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Abstract— With the advent of System-On-Chip (SOC) 

technology, there is a pressing need to enhance the quality of 

design tools available and increase the level of abstraction at 

which hardware is designed, implemented and programmed. 

This would reduce the gap between what is currently 

achievable technologically, and what hardware engineers are 

capable to produce given time to market constraints.   

Hardware development should hence become easier and less 

time consuming, without scarifying the implementation 

efficiency. Towards this goal, we present in this paper a 

simple structural high-level hardware language called 

HIDE+, particularly suitable for the rapid generation of 

highly parameterised, and highly efficient, hardware cores. 

We detail the syntax and semantics of HIDE+ and illustrate 

how highly scaleable, parameterised and optimised 

architectures can be described and automatically generated 

from it, using a small set of constructors. HIDE+ offers a 

much more abstract way of describing hardware than is 

possible with traditional hardware description languages 

such as VHDL or Verilog. Although less abstract and 

extensive than other electronic system language environments, 

HIDE+ does not compromise on hardware efficiency. It can 

thus be of great use to SOC design as an Intellectual Property 

(IP) development environment.

I. Introduction 

Recently, semi-conductor technology has made spectacular 

advances leading to high-density fabrication and the 

incorporation of hybrid technologies on a single chip [1]. 

Nevertheless, the design productivity of engineers has not 

kept pace with these advances [2]. To close this gap and meet 

the stringent time-to-market and other constraints, there is a 

pressing need for higher quality hardware design tools and 

associated methodologies and design flows. To this end, 

researchers have recently introduced various System Level 

Design Languages (SLDLs) to raise the design abstraction 

level e.g. by focusing on system behaviour rather than low-

level implementation details [3][4][5]. However, researchers 

recognise that the key to cope with the complexities involved 

with System-On-chip (SOC) design remains the reuse of 

Intellectual Property (IP) cores. Nonetheless, the use of third-

party IP is fraught with problems to cost of ownership, lack of 

proper documentation, and maintenance issues. Moreover, IP 

cores integration, especially if these come from different 

providers, is not straightforward and increase the overall 

design time remarkably due to lack of standards [6]. Hence, 

the development of hardware design environment for IP cores 

generation, perhaps for in-house use, is one way to address the 

above problems. 

Towards this end, we describe in this paper a high level 

Prolog-based hardware design environment, called HIDE+, 

specifically for the design of highly optimised DSP hardware 

architectures. The programming environment is built upon the 

success of a hardware description environment, developed by 

the authors, called HIDE [7]. Since its first publication, two 

major versions of HIDE have been developed to date. The 

details of these can be found in [8-9].   

The remainder of the paper is organised as follows. Section 2 

gives a brief overview of the HIDE environment on which 

HIDE+ builds. The rationale behind the development of 

HIDE+ is then given in section 3. Section 4 details the bases 

of the HIDE+ language, its structure and development 

environment, and illustrates this in the context of a number of 

DSP architectures. Conclusions will be drawn at the end. 

II.   Overview of the HIDE Environment 

Figure 1 presents a block outline of the HIDE environment 

[9]. The environment has two libraries: the Basic Component 

Library (BCL) and the Object Description Library (ODL). 

The BCL contains netlist code for a large set of basic building 

blocks e.g. 1-2 bit adders, used to build more complex 

architectures. These are pre-designed by the architecture 

builder. The ODL on the other hand contains a header 

description of each of the BCL elements. The header 

description has the following format: 

is_basic_block (name, control_list, ports_list,…)

where name denotes the name of the block and 

control_list/ports_list the list of its control/data ports. The 

headers are used by the HIDE engine when assembling their 

associated components. The application developer describes 

his/her architecture using the HIDE constructors given in [9]. 

The architecture description is then translated by the HIDE 

parser into a hardware configuration, which is then 

Engineering Letters, 16:3, EL_16_3_27
______________________________________________________________________________________

(Advance online publication: 20 August 2008)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29580646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


synthesised into EDIF or VHDL format. The details of the 

translation can be found in [9]. 

Fig. 1 Overall HIDE environment 

HIDE+ inherits from HIDE its programming environment. 

However, the HIDE+ syntax is different from HIDE’s in order 

to overcome some of the latter’s limitations, as will be 

explained in the following sections.

III.   HIDE+ Rationale 

As stated in [9], the current version of HIDE is more suited to 

the description and synthesis of regular hardware 

architectures. However, many parallel hardware architectures 

are irregular. In that case, the HIDE simple block placement 

based on horizontal and vertical constructors is not 

appropriate. Furthermore, HIDE’s control mechanism is basic 

and does not allow for the description of complex clocking 

schemes for instance. It also implicitly assumes integer data 

processing i.e. fractional numbers with rounding and 

truncation are not supported. Finally, HIDE does not separate 

between block connectivity and placement, as placement is 

implicitly assumed in HIDE’s constructors e.g. horizontal,

vertical.

The above limitations led us to develop a new notation, which 

builds on the advantages of HIDE, which are: 

  The use of Prolog as the base development language, 

which allows for easy and smart coding of design rules for 

instance 

  The use of a VHDL/EDIF generator engine which takes a 

high level abstract syntax tree as input 

  Use of hardware skeletons as a hierarchical way to 

develop efficient hardware at increasingly abstract levels, 

while eliminating the aforementioned limitations of HIDE. 

The following section describes the bases of HIDE+. 

IV.  Bases of HIDE+  

To implement an architecture using HIDE+, the following 

three aspects need to be considered: 

Architecture Description to instantiate the architecture 

components, and specify their composition and 

interconnection  

Architecture Control to feed the architecture components 

with the appropriate control signals (e.g. clocking)  

Architecture Constraints to apply placement, routing, and 

timing constraints on the generated hardware configuration.  

This approach allows a highly modular development 

environment. The following explains each of the above 

aspects in turn. 

A. HIDE+ Architecture Description 

The basic component in a HIDE+ configuration description is 

a block. The latter can be either a basic block or a compound 

block. However, unlike in HIDE, HIDE+’s does not group the 

block’s ports into four sides regardless of their types [8]. 

Instead, HIDE+ considers a basic block as an operation or a 

control node to be included in a data and control flow graph

representation of a compound block or architecture. The block 

is fed with a set of input data and control signals and generates 

output data through output ports, which would then be input 

data or control signals for other nodes in the graph.  

Fig. 2 depicts a diagram of the block abstraction in HIDE+. 

The block ports are divided into two groups: 

Inputs: data inputs and carry-in input  

Outputs: data outputs and carry-out output 

The blocks’ control ports are treated separately by the 

architecture control engine (see section C below). 

Block 

Carry Outs 

Carry Ins 

Outputs Inputs

Control

Fig. 2  HIDE+ block abstraction 

All of the properties of a port are grouped into one 

constructor: 

port( Type, Name), for a single port 

or

port( Type, Name(Dim)), for a bus

where Name denotes the name of the port and Type its type 

(e.g. in for input, out for output). The number of the port wires 

can be any non-zero positive integer and is represented by 

Dim.

A.1. Block Interconnection   

Fig. 3 gives the HIDE+ constructors used to build a compound 

block from elementary sub-blocks. When connecting two 

blocks (Block1 and Block2), the flow of data can be: 

from the outputs of Block1 to the inputs of Block2. The serie

(or s_seq when replicating the same block) constructor is 

used to annotate this connection 

from the outputs of Block2 to the inputs of Block1, or even 

from outputs of Block1 back to its inputs. This feedback 

connection is specified using the loop constructor 

from the carry-out of Block1 to the carry-in of Block2. The 

two blocks are aligned in parallel without connecting their  
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data ports. The parallel_with_carry (or p_seq_with_carry 

when replicating the same block) constructor is used to 

annotate this connection 

from the carry-out of Block1 to the carry-in of Block2 along 

with connecting the data ports of the two blocks. The 

serie_with_carry (or s_seq_with_carry when replicating 

the same block) constructor is used to annotate this 

connection 

On the other hand, the constructor parallel (or p_seq when 

replicating the same block) is used to align the data ports of 

sub-blocks in parallel (so they can be grouped under one 

entity) without connecting their data ports and carry logic 

inputs outputs.  

As in HIDE [8], the network connection constructor (nc([])) is 

used in conjunction with the above constructors if the user 

wants to connect the blocks’ ports explicitly rather than 

relying on the automatic ports matching [8]. However, in 

HIDE+, the nc([]) constructor also handles buses instead of 

just single wire ports. 

1       2…… N

Serie Composition 

C= serie([B1, B2,…., BN]) 

=B2 BNB1

C= s_seq([N, B]) 

Carry CompositionParallel Composition 

B

B

B

= C

C= p_seq([N,B]) 

B2

B1

BN

=
C

C= parallel([B1, B2,…., BN]) 

Loop Composition 

C= loop([B, nc([(1,2])]) 

B

C

=B BB C

C
=

C= serie_with_carry([D1,D2,…., DN])

=DND1 D2 D2
C

C= parallel_with_carry([D1,D2,…, DN])

=
C

D1

D2

D3

DN

N

1

Di

Carry out

Carry In

Fig. 3 HIDE+ basic constructors 

Note that the above constructors have been derived after a 

rigorous exploration of a high number of DSP architectures, 

with the aim of allowing hardware designers to describe their 

architectures precisely and concisely. 

A.2. Types of Blocks 

In HIDE+, a hardware block can be: 

Purely Combinatorial: where the block is not clocked 

Non-combinatorial: where the block is clocked. Three 

cases are then possible: 

The block is clocked with the architecture’s master clock 

The block is clocked with a clock rate N times lower than 

the master clock rate. Then, if this clock frequency is 

already available on the chip, it can feed directly the 

block's clock input. Otherwise, the block needs to be 

enabled every N cycles of the Master clock. In the latter 

case, the clock Enable signal is generated automatically 

by the HIDE+ using a simple counter of period N 

The block is clocked with a clock rate N times higher 

than the master clock rate. Then, the block’s clock input 

should be driven by HIDE+ from dedicated chip logic 

(e.g. DCM block in Xilinx FPGAs [10]).  

To portray the above three cases, a ClkType attribute is 

attached to every block constructor. It is equal to: 

“~”: when the block is combinatorial 

“N”: when the block is clocked with a clock rate of N-

scale the master clock rate.  

A.3. Rounding off  

As shown in [11], to limit the unnecessary growth of hardware 

architectures’ internal wordlength, rounding off and/or 

truncation are often carried out. The operation of rounding off

a binary number B (=bn-1bn-2…b0b-1b-2b-3..b-(m-1)) at the order I

consists of adding the bit b-(I+1) to the binary number BT

(=bn-1bn-2…b0, b-1b-2b-3…b-I). Unlike the truncation operation, the 

implementation of the rounding operation normally requires 

dedicated logic: an adder (rounder) to add the carry bit b-(I+1) to 

the number BT. However, this dedicated logic might not be 

needed if the operand to be rounded happens to be an input to 

an adder/subtractor in the architecture as the adder/subtractor 

own logic can be used to implement the rounding off 

operation of one operand (by feeding its b-(I+1) bit to the carry-

in input of the adder), hence precluding the need for dedicated 

rounder hardware. Nonetheless, if both operands of an 

adder/subtractor need to be rounded off, the rounding bit of 

the second operand has to be delayed to feed the carry in of a 

next available adder/subtractor in the architecture, otherwise a 

dedicated rounder needs be inferred (see Fig 4, for an example 

of adder tree). HIDE+ automatically generates the necessary 

rounders and the rounding delays networks as well as feeding 

the carry in with the operands’ rounding bits. To support this 

operation, the attribute round(I) (where I denotes the 

precision) is added to the relevant HIDE+’s arithmetic block 

header description. 

+ - + +

- +

+ +

+ +

Rounder

Rounder

+ +- - -

Rounding bit delay

Rounding bit propagation

Fig.  4  Rounding-off scheme illustration in a 5-operand adder 

tree

It is worth noting that the rounding precisions of the operands 

don’t have to be equal. As such, a block Left and Right

rounding attributes need to be added. However, throughout 

this paper, we limit the presentation to a uniform rounding for 

the sake of simplicity. 

B. HIDE+  Library Structure 

The HIDE+ library contains a range of components with 

different levels of abstractions (e.g. from a 1-bit section of a 
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multiplier to a fully parameterised multiplier unit). The library 

is built hierarchically as illustrated in Fig. 5. 

Fixed Basic 

Component 

Library 

Parameterised skeletons 

Parameterised Basic 

Components Library 

Fig. 5 A layered model of the HIDE+ library

The following sub-sections detail each layer in turn. 

B.1. Fixed Basic Components Library 

At the bottom level lays the fixed Basic Components Library 

(BCL). This groups the basic building blocks that implement 

the widely used operations in DSP applications, such addition, 

multiplication, delay, etc but at one bit level. These blocks are 

described in VHDL and EDIF format 2.0. This layer 

implemented by the architecture builder constitutes the 

nucleus of any HIDE+ constructed block. The properties of 

this layer’s blocks are stored in the Object Description Library 

(ODL) (see section II) so that the user can instantiate them 

when composing DSP operators. 

Most of this layer’s components have three varieties: 

combinatorial, clocked with the master clock or a dedicated 

clock, or instead at each N cycles of the master clock so the 

clock enable is used.  

B.2. Parameterised Basic Components Library 

This layer delivers the basic DSP operations (e.g. N bits 

buffers, adders, etc). The blocks are fully parameterised, and 

composed solely from the fixed BCL components. The 

following gives examples from this layer’s components. 

Line Buffer 

Buffer units are often used in order to synchronise the supply 

of data. A buffer unit of size Size words and I/O wordlength 

WL is obtained by invoking the following constructor: 

lb(Size, WL, ClkType) 

Multi-Lines Buffer 

A Multi-Lines buffer is used to generate parallel data outputs 

from a serial stream of samples as shown in Fig. 6. This 

configuration can be generated by invoking the following 

constructor: 

ser2Par(NumOfPorts, WL, Size, ClkType, Flag) 

where NumOfPorts specifies the number of lines to be 

buffered each of Size words length. Flag is a Boolean variable 

that specifies whether the input sample should also be forked 

to the output or not. 

D0D1DK-2

DK-1

DK-1

Fig. 6 A serial to parallel converter: ser2Par(K)

Truncation

Truncating an input of InWl bits to Prec-bits precision is 

obtained by invoking the following constructor: 

truncator(InWl, Prec)

Adder/Subtractor 

This performs a weighted addition/subtraction since the 

operands of an addition/subtraction might need to be shifted 

before addition/subtraction [8] (see Fig. 7). The required 

constructor for the adder is: 

adder(OutWl, LeftOff, RightOff, ClkType, Round) 

+/-
In2(W2,RightOff)

In1(W1, LeftOff)

Out(OutWl)

Fig. 7 A weighted adder/subtractor

Counter 

This block is useful in generating a regular periodic sequence. 

It is created by calling the following constructor: 

  counter(UpOrDown, Step, InitSate, Period, ClkType, TypeOfOut)

where: 

UpOrDown: specifies if it is an upward or downward counter 

Step: specifies the step-size of the counting 

InitState: specifies the initial value of the counter 

Period: specifies the period of the counter 

TypeOfOut: a Boolean flag that specifies if the combinatorial 

output of the counter should also be available at the output.

LUT 

This is useful to configure FPGAs’ Lookup-Tables. For 

instance, a 6-input LUT can be invoked by calling the 

constructor: 

lut6(INIT)

where INIT specifies the function of the LUT.  

B.3. Parameterised Skeletons Library 

This layer contains higher level units called skeletons. A 

skeleton is a mapped-to-structure, to which the user can 

supply not only fixed and parameterised BCL components but 

even other skeletons, as parameters. Skeletons embed 

optimisation rules for logic use reduction and speed 

enhancement. An example of such rules computes the 

minimum wordlength needed at every node of an architecture 

[12]. This minimum wordlength depends on the dynamic 

range of the node’s operands as well as the node operation 

itself.  For instance, the following constructor is inherently 
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called inside a coefficient-multiplier skeleton code to 

determine the minimum wordlength necessary at its output: 

  nodeDynamic(Coeff, Scale, InValue, OutValue, OutWl) 

where Coeff denotes the multiplier operand’s coefficient 

value, Scale any scaling applied to the multiplicand, InValue

is a 2-tuple (Min, Max) representing the dynamic range of the 

input,  OutValue is a 2-tuple representing the dynamic range 

of the output and OutWl is the minimum wordlength necessary 

to cover the output’s dynamic range. Similarly, the following 

constructor is invoked to find the minimum wordlength at the 

output of a generic node: 

nodeDynamic(Op, Scale, InValue, OutValue, OutWl) 

where Op can be either add (for an addition), sub (for a 

subtraction), max (for a maximum) or min (for a minimum),  

Scale is a tuple representing any weighting applied on the 

operands and InValue is a list of tuples representing the 

dynamic ranges of the operands. The outValue represents the 

InValue attribute of the subsequent node in the architecture. 

Hence the above constructors can be applied iteratively 

through all of the architecture’s nodes. 

The following gives illustrative examples of skeletons:  

Reduction Tree skeleton 

A reduction tree skeleton reduces a set of operands into one 

result. Fig. 8 gives an example of 2-input node tree structure. 

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

sgnN, scalingN

sgn1, scaling1

sgn2, scaling2

Fig. 8 A reduction tree skeleton

To generate an instance of this skeleton, the following 

constructor is provided: 

tree(Op, NodeSz,TreeSz, Round, ClkType, OrdOfPip, InpVal, 

BoundWL, OutVal, OutWl, SgnOfOp, Scaling) 

where Op specifies the tree operation (i.e. add, max or min),  

NodeSz/TreeSz the node/tree number of inputs, OrdOfPip the 

tree pipelining depth, BoundWL the upper bound wordlength 

set by the user if any, and SgnOfOp/Scaling the sign/scaling of 

operands. 

This constructor embeds rules to generate the final hardware 

configuration with the required wordlength at every node of 

the architecture as well as the rounding, clocking and 

pipelining. 

Reduction Chain Skeleton 

A reduction chain skeleton reduces a set of operands into one 

result. Fig. 9 gives an example of 2-input node chain structure. 

Op

sgn1,

scaling1

sgn2,

scaling2

0 Op Op Op Op

sgnN,

scalingN

Fig. 9 A 2-input node reduction chain skeleton 

To generate an instance of this skeleton, the following 

constructor is provided: 

chain(Op, NodeSz,TreeSz, Round, ClkType, OrdOfPip, InpVal, 

BoundWL, OutVal, OutWl, SgnOfOp, Scaling) 

1-D FIR Filter Structures 

The following explains how general and symmetric FIR filters 

are described in HIDE+.  

a) General FIR filter  

The architectures of a general FIR filter have mainly two 

forms: direct and inverse [13]. 

1. Direct Form Filter Structure 

Fig. 10 shows the direct form of a 1-D FIR filter.  

XK-1

Adder Tree

Out

se
r

2
P

a
r

p
a

r
M

lt

X0

h0 h1 hK-1

Fig. 10 Direct form structure of a K-taps FIR filter 

Its HIDE+ description is as follows:  

where FltCoefList/Coefs_Wl gives the filter’s coefficient 

values/wordlength, Mlts_OrdPip specifies the pipelining order 

of each multiplier, and B2_OutVal is a 2-tuple list of the 

dynamic ranges at the multipliers’ outputs. 

Op = add 

B1 = ser2Par(K-1, InWl, 1,ClkType, true), 

// parMlt is implemented using parallel constructor 

B2=parMlt(FltCoefsList,Coefs_Wl,ClkType,Mlts_OrdPip,InVal, 

B2_OutVal, B2_Wl),

B3 = p_seq(K, truncator(B2_OutWl, Prec)), 

B4 = tree(Op, NodeSz, K, Round,ClkType,OrdOfPip, B2_Out_Val,  

BoundWl, OutVal,OutWl, SgnOfOp, Scaling), 

Constructor=serie([B1,B2,B3,B4]),!.
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2. Inverse Form Filter Structure 

Fig. 11 shows the inverse form structure of the 1-D FIR filter.  

h0hK-1 hK-2

X

+

O
u

t+ + +0

p
a

rM
lt

Adder Chain

Fig. 11 Inverse form structure of a K-taps FIR filter 

Its HIDE+ description is as follows: 

b) Symmetric FIR Filter 

The architectures of a symmetric FIR filter have mainly two 

forms: direct and inverse. 

1. Direct Form Symmetric Structure 

Fig. 12 shows the direct form of a 1-D symmetric FIR filter.  

Adder Tree

+ + +

h0 h1 hK

ser2Par

parAdd

parMlt

X

Fig. 12 Direct form structure of a (2K+1)-taps FIR filter 

The HIDE+ description of a 1-D L-tap direct symmetric filter 

is: 

2. Inverse Form Symmetric Structure 

Fig. 13 shows the inverse symmetric form of the 1-D FIR r.  

In

0

Kh0h 1h 2Kh

Out

parM
lt

adder
C

hain

Fig. 13 Inverse form structure of a (2K+1)-taps symmetric 

FIR filter 

The HIDE+ description of a 1-D L-tap inverse symmetric 

filter is: 

2-D FIR Filter structure 

Fig. 14 shows the architecture of a (KxM) taps 2-D FIR filter. 

The 2-D FIR filter is implemented by means of K 1-D FIRs 

(each one having M taps) and “K-1” row delays. Each row 

delay holds a whole image raw (e.g., N pixels for an NxN 

image).

Op = add 

B1 = nc([(1,1),(1,2),…,(1,K)]), 

B2=parMlt(FltCoefsList, Coefs_Wl, ClkType, Mlt_OrdPip, InVal, 

B2_OutVal, B2_Wl), 

B3 = p_seq(K, truncator(B2_Wl, Prec)), 

B4 = chain(Op, NodeSz, K, Round, ClkType, OrdOfPip, B2_OutVal, 

BoundWl, OutVal, OutWL, SgnOfOp, Scaling), 

Constructor = serie([B1,B2,B3,B4]),!. 

Op = add 

B1 = ser2Par(L-1, InWl, 1, ClkType, true), 

B2 = generate_nc_for_symmetric filter, 

// parAdd is implemented using parallel constructor 

B3=parAdder(InVal, ClkType, B3_OutVal), 

 ( (even(L), Half is L/2); (Half is L//2+1) ),!, 

B4 = p_seq(Half, truncator(B3_Wl,Prec)) 

B5=parMlt(FltCoefsList, Coef_Wl, ClkType, Mlts_OrdPip, 

B4_OutVal, B5_OutVal, B5_Wl), 

B6 = tree(Op, NodeSz, Half, Round, ClkType, OrdOfPip, 

B5_OutVal, BoundWL, OutVal, OutWl, SgnOfOp, Scaling), 

Constructor = serie([B1,B2,B3,B4,B5,B6]),!.

Op = add 

B1 = nc([(1,1),(1,2),…,(1,L)]), 

B2 = parMlt(FltCoefsList, Coef_Wl, ClkType, Mlts_OrdPip, InVal, 

B2_OutVal, B2_Wl), 

B3 = p_seq(L, truncator(B2_Wl, Prec)) 

B4 = chain (Op, NodeSz, L, Round, ClkType, OrdOfPip, 

B2_OutVal, BoundWl, OutVal, OutWL, SgnOfOp, Scaling),  

Constructor = serie([B1,B2,B3, B4]),!.
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Fig. 14 (KxM)-tap 2-D FIR filter architecture

The following presents the main HIDE+ constructor calls to 

implement a 2-D KxM FIR filter: 

where FirStructures instantiates one of the 1-D FIR structures 

shown in the previous section.  

Note that this skeleton architecture has been used to 

implement a generic image algebra neighbourhood operation 

core set [8], simply by replacing the multiplier by the required 

local operator (e.g. addition) and the adder by the global 

operator (e.g. maximum, minimum). The implementation 

configuration delivers the same performance as when 

optimised carefully by hand [14].  

C. HIDE+’s Architecture Control  

In addition to the provision of regular counter constructor (see 

section B.2), HIDE+ is able to generate the logic for any 

periodic pattern output. This logic consists of LUTs 

associated with flip flops where the flip-flops’ outputs are fed 

back into the LUT inputs. Fig. 15 shows, for example, the 

required logic for implementing the periodic sequence 

[0,1,0,0].

O
u

t

0

0

0

1 FF

Clk

LUT2

Fig. 15 Implementation of a [0,1,0,0] periodic sequence 

generators. 

The equivalent HIDE+ constructor is: 

B=loop([serie([lut2(4),FF])]) 

More complex controllers are implemented via Finite State 

Machine (FSM) structures. These are automatically generated 

using high level HIDE+ constructors as explained below. 

Fig. 16 shows the general structure of an FSM [15]. The 

current state(value) of the machine is stored in the state

memory (a set of n flip-flops or a memory). The machine’s 

next state is a function of the current state and the inputs. The 

outputs in Mealy FSMs are a function of the current state and 

the inputs while in the Moore FSMs, outputs are a function of 

the current state only. 

Next 

State Logic

Combinatorial 

Logic

Sequential 

Logic

Flip Flops, Mem 
Current State

Q

Q
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CLR

S

R
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Fig .16 FSM Block Diagram 

Usually, FSM are described by state diagrams. State diagrams 

are then converted into state and output tables from which the 

structure of the next state and output circuits can be derived. 

The current version of HIDE+ does not allow the designer to 

draw the state diagram graphically. Instead, he/she can set the 

next state function by invoking the following constructor: 

stateTable[(In,CurrentState,NextState),….] 

The designer can set the output function by calling:  

outTable[(In,CurrentState,outVal)], in Mealy FSMs 

or

outTable[(CurrentState,outVal)], in Moore FSMs 

where In, CurrentState, NextState, and outVal can be given in 

decimal or binary representation. 

Subsequently, the FSM block’s architecture is generated by 

invoking the following constructor: 

genFSM(Type,StateTable,OutTable,EncType)

Op = add 

B1 = ser2Par(K, InWl, RowSz,ClkType, true), 

// parFlt is implemented using parallel constructor

B2 = parFlt(RowFlt, FirStructures, B2_OutVal, B2_OutWl), 

B3 = tree(Op, NodeSz, M, Round,ClkType,OrdOfPip, B2_OutVal, 

BoundWl, OutWl, ones(1,M),ones(1,M)), 

Constructor=serie([B1,B2,B3]),!.
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where Type indicates the type of the FSM and EncType

specifies the FSM’ states encoding: Binary, Gray Code, or 

oneHot. The genFSM function implements the Quine 

McLusky algorithm needed to minimise the combinatorial 

logic [15]. Finally, a drive_controls constructor [7], connects 

the output of the above FSM block to the relevant block(s) in 

the sought architecture. 

D. HIDE+ Architecture Constraint 

In addition to mapping constraints applied on the BCL 

components, designers can attach placement and timing 

constraints to the designed hardware architecture. Currently, 

these are automatically passed to back-end synthesis tools. In 

the future, HIDE+ will include rules for automatic time-driven 

floorplanning. 

V.   Implementation Results 

HIDE+ has been used to implement a wide range of real word 

applications on actual FPGA Hardware [8][9][14]. The results 

show that HIDE+ can deliver the same performance as the 

best handcrafted designs, with the added parameterisability 

and scalability features. This section gives a sample of these 

results through a Daubechies-8 FIR filter [16] implementation 

on Xilinx XCVE50-8 FPGA [17]. The filter is an instance of a 

HIDE+ core which was written with various optimisations 

embedded into it, including automatic minimum word length 

and precision inference, and efficient FPGA hardware 

mapping. Table 1 below gives the performance achieved by 

implementing the low Daubechies-8 FIR filter using the 

structures of figure 10 and 11, using both HIDE+ and a 

handcrafted schematic-entry design of the same filter. The 

filter coefficients have been represented in 8 bits and 2 

fractional precision were allocated  

to the internal wordlength.  

Area (Slices) Speed (MHz) 

Fig. 10 architecture 147 ~167 

Fig. 11 architecture 113 ~159 

Table 1. Performance of a low Daubechies-8 FIR filter 

implementation on Xilinx XCVE50-8 FPGA using schematic 

entry and HIDE+ tool 

As can be seen from the table, the HIDE+ core delivers the 

same performance as a handcrafted schematic-entry design.  

VI. Conclusion

In this paper, we have described the bases of a Prolog-based 

structural hardware development environment, called HIDE+, 

which allows for very concise and abstract descriptions of 

structured hardware architectures, and translates them 

automatically into very efficient hardware implementations. 

Based on a hierarchical library of hardware building blocks

and a small set of constructors, we have illustrated the use of 

HIDE+ in the construction of a number of FIR-based 

architectures. These designs proved optimal in the sense that 

the same optimisations undertaken by hand were achieved 

automatically through the use of HIDE+. The achieved 

concise descriptions show clearly the benefit of the modular 

structure of the language in facilitating the development of 

efficient and reusable designs and IP cores in general (see 

section B.3).  

The development of in-house Intellectual Property cores has 

become vital in the EDA industry, and with current high 

density heterogeneous hardware platforms and stringent time-

to-market constraints, HIDE+’s approach to hardware 

development can become very appealing. And although the 

proposed environment does not include behavioural modelling 

currently, and does not allow for concurrent hardware 

software co-design, it provides a fully programming 

environment for the development of highly parameterisable 

and optimised IP cores. Nonetheless, the extension of HIDE+ 

and its integration to higher level SLDLs are currently being 

considered. 
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