
HIDE+: A Logic Based Hardware Development

Environment

AbdSamad BenKrid
*
, IEEE Member, Khaled Benkrid

**
, Senior IEEE Member

*School of computer science, The Queen’s University of Belfast, Malone Road, BT 7 1NN, Northern Ireland, UK

**School of Engineering and Electronics, The University of Edinburgh, Mayfield Road, EH9 3JL, Scotland, UK

Abstract— With the advent of System-On-Chip (SOC)

technology, there is a pressing need to enhance the quality of

design tools available and increase the level of abstraction at

which hardware is designed, implemented and programmed.

This would reduce the gap between what is currently

achievable technologically, and what hardware engineers are

capable to produce given time to market constraints.

Hardware development should hence become easier and less

time consuming, without scarifying the implementation

efficiency. Towards this goal, we present in this paper a

simple structural high-level hardware language called

HIDE+, particularly suitable for the rapid generation of

highly parameterised, and highly efficient, hardware cores.

We detail the syntax and semantics of HIDE+ and illustrate

how highly scaleable, parameterised and optimised

architectures can be described and automatically generated

from it, using a small set of constructors. HIDE+ offers a

much more abstract way of describing hardware than is

possible with traditional hardware description languages

such as VHDL or Verilog. Although less abstract and

extensive than other electronic system language environments,

HIDE+ does not compromise on hardware efficiency. It can

thus be of great use to SOC design as an Intellectual Property

(IP) development environment.

I. Introduction

Recently, semi-conductor technology has made spectacular

advances leading to high-density fabrication and the

incorporation of hybrid technologies on a single chip [1].

Nevertheless, the design productivity of engineers has not

kept pace with these advances [2]. To close this gap and meet

the stringent time-to-market and other constraints, there is a

pressing need for higher quality hardware design tools and

associated methodologies and design flows. To this end,

researchers have recently introduced various System Level

Design Languages (SLDLs) to raise the design abstraction

level e.g. by focusing on system behaviour rather than low-

level implementation details [3][4][5]. However, researchers

recognise that the key to cope with the complexities involved

with System-On-chip (SOC) design remains the reuse of

Intellectual Property (IP) cores. Nonetheless, the use of third-

party IP is fraught with problems to cost of ownership, lack of

proper documentation, and maintenance issues. Moreover, IP

cores integration, especially if these come from different

providers, is not straightforward and increase the overall

design time remarkably due to lack of standards [6]. Hence,

the development of hardware design environment for IP cores

generation, perhaps for in-house use, is one way to address the

above problems.

Towards this end, we describe in this paper a high level

Prolog-based hardware design environment, called HIDE+,

specifically for the design of highly optimised DSP hardware

architectures. The programming environment is built upon the

success of a hardware description environment, developed by

the authors, called HIDE [7]. Since its first publication, two

major versions of HIDE have been developed to date. The

details of these can be found in [8-9].

The remainder of the paper is organised as follows. Section 2

gives a brief overview of the HIDE environment on which

HIDE+ builds. The rationale behind the development of

HIDE+ is then given in section 3. Section 4 details the bases

of the HIDE+ language, its structure and development

environment, and illustrates this in the context of a number of

DSP architectures. Conclusions will be drawn at the end.

II. Overview of the HIDE Environment

Figure 1 presents a block outline of the HIDE environment

[9]. The environment has two libraries: the Basic Component

Library (BCL) and the Object Description Library (ODL).

The BCL contains netlist code for a large set of basic building

blocks e.g. 1-2 bit adders, used to build more complex

architectures. These are pre-designed by the architecture

builder. The ODL on the other hand contains a header

description of each of the BCL elements. The header

description has the following format:

is_basic_block (name, control_list, ports_list,…)

where name denotes the name of the block and

control_list/ports_list the list of its control/data ports. The

headers are used by the HIDE engine when assembling their

associated components. The application developer describes

his/her architecture using the HIDE constructors given in [9].

The architecture description is then translated by the HIDE

parser into a hardware configuration, which is then

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29580646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

synthesised into EDIF or VHDL format. The details of the

translation can be found in [9].

Fig. 1 Overall HIDE environment

HIDE+ inherits from HIDE its programming environment.

However, the HIDE+ syntax is different from HIDE’s in order

to overcome some of the latter’s limitations, as will be

explained in the following sections.

III. HIDE+ Rationale

As stated in [9], the current version of HIDE is more suited to

the description and synthesis of regular hardware

architectures. However, many parallel hardware architectures

are irregular. In that case, the HIDE simple block placement

based on horizontal and vertical constructors is not

appropriate. Furthermore, HIDE’s control mechanism is basic

and does not allow for the description of complex clocking

schemes for instance. It also implicitly assumes integer data

processing i.e. fractional numbers with rounding and

truncation are not supported. Finally, HIDE does not separate

between block connectivity and placement, as placement is

implicitly assumed in HIDE’s constructors e.g. horizontal,

vertical.

The above limitations led us to develop a new notation, which

builds on the advantages of HIDE, which are:

 The use of Prolog as the base development language,

which allows for easy and smart coding of design rules for

instance

 The use of a VHDL/EDIF generator engine which takes a

high level abstract syntax tree as input

 Use of hardware skeletons as a hierarchical way to

develop efficient hardware at increasingly abstract levels,

while eliminating the aforementioned limitations of HIDE.

The following section describes the bases of HIDE+.

IV. Bases of HIDE+

To implement an architecture using HIDE+, the following

three aspects need to be considered:

Architecture Description to instantiate the architecture

components, and specify their composition and

interconnection

Architecture Control to feed the architecture components

with the appropriate control signals (e.g. clocking)

Architecture Constraints to apply placement, routing, and

timing constraints on the generated hardware configuration.

This approach allows a highly modular development

environment. The following explains each of the above

aspects in turn.

A. HIDE+ Architecture Description

The basic component in a HIDE+ configuration description is

a block. The latter can be either a basic block or a compound

block. However, unlike in HIDE, HIDE+’s does not group the

block’s ports into four sides regardless of their types [8].

Instead, HIDE+ considers a basic block as an operation or a

control node to be included in a data and control flow graph

representation of a compound block or architecture. The block

is fed with a set of input data and control signals and generates

output data through output ports, which would then be input

data or control signals for other nodes in the graph.

Fig. 2 depicts a diagram of the block abstraction in HIDE+.

The block ports are divided into two groups:

Inputs: data inputs and carry-in input

Outputs: data outputs and carry-out output

The blocks’ control ports are treated separately by the

architecture control engine (see section C below).

Block

Carry Outs

Carry Ins

Outputs Inputs

Control

Fig. 2 HIDE+ block abstraction

All of the properties of a port are grouped into one

constructor:

port(Type, Name), for a single port

or

port(Type, Name(Dim)), for a bus

where Name denotes the name of the port and Type its type

(e.g. in for input, out for output). The number of the port wires

can be any non-zero positive integer and is represented by

Dim.

A.1. Block Interconnection

Fig. 3 gives the HIDE+ constructors used to build a compound

block from elementary sub-blocks. When connecting two

blocks (Block1 and Block2), the flow of data can be:

from the outputs of Block1 to the inputs of Block2. The serie

(or s_seq when replicating the same block) constructor is

used to annotate this connection

from the outputs of Block2 to the inputs of Block1, or even

from outputs of Block1 back to its inputs. This feedback

connection is specified using the loop constructor

from the carry-out of Block1 to the carry-in of Block2. The

two blocks are aligned in parallel without connecting their

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

data ports. The parallel_with_carry (or p_seq_with_carry

when replicating the same block) constructor is used to

annotate this connection

from the carry-out of Block1 to the carry-in of Block2 along

with connecting the data ports of the two blocks. The

serie_with_carry (or s_seq_with_carry when replicating

the same block) constructor is used to annotate this

connection

On the other hand, the constructor parallel (or p_seq when

replicating the same block) is used to align the data ports of

sub-blocks in parallel (so they can be grouped under one

entity) without connecting their data ports and carry logic

inputs outputs.

As in HIDE [8], the network connection constructor (nc([])) is

used in conjunction with the above constructors if the user

wants to connect the blocks’ ports explicitly rather than

relying on the automatic ports matching [8]. However, in

HIDE+, the nc([]) constructor also handles buses instead of

just single wire ports.

1 2…… N

Serie Composition

C= serie([B1, B2,…., BN])

=B2 BNB1

C= s_seq([N, B])

Carry CompositionParallel Composition

B

B

B

= C

C= p_seq([N,B])

B2

B1

BN

=
C

C= parallel([B1, B2,…., BN])

Loop Composition

C= loop([B, nc([(1,2])])

B

C

=B BB C

C
=

C= serie_with_carry([D1,D2,…., DN])

=DND1 D2 D2
C

C= parallel_with_carry([D1,D2,…, DN])

=
C

D1

D2

D3

DN

N

1

Di

Carry out

Carry In

Fig. 3 HIDE+ basic constructors

Note that the above constructors have been derived after a

rigorous exploration of a high number of DSP architectures,

with the aim of allowing hardware designers to describe their

architectures precisely and concisely.

A.2. Types of Blocks

In HIDE+, a hardware block can be:

Purely Combinatorial: where the block is not clocked

Non-combinatorial: where the block is clocked. Three

cases are then possible:

The block is clocked with the architecture’s master clock

The block is clocked with a clock rate N times lower than

the master clock rate. Then, if this clock frequency is

already available on the chip, it can feed directly the

block's clock input. Otherwise, the block needs to be

enabled every N cycles of the Master clock. In the latter

case, the clock Enable signal is generated automatically

by the HIDE+ using a simple counter of period N

The block is clocked with a clock rate N times higher

than the master clock rate. Then, the block’s clock input

should be driven by HIDE+ from dedicated chip logic

(e.g. DCM block in Xilinx FPGAs [10]).

To portray the above three cases, a ClkType attribute is

attached to every block constructor. It is equal to:

“~”: when the block is combinatorial

“N”: when the block is clocked with a clock rate of N-

scale the master clock rate.

A.3. Rounding off

As shown in [11], to limit the unnecessary growth of hardware

architectures’ internal wordlength, rounding off and/or

truncation are often carried out. The operation of rounding off

a binary number B (=bn-1bn-2…b0b-1b-2b-3..b-(m-1)) at the order I

consists of adding the bit b-(I+1) to the binary number BT

(=bn-1bn-2…b0, b-1b-2b-3…b-I). Unlike the truncation operation, the

implementation of the rounding operation normally requires

dedicated logic: an adder (rounder) to add the carry bit b-(I+1) to

the number BT. However, this dedicated logic might not be

needed if the operand to be rounded happens to be an input to

an adder/subtractor in the architecture as the adder/subtractor

own logic can be used to implement the rounding off

operation of one operand (by feeding its b-(I+1) bit to the carry-

in input of the adder), hence precluding the need for dedicated

rounder hardware. Nonetheless, if both operands of an

adder/subtractor need to be rounded off, the rounding bit of

the second operand has to be delayed to feed the carry in of a

next available adder/subtractor in the architecture, otherwise a

dedicated rounder needs be inferred (see Fig 4, for an example

of adder tree). HIDE+ automatically generates the necessary

rounders and the rounding delays networks as well as feeding

the carry in with the operands’ rounding bits. To support this

operation, the attribute round(I) (where I denotes the

precision) is added to the relevant HIDE+’s arithmetic block

header description.

+ - + +

- +

+ +

+ +

Rounder

Rounder

+ +- - -

Rounding bit delay

Rounding bit propagation

Fig. 4 Rounding-off scheme illustration in a 5-operand adder

tree

It is worth noting that the rounding precisions of the operands

don’t have to be equal. As such, a block Left and Right

rounding attributes need to be added. However, throughout

this paper, we limit the presentation to a uniform rounding for

the sake of simplicity.

B. HIDE+ Library Structure

The HIDE+ library contains a range of components with

different levels of abstractions (e.g. from a 1-bit section of a

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

multiplier to a fully parameterised multiplier unit). The library

is built hierarchically as illustrated in Fig. 5.

Fixed Basic

Component

Library

Parameterised skeletons

Parameterised Basic

Components Library

Fig. 5 A layered model of the HIDE+ library

The following sub-sections detail each layer in turn.

B.1. Fixed Basic Components Library

At the bottom level lays the fixed Basic Components Library

(BCL). This groups the basic building blocks that implement

the widely used operations in DSP applications, such addition,

multiplication, delay, etc but at one bit level. These blocks are

described in VHDL and EDIF format 2.0. This layer

implemented by the architecture builder constitutes the

nucleus of any HIDE+ constructed block. The properties of

this layer’s blocks are stored in the Object Description Library

(ODL) (see section II) so that the user can instantiate them

when composing DSP operators.

Most of this layer’s components have three varieties:

combinatorial, clocked with the master clock or a dedicated

clock, or instead at each N cycles of the master clock so the

clock enable is used.

B.2. Parameterised Basic Components Library

This layer delivers the basic DSP operations (e.g. N bits

buffers, adders, etc). The blocks are fully parameterised, and

composed solely from the fixed BCL components. The

following gives examples from this layer’s components.

Line Buffer

Buffer units are often used in order to synchronise the supply

of data. A buffer unit of size Size words and I/O wordlength

WL is obtained by invoking the following constructor:

lb(Size, WL, ClkType)

Multi-Lines Buffer

A Multi-Lines buffer is used to generate parallel data outputs

from a serial stream of samples as shown in Fig. 6. This

configuration can be generated by invoking the following

constructor:

ser2Par(NumOfPorts, WL, Size, ClkType, Flag)

where NumOfPorts specifies the number of lines to be

buffered each of Size words length. Flag is a Boolean variable

that specifies whether the input sample should also be forked

to the output or not.

D0D1DK-2

DK-1

DK-1

Fig. 6 A serial to parallel converter: ser2Par(K)

Truncation

Truncating an input of InWl bits to Prec-bits precision is

obtained by invoking the following constructor:

truncator(InWl, Prec)

Adder/Subtractor

This performs a weighted addition/subtraction since the

operands of an addition/subtraction might need to be shifted

before addition/subtraction [8] (see Fig. 7). The required

constructor for the adder is:

adder(OutWl, LeftOff, RightOff, ClkType, Round)

+/-
In2(W2,RightOff)

In1(W1, LeftOff)

Out(OutWl)

Fig. 7 A weighted adder/subtractor

Counter

This block is useful in generating a regular periodic sequence.

It is created by calling the following constructor:

 counter(UpOrDown, Step, InitSate, Period, ClkType, TypeOfOut)

where:

UpOrDown: specifies if it is an upward or downward counter

Step: specifies the step-size of the counting

InitState: specifies the initial value of the counter

Period: specifies the period of the counter

TypeOfOut: a Boolean flag that specifies if the combinatorial

output of the counter should also be available at the output.

LUT

This is useful to configure FPGAs’ Lookup-Tables. For

instance, a 6-input LUT can be invoked by calling the

constructor:

lut6(INIT)

where INIT specifies the function of the LUT.

B.3. Parameterised Skeletons Library

This layer contains higher level units called skeletons. A

skeleton is a mapped-to-structure, to which the user can

supply not only fixed and parameterised BCL components but

even other skeletons, as parameters. Skeletons embed

optimisation rules for logic use reduction and speed

enhancement. An example of such rules computes the

minimum wordlength needed at every node of an architecture

[12]. This minimum wordlength depends on the dynamic

range of the node’s operands as well as the node operation

itself. For instance, the following constructor is inherently

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

called inside a coefficient-multiplier skeleton code to

determine the minimum wordlength necessary at its output:

 nodeDynamic(Coeff, Scale, InValue, OutValue, OutWl)

where Coeff denotes the multiplier operand’s coefficient

value, Scale any scaling applied to the multiplicand, InValue

is a 2-tuple (Min, Max) representing the dynamic range of the

input, OutValue is a 2-tuple representing the dynamic range

of the output and OutWl is the minimum wordlength necessary

to cover the output’s dynamic range. Similarly, the following

constructor is invoked to find the minimum wordlength at the

output of a generic node:

nodeDynamic(Op, Scale, InValue, OutValue, OutWl)

where Op can be either add (for an addition), sub (for a

subtraction), max (for a maximum) or min (for a minimum),

Scale is a tuple representing any weighting applied on the

operands and InValue is a list of tuples representing the

dynamic ranges of the operands. The outValue represents the

InValue attribute of the subsequent node in the architecture.

Hence the above constructors can be applied iteratively

through all of the architecture’s nodes.

The following gives illustrative examples of skeletons:

Reduction Tree skeleton

A reduction tree skeleton reduces a set of operands into one

result. Fig. 8 gives an example of 2-input node tree structure.

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

sgnN, scalingN

sgn1, scaling1

sgn2, scaling2

Fig. 8 A reduction tree skeleton

To generate an instance of this skeleton, the following

constructor is provided:

tree(Op, NodeSz,TreeSz, Round, ClkType, OrdOfPip, InpVal,

BoundWL, OutVal, OutWl, SgnOfOp, Scaling)

where Op specifies the tree operation (i.e. add, max or min),

NodeSz/TreeSz the node/tree number of inputs, OrdOfPip the

tree pipelining depth, BoundWL the upper bound wordlength

set by the user if any, and SgnOfOp/Scaling the sign/scaling of

operands.

This constructor embeds rules to generate the final hardware

configuration with the required wordlength at every node of

the architecture as well as the rounding, clocking and

pipelining.

Reduction Chain Skeleton

A reduction chain skeleton reduces a set of operands into one

result. Fig. 9 gives an example of 2-input node chain structure.

Op

sgn1,

scaling1

sgn2,

scaling2

0 Op Op Op Op

sgnN,

scalingN

Fig. 9 A 2-input node reduction chain skeleton

To generate an instance of this skeleton, the following

constructor is provided:

chain(Op, NodeSz,TreeSz, Round, ClkType, OrdOfPip, InpVal,

BoundWL, OutVal, OutWl, SgnOfOp, Scaling)

1-D FIR Filter Structures

The following explains how general and symmetric FIR filters

are described in HIDE+.

a) General FIR filter

The architectures of a general FIR filter have mainly two

forms: direct and inverse [13].

1. Direct Form Filter Structure

Fig. 10 shows the direct form of a 1-D FIR filter.

XK-1

Adder Tree

Out

se
r

2
P

a
r

p
a

r
M

lt

X0

h0 h1 hK-1

Fig. 10 Direct form structure of a K-taps FIR filter

Its HIDE+ description is as follows:

where FltCoefList/Coefs_Wl gives the filter’s coefficient

values/wordlength, Mlts_OrdPip specifies the pipelining order

of each multiplier, and B2_OutVal is a 2-tuple list of the

dynamic ranges at the multipliers’ outputs.

Op = add

B1 = ser2Par(K-1, InWl, 1,ClkType, true),

// parMlt is implemented using parallel constructor

B2=parMlt(FltCoefsList,Coefs_Wl,ClkType,Mlts_OrdPip,InVal,

B2_OutVal, B2_Wl),

B3 = p_seq(K, truncator(B2_OutWl, Prec)),

B4 = tree(Op, NodeSz, K, Round,ClkType,OrdOfPip, B2_Out_Val,

BoundWl, OutVal,OutWl, SgnOfOp, Scaling),

Constructor=serie([B1,B2,B3,B4]),!.

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

2. Inverse Form Filter Structure

Fig. 11 shows the inverse form structure of the 1-D FIR filter.

h0hK-1 hK-2

X

+

O
u

t+ + +0

p
a

rM
lt

Adder Chain

Fig. 11 Inverse form structure of a K-taps FIR filter

Its HIDE+ description is as follows:

b) Symmetric FIR Filter

The architectures of a symmetric FIR filter have mainly two

forms: direct and inverse.

1. Direct Form Symmetric Structure

Fig. 12 shows the direct form of a 1-D symmetric FIR filter.

Adder Tree

+ + +

h0 h1 hK

ser2Par

parAdd

parMlt

X

Fig. 12 Direct form structure of a (2K+1)-taps FIR filter

The HIDE+ description of a 1-D L-tap direct symmetric filter

is:

2. Inverse Form Symmetric Structure

Fig. 13 shows the inverse symmetric form of the 1-D FIR r.

In

0

Kh0h 1h 2Kh

Out

parM
lt

adder
C

hain

Fig. 13 Inverse form structure of a (2K+1)-taps symmetric

FIR filter

The HIDE+ description of a 1-D L-tap inverse symmetric

filter is:

2-D FIR Filter structure

Fig. 14 shows the architecture of a (KxM) taps 2-D FIR filter.

The 2-D FIR filter is implemented by means of K 1-D FIRs

(each one having M taps) and “K-1” row delays. Each row

delay holds a whole image raw (e.g., N pixels for an NxN

image).

Op = add

B1 = nc([(1,1),(1,2),…,(1,K)]),

B2=parMlt(FltCoefsList, Coefs_Wl, ClkType, Mlt_OrdPip, InVal,

B2_OutVal, B2_Wl),

B3 = p_seq(K, truncator(B2_Wl, Prec)),

B4 = chain(Op, NodeSz, K, Round, ClkType, OrdOfPip, B2_OutVal,

BoundWl, OutVal, OutWL, SgnOfOp, Scaling),

Constructor = serie([B1,B2,B3,B4]),!.

Op = add

B1 = ser2Par(L-1, InWl, 1, ClkType, true),

B2 = generate_nc_for_symmetric filter,

// parAdd is implemented using parallel constructor

B3=parAdder(InVal, ClkType, B3_OutVal),

 ((even(L), Half is L/2); (Half is L//2+1)),!,

B4 = p_seq(Half, truncator(B3_Wl,Prec))

B5=parMlt(FltCoefsList, Coef_Wl, ClkType, Mlts_OrdPip,

B4_OutVal, B5_OutVal, B5_Wl),

B6 = tree(Op, NodeSz, Half, Round, ClkType, OrdOfPip,

B5_OutVal, BoundWL, OutVal, OutWl, SgnOfOp, Scaling),

Constructor = serie([B1,B2,B3,B4,B5,B6]),!.

Op = add

B1 = nc([(1,1),(1,2),…,(1,L)]),

B2 = parMlt(FltCoefsList, Coef_Wl, ClkType, Mlts_OrdPip, InVal,

B2_OutVal, B2_Wl),

B3 = p_seq(L, truncator(B2_Wl, Prec))

B4 = chain (Op, NodeSz, L, Round, ClkType, OrdOfPip,

B2_OutVal, BoundWl, OutVal, OutWL, SgnOfOp, Scaling),

Constructor = serie([B1,B2,B3, B4]),!.

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

L
in

e

B
u

ff
e

r

A
c
c
u
m
u
la
to
r

Image X Input by rows

O
u

t

[X0]

[XK-1]

[XK-2]

[Xi] 1-D Horizontal Filter Row j

1-D Horizontal Filter Row L-1

1-D Horizontal Filter Row 1

1-D Horizontal Filter Row 0

L
in

e

B
u

ff
e
r

L
in

e

B
u

ff
e

r

Fig. 14 (KxM)-tap 2-D FIR filter architecture

The following presents the main HIDE+ constructor calls to

implement a 2-D KxM FIR filter:

where FirStructures instantiates one of the 1-D FIR structures

shown in the previous section.

Note that this skeleton architecture has been used to

implement a generic image algebra neighbourhood operation

core set [8], simply by replacing the multiplier by the required

local operator (e.g. addition) and the adder by the global

operator (e.g. maximum, minimum). The implementation

configuration delivers the same performance as when

optimised carefully by hand [14].

C. HIDE+’s Architecture Control

In addition to the provision of regular counter constructor (see

section B.2), HIDE+ is able to generate the logic for any

periodic pattern output. This logic consists of LUTs

associated with flip flops where the flip-flops’ outputs are fed

back into the LUT inputs. Fig. 15 shows, for example, the

required logic for implementing the periodic sequence

[0,1,0,0].

O
u

t

0

0

0

1 FF

Clk

LUT2

Fig. 15 Implementation of a [0,1,0,0] periodic sequence

generators.

The equivalent HIDE+ constructor is:

B=loop([serie([lut2(4),FF])])

More complex controllers are implemented via Finite State

Machine (FSM) structures. These are automatically generated

using high level HIDE+ constructors as explained below.

Fig. 16 shows the general structure of an FSM [15]. The

current state(value) of the machine is stored in the state

memory (a set of n flip-flops or a memory). The machine’s

next state is a function of the current state and the inputs. The

outputs in Mealy FSMs are a function of the current state and

the inputs while in the Moore FSMs, outputs are a function of

the current state only.

Next

State Logic

Combinatorial

Logic

Sequential

Logic

Flip Flops, Mem
Current State

Q

Q
SET

CLR

S

R

Next

Output Logic

Combinatorial

Logic

Current

State

O
u
tp

u
ts

Inputs

(Mealy State Machine Only)

Fig .16 FSM Block Diagram

Usually, FSM are described by state diagrams. State diagrams

are then converted into state and output tables from which the

structure of the next state and output circuits can be derived.

The current version of HIDE+ does not allow the designer to

draw the state diagram graphically. Instead, he/she can set the

next state function by invoking the following constructor:

stateTable[(In,CurrentState,NextState),….]

The designer can set the output function by calling:

outTable[(In,CurrentState,outVal)], in Mealy FSMs

or

outTable[(CurrentState,outVal)], in Moore FSMs

where In, CurrentState, NextState, and outVal can be given in

decimal or binary representation.

Subsequently, the FSM block’s architecture is generated by

invoking the following constructor:

genFSM(Type,StateTable,OutTable,EncType)

Op = add

B1 = ser2Par(K, InWl, RowSz,ClkType, true),

// parFlt is implemented using parallel constructor

B2 = parFlt(RowFlt, FirStructures, B2_OutVal, B2_OutWl),

B3 = tree(Op, NodeSz, M, Round,ClkType,OrdOfPip, B2_OutVal,

BoundWl, OutWl, ones(1,M),ones(1,M)),

Constructor=serie([B1,B2,B3]),!.

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

where Type indicates the type of the FSM and EncType

specifies the FSM’ states encoding: Binary, Gray Code, or

oneHot. The genFSM function implements the Quine

McLusky algorithm needed to minimise the combinatorial

logic [15]. Finally, a drive_controls constructor [7], connects

the output of the above FSM block to the relevant block(s) in

the sought architecture.

D. HIDE+ Architecture Constraint

In addition to mapping constraints applied on the BCL

components, designers can attach placement and timing

constraints to the designed hardware architecture. Currently,

these are automatically passed to back-end synthesis tools. In

the future, HIDE+ will include rules for automatic time-driven

floorplanning.

V. Implementation Results

HIDE+ has been used to implement a wide range of real word

applications on actual FPGA Hardware [8][9][14]. The results

show that HIDE+ can deliver the same performance as the

best handcrafted designs, with the added parameterisability

and scalability features. This section gives a sample of these

results through a Daubechies-8 FIR filter [16] implementation

on Xilinx XCVE50-8 FPGA [17]. The filter is an instance of a

HIDE+ core which was written with various optimisations

embedded into it, including automatic minimum word length

and precision inference, and efficient FPGA hardware

mapping. Table 1 below gives the performance achieved by

implementing the low Daubechies-8 FIR filter using the

structures of figure 10 and 11, using both HIDE+ and a

handcrafted schematic-entry design of the same filter. The

filter coefficients have been represented in 8 bits and 2

fractional precision were allocated

to the internal wordlength.

Area (Slices) Speed (MHz)

Fig. 10 architecture 147 ~167

Fig. 11 architecture 113 ~159

Table 1. Performance of a low Daubechies-8 FIR filter

implementation on Xilinx XCVE50-8 FPGA using schematic

entry and HIDE+ tool

As can be seen from the table, the HIDE+ core delivers the

same performance as a handcrafted schematic-entry design.

VI. Conclusion

In this paper, we have described the bases of a Prolog-based

structural hardware development environment, called HIDE+,

which allows for very concise and abstract descriptions of

structured hardware architectures, and translates them

automatically into very efficient hardware implementations.

Based on a hierarchical library of hardware building blocks

and a small set of constructors, we have illustrated the use of

HIDE+ in the construction of a number of FIR-based

architectures. These designs proved optimal in the sense that

the same optimisations undertaken by hand were achieved

automatically through the use of HIDE+. The achieved

concise descriptions show clearly the benefit of the modular

structure of the language in facilitating the development of

efficient and reusable designs and IP cores in general (see

section B.3).

The development of in-house Intellectual Property cores has

become vital in the EDA industry, and with current high

density heterogeneous hardware platforms and stringent time-

to-market constraints, HIDE+’s approach to hardware

development can become very appealing. And although the

proposed environment does not include behavioural modelling

currently, and does not allow for concurrent hardware

software co-design, it provides a fully programming

environment for the development of highly parameterisable

and optimised IP cores. Nonetheless, the extension of HIDE+

and its integration to higher level SLDLs are currently being

considered.

VII. References

[1] International Technology Roadmap for Semiconductors

(ITRS), 2005, available at http://public.itrs.net/

[2] David August, Kurt Keutzer, Sharad Malik, Richard

Newton. Programmable ASICs to reduce costs. EE

Times, November 2000.

[3] System C Home page: http://www.systemc.org.

[4] Spec-C Home page: http://www.cecs.uci.edu/~specc/

[5] Celoxica Limited, Handel C information sheets. Available

at http://www.celoxica.com.

[6] Harriet Harvey-Horn. IP Assessment: Issues and

Strategies. Silicon Integration Initiative, August 1999.

[7] K.Alotaibi, “A high level hardware description

environment for FPGA-based image processing

applications,” PhD Thesis, Department of Computer

Science, The Queen’s University of Belfast, 1999.

[8] K. Benkrid, D. Crookes, “From application descriptions

to hardware in seconds: a logic-based approach to

bridging the gap”, IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, TVLSI12, vol. 4,

2004, pp. 420–436.

[9] K. Benkrid, S.Belkacemi, A. Benkrid, “HIDE: A

Hardware Intelligent Description Environment”, In

Elsevier's Journal of Microprocessors and Microsystems,

Special Issue on FPGA-based Reconfigurable

Area (Slices) Speed (MHz)

Fig. 10 architecture 147 ~167

Fig. 11 architecture 113 ~159

(b) HIDE+

(a) SchematicEntry

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

Computing, 30, Vol. 6, pp. 283-300, September 2006.

[10] Virtex-5 Family Overview Platforms, Xilinx Inc., 2007.

Available:

http://direct.xilinx.com/bvdocs/publications/ds100.pdf

[11] A. Benkrid, K. Benkrid, D. Crookes, “A Novel Approach

for Diminishing and Predicting the Error Dynamic Range

in Finite Wordlength FIR Based Architectures”, IEEE

International Conference on Acoustics, Speech, and

Signal Processing (ICASSP’03), vol. 2, pp. 581-584,

April 6-10, 2003, Hong Kong

[12] K. Benkrid, K. Benkrid, D. Crookes, “The Optimal

Wordlength Calculation for Forward and Inverse Discrete

Wavelet Transform Architectures”, SPIE Journal of

Optical Engineering, OE, Vol. 43, Issue 2, pp. 455-463,

February, 2004.

[13] Peter Pirsch, “Architectures for Digital Signal

Processing,” John Wiley & Sons, 1999.

[14] A. Benkrid, “Design and Implementation of 2-D Discrete

Wavelet Transforms on FPGAs”, PhD thesis PhD Thesis,

Department of Computer Science, The Queen's

University of Belfast, 2003.

[15] S. Golson, “State Machine Design Techniques for

Verilog and VHDL” Synopsys Journal of High-Level

Design, September 1994, pp. 1-48.

[16] M. Vetterli, M. Kovacevic, Wavelets and Subband

Coding. Prentice Hall, New Jersey, USA, 1995.

[17] Virtex-E Family Datasheet, Xilinx Inc. , 2003. Available:

http://www.xilinx.com/support/documentation/data_sheet

s/ds022-1.pdf

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

