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ABSTRACT 

 Research has shown the importance of Electronic Health Records (EHR) and in-

home sensor data for continuous health tracking and health risk predictions. With the 

increased computational capabilities and advances in machine learning techniques, we 

have new opportunities to use multi-modal health big data to develop accurate health 

tracking models. This dissertation describes the development, evaluation, and testing of 

systems for predicting functional health and fall risks in community-dwelling older adults 

using health data and machine learning techniques.  

 In an initial study, we focused on organizing and de-identifying EHR data for 

analysis using HIPAA regulations. The dataset contained nine years of structured and 

unstructured EHR data obtained from TigerPlace, a senior living facility at Columbia, MO. 

The de-identification of this data was done using custom automated algorithms. The de-

identified EHR data was used in several studies described in this dissertation. We then 

developed personalized functional health tracking models using geriatric assessments in 

the EHR data. Studies show that higher levels of functional health in older adults lead to a 

higher quality of life and improves the ability to age-in-place. Even though several geriatric 

assessments capture several aspects of functional health, there is limited research in 

longitudinally tracking the personalized functional health of older adults using a 

combination of these assessments. In this study, data from 150 older adult residents were 

used to develop a composite functional health prediction model using Activities of Daily 

Living (ADL), Instrumental Activities of Daily Living (IADL), Mini-Mental State 

Examination (MMSE), Geriatric Depression Scale (GDS), and Short Form 12 (SF12). 

Tracking functional health objectively could help clinicians to make decisions for 
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interventions in case of functional health deterioration. We next constructed models for fall 

risk prediction in older adults using geriatric assessments, demographic data, and 

GAITRite assessment data. A 6-month fall risk prediction model was developed with data 

from 93 older adult residents. Explainable AI techniques were used to provide explanations 

to the model predictions, such as which specific features increased the risk of fall in a 

particular model prediction. Such explanations to model predictions provide valuable 

insights for targeted interventions. In another study, we developed deep neural network 

models to predict fall risk from de-identified nursing notes data from 162 older adult 

residents from TigerPlace. Clinical nursing notes have been shown to contain valuable 

information related to fall risk factors. This analysis provides the groundwork for future 

experiments to predict fall risk in older adults using clinical notes.  

 In addition to using EHR data to predict functional health and fall risk in older 

adults, two studies were conducted to predict fall and functional health from in-home 

sensor data. Models for in-home fall prediction using depth sensor imagery have been 

successfully used at TigerPlace. However, the model is prone to false fall alarms in several 

scenarios, such as pillows thrown on the floor and pets jumping from couches. A secondary 

fall analysis was performed by analyzing fall alert videos to further identify and remove 

false alarms. In the final study, we used in-home sensor data streaming from depth sensors 

and bed sensors to predict functional health and absolute geriatric assessment values. These 

prediction models can be used to predict the functional health of residents in absence of 

sparse and infrequent geriatric assessments. This can also provide continuous tracking of 

functional health in older adults using the streaming in-home sensor data.  
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Chapter 1: Introduction 

 

1.1 Motivation  

The number of Americans ages 65 and older is projected to be over 95 million by 

2060, sharing about 23 percent of the total population in the USA [1]. Similar demographic 

shifts are predicted for many other countries, including Japan, South Korea, Hong Kong, 

Italy, Germany, and China.  In addition, studies estimate that in the year 2014,  44.7 million 

older adults lived independently in housing units, such as homes and apartments (96.8 

percent), compared to only 1.5 million in group quarters, and only 1.2 million in nursing 

homes in the USA [2]. Therefore, creating an environment that can improve quality of life 

and support independence in the growing population of older adults is currently an 

important quest in healthcare research.  

Creating an environment to support and care for older adults could be done in a 

variety of ways. Smart home systems such as smart medication reminder systems and in-

home sensor systems for continuous health monitoring, advanced care coordination, and 

clinical interventions can all help in improving the quality of life and independence in older 

adults.  A combination of in-home sensor systems and advanced nursing care coordination 

has been shown as an effective combination to support aging in place [3, 4]. Senior living 

facilities like TigerPlace at Columbia, Missouri provides advanced nursing care along with 

an integrated in-home sensor system that can track gait, predict fall, estimate restlessness, 

and sleep parameters of older adults [5, 6]. Custom data processing algorithms have been 

developed to track and recognize patterns in sensor data [7]. In the case of anomalies or 
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adverse health conditions detected in sensor data patterns, these algorithms generate health 

alerts and send them to the designated care providers. Health alert generating systems have 

a critical part of healthcare systems to inform care providers about the critical health 

conditions of the resident and patients. For example, automated fall detection and alarm 

system detects falls and sends alerts to the care providers or family members for their 

immediate attention [8]. Many generated health alerts are usually irrelevant, redundant, or 

simply false. These false alerts overwhelm the schedule of care providers. This 

phenomenon is commonly known as alarm fatigue [9]. Sensor-based alerts suggest a 

significant enough change in sensor data was found, however, they do not necessarily 

provide sufficient information about the change in the underlying health condition of an 

older adult. Therefore, understanding the underlying health conditions could help improve 

the health monitoring systems.  

Electronic Health Records (EHR) and in-home sensor data have been shown to 

contain critical health information including functional health and fall risk factors in older 

adults [10, 11]. At TigerPlace, care is provided by registered nurse care coordination 

services and EHR data has been maintained by the nursing staff [12]. However, analysis of 

this EHR dataset has not been conducted to track or predict the health of residents. This 

provides a unique opportunity to utilize the TigerPlace EHR data to understand 

longitudinal underlying health changes of the older adult residents. In this dissertation, we 

analyzed the TigerPlace EHR data to track personalized functional health in older adults. 

The current fall risk model used at TigerPlace is based on in-home gait speed only [13]. 

This provided an opportunity to explore new methods to predict fall risk using the unique 
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data at TigerPlace.  Therefore, in addition to functional health tracking, we have also 

utilized the EHR data to predict fall risk.  

We first de-identified and developed an EHR dataset for predictive analytics 

combining data from two different EHR databases used at TigerPlace between 2010 and 

2019. We developed several health prediction and tracking models using the de-identified 

EHR data,  specifically (1) functional health status prediction using geriatric assessments, 

(2) 6-month fall risk prediction using geriatric assessments and GAITRite data, (3) fall 

risks estimation using clinical notes and medications, and (4) functional health status 

prediction using in-home sensor data.  

Functional health is multifactorial comprising of several patterns [14]. We used 

geriatric assessments in the EHR of 168 residents living at TigerPlace between 2011 – 2019 

to develop a composite functional health index. We extended the Rothman Index model 

developed for critical inpatient care to construct the functional health index using excess 

risk functions for the geriatric assessments [15]. Additionally, we developed mixed-effect 

logistic regression models to estimate functional health using the repeated geriatric 

assessments from the residents. We also developed 6-month fall risk models to accurately 

predict fall risk from the geriatric assessments and gait parameters from GAITRite data. 

Furthermore, we used clinical notes and medication information in the EHR to predict fall 

and hospitalization risks using word embedding models and Long Short-Term Memory 

neural networks. Finally, we used in-home sensor data including depth sensor and bed-

sensor data to predict the functional health of the residents. We used different combinations 

of sensor data to predict the functional health estimates obtained from the mixed-effect 

model and the absolute geriatric assessments including ADL, IADL, MMSE, and GDS.   



 

4 

In addition to predicting fall risk, we also improved the fall prediction algorithm by 

reducing irrelevant or false fall alarms generated because of known issues in processing 

sensor data. Real-time fall detection system using depth sensors has provided promising 

results [16]. TigerPlace senior living facility has been using the fall detection system 

developed by Stone et al. and send real-time alerts to the clinical staff [16]. The algorithm, 

however, does not perform human detection to confirm that a persona fell in the detected 

fall video. Hence, along with successfully detecting several hundreds of true falls, the 

model also detected thousands of non-fall videos as falls. Some examples of these non-

falls include pets jumping from couches, linens thrown on the floor, and kids jumping on 

the floor [17]. We propose a new secondary analysis of the detected fall alert videos to 

prune out the false alarms. We developed and labeled an alert video dataset containing 

~4000 alert videos. We used deep neural networks, specifically convolutional neural 

networks (CNNs) based architectures for secondary processing of the alert videos to reduce 

false alarms and alarm fatigue.  

1.2 Primary Goals 

The primary objectives of this dissertation include: 

• Development of an EHR dataset 

o De-identification of the EHR databases used at TigerPlace senior living 

facility from 2010 to 2018 

o Re-compilation of geriatric assessments data in the de-identified database 

o Organization of EHR data for predictive analysis 

• Development of health risk prediction model using geriatric assessments in the 

electronic health record (EHR) data  
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o Development of a Functional Health Index using geriatric assessments to 

track longitudinal functional health changes in older adults using excess-

risk functions 

o Development of mixed effect models using repeated assessment measures 

to predict functional health 

• 6-month fall risk prediction using geriatric assessments, weight change, and 

GAITRite-assessment data 

o Development of fall risk prediction models using machine learning 

algorithms from spatiotemporal gait parameters, and assessment data 

o Use of model explainability methods to explain fall risk predictions for 

personalized interventions   

• Retrospective analysis of fall alert videos to prune out false alarms 

o Development and labeling of a fall alert dataset 

o Classification of fall alert videos to identify and prune out false alarms using 

CNN based deep neural architectures 

• Fall and hospitalization predictions using clinical notes and medications 

o Development of deep neural architectures and word embedding models to 

predict fall and hospitalization risk from clinical notes and medications data 

• Functional health predictions using in-home sensor data 

o Development of regression models to predict functional health from in-

home sensor data obtained from depth sensors and bed sensors 
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1.4 Organization 

Chapter 2 provides an overview of the background associated with this research. It 

primarily focuses on health monitoring systems, alarm fatigue in health systems, EHR data 

and nursing assessments, health indices and trajectories in estimating health, and video 

classification methods using deep neural network models.  

Chapter 3 provides an overview of the de-identification and organization of the 

EHR data.  

Chapter 4 describes the development and validation of a functional health status 

estimation model using geriatric assessment data in the EHR. Also, Chapter 4 includes the 
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development and validation of mixed-effect logistic regression models to predict health 

status using the repeated assessment data.  

 Chapter 5 provides an overview of the development of 6-month fall prediction 

models using geriatric assessments, change in weight, and GAITRite data.  

Chapter 6 provides an overview of the development of a fall alert dataset. Also, it 

provides an overview of retrospective fall alert video classification using deep neural 

networks.  

Chapter 7 provides an overview of fall prediction strategies using nursing notes and 

other text-based data in EHR.  

Chapter 8 provides an overview of functional health predictions using in-home 

sensor data obtained from depth sensors and bed sensors.  

Chapter 9 provides a brief description of future work and a detailed progress 

summary of the dissertation research.  
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Chapter 2: Background 

 

2.1 Health Monitoring Systems 

Health monitoring systems continuously monitor the health of an individual as an 

alternative to traditional healthcare management of patients to reduce healthcare and 

hospitalization costs, provide disease prevention, detect the change in health status, and 

provide data for early interventions [18]. Sensor-based health monitoring systems are 

pervasive and are used in several healthcare facilities, including Intensive Care Units 

(ICUs), home care, and aging-in-place facilities [3]. Many sensors are used in ICUs, 

smartphones, and smartwatches for continuous health monitoring [19]. However, studies 

have shown that older adults prefer non-wearable sensors for health tracking [20]. Aging 

in place facilities like TigerPlace are equipped with several non-invasive in-home sensors, 

such as bed sensors and depth sensors to continuously monitor the health of the older 

residents.  

The health monitoring systems have several algorithms to process the sensor data 

and detect in case of any anomalies. In case of an important health anomaly detection, 

alerts are generated to the clinicians and other designated care providers. Depending on the 

number of residents or patients under observation, and the sensitivity of the alert system in 

a health monitoring system, the number of alerts can significantly vary. If the number of 

alerts is too high such that it is overwhelming the schedule of the care providers, then the 

alerts can cause major distractions in the health system and patient safety issues [21].  
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2.1.1 Alarm Fatigue 

Studies show that 72% to 99% of clinical alarms are false [9]. These false health 

alerts in health monitoring systems overwhelm the schedule of care providers causing the 

care providers to not take all alerts seriously, thinking they may not be significant. This 

phenomenon is called alarm fatigue. Alarm fatigue leads to desensitization of alarms which 

leads to missed true alarms and patient deaths  [9, 21, 22]. However, studies show that 

customization of alarm parameters can reduce the number of false alarms and increase 

patient safety [9].  

The ECRI group has reported that alarm and alert-related issues have been one of 

the most pervasive medical device hazards reported from 2011-2020 [23]. Funk et al. 

surveyed to understand the attitude and practice of respondents related to clinical alarms 

[24]. The study results show that frequent false alarms are the most important alarm-related 

issue. The survey respondents also reported that patients are experiencing adverse events 

related to alarms at their institutes. Cvach et al. have conducted an integration review on 

alarm fatigue that analyzed over seventy-two articles between 1/1/2000 and 10/1/2011 

using the John Hopkins Nursing Evidence-Based Practice model [25]. The authors 

mentioned that alarm fatigue is a national problem and had been the number one medical 

device hazard in 2012. Cvach et al. also mentioned that several methods including signal 

filtering, algorithms, and/or artificial intelligence systems are some of the methods 

researchers have successfully tried to reduce the number of false alarms. In a research 

study, Graham et al. reported that alarm fatigue could be improved by training nurses to 

individualize the patients’ alarm parameters [26]. Based on the studies by Cvach and 

Graham et al. personalization of alarm parameters could improve alarm fatigue incidents. 
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Also, research shows that there is an issue of over-monitoring in health systems, not just in 

ICU-care but also in non-ICU hospital settings [27]. Therefore, changing sensitivity in 

health tracking based on patient health status could also play a significant role in improving 

alarm fatigue.  

2.1.2 False and/or Irrelevant Alarms in Eldercare Systems 

Alarm fatigue has been reported in eldercare systems due to a significant number 

of false and irrelevant alerts. Skubic et al. reported that the depth camera-based fall 

detection system produced a large number of false fall alerts while detecting in-home falls 

[17]. The authors discussed two longitudinal studies testing fall detection sensor 

technology for homes of older adults. In the latest fall detection study, 570 fall alerts were 

generated from 67 apartments over 7 months period, out of which only 67 were actual falls. 

The source of the false alarms were linens thrown on the floor, pets jumping, visitors, etc. 

A secondary analysis of these fall alerts could potentially eliminate some of these false 

alarms.  

2.2 Electronic Health Records Data  

To reduce false alerts, the alarm system should be personalized based on the health 

status of the residents or patients. A healthier person with higher functional health should 

be treated differently as compared to a person with lesser functional health. The functional 

and overall health status of an individual can be obtained using Electronic Health Records 

(EHR) [28].  

EHR are developed as the digital replacement for the traditional paper-based 

medical records. The primary benefit of having a digital version of the health records is the 

ease of storing and retrieving the entire medical history of a patient as necessary. EHRs are 
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complex and contain both structured and unstructured health data. The structured data in 

the EHR include physiological measures (vital signs), lab results, health assessments 

(Activities of Daily Living), medications, and diagnoses. The unstructured data in the EHR 

include clinical free text in the progress notes and visit notes.   

2.2.1 EHR at TigerPlace 

In this dissertation, we focus on analyzing the EHR data from a senior living 

facility, which is different than an EHR in a medical system or a critical care system. An 

EHR system in the senior living facility contains longitudinal health data compared to the 

more sparse health data in a hospital EHR with hospitalization-specific data. The 

longitudinal data in a senior care facility could provide us more insights on the change in 

health condition over a period that led to hospitalization, fall, or even death. The EHR data 

at TigerPlace contained geriatric assessments, adverse health events such as hospitalization 

and fall event information, vital signs, medications, progress notes, medical diagnoses, and 

lab results.    

2.3 Geriatric Assessments, Functional Health, Health Indices, and Health 

Trajectories for Older Adults 

Functional health in older adults is complex and multifactorial [29, 30]. Several 

geriatric assessments have been developed and validated for measuring different aspects 

of functional health in older adults, such as Activities of Daily Living (ADL), Instrumental 

Activities of Daily Living (IADL), Mini-Mental State Examination (MMSE), Geriatric 

Depression Scale (GDS), and Short Form 12 (SF12) [31-40]. ADLs are defined as activities 

that are essential for independent living. IADL require a higher level of personal autonomy, 

referring to tasks that require enough capacity to make decisions through greater interaction 
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with the environment [38]. MMSE is a widely used test to evaluate the cognitive aspects 

of mental function. MMSE excludes questions concerning abnormal mental experiences 

and mood [36]. GDS is a screening tool for measuring depression in older adults [39]. SF-

12 is a multipurpose short form that provides a generic measure of health status [40]. All 

these assessments have good reliability and validity. These individual assessments can 

track different aspects of functional health in older adults. However, understanding the 

overall change in the functional health of an older adult using these individual assessments 

can be difficult, as they are based on different scales and have a wide range of clinical 

condition focus and importance to overall health. Instead of considering them individually, 

a combination of these assessments can be used to develop a continuous composite 

functional health score to predict a more general status of functional health in older adults.  

Several studies have been conducted in developing health and prognostic indexes to track 

or predict comorbidity, mortality, frailty, and functional health in older adults [41-46]. 

Mazzaglia et al. developed two prognostic index models to predict five-month mortality 

and hospitalization [41]. In the first model, they used a set of 7 questions from ADL and 

IADL to develop their index. The area under the receiver operating characteristic curves 

(AUC) to predict mortality and hospitalizations were 0.75 and 0.60, respectively. In the 

second model, they considered drug use and previous hospitalizations, which increased 

their hospitalization AUC to 0.67. Gagne et al. developed a single numeric index to predict 

mortality by combining Charlson and Elixhauser measures [42]. Results show that the 

combined score performed better in predicting mortality than the individual scores. Carey 

et al. and Lee et al. developed prognostic models to predict mortality using data from the 

Program of All‐Inclusive Care for the Elderly (PACE) and 1998 wave of the Health and 
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Retirement Study (HRS), respectively [43, 44]. Schonberg et al. used 39 risk factors, 

including functional measures, illnesses, behaviors, demographics in a multivariable Cox 

proportional hazards model to predict 5-year mortality [45]. Giovanni et al. developed a 

multisource comorbidity score using administrative data, such as diagnostic categories and 

ICD-9 to measure comorbidity, predict 1-year mortality, and other adverse outcomes [46]. 

This study did not include functional status as a variable in the predictive model 

development.  

Fried. et al. conducted a study to predict frailty in older adults [47]. They defined 

frailty as a clinical syndrome in which the older adult has three or more out of five frailty 

criteria. These five criteria include unintentional weight loss, self-reported exhaustion, 

weakness, slow walking speed, and low physical activity. This standardized phenotype of 

frailty detection can identify frail older adults potentially at risk of falls, hospitalizations, 

disability, and death.  

Gait analysis provides critical information in predicting adverse health conditions 

and functional health in older adults [13, 48]. Nelson et al. developed a Functional 

Ambulation Performance (FAP) score that captures the gait capacity of an individual using 

a specific set of spatiotemporal parameters (STPS) [49, 50]. The FAP score is integrated 

with the GAITRite walkway (CIR System Inc; Clifton, New Jersey), a gold standard 

system for measuring STPS [51]. FAP has been validated in several independent studies 

[50].  

The mortality-based prognostic models tend to predict future adverse health 

conditions, specifically death, instead of predicting the overall functional health of an 

individual at a given time. The frailty phenotyping method developed by Fried et al. can 
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predict the presence of frailty with minimal granularity as it can only classify an older adult 

into one of the three frail categories: frail, intermediate frail, and not frail [47]. This may 

not be able to track the gradual changes in the functional health of an individual. Also, this 

only considers the physical aspects of functional health; cognitive aspects were excluded 

[52, 53]. The FAP score is also developed considering only gait ability and does not 

consider the cognitive aspects of functional health [49]. We argue that a continuous 

measure of overall functional health can provide critical information about changes in 

functional health over a period. Interventions based on overall functional health 

deterioration can help older adults live with higher independence and quality of life [54].  

Rothman et al. have developed a continuous measure of patient condition in acute care, 

called the Rothman Index, using a set of 26 Electronic Medical Record variables [15]. They 

used one-year post-discharge mortality to develop excess risk functions for each variable. 

The excess risk functions were then used to calculate the Rothman Index for an individual 

at a given period. Instead of predicting an adverse health condition, the Rothman Index 

provides an overall patient condition in inpatient care. 

2.3.1 Predicting Functional Health from In-Home Sensor Data 

 As described in the previous section, several assessments and models have been 

created to estimate functional health in older adults. However, these functional health 

assessments dependent on human intervention. Trained nurses and health practitioners 

conduct these assessments at regular intervals. The two significant issues with the manual 

assessment of functional health are the subjectivity involved in conducting the assessment 

and the fact that the assessments are not conducted more frequently to track the change in 
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health. Therefore, estimating functional health accurately using unobtrusive in-home 

sensor data could solve these issues.  

 Several studies have been conducted to predict functional health using technology-

enabled platforms and in-home sensors. Cook et al. in a systematic review discussed the 

use of technology-enabled platforms to predict functional health [55]. In this article, the 

authors discussed technology-enabled and sensor-based functional health assessments, 

such as using wearable sensors for physiological, motor function, and mood monitoring; 

ambient sensors for dementia prediction, analysis of daily activities, and specific state 

detection including gait, balance, mobility, and mood [56-60]. The in-depth analysis 

provides evidence that computing, wireless sensors, and machine learning technology have 

the potential to revolutionize functional health assessment.  

 Dawadi et al. have presented an automated cognitive assessment method using in-

home motion, light, door, and temperature sensor data [61]. In the study, sensor data from 

18 community-dwelling seniors from a retirement community with age 73 or older were 

collected along with biannually administered clinical, cognitive, and motor tests using 

timed up and go (TUG) and repeatable battery for the assessment of neuropsychological 

status measure of cognitive status (RBANS). Results show that the automatically labeled 

activities including ADL, sleep show a statistically significant correlation with RBANS. 

Also, ADL and sleep combined with other features such as mobility, and out-of-home 

duration show a statistically significant correlation with TUG.  

 In another study, Aramendi et al. have presented an automatic assessment of 

functional health decline in seniors using smart home data [11]. They used a set of 10 day-

level activity features to predict Instrumental Activity of Daily Living-Compensation 
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(IADL-C). The features include time spent per day in cooking, eating, and relaxing; sleep-

related features including sleep duration, and frequency, and mobility-related features such 

as a total number of activated motion sensors, and total distance walked. The study 

included data obtained from 29 older adults for an average of two years. The authors 

experimented with different regression algorithms to predict IADL-C using the ten 

features. Results show that a statistically significant correlation was observed between 

IADL-C and the predicted IADL-C using different algorithms. However, the correlation 

values ranged from 0.01-0.29 suggesting a high correlation between the predicted and 

actual IADL-C was not found. The authors further experimented with the predicted IADL-

C values and found that even though the predicted IADL-C was not highly correlated with 

the actual IADL-C but it was able to successfully suggest if there was a positive or negative 

change in the actual value.  

2.4 Video Classification for Pruning False Fall Alerts 

False fall alert reduction is critical in improving the overall alert system at senior 

living facilities. A longitudinal study conducted by Skubic et al. shows that many false 

alerts are generated in the depth image-based fall detection system are because of in-home 

events like linens thrown on the floor and pets jumping off the furniture [17]. A 

retrospective analysis of these alert videos can provide more context to identify and remove 

these false fall alerts. Alerts generated using the fall detection system are essentially email 

or text messages with a link to the fall video  [8]. A spatiotemporal video classification 

could be used as a secondary alert video analysis step (an analysis after the fall detection 

system detects a fall and before an alert is generated) to predict a non-fall and stop it from 

becoming an alert.   



 

19 

Video and action classification are fundamental problems in computer vision. 

Several studies have been conducted to understand and classify videos using hand-crafted 

spatiotemporal features, including space-time interest points (STIP), SHIFT-3D, HOG3D, 

Cuboids, and iDT [62-67].  

The availability of a large number of images and videos has encouraged the 

development of new computing techniques and algorithms to analyze these data for various 

applications. The recent developments in deep neural networks, specifically convolutional 

neural networks (ConvNets) for image processing have been very successful [68-74]. The 

ConvNet architectures have been used in several image processing tasks including, image 

recognition, retrieval, segmentation, and detection [71, 75-79]. Ziller et al. have shown that 

ConvNets learn powerful interpretable features [80]. Several new techniques such as Batch 

Normalization, Dropout, Parametrized-RELU, Spatial-Pyramid Pooling have been 

developed to further improve the classification accuracy [81-84].  

Several deep architectures have been proposed to learn spatiotemporal features for 

video understanding. In [85], Ji et al. have proposed 3D ConvNets to recognize human 

actions. Restricted Boltzmann Machines and stacked ISA were also used with 3D 

ConvNets to learn spatiotemporal features [86, 87].  

CNN architectures trained on the ImageNet dataset have been used for solving 

image problems in other domains as well. ImageNet trained network features have been 

used for the PASCAL VOC classification and detection challenge [78, 88]. Shaoqing et al. 

have shown that features obtained from a deeper trained network like VGG-16 can provide 

further improvements in the PASCAL VOC performance [89]. These pioneering papers 

inspired several experiments to use ImageNet trained deep architectures for transfer 
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learning or be used as is in completely new tasks, such as video and action classification, 

depth prediction, segmentation, and pose estimation.  

The progress in developing new architectures for video classification and 

representation learning is slower [90-94]. Tran et al. explain the three important bottlenecks 

in the development of strong architectures for videos when compared to image-based 

models: 

• Video ConvNets need higher computation power and memory  

In [94], Tran et al. have studied that it could take up to 3 to 4 days to train a 3D 

ConvNet on UCF101 and about two months on h-1M datasets [91, 95]. 

• No standard benchmark for architecture search for videos 

ImageNet is being used as the standard benchmark to test image classification 

accuracy [69, 70].  Deep architectures can be trained on this dataset at a reasonable 

expense of time and the trained networks generalize to other tasks, such as 

segmentation and object detection. The Sports-1M dataset is shown to help learn 

generic features when trained with a needed architecture [94]. However, the dataset is 

too large, and it is expensive to perform an architecture search using the Sports-1M 

dataset. Video data frames in UCF101 are highly correlated. Studies show that models 

trained on UCF101 suffer from overfitting issues [91, 94]. Tran et al. have reported that 

training ConvNet models from scratch using UCF101 accuracy of only 41-44% could 

be obtained. However, finetuning using the Sports-1M dataset, the authors could 

improve the accuracy to 82% on UCF101 [94].  

• Designing a video classification model is non-trivial 
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The performance of a video classification deep architecture is dependent on 

many choices, including the pre-processing process, type of convolutions, number of 

layers, and modeling temporal dimensions. Tran et al. performed an architecture search 

on UCF101 to solve this issue [90].  

Carreira et al. developed a new architecture, Two-Stream Inflated 3D ConvNets, 

otherwise known as I3D to learn spatiotemporal features [96]. The I3D is based on the idea 

that 3D ConvNets can benefit from ImageNet 2D ConvNet designs. The architecture 

inflates 2D ConvNets into 3D. The filters and pooling kernels are inflated endowing them 

with an additional temporal dimension in a successful 2D classification model to create a 

3D ConvNet classification architecture. Square filters are converted into cubic using this 

design strategy. Results show that this model outperforms the state-of-the-art video 

classification models. 

In another study, Tran et al. have explored and compared convolutional residual 

block architectures for video classification [97]. The architectures they have included are, 

2D convolutions over the entire clip [92], 2D convolutions over frames, 3D convolutions 

[85, 94, 96], mixed 3D-2D convolutions, and R(2+1)D convolutions. The new 

spatiotemporal convolutional block R(2+1)D designed by the authors in this study 

approximates the 3D convolutions. It consists of a 2D convolution followed by a 1D 

convolution, decomposing spatial and temporal modeling into two separate steps. Results 

show that the R(2+1)D performs similar or superior to the state-of-the-art architectures like 

I3D.  

 Therefore, there is enough evidence in the literature that convolutional neural 

networks can be used to classify videos effectively. A successful video classification model 
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will help reduce the number of false fall alarms raised through the depth data-based fall 

alarm detection model [8]. The depth fall alerts send a message with an RGB video of the 

fall. The video is segmented [98]. The segmentations generally include are the ground 

plane and the foreground objects. The foreground objects usually contain the fall. False 

alarms occur when a foreground is an object other than a human falling on the floor, such 

as a pillow thrown on the ground, jumping off the furniture, etc. Modeling the 

spatiotemporal features in these videos and classifying the alert videos can help reduce 

false alarms.  

2.5 Computing with Words to Predict Health Risk 

 Bjarnadottir et al. have found that nursing notes can contain clinical, organizational, 

and environmental fall risk indicators that are not explicitly recorded by the providers or 

other commonly measured fall risk factors [10].  In this exploration study, the authors 

analyzed 1,046,053 registered nurses’ notes (RNs’ notes) from the MIMIC-III database. 

The study results show that the RNs’ notes have contained explicit, intrinsic, and extrinsic 

factors related to the risk of fall. This study inspired us to explore the nursing notes in the 

EHR at Aging-in-Place facilities to predict fall risk.  

 

Studies show that processing nursing notes to predict health outcomes has many 

challenges [99, 100]. Hyun et al. conducted a study exploring the ability of NLP to extract 

data from nursing notes [99]. The authors used the MedLEE library to encode the nursing 

notes. Hyun et al. have concluded that the RNs’ free texts contained several key health 

information and they could be extracted using NLP techniques. However, the authors 

observed that MedLEE did not include many Nursing terminologies and abbreviations. 

MedLEE, like other Medical Language Extraction and/or Encoding systems heavily 
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depend on a specific lexicon that may not be easily extended to be used in new text domains 

[99]. Therefore, instead of depending on a predefined Medical Language Extraction 

System, adaptive and automatic feature engineering of RNs’ free texts using advanced NLP 

models would probably be a step in the right direction. The recent developments in NLP 

research show promising results in predicting health outcomes from nursing notes [100-

103].  

More specifically, there is a precedent for predicting health outcomes using 

machine learning and electronic health records which includes a wide range of uses. A 

previous study involving the neural network system named DeepCare used machine 

learning to predict future medical events from electronic health data [104]. In their case 

studies, testing DeepCare with diabetes and mental health remission, they found that 

DeepCare performed competitively against current state-of-the-arts [104]. Another study 

involves predicting psychiatric readmission using statistical models with word patterns 

identified with natural language processing of the EHR data [105].  Research has also been 

done regarding the risk of harm a patient may inflict on themselves or others around them, 

also using natural language processing to analyze EHR data [106].  

There have also been previous studies regarding predicting falls in a variety of 

settings. A study conducted on elderly patients visiting health centers in Maine found that 

deep learning models were able to successfully improve fall prediction accuracy [107]. In 

an in-patient setting, a second study used Japanese EMR data to sort patients in the hospital 

into risk and no-risk groups with relatively high accuracy [108]. However, this study 

additionally shows that temporal aspects of prediction can affect the success of deep 

learning models. Specifically, using more recent data provides for more accurate 
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predictions than long-term data [108].  Despite this, using long-term EMR data is still better 

for accuracy than excluding EMR data entirely [107, 108]. Predictions are also improved 

when the entirety of a patient's EHR records is used, including the clinical free-text nursing 

notes, which are not commonly used in machine learning models due to their unstructured 

nature [109]. Since clinical text data are often left out of predictive models, we have the 

opportunity to fill in this gap of research. 

Previous research around using natural language processing to decipher EHR data 

has been around the topic of assigning medical codes to free text EHR data. One study used 

natural language processing to identify fall risk that needed to be coded within clinical 

notes to accurately reflect the fall risk in seniors that otherwise would not have been 

reported [110]. Another study more broadly aimed to identify concepts relating to ICD-9 

codes using deep learning methods [111]. While our research does not involve medical 

codes, NLP identifying concepts related to fall risk suggests that we can identify fall risk 

for purposes unrelated to medical coding. 

When approaching a natural language processing task with deep learning, there are 

several models and methods used. While convolutional neural networks (CNNs) are used 

more for text classification tasks, recurrent neural networks (RNNs) are typically better for 

tasks with a temporal aspect [112]. In a study that compared the performance of RNNs and 

CNN on several tasks (such as Sentiment Classification, Relations Classification, Textual 

Entailment, etc.), they found that typically RNN models are better at tasks that require 

understanding a sentence as a whole and CNN models are better at key-phrase detection 

[113]. 
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To improve the accuracy of deep learning models, several studies use pre-trained 

word embeddings from large public datasets [112]. For tasks related to the biomedical field 

and clinical applications, word-embeddings from those specific areas out-perform other 

sources [103]. For our research, we started with using a clinical word embedding 

BioWordVec for this very reason. For clinical note processing specifically, the model that 

was trained using other notes performed better than the model trained on PubMed Central 

works [103]. 
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Chapter 3: Eldertech EHR Dataset Development 

 

Abstract 

A primary task in developing an efficient alert system is to develop health status 

prediction models. EHR data contains continuous health data on individuals living in a 

facility. Therefore, an analysis of EHR data could provide detailed information on a change 

in the health of the residents to predict the continuous health status of the residents. The 

EHR data used in this dissertation was obtained from the TigerPlace facility, located at 

Columbia, Missouri USA [6]. The EHR contained Vital signs, medications, progress notes, 

medical diagnoses, and lab results. We pre-processed and de-identified the EHR data using 

HIPAA regulations. We also re-evaluated the geriatric assessment scores data using the 

answers to the assessment questions found in the de-identified EHR. The final dataset 

contained 201 subjects with health data collected from 2010 to 2019.  

3.1 Background 

 EHR datasets contain valuable health information in both structured and 

unstructured formats. Several open-source benchmark EHR datasets have been developed 

to help the healthcare research community to analyze, conduct research, and solve critical 

problems concerning healthcare. The Medical Information Mart for Intensive Care 

(MIMIC – III) database contains deidentified health data associated with ~60,000 intensive 

care unit admissions from Beth Israel Deaconess Hospital [114]. MIMIC – III database 

contains sparse samples of time-series health observations recorded during inpatient ICU 

care, including medications, clinical notes, vital signs, and microbiology reports. MIMIC 
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– III data, however, does not contain non-emergency everyday health data that is generally 

collected through the EHR at the senior living facilities. The continuous health monitoring 

of health data could provide valuable information about what changes in health led to an 

adverse health event, such as a fall or hospitalization.  

In addition to structured data in the EHR, clinical notes, such as progress notes, 

discharge summaries provide valuable information about patient health [115-117]. i2b2 

dataset developed and maintained by Partners Healthcare contains several EHR datasets 

including free text-based Natural Language Processing (NLP) EHR datasets. However, this 

EHR data also does not contain the continuous health monitoring EHR data, specifically 

related to senior care.  

The EHR dataset at TigerPlace has been continuously updated for about a decade 

from 2010 - 2019 for all residents living at the facility making it the ideal dataset for 

longitudinal data analysis to understand health changes in the residents over a longer 

period. Therefore, we created a comprehensive de-identified dataset using the TigerPlace 

EHR. The dataset developed was then used to perform health status estimation for the 

residents.   

3.2 Methods 

 We followed HIPAA and Institutional Review Board regulations in de-identifying 

the EHR databases [118]. The de-identified dataset was then used for predictive analytics.  

3.2.1 Electronic Health Records Data from TigerPlace 

 EHR dataset development was a crucial step for this dissertation work. The EHR 

data developed for the study was a combination of the CyberSense EHR and 
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PointClickCare EHR database used at TigerPlace [119, 120]. The CyberSense EHR was 

developed by CyberSense.US and was used as the primary health data record-keeping tool 

from 2010 to 2017. In 2017, the new PointClickCare EHR was introduced. The 

PointClickCare EHR is developed by PointClickCare Corp. and is the EHR database 

currently used at TigerPlace.  

3.2.2 De-identifying and Pre-processing EHR Data 

 Each resident in the database had a unique identifier code in the Resident's table 

along with their name, date of birth, address, and other personal details. We observed that 

in several cases the resident’s unique ID was composed of their last and first name instead 

of an all digit-based ID. The unique IDs are used in all tables to identify the resident. 

Therefore, to remove the trace of resident names through the IDs, we created a new set of 

IDs for those residents and replaced the older name-based IDs with the new digit-based 

IDs in all tables. We did not change the preexisting all-digit IDs that did not contain a 

name. We created a mapping table that contained the old IDs and their corresponding new 

IDs. We used this map to replace old IDs in all the other tables. The mapping ID table was 

kept encrypted and used only when another data table containing the older name-based IDs 

was supposed to be joined with the existing de-identified tables. Updating the name-based 

IDs was an essential step in de-identification as the older IDs with parts of the resident's 

first and last name could give away the identity of the residents. We removed all the 

personal information columns containing their contact and address details. Here is a list of 

the information we removed according to the de-identification standard of the HIPAA 

Privacy Rule with the exception of the residents’ birth dates [121]: 

• Name 
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• Social Security Numbers 

• Admission and discharge dates 

• Address including city, county, state 

• Zip Code 

• Email address 

• Phone Number 

• Medical Record Numbers 

• Any account numbers 

• Any images 

The age of the residents was important for data analysis. Therefore, instead of 

deleting the date of births, we modified the date of births by setting the day in the dates to 

1. For example, someone with a birthday of 05/14/1953 or 05/02/1953 was converted to 

05/01/1953.  

Resident’s names were repeatedly used in the free text, unstructured data, 

specifically in the progress notes and visit notes. We identified if the residents had any 

other common names apart from the given first and last names. We used the resident's first 

name, last name, and any other common names to replace the names in the text data, in all 

the tables, in the entire EHR database by their unique IDs. For example, if a resident had 

their last name, first name as MISHRA, ANUP, here is how the before and after de-

identification of text input in the EHR looks like assuming the unique ID for MISHRA, 

ANUP is 100000044: 
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Before de-identification:  

“i went and checked on mr. mishra and he told me that he didn't have to use the restroom 

to maybe come back later after dinner.” 

After de-identification:  

“i went and checked on mr. 100000044 and he told me that he didn't have to use the 

restroom to maybe come back later after dinner.” 

We used a set of string operations, including regular expressions to search the 

names in the text and replace them with unique IDs for the de-identification. Finally, we 

encrypted and removed the mapping table that contained the name-based IDs. The final 

de-identified dataset contained only digit-based IDs, without any personal identification 

information about the residents, including names.  

3.2.3 Re-evaluating Geriatric Assessments 

 The de-identified EHR data contained several geriatric assessments. The geriatric 

assessments include ADL, IADL, MMSE, GDS, and SF-12. There were three different 

tables maintained for these assessments: questions and the answer options for all the 

assessments, clinical entries of answers periodically obtained from the residents for each 

of these assessments, and the scores obtained per individual assessments calculated by 

predefined algorithms. The nursing staff had concerns regarding the automatic evaluation 

of the assessments in the Cybersense EHR database. Therefore, all the answers obtained 

from the assessment were re-evaluated using custom algorithms to re-generate the 

assessment scores for future analysis.  
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The geriatric assessments were used in several analysis projects to estimate overall 

functional health, fall, hospitalization risk in older adults. Therefore, accurate evaluation 

of these assessments was crucial to the projects based on EHR data. Based on the literature, 

and clinical guidelines new custom algorithms were developed to re-evaluate the geriatric 

assessment scores. Specifically, we used the short form of ADL from RAI MDS 2.0, 

Lawton’s IADL, GDS, MMSE, and SF12 using the approach described by Ware et al. to 

re-evaluate the assessments [36, 39, 53, 122, 123]. 

3.3 Assessment Data Statistics  

Table 3.1 Assessment Statistics 

 
PCS12 MCS12 ADL IADL MMSE GDS 

Count 795 795 917 862 885 920 

Mean 37.95 54.23 2.21 3.77 25.01 2.94 

Std 11.78 9.10 3.17 1.56 6.63 2.52 

Min -2.00 1.91 0.0 0.00 0.00 0.00 

25% 28.43 50.23 0.0 2.00 23.00 1.00 

50% 37.11 56.61 1.0 4.00 28.00 2.00 

75% 48.59 60.14 3.0 5.00 30.00 4.00 

Max 63.43 73.87 15.00 6.00 32.00 15.00 

 

 Fig. 3.1 through 3.6 shows the histogram plots of the individual assessments.  
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Figure 3.1. Histogram distribution of PCS 12 

 

 

Figure 3.2. Histogram distribution of MCS 12 
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Figure 3.3. Histogram distribution of ADL 

 

 

Figure 3.4. Histogram distribution of IADL 
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Figure 3.5. Histogram distribution of MMSE 

 

 

Figure 3.6. Histogram distribution of GDS 

 We observed that ADL data is extremely skewed as compared to other 

assessments.  
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Chapter 4: Development and Validation of Health Risk 

Prediction Models for Older Adults Using the Geriatric 

Assessments 

 

4.1 Introduction 

Higher levels of functional health in older adults lead to a higher quality of life and 

improves the ability to age-in-place. Measuring functional health objectively could help 

clinicians to make decisions for interventions in case of health deterioration. Even though 

several geriatric assessments capture several aspects of functional health, a composite 

index representing continuous overall functional health is missing.  

We used geriatric assessment data collected from 168 older adults to develop and 

validate a heuristic functional health index (FHI) model based on risks associated with 

falls, hospitalizations, emergency visits, and death. The geriatric assessments included 

were Activities of Daily Living (ADL), Instrumental Activities of Daily Living (IADL), 

Mini-Mental State Examination (MMSE), Geriatric Depression Scale (GDS), and Short 

Form 12 (SF12). FHI quantifies the overall functional health risk by summing the risks 

associated with the individual assessment scores at a given period. Construct validators 

such as health events vs FHI, six-month fall, six-month mortality, and functional 

ambulation performance score were used to validate the FHI model. 

The FHI model is shown to separate fall or death events from all other health event 

categories with the area under the receiver operating characteristic curve (AUC) of > 0.73. 

An AUC of > 0.72 was obtained in predicting a fall within six months, and an AUC of > 
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0.71 for predicting mortality within six months. Multiple comparisons of means using the 

Turkey HSD test show that FHI for no health events category versus fall or death was 

statistically significant (p < 0.05). Case studies with FHI trajectories show that changes in 

FHI over time correspond to critical functional health changes in older adults. 

In addition to developing the FHI model using excess risks, we constructed mixed-

effect logistic regression models to predict adverse health event outcomes, such as falls 

and hospitalizations from the health assessments. The repeated assessment measures from 

an individual resident could be correlated. To overcome the with-in-subject correlations 

due to repeated measures, we considered mixed-effect models in our analysis. In this 

analysis, residents are treated as random effects.  

The FHI may provide clinicians with a longitudinal view of overall functional 

health in older adults to help address the early detection of deterioration trends and 

determine appropriate interventions. It can also help older adults and family members take 

proactive steps to improve functional health, such as physical therapy, increasing time 

walking and strength training, or balance exercises to improve balance.  

4.2 Background 

The number of Americans ages 65 and older is projected to be over 98 million by 

2060, which is about 24 percent of the total population in the USA [124]. The aging 

population is at a higher risk of functional decline than their younger counterparts [125]. 

Keeping persons over 65 at higher functional levels can lead to a higher quality of life, 

successful aging-in-place, and reduce healthcare expenditures [126]. To predict the 

functional health status of the residents using health assessments we evaluated two 

different methods, (1) excess risk functions and (2) mixed-effect modeling. 
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4.2.1 Functional Health Index Development Using Excess Risk Functions 
 

FH in older adults is complex and multifactorial [127, 128]. Gordon has defined 11 

FH patterns to facilitate nursing diagnoses [127]. The list of FH patterns included health-

perception, activities of daily living, cognitive ability, and self-perception. This suggests 

that FH is not only limited to physical function, but rather is a combination of physical, 

cognitive, and social function, among other factors. The World Health Organization’s 2015 

World Report on Aging and Health outlines a framework for Aging-in-Place around the 

new concept of functional ability [128]. It reinforces that FH is a combination of physical, 

cognitive, and social functions, and also suggests that the loss of these functions has a 

detrimental impact on an older adult’s health status, quality of life, and independence [128, 

129]. Therefore, in this study, we have used a specific set of geriatric assessments that can 

measure multiple aspects of physical, cognitive, and social function to predict overall FH. 

 

Several geriatric assessments have been developed and validated for measuring 

different aspects of functional health in older adults, such as Activities of Daily Living 

(ADL), Instrumental Activities of Daily Living (IADL), Mini-Mental State Examination 

(MMSE), Geriatric Depression Scale (GDS), and Short Form 12 (SF12) [31-40]. ADLs are 

defined as activities that are essential for independent living. IADL require a higher level 

of personal autonomy, referring to tasks that require enough capacity to make decisions 

through greater interaction with the environment [38]. MMSE is a widely used test to 

evaluate the cognitive aspects of mental function. MMSE excludes questions concerning 

abnormal mental experiences and mood [36]. GDS is a screening tool for measuring 
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depression in older adults [39]. SF-12 is a multipurpose short form that provides a generic 

measure of health status [40]. All these assessments have good reliability and validity. 

These individual assessments can track different aspects of functional health in older 

adults. However, understanding the overall change in the functional health of an older adult 

using these individual assessments can be difficult, as they are based on different scales 

and have a wide range of clinical condition focus and importance to overall health. Instead 

of considering them individually, a combination of these assessments can be used to 

develop a continuous composite functional health score to predict a more general status of 

functional health in older adults.  

Several studies have been conducted in developing health and prognostic indexes 

to track or predict comorbidity, mortality, frailty, and functional health in older adults [41-

46]. Mazzaglia et al. developed two prognostic index models to predict five-month 

mortality and hospitalization [41]. In the first model, they used a set of 7 questions from 

ADL and IADL to develop their index. The area under the receiver operating characteristic 

curves (AUC) to predict mortality and hospitalizations were 0.75 and 0.60, respectively. In 

the second model, they considered drug use and previous hospitalizations, which increased 

their hospitalization AUC to 0.67. Gagne et al. developed a single numeric index to predict 

mortality by combining Charlson and Elixhauser measures [42]. Results show that the 

combined score performed better in predicting mortality than the individual scores. Carey 

et al. and Lee et al. developed prognostic models to predict mortality using data from the 

Program of All‐Inclusive Care for the Elderly (PACE) and 1998 wave of the Health and 

Retirement Study (HRS), respectively [43, 44]. Schonberg et al. used 39 risk factors, 

including functional measures, illnesses, behaviors, demographics in a multivariable Cox 
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proportional hazards model to predict 5-year mortality [45]. Giovanni et al. developed a 

multisource comorbidity score using administrative data, such as diagnostic categories and 

ICD-9 to measure comorbidity, predict 1-year mortality, and other adverse outcomes [46]. 

This study did not include functional status as a variable in the predictive model 

development.  

Fried. et al. conducted a study to predict frailty in older adults [47]. They defined 

frailty as a clinical syndrome in which the older adult has three or more out of five frailty 

criteria. These five criteria include unintentional weight loss, self-reported exhaustion, 

weakness, slow walking speed, and low physical activity. This standardized phenotype of 

frailty detection can identify frail older adults potentially at risk of falls, hospitalizations, 

disability, and death. Rockwood et al. developed a 7-point Clinical Frailty scale to predict 

death or need for institutional care [130]. The Clinical Frailty scale is based on an a-priori 

selection of features and is intended to predict mortality or the need for institutional care.  

Gait analysis provides critical information in predicting adverse health conditions 

and functional health in older adults [13, 48]. Nelson et al. developed a Functional 

Ambulation Performance (FAP) score that captures the gait capacity of an individual using 

a specific set of spatiotemporal parameters (STPS) [49, 50]. The FAP score is integrated 

with the GAITRite walkway (CIR System Inc; Clifton, New Jersey), a gold standard 

system for measuring STPS [51]. FAP has been validated in several independent studies 

[50].  

The mortality-based prognostic models tend to predict future adverse health 

conditions, specifically death, instead of predicting the overall functional health of an 

individual at a given time. The frailty phenotyping method developed by Fried et al. can 
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predict the presence of frailty with minimal granularity as it can only classify an older adult 

into one of the three frail categories: frail, intermediate frail, and not frail [47]. This may 

not be able to track the gradual changes in the functional health of an individual. Also, this 

only considers the physical aspects of functional health; cognitive aspects were excluded 

[52, 53]. The FAP score is also developed considering only gait ability and does not 

consider the cognitive aspects of functional health [49]. We argue that a continuous 

measure of overall functional health can provide critical information about changes in 

functional health over a period. Interventions based on overall functional health 

deterioration can help older adults live with higher independence and quality of life [54].  

Santoni et al. used gait speed, cognitive function, chronic multimorbidity, and 

disability to predict present and future care need in Swedish older adults [131]. Their model 

could predict hospitalization with an AUC of 0.78 (95 CI =0.74-0.81) and mortality with 

an AUC of 0.85 (95% CI=0.83-0.87). The dataset used in the study included older adults 

with high levels of cognitive and physical function; at least 90% of participants were free 

of severe disability, and at least 50% were functionally independent despite chronic 

disorders. In contrast, in our study, the dataset includes older adults with comparatively 

lower cognitive and physical function. The study did not include falls and emergency visits 

as outcome measures. 

Rothman et al. have developed a continuous measure of patient condition in acute 

care, called the Rothman Index, using a set of 26 Electronic Medical Record variables [15]. 

They used one-year post-discharge mortality to develop excess risk functions for each 

variable. The excess risk functions were then used to calculate the Rothman Index for an 

individual at a given period. Instead of predicting an adverse health condition, the Rothman 
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Index provides an overall patient condition in inpatient care. Based on the Rothman Index 

method, we report the development and validation of a continuous measure of functional 

health, Functional Health Index (FHI), for chronic care using geriatric assessments and 

excess risk functions for each assessment type.  

We hypothesized that detecting a decline in an individual’s FH would represent 

deterioration in underlying health conditions recorded in the electronic health record. In 

this study, we develop and validate a method for continuous tracking of personalized FH 

of older adults using routine geriatric assessments and adverse health outcomes. We use a 

mixed-effects logistic regression model that allows us to use repeated measurements to 

build the model and provide personalized health predictions. We hypothesize that these 

geriatric assessments would provide sufficient information in developing a personalized 

FH tracking model. We believe that continuous tracking of FH could help early detection 

of health deteriorations and facilitate earlier interventions by health professionals to 

improve the health of an older adult.  

4.2.2 Mixed Effect Models to Predict Adverse Health Events 

 

 A major demerit of the Rothman-style analysis in developing the Functional Health 

Index is that the model does not account for intra-resident data biases because of the 

repeated assessment measures. The assessment dataset contains repeated measurements 

from the residents at TigerPlace obtained over 10 years. These repeated measurements 

could potentially have high correlations among them. For example, a resident with very 

low functional health and multiple chronic health conditions will have a significantly 

different set of assessment values when compared with a healthier resident with no chronic 

health condition and higher functional health. In such scenarios, the assessments obtained 
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from these two residents will likely have significantly different distributions. To avoid such 

bias in the data because generalized linear mixed-effect models could be used to model the 

assessment data [132-134].   

 Generalized linear mixed models (GLMMs) extend linear mixed models to allow 

response variables from different distributions, including binary responses [134, 135]. 

Mixed effect models consider both fixed-effects and random-effects in a dataset. In our 

analysis, the geriatric assessments are the fixed effects, and the residents introduce random 

effects. The general form of the GLMMs is, 

𝑦 = 𝑋β + 𝑍𝑢 + ε 

Where y is an N × 1 column vector representing the outcome variable, X is an N 

× p matrix of p fixed-effect predictor variables, 𝛽 is a p × 1 column vector of fixed-effect 

regression coefficients, Z is an N × q design matrix for the q random-effects, u is the q × 

1 vector of the random effects, and 𝜀 is an N × 1 column vector of the residuals. In our 

analysis, Z depicts the unique residents in our dataset. Z possibly being too large, it only 

contains 1s and 0s. Each column represents a resident and each row represents an 

assessment set. If an assessment belongs to a resident in that column the cell value is 1, 0 

otherwise.  

 The vector u is a normal distribution with zero mean and variance G. u is 

generally defined as, 

𝑢 ∼ 𝒩(0, 𝐺) 

Where G is the variance-covariance matrix of random effects, defined as 

(considering we have both random intercepts and slopes),  

G = [
𝜎𝑖𝑛𝑡

2 𝜎𝑖𝑛𝑡,𝑠𝑙𝑜𝑝𝑒
2

𝜎𝑖𝑛𝑡,𝑠𝑙𝑜𝑝𝑒
2 𝜎𝑠𝑙𝑜𝑝𝑒

2 ] 
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Fixed effects are directly estimated, whereas, the random effects are modeled as 

deviations from the fixed effects with a mean zero. Therefore, random effects are 

deviations around the value 𝛽. In this study, we have only considered random intercepts so 

the matrix G would just be a 1× 1 matrix. G is a square, symmetric, and positive semi-

definite that contains redundant elements. Therefore, for simplification, instead of directly 

estimating G, θ is estimated (e.g., a triangular Cholesky factorization G = LDLT). In a more 

general form, G can be represented as (a function of θ), 

G = 𝜎(𝜃) 

The response variables in GLMMs can come from different distributions besides 

gaussian. The responses can also be modeled using link functions, such as log link. A linear 

predictor can be defined as, 

𝜂 = 𝑋𝛽 + 𝑍𝛾 

 Here 𝜂 is defined as a linear function that is a combination of fixed and random 

effects. 𝜂 excludes the residuals. The link function relates 𝜂 with the outcome variable y. 

The model for the conditional expectation of y is, 

𝑔(𝐸(y)) = 𝜂 

 Where g(.) is the link function. The expectation of y can be modeled as, 

𝐸(y) = ℎ(𝜂) = 𝜇 

 Where y is, 

y = ℎ(𝜂) + 𝜀 
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4.3 Experiments 

 

4.3.1 Data 
 

The proposed model of the functional health index is based on a set of frequently 

collected geriatric assessment scores in the Electronic Medical Record (EMR), such as 

ADL (Short Form ADL, RAI MDS 2.0), IADL (Lawton), GDS, MMSE, and SF12 [53, 

122, 123]. The SF-12 assessment has two components, a physical component or PCS and 

a mental component of MCS. We used assessments collected at TigerPlace, an Aging-in-

Place facility in Columbia, MO, on 168 independent living older adult residents (females 

= 106, age = 82.8  8.0) [5]. We included all residents living at TigerPlace for over eight 

years, from 2011 to 2019. All assessments were collected at a regular interval of six 

months. Multi-collinearity was determined using the Pearson correlation coefficient for the 

assessments. None of the included assessment pairs had a Pearson correlation greater than 

0.7. The final dataset contained 4,853 individual assessments. The number of assessments 

in each assessment category was comparable. 

Four different health events, including falls, emergency visits, hospitalizations, and 

death were considered to construct the risk models for the assessments. These health events 

were assumed to reflect the underlying functional health deterioration of an individual. The 

dataset contained 2,677 health events, out of which 1,931 were falls. Tables 4.1 (a) and 4.1 

(b) show the breakdown of the number of assessments and health events included in the 

study, respectively. Table 4.1 (C) shows a summary of the characteristics of the assessment 

data.   
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For validation purposes, we randomly divided the dataset into two groups of 

residents: Group-A and Group-B. Group-A contained data from 100 residents and was used 

to construct the model. Group-B contained data from the remaining 68 residents and was 

used to validate the model. Individual residents were not considered as samples in our 

dataset, instead, six months of every individual resident was considered as a sample. Each 

of these samples typically contained a set of five assessments and health events for that 

resident during those six months. For example, if a resident lived at TigerPlace for five 

years, the dataset would have ten samples for that resident, each containing a set of 

assessments and health events. This study received Institutional Review Board approval at 

the University of Missouri, Columbia.  

Table 4.1 (a) Number of geriatric assessments in each assessment type. 

 Geriatric Assessments 

ADL IADL GDS MMSE SF-12 (PCS) SF-12 (MCS) 

Count 814 777 878 854 765 765 

 

Table 4.1 (b) Number of health events in each health event type. 

 Health Events 

Falls Emergency Visits Hospitalizations Deaths 

Count 1931 396 350 61 

 

Table 4.1 (c) Assessment Data Characteristics. 

Assessments (Range) * Mean (Std) 

ADL (0 -16) 2.19 (3.23) 
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IADL (0 - 8) 3.88 (1.57) 

MMSE (0 - 30) 25.09 (6.54) 

GDS (0 - 15) 2.88 (2.45) 

SF-12, mental score (0 - 100)  54.31 (9.17) 

SF-12, physical score (0 - 100) 37.76 (11.85) 

 

* Interpretation of the assessment scores - ADL, higher scores indicate more ADL 

impairment; IADL, lower scores show low function; MMSE, lower scores show more 

cognitive impairment; GDS, higher scores indicate depression; SF-12, low scores indicate 

a low level of mental or physical health  

4.3.2 Model Construction using Excess Risk 
 

The assessments had different ranges of scores. All assessment scores were 

normalized and discretized to integer values ranging from 0-10. After normalization, 

excess risk functions were computed for the individual assessments. We defined the excess 

risk functions as the percentage increase in six-month post-assessment health events 

associated with any value of an assessment, relative to the minimum six-month health 

events identified for that assessment. Only one health event per resident over six months 

was included in the excess risk function development. This was done to avoid biases, as 

some residents had several health events in six months. Figure 4.1 shows the excess risk 

function for the IADL assessment. The black dot points represent excess risk percentages 

for normalized IADL scores. The regression fit represented by green diamonds is a 

polynomial fit to the data points. The excess risk functions were set to a constant where the 
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data are sparse and were not extrapolated as the underlying function is unknown. We used 

the six months to determine excess risk functions as new assessments were obtained every 

six months.  

 

Figure 4.1. Excess six-month health events risk as a function for normalized IADL scores 

 

The excess risk functions were used to determine the Functional Health Index (FHI) 

for a given six-month period as shown in equation (1).  

 

𝐹𝐻𝐼𝑛𝑑𝑒𝑥 = 100 − (𝑆𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟) ∑ 𝐸𝑥𝑐𝑒𝑠𝑠𝑅𝑖𝑠𝑘𝑖
#𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡𝑠
𝑖=1  (1) 
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A scaling factor is used to ensure that most of the FHI values fall between 0-100. 

The product of a scaling factor and excess risk sum is subtracted from 100 to make sure 

that a higher FHI represents a lower functional health risk. To compute continuous FHI 

values for a resident, missing assessment scores are updated by using the most recent 

assessment scores. The FHI values for a resident are computed every six months and 

considered to remain constant over the six months.  

4.3.3 Model Assessment and Construct Validators 

 

Similar to the Rothman Index, FHI is a heuristic model and is not designed to 

predict a specific quantity [15]. The validity and reliability of such a method cannot be 

exactly quantified [136, 137]. To validate FHI, we followed the construct validity 

methodology adopted by Rothman et al. and Richardson et al. in developing the Rothman 

Index and Score for National Acute Physiology, respectively [15, 136]. Boudreaux et al. 

defined construct validity as ‘‘. . . the degree to which a measure actually assesses the 

attribute it is purported to measure’’ based on ‘‘whether the measures relate to other 

variables in expected and predictable ways’’ [138, p. 168]. The relationship of the FHI to 

a health event independently associated with functional health was examined on the 

assumption that poorer functional health is expected to correspond to more serious health 

events.  

A set of construct validators was chosen to validate the FHI model. Validation 

results are reported on both resident groups (Group - A and Group - B) using sensitivity-

specificity analysis and area under the receiver operating characteristic curves (AUC) [139, 

140].   
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The correspondence of FHI to different health events was evaluated. The four 

health event categories considered for this evaluation were: no health event, 

hospitalization, or an emergency visit, fall, and death. In some instances, multiple types of 

health events co-occurred in the same six-month period sample. For example, a fall 

followed by an emergency visit or hospitalization. To avoid such data overlap, samples 

with more than one category were discarded. The exclusion of overlapped samples was 

done with one exception. We considered all samples with death events in the death 

category, irrespective of their overlap with other categories. This was done assuming that 

death is the worst health outcome and overlap of other health events just indicate the 

severity of health deterioration at the end of life. However, samples with death events were 

removed from other categories to make all health event categories independent of each 

other. After the exclusion of overlapped samples, the remaining 89.10% of samples from 

Group-A and 90.74% of samples from Group-B were used for the validation.  

4.3.3.1 Health Events vs FHI 

Average FHI values for all health event categories in both groups were computed. 

We employed analysis of variance (ANOVA) procedures to determine the statistical 

significance between FHI values associated with the four categories. The ANOVA analysis 

was followed with multiple comparisons of means using the Turkey HSD post-hoc test 

[141]. Also, FHI values were used to separate different health event categories, 

specifically, no health event versus the rest and no health event and hospitalization and 

emergency visits versus the rest. The area under the curve (AUC) associated with each 

separation was calculated.  
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4.3.3.2 Six-month Fall  

To validate the effectiveness of FHI in predicting a fall within six months, the 

average six-month fall percentages associated with FHI values were computed. Also, FHI 

values were used to separate the no health event category from the fall category. AUC 

associated with the separation was computed for each group.  

4.3.3.3 Six-month Mortality  

The relationship between six-month mortality and FHI was examined. Average six-

month mortality percentages associated with FHI values were computed. To examine the 

sensitivity of the FHI to mortality, AUC associated with the separation of the death 

category from the rest of the three categories was computed.  

4.3.3.4 FAP Score  

STPS and the FAP score of TigerPlace residents have been collected every six 

months using the GAITRite system. The FAP score has been shown to represent underlying 

impaired functional health [50]. We conducted a correlation test between FHI and FAP 

scores in both groups to evaluate FHI as a functional health indicator.  

4.3.3.5 Case Studies 

We explored two case studies to evaluate the correspondence of FHI with actual 

functional health changes observed in EMR. FHI values were computed for the entire stay 

of these residents at TigerPlace. A timeline of FHI values was plotted to represent the FHI 

trajectory of each resident. An investigation of the clinical notes was performed to obtain 

the actual functional health changes reported in the EMR for these residents. The ground 

truth on functional health changes was compared with the changes observed in the FHI 

trajectory. 
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4.3.4 Mixed Effect Modelling to Predict Fall and Hospitalization Risks 
 

 We used mixed-effect modeling to predict fall events that caused hospitalizations using 

geriatric assessments. We used mixed-effects logistic regression to model binary health event 

outcomes. The two binary outcomes used for the analysis were, hospitalizations associated with 

falls vs everything else (including no health events, independent fall events, independent 

hospitalization events, independent emergency visit events, and independent death events). Apart 

from the geriatric assessments, we also considered percentage change in weight, falls in the last 6 

months, and age during assessment into account for this analysis. The distribution of the continuous 

variables is shown in Fig. 4.2.  

 

Figure 4.2. Pair plot presenting the distribution of the continuous variables in the analysis 
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 Fig 4.2 shows that ADL and IADL had the highest amount of correlation (-0.692). 

However, the absolute correlation value was < 0.7 so we considered both variables for the 

modeling. We used the glmer function from the lme4 R library to perform the mixed effect 

logistic regression [142-144]. Finally, we performed a multilevel bootstrapping to improve 

the model [145, 146]. For each resident in our study 2000 samples were resampled with a 

replacement for the bootstrapping.  

 The assessments collected over time are nested within the residents. The 

assessments were considered as fixed effects, and the residents were considered as the 

random effects because assessment measures collected within the residents may be 

correlated. Modeling residents as a random effect provides the personalization effect, as 

the model predictions depend on who the resident is instead of just the assessment scores. 

The predicted probabilities from the final model were subtracted from 1.0 so that higher 

values represent better health status and vice versa. We refer to these values as functional 

health values (FHV) in the rest of the article. We used construct validators such as health 

event categories vs FHV and six-month fall percentage vs FHV to validate the mixed-

effects model.  

 

4.4 Results 

In this section, we present the results associated with each construct validator for 

the excess risk-based FHI model. We also present the results associated with the mixed 

effect logistic regression model.  
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4.4.1 Excess Risk Model Validations 
 

4.4.1.1 Health Events vs FHI 

Table 2 shows the mean, standard deviation, and percentage of data samples in each 

health event category for Group-A and Group-B. Mean values for the four categories show 

that the first two categories (no health event, emergency visit, or hospitalization) have a 

higher FHI mean compared to the fall and death event categories.  

Multiple comparisons of means using the Turkey HSD test show that all pairs of 

health event categories were statistically significant (p < 0.05), except for two pairs: no 

health event versus emergency visit or hospitalization and fall versus death [147]. Fig. 4.3 

shows FHI values for different health event categories. We used the FHI values for 

separating the first two categories from the last two (fall and death) and obtained an AUC 

value of 0.733 (95% CI, 0.686-0.78) for Group-A and an AUC value of 0.732 (95% CI, 

0.675-0.789) for Group-B. Fig. 4.4 shows the receiver operating curve for the separation. 

A statistically significant difference was found between FHI values associated with the 

different health event categories for Group-A, F(474) = 25.63, p < 0.0001, and Group-B, 

F(367) = 16.97, p < 0.0001 [148].  

Table 4.2 Mean FHI by Health Event Category for Group-A and Group-B. 

Health Event 

Category 

Group-A 

(n = 474) 

Group-B 

(n = 367) 

No health event  71.19 (16.17) a 

56.02% 

69.39 (14.66) 

60.96% 



 

54 

Emergency Visit or 

Hospitalization 

69.92 (17.03) 

6.96% 

68.94 (14.23) 

6.61% 

Fall 58.10 (14.15) 

27.64% 

58.06 (12.71) 

27.93% 

Death 53.84 (10.53) 

3.38% 

55.32 (12.71) 

4.50% 

 

a Mean FHI is in bold, with standard deviations in parenthesis, followed by sample size 

percentages. 

 

Figure 4.3. FHI vs health event categories for Group-A and Group-B. 
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The top and bottom of each box represent 75% and 25% percentiles of FHI for that 

category. Horizontal lines in each box represent the median FHI values for each category. 

The top of each whisker represents the maximum value of FHI in that category or median 

plus 1.5 times the interquartile range; the bottom whisker represents the minimum value of 

FHI in that category or median minus 1.5 times the interquartile range. 

 

 

Figure 4.4. ROC showing the separation of the first two health event categories from the last two. 

Receiver operating curve showing the separation of the first two health event categories (no health event and 

emergency visit/hospitalization) from the last two health event categories (fall and death). 
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4.4.1.2 Six-month Fall vs FHI 

The average likelihood of fall within six months of computing the FHI is shown in 

Figure 4.5 The AUCs for separating the no health event category from fall were: 0.726 

(95% CI, 0.676-0.776) for Group-A and 0.726 (95% CI, 0.666-0.787) for Group-B. Fig. 4 

shows that both groups had similar six-month average fall percentages. Higher FHI values 

correspond to a lower average fall percentage and vice versa.  

4.4.1.3 Six-month Mortality vs FHI 

The average likelihood of death within six months of computing the FHI is shown 

in Fig. 4.6. The AUCs for separating all health event categories from death were: 0.742 

(95% CI, 0.649-0.834) for Group-A and 0.712 (95% CI, 0.58-0.844) for Group-B. A lower 

FHI score corresponds to a higher average death percentage and vice versa. Fig. 5 shows 

that both groups had similar six-month average death percentages. 
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Figure 4.5. Average % of Falls vs FHI. 

 

Figure 4.6. Average % of Deaths vs FHI. 
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4.4.1.4 FAP Score vs FHI 

The FAP score from every six months was compared with the respective FHI value. 

A significant correlation was found (Pearson’s correlation = 0.633, p < 0.0001). The 

positive correlation indicates that higher FAP score values correspond to higher FHIs.  

4.4.1.5 Case Studies using FHI 

Two case studies are presented demonstrating correspondence of changes in FHI 

with significant health changes reported in EMR clinical notes. See Appendix A for more 

examples of FHI Trajectories.  

4.4.1.5.1 Case Study - 1  

Fig. 4.7 shows the FHI trajectory of a TigerPlace resident. Falls, emergency visits, 

and hospitalizations experienced by the resident are marked on the FHI trajectory timeline. 

A visual assessment of the plot suggests that lower FHI values correspond to falls, 

emergency visits, and hospitalizations. The resident did not experience any critical health 

event during the period between July 2016 to January 2018 when the FHI values were 

higher.  
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Figure 4.7. FHI Trajectory of a TigerPlace resident from Case Study – 1. 

 

An analysis of EMR clinical notes suggests that the resident was able to walk 

independently without any support until January of 2018. The resident started walking with 

a walker and was often in a wheelchair starting from April 2018. A sharp decline in the 

FHI trajectory at the beginning of 2018, with FHI < 60, confirms that FHI decline may 

correspond to significant functional health changes.  
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4.4.1.5.2 Case Study - 2  

Fig. 4.8 shows the FHI trajectory of another resident at TigerPlace. An investigation 

of the resident’s EMR clinical notes suggests that the resident had chronic pain and was in 

a wheelchair for the entire period.  

 

Figure 4.8. FHI Trajectory of a TigerPlace resident from Case Study – 2. 

 

An analysis of EMR notes show that the resident experienced increased back pain 

during October 2017 and cognitive impairment during November 2017. These health 

changes correspond to the significant decline in FHI observed in late 2017. FHI for the 

resident further declined in the later months (FHI ~ 50) corresponding to increased 

functional health deterioration, leading to several falls, emergency visits, and 
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hospitalizations between 01-2018 to 01-2019. This shows that a decline in FHI may 

correspond to cognitive impairments and other functional health deteriorations.   

 

4.4.2 Mixed Effect Logistic Regression for Predicting Adverse Health Events 
 

4.4.2.1 Health Event Categories vs FHV 

Table 4.3 shows the mean, standard deviation, and sample size of data in each 

health event category. Mean values for the five categories show that FHV associated with 

no health events were higher when compared to the samples associated with 

hospitalization, emergency visit, fall, and death.  

A one-way ANOVA was calculated on FHV values associated with the different 

health event categories. The analysis was significant (F=154.99, p < .0001). Multiple 

comparisons of means using the Turkey HSD test show that all pairs of health event 

categories were statistically significant (p < 0.001), except for two pairs: fall only versus 

fall with hospitalization and death versus fall with hospitalization [40]. Fig. 4.9 shows FHV 

for different health event categories. FHV for no health events were well separable from 

the rest of the health events with an AUC value of 0.85 (95% CI, 0.83 - 0.88). Fig. 4.10 

shows the receiver operating curve for the separation.  

The model could predict emergency visit or hospitalization with an AUC of 0.72 

(95 % CI, 0.65 – 0.79), fall only with an AUC of 0.86 (95 % CI, 0.83 – 0.89), fall with 

hospitalization with an AUC of 0.89 (95 % CI, 0.85 – 0.92), and death with an AUC of 

0.93 (95% CI, 0.88 – 0.97) when separating from no health event category. 
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Table 4.3 Mean FHV by Health Event Category. 

Health Event Category FHV (n=899) 

Mean (Std), Sample size 

No health event  0.69 (0.18), 497 

Emergency visit or 

hospitalization only 

0.54 (0.18), 55 

Fall only 0.38 (0.07), 224 

Fall with hospitalization 0.34 (0.20), 92 

Death*  

 

0.30 (0.16), 31 

  

 

Figure 4.9. FHV vs health event categories. 

The top and bottom of each box represent 75% and 25% percentiles of FHV for that category. Horizontal lines 

in each box represent the median FHV values for each category. The top of each whisker represents the 

maximum FHV in that category or median plus 1.5 times the interquartile range; the bottom whisker represents 

the minimum FHV in that category or median minus 1.5 times the interquartile range. 
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Figure 4.10. Receiver operating curve showing the separation of the no health event category from the rest 

 (emergency visit/hospitalization, fall, fall and hospitalization, and death). 

4.4.2.2 Six-month Fall 

The average likelihood of fall within six months of computing the FHV is shown 

in Figure 4.11. We observed that higher FHV correspond to a lower average fall percentage 

and vice versa. An FHV score of 1.0 corresponds to ~ 0.0 fall percentage. The fall 

percentage almost linearly increased with a decrease in FHV.  
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Figure 4.11. Average % of Six-Month Falls vs FHV. 

 

 

 

4.4.2.3 Case Studies 

 We analyzed the same case studies as in the case of the excess risk model to 

demonstrate correspondence of changes in FHV with significant health changes reported 

in EMR nursing notes and the trajectories were very similar. We did observe a larger 

variation in the trajectories in the case of the FHV model. Fig 4.12 and 4.13 show the two 

trajectories.  
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Figure 4.12. FH trajectory of a TigerPlace resident from Case Study – 1 using FHV model. 

 

 

 

Figure 4.13. FH trajectory of a TigerPlace resident from Case Study – 2 using FHV model. 
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4.5 Discussion 

We have developed two different FH prediction models to track continuous 

personalized FH using a set of geriatric assessments. However, we observed that the FH 

tracking model using mixed-effects logistic regression is more efficient when compared 

with the excess risk-based FH tracking model. Also, the mixed-effects model provides the 

capabilities to track personalized FH.  

An FH trajectory is developed using longitudinal FHV predictions over time. The 

FH trajectory can be updated for a resident as new assessment scores are available, 

typically every six months. The model was developed by discriminating geriatric 

assessment scores associated with adverse health events, such as falls, emergency visits or 

hospitalizations, and mortality against scores associated with no adverse health events.  

Results show that a rank order was observed in mean FHV, when moving from a 

lower health risk category, such as no health events to a higher health risk category, such 

as fall with hospitalization and death. This shows the generality of FHV. FHV can be 

interpreted to the effect that a higher value represents a healthier person. Results show that 

FHV of >= 0.6 corresponds to < 40% of six-month fall risk. The six-month fall risk 

percentage almost linearly increases with a decrease in FHV. Results also show that FHV 

< 0.4 could significantly increase the risk of falls, hospitalizations, and mortality. Case 

study analyses suggest that changes in FH trajectories are mostly gradual with some sudden 

drops. Sudden drops in FHV did correspond to significant health changes observed in the 

EMR. A lower FHV, specifically FHV < 0.4 throughout could suggest a high risk of falls 

and hospitalizations for the entire stay of the older adult. See Appendix A for more case 

studies and FH trajectory plots.  
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The high AUC values of 0.85 obtained for separating samples corresponding to no 

health events from rest suggests that a higher value of FHV represents a healthier FH state 

of the resident. FHV is not intended to predict a specific event. Instead, FH trajectories 

over a period can show the trend of FH changes for an individual. The case studies 

discussed above show that change in FHV may indicate a change in physical or cognitive 

FH. A decline in FHV below 0.6 may indicate a severe FH decline and interventions are 

needed to improve or maintain the FH of the resident. In the case studies, we observed that 

FHV below 0.6 was associated with an increased number of falls, hospitalizations, and 

emergency visits. In the case of the second case study, the FH trajectory shows that the 

FHV of the resident moved below 0.6 in the latter half of 2017. However, the person started 

experiencing adverse health events in early 2018. We believe that early interventions, 

specifically in the second case study may have helped the resident to possibly improve 

overall FH and avoid the following health events. 

In [5], Rantz et al. conceptualized that the functional ability tends to decline unless 

timely interventions are provided. As we studied the FH trajectories for the TigerPlace 

residents, we found that the FH of an individual can decline as well as improve. We 

observed that for some residents, as they first start living at TigerPlace, their FH improved 

over a period. This could be because of the state-of-the-art care coordination provided at 

TigerPlace and other similar facilities. We observed this effect in the first case study. The 

predicted FH of the resident improved between 2016 – 2017 before it started to decline in 

the last half of 2017.  
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A limitation of this study is the study sample size. We had access to the data of only 

150 senior residents from a single aging-in-place facility. We believe that data from a larger 

population, with more assessments and health events, could improve the generalizability 

of the model.  

A second limitation is that we did not incorporate multimorbidity or age in our 

model. Previous studies have included chronic morbidity was as a number of chronic 

conditions to predict health outcomes [131]. While age and multimorbidity are associated 

with increased adverse health events, we were interested in evaluating the effectiveness of 

a composite score based on the routinely obtained geriatric assessments reported in the 

EMR in detecting health changes.  

The use of mixed-effects modeling to predict adverse health events from repeated 

measurements from the residents helped us to use the entire longitudinal data obtained from 

the residents over the eight years. Also, using residents as random effects in model 

construction helped to personalize the model predictions. Therefore, even though we had 

a smaller population to work with, we could use thousands of measurements to build an 

effective model.  

Personalized FH trajectories could equip healthcare providers at TigerPlace with 

early health risk indications and context about the changes in FH in the residents. In 

addition to providing a visual representation of the change in FH the model could also 

provide detailed information about what changes in the new assessments led to the change 

in FH. This could help care providers to decide on necessary targeted interventions faster.  
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4.6 Conclusions 

FHI and FHV are general measures of functional health in older adults, computed 

using geriatric assessments electronically available in the EMR.  

 We developed and validated a model to track personalized functional health in older 

adults using multiple construct validators. We demonstrated that significant changes in the 

functional health trajectory could be early indicators of possible adverse health events. The 

FH trajectories could help caregivers decide appropriate interventions based on trends in 

overall functional health change. We propose that a larger dataset could be used in future 

studies to improve the model.  

4.7 Code and Data Repository 

The analysis code and metadata git repository link for the FHI project is 

https://vcs.missouri.edu/akmm94/THIL_codes_de_id_db 
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Chapter 5: 6-month Fall Risk Prediction using Geriatric 

Assessments and GaitRite Data  

 

Abstract 

Older adults age 65 and above are at higher risk of falls. Predicting fall risk early 

could provide caregivers enough time to provide interventions, which could reduce the 

risk, potentially avoiding a possible fall. In this paper, we present an analysis of 6-month 

fall risk prediction in older adults using geriatric assessments, GAITRite measurements, 

and fall history. The geriatric assessments included were Activities of Daily Living (ADL), 

Instrumental Activities of Daily Living (IADL), Mini-Mental State Examination (MMSE), 

Geriatric Depression Scale (GDS), and Short Form 12 (SF12). These geriatric assessments 

are collected by staff nurses regularly in senior care facilities. From the GAITRite 

assessments on the residents, we included the Functional Ambulatory Profile (FAP) scores 

and gait speed to predict fall risk.  We used the SHAP (SHapley Additive exPlanations) 

approach to explain our model predictions to understand which predictor variables 

contributed to increase or decrease the fall risk for an individual prediction. In case of a 

high fall risk prediction, predictor variables that contributed the most to elevate the risk 

could be further examined by the health providers for precise health interventions. 

We used LASSO and an ensemble of decision trees to perform a feature selection 

to understand the importance of the individual assessments, gait parameters, and fall 

history in predicting fall. We used the geriatric assessments, GAITRite measurements, and 

fall history data collected from 95 older adult residents (age = 86.04 ± 6.68, female = 59) 
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to train machine learning models to predict 6-month fall risk. Our models could predict a 

6-month fall with an accuracy of 0.80 (95% CI of 0.78-0.83), AUC of 0.72 (95% CI of 

0.68-0.75), Sensitivity of 0.79 (95% CI of 0.75-0.83), and Specificity of 0.68 (95% CI of 

0.63-0.73). Our early prediction of fall risk could identify residents who are at higher fall-

risk, which could potentially help care providers and family members to perform 

preventive actions.   

5.1 Background 

 The number of Americans ages 65 and older is projected to be over 98 million by 

2060, which is about 24 percent of the total population in the USA [124]. Studies show that 

more than one-third of older adults fall each year [149]. Out of these fallers, 20%-30% of 

the individuals suffer moderate to severe injuries, which reduces independence and 

mobility, and increases the risk of premature death [150]. Identifying older adults who are 

at higher risk of falls requiring interventions is challenging for clinicians [151].  

Falls in older adults are multi-factorial [152]. Consequently, several fall risk 

assessment tools have been developed and validated [152]. Lusardi et al. have presented a 

systematic review and meta-analysis analyzing fall risk assessment tools [152]. In their 

analysis, they have included several self-report measures such as the Geriatric Depression 

Scale (GDS), Medical Outcomes Study Short Form (SF-36), and Mini-Mental State 

Evaluation (MMSE). Also, the study included medical history questions such as a history 

of previous falls and requiring any ADL assistance. The analysis shows that no single 

test/measure demonstrates a strong post-test probability in predicting fall. Deandrea et al. 

performed another systematic review to provide a comprehensive list of evidence-based 

risk factors for falls [153]. This analysis did not include SF-12 measures as a risk factor. 
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Oshiro et al. have used the predictors chosen by Deandrea et al from the Electronic Health 

Records (EHR) based on psychological and medical factors, medication use, and mobility 

or sensory factors to predict fall risk [154].  Results show that their final model had a 

positive predictive value of 8%, a negative predictive value of 98%, and an area under the 

curve of .74, with a sensitivity of 67% and specificity of 68%. One issue with these analyses 

is they use a crisp boundary in the range of scores for each assessment instead of using the 

entire distribution of an assessment to predict fall risk. A common analysis overlap in these 

two studies suggests that medical history questions, self-reported measures, performance 

and mobility-based measures are some of the most commonly used predictors to estimate 

fall risk in the literature. Therefore, in this study we estimated fall risk based on predictors 

from these three categories.  

We hypothesize that a combination of geriatric assessments, containing physical, 

mental, depression, and fall history questions, along with gait parameters could provide a 

better prediction of fall risk than the individual assessments by themselves. In this study, 

we develop a data-driven fall risk prediction model using several different assessments, 

including Activities of Daily Living (ADL), Instrumental Activities of Daily Living 

(IADL), Mini-Mental State Examination (MMSE), Geriatric Depression Scale (GDS), and 

Short Form 12 (SF12) [31, 32, 35, 40, 155]. ADL are defined as activities that are essential 

for independent living [31]. IADL require a higher level of personal autonomy, referring 

to tasks that require enough capacity to make decisions through greater interaction with the 

environment [31]. MMSE is a widely used test to evaluate the cognitive aspects of mental 

function [155]. MMSE excludes questions concerning abnormal mental experiences and 

mood. GDS is a screening tool for measuring depression in older adults [32]. SF-12 is a 
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multipurpose short form that provides a generic measure of health status [35, 40]. SF-12 

has a mental (MCS) and a physical (PCS) component. All these assessments have good 

reliability and validity and they represent different factors of health and wellbeing.  

Gait characteristics have been used as fall risk indicators. Functional Ambulation 

Performance (FAP) score captures the gait capacity of an individual using a specific set of 

spatiotemporal parameters (STPS) [49, 50]. The FAP score is integrated with the GAITRite 

walkway (CIR System Inc; Clifton, New Jersey), a gold standard system for measuring 

STPS [51]. FAP has been validated in several independent studies [50]. GaitRite provides 

several other spatiotemporal parameters apart from FAP in its gait tests, including gait 

speed, step length, step time. Performing a pair-wise correlation analysis we found that 

most gait parameters were highly correlated (Pearson Correlation > 0.8) with either the 

FAP score or gait speed. Therefore, we chose to include only FAP and gait speed in our 

study as the only two gait parameters. We have also included falls in the last 6 months as 

a binary predictor with its value being 1 if there was a fall in the last 6 months, and 0 

otherwise.  

In addition to constructing a model to predict fall risk, we also used explainable AI 

techniques, specifically SHAP (SHapley Additive exPlanations) to explain our models and 

the specific predictions made by the models [156]. SHAP uses game theory to determine 

the individual contributions of the input features in predicting the outcome by a machine 

learning model. Lundberg et al. proposed SHAP values as a unified measure of feature 

importance. SHAP values attribute to each feature the change in the expected model 

prediction when conditioning on that feature. Considering the model has a base expected 

value that would be predicted if we did not know any features, SHAP values explain how 
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to get from the base value to the current output. The additive SHAP values for the 

individual features will either be positive or negative, hence increasing or decreasing the 

model prediction value starting from the expected base prediction value. SHAP can be used 

to provide a global explanation of a model by describing how the individual features have 

an overall effect on the model's predictions. SHAP can also be used to explain a particular 

model prediction. For example, fall prediction for an older adult using the model by 

providing feature importance of the individual features for that prediction. These feature 

importance values otherwise known as SHAP values could explain a model’s prediction 

by suggesting which amongst the features had a larger contribution in that particular 

prediction. The fall risk model developed in this study depends on several aspects of 

functional health and mobility. An explanation to the fall risk predictions of individual 

older adults, providing more information about the predictors those had a higher 

contribution in increasing or decreasing the fall risk could provide critical clinical 

information for targeted interventions.  

In this chapter, we present an analysis of fall risk prediction using geriatric 

assessments, gait parameters, and fall risk. We hypothesize that the assessment scores and 

fall history can be used to predict fall risk with good reliability and validity. We also 

hypothesize that a feature selection method, such as LASSO could provide the list of 

important features amongst all assessments for better classification accuracies. We include 

a description of the methods along with experiments and results. 
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Figure 5.1. Pairwise relationships amongst (a) geriatric assessments and fall history to 6-month fall. 

Adl = activities of daily living, iadl = instrumental activities of daily living, mmse = mini-mental state 

examination, gds = geriatric depression scale, pcs = short form 12 physical component, mcs = short form 12 

mental component, fall_6_ = fall in the last 6 months, fap = functional ambulation performance, velocity = gait 

speed, age = age during the assessment period, fall = fall in the next 6-months 
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5.2 Methods 

5.2.1 Data 

 

We used a set of frequently collected geriatric assessment scores in the Electronic 

Medical Record (EMR), such as ADL (Short Form ADL, RAI MDS 2.0), IADL (Lawton), 

GDS, MMSE, and SF12 [31, 32, 35, 40, 155]. The SF-12 assessment has two components, 

a physical component or PCS and a mental component or MCS. We used assessments 

collected at TigerPlace, an Aging-in-Place facility in Columbia, MO, on 93 independent 

living older adult residents (female = 58, age = 87.2 ± 7.0). In this study, only the first set 

of assessments collected on the residents were included to avoid repeated correlated 

measures from the same resident.  We also included the gait speed and the FAP scores of 

TigerPlace residents collected using the GAITRite system over the same period. All 

assessments were conducted by the nursing and physical therapy staff at the TigerPlace 

and University of Missouri in Columbia, MO. Fall events reported by nursing and facility 

staff were used to develop the 6-month fall outcome and fall history binary predictor data. 

We only considered falls reported between the date of the first conducted assessment until 

six months. We did not consider demographic data, including gender into account in this 

analysis. Table 5.1 shows a summary of the characteristics of the predictor variables. Table 

5.2 shows the fall history of the participants. This study received Institutional Review 

Board approval at the University of Missouri, Columbia. 

Table 5.1 Data Characteristics 

Variable * Non-Fallers (n=57) Fallers (n=36) 

Mean (Std) Mean (Std) 

ADL (0-16) 1.21 (1.94) 2.36 (2.82) 

IADL (0-8) 4.29 (1.45) 3.22 (1.2) 
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MMSE (0-30) 24.50 (5.87) 24.06 (8.25) 

GDS (0-15) 2.42 (2.27) 3.06 (2.77) 

SF12 - PCS (0-100) 43.81 (11.16) 35.76 (10.91) 

SF12 - MCS (0-100) 53.10 (9.11) 54.55 (7.54) 

Age 87.27 (6.57) 87.06 (7.93) 

FAP (40-100) 75.22 (17.83) 63.66 (15.13) 

Gait Speed 71.15 (28.28) 52.22 (26.83) 

 

* Interpretation of the variables - ADL, higher scores indicate more ADL impairment; 

IADL, lower scores show low function; MMSE, lower scores show more cognitive 

impairment; GDS, higher scores indicate depression; SF-12, low scores indicate a low level 

of mental or physical health; Fall History, 1 indicates one or more falls in the past 6 months 

and 0 indicates no falls in past; FAP, lower scores indicate poorer gait ability; Gait Speed, 

lower scores indicate poorer gait ability 
 

Table 5.2 Fall History of Study Participants 

Fall - Category Past Falls = 0 Past Falls = 1 Past Falls = 2 

Non-Fallers (n=57) 43 10 4 

Fallers (n=36) 22 12 2 

 

5.2.2 6-Month Fall Prediction 
 

5.2.2.1 Data Preprocessing 

Subjects containing Null values for any assessment were discarded. All 

assessments were standardized (Center to the mean and component-wise scale to unit 

variance). Multi-collinearity was determined using the Pearson correlation coefficient for 

the assessments. Performing a pair-wise correlation analysis we found that most gait 

parameters were highly correlated (Pearson Correlation > 0.8) with either the FAP score 

or gait speed. Therefore, we chose to include only FAP and gait speed in our study as the 

only two gait parameters. We have also included falls in the last 6 months as a binary 
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predictor with its value being 1 if there was a fall in the last 6 months, and 0 otherwise. 

None of the included predictor variables had a Pearson correlation greater than 0.7. 

5.2.2.2 Feature Selection 

We used the Least Absolute Shrinkage and Selection Operator (LASSO) and an 

ensemble of decision trees to understand the feature importance of our predictor variables 

[157-159].   

 

 

Figure 5.2. Feature Importance using LASSO and Randomized Decision Trees 

 

 Fig 5.2 shows the importance of the features and their importance level estimated 

by LASSO regression and an ensemble of decision trees. An analysis of the feature 

selection methods shows that age and fall in the previous six months were not estimated as 

important features in predicting future falls when compared to other features. Also, velocity 
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was not picked as an important feature by LASSO and gds was one of the least important 

features estimated by the randomized decision trees. For further evaluation, we ran 

classification experiments with and without including age and previous falls from our data 

set as they are chosen as the least important features by both feature selection methods.  

5.2.2.3 Classification Experiments 

We performed classification experiments to predict 6-month fall risk using all 

features and just LASSO features to see the performance of the classification models. We 

explored logistic regression, decision trees, and SVM models for the classification task. 

For decision trees and SVM we performed a hyperparameter grid search to find optimal 

parameters for the classification task. We performed five-fold cross-validation for the 

analysis. Results reported are the mean of the five-fold cross-validation performance 

measures. The classifiers were evaluated based on Area Under the Curve (AUC), validation 

accuracy, sensitivity, specificity, and F1 scores.  

5.2.2.4 Explaining the Models and Individual Predictions Using SHAP 

We used Shapley Additive exPlanations (SHAP) values to explain our models and 

predictions [156].  SHAP assigns an importance value to each feature for a particular 

prediction. SHAP values are additive. SHAP values for each feature provide an explanation 

about which features contributed to either increase or decrease the expected model output. 

We have included examples to show how SHAP values could show the reason for high fall 

risk predictions, for example, if one or more key features contributed to increasing fall risk 

in a particular prediction [156, 160].  
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5.3 Results 

 Table 5.3 shows the five-fold cross-validation performance measures of the 

different classifiers predicting 6-month fall risk. Overall, the SVM classifier using LASSO 

features performed the best with a sensitivity of 0.79 (95% CI of 0.75-0.83), Specificity of 

0.68 (95% CI of 0.63-0.73), F1 score of 0.73 (95% CI of 0.69 – 0.76), and accuracy of 0.72 

(95% CI of 0.68-0.75). Logistic regression performed like SVM when modeled with 

LASSO features. Logistic regression with LASSO features obtained a slightly higher 

Specificity of 0.70 (0.65 – 0.94) than SVM. We also observed that for all the observed 

performance matrices, SVM has a smaller 95% CI range as compared to Logistic 

regression. Decision trees did not perform as well as logistic regression or SVM. 

Table 5.3 Classification Results in Predicting 6-month Fall Risk 

Classifier 

Sn  

(95% CI) 

Sp  

(95% CI) 

F1  

(95% CI) 

Acc  

(95% CI) 

AUC  

(95% CI) 

Logistic Regression  

0.71  

(0.62-0.80) 

0.68  

(0.64-0.73) 

0.70  

(0.67-0.73) 

0.69  

(0.66-0.73) 

0.75  

(0.70-0.81) 

Logistic Regression 

(LASSO Features) 

0.74  

(0.64-0.84) 

0.70  

(0.65-0.74) 

0.73  

(0.69-0.76) 

0.72  

(0.68-0.76) 

0.77  

(0.71-0.82) 

Decision Tree 

Classifier 

0.62  

(0.44-0.80) 

0.70  

(0.60-0.79) 

0.67  

(0.61-0.74) 

0.67  

(0.60-0.73) 

0.69  

(0.64-0.75) 
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SVM 

(kernel=linear) 

0.79  

(0.68-0.89) 

0.67  

(0.63-0.72) 

0.72  

(0.68-0.76) 

0.71  

(0.67-0.76) 

0.78  

(0.72-0.84) 

SVM 

(kernel=linear) 

(LASSO Features) 

0.79  

(0.75-0.83) 

0.68  

(0.63-0.73) 

0.73  

(0.69-0.76) 

0.72  

(0.68-0.75) 

0.80  

(0.78-0.83) 

 

5.3.1 Explaining the Models and Individual Predictions Using SHAP 

 

 We used SHAP to explain models and model outputs. Fig 5.3 shows the global 

explanation of a model, an SVM model with a linear kernel in this case. The plot shows 

how the feature importance values are distributed for each individual feature value range. 

For example, a lower value for velocity has a higher value of SHAP value and vice versa. 

Therefore, during a model prediction, a lower value of velocity could increase the fall risk 

prediction for this model. Which aligns with our general intuition. Figures 5.4 (a) and (b) 

provide explanations for two different fall risk predictions by the SVM model. 

Explanations to individual model predictions provide insights about which features 

increased the fall risk prediction of a resident. For example, a lower iadl increased the fall 

risk prediction for Resident 1, however, a higher iadl helped reduce the fall risk for 

Resident 2. The model had an expected base prediction value of 0.6. 
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Figure 5.3. Global Explanation of a Model Using SHAP 

 

 

(a) Model Prediction Explanation for Resident 1 

 

 

(b) Model Prediction Explanation for Resident 2 

 

Figure 5.4. Explaining an Individual Model Prediction for Two Different Subjects 
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5.4 Discussion 

We observed that SVM performed superior to logistic regression in the 

classification task of predicting 6-month fall risk. Studies have shown that a history of 

previous falls significantly increases fall risk [152]. However, through repeated LASSO 

experiments we observed that in this cohort that was not the case. We further investigated 

the data to understand the impact of previous falls on new falls. Fig 5.5 shows all residents 

with their previous fall history and future falls in the next 6 months. If the resident did not 

have a fall in the past or the next six months a blank space is plotted without any marker. 

 

Figure 5.5. Previous and Future falls of the 95 Residents in the Data Set 

 

The plot shows that percentage of new fallers who had a previous fall was 53%. 

This could be the very reason why previous falls did not have higher importance. Based on 

the feature importance analysis, iadl, adl, fap, and pcs had significantly higher importance 

than others. This signifies that physical function and performance played a greater role in 

predicting fall risk in this population.  

We also observed that the age of the residents was not a critical feature in predicting 

fall risk. The population cohort consists of older adults with a mean age of 88. Which is 
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significantly larger than 65 that most studies are based on. Therefore, we believe that this 

analysis fills a literature gap of fall prediction in older adults with age > 80.  

Out of the two best performing models, logistic regression would be more 

explainable than the SVM model. Therefore, in the case of a higher fall risk prediction, the 

logistic regression model developed using LASSO features can be used to understand 

which features caused that prediction.  

Explanations to the model predictions using SHAP values provide additional 

insights about which predictor variables have increased fall risk prediction for an 

individual. Understanding which predictor variables are causing a higher fall risk could 

help health providers to provide personalized interventions to the residents. Therefore, the 

fall risk model could provide essential guidance to a health provider to focus on specific 

factors of fall risk instead of analyzing the individual assessments or predictor variables to 

understand their effects. For example, in Fig 5.4 (a) we observed that the fall risk for the 

individual was predicted to be 0.73 suggesting the resident had a relatively higher fall risk. 

The SHAP explanation to the individual prediction shows that the IADL assessment score, 

PCS assessment score, and a past fall were the three most prominent features that increased 

the fall risk. We can also observe that a slightly higher velocity (gait speed) was helping to 

reduce the fall risk. Similarly, in Fig. 5.4 (b) we can observe that the fall risk predicted by 

the model is 0.58, indicating the resident had a relatively lower fall risk at the time of 

assessments. Evaluation of the SHAP values for this individual prediction suggests that a 

significantly higher gait speed and IADL helped to reduce the fall risk for this resident. 

These critical and objective explanations could help clinicians save time and provide 

focused interventions to older adult residents with increased fall risk.   
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Future analysis with more predictor variables could potentially improve the results. 

Grip Strength, TUG scores, and medications could potentially be included to improve the 

prediction. Also, a longitudinal study with repeated measures from the individual subjects 

for recurrent events (fall and hospitalization) could provide improved and personalized risk 

assessment scores.  

5.5 Conclusions 

In summary, we have performed an analysis to predict 6-month fall risk amongst 

older adults using geriatric assessments, spatiotemporal gait parameters, and fall history. 

The fall risk models developed are explainable to critical information about which 

predictor variables were responsible for an increased risk of falls. This could potentially 

help clinicians to save time from analyzing individual assessments and provide early 

interventions to avoid a possible future fall.  
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Chapter 6: Retrospective Depth Video Classification to Reduce 

False Fall Alerts  

 

6.1 Introduction 

  Falls remain one of the leading causes of injury in older adults. Millions of older 

adults age 65 and older fall each year [161]. One out of five falls causes serious injury-

causing broken bones or head injury [162]. Each year, 3 million older adults are treated in 

emergency departments because of fall-related injuries. Also, the fall-related death rates in 

the U.S. have increased by 30% from 2007 to 2016 for older adults. At this rate, researchers 

anticipate that there will be 7 fall deaths every hour by 2030. Moreover, $50 billion in 

medical costs were due to falls in 2015 [163]. Falls are multifactorial [152]. A robust health 

monitoring system with fall prediction and real-time fall detection capabilities can help to 

inform family and clinicians, reduce fall-related deaths, serious injuries, and medical costs. 

Also, a fall monitoring system can help reduce the risk of prolonged periods of lying on 

the floor because of the inability to get up, especially for those who are living independently 

[164].  

There have been several proposed fall detection systems including accelerometers, 

push-button systems, acoustic sensors, passive infrared sensors, video-based sensors, and 

other privacy-preserving techniques such as the use of silhouettes from depth sensors [165, 

166]. Stone et al. have developed a fall detection system using depth image data [8]. The 

fall detection system operates in two stages. The first stage characterizes the foreground 
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object’s vertical state in individual depth image frames and then segments on-ground 

events from the vertical state time series obtained by tracking the object over time. The 

second stage uses an ensemble of decision trees to detect if a fall preceded on the ground. 

The fall detection system is robust; however, it fails in recognizing false alarms in certain 

cases. The authors have mentioned that objects being dropped on the floor, pets jumping 

off the furniture, and visitors lying or sitting down on the floor could generate false alarms. 

The algorithm also does not detect is the foreground is a person or not. Therefore, even 

though the algorithm successfully detects most real falls it tends to generate a high number 

of false alerts causing alarm fatigue [17].  A large number of false alarms in healthcare 

systems are known to increase the burden on clinicians leading to the desensitization of 

alarms and patient safety issues [9, 21, 22].  

In this study, we conducted several experiments to explore possible solutions to 

reduce false alarms in the depth image analysis-based fall detection system. We annotated 

several fall alerts, both true fall alerts and false alerts using a set of activities and used deep 

neural network architectures to perform the classification of the alerts. Alert classes with 

high accuracy in the classification experiments were pruned out to reduce false alarms. We 

also experimented with different fall alert thresholds to confirm that we do not miss a true 

fall alert. Results show that we can reduce the false alerts by 43 – 76 % by choosing 

different fall alert thresholds. A higher reduction in false alarms by increasing the 

thresholds also increases the risk of missing true falls.  
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6.2 Experiments 

6.2.1 Fall Alert Dataset Creation, Annotation, and Augmentation 

The fall detection system developed at the Center for Eldercare and Rehabilitation 

Technology, University of Missouri, Columbia has been deployed for production at 

TigerPlace senior living facility since 2014. To analyze, understand, and ultimately reduce 

the false fall alerts, we first developed a new fall alert dataset containing over ~4000 alert 

videos generated between 2016-2019. After collecting the fall alerts, we organized the 

alerts by annotating them.  

We approached the data annotation by describing the activities seen in the alert 

video in a short statement. For example, instead of creating a generic label for all pet 

activities, we created 14 labels to describe the unique events in the alert videos with pets. 

The labels were created organically during the data labeling process. Once the labeling was 

complete, we ended up with 89 unique video labels for the activities in the entire dataset. 

Table 6.1 shows the 14 labels our annotators came up with while labeling alert videos 

containing pets. Along with the new data annotations, we merged the annotation used for 

alert videos in a previous study by Skubic et al [17]. Also, the annotators have defined a 

set of condensed descriptions for the 89 classes based on the key subject or activity in the 

alert videos. The condensed descriptions can be considered as superclasses of the 89 

classes. The classes and condensed descriptions are presented in Appendix C. 

Table 6.1 Example of Super and Sub-classes in the Dataset 

Key 

Subject/Activity 
Annotation Labels for Alert Videos with Pets 

Pets 

pet jumped off furniture 

dog laying down 

pet walking 
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pet running 

pet running, knocked over object 

pet? Moving in corner 

pet walking near resident 

pet walking, non-resident bending over 

pet walking, resident bending over 

pet walking, multiple people in room, lots of 

activity 

resident pushed object, pet walking near resident 

pet walking, laundry thrown on ground 

pet playing on ground, multiple people in room 

non-resident pushing object on ground, pet 

walking 

 

Table 6.1 shows the complexity of the classification problem. For instance, the alert 

videos with pets can contain several variations of pet activities and are significantly 

overlapped with other resident and non-resident activities, such as laundry thrown on the 

floor, objects pushed, and non-resident bending over. We have conducted several analyses 

and observed thousands of videos to understand the variations in these overlapped classes. 

Several strategies have been employed to effectively separate these classes. We performed 

several classification experiments by re-grouping and/or removing different sets of class 

labels from the dataset. The detailed analysis strategies are presented in the Experiments 

section.  

We performed two sets of classification experiments: first with organizing all the 

data into three classes only, and in the second with 23 distinctive classes. The three-class 

classification experiment was performed to understand the predictability of neural network 

architectures in predicting fall versus other activities from the fall alert dataset. The three 
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classes considered were falls, pets, and all other activities. After a performance evaluation 

of the neural network models on the three-class classification, we performed an extensive 

analysis by observing videos from different classes and came up with 23 classes, each 

having at least 50 alert samples per class.  

The original labeled alert dataset with 89 classes had five key fall class categories, 

including fall forward, fall backward, fall side, fall chair, and other falls. The fall directions 

in the fall classes represent the direction of falls with respect to the depth camera. We put 

all true fall videos in one class category because most fall classes did not have at least 50 

samples.  20% of the alert dataset was reserved for testing and another 20% for validation. 

The rest of the data was used for training the models. The samples in the training set were 

flipped horizontally to augment the dataset. Also, we replaced each true fall alert sample 

in the training data with 20 random augmentations to further augment the dataset. We 

performed the data augmentations to increase the number of training samples, specifically 

provide more weight to fall samples during classification. Fig 6.1 shows an example of fall 

video augmentation. The set of frames in Fig 6.3 (a) were directly obtained from the 

original video. Fig 6.3 (a-1), (a-2), and (a-3) represent three unique augmentations using 

the frames in 6.3(a). We did not perform any data augmentation for samples in testing and 

validation datasets.   
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Figure 6.1. Fall Video Augmentation Example; (a) Represents the Actual Fall Frame Sequence 

(a-1), (a-2), (a-3) Represent Random Augmentations Made to the Frames in (a) 

The final 23-class dataset sample distribution per class is presented in Fig. 6.1. 

 

Figure 6.2. 23-Class Dataset Sample Distribution per Class 
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As the next step, the labeled alert videos were pre-processed to remove the 

unwanted background section of the frames, reshaped, and normalized the foreground 

objects for consistency.  

6.2.2 Data Pre-processing 

 The preprocessing of the alert videos was done in three steps. 

In the first step, we reshaped all the videos into 320 × 244. The fall detection project 

has gone through many revisions and hence a set of older alert videos were in different 

sizes. The most common video size observed was 320 × 244 and the current fall detection 

system uses this shape of image frames. So, to keep the videos consistent we converted the 

videos into this shape.  

In the second step, we removed the background of the alert videos, which contain 

furniture, walls, and other non-moving objects. We removed the background using two 

HSV filters. Because of limited samples in our dataset with repeated alert videos from the 

same set of apartments, including background images could potentially introduce bias. For 

example, if an apartment has a pet that often jumps from the couch, by feeding tens of 

training samples with of the pet jump (in that fixed apartment setting), the neural network 

might memorize the background to predict pet jumps, instead of generalizing the actual 

event of pet jump. Therefore, in the case of an actual fall in that apartment setting, the 

model might favor predicting the fall as a pet jump. Removing the apartment background 

helps to generalize the model better assuring that the events have no specific connection 

with that apartment setting. The only video segments colored after the second step of 

preprocessing were the ground floor and the foreground. Figure 6.3 shows an example of 

before and after preprocessing alert video frames.  
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In the third step, we normalized the foreground segments. The depth data-based fall 

detection algorithm consistently colored the ground floor using shades of blue. The 

intensity of the blue color was higher closer to the depth camera as shown in Fig. 6.3. The 

foreground objects in the videos were segmented and colored as well.  We observed that a 

moving object in the foreground may change its color within a small period. For example, 

Fig 6.3 shows a falling resident’s body-colored in shades of green in the early stages of the 

fall, however, the body color changed to shades of orange in the later frames. We believe 

this could affect the performance of neural network models, specifically pre-trained models 

trained on RGB data. Therefore, we normalized the foreground objects such that these 

objects have a consistent range of colors throughout the video. Fig. 6.3 shows two frames 

with before and after pre-processing from an alert video of a true resident fall. The two 

frames show that the color of the segmented resident changed from green in (a-1) to orange 

in (a-2). After the second step of preprocessing, the foreground image segment of the 

resident was colored consistently as seen in Fig 6.1 (b-1) and (b-2).  
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Figure 6.3. Example of fall video preprocessing; (a-1) and (a-2) represent two frames of a fall video before 

preprocessing, (b-1) and (b-2) represent the two frames of the video after preprocessing. 

 

6.2.3 Classification Experiments  

 We performed several classification experiments to classify these video classes. To 

evaluate the effectiveness of deep learning architectures in discriminating falls versus other 

classes, we performed a classification test using only three classes. We divided the dataset 

into falls, alert videos involving pets, and all other false alert videos usually containing 

objects. We used the best performing model in this analysis for a more extensive analysis 

using alert videos from 23 different classes.   
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6.2.3.1 Three-class Classification  

 We performed the three-class classification as a baseline analysis to confirm that 

deep learning models can discriminate real fall videos from false alerts. The three classes 

were fall, pets, and objects. This experiment treats all objects equally, so objects such as 

laundry, pillow, furniture, and recliner were all considered as objects. Similarly, all pet 

activities described in Table 6.1 were considered in the pet class.  

For this classification experiment, we used 3333 labeled alert videos. We 

considered 80% of all data for training and 20% of the data for testing. The alert videos 

were typically comprised of 75 to 200 frames. We resampled all the alert videos to 40 

frames for the experiment. Also, we flipped all videos in the training data.  

We used pre-trained Inception V3 models for feature extraction from each alert 

video [167]. Pre-trained Inception V3 is a powerful and efficient deep CNN architecture 

trained on the ImageNet object detection dataset. We used Inception V3 for obtaining the 

convolutional features from the alert videos as large variations in object location in the 

images would not matter much in this network. Inception V3 is also a relatively wider 

network and hence helps not to overfit. Multiple filters at the same level help different 

levels of filtration. We used the Inception V3 as a feature extractor. So, we removed the 

last fully connected layer of the Inception V3. The alert videos were reshaped to 299 X 299 

X 3 from 320 X 244 X 3 to be able to use them as inputs of the Inception V3 model. Each 

of the 40 frames of a sample alert video was fed into the Inception V3 model and the outputs 

obtained from the last but one layer of the model were used to train another custom neural 

network architecture. The custom neural network models were created either using stacks 

of dense neural layers or LSTMs accompanied by a softmax layer for classification. Fig. 
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6.4 shows the classification architecture we used for this experiment. We used Adam 

optimizer and categorical cross-entropy for the training of the custom models.  

 

Figure 6.4. Classification Architecture 

   

 We received feature vectors of shape 40 × 2048 after passing the 40 frames of alert 

videos through a pre-trained Inception V3 model as shown in Fig. 6.4. We used these 

feature vectors to develop custom neural network models consisting of LSTM and CNN 

layers. We performed experiments with several combinations of LSTM and CNN modules, 

including two 512 dense modules, 1024 × 512 dense modules, two 1024 dense modules, 

two 2048 LSTM modules, three 2048 LSTM modules, and four 2048 LSTM modules. 

Finally, we added a fully connected layer with softmax activation for classification. We 

used Keras V2.2.0 and Tensorflow V1.9 for the experiments [168, 169].  

6.2.3.2 23-class Classification Experiments With Data Augmentation 

 We ran another set of experiments by re-categorizing the alert dataset into 23 

classes. The classes are listed in Table 6.2. The new classes were defined by carefully 
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observing the videos from the 89 classes. These 23 classes have at least 50 alerts and these 

classes capture ~98% of all the alert videos.  

Table 6.2 List of class labels in the 23-class classification 

Class Labels 

0: laundry_thrown 
1: ast_device_movement 
2: bent_dropped_object  
3: bent_laundry  
4: bent_move_object 
5: bent_non_resident 
6: fall 
7: high_activity 
8: laundry_fell  
9: laundry_staff  
10: laundry_then_sat_recliner 
11: move_furniture 
12: move_on_wheelchair 
13: object_kicked 
14: pet 
15: pet_jump 
16: pet_laying 
17: pet_near_resident 
18: recliner_get_up  
19: recliner_laundry 
20: recliner_leg_movement 
21: staff_attending_bed  
22: walk 

 

 The final dataset contained 7010 training samples, 1078 validation samples, and 

901 testing samples. From the three-class classification experiment, we observed that the 

architectures without LSTM modules overfit the training data. We also observed that 

models with LSTMs were stable, so we considered using LSTM based architectures to train 

our models in the 23-class classification task.  
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6.3 Results 

6.3.1 Three-Class Classification Results  

The results of the three-class classification are summarized in table 6.3. We 

observed that the test accuracies were comparable across the architectures. However, we 

found a significantly higher accuracy for training samples for dense models suggesting that 

they essentially overfit the training data. However, the LSTM models performed 

consistently and seemed to have a more stable overall performance. For LSTM models, F1 

scores ranged from 0.785-0.802. The number of parameters and training time significantly 

increased with an increase in the number of LSTM layers. The 2-layer LSTM model used 

with Inception V3 features performed very similarly to other models, therefore, we 

considered this model for future experiments.  

 

Table 6.3 Three class classification results for different architectures using Inception V3 features 

architecture test 

accuracy 

test 

F1 

test 

precision 

test 

recall 

train 

accuracy 

train 

F1 

train 

precision 

train 

recall 

2X512 

Dense 

0.762 0.756 0.806 0.76 0.866 0.864 0.893 0.87 

1024X512 

Dense 

0.811 0.81 0.814 0.81 0.936 0.935 0.937 0.94 

1024X1024 

Dense 

0.791 0.793 0.812 0.79 0.901 0.902 0.914 0.9 

2LSTM 0.795 0.785 0.802 0.8 0.795 0.784 0.804 0.8 

3LSTM 0.79 0.792 0.798 0.79 0.813 0.813 0.816 0.81 

4LSTM 0.801 0.802 0.805 0.8 0.818 0.818 0.82 0.82 
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6.3.2 23-Class Classification Experiment Results 

 The dataset with 23-classes was trained using the 2 × LSTM models and the results 

for the validation data are presented in Fig. 6.5. The ROC curves for test data are presented 

in Fig 6.6.  

 

Figure 6.5. ROC Curves from 23-class classification on Validation Data 

class labels: 0: Laundry_thrown, 1: ast_device_movement, 2: bent_dropped_object , 3: bent_laundry , 4: , 

ent_move_object, 5: bent_non_resident, 6: fall,  7: high_activity, 8: laundry_fell , 9: laundry_staff, 10: 

laundry_then_sat_recliner, 11: move_furniture, 12: move_on_wheelchair, 13: object_kicked, 14: pet, 15: 

pet_jump, 16: pet_laying, 17: pet_near_resident, 18: recliner_get_up, 19: recliner_laundry, 20: 

recliner_leg_movement, 21: staff_attending_bed, 22: walk 
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Figure 6.6. ROC Curves from 23-class classification on Test Data 

class labels: 0: Laundry_thrown, 1: ast_device_movement, 2: bent_dropped_object , 3: bent_laundry , 4: , 

ent_move_object, 5: bent_non_resident, 6: fall,  7: high_activity, 8: laundry_fell , 9: laundry_staff, 10: 

laundry_then_sat_recliner, 11: move_furniture, 12: move_on_wheelchair, 13: object_kicked, 14: pet, 15: 

pet_jump, 16: pet_laying, 17: pet_near_resident, 18: recliner_get_up, 19: recliner_laundry, 20: 

recliner_leg_movement, 21: staff_attending_bed, 22: walk 

 Results show that several classes were well separated. We observed that the fall 

class had a high AUC in validation and test set, with values 0.96 and 0.90, respectively. 

Classes with laundry and recliner movement (10, 19), furniture movement (11), moving on 

a wheelchair (12), staff attending bed (21) had AUC values more than 0.95, suggesting 

those false alerts are highly separable. We observed that alert videos belonging to objects 
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kicked (13) had an AUC of 0.67 in the test data suggesting that the class was not very 

separable.  

Fig. 6.9 shows the confusion matrix for the 23-class classification model.  

 

Figure 6.7. Confusion Matrix for 23-Class Classification 

 

6.4 Discussion 

 The results from the two experiments show that the fall videos were well separated 

from all other activities with high sensitivity and specificity. We observed that most real 
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fall alert videos were classified as falls, except for a few being misclassified as high 

activity, pet playing, assistive device movement, or laundry thrown.   

Several classes had significant overlaps with other classes. For example, laundry 

staff and laundry thrown have several overlapped characteristics, such as laundry thrown 

on the floor, and the possible presence of a staff member. Similarly, laundry staff also has 

overlapped characteristics with staff attending bed. We also observed a cluster in the 

confusion matrix near classes containing pets, such as pet, pet jump, and pet playing. This 

suggests that the pet classes were mostly misclassified as other pet classes. The confusion 

matrix presented in Fig 6.7 confirms that samples from overlapped classes were more likely 

to be misclassified. A possible solution to this problem is by combining overlapped classes 

as a single class. However, we kept them separate because of their unique characteristics. 

Moreover, accurately classifying the classes other than fall class is not necessarily a 

priority. We observed that samples from most false fall alert classes were not classified as 

fall, which is a priority.   

 We also observed that samples from class pets near residents were classified as a 

high activity. The high activity class usually represents a significantly higher number of 

foreground objects. With the presence of pets and residents or visitors, the amount of 

foreground activity is assumed to be high, and hence the miss classifications.  

Classes with lower sample sizes were shown to have miss classified entirely, for 

example, bent nonresident, bent move object, and object kicked. We are constantly adding 

more samples to our training dataset. With an increased number of samples per class this 

problem could be resolved.  
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6.4.1 False Alarm Reduction Using Fall Prediction Thresholds 

An alert can be considered as a false alert if the probability of the alert belonging 

to fall, class, is less than a predetermined threshold, θ. In this method, we heuristically 

defined several fall class probability thresholds such that the model ideally does not miss 

any actual fall. We analyzed this method using several fall prediction probability thresholds 

as presented in Table 6.4. The lowest threshold, θ0 was obtained from the ROC curve 

separating the fall class from the rest of the 22 classes in the test dataset, when True Positive 

Rate (TPR) was equal to 1. Table 6.4 shows that the % of false alarms decreases with an 

increase in false alarm thresholds. Using θ3 as the alert threshold would potentially reduce 

76% of the false alarms, however, we might end up missing more true fall alerts with low 

probabilities.  

Table 6.4 False Alarm % using different fall probability thresholds θ0 < θ1 < θ2 < θ3 

Threshold # of missed falls % of false alarms 

θ0 0 0.57 

θ1 1 0.47 

θ2 1 0.33 

θ3 2 0.24 

 

6.4.1.1 Running the Secondary Analysis in Real-Time to Reduce False Alerts 

 We made the secondary fall analysis algorithm run live for false fall alert reduction. 

During the test phase, the algorithm was able to reduce a significant number of false alerts. 

A reduction in the number of alerts for two different facilities are reported in Figures 6.8 

and 6.9. 
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Figure 6.8. Adl THIL Facility - Alerts Summary After Secondary Processing 

 

 

Figure 6.9. Adl TigerPlace Facility - Alerts Summary After Secondary Processing 
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The results presented in the above two tables are based on θ0 as the primary goal of 

this analysis is to not miss any true alarms while reducing as many false alarms as possible. 

Alerts generated by the already-in-place fall detection system categorize the alerts into four 

categories: low, medium, high, and super, with low being the fall alerts with the lowest 

possibility of being a fall and vice-versa. Our model was used to filter high fall alerts. The 

alerts that were not rejected by the model were sent to the residents. All super alerts were 

sent to the residents and low or medium alerts were rejected. We observed that the model 

performed slightly better in the THIL facility by rejecting about 32% of the high alerts, 

however, it could only reject 21% for the TigerPlace facility. These numbers are still 

significant as these results are obtained by running the model only between 03/24/2020 till 

07/22/20. A larger time range and a larger number of facilities could have an even larger 

impact in reducing false alerts.  

Currently, Foresite Healthcare, our commercial partner who licenses the fall 

detection system runs their fall detection system in several facilities. In their system, high 

alerts are monitored by human intervention. The secondary fall analysis could potentially 

be a step towards reducing human interventions for fall prediction.  

6.4.2 False Alarm Identification Using Multi-Dimensional Scaling 

 In addition to exploring the thresholding method to reduce false alarms, we also 

explored the use of top predicted classes to reduce false alarms. We performed this 

exploration analysis using the test dataset model predictions using the 23-class 

classification model. In the thresholding method, we only used the fall prediction 

probabilities to set the thresholds. However, in this study, we analyzed several groups of 

features to analyze if we could separate false alarms from true falls effectively. The groups 
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include (a) fall prediction probability only; (b) fall prediction probability with fall 

confidence (low, medium, high, or super), (c) fall prediction probability, fall confidence, 

and top predicted class; (d)  fall prediction probability, fall confidence, and top three 

predicted classes; (e) fall prediction probability, fall confidence, and top five predicted 

classes.  

 We developed five separate random forest models for each of the feature groups to 

detect false fall alerts. Proximity measures from the random forest models were then used 

to draw Multidimensional Scaling (MDS) plots with the test data samples to understand 

how the samples are related to each other [170]. MDS provides a means to find and 

visualize patterns or grouping of similar observations in data while preserving the relative 

distance between observations. In this analysis, we used proximity measures obtained from 

the trained random forest models to construct MDS plots.  Fig 6.10 (a-e) show the MDS 

plots for the five different feature groups.  

 

(a) MDS plot using fall prediction probabilities only 
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(b) MDS using fall prediction probability with fall confidence 

 

 

(c) MDS plot using fall prediction probability, fall confidence, and top predicted 

class 
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(d) MDS plot using fall prediction probability, fall confidence, and top three 

predicted classes 

 

(e) MDS plot using fall prediction probability, fall confidence, and top five predicted 

classes 

Figure 6.10. MDS plots using random forest proximities for different groups of features 
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We observed that all features could separate the true falls from false alarms to some 

degree. However, with the increased number of features, specifically in the group (d) and 

(e) we could see a significant separation between the true falls and false fall alerts. The 

final group (e) provided the best separation between true falls and false alarms.  

We observed that four true falls in group (e) MDS plots (four falls in the left dense 

cluster of false alerts in Fig 6.10 (e)) were always grouped along with the false alarms. We 

further investigated these four alert videos to understand what characteristics in these falls 

made them closer to the false alarms. In two of these four fall videos, we observed the 

presence of more than one adult in the field of view of the depth camera. In both alert 

videos, one of the adults fell and the other adult responded to the fall by moving towards 

the falling resident. We further analyzed the five closest neighboring observations in the 

MDS plot to these fall videos. For one of the two of these fall videos containing two adults, 

the nearest alert video classes were ‘bend_laundry’, ‘laundry_staff’, ‘pet near resident’, 

and ‘pet’. Fig 6.11 (a) shows the final frame in the fall video. In the second video with two 

adults in view, we observed that the falling adult fell over a couch and a chair. The nearest 

MDS plot neighbors for this fall belonged to classes: ‘recliner_get_up’, 

‘ast_device_movement’, ‘recliner_leg_movement’, ‘move_on_wheelchair’, and 

‘pet_jump’. Fig 6.11 (b) shows the final frame of the second fall video with two adults. 

Observing the scene characteristics in these videos, we can understand why these fall 

videos were observed close to observations in the above-mentioned class categories in the 

MDS plot.  
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(a) 

 

(b) 

Figure 6.11. Last frame of the fall videos with two adults in view 
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Similarly, we also analyzed the other two fall alert videos that remained close to 

the dense false alarm cluster in 6.10 (d and e).  We found that one of the fall videos suffered 

from significant occlusion. Fig 6.12 shows the last frame of this fall video. We observed 

that the resident fell in sight of the camera, but the resident was occluded by the bed while 

falling. Observations closer to this fall video in the MDS plot belonged to classes: 

‘Laundry_thrown’, ‘pet_near_resident’, ‘pet_jump’, ‘high_activity’, and ‘walk’.  

 

Figure 6.12. Last frame of the fall alert video with significant occlusion 

 

Finally, we observed that in the last video of this category, the resident fell on a 

recliner, making the recliner a significant foreground. Fig. 6.13 shows the last frame of the 

fall video. We believe that the significant recliner foreground could have been the reason 

for the fall to be closer to some of the false fall alerts in the MDS plot. The observations 
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closer to this fall observation in the MDS plot belonged to classes: ‘bent_move_object’, 

‘Laundry_thrown’, ‘recliner_leg_movement’, ‘high_activity’, and ‘bent_laundry’.   

 

 

Figure 6.13. Last frame of fall video, resident falling on a recliner 

 

 Based on the clusters of the observations in the MDS plots, we believe that features 

including the top five predicted classes, fall confidence, and fall prediction probability 

could be used to reduce false alarms. However, we observed that four of the 40 videos in 

the test dataset were close to the false alarm observations. Analyzing these videos, we 

understood that these four fall videos had some unique characteristics that made them 

closer to false fall alerts in the MDS plots.  

 Using the MDS plot analysis we could potentially reduce false alarms by observing 

the nearest neighboring observations of the alert video sample in the plot. However, we 
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could still miss some true fall alerts. For example, if we choose all alerts observed in the 

left top dense false alarm cluster in Fig 6.10 (e) as false, we will miss four true falls. 

Therefore, we believe that even though the MDS method of reducing false alarms seems 

effective, we chose the thresholding method for production. We believe that our 

conservative thresholding method will less likely miss any true falls as compared to the 

MDS method.   

6.5 Conclusion 

 Our analysis shows that the secondary fall analysis method could successfully 

reduce false fall alerts. The model flagged all fall alerts with a fall prediction probability 

below a fixed threshold as false. Increasing the threshold could reduce false alerts but in 

the cost of potentially missing true alerts. Reducing false fall alerts using this method could 

potentially reduce alarm fatigue in senior care facilities using the depth camera-based fall 

detection system.   
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Chapter 7: Fall Risk Prediction in Older Adults from Nursing 

Notes Using BioWordVec Word Embeddings 

 

Abstract 

Nursing notes in Electronic Health Records (EHR) contain critical health 

information, including fall risk factors. However, an exploration of fall risk prediction 

using nursing notes is not well examined. In this study, we explore deep learning 

architectures to predict fall risk in older adults using nursing notes in the EHR. We used 

EHR data including free-text nursing notes, medications, and observed falls from 162 older 

adults. We used BioWordVec to train multiple recurrent neural network-based models to 

predict future falls. Our final model predicted falls with a sensitivity of 0.75, a specificity 

of 0.83, and an F1 score of 0.82. LSTM-based deep neural models were most effective in 

predicting future falls. Also, the models generally performed better in predicting future 

falls in a shorter time range as compared to falls in the distant future. This exploratory 

analysis provides groundwork on the use of word embeddings in predicting fall risk from 

nursing notes. 

7.1 Introduction 

 The number of Americans with age 65 and above is projected to be over 98 million 

by 2060, which is about one-fourth of the total population in the USA [124]. Also, older 

adults with age 65 and above are at higher risk of fall. Studies show that more than one-

third of older adults fall each year [149]. Among these fallers, 20%-30% suffer moderate 

to severe injuries, which reduces their independence and mobility, and increases the risk 
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of premature death [150]. Identifying older adults who are at higher risk of fall requiring 

interventions is challenging for clinicians [151]. 

There have been several studies on predicting fall risk in older adults using history 

questions, self-report measures, performance-based measures, or a combination of 

measures [152]. However, there has not been enough exploration in predicting fall risk 

from free-text nursing notes [10]. Free text nursing notes, unlike structured EHR data, are 

less standardized, which makes them difficult to use in developing predictive models. 

However, studies show that these notes have critical information related to health 

prediction, including fall risk [10]. This provides an opportunity to explore the 

effectiveness of state-of-the-art natural language processing (NLP) methods to predict fall 

risk from nursing notes.  

In this analysis, we explore word embeddings and recurrent neural network-based 

deep learning architectures to predict falls from free-text nursing notes, and medications. 

We hypothesize that free-text clinical notes in the EHR can be used to predict future falls 

in older adults.  

7.2 Materials and Methods 

7.2.1 Data  

We included the free-text nursing notes and medications in the EHR collected from 

162 older adults at TigerPlace, an Aging-in-Place facility in Columbia, MO [6]. The data 

were collected in the EHR by the nursing staff working at TigerPlace in collaboration with 

the Sinclair Nursing School at the University of Missouri, Columbia, MO. The free-text 

nursing notes included staff visit notes and progress notes. We de-identified the nursing 

notes data based on HIPAA regulations. A detailed description of the data de-identification 
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process is provided in the supplementary material. The fall events were reported by the 

TigerPlace staff in the EHR. Table 7.1 shows the number of records available in the EHR 

dataset.  

 

Table 7.1. Records in TigerPlace EHR data 

 # Visit 

Records* 

# Progress 

Notes** 

# Medication 

Names*** 

# Fall 

Events 

Total 247340 
3456 2762 1704 

Average Per 

Resident 
1526.79 

21.33 17.05 10.52 

 

* Visit Records were descriptions written by nurses every time they visited each resident, 

which included medication reminders to changing sheets.  

**Progress notes were notes from medical visits.  

***Medication names were a list of medications the resident was on 

7.2.2 Pre-processing  

We found several common methods of preprocessing text data for natural language 

processing from previous studies. We lowercased the text [171, 172], removed stop words 

[172, 173] (words like ‘a’, ‘an’, ‘so’, ‘of’, which contain little to no contextual 

information), removed punctuation [171, 174], and tokenized the words. Words that 

commonly appear together in the clinical text were assigned to one token [171, 172, 174, 

175]. Punctuations in the text were removed except for a few specific scenarios, such as ‘/’ 

in blood pressure measurements, and decimals in floating-point measurements. Finally, we 

standardized the blood pressure and blood sugar measurements to a format supported by 
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BioWordVec, which included rounding numbers to the nearest ten. Also, we removed all 

timestamps as they did not add meaning to our data. We organized all the clinical notes 

and medications in temporal order: data are organized by resident and by time. 

7.2.3 Final Dataset  

To avoid using correlated and repeated measurements, we only considered six 

months of data for each resident when they first started living at TigerPlace. We considered 

two months starting from the end date of their first six-month stay period to predict fall 

events. Only 27 of the 162 residents experienced a fall in the two-month prediction period.  

Because smaller our dataset was relatively small, we decided to use pre-trained 

word embeddings rather than developing our own. The table shows the characteristics of 

the dataset. 

This study received Institutional Review Board approval at the University of 

Missouri, Columbia. 

 

7.3 Model Construction 

We evaluated two different pre-trained word embedding models, BioWordVec and 

GloVe to understand if one of them is more effective in capturing the words found in the 

dataset [176, 177]. We observed that BioWordVec was able to capture more clinically 

relevant terms when compared with GloVe. Hence, we considered BioWordVec as our 

preferred word embedding model to construct the prediction models. We have provided 

more details about this analysis in our supplementary document. Appendix D provides a 

more in-depth comparison of the performance of the word-embedding models.  

We experimented with several recurrent neural network models with Long Short-

Term Memory (LSTM) units and Gated Recurrent Units (GRU). Because of the small 
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dataset, we constructed simpler models to not overfit our data. The three models we 

experimented with are shown in Fig 7.1. To test each model, we ran ten repetitions of 

fivefold cross-validation. We recorded the mean values of each model's accuracy, 

sensitivity, specificity, F1 score, and area under the receiver operating curve (AUROC).  

Because our data set is unbalanced, we also utilized class weights during training 

so that the fall class would have more effect on models than the non-fall class. After 

running a parameter search, we determined that the best class weight for the fall class was 

1.95 while the non-fall class remained at 1. 

7.4 Results 

Table 7.2 shows the mean accuracy, sensitivity, specificity, and F1 scores of 10 

repeated tests of 5-fold cross-validation for each model. Representations of each model are 

shown in Figures 4, 5, & 6. With these models, we were able to achieve F1 scores as high 

as .82, with both an LSTM and GRU architecture, with the LSTM achieving higher 

sensitivity, despite the GRU having higher accuracy and specificity. 

Table 7.2. Classification results 

Model 
Fall Class 

Weight 
Accuracy Sensitivity Specificity F1-Score 

LSTM 1 
1.95 .81 .75 .83 .82 

LSTM 2 
1.95 .72 .90 .66 .73 

GRU 1 
2 .76 .79 .76 .79 

GRU 1 
1.95 .83 .63 .88 .82 
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Figure 7.1. ROC curves for classification 

 

 

(A) 

 

(B) 
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(C) 

Figure 7.2. LSTM and GRU models: (A) LSTM 1, (B) LSTM 2, AND (C) GRU 1 

 

7.5 Discussion 

Our results support the idea that fall risk can be determined from free-text clinical 

notes. With the size of our data set, we were only able to test relatively simple models on 

our data, however, even with that limitation, we were able to yield results that demonstrate 

that fall risk can be determined from EHR free-text data.  

We consider LSTM 1 to be the best performing model, because while it does not 

have as high an accuracy or specificity as GRU 1, it has a higher sensitivity, which is 

important in a situation where you want as many of the true positives identified as possible, 

additionally, the two models have the same F1-score of .82. This suggests that LSTMs 

would be appropriate to use in further research, especially when using a larger dataset that 

allows for more complicated architectures than our simple LSTM models. 

The size of our dataset may be a limitation in this study. We try and mitigate this 

by using 5-Fold cross-validation and using early stoppers within our training to prevent 

overfitting. Future research into free text EHR data should include larger sets than our 162-

person set. Another aspect that may have limited us was the fact that BioWordVec did not 

catch all the words in our datasets, therefore it may be more useful to create a word 

embedding that could catch the entire vocabulary. 
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7.6 Conclusion 

We have demonstrated that fall risk can be determined from nursing notes. 

Hopefully, we have set the groundwork for research into this topic, and that similar 

research involving EHR data will be conducted in the future, especially with larger 

datasets. Future research should look into what machine learning architectures are best for 

analyzing nursing notes, and work should be done in incorporating fall risk predictions into 

health alert systems to decrease false positives and help mitigate alert fatigue in health care 

workers. 
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Chapter 8: Functional Health Prediction Using In-Home 

Sensor Data 

 

Abstract 

With the increasing computational capabilities and advances in internet of things 

technologies, unobtrusive in-home sensors have improved continuous health monitoring. 

These health monitoring systems have been shown to predict fall, track gait, sleep, and 

overall activity successfully in the homes of community-dwelling older adults. In addition 

to tracking these objective and clinically relevant health measurements, functional health 

tracking could provide information about the overall well-being of older adults. Higher 

functional health has been shown to increase the quality of life and successful aging in 

place. Functional health is traditionally measured using questionaries and self-evaluation 

surveys that generally involve subjectivity and are conducted less frequently. Predicting 

functional health from the in-home sensor data could provide continuous functional health 

monitoring and hence early detection of functional health deterioration. In this study, we 

explore developing accurate functional health prediction models using in-home sensor 

data.  

8.1 Background 

Research has shown that higher functional health leads to a higher quality of life 

and improved aging in place [126]. Functional health is complex and multi-factorial. 

Tracking functional health has been traditionally conducted in clinical settings under the 
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supervision of trained clinicians. Based on the 2015 WHO world report on aging and 

health, functional health consists of physical, cognitive, and social function [128]. Several 

screening tests such as ADL, IADL, MMSE, and GDS provide different aspects of 

functional health. In Chapter 4, we used these manually collected assessment measures to 

develop a composite functional health score.  

With the technological advancements, functional health assessments have been 

automatized in several ways, such as computer-assisted assessments, gamification, and 

virtual reality-based assessments, wearable sensor-based, and unobtrusive in-home sensor-

based assessments [55]. Non-wearable unobtrusive in-home sensors, such as motion 

sensors, depth sensors, and bed sensors provide high autonomy and continuous flow of 

daily activity data. Studies have shown that the use of these sensor data could be used to 

predict different aspects of functional health. Arcelus et al. have successfully measured sit-

to-stand timing with a mean error of 0.11 seconds and symmetry with an accuracy of 93.0% 

from bed pressure sensors [178]. Authors suggest that the sit-to-stand timing estimation 

and symmetry of bed departures could be studied for early indication of fall risk and other 

function health deteriorations. In another study, Greene et al. have developed a cognitive 

decline prediction model from Timed up and go tests performed using body-worn inertial 

sensors [179]. Their study included 189 community-dwelling older adults. The authors 

have included several quantitative movement parameters obtained from the sensors 

including temporal gait parameters, spatial gait parameters, turn parameters, and angular 

velocity parameters. Results show that baseline TUG parameters and change from baseline 

TUG parameters were the strongest predictors of cognitive decline. The authors used 

MMSE as the key assessment to predict cognitive decline in this study. In similar studies, 



 

124 

Verghese et al. and Lord et al. have successfully demonstrated that gait impairment could 

be used to predict cognitive decline and mild depressive symptoms in early Parkinson’s 

disease, respectively [180, 181].  

Stone et al. have mapped in-home sensor Kinect-based gait speed measurements to 

TUG time. TUG time has been a successful predictor of fall risk; hence they used the 

automated TUG estimation to predict fall risk in older adults. Alberdi et al. have used 

longitudinal smart home data collected from 29 older adult residents over an average 

duration of two years to detect early stages of age-related disorders such as Alzheimer’s 

disease [182]. They obtained 10-time series behavioral features from the sensor data, such 

as duration of specific activities including time spent for cooking, eating, and relaxing; 

mobility-related features including total number of activated sensors, and total distance 

covered walking inside the home per day; sleep-related features including sleep duration, 

and frequency. Results show that the behavioral features could be successfully used to 

predict TUG with a statistically significant regression correlation of ~0.55. The models 

however struggled to predict all other absolute test scores including GDS, and Prospective 

and Retrospective Memory Questionnaire (PRMQ).  

In-home sensors, such as depth sensors, bed sensors, and motion sensors have been 

successfully deployed at TigerPlace, a senior living facility in Columbia, MO for 

continuous health monitoring of older adults. The data obtained from the sensors have been 

used to estimate several clinically relevant matrices including gait speed, estimated TUG, 

sleep restlessness, and in-home activities. In this analysis, we explore methods to predict 

functional health from these matrices. In our earlier studies (Chapter 4), we have estimated 

overall functional health in older adults using ADL, IADL, MMSE, GDS, and SF-12 
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matrices from the electronic health records data. Our task in this study is to estimate the 

overall functional health estimation we obtained in the previous study using health matrices 

obtained from the in-home sensors. Also, we will estimate absolute assessment scores of 

the geriatric assessments from in-home sensor data. We have used the linear regression 

method to solve this regression problem. We have also constructed functional health 

tracking plots using predicted functional health from the sensor data and estimated overall 

functional health from EHR data. These plots help us understand if the trends observed in 

the composite functional health values are reflected in the predicted functional health 

values.     

8.2 Methods 

8.2.1 Data 

 

We used a set of continuously measured data obtained from depth sensors and bed 

sensors embedded at TigerPlace. The features obtained from depth sensors were stride 

length, stride time, gait speed, walks per day, and estimated TUG time. The features 

obtained from bed sensors were seconds in bed, seconds restless, restlessness percentage, 

average respiration rate, and average heart rate. We used these features to predict the 

absolute geriatric assessments and the overall functional health estimated using the mixed-

effect models as described in chapter 4 [183].  

The dataset contained 150 (females =97, age = 87.2 ± 7.2) older adult residents who 

lived at TigerPlace from 2011-2019 were included in the analysis. Because of a large 

number of missing values in the dataset, a subset of this dataset was used for each 

regression model construction. Functional health values were estimated biannually as 
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geriatric assessments were collected once every six months at TigerPlace. The mean date 

of all assessments was obtained and considered as the date of functional health assessment. 

Based on the date of functional health assessment, mean values of the sensor features were 

obtained using sensor feature measurement 15 days before and after the date of functional 

health assessment. We then used these average values as our features for regression models. 

We excluded functional health values that did not accompany sensor data. A correlation 

plot of the bed sensor and depth sensor features in Fig 8.1 shows that stride length and 

estimated TUG were highly correlated to gait speed. Therefore, stride length and estimated 

TUG were discarded from the analysis. Seconds in bed and seconds restless were also 

highly correlated, therefore, feature seconds in bed was discarded from the analysis.  
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Figure 8.1. Correlation plot of depth and bed sensor features 

 

For each geriatric assessment, we have also performed a feature selection to obtain 

the best features to predict that particular assessment. We used all features including the 

correlated features for the feature selections. This study received Institutional Review 

Board approval at the University of Missouri, Columbia. 

8.2.2 Functional Health Estimation from In-Home Sensor Features 

 

The dataset obtained from the previous steps was used to construct regression 

models to estimate the functional health of an individual using the in-home sensor data. 
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We not only estimated the composite functional health values developed from the geriatric 

assessments but also the geriatric assessments themselves.  We finally constructed 

functional health trajectories from the cross-validation regression predictions and 

compared them with the true functional health estimates based on methods described in 

chapter four. 

8.2.2.1 Regression Analysis 

 We used linear regression to construct the prediction models. We used the set of 

depth sensor-based features and bed sensor-based features separately to construct the 

regression models. Also, we have used a set of selected features obtained using univariate 

F-test statistics feature selection to construct the regression models to estimate each 

outcome variable. We used the leave-one-out method (LOOCV) of cross-validation 

because of limited data availability. 

8.2.2.2 Evaluation 

For the regression models, we evaluated the models using correlation coefficients 

(r) and means square errors (MSE).  

8.3 Results 

8.3.1 Regression Analysis 

  

 We performed regression analysis to predict the geriatric assessments, including 

ADL, IADL, MMSE, GDS, and the composite functional health values obtained in Chapter 

4. Table 8.1 shows the regression output correlation and MSE values for predicting the 

outcome variables from depth sensor-based features, bed sensor-based features, depth 
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sensor-based features with seconds restlessness obtained from bed sensors, and selected 

features for each outcome variable obtained using feature selection.  

Table 8.1 Predicting geriatric assessments and FHV from in-home sensor features 
 

Depth sensor-

based  

Features  

(n=37, F=26) 

Bed sensor-

based 

features  

(n=30, F=21) 

Depth sensor-

based  

Features + 

seconds restless 

(n=16, F=9) 

Features 

obtained from 

feature selection  

r  

(p-value) 

mse r  

(p-

value) 

mse r  

(p-value) 

mse r  

(p-value) 

mse 

ADL 0.54 ‡ 

(<0.0001) 

7.4 0.35 ⁕ 

(0.002) 

9.41 0.72 ‡ 

(<0.0001) 

18.21 0.78 ‡ 

(<0.0001) 

30.4 

IADL 0.37 † 

(0.0002) 

11.99 0.16  

(0.17) 

10.23 0.39 ⁕ 

(0.02) 

9.91 0.33 ⁕ 

(0.07) 

9.59 

MMSE 0.063 

(0.55) 

621.3 0.304 

⁕ 

(0.009) 

585.0 0.097 

(0.590) 

587.21 0.40 ⁕ 

(0.023) 

599.01 

GDS 0.24 ⁕ 

(0.019) 

6.59 -0.20 

(0.079) 

8.29 0.37 

(0.03) 

8.96 0.73 ‡ 

(<0.0001) 

11.94 

FHV 0.32 ⁕ 

(0.002) 

0.04 -0.10 

(0.37) 

0.04 0.309 

(0.079) 

0.025 0.36 ⁕ 

(0.04) 

0.027 

 

⁕ p<0.05 

† p<0.001 

‡ p<0.0001 

Results show that the constructed linear regression models could estimate the 

geriatric outcome variables with statistical significance. Features obtained using the feature 

selection method could predict all individual assessments including composite functional 

health values with statistical significance. Out of the observed correlation in Table 8.1, 
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GDS and ADL were predicted with the highest correlation values with p<0.0001. The set 

of features selected for the individual outcome variables using the feature selection method 

are shown in Table 8.2.  

Table 8.2 Selected features using univariate F-test statistics 

Geriatrics assessments / 

FHV 

Selected features  

ADL Stride time, stride length, speed, walks per day, 

estimated tug, seconds restless, restless percentage 

IADL Stride time, speed, walks per day, estimated tug, 

restless percentage 

MMSE Stride time, stride length, speed, walks per day, average 

respiration 

GDS Stride time, speed, walks per day, seconds restless 

FHV Stride time, stride length, estimated tug, average 

respiration  

 

In addition to the correlation tests, we compare predictions obtained from this 

model to the actual functional health estimates from mixed-effect models, we plotted the 

time series functional health measures for a subset of residents. Figures 8.2 (a) and (b) 

show trends of actual and predicted functional health values for two TigerPlace residents. 
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(a) 

 

   (b) 

                 Figure 8.2. Predicted and expected functional health values of two TigerPlace residents 

 

8.4 Discussions 

 Results show that correlation values and mean square errors in predicting the 

geriatric assessments and functional health values are comparable or better than results 

observed in the literature [11]. Health trends observed from the functional health value 

estimations show that predicted functional health values generally follow the actual 
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functional health trends even though the model overestimated the functional health values 

in both case studies.  

 To understand the poor relatively lower correlation values in the prediction, we 

constructed pair plots of the features suggest that none of the individual features or pairs 

of the features are well separated for the distribution of values in IADL. Figures 8.3 and 

8.4 shows that gait and sleep feature distributions for different ranges of IADL were 

significantly overlapped.  

 

Figure 8.3. Pair plots of gait features with color hues based on IADL range 



 

133 

 

Figure 8.4. Pair plots of sleep-related features with color hues based on IADL range 

 

 The pair plots provide evidence that the data used to develop regression models to 

predict IADL were significantly overlapped. This could explain the relatively lower 

correlation values in Table 8.1.  

Results show that model performances were typically better when the models were 

constructed from depth sensor-based features as compared to bed sensor-based features. 

This could be because functional health values may depend more on gait features than bed 

sensor-based features. The feature selection method also provides further evidence that 
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gait-based features were more successful in predicting functional health than features 

obtained from bed sensors.  

8.5 Conclusions 

 We performed an analysis to predict geriatric assessments and composite functional 

health estimates from in-home sensor data from bed and depth sensors. We demonstrated 

that the outcome variables can be estimated from sensor data. We also demonstrated that 

predicted composite functional health values do follow the trend of true functional health 

values, suggesting positive or negative changes in functional health values could be 

successfully estimated.  
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Chapter 9: Conclusion and Future Work 

 

9.1 Summary 

 The work described in this dissertation lays the groundwork for using de-identified 

EHR and in-home sensor data to track personalized functional health, predict fall risk using 

unstructured clinical nursing notes and geriatric assessments, explaining fall risk models 

to understand which features contributed to increased fall risk to provide precise 

interventions, and performing a secondary fall analysis to reduce false alarms. The models 

use nine years of longitudinal EHR, and in-home sensor data obtained from depth sensors 

and bed sensors at TigerPlace to predict functional health and fall risk.  

9.2 Major Contributions 

The major contributions of this dissertation study include: 

• Development of an electronic health records (EHR) dataset for predictive analytics 

o De-identified the EHR databases used at TigerPlace senior living facility 

from 2010 to 2018 

o Re-compiled geriatric assessments data in the de-identified database 

o Organized EHR data and used it for predictive analytics in constructing 

personalized functional health tracking and fall risk prediction models 

• Development of health risk prediction models using geriatric assessments in the 

EHR data  
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o Developed a Functional Health Index using geriatric assessments to track 

longitudinal functional health changes in older adults using excess-risk 

functions 

o Developed mixed effect models using repeated assessment measures to 

predict composite personalized functional health values 

o Developed and tested the models on 150 TigerPlace residents and results 

show higher functional health corresponds to lower fall risk, 

hospitalizations, and mortality 

o Analyzed case studies that show that the predicted functional health 

correlate with underlying health changes as observed in the EHR 

• 6-month fall risk prediction using geriatric assessments and GAITRite-assessment 

data 

o Developed fall risk prediction models using machine learning algorithms 

from spatiotemporal gait parameters and geriatric assessment data 

o Used model explainability methods to explain fall risk predictions for 

personalized interventions   

o Evaluated models on 93 independent living residents at TigerPlace 

• Retrospective analysis of fall alert videos to prune out false alarms 

o Developed and labeled a fall alert dataset containing more than 4000 

individual fall alert videos 

o Developed classification models to accurately identify true falls reducing 

false fall alerts by 21-33% using deep neural architectures 
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o Deployed the secondary fall analysis models successfully in production 

environments after testing the model for six months 

• Fall risk prediction using clinical notes and medications 

o Developed deep neural architectures and word embedding models to predict 

fall and hospitalization risk from clinical notes and medications data 

o Utilized EHR data, specifically nursing notes and medication data from 162 

TigerPlace residents to develop the models with state-of-the-art results in 

predicting fall risk in older adults  

• Functional health prediction using in-home sensor data 

o Developed regression models to predict functional health from in-home 

sensor data obtained from depth sensors and bed sensors 

o Used model prediction to understand functional health trends in older adults 

9.3 Future Work 

Although the models developed in this dissertation have significant capabilities, 

avenues exist for further research and improvement. The first of these is using the 

predictions obtained from the personalized functional health model to improve the alert 

system at TigerPlace. Studies show that a significant number of alerts generated at 

TigerPlace are irrelevant and redundant. The personalized functional health predictions 

could be used to personalize the alert system. For example, the alert threshold could be 

adjusted such that an individual with higher functional health received fewer alerts as 

compared to an induvial with lower functional health.    

Second, the personalized functional health predictions could be further evaluated 

using more case studies and in-depth analysis of corresponding nursing notes. The general 
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notion of functional health in older adults is the overall functional health of an individual 

decreases over time. However, based on our model predictions we have observed increased 

functional health in a few scenarios for some residents. Understanding what caused these 

increases in functional health could provide valuable information about intervention 

strategies to help older adults maintain higher functional health through their stay at senior 

living facilities like TigerPlace. 

Lastly, there are several aspects of the TigerPlace EHR data that are not being used 

to predict fall risk or track functional health. For example, vital signs and lab results. 

Developing a fall risk model that uses other structured data in the EHR to predict fall risk 

could result in developing a more robust fall prediction model. In the current models, only 

geriatrics assessments, nursing notes, visit notes, and medications were used to predict fall 

risk.  
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Appendix A FHI Trajectories of TigerPlace Residents 

 

 

Fig. A1 FHI Trajectories of TigerPlace Residents. A: A significant drop in FHI between 

2016-2018 corresponds to hospitalizations and falls. B: FHI continuously declined until 

Jan 2016 (~60) and never improved, followed by several falls. C: An example of consistent 

functional health with no significant FHI declines. Several health events were observed 
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close to death. D: Lower FHI (< 60), corresponding to a significant number of falls and 

other health events throughout the stay. E: The initial fall and other health events cannot 

be explained (FHI~70). FHI improved over time until June 2014. Significant drops in FHI 

during July-Dec 2015 and January-June 2018 correspond to falls. 
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Appendix B Random Effects for the final Mixed Effect Model 

Development to Estimate Functional Health in Older Adults 

Using Geriatric Assessments 
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Appendix C Fall Alert Labelling Categories 

Common Descriptions 
Condensed 

Descriptions Class 1 Class 2 Class 3 fall 

staff making bed 
laundry being 
done laundry     no 

clothing fell to floor 
laundry being 
done laundry     no 

resident threw off 
pillows/sheets while 
in bed 

laundry being 
done laundry     no 

laundry thrown on 
ground 

laundry being 
done laundry     no 

laundry being thrown 
on ground, non-
resident bending over 

laundry being 
done laundry bend   no 

non-resident bending 
over, folding laundry 

laundry being 
done laundry bend   no 

bedding/pillows 
thrown on ground 

laundry being 
done laundry     no 

pet jumped off 
furniture 

pet jumped off 
furniture pet     no 

dog laying down 

pet moving 
around 
apartment pet     no 

pet walking 

pet moving 
around 
apartment pet     no 

pet running 

pet moving 
around 
apartment pet     no 

pet running, knocked 
over object 

pet moving 
around 
apartment pet object   no 

pet? Moving in corner 

pet moving 
around 
apartment pet     no 

pet walking near 
resident 

pet moving 
around 
apartment pet     no 

pet walking, non-
resident bending over 

pet moving 
around 
apartment pet bend   no 

pet walking, resident 
bending over 

pet moving 
around 
apartment pet bend   no 
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pet walking, multiple 
people in room, lots 
of activity 

pet moving 
around 
apartment pet high_activity   no 

resident pushed 
object, pet walking 
near resident 

pet moving 
around 
apartment pet object   no 

pet walking, laundry 
thrown on ground 

pet moving 
around 
apartment pet laundry   no 

pet playing on 
ground, multiple 
people in room 

pet moving 
around 
apartment pet high_activity   no 

non-resident pushing 
object on ground, pet 
walking  

pet moving 
around 
apartment pet object   no 

resident moving 
object around on 
ground 

object being 
pushed around 
apartment object     no 

non-resident bent 
over pushing object 

object being 
pushed around 
apartment object bend   no 

non-resident bending 
over, moving objects  

object being 
pushed around 
apartment object bend   no 

non-resident bent 
over, dropped object  

object being 
pushed around 
apartment object bend   no 

non-resident bending 
over, tossed object 
across floor 

object being 
pushed around 
apartment object bend   no 

non-resident pushing 
object, multiple 
people in room 

object being 
pushed around 
apartment object high_activity   no 

object kicked 

object being 
pushed around 
apartment object     no 

object fell to floor 

object being 
pushed around 
apartment object     no 

resident rocking in 
recliner 

resident in 
recliner (rocking, 
using footrest, 
adjusting 
blanket) recliner     no 

resident unfolding 
blanket while sitting 
in recliner 

resident in 
recliner (rocking, 
using footrest, recliner laundry   no 
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adjusting 
blanket) 

resident unfolded 
blanket then sat in 
recliner 

resident in 
recliner (rocking, 
using footrest, 
adjusting 
blanket) recliner laundry   no 

resident put up 
footrest on recliner 

resident in 
recliner (rocking, 
using footrest, 
adjusting 
blanket) recliner     no 

resident moved legs 
while sitting in 
recliner 

resident in 
recliner (rocking, 
using footrest, 
adjusting 
blanket) recliner     no 

resident leaned 
forward in chair, 
dropped laundry on 
floor, multiple people 
in room 

resident in 
recliner (rocking, 
using footrest, 
adjusting 
blanket) recliner laundry high_activity no 

resident sat in 
recliner then crossed 
legs 

resident in 
recliner (rocking, 
using footrest, 
adjusting 
blanket) recliner     no 

resident crossed feet 
while sitting in 
recliner 

resident in 
recliner (rocking, 
using footrest, 
adjusting 
blanket) recliner     no 

resident dropped 
recliner footrest and 
removed blanket 

resident getting 
out of chair recliner laundry object no 

resident attempting 
to get out of chair  

resident getting 
out of chair recliner     no 

resident got out of 
chair 

resident getting 
out of chair recliner     no 

resident walking with 
walker 

resident moving 
with assistive 
device in 
apartment ast_device     no 
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resident walking with 
walker and being 
assisted, multiple 
people in room 

resident moving 
with assistive 
device in 
apartment ast_device high_activity   no 

resident using walker 
to back into chair 

resident moving 
with assistive 
device in 
apartment ast_device     no 

resident backed up in 
wheelchair then bent 
over 

resident moving 
with assistive 
device in 
apartment ast_device bend   no 

resident using arms 
to move in 
wheelchair 

resident moving 
with assistive 
device in 
apartment ast_device     no 

resident backed up in 
wheelchair 

resident moving 
with assistive 
device in 
apartment ast_device     no 

resident being 
pushed by staff in 
wheelchair 

resident moving 
with assistive 
device in 
apartment ast_device     no 

resident moved while 
sitting in chair 

resident moving 
with assistive 
device in 
apartment ast_device     no 

resident moving 
slowly 

gait change, 
bending over walk     no 

resident bent over 
gait change, 
bending over bend     no 

resident walking fast 
gait change, 
bending over walk     no 

non-resident 
exercising 

gait change, 
bending over exercise     no 

non-resident walking 
fast 

gait change, 
bending over walk     no 

stretcher brought into 
room 

Multiple people 
in room, activity 
level high high_activity object   no 

non-resident moved 
furniture 

Multiple people 
in room, activity 
level high high_activity object   no 
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non-resident brought 
in dolly, then bent 
over 

Multiple people 
in room, activity 
level high high_activity bent object no 

non-resident folding 
blankets, non-
resident and child on 
floor, multiple people 
in room, lots of 
activity 

Multiple people 
in room, activity 
level high high_activity     no 

CERT staff working on 
depth computer 

Multiple people 
in room, activity 
level high high_activity fall   other 

child sat on floor, 
multiple people in 
room 

Multiple people 
in room, activity 
level high high_activity     no 

multiple people in 
room 

Multiple people 
in room, activity 
level high high_activity     no 

non-resident and 
child on floor, 
multiple people in 
room, lots of activity 

Multiple people 
in room, activity 
level high high_activity     no 

staff leaning towards 
resident 

staff/family 
assisting 
resident other     no 

non-resident bent 
over to assist with 
recliner 

staff/family 
assisting 
resident bend     no 

staff attending to 
resident in bed 

staff/family 
assisting 
resident other     no 

non-resident kneeling 
by resident on floor, 
multiple people in 
room 

staff/family 
assisting 
resident high_activity     no 

unsure, no good 
image 

unsure, no good 
image other     no 

resident fell 
backwards with 
walker 

resident fell 
backwards fall_back     yes 

resident fell 
backwards into chair 

resident fell 
backwards fall_back     yes 

resident fell 
backwards into 
recliner 

resident fell 
backwards fall_back     yes 

resident fell 
backwards into bed 

resident fell 
backwards fall_back     yes 
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resident leaned back 
to sit in chair and fell 

resident fell 
backwards fall_back     yes 

resident bent over 
and fell backwards 

resident fell 
backwards fall_back     yes 

resident bent over to 
move object 

resident/non-
resident bending 
over bend     no 

non-resident bending 
over 

resident/non-
resident bending 
over bend     no 

resident fell forward 

resident/non-
resident fell 
forward fall_forward     yes 

resident fell forward 
while walking with 
cane 

resident/non-
resident fell 
forward fall_forward     yes 

non-resident fell to 
knees 

resident/non-
resident fell 
forward fall_forward     yes 

resident fell forward 
into chair while 
walking, more than 
one person in room 

resident/non-
resident fell 
forward fall_forward     yes 

non-resident sat on 
floor 

resident/non-
resident sitting 
on floor, 
recumbent 
position sit     no 

non-resident sat on 
floor, laid on back, 
pet walking 

resident/non-
resident sitting 
on floor, 
recumbent 
position sit     no 

non-resident laying 
on ground 

resident/non-
resident sitting 
on floor, 
recumbent 
position sit     no 

staff sitting and 
scooting on ground 

resident/non-
resident sitting 
on floor, 
recumbent 
position sit     no 

resident fell to side 
into bed while using 
walker 

resident fell 
sideways fall_side     yes 
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resident fell sideways 
into chair 

resident fell 
sideways fall_side     yes 

resident fell to side 
while walking 

resident fell 
sideways fall_side     yes 

resident fell to side 
into chair while using 
walker 

resident fell 
sideways fall_side     yes 

resident slid off of 
chair and slumped to 
floor 

resident fell out 
of chair fall_chair     yes 

resident fell out of 
wheelchair 

resident fell out 
of chair fall_chair     yes 

screen partition fell 
near resident 

screen partition 
fell near resident other     no 

 

  



 

149 

Appendix D Word Embedding Model Comparison 

We compared BioWordVec, which is trained on biomedical text, and GloVe 

Embeddings, which is trained on Wikipedia. These comparisons were made over the first 

6 months of notes each resident had (the notes that would become the dataset). When 

applied to our data, BioWordVec found 9,435 unique words. The Maximum amount of 

words found within someone’s text data was 18,242, and the mean for each resident was 

1,889.93. Similarly, GloVe Embeddings had 8,037 unique tokens and an average per 

resident of 1,844.20 (Table III).  Additionally, the distribution of tokens per resident for 

each pre-trained embedding is shown in Figures 1 & 2. 

We decided to do our testing with BioWordVec because of its specialization with 

medical terms. Although GloVe Embeddings had a similar average, there were 1,500 words 

that BioWordVec had embeddings for that GloVe did not. These words included blood 

pressure measurements, blood sugar measurements, medication names, etc. that would 

contribute to fall prediction. 

TABLE D1. Comparison of Word Embedding Models First Six-Month Statistics 

Embedding Total Tokens 
Unique 

Tokens 

Mean Tokens 

per Resident 

Tokens 

Unique to 

This 

Embedding 

BioWordVec 
306,169 9,435 1,889.93 1,435 

GloVe  
298,760 8,037 1,844.20 37 
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Appendix E Code Repositories 

Chapter 3, Chapter 4, Chapter 5, Chapter 8:  

https://vcs.missouri.edu/akmm94/THIL_codes_de_id_db.git 

Chapter 3: THIL_codes_de_id_db/source/create_deid_db 

Chapter4: 

THIL_codes_de_id_db/source/data_analysis/journal_data_analysis_JBHI_2019 

Chapter 5: THIL_codes_de_id_db/source/data_analysis/PervasiveHealth2020 

Chapter 8: THIL_codes_de_id_db/source/regress_sensor_to_ehr 

Chapter 6:  

Preprocessing: https://vcs.missouri.edu/akmm94/sfa_pre_processing_dev.git 

Development: https://vcs.missouri.edu/akmm94/secondary_fall_analysis.git 

Production: 

https://vcs.missouri.edu/CERT-Students/studentProjects/secondary_fall_analysis.git 

Chapter 7:  

https://vcs.missouri.edu/akmm94/reu2020_nlp.git 
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