing a reconstruction step using a

decoder. This process converts the representation to an output that approximates

the distribution of training examples. Autoencoders have been utilized as generative

modeling techniques in dimensionality reduction and for feature learning applications

[11].

To be conducive to dimensionality reduction, it is imperative that autoencoders

learn to avoid generating the same output as the input provided; this is accomplished

by using regularization to restrict over-fitting on the training data [12]. One method

used to prevent such over-fitting is Denoising Autoencoders (DAE) [13]. This method

intentionally corrupts the input or training sample with a certain type of noise (uni-

form, Gaussian, etc.) and trains the denoising autoencoder to filter out the noise in a

denoising layer. Thereafter, the output is reconstructed from a “cleaned" input, which

makes denoising autoencoders robust to noise in the training samples. Denoising Au-

toencoder EDA (DAE-EDA) [14] uses denoising autoencoders as generative models

for EDA. DAE-EDA was tested on concatenated deceptive traps, NK Landscapes,

and HIFF functions, and its performance was compared to BOA and RBM-EDA.

DAE-EDA was found to be much faster than BOA and RBM-EDA, but at the cost of
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a reduced optimization score. In some cases, DAE-EDA was able to reach quicker con-

vergence in term of number of fitness evaluations, but in most other cases it required

larger population sizes to achieve guaranteed convergence.

2.2.4 Deep Boltzmann Machines EDA

Deep Boltzmann Machines (DBM) [15] are deep neural networks consisting of multiple

layers of hidden neurons, and can thus be used to capture the model of the population

at increasing layers of abstraction. Each hidden layer provides one additional layer of

abstraction capable of representing patterns or features in the data. Authors in [16]

used DBM with EDA based on the promise shown by the results in RBM-EDA and

on the success of deep learning models. Following similar experimental benchmarks as

in RBM, the authors found that while DBM-EDA was computationally less expensive

than BOA, the quality of the solutions was inferior to BOA in cases of multi modal

problems beyond trap-5. Furthermore, the authors specified that given the efforts

needed to train the multi-layer DBM-EDA, it was not feasible to be used in a noisy

training set. DBM-EDA was not able to find the global optimum in complex problems

when allotted the same population size as BOA.

2.2.5 Generative Adversarial Network EDA

An alternative generative approach for EDA modeling was suggested by the author

in [17], where Generative adversarial networks [?] were used to model the popula-

tion [17] (GANEDA). GANs are generative neural networks that estimate the distri-

bution of data using two components – the generator and the discriminator. They

are trained separately and iteratively. The generator produces solutions that repre-

sent the distribution of the population, while the discriminator tries to distinguish

the solutions produced by the generator from the rest of the population. The task
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of the generator is to produce new solutions that very closely reflect the distribution

of the population such that the discriminator cannot detect the new solution as a

synthesized outlier. Authors in [17] tested GAN-EDA on one-max problems, concate-

nated trap functions, and NK Landscapes. GAN EDA displayed lower performance

than both DAE-EDA and BOA for the test problems presented and in most cases was

unable to find the global optimum.

2.2.6 Variational Autoencoder EDA

Variational Autoencoders (VAE) [18] [19] improve upon traditional autoencoders in

their explorative capabilities by generating data from continuous latent spaces rep-

resentation, which allows for smooth interpolation and randomized sampling by ex-

panding the latent search space horizon beyond what the training samples represent.

While traditional autoencoders are able to introduce minor random variations in the

input provided, VAEs allow a greater degree of control of the direction and magni-

tude of the variation produced in the output by the hidden model [20]. Autoencoders

described in previous sections differ from VAE in that standard autoencoders do not

have a probabilistic basis, whereas VAEs allow stochastic generative modeling with

tunable probability parameters [21]. Authors in [22] used VAE as a generative mod-

eling technique for EDA population (VAE- EDA). The presence of continuous latent

spaces within VAE allows for easy interpolation and random sampling. A first ver-

sion of VAE-EDA was proposed by authors in [22]; a randomized population was

generated initially, from which the fittest subset of individuals were identified us-

ing Tournament selection. From the fittest individuals, a Gaussian probabilistic VAE

model was learned, which was then sampled to derive offspring candidates for the next

generation. The offspring were combined with parents, and the selection procedure

was carried out again until the global optimum was found.
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The authors proposed two extensions of VAE-EDA. The first extension, named

Extended VAE (E-VAE), contained a second decoder along with the standard encoder-

decoder. The second decoder was used to learn to predict the fitness value of the

output. The second extension proposed by the authors in [22] is titled Conditioned,

Extended VAE (CE-VAE) and proposed to use the predictor to explicitly sample

the solutions with best-predicted fitness. In this extension, the predictor accepted

the output of the encoder (same as the decoder that outputs the off-spring), and

the predictor and decoder were trained simultaneously. This predictor demonstrated

efficacy as a regularizer component for the latent representation and also demonstrated

potential to be used as a surrogate fitness function in situations where the actual

fitness computation required a great amount of time. Substituting the surrogate

fitness function was found to improve the overall performance of the algorithm in

cases such as this. This method, however, was not tested on any benchmark problems

or compared to any state-of-the-art algorithms. Authors in [22] merely compared the

relative performance of three methods on a simplified protein folding problem that

had a single objective.
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2.3 Wrapper Based Feature Selection and EDA

Approaches

When machine learning algorithms are applied on high dimensional data, an issue

known as curse of dimensionality arises, where as the number of dimension increases,

the volume of the data space increases and the amount of data available becomes

sparser [1]. Sparse data adverse affects the efficacy and the solution quality of several

machine learning algorithms [2] for example for classification models that work on

grouping instances based on their similarities to come up with a model, struggle to

make such groupings when due to extraneous features they mind most instances to

be dissimilar. Sometimes the presence of a large number of features causes learning

models to overfit the training data which degrades the solutions given by the model

when tested on novel data. Not only that, working with high dimensional data in-

creases memory requirements and puts a higher demand on computational costs for

machine learning algorithms [2].

A class of machine learning algorithms exist to tackle the issues arising from high

dimensional data. These algorithms are known as Dimensionality reduction algo-

rithms and are categorized into two groups: Feature Selection and Feature Extrac-

tion. In Feature Extraction, subsets of higher dimensional data are combined linearly

or non-linearly and the output is mapped to a new feature space. The features in

the new feature space thus created have lower number of dimensions than the original

feature space. On the other hand, feature selection directly choses a subset of features

from the original feature space to lower the dimensionality [3] [4].

Both feature selection and feature extraction are considered appropriate tools to

reduce features in high dimensional data leading to better generalization of models,

while also decreasing computational costs and memory requirements. Feature ex-
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traction produces high level features by combining features from the original feature

space. These high-level features are making it difficult to interpret the resulting model

built from these high-level features. Hence, in many cases feature selection becomes

a preferred choice as it retains the relevant original features and only removes the

unnecessary features, thereby maintaining the ease of interpretation of the models

generated from the subset [2]. Even in cases where the original number of features are

not too high, feature selection is often employed to reduce computational costs and

to improve model quality. Moreover, real-world data often contains a lot of noisy fea-

tures that are irrelevant and sometimes redundant. Removal of such features improve

the performance of machine learning algorithms while improving computational effi-

ciency. In the context of this body of research, we will focus our discussion on feature

selection methods.

Features selection techniques are classified into three categories based on the level

of coupling with other machine learning algorithms (such as classification algorithms).

Thus, depending on the method the feature selection search is performed along with

the construction of classification model, the feature selection algorithms can be clas-

sified as: Filter methods, Wrapper methods and Embedded Methods [5].

Filter methods analyze only the intrinsic properties of the data and usually work

by assigning a feature relevance score to the individual features in the feature space.

Based on a certain threshold, the lower scoring features are removed from the feature

space. The remaining higher scoring features are fed into classification algorithms

for further processing. Hence filter methods are computationally inexpensive in most

cases and work independently of the classification algorithms that consume the data.

In contrast to filter methods, Wrapper methods integrate the feature search step

within the model hypothesis search of the classification method. In wrapper methods,

a search method is defined that selects a subset of features in the feature space. A spe-
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cific subset of features produced is evaluated by using the feature subset to train and

test a specific classification algorithm and model. Hence this method is very tightly

coupled with the specific problem domain and classification method employed. A

major advantage of wrapper method is that they take into account the interaction

between model search and feature subset search and can also discover feature depen-

dencies. Disadvantages of wrapper method is that they tend to overfit the data and

are computationally expensive.

Estimation of Distribution Algorithms (EDA) [6], [7] have been used for feature

subset search in wrapper methods in previous research. In [8] the authors proposed a

novel algorithm - Feature Subset Selection by Estimation of Bayesian Network Algo-

rithm (FSS - EBNA) which uses Estimation of Bayesian Network Algorithm [9] which

follows EDA paradigm for feature subset selection. EDAs evolves the population by

altering probability distribution of the highest fitness candidates in the population

of candidates in each iteration of the search. In EBNA, the evolution of the model

is performed by a Bayesian network working in tandem with a local search method.

Authors claimed FSS-EBNA to be a computationally efficient wrapper method that

can be successfully applied to any problem where specific domain knowledge is not

available and where number of samples available is very low.

In [10] the authors used wrapper methods with EDAs to classify cancerous genes

in gene expression datasets. They successfully used naïve Bayes classifier with EDA

as a wrapper, to considerably reduce the number genes in their classification model,

leading to a concise model that is easy to interpret which was a critical requirement for

their problem. EDAs, specifically Population based Incremental Learning [11] along

COMIT which is a dependency tree based EDA, were used as wrappers in [12] for

predicting survival rates of cirrhotic patients.

EDA methods were also applied a wrapper technique in [13] on results obtained
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from EcoSim, an artificial ecosystem simulator [14]. One of the objectives of this

study was to discover the genes that have a stronger influence on fitness of individu-

als. In order to achieve this, the authors wrapped CMSS-BOA [15] for feature search

on to Random Forests [16] for classification. CMSS-BOA does not restrict a fixed

upper bound on the number of variables on which another variable can have some

dependency with, leading to discovery of intricate and highly relevant interdependen-

cies between variables. Each subset of interdependent variables is encoded as a string

of bits. The subset that maximizes the Area under ROC curve (AUC) obtained by

Bayesian network classifier is selected.

In conclusion, feature selection is an effective and efficient tool to address the prob-

lems associated with high dimensional datasets leading to concise and interpretable

machine learning models which can be built in reasonable amount of computational

time and resources. Wrapper methods integrate the feature subset search with clas-

sifier model search leading to selection of subset of features that are guaranteed to

result in better classification models. Estimation of Distribution algorithms being

computationally efficient tools for continuous and non-linear combinatorial optimiza-

tions have proven to be a good choice for use as a wrapper method in feature subset

search and selection in previous research.
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Chapter 3

Estimation of Distribution using

Population Queue based

Variational Autoencoders

3.1 Introduction

Estimation of Distribution Algorithms (EDA) [1–4] are population-based stochastic

combinatorial optimization algorithms that attempt to explore a solution space to

find an optimum solution by creating probabilistic models of promising solutions and

creating new samples from the probabilistic model. The algorithms typically try

to generalize from the current solution space sample (current population) to build

a probabilistic model; this model is then sampled to create the next generation of

solutions that are evaluated with respect to the function to optimize (the fitness

function). The best new solutions are selected and are recombined with the parent

population (see figure 5.1 adapted from [5]). The population model is improved

at every iteration of EDA to yield the next generation of solutions that could be
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Figure 3.1: EDA Procedure: The initial population is assigned a fitness value by
application of a fitness function on the candidate, and a selection step is applied to
pick the fittest candidates out of the parent pool. A simple probabilistic model is
created from the fittest parents which is then sampled to produce next generation of
candidates. [5]

potentially closer to the global optima.

In recent studies, Machine Learning techniques have been employed to build pop-

ulation models with considerable success. Restricted Boltzmann Machine (RBM) [6]

comprised of a stochastic neural network was used as population model [7] and dis-

played a considerably less computational time requirement than BOA. In another

work, the authors implemented Deep Boltzmann Machine (DBM) to generate the

next batches of solutions [8]. Autoencoders [9, 10] have also been used to model the

population of promising solutions [11].

In this paper we propose a novel extension for EDA that uses Variational Autoen-

coders [12] - Variational Autoencoder EDA (VAE-EDA) [13]. Variational autoen-

coders are expected to yield models that explore the solution space more optimally as

they model a probabilistic distribution of the latent space (its average and standard

deviation on the assumption that the latent variables follow a Gaussian distribution)

that would better capture the properties of the objective function, which allows for

the smoothing of the data generation process [13]. The extension of VAE-EDA (VAE-

EDA-Q) proposed in this paper smooths the update of the VAE-EDA model to avoid
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premature convergence to a sub-optimal region of the solution-space by learning the

model on a set of candidate solutions generated on a range of previous generations

(modeled as a queue of populations) of the VAE-EDA process. Another extension

proposed in this work uses Adaptive Variance Scaling (AVS) [14] to dynamically con-

trol the rate of exploration of the latent space by using a coefficient multiplied to the

variance of sampling.

The success of machine learning heavily relies on human machine learning experts

who are responsible for feature selection, workflow design, selection and design of

machine learning models, and hyper-parameters. There is a growing demand for self-

contained machine learning methods that can be used within a variety of domains

without the necessity of the involvement of machine learning human experts. To

this effect, [15] a new field of research targeting progressive automation of machine

learning, known as AutoML, is being pursued. The term AutoML encompasses all

aspects related to automating the process of machine learning beyond model search,

hyper-parameter optimization, and algorithm selection and includes representation

learning and automatic feature extraction, automatically applying algorithms to a

given problem, automatic detection of skewed data and missing values, etc. [15].

Convolutional Neural Networks [16] [17] (CNNs) are neural networks that aid in

processing multi-dimensional array representations of complex data such as a color

image stored as three two dimentional arrays, for example [18]. Various techniques

have been previously employed to automatically generate CNNs. These methods can

be broadly categorized as evolutionary algorithms [19] or reinforcement learning [20]

based methods. Evolutionary algorithm approaches perform by altering a population

of promising solutions using evolutionary strategies along with specific heuristics to

quickly find the best candidate. Prominent contributions include Genetic CNN [21],

CNN-GA [22] that utilizes genetic algorithms to discover CNN architectures, Large-
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scale Evolution [23], Hierarchical Evolution [24] that utilizes hierarchical representa-

tion, and Catesian Genetic Programming method (CGP) [25] CNN. Reinforcement

learning approaches employ a form of reward-penalty strategy where a reward is given

for finding solutions close to the optimum and a penalty is imposed when the solu-

tion is farther from optimum. Other algorithms that fall into this category include

neural architecture search (NAS) method [26], MetaQNN that employs meta model-

ing [27], the efficient architecture search (EAS) method [28], and block design method

(Block-QNN-S) [29].

Empirically, the algorithms discussed above have demonstrated promising results

on image recognition and classification problems when tested on CIFAR10 and CI-

FAR100 [30], which are considered as benchmark datasets for image classification

problems. However, due to the challenges involved in the automatic generation of

CNNs (including the heavy demand on computational resources and computational

time) some form of manual intervention is still necessary for most algorithms within

both categories. Additionally, the resulting classification accuracy does not perform as

well as the state-of-the-art. Fully automatic algorithms mentioned previously include

CNN-GA, Large Scale Evolution, Meta CNN, NAS, and CGP CNN. Semi-automatic

algorithms include Genetic CNN, Block-QNN-S, EAS, and Hierarchical Evolution.

In this paper, we have used VAE-EDA-Q with AVS as an AutoML algorithm to

discover architectures for CNNs and tested the CNNs generated as compared to the

results of other state of the art algorithms.
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3.2 Background and Related Work

3.2.1 Bayesian optimization algorithm and improvements

Bayesian optimization algorithm (BOA) [31] [32] is a state-of-the-art EDA capable of

tackling many difficult optimization problems. It uses Bayesian networks to model

the population and, hence, solves many problems that are difficult to decompose

into separable subproblems. The possible configuration of a Bayesian Network grows

exponentially with the number of decision variables. Hence, a greedy heuristic is

used to build a network from an empty network consisting of nodes only. Some real

world problems are hierarchically decomposable, and hBOA [33] algorithm tackles

such problems by creating compact Bayesian networks with local structures to allow

complex networks to be learned [5]. Additionally, hBOA uses restricted tournament

replacement, which is a niching technique that attempts to match similar solutions

against each other rather than competing dissimilar solutions.

Constrained Model Search Space BOA (CMSS-BOA) [34], on the other hand,

successfully improves on the computational efficiency of BOA by constraining the

search space using a heuristic called max-min parent children (MMPC) [35] and then

performing hill-climbing on the search space. CMSS-BOA was compared to BOA

on benchmark problems such as OneMax and concatenated k-trap function. CMSS-

BOA was found, in most cases, to be able to converge earlier than BOA. However,

the average fitness of BOA population was slightly higher than CMSS-BOA.

3.2.2 Deep Boltzmann Machine based EDA

Deep Boltzmann Machines (DBM) [36] are deep neural networks consisting of mul-

tiple layers of hidden neurons, and, hence, can be used to capture the model of the

population at increasing layers of abstraction. Each hidden layer provides one addi-

38



tional layer of abstraction capable of representing patterns or features in the data.

The authors in [8] used DBM with EDA based on the promise shown by the results

in RBM-EDA and based on the success of deep learning models. The authors found

that while DBM-EDA is computationally less expensive than BOA, the quality of the

model was not as effective as BOA in the case of multi modal problems beyond trap-5.

The authors state that, given the efforts needed to train, it is not feasible to be used

in a noisy training set. DBM-EDA could not find the global optimum in complex

problems when allotted the same population size as BOA.

3.2.3 Autoencoders and Denoising Autoencoder EDA

Autoencoders [9, 10, 37] are neural networks that learn an abstract representation

of the input with an encoder layer and then perform a reconstruction step using a

decoder to convert the representation to an output that approximates the distribution

of training examples. Autoencoders have been used as generative modeling techniques

in dimensionality reduction and within feature learning [38].

One of the methods employed to prevent such over-fitting is to use Denoising

Autoencoders (DAE) [39]. This approach intentionally corrupts the input or training

sample with a certain type of noise (uniform, Gaussian etc.), and the denoising autoen-

coder is trained to filter out the noise in a denoising layer. Thereafter reconstruction

of the output from a "cleaned" input occurs. This makes denoising autoencoders a

robust filter to noise within the training samples. Denoising Autoencoder EDA (DAE-

EDA) [11] uses denoising autoencoders as generative models for EDA. DAE-EDA was

tested on concatenated deceptive traps, NK Landscapes, and HIFF functions. Its per-

formance was compared to BOA and RBM-EDA. DAE-EDA was found to be much

faster than BOA and RBM-EDA, however reduced model quality was observed as a

consequence.
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Figure 3.2: Concept of Convolutional Neural Network depitcts an image of a dog
broken up into RGB (red, green and blue) inputs before feeding it to the first convo-
lutional layer. Each square box shows a feature map. Image adapted from [18].

3.2.4 Convolutional Neural Networks

A Convolutional Neural Network’s (CNN) architecture is comprised of a series of

stages (figure 5.4). As described by authors in [18], the initial stages are composed of

Convolutional and Pooling layers. The convolutional layer uses filters to execute the

convolutional process on the image data provided as input. Each filter in a convolu-

tional layer is designed as a matrix and, in the scope of this paper, we restrict the

discussion to 2-dimensional convolutional operations and filters since we are process-

ing 2 dimensional image data only. The filter has a fixed size and scans the image

throughout the convolution step, during which it slides in a horizontal direction at a

fixed step (known as width of stride), then moves vertically with a fixed step (known

as height of stride), before making the next horizontal slide. This process continues
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until the entire image has been scanned. At each position on the image where the

filter stops, a convolution operation is performed by multiplying a pixel value with a

corresponding value in the filter matrix. The values are then added up to get the fil-

ter output. The output derived from the filter operation upon the whole input image

yields a matrix which is known as feature map. At higher layers, the convolutional

operation is applied to the feature maps of the previous layers to generate the feature

maps of the current layer. For a given convolutional layer, multiple different filters

of standard sizes are utilized to generate maps of the same dimensions (based on the

stride values), which forms a set of feature maps. One parameter of a CNN is the

number of feature maps available (which corresponds to the number of different filters

used per level). A classical trick, known as padding, can be applied at the edge of the

image if the filter goes beyond the boundary of a map. In this case, the size of the

map is increased by padding zeros on all edges of the map.

The second type of layer used within a CNN is known as Pooling layer, which is

used between other CNN layers, and helps to reduce the spatial dimensions of the

internal representation. Presence of a pooling layer helps to reduce the number pa-

rameters and computational requirements of the network. It also helps to prevent

over-fitting of the model to training data. A pooling layer does not change the dimen-

sions of the input image, nor does it contain any parameters as it calculates a fixed

function on the input provided. The pooling layer has two hyperparameters: spatial

extent of the downsampling filter (known as kernel size) and stride size. Pooling layers

can be of max or mean types. For example, consider a max pooling layer of kernel

size 2x2 and stride of 2. In this case, the downsampling filter will scan a 2x2 region

in a slice of the input, and take the max of 4 numbers before moving on to the next

2x2 block (since the stride is 2). This helps to discard 75% of the activations and

keeps the overall network structure simple. The mean pooling layer employs the same
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process with the exception that it takes average of the values of 2x2 area.

The overall architecture of a CNN involves stacking multiple stages of convolu-

tional layers, reLU, and pooling layers such that it is superseded by more fully con-

nected and convolutional layers. Back propagation of gradients is performed through

a CNN to train all the weights. A typical CNN structure used in practical applications

can have have more than 100 layers, millions of weights, and connections in the range

of billions. In recent years, due to advancements in computing hardware and efficient

use of GPUs, CNNs have become extensively used for tasks involving recognition and

detection [40–45].

3.3 Variational Autoencoder EDA

3.3.1 Variational Autoencoders

Variational Autoencoders (VAE) [12] [46] improve upon traditional autoencoders in

their explorative capabilities by generating data from continuous latent spaces rep-

resentation, which allows for smooth interpolation and randomized sampling by ex-

panding the latent search space horizon beyond what the training samples represent.

While traditional autoencoders are able to introduce minor random variations in the

input provided, VAEs allow for a greater degree of control of the direction and magni-

tude of the variation produced in the output by the hidden model [47]. Autoencoders

described in the previous section differ from VAE in that standard autoencoders do

not have a probabilistic basis while VAEs allow stochastic generative modeling with

tunable probability parameters [48]. We have adapted the following description of

VAE from [47].

In [12] and [47], the authors define VAE by considering z as a vector of latent

variables in Z which form a high dimensional space (see Encoder half of figure 5.3).
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The z can be sampled using some density function P(z) defined over Z. Equation

5.1 aims at maximizing the probability of X by optimizing θ (X is a data point in

our dataset, and θ is a parameter vector in space Θ); where z is sampled with a high

probability from P(z).

P (X) = Maximize(
∫
P (X|z; θ)P (z)dz) (3.1)

Hence, in VAE, the objective becomes to model the probabilistic distribution of

parameters of the latent space instead of fixed values for them [48]. However, the

integral computation is intractable. Some approximations are therefore needed to es-

timate this distribution. VAE use an approximation Q(z|X), modeled by the encoder,

of the posterior distribution P (z|X) and an approximation of P (X|z), modeled by the

decoder. Some common choices of the distribution models used in VAEs are Bernoulli

Distribution or Multivariate Gaussian distribution. Equation 3.2 gives the probability

model for Gaussian distribution having a mean of f(z; θ), with I being the covariance

multiplied by some scalar hyperparameter σ and f representing the decoder network.

P (X|z; θ) = N (X|f(z; θ), σ2 ∗ I) (3.2)

The values sampled from the model for z need to contain useful information from

P (X|z) to produce an output similar to desired target X. Therefore the function

Q(z|X) is learned (encoder) in order that the distribution over z can be later used to

produce X.

3.3.2 Variational Autoencoder EDA (VAE-EDA)

Authors in [13] employed VAE as a generative modeling technique to be used as the

model for EDA (VAE- EDA). The motivation is that VAEs have continuous latent
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Figure 3.3: Variational Autoencoder structure showing the parent vectors on top
layer mapped to higher dimensional spaces in encoder f(x). The z layer provides the
probability distribution sampling function, which is sampled by the decoding layers
g(x) to yield the output in real dimension at the bottom layer.

spaces and allow for easy interpolation and random sampling. To clarify, if the input

space has gaps or discontinuities, standard EDAs have difficulty dealing with the

corresponding latent space. With VAE-EDA, a randomized population is initially

generated, from which individuals are selected by using Tournament Selection to find

and select the subset of fittest individuals. From these fittest individuals, a Gaussian

probabilistic VAE model is learned, that is then sampled to derive offspring candidates

for the next generation.

3.3.3 Variational Autoencoder EDA with Population Queue

(VAE-EDA-Q)

We propose an advanced version of VAE-EDA algorithm in algorithm 1, in which

we attempt to control the convergence of our population by using a strategy where

the VAE-EDA is updated using a sample built from a sliding window of historical

populations. We refer to this algorithm as Variational Autoencoder EDA with Pop-

ulation Queue (VAE-EDA-Q) ∗. The VAE-EDA-Q model is updated based on the
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fittest candidates from the sampled population history, instead of the immediate par-

ent population. We perform tournament selection on candidates from the history to

create a new population to update the VAE-EDA-Q model. The latent model of the

VAE-EDA-Q is sampled at every time step, and a new population is built by combin-

ing the offspring with the fittest candidates in the parent population for the preceding

time step. The VAE-EDA-Q is expected to have a greater degree of control over the

diversity of the solutions produced. The size of the queue allows us to control this

diversity - if the value is too low, the model produces too diverse solutions. And if the

value is on the higher side, then the model does not explore as much as desired. The

choice of the value for which this parameter is set depends on the difficulty and the

nature of the problem to be solved. In our study, the update time step was empirically

chosen as 10 to find a value that balances speed of convergence and desirable amount

of population diversity for the problems in the scope of this paper.

3.3.4 Variational Autoencoder EDA with Population Queue

and Adaptive Variance Scaling (VAE-EDA-Q AVS)

In order to remedy the problem of diversity loss (premature loss of variance in the

population), a methodology named Adaptive Variance Scaling (AVS) was suggested

in [14] [49] that helped scale the variance beyond the maximum likelihood estimate of

the model generated from the parent population. In AVS, a coefficient is used to scale

the variance of sampling, which is known as variance multiplier cAV S. If the variance

of the model is Σ, then the model is sampled using a variance of cAV SΣ. If at each

iteration we find an improvement in the best fitness, then the cAV S is multiplied by

ηINC > 1 to help enlarge the variance and increase the exploration of the search space

.
∗Source code is available at https://github.com/sourodeep/vaeedaq
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Algorithm 1 Variational Autoencoder EDA with Population Queue - VAE-EDA-Q
i← 0
QueueSize← 10
PopulationHistory[]← null . Define a Queue to store populations from different
iterations
Generate Initial Population P(0) . Assume n to be population size
PopulationHistory[i].PUSH(P (0)) . Insert initial population into the queue of
populations
while Global Optimum not found OR Current Iteration < Max_Iteration do

Select promising solutions N(i) from P(i) using TournamentSelection
if i ≥ QueueSize then

PopulationHistory.POP() . Remove oldest Population from head of the
Queue

end if
SampledPopulationHistory ← TournamentSelection(PopulationHistory[])

. Selecting n candidates
Build/Update Variational Autoencoder Model M(i) from SampledPopulation-

History
Sample M(i) to produce next generation O(i)
P (i+ 1)← N(i) +O(i)
PopulationHistory.PUSH(P (i+ 1)) . Insert newly generated population into

the queue
i← i+ 1

end while
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If no improvement is observed in fitness values, the variance multiplier is multi-

plied by a factor of ηDEC ∈ [0, 1], which helps in reducing the range of exploration.

Generally, in order to maintain symmetry in scaling, ηINC = 1/ηDEC . We have ap-

plied the AVS method to the standard deviation vectors of VAE-EDA-Q at the layer

of hidden neurons that model the latent space (z layer in figure 5.3) to dynamically

control the amount of exploitation and exploration at the sampling step of each iter-

ation. We will refer to this algorithm as VAE-EDA-Q AVS ∗. VAE-EDA-Q AVS was

able to solve benchmark problems of even greater difficulty than VAE-EDA-Q such

as Trap 11 and 13, as well as NK Landscapes of up to epistasis (k) 10.

3.3.5 CNN Architecture Optimization

We used a predefined set of building blocks of CNN to build the population of VAE-

EDA-Q AVS, where each candidate in the population represents a combination of

building blocks to be used for the construction of a model to be learned for classifica-

tion of the target image dataset. At the initial iteration, the population is randomly

generated using a fixed encoding strategy, which will be discussed subsequently. What

follows is a standard VAE-EDA-Q AVS procedure (algorithm 1). The fittest candi-

dates, representing specific CNN architectures, are selected using tournament selec-

tion, and new offspring are generated by sampling the latent model generated from

the parent population. The next generation of solutions are obtained by combining

the fittest parents with the offspring. We will refer to this algorithm as VAE-EDA-Q

AVS.

Our encoding strategy follows that of [22] to facilitate a standardized comparison

with their results. A CNN is comprised of several layers such as convolutional layers,

pooling layers, and fully connected layers. We have used Skip layers, as defined in [22],

which uses skip connections directly, thereby replacing the convolutional layer at CNN
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Figure 3.4: Encoding of a Skip layer [22]

creation. A Skip Layer (figure 3.4) uses two convolutional layers and a skip connection

that connects the input of the first convolutional layer to the output of the second one.

The motivation for this design is drawn from ResNet [50], and the previous research

has proven ResNet to be highly effective [51] [52] [23].

The parameters of a convolutional layer includes number of feature maps, stride

size, filter size, and type of convolutional operation. In our encoding strategy, we use

the same settings for our convolutional layers. The filter size is set to 3 x 3, the stride

size is set to 1 x 1, and only same convolutional operation is used. Parameters for

a skip layer include the number of feature maps in the two constituent convolutional

layers (F1 and F2 in algorithm 2). The pooling layer sizes are set to 2 x 2 applied

to stride sizes and kernel sizes. The choice of these parameters is inspired from the

designs of building blocks of manually created CNNs [51] [52].

Algorithm 2 shows the procedure used to initialize the population for VAE-EDA-

Q AVS, where PMax number of initial candidates are generated. Each candidate is

stored as a linked list and represents a CNN, where the length S of the candidate
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representing the depth of the CNN is uniformly and randomly initialized. After

a linked list (LL representing the CNN) is initialized, each node of the linked list

is configured either as a pooling layer or a skip layer stochastically with each node

having an equal probability of being a skip or a pooling layer. Additionally, we explore

the possibility of including two consecutive pooling layers. If a node is configured as

a skip layer, the number of filters in the two convolutional layers are uniformly and

randomly generated. Conversely, if a node is configured as a pooling layer, the pooling

type is set as Max or Mean with equal probability.

Algorithm 2 Population Initialization of VAE-EDA-Q AVS based CNN architecture
search

Input: Size of Population (PMax).
Output: Initial Population P0.

P0 ← NULL
while |P0|< PMax do

S ← RandomInteger . Size of Candidate gives Depth of CNN
LL← Create Linked List containing S nodes of CNN
for each Node N in LL do

r ← Generate Real Number between 0 and 1
if r < 0.5 then

N.Type← Skip_Layer
N.F1← Random Integer (> 0)
N.F2← Random Integer (> 0)

else
N.Type← Pooling_Layer
q ← Random Number Uniformly Generated (0,1)
if q < 0.5 then

N.P1←Max . Pooling Type
else

N.P1←Mean . Pooling Type
end if

end if
end for
P0 ← P0

⋃ LL
end while

Fully connected layers are not used within our encoding strategy - only pooling
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layers and skip layers are used. Fully connected layers have not been used in the

proposed encoding following [22], as they lead to over-fitting [53] caused by dense

connections [54]. Moreover, the number of fully connected layers and neurons within

each layer is a parameter that is difficult to optimize. Removing the fully connected

layer reduces the search space required to explore and additionally keeps the search

tractable.

3.3.6 CNN Model Training and Evaluation

For a given individual in the VAE-EDA-Q AVS population, a CNN is coded and

a softmax classifier is added on top it [55]. The classes are determined based on

the target image classification dataset. At the decoding step of the CNN, a rectifier

activation [56] is used, and then the output is batch normalized [57] as per convention

in designing CNNs [50]. Afterwards, the CNN is trained by using Stochastic Gradient

Descent (SGD) [58] optimizer on the training data and evaluated on the validation

dataset. The best classification accuracy on the validation dataset determines the

fitness of the individual in the population of EDA.

3.4 Experiments

3.4.1 Core Experiments on VAE-EDA-Q and VAE-EDA-Q

AVS

Test Problems

We have evaluated VAE-EDA-Q and VAE-EDA-Q AVS on concatenated deceptive

trap functions of order 5, 7, and 9, as well as NK Landscapes (with the epistasis k

varying form 4 to 6), which are considered benchmark test problems [9]. Additionally,
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VAE-EDA-Q AVS was also tested on Trap Functions of order 11 and 13 and also

on NK Landscape of k = 6 to k = 8. The difficulty of these problems increased

linearly with the problem size (given by the number of decision variables) as well

as exponentially with the degree of dependencies between parameters (the order of

the trap, for example). Therefore, the main driving factor of complexity for these

problems is the degree of dependencies.

In concatenated traps [59] of order k (referred to as Trap-K), a solution vector x

is divided in subsets of size k, where each subset is used to create a deceptive trap.

Within each subset, the variables are dependent upon each other yet independent of

the variables within other subsets. Thus, the problem is decomposable into indepen-

dent sub-problems. Hence, the fitness of each subset contributes to the global fitness

as a sum of fitness of individual traps.

Assume p to be an assignment of k values (0 or 1) to an arbitrary subset of

variables, then the fitness contribution for that subset is given by Equation 7. The

fitness of the trap increases with increasing zeros, unless the assignment are all values

of one. The deception is a result of increasing numbers of 1 within a subset causing the

fitness to decrease, even though the solution gets closer to global optimum (consisting

of an assignment of 1 for all variables). The size of the subset or trap, given by k,

increases the complexity of the problem as the value of K increases.

f(a) =


k if ∑i+k−1

i pi = k

k − (∑ pi + 1) if otherwise
(3.3)

NK Landscapes [60] are functions defined by two parameters: the total number

of binary variables in the problem (N) and the size of neighborhood for each variable

(K). The fitness function of each bit is provided by a lookup table generated randomly

beforehand that determines the fitness of the bit and its neighbors. For example,
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consider a problem of N = 4 and K = 1 (the problem contains 4 variables in total),

then the fitness of the assignment of all variables f(n) is composed of the sum of the

fitness of sub-problems fN
i , one sub-problem for each variable. The fitness of one

variable depends on its value as well as the value of its next k variables (one in our

example since K=1).

The total fitness of a solution f(n) in NK Lanscapes is the sum of all fitness

components (subsets of a bit or variable and its k neighbors). Formally equation 3.4 [7]

shows how the total fitness f(n) is governed by the sum of individual fitness functions

fN
i . fN

i evaluates fitness of a sub-problem based on the assignment of the first variable

xi as well as its k successors xi1 to xiK . Therefore, the value of each decision variable

xi affects the fitness of K+1 sub-functions. Thus, each decision variable assignment

impacts multiple fitness components due to this overlap among neighboring variables.

These dependencies make it impossible to separate and independently solve the sub-

problems.

f(x) = 1/N
N∑

i=1
fN

i (xi, xi1, ......xiK) (3.4)

In most cases NK Landscapes are NP-Complete for k > 1, which poses a challeng-

ing optimization problem [61]. In order to compare VAE-EDA, VAE-EDA-Q, and

VAE-EDA-Q AVS with other state-of-the-art algorithms (BM-EDA [7] and DAE-

EDA, [11]) we use similar NK Landscapes with known optima as in [7, 11,61].

Experimental Setup

We have compared VAE-EDA [13], VAE-EDA-Q, VAE-EDA-Q AVS, BOA [31], hBOA

[33], BM-EDA [7], CMSS-BOA [34], DBM-EDA [36], and DAE-EDA [11], on Trap

52



Functions and NK Landscapes of varying complexity. For each algorithm and prob-

lem, we have reported results for an average of 30 runs, which were allowed to run

until global optimum was found. For consistency of the results, all algorithms used

tournament selection (size 2) without replacement (same as reported in experiments

for DBM-EDA and DAE-EDA). We have used the results mentioned by the authors

in the original papers for BM-EDA and DAE-EDA in our discussions. For Trap 5,

we have compared VAE-EDA, VAE-EDA-Q, VAE-EDA-Q AVS, BOA, hBOA, DAE-

EDA, DBM-EDA, and CMSS-BOA and reported the execution times in seconds (log

scale) as well as the number of unique fitness evaluations. For Trap 7 and 9, we have

compared VAE-EDA, VAE-EDA-Q, VAE-EDA-Q AVS, BOA, hBOA, and CMSS-

BOA and reported the execution times as well as the total number of fitness evalu-

ations. DAE-EDA and DBM-EDA could not be compared for Trap 7 and 9 as the

results for the algorithm were not reported by the authors due to unavailability of

their code.

For NK Landscapes (up to K = 6), we compared VAE-EDA, VAE-EDA-Q, VAE-

EDA-Q AVS, BOA, hBOA, DBM-EDA, CMSS-BOA, and DAE-EDA and reported

the execution times as well as the total number of unique fitness evaluations. Some

of the algorithms could not produce results in a comparable time frame or number

of generations for the particular test problem, and, hence could not be included in

the results. For Traps of 11 and 13 and also for NK Landscape of K = 8 and K =

10, we have compared only VAE-EDA-Q AVS, BOA, and CMSS-BOA as the other

algorithms were either not able to solve these problems or the results were not avail-

able from other published research. To the best of our knowledge, this paper is the

first to present successful results on Trap 11 and 13 and on NK-landscape with K=10.

All experiments were performed on a high performance cluster computing platform

provided by SHARCNET (https://www.sharcnet.ca) where base compute node con-
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figuration was Intel E5-2683 v4 (Broadwell) 2.1 GHz with 32 cores, 128 GB of memory.

For Trap 5 and NK Landscape (K < 8), we have used results reported in previously

published research. For all other test problems, the tests were performed on the same

system configuration.

Implementation

For both algorithms proposed in this paper, VAE-EDA-Q ∗and VAE-EDA-Q AVS,

Nesterov Adam optimizer (NADAM) was used as the optimizer [62]. This provides a

better computational performance than stochastic gradient descent. The training of

the model used a mini-batch size of 64 samples, and the number of epochs was set as

approximately P/64, where P is the size of the training population. The intermediate

layers of hidden neurons contained n/2 nodes where n represented the problem size,

while the latent dimension hidden layer always contained 20 fixed hidden nodes for

all of our experiments. A learning rate of 0.02 was used for both algorithms. For

VAE-EDA, we have used the same model architecture as suggested by the authors

in [13]. The algorithms were implemented in Python programming language using

Keras Deep learning library (https://keras.io/).

3.4.2 Experiments on VAE-EDA-Q AVS based CNN archi-

tecture Search

Image Classification Datasets

We have used CIFAR10 and CIFAR100 datasets [30] for image classification in our

experiments as they are difficult to solve due to their image size, higher number of

image classes (10 or 100), and the presence of rotation, translation (position of object
∗Source code is available at https://github.com/sourodeep/vaeedaq
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to be classified varies in the image), and noise in the images. They are considered

benchmark datasets to gauge the performance of deep learning based image classi-

fier algorithms. CIFAR10 contains ten classes of objects commonly seen within our

environment such as cats, dogs, airplanes, automobiles, etc. It consists of 60000 size

32 x 32 RGB images, from which 50000 images are used for training and the rest for

testing. CIFAR100 is a similar dataset, with the exception of containing 100 classes

with 600 images in each class.

We have split the training dataset into two parts whereby the first 90% is used

for training of the CNN and the remaining of the 10% images are used for validation

of the model trained. A pre-processing is performed to each image before training in

which four zero pixels are padded to every direction of a given image. A fixed sized

crop is then sampled randomly and uniformly from the image, and a cropped image

can be horizontally flipped with a probability of 0.5. This pre-processing procedure

standardizes the images and is used widely in state-of-the-art algorithms [50] [51].

Comparison with State-of-the-art Algorithms

We have compared VAE-EDA-Q AVS to manually designed CNNs, which are known

to be highly accurate in classfications [63] such as DenseNet [51], ResNet [50], Maxout

[64], VGG [45], Network in Network [65], All-CNN [66], and Highway Network [67].

For ResNet we have used ResNet models of depth 101 and 1202 only.

Our proposed algorithm has been compared with some semi-automatic algorithms

that require some form of manual designing before an architecture is discovered. The

algorithms used for comparison were Hierarchical Evolution [24], Genetic CNN [21],

Block-QNN-S [29], and EAS [28]. EAS is considered semi-automatic because it works

on CNN blocks, which have already proven to have good accuracy for the dataset being

classified. QNN needs a predefined large CNN, on which the discovered CNNs are
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added. Some fully automatic CNN search algorithms have also been compared to our

method such as CNN-GA [22], Large-Scale Evolution [23], NAS [26], CGP-CNN [25],

and MetaQNN [27]. These algorithms do not require any human intervention in the

process.

3.5 Results and Discussion

3.5.1 Core Experiments on VAE-EDA-Q and VAE-EDA-Q

AVS

All results presented correspond to an average of 30 independent runs for each method.

Figure 5 shows the execution time comparisons between BOA, hBOA, CMSS-BOA,

VAE-EDA, VAE-EDA-Q, VAE-EDA-Q AVS, DBM-EDA, and DAE EDA for Trap 5

problems of problem sizes 25, 50, 75, and 100. We can see that both VAE-EDA-Q

and VAE-EDA-Q AVS have better computational performance than VAE-EDA, BOA,

and CMSS BOA. While VAE-EDA-Q and VAE-EDA-Q AVS outperform DBM-EDA,

VAE-EDA is unable to do so. The execution of time of DAE-EDA, as reported by the

authors, turns out to be slightly lower than those of VAE-EDA-Q and VAE-EDA-Q

AVS.

For the number of fitness evaluations (figure 5.6), it was observed that DAE-EDA

performs more fitness evaluations than all other algorithms. VAE-EDA-Q and VAE-

EDA-Q AVS perform less fitness evaluations than VAE-EDA, BOA, and CMSS-BOA,

with BOA being the highest. We also find that VAE-EDA-Q has better performance

than VAE-EDA both in terms of execution times and fitness evaluations. The number

of performance evaluations of DBM-EDA lies between that of VAE-EDA and VAE-

EDA-Q.
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Figure 3.5: Execution time for Trap 5 comparing BOA, HBOA, CMSS-BOA, VAE-
EDA, VAE-EDA-Q, VAE-EDA-Q AVS, DBM-EDA, and DAE-EDA. VAE-EDA-Q
and VAE-EDA-Q AVS have better performance than VAE-EDA, BOA, and CMSS-
BOA.

Figure 3.6: Number of fitness Evaluations for Trap 5 comparing BOA, HBOA,
CMSS-BOA, VAE-EDA, VAE-EDA-Q, VAE-EDA-Q AVS, DBM-EDA, and DAE-
EDA. VAE-EDA-Q has the lowest number of fitness evaluations compared to all the
other algorithms

57



Figure 3.7: Execution time for Trap 7 comparing BOA, HBOA, CMSS-BOA, VAE-
EDA, VAE-EDA-Q AVS, and VAE-EDA-Q. VAE-EDA and VAE-EDA-Q perform
better than BOA and CMSS-BOA, with VAE-EDA-Q having the lowest execution
time

Figure 3.8: Number of fitness Evaluations for Trap 7 comparing BOA, HBOA, CMSS-
BOA, VAE-EDA, VAE-EDA-Q AVS, and VAE-EDA-Q. VAE-EDA and VAE-EDA-Q
perform better than BOA and CMSS-BOA, with VAE-EDA-Q having the lowest
number of fitness evaluations
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Figure 3.9: Execution time for Trap 9 comparing BOA, HBOA, CMSS-BOA, VAE-
EDA, VAE-EDA-Q AVS, and VAE-EDA-Q. VAE-EDA-Q AVS and VAE-EDA-Q per-
form better than VAE-EDA, BOA and CMSS-BOA, with VAE-EDA-Q having the
lowest execution time

Figure 3.10: Number of fitness Evaluations for Trap 9 comparing BOA, HBOA, CMSS-
BOA, VAE-EDA, VAE-EDA-Q AVS, and VAE-EDA-Q. VAE-EDA-Q and VAE-EDA-
Q AVS perform better than VAE-EDA, BOA and CMSS-BOA, with VAE-EDA-Q
having the lowest number of fitness evaluations

59



Figures 5.7, 5.8, 5.9, and 5.10 shows similar results for VAE-EDA, VAE-EDA-Q

AVS, VAE-EDA-Q, CMSS-BOA, hBOA, and BOA for higher order traps of order 7

and 9 respectively. For trap 7 and trap 9, DAE-EDA and DBM-EDA could not be

compared as the result for higher order traps was not provided by the authors in their

original research. We find that VAE-EDA-Q and VAE-EDA-Q AVS have approxi-

mately one-tenth the execution time requirement of BOA and perform approximately

half the number of fitness evaluations as BOA.

In addition to having a better performance than other algorithms tested, VAE-

EDA-Q AVS was able to solve traps of orders 11 and 13 for all 30 runs with approxi-

mately 20 to 50 times less computational time requirement than BOA and CMSS-BOA

as shown in the graphs in figures 3.11-3.14. VAE-EDA and VAE-EDA-Q could not

solve these problems, and no results were reported for DAE-EDA and DBM-EDA for

these problems. Moreover, the success rate of BOA, hBOA, and CMSS-BOA was

only about 23% (approximately 7 out of 30 runs were able to find the global opti-

mum), while the success rate of VAE-EDA-Q AVS was 100%. These results prove

that VAE-EDA-Q AVS is more capable at successfully exploring the latent space by

dynamically varying the degree of exploration based on fitness.

In order to test the statistical significance of the results, we performed Kruskal

Wallis ANOVA [68] separately for the execution time and the number of fitness evalu-

ations independently for each trap order, and all the differences turned out to be sig-

nificant (p-value < 0.05). For Trap 5 specifically, we performed an additional Kruskal

Wallis ANOVA test on DAE-EDA, VAE-EDA-Q, and VAE-EDA-Q AVS for execu-

tion time, and the result shows that the differences were not statistically significant

(p-value 0̄.149 for execution time with alpha at 0.05).

Figure 3.15 shows the comparison of BOA, CMSS-BOA, VAE-EDA, VAE-EDA-Q,

VAE-EDA-Q AVS, DAE-EDA, and DBM-EDA on NK Landscapes with problem sizes
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Figure 3.11: Execution time for Trap 11 comparing BOA, HBOA, CMSS-BOA, and
VAE-EDA-Q AVS. VAE-EDA-Q AVS has lower execution time compared to BOA
and CMSS-BOA for all problem sizes.

Figure 3.12: Number of fitness Evaluations for Trap 11 comparing BOA, HBOA,
CMSS-BOA, and VAE-EDA-Q AVS. VAE-EDA-Q AVS has lower number of fitness
evaluations compared to BOA and CMSS-BOA for all problem sizes.
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Figure 3.13: Execution time for Trap 13 comparing BOA, HBOA, CMSS-BOA, VAE-
EDA, VAE-EDA-Q AVS, and VAE-EDA-Q. VAE-EDA-Q AVS has lower execution
time compared to BOA and CMSS-BOA for all problem sizes.

Figure 3.14: Number of fitness Evaluations for Trap 13 comparing BOA, HBOA,
CMSS-BOA, and VAE-EDA-Q AVS. VAE-EDA-Q AVS has lower number of fitness
evaluations compared to BOA and CMSS-BOA for all problem sizes.
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30 and 34 and neighborhood size varying from 4 to 10. VAE-EDA-Q was found to

have a slightly higher execution time than DAE-EDA, though the differences were not

significant according to Kruskal Wallis ANOVA test. VAE-EDA-Q was also found to

perform the smallest number of fitness evaluations (half or less) compared to all other

algorithms tested for most cases.

While no results were presented for DBM-EDA and DAE-EDA for neighborhood

size of 6 and above, we have performed the experiments to compare VAE-EDA, VAE-

EDA-Q, VAE-EDA-Q AVS, BOA, and CMSS-BOA on the same problem sizes but

with k varying between 6 and 10. It was observed that VAE-EDA-Q and VAE-EDA-Q

AVS have better performance than VAE-EDA-Q, BOA, and CMSS-BOA in terms of

execution time as well as number of fitness evaluations.

Moreover, VAE-EDA-Q AVS was able to solve NK Landscapes with neighborhood

size 8 and 10 at a better success rate than BOA. For BOA, the success rate was 40%,

while VAE-EDA-Q AVS had a success rate of 100%. The execution time and the

number of fitness evaluations for VAE-EDA-Q AVS was also better than BOA for these

problems. VAE-EDA-Q AVS was 10 - 30 times faster than BOA for NK Landscape

problems. The other algorithms were either not able to solve these problems or

no results were reported in past research for these algorithms for problems of this

complexity. The differences in computational time observed in these comparisons

were statistically significant (Kruskal Wallis ANOVA test with p-values < 0.05).

VAE-EDA- Q and VAE-EDA- Q AVS were found to have very similar execution

time as compared to DAE-EDA without any statistically significant differences for

trap problems and NK Landscapes. VAE-EDA-Q and VAE-EDA-Q AVS were found

to outperform all other algorithms including DAE-EDA in number of fitness evalu-

ations. This can be attributed to the fact that BOA, CMSS-BOA, DBM-EDA, and

DAE-EDA require larger population sizes to find global optimum and that the VAE
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Figure 3.15: Execution time for NK Landscapes comparing BOA, HBOA, CMSS-
BOA, VAE-EDA, VAE-EDA-Q, VAE-EDA-Q AVS, DBM-EDA, and DAE-EDA.
DAE-EDA has lowest execution time upto k = 5. VAE-EDA-Q AVS is able to solve
K = 8 and K = 10 at better performance than BOA.
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Figure 3.16: Number of fitness evaluations for NK Landscapes comparing BOA,
HBOA, CMSS-BOA, VAE-EDA, VAE-EDA-Q, VAE-EDA-Q AVS, DBM-EDA, and
DAE-EDA. VAE-EDA-Q has lowest number of fitness evaluations compared to all
other algorithms. VAE-EDA-Q AVS is able to solve K = 8 and K = 10 at better
performance than BOA
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is particularly efficient to detect and model the main dependencies. For BOA and

CMSS-BOA, the necessary population size is calculated as Tp = 2k × n1.05 [32] [69]

where k is the size of the trap and n is the problem size. Hence, with increasing

problem difficulty (order of the trap or k), the necessary population size increases ex-

ponentially. Conversely, VAE-EDA-Q and VAE-EDA-Q AVS are better at exploring

latent spaces using significantly smaller population sizes. The maximum population

size required to solve trap 9 for a problem of size 108 was 2400 for VAE-EDA and

VAE-EDA-Q. Conversely, for DAE-EDA and DBM-EDA, the population size require-

ment approached 16000 - even for trap 5 problems. While for BOA and CMSS-BOA,

the population size requirement was 69000 (for trap 9 problem of size 108).

We also observed that VAE-EDA-Q AVS was able to solve problems of greater

difficulty than VAE-EDA, VAE-EDA-Q, DAE-EDA, and DBM-EDA. These problems

included Trap 11, Trap 13, and NK Landscapes with neighborhood size 8 and 10.

While BOA, hBOA, and CMSS-BOA were also able to solve some of these problems,

their success rate was 40% or less. This is in contrast to VAE-EDA-Q AVS, which

had a success rate of 100%.

3.5.2 Experiments on VAE-EDA-Q AVS based CNN Archi-

tecture Search

We have compared VAE-EDA-Q AVS with other state-of-the-art algorithms based

on two metrics - the classification accuracy and the number of parameters shown

in Table 3.1. Classification accuracy represents the general success of the algorithm

when presented a task to classify an image. The number of parameters represents

the complexity of the CNN discovered by the generative model or static number of

parameters, in the case of manually designed CNNs. We have used publicly reported

results for state-of-the-art algorithms when comparing the results of our proposed
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Table 3.1: Comparison between VAE-EDA-Q AVS and other state-of-the-art algo-
rithms based on percentage of classification accuracy and number of parameters of
the Convolutional Neural Network discovered

Group Algorithms CIFAR10
Accuracy

CIFAR100
Accuracy

Number
of
Parameters

Manually created
CNNs

ResNet (depth = 101) 93.57 74.84 1.7M
ResNet (depth = 1,202) 92.07 72.18 10.2M
DenseNet 94.17 76.58 27.2M
VGG 93.34 71.95 20.04M
Maxout 90.70 61.40
Network in Network 91.19 64.32
Highway Network 92.40 67.66
All-CNN 92.75 66.29 1.3M

Semi-Automatic

Genetic CNN 92.90 70.97
Hierarchical Evolution 96.37
EAS 95.77 23.4M
Block-QNN-S 95.62 79.35 6.1M

Fully Automated

Large Scale Evolution 94.60 5.4M
Large Scale Evolution 77.00 40.4M
CGP-CNN 94.02 1.68M
NAS 93.99 2.5M
Meta-QNN 93.08 72.86
CNN-GA 95.22 2.9M
CNN-GA 77.97 4.1M
VAE-EDA-Q AVS CNN 95.03 2.1M
VAE-EDA-Q AVS CNN 75.86 3.6M
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methodology. An empty cell indicates that the parameter is not applicable or that

the result was not reported in original research. For VAE-EDA-Q AVS, we have taken

the final CNN discovered by the model and trained it over 30 independent runs to

find the average result reported in Table 3.1.

Comparison with Manually Created CNNs

For CIFAR 10, we observe an increase in classification accuracy of 2.15%, 0.4%, and

1.3% for VAE-EDA-Q AVS when compared to ResNet (depth 1202), DenseNet, and

VGG respectively. VAE-EDA-Q AVS uses 4.7, 12.5, and 10 times less parameters than

ResNet (depth 1202), DenseNet, and VGG respectively, indicating that VAE-EDA-Q

AVS discovers simpler networks that have better classification accuracy.

While the number of parameters in VAE-EDA-Q AVS is higher for CIFAR10

compared to ResNet (depth 101) and All-CNN, the classification accuracy is 1.05%

and 3% higher respectively. Moreover, for CIFAR10, VAE-EDA-Q AVS has a higher

classification accuracy than Maxout, Network in Network, and Highway Network. We

observe similar improvement in classification accuracy for CIFAR100, where VAE-

EDA-Q AVS outperforms all reported results in the manually created CNN category

while using fewer parameters than most of the algorithms within the first group.

VAE-EDA-Q AVS uses more parameters for CIFAR100 than ResNet (depth 101) and

All-CNN, but yields better accuracy.

Comparison with Semi-Automatic Algorithms

In the case of the Semi-Automatic group of algorithms for CIFAR10 and CIFAR100,

VAE-EDA-Q AVS has 1.79% and 6.89% times higher accuracy, respectively, compared

to Genetic CNN. For the other algorithms in this group, we find decreased accuracy for

VAE-EDA-Q AVS. However, we also find that VAE-EDA-Q AVS uses a significantly
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less number of features in most cases. Still, it should be mentioned that VAE-EDA-

Q AVS does not require any domain expertise, while all algorithms in this category

require human expertise in some form. For CIFAR10, VAE-EDA-Q AVS has 0.986

times the accuracy produced by Hierarchical Evolution, and 0.992 times the accuracy

obtained from EAS. VAE-EDA-Q AVS uses 11.14 times less parameters in EAS. On

comparing Block-QNN-S to VAE-EDA-Q AVS for CIFAR10 and CIFAR100, we find

that VAE-EDA-Q AVS has 1.09% and 4.39% lower accuracy, respectively. However,

we also find that VAE-EDA-Q AVS uses 2.9 and 1.7 times less parameters as compared

to Block-QNN-S for CIFAR10 and CIFAR100 respectively.

In order to solve real world problems, algorithms in this group require extensive

human support. For example, a preliminary requirement of EAS is to provide a

manually designed and tuned CNN to begin with, which the algorithm can fine tune.

If the initially tuned network architecture is not well designed, then the algorithm’s

performance will degrade. Also in cases of Block-QNN-S and Hierarchical Evolution,

the output CNN given by the algorithms cannot be applied directly to solve the task.

They must be augmented into a large scale CNN that require manual design in order

for the accuracy to be at par. If the larger network is not manually designed well,

then the performance of these algorithms degrade significantly. VAE-EDA-Q AVS,

on the other hand, does not have any requirement of manual intervention and can be

readily used on any real world problem

Comparison with Fully Automatic Algorithms

Finally, for the fully automated group of algorithms, and for CIFAR10 and CIFAR100,

we find that VAE-EDA-Q AVS has 0.45% higher and 1.48% lower accuracy compared

to Large Scale Evolution, at 2.57 and 11.22 times less parameters than Large Scale

Evolution.
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We observe a slight increase in accuracy of VAE-EDA-Q AVS on CIFAR10 at

1.07%, 1.1% and 2.09% higher compared to CGP-CNN, NAS, and Meta-QNN respec-

tively. However, CGP-CNN uses 0.8 times more parameters used by VAE-EDA-Q

AVS. VAE-EDA-Q AVS uses 1.19 times less parameters compared to NAS. For Meta-

QNN on CIFAR100, we observe a 4.11% increase in accuracy for VAE-EDA-Q AVS.

Finally, for CNN-GA, on CIFAR10 and CIFAR100 datasets, we observe a 0.19%

and 2.7% decrease in accuracy in VAE-EDA-Q AVS respectively. This decrease in

accuracy is offset by an increase in performance where VAE-EDA-Q AVS uses 1.38 and

1.14 times less parameters than CNN-GA for CIFAR10 and CIFAR100 respectively.

An overview of the results suggest that VAE-EDA-Q AVS performs better than

manually created CNNs in terms of classification accuracy as well as number of pa-

rameters (complexity of the CNN) in almost all cases. In the case of semi-automatic

algorithms, VAE-EDA-Q AVS has a very close accuracy, and sometimes better accu-

racy, at far less network complexity. For the fully automatic group, we observe an

increase in accuracy and a decrease in network complexity in almost every case except

CNN-GA. For CNN-GA, we offer a trade-off for accuracy at an increased speed of

execution with a simpler network architecture. It should also be noted that Manual

CNNs and Semi-Automatic CNNs require human expertise, whereas fully automated

algorithms like VAE-EDA-Q AVS can be applied to any real world problem without

any human intervention.

3.6 Conclusion

We have presented two novel approaches for Estimation of Distribution algorithms

based on Variational Autoencoders for exploring the use of latent variable modeling

in EDAs. The first approach uses a variational autoencoder to model the population
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by building its model based on a queue of populations that update at each itera-

tion (VAE-EDA-Q). The second algorithm uses Adaptive Variance Scaling (AVS) [14]

along with Queue based Variational Autoencoder model (VAE-EDA-Q AVS) to dy-

namically adjust the variance while sampling the latent space based upon observance

of improvement in the fitness generated. VAE-EDA-Q and VAE-EDA-Q AVS were

compared to the classic Bayesian network EDA algorithms (such as BOA, hBOA, and

CMSS-BOA) as well as state-of-the-art algorithms (such as the standard VAE-EDA,

DAE-EDA, and DBM-EDA). The algorithms were tested on benchmark problems

composed of Trap problems and NK Landscapes.

The results obtained were very promising in that VAE-EDA-Q required the lowest

number of fitness evaluations compared to all other algorithms for all of the prob-

lems tested. In terms of execution time, VAE-EDA-Q had a slightly higher execution

time compared to DAE-EDA (with implementation in Octave) for trap 5 and NK

Landscape with neighborhood size of 5 problems, though the differences were not

statistically significant. This can be attributed to differences in implementation and

room for code optimization since the number of fitness evaluations performed by VAE-

EDA-Q was lower than DAE-EDA. Moreover, and more importantly, the problems

used for the comparisons utilized fitness function that are very fast to compute. For

real life problems, where the fitness function can be very computationally expensive

to compute, the drastic reduction in the number of fitness evaluations of VAE-EDA-Q

and VAE-EDA-Q AVS would lead to an important reduction in the overall compu-

tational time. In addition to having a better performance than other algorithms,

VAE-EDA-Q AVS is able to solve problems much more complex than the ones that

can be solved by VAE-EDA, VAE-EDA-Q, DBM-EDA, and DAE-EDA. While BOA,

hBOA, and CMSS-BOA were also able to solve some of these problems, the success

rate was much lower and the number of fitness evaluation was much greater (10 to 30
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times more) than displayed by VAE-EDA-Q AVS.

The success of VAE-EDA-Q and VAE-EDA-Q AVS is due to their use of generative

modeling and their ability to find solutions using about 12% of the population size

required by state-of-the-art algorithms (such as DAE-EDA and DBM-EDA) and 3%

of the population size required by Bayesian modeling algorithms (such as BOA, hBOA

and CMSS-BOA) respectively. We have also presented results for problems of greater

difficulty than the ones presented for DBM-EDA and DAE-EDA (such as Trap 7, Trap

9, Trap 10, Trap 13 and NK Landscapes with K = 6 to K = 10), which demonstrates

the robustness of our approaches with scaling complexity. We have demonstrated

that VAE-EDA-Q and VAE-EDA-Q AVS outperform VAE-EDA, BOA, hBOA, and

CMSS-BOA in execution time and fitness evaluations for both Trap problems and NK

Landscapes.

In this paper, we have also proposed an estimation of distribution based automated

architecture search algorithm for convolutional neural networks named VAE-EDA-Q

AVS. The core algorithm of VAE-EDA-Q AVS was extended to encode arbitrary CNN

architectures of dynamically generated depths and to produce optimized offspring can-

didates of similarly varied CNN architectures. VAE-EDA-Q AVS was tested on CI-

FAR10 and CIFAR100 benchmark datasets successfully and then compared to various

state-of-the-art CNN algorithms. It was observed that VAE-EDA-Q AVS generates

CNN models that have 1.5% higher accuracy while requiring 25% less parameters

for CIFAR10 on average compared to all other state-of-the-art algorithms, and 6%

higher accuracy with 10% less parameters for CIFAR100 on average. This indicates

that VAE-EDA-Q AVS is able to discover CNN architectures that are simpler in

design and yet provides a better classification accuracy.

Future work involves improving upon VAE-EDA-Q AVS by dynamically changing

population queue size based upon the state of the iteration as well as balancing the
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amount of exploration and exploitation performed as the algorithm progresses. We

expect the new algorithm to have lower execution time and, additionally, a lower

number of fitness evaluations while being able to tackle even more complex problems.
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Chapter 4

A Comparison of Sexual Selection

versus Random Selection With

Respect to Extinction and

Speciation Rates

4.1 Introduction

Within biological literature, a distinction exists between sexual selection and random

mating (panmixia), sometimes known as the null model. Strictly speaking, random

mating as a null model assumes an infinite number of mates for a female. Realisti-

cally, however, there is simulation evidence that random finite mating is possible [1].

Moreover, ample evidence from empirical studies supports the occurrence of random

mating in a number of species. Authors in [2] found panmixia to occur in the Eu-

opean eel (Anguilla Anguilla L.) and proposed it to be likely within other marine

species. Using genetic evidence of patterns of differentiation in a migratory species
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of waterbird (Pelecanus Erythrorhynchos), the researches in [3] were able to confirm

random mating in this species. Further, [4], using genetic evidence (12 polymorphic

microsatellite markers), found panmixia to be likely within a species of halibut (rein-

hardtius hippoglossoides). Authors in [5] found evidence of panmixia in a deep sea

fish, Antimora rostrate.

As observed by [6], sexual selection is a relatively poorly understood concept. They

define sexual selection as intra-specific reproductive competition [6]. Further, the au-

thors proposed a distinction between natural selection and sexual selection, where the

latter is variance due to mating success and the former involves variance with respect

to other aspects of fitness [6]. An important issue with respect to sexual selection is

the so-called good genes hypothesis, which is the idea that females choose males with

good genes leading to fit offspring. This hypothesis is based upon the assumption

that males manifest evidence of genes though secondary phenotypic traits such as

coloration [7]. [7] performed a meta-analysis and discovered a marginally significant

correlation between offspring survival and male secondary traits that attract females

during mating, thereby indicating that good genes play at least a small role in sex-

ual selection. [8] studied Pronghorn (Antilopa Americana) females as they engage in

selective mating. While they concluded that secondary male traits may play a minor

role in selection for good genes [8], they also concurrently admitted that the good

genes hypothesis remains an open question.

In our study, using individual-based computer simulations, we compare sexual

selection and random mating with respect to speciation rate and extinction rate. In

cases of sexual selection involving female selection of males with good genes, thereby

possibly conferring a fitness advantage on offspring, it may be reasonable to anticipate

the extinction rate of species with sexual selection to be lower than for species that

mate randomly. However, the question concerning the relative fitness advantage and
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extinction rates of either random mating or sexual selection remains unresolved in the

literature [9]. It is our hope that our computer simulations will shed some light on this

issue by determining the conditions under which random mating and sexual selection

contribute to the extinction rate. It is not being claimed that there is any unresolved

inconsistency between random mating and sexual selection in terms of extinction rate.

Using numerical simulations, the authors of [9] argued that the concept of sexual

selection resulting in lower or higher extinction rates (compared to random mating)

is dependent upon the female responsible for the survival of the species gaining bene-

fits from selective mating without suffering costs. The authors argued that scenarios

which require the female to bear the costs of selective mating without gaining the ben-

efits, would lead to higher extinction rates versus random mating scenarios. However,

within scenarios in which the female gains the benefits of sexual selection while the

male bears the costs, the extinction rate for the species would be lower than within

random mating [9]. [10] provided empirical evidence demonstrating sexual selection to

actually counteract extinctions of bulb mite populations Rhizoglyphus robini. They

created 100 small populations of mites, each with 5 males and 5 females, where 50

populations required monogamy and 50 populations allowed sexual selection [10].

They discovered monogamous populations to display a significantly higher extinction

rate, as opposed to the sexual selection populations [10]. Along the same lines, [11]

found lineages of the flour beetle (Tribolium castaneum) derived from populations

with strong sexual selection to display fitness despite inbreeding, thus suggesting that

sexual selection serves as protection against extinction. Lineages derived from popu-

lations with weak sexual selection or no sexual selection, however, experienced lower

fitness and became extinct after 10 generations [11]. Again, it is important to empha-

size here that we are not pitting sexual selection against random mating. Rather, we

are citing evidence for differences between them in terms of extinction rates.
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Conversely, a study by [12] found that sexual selection in 1030 bird species in-

creases the risk of extinction while possibly promoting speciation. Moreover, [13]

found no evidence of a relationship between extinction rate and sexual selection after

examining data of body masses of 1007 species of mammals.

A recent individual based modeling study predicted sexual selection to be capable

of potentially increasing the probability of extinction and, in other cases, decreasing

the probability of extinction [14]. According to the authors, sexual selection decreases

the probability of extinction in larger populations while increasing the probability of

extinction in small populations [14]. The aim of our current simulation study is to

shed further light on this issue.

A related issue examines the presence of a relationship between sexual selection

and speciation rate. Similar to the debate regarding the possible connection between

sexual selection and extinction rate, there exists no clear consensus in the literature

regarding the connection between sexual selection and speciation rate. Supporting

evidence has been presented by a number of studies that suggest sexual selection as

a driver of speciation. For example, [15] studied 84 speciation events in 23 species

of passerine birds. They concluded that sexual selection, combined with male-male

competition, hastened the evolution of pre-mating reproductive isolation, thereby

driving speciation [15]. Further, [16] found animals that participate in bioluminescent

courtship displays (suggesting sexual selection) to display a high rate of speciation.

Additionally, the author of [17] found sexual selection generated by sensory drive to

contribute to reproductive isolation and, hence, speciation in threespine sticklebacks

(Gasterosteus spp.). Refuting evidence has also been published. [18] conducted a

meta-analysis to determine the effect size of any possible correlation between sexual

selection and speciation rate. The authors found a small, albeit significant, positive

correlation between sexual selection and speciation rates [18]. [19] argued that there
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exists no supporting evidence that sexual selection drives speciation in birds. They

employed data for 1030 bird species across 467 genera to compare speciation rates

between species displaying strong sexual selection with species displaying random

mating [19]. They found that although species richness varied across the genera,

there was no correlation between species richness and sexual selection [19].

In an individual based modeling study, [20] found sexual selection to reduce repro-

duction in immigrants, thereby reducing speciation by hybridization. Authors in this

study assumed hybridization to be a contributing mechanism for speciation, and found

intraspecific sexual preferences to appear to reduce species divergence. Further, [20]

suggested that sexual selection is not sufficient to independently promote speciation.

In contrast, computer simulations employed by [21] demonstrated that genetic drift

can work in conjunction with sexual selection to promote speciation. Moreover, [22] ,

using individual based computer simulations, found that sexual selection acts in con-

cert with natural selection to promote reproductive isolation and eventual speciation.

However, [23], using agent based modeling computer simulations of sexual selection,

found sexual selection to independently initiate speciation and contribute to popula-

tion diversity. Thus, even in terms of the simulation literature, there is a measure of

disagreement regarding the role of sexual selection in speciation. Using our individual

based modeling computer simulations, we hope to provide additional understanding

of the possible connection between speciation rate and sexual selection.

Species turnover and species diversification rates are closely related to the con-

cepts of extinction and speciation, respectively. Turnover rates can be defined as the

interplay between species extinction and the advent of new species through speciation

or immigration, with speciation tempering extinction [24] [25] [26]. Authors in [26]

report that dichromatic species of birds, with higher rates of sexual selection due to

color displays, have a 23% higher local extinction rate and a 25% higher turnover rate
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than monochromatic (only black and white vision) bird species. This is consistent

with the findings of [12]. Diversification rate can be defined as the difference between

speciation rate and extinction rate as outlined in Magallon and Sanderson (2001) [27]

and in [28]. Similar to [15], [16] and [17] examined the relationship between sexual

selection and speciation rate, Kazancioglu et al. (2009) [29] reported that sexual se-

lection (as evidenced by dichromatism) accelerates diversification rates in parrotfishes

(Scaridae). Moreover, [30] collected empirical data from a wide range of animal taxa

employing sexual selection. The authors found that taxonomic families with strong

sexual selection on males demonstrated higher levels of species richness, as opposed

to taxa without strong sexual selection on males [30]. On the other hand, [31] found

no significant difference in diversification rates between dichromatic species of cichlid

fish and monochromatic species of cichlid fish in Lake Tanganyika.

Further, in an individual based modeling simulation study employing a genetic

algorithm, [32] reported that sexual selection initiates speciation, along with biodi-

versity, by creating new fitness peaks. Additionally, a combined phylogenetic and

computer simulation study demonstrated sexual selection to increase genetic diver-

sity within populations of jumping spiders (Habronattus pugillis), thereby suggesting

a link with speciation and species diversity [33].

There are several empirical studies that consider the possible mechanisms relating

sexual selection with speciation and extinction rates. For example, [34] studied X.

birchmanni-X. malinche hybrid zones in river systems in Mexico. The authors found

that assortative mating (a form of sexual selection) leads to higher rates of speciation

by inducing reproductive isolation, which is a key mechanism in speciation [34]. [35]

found that although in certain species of Nematodes, unisexual reproduction (and

hence the absence of assortative mating) led to reproductive isolation and higher

species diversification, in the plant species Mimulus self-fertilization led to lower levels
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of reproductive isolation and hence species diversification. In a recent review article,

[36] argue that although assortative mating can in some cases lead to higher resistance

to pathogens (and hence lower extinction rates), in other cases, assortative mating

reduces genetic diversity thereby lowering resistance to pathogens.

In this study, using individual-based computer simulations, we will test the fol-

lowing hypotheses regarding sexual selection and speciation and extinction rates.

H1: There is a significantly higher rate of speciation in populations with strong

sexual selection versus those with weak or no sexual selection.

H2: There is a significantly lower rate of extinction in populations with strong

sexual selection versus those with weak or no sexual selection.

It is important to note that in testing these hypotheses, we are not myopically

ruling out a variety of ecological factors contributing to speciation and extinction rates

such as habitat, predation, population size, body size, resource levels, and so forth.

These factors admittedly play a role with respect to extinction as discussed in [37] and

with respect to speciation as discussed in [38]. In fact, our rules performed extraction

using decision trees after the runs to appeal to ecological factors, such as body size, in

predicting extinction and speciation rates (see below). Moreover, the initial time steps

of all runs involved similar parameter values for ecological factors such as predation,

habitat, grass availability, and more in order to isolate the independent variables of

sexual selection and random mating.

Further we will test the following hypotheses regarding sexual selection, species

turnover, and species diversification:

H3: There is a significantly higher species diversification rate in populations with

strong sexual selection versus those with weak or no sexual selection.

H4: There is a significantly lower turnover rate in populations with strong sexual

selection versus those with weak or no sexual selection.
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With respect to H3, the prediction of higher rates of extinction in populations

with random mating can involve offset by higher rates of speciation. High rates of

speciation, as a counter to high extinction rates, were discussed by the author of [39].

He observed that high speciation rates were the only way for Neogene pectinaceans

to avoid extinction. On the other hand, using individual based modeling, [40] showed

that a low speciation rate may actually confer resistance to extinction. Our regression

analysis will help resolve this issues. Finally, we will use machine learning (employing

decision trees) to extract rules predicting extinction rates and speciation rates both for

sexual selection and random mating. These rules will help to discern whether female

selective patterns, or lack thereof, predict extinction rates and speciation rates.

4.2 Materials and Methods

4.2.1 EcoSim

EcoSim [41] is an artificial ecosystem comprised of a three level food chain. Preda-

tors occupy the third trophic level, followed by prey at the second trophic level, and

grass as primary producers. As an individual based modeling system, EcoSim is de-

signed with a bottom-up approach, whereby the system defines evolvable individual

(prey and predator) behaviors and exhibits emergent properties of a natural ecosys-

tem at a macroscopic level ∗. The source code of EcoSim can be downloaded from

github.com/EcoSimIBM.

The virtual world of EcoSim consists of 1000x1000 cells represented as a torus,

where each cell in the world has the potential to contain an unlimited number of prey

and predators, and limited amount of grass. Every individual has a unique behavioral

model that is coded in its genome and is therefore subject to evolution. In EcoSim,
∗The source code of EcoSim can be downloaded from github.com/EcoSimIBM
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predators can hunt prey, which results in an allotment of meat in the cell proportional

to the size of the prey killed. The location of individuals and amount of resources

dynamically vary in time as a consequence of the interactions between individuals and

the diffusion mechanism for grass [42]. EcoSim has been used to investigate a wide

range of ecological properties such as speciation rate [43], extinction of species [44],

evolution of prey individuals under the stress of predator pressure [45], and ecological

risk assessment of Polychlorinated biphenyls [46].

The genome of an individual consists of two sections; the physical genome rep-

resents physical features and the behavioral genome codes for the behavioral model

of an individual. Hence, every individual has its own behavioral genome that guides

its behavior. The behavior of each individual is implemented using a Fuzzy cognitive

map (FCM) [47]. The FCM of an individual is a directed graph where nodes represent

concepts and edges between nodes represent the relationship between the concepts.

Concepts can be of three types: sensitive concepts (such as perception of distance

from predator, perception of self-energy levels, etc.), internal concepts (such as fear,

satisfaction, etc.), and motor (or action) concepts (such as reproduce, escape from

predators, etc.). The edges between two concepts have weights denoting the influence

of one concept upon another. A positive weight models an excitatory effect from one

concept to another, and a negative weight models for an inhibitory effect. Activation

of sensitive concepts influences activation of internal concepts, and activation of inter-

nal concepts influences activation of motor concepts . Specific positive and negative

feedback loops can also evolve.

One possible action for prey and predators is reproduction. Reproduction requires

two individuals and is successful if these two individuals are located in the same

cell, have enough energy, and are genetically similar. The physical genome distance

between two individuals is calculated as sum of differences between values of their
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physical genome attributes, after the difference is normalized based on the range of

the attribute. The physical genome distance is added to the evolutionary distance

of two individuals, which is calculated based on differences between the values of the

behavioral genome (coding for edge weights within the FCM). This results in a total

measure of dissimilarity between two individuals. If this dissimilarity is less than a

certain predefined threshold, the individuals are able to mate. For all experiments in

this paper, this threshold is set as 16 for both prey and predator.

A high degree of genetic dissimilarity causes reproduction to fail. Conversely, a

unique new individual is born as a result of successful reproduction. The resulting

offspring are assigned a distinctive genome inherited form both the parents with pos-

sible mutations. A group of individuals with similar genetic characteristics is assumed

to be of the same species. A species is associated with a representative genome equal

to the average genome of its members. A speciation threshold is used to determine

the occurrence of speciation. When the difference between the genome of two individ-

uals of the same species is greater than the speciation threshold, a speciation occurs.

Thus, when populations genetically diverge due to evolution, speciation events can be

generated. A 2 mean clustering algorithm is applied to the genome of the individuals

of the species to split it in two sister species [48].

Individual Attributes

Individuals in EcoSim, whether prey or predator, possess physical attributes. Prey

with faster running ability are better equipped to escape from predators, while prey

with a slower running ability are hunted. Additionally, individuals that can sustain

a steady energy level are expected to live longer. The attributes or physical traits

in question are of two types in EcoSim: those that are inherited by individuals at

birth (maximum energy, maximum age, vision range, maximum speed, minimum
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Figure 4.1: An example of a simple FCM in which activation of foeClose (proximity
to predator) and foeFar (distant predator) is given by fuzzification of these concepts,
depending on the distance of prey from predator. In the fuzzification process the
real value of the sensory concept (say predator is 5 cells away) is converted to a
fuzzy value (say a decimal number from 0 to 1). The speed at which prey evade is
given by defuzzificaton of evasion concept, where the reverse of fuzzification happens
- the fuzzy value is converted to a real scalar value. The L matrix is an nxn matrix
showing influence of one concept on another; where 0 denotes foeClose, 1 denotes
foeFar, 2 represents fear and 3 represents evasion. Activation levels of motor concepts
in EcoSim dictate what action an individual will take next and the defuzzification of
the activation level provide the intensity of the action. For example if evasion concept
is activated, the defuzzification of evasion concept gives the speed of evasion. [41]
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reproduction age, State of birth, defense, and cooperative defense) and those that are

acquired by an individual during its lifetime (such as energy at a given time step, age,

speed, and strength).

Operational Definitions of Turnover Rate and Diversification Rate

Following the lead of [26], in equation 4.1, turnover rate (TR) is defined as the ex-

tinction rate (ER) divided by the speciation rate (SR):

TR = ER/SR (4.1)

Further, following the lead of [27], in equation 4.2, diversification rate (DR) is

defined as the difference between speciation rate (SR) and extinction rate (ER):

DR = SR− ER (4.2)

Energy and Strength

The world in EcoSim contains grass as the primary producer, which is initially uni-

formly distributed. Grass can then grow up to a user defined limit, diffuse from

one cell to another, and is finally consumed by prey to obtain energy for sustenance.

Predators hunt prey for meat or scavenge dead prey for energy. The maximum energy

of an individual (energyMax) is part of its physical genome and is constant for an

individual. Cumulative energy obtained by consuming grass or meat is capped at the

energyMax of an individual. The energy obtained by individuals contributes to an

individual’s strength. The strength of an individual is dependent on an individual’s

age, current energy, and maximum energy. For prey individuals, if the energy of an

individual is greater than or equal to 1/3 of its maximum energy and if this individual

is young or old, its strength is equal to 2/3 of maximum energy. If the energy of an
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individual is greater than or equal to 1/3 of maximum energy and if the individual is

neither young nor old, its strength is equal to maximum energy. However, if the cur-

rent energy of an individual is less than 1/3 of maximum energy, then its strength is

equal to the sum of 3/2 of current energy and 1/2 of maximum energy. An individual

is considered young if its age is less than the reproductive age (repAge), and an indi-

vidual is considered old if its age is greater than maximum age of the individual minus

the reproductive age (maxAge - repAge). The average repAge for prey is 6 time steps,

while the maxAge for prey is 46 time steps; these values change across generations of

individuals as a result of evolutionary processes modeled within EcoSim.

The energy obtained by individuals is spent at each time step to carry out various

actions necessary for survival and procreation. Equation 4.3 gives the energy spent

by prey at each time step. Table 4.1 gives initial values for some of the parameters.

Energyprey = 1.2× ArcPenalty + strength× (speed)2

4000 +
(
MaxEnergy

5

)0.75

+(V ision× 2.5)0.75 + (defense× 5)0.75 + (Max(0, 8− repAge))2.3
(4.3)

ArcPenalty = max((nbArcs− threshold)0.75, 1)) (4.4)

In equation 4.4 arcPenalty accounts for energy consumed by the FCM of an indi-

vidual based on the individual’s FCM complexity. NbArcs are the number of edges

within the FCM of an individual (which includes connections between sensory, inter-

nal, and motor concept nodes). In other words, an individual is imposed a higher

energy cost for having a complex behavioral model (FCM) within EcoSim, as com-

pared to individuals with a simpler behavioral model (lesser edges within FCM). The
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cost is imposed only when the number of edges/arcs go beyond a predefined threshold.

In equation 4.3 vision refers to the extent (number of cells) for which individuals

can see. Prey individuals can defend themselves from predators, and the value of

this faculty is given by the defense parameter. RepAge is the minimum age at which

individuals can begin to reproduce. This paper presents results for prey individuals

only, thus only the energy function of prey has been provided. The bioenergetics

of prey individuals outlined above is consistent with the modeling used in a seminal

paper on this subject, [49], for agent based models. In [49], the energy used by

prey is a function of a number of variables such as food acquisition, reproduction,

defense against predators, and body mass (represented by MaxEnergy) similar to our

modeling. Equations 4.3 and 4.4 account for the (non-reproductive) outflow of the

energy of an individual at a given time step and is subtracted from the current energy

of the individual.

Reproduction

By default, females mate with randomly chosen males located in the same cell as

the female. For a mating action to progress, several conditions must be established:

the male must not have acted in that time step, the male must also be willing to

reproduce, energy of the male must be greater than 12.5 percent (arbitrarily chosen)

of its maximum possible energy, and the male must be in the same cell as the female.

Additionally, females are only able to mate with males within a certain genetic mating

distance. If any of the conditions fail, the female proceeds to find another male for

mating, in the same time step, until an attempt to reproduce successfully with every

male in the cell has been made. A penalty of 1 percent of maximum energy is paid by

the females for every failed mating attempt, irrespective of the reason for failure. It is

also possible that the female is unable to find any suitable mate within a given time
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step and, in that case, the reproduction action becomes a futile attempt incurring loss

of energy as the only effect.

In good genes mate selection experiments, females attempt to mate with males,

in the same cell, by descending order of male strength. The premise relies on the

assumption that greater strength is an indicator of better physical constitution and

abilities. However, finding a strong male would require the female to spend more

energy in search of mate. Therefore, for every failed reproduction attempt, females

spend 2 percent of their maximum energy. Moreover, the strong male is selected before

the female finds out whether other conditions are favorable; thus the probability of a

successful reproduction, given that the male is strongest and most able to reproduce

(all other conditions are favorable), is reduced.

When a reproduction action is successful, an offspring is born. The sex of the

newborn is selected randomly with equal probability of being male or female. The

genomes of the parents are crossed over and mutated to form the genome of the

offspring. The offspring inherit the perception layer within the FCM from the parent

of same sex as the offspring. The rest of the edges in the FCM of the newborn

are randomly picked from either parent. In order to model simple linkage, alleles

corresponding to the edge values of the FCM are transferred by blocks; for a given

node in the FCM, the values for each of the edges connected to the node are transferred

together from one parent to the offspring. For each such block of FCM edges, the

parent from which the block is taken is chosen randomly. Hence, for a given node,

there is no recombination among edges; recombination occurs at the level of edges of

blocks.

The physical genome of the offspring is also a random combination from the physi-

cal genome of the parents. This is true for the whole physical genomes, with exception

of maximum energy (ME) as shown in equations 4.5 and 4.6. Refer to table 4.1 for
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initial values of ME.

MEfemalenewborn = (5×MEf +MEm)
6 (4.5)

MEmalenewborn = (5×MEm +MEf )
6 (4.6)

In equations 4.5 and 4.6, m and f refer to male parent and female parent respec-

tively.

The initial energy of an offspring at birth is governed by the State of Birth (SOB)

(table 4.1 gives initial values of SOB) of the parents - which is a fraction of energy

contributed by the parents to the offspring at the time of reproduction.

Energyo = MEf × SOBf +MEm × SOBm

100 (4.7)

Energy of both the parents is reduced following a successful reproduction. The

new energy of the male parent is defined by equation 4.8.

NewEnergymaleparent = SOBm

SOBm + SOBf

× Energyo × 1.05 (4.8)

If the offspring produced is a result of the first pregnancy of the female parent, the

female parent incurs an additional First Pregnancy Penalty (FPP) where Energyf is

the energy of the female before reproduction, shown in equation 4.9. There is biolog-

ical justification for this bioenergetics model of reproduction that imposes a penalty

for primiparity (first birth). In [50], it was reported that first pregnancies involve more

complications than second pregnancies in the case of humans (homo sapiens sapiens),

such as hemorrhaging and perinatal death. Further, it Was reported in [51] that

guinea-pigs’ (Caviaporcellus) transfer of maternal energy to offspring during the first
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Table 4.1: Initial values of the parameters of submodels related to prey individuals

Parameter Prey Female Prey Male
State of Birth (SOB) 16 12
Max Energy (ME) 2000 2000

Vision 13 13
Age of Reproduction (repAge) 6 6

Maximum Age 46 46

pregnancy is less efficient than for multiparous mothers. In addition, births have been

shown to be less successful for primiparous mothers than for multiparous mothers.

NewEnergyfemaleparent =
(

SOBf

SOBm + SOBf

× Energyo × 1.05
)
− (FPP × Energyf )

(4.9)

If the offspring does not result from the first pregnancy of the female parent, the

energy after reproduction is given by equation 4.10.

NewEnergyfemaleparent =
(

SOBf

SOBm + SOBf

× Energyo × 1.05
)

(4.10)

4.2.2 Machine Learning

According to [52], machine learning can be described as a field of research that deals

with the automated analysis of complex data with aim to predict certain dependent

variables of the data set given independent variables. The ultimate objective is to

group together related data into meaningful clusters or discover patterns in a data

set. Machine learning models are considered to perform well if they can generalize

to new data, after the model has been generated using known data. Accordingly, the

data processed by machine learning algorithms can be divided into two groups [52].
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One is used for training or building the model, and the other (previously unseen data)

is used to validate the model. Once a model is available that can predict unseen data

with reasonable accuracy, one may also infer meaningful rules from the model with

the aim of discovering the factors that influence the predicted outcome [44].

Decision Trees

According to [53], a decision tree is a tool used to describe underlying data with a set

of rules that recursively divides the data into a hierarchy of such rules in a sequential

manner. Thus, decision trees aid in exploring data by providing a description of

significant properties of the data. Each path in a respective tree corresponds to a rule

learned from the data that can be used to predict the values of dependent variables

from the observed values of independent variables. These rules can then be used to

discover and understand specific causal relationships between these variables.

Given the scope of the current paper, the discussion is restricted to univariate

classification trees with ordered decision variables.

In most univariate decision tree algorithms, partitioning of the data is done by

splits based on a single variable of the form x ≤ c (where x is a non-categorical

variable and c is a constant). This implies that if x is less than a certain value, data

is assigned within one group. When x is greater than a certain value, the data is

allocated to a different group. This point of decision is referred to as a (decision)

node and is a point where the tree either branches into more nodes or ends in a leaf

(containing a class). These nodes can be easily converted into IF-THEN rules, which

enhance the interpretation of a decision tree model.

Generally, at the level of a node, an exhaustive search is employed to find the

variable x and the constant c; with an objective to optimize some measure of node

impurity such as entropy Im [54], given by equation 4.11, for classification trees.
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Decision trees are built top-down starting from a root node, and then partitioning

the data into sub-spaces with as much homogeneity as possible. Namely, after a split,

each child node contains instances of similar class. The entropy measure in equation

4.11 gives the homogeneity of a node. If all instances in the node are of same class,

the equation evaluates to 0. Otherwise, when the instances are equally divided by

two classes, the entropy value is 1.

For growing or induction of trees, greedy search techniques exist that employ

heuristics to find smaller trees in less time.

Im = −
k∑

i=1
pi

mlog2p
i
m (4.11)

The research presented here uses a special decision tree algorithm known as C4.5

[55]. C4.5 uses gain ratio, which is an entropy based measurement, to test purity of a

node. Authors in WEKA’s [56] use J48 algorithm, an implementation of C4.5 in Java

programming language to model and validate decision trees.

Variational Autoencoder EDA as a Wrapper Method for Feature Selection

Machine learning algorithms work to extrapolate knowledge from massive datasets.

The reliability and interpretability of the knowledge gained by machine learning anal-

ysis of the datasets, however, can be affected by presence of irrelevant, redundant and

superfluous information (features) present in such datasets [57] . Feature selection is

a class of machine learning algorithms that is used to detect and expunge the dataset

of such extraneous features before the predictive model is built. For example, if a

dataset contains samples described by 10 features and only 3 of these features are

useful in classifying the dataset into one category or another, then feature selection

algorithms remove the other 7 features so that a more concise and efficient classifier

can be built using these 3 features only.
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Wrapper methods are a type of feature selection algorithms where the model build-

ing step (such as generating a decision tree) is integrated within the feature selection

step [58]. This differs from the filter method in which the feature selection is per-

formed as a preprocessing step before the model is built. Wrapper methods define a

combinatorial optimization search procedure in the complete feature space that return

subsets of features to be evaluated based on the predictive model. In the evaluation

phase, these subsets of features are used to train and test a specific classification

model (consider a C4.5 decision tree, for example), and the accuracy of the decision

model generated from this subset is used to judge the worthiness of the feature subset.

Thus, to search the feature space for the best subset, the search is wrapped around

the classification model.

Estimation of distribution algorithms (EDA) [59–62] are metaheuristics that aid

in combinatorial optimization. EDA maintains a population of promising candidate

solutions. In a selection step, the candidate solutions with the best fitness are selected

from the population, and thereafter a probabilistic generative model is built from these

promising candidates to generate the next generation of promising candidates. Fitness

of the candidate solutions are defined by problem specific criteria that evaluates the

candidate as a whole, based on the values of each constituent feature in the candidate

solution. In our case, the fitness function is the predictive models accuracy. This

process repeats itself until the optimal solution is obtained or the current best solution

has a fitness which is deemed as sufficient. The exact combination of assignments

to variables producing a higher fitness is complex to determine. EDAs have been

used successfully as a wrapper method for classification tasks in [63] and [64]. In [64]

Constrained Model Search Space Bayesian Optimization Algorithm (CMSS-BOA) [65]

was used as a wrapper method with C4.5 Decision trees. When EDAs are used as

the Wrapper Method, the fitness is evaluated based on the predictive accuracy of the
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classifier.

Variational Autoencoder EDA with Population Queue (VAE-EDA-Q) [66] which

uses variational autoencoders [67] [68] to model the population. This method has

been found effective at exploring latent continuous search spaces. VAE-EDA-Q is

able to explore continuous latent space representation of the features, which allows

randomized sampling and smooth interpolation over the manifold of the high-quality

solutions in the feature space.

4.3 Simulations

Ten independent runs of EcoSim ∗, were performed on SHARCNET

(www.sharcnet.ca) for each of the following two experiments - Sexual Selection strat-

egy and Random Mating strategy. Each of the runs was allowed to pass five thousand

time steps. One generation in EcoSim corresponds to minimum reproductive age

(repAge) and is approximately equal to 6 time steps. The experiments were per-

formed on AMD Opteron systems with 2.2 Ghz clock speed, with four cores, and 8

GB of RAM.

For a given run, population wide average results (containing information about

speciation rate, average energy, mating distance, extinction rate, etc.) are available

for prey and predator individuals respectively, irrespective of the species to which the

individuals belong. In order to analyze the commonality of results between the two

experiments, we averaged the results from 10 runs for each of the two experiments

instead of focusing on isolated results from each run, which yielded two sets of results:

one for sexual selection (average of ten runs) and one for random mating (average of

ten runs). The world and individuals of EcoSim take nearly one thousand time steps
∗Source code of EcoSim is available from github.com/EcoSimIBM for readers interested in repli-

cating the experiments.
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to stabilize into a sustainable world containing genetically fit individuals. Therefore,

the first one thousand time steps were removed from the two result files.

Extinction rate in EcoSim is measured as the number of species that became

extinct in a given time step divided by the total number of species at that time step.

Similarly, speciation rate is the number of new species created in a given time step

divided by the total number of species at that time step.

The one way ANOVA test described by Kruskal Wallis [69] on ranks was per-

formed between the speciation rate for sexual selection and the speciation rate for

random mating, as well as between the extinction rate for sexual selection and the

extinction rate for random mating with an α value (or significance level) of 0.05. The

Kruskal Wallis test was also performed on species turnover rates and diversification

rates. In either case, the null hypotheses was assumed to be that there was no signif-

icant difference in speciation rate or extinction rate between the two groups of sexual

selection (good genes mating) and random mating.

As mentioned previously, the machine learning experiments were aimed at predict-

ing the variation in speciation rate and extinction rate for a given mating strategy.

Hence, the speciation rate and extinction rate needed to be transformed from non-

categorical to categorical variables in order to change the regression problem (predict-

ing values) to a classification problem (predicting class labels). The interest was to

predict, at a population wide level, the aspects of high and low speciation rate, and

high and low extinction rate.

To transform the speciation and extinction rates, the data was divided in to three

parts based on values of speciation rate (for classifying speciation rate) and values

of extinction rate (for classifying extinction rate) such that the number of instances

in each of the three parts was equal. The objective was to divide the data set into

three classes (HIGH, MED, and LOW) based on either speciation rate discretized
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Table 4.2: Mapping speciation rates and extinction rates to HIGH-LOW classes

Class Sexual Selection Random Mating
Speciation HIGH Speciation rate > 0.00787 Speciation rate > 0.01010
Speciation LOW Speciation rate < 0.00513 Speciation rate < 0.00546
Extinction HIGH Extinction rate > 0.00790 Extinction rate > 0.00933
Extinction LOW Extinction rate < 0.00512 Extinction rate < 0.00525

to speciation level or extinction rate discretized to extinction level. The analysis of

causes for a significant increase or decrease in speciation and extinction rates was of

interest; our focus, therefore, centered on predicting the instances in the partitions

where speciation/extinction was labeled as "LOW" and in the partition where spe-

ciation/extinction was labeled as "HIGH". Total instances in the partition labeled

“MED” were discarded, as they were not useful for our investigation.

Table 4.2 shows the thresholds for which a given speciation or extinction rate

is mapped to a HIGH-LOW class. The values that fall between these thresholds

are classified as medium or MED. The results presented in this paper are based on

approximately 3900 instances, or data points, for sexual selection and 3900 instances

for random mating (after discarding the MED values from result sets). Each instance,

or data point, corresponds to a time step in the EcoSim simulation. Consequently,

each of the 3900 instances can be classified as Speciation HIGH or Speciation LOW,

for Speciation level class. The same 3900 instances can also be classified as Extinction

HIGH or Extinction LOW, for Extinction level class, based on the values in table 4.2.

We used C4.5 for predicting speciation and extinction levels using 10-fold cross

validation, and the results presented in the next section are an average of all the folds.

Sensitivity analysis was performed to discover the extent to which the key findings

potentially varied based on the penalty imposed on females for failed reproductive

efforts (equation 4.12 where N is number of failed reproduction attempts, p= 0.01 for

random mating and p = 0.02 for sexual selection). A secondary set of experiments
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on sensitivity of the reproductive penalty parameter for sexual selection runs was

performed.

Energynew = Energyold − [N × p× Energymax] (4.12)

In the above mentioned experiments, a coefficient parameter c was added to the

penalty as given in equation 4.13 which was varied from 0.50 to 1.25, in steps of 0.25.

Thus, 15 independent runs were performed for each of the five coefficients, with a

run time of 4500 time steps. For a given coefficient, the average of speciation and

extinction rates were calculated for 15 runs. Furthermore, the rates were averaged for

30 time steps, in steps of 50 time steps, to avoid inherent temporal correlation (see

figure 4.2).

Thereafter, Kruskal Wallis Analysis of variance was performed on each of the five

sets of results to establish whether any change within the threshold of coefficient of

the penalty parameter would have any significant impact on speciation or extinction

rates that would affect the key findings presented here.

Energynew = Energyold − [c×N × p× Energymax] (4.13)

4.4 Results and Discussion

The graph shown in figure 4.3 shows the similarity of extinction rates when the coef-

ficient of penalty imposed on female prey for reproductive failure is varied from 0.5

to 1.5 in steps of 0.25.

Kruskal Wallis analysis revealed no significant difference between the extinction

rates for various treatments (p value of 0.492, for α = 0.05) for female prey in sexual
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Figure 4.2: Measuring whether statiscally significant differences exist in species rates,
for varying values of reproductive penalty parameter based on coefficient c. Sensitivity
anal- ysis experiments for extinction rate has same setup.

106



Figure 4.3: Extinction rates when the coefficient of penalty imposed on female prey
for reproductive failure is varied from 0.5 to 1.5 in steps of 0.25. The differences
observed are not statistically significant.

selection experiments (figure 4.3). Similar results were obtained for speciation rates;

the graph in figure 4.4 shows the change in speciation rates when c is varied from

0.5 to 1.5. Kruskal Wallis analysis also showed no significant difference in speciation

rates for different c-values (p value of 0.179, for α = 0.05).

Hence, no statistically significant differences were observed in speciation and ex-

tinction rates when the reproductive penalty parameter was altered by a factor varying

from 0.5 to 1.5. This establishes robustness of the results and discussions that follow,

which are to include turnover and diversification rates.

4.4.1 Lower speciation rate in sexual selection

Recall that our first hypothesis, H1, describes a higher speciation rate for populations

with strong sexual selection as opposed to populations with weak selection or random

mating. As evidenced by our simulation study, the average speciation rate for the

random mating group was significantly higher than the average speciation rate for

the sexual selection mating group (Kruskal Wallis, p-value less than 0.0001, alpha
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Figure 4.4: Speciation rates observed are not significant, when the coefficient of
penalty imposed on female prey for reproductive failure is varied from 0.5 to 1.5
in steps of 0.25. The differences observed are not statistically significant.

= 0.05). This finding challenges H1. One possible explanation for the higher rate of

speciation in the random mating group is that there is a significantly higher extinction

rate for this group (see discussion in section 4.2 below) - this higher extinction rate

is offset by the higher speciation rate [39].

Another possible explanation for lower speciation rates observed in populations

with strong sexual selection is that sexual selection leads to lower levels of hybridiza-

tion, a possibility that was considered in [20]. Moreover, this explanation is supported

by an empirical study by [70] in which the authors report that sexual selection possi-

bly impedes gene flow and, hence, hybridization between two subspecies of mice (Mus

musculus musculus and Mus musculus domesticus). [70] found that male musculus

mice gave preference to signals from female musculus mice and discriminated against

signals from female domesticus mice, which in turn lowered hybridization. Similar

findings regarding a small fish, Poecilia Mexicana, are reported in [71]. Impeding

hybridization due to sexual selection would presumably impede speciation, assuming

that hybridization contributes to speciation, as [72] contend.
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4.4.2 Lower extinction rate in sexual selection

Our second hypothesis, H2, is that populations with strong sexual selection have a

lower extinction rate than populations with either weak selection or random mating.

In our simulation study, we found that there there is indeed a significantly higher

rate of extinction for random selection groups as opposed to sexual selection groups

(Kruskal Wallis, p-value less than 0.0001, alpha =0.05), which corroborates H2. Fur-

ther, this finding of our simulation study is validated by a number of empirical studies

including [10] and [11]. Authors in [40] suggest that a lower speciation rate may ac-

tually work as a shield against extinction based on the assumption that high rates of

speciation tend to be selected against.

Further, as we argued above, the higher speciation rates in random mating popu-

lations may help to offset the higher extinction rates in these populations as opposed

to populations with strong sexual selection. Another possible link between lower spe-

ciation rates and lower extinction rates of populations with strong sexual selection is

that sexual selection reduces hybridization (as suggested above), which shields these

populations from extinction in cases where hybrids have lower fitness than their par-

ents. As [73] argue in the case of Darwin’s finches, hybrids in general are less fit than

the parents (except in cases of severe climatic change such as the presence of El Nino

events on the Galapagos Islands) [74].

4.4.3 Species Diversification Rates

The reader will recall that the species diversification rate can be defined as the dif-

ference between the speciation rate and extinction rate as outlined in Magallon and

Sanderson (2001). Our third hypothesis, H3, considers a significantly higher species

diversification rate in populations with strong sexual selection versus those with weak

109



or no sexual selection. H3 was not corroborated by our findings. There was not a

statistically significant difference (Kruskal Wallis, p-value of 0.07 and alpha of 0.05)

between the diversification rates for sexual selection species versus random mating

species. Although these results are in disagreement with the findings of [29], they do

agree with the findings of [31] who reported no significant difference in diversification

rates between dichromatic species of cichlid fish and monochromatic species of cichlid

fish in Lake Tanganyika.

The findings of our simulation study are reasonable considering that within popu-

lations of strong sexual selection, the speciation rate and extinction rates are relatively

low. Whereas in populations with random mating, the speciation and extinction rates

are both relatively high. Thus, it is entirely possible that the differences between spe-

ciation and extinction rates in both cases would be comparable. Consider the case of

a relatively high speciation rate within a sexual selection population. In light of a rel-

evantly low extinction rate for these populations, a significantly higher diversification

rate would be expected as opposed to a random mating population. This, however,

is not the case.

4.4.4 Species Turnover Rates

As noted above, the species turnover rate can be defined as the interplay between

species extinction and the advent of new species either through speciation or through

immigration. Generally, the species turnover rate is the rate at which one species

is replaced by another species, and is measured by presence and absence data of

species [75]. The fourth hypothesis considered in this study, H4, is that the species

turnover rate for sexual selection populations is significantly higher that the turnover

rate for random mating populations. As evidenced by our study, the species turnover

rate for sexual selection species is indeed significantly higher than the turnover rate for
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random mating species (Kruskal Wallis, p-value of 0.03, alpha value of 0.05). These

results are validated by the empirical findings of [26], as outlined above. One possible

explanation of our findings regarding turnover rate is that within sexual selection

populations, there exists mating discrimination against immigrants. This results in

low hybridization. Whereas in random selection populations, there exists an arguably

higher level of mating and hybridization with immigrants. If there is no mating with

immigrants in sexual selection populations, then the immigrant species may go extinct

faster than in random selection populations. The relatively high rate of absence of

immigrant species due to extinction could translate into a higher turnover rate for

sexual selection populations.

4.4.5 Factors driving speciation

In order to predict speciation rates, the data set was first passed through VAE-EDA-

Q AVS attribute selection to remove extraneous attributes. Thereafter, the C4.5

algorithm was used to build predictive models. The two trees (one for predicting spe-

ciation level in Sexual Selection and one for predicting the same in Random Mating)

had many branches leading to the inference of multiple rules (one rule per branch).

The discussion, however, was restricted to the rules that provided maximum coverage

- that is, the rules that were true for the maximum number of instances. There are

two numbers associated with each leaf node. The first number indicates the total

number of instances reaching that leaf (rule) while the second number after the ‘/’

indicates the number of misclassified instances.

This restriction was imposed to direct interest towards the most relevant rules/branches,

which is expected to remain the same when the simulation is extended to run longer

(or when more runs are included in the averages). In other words, these leaves, and

the rules associated with these leaves, are the most generalized ones. The leaves of
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the branches with maximum coverage have been underlined with blue color in figures

4.5 and 4.6 depicting the decision tree (C4.5 model).

Speciation affected by body size in Sexual Selection

The C4.5 algorithm was able to classify the instances (into Speciation High and Spe-

ciation Low) with 80.5% accuracy, based on 10 fold cross-validation. The prediction

of speciation rates by the decision tree for sexual selection indicates that when Max-

Energy (manifested in body size) is high (above a critical threshold value), the rate

of speciation is high (see figure 4.5 below). On the other hand, if MaxEnergy is lower

than this threshold value, though within a certain range, then the speciation rate

is low (see figure 5.2 below). In other words, this decision tree implies that body

size is a predictor of speciation rate for sexual selection populations. An empirical

study conducted by [76] investigated the body masses of 3,235 mammal species to

determine the relationship of body size to rate of speciation. The authors found that

larger sized mammalian species demonstrated a higher rate of body size evolution, as

opposed to smaller size species [76]. These results may, in turn, suggest a higher rate

of speciation in larger bodied mammals. By extrapolating these empirical findings to

our simulations, the prediction of sexually selecting populations containing individu-

als with higher MaxEnergy would be expected to have higher rates of speciation than

populations with lower MaxEnergy since body mass is related to MaxEnergy.

Predator pressure restricting species divergence in Random Mating

The accuracy of C4.5 algorithm, in this case, was 78.7%, based on 10 fold cross-

validation. The prediction of the decision tree for speciation rates for random mating

indicates that defense against predators is a good predictor of speciation rates. Note

that the dominant node is MaxEnergy (related to body size) as with sexual selec-
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Figure 4.5: C4.5 model depicting a decision tree to predict speciation levels in Good
genes mating based on threshold values of various parameters. A node represents a
decision variable to predict speciation level (high or low) at the leaf. A path from
various nodes to a leaf represent a conditional rule, based on the nodes in the path
(decision variables). There are two numbers associated with each leaf node. The
first number indicates the total number of instances reaching that leaf (rule) while
the second number indicates the number of misclassified instances. The leaves of the
branches with maximum number of instances have been underlined with blue color
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tion. This is corroborated by an empirical study presented by authors in [76], which

demonstrates another confirmation that a larger body size implies a higher rate of

speciation.

For random mating, where energy expended in defense against predators is lower

than a critical threshold value, the rate of speciation is high. Whereas when energy

expended in defense against predators is higher than this threshold value, the rate of

speciation is low (see figure 4.6 below). These results are reasonable with regard to our

simulations since cases of prey expending much of their energy to evade predators are

equipped with less time for reproduction. This, in turn, could slow down the speciation

rate. In terms of empirical validation of these results, it was found in [77] [78] that the

Western mosquito-fish (Gambusia affinis) evolves a number of traits such as smaller

caudal region in lower predation settings, as opposed to members of the species in

higher predation areas. This indicates species divergence between lower predation

populations and higher predation populations.

4.4.6 Factors driving extinction

For predicting extinction, VAE-EDA-Q AVS attribute selection was used again before

classifying the instances with C4.5 algorithm. In this case, the decision trees contained

fewer nodes and, hence, the entire tree was taken into consideration in the discussions.

Higher speciation increases risk of extinction in Sexual Selection

The prediction accuracy of the C4.5 algorithm was 77.9 % based on 10 fold cross-

validation. The prediction of the decision tree for extinction rate for sexual selection

indicates that evolutionary distance (dist_Evol) is a good predictor of extinction

rate. In particular, when evolutionary distance is above a critical threshold value,

there is a high rate of extinction. Whereas when evolutionary distance is below this
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Figure 4.6: C4.5 model depicting a decision tree to predict speciation levels in random
mating based on threshold values of various parameters. A node represents a decision
variable to predict speciation level (high or low) at the leaf. A path from various
nodes to a leaf represents a conditional rule, based on the nodes in the path (decision
variables). There are two numbers associated with each leaf node. The first number
indicates the total number of instances reaching that leaf (rule) while the second
number indicates the number of misclassified instances. The leaves of the branches
with maximum number of instances have been underlined with blue color
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Figure 4.7: C4.5 model depicting a decision tree to predict extinction levels in Good
genes mating based on threshold values of various parameters. A node represents a
decision variable to predict extinction levels (high or low) at the leaf. A path from
various nodes to a leaf represents a conditional rule, based on the nodes in the path
(decision variables). There are two numbers associated with each leaf node.

threshold, there is a low rate of extinction (see figure 4.7 below). This concurs with

our results describing species that employ sexual selection to display lower speciation

rates and lower extinction rates than random mating species (which have higher rates

of speciation than sexual selection species). Moreover, animal species undergoing a

high rate of specialization have been described to go extinct by authors in [79]. These

results suggest that high evolutionary distance resulting in speciation and attendant

specialization are linked to extinction.

Larger body size increases risk of extinction in Random Mating

Finally, the prediction of decision tree for extinction rate of random mating species,

which had an accuracy of 77 %, indicates that MaxEnergy (manifested in body size)

is a good predictor of extinction rate. When MaxEnergy (body size) exceeds a critical

threshold, there is a high rate of extinction. When MaxEnergy is below this threshold,

extinction rate will be low (see figure 4.8 below). Corroborating these results is a study
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Figure 4.8: C4.5 model depicting a decision tree to predict extinction levels in random
mating. A node represents a decision variable to predict extinction levels (high or low)
at the leaf. A path from various nodes to a leaf represents a conditional rule, based
on the nodes in the path (decision variables). There are two numbers associated with
each leaf node.

of Australian mammalian species, both existing and extinct, discussed in [80]. [80]

report that species with smaller body sizes are less prone to extinction than species

with large body sizes. Similar results were obtained in [81] with respect to Brazilian

carnivores. Extrapolating these empirical results to our simulations, leads to the

prediction that random mating species with lower MaxEnergy would be expected to

have lower extinction rates than random mating species with higher MaxEnergy
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4.5 Conclusion

In this general simulation study, we found that species employing sexual selection

have a lower extinction rate than species using random mating. This suggests that

sexual selection helps to shield species from extinction, as reported in [10] and [11]. A

plausible explanation of this result in our simulations is that there is lower hybridiza-

tion in sexual selection species. This means that there will be a paucity of low fitness

hybrids relative to random mating species. However, we found the species turnover

rate for sexual selection populations to be higher than random mating populations,

which may be due to the possibly faster rate of extinction of immigrants in sexual

selection species habitats.

Moreover, we found a higher speciation rate displayed by random mating species

than species using sexual selection. This is supported by biological theory as a higher

speciation rate could help offset higher extinction rates, as discussed in [40]. Moreover,

empirical evidence demonstrates preference within sexual selection species to be for

mates within species classifications. This reinforces hybridization in sexual selection

species to be a relatively uncommon phenomenon [70, 71]. Speciation rates within

sexual selection populations, therefore, would be to be relatively low, assuming that

hybridization contributes to speciation. Finally, a higher species diversification rate

for species using random selection was not found. Random mating species displayed

higher extinction and speciation rates, and sexual selection species displayed lower

extinction and speciation rates. This implies that the differences between speciation

and extinction for both groups would be comparable.

Using decision trees, we were also able to extract rules that help predict conditions

under which speciation rate and extinction rate are high or low for both sexual selec-

tion and random mating. One important trait demonstrating predictive value, with

respect to extinction rate for random mating, is body size (MaxEnergy). Our rules
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predict that when body size exceeds a critical threshold value, there is a high rate

of extinction. This is corroborated by several empirical studies [80, 81]. This is an

important result since, as noted in [37], there is disagreement in the literature regard-

ing the correlation between body size and extinction rate. Our results help to resolve

this dispute, since we generated high accuracy rules that demonstrated a connection

between body size and extinction rate. We also found a good predictor of extinction

rate for sexual selection species to be evolutionary distance, as corroborated in Raia

et al. (2016). Our findings go transcend [79] as our high accuracy rules support the

link between evolutionary distance and extinction rate.

Finally, our rules show that predator defense is a predictor of speciation rate for

random mating (corroborated in [77] and [78]) and that body size is a predictor of

speciation rate for sexual selection (corroborated in [76]). As noted in [78], there has

been no clear consensus about the role of predator defense in the driving of speciation

rates. Additionally, as noted in [76], there is still debate about the role of body size

in extinction rates in extant mammalian species. Once again, our high accuracy rules

contribute to the resolution of both of these debates. A possible extension of this work

would consider the long term evolutionary consequences of sexual selection. A similar

machine learning approach to distinguish the specific evolution resulting from both

sexual and random mating policies could be employed. Differing degrees of sexual

selection could also be considered by changing the sexual selection policy. Long runs

of our simulation could be performed to observe and compare short and long term

evolutionary patterns. Our machine learning methodology could also be fruitfully ap-

plied to analyze real ecological and paleontological data, providing semantically clear

rules explaining the ecological and evolutionary effects of sexual selection. However,

this approach would be restricted to situation in which a large amount of data could

be available.
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Chapter 5

Animal communication of fear and

safety related to foraging behavior

and fitness

5.1 Introduction

There are a number of empirical studies that have demonstrated the influence of an-

imal communication upon behavior. Vibrational communication in insects influences

mating behavior and sexual selection ( [1]. Authors in [2] have reported the combina-

tion of auditory and visual courtship signals to have a stronger influence on courtship

behavior in female pigeons (cooing, circling and tail spreading) than either modal-

ity acting singularly. Nobel laureate Karl von Frisch found that honey bees (genus

apus) initiate waggle dances, thereby communicating to conspecifics the location of

food, resulting in influence on foraging behavior (von Frisch, 1967). Along the same

lines, [3] reported that bumblebees (Bombus terrestris) communicate the existence of

honey spots to conspecifics after they unload by grooming and fanning their wings,
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which results in recruits for foraging activity. Also, there exists evidence of the role

of alarm signalling in the communication of urgency for escape from predators in the

bird Sericornis frontalis [4]. The authors discovered that multi-modal alarm signals

were more likely to result in escape behavior than unimodal signals [4]. There is also

a body of literature, described below, that investigates the influence of alarm com-

munication plays on foraging behavior, which is the focal point of this article. There

is a high level of corroboration within empirical studies supporting the claim that

predator alarm cues and presence of predation decreases foraging activity in prey.

For instance, as reported by [5], hard clams, Mercenaria mercenaria reduce their feed-

ing behavior in response to cues from injured conspecifics. Further, chemical alarm

cues generated from closely related heterospecifics (but not from distantly related

heterospecifics) were associated with reduced foraging behavior in a coral reef fish,

Amphiprion percula [6]. [7] observed that a species of termite workers, Coptotermes

acinaciformi reduced their foraging behavior in response to vibratory alarm signals

elicited by soldiers. [8] reported that crab foraging behavior lessened for the species

Panopeus spp. in the presence of cues from predators. Further, [9] found that snails

of the species Physa gyrina sought refuge and were less active in response to injured

snail cues as a result of predation. [10] reported that convict cichlid fish, Archocentrus

nigrofactiatus, exibits an altered foraging response in the face of damage release cues

from conspecifics (See also [11] ; [12] for similar results).

Opposition to the view that increased predation and alarm cues result in lower

foraging activity in prey, [13] is the predation risk allocation hypothesis. The central

departure involved forecasts an increase in foraging activity by prey in response to

continued predation and alarm cues in order to secure nourishment over the course of

time. This hypothesis involves a method of cost-benefit analysis where, over the course

of time, the cost of vulnerability to predation is outweighed by the benefits of finding
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food to survive. As [14] observed, the predation risk allocation hypothesis entails

two predictions: 1) initial predation and predator alarm cues result in a decrease

in foraging activity, although 2) as exposure to predation and alarm cues remain

high over a longer period of time, prey begins to engage in risky foraging behavior

given the need for nourishment and energy. As [15] noted, a number of studies seem to

corroborate the predation risk allocation hypothesis including [16], [17] along with [18].

In all of the aforementioned studies, prey demonstrated higher foraging activity in the

presence of sustained high levels of predation and alarm cues. In contrast, authors

in [15] argued the findings of [11] and [12] demonstrated a decrease in foraging behavior

in the presence of predation (which is consistent with the findings we presented in

the first paragraph), present evidence for the predation risk allocation hypothesis to

still remain unanswered. [14] also expressed a measure of skepticism regarding the

predation risk allocation hypothesis. An important goal of our study is to enhance

understanding of this debate. In particular, we seek to test the following hypotheses

in our study:

H1: Communication of fear related to predation is associated with a lessening of

foraging behavior relative to the absence of communication.

H2 (predation risk allocation hypothesis): Communication of fear related

to predation is associated with an increased level of foraging behavior over time rela-

tive to the absence of communication. These hypotheses are not necessarily mutually

exclusive as fear communication results in an initial decrease of foraging activity. Yet,

over a period of time, some animals may become habituated to fear communication

and take risks in order to increase inclusive fitness. This notion provides a relative

basis for the third hypothesis examined by our study involving the claim that habitua-

tion to alarm communication augments inclusive fitness. With respect to H2, the idea

that alarm communication augments fitness after habituation to alarm occurs aligns
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with the expectation that an increase in individual fitness would occur over time due

to the increase of foraging behavior despite alarm signals. The basis for this hypoth-

esis assumes that nutrition is required for reproduction. If this expectation is met,

it would appear to corroborate H2. Conversely, a fourth hypothesis to be considered

in this investigation centers on a decrease in foraging activity in response to alarm

communication that increases individual fitness since an animal cannot reproduce if it

is killed by a predator. Confirmation of this hypothesis would appear to corroborate

H1, since it is plausible for alarm communication to result in a decrease in foraging

behavior, thereby increasing individual fitness. Thus, an additional question that we

will be investigating in this paper is the connection between alarm communication and

its effect on foraging behavior and individual fitness. Fitness of individuals in EcoSim

is measured as the sum of the number of children and grandchildren produced by an

individual. This characterization of fitness was developed in brommer2004single and

later in [19].

In order to address the issue of this possible relationship, we will investigate the

following additional hypotheses:

H3: Alarm communication augments individual fitness in animal species when

there is habituation to alarm communication,

H4: Alarm communication augments individual fitness in animal species when

this communication reduces foraging activity.

From an overview of the literature, habituation to alarm cues suggested by the

risk allocation hypothesis appears to decrease fitness, which challenges H3. Authors

in [20] described habituation to alarm pheromones over 3 generations as a consequence

of nutritional requirements that resulted in lower survival (presumably due to being

killed by predators) and fecundity in aphids. Higher fitness was exhibited by aphids

that did not habituate to perception of alarm signals, which corroborates H4. More-
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over, [21] reported that cichlid fish (P. cichlid fish) reduced activity in response to

alarm cues from conspecifics, thus enhancing survival and hence fitness, which again

appears to refute H3 and corroborate H4. Moreover, additional published support

exists for H4 - the hypothesis that alarm communication that decreases foraging be-

havior and results in increased inclusive fitness in a variety of animal species. Authors

in [22] reported that tetra fish (Hemigrammus erythrozonus) responded to subthresh-

old chemical cues from conspecifics by increasing their vigilance against predators,

which the authors designated as a ‘fitness-related’ behaviour. An earlier study by [23]

studied 6 species of monkeys where individuals elicited alarm signals in the presence

of predators such as leopards. The authors concluded that these signals served the

primary function of warning conspecifics rather than alerting predators, which they

argued to provide kinship advantages and augment inclusive fitness [23]. There also

appears to be some animal species that use alarm signals to alert predators rather

than conspecifics. Various rodent species as discussed in [24] and [25] exhibited this

modality, which was found to increase indirect fitness. We shall conduct individual-

based modeling computer simulations in our study in order to test hypotheses H1

through H4. The significance of our study is that it will clarify the relationship be-

tween fear communication and foraging behavior and discern how this impacts fitness

across both specific and general animal species.

5.2 Methods

5.2.1 EcoSim

EcoSim ( [26] ; [27]) is a simulator of a virtual individual based ecosystem designed

to simulate the behavior of predators and prey individuals in a dynamic tri-trophic

environment consisting of 1000 x 1000 cells (EcoSim source code (in C++) can be
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obtained from the repositories at https://github.com/EcoSimIBM). EcoSim serves the

purpose of studying complex ecological problems when time and cost issues make field

studies impractical. EcoSim has been used to investigate a wide range of ecological

properties such as speciation rate [28], extinction of species [27], evolution of prey

individuals under the stress of predator pressure [29], ecological risk assessment of

Polychlorinated biphenyls [30], and effect of different mate selection strategies on

extinction and speciation [31].

EcoSim uses a fuzzy cognitive map (FCM; [32]) to model behavior of individuals.

These FCMs are coded in the genome of the individuals and are subject to evolutionary

processes through crossover and mutation for both predators and prey. Another

essential feature within EcoSim pertaining to the present paper is the capacity of

fitness of individuals to exist as an emergent property of the system; that is the

individuals are not programmed to attain higher fitness. Instead, we define the fitness

of an individual as the sum of children and grandchildren produced by that individual.

This definition of fitness was developed in [33] and in [19], and it was discussed in [34].

Each cell in EcoSim may contain prey, predators, and grass. Grass serves as

the source of energy for prey, while the predators hunt and consume prey or meat

(previously killed prey). The simulation goes through a discrete succession of steps,

henceforth referred to as a timestep. During each such timestep, each predator and

prey perform one unique action based on perceived environmental factors and internal

state (facilitated by FCMs). Examples of potential actions taken by prey include

escaping from predators, searching for food, socializing with other prey, exploring the

virtual world of EcoSim, resting, eating and reproducing.

To achieve such actions, all individuals are required to spend a certain amount

of energy based on the bioenergetic model and physical factors of the particular in-

dividual. Speed, maximum speed, vision range, and reproductive age, (repAge), are
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examples of factors involved. The exact equation for energy expenditure of prey indi-

viduals is given by equation 5.1. NbArcs is a measure of the complexity of the brain

based on the number of edges in the FCM of an individual. Vision is the distance

(number of cells) for which individuals can see. Defense is the measure of capability of

an individual to protect itself from predator attacks, while coopDefense (Cooperative

Defense) is the ability of an individual to protect other local prey from predators.

Energyprey = 0.8×max((nbArcs− threshold)0.75, 1)) + Strength× (Speed)2

10000

+
(
MaxEnergy

5

)0.75

+(V ision× 5)0.75 + (Defense× 5)0.75 + (CoopDefense× 75)0.75

+(Max(0, 8− repAge))2.3

(5.1)

In EcoSim the genome of an individual consists of two sections : the physical

genome representing the physical features and the behavioral genome coding for the

behavioral model of the individual. The genome of an individual remains constant

during its lifetime. The behavioral model of an individual is modeled using a FCM,

which is a directed graph consisting of nodes and edges (see figure 5.1). Due to

the evolutionary process modeled by EcoSim, each individual has a unique FCM.

The nodes represent various concepts, while the edges represent various relationships

between concepts. These concepts can be of three types: sensory concepts (sensing of

distance from predator, perception of own energy level, etc.), internal concepts (such

as fear, satisfaction, disgust, etc.) and action concepts (shown in figure 5.2). Each

edge has a weight associated with it, which represents the degree of influence of a

source concept upon a destination concept. These edge weights can be negative or
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positive and are based on the type of influence one concept has upon another. Hence,

a positive edge weight means the source has an excitatory influence on the receiving

concept, while a negative edge means the source edge has an inhibitory effect on the

receiving concept.

5.2.2 Experiments

To test our hypotheses, ten independent runs of EcoSim were conducted, where all

prey individuals possessed the ability to communicate fear (Communication Runs);

ten other independent runs were also conducted where individuals did not have com-

munication capabilities (Non-Communication Runs). Each set of runs was executed

to 36,000 time steps.

To model communication between individuals, two new sensory concepts were cre-

ated for prey individuals: “Communicated Fear” (CommDanger with values between

0 and 1) and “Communicated Safety” (CommSafety –with values between 0 and 1)

(see figure 5.3). The input to the CommDanger node of prey is the average activation

level of fear of all prey (say f) within 3x3 cells centered around the given prey. In con-

trast, the input to the CommSafety concept is 1-CommDanger (which is an indicator

of safety of the environment).

Figure 5.4 shows how the receiver obtains the extra information related to fear.

In a scenario where receiver prey B is unable to sense a predator directly due to too

large of a distance, perception of distant predators is still possible through the fear

level of neighbors, which allows prey to act accordingly. It is to be noted that the

information about the fear level of each individual (CommDanger) is transmited to

all individuals in a 3x3 cells block irrespective of which prey species the individuals

belong.

Initially, edges are not assigned from CommDanger and CommSafety to other

138



Figure 5.1: An example of a simple FCM in which activation of predClose (proximal
predator) and predFar (distant predator) is given by fuzzification of these concepts,
depending on the distance of prey from predator. In the fuzzification process, the
real value of the sensory concept (consider a predator 5 cells away) is converted to a
fuzzy value (a decimal number from 0 to 1). The speed at which prey evade is given
by defuzzificaton of the evasion concept, where the reverse of fuzzification happens -
the fuzzy value is converted to a real scalar value. The L matrix is an nxn matrix
showing the influence of one concept upon another; where 0 denotes predClose, 1
denotes predFar, 2 represents fear, and 3 represents evasion. Activation levels of motor
concepts in EcoSim dictate choice of action for an individual and the defuzzification
of the activation level provides the intensity of the action. For example, if the evasion
concept is activated, the defuzzification of the evasion concept gives the speed of
evasion. [26]
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Figure 5.2: FCM of a typical prey individual. The left column of nodes contains the
sensory concepts; the middle column of nodes contains the internal concepts, and the
right column of nodes contain the motor concepts. The red edges denote a negative
edge and a blue line denotes a positive edge. The thickness of the lines indicates the
weight of the edge.
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Figure 5.3: An illustration of Communication-related to Danger and Safety shows the
sharing of fear between two individuals near one another.
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Figure 5.4: Communication of Fear from Signaler to Receiver. Receiver prey received
the extra information related to fear, even when the receiver is unable to sense a
predator directly due to a greater distance
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nodes. The way individuals use the perceived information depends on the emergence

of new edges between the two new concepts and other internal and motor concepts.

The emergence of new edges is the result of evolutionary processes within EcoSim.

To evaluate the evolutionary value of this communication system, a cost has been

added for the usage of the CommDanger/CommSafety node information. The cost

is calculated as 0.09 % of maximum energy of an individual at each time step. The

addition of this cost implies that an individual expends energy as soon as an edge

develops between the CommDanger or the CommSafety nodes to any other node in

the individual’s FCM. This models the cost of having a new perception mechanism.

This cost supercedes the cost associated with each edge, including the ones connected

to the CommDanger/CommSafety nodes.

At this stage, it is important to distinguish the experimental method used in

our article from the experimental method employed in the recent simulation study

conducted by [35] as there is a key difference between our EcoSim simulations regard-

ing prey individuals and the simulations conducted by the aforementioned authors.

The simulations performed by authors in [35] involve 3 types of runs with prey in-

dividuals and additionally employ 3 distinct foraging strategies - control (like our

non-communication prey), risk-averse, and risk-taking. Our simulations assign no

distinction between risk-averse vs. risk-taking communities and employ only 2 types

of runs: communication and non-communication. In communication runs, communi-

ties averse to risk and not averse to risk were emergent in our simulations over time

rather than occur as parameters for initialization.
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5.2.3 Machine Learning

Decision Trees

Decision tree algorithms yield a set of hierarchical rules based on features of data

that aid in dividing datasets recursively into various classes [36]. Hence, decision

trees shed light on significant distinctive properties of data. Each path in a decision

tree, from the root to a leaf node, corresponds to a rule that can be used to predict the

dependent feature based on independent features. Thus, the rule governing whether

a data point corresponds to a communication run or a non-communication run can

be used to predict the population density in the world or the level of predation fear

in the world, for example.

In univariate decision trees, the hierarchical split of data instances is based on a

single feature at any given node and takes of the form of: x < c or x > c, with x

representing the feature and c representing a threshold value. At a given node along

a pass, all the current data instances for which the decision feature x is less than a

certain constant are sent to the left downside branch, while the other instances are

sent to the right branch. This process generates a split of the current set of instances

into two subsets. Each of those subsets of instances undergoes further splits until the

dependent feature can be classified with some degree of accuracy.

At the level of a node, an exhaustive search is used to find the independent feature

x and the constant c, where the objective is set to optimize some measure of node

impurity, such as entropy [37]. This measure of entropy takes a value between zero

and one depending on how the instances are split by the node. If all the instances fall

into one category, entropy takes a value of 0; entropy takes a value of one when the

instances are equally divided into two classes.

In this paper we have used a specific decision tree algorithm known as C4.5 [38]
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which uses the information gain ratio as an entropy measurement to identify how well

a decision variable can split data entering the decision feature.

Variational Autoencoder EDA as a Wrapper Method for Feature Selection

Machine learning algorithms extrapolate knowledge from massive datasets. The re-

liability and interpretability of knowledge gained through machine learning analysis

of datasets can be affected by the presence of irrelevant, redundant, and superfluous

information (features) present in such datasets [39]. Feature selection is a class of ma-

chine learning algorithms used to detect and expunge datasets of extraneous features

before the predictive model is built. To illustrate, consider a dataset that contains

samples described by 10 features, but only 3 of these features are useful in classify-

ing the dataset into one category or another. Feature selection algorithms could be

employed to remove the other 7 features so that a more concise and efficient classifier

could be built.

Wrapper methods are a type of feature selection algorithms where the model build-

ing step (such as generating a decision tree) is integrated within the feature selection

step [40]. This differs from the filter method in which feature selection is performed as

a preprocessing step before the model is built. Wrapper methods define a combinato-

rial optimization search procedure in the complete feature space that returns subsets

of features to be evaluated based on the predictive model. In the evaluation phase,

these subsets of features are used to train and test a specific classification model (a

C4.5 decision tree, for example), and the accuracy of the decision model generated

from this subset is used to judge the worthiness of the feature subset. Thus, to search

the feature space for the best subset, the search is wrapped around the classification

model.

Estimation of distribution algorithms (EDA) [41–44] are metaheuristics that aid
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in combinatorial optimization. EDA maintains a population of promising candidate

solutions. In a selection step, the candidate solutions with the best fitness are picked

from the population and thereafter a probabilistic generative model is built from these

promising candidates to generate the next generation of promising candidates. Fitness

of the candidate solutions is defined by some problem specific criteria that evaluates

the candidate as a whole, based on the values of each constituent feature in the

candidate solution. In our methodology, the fitness function is the predictive models

accuracy. This process repeats itself until the optimal solution is obtained or the

current best solution has a fitness considered to be sufficient. The process to determine

the exact combination of assignments to variables that lead to a higher fitness is

complex. EDAs have been used successfully as a wrapper method for classification

tasks in [45] and [46]. In [46] Constrained Model Search Space Bayesian Optimization

Algorithm (CMSS-BOA) [47] was used as a wrapper method with C4.5 Decision trees.

When EDAs are used as the Wrapper Method, the fitness is evaluated based on the

predictive accuracy of the classifier.

Variational Autoencoder EDA with Population Queue (VAE-EDA-Q) [48] uses

variational autoencoders [49] [50] to model the population. This method demon-

strated efficacy in exploring latent continuous search spaces. VAE-EDA-Q is able to

explore continuous latent space representation of the features which allows random-

ized sampling and smooth interpolation over the manifold of high-quality solutions in

the feature space.

In this paper, we utilized a wrapper method combining C4.5 algorithm with

VAE-EDA-Q to discover the distinguishing characteristics of communication and non-

communication runs. The capacity of VAE-EDA-Q to act as a combinatorial optimizer

to select the best subset of features yields optimal accuracy for C4.5 algorithm.
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5.3 Results and Discussion

5.3.1 The effects of alarm communication on foraging behav-

ior (Comparing communication and non-communication

runs)

As discussed in the introduction, two hypotheses examined by our simulation include:

H1: Communication of fear relating to predation is associated with a lessening of

foraging behavior relative to the absence of communication.

H2 (predation risk allocation hypothesis): Communication of fear relating to

predation is associated with an increased level of foraging behavior over time relative

to the absence of communication.

The average of all runs appear to corroborate H1 and refute H2, as can be seen

from figure 5.5 . Over time (by the 20,000th time step), communication relating to

the presence of predators is associated with an overall decrease in foraging behav-

ior, whereas the absence of communication is associated with an overall increase in

foraging behavior.

To determine the statistical significance of the observed differences, Kruskal Wallis

One Way ANOVA tests were conducted individually on the test parameters. Before

non-parametric tests were conducted, averages were performed for groups of 30 data

points in each window (for thirty consecutive time steps) and omission of the sub-

squent 20 timesteps was completed to remove inherent temporal continuity in the

results. Therefore, the data points obtained were for averages of timesteps 1- 30, 50 –

80, 100 – 130, etc. Skipping 20 timesteps in between yields discrete samples on which

ANOVA can be applied, as the direct causal dependence from one sample point to

the next is removed.
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Figure 5.5: Comparing Search Food Ratio between Communication and Non-
Communication Runs

The dependent variable is the Search food ratio, which is defined as the ratio of

the number of individuals that opted for the search food action to the total number

of individuals for a given time step. ANOVA tests were also performed to treat

each run as an independent sample, Search Food ratio was averaged for all time

steps occurring after 20000th generation. For ten runs of Communication and ten

runs of Non-Communication, 20 independent and normal data points were chosen

for ANOVA testing to ascertain whether the independent variable (Communication

Run/ Non-communication Run) could explain the differences in Search Food ratio.

The differences were found to be statistically significant from ANOVA experiments

analyses (p-value < 0.0001, alpha = 0.05).

These results concur with the empirical findings of [5]; [6]; [7]; [8] and [9]. They

are in disagreement, however, with other empirical studies such as [16]; [17] and [18]

which corroborate H2, the risk allocation hypothesis.
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An aparent issue with respect to our data is the significant divergence at roughly

20,000 time steps for communication vs. non-communication runs displayed by our

graphs for the Search Food Ratio. Potentially, this divergence could explained by

the mechanism of evolution of foraging behavior in both communication and non-

communication species rather than phenotypic plasticity. Evolutionary change gen-

erally occurs multi-generationally, while phenotypic change is relative to the existing

genotype [51–53]. This is not to presume that evolution takes thousands or millions

of years in all cases, as is observed by [54] in his work on eco-evolutionary dynamics,

as well as in [29]. [54] noted that Darwin’s finches evolved beak sizes suited to their

environment over a relatively short period of time. Similar findings were observed

by [55] where evolutionary changes in guppies took place only after 30 – 60 genera-

tions. Along these lines, it is important to note that one time-step in EcoSim is not

equivalent to a generation in biological terms. One generation can be represented

by multiple time steps, since within EcoSim, a time step only involves one decision,

one action, and any changes regarding species status. Thus, 20,000 time steps do

not equal 20,000 generations. In fact, one generation, which is linked to the age of

reproduction, equals 6 to 8 time steps [56].

At this point, it could be argued inadvertent conflation of two types of commu-

nication relating to predation occurred – Comm Danger and Comm Safety. Further

analysis, however, suggests that these two types of communication are consistent in

their effects on foraging behavior overall. As can be seen in Figure 5.6, Comm Danger

is strongly correlated with a decrease in foraging behavior (Correlation coefficient =

-0.9948) and Comm Safety is strongly correlated with an increase in foraging behavior

(Correlation coefficient = 0.9967) – averaged across all runs. This is expected relative

to H1.
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Figure 5.6: Comparing Search Food Ratio between Communication and Non-
Communication Runs

5.3.2 Difference in effect of communication on Search Food

across various Communication runs

The number of individuals using a certain FCM edge within a range of weight values

is recorded to assess and associate a level of significance to the usage of an edge

within the whole population (figure 5.3). Figure 5.7 illustrates the methods for which

communication nodes can be used in the population. The y-axis of the graph shows

the number of prey individuals using a particular communication edge, at a particular

timestep for one run in our simulation batch, while the x-axis gives the names of

edges connecting Communicated Danger or Communicated Safety to other nodes in

the FCM.

To quantify the impact of the communication nodes, a combined usage index of

the usage data was calculated to find the mean usage of an edge in the population.

The combined usage index is calculated by multiplying the number of individuals

using a particular edge, within a weight value range, by the higher edge weight value

in that range, and adding up the values for each range for a given link (i.e. the link

between CommDanger and SearchFood (See Supplementary Material A)).
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Figure 5.7: Number of individuals using links from Communication nodes to other
nodes for Run 8 at 34000th timestep.
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Using the concept of the combined usage index, the net effect of CommDanger

and CommSafety on Search Food in individual communication runs can be measured.

In figure 5.8 below, the majority of the individual runs displayed edge values linking

communication with search for food as negative and, hence, inhibitory when averaged

across individuals. However, some of the individual runs (particularly 3, 4 and 5)

displayed edge values that were either positive, negligible or only slightly negative.

This suggests that in some circumstances, fear-related communication has the po-

tential to increase (or at least not diminish) foraging behavior when the benefits of

securing nourishment outweigh the risks associated with predation. This result aids

in the corroboration of the Risk-Allocation hypothesis, H2, outlined above. That is,

there exists, in some cases, habituation to alarm communication over time if the risks

associated with predation are outweighed by the fitness-related benefits of finding

food.

Although the combined usage index provides some information about the direct

impact of the communication nodes on a given behavior, such as search-food, it does

not capture the potential indirect influence communication nodes may have. For ex-

ample, in addition to the direct edge between CommDanger to Search-food, there are

also indirect connections between these two concepts, such as CommDanger − > Fear

− > Search-food. The communication nodes can exert influence on the behavior via

these indirect connections as well, and these indirect influences have potential signif-

icance. To further examine the overall effects of CommDanger and CommSafety on

Search food that accounts for both direct and indirect connections, we developed a

simulation tool to analyze the FCM of each individual outside of the dynamic envi-

ronment of EcoSim (see Figure 5.9). Using the tool, the input of the CommDanger

(sensory node) was varied while all other sensory input was fixed, and variation within

Search Food was measured under these conditions. Similarly, the input of the Comm-
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Figure 5.8: Individual run impacts of Communicated Danger and Communicated
Safety on Search Food Node at 34000th timestep.
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Figure 5.9: FCM Analyzer showing the FCM network of one prey individual and the
connections from Communication Node to various internal nodes and finally stopping
at Search Food.

Safety was varied while all other sensory input was fixed, and variation in Search

Food was again measured in this similar fashion. FCM values (edge weights and con-

nections) of 50 random prey individuals were extracted from the end of each of the

10 runs. Upon them, the experiment to find the independent effects of CommDanger

and CommSafety on Search-Food ratio was performed. For each run, the activation

of search food was measured for each of the 50 prey individuals and the average of the

activation of search food was reported. Other sensory node values were set constant

and derived from the average value for the set of 50 individuals from each run.

In our experiments we discovered that each communication run assumed one of

two behaviors (see figure 5.10). In one set of runs, the impetus to search for food
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increased with increase of communication. While in another group of runs, the search

food behavior decreased with an increase in communication. To better understand

the independent effects of communicated danger and communicated safety on search

food in these two groups of runs, the same tool was used to measure the extent of

the effect of Communication on search food in two groups of communication runs.

Effects resulted from 3 runs in each group, where 100 individuals from each run were

averaged for the 3 runs in each group.

A more fine-grained analysis of the data, where the independent effect of Comm

Danger and CommSafety upon Search food across all runs was not averaged but in-

stead considered individually, revealed a more nuanced result. Within the specific

runs of 7,8, and 10, H1 which states alarm communication to result in decreased

foraging was corroborated, Within the specific runs of 3,4 and 5, H2, the risk allo-

cation hypothesis, was corroborated. Figure 5.10 shows the independent effects of

CommDanger and CommSafety on Search Food for the two sets of runs, where 100

individuals from each run were averaged over 3 runs in each set. Two significant find-

ings can be drawn from this data. First, the effects of communication appear to be

primarily driven by CommDanger, while CommSafety had a much smaller influence

on search food activity. Second, communication displayed opposite effects in the two

groups of runs. Otherwise stated, in the presence of predation, animals occasionally

take risks in nature due to habituation to alarm signals as discussed in the empirical

studies by [16], [17] along with [18]. Whereas in other cases, alarm signals are found

to reduce foraging behavior.
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Figure 5.10: FCM Analyzer: Effect of varying CommDanger and CommSafety on
SearchFood on individuals from separate runs.
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5.3.3 Extraction and analysis of the most significant environ-

mental and behavioral differences between alarm com-

munication and non-communication experiments

We also have attempted to determine the distinguishing factors between Communica-

tion and non-communication experiments based on meaningful data related to prey,

in addition to specific physical world and individual characteristics. C4.5 decision

trees [38] were used to generate the rules based on a subset of features extracted by

VAE-EDA-Q [48] as a wrapper method. Raw data collected from each run of EcoSim

contained 102 features measuring numerous properties of the world, environment, and

the prey individuals at each time step. Using the wrapper method enabled the selec-

tion of a subset of only 8 significant features out of 102, thus reducing the complexity

and easing the interpretation of the rules that were obtained from the decision trees.

Ten runs for communication and ten runs for non-communication were initially

used. For each communication or non-communication run, 30 timesteps were averaged

to produce one instance (row) of training data to be used in building the decision trees.

The subsequent 20 timesteps were skipped to remove the effects of temporal continuity.

To illustrate, the training instance obtained by averaging each of the 102 features from

timesteps 30 to 60 would generate the next data point equal to the average of the

same features from timesteps 80 to 110 for a given run. Based on the run from which

the instance was taken, the training instance was labelled as either communication

or non-communication as applicable. Thereafter, all the training instances received

from 20 runs using the above averaging procedure were combined into one training

dataset, which was used in VAEEDA-Q based Wrapper method.

The effects of communication on foraging behavior have been discussed above.

Still, one question that naturally arises scrutinizes the distinguishing features between
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Features

Rules
Rule code:

Communication: C
Non-Communication: ∼ C

AND: ∧

nbPerCell Comm-R1: (nbPerCell < 2.18) →C

nbPerCell and
Concept-Fear

Comm-R2: (ConceptFear > 0.14)
∧(2.18 ≤ nbPerCell < 2.64)→ C

NoComm-R2: (ConceptFear > 0.14)
∧(nbPerCell ≥ 2.64)→∼ C

nbPerCell, Concept-
Fear and Concept-
SearchPartner

Comm-R3: (nbPerCell ≥ 2.18)∧
(Concept− Fear < 0.14)∧

(Concept− SearchPartner ≥ 0.86)→ C

NoComm-R3: (nbPerCell ≥ 2.18)∧
(Concept− Fear < 0.14)∧

(Concept− SearchPartner < 0.86)→∼ C

Table 5.1: Rules obtained from VAE-EDA-Q C4.5 Wrapper

alarm communication runs and non-communication runs. Using machine learning,

construction of decision trees elucidated rules that specified the conditions related

to alarm communication. Below is a table that outlines the rules derived from the

decision trees (see table 5.1).

RULE 1: Throughout the simulation of EcoSim various key parameters related

to prey, predators, and the world were recorded to get a meaningful understanding

of the unique nature of the run. One such parameter was nbPerCell, which is the

average number of individuals per cell and specifies at least one individual measured

per timestep. Therefore, it is a direct measure of the density of population. In

Communication runs, the individuals are less densely populated. The average number
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of prey in each cell is less than 2.18, implying that individuals are more spread in

communication runs and more clustered in non -communication runs.

These results cohere with a study by [57] where it was reported that alarm com-

munication decreases as population density increases (dilution of risk) for conspecific

collections of zebras. Conversely, [2] found alarm signalling in grey squirrels to be

more likely when conspecifics were present with high density than in cases of absence

or low density. Urban grey squirrels demonstrated a higher likelihood to use alarm

signals when compared to rural grey squirrels, where there is lower density of con-

specifics [2]. Authors in [58], however, reported alarm communication in grey squirrels

to be completely unaffected by population density. Rule 1 stating that alarm com-

munication favors a population density that is below a certain threshold is outlined

in the above table and appears to vindicate the empirical findings of [57]. This aligns

with biological philosophy as a high density of individuals is conducive to lessened

levels of urgent communication because there are many conspecifics that can offer

protection against predators. Contrarily, in less densely populated areas, individuals

are on their own, and communication can be indispensable in preserving life in the

presence of predators.

RULE 2: Similarly, rule 2 states that communication runs favor population

densities with an intermediate range between 2.18 and 2.64 individuals when fear of

predation is high (with respect to a given threshold). Non-communication runs favor

population densities greater than or equal to 2.64 individuals, when fear of predation

is high (with respect to a given threshold). These results are also in agreement with

the findings of [57].

RULE 3: Communication runs favor searching for partners when fear of pre-

dation is low (with respect to a threshold) and when population density is high (with

respect to a threshold). Non-communication runs favor abstaining from the search
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for partners under these conditions. This is confirmed by an empirical study con-

ducted by [59] where the authors found the African cichlid fish, Astatotilapia burtoni

to engage in acoustic communication during sexual reproduction.

5.3.4 Investigating the possible connection between alarm

communication and fitness

Fitness of individuals in EcoSim is measured as the sum of the number of children

and grandchildren produced by an individual. This characterization of fitness was

developed in [33] and later in [19]. Average fitness of the population was compared in

communication runs where communication positively affected search food (foraging),

runs where communication negatively affected foraging, and runs where the commu-

nication faculty was blocked. Four runs from each test group were considered. The

population fitness (average of individuals’ inclusive fitness) was measured for each run

for 25 timesteps at intervals of 20 timesteps; data in figure 11 represents the average

fitness of the population measured over a 500 timestep period taken from the end of

each run, consisting of an average of fitness of 25 timesteps in each run.

As discussed in the introduction, evidence from empirical studies suggests a re-

lationship between alarm communication and alterations of foraging behavior and

individual fitness; this includes the studies by [20], [22], as well as [23]. In particular,

the results of these studies corroborate hypothesis H4 and challenge H3 as outlined

above:

H3: Alarm communication augments individual fitness in animal species when

habituation to alarm communication occurs.

H4: Alarm communication augments individual fitness in animal species when

this communication reduces foraging activity.

As demonstrated by our results in table 5.2, higher levels of fitness are exhibited
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Communication
Positively
Affect Foraging

Communication
Negatively
Affect Foraging

Blocked Comm

Run Avg
Fitness

Std.
Dev. Run Aveg

Fitness
Std.
Dev. Run Avg

Fitness
Std.
Dev.

1 6.2 8 6 7.3 9.5 1 4.5 10
3 6 9 7 7.1 9 2 4.6 11.5
4 6.1 9.2 8 7.2 9 3 4.3 10
5 6.3 8.5 10 7 9.1 4 4.7 10.6

Table 5.2: Comparing Fitness between runs where Communication positively affects
foraging, communication negatively affects foraging and runs where the communica-
tions are blocked.

across all runs in connection with communication of both positive and negative influ-

ence on foraging as opposed to no communication at all. This appears to corroborate

both H3 and H4. However, the results also demonstrate fitness to be higher when

alarm communication results in decreased foraging behavior, as opposed to increased

foraging behavior, which aligns with H1 and H4 while disputing H3 as outlined above.

5.4 Conclusion

In this study, we used EcoSim, an individual based modeling platform that simulates

an artificial ecosystem with three trophic levels (grass, prey, and predators) to model

the communication of fear of predation within the prey population. In our simulations

we have attempted to observe the effects of the communication of fear on foraging

behavior as well as the effects that modifying foraging behavior via communication

has on fitness. Further, using machine learning, we attempted to determine the roles

that communication plays on population density and reproductive impetus of prey

individuals when fear of predators is higher than or lower than a given threshold. To

this end, we derived prediction rules from decision trees generated by VAE-EDA-Q

C4.5 Wrapper. The hypotheses explored in this work are as follows:
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H1: Communication of fear related to predation is associated with a lessening of

foraging behavior relative to the absence of communication.

H2: (Predation risk allocation hypothesis) Communication of fear related to pre-

dation is associated with an increased level of foraging behavior over time relative to

the absence of communication.

H3: Alarm communication augments individual fitness in animal species when

there is habituation to alarm communication.

H4: Alarm communication augments individual fitness in animal species when this

communication reduces foraging activity.

Based on our simulation results, it appears some cases favor alarm communica-

tion that results in increased foraging behavior (possibly due to habituation) thus

corroborating H2 outlined above, while other cases favor alarm communication that

results in decreased foraging behavior, thereby corroborating H1 as outlined above.

As outlined in sections 5.3.1 and 5.3.2, empirical evidence exists in support of both

effects of alarm communication. Although one may expect an increase in inclusive

fitness for both cases, it would appear from our data that higher fitness is a product

of cases where alarm communication results in decreased foraging as opposed to cases

where alarm communication results in increased foraging. This data corroborates H4

and challenges H3. In addition to the number of empirical studies outlined in section

5.3.4 that validate our findings regarding fitness. Biological theory also supports our

findings since foraging in the presence of predation may have a negative effect on sur-

vival if the predators are largely successful. Under this philosophy, individuals would

be unable to reproduce and pass on their genes to future generations. Using machine

learning, we were able to determine the features that characterize alarm communi-

cation runs. First, we discovered that communication runs favor a low population

density relative to a given threshold, which has been validated by a number of em-
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pirical studies. Notwithstanding, we also discovered that communication runs favor

population densities intermediate of two thresholds t1 and t2 (where t1 < t2) when

fear is higher than a given threshold (0.14). Non-communication, however, were found

to favor population densities that exceed the higher threshold t2 when fear is higher

than the threshold value 0.14.

Alarm communication appears to occur in lower population densities when there

a higher level of fear of predation occurs, potentially due to the presence of fewer

individuals to warn others. Higher density populations, according to [57], exercise a

so-called dilution of risk. Finally, we discovered that communication runs favor the

desire to search for reproductive partners when fear is below a given threshold and

population density is higher than a given threshold. Conversely, non-communication

runs do not favor searching for reproductive partners under these conditions. This

is supported by biological theory, since a greater level of conspecifics is conducive to

a higher chance of socialization and eventual reproduction, especially when there is

reduced fear of predation. Further, socialization for the purpose of reproduction has

a greater chance of success when communication between the individuals is involved.
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Chapter 6

Conclusions

The investigation of natural systems within the real world has historically presented

challenges for scientists as complexities involved with ecological phenomena are fas-

cinating, yet difficult to understand. Artificial simulations have recently unburdened

the study of natural systems through modeling approaches that elucidate the be-

havior of complex ecosystems. Individual based modeling creates virtual ecosystems

wherein a bottom-up approach allows traits and behaviors of individual organisms

to be held at the forefront and summate to overall outcomes based on interactions.

Due to the very nature of this approach, myriads of interactions have the propensity

to produce non-linear behaviors that generate vast amounts of data. Thus, with the

objective of transforming raw data into insight, machine learning is employed to ex-

tract useful knowledge, suggest conclusions, and aid in the process of decision making

through learning from the input raw data. In tandem, individual based modeling

and machine learning make possible the understanding of high-level, true to nature,

ecological phenomena [1].

Several machine learning methods exist to mitigate issues involved with high di-

mensional datasets. One approach, feature selection, focuses on the removal of ex-
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traneous features prior to processing and results in concise models produced with a

reasonable computational resource budget. One approach to feature selection, called

wrapper methods, integrates the feature subset and classifier model search; this leads

to the generation of undeniably superior classification models. Estimation of distribu-

tion algorithms, in the capacity of efficient continuous and non-linear optimizations,

have demonstrated success for use as a wrapper method for feature subset search and

selection.

We constructed a novel estimation of distribution algorithms (EDA) based upon

the combination of two novel generative models known as variational autoencoder

model building algorithms. Variational Autoencoder with Population Queue (VAE-

EDA-Q) relies upon a queue of historical populations, updated at each iteration of

EDA, to smooth the data generation process. Adaptive Variance Scaling (AVS) dy-

namically updates the variance at which probabilistic models are sampled based on

the fitness of solutions. Cooperatively, the effects of our method of combining VAE-

EDA-Q with AVS, demonstrated high computational efficiency and required few fit-

ness evaluations when we tested them on Trap-k and NK landscapes [2]. In addition

to benchmark problems, we tested VAE-EDA-Q AVS on CIFAR10 and CIFAR100

datasets for a real world comparison to state-of-the-art CNN algorithms, of which

were either fully automated, manually designed, or required partial human interven-

tion. VAE-EDA-Q AVS demonstrated an average of 1.5% higher accuracy on CI-

FAR10 than all other state of the art algorithms while requiring 25% less parameters

and an average of 6% higher accuracy on CIFAR100 than all other state of the art

algorithms using 10% less parameters. Further, VAE-EDA-Q demonstrated its profi-

ciency in exploring continuous latent space representation of features, which enables

randomized sampling and smooth interpolation over the manifold of high-quality so-

lutions within the feature space. Accordingly, we used VAE-EDA-Q as a wrapper
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method to reduce the number of features on results obtained from EcoSim [3].

Through the optimization of machine learning approaches employed within EcoSim,

several highly debated concepts were able to be resolved by modeling and examining

intricate relationships. The relationship between selective mating, speciation rate,

and extinction rate was one concept explicated through individual based computer

simulations that had previously lacked consonance based on empirical study. Sim-

ulations produced by EcoSim demonstrated a significant difference between sexual

selection and random selection as related to speciation rates, extinction rates, and

species turnover rates. Machine learning was employed to generate prediction rules

regarding rates of speciation and extinction for both sexual and random selection

groups. Within random selection, speciation was found to be significantly higher.

Animal alarm communication, as related to foraging behavior and fitness, was

another topic to be resolved through individual based modeling. Results demon-

strated alarm communication to decrease foraging activity in most cases, yet gradu-

ally increase foraging activity in the case of habituation. Furthermore, both outcomes

resulting from alarm communication were found to increase fitness as compared to

non-communication. Additionally, within alarm communication, fitness was found to

be higher within groups that displayed decreased foraging activity as compared to

groups that gradually increased foraging activity in response to habituation. Lastly,

machine learning was employed to discern features categorizing communicative or

non-communicative environments, from which conclusions could be formed about the

impact of communication on several factors related to a community of prey. Com-

munication was found to be important in cases of low population density and high

reproductive urgency in the context of low levels of fear. Communication was found

to be less important in the presence of high numbers of conspecifics. This study

highlights the interest of machine learning and individual based modeling as specific,
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intricate rules and resolutions were able to be determined through the testing of four

hypotheses.

As discovery progresses within the field of machine learning, the study of natural

systems is expected to advance to new territory. Future work proposed for the ad-

vancement of VAE-EDA-Q AVS involves dynamically altering the population queue

size in accordance with the state of iteration, as well as balancing the amounts of ex-

ploration and exploitation as the algorithm progresses [2]. Future extensions related

to sexual selection involve the examination of long-term evolutionary consequences.

Using a machine learning approach similar to that employed by authors in [4], dis-

tinct, specific evolutionary patterns relative to sexual selection and random mating

could be studied by altering the sexual selection policy. Long runs could be executed

to observe and compare short and long term patterns. Further, the same approach

could be applied to real ecological and paleontological data to generate rules for the

analysis of ecological and evolutionary effects of sexual selection in this capacity.

As related to the study of communication, future extensions propose to explore

the possibility of communication of other internal concepts such as curiosity and

satisfaction. Using the approach outlined in chapter 5, the relationship between these

concepts and other individuals and the environment could be elucidated. Further,

specific internal concepts such as hunger and chasing prey could be studied as effectors

of hunting behavior and fitness of predators. Advanced applications could examine

communication of entire subsets of internal concepts to ascertain effectual concepts

for survival and fitness.

These studies, and many similar, have harnessed the capability of individual based

modeling in conjunction with machine learning to reach outcomes that previously

required a lifetime to realize. The validation of the results with real-world observations

has confirmed the significance of their use.
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Step 1:  We begin with the above data which relates to a particular timestep of a particular run. 

Step 2: We find a combined index of popularity/importance of a given edge as follows: 

Index = ∑ (Edge Weight * Number of Individuals) 

Range of Edge 

weight 

Number of Individuals using the 

given edge (here CommDanger-

>Satisfaction) with given weight 

range 

(Here -1 to -0.6) 

 

 

Edges of FCM 

Appendix A
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The higher limit of an edge weight range is multiplied by the number of individuals using that 

edge. Thereafter we add the values for a given edge 

In the image below for the first row (CommDanger -> Fear) we find index as follows: 

Index  = (-1 * 42) + (-0.5 * 1740) +(0.5 * 1242) + (1 * 25) 

= 884.5 

This index is denoted as CD for CommDanger connections and CS for CommSafety 

connections 

 

 

Step 3: 

 

The combined index is calculated as CD - CS 
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