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Abstract. Neuromorphic hardware and cognitive robots seem like an obvious fit,

yet progress to date has been frustrated by a lack of tangible progress in achieving

useful real-world behaviour. System limitations: the simple and usually propri-

etary nature of neuromorphic and robotic platforms, have often been the funda-

mental barrier. Here we present an integration of a mature “neuromimetic” chip,

SpiNNaker, with the humanoid iCub robot using a direct AER - address-event

representation - interface that overcomes the need for complex proprietary proto-

cols by sending information as UDP-encoded spikes over an Ethernet link. Using

an existing neural model devised for visual object selection, we enable the robot

to perform a real-world task: fixating attention upon a selected stimulus. Results

demonstrate the effectiveness of interface and model in being able to control the

robot towards stimulus-specific object selection. Using SpiNNaker as an embed-

dable neuromorphic device illustrates the importance of two design features in a

prospective neurorobot: universal configurability that allows the chip to be con-

formed to the requirements of the robot rather than the other way ’round, and stan-

dard interfaces that eliminate difficult low-level issues of connectors, cabling,

signal voltages, and protocols. While this study is only a building block towards

that goal, the iCub-SpiNNaker system demonstrates a path towards meaningful

behaviour in robots controlled by neural network chips.

Keywords: cognitive, robotics, attention, neuromorphic

⋆ Alexander Rast and Steve Furber are with the School of Computer Science, The Univer-

sity of Manchester, Manchester, UK (email: rasta@cs.man.ac.uk). Samantha Adams, Thomas

Wennekers and Angelo Cangelosi are with Plymouth University, Plymouth, UK. Francesco

Galluppi is with the Institut de la Vision, Paris, France. José-Antonio Pérez-Carrasco is with
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1 Introduction: The Need for Practical Neuromorphic Robotics

(a) Real iCub (b) Simulated iCub (c) SpiNNaker chip

Fig. 1: The iCub Robot and SpiNNaker chip

Neural networks seem like an obvious fit for robots. Indeed, behavioural roboticists

assert, with some justification, that embodiment matters: it is not enough, to achieve

meaningful behaviour, to implement a neural network as an abstract “disembodied

brain” operating on synthetic stimuli in an artificial environment [11]. Within neuro-

robotics itself, advances in understanding of the neurobiology have many researchers

suggesting that neural models more closely matching the biology [1] may more clearly

reveal the computational principles necessary for cognitive robotics while illuminating

human (and animal) brain function. Critically, some neurobiological experiments sug-

gest that spike-based signalling is important at the cognitive/behavioural level as well as

in learning [12]. If this is true perhaps spike-based neurorobots can embody behavioural

features that seem intractably hard without neural hardware [7]. However, until now, in

practice most neurorobotic systems, e.g. [3] have simulated the neural component on an

external host PC due to internal hardware constraints or incompatible interfaces. Both

the hardware [4] and the robotic systems [2] have now reached a point of maturity where

integrated neurorobots able to demonstrate effective behaviour in nontrivial real-world

scenarios are within reach. Our aim is to create such a system in a way that both fulfils

the long-held promise of practical neurorobotics and illustrates their potential to act as

a tool for neurobiological experimentation. Here we introduce a system integrating 2

mature platforms over a direct interface: the humanoid iCub robot (Figs. 1a, 1b) and the

embeddable neuromimetic SpiNNaker chip (Fig. 1c) to solve a behaviourally relevant

task: goal-directed attentional selection.

2 Test Materials and Methods

There are 3 main components to our test system: the iCub robot and its associated

support systems, the SpiNNaker system with its AER interface, and the network model.



2.1 Neural Model

Fig. 2: The test model. The input retina layer is a real or simulated visual field taken

either from the preprocessed robot imaging system or from a software image generator.

Each of layers V1, V2, V4, and PFC are separated into 4 orientations per layer. Layer

LIP merges orientations via a winner-take-all.

As a test network, we use the attentional model of F. Galluppi, K. Brohan, et al. in

[5]. We chose this network because it exhibits realistic real-world behaviour in a non-

trivial task while remaining simple, proven, and scalable. The network (Fig. 2) has 6

layers roughly corresponding to selected brain areas. We retained the original network

parameters and sizes: 16×16 neuron visual field, 10×10 image maps in 4 orientations

for both V1 and V2, and 5× 5 location fields for V4, PFC, and LIP. However we made

the following modifications/additions to the network:

1. We sharpened the winner-take-all filtering in the LIP of the original model.

2. We extended the input stimulus to allow testing with either real or synthetic sources.

3. We inserted an automatic parameter scaling module in the PyNN script.

4. We added an option to enable STDP learning between the V2 and V4 layers.

2.2 SpiNNaker

The SpiNNaker chip (Fig. 1c) is a universal neural network platform designed for real-

time simulation with an array of programmable cores operating in parallel over a con-

figurable asynchronous multicast interconnect. While the typical neuromorphic device

implements a fixed model, SpiNNaker can be easily programmed by users with a wide

range of different models. Inter-processor communications occur exclusively through

Address-Event Representation (AER) spikes: small packets carrying only the address

of the neuron that spiked (and possibly a 32-bit data payload).

To interface to SpiNNaker, external devices (such as the robot) send spikes rather

than pass data structures directly. This conveniently and data-efficiently abstracts away

internal processing particulars on both sides of the interface. SpiNNaker supports the

AEtheRnet general-purpose direct AER interface [10], transmitting up to 256 spikes per



frame as 32-bit words via UDP over an Ethernet connection. We enhanced the original

AEtheRnet interface with additional support for multiple (up to 6) input and output

devices (spike sources and spike receivers) and an internal software router to allow

multicast of output spikes to multiple devices simultaneously.

2.3 iCub

iCub is a flagship humanoid developmental robotics platform [8]. See Fig. 1. There has

been a limited amount of research implementing spiking neural networks for control

of the iCub, such as the work of Bouganis and Shanahan [2] and the iSpike library

developed by Gamez, et al. [6]. These have relied on a host PC to run the neural network

whereas our aim is direct execution on neuromorphic hardware.

We use YARP (Yet Another Robot Platform) for a communications protocol and

also Aquila - an easy-to-use, high-performance, modular and scalable software archi-

tecture for cognitive robotics [9]. In particular we use the Tracker module for extraction

of objects from the scene and basic image processing, transforming the 240x320 RGB

raw image from a single iCub camera into a downsampled 16x16 image of black and

white pixels which are then converted to spikes by mapping “ON” pixels to spike out-

puts. We also use the iCubMotor module which converts image coordinates into head

motor movements to enable the iCub to look at a location corresponding to a point in a

2D image. We then configured the iCub as a virtual AEtheRnet device with a bidirec-

tional link which maps iCub camera input to the two input layers and receives spikes

from the LIP output layer.

3 Results

We ran 4 experiments. Experiment I was a simulation using synthetic visual inputs to

develop an initial weight tuning for the network. Experiments II, III and IV tested the

ability of the network (with optimised weights, STDP off), and the iCub robot, to locate

and attend to the location of a preferred object when it was the only object present and

when two objects (one preferred and one aversive) were present in the scene.

3.1 Experiment I

To explore the weight parameters of the network, we first ran a set of preliminary tests

using the synthetic stimulation model noted in 2.1. The stimulus (3a) was a pair of black

horizontal and vertical bars with slow upwards and rightwards motion respectively. We

successively tuned the spike outputs for each of layers V1, V2, V4, and LIP to re-

spond just below its continuous spiking threshold - at the point of maximum sensitivity

(Fig. 3). As can be seen in Fig. 3f, when correctly tuned the output LIP layer was able,

with synthetic inputs, to narrow its output (area of visual fixation) to a single neuron.

3.2 Experiment II

In this experiment we tested the ability of the robot to attend to single stimuli (either a

horizontal or vertical object). Figure 4 shows the raw and preprocessed input. Figure 5



(a) Input Stimulus (b) V1 spikes. winv1=24 (c) V2 spikes. wv1v2=15

(d) PFC spikes.

wpfcv4=0.0915
(e) V4 spikes. wv2v4=3.275 (f) LIP output. wv4lip=25

Fig. 3: Synthetic input and spike raster plots for each layer. The x-axis is time. Neuron

numbers are depicted on the y-axis in ascending order, by orientation first, then by row,

then by column. For each layer other than LIP, each orientation is 1

4
of the population.

The LIP layer has only one combined orientation. Neuron 18 thus corresponds to the

neuron at row 4, column 4 in the output field.

shows the LIP maps (fixation frequency by location) produced. The maps show spike

count over a 1 second run (normalised so that values lie between 0.0 and 1.0) with

lighter coloured areas indicating higher saliency. In both cases the network is able to

determine whether the object to left or to the right is the preferred object.

3.3 Experiment III

In this experiment we tested the ability of the robot to attend to one object when both

were present in the scene. Figures 4g and 4h show the input stimulus in this case. Figure

5c shows the LIP saliency map (attentional preference) produced when the horizontal

object is preferred and the vertical object is aversive and Fig. 5d the LIP map when the

vertical object is preferred and the horizontal is aversive. In both scenarios, although

there is activity produced for both objects, the network is able to determine which one

is the preferred object and thus the more active location. Table 1 compares the estimated

mean firing rates in both scenarios for the V2 and V4 layers and shows the effect of the

biasing of V4 by the PFC. In the V2 layer there is very little discrimination between

the preferred and aversive stimuli but in V4 the activity of the preferred stimulus is

amplified and that of the aversive stimulus is suppressed.



(a) Raw input,

horizontal

(b) Aquila view,

horizontal
(c) Processed view,

horizontal

(d) Raw input, vertical
(e) Aquila view, vertical (f) Processed view,

vertical

(g) Raw Camera Input
(h) Aquila Saturation

mask View

(i) Attended locations

superimposed

Fig. 4: iCub camera view and Aquila saturation masks for objects taken separately and

together. Downsampled black and white images for the horizontal and vertical objects

(top). Superimposed attended location map (bottom right).

(a) Horizontal

object only

(b) Vertical object

only

(c) Horizontal

object preferred

(d) Vertical object

preferred

Fig. 5: LIP saliency maps for Experiment II (single stimuli) and Experiment III (dual

stimuli)



Table 1: Estimated mean firing rates (Hz) in V2 and V4 for dual stimuli

Preferred Aversive V2 (unbiased) V4 (biased)

P A P A

Vertical Horizontal 8.04 7.63 55.48 4.92

Horizontal Vertical 8.34 7.83 23.0 4.48

3.4 Experiment IV

In this experiment we ran 20 repeats of Experiment III, 10 of each with the preferred

orientation set as horizontal and vertical respectively. Figure 4i shows the raw camera

view with a selection of the locations that were attended to superimposed as red squares.

Of the 20 runs 14 resulted in the correct object being selected. Nearly equal activation

in both areas of the LIP map caused the wrong object to be selected in 6 cases.

4 Discussion: The Test of Real-World Applications

Our system significantly expands the model complexity that can be embedded in a neu-

rorobot. Some issues remain to be addressed. Scalability: The small network we used

allows only a broad distinction between 2 objects; we are scaling it to sizes with finer

discrimination. Interfaces: Translating from the frame-based camera was rather artifi-

cial. Experiments with a neuromorphic version of the iCub show that native AER is

clearly the preferred interface. Learning: Disabling STDP during tests clarified inter-

face aspects at the expense of cognitive aspects. SpiNNaker-only trials of the model

with STDP on have run successfully and will be tested on the iCub. Context: Using

vision alone tends to lead to a fixed context but future plans include expanded top-down

processing in the PFC and the addition of bio-inspired auditory processing to assist with

learning the preferred stimulus. When these systems are in place we hope to be in a po-

sition to run a genuinely practical cognitive test. We propose several key criteria about

what kind of application would demonstrate achievement of practical neurorobotics:

Adaptive Behaviour: The application should require the robot to synthesise behav-

iours that have not been specified imperatively.

Intrinsic Unpredictability: The environment should generate unpredictable events

whose impact on behaviour is more than perturbative.

Multidimensional Cognition: Tasks should involve the integration of multiple sen-

sory and response modes.

Real-World Applicability: Behaviour should be meaningful in a real human context.

5 Conclusions

We have integrated neuromorphic computing and humanoid robotics to perform a cog-

nitive task that, while equally feasible with traditional robotics techniques, can here be



achieved with a model scalable to a variety of contexts. In possibly nonstationary sit-

uations, where decisions may need to be made faster than their consequences can be

predicted, classical offline machine learning and Bayesian approaches may fall short. A

cognitive system using configurable neural hardware with standard interfaces, running

biologically derived models, offers perhaps the critical margin of flexibility. Our exper-

iments point the way to one of the goals of cognitive robotics: self-directed robots able

to respond adaptively and appropriately rather than imperatively to the combination of

unexpected events and indeterminate consequences characteristic of the real world.
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