1,952 research outputs found

    An unsupervised behavioral modeling and alerting system based on passive sensing for elderly care

    Get PDF
    Artificial Intelligence in combination with the Internet of Medical Things enables remote healthcare services through networks of environmental and/or personal sensors. We present a remote healthcare service system which collects real-life data through an environmental sensor package, including binary motion, contact, pressure, and proximity sensors, installed at households of elderly people. Its aim is to keep the caregivers informed of subjects’ health-status progressive trajectory, and alert them of health-related anomalies to enable objective on-demand healthcare service delivery at scale. The system was deployed in 19 households inhabited by an elderly person with post-stroke condition in the Emilia–Romagna region in Italy, with maximal and median observation durations of 98 and 55 weeks. Among these households, 17 were multi-occupancy residences, while the other 2 housed elderly patients living alone. Subjects’ daily behavioral diaries were extracted and registered from raw sensor signals, using rule-based data pre-processing and unsupervised algorithms. Personal behavioral habits were identified and compared to typical patterns reported in behavioral science, as a quality-of-life indicator. We consider the activity patterns extracted across all users as a dictionary, and represent each patient’s behavior as a ‘Bag of Words’, based on which patients can be categorized into sub-groups for precision cohort treatment. Longitudinal trends of the behavioral progressive trajectory and sudden abnormalities of a patient were detected and reported to care providers. Due to the sparse sensor setting and the multi-occupancy living condition, the sleep profile was used as the main indicator in our system. Experimental results demonstrate the ability to report on subjects’ daily activity pattern in terms of sleep, outing, visiting, and health-status trajectories, as well as predicting/detecting 75% hospitalization sessions up to 11 days in advance. 65% of the alerts were confirmed to be semantically meaningful by the users. Furthermore, reduced social interaction (outing and visiting), and lower sleep quality could be observed during the COVID-19 lockdown period across the cohort

    An automatic wearable multi-sensor based gait analysis system for older adults.

    Get PDF
    Gait abnormalities in older adults are very common in clinical practice. They lead to serious adverse consequences such as falls and injury resulting in increased care cost. There is therefore a national imperative to address this challenge. Currently gait assessment is done using standardized clinical tools dependent on subjective evaluation. More objective gold standard methods (motion capture systems such as Qualisys and Vicon) to analyse gait rely on access to expensive complex equipment based in gait laboratories. These are not widely available for several reasons including a scarcity of equipment, need for technical staff, need for patients to attend in person, complicated time consuming procedures and overall expense. To broaden the use of accurate quantitative gait monitoring and assessment, the major goal of this thesis is to develop an affordable automatic gait analysis system that will provide comprehensive gait information and allow use in clinic or at home. It will also be able to quantify and visualize gait parameters, identify gait variables and changes, monitor abnormal gait patterns of older people in order to reduce the potential for falling and support falls risk management. A research program based on conducting experiments on volunteers is developed in collaboration with other researchers in Bournemouth University, The Royal Bournemouth Hospital and care homes. This thesis consists of five different studies toward addressing our major goal. Firstly, a study on the effects on sensor output from an Inertial Measurement Unit (IMU) attached to different anatomical foot locations. Placing an IMU over the bony prominence of the first cuboid bone is the best place as it delivers the most accurate data. Secondly, an automatic gait feature extraction method for analysing spatiotemporal gait features which shows that it is possible to extract gait features automatically outside of a gait laboratory. Thirdly, user friendly and easy to interpret visualization approaches are proposed to demonstrate real time spatiotemporal gait information. Four proposed approaches have the potential of helping professionals detect and interpret gait asymmetry. Fourthly, a validation study of spatiotemporal IMU extracted features compared with gold standard Motion Capture System and Treadmill measurements in young and older adults is conducted. The results obtained from three experimental conditions demonstrate that our IMU gait extracted features are highly valid for spatiotemporal gait variables in young and older adults. In the last study, an evaluation system using Procrustes and Euclidean distance matrix analysis is proposed to provide a comprehensive interpretation of shape and form differences between individual gaits. The results show that older gaits are distinguishable from young gaits. A pictorial and numerical system is proposed which indicates whether the assessed gait is normal or abnormal depending on their total feature values. This offers several advantages: 1) it is user friendly and is easy to set up and implement; 2) it does not require complex equipment with segmentation of body parts; 3) it is relatively inexpensive and therefore increases its affordability decreasing health inequality; and 4) its versatility increases its usability at home supporting inclusivity of patients who are home bound. A digital transformation strategy framework is proposed where stakeholders such as patients, health care professionals and industry partners can collaborate through development of new technologies, value creation, structural change, affordability and sustainability to improve the diagnosis and treatment of gait abnormalities

    Inertial sensors-based lower-limb rehabilitation assessment: A comprehensive evaluation of gait, kinematic and statistical metrics

    Get PDF
    Analysis of biomechanics is frequently used in both clinical and sporting practice in order to assess human motion and their performance of defined tasks. Whilst camera-based motion capture systems have long been regarded as the ‘Gold-standard’ for quantitative movement-based analysis, their application is not without limitations as regards potential sources of variability in measurements, high cost, and practicality of use for larger patient/subject groups. Another more practical approach, which presents itself as a viable solution to biomechanical motion capture and monitoring in sporting and patient groups, is through the use of small-size low-cost wearable Micro-ElectroMechanical Systems (MEMs)-based inertial sensors. The clinical aim of the present work is to evaluate rehabilitation progress following knee injuries, identifying a number of metrics measured via a wireless inertial sensing system. Several metrics in the time-domain have been considered to be reliable for measuring and quantifying patient progress across multiple exercises in different activities. This system was developed at the Tyndall National Institute and is able to provide a complete and accurate biomechanics assessment without the constraints of a motion capture laboratory. The results show that inertial sensors can be used for a quantitative assessment of knee joint mobility, providing valuable information to clinical experts as regards the trend of patient progress over the course of rehabilitation

    Pivotal Visualization:A Design Method to Enrich Visual Exploration

    Get PDF

    Visualization of Physical Activity Patient-Generated Health Data for Clinical Care

    Get PDF
    This project examined the gap between physical activity patient-generated health data (PGHD) that are currently collected, versus formats or derivatives of PGHD that healthcare personnel at an internal medicine clinic would find useful (e.g. higher-level summaries or visualizations). Participants from the clinic were observed and surveyed, and a visualization was designed and prototyped based on findings from this research. Afterwards, the visualization was assessed with a utility and usability evaluation. The observation revealed points at which healthcare personnel interact with patient physical activity (PA) information in their current workflow. The survey found that overall, the healthcare personnel were most interested in seeing exercise type, minutes of moderate-to-vigorous PA, and step count. They expressed interest in using the visualization for determining PA recommendations and baselines, and for overall summarization of PA. The evaluation showed that the visualization performed at a “fair” level, but some improvements can be made.Master of Science in Information Scienc

    Personalized functional health and fall risk prediction using electronic health records and in-home sensor data

    Get PDF
    Research has shown the importance of Electronic Health Records (EHR) and in-home sensor data for continuous health tracking and health risk predictions. With the increased computational capabilities and advances in machine learning techniques, we have new opportunities to use multi-modal health big data to develop accurate health tracking models. This dissertation describes the development, evaluation, and testing of systems for predicting functional health and fall risks in community-dwelling older adults using health data and machine learning techniques. In an initial study, we focused on organizing and de-identifying EHR data for analysis using HIPAA regulations. The dataset contained nine years of structured and unstructured EHR data obtained from TigerPlace, a senior living facility at Columbia, MO. The de-identification of this data was done using custom automated algorithms. The de-identified EHR data was used in several studies described in this dissertation. We then developed personalized functional health tracking models using geriatric assessments in the EHR data. Studies show that higher levels of functional health in older adults lead to a higher quality of life and improves the ability to age-in-place. Even though several geriatric assessments capture several aspects of functional health, there is limited research in longitudinally tracking the personalized functional health of older adults using a combination of these assessments. In this study, data from 150 older adult residents were used to develop a composite functional health prediction model using Activities of Daily Living (ADL), Instrumental Activities of Daily Living (IADL), Mini-Mental State Examination (MMSE), Geriatric Depression Scale (GDS), and Short Form 12 (SF12). Tracking functional health objectively could help clinicians to make decisions for interventions in case of functional health deterioration. We next constructed models for fall risk prediction in older adults using geriatric assessments, demographic data, and GAITRite assessment data. A 6-month fall risk prediction model was developed with data from 93 older adult residents. Explainable AI techniques were used to provide explanations to the model predictions, such as which specific features increased the risk of fall in a particular model prediction. Such explanations to model predictions provide valuable insights for targeted interventions. In another study, we developed deep neural network models to predict fall risk from de-identified nursing notes data from 162 older adult residents from TigerPlace. Clinical nursing notes have been shown to contain valuable information related to fall risk factors. This analysis provides the groundwork for future experiments to predict fall risk in older adults using clinical notes. In addition to using EHR data to predict functional health and fall risk in older adults, two studies were conducted to predict fall and functional health from in-home sensor data. Models for in-home fall prediction using depth sensor imagery have been successfully used at TigerPlace. However, the model is prone to false fall alarms in several scenarios, such as pillows thrown on the floor and pets jumping from couches. A secondary fall analysis was performed by analyzing fall alert videos to further identify and remove false alarms. In the final study, we used in-home sensor data streaming from depth sensors and bed sensors to predict functional health and absolute geriatric assessment values. These prediction models can be used to predict the functional health of residents in absence of sparse and infrequent geriatric assessments. This can also provide continuous tracking of functional health in older adults using the streaming in-home sensor data

    Usability analysis of contending electronic health record systems

    Get PDF
    In this paper, we report measured usability of two leading EHR systems during procurement. A total of 18 users participated in paired-usability testing of three scenarios: ordering and managing medications by an outpatient physician, medicine administration by an inpatient nurse and scheduling of appointments by nursing staff. Data for audio, screen capture, satisfaction rating, task success and errors made was collected during testing. We found a clear difference between the systems for percentage of successfully completed tasks, two different satisfaction measures and perceived learnability when looking at the results over all scenarios. We conclude that usability should be evaluated during procurement and the difference in usability between systems could be revealed even with fewer measures than were used in our study. © 2019 American Psychological Association Inc. All rights reserved.Peer reviewe

    Participative Urban Health and Healthy Aging in the Age of AI

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2022, held in Paris, France, in June 2022. The 15 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 33 submissions. They cover topics such as design, development, deployment, and evaluation of AI for health, smart urban environments, assistive technologies, chronic disease management, and coaching and health telematics systems
    • 

    corecore