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Image Description Using a Multiplier-Less Operator
Hakan Tuna, İbrahim Onaran, and A. Enis Çetin, Member, IEEE

Abstract—A fast algorithm for image classification based on a
computationally efficient operator forming a semigroup on real
numbers is developed. The new operator does not require any mul-
tiplications. The co-difference matrix based on the new operator is
defined and an image descriptor using the co-difference matrix is
developed. In the proposed method, the multiplication operation
of the well-known covariance method is replaced by the new oper-
ator. The proposed method is experimentally compared with the
regular covariance matrix method. The proposed descriptor per-
forms as well as the the regular covariance method without per-
forming any multiplications. Texture recognition and licence plate
identification examples are presented.

Index Terms—Co-difference matrix, covariance matrix, license
plate identification, multiplier-less signal processing, texture
recognition.

I. INTRODUCTION

D ESCRIPTIVE feature extraction from images or image
regions are necessary in many image recognition and

video analysis problems. Practical applications include intel-
ligent video surveillance systems with object tracking, human
and vehicle recognition and license plate recognition features
[1], [2].

In this letter, we introduce an operator which forms a semi-
group on real numbers and define an image region descriptor
based on this operator. We replace the multiplication operation
in regular covariance matrix method with the new operator and
we call this matrix as the co-difference matrix. We show that the
co-difference matrix method performs as well as the covariance
matrix method in texture classification and license plate identi-
fication applications.

Porikli et.al introduced the covariance matrix method as
a new image region descriptor, and showed that covariance
method performed better than the previous approaches to the
texture recognition problem [3]–[5]. They also developed an
object tracking method using the covariance matrix.

Let be a -dimensional feature vector for each pixel
of a two-dimensional image. The vector may contain the in-
tensity, color components, and gradient values of a given pixel.
Let us index the image pixels using a single index , and assume
that there are pixels in a given image region. As a result we

Manuscript received February 25, 2009; revised May 14, 2009. First pub-
lished June 05, 2009; current version published July 01, 2009. The work of İ.
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have -dimensional feature vectors . The covari-
ance matrix of the image region is defined as

(1)

where is the mean vector of the feature vectors. Since the
covariance matrix is symmetric the number of independent
parameters are not but .

II. CO-DIFFERENCE MATRIX

Computational cost of a single covariance matrix for a given
image region is not heavy. However, computational cost be-
comes important when we want to scan a large image at different
scales and all locations to detect a specific object. Furthermore,
many video processing applications require real-time solutions.
In order to decrease the computational cost, we introduce the
co-difference matrix as follows

(2)

where the operator acts like a matrix multiplication operator,
however, the scalar multiplication is replaced by an additive op-
erator . The operator is basically an addition operation but
the sign of the result behaves like the multiplication operation:

if
if
if
if

(3)

for real numbers and . We can also express (3) as follows

(4)

Since the co-difference matrix is also sym-
metric as the covariance matrix. Co-difference behaves similar
to the covariance function. If two variables tend to vary together,
co-difference function produces positive results as the covari-
ance. When two variables tend to vary inversely, co-difference
equation gives negative results. On the other hand, computa-
tional cost is decreased by replacing the multiplication opera-
tion with addition operation.

The operator satisfies totality, associativity and identity
properties, therefore it is a monoid function. In other words, it is
a semigroup with identity property. We successfully used sim-
ilar statistical methods in [6]. Another similar statistical function
is the Average Magnitude Difference Function (AMDF) which
is widely used in speech processing to determine the periodicity
of voiced sounds.
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Fig. 1. Sample images from the Brodatz texture database. It contains non-ho-
mogeneous textures as well as homogeneous texture images.

TABLE I
SUCCESS RATES OF COVARIANCE AND CO-DIFFERENCE

METHODS IN BRODATZ TEXTURE DATABASE

Fig. 2. Sample images from the license plate database.

III. EXPERIMENTAL RESULTS AND CONCLUSIONS

We use the well-known Brodatz texture database for texture
classification experiments. We compare the results of regular
covariance method [3] and the proposed co-difference method.

The Brodatz texture database which we used in our experi-
ments consists of 111 texture images. The size of each image
is 640 640. Classification is a challenging task because of the
non homogeneous texture images in the database. Sample im-
ages from the database are shown in Fig. 1. In our experiments,
we divide each texture image into 320 320 sized four sub-im-
ages. The first half of these images are used for training and the
remaining ones are used for testing.

We use intensity and the norms of first and second order
derivatives of intensity values of pixels in both x and y direc-
tions for feature space as follows .

Therefore every pixel in a given image region is mapped to
a -dimensional feature vector. Then the covariance and
the co-difference of these features are calculated using both (1)
and (2), respectively. As a result, we end up with 5 5 dimen-
sional covariance and co-difference matrices, representing each
region.

To represent each texture image, we choose 100 regions from
random locations in the image. Each region is a square box with
random sizes which varies from 16 16 to 128 128. We cal-
culate the covariance matrix of each region. Thus, every texture
image is represented with 100 covariance matrices extracted
from random regions of these images.

We use the K-nearest neighbor (k-NN) algorithm for the clas-
sification task. The k-NN algorithm is a supervised learning

method which classifies samples according to majority of the
closest training samples in the feature space. We use a gener-
alized eigenvalue based distance metric to compare covariance
and co-difference matrices which was introduced in [7], [8] and
used in [3] as a part of the k-NN method:

(5)

where are the generalized eigenvalues of covariance
matrices and .

We measure the distances between the instance covariance
matrix to be classified and the covariance matrices in the train
database. Similarly, two co-difference matrices and are
compared to each other using the same metric . The k
nearest samples from the train database is chosen and the query
instance is assigned to the class most common amongst these
k samples from the train database. If , then the query
instance is assigned to the class of its nearest neighbor.

The choice of k depends on the data. Large values of k with re-
spect to the number of samples decrease the probability of mis-
classifying and decrease the effect of noise. However it makes
the classification boundary less distinct.

1) Classification Results: Brodatz texture database is a chal-
lenging database with lots of non-uniform texture images. To
compare the proposed co-difference matrix method with the
original covariance matrix method

Both covariance matrices and co-difference matrices are ex-
tracted from randomly selected regions and added to the training
set. Then the same procedure is also applied in the query set. For
different values of K, textures are classified by using the k-NN
algorithm in both methods. Classification results for different k
values are summarized in Table I.

In [3], slightly higher classification results than the results
in Table I are obtained for the covariance method in Brodatz
texture database. This is possible because each texture is repre-
sented by covariance matrices extracted from randomly selected
regions. As a result, classification results may not turn out the
same.

2) Identification of License Plate Regions: In order to
compare our co-difference matrix method with the covariance
method [9], we constructed a license plate database from the
Internet.

License plate database consists of plate images gathered from
an internet page which contains galleries of used cars for sale.
This dataset contains Turkish license plate samples and is a chal-
lenging dataset. License plate images taken from this website
have different illumination, and they are at different scales and
the pictures are taken from different angles. The negative sam-
ples for training and query datasets are obtained randomly from
car pictures with darkened or removed license plate regions.
The training and test set contains 99 positive and 120 negative
images, respectively. The license plate database and the soft-
ware is available at www.ee.bilkent.edu.tr/~signal. Sample im-
ages from the database are shown in Fig. 2.

The feature vector used in covariance matrix and co-dif-
ference matrix computation is 7 dimensional in this problem:

where and coordinate
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Fig. 3. ROC curve of the covariance matrix method and co-difference matrix
method.

values of pixels are normalized to in order to gain scale
robustness against scale, is the intensity value, , , ,

corresponds to the first and second order derivatives of
intensity values along the x and y directions, respectively. Since

, and values are always constant
for all images we end up with different
covariance or co-difference values.

We employ a three layer neural network algorithm for classi-
fication task. Non-constant and non-repeating values of covari-
ance and co-difference matrices are fed to the neural network,
and the neural network outputs a result between and in
order to decide if the region corresponds to a license plate or
not. In order to obtain ROC curves, we ordered the query sam-
ples according to the output values of the neural network. We
divide this ordered sequence from every possible location. Then
the part with higher values are labeled as positive results and the
part with lower values are labeled as negative results. At each
different division, the number of true positives and true nega-
tives are computed and marked on the ROC graph. The results
are depicted in Fig. 3.

Experimental results show that the proposed co-difference
matrix descriptor gives very similar results to the covariance ma-
trix descriptor.

The computational cost of the co-difference method is lower
than the covariance method because it does not require any mul-
tiplications. This is especially important in real time applica-
tions in which the entire image or video frame has to be scanned
at several scales to determine matching regions and ASIC im-
plementations [10]–[12].

Table II describes the computational cost of the covariance
method and the co-difference method for an image region
having N pixels. Each pixel has M features. Therefore the
resulting covariance and co-difference matrices are M by M.

TABLE II
COMPUTATIONAL COST OF THE COVARIANCE AND CO-DIFFERENCE

METHODS FOR A REGION WITH N PIXELS AND M FEATURES (DIVISION IS

ACTUALLY NOT NECESSARY FOR AN IMAGE DESCRIPTION APPLICATIONS

�� � ������ �� OR �� � ������ �� CAN BE USED)

We use additions and sign comparisons in
co-difference method instead of the same number of multipli-
cations in the covariance method. Both methods also require

additions and divisions for mean computation.
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