466 research outputs found

    Human Detection and Gesture Recognition Based on Ambient Intelligence

    Get PDF

    Towards Real-World Neurorobotics: Integrated Neuromorphic Visual Attention

    Get PDF
    Neural Information Processing: 21st International Conference, ICONIP 2014, Kuching, Malaysia, November 3-6, 2014. Proceedings, Part IIINeuromorphic hardware and cognitive robots seem like an obvious fit, yet progress to date has been frustrated by a lack of tangible progress in achieving useful real-world behaviour. System limitations: the simple and usually proprietary nature of neuromorphic and robotic platforms, have often been the fundamental barrier. Here we present an integration of a mature “neuromimetic” chip, SpiNNaker, with the humanoid iCub robot using a direct AER - address-event representation - interface that overcomes the need for complex proprietary protocols by sending information as UDP-encoded spikes over an Ethernet link. Using an existing neural model devised for visual object selection, we enable the robot to perform a real-world task: fixating attention upon a selected stimulus. Results demonstrate the effectiveness of interface and model in being able to control the robot towards stimulus-specific object selection. Using SpiNNaker as an embeddable neuromorphic device illustrates the importance of two design features in a prospective neurorobot: universal configurability that allows the chip to be conformed to the requirements of the robot rather than the other way ’round, and stan- dard interfaces that eliminate difficult low-level issues of connectors, cabling, signal voltages, and protocols. While this study is only a building block towards that goal, the iCub-SpiNNaker system demonstrates a path towards meaningful behaviour in robots controlled by neural network chips

    Learning Universal Computations with Spikes

    Get PDF
    Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them

    The Morse Code Room: Applicability of the Chinese Room Argument to Spiking Neural Networks

    Get PDF
    The Chinese room argument (CRA) was first stated in 1980. Since then computer technologies have improved and today spiking neural networks (SNNs) are “arguably the only viable option if one wants to understand how the brain computes.” (Tavanei et.al. 2019: 47) SNNs differ in various important respects from the digital computers the CRA was directed against. The objective of the present work is to explore whether the CRA applies to SNNs. In the first chapter I am going to discuss computationalism, the Chinese room argument and give a brief overview over spiking neural networks. The second chapter is going to be considered with five important differences between SNNs and digital computers: (1) Massive parallelism, (2) subsymbolic computation, (3) machine learning, (4) analogue representation and (5) temporal encoding. I am going to finish by concluding that, besides minor limitations, the Chinese room argument can be applied to spiking neural networks.:1 Introduction 2 Theoretical background 2.I Strong AI: Computationalism 2.II The Chinese room argument 2.III Spiking neural networks 3 Applicability to spiking neural networks 3.I Massive parallelism 3.II Subsymbolic computation 3.III Machine learning 3.IV Analogue representation 3.V Temporal encoding 3.VI The Morse code room and its replies 3.VII Some more general considerations regarding hardware and software 4 ConclusionDas Argument vom chinesischen Zimmer wurde erstmals 1980 veröffentlicht. Seit dieser Zeit hat sich die Computertechnologie stark weiterentwickelt und die heute viel beachteten gepulsten neuronalen Netze ähneln stark dem Aufbau und der Arbeitsweise biologischer Gehirne. Gepulste neuronale Netze unterscheiden sich in verschiedenen wichtigen Aspekten von den digitalen Computern, gegen die die CRA gerichtet war. Das Ziel der vorliegenden Arbeit ist es, zu untersuchen, ob das Argument vom chinesischen Zimmer auf gepulste neuronale Netze anwendbar ist. Im ersten Kapitel werde ich den Computer-Funktionalismus und das Argument des chinesischen Zimmers erörtern und einen kurzen Überblick über gepulste neuronale Netze geben. Das zweite Kapitel befasst sich mit fünf wichtigen Unterschieden zwischen gepulsten neuronalen Netzen und digitalen Computern: (1) Massive Parallelität, (2) subsymbolische Berechnung, (3) maschinelles Lernen, (4) analoge Darstellung und (5) zeitliche Kodierung. Ich werde schlussfolgern, dass das Argument des chinesischen Zimmers, abgesehen von geringfügigen Einschränkungen, auf gepulste neuronale Netze angewendet werden kann.:1 Introduction 2 Theoretical background 2.I Strong AI: Computationalism 2.II The Chinese room argument 2.III Spiking neural networks 3 Applicability to spiking neural networks 3.I Massive parallelism 3.II Subsymbolic computation 3.III Machine learning 3.IV Analogue representation 3.V Temporal encoding 3.VI The Morse code room and its replies 3.VII Some more general considerations regarding hardware and software 4 Conclusio
    • …
    corecore