23,050 research outputs found

    Image Description Using a Multiplier-Less Operator

    Get PDF
    Cataloged from PDF version of article.A fast algorithm for image classification based on a computationally efficient operator forming a semigroup on real numbers is developed. The new operator does not require any multiplications. The co-difference matrix based on the new operator is defined and an image descriptor using the co-difference matrix is developed. In the proposed method, the multiplication operation of the well-known covariance method is replaced by the new operator. The proposed method is experimentally compared with the regular covariance matrix method. The proposed descriptor performs as well as the the regular covariance method without performing any multiplications. Texture recognition and licence plate identification examples are presented

    Programmable remapper for image processing

    Get PDF
    A video-rate coordinate remapper includes a memory for storing a plurality of transformations on look-up tables for remapping input images from one coordinate system to another. Such transformations are operator selectable. The remapper includes a collective processor by which certain input pixels of an input image are transformed to a portion of the output image in a many-to-one relationship. The remapper includes an interpolative processor by which the remaining input pixels of the input image are transformed to another portion of the output image in a one-to-many relationship. The invention includes certain specific transforms for creating output images useful for certain defects of visually impaired people. The invention also includes means for shifting input pixels and means for scrolling the output matrix

    Factoring in a Dissipative Quantum Computer

    Full text link
    We describe an array of quantum gates implementing Shor's algorithm for prime factorization in a quantum computer. The array includes a circuit for modular exponentiation with several subcomponents (such as controlled multipliers, adders, etc) which are described in terms of elementary Toffoli gates. We present a simple analysis of the impact of losses and decoherence on the performance of this quantum factoring circuit. For that purpose, we simulate a quantum computer which is running the program to factor N = 15 while interacting with a dissipative environment. As a consequence of this interaction randomly selected qubits may spontaneously decay. Using the results of our numerical simulations we analyze the efficiency of some simple error correction techniques.Comment: plain tex, 18 pages, 8 postscript figure

    New Multiplier Sequences via Discriminant Amoebae

    Full text link
    In their classic 1914 paper, Polya and Schur introduced and characterized two types of linear operators acting diagonally on the monomial basis of R[x], sending real-rooted polynomials (resp. polynomials with all nonzero roots of the same sign) to real-rooted polynomials. Motivated by fundamental properties of amoebae and discriminants discovered by Gelfand, Kapranov, and Zelevinsky, we introduce two new natural classes of polynomials and describe diagonal operators preserving these new classes. A pleasant circumstance in our description is that these classes have a simple explicit description, one of them coinciding with the class of log-concave sequences.Comment: 11 pages, 6 figures. Submitted for publicatio

    Weighted model spaces and Schmidt subspaces of Hankel operators

    Get PDF
    For a bounded Hankel matrix Γ\Gamma, we describe the structure of the Schmidt subspaces of Γ\Gamma, namely the eigenspaces of Γ∗Γ\Gamma^* \Gamma corresponding to non zero eigenvalues. We prove that these subspaces are in correspondence with weighted model spaces in the Hardy space on the unit circle. Here we use the term "weighted model space" to describe the range of an isometric multiplier acting on a model space. Further, we obtain similar results for Hankel operators acting in the Hardy space on the real line. Finally, we give a streamlined proof of the Adamyan-Arov-Krein theorem using the language of weighted model spaces.Comment: Final version, to appear in Journal of the London Mathematical Societ

    Boundary conformal fields and Tomita--Takesaki theory

    Full text link
    Motivated by formal similarities between the continuum limit of the Ising model and the Unruh effect, this paper connects the notion of an Ishibashi state in boundary conformal field theory with the Tomita--Takesaki theory for operator algebras. A geometrical approach to the definition of Ishibashi states is presented, and it is shownthat, when normalisable the Ishibashi states are cyclic separating states, justifying the operator state correspondence. When the states are not normalisable Tomita--Takesaki theory offers an alternative approach based on left Hilbert algebras, opening the way to extensions of our construction and the state-operator correspondence.Comment: plain Te
    • 

    corecore