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Abstract

Emotion recognition still poses a challenge lying at the core of the rapidly growing area of affective computing and is crucial for
establishing a successful human-computer interaction. Identification and understanding of emotions are achieved through various
measures, such as subjective self-reports, face-tracking, voice analysis, gaze-tracking, as well as the analysis of autonomic and
central neurophysiological measurements. Current approaches to emotion recognition based on electroencephalography (EEG)
mostly rely on various handcrafted features extracted over relatively long time windows of EEG during participants exposure to
appropriate affective stimuli. In this paper, we present a short-term emotion recognition framework based on spiking neural net-
work (SNN) modelling of Spatio-temporal EEG patterns. Our method relies on EEG signal segmentation based on detection of
short-term changes in facial landmarks, and as such includes no computation of handcrafted EEG features. Differences between
participants’ EEG properties are taken into account via subject-dependent spike encoding in the formulated subject-independent
emotion recognition task. We test our methods on the publicly available DEAP and MAHNOB-HCI databases due to the avail-
ability of both EEG and frontal face video data. Through an exhaustive hyperparameter optimisation strategy, we show that the
proposed SNN-based representation of EEG spiking patterns provides valuable information for short- term emotion recognition.
The obtained accuracies are 78.97% and 79.39% in arousal classification, and 67.76% and 72.12% in valence classification, on
the DEAP and MAHNOB-HCI datasets, respectively. Furthermore, through the application of a brain-inspired SNN model, this
study provides novel insight and helps in the understanding of the neural mechanisms involved in emotional processing in the
context of audiovisual stimuli, such as affective videos. The presented results encourage the use of the proposed EEG processing
methodology as a complement to existing features and methods commonly used for EEG-based emotion recognition, especially
for short-term arousal recognition.

Keywords: Spiking Neural Networks, Emotion Recognition, Affective Computing, EEG, Event Detection

1. Introduction

The interaction between humans and computational devices is becoming more and more common with the advent
of personal digital devices, wearable systems, and other technological interventions. The field of affective computing
(AC) combines computer science and emotion research to enable computational systems to identify the emotional
states of users (affect recognition) and to generate responses that humans are likely to perceive as emotional (affect
generation). It has also been argued that over time, it may be possible for systems to actually ”feel” emotions [1].
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The introductory work by Picard [1]. was followed by much research at the intersection of diverse fields such as
neuroscience, ethics, psychology, and engineering, among others. To this day, the work on AC has resulted in the
improvement of systems that are capable of interpreting, identifying, and responding to the emotional states of users.
For this purpose, affective computing makes use of various multimodal inputs such as facial images, i.e. facial expres-
sion, voice data, biometric data, e.g. physiological changes, and body language of the user. Computational models
termed as ”affect models” are then employed to make sense of these input parameters and identify the emotional state
of the user [2]. The significance of AC is on the rise, given the increased degree of human-computer interactions.
According to a recent study1, 95% of the American population now owns a cell phone of some kind among which
77% use a smartphone. To compare with, the percentage of smartphone users was 35% in 2011. Instead of the one-
sided interactions that humans normally expect from machines, utilising AC can make these systems respond in more
effective ways, making the whole technology experience more satisfactory to the user [3]. Devices often come with
built-in sensors that collect user data. The key challenge, lying at the core of AC is recognising the emotional state of
a person based on the available data.

Nowadays, AC is finding applications in various fields ranging from gaming [4], education and e-learning [5, 6]
to medicine [7, 8], wearable devices [9], robotics [10], etc. For example, research shows that effective computing
systems may aid in the diagnosis of seemingly hidden and unobservable medical conditions such as depression and
chronic pain [8]. Similarly, affective systems can provide more empathetic, personalised feedback to students, making
online learning more efficient [11]. As briefly stated earlier, in order to sense affective states, four types of inputs are
typically used: 1) facial expression recognition [12, 13, 14], 2) voice recognition [15, 16, 17], 3) gesture recognition
[18, 19] and 4) biometrics [20, 21, 22]. Various instruments are used to gather the aforementioned types of data,
like cameras, microphones, sensors and biometric devices (e.g. heart rate, blood pressure, skin conductance or elec-
troencephalography (EEG) measurements). The vast majority of AC research if focused on detailed analysis of the
collected data, in order to determine the emotional state of the user, where various machine learn- ing techniques have
been employed [17, 23, 24]. Affect models are usually trained on large datasets of relevant data so that they can then
be employed for emotion recognition and affect generation.

Various improvements in model architectures, feature selection methodology [20] and deep-learning-based data
representations have led to increases in emotion classification accuracies in the last years. However, exploration
of novel approaches and concepts in the analysis of human affect could add new information and thus complement
traditionally used approaches and features. As stated above, EEG is one of the well-established modalities in affective
research [12, 13, 25]. On the other hand, spiking neural networks (SNNs) have recently proven to be successful in
modelling, recognition and understanding of EEG Spatio-temporal data in a wide array of domains [26], as described
in section 2. Based on the importance of EEG in AC [25], as well as numerous EEG-based applications using SNNs
(described in section 2), in this paper, we adapt and apply the concept of evolving spiking neural networks (eSNN)
[27] and propose an SNN classification framework for EEG-based short-term emotion recognition.

Main contributions of our paper are:

• EEG signal segmentation strategy based on detection of changes in facial landmarks for short-term emotion
recognition (section 3.2).

• SNN-based framework for subject-independent short-term emotion recognition (section 4).

• Hyperparameter optimisation strategy for spike encoding and the dynamic evolving SNN (deSNN) data repre-
sentation (subsections 4.1.1 and 4.2.2).

• Comparison of emotion classification accuracies obtained by simple EEG spike-based features vs complex
SNN-based representation of EEG spiking patterns (section 5).

• Novel SNN-based insights related to the neural mechanisms involved in short-term emotional processing of
affective videos.

1https://www.pewresearch.org/internet/fact-sheet/mobile/
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2. Spiking neural networks

Human brains encode information via discrete events known as action potentials or spikes, following an all-or-
none principle, where a neuron fires a spike once the accumulated potential reaches a certain threshold, else it remains
silent. Due to this binary nature of information representation, the human brain still outperforms the traditional
artificial neural networks (ANNs) in terms of both energy and efficiency [28, 29]. Compared to the traditional ANNs,
SNNs utilise a more biologically plausible model of neurons [30], thus bridging further the gap between neuroscience
and learning algorithms. SNNs have shown the ability to integrate information encoded in time, phase, frequency, as
well as handle large volumes of data in an adaptive and self-organised manner [31], making them particularly suitable
for solving online Spatio-temporal pattern recognition problems. SNNs have been shown to be computationally more
efficient than ANNs, both theoretically [32, 33] and in several real-world applications [34]. SNNs have over the past
years proven to be successful in several real-world learning tasks such as unsupervised classification of non-globular
clusters [35], image segmentation and edge detection [36], as well as in various tasks related to modelling, recognition
and understanding of EEG Spatio-temporal data [37, 38, 39], such as Alzheimer’s disease classification [40], epilepsy
and epileptic seizure detection [41], predicting human behaviour during decision making [42], detection of limb
movement execution and intention for brain-machine interface (BMI) applications [43], classification of activities
of daily living [44], modelling of peri-perceptual brain processes [45], distinguishing brain states associated with
depression and responsiveness to Mindfulness Training [46], etc.

The evolving SNN, i.e. eSNN, is a class of SNN that utilises rank order learning [47] and was first proposed in [48].
In addition to the open evolving structure which facilitates the addition of new variables and neuronal connections
[49], eSNNs have the advantage of fast learning from large amounts of data and can interact with other systems
actively. eSNNs also allow the integration of various learning rules such as supervised learning, unsupervised learning,
fuzzy rule insertion and extraction, to mention a few, and are self-evaluating in terms of system performance. These
aforementioned properties constitute the evolving connectionist systems (ECOS) principles on which the eSNN is
based [50]. In the rank-order learning scheme, the synaptic weights are adjusted only once, making it not very efficient
for Spatio-temporal data, where there may be a need to adjust synaptic weights based on the spikes arriving on a given
synapse over time. To overcome this disadvantage, an extension of eSNN known as dynamic eSNN (deSNN) was
introduced in [31] that combines rank-order learning with temporal learning rules such as spike-timing-dependent
plasticity (STDP), which allows dy- namic adjustment of the synaptic weights (more details in subsection 4.2.2).
However, both eSNN and deSNN do not encapsulate the structural information of the brain in terms of neuronal
locations and their connectivity, which may be crucial for modelling of Spatio-temporal brain data (STBD), such as
EEG. The NeuCube architecture, first proposed in [51], aims at building an eSNN that incorporates structural as well
as functional aspects of the brain along with utilising the unsupervised STDP learning algorithm. Below we give a
brief introduction to the NeuCube architecture.

Traditional supervised learning methods such as support vector machines (SVM) or multilayer perceptron neural
networks (MLP) typically deal with the spatial or temporal aspects of brain data, but cannot handle the dynamic in-
teraction between these processes [38]. Furthermore, such models cannot incorporate any prior structural knowledge
of the brain in an unsupervised manner, or handle multimodal brain data, e.g. EEG, functional magnetic resonance
imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET). NeuCube is a specific imple-
mentation of an eSNN, initially proposed to handle pattern recognition problems related to STBD, but has further
been developed and modified in order to handle various other types of Spatio-temporal data such as audiovisual data,
climate data, seismic data and ecological data [26, 52]. The emotion recognition methodology proposed in this paper
is based on the NeuCube framework, which has been adapted and further developed for this specific task, particularly
in the directions of subject-specific spike encoding and hyperparameter optimisation (see section 4).

3. Data preparation

3.1. Datasets
Due to the high interest in EEG analysis for emotion recognition, several publicly available multimodal databases

have been established to this day, like DEAP [12], MAHNOB-HCI [13], SEED [53] or DREAMER [54], all of which
include EEG. In this paper, we use DEAP and MAHNOB-HCI databases due to their similarity and availability of
frontal face video data, which is needed for our event-detection-based signal segmentation.
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DEAP is a widely used dataset for multimodal emotion analysis, consisting of 32 subjects [13]. 32-channel
EEG and peripheral physiological signals, namely the galvanic skin response (GSR), electrooculogram (EOG), elec-
tromyogram (EMG), respiration, plethysmograph, electrocardiogram (ECG) and body temperature were recorded
during subjects’ exposure to 40 one- minute long affective music videos. After watching each video, each subject
rated their emotional experience in five dimensions: valence, arousal, dominance, liking and familiarity. The rating
values were on a continuous scale of 1-9, except for familiarity, which was rated on a discrete scale of 1-5. For 22 out
of the 32 subjects, the frontal video was recorded, so we used data from those 22 subjects only.

MAHNOB-HCI is a multimodal dataset consisting of 27 subjects which participated in two experiments [13].
In the first experiment, similarly to DEAP, each participant watched 20 emotional videos which were between 34.9
and 117 seconds long. Recorded signals included 32-channel EEG, peripheral physiology (ECG, GSR, respiration,
skin temperature), eye gaze data, audio data and video from 6 cameras recording facial expressions and head pose.
After watching each video, the participants gave an emotional label/tag to the video, as well as rated their emotional
experience in arousal, valence, dominance and predictability on a 1-9 scale. The second experiment was related to
implicit tagging and was not used in this work.

3.2. EEG segmentation based on the analysis of facial landmarks
In this section, we describe the signal segmentation procedure, which was used to detect moments of participants’

most intensive emotional engagement, based on detecting events in the time-varying facial landmarks. This step is
important due to several reasons:

• The differences in utterance lengths vary between DEAP and MAHNOB- HCI, as well as within the MAHNOB-
HCI database itself. With an event-based approach, we make sure all samples which are to be used for later
emotion recognition are of the same length.

• The self-assessed emotional experience of the participant is not uniformly distributed across the entire duration
of an emotional video but is more likely a result of one or more emotionally intensive events of shorter duration.
We aim to capture the occurrences of such events by the analysis of facial landmarks.

The facial-video-based event detection algorithm comprises the following steps, which were taken in both datasets:

1. In each frame of each video, the participant’s face was tracked. We have employed an implementation2 of the
Viola-Jones algorithm [55] to detect participant’s faces, noses, eyes, mouth, etc., in the first frame of the video.
This step outputs a region of interest (ROI).

2. ROI from the previous step is then tracked from frame to frame based on detection and tracking of specific
features by using a minimum eigenvalue feature detection algorithm developed by Shi and Tomasi [56] and a
Kanade–Lucas–Tomasi (KLT) feature tracking algorithm [57].

3. Each detected and tracked ROI from the previous step was used as input to a facial landmarks detection algo-
rithm3 [58]. Facial landmarks were 68 specific points on the face, such as mouth corners, eyebrow lines, eye
lines, etc., as shown in Figure 1.

4. Based on the detected and tracked 68 facial landmarks, we compute an array of 20 specific geometrical features
per frame, related to eyebrow, eye and lip positioning and shape, as described in [13].

5. The energy of time-varying geometrical facial features (see Figure 2, top) is calculated disregarding the 10
features based on eye landmarks (features f5 to f14 in [13]), as the eye-based features are very sensitive to
blinking. The obtained energy signal is shown in Figure 2, bottom.

6. A simple liner-slope-based match filter for detecting increases in the facial features energy signal is applied,
resulting in a detection signal (see Figure 2). A maximum in the detection signal marks the beginning of a
one-second-long event. Figure 3 shows the face of the participant at the beginning and ending of the first event
from Figure 2.

2The vision.CascadeObjectDetector object from Matlab’s Computer Vision Toolbox.
3The pretrained DLIB model for facial landmarks detection: http://dlib.net/files/shape predictor 6 face landmarks.dat.bz2
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Figure 1: Two examples of facial landmarks detection in the MAHNOB-HCI dataset.

7. EEG signal segmentation is finally performed based on the detected events from the previous step. EEG signals
were preprocessed using the TEAP toolbox [59], and all 32 available channels are used.

The described procedure resulted with a total of 224 samples for arousal classification and 224 samples for valence
classification from the DEAP dataset, and a total of 162 samples for arousal classification and 208 samples for valence
classification from the MAHNOB-HCI dataset. Data from participants with less than 5 samples per participant were
excluded from the analysis, resulting with a total of 214 samples for arousal classification (125 labelled positively)
and 214 samples for valence classification (112 labelled positively) from the DEAP dataset, and a total of 131 samples
for arousal classification (47 labelled positively) and 191 samples for valence classification (94 labelled positively)
from the MAHNOB-HCI dataset.

Figure 2: Detection of increases in facial activity. The top axes are showing the trajectories of facial features during a participant’s exposure to a
pleasant video. The bottom axes are showing the corresponding facial features energy signal (blue) and the detection signal (red). In this example,
three events were detected.
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Figure 3: An example of a change in the participant’s facial expression from the beginning to the ending of a detected emotional event.

The number of extracted samples, as well as the class distributions, are not equal for valence and arousal due
to our labelling strategy. For arousal, we used utterances which were labelled as either calm or excited/activated,
thus excluding medium arousal. Accordingly, for valence, we also selected 2 classes (pleasant and unpleasant), thus
excluding utterances labelled as neutral valence. This resulted with cases for which a participant rated his experience
as, e.g. pleasant and medium arousal, in which case the data is processed for valence analysis and not processed for
arousal analysis.

4. Emotion recognition methodology

In the following section, we describe our emotion recognition methodology based on SNN modelling of Spatio-
temporal EEG spike patterns. Accord- ing to recent reviews of various studies on emotion recognition from EGG
[25, 60], static features extracted on specific slices of EEG data dominate the research landscape. These are most
commonly related to spectral features, like changes in power over the theta, alpha, beta and gamma frequency bands
[12, 61, 62] and spectral power asymmetry measures in pairs of symmetrical electrodes [13, 62]. Besides the frequency
domain features, which are predominant, various time domain and nonlinear features have been investigated as well
[63], such as Hjorth features [64], fractal dimensions, entropy features etc. Regardless of the feature extraction
methodology, traditional approaches usually result in a static feature vector, thus usually well capturing the spatial
aspect (emerging from the electrode positions), but neglecting the dynamical Spatio-temporal nature of EEG patterns.
Time-frequency domain features are currently the only tool used to capture these dynamical changes in EEG [65].
With our work, we aim to leverage the Spatio-temporal nature of EEG in emotion recognition by investigating the
concept of spike encoding and SNN modelling of EEG. Therefore, we focus only on the comparison of the predictive
power of simple spike-based features and complex SNN based Spatio-temporal spike-patterns in the task of EEG
based emotion recognition. Accordingly, the possibility of enhancing the predictive power by the integration of EEG-
spike-based features with traditional static features described earlier exceeds the scope of our work.

Figure 4: Illustration of the proposed SNN computational architecture for EEG-based emotion recognition.
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The proposed SNN-based framework for subject-independent emotion recognition includes the following process-
ing steps (illustrated in Figure 4):

1. Subject-specific spike encoding of short-term EEG recordings obtained by the segmentation strategy described
in section 3.2.

2. Unsupervised learning of a brain-like 3-D SNN reservoir (SNNr) module, based on STDP learning.

3. deSNN representation of Spatio-temporal spiking patterns obtained from the trained SNNr, given a specific in-
put spike sequence. The obtained representation forms a static vector which is suitable as input to any traditional
supervised learning algorithm (e.g. SVM, ANN, kNN, etc.).

4. Feature selection and supervised learning for emotion recognition from the representation obtained in the pre-
vious step.

4.1. Spike encoding
In an SNN-based architecture, information is processed in the form of binary spiking events. Accordingly, all 

continuous variables first need to be encoded into spike trains, shown as the first step in  Figure 4.  In  this paper, by 
spike encoding, we namely focus on temporal spike encoding methods where spike timings usually mark changes in 
the signal value over time [66]. This approach is driven by a biologically plausible view that precise relative spike 
timing encodes information [67]. Most of the commonly used encoding algorithms [52], such as threshold-based 
representation (TBR), step-forward (SF) encoding, moving-window (MW) encoding, or the Bens Spiker Algorithm 
(BSA) [68], rely on tracking the temporal changes in the signal, which then represent the exact timing of spikes. Such 
algorithms produce a bipolar spike sequence, where positive changes in signal value (increases) result with positive 
spikes, and negative changes in signal value (decreases) result with negative spikes.

In this paper, we transform the EEG data into spike trains using the relatively simple version of TBR [69, 70]. The 
method is based on thresholding the rate of change of an input variable over time and is suitable when the input data is 
a stream, which is the case with EEG. The algorithm is based on the variable threshold value that is calculated for 
each of the 32 input data channels. The variable threshold array is calculated for each channel, as the signal dynamics 
and value ranges can vary between the input channels. For each of the input channels, the variable threshold is 
calculated based on one scalar input parameter (αT R) in the following way:

VT (k) =
1
N

N∑
i=1

(
µ + σ · αTR

)
(1)

where N is the number of samples, T is the signal length (number of time points per data sample), and k goes from
1 to the number of channels Ninput = 32. αTR is the spike threshold parameter, µ is the sample mean rate of change
in the signal, σ is the sample standard deviation of the rate of change in the signal, and VT is the resulting variable
threshold array. Equation (1) represents the threshold value for the k-th input channel. At each time point where the
k-th input channel signal difference (rate of change) exceeds the corresponding variable threshold, a positive spike is
generated. Accordingly, inhibiting, i.e. negative, spikes are generated when the rate of change exceeds the variable
threshold in the negative, i.e. decreasing, direction. Algorithm 1 sums up the spike encoding procedure in a compact
algorithmic form.

In affective applications, such as the subject-independent emotion recognition, the encoding algorithm should
ideally provide similar spike trains for similar emotional states, regardless of the high inter-subject variability in the
collected EEG signal properties. Therefore, the encoding procedure described in algorithm 1 is utilised in a per-subject
fashion, with µ and σ being estimated separately for each subject.

4.1.1. Optimisation of the spike encoding method
Spike encoding is the first link in the SNN processing chain. Choosing the appropriate spike encoding method,

with the optimal hyperparameters, in our case αTR, is extremely important, in order to retain the task-relevant in-
formation. The spike encoding can therefore be seen both as a primary information compression as well as a noise

7
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Algorithm 1: Spike encoding: fencode : RT×Ninput→{−1, 0, 1}T×Ninput

Require: Xin ∈ RT×Ninput , {hyperparameters := αTR}

Ensure: Xout ∈ {−1, 0, 1}T×Ninput

1: N ← #(Xin) {number of data samples in the dataset}
2: for k = 1 to Ninput do
3: VTk ← 0
4: for i = 1 to N do
5: x← channel k of the i-th sample in Xin

6: x′ ← |δx|
7: µ← mean(x′)
8: σ← st.dev.(x′)
9: VTk ← VTk + (µ + σ · αTR)

10: end for
11: VTk ←

VTk
N

12: end for
13: for k = 1 to Ninput do
14: for i = 1 to N do
15: x← channel k of the i-th sample in Xin

16: x′ ← δx
17: xout ← 0T×1

18: for j = 2 to T do
19: if x′j > VTk then
20: xout( j) ← 1
21: else if x′j < −VTk then
22: xout( j) ← −1
23: end if
24: end for
25: store spike train xout in Xout for channel k, sample i
26: end for
27: end for

elimination step. Inadequate spike encoding algorithm can result with either loss of useful information on one end
(high αTR), or high levels of information noise on the other end (low αTR), as shown in Figure 5. The problem of
selection and optimisation of temporal spike encoding algorithms for SNNs has been most recently tackled in [66]. An
exhaustive approach should evaluate the effectiveness of the encoding within the context of the entire SNN processing
and classification framework, i.e. the encoding algorithm is optimised according to the output of the whole SNN
system, e.g. classification accuracy [71]. The computational cost of such an approach would be extremely high, due
to the need for simultaneous optimisation of all SNN system hyperparameters, thus making the approach infeasible.
Another approach is to try and optimise the encoding step by itself, via application of the corresponding decoding
algorithm and trying to minimise some error metric between the original and reconstructed signal, as in [66]. This
approach neglects the classification task context, thus lacking final validation in terms of the obtained classification
performance.

In this paper, we propose a compromise approach: we optimise the encoding method by itself, due to the already
stated computational infeasibility of taking into account the rest of the SNN system, while we still take into account
the specific classification problem, i.e. binary emotion classification in terms of valence and arousal. In order to avoid
evaluating the performance of the entire SNN system, we calculate an array of simple spike-based features based on
statistical descriptives and the widely used rate coding scheme [72]. For each of the 32 EEG channels, encoded into
spike trains as described in the previous subsection, we calculate the following 6 features:

• firing rate of positive spikes,

• firing rate of negative spikes,

• median timing difference between consecutive positive spikes,
8
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Figure 5: Spike trains resulting from different AER threshold parameter (αTR) values. Lower αTR yields a dense spike train with a tendency to
encode changes which are most likely on the level of noise, while high αTR value yields a sparse spike train with only major changes in signal value
being encoded as spike events.

• median timing difference between consecutive negative spikes,

• interquartile range of timing differences between consecutive positive spikes,

• interquartile range of timing differences between consecutive negative spikes.

We use a simple definition of firing rate as the temporal average, i.e. the number of spikes divided by the corre-
sponding time interval duration (in our case 1 second for all data samples). Each sample is therefore described by
32 · 6 = 192 simple rate-coding-based and statistical features. Datasets are formed for an array of different αTR values
(ranging from 0.5 to 5, with a step of 0.5), standardised, and then tested for their task-relevant discriminative power.
The used performance metric is the cross-validated classification error obtained with an optimised Inf-FS feature
selection algorithm [73, 74] and an RBF-SVM classification algorithm. This metric employs a simple and generic
feature selection and machine learning approach in order to estimate the maximum cross-validated nonlinear class
separation that can be obtained by the calculated features. For each αTR value, a non-convex Bayesian optimisation
approach was employed in order to find the values of the remaining hyperparameter values:

• αFS : Inf-FS parameter representing the trade-off between feature dispersion and feature correlation, which are
the basis of the Inf-FS feature ranking algorithm (range set to [0, 1]),

• nFS : number of selected features, based on the obtained feature ranking (range set to [1, 50], integer grid),

• C: RBF-SVM parameter (range set to [10−3, 103], logarithmic grid),

• σ: RBF-SVM parameter (range set to [10−3, 103], logarithmic grid),

which maximize the leave-one-subject-out (LOSO) cross-validation accuracy. Matlab function bayesopt was used,
with 500 objective evaluations and a 0.5 exploration ratio. Algorithm 2 sums up the spike encoding optimisation
procedure in a compact algorithmic form.

Algorithm 2 has been applied to the tasks of arousal and valence classification, on both DEAP and MAHNOB-
HCI, and the results of the spike encoding optimisation are shown in Figure 6. Threshold value αTR = 1.5 yields the
most informative spikes for both arousal and valence classification. Such a result can be interpreted in the context of
the behaviour of the encoding algorithm illustrated in Figure 5.

9
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Algorithm 2: Optimisation of the spike encoding threshold parameter αTR

Require: Xin ∈ RT×Ninput , y ∈ RNsamples×1

Ensure: αTR,opt.

1: αTR,range ← {0.5k, k ∈ {1, 2, ..., 10}} {search range for αTR}

2: Nsearch ← #(αTR,range) {from the above: #(αTR,range) = 10}
3: CVloss ← 0Nsearch×1 {initialise objective array}
4: αFS ,range ← [0, 1]) {search range for αFS }

5: nFS ,range ← [1, 50]) {search range for nFS , integer}
6: Crange ← [10−3, 103]) {search range for C, logarithmic grid}
7: σrange ← [10−3, 103]) {search range for σ, logarithmic grid}
8: for i = 1 to Nsearch do
9: X ← fencode(Xin, αTR,range(i)) {spike encoding, see algorithm 1}

10: calculate X f eatures ∈ RNsamples×192 based on X {features described in section 4.1.1}
11: CVloss(i)← Bayesopt(X f eatures, y, αFS ,range, nFS ,range,Crange, σrange) {cross-validated classification error, other

hyperparameters described in 4.1.1}
12: end for
13: imin ← index of smallest element in CVloss

14: αTR,opt. ← αTR,range(imin)

4.2. Spiking neural network processing

4.2.1. 3D SNNr module
Once the EEG data has been encoded for each subject, the obtained sparse spike trains are used to train a 3D SNNr

with Nr = 1471 leaky integrate and fire (LIF) model neurons. Each neuron has a predefined 3D spatial coordinate,
according to the Talairach template coordinates from [75], resulting with a brain-like shape. Accordingly, input spikes
are passed over to the SNNr at the neuron locations corresponding to the mapping of 32 EEG channels, as shown in
Figure 7.

The connections between the neurons in the SNNr are initialised using the small-world connectivity (SWC) ap-
proach [37], where a radius is defined as a parameter for connecting neurons within this radius, i.e. small-world
radius (SWR). This results in an SNNr of sparsely connected neurons. After initialisation, the connection weights

Figure 6: Class separation performance metrics for different αTR values, using both datasets: arousal classification (left) and valence classification
(right). Optimal αTR value is indicated by an asterisk.
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Figure 7: 3D SNNr structure, according to the Talairach template coordinates. Yellow neurons are considered input neurons, and correspond to the
mapping of 32 EEG channels.

W(i j) between the pairs of connected neurons (i j) are determined based on the following expression:

W(i j) = sgn
(

rand(1) − 0.2
)
· rand(1) ·

1
Ldist(i j)

, (2)

Where rand(1) generates a pseudorandom from a uniform distribution on the open interval (0, 1), and Ldist(i j) represents
the distance between neurons i and j. The equation above results with an expectation of 80% positive weights and
20% negative weights (in matrix W).

The STDP learning rule [76] is applied that allows the SNNr to adapt the connection weights based on the Spatio-
temporal associations between the input-driven spikes. The used STDP algorithm relies on the following hyperpa-
rameters:

• D (potential leak rate): the rate of potential passive degradation through inactivity,

• R (refractory time): determining a period of resting between spikes,

• η (STDP rate): learning rate, used for weight updating,

• β (firing threshold): potential threshold for generating a spike,

• Niter: number of training iterations,

and with the specific steps described in Algorithm 3.

4.2.2. deSNN representation
As an output representation of the SNNr-based spike sequences we used the deSNN algorithm [31]. The method

combines the simple rank-order (RO) learning rule [47] and the STDP-based activation of the neurons in the previously
trained SNNr (as described in Algorithm 3). In the previous section, we have described how the spike trains can be
used to train the SNNr in an unsupervised manner. However, the SNNr now operates as an activation module, meaning
that the new input spike trains are propagated through the trained SNNr, generating a complex Spatio-temporal neuron
activation pattern. This pattern is used to generate (evolve) the output neurons, i.e. the deSNN representation. The
algorithm hyperparameters are:

• αdeSNN: main deSNN hyperparameter that determines the output value based on the first spike occurrence of the
corresponding SNNr neuron,

• d(drift): used for output update on the subsequent spikes of the corresponding SNNr neurons.
11
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Algorithm 3: Unsupervised SNNr weight learning: fS T DP

Require: Cinit ∈ {0, 1}Nr×Nr ,Winit ∈ RNr×Nr , S in ∈ {−1, 0, 1}T×Ninput×Nsamples {hyperparameters := D,R, η, β,Niter}

Ensure: Wout : RNr×Nr

1: χ← [1, 2, ...,Nr] {all neuron indices}
2: Pk ← 0, ∀k ∈ χ {initialize neuron potentials}
3: Rk ← 0, ∀k ∈ χ {initialize neuron refractory time counters}
4: find inputneuron indices ι ⊂ χ
5: for niter = 1 to Niter do
6: η′ ← η

√
niter

7: for i = 1 to Nsamples do
8: s← T × Ninput spike matrix of the i-th sample in S in

9: for t = 1 to T do
10: find f iringneuron indices τ = { f iringneurons in ι} ∪ {k ∈ χ \ ι, Pk > β}

11: for all j ∈ τ do
12: find post synaptic neuron indices γ
13: for all k ∈ γ and Rk = 0 do
14: Pk ← Pk + w jk {update potential}
15: end for
16: end for
17: Pk ← 0,∀k ∈ τ {reset potential}
18: Rk ← R,∀k ∈ τ {reset refractory counter}
19: Pk ← max(0, Pk − D),∀k ∈ χ \ ι \ τ
20: Rk ← max(0,Rk − 1),∀k ∈ χ \ ι \ τ
21: for all j ∈ τ do
22: find post synaptic neuron indices γ
23: for all k ∈ γ do
24: w jk ← w jk − η(t − t f

k )
25: end for
26: find pre synaptic neuron indices γ
27: for all k ∈ γ do
28: w jk ← w jk + η(t − t f

k )
29: end for
30: end for
31: end for
32: end for
33: end for

From the deSNN procedure, described in Algorithm 4, it can be seen that the static output representation of the
Spatio-temporal SNNr-based spiking patterns highly depends on the selection of the method’s hyperparameters αdeSNN
and d.

5. Experiments

In [37] it has been suggested to repeat the processing steps described in sections 4.1.1, 4.2, and 4.2.2 for different
hyperparameter values in order to optimise the final classification performance in the supervised learning step. Taking
into account the entire proposed methodology, this includes the following hyperparameters: αTR for spike encoding;
S WR, D, R, η, β and Niter for STDP-based unsupervised learning of the SNNr; αdeSNN and d for the deSNN repre-
sentation; and finally αFS , nFS , C and σ for the supervised learning step, which includes feature selection and an
RBF-SVM classifier. This makes a total of 13 hyperparameters that should be simultaneously optimised in an exhaus-
tive procedure where each iteration includes data preprocessing, STDP-based learning as well as cross-validation of
the obtained output representation. However, STDP-based training of SNNs is computationally very expensive and
accounts for the most significant proportion of the total execution time.

12
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Algorithm 4: Output deSNN representation: fdeS NN

Require: W ∈ RNr×Nr , sin ∈ {−1, 0, 1}T×Ninput

{hyperparameters := α, d}
Ensure: WdeS NN ∈ R1×Nr

1: WdeS NN ← 01×Nr {initialize representation to 0}
2: F ← 01×Nr {initialize the neuron firing flags}
3: c← 0 {initialize the neuron firing order counter}
4: S cube ← propagate sin through the SNN defined by W {S cube is a sparse Nr × T matrix of all neuron firings for the entire

sample duration length T }
5: for i = 1 to T do
6: for j = 1 to Nr do
7: if S cube(i, j) = 1 then
8: if F( j) = 0 then
9: {neuron fires for the first time}

10: WdeS NN( j)← αc

11: F( j)← 1
12: else
13: WdeS NN( j)← WdeS NN( j) + d
14: end if
15: c← c + 1
16: else
17: WdeS NN( j)← WdeS NN( j) − d
18: end if
19: end for
20: end for

In order to mitigate the computationally expensive STDP-based step, we optimise the encoding hyperparameter
αTR via a compromise approach described in section 4.1.1, outside of the SNN context, while still taking into account
the classification task performance. Parameter αTR = 1.5 is identified as optimal for both the arousal and valence
classification tasks. For the STDP-based training of the SNNr module, we use a set of previously identified hyperpa-
rameters [40]: S WR = 2.5, D = 0.002, R = 6, η = .001, and β = 0.5, in order to avoid training the SNNr at each
step of the deSNN and supervised learning hyperparameter optimisation. Niter was set to 5, due to the relatively small
amount of available EEG data. This parameter has to be taken with caution as high values may cause over-training
of the SNNr [37]. The resulting brain-like SNNr connectivity can be visualised, analysed and interpreted for a better
understanding of the EEG data and relative involvement of various brain regions. Figure 8 shows the emerging SNNr
connectivity, obtained by using data with different emotional labels.

For each of the 4 available subtasks, i.e. arousal and valence classification with DEAP and MAHNOB-HCI, a
Bayesian optimisation approach is utilised in order to identify the optimal set of the 6 remaining hyperparameters.
αFS , nFS , C and σ are optimised using the same ranges as in section 4.1.1. The range for αdeSNN was set to [10−2, 2],
and range for d was set to [10−3, 1]. At each iteration both simple spike-based features from section 4.1.1, as well as the
deSNN-based features, were fed to the feature selection and LOSO cross-validated RBF-SVM evaluation, in search
of the maximum accuracy. The idea was to test the added value of deSNN-based features in terms of classification
accuracy improvement. Results are summed up in Table 1.

The upper half of Table 1 is based on the results obtained in section 4.1.1 (Figure 6), while the lower half sums
up the results of deSNN optimisation procedure described in this section. The addition of optimised deSNN repre-
sentation to the feature set significantly increased the maximal obtainable accuracy in arousal classification, for both
datasets. In terms of valence classification, accuracy was slightly improved for DEAP, but not for MAHNOB- HCI.
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Figure 8: Connectivity of 4 different SNNr modules. Each SNNr is obtained by using the combined data from both DEAP and MAHNOB-HCI,
labeled as either low or high in terms of either arousal or valence. For each SNNr two 3-D plots from different angles are given: the left plot
shows frontal and left side of the brain, while the right plot shows the back (posterior) and right side of the brain. Neurons are plotted with a slight
transparency in order to better highlight the 3D nature of the emerged connections. 500 strongest connections are displayed for each SNNr, with
thicker lines denoting stronger connections. Brighter neurons are more active.

6. Discussion

The obtained results demonstrate how complex SNN-based Spatio-temporal modelling of EEG spiking patterns
can provide additional information value able for short-term emotion classification. Such SNN-based information was
shown to be particularly useful for short-term arousal classification, and not as much for valence.

The main advantage of the described procedure is straight-forward spike-based processing of EEG, as opposed
to the need for extraction of handcrafted features in case of the most classical methods, as well as the ability to
capture information hidden within the complex Spatio-temporal EEG spiking patterns on relatively short time frames.
Furthermore, the addition of subject-specific spike encoding, which is crucial in order to successfully develop subject-
independent SNN-based decision systems, as well as the proposed hyperparameter optimisation strategy is an added
value to the original NeuCube framework. Hopefully, this will open up additional paths and opportunities for further
utilisation of brain-like SNN models in various subject-independent classification tasks.

Table 1: Comparison of the obtained optimized LOSO cross-validation accuracies.

Feature set Task Dataset Accuracy

Simple spike-bassed
features

Arousal DEAP 0.6384
MAHNOB-HCI 0.7593

Valence DEAP 0.6473
MAHNOB-HCI 0.7212

Simple spike-bassed
features + deSNN

Arousal DEAP 0.7897
MAHNOB-HCI 0.7939

Valence DEAP 0.6776
MAHNOB-HCI 0.7068
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From the spike-only-based ”comparison approach” (Table 1) emerge both the strengths and limitations of this
study. This approach demonstrates that the addition of deSNN features, which are a representation of Spatio-temporal
SNNr spiking patterns, to simple non-SNN-related spike features improves the classification performance. In con-
trast to traditional approaches, an SNN-based emotion classification framework presented in this paper can help in
better understanding of short-term emotional processing. From Figure 8, it can be seen that the left side of the brain
dominates in terms of connectivity strength, i.e. activation, in particular regions corresponding to the temporal lobe,
amygdala and the occipital lobe. This result is not surprising, since both DEAP and MAHNOB-HCI induce emotions
by means of emotional videos, which requires visual processing (occipital lobe) as well as the processing of language
(temporal lobe). Additionally, it is well known that the amygdala, located in the medial temporal lobe, plays one of
the key roles in general emotional processing [77]. The dominance of the left side most likely emerges from the dom-
inance of the left temporal lobe in most people. For example, the lateral sulcus, area considered to be highly involved
in language function, is longer on the left than on the right side of the brain [78]. Additionally, the posterior views on
the obtained connectivities from Figure 8 suggest that occipital lobe plays the most significant role in the processing
of high arousal. This might indicate that the visual portion of the affective stimuli plays the most significant role in in-
ducing high emotional arousal. Due to the indirect presence of the EEG data from all subjects in both the training and
validation, as a result of a single unsupervised SNNr training for each of the 4 subtasks, the reported accuracies likely
overestimate the true predictive power of framework, and as such call for future work, with bigger amounts of data.
Given that, as well as the hyperparameter optimisation strategy described in section 5, Table 1 should rather serve as
a demonstration of ”added value” in comparison to the classical non-SNN- related spike-based features. Additionally,
analysis of the deSNN features in the context of the traditional time- or frequency-domain EEG features would be a
useful but exceeds the scope of our work as such features do not match the idea of biologically inspired spike-based
processing of EEG. However, the proposed approach should not be considered only in terms of the obtained classifi-
cation performance, which is the case in most traditional ”black box” emotion recognition models. One of the main
advantages of this approach is in the understanding of the induced and recognised emotions through a brain-inspired
SNN model, as shown in Figure 8 and discussed above.

7. Conclusion

To conclude, the paper for the first t ime i ntroduces a  b rain-inspired S NN a rchitecture t o r ecognise, a nd most 
importantly, to explain for a better understanding, EEG data measuring two basic emotions: arousal and valence. The 
patterns obtained after deep learning in the SNN architecture are interpreted in terms of brain activities of subjects. 
The proposed method can manifest fast, incremental and transfer learning on new data related to emotions that make 
it suitable for further study and for real-time emotion recognition systems. Future work will involve improved SNN 
hyperparameter optimisation and better visualisation of the brain- structured SNN during and after learning for a 
better understanding of brain processes related to emotional processing in humans.
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