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Information Visualization Novices

Construct Visualizations”

Introduction 1
Overview: This chapter orients the reader to the topic of
data visualization with historical examples. It enumerates the
new features of visualizations under modern technological
landscape to set the discussion context under which visual-
izations’ role as augmenting human capacities is explained.
The research questions of this thesis are put forward in the last
section.

1.1 Why Visualization?

Complexity poses challenges to understanding. It either slows

down our sense-making or renders the task simply impossi-

ble. Visualization is a method to facilitate cognitive processes

through visual deliberations. When confronting the complexity

induced by a large amount of information, a pictorial repre-

sentation usually helps to unfold the invisible associations and

underlying patterns from scattered information. Data visual-

ization in particular is the art of transforming such complexity

into intuitive visual formats. Thanks to this, our essential abili-

ties for data-related tasks such as comparisons [1], associations,

or predictions, are empowered.

A common misconception about visualizations is they are con-

structed through computers or other digital facilities. However,

the dependence on digital media is helpful but not integral.

Technological advancements have changed both the design in

terms of the final product as well as the development in terms



2 1 Introduction

Figure 1.1: Snow’s London cholera

map: cholera cases counts in the

neighborhood shown as bar stacks

perpendicular to the streets.

©Cropped version from “On the Mode of Communication of
Cholera”, 1855.

Table 1.1: Anscombe’s quartet: four

data sets

I II III IV

x y x y x y x y

10 8.04 10 9.14 10 7.46 8 6.58

8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71

9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47

14 9.96 14 8.1 14 8.84 8 7.04

6 7.24 6 6.13 6 6.08 8 5.25

4 4.26 4 3.1 4 5.39 19 12.5

12 10.84 12 9.13 12 8.15 8 5.56

7 4.82 7 7.26 7 6.42 8 7.91

5 5.68 5 4.74 5 5.73 8 6.89

of the authoring tool chain. Despite such a significant impact,

the core function of data visualization remains constant — to

let the meaning behind data surface. This is justified by the

resemblance of working mechanisms in historical examples

before the existence of digital technologies.

Snow’s cholera map shown in Figure 1.1 is one of the classics

of its time. The visualization is designed to analyze the spread

of epidemic during 1854 cholera outbreak in London. In the

work he presented to the London Epidemiological Society,

John Snow mapped the number of death cases as stacked bars

perpendicular to the streets of affected households. The map

exhibits the concentration effect of death cases in a spatial

context, which leads to the suspicion around a pump at Broad

Street. The hypothesis regarding the pump being the source

of disease is later confirmed by the cessation of the epidemic

after shutting it down. Without being a cartographer, Snow’s

visualization demonstrates the power of visual depiction which

has revealed critical insights for decision-making.

Effective views of data not only aids the resolution of the

problem but also brings us a different, likely a more pleasant,

way of knowing. The more intuitive view of data paves the way

for acquiring new knowledge to extend our conceptualization

of the matter. But in the meanwhile, it can also give us the ability

to avoid misconceptions or over-estimations accompanied by

the caveat of over-simplification.

For example, descriptive statistics can provide quantitative

summaries of data. But the application without sufficient dis-

cretion may lead to a distorted view of them. To demonstrate

the possible misleading statistical descriptions, statistician Fran-

cis Anscombe [2] nominated four data sets (Table 1.1) which

display distinctive distribution characteristics (Figure 1.2) yet

show no difference in statistical features (Table 1.2). The com-

parison between the visualization and statistical profile makes
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Table 1.2: Anscombe’s quartet: statistical features

Property Value Accuracy

Mean of x 9 exact

Sample variance of x 11 exact

Mean of y 7.5 0.01

Sample variance of y 4.125 ± 0.003

Correlation 0.816 to 3 decimal places

Regression line y = 3.00 + 0.500x 0.01 and 0.001 respectively

Coefficient 0.67 to 2 decimal places

Figure 1.2: Anscombe’s quartet: dis-

tinctive distribution of same statistic

features.

c Wikimedia Commons, user: Schutz

[2]: Anscombe (1973), “Graphs in

Statistical Analysis”

[3]: Marey (1885), La méthode
graphique dans les sciences expérimen-
tales et principalement en physiologie et
en médecine
[4]: Tufte (1986), The Visual Display
of Quantitative Information

it self-evident that the unique character of data can be easily

overlooked without visual plots of data. The visualization of

data in this case functions as an utility to re-examine the statisti-

cal outcomes with visual perceptions, which reveals the hidden

disagreement between statistical description and nuanced vi-

sual patterns. The nominated data set is later remembered

as Anscombe’s Quartet, which reminds us the importance of

visual awareness in data analyses to avoid careless interpreta-

tions. As visualizations provide an interface to our inherent

visual pattern recognition ability, it makes leveraging this abil-

ity to apply discretion and restore a more accurate view of data

more convenient.

Comparing the two cases above, we can see that visualiza-

tions both improve the quantity of knowing, i.e. uncovering

unknown connections, and quality of knowing, i.e. avoiding

oversimplifications. These advantages are not limited in the

few presented cases or domains. The wide applicable value

can be further justified by examples such as Ibry’s Visual Train

Schedule [3] or Minard’s visual history of Napoleon’s Russian

Campaign [4], ranging from commute planning to strategic

rationales such as warfare investigation. Because of the wide

applicability, we are intrigued to outline the underlying reasons
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explaining the core effectiveness of visualizations abstracted

from aforementioned domains. To answer this question, it is

helpful to look deep into how visualizations essentially work.

Here we would like to unfold our brief elaboration on this

issue, which will be expanded by the arguments afterwards.

Human beings are like other creatures. We are equipped with

primitive senses and instincts to capture the things around us

as we use physical abilities to navigate and cast our influence

based on assumptions of the situation [5]. Thus, the connections

with the world we make are results of the interplay of two

processes — the perception and our influence upon the world,

i.e. the process of making sense of the world and making

changes to it accordingly. The visual system is a Darwinian

gift for the first process. It efficiently describes a large array of

objects around us and elevates them into patterns, based on

which we form quick judgments and make informed actions.

However, to make connections between two entities, there are

boundaries and distances to overcome. If we use distance to

symbolize the extent of involved challenges in perception and

influence, the size of this distance depends on the very subject

matter to perceive (or influence) and its compatibility with our

innate abilities. For instance, infrared is useful to track heat

sources, but such radiations are imperceptible to human eyes.

Therefore, extra distance such as the utilization of specialized

equipment needs to be considered. Like infrared to the human

visual system, complex, chaotic, and abstract subjects are also

difficult to comprehend with our innate abilities. This is when

tool making becomes necessary to push our natural limits

in making sense and casting influence over these matters.

Visualization design is an essential step to aid the first process

of sense-making.

To document a faithful description of a complex matter, data

follow a human-defined schema to repetitively capture certain
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features of the subject. The provenance of data abstraction gives

order and discreteness to the observed matter, providing the

basic materials to shape our understanding of the subject. But

the crystallization and accumulation of data also introduces an

additional layer of overhead between our direct perception and

the subject matter, increasing the distance between the two.

What makes data visualizations powerful is they enhance the

perception from two ends — our primitive senses and the utility

ease of data abstraction — to build a common ground between

people and the data. On one hand, it connects closely with

the data abstraction, modifying its format and changing the

transformation parameters whenever necessary. On one hand,

it employs the most intuitive communication means of visuals

to bring complexities closer to our innate processing capacities,

make reasoning with abstract information a more analogue

process. Despite the extra engineering effort, visualizations

actually narrows down the distance between complexity and

perception from the human-centered perspective. So the view

of complex matters is augmented to a faster and more insightful

level.

1.2 Designing Computerized
Visualization

Information technologies are casting a universal impact upon

many facets in modern society, giving rise to a surge of data-

enabled applications. The examples like these can be found in

domains such as finance [6] or healthcare [7]. Technological

advancements have not only eliminated the laborious manual

efforts in recording, labeling, and organizing information, but

also brought systemic disruptions throughout data collection,

transmission, storage, retrieval, and visualization pipeline. The
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new paradigm has contributed a significant abundance of

data [8], of which the complexity is reflected by both the struc-

ture of data [9] and the size of data [10]. In addition to improved

efficiency regarding collecting, processing, or distributing data,

new technologies also give birth to apparatuses that expanded

the landscape of data collection, unveiling unimagined research

subjects such as atmospheric analysis [11], satellite tracking [12,

13], or oceanographic study [14, 15].

Digitized information and data are essential to the moderniza-

tion of communications. Either for scientific research or daily

life, data have become a proxy for our perception and influence

on the world. In most cases, the influence part is usually the

ultimate goal to apply practical changes. But it only comes after

sufficient knowledge is gained. Thus, the ability to “see” clearly

urges us to divert more attention toward the sense-making of

data. This means revamping the visualizations to suffice the

demanding intensity of modern analyses is becoming more

relevant as data collection technologies continue to evolve.

To build matching sense-making capacities, a few technological

innovations are in sight. First, the cheap supply of (mobile)

graphic processing power and display media promise the

possibilities to fit visualization applications into any flexible

format. It can easily be installed into office walls, street corners,

or simply carried in the pockets. Second, digitized platforms

permit dynamic updates on the graphic content based on the

supplied data, meaning the appearances of visualization works

are no longer fixed and static. Visualization designers create

software to enable reusable charts and graphs that can be eco-

nomically reproduced to accommodate different purposes and

diverse user inputs [16, 17]. Seasoned drawing skills like cartog-

raphers are no longer mandatory. Instead, visualization design

shift their attention toward identifying a category of tasks

or services of an unvarying problem theme associated with

the data type. This transformation creates a layer of flexibility
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between the data and the design. Visualizations are expected

to accommodate and adapt to changing questions and fulfill

compound missions in the new technological landscape.

1.3 Traits of Modern Visualization

Academic explorations and industrial iterations in the past

decades have led to a few emerging traits in modern visualiza-

tion design, providing guiding scaffolds to new studies in the

field. These traits are prevalent in the design and implementa-

tion of recent visualization studies. Here we summarize the

significant ones from the perspective of this thesis.

1) Modern visualizations leverage interactivity to exhibit the most
relevant part of information. It is increasingly common that vi-

sualizing the entire data set is either unhelpful to viewers’

sense-making or simply technically impossible due to the sheer

size of data. For these cases, simplification methods are neces-

sary. Implementing mechanisms into the visualization pipeline

for a reduced data set can produce cleaner results based on it.

After visual spaces are economically allocated to emphasize

on the unique features data, it is necessary to support users’

decision upon which patterns are more prominent in the fi-

nal presentation. Therefore, visualizations need to follow a

two-step combination of operations: performing transitions to

expose details-on-demand [18] and use interactions to support

the decision on which part to expose. Modern visualizations

allow users to navigate, manipulate, aggregate, and assimilate

data, and build up preliminary knowledge to guide follow-up

explorations.

2) The placement and role of machine automation is attracting (aca-
demic) interests in recent visualization design. State-of-the-art

machine learning (ML) and artificial intelligence (AI) have
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enabled some autonomous high-level, pseudo-human pattern

recognition abilities [19] from large data sets with minimum-

to-no need for data reduction. The systems are designed to

autonomously tune the models to improve their judgments [20],

making them less dependent on human interventions. But the

integration of ML and AI functionalities introduces caveats

such as trust and transparency issues or the under-supply of

steerability. Therefore, pure black-box systems are replaced

with ones featuring visualization interfaces to moderate these

caveats. The design of these visualization interfaces involves

reimagining the relationships between data, human, and ma-

chine [21–23]. And a key role of visualizations in this endeavor

is to give machine not only the abilities to extract machine-

readable patterns from data and gradually convert them into

categories and definitions [24], but also to translate the internal

patterns into human-readable formats to avoid the caveats.

Visualization design pertaining to this issue involves inves-

tigating the contextualized reasons why the system should

not be fully automated and where to install the necessary

visual, interactive steps so that judgments from human pattern

recognition are respected.

3) Data are analyzed in a specific domain, where the corresponding
visualization should be contextualized with the help of domain knowl-
edge. Data are abstract representations of a domain-specific

problem. Designing visualization for the data is not only about

arranging a truthful representation of it, but also decoding

abstract values to tangible ideas with meaningful references to

the context. Even for general-purpose idioms like bar charts

and box plots, customization to adapt the design to problem

characteristics are necessary for successful interpretation [25].

The foundation of these efforts is the study of domain require-

ments and the consultancy from domain experts. The more

complex the tasks are, the more extensiveness of investigation

into the domain context is required. The domain knowledge
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is usually acquired along with the extensive domain studies

consisting of a series of discussions to lay down verifiable

pain-points in the current state and analytical gaps, which are

to be addressed in the subsequent evaluation-iteration loops.

1.4 Visualization to Augment Human
Capacity

Since the three aforementioned considerations in visualization

design share the common dependence on man-machine rela-

tionships, the study of human factors is thus indispensable.

But a general insight into this issue requires us to look beyond

certain characters of a niche user group and their influence

to the system. We need to focus on the fundamental meaning

of visualizing data (either with the help of computers or not)

and its impacts on man-machine relationships in a broader

sense. An inspiration to this question can be found in an early

ambition pioneered by Douglas Engelbart in 1962 [26, 27].

In the age when human-machine interaction is still in its in-

fancy, Engelbart’s vision indicates that systems can leverage

externalized symbols and concepts to orchestrate sophisticated

hierarchical structures by which human intellectual effective-

ness is improved. In short, the design and development of

modern digital tools serves a simple and explicit purpose — to

augment human intellect.

Moreover, Engelbart has explicitly mentioned generating under-

standing through visual communication, balancing machine

efficiency and human capability, and developing comprehen-

sion with methods such as hypothesis testing with human

computer interaction [27], which significantly overlap with

major themes in modern visualization design.

Engelbart’s legacy is continuously revisited [28, 29] after the
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very proposal nearly half a century ago. We can see that the

principle of augmenting human intelligence is still valuable

and inspiring. However, due to the reasons stated above (§ ·1.2),

the challenge in designing visuals and interactions to amplify

human intellect with data is not disappearing but proliferating.

Therefore, it is reasonable to link the role of visualization

design to this vision and question how assisting human’s

information consumption and thinking capacity facing the

new technological landscape is achieved with visualization

design. Following this effort, this thesis reports on a series

of experiments for the discovery of a design methodology to

augment human intelligence in the face of data complexity.

More specifically, we explore along the theme of how to visually
amplify human abilities in finding useful knowledge from complex
data, which is essentially a way of augmenting human intellect
from the data visualization’s point of view. Based on this

motivation, we initiate the research project by laying down the

following research questions:

▶ How to effectively characterize the design context to

facilitate explorations in problem-driven visualization

research?

▶ Which cognitive process in scientific reasoning is con-

structive to conceptualize novel exploration facilitation

methods?

▶ How can the findings from our studies be theoretically

generalized as a replicable method to scaffold future

design?

To answer these three questions, we will start by investigating

recent literature that shares the same interest in promoting

human understanding and knowledge discovery (chapter 2).

Following the literature, we approach research questions by

employing a theoretical framework to address the discovered

opportunities, the result of which builds the theoretical foun-
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dation for the pivotal visualization method (chapter 3). The

proposed method is experimented in two studies with explicit

references to case details in the gaming context (chapter 4)

and spatial-temporal movement context (chapter 5). Then, we

connect the theoretical components in chapter 3 to the vivid

examples to demonstrate applicability of our method and sys-

temically refine the according lessons to provide guidance for

future needs (chapter 6). We conclude our research in chapter 7

which marks the end of this thesis.
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Visualization and Human
Augmentation 2

Overview: This chapter is a literature study that collects and
analyzes existing approaches that intersect with the princi-
ple of augmenting human intelligence from the visualization
perspective. The study specifies three non-trivial desiderata
in modern visualization design, based on which it identifies
opportunities concerning domain knowledge embodiment and
hypothesis generation. The study sets the motivation back-
ground of the proposition of the pivotal visualization design
method.

2.1 Desiderata

From its original context, we can see that the principle of

augmenting human intellect has the explicit implication of ex-

ploiting modern digital infrastructure and utilities to improve

human capacities. From a visualization design perspective,

systems are qualified by their advantages in visually assisting

human capacities in making sense of data [30]. Thanks to

the interactive visual environment provided by the system,

the dominating human capacities in unveiling questions and

patterns facing data complexity is amplified. However, this

advantage is non-trivial to keep up with the latest advancement

of information systems [31, 32]. The involved desiderata are

threefold:
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Human Factors Compliance

For most branches of design disciplines, the design solution

is specified in a limited design space where compliance with

the boundary conditions is a must. Visualization design also

needs to consider a few inherent limitations. One of the most

significant limitations relates to the human-factors [30], or more

specifically the natural limits in human perceptions. Besides

the human-factor studies on the context specific level [33–35]

where case and task dependent behavioral clues with specific

application implications are discussed in respective domain

contexts, these fundamental limitations are case-independent

patterns based on discoveries from cognitive science. These

insights reveal insurmountable bottlenecks regardless of the

data, problem, or visualization method.

The first bottleneck is the upper limit of visual information

transference. According to cognitive scientists, the information

bandwidth of the human visual system caps at around 10

Mbps [36, 37], indicating a hard ceiling for visualization design

to cope with. However, the real allowed information flow

can be significantly reduced as we do not expect the user’s

perception to work at peak performance at all time. The deficit

in information readability and intuitiveness can exhaust visual

perception by a large margin if not treated properly. There are

also explorations into increasing the transfer rate by integrating

other channels/modalities such as auditory, tactile senses [38,

39]. The results from these explorations are not promising as

the amount of added flow is trivial compared to the dominating

visual channel [40, 41].

Our short-term memory is also not perfect at dealing with data

complexity. Study shows that human knowledge acquisition

does not follow a continuous model [42]. Instead, our minds

group mental elements into discrete “chunks” in the memory,
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updating their priority and organization in response to emerg-

ing tasks in the real-time [42]. These chunks have relatively

fixed numbers and sizes with possible improvements from

training [43]. But the improvements are not to keep up with the

ever-growing information overload in modern data analyses.

Visualization design is an effort to cope with these limits in-

stead of imagining how to defeat them. Interaction techniques

such as focus-and-context, or zoom-and-detail [44, 45] are are

invented to filter out irrelevant parts and highlight the most

interesting subsets to streamline the visualized complexity.

More approaches in visual analytics [46] aim at the similar goal

of reducing information representation with parameterized

model aggregation.

On top of the fundamental limits, contextualized human fac-

tors are also important. For instance, suitable screen brightness

for the working environment [42] or sufficient refresh rate to

capture the change frequency [47]) provide actionable knowl-

edge to draft the design basis [30, 48]. Clarifying these factors

asks for inputs from the context-based studies, which are not

suitable for general discussion here. We will pay attention to

these issues in detailed cases in chapter 4 and chapter 5.

Transparency

As we mentioned in the previous section, interaction tech-

niques to enable filtering and subsetting can help reduce the

amount of information presentation. One key advantage of

these techniques is they simulate the natural physical move-

ments (e.g. focus-and-context, or zoom-and-detail) to convey

the underlying computational processes, making them familiar

and intuitive to human conception. But the same advantage

is not achievable with all the techniques to cover every case.

For instance, the sheer number of relations or dimensions in

the data may be too expensive to produce a visual summary
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of [49, 50], or the abstract nature of the problem (the reasoning

of an AI-based go player for example) is tricky to be explored

in a visual space [51]. For these circumstances, model-based

summary may be applied as a pre-stage component to aggre-

gate the information into presentable sizes [45, 52, 53]. In fact,

model-based simplifications are getting momentum in latest

visualization research [54–57]. However, the sophistication

of integrated models [23, 58–60] for simplified representa-

tions produces opaque data pipelines, which gives rise to the

transparency issues of information systems [21, 61].

The concept of transparency and the accompanying symptoms

are multifaceted: Samek, Wiegand, and Müller [62] refer to

non-transparent as “not clear what information in the input

data makes them actually arrive at their decisions.” Springer

and Whittaker [63] note that being non-transparent is the in-

ability to give “an explanation of why a model made a given

prediction”. According to Angelini et al. [64], a system is non-

transparent if it behaves as “an algorithmic black box without

any means to observe, interject, and reconfigure it on the fly”.

The proliferated discussions around transparency (cf. ACM

Conference on Fairness, Accountability, and Transparency:

https://facctconference.org) indicates that it is not a trivial

problem. One of the reasons is poor transparency raises the

threshold and potentially hurts the usability of a system. From

a user’s perspective, transparency issues eliminate the informa-

tion parts that are consequential to the ease of reasoning and

follow-up decision-making, causing unnecessary speculative

guesses while increasing the learning burden. These drawbacks

prohibit the analysts, who usually hold little knowledge of the

underlying automation mechanism, from smooth adoption of

the system or even using it at all [65, 66].

In addition to usability concerns, poor transparency also pro-

hibits the development of a proper trust relationship between

the user and the system [67–69]. Imagine a route planning app
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prompts the driver to alternate the path toward his workplace

due to construction roadblocks without revealing the reason

information. The driver may reject the recommendation as

a system error and instead rely on his knowledge. This ex-

emplifies that under-trust in the system lowers the usage of

well-functioning automation systems, which is economically

unsound [70]. If the user gives full trust to a system without pre-

caution, the unnoticed error may snowball until it leads to fatal

losses [71]. The malfunctions of Boeing 737-Max jetliners are

examples of giving too much execution authority to the error

prevention system which were originally designed to automat-

ically adjust human errors [72]. Human pilots were simply not

given sufficient situation awareness and control over automa-

tion to avoid the crash. Transparency issues are also important

in similar action-critical scenarios such as fire emergencies [73],

medical diagnosis [74], or air traffic controls [75].

The provision of transparency is based on the exposure of in-

ternal processes that produce the simple outcomes. When the

final outcome is ready, it is possible to compare them against

one’s judgments and experiences to make adjustments in the

next operation, which potentially mitigates the drawbacks

of transparency issues. However, these self-adjustments are

crude workarounds which still affect the users’ confidence

in decision-making [76, 77]. In the meanwhile, data analyses

need to be vigilant in unconventional patterns. As an opaque

system may only produce final results in the end of the pipeline,

contradictory patterns and trends in the middle, which may

contain valuable information, are eliminated. The analyst may

falsely assume his/her earlier assumption is perfectly reflected

by the data as no contradicting evidence shows otherwise. The

existence of such a possibility can be justified by the oversim-

plification error demonstrated by the Anscombe’s Quartet in

§ ·1.1 Why Visualization?. Treatment to this caveat is more es-

sential if the analyst’s goal is to explore for knowledge instead
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of seeking a confirmatory result from an existing question.

Explorability

Transparency makes internal processes of a system inspectable

to human eyes. However, explorability, namely the quality of

being explorable, requires the system to continuously update

the information disclosure in response to stacking inquiries

produced by user actions. Instead of clearly presenting the

inner process of how a system reaches to a conclusion (i.e.

transparency), explorability demands a new layer of flexibil-

ity on top of existing interactivity which is already widely

implemented in recent visualization works.

Data explorations resemble the process of navigating a maze of

many sub-routes. Wrangling the features in different regions of

data is like testing or trying different sub-routes for a pathway

out. Rejecting a few hypotheses (as dead ends) is necessary

to narrow down the search space for suitable model parame-

ters. The iterative process of hypothesizing and experimenting

would eventually lead to the solution of the maze with the

analysts’ persistence. It is important to note that a discovery

of a dead end in the maze does not reject all the accumulated

knowledge as one can start over from a previous crossroad

with different directions but not the very beginning. In data

exploration, previous knowledge also plays a role in the contin-

uation of analysis. The difference is going back to the previous

crossroad requiring dedicated support for flexible navigation,

which pertains to the ability of answering user’s questions

through improving approximations. For this case, an approxi-

mation improving its accuracy is like a path growing its length

to approach the real exit in a maze. This flexibility in contriving

improved versions of approximations is indispensable to data

exploration [74]. The very paradigm following this routine of
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assimilating new knowledge by active trials of approximations

is known as the exploratory data analyses (EDA) [78].

To perform the trials and identify valuable approximations,

explorable systems need to give the user more control to search

operations for extra diversity of the asked questions. This is

especially true when a user needs to build familiarity with data

by initial experimentation. Contrasting to traditional analysis

where systems work straight to the final result initiated by

a single input, explorable systems carry out the analyses by

answering the gradual inputs from users, i.e. users’ on-going

actions are useful resources to adjust the system and therefore

respected by design [59]. This type of flexibility eliminates

the headache of pinpointing the inputs before familiarity of

data, achieving the diversity of questions by paying hospitality

to user’s curiosity, interest, and intent, which are essential

elements in learning about data. Because the explorable systems

enable such a dynamic and user-driven approach as opposed

to a static and processing-driven one, it can exploit a greater

potential of the systems’ analytic power.

Explorable systems depend on several key elements to take

effect: Firstly, the system needs to be receptive to users’ (subjec-

tive) inputs and respond to them timely to realize an interactive

knowledge discovery process [79]. Secondly, the system should

feature plausible user interface design so that users can intu-

itively carry out their tasks by smooth explorations, not being

bothered by the unnecessary obscurity by amateur interface

design [80]. Thirdly, the system should allow for decoupling

the entire analytical chain into incremental steps so that small

discoveries by trials and errors can build up as the exploration

continues. Comprehensive understanding of the objective prob-

lem is usually a result of gradual approximations [81]. And

finally, a considerable size of the exploration space should

be supported [82, 83], allowing the user to freely construct

hypotheses by manipulating multiple result-sensitive dimen-
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sions instead of manually browsing over plain data points [45].

Achieving explorability as a systemic effect is a non-trivial

task as the implementation difficulty to cover all these compo-

nents tends to scale with analytic complexity in information

systems [56, 71, 84].

In sum, the inherent human factor limits (such as limits in

visual perception) motivates the application of complexity

reduction methods, among which models without easily un-

derstood natural metaphors challenges human observation

of the underlying behaviors of the system. Accommodating

domain knowledge in visualization systems can facilitate the

interpretation of the visual outcomes. But there are several

gaps to be filled. For instance, exposing flexible controls to sup-

port knowledge generation tasks requires the systemic support

for explorability (of data or model behavior), which is practi-

cally non-trivial for its multifaceted requirements. Thus, the

aforementioned desiderata are closely intertwined with each

other. A closer look at the interactions between the desiderata

shows that the contribution in one may force a chain effect

globally (Figure 2.1), which suggests design improvements to

any are affected by systematic considerations. This systematic

consideration is closely examined from different angles in

latest works, which we put forward three main categories to

discuss.
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Figure 2.1: The Relationships of Desiderata: human factors (blue circle around human) are a primitive concern that

leads to the application of machine models for simpler visual representation because human factors such as cognitive

bottlenecks are impossible to bypass when involving human interference. The sophistication of machine models makes

their internal structures increasingly imperceptible, causing black-box issues in the visualization system. Thanks

to the support for interaction in visualization systems, explorations with data can lead to disclosure of its internal

processes. As a consequence, the additional knowledge of the internal processes leads to improved transparency,

which in turn gives rise to the explorability of the system. Designers need to systematically address the concerns in

each step to augment human-led explorations.
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2.2 Efforts

Related works from different research themes inspire new visu-

alization design methods. With regards to the aforementioned

categorization by the three desiderata, we summarize these

themes of related works as known efforts to approach the

desiderata with respective perspectives and interests.

Human-Centered Design

Visualizations are not only information interfaces. They are

also interaction interfaces just like the other human-computer

interfaces which communicate human intentions and present

machine feedback. The theme of human-centered design (HCD)

models the behaviors, routines, expectations of specific human

groups as a basis to inform the design of human-machine

interface [85, 86]. This endeavor is essentially learning the

human user and designing systems accordingly so that the

outcome would be well-compatible with real usage scenarios

with least effort from the human users. The interface design

in visualization systems often require similar interaction de-

sign objectives, where exclusive user studies are carried out

before and after the system implementation to guide the design

and verify its effectiveness. The wide inclusion of user evalu-

ations in application-based visualization research are direct

exemplifications for this.

In the previous stage, visualization designers conduct exten-

sive user study to clarify and gain insights regarding the users’

tasks and analysis routines. In addition to finding the cognitive

and ergonomic bottlenecks (based on lower level principles (§ ·
2.1 Human Factors Compliance)), designers also need to char-

acterize the application context of visualization techniques.

This can not be achieved without assimilating new knowledge
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specific to the domain. This effort is not auxiliary preparation

but a rather essential pillar of the entire project, which some-

times can exceed the workload of exact implementation in

terms of the proportional time and effort (an 8 months long

investigation [87] for instance).

The collected data from the pre-design stage are distilled into

key user requirement points, which are used. Analyzing the

requirements also contributes to the identification of crucial

tasks, which are chains of discrete actions motivated by the

explicit domain questions to inform the later design conceptu-

alization. Reflective design choices are made to streamline the

analysis process relating to the tasks. The elaborate command

of the visual presentation should serve the identified tasks with

extra considerations into the concerns such as transparency,

performance, robustness, accuracy, or reliability. HCD in this

regard involves leveraging innate human perception rules such

as the attention-effective placement of visual elements [34],

moderating reading error-rates [35], or color choices [88, 89] as

well as extensive considerations for the specific context. In real

practices, the process of designing with human-orientation

can also be carried out iteratively following the loop as shown

in Figure 2.2.

The post-design stage proceeds with a ready prototype to test.

This stage assumes that the implemented system follows the

requirements and tasks specified in the before stage. In addition

to finding explicit evidence to justify the design’s effectiveness,

verifying the design in a real usage scenario helps to uncover

overlooked insights about the real user behaviors using the

system. This part of the user study consolidates our knowledge

about human users in terms of reception of the system as well

as limits and caveats to avoid in the given design context.

In sum, the essential goal of the HCD effort is to ensure the

shaping of the final design aligns not only with basic human
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Figure 2.2: The loop of activities in

Human-Centered Design according

to Jokela et al.
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factors but also the explicit needs for task requirements. It is

an intention to tweak the design with respect to human limits

or needs instead of the other way around.

Explainable Artificial Intelligence

Modern algorithmic models allow us to offload part of the

data analysis work to the machine to uncover data patterns for

us. However, with increased complexity, the integrated model

raises the threshold to interpret the systems’ behaviors [26],

leading to black-box systems which pose challenges to the

systems’ adoptions.

For the most widely applied models in data analysis, deep

artificial neural networks (DNNs) are among the most sophis-

ticated ones. Each derivation, such as convolutional neural

networks (CNNs), generative adversarial networks (GANs), re-

current neural networks (RNNs), equips machines with higher

level pattern recognition capabilities by modifying or adding

another building block to the network structure. These models

turn raw data into machine-friendly layers of abstractions,

processing them by algorithmic operations with little human

interventions. Because of the unprecedented application po-

tentials of many sectors [90–92], these technologies can turn

nearly any data-related problems into algorithmic processes
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Table 2.1: A non-exhaustive list of visualization tools for common (deep) artificial neural networks

Tool Model Type Author Year

CNNVis [95] CNN Liu et al. 2017

ReVACNN [96] CNN Chung et al. 2016

RNNVis [97] RNN Ming et al. 2017

LSTMVis [98] RNN (i.a. LSTM) Strobelt et al. 2018

DeepEyes [99] Generic Pezzotti et al. 2018

ActiVis [100] Generic Kahng et al. 2018

DGMTracker [101] GAN, VAE Liu et al. 2018

[93]: Rysiew (2021), “Epistemic Con-

textualism”

[94]: McKenna (2015), “Contextual-

ism in Epistemology”

[69]: Adadi et al. (2018), “Peeking

Inside the Black-Box”

[102]: Guidotti et al. (2018), “A Sur-

vey of Methods for Explaining Black

Box Models”

[103]: Barredo Arrieta et al. (2020),

“Explainable Artificial Intelligence

(XAI)”

[102]: Guidotti et al. (2018), “A Sur-

vey of Methods for Explaining Black

Box Models”

[103]: Barredo Arrieta et al. (2020),

“Explainable Artificial Intelligence

(XAI)”

[104]: Gunning (2017), Explainable Ar-
tificial Intelligence (XAI)

of identifying, predicting, or categorizing as long as the data

can suffice. But the wide applicability is achieved through

abstraction, which basically removes the original semantics

data and only focuses on the informational variations. Such

transformations mimic part of human intellectual activities but

do not reproduce human’s sensitivity to the problem context.

As a consequence, the advantage of abstracting higher-level

patterns with models makes the machine processes further

distant from human reasoning as it departs from the explicit

contexts where meanings originate from [93, 94]. The explain-

able artificial intelligence (XAI) is an endeavor to particularly

tackle this issue.

XAI is a manifold concept that is still working toward a unifying

definition [69, 102, 103]. Guidotti et al. [102] regard the provision

of “an ’interface’ between humans and a decision maker that

is at the same time both an accurate proxy of the decision

maker and comprehensible to humans” to be the defining

feature of XAI. Barredo Arrieta et al. [103] advocate to include

the audience as a key component to assess explainability,

taking into account the goals and cognitive skills of a user

group. In addition to understandability and trust-worthiness,

Gunning [104] also related XAI closely to machine learning

techniques that makes AI manageable to human operators.
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More domain dependent elaborations can be found in ongoing

references [105–107].

Visualization-related accounts of XAI and its relevant facilita-

tion are mostly one or a mixture of three major branches. The

first one is to provide a global, explicit representation of the

entirety of the underlying model. This way, the engineering

work such as tweaking and debugging are supported with

ground reference to the exact running logic [108]. Improve-

ments like optimization and customization are, therefore,easier

to make. Explainability in this way is more frequently seen in

models like decision trees and rule-based expert systems [109],

of which models themselves can be described with memorable

structures.

Another branch is to locate the salient internal representation

(i.e. direct or indirect abstraction from raw data in the mid-

dle layer) and find its causality or mutual influence to the

external representation [110–112]. By semantically visualizing

internal representations [113, 114] and clarifying the connections

between interacting parts [95], how machines reach certain

decisions are delineated to human perceptions and rationals.

The last branch of XAI is represented by Guidotti et al.’s notion

of “proxy”, where explainability is realized by visualizing a

reduced entity derived from the less intuitive decision-making

model. The explanation is thus acquired by studying the behav-

ior of the proxy instead of the ground details (e.g. enormous

layers of neurons in deep learning). Liu et al. [101] visualizes

large-scale time series data recorded from the training process

of generative models to virtually reproduce its training process,

the resolution of which is sufficient to preserve the outliers yet

without the annoyance of visual clutters. Xu et al. [115] utilize

the combination of model compression and dimension reduc-

tion techniques to project deep classifiers into simpler forms,

producing a visualization (i.e. Darksight [115]) that is more
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informative than standard methods. Instead of confronting the

model’s complexity directly, the Interpretable Mimic Learning

(IML) proposed by Chen et al. [110] learns from the deep learn-

ing models and presents human interpretable features with

little or no performance compromise.

As mentioned before, complex models like (deep) ANN ef-

fectively reduce the manual labor in pattern recognition with

data but are harder to interpret. Visualizations in this regard

tame not only the traditional data complexity but also the

unprecedented model complexity as well. Utilizing visualiza-

tion techniques to mitigate undesirable side-effects caused by

higher degree of abstractions is gaining momentum in the

cross-section between the ML/AI community and the visual-

ization community in recent years. This seems to indicate the

complexity of either data or the added artificial facilities in the

visualization pipeline poses equal challenges to sense-making.

Visualization design should strive for removing the barriers in

both aspects to promote transparency and explorability.

Progressive Visual Analytics

Knowledge discovery processes can also be supported pro-

gressively [116, 117] with visualization techniques [64, 118, 119].

By providing extra controllability over the middle steps in

data analysis, the analytic process can maximize the value in

each outcome to develop new rationales one following another.

Visual analytics (visualization with data mining/analytic capa-

bilities [120]) supporting this progressive approach is referred

to as progressive visual analytics (PVA). In one way, PVAs

dissect monolithic algorithmic pipelines into controllable sub-

parts, exposing controllable parameters to steer the algorithmic

process. In another way, the entirety of the data set is reduced

to a smaller size, allowing it to be consumed by chunk sizes

that are possible for quick computation and early feedback [64,
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121]. For instance, Jo, Seo, and Fekete [122, 123] keep an up-

dating cache of newly indexed data in k-Nearest Neighbor

(kNN) algorithms to enable approximate queries following

most recent user interactions. Pezzotti et al. [117] trade partial

accuracy of the t-distributed Stochastic Neighbor Embedding

(t-SNE) algorithm for lower latency to provide steeribility for

in-progress intervention. HARVEST [124] pays special atten-

tion to the integration of available and recent knowledge in the

progression of knowledge discovery. InsightsFeed [125] exem-

plified a set of interface design guidelines featuring explicit

support for feedback and control.

A key advantage of the progressive manner is to make in-

termediate results accessible. The results are useful because

they provide valuable information which is consequential to

the follow-up phases [119]. If XAIs are regarded as upgrading

the models to reveal the semantics of inner representation or

monitor the classification process, PVA approaches are less

aggressive in adding new building blocks on top of the ML

models. They are rather about applying structural changes [118]

of the entire analytic system to accompany the model with more

granular interactivity for easy interventions. The interfaces sup-

porting the interactivity expose the parameters to the human

controls, which, as noticed by Badam, Elmqvist, and Fekete

[125], opens up user interface design questions concerning how

visualizations can be adapted to support PVAs.

The responsiveness of an intelligent system is a salient factor to

influence both user experience and task performance but hard

to guarantee when the analytic involves heavy computation and

large scale data. According to human factor experiments [126],

visual responses that take longer than 500ms can significantly

restrain a system’s maneuverability. Considering explorability

is realized by frequent and flexible visual navigation, longer

responses can certainly undermine the explorability of a system.

Since the delay of response is often associated with the amount
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of computation required by data size to process, chunking the

data into smaller batches can moderate the waiting time. Even

doing so may add up the total time for computation, users

can have higher qualitative satisfaction without sacrificing

significant performance loss compared to the instantaneous

display of outcomes in terms of insight discovering rate [127].

This can be even further improved by combining layered

visual design with multi-thread processing [128], which better

ensures front-end representations stay in sync with underlying

computation.

The exchange for speed and flexibility with data chunking

may also yield less accurate outcomes as results are inferred

from a fraction instead of the entirety of data. This draw-

back makes managing the increased data uncertainty relevant.

ProReveal [129] uses programmed safeguards to manage this

effect by preventing biased or incorrect hypotheses in the early

stage to overly consume computation time and avoid false

positive discoveries. QUDE [130] controls the error rate caused

by overloaded simultaneous hypotheses (i.e. multiple hypothe-

ses testing error) by implementing dedicated sample testes.

Angelini, May, and Santucci [131] highlight the need to include

subjective measures such as expressiveness and reliability in

quality assessments of an analytic system to cover more inclu-

sive factors on the global scale. For the same concerns, Stolper,

Perer, and Gotz [49] advocate the user-centeredness of PVAs,

arguing “a visualization should provide the analyst with ap-

parent affordances for adjusting and directing the analytic,

in addition to effectively communicating the results of the

analysis to the analyst.”

As a visualization approach, PVAs balance the progression

of computer and human actions in terms of time resources

and cognitive workload, making each step perceptible and

maneuverable to smoothly collaborate with human thinking. It

practically organizes the power of computation and the impor-
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tance of early user reports together to mitigate the drawbacks

of either side. The PVA approach can be especially seen as an

effort to systematically place explorability in many possible

slots of a system to transform it into a more open and assistive

facility.

2.3 Opportunities

The above approaches contribute to the aforementioned desider-

ata from respective angles. These emerging efforts help us to

conceptualize a few potentially overlooked objectives under the

goal of improving human capacity in knowledge discovery.

Augmented Hypothesis Generation

The desideratum of explorabiliy (§ ·2.1 Explorability) is asso-

ciated with superior efficiency in generating hypotheses. In

visualization design, superior explorability means more flexibil-

ity to support agile approximations to the answers as opposed

to one-shot queries (or tests) to validate a fixed hypothesis. The

seemingly less efficient approximations open up the chance

of interbreeding of thoughts and experiments, with each step

contributing more nuanced and inspiring hypotheses.

Regarding the goal of improving hypothesis generation, Moritz

et al. [132] proposed the concept of optimistic visualization where

workload in verification is condensed to make room for maxi-

mizing the early approximations. The method advocates sacri-

ficing hypotheses quality in exchange for quickly generations

of hypothesis batches in the initial exploration stage. Optimistic

visualization’s emphasis on number advantage in hypotheses

(or visual exploration in general) should be practiced with

caution because of the risk of false claims. As noted by a caveat
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in statistics (cf. multiple hypotheses testing error), eliciting

too many hypotheses loosely at once may lead to erroneous

results. This produced error can be potentially regulated by

statistical methods such as the Bonferroni Correction [133]

and Benjamini-Hochberg Correction [134]. But adapting these

methods to support explorations is not trivial [130]. There-
fore, we change our focus from the number of hypothesis
generation toward the ease of locating the right questions,
which can be a daunting task when the analyst experiences
significant uncertainty of the problem itself (§ ·3.1 Problem

Uncertainty).

Visual Embodiment of Domain Knowledge

The idea of explanation is crucial to the general knowledge

finding. However, to the best of our knowledge, the literature

around XAI has not clarified the link between the criteria of

a sound explanation and the explanations currently feasible.

The XAIs exhibit the potential to convert machine friendly

processes and information to semantic symbols and analogue

images, significantly eliminating the threshold of algorithmic

and mathematical reasoning into computational processes. But

in a social context an explanation is typically given from and to a

human. The current treatments usually ignore such social prop-

erties of an explanation in a context-sensitive context, where

explanations differ by the explainee or situation [108]. Current

AI-infused systems only provide that context-awareness with

naive approaches such as predefining usage scenarios [135],

mining salient vectors [136], or state identifications [137], as-

suming that the context can be sufficiently captured through

the parameters. We argue that context-awareness in this regard

is more of the adaptations of AIs instead of explanations of the

subject matter.
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When it comes to context-sensitivity, humans, or more specifi-

cally domain experts, are the most reliable providers of such

a resource for their rich knowledge into the data collection

settings and the research background. Incorporating domain

knowledge is a norm in visualization tool-making for a steady

long period of time. The knowledge is often exploited to pin-

point the requirements which shape the later design planning,

answering questions such as what plotting technique to use

or how the interactivity should be implemented to carry the

tasks. However, the valuable assets are used to merely reinforce

the interpretation of generated graphs after the data analysis

takes place with a ready system. During the analysis, the role

of domain knowledge in the essential visual expression and

content is somehow weak or even missing compared to proce-

dures in the early stages (data cleaning or pre-processing [138]).

Therefore, we argue that the inability to cast the influence of

domain knowledge to the content level is an under-exploitation,

with which little assistance is leveraged to unpack the funda-

mental problem from the knowledge assistance perspective,

cf. § ·3.2 Guidance from Knowledge Assistance.

Realizing that domain-originated knowledge (whether explicit

or not) holds the potential of informing critical clues to the

analyses, embedding the knowledge into the visual analytical

environment presumably actualizes the merit of integrating

domain knowledge into different stages of data analysis [139].

This motivates us to search for potential design methods that

use domain knowledge not only to inform the visualization

interface design but also to be integrated into the visualized

information essence.

As noted by Choo and Liu [140], injecting human knowledge in

complex systems (such as ones incorporating the deep learning

models) is challenging. The extent of this challenge seems to

correlate with the complexity of the model. Current work [129]

only provides definitions of rules and filters as a way to include
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domain knowledge into the visualization pipeline which is

only enough to address the regulation of machine executions.

Although this can be improved, the accurate representation of

injected knowledge as well as the intermediate results (from

either small batches of data or a sub-module of algorithm),

which determines the reliability of intelligent systems [140],

is less mentioned by the latest work. Thus, a focus on the
representation of embodied domain knowledge should be
included in the future discussion.

We can imagine that the future implementations with joint

benefits of transparency (potentially provided by XAIs) and

explorability (potentially provided by PVAs) allow us to par-

tially inject human knowledge into the model by interactions.

However, this thesis primarily focuses on the discovered op-

portunities above, which are main themes that motivate the

pivotal visualization method.
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Pivotal Visualization 3
Overview: This chapter elaborates on the theoretical model
of pivotal visualization. It unfolds the core idea of the proposed
design method following the structural order of problem scope,
theorem, method, and effect. It briefly discusses the application
context of pivotal visualization to set the stage for the studies
in the next chapters.

3.1 Problem Uncertainty∗

The emphasis on problem orientation is a signature character

of the design discipline [141, 142]. Designers perceive, inter-

pret, structure and solve design problems to develop a proper

solution [142, 143]. Similarly, the problem-driven research in

visualization [144] focuses more on design method, rationale,

evaluation, and reflection than its technique-driven counter-

part. In this regard, visualization design is the integration

of the two as it is about applying the same problem-solving

mentality to facilitate human understanding of data. As data

are used to represent certain features of a problem, the very

effort of visualization design can be translated as “create new

structures and relationships in a user’s understanding of the

problem” [145] instead of acquisitions of isolated facts.

Part of this section is based on the published work W. Li, M. Funk, and A. C.
Brombacher, Toward Visualizing Subjective Uncertainty: A Conceptual Framework
Addressing Perceived Uncertainty through Action Redundancy, in EuroVis Workshop
on Reproducibility, Verification, and Validation in Visualization (EuroRV3), 2018.
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Regarding the structures and relationships to understand a

problem, the self-evident numeric relationships (such as co-

linearity of numbers, hierarchical structures of graph nodes,

or spatial approximations between vector clusters) and the

implicit, non-evident ones only are obviously different. The

first type of relationships are discrete and easily inferrable

by rigorous programs such as search algorithms or statistical

model. The second type are acquired with the help from the

awareness of problem context, which usually involves tacit

knowledge or intuition.

This dichotomy is best illustrated by the types of questions

asked during the data analysis: Questions concerning self-

evident relations are verifiable with crisp processes (usually

in the form of a statistical model or a routine algorithm). As

long as the raw data suffices certain quality standard, the

presented relationships can be accepted as credible answers

to the hypothesis. Examples of this type questions can be

“what is the most significant producer of carbon emission in

North America?” or “how does the oil price correlate with the

global food price in the past decade?” However, data analyses

often need to deal with the other type of questions. These

questions are not easily answerable with the same methods as

they involve implicit, undocumented clues which are beyond

what raw data can provide. Examples of these can be “how to

determine the satisfactory level of groups of amusement park

visitors?” or “what could happen to the wildlife in the nearby

natural reserve if we establish a manufacturing facility in the

area?”

As an increase in data quality only contributes to soundness

and credibility of data but does not expose additional struc-

tures of the problem, improvement in data quality contributes

differently to these two types of questions. Usually, reducing

data quality imperfections such as loss of accuracy, precision,

or a missed value point in a data file directly impact the quality
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of answers to the former type as unreliable information can

lead to inaccurate or false discoveries. Although the later type

of questions receives the same benefit, additional research is

still needed to produce plausible answers.

Therefore, the structures and relationships based on which we

build our understanding of the problem are more complicated

than how it first appears. Some of the relationships are inherent

in data. With technical facilities, we can mitigate some data

imperfections to facilitate the location of such relationships.

But some of the other ones are implicit, which require human

efforts to collect deeply embedded knowledge incrementally.

With the accumulation of insights, the structure of the problem

is thus perceivable thereafter by stitching together the pieces of

relationships. Making sense of data requires paying attention

to both the self-evident relationships and structures as well as

the implicit ones. When either issue is insufficiently treated,

uncertainty escalates to plague the understanding. Based on

a broader sense of uncertainty [146], we define ones caused

by insufficient familiarity with the implicit relationships and

structures that characterize the uniqueness of the problems

as problem uncertainty whereas ones caused by loss-of-detail

in information provision as data uncertainty. In data analyses,

both types of uncertainty undermine analysts’ confidence

and obscures structural knowledge generation, hindering the

understanding of research problems, and consequently, the

ultimate accomplishments of research objectives [147, 148].

Characterizing problems is indispensable in the early stage

of design practice. Doing so in a visualization design context

requires the designer to unpack the problem into different

levels of abstractions [149]. For instance, a generic partition

algorithm can deal with problems across domains, while empir-

ical knowledge about the recurring skews in the data sampling

apparatus is critical but only applicable to the current analysis.

In addition to the nested model by Munzner [149], which sorts
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different layers by their granularity of task clarification, we

propose a leveled model of specificity which focuses on the

width of application coverage regarding a question, i.e. how

much the question is deeply embedded to this specific prob-

lem (Figure 3.1). We argue that even for low-level algorithmic

decisions, problem uncertainty still arises as long as the an-

swers of these questions cannot be found in the data alone

and nuanced understanding of the problem is lacking to form

hypotheses. Thus, problem uncertainty can exist on any level

of this specific model.

Medium: 
Expertise 
Application

Low: 
Model
Configuration

High: 
Project
Character

e.g. S1) How to create a reference model to work
for physical therapy diagnoses? (Alonso, 2002)

S2) Which domain knowledge niche is useful to
supervise the elimination of the noise in sequence
mining outcomes? (Liu, 2017)

S3) Would the lion-avoidance behavior of a similar
species, e.g. cheetah, significant enough to impact its social
interactions reflected by GPS data? (Klein, 2019)

sp
ec

ifi
ci

tye.g.

e.g.

Figure 3.1: Specificity Levels of Problem Uncertainty: questions with a higher problem specificity are closer linked

to the exclusive character of the underlying problem whereas ones of lower specificity consider shared traits of the

problem from an abstraction form.

Reducing problem uncertainty on these levels paves the way

for data exploration and consequent hypothesis generation.

However, hypothesis generation is not and should not be about

aimless random guesses as there are too many potentially

irrelevant question niches to distract the research. Without an

objective to guide the procedure, time wasted on laborious

work is likely. The procedural nature of exploratory knowl-

edge finding – analysts start with an estimation or interest and

gradually adjust the question for deeper insights – requires
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inspirational starting points. Therefore, it is important to ad-

dress this issue early in real practice. Analysts need an utility

of guidance to exploit limited knowledge of problem to foster

a starting point to being the exploration.

Characterization of the problem is the essential goal of reducing

problem uncertainty. To support the guidance of exploration, it

is advantageous to 1) integrate existing knowledge of problem

and 2) transform such knowledge into another type which

contribute to the awareness of potential structures and rela-

tionships of the problem beyond the information provided by

data. The utility of guidance should support gradual relevance

of certain facets of the problem character based on which a

more comprehensive picture is retrieved through consecutive

explorations.

3.2 Addressing Problem Uncertainty

Guidance from Knowledge Assistance

Facilitating explorations through the guidance of knowledge as-

sistance in the visual analytics context is coined as Knowledge-

Assisted Visual Analytics (KAVA for short). In KAVA, knowl-

edge assistance can usually be exploited as systematic, explicit

knowledge (such as the Industry Foundation Classes schema

in infrastructure management [150] or the diagnostic rules in

rehabilitation [151]) to serve as standards reference for profes-

sional judgment. The explicit knowledge (usually objectively

defined in the domain field) can be formally or semi-formally

defined as explicit knowledge store (also, EKS). KAVA systems

can leverage these (formalized) explicit knowledge as canonical

reference for classification or validation jobs. The knowledge

assistance in this form is primarily static feature sets which

often referred as rules. We see wide adoptions of these in
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rule-based expert systems, which defines the first generation

of AI [152]. Because the rules are pre-defined and static, a user

can only influence the system’s operations by the placement of

these rules with little influence over their internal structures.

However, if the explicit domain knowledge is not readily formal-

ized or sufficiently applicable to reduce problem uncertainty,

a process of knowledge externalization is required to convert

implicit/tacit knowledge to external representations [153]. For

instance, the tacit knowledge of effective data views can be

externalized by collecting subjective rating on the quality of

system-generated views [154]. As one of the four knowledge

transfer processes (i.e. internalization, externalization, collab-

oration, and combination), Wang et al. [155] recommended

storing user-generated knowledge during the analytical pro-

cess into a knowledge database to improve follow-up research.

The benefit of this approach has been realized in cases such

as filtering or color-encoding call sequences in malware anal-

ysis [156], or guiding the mesh simplification algorithm for

urban textures [157], which alleviates one or more of the typical

problem uncertainty as in Figure 3.1.

The openness toward individual’s partial, tacit knowledge is

gaining interest [158] partially because the context-dependent

mental constructs from individuals may have substantial bene-

fits [53]. For instance, the knowledge discovery in databases (KDD)

paradigm values subjectivity as a rather important role in se-

curing new knowledge from data regardless of whether it takes

the form of a user input of the subjective interestingness [79]

or an individual’s serendipity and intuition [159]. Both the

belief function in Dempster-Shafer theory and the choice of k
in k-means clustering depend on subjective decisions of inputs

instead of objective computation results. In these cases, the

reliance on subjectivity is unavoidable. In fact, many data re-

lated tasks in modern data analyses such as data cleaning, data

mining, and machine learning, to some extent, all collaborate
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with people’s subjectivity despite avoiding subjectivity has

been a long-standing concern in scientific research.

Criticisms against subjectivity claim that analyst’s subjectivity

can be narrowed by and biased toward the analyst’s own

experience [160, 161]. For instance, the inertia of accustomed

workflows may prevent the adaptation of corrected ones [160],

or the coincidental existence of an inferior one may render

the evaluation of the current candidate more appealing than

it really is (cf. attraction effect [162]). As these caveats are

hard to eliminate [163], safety measurements are necessary

to manage the potential caveats when exploiting the value of

user-generated knowledge [164, 165].

Procedural Knowledge with Semantic Interaction

Knowledge assistance can be formulated at the pre-design

stage of an analytic tool. This type of assistance are feasible

before the actual data exploration because they are based on

either objective and unvarying explicit knowledge or criteria

and rules that are easily externalized as formal descriptions

by domain experts. For instance, the Business Process Model

and Notation (BPMN) method can rigorously define a business

model following the operations determined by the organi-

zation objectives (Figure 3.2). The system then executes the

program describing the business model to get outcomes of task

specifications with little or no support for interactions [166]. As

a comparison, user-generated, context-dependent knowledge

can be accumulated during the interaction stage. If applied

wisely, the latter type of knowledge can be leveraged to guide

the next loop of discover, save, and reuse iteratively [167],

yielding waves of new knowledge chunks to better reveal the

structures and relationships of the research problem, which

gradually decreases the problem uncertainty. For instance,
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the visually identified patterns in network traffic can be in-

teractively represented to the system which makes it ready

for reuse in future classifications [167]. Here, we characterize

the former type of knowledge assistance as declarative as it

contains explicit definitions and unambiguous descriptions,

while the latter being procedural since the rules are refined by

human-in-the-loop approaches.

Declarative knowledge, as an important part of the domain

knowledge pool, can be formalized easily and be fed into ma-

chines. Procedural knowledge which usually lacks a formal

standard which is often hard to describe with discrete lan-

guages, need to be exploited through the indirect approach.

According to Federico et al. [153], procedural knowledge can be

captured by accumulating the implication of tacit knowledge

inferred from semantic interactions [168], i.e. user interaction

supported with a vocabulary of domain-related actions/con-

cepts. By operating visual interfaces, procedural knowledge

can also be parameterized [156] and represented in machine

friendly formats [167]. This process can be realized by system

passively capturing the procedural knowledge while user is

performing the exploration. For instance, as a user is sorting

sport action events to prioritize on the most significant events

during the game, the system can derive sorting functions from

the user inputs and depict the used parameters to allow inter-

active refinements of the model [158]. Using this knowledge as

input to recursively generate new ones is known as intelligent

data analysis [169]. A visualization design concept specialized

at the retrieval of user inputs is the semantic interaction.

To disambiguate semantic interaction in visualization design

from semantic visualization [9, 170, 171], which extracts se-

mantic elements (concepts, individuals, relations) by mining

ontology structures from a knowledge database (of similar us-

age with EKS as described in § ·3.2 Guidance from Knowledge

Assistance), the notion of semantic interaction in visualiza-
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tion design focuses on creating a semantic abstraction so that

knowledge about the working details of the algorithms is not

necessary — semantic interaction systems will be responsible

for capturing the user’s intention and translate them from

mental artifacts to algorithmic adjustments [172]. The user’s

intention can be modeled based on record of interactions over

time so that model adaptations can happen to generate ap-

proximations to the interesting features [173]. For instance, the

underlying model of a visual analytic system can adjust its

spatial layout of textual documents by monitoring user inter-

actions [174], which can improve the quality of identification

of interesting text. In this case, the first adjustment may not

produce the optimal layout but a useful approximation for the

follow-up iterations.

Semantic interaction embraces visual metaphors to communi-

cate hypotheses [173], through which the user can passively

read the symbolic representations of the model (e.g. boxes

as grouped text documents) or actively configure the visual

space to externalize their assertions (e.g. labeling, annotating,

filtering, or organizing the document or document group). The

graphical means provides an intuitive channel of intelligence

interchange which allows for quick sense-making as well as

iteration of hypotheses. This is important because creating

a flexible environment for procedural assimilation of knowl-

edge [145] synchronizes well with the psychological nature

of human knowledge building, which immediate declarative

answers are usually not instantly available [175].
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3.3 Knowledge Building as Dual Space
Search

Existing visualization designs are already capable of leveraging

exploited (declarative) knowledge to either contribute new

(declarative) knowledge (as in intelligent data analysis) or

guide user specifications (i.e. the interactivity taken to explore

a subset) (§ · 3.2 Addressing Problem Uncertainty). While

performing analyses following such a pattern, people tend to

make discoveries following a strategy of consistently comparing

the gathered data to their expectations, based on which new

goals are set to explain possible discrepancies [176]. Klein et

al. describe the combination of “goals, expertise, and stance”

with data as data-frames, which play a central role in sense

making by guiding the next steps in choosing, interpreting,

and incorporating new data [177]. For instance, what strategy do

the intelligence professionals follow may substantially steer the

interpretation of available intelligence to assess the likelihood

of a nuclear threat during the 1962 Cuban Missile Crisis [178].

The devised tactic may determine the discovery of new data,

which may leads to conformity or conflict of current “frames”

(of human) by either contrast or synthesis of evidences (of data).

Under these conditions, the distinction and interplay between

human and data, conceptual and factual is quite visible.

In fact, the complementary duality of human vs. data, con-

ceptual vs. factual is prevalent in many discovery processes,

pointing to a fundamental feature in knowledge building in

general. According to Klahr and Dunbar [82], scientific rea-

soning consists search processes in two problem spaces: the

hypothesis space, containing each generated hypothesis during

the discovery process, and the experiment space, containing

possible experiments to validate certain hypotheses. In these

spaces, the hypotheses are human conceptions and the ex-
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Figure 3.3: The Dual Space Search Model: Scientific reasoning with data progresses as a continuous search process in

two complimentary spaces. The hypothesis contributes to the experiment and the experiment triggers new hypotheses.

A researcher fluently switches between the two spaces to explore novel knowledge.

✍: Historical facts indicate the pre-

sented map is primarily used as a

communication tool to convince lo-

cal authorities.

periments are factual validations. Search in the hypothesis

space is guided both by prior knowledge (long-term memory)

and experimental results, which takes place in the experiment

space. In turn, the current hypothesis invokes a search in the

experiment space to generate information to formulate new

hypotheses. In this loop, knowledge is built through a contin-

uous search activity switching between two complimentary

spaces (Figure 3.3).

Data analysis which may not rigorously replicate the scientific

reasoning process is also a version of dual space search process.

Take Snow’s cholera map (Figure 1.1 in chapter 1) for example,

the discovery of denser death cases near a pump as a factual

evidence triggers the hypothesis of the potential correlation

between infection rate and proximity to the pump’s location.

Verifying this hypothesis by counting the death numbers near

all the other pumps can work as experiments for quick men-

tal validation
✍

. Klahr and Dunbar’s dual space model was

introduced decades ago before the arrival of Internet and big

data. Today, the unaddressed complexity of data can easily

disrupt the workload distribution between the two spaces. For

instance, as comprehensive knowledge of raw data become

less affordable, hypothesis generation would not easily assume

timely sense-making of all available data, whereas the time cost
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of experiments, if well defined, can be effectively moderated by

improved computing capacity. As such a tendency is becoming

more salient, the smoothness of traveling between the two

spaces drops exponentially. This gap can be justified by adding

data representation to extend the original model in a later

revisited version of the paper [179].

In the same way of how semantic interaction promotes pro-

cedural knowledge finding, the progression of hypothesis-

experiment loop can also benefit from the visual abstraction

to lower the mental workload. Metaphoric representations of

factual data in the search spaces is plausible because it repeats

the design philosophy of utilizing visual abstraction in seman-

tic interaction — replacing the need for detailed knowledge to

reduce learning overhead (§ ·3.2 Procedural Knowledge with

Semantic Interaction).

Exploiting a visual and semantically sensible representation of

data is a way to augment dual space search. In the experiment

space, new evidences from last loop, which can be poorly for-

matted, need an intuitive representation to stay consistent with

the user’s prior tacit knowledge to facilitate new hypotheses, i.e.

being able to trigger immediate judgments or inspirations ac-

cording to prior experience. This is important because the tacit

knowledge, as a valuable asset to derive new knowledge [169],

is often not readily externalized or even hardly externalizable

since it mostly resides in human mental models [153]. Instead,

the analyst may use ambiguous descriptions or heuristics to

rationalize new findings as moving along the dual spaces. For

instance, a diagnosis expert may assume an irregularity in

patient visits in recent days but unable to find a crisp definition

of the irregularity pattern or “feeling”. The variation of color or

distribution shape of visitors by weekdays may provide a sub-

tle replacement of the intuitive judgment. If the visualization

system is capable of capturing the semantics of irregularities

in a more coherent manner, it will play smoothly with existing
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mental model of the expert’s reasoning which leads to easier

formation of the next hypothesis. As we are working toward

a comprehensive understanding of the data problem (§ ·3.1)

through procedural steps [177], the semantic visual abstraction

of evidences (from the experiment space) is useful as it enables

faster paces in searching for new hypotheses by removing

interpretation barriers and making shortcuts to expert users’

tacit knowledge for smoother reasoning process [180].

The hypothesis space may also benefit from semantic abstrac-

tions as new hypotheses can be built on top of the concepts

represented by the semantics. For instance, the analyst can ask

questions like “is the effect of irregularity growing?” or “is there

any historical record of such an irregularity?”. As experiments

leveraging machine capacity are easier with unambiguous defi-

nitions (e.g. event frequencies, conditional rules), the necessity

of turning a hypothesis into a visual format remains an open

question. However, visualized hypotheses have resulted plausi-

ble effects in terms of usability and user experience gains [181]

and model manipulation effectiveness [182].

Data inspire hypotheses. Hypotheses lead to new evidence.

We see the cumulative nature of knowledge generation a core

feature of the dual space search model. This, however, is poorly

reflected by existing knowledge assistance implementations.

On the experiment side, once new data are presented, the

knowledge assistance provided by the system merely facili-

tate professional judgment with readily externalized, explicit

knowledge [150, 151]. On the hypothesis side, supporting meth-

ods are provisions of casual expectations by textual inputs [161]

or numeric predictions with primitive visual depictions [183].

How the latest experiment result and a novel hypothesis are

linked to reinforce each other is unclear.

Visualizations in general value insights as a key indicator of

effective knowledge generation. According to North [184]’s
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account of insight, there are five criteria to meet, namely

“complex, deep, qualitative, unexpected, and relevant”. North’s

proposition amplifies the need for visualizations to touch a

deeper, comprehensive, qualitative layer of the data problem,

at which the aforementioned methods may fall short. Thus,

supporting the dual space search for knowledge generation

beyond primitive quantitative inferences becomes relevant. In

addition to that, we would argue for a design method that

also pays close attention to the explicit support of cumulative

hypothesis generation and experimentation in accordance with

the dual space search process.

3.4 Semantic Attribute

Hypothesis Search

Framing hypotheses requires both searching for interesting pat-

terns and devising structured statements. There are distinctive

processes governed by different principles.

On the searching part, hypotheses are usually triggered by

local patterns which are expected to be experimented and gen-

eralized to solidify as useful knowledge [179]. Therefore, the

assumption in an established hypothesis is inherently linked

to a subset of features of interest. However, the location and

identification of the sub-features are not always clear. This is

where eliciting initial concepts and introducing semantics be-

comes helpful. With simple keywords, a concept can initialize

a coherent interest which creates a focused search space. The

step is mostly user-driven. For example, the user can specify a

subspace of interest leveraging domain specific prior knowl-

edge, generic prior knowledge, internal and external goals,

or personal attributes [83]. In this way, the concept functions
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as a helpful constraint to ensure concentrated search in the

hypothesis space [176].

The semantics derived from the concepts also set the “seeds”

for semantically similar cases to converge and snowball in the

experiment space. For instance, a document analysis system can

leverage a keyword input as a seed to retrieve relevant terms

by semantic similarity, from which the user can further refine

its lexical associations with the rest of the corpora data by in-

teractive experiments such as linking with semantic groups or

filtering our irrelevant concepts [175]. By continuing searching

and refining, deeper and more nuanced hypotheses are possi-

ble thanks to the cumulative knowledge by the convergence

and snowballing of relevant information pieces. However, the

semantic representation of such a concept, whether as a con-

strain or “seed”, is scarcely a design objective. We argue that a

semantically sensible visualization of the concept can make a

novel type of knowledge assistance by itself [153].

On the statement part, organizing mental artifacts into struc-

tures is essential. The Human Cognition Model (HCM) sug-

gested by Green, Ribarsky, and Fisher [185] places emphasis

on the batch hypotheses generation of human capacities (also

seen in optimistic visualization [132]) matched by the machine

capacities to validate the hypothesis with a “matrix”of prove

or disprove. One of the advantages of this approach is that it

maximizes the concurrency of living hypothesis-experiment

threads which reduces the time cost. However, each experiment

result has no influence over the other hypotheses. Thus, this

compartmentalized structure of mental artifacts (i.e. each hy-

pothesis search and validation work in its own separated space)

hinders the depth of exploration. To support the depth of the

hypothesis search space (i.e. the vertical height of the hypoth-

esis space in the dual space search model, cf. Figure 3.3), we

need to ensure previous discoveries (e.g. earlier notes of small

experiment results) can contributes to the latest exploration
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Figure 3.4: Semantic Attribute: the

auxiliary attribute that combines

domain concept and raw data for

deeper hypothesis search.

context [186]. The relationships between these hypotheses can

thus provide hierarchical structure of the piecemeal knowl-

edge, one inspiring another, creating hypothesis statements

with improving detail and quality.

In the face of problem uncertainty, the hypothesis search is

a progressive effort. As one tends to search in narrow spaces

where hypotheses and experiments are framed and tested

provisionally [161], we suggest that enhancements to hypothesis

search should leverage semantic integration of concept as well

as continued exploit of existing hypotheses to make more

“complex, deep, qualitative, unexpected, and relevant” insights

accessible.

Reinforcing with a Novel Attribute

When analyzing a phenomenon, it is useful to introduce a

non-existing variable as an instrument to bridge a gap in

the reasoning. In observational epidemiology [187] and social

studies [188], the introduced variable is called instrumental

variable (IV), which is used to regulate the disturbance upon

known variables (observable variables) or verify endogenous

covariations. For instance, analyzing the effect of a respondent’s

education on the prestige of first occupation might use his/her

father’s education as a IV for respondent’s education. Survival

analysis in clinical trials [189] can include an auxiliary variable

to restore missing information (e.g. event time) and improve

estimation efficiency with fewer errors.

Under the goal of enhancing hypothesis search with a con-

cept, we introduce a new variable that combines the semantics

(derived from the concept) and the attributability of data vari-

able (Figure 3.4). It interfaces with an preliminary semantic to

project a meaning or concept into the analysis context featuring

calculations based on factual data. It is designed to address
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problem uncertainty by leveraging human ability in conceptu-

alization such as common sense, creativity, or domain exper-

tise and machine ability in verification and data aggregation

through computation. The composition of a semantic attribute

has an expert-driven ideation and a domain-dependent formal

definition. Such an arrangement is to mitigate undesirable

side effects of subjective conceptualization explained in § ·
3.2 Guidance from Knowledge Assistance (the former) by en-

suring its compliance with ground data features via a rigorous

formula (the latter). The expectation is to expose the implicit,

under-explored facet which is only accessible in the deeper

area of search space (§ ·3.3 Knowledge Building as Dual Space

Search).

The introduced semantic attribute thus functions as a pivot,

which is a critical point that passes inaccessible knowledge

to a reachable range. The visualization approach featuring

the semantic attribute for the same effect is identified as “piv-

otal effect”, which we will give more detailed definition and

elaboration in § ·3.5 The Pivotal Effect.

3.5 The Pivotal Effect

The pivotal effect, which is achieved by introducing a semantic

attribute and implanting it into the visualization pipeline,

is the defining character of pivotal visualization. We clarify

the concept and application method of pivotal effect in this

section.

Concept

The first appearance of pivoting as a hypothesis supporting fea-

ture can be found in the anchor recommendation functionality
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in Dziban [190], where an auxiliary view of unexplored infor-

mation is presented to adjust the user’s hypothesis for better

questions. The auxiliary view here works as a stepping-stone

toward deeper, more informed hypotheses instead of the usual

ultimate answer, which contributed a plausible boost to the

research. An apparent intersection between the pivoting view

and pivotal visualization is the shared principle of leveraging

an indirect view to improve the visual analyses — pivotal

visualization constructs novel representation using derived

semantic attributes instead of experimental hypotheses. How-

ever, the pivotal visualization aims to strike a systemic effect in

the dual space search model comparing to Dziban’s one-shot

support for modified hypotheses:

Firstly, the pivotal effect is realized by a dynamic variable that

encompasses a range of questions instead of one. For instance,

the auxiliary view in Dziban’s case is a static outcome of a query

result from a given question. The view updates as the static

parameter set is replaced by another question. The possible

derivations from the original hypotheses are unaddressed.

As a comparison, leveraging a semantic attribute instead of

a new view allows for decomposing the initial hypothesis

to one or more key concepts. This polymorphic nature of

semantic attributes support not only a simple value but a

multivariate context. Thus, the identification and formulation

of semantic attributes scaffolds a novel search space instead of

an onetime representation of a static pattern as what Dziban

provides. The pivotal effect is not a hypothesis adjustment

facility but augmentation to support the multifacetedness of

the hypotheses.

Secondly, the pivotal effect extends the reachability of domain

knowledge. Domain knowledge usually helps the analyst to re-

late the hypothesis to the necessary sub-group or sub-feature of

data, by which a hypothesis is formed. The formed hypothesis

leverages a data view to continue a follow-up experiment. How-
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ever, this convention only uses domain knowledge to modify

the data view instead of internalizing the knowledge as part of

the substantial materials to assist hypothesis conceptualization

with the visualization system. The pivotal effect closes this

gap by the visual embodiment of domain knowledge, casting

influence throughout the visualization pipeline from drafting

initial concepts to the ultimate experiments for conclusive

knowledge.

These two points distinguish pivotal visualization as a de-

sign method with more profound impacts to the explorations.

To back up this concept of pivotal effect, we add theoretical

anatomy consisting of clearly defined rationales and implemen-

tation scaffolds, with which the non-trivial effort in realizing

the pivotal effect can benefit from. We continue the extensive

elaborations by illustrative figures and formal definitions in

the next section.

Formalism

An Asymmetric Model of the Dual Space Search

The dual space search model [82] illustrates the underlying

pattern of knowledge discovery. It underlines the duality and

gradual, cumulative nature of knowledge discovery. Through

constructing hypotheses and conducting experiments, the

consistency of new knowledge can be verified with known in-

formation. However, the model presents two problem spaces as

symmetrical blocks, which may contradict reality in some cases.

For instance, the very effort of experimentation requires data

to support as ground facts. Ideally, every new hypothesis in the

hypothesis space is justifiable (or falsifiable) by experimenting

with the corresponding data. However, in reality, the provision

of data is not inexhaustible — insufficient information can

suspended the experiments in the middle ground of neither
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yes nor no. Then, the hypothesis in this situation is invalid

as it contributes no extra knowledge. Therefore, the explo-

ration space of all valid hypotheses (determined by the variety

and depth of hypotheses) needs to satisfy the verifiability (or

experimentability) of hypotheses assuming that the domain

expertise and the prior knowledge remains constant without

altering the analyst. Since experiments of hypotheses need to

be supported by data, a shortage of data availability threatens

the how much of the hypotheses can be experimented. How-

ever, this detrimental effect only goes in one direction from

experiment space to hypothesis space — reducing the number

of hypotheses have no substantial influence on the provision of

data and the associated experimentability. We found that such

a unidirectional dependency, where the hypothesis space is

constructed on top of (and therefore limited by) the experiment

space and the experiment space is largely determined by data

availability under the hood, is overlooked by the symmetric

notation of dual space as in Figure 3.3. This inconvenience

motivates us to devise a modified version of the dual space

model to accommodate the asymmetric relationship between

the two search spaces. As a result, we have conceptualized

a model featuring an asymmetric adaption from the original

dual space structure as in Figure 3.5.

Figure 3.5: An asymmetrical depic-

tion of two problem spaces: the area

of experiment space depends on

the availability of data (green re-

gion). The hypothesis space is ex-

tended from the experiment space

(blue area), the thickness of which

relies on the maximum distance of

verifiability of experiments (Rmax).

A dashed line between hypothe-

sis space and experiment space in-

dicates the dual space search can

travel between as in the symmetrical

model.

maximum limit of verifiability
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The new asymmetrical model utilizes concentric circles to rep-

resent exploration spaces where areas of the inner circles (i.e.

data, experiment space) support the areas of the hypothesis

space. In this model, the experiment space is determined by

the ground data and related inferences based on previously

externalized declarative knowledge (§ ·3.2 Procedural Knowl-

edge with Semantic Interaction). Here, we use prior knowledge
to represent all sorts pre-existing knowledge regardless if it

is externalized with the aforementioned process or not for

simplicity. Similar to the original model, the experiment space

and the surrounding hypothesis space share a common border

(dashed line in Figure 3.5 Asymmetrical Problem Spaces), indi-

cating both spaces are traversable for hypothesis/experiment

searching. The new model includes data availability as an inte-

gral factor, which facilitates the explanation of the advantages

of pivotal effect.

While making explorations in the two spaces, the areas may

increase, updating the proportions of each in the total area for

knowledge exploration. For instance, an upsurge of infection

number in certain demographic niche provides important fresh

ground knowledge to possibly explain the epidemiological

cause of the disease. The new data from the diagnosis report can

be used to test the hypothesis that medical experts hold, giving

them stronger validation support to solidify their knowledge

of the disease. The expert may rethink their hypothesis if the

previous one is wrong, or continue to form new ones based on

that for more detailed understanding. This process invokes the

expansion of the experiment space as latest discovery brings

more evidence to validate the hypothesis or inspire more

hypothesis which was not accessible before the new data is

available. Similarly, improved prior knowledge can also affect

hypothesis space, making deeper or more efficient (i.e. more

likely to be proved as true) hypothesis possible. Given that the

contribution of new data or improved prior knowledge to each
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dependent region is unknown, we only use the figure to mark

the structure of the model instead of the exact areas of each,

which may vary to the specific situation.

The hypothesis space is unique because it has an open border

outside, indicating it is less confined and flexible for extension

since the hypotheses themselves are not inherently required

to be true and one can freely have a growing number of

hypotheses as long as they are relevant to the research. The

outside border we used is only to indicate the limit number

of valid hypotheses, i.e. the hypotheses verifiable in current

setup. The closer a hypothesis is located to the outer border,

the less verifiable it is. Here, we denote the verifiability (or

experimentable) of a hypothesis by h. h decreases as its distance

to ground knowledge d increases. Assuming no additional

data or more capable analyst can be leveraged, a hypothesis it

is not verifiable if it is located beyond the maximum limit of

verifiability Rmax (i.e. h > Rmax). Thus, we can conclude that

the hypothesis is inconsequential and out of scope (Figure 3.6).

We use sentences like “the raised question cannot be answered

by experimenting with available data alone” or simply “this

collected data is irrelevant to this issue” to describe situations

like this.

Figure 3.6: An Unverifiable Hypoth-

esis: Bigger distance from experi-

ment space h indicates the hypothe-

sis is less easier to experiment and

verify. If the verifiability h goes be-

yond the boundary of what current

experiment space can support (i.e.

h > Rmax), the hypothesis is our of

scope and inconsequential to deriv-

ing meaningful knowledge.

verifiability of hypothesis
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Since exploration involve search in both of the spaces, we define
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the exploration space E as the union of hypothesis space Sh
and experiment space Se, i.e. E = Sh ∪ Se.

Therefore, this asymmetrical model raises two important facts:

1) the unidirectional dependency toward ground knowledge,

and 2) the bounded verifiability of hypotheses.

The Pivotal Effect with a Semantic Attribute

A reference to this asymmetric model makes it easier to illus-

trate the realization of pivotal effect through the introduction

of a semantic attribute.

Firstly, it aligns well with our common sense as a broader di-

versity in the hypothesis generation is helpful to capture novel

ideas. However, overloading the analysis with random, scat-

tered hypotheses can lead to distractions, which undermines

the likelihood of deeper discoveries on a focused theme. It will

be more productive and revealing if the piecemeal findings

can assist each other under a common problem realm. For in-

stance, in soccer game analyses, the pressure on the ball shares

similar patterns as the same on players [191]. The analyses of

one contributes to another as both involve understanding the

dynamic of the common theme of pressure. From a design

perspective, a connection that apparently wraps these two

problems together will help to address this issue of random

and scattered hypotheses without a focus. If we can converge

the hypotheses forming to concentrate on a coherent theme, the

hypotheses can thus inform another, leading to a structured un-

derstanding of the problem (as explained in § ·3.4 Hypothesis

Search). In this example, the concept of pressure can perform

the function of a semantic attribute that converges threads of

inquiries to create enough focus for the non-salient knowledge

(e.g. the interaction between ball pressure and movements of
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Figure 3.7: Implanting semantic at-

tribute in the asymmetric model cre-

ates a pivotal effect which enables 1)

coherent explorations toward a prob-

lem theme and 2) ground knowl-

edge extension permitting inward

attributability of hypotheses and en-

abling outward novel hypothesis

space.
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players), which is harder to access if hypotheses are scattered

in pieces.

Secondly, as the concept in a semantic attribute incorporates

tacit domain knowledge and inferences from data, it enriches

the ground knowledge in the experiment space (the union of

green and the blue area) while keeping the verifiability intact.

The embodiment of a concept allows the analyses to perform

with hypotheses on the level of concepts (instead of feature

parameters). The rigorous match to the source data (deter-

mined by its composition, cf. Figure 3.4) allows an interface to

be established for bidirectional reasoning — accessing existing

knowledge and data in the experiment space from hypotheses

(inward) and catalyze new experiment outcomes to inspire

new hypotheses (outward). Therefore, the explorations in the

dual space search based on the semantic attribute ensures the

hypothesis-experiment cycle is lifted to the domain conceptu-

alization level but not easily derailed by loose definitions of

concepts.

The aforementioned advantages are explained by Figure 3.7,

where the mechanism and composition of the pivotal effect are

illustrated. Here we depict the semantic attribute as an extruded

knob instead of a full circle to represent the problems adhering



3.5 The Pivotal Effect 59

to the concept, i.e. topics of a common theme surrounding that

semantics. This depiction tells that 1) the semantic attribute

intersects with prior knowledge in the sense that they both

leverage the domain knowledge while semantic attributes do

not require a rigorously externalized format of the knowledge,

2) a semantic attribute implies a specified direction of search

driven by the concept of relevant domain knowledge. Thus,

the semantic attribute guides the experiment space toward a

designated theme and extends the original hypothesis space

S′
h

= Sh ∪ SSA. New questions leveraging the concept in

semantic attribute can therefore happen in the new realm.

Thus, the total exploration space is expanded as

E′ = S′
h
∪ Se = (Sh ∪ SSA) ∪ Se

, thus

E′ > E

given the unmodified maximum verification distance Rmax.

This expansion of exploration space has a systemic effect on

knowledge discovery. We employ a model to summarize the

pivotal effect on this process. Assume no new data are collected,

the constant amount of raw data is denoted by d and the prior

knowledge (externalized declarative domain knowledge) based

on that is denoted by Id. Then, the available ground knowledge

for experimentation is the sum of the two, i.e. K0(d) = d + Id.

Since knowledge discovery is a cumulative search process, the

size of discovered knowledge grows in time. We distinguish

the time spent in hypothesizing as th and the time spent in

experimenting as te. Thus, a complete hypothesis-experiment

cycle takes the time of l, i.e.

l = th + te (3.1)
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If we use li to denote the time spent for the i-th loop of

hypothesis-experiment cycle, n is number of loops given the

exploration time t, then n, t suffices

∑n
i=0

li ⩽ t <
∑n+1

i=0
li.

Therefore, the time and data dependent model of discovered

knowledge is defined as:

K(t, d) = d + Id +
N(t)
∑

i=0
Qi(E) (3.2)

where Qi(E) is the knowledge chunk discovered in the i-th
hypothesis-experiment loop based on exploration space E, and

N(t) is the function to find number of loops n given the time

t. Since improving exploration space augments knowledge

discoveries, Q is positively correlated to E, i.e. 𝝆Q,E ⩾ 0. Thus,

an exploration space boost from E to E′ improves knowledge

discovery from Qi(E) to Qi(E′) in each loop, contributing to

the search productivity and the quality of new discoveries.

The side-effect of increasing the exploration space is the extra

time budget in forming hypothesizing (th) and experimenting

(te), which sum up to a longer loop time l (Equation 3.1). We

suppose the experiment time to take up a larger proportion

of the total loop time after an exploration space improvement.

This is a result of respective effects on the two spaces:

On the experiment space side, a semantic attribute adds new

information on top to the experiment space, which contributes

to a larger scope of information. It takes a longer time to search

in a larger experiment space. Thus the time te is expected

increase. Also, verification with concepts in the semantic at-

tributes requires the knowledge exchange with the related

domain knowledge, which only resides in human minds and is

not easily accelerated by computation. The domain knowledge

in this case acts as a gatekeeper to improve the quality of

generated knowledge, at the cost of time efficiency.



3.5 The Pivotal Effect 61

Conversely, the time cost for hypothesis search th is likely to

decrease because semantic representation eases the conceptu-

alization by eliminating the mental workload of understanding

the underlying data complexity (§ ·3.2 Procedural Knowledge

with Semantic Interaction). In a hypothesis search, validating

a hypothesis (checking) often costs much less resource than

forming one (searching). This aligns with our daily experience.

For instance, when performing the data analyst to study the

carbon emission in different states in US, the assumptions

of whether population contributes more significantly to the

emission than industrialization is an outcome of thoughtful

reasoning, which usually takes a period contemplation longer

than fact-checking with software tooling.

As we try to combine the two opposing effects on the efficiencies

of exploring the two spaces, the added time cost from additional

experiment space is apparently overshadowed by the boost in

hypothesizing efficiency. This is because the boost in human

productivity in searching hypotheses contributes a larger time

difference comparing to the negligible additional time cost

to cover a larger experiment space with software facilitation.

Therefore, in a fixed total time t of hypothesis-experimentation,

the average time cost of each loop after the space expansion l̄′

is expected to be lower, i.e. l̄′ ⩽ l̄, resulting in more loops of

search, i.e. n′ ⩾ n, which leads to an amplification to the total

amount of discovered knowledge K(t, d) as in Equation 3.2.

In sum, the pivotal effect produced by implanting a semantic

attribute to the asymmetric search model can achieve improved

knowledge discovery. It enables faster search of deeper, more

focused hypotheses even when the research objective is com-

plicated with problem uncertainty.
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Visual Depiction

The manipulation of visual artifacts enables a dialogue between

human and machine [192, 193]. Likewise, to make the pivotal

effect tangible to the user, visual depiction is essential. Visual

encoding in visualization design is the process that transforms

raw data into visual mappings such as colors [89], shapes [55,

194], or spatial locations [195]. In this process, the visual vari-

ables need to consider the intrinsic matching of data variables.

For instance, the hue differences of colors can be leveraged

to distinguish categorical data, while shape dimensions like

height (or size) are suitable for numeric data. We also prefer to

use screen locations to present the inherent spatial relations in

GPS coordinates. However, semantic attribute is easily mapped

like the variables in the raw data because of its incorporation

with the semantics of concept. Visual design for the concept

needs to be both context-sensitive (e.g. the intensity gauge of

network traffic flows) to be seamless with the original variables

and feature-rich (e.g. flexible layout reconfiguration) [196] to

accommodate various angles to explore problems associated

with the concept.

Accurate and quick interpretation of conveyed semantics de-

pends on its close alignment with the visual encoding [88].

Some conventions in cartography such as blue for water and

green for forests are good examples following this rule. The-

oretically, the Form-Semantics-Function model [197] treats

semantics as a function in the domain vocabulary to create

resemblance between the visual metaphor (i.e. the analogy to

a domain feature by the design of a single visual variable or

the organization of visual variables) and the domain function.

Simoff [197] divides the transfer of semantics into common
semantics (i.e. semantics sharing similar notions in both source

domain and target domain, e.g. symmetry and balance) in

generic space versus new semantics (i.e. semantics revealing
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unique characters between form metaphors and functions, e.g.

thickness of a border stroke and the priority of that task) in the
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. Simoff [197] argues that the design of visualized

semantics should focus on revealing the unique characteristics

of certain domain functions with new semantics in the blend

space, which motivates the design effort to emphasize more

on the novel unknown aspects beyond the existing domain

concepts. Thus, the visual design of a semantic attribute should

not only explain just the semantics but also invoke new re-

lationships, formal manifests, and visual expressions of new

semantics in the visualization system [198].

Focusing on the creative function of inspiring new thoughts,

the semantic attribute may further extend the concept into

deviated sub-concepts to assist various analytic scenarios, re-

sulting versions of visual forms supported by respective data

translations. For instance, a quantitative measurement of a pair

can be translated into graphical relationship of a group, or

scalar values could be translated to temporal paths. Such devi-

ations project the semantic attributes non-intrusively into the

analytical environment, facilitating quick interpretations and

knowledge generations leveraging the parent concept [161].

The visual design for a semantic attribute depends on a set

of unique features in the data, the problem context, and the

domain interest. Therefore, one fixed formula to encompass

every little design consideration is practically impossible. So we

apply a brief abstraction to the visual design method. Built on

top of that, chapter 4 and chapter 5 will elaborate the complete

implementation details to substantiate the benefits of pivotal

visualization in explicit cases.
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3.6 Study Context: Investigating Implicit
Behaviors

As the development of digitization of everyday things goes on,

complex problems are increasingly possible to be represented

by data, which opens up the possibility of data-driven and

data-reliant studies of behaviors. Such a trend is already taking

place in the behavior studies of animals [199, 200] as well as

humans [201–203]. As the scope of and depth of the study

expand, applications of data analysis techniques based on

modern apparatus becomes prevalent.

The data-empowered behavior analysis requires treatments to

the quality and availability of data, which is determined by the

data provenance stage. There are two major data provenance

approaches to collect behavior data (as opposed to the classic

manual input or labeling in the historical cases (§ · 1.1 Why

Visualization?)): 1) using digital sensory to capture a selected

feature set from the physical world and storing them in a

(semi-)defined schema, or 2) accumulating system logs from

open-ended virtual environments where people can participate

via an agent living in a platform (e.g. video games and social

network services). This difference in the origination of data

can be divided by the notions of sensory data versus log data.

The sensory data and log data in our studies have three dif-

ferences: 1) they are used to describe behaviors in different
time-spaces. Sensory data is observed in real world bounded

by universal natural physical laws, while log data only follows

the system-defined behavioral rules which may not be consis-

tent depending on the system. 2) They are prone to different
vulnerabilities. sensory data need to consider potential fidelity

loss as limited by the sensing capacity or physical situation.

This issue does not exist in log data. The transmission, storage,

and computation errors can negatively affect the data quality
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of both. 3) The reproducibility of ground truth are different.
If log data only stores every state change during the process, a

deterministic system can basically reproduce the entirety of

the process without loss of fidelity. This does not hold true

for sensory data as only the selected features in the interested

phenomena, events, or processes are logged for analysis. The

analysis therefore only covers certain aspect of the behavior as

long as it provides sufficient evidence for the argument.

Awareness of this distinction and the possible consequent ad-

vantages or disadvantages are constructive to the hypothesis

generation and interpretation of experiment results. For exam-

ple, since GPS data are sensory, the location specified by the

coordinates might be incorrect under certain weather condi-

tions or geographic occlusions (e.g. atmospheric effects, sky

blockage [204]). Considering this, frequent sudden turbulence

of movement trajectory in certain areas might be recognized

as a place of poor signal instead of real intensive movements.

Also, because different virtual environments support different

types of behaviors, the analysis method for certain behavior

need to be adjusted or even redesigned for similar insights. For

instance, the play duration of an attempt can reflect opposite

player competitiveness in puzzle-based games and survival

challenge games.

In the upcoming chapters, each of the two studies use one of

the aforementioned data types respectively. One is based on

sensory data from wild animals in the open space while the

other is the log data from video game replays. In both studies,

we have turned our focus on the behavior patterns of living

entities because behavior problems contain non-exhaustible

influencing factors (e.g. heterogeneous internal states and

external conditions) [205–208]. Therefore, the research prob-

lems concerning behaviors can be near-infinite as they are

hardly determined by the limited data only, which makes them

suitable candidates for analyzing data facing high problem
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uncertainty. Facing this, we develop the pivotal visualization

design method, whose components and effects are illustrated

by the asymmetric dual space search model. The theoretical

model of pivotal visualization explained in this section presents

an approach to augment knowledge discovery under problem

uncertainties. We unfold the application details of the pivotal

visualization method with complete studies starting from the

next chapter.



Study A: Visualizing Players’
Strategy Choice and Action

Complexity in Video Games 4
Overview: Behaviors in game plays can be analyzed through
saved replay data. This chapter∗presents a previously published
study that demonstrates how pivotal visualization can establish
a novel perspective into the actions, timings, strategies in game
plays for learning experts. The explored implementation tracks
the dynamics between behavior complexity and performance
change as players improve. Strategy patterns are depicted
through a customized glyph system (i.e. Strategy Signature)
to visualize structural differences in strategy. We allow easy
access of contextual information to verify discovered insights
against raw attributes. Evaluation with expert users shows that
the system effectively reduced their time and effort in finding
interesting sub-groups and gave them unexplored angles of
behavior complexity to contemplate player’s skill growth.

4.1 Introduction

In addition to providing entertaining challenges, a video game

also makes an open platform to collect diverse user interactions.

The inputs during a game play are gestalt results of perception,

conceptualization, problem framing, and iterative learning.

Thus, the play data derived from game logs are valuable assets

to study players’ individual preferences as well as learning

∗
This chapter is based on the published work W. Li, M. Funk, Q. Li, and A.
Brombacher, Visualizing Event Sequence Game Data to Understand Player’s Skill
Growth through Behavior Complexity, Journal of Visualization, May 2019.
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patterns. The visualizations facilitating this task are being

developed to enable fast and flexible exploration into players’

behavior patterns [209], lowering the barrier of data analysis

with domain knowledge informed judgment [210].

For either self-improvement [211, 212] or game design [213],

player performance is a common concern in the field of game

analytics. Visualizations can effectively reduce the effort to

rate the game plays or players by visual comparison. However,

finding the performance differences and investigating the cause

of them are different because different levels of understanding

are involved — the chronicle perspective of how players learn

and improve over time can exhibit valuable details to extract

a more structured view of how players play a game. This

involves insights into the implicit strategy choices, execution-

and-refinement loops, or the individual learning styles which

are not easy to measure and therefore statistically analyzed.

Therefore, it is necessary to design visualizations specifically

to study the performances and learning processes by scru-

tinizing the variations of strategies over time from multiple

perspectives.

To understand the strategy variations, we employ action com-
plexity and strategy patterns as the semantic attributes. The

former is observed by the heterogeneity of players inputs, to

facilitate the insights into the learning patterns in video games

whereas the latter is glyph system encoding strategy charac-

teristics to delineate the intensity of in situ strategy shift (i.e.

the tendency toward incremental improvements of consecutive

strategies v.s. abrupt reconceptualization of new strategies).

The result is a web-based interactive visualization tool that

allows learning experts to reason with a wider range of hy-

potheses regarding how players improve their games through

repetitive trials. Evaluations with the learning experts show

that the pivotal effect supported by the two semantic attribute

can effectively boost research productivity with which several
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unseen patterns are successfully discovered.

To the best of our knowledge, our visual analysis approach

is novel in the game domain in terms of the integration of

behavior complexity and the support of insight into repeated

learning processes. This study illustrates how pivotal visualiza-

tion can be implemented to exemplify its effectiveness in the

game analytics domain. We argue that the explorations into

the behavior complexity and its relation to discrete action data,

performance outcomes, and most importantly strategy abstrac-

tions in this study elicits reusable knowledge for research of

similar interests. We mention a few highlights in this study:

1) We exemplified an integrated visualization following the

pivotal visualization approach which enables a view of implicit

action complexity for learning behavior study. 2) We invented

a novel glyph system for medium length event sequence to

extract players’ strategy characteristics for self-comparisons

of consecutive attempts as well as between-player preferences

differences.

4.2 Literature Related to This Study

Related works to this study are three-fold. This first focuses

on recent works applying visualization techniques to analyze

game data. The second discusses how complexity can be de-

rived using entropy-based models. The last covers techniques

that summarize event sequences beyond video game related

fields.

Visual Analysis For Games

Visualization of game data can be differentiated by design pur-

poses influenced mostly by the targeted users, based on which
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the design rationales can vary significantly [209, 214]. Following

such a distinction, the two most recognizable types of visual-

izations are the entertainment oriented-visualization and the

developer-oriented visualization. The entertainment-oriented

visualizations are also noted as "playful visualization" [214, 215]

because visualizations under this umbrella is mostly driven by

the need to extend the enjoyment of the game itself. Entertain-

ment features such as on-line community [216] or achievement

system [217] are integrated to motivate participation and player

engagement. In contrast, the developer-oriented approach cares

less about how much extra appeal the visualization be added

to the game by itself. Their primary focus is to use the game log

data to reproduce the gaming process for postmortem analyses

based on which playing experience can be understood to iterate

the game design [218–220]. For instance, game designers can

use the derived insights from visualizations to deliberately

tweak and adjust the game design at specific stage/phase to

streamline the experience journey of the game.

Comparing to these two categories, our study has a significant

distinction as the design requirement is centered upon the

learning behaviors instead of gaming or game development,

which may require specific considerations that are not fully

covered by the aforementioned works. Prior works in this

regard are few but interesting. Farooq, Baek, and Kim [218]

extracts player behavior model in a routine manner, but the dy-

namic difference between time and individual is less observed.

Hernández, Duarte, and Dodero [221] utilize Process Mining

to build behavior models in serious games (video game with

educational purposes), but lacks advanced visualization and

interactions. Wallner [222] used a transition-focused approach

to seek evidence on progressive changes of behavior patterns

— specifically with event sequence data. However, the study

primarily emphasize on technical implementation instead of

visual design.
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The player behaviors are often inferred from primitive measure-

ments such resources, items, or movement locations. Therefore,

it is often required to synthesize abstract metrics beyond these

primitive factors to describe higher level behavior patterns.

Moura, el-Nasr, and Shaw [223] summarized time-dependent

actions of the selected session into a static diagram to dis-

play behavior patterns in an action role-playing game (A-RPG)

game. Similarly, Li et al. [220] uses derived metrics to reveal the

mechanism behind snowballing effect (one side of rival teams

accumulates advantages unvaryingly) in multiplayer online

battle arena (MOBA games). However, the used abstraction

methods are mostly designed for numeric attributes, which

are incompatible with categorical events.

These previous work either displays insufficient treatment

to our case or noticeable-to-major incompatibilities with the

objective of our study. Therefore, an unexplored approach to

speculate the learning patterns and the related behaviors is

motivated.

Informational Complexity with Entropy

In information theory, entropy is a measurement of the hetero-

geneity of possible states in a system. Similar entropy-based

principles can also achieve plausible results in measuring the

complexity of human behaviors [224, 225].

For action events in a video game, measuring the complexity of

gaming actions is essentially measuring the randomness or the

lack of order in a given set of categorical data. To achieve this,

there are several applicable methods. They are Complexity In-

dex [226], the Turbulence [227] and Longitudinal Entropy [226].

However, the first two methods are sensitive on the sequence

length, which are prone to duplicate noise of repetitive user

inputs despite the same underlying intention. Considering this,
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the Longitudinal Entropy which streamlines the essential infor-

mation quantity, suits the best for its consistent performance

in both verbose and short sequence.

Given the pi is the proportion of positions of the same action

i and A is the alphabet size of all the possible actions. The

formula of complexity can be defined as:

H(pA) = –
a
∑

i=1
pilog(pi)

Provided the complexity can be quantified as scalar values,

visualization of behavior complexity can be made possible.

But how the behavior complexity varies especially in the con-

text of repetitive gaming process is not touched by existing

visualization work.

Techniques in Summarizing Event Sequences

Making sense of massive event sequence is hard. Some authors

use mining algorithms to find a simplified subset of events as a

representative of similar ones. Their techniques usually vary in

the sensitivity on different attributes to categorize sequences

based on particular domain requirements. For example, Chen,

Xu, and Ren [228] designed a "soft pattern matching" mech-

anism to summarize multiple event sequences that tolerates

minor inconsistencies of events for less cluttered results. Unger

et al. [229] use both semantic similarity and temporal similarity

to form meaningful clusters. Apart from automated pattern ex-

traction, user defined matching rules before visual inspection

or statistical analysis are also possible. Works like Cappers and

Wĳk [230] and Zgraggen et al. [181] adapted query languages

and regular expressions to remove noise data and unrelated

sequences with graphical user interfaces. Thus, categories
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sorted by different rules form accordingly with cleaner visual

result. However, this approach is more useful to find the most

representative (i.e. most common or frequent) patterns. The

techniques for scenarios when identifying frequent sequences

is less important are insufficiently explored

There are also ways to improve the sense making in event

sequences with primarily visual design. For example, Life-
Flow [231] and CoCo [232] summarizes low cardinality patient

journey events with a tree structured view. MatrixWave [233]

achieved the summarization by mostly layout design, which

is appealing because direct visual representation without the

loss of information is proven to be highly effective. However,

scalability issues may arise when information density increases

and visual clutter is unlikely to be avoided easily.

4.3 Project Background

Lix: Game as a Data Platform

Puzzle games are a genre that has a low-entrance barrier for

most novice players. Unlike intensive action or shooter games,

puzzle games are less demanding on fast reflexes and prior

experience, making them more inclusive toward wider demo-

graphic groups including both male and female, senior and

junior participants [234]. This advantage ensures the analysis of

learning is not biased toward a particular niche and the insights

are more representative of learning behavior patterns in the

general population. As learning are progressive processes, the

study of learning behavior requires multiple batches of game

logs containing consecutive attempts to reconstruct the timeline

of progressive adjustments. The game choice needs to consider

the time cost to quickly generate game log batches produced

by discrete retrials. Furthermore, to eliminate the influence of
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Figure 4.1: Lix Game: little bots

(lixes) are spawned automatically

from the black square hole in the

middle left. The control bar at the

bottom indicates jumper is cur-

rently selected and ready to be trig-

gered on one of the lixes. The middle

right part of the picture shows a deep

tunnel into the ground made by

miner s. Yellow bars at the tunnel’s

entrance are built by platformer s,

which can support upcoming lixes

walking on them. The destination is

out of current screen frame to the

right, which can be found by mouse

hovering on the right boarder of the

screen to scroll over.

✍: http://www.lixgame.com

non-player factors, we prefer deterministic games (i.e. same

input will always produce a fixed result regardless of the player

and the time of attempts) as oppose to non-deterministic ones

(i.e. the game progresses as a join product of player control and

non-controllable variables such as behaviors of other players

or random environmental influences) to ensure players’ perfor-

mance variations are faithful reflections of individual learning.

Considering these criteria, the game Lix suits the study context

well as it suffices easy player onboarding, quick and steady

data production, and deterministic gaming mechanism.

Lix is an open-source variation of Lemmings, which was origi-

nally developed in 1991 by DMA Design
✍

. The game consists

of puzzle-like challenges, where a new "lix (the autonomous

walking bots)" is spawned into a two-dimensional virtual world

every a few seconds until a top number of 20 (Figure 4.1). Lixes

walks restlessly by default which may potentially be killed

by encountering hazards such as falling into water. Each lix

turns back if hits an impassable obstacle such as a wall or a hill.

Actions (such as jumper ) can be triggered with a lix, practicing

the ability to interact or change the corresponding landscape,

which may help the other lixes to pass over or take a safer path

otherwise. For example, a player can trigger a miner to dig a

tunnel into a hill or trigger a platformer which modifies the

pathway to make it less steep to pass safely. A list of available

actions are platformer jumper climber floater batter blocker

nuke exploder and miner . During the play, players arrange

good timing and actions to help the lixes arrive at the destina-

tion with the least loss-of-unit. A top score of 20 is possible if

all of the lixe members safely arrived at the destination.

Expert Background

Five domain experts (E1 E5) are involved in the project: E1 is

a researcher with 4 years of research experience in studying
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human learning in game scenarios, who is also the maker of

the data collection program to extract data from native replay

files. E2 is a game researcher with a strong background in game

visualization as well as data mining. E3 is a researcher with

industry experience of video games and is familiar with mod-

ern game development processes. He has contributed widely

applied user research methods in the game environment. The

rest two (E4 and E5 ) are junior research assistants specialized

at data analytics and informatics. E4 and E5 are responsible

for purposing possible new analytic methods to meet certain

requirements. Only E1 is a proficient player among all the

experts.

The research is exploratory in the sense that all the experts do

not have crisp questions for the data collection. The objective

is to find as many as possible new ways to develop a proper

description of learning behaviors by exploiting the data. From

their awareness of the game domain, it is acknowledged that

learning pattern is deeply tangled with the in-game decision-

makings as players progress. The experts are interested in

exploring novel angles in understanding the actions especially

by ways beyond known statistic models.

Data Description

The raw data consist of numerous actions from 15 players with

271 sessions in total (a new session ends when an attempt or

trial to win is over). An action is recorded every time a player

triggers an ability with a lix (possibly one of the actions shown

in the control bar in Figure 4.1). Each action is described by

eight attributes, including the Player as the player’s identifier,

the n-th Attempt of this player, the Action type (like jumper ),

the number of elapsed frames updated (Update) when action

is triggered upon the m-th Lix by spawning order. The game

uses result to mark the end of an attempt. The number of Saved
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Table 4.1: An Example of Raw Data

Scheme: beginning data points of

the first attempt by Player 1

Player Attempt Action Update Lix Saved Ability Second

1 1 JUMPER 76 0

1 1 PLATFORMER 158 2

1 1 PLATFORMER 174 3

. . . . . . . . . . . . . . . . . . . . . . . .

1 1 RESULT 9205 NA 0 4 614

lix will be counted as the final score when result is triggered.

The data also summarize used unique actions (Ability) and the

attempt’s used time (Second).

Players are recruited from college students with not prior

experience with the game. Lix has many built-in stages (i.e.

virtual worlds of challenges) to choose from. We selected a

novice level (easiest of all four levels) to moderate the challenge

in case the learning is crippled for being overly difficult to

some players. We encourage the player to freely learn and test

their solutions as much as possible.

4.4 User Study

We conduct user studies in three phases to uncover the domain

requirements as preparations to design the visualization. The

first phase is to obtain a general sense of the current workflow

to find possible pain points. The second phase iterates versions

of design mock-ups to test out the most suitable design pattern.

The last phase concludes the design requirements for the final

implementation.
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Phase I: Domain Investigation

Process

In this phase, we conduct semi-structured interviews with the

domain experts during which their current working routine

and existing discoveries are shared. We ask questions regarding

how insights were generated by current methods (e.g. E4 and

E5) shared their findings from explorations with R packages),

during which experts are free to suggest new functionalities

with specifications of their explicit needs. Their sharing also

clarifies the used apparatus for extracting raw data from the

game’s native replay files. Each player plays a single session

at a time with a free choice on how many attempts are good

enough to represent their skills. Players play in isolation one

after another without any awareness or influence of others’

game play. This ensures later players cannot learn from earlier

ones even tried the same challenge.

Pain Points

A few pain points in their current workflow are identified with

the process above. For instance, we found the analysis opera-

tions are cumbersome as it requires laborious reconfiguration

by editing the source code to experiment different hypotheses.

Also, their sequence mining algorithm can produce some sim-

ple results but the experts seem to struggle with interpreting

the results and relating them to certain behavior insights. This

potentially indicates that the experts lack a direct access to the

game context from which they can reason with the awareness

of related factors to the mining results. It is also reported that

visualizations by the generic plotting methods in R packages,

which they use frequently, is too primitive and lacking levels

of detail on demand. They wish to immediately test newly
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formulated inquiries on the fly which is unfortunately not

well-supported by the current workflow.

Phase II: Iterating Alternatives

We use visual mock-up (as an effective method to commu-

nicate design ideas [235]) is to quickly flesh out the design

concepts to search solutions that possibly fill the gaps in current

workflows. As most domain experts (except E2) are not knowl-

edgeable about visualization designs, we employed co-design

sessions to elaborate on details and go through an iterative

process to solidify the final plan for the design of functions

and layouts (Figure 4.2).

As discussions continue, the design details are enriched by

iterative versions of visual design with adjustments confirmed

by the designer and the expert users. This process also helps

us obtained a crisper sense of how the visualization is likely to

be used in clinical settings which are unlikely to be possible

without such an effort. For instance, the experts may occasion-

ally look into the time intervals between actions to understand

the solution based on which they can generalize some patterns

of strategies. Also, as learning behavior study, one may want to

know whether the player is decisive or hesitative. A reference

to the time differences maybe necessary for this case.

Phase III: Summarizing Requirements

Works in the previous phases help us enlist a few critical tasks to

be supported in the final design. To ensure the implementation

aligns with the facilitation of these tasks, we explain the most

significant requirements to consider both in the explicit design

and afterward implementation.
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Figure 4.2: Alternative designs and rationale history (color bleached for presentation): Ver.1 differentiates action types

with color. Actions of a single attempt are represented by a horizontally line with the distance determined by the time

elapsed in between. Scores are numerically displayed on the left. Ver.2 Added a) aggregated player performance, b) a

filter to show/hide certain action to focus on an action subset, c) the "ignore time" checkbox to discard time intervals

for simple sequences. Ver.3 joins the sequence action view and timed action view through a switch to accommodate

different tasks.

R1: information display design should feature player orientation.
Since learning behaviors are highly related to player charac-

teristics, the insights into how individual difference or group

similarity based on people are essential to the research. Visual

design of the interfaces should provide clear affordance for such

player-orientation. Therefore, the visual elements correspond-

ing to each data attribute should prioritize the prominence

of player distinctions. Comparisons between players, which

emphasize on the subtle individual differences in behavior

patterns, are highly valued by the experts.

R2: the support for exploring the relevance between anomalies and raw
attributes. When raw data are summarized, the reduced view

of data often hides the potential risk of overlooking important

information. This means a quick peek into the information

context of an anomaly is useful to locate deeper causes of a

phenomenon or connections of a pattern. Also, a lot of efforts

are wasted because the analysts lack efficient ways to revise

certain episodes in a game play. Considering the data size is

not too significant, exposing rich details of high granularity

of behavior traces is possible and constructive, which also
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eliminates a substantial amount of effort of reviewing game

plays.

R3: improvement cycles by attempts should be supported to ex-
hibit the chronicle strategy evolvement based on previous attempts.
Beyond performance as a result, the experts also care about

the patterns of incremental changes that preceded before a

strategy improvement or a success. As learning is a primary

focus of our study, the details in the process of performance

improvements are particularly valuable in the study of learning

behavior patterns. Designing a view to allow easy comparison

of consecutive attempts is needed for the analyses.

R4: an efficient way to describe the qualitative differences between
playing styles. Based on experience gained from the prior at-

tempts, each player could contribute novel successful plays

through different techniques or procedures. The differences in

strategies are qualitative and lack of an intuitive differentiation

method. A visual means to catalyze the discovery of similarity

between attempts and players is as useful as exhibiting the

differences between the involving attempts of the same player.

Visually identities of qualitative traits in strategies, which are

faster to compare than statistical categorizations, are believed

to be effective in this regard.

R5: the delineation of complexity in player strategies compositions.
Experts frequently use "complexity" when describing player

action combinations. However, such complexity is loosely-

defined, usually perceived by the naive visual impression of

the heterogeneity or density of actions in a sequence. This

shallow interpretation is insufficient for comparison when

sequences are complex or the qualitative differences are too

insignificant to be directly observable. Also, the higher level

trends of complexity turbulence are hard to conceive when

actions are merely discretely positioned. The graphical account

of the complexity variations should be implemented to support
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the complexity view of the action data.

4.5 Method

We employed a few novel methods to satisfy the requirements

defined above, which serves as essential pillars in the design

of visualization.

Behavior Complexity as a Semantic Attribute

To support the analysis of actions in a variety of angles, we

introduce the semantic attribute of behavior complexity to

this study. Here, the behavior complexity is defined as the

measured heterogeneity of action data driven by the individual

behaviors throughout the process of certain event, which is,

in this case, playing a video game. When the observed actor

uses more diverse type of actions, his/her next move becomes

less predicable as the predictions need to choose from many

pre-existing options. For instance, if a player retrospectively

uses many miner s with very occasional jumper s during an

attempt, his/her next move is significantly likely to be another

miner . But if a player is just getting started and he/she wants

to randomly test out the many functions of different moves

without a concrete plan (which appears to be supported by

some data series), the next move is nearly impossible to predict

accurately because the actions seem to follow no rules and

the resulted data look like noises comparing to ones of a well-

defined configuration of a strategy. Behavior complexity in this

regard is the attribute that put the subtle differences between

these two types of behavior patterns into perspective. The

higher the behavior complexity, the more diverse actions an

actor could perform, which consequently makes him/her less

predictable.
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Hereby, assuming behavior complexities are influenced by a lot

of invisible internal drivers of the actor (e.g. how much patience

a game player has for the particular challenge, how anxious a

player is during the play) as well as the external challenge (e.g.

the game stage). Due to individual differences, the emitted

behavior complexities can range from totally loss of order

(high complexity) to steady repentance of uniform actions

(low complexity). Following the gaining of experience, the

complexity of actions (by attempts) will regress to one or a few

centroids as solutions to a specific objective usually confines

to a limited finite number. Thus, by examining the behavior

complexity in different periods or scenarios, undiscovered

patterns of learning behaviors can be observed despite we

have no direct access to the internal drivers of the actor. In

this way, the behavior complexity plays the role of a semantic

attribute as it pivots the most obscure part of learning behavior

(i.e. the internal processes) to external variations (i.e. action

data), which can be visualized to interface with human pattern

recognition abilities for knowledge finding. Visualizations

based on this construct thus exemplifies the pivotal effect of

behavior complexity (as the semantic attribute) in the context

of puzzle games.

Quantification of Behavior Complexity

The strategy for this type of puzzle based game is defined by a

set of action combinations, which outcomes are series of event

sequences. A quantification result of the sequences should be

designed to capture the heterogeneity of actions of varying

length to represent the behavior complexity. Therefore, we

employ longitudinal entropy which calculate the information

quantity produced by the action sequences. This method is only

sensitive to the order and state distribution of actions (usually

a subset of the available actions). Since the complexity of



4.5 Method 83

[146]: Li et al. (2018), “Toward Vi-

sualizing Subjective Uncertainty: A

Conceptual Framework Addressing

Perceived Uncertainty through Ac-

tion Redundancy”

Figure 4.3: We nest (or group) in-

dividual actions and store them as

action sequences (in string format)

by per player per attempt and calcu-

late longitudinal entropy of each as

behavior complexity.

[226]: Gabadinho et al. (2011), “An-

alyzing and Visualizing State Se-

quences in R with TraMineR”

actions may be an indicator of undetermined thinking facing a

challenge [146], an increase of the information entropy of action

combinations can supposedly be induced by cognitive stress.

Because of the relationship, we implement the data processing

flow to make the link between the action heterogeneity and

behavior complexity apparent to reflect deeper insights in the

learning behaviors, cf. Figure 4.3:

▶ Data points as discrete actions are aggregated into event

sequences by every player attempt. The original temporal

order of each action is preserved but the time stamps are

discarded.

▶ Quantify the longitudinal entropy [226] of each action

sequence.

▶ Store the quantification result as behavior complexity in

a new column.

Required Complexity or Redundant Complexity

The measurement of behavior complexity opens up a new

angle into the study of learning based on simple categorical se-

quences. The complexity can increase as a result of knowledge

accumulation to devise new, advanced solutions. But it could

also relate to necessary complications by imposing redundant,

inconsequential actions. Likewise, simple actions of less behav-

ior complexity may not be premature termination of the game

or a sign of unskillfulness because of poor knowledge of many

other actions. It could also be interpreted as refined strategy

executed by finer, more accurate motor skills by the player as

long as the full scores are never compromised by less complex

action combinations. So there should not be a simple, one-way

explanation to the measurement arguing that the increase or

decrease of behavior complexity is always an advantage or

disadvantage.
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For an easier discussion, we define the complexity that can

be reduced without damaging the final score as redundant
complexity, while the minimum complexity of actions required

to pass the stage as required complexity. The definition of the two

concepts provides two functions. First, it raises the awareness

of undesired over-complication, which may not be a reflection

of meaningful growth but immaturity of a solution instead.

Second, the ratio of redundant complexity and required com-

plexity may be an indicator of stage difficulty on the basis of

players may find some stages difficult to reduce the redundant

complexity, suggesting the stage to be a difficult one.

As the astute readers may have noticed, the judgment of be-

havior complexity is rather difficult and more essential to the

study than the quantification of it. To ensure the fidelity of

insights, behavior complexities should always be contextually

interpreted to understand the deeper cause of such a variation

and challenged by domain expertise. This consideration pro-

vides strong reasons to understand the semantic attribute of

behavior complexity by visualizing the multivariate context of

gaming.

Strategy Pattern as a Semantic Attribute

Despite that some strategies are close in the complexity level,

the exact solution may contain fundamentally different pat-

terns which are not captured by numeric complexity alone.

This means complexity per se is good at telling the subtleties

in strategy composition. To summarize the qualitative differ-

ence in strategy and playing style, we need a firm grasp on

how strategies differ from or resemble with each other. To this

end, behavior complexity may not be ideal to suffice this goal.

To address this problem, we employed a glyph system (i.e.

Strategy Signature) to make qualitative features of strategies

more distinguishable. As a key attribute to understand the



4.5 Method 85

Figure 4.4: Example: Strategy

Signature of event sequence

platformer - platformer -

climber - blocker - miner -

batter - batter - floater - batter

behaviors, the qualitative strategy patterns are semantically

represented by visual graphs, which makes the subtle differ-

ences in the diversity of playing styles more apparent to the

human perception.

On the implementation level, Strategy Signature (SS) is glyph

based model which renders a (long) action sequence into a

compact circular polyline glyph (Figure 4.4). The shape of each

SS is determined by the action type and order of appearance

of each action in an attempt. The position of each action in a

sequence A is determined through a polar coordinate system,

which can be mathematically defined as the following:

A = (rt · sin𝜽c, rt · cos𝜽c)

where

rt =
t
N

· R and 𝜽c =
c
N

· 2𝝅

Here, each position takes a radial angle 𝜽 (determined by its

order number c – th in a rule-of-thumb ordered list of actions)

and the distance to the center r (determined by the time order

t). N (N = 9 in Figure 4.4) is the length of action sequence. R
is the maximum radius of the outer line.

This model ensures that same actions will always be aligned

to the same radial direction, which is useful to tell the usage

and frequency of certain actions. Like shown in Figure 4.4, the

produced shape is sensitive to the time order of actions, which

facilitates the distinction between sequences of similar action

statistics but different time order.

With the new glyph system, we can easily judge the diversity

of strategies such as sorting the strategies into a few typical

categories. While preserving the subtle differences between

similar ones, incremental changes and variation in strategy in

consecutive attempts are still observable. Visualization based
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on SS makes both commonality and distinction of strategy

patterns recognizable with a glimpse. The pivotal effect based

on this semantic attribute levitates the strategy patterns as a

result of diversity of playing styles from the details of discrete

action sequences, which facilitates the hypothesis forming with

a higher level of concept (i.e. strategy pattern) without the need

to read the discrete actions.

Figure 4.5: The default view layout has 3 views and 2 panels: 1) Player & Perfomance shows percentage of acquired

scores by the player; 2) Actions & Attempts places actions horizontally following lines of consecutive attempts; 3)

Complexity & Growth delineates complexity against performances in numeric scores; 4) Control Buttons are used

to either indicate or change current view mode or and apply filter to certain action combinations; 5) Bottom Bar is

dedicated to display Strategy Signatures.
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4.6 Design

Layout

The overall design of the visualization can be found in Figure 4.5,

where the interface is composed of a few cohesive views (sec-

tion 1 3) divided by natural spaces instead of linear dividers for

visual clearance. The layout begins with the control bottoms on

the top to globally manipulate the display of data (more details

in § ·4.6 Interactivity). In the main body area, columns from

left to right are focusing on 1. player & performance, 2. actions
& attempts, and 3. complexity & growth. SSes are horizontally

aligned at the bottom of the screen for easy comparison.

The first two columns depict all actions in the order of attempts

and players. User can use mouse scrolling to browse the entire

data set vertically to have a overview of all the actions in data.

While triggering the scrolling interaction, the first two colomns,

i.e. player & performance and actions & attempts, stays in sync

with each other such as the location change in actions & attempts
will drag player together to ensure actions and attempts are

always adjacently displayed with the corresponding player(R1).

The third column of complexity & growth is a summary of all

and therefore stays afloat to vertical scrolling.

Visual Encoding

Analysts’ inquiries demand a variety of information formats

and scopes. For instance, the distinction between individual

actions and the complexity of all the actions in an attempt may

require different views to find an answer with. Following this,

we highlight a few important key points to be supported by

dedicated design treatments through visual encoding in this

section.
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[236]: Healey et al. (1996), “High-

Speed Visual Estimation Using

Preattentive Processing”

Action

The most primitive attributes in the data are the distinctive

types of actions by the players. With the voluminous number

of actions, the workload of read action sequence as well as

any tasks related to such effort is significant correlated to the

ease of differentiating the action types. Considering this, we

employ the pre-attentive channel of color for this task [236]. As

suggested by cognitive science, the choice of nine vibrant colors

can make the dots different action instantly distinguishable

on a dark background, cf. left of Figure 4.7. The distribution

of actions is easily skimmable with the visual patterns of

colors that are fast to read and effortlessly processed by the

subconscious mind. Skimming through the action dots gives

the user a direct grasp on the details of discrete events (R2).

To make the hierarchical order of actions, attempts, and players

visually apparent, actions of a single attempt are depicted

as round circles, organized in horizontal lines, and placed in

juxtaposition to the players. In this way, the varying numbers

of attempts by a player as numbers of actions in each attempt

are intuitively organized together to make levels of details

apparent to the viewer.

Complexity & Performance Growth

Behavior complexities and player scores are displayed in the

same view next to the actions on the right, cf. Figure 4.6. This

view is used to study the interaction between behavior com-

plexity and the outcome performance, through with checking

of covariance of achieved score and complexity value is al-

lowed.

On the technical level, this view suppresses the discrete actions

and depicts an individual attempt as a single point, in which
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[237]: Luck et al. (2013), “Visual

Working Memory Capacity”

[238]: Fitts (1954), “The Information

Capacity of the Human Motor Sys-

tem in Controlling the Amplitude of

Movement.”

attempts of higher scores are placed closer to the right and

more complex ones are placed to the right. Note that the

performances (x-axis) are displayed in percentage and behavior

complexities (y-axis) are normalized to [0, 1]. The point takes

the shape of a diamond to make positions more comparable

with four sharp corners white border to bring up the contrast

against the dark background.

As basic scatterplots do not communicate grouping and tempo-

ral orders that we need, the lines joining the points by attempts

and players are plotted to describe the gradual steps of consec-

utive attempts. The explicit order of the-one-before, previous,

current, next and the-one-after (Figure 4.6) is highlighted in

colors of blue or red, of which the blue ones are before the

current selection and the red ones are beyond. Ones near the

“current” selection are filled with the corresponding color and

one-step-further ones are simply outlined instead. This design

enhances basic scatterplot with the extra ability to delineate

the relationship of temporal order in a sub-group.

Strategy

Users can quickly skim through the colors of the dots to

obtain a general view of used actions in the attempts. However,

the similarity and difference in strategies take a considerable

amount of visual memory [237] to make comparisons. This is

even more challenging if the attempts are distantly presented

(cf. Fitts’ Law [238]) or repeated comparison between more

attempts are required. Therefore, a space-saving, memorable

representation is needed. This motivates the technique of SS (as

introduced in § ·4.5 Strategy Pattern as a Semantic Attribute),

with which we can encode the sequences into glyphs that

have significant less visual information to read as well as to

display.
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Figure 4.6: Visual encoding of time order in growth journey in terms of learning. Big circles in contrast with diamond

shape highlight the player selection. Among the circles (attempts) of current selection, the order of attempts are

distinguished by visual appearances. We use blue, white, and red to indicate past, current selection, and future

respectively. Strategy Signatures are collectively displayed at the Bottom Bar to discern how strategies evolve by

iterations. In this case, Player 2 experiences a dramatic strategy shift after the 5th attempt and scores impressively

after the 4th attempt.

Figure 4.7 is an example of how two distinctive strategies by

Player 2 are illustrated. As the two shown strategies are very dif-

ferent in term of action choices, SS produces highly distinctive

shapes to reflect the difference. The design of SS is also capable

of showing differences in time order even the action choices

are the same. A subtle adjustment of strategy is detectable

but categorizable to strategy pattern. For instance, strategy1
frequently uses jumper as a starter action, the similarity of the

attempts is visually perceivable through its SS output. It is also

discernible that the player modifies some of the ending actions

by mixing more miner s in the last a few attempts. We can tell

the difference as the last signature takes more triangular shape

than the preceding ones (R3).
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Color Strategy Signature

Figure 4.7: Two distinctive strategies

reflected by color (left) and SS (right)

Figure 4.8: Filtered view to only

show climber , blocker and

batter actions of attempts by

Player 7 for better focus.

Interactivity

In this section, we describe how relevant information is visual-

ized as a result of the interactions such as selection, hovering

or inspections and how they are closely designed to answer

user questions.

Action Filter

Action filter can create a focused view on an interested subset

of actions. This can be useful to study the exact influence

of chosen actions by their distribution among attempts and

players. For instance, the user may want to study how certain

action(s) would determine the win or loss of an attempt (R2).

To do this, the user can click on the unwanted actions on

the Action Filter to gray out the irrelevant action types for a

cleaner result (Figure 4.8). This also facilitates comparisons of

action distributions across different attempts and players. For

example, Figure 4.8 shows that Player 7 uses much less climber

s in his/her latter attempts comparing to beginning ones. This

may signify very clear behavior pattern that the player may

learn to use fewer, more refined actions as he/she learns.

Such a functionality enables us to see the actions’ frequency

distribution within or between players, based on which we can

infer the performance improvements or progression patterns

in time (R1, R3).
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Switching View Modes

We implemented two view modes for different analysis scenar-

ios. The behavior complexity view shown in Figure 4.5 features

a more condensed display of information of player’s overall

performance (shown in percentage under the player label),

action sequences, strategy character adjacently to assist the

analysis with behavior complexity. To make room for this ad-

vance configuration of information display, this design uses a

more aggregated view as events are depicted with summarized

SSes and complexities while the detailed temporal information

of raw data is sacrificed. Thus, the attribute of interval time

between actions is not visible to the user in this mode.

To provide a higher fidelity of the player’s play progress with

sufficient contextual information (R2), a user can leverage

the switcher to restore the time intervals between actions

by clicking on the Timed Actions button at the top of the

screen (Figure 4.9). In this mode, event actions take full screen

width to place back the actions on horizontal time axes. The

scale of time axes is universally shared, meaning all attempts

of all players can be vertically compared by its distance to

the left origin. A user can inspect the exact timestamp of an

action by hovering on the actions (depicted as colored dots),

cf. Figure 4.9.

If the user selected a player in the timed action mode, the

selection will be preserved after switching back to the behavior

complexity mode (§ ·4.6 Player & Action Selection). This allows

the user to dive right into the details of a specific play process

in detail without repeating the selection. The knowledge of

detailed action intervals gives the user a view of not only

the action compositions but also the pace of the gaming. For

instance, the player can play at a faster pace at the beginning

of an attempt while gradually slows down as he/she realizes

he/she is about to lose the game. Also, some player may exhibit
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Figure 4.9: Switched to Timed Actions mode: actions are positioned left-to-right following the time order. Mouse

hovering interaction will trigger the time stamp label of selected action.

a similar pattern but based on very opposite sentiments during

playing. This kind of granular understanding of the potential

experience of the game, such as haste or hesitation, is useful to

understand player performances and learning behaviors.

Player & Action Selection

According to R1, the interaction design should support player-

orientation in the display of information. The previous sections

have elaborated on how such a principle is applied to the

display of actions, attempts, and strategies. When it comes to
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communicating complexity or performance, we also imple-

mented the selection functionality to support keeping a track

of the foremost actions. The selection of actions, like selected

players when switching view modes, are preserved in both

modes until intentionally cleared. After some actions are se-

lected, significant visual clutters by irrelevant actions are faded

to support comparisons across screens by vertical scrolling.

To trigger the selection of a player, the user can click the player’s

label on the rightmost column (i.e. 1. player & performance in

Figure 4.5). A player selection event will draw the growth

journey of the corresponding player on the rightmost column

(i.e. 3. complexity & growth in Figure 4.5). The diamond points

in the presented scatterplot renders all the attempts of the

selected player(s). Diamond points are linked together with

different line appearances – dashed lines for previously selected

player while solid line for the most recent selection. This allows

selection of one or more players to compare their lines are

growth journeys. The SS glyphs of the last selection (a player

instead of a single attempt) will be drawn to the bottom bar (i.e.

5. bottom bar in Figure 4.5). The user can hover on any of the SSes

to quickly find the temporally neighboring attempts, which

appearances are mutated according to the rule in § ·4.6.

This design allows the three aspects of the player learning -

the complexity change, the performance change (with player

growth line) (R5) and the strategy modification (the bottom

bar) (R4) to be studied with an holistic interactive view, giving

answers to a variety of questions relating to these attributes.

4.7 Evaluation

To validate the effectiveness of this system, we conducted sep-

arated semi-structured evaluations with the aforementioned
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domain experts. The evaluation process is divided into two

sessions, the orientation session and self-guided session. The

goal of the evaluations is to help us verify 1) how much the

design is effective to meet the identified requirements in § ·4.4,

and 2) to which extent the visualization can facilitate knowl-

edge generation of unknown aspects (i.e. supporting novel

exploration spaces in pivotal visualization).

In the orientation session, an introduction is given to each of

the experts to explain the key functionality of the visualization.

The view and control are demonstrated interactively with the

real prototype. Experts were asked to repeat the demonstrated

task again to ensure their sufficient familiarity of the design.

Lastly, a short period is left to the expert to experience the

prototype freely. Any discovered questions about the visual-

ization during the period will be answered immediately. The

self-guided session is an expert-driven session, in which the

experts were given full access to the system and follow their

own research interest or curiosity to analyze the game log data

by themselves. We ask the experts to speak out loud and record

their feedback with the computer’s microphone. We also kept

a video recording of all the second sessions.

An immediate discovery is that the visualization indeed help

them discover insights faster than earlier workflows. As some

early confirmatory analysis based on their prior knowledge

suggests, the learning ability of Player 2 is remarkable as brows-

ing with visualization can quickly locate a sharp performance

increase in the player performance history. Also, the popularity

of miner among all players is intuitively conveyed rather than

statistically measured. Beyond the confirmation of discoveries

that were already possible in previous workflows, we elaborate

on how the visualization design helps the experts in identify-

ing previously inaccessible novel patterns. These discoveries

are usually associated with the implicit concept of strategies

and complexities, which are exclusively supported by pivotal
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Figure 4.10: Behavior Complexity

Growth: The lines tends to link

the bottom left corner to the upper

right, suggesting experience gain co-

existed with complexity increase on

the global level.

visualization design.

Novel Discoveries

D1 - Complexity Increase

Intrigued by the idea of quantifying behavior complexity, ex-

pert clicked to turn on all the player’s label to display the general

trend of all the behavior complexities of all attempts of all play-

ers. The hypothesis is there is a general correlation between per-

formances and behavior complexities, thus peak performances

ought be polarized toward the lower or higher bound of behav-

ior complexities. By doing so, the global pattern of complexity

distribution with performance is shown (Figure 4.10).

From this depiction, we can see that growth lines are heavily

intertwined, indicating that the interaction between perfor-

mances and complexities is not straightforward, i.e. there are

regional cases where the complexity increase has neutral or

opposite effect on performance than normal. This confirms

the prior assumption of high heterogeneity in growth patterns
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vis-à-vis behavior complexities. Having said that, the rough

pattern of players starting from less complex attempts and

gradually reaching higher scores with more complex moves

seems to be visible. This pattern of low score with low complex-

ity to high score with high complexity is well represented by

the growth line of Player 2 in Figure 4.6. To verify the pattern

with more contextual information, the expert refers to the SSes

and exact actions on the left to see how Player 2 progresses

in the game. The expert then discovered a three-stage pattern

in the player’s behavior: 1) Player 2 began by experimenting

with several jumper s and nuke s, 2) Player 2 included some

extra miner s and found a working solution, 3) Player 2 con-

tinued to refine the solution by removing the unnecessary

jumper s followed by a few solutions with more diverse actions

of increased behavior complexity.

This discovery by the expert confirms that visualization of

behavior complexities organized by player attempts is useful

to assist the novel finding of complexity increase in players’

learning progressions. Despite the initial hypothesis of sim-

ple correlation between complexity and performance is not

supported by the visualization results on the global level. The

continued exploration into details makes the expert aware

of the subtle improvement of iterative attempts, which helps

to explain the potential motivation behind certain learning

patterns with the insight into behavior complexities variations

(R1, R5).

D2 - "Tail Optimization" Behavior

To locate the best performers of the game, the expert glimpses

through the attempts of highest score percentage (left-most

area in the scatterplot of 3. complexity & growth in Figure 4.5).

The growth lines indicate that a plenty of players continues

to play with some degree of modification of earlier attempts.
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This can be seen as a sign of polishing existing solutions or

exploring new solution once they figured out how to pass

the stage. As this part of the behavior tends to happen in the

later stage of the learning progress (growth line), we use “tail

optimization” to represent continued adjustments after at least

one successful attempt like these.

Figure 4.11: Tail Optimization: Fi-

nal adjustments to improve previous

success.

To study the “tail optimization” behavior, the expert selects

Player 2, 7, 9 and 13 for their steady high performance in the

last a few attempts. By comparing the growth lines of these

players, the expert finds that, among attempts with highest

scores in the latter stage, ones with the complexity over 0.63

or below 0.58 will eventually converge toward 0.6, which

is also where most successful attempts resides (Figure 4.11).

This seems to justify our earlier assumption that the solution

to a specific level requires a fixed amount of complexity (cf.

the required complexity in § ·4.5) to win. Despite the players

are not aware of the concept of redundant complexity in

§ ·4.5, their optimization efforts for simpler actions can be

explained as an intention to remove previously unnecessary

moves for more efficient solutions. However, the hypothesis

assuming “tail optimization” behaviors lead to better solutions

are unfortunately challenged by the follow-up experimentation

— evidences from the visualization suggests that, comparing to

more efficient solutions, players more often add more behavior

complexities to their solution to surprisingly "over-complicate"

their solutions after they win, which contradicts with the goal

of optimization.
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Figure 4.12: Successful solution tem-

plates (i. iv) v.s. failed best attempts

(failed): Strategy Signature facili-

tates the visual categorization of so-

lutions.

To better understand the context of this behavior, the expert

switches the view mode to timed actions to see how the behavior

is reflected by previously suppressed time interval information.

This attempt is fruitful. The expert soon discovers that player’s

latter successful attempts nearly always take less time to finish.

This suggests that player prefers to trade for shorter time

consumption at the cost of extra behavior complexity. In other

words, faster is more important to leaner actions for most

players.

This discovery demonstrates how the semantic attribute of

behavior complexity is experimented with additional evidence

to validate the hypothesis, which in this case is the players

“tail optimizations”(R1). It also justifies the need and benefit of

retrieving additional contextual information on demand, which

in this case is the time consumption of each attempts(R2).

D3 - Strategy Categories

An advantageous quality of this game is its possibility of mul-

tiple solutions. This means the same stage can simultaneously

have more than one way to pass. Given the minor difference

in exact execution, the expert finds that similarities among

attempts of same strategies can be visually identified with

SS. And there are few clusters each of which represents an

approach to win by itself.

As SS converts the action sequences into legible shapes, at-

tempts of players are presented in a reduced visual format

with which the similarities between solutions are observable.

For instance, the best attempts by Player2, 3, 4, 6, 13 share very

similar shape in their SSes, cf. i in Figure 4.12. The expert also

identifies a slightly deviated solution from this cluster in the

SS shapes of Player 9 and Player 7’s solutions. As a contrast,

the solutions of Player 14, 14, 5 are significantly different as one
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can easily see by the shape of SSes (Figure 4.12). This validates

that SSes can produce highly discernible contrast in shapes’

appearances.

Once the successful patterns of attempts are visually known to

the expert, SSes can work as a utility to help the expert predict

the success rate of an attempt by comparing the SS shape of

an input attempt with successful templates of known working

solutions. The failed cluster in Figure 4.12 are ones picked as

the attempts of highest scores from players who never made

it. From the SS shapes we can see that these attempts failed to

align with any of the successful templates, which may help to

explain why these players never managed to get a full score till

the end of learning.

The discovery of categorization power of SS (as similar success-

ful solutions can be clustered into templates) is a surprise to

us as well as the experts. We use SS to unveil an undiscovered

pattern among solutions, from which new explorations such

as finding more templates or comparing these templates are

possible. With SS, the semantics of strategy patterns are visu-

ally presented to allow experts to investigate the versatile ways

of playing by different players (R4), which presumably lead

to new hypotheses based on the knowledge of such versatility

and the convergence toward established solution templates.

Expert Feedback

In addition to discoveries presented by enlisted cases above, we

conducted dedicated interviews with the experts to collect their

feedback on the overall design of the visualization. We specifi-

cally prompted the experts by revising the initial requirements

in § ·4.4. We use the data from these interviews to benchmark

the effectiveness of our design against the previously proposed

requirements.



4.7 Evaluation 101

Generally, the experts approve that our design is useful to their

analysis task particularly in identifying interesting patterns

on the players or attempts level while preserving the subtle

differences in ground data level. This flexibility helps the expert

to leverage their domain knowledge easily. For instance, their

domain knowledge in learning behavior suggests that players

exhibiting higher persistence in learning can be labeled as

long-term performers, meaning their performance snowballs

remarkably with long-term accumulation of experience. In this

regard, this visualization system gives them explicit hints to

verify such knowledge. When E3 finds the gradual strategy

improvements by Player 5, he confirms such a principle with

"...specially that you can see that they approached simpler

and simpler solutions using climber and miner ." The exhibited

persistence is a valuable positive trait in learning, according

to E1. E1, E2, E3, and E4 report that design also substantially

facilitates the understanding of player growths in terms of

learning progression. The visual approach helps them to see

clearly how the strategy transformation and refinement would

influence the score (as the sole performance indicator) in each

consecutive attempts (R3).

The growth lines (3. complexity & growth in Figure 4.5) and

action dots (2. actions & attempts in Figure 4.5) produce clear

depictions of inherent multivariate attributes as well as derived

semantic attribute of behavior complexity of the selected player.

Supported by the interactions (§ ·4.6), the experts can fluently

zoom into interested aspects of attributes (R1, R2). "I like that

fact that you can quickly gain an overview about which are the

most dominant ability used by players, (such as) P2 focus on

jumper s, and across all players you find a lot of red, pink, light,

blue, and orange, indicating that platformer , miner , climber ,

and jumper are abilities that players gravitate towards.", said

by E3. The interactivity also enables the analysts to scrutinize

the efforts of repeated attempts and how the player learns from
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them (R3).

"The global view of complexity trend is very inspiring (R5)",

stated E5. Although the quantity of collected data points

are limited to validate if the correlations related to behavior

complexities. E5 believes this inspires new research questions

to unlock new knowledge about learning behaviors and more

discussions in this regard should be continued.

The use of SS is novel according to all the experts. Before

experimenting with the visualization, E5 believes that the best

solution is a modest deviation from the solution based on the

successful attempts of Player 2, cf. i in Figure 4.12. And the

solution by Player 5 is a very risky and less recommended

approach. Thanks to the SS, E1 rediscovers an important suc-

cessful solution represented by Player 14 and 15. This leads

to a radical change on the view of diversity of solutions (R4).

"Yes, maybe the other (strategy iii in Figure 4.12) is a viable

solution.", said E1.

In general, experts believe the visualization design can facili-

tate generating new knowledge from the game log data and

boosting their research productivity. They are especially con-

vinced by the advantages of the visual approach of identifying

behavioral patterns. E2 makes positive remarks on the inter-

face design, saying that the interfaces are well-organized and

polished and the interactions and transitions are coherent and

intuitive to understand. The aesthetic appeal of the design is a

bonus to its analytical capability.

The experts are also asked to share their opinions on possible

insufficiency of the design. The outcomes are mainly two-fold:

1) The Timed Action view is a bit difficult to find (by E3). A

user may only navigate in the default view mode, assuming

that temporal information is simply discarded for ease of

visualization (by E4). 2) E1 and E4 also suggest a possibility to
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view a chosen set of action sequences of the dots and squeeze

them into a condensed view to eliminate vertical scrolling.

4.8 Discussion

Applicability & Limitation

We employed two novel methods in to support the pivotal

design method — the entropy-based approach to quantify

behavior complexity in game learning and the glyph based

visual technique to extract characteristics of a categorical se-

quence. While it is safe to assume that the visualization system

can achieve comparable effectiveness with data from similar

puzzle-based games, we focus our discussion of the applicabil-

ity and limitations by looking into the technical potentials of

the two methods.

The behavior complexity enables an objective perspective of the

quantity of heterogeneity in an event sequence. We employed

a entropy-based method to strictly measure how complex an

attempt is, which was previously implicit and unobservable.

As the challenge in analyzing game log data can grow with

advanced mechanisms in modern video games, techniques to

make the complexity of behaviors explicit and observable are

going to be more and more valuable to the behavior studies

for game designers as well as professional trainers. Regarding

this, we consult game experts to discuss the generalizability of

this approach in latest popular games. The following genres

and examples are identified as a result:

▶ Tower defense games like Plants vs. Zombies [239], where

choices of plant defenders are encoded as events and

key to the play. In these games, the construction of de-

fenders is likely to cost a certain amount of resources,
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which makes streamlining the token use (like action

use in lix) equally relevant toward skillful game play.

Likewise, the complexity of construction and building

choices still remains an indicator of skillfulness as lower

resource consumption means more late game elastic-

ity and snowballing potential. Considering the huge

genre [240], applicable games can be many.

▶ We also find our approach applicable to fighting games

like Street Fighters [241], in which players can repeatedly

perform combos (a series of controlled attacks all at once)

and combat routines can be analyzed. In this genre, the

damage dealt can be regarded as the score achieved.

Players with better attack accuracy are likely to produce

more damage impact within a smaller set of moves (e.g.

heavy punch, jump backward). Substantial adjustments

to current design are needed to accommodate other

factors such as the character choice and time consumption

for fair assessments.

The application potentials outside of game analytics are also

worth-considering, as the method essentially converts behav-

ior complexity from event sequences. In scenarios of where

the analysis of people’s behavior is non-trivial, investigating

the complexity of behavior can also help to the analysis. For

instance, awareness of the complexity of hospital operations

in the IT system [242] may contribute critical insights into

the streamlining of the care-giving process, while increasing

the behavior complexity of the visitors in an amusement park

[243] may be beneficial enrich the entertainment experience.

There are also limitations to consider while applying the used

methods. For instance, future application of the behavior com-

plexity should be mindful that the entropy based method is

a very aggressive simplification as it can suppress critical im-

portant information such as the interval time between actions,
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which can be equally informative to describes the complexity

of behaviors. Moreover, the SS displays categorical events with

a pre-determined alphabet of actions, the order which follows

a rule-of-thumb instead of a logical order, which could be

prone to unknown biases. The SS method is also sensitive to

the cardinality of sequences, i.e. the produced visual result

may become illegible as the number of event types surpasses a

threshold. Our limited test suggests that the number of action

types should be no more than 12 to guarantee an optimum

result.

Summary

The study targets at the analysis of behaviors in video game

learning, where analyses need to derive deeper behavior level

concepts based on basic action records. Following the pivotal

visualization design method as the scaffold, we employ novel

methods to establish semantic attributes to facilitate this goal.

The semantic attributes extend the exploration space with the

concept of behavior complexity and strategy pattern (depicted

via SSes), enabling domain experts to sketch unprecedented

hypotheses (§ ·4.7 Novel Discoveries) while keeping the newly

derived concepts attributable with data. Despite some of the

early hypotheses are not supported by the experiments with

semantic attributes, analyses enhanced by the provision of

behavior complexity and strategy patterns contribute criti-

cal insights that substantially steered the follow-up research

questions, leading to new realms of knowledge which are im-

possible without the pivotal effect. The exclusive benefits are

three-fold as the visualization enables the experts to: 1) join

behavior complexity and performance in the context of quali-

tative strategy differences, 2) explore how players’ solutions

evolves with attempts iterations, and 3) categorize a template

of successful solutions.
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The above benefits supported by domain experts’ use cases in-

dicate that our substantiation of pivotal visualization approach

in the study context of learning behavior achieves expected

soundness, which is also supported by the final evaluation.

Therefore we conclude that the pivotal visualization approach

is effective in enhancing experts’ knowledge discovery abili-

ties in the exploration of uncertain learning behavior patterns

during video game play.



Study B: Visualizing
Movement Relatedness

among Free-roaming
Animals 5

Overview: Movement ecology is a maturing field that de-
rives ecological insights from animals’ movements. For all the
available technologies, GPS tracking has the biggest potential
to examine movement patterns at a larger scope, capturing a
number of entities spanning across an ecological-meaningful
area and time frame. Focusing on lower level interactions of
movements, this study is based on a published work that inves-
tigates the tricky interactions between animals. In this study∗,
the proximity-based, time-dependent semantic attribute of
movement relatedness is put forward and supported by
the visual presentation of the spatial-temporal contexts, social
surroundings, and underlying data uncertainties in a multi-
species setting. The attribute of movement relatedness is
extended into the pairwise (PW) or individual-to-group (i-
G) modes for respective analysis scenarios. The visualization
implementation concerning these two modes exposes the non-
salient influence potentials between moving entities, such as
one to another individual or one to another group of animals.
According to expert evaluation, the system design contributes
valuable clues in analyzing multi-species movements patterns
and characterizing signs of potential interactions, generating
critical insight to educate late stage mathematical modeling
for batch processing.

∗
The study in this chapter is based on the published work W. Li, M. Funk,
J. Eikelboom, and A. Brombacher, Visual Exploration of Movement Relatedness
for Multi-species Ecology Analysis, arXiv:2001.11163 [cs], Jan. 2020. and the

submitted work W. Li, M. Funk, J. Eikelboom, and A. Brombacher, Mov’inFinder:
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5.1 Introduction

Animal movement has been one of the most intriguing subjects

since ancient times. The earliest exploration by Aristotle (384 -

322 BC) dates back to the 4th century BC [244]. Thanks to mod-

ern technologies, our scientific discovery methods are no longer

bounded to direct measurements and human senses. Technical

means as proxies to monitor animal movements have evolved

with recent developments in sensory technology, telecommu-

nication [245–248], geographic information system (GIS) [249–

251], and data mining [252, 253]. These multi-disciplinary

efforts maximize the potential of data-driven approaches to

address complex behavior patterns such as community dy-

namics [254], or responses to land-use change [255]. However,

the conceptualization of these patterns demands next level

analytical capabilities to accommodate unprecedented research

challenges such as exploring “how and why animals interact

with conspecifics, and how and why they compete and re-

produce.” [256]. Movement ecologists are requiring dedicated

sense-making technology to unlock the full wealth of ecological

data at scale [257].

Animal movement can be captured in many ways [208, 247,

248] depending on the research problem. Spatial movement

plays a central role in many ecological researches [207, 244,

258]. In addition to the benefit of summarizing movement

patterns over larger areas, recent trends in movement ecology

begin to focus on movements of smaller regions to scrutinize

behaviors at a local level [259], particularly how discrete entities’

movements are influenced [260–263]. In this view, cross-species

interactions such as host – parasite, predator – prey, or plant –

herbivore [264, 265] (known as antagonistic interactions among

Visual Investigation for Movement Influences between Multi-species Animals in
Ecology Analysis, TVCG, April 2021.
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ecologists) are more discernible because individual behaviors

and discrete actions are typically investigated at a finer scale.

However, the discrete movements in local scales may not be

sufficiently explained by isolated movement trajectories. To

understand the meaning or motivation behind certain behav-

iors on a higher level, aggregated, long term rules need to

be derived from basic movements based on the social, ter-

ritorial contexts [258, 266]. This is exemplified by a recent

study in human behavior [267] uncovering that the spatial

approximations can be effective predictors of human social

ties. Regarding this, it is reasonable to assume that meaningful

insights regarding the relationship between animal individuals

can also be studied through their spatial relations. Designing

visualization support for this mission is non-trivial as it can

contribute visual and intuitive results to complement existing

quantification methods in the search for clues of the less ap-

proachable motivations and meanings (or internal states in

ecological sense) behind the apparent movements. Our study

is therefore motivated by the a need to facilitate the ecological

research in this problem niche.

Methodologically, we employ visual techniques to exhibit

the ecological evidences concerning relational behaviors with

spatial movement data. This is only possible by visualizing

movements details not only as individuals trajectories but also

the potential influence between them. Therefore, we enable the

movement analyses by introducing the semantic attribute of

movement relatedness, which is an indicator of social intimacy or

potential predatory threats in wild environments. The system

interprets animal relations in two modes — pairwise (PW)

and individual-to-group (i-G). The former considers only the

one-plus-another mutual relations between two entities. The

latter analyzes one entity by comparing its relationship to all

the others on the global level. The system extensively covers

animations to convey the movement vividly. Controlled by a
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"playback" control system, movement transitions of scattered

data points is depicted with a transitional trace line, which can

be temporally adjusted and algorithmically smoothed. Taking

the appearance of a reduced visual language, the system is

tested to be effective in maximizing domain experts’ ability

in finding potential alignment and pairing of cross-species

movements via aggregated view of long-term relation and

movement relatedness by group. The pivotal visualization

instantiated in the study results the following contributions:

▶ a trace-animation-based visual communication of move-

ments and time varying movement relatedness, and

▶ the support of novel exploration space based on pairwise

and individual-to-group comparison of animal’s spatial

situations.

5.2 Literature Related to This Study

Visualization in Movement Ecology

Movements are usually referred as locomotive movements

in the field of movement ecology. Location changes are use-

ful clues to reveal ecological patterns in problems such as

resource use [268], population dynamics [256], and climate

influence [269] between individuals, groups, or species. Many

ecologists have prior experiences of using visualizations in

their research. Generic visualization tools (e.g. Movebank [255],

AMV [270], Env-DATA [271]) are employed to support com-

mon tasks like trajectory plotting and multivariate filtering.

As they are compatible with a wide range of species and data

types to accommodate many research projects, the generic

functionalities are sufficient candidates for basic movement

analyses.
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However, some research tasks require analytic aggregation

capabilities. Drosophigator [272] uses statistics from heteroge-

neous data sources to generate visualized predictions of the

spread of invasive species. Xavier and Dodge [273] integrates

environment data to study the connectivity (a technical term

in ecology indicating the degree of environmental variables

affecting its inhabitants in an area [274–276]) of landscape char-

acteristics and animal behaviors. Konzack et al. [277] analyze

the migratory trajectories to recognize the stopovers among

gulls’ movements.

The visual design is also important to communicate the ag-

gregated results in relation to the problem domain. Slingsby

and van Loon [266] discuss the design choices of visual encod-

ing in ecology visualization, suggesting that the use of visual

language needs to convey "ecological meanings" to support

contextualized reasoning. Spretke et al. [257] put forward the

"enrichment" method to enhance analytical reasoning with

visual representation of attributes like speed, distance, dura-

tion in the geographical context, allowing quick hypothesis

iterations on local subsets.

Aggregation of attributes might be useful to understand a

movement behavior, but behaviors are better explained in a

context where influence of peers and surroundings are con-

sidered [254]. Since the interest in entity level behaviors is

rising [259], the mutual influence between multiple entities

can be a worthy starting point for upcoming visualization

research.

Trajectory Analysis

Manually searching for patterns in the long, twisted, and some-

times cluttered movement trajectories can be daunting. This

makes event detection algorithms necessary as they alleviate
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the cognitive load for experts. The execution of automatic event

detection usually requires defining a set of parameters, such as

time window, speed, heading, and mutual distance, to narrow

down the search space to a subset of trajectory fragments [278–

281]. The detection outcomes are usually visualized on top

of the movement trajectories with reference to the original

geographic context. As the detection processes are sensitive

to the subject animal and landscape context [280], we need

flexible visualization controls to cope with the distinct charac-

teristics of movements for consistent results [278]. For example,

Andrienko et al. [281] suggested a bottom-up approach where

the detected elementary interactions (a concept derived from

Bertin’s elementary level of analysis [282], meaning "particular

instances of interaction between individual objects") are used

as key clues to understand group level patterns. Bak et al. [278]

propose a method to boost the performance in event detection

at larger scale. The extra performance gain can thus be allo-

cated to support interactive parameter input, through which

the visual feedback of outcomes makes an essential part of

the interactive loop to guide the next iteration. Bak et al. [278]

also mentions the classification of four types of higher level

encounter patterns, which seems to be a continuation from

Andrienko et al. [281]’s advocacy of characterizing elementary

patterns.

Movement interactions are multifaceted. A visual feedback

loop for adaption and fine-tuning of the analytic system is

indispensable to detect potential interactions. Also, automatic

techniques mostly solve lower level tasks such as matching

route similarity or spatial-temporal closeness between trajec-

tories. Recognizing general patterns and questioning with

alternative assumptions are still a job of human expertise. Thus,

we need to keep a open mind to the machine results but, at the

same time, expose visual details for domain judgment.
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Visualization of Spatial Temporal Movements

As a convention, most movement data are plotted by either dis-

crete coordinate points [266] or linked trajectories [277, 283] on

a 2-dimensional map. However, simultaneous considerations

into both spatial and temporal variations are necessary to avoid

false identification of collocations (i.e. mistakenly regarding

position overlaps at different time period as real meetings).

There are several approaches sufficing this criterion.

A common treatment here is the Space Time Cube (STC) [284–

286], which projects the temporal dimension in the z-axis of a

3D view. In STC, real collocation of two entities are depicted

as the neighboring points in a 3D space. But it makes visual-

ization work prone to problems like loss of perspective and

obfuscation [287, 288]. Since the third dimension is devoted

for the time differences, subjects that travel in the third dimen-

sion [289] may cause compatibility issues. AMV [270] includes

a workaround that does not use a 3D space. It do so by con-

fining trajectories to the local duration and presents relative

movements only by removing the distraction of temporally dis-

tant trajectory parts. But the fine details of proximity variations

in a selected duration is not supported. Alternatively, abstract-

ing movements from their geospatial context, as explored by

Crnovrsanin et al. [290], is also a possible way to clarify the

subjects’ spatial temporal relations.

In sum, facilitating the analyses of wildlife behaviors via visu-

alizations is a non-trivial problem. Many open gaps to support

in the study of space-time relatedness with visualizations re-

mains unaddressed. The flexible interactions of quick selection,

navigation, and visual adjustments [291] for movement data

analyses provided by visualizations would be both challenging

and beneficial to the field of movement ecology research.
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5.3 Context and Requirements

In this section, we describe the basic setup of the domain re-

search including the expert collaborators, metadata, apparatus

(for data collection), and domain requirements.

Project Background

The domain problem targets at multi-species, free-roaming

animals in a South African nature reserve. The researchers’

primary interest lies in the behavior along space-time variations.

Instead of analyzing relationships with natural landscapes,

the experts need visual insights into behaviors of individual

animals and how they would influence each other, which is also

a valuable compensation to their current tool sets. Individual

interactions are also potential to later applications such as to

analyze other species, or even human social interactions.

Two ecologists are invited as domain experts (E1 and E2).

Both of the them have extensive research experience with

animal movements studies. E1 has a background in movement

ecology, spatial analysis. E2 also works in quantitative ecology

and environmental sciences. They both conduct quantitative

data analysis with R
✍

and use field-specific packages to plot

the movements either by spatial attributes (map) or numeric

attributes (bar chart or line chart). However, they both find their

current tools limiting. For example, they both have complains

about the lack of support in converting the multidimensionality

of movement trajectories into easily consumable information.

E2 also emphasized on the analysis challenge when dealing

with multi-entity temporal-spatial variations.
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Data Description

For data collection, ecologists attach GPS collars [292] to each

of the 25 tracked animals (Figure 5.1). The subjects consist of 5

lions, 10 wildebeests and 10 zebras. The entire data collection

lasted for roughly 30 months, which captures periodic changes

of climate though different seasons. To ensure sufficient battery

life, collar tag sensors were programmed to obtain and store

GPS coordinates by every two hours. Therefore, the movement

data is composed of fairly sparse timed geolocation points,

which itself imposes challenges such as locational uncertainties

between two neighboring data points.

Beyond the limits of device capacities, unpredictable weather

conditions and landforms also induces loss-of-fidelity issues

in the tracking data [293]. The cause of such a data quality

compromise can be any incidents of physical impact, wet

situations by rainy days or water areas, or signal blockages

by geographic occlusions. As a result, the collected data are

likely contain one or both of the following errors: a) unrealistic

values, i.e. two subsequent data points have impossibly large

position difference in between which is evidently an error,

and b) missing points, i.e. failure to record a data point at the

programmed time.

Due to aforementioned the caveats, pre-processing the data is

needed for smooth analyses later [294]. The domain experts

proceeded with the removal operations to deal with the first

type of error (error a), resulting in unstable trajectories with

irregular gaps of varying length on it. They also trimmed off

the unusable parts at the beginning or ending of every animal

tracking (an extreme case of error b), resulting in temporally

uneven starting and endings points in the trajectories. This

process lefts two problems. First, the locations of missing

points need to be inferred from previous or later (realistic)

data points. Second, the visualization needs to accommodate



116 5 Visualizing Movement Relatedness

varying number of “on-stage” animals as some may appear or

disappear later than the others.

Requirements

Integrating a visual approach into existing analytic workflow

requires shared understanding from both ecology and visual

analysis. The requirement study with the domain experts

continues for six months, after which we devise five design re-

quirements as guidelines to add new capabilities to the research

workflow. We begin with draft design proposals in the form of

low-fi visual sketches, which inspire nuanced discussions to

pin-point their most prominent concerns that are difficult to

be explained by words. Draft animations are employed to com-

municate complex interactive effects. Versions of animations

to portray the movement dynamics are iterated via Process-

ing [295] sketches, in which the communication effectiveness

is evaluated respectively. Some useful insight about require-

ment niches are discovered through also co-design sessions

with the experts. The sessions are supported by diagrams and

paper sketches where experts take a more active role to freely

propose ideas though accustomed media formats to explain

the intended functionalities. To pilot for likely insights and

also unexpected misinterpretations, qualitative surveys were

also conducted in an expanded user group (7 people) of both

experts and non-experts. We used structured questionnaires to

prioritize the requirements and balance conflicting directions.

With constant refinements, we conclude that the visualiza-

tion design should facilitate movement ecology research by

addressing the design requirements in the following aspects:

R1 - Allowing the complexity of spatial temporal movements to be
easily interpreted through a simple and constraint visual language.
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The experts understand the challenges of multidimensionalilty

in the collected data. But their experience with interactive

visualizations does not go beyond relatively simple ones such

as density plots or static trajectory drawings. Developing ad-

vanced functionalities may help but the accompanied steep

learning curves can raise some other concerns that undermines

the adaptability due to the existence of accustomed operation

processes and mental models. So the analytical flexibility come

with visual exploration is preferably supported by simple and

intuitive visual expressions, based on which implicit movement

patterns are easier to recognize. Being powerful though, the

implemented visualization system should demand minimal

extra explanations which can break the flow of data analysis

work. The experts expect it to support the experimentation of

most recent hypothesis based on newly discovered knowledge,

the verification of which may facilitate the model building with

the assistance of existing analytical pipelines.

R2 - Supporting interactive navigation into any subset or sub-region
of the spatial-temporal space.

Considering a 2.5-years-long time frame of the project, brows-

ing the global timeline means navigating through roughly 4000

data points for every 2 weeks of tracking time. Additionally,

the patterns can exist in any level of time scopes, e.g. move-

ment difference in days and nights, weeks and even seasons.

Granular time windows should be implemented as movement

patterns are sensitive to the observation time frame. Picking a

time point or selecting a temporal duration of a customizable

length allows for the autonomy to iterate over multiple time

lengths for the particular research task.

R3 - Treatments to the identified imperfections in collected data.

Being aware of the existing data quality issues, it is relevant

to have built-it mechanisms to reproduce smooth, consistent

visual results while not hidden the underlying imperfections.
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Instead of ignoring unreliable data points, visually commu-

nicating the uncertainties is advantageous for making sound

judgments. Therefore, the visualization should not only toler-

ate the unsteady internal data streams during the interaction

process, but also facilitate distinguishing the visual results of

questionable data points from the solid, trustworthy ones.

R4 - Supporting comparisons between movements of different species.

Animals of the same species share behavioral similarities. And

the opposite can be true for ones different species. But the

extent of difference varies between comparisons. For instance,

we would expect more behavioral commonalities between the

wildebeests and zebras as both species are herbivores, while

many commonalities may not persist between species of poten-

tial predatory threats such as wildebeests and a lions, as one

being herbivores and the other being predators. This contrast

of behavioral tendency is presumed by common sense but

not rigorously studied by visualized data. To explore species-

sensitive aspects of movement behaviors, the awareness of

species differences is needed. The visualization system should

allow them to visually disintegrate the behavior differences as

influenced by the species composition.

R5 - Exhibiting the clues to investigate relationships between ani-
mals.

Movement behavior is a complex problem which can be influ-

enced by many environmental factors. It is also not surprising

that animals would influence each other’s movements in more

or less subtle ways from slight movement deviations to social

interactions. Understanding how animals would influence or

interact with each other by their movements in either intra-

species or inter-species settings can contribute to valuable

ecological insights. In our case, studying the dynamics of

how animals are closely bounded to each other and verify-

ing the persistency of such a bounding play a fundamental
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[296]: Sacha et al. (2017), “Dynamic

Visual Abstraction of Soccer Move-

ment”

role in the analyses regarding animal’s mutual influences and

interactions.

The above requirement list from R1 to R5 is sorted by a loosely

connected dependency order where satisfying the latter, higher

level ones may require the support from the former, basic

ones.

5.4 Design Rationale

In search for proper methods and to convert the requirements to

executable guidelines, we present a few conceptual elaborations

as cornerstones to scaffold pivotal visualization design in this

study.

Parametric Trace Animation

As aforementioned, context adaptability is important in move-

ment analysis. For addressing contextualized research prob-

lems characterized by local variables such species, speed, or

group size, parameterizing the visualization to adapt the vi-

sual results extends the adaptability and, therefore, suffices

a reasonable choice. In our case, larger time interval size is

used to record movement locations. Straight lines connecting

location points would appear cluttered with angular shapes

and present few clues to anticipate the movements between lo-

cations. Regarding this issue, trajectory smoothing [296] can be

helpful as the visualized path can help to build visual heuristics

to makes potential behavior patterns easier to uncover and tra-

jectories of different individual more visually distinguishable.

The smoothing also produces other effects that will benefit

the analysis. For example, the smoothing will make sharper

turns with slower animals (ones with shorter distance between
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GPS Coordinates
Unsmoothed Polyline

Fast Seg. 
 Slow Seg. 

𝜃

𝜃'

Figure 5.2: Differences by apply-

ing line smoothing: 1) Slower move-

ments tend to produce more com-

plex, sharper turns and while the op-

posite is true for faster movements.

2) Smoother trajectory shape also

adjusts the assumption of heading

directions, e.g. 𝜽 ≠ 𝜽′
.

[297]: Demšar et al. (2015), “Analysis

and Visualisation of Movement”

[291]: Andrienko et al. (2013), Visual
Analytics of Movement

[298]: Andrienko et al. (2010),

“Space, Time and Visual Analytics”

with consecutive points), while the opposite applies to faster

moving animals (Figure 5.2). Domain experts can also use a

middle point in the curve to adjust their estimations of the

heading if necessary.

A decision upon the right amount of smoothness and trajectory

shape requires careful deliberation and calibration. To facilitate

iterative reconfiguration, instant visual feedback of parameter

adjustments can make such a process more productive. This

helps domain experts to understand the effect of each parameter

to facilitate easier interpretation of trajectory lines regarding R1
and creates adaptability for different analytic scenarios. We

understand that the domain experts may occasionally wish to

fact-check the raw data points. Therefore, smoothing should

be implemented as optional so that reverting to the primitive

angular traces of discrete locations points is still possible.

Movement Relatedness as the Semantic Attribute

The inherent entanglement of space and time (defined as spatio-
temporal dependency in GIS) is a key challenge in movement

analysis [297]. Observations in the spatial domain without the

consideration of temporal stability may result in unreliable or

even false positive discoveries [291]. As the time variance is

traditionally less focused, assisting domain experts to think

temporally is essential [298].

To find potential interactions between animals, spatial prox-

imity should be discussed in a local time context. Following

on this principle, we propose movement relatedness (MR) as a

concept that describes the relationships with spatial-temporal

references. In this study, the MR works as a semantic attribute

to support the pivotal effect of outlining the potential influ-

ences or interactions between moving animals. Before move on
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to the definition and sub-forms of MR, we distinguish move-

ment relatedness from proximity because MR concerns the

distance variations in a medium-to-long time range to indicate

the likelihood of potential influences or interactions, whereas

proximity is only a measurement of distance in between points

in a fixed time point. Therefore, the MR is partially informed

by proximity as it can be derived from the trends of physical

proximity in time.

We employ two basic modes for inspecting how related animals

are bonded to each other by their movements – the pairwise
(PW) MR and the individual-to-group (i-G) MR. The pairwise

approach takes two entities as input and displays their dynamic

relation variations. The i-G approach takes a focal entity and

displays how closely it is connected to the rest of the animal

group over time. These two modes are extended form the very

idea of MR, which compliment each other for different tasks.

For example, the PW mode can be used to verify the extent and

strength of relation in a suspicious pair, while finding potential

interaction candidates can only be supported by i-G mode (R5).

The visual presentation of the two is based on different type

of information qualitatively or quantitatively. We give each a

detailed definition as follows:

Pairwise MR (Pij(t), t ∈ T, i, j ∈ A) is a time dependent

scalar value describes physical proximity (dij) comparing to

the maximum distance (M) bounded in the captured area, i.e.

Pij = M – dij. Here, T represents all the possible states in the

global timeline, while i and j are two elements from all the ani-

mals (A). MR of one versus multiple targets enables comparison

between more candidates and is more complex than the pair-

wise counterpart. Because the collective i-G MR pattern Gx(t)
is rather a structural, multivariate representation that is contex-

tually understood by considering explicit movement trajectory,

relative proximity, and heading directions which involves con-

stant changing features among multiple targets, it deserves
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[300]: Sacha et al. (2016), “The Role of

Uncertainty, Awareness, and Trust

in Visual Analytics”

a different notion to represent. Suppose x is the focal animal

(the one to be compared with the rest of the group) and a time

range from t1 to tR is considered, the i-G MR is formulated

as Gx(t) = {Pxa(t) | a, x ∈ A and x ≠ a, t = {t1, t2, ..., tR}}.

Here, we deal with the intricacies that are difficult to be sum-

marized as a quantitative measurement (e.g. the complex

relationships between x and multiple moving entities), we

implemented a combination of visual components to delineate

the implicit patterns and variations.

Uncertainty Awareness

The uncertainty awareness is believed to be useful in improv-

ing decision-making [75, 299]. Communicating uncertainty is

important in our case because it can false signal the absence

of one entity in a mutual relationship, which could mislead

the experts’ judgment and indicate a termination of related

session. To avoid this, we take a series of measures: Firstly, we

perform linear interpolation to fill the missing gaps to ensures

steady data flow for the well-functioning of relation deriva-

tion model. Secondly, we treat the interpolated data points

differently by labeling and measuring their reliability. This

is realized by assigning a special Boolean label, i.e. interpo-

lated or null, and a measurement of uncertainty extent. The

measurement is computed as follows: given the current index

i and index range of consecutive missing data points [c, c′]
(i ∈ [c, c], i, c, c′ ∈ N), the degree of uncertainty U can be

formulated as: U = min(|i– c|, |i– c′|), i.e. the uncertainty in

current data point i will be determined by the index distance

to the nearest (temporally) reliable data point (Figure 5.3).

Thus, the uncertainty information prepared to be visualized

with different levels of awareness (R3). The experts can make

judgment on the credibility and integrity of a pattern by also

referencing the visualized uncertainty [300].
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Ue = min{3, 1} = 1
▶

 

e

0
Figure 5.3: Degree of Uncertainty: a

value U is calculated from its dis-

tance to the nearest reliable data

point. The interpolated data points

(i.e. U > 0) are explicitly labeled as

so.

5.5 System Description

Figure 5.4: Interface Overview: A) Time Slider: a slider to indicate and cast change to the current position in the

global timeline. B) Main View: a 2D space to display geo-spatial MR. C) Control Panel: control widgets to fine tune

parameters for animation or pick animal pairs. D) Uncertainty View: an overview of collective data stability and

availability. E.1) MR : A chord diagram to display MR between multiple entities. E.2) Pairwise MR: Interactive line

chart for long term pairwise MR display.
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[296]: Sacha et al. (2017), “Dynamic

Visual Abstraction of Soccer Move-

ment”

We implemented our visualization system in an interactive,

web-based application with D3.js. It consists of a main view,

peripheral views, and control areas, see Figure 5.4. The func-

tionalities are results from § ·5.3 Requirements and § ·5.4 Design

Rationale. Main area (Figure 5.4 B) displays movements and

trace lines in relation to their original geographical patterns.

Time Slider (Figure 5.4 A) is a time reader and controller to

set the global "current" time and indicate the length of cov-

ered duration, which is shown as the red line along the center

(Figure 5.4 C). Trace line adjustments and animal pair selector

is placed in the control panel. Uncertainty in the data are in-

dicated separately by each animal along the time progression

(Figure 5.4 D). MR measurements can be found in Figure 5.4 E1,

E2. We expand with more details in the rest of this section.

Movement Encoding

Moving animals are represented as animating locations, each

with an ID and a species color. Species are colored to resemble

the animal’s natural appearance: orange for lion, cool gray for

wildebeest, and black for zebra.

Each animal entity draws a trace line with the same color of

itself, the length of which corresponds to the global duration.

As time coverage is the same for every trace line, drastic move-

ments (bigger distance between steps) will appear longer than

sedentary animals, creating a contrast that enables comparison

between animal individuals by its movements intensity. Thus,

outlier movements can stand out more clearly.

To improve the readability of movement trajectories (as ex-

plained in § · 5.4 Parametric Trace Animation), we applied

parametric smoothing to the trace lines. The technique is par-

tially inspired by Sacha et al. [296]’s trajectory simplification,

we integrated commonly used methods like cubic basis spline,
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Figure 5.5: Curve Adjustments & Settings: Experts can leverage their domain knowledge to tweak smoothing functions

and smoothness threshold for the desired result.

[301]: Holten (2006), “Hierarchical

Edge Bundles”

natural cubic spline, straightened cubic basis spline based on

Holten [301]’s edge bundles (originally developed for bundling

hierarchical edges), Cardinal spline, Catmull-Rom spline with

D3.js’ curve interpolation functions. This flexibility in config-

uration (Figure 5.5) can be fine-tuned by mode or intensity.

Here, the mode determines the type of underpinning smooth-

ing function and the intensity, specified by a linear 𝜶 value

between 0 and 1, offers the option to adjust the amount of

smoothness: 𝜶 = 0 means no smoothing at all and 𝜶 = 1
means smoothest. The goal is to give domain experts extensive

free options to pinpoint the right parameter to draw trajectories

that caters to their analysis scenarios.

Uncertainty Encoding

Uncertainties can be visualized following the temporal axis

in (Figure 5.6). The thin horizontal heatmaps in this view
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Figure 5.6: Uncertainty View: dis-

playing data quality issues with tem-

poral context. The view provides

a sense of whether the data qual-

ity can be trusted around current

point in time. Labels on the right

show whether the animal’s data is

currently available to be displayed

on main view to the left. The white

"⊲" signs inside animal labels indi-

cate the selected state of an animal

pair for pairwise MR analysis. Visual

clutter can be mitigated by clicking

on the label to hide certain animal

subsets.

depicts the data issues in three aspects: 1) the start and end

time of available data, 2) the general distribution, and 3) the

degree of uncertainty (by depth of color), cf. § ·5.4 Uncertainty

Awareness. The time context is useful to guide expert to skip

certain segments by informing where to expect reliable data.

In the spatial domain, moving entities will change both ap-

pearance and size once uncertainty happened in the data

(Figure 5.7). Filled circles change to dashed outlines, expand-

ing their sizes to indicate a dilution of positional accuracy. Its

opacity also decreases along with the size increase, telling the

viewer that the system is unsure about exact location of current

animal.

Expert can leverage both display methods to avoid risky in-

terpretations and apply self-discretions with their domain

knowledge.

Movement Relationship Encoding

The MR can be understood through different setups. We de-

scribe two modes to treat them respectively: the MR between
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Figure 5.7: Uncertainty in Spa-

tial Movements: Empty circles are

shown to tell the end of available

data. A circle with expanding area

indicates movements are visualized

with diminishing accuracy.

[44]: Cockburn et al. (2008), “A Re-

view of Overview+detail, Zooming,

and Focus+context Interfaces”

two individuals (pairwise) and one individual comparing to a

group of the rest (i-G).

Granular variation of Pij(t) is plotted with a line chart. Overview-

and-zoom functionality [44] is needed here considering the

amount of details in 2.5 years of data points. So we imple-

mented a vertically mirrored line chart below it with different

purposes for each half – the bottom one can be brushed to

select the time range and the top side displays zoomed details

of the brushed area., cf. B) in Figure 5.8.

The chord diagram can provide an overview of MR of all

possible pairs being presented in the main view. Ones with

higher MRs are drawn in bolder and more saturated ribbons

while lighter appearance applied for the lower MR, cf. A) in

Figure 5.8. The delineation reacts differently to a duration and

fixed time point. If a duration is selected, the system calculates

averaged proximities of all intervals in the range to determine

the ribbons’ appearance: Pij = 1
R ·

∑R
s=1

Pij(ts). This approach

is very similar to the pairwise mode but more aggregated.

Experts can brush and drag to tweak the duration length.

Such operations are useful to answer questions like "Were the

animals’ movements more clustered (related) during the past

eight hours? Were they the same for last two days?". It is a
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Figure 5.8: Pairwise MR in two

views: A) Chord diagram with each

ribbon for any possible pair in the

given time range; B) Interactive line

chart with separated brush-to-zoom

functionality.

simpler and more straightforward way to search for patterns

without looking at the spatial changes in the main view.

Geographical pattern of the i-G MR ( Gx(t) ) is displayed in

the main view where spatial distribution and social context

are sensitive aspects. The individuals can be focused by click-

ing on its circle in the main view. The interaction halts any

ongoing animations and creates an array of concentric circles.

MRs of animals concerning the focal animal can be visually

examined (Figure 5.9). Radii of the circles indicate the spatial

proximity to the animal: r = Pxa. The circles sort proximity

of animals with scattered distances and moving trends (came

closer or went further) into an egocentric diagram where uni-

directional comparison of proximity is possible. Based on this,

proximities of current time is easy to tell by circle sizes. The

less explicit moving trends, however, are illustrated by the
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Figure 5.9: i-G MR in Main View:

Animal movements are displayed in

relation to the focal animal C. Their

MR in the duration is aggregated

and represented by capped lines

which ends are used to indicate the

nearest and farthest distance to the

focal animal. Here we can see that

A3 has moved closer to C and A4

has become more distant judging by

the overall trend. Despite located at

different directions to C, the distance

comparison between A4 and A3 is

still intuitive and apparent.

trace lines and MR error bars. Here, the former corresponds

to the movement trajectory of the duration and the latter is

a depiction to analyze the trend of MR: line caps on both

ends of the error bars are determined by the maximum and

minimum values of relative proximity in the duration. Thus,

whether an entity is drawing closer or moving farther can be

read from the negative/positive sum of relatedness, which

is derived by comparing length of error bars from the inside

(positive relatedness) and outside (negative relatedness) of the

proximity circle. For instance, ones with much larger outer

length suggests the underlying animal spend most of the recent

time in places more distant to the focal animal than its current

location, which means it tends to move farther considering the

past period. The trace line here is to verify the judgment on the

trend of MR change with exact movement details.
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[302]: Boren et al. (2000), “Thinking

Aloud”

5.6 Use Case

We tested the visualization system with domain experts to val-

idate its usefulness in practical environments. Specifically, the

system is hosted online as a web application, and we recorded

two sessions of screen interactions and verbal communications

remotely via Skype. No specific tasks were given during the

experiment. Experts are encouraged to explain their reasoning

following the think-aloud protocol [302], and support the ex-

planation with domain knowledge if necessary. Two sessions

with total length of 105 minutes are video recorded for the

post-hoc analysis. We keep notes of the highlights with refer-

ence to their time slider position, flow of interaction, experts’

interpretation, filter settings, as well as the video time. We

report on our observation of cases in the rest of this section.

Checking Seasonal Distribution Change

Background: Seasonal climate change impacts many aspects

in an ecosystem. Ecologists need to understand how this is

reflected in animal movements. Fortunately, the raw data covers

sufficient season cycles in a multi-annual time frame. Thus,

seasonal differences in movement distributions can be visually

compared.

Method: By either picking a specific position on the global time

slider with mouse or manual input of time digits (R2), experts

can quickly preview the general distribution of animal locations.

Either way, the season (resp. to the Southern Hemisphere)

display on the time ticker will change to the specified time. The

experts also turn on the trace line to portray areas of denser

movements by following two steps (R1): 1) they extend the trace

line duration length to 90 days (meaning location history of

roughly three months) and 2) they move the "current" time to
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Figure 5.10: Herbivore spatial distribution and general MR level between summer and winter time. Chord diagram

with more saturated ribbons indicates more related spatial distribution of entities.

the end of the season precisely by digits, e.g. "28/02/2011 00 :
00". Thus, a long trajectory would take on a nested shape within

which condensed areas indicate frequent visits in particular

regions. They can also filter out herbivores or predators to

make clean comparisons between species across different time

of the year (R4). Experts use the overall color tone of the ribbons

in the chord diagram altogether to tell how close animals are

forming (local) groups.

Insight: Figure 5.10 are snapshots of animal distributions in

winter vs. summer. It is observable that the herbivores tend to

spread loosely in winter and gather closer during summer. Such

a pattern tends to gravitate toward a few specific regions as it

can be shown in the long term season trajectory (Figure 5.11).

The experts believe that this could be caused by the periodic
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Figure 5.11: Long trajectory covering the movement paths of the entire season. Such configuration is useful to detect

popular regions in a specific time of the year. Herbivores tend to concentrate in small patches in the center of the map

during summer.
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Figure 5.12: Absolute Travel Dis-

tance with Bundle Curve (𝜶 = 0)

: Predators travels much more dur-

ing night hours.

rainfall change in a year which leads to denser natural resource

such as vegetation and water accumulations in some regions.

The outcome shows that the concentration of natural resources

attracts herbivores while such a trend is less obvious among

the predators. Also, the shape and size (without smoothing)

of trace lines can provide useful clues regarding the relative

sedentary v.s. active state of an animal: longer, more dispersed

lines indicate more active behaviors in the area, while the more

condensed, wiggling lines suggests more sedentary ones. From

the comparisons between summer months and winter months,

experts has experimented some immediate hypotheses that

correlate to seasonal changes — 1) season does have effect

on the concentration tendencies of animals, 2) such tendency

is more significant among herbivores than predators and 3)

relative sedentary states are most observed among herbivores

during the winter.

Species Difference in Night Travel Distance

Background: Another potential influence on animal behavior

is day-night transition. Unlike most birds who tend to rest

during most of the night hours, some mammals may react

to day-night alternation differently in order to ensure their
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survival. The changes in temperature, visibility, as well as the

effect of chronobiology could have heterogeneous effects on

the movements of species. How the behavior difference could

be visually reflected by geographical patterns is intriguing.

Method: The expert starts with setting the current time to 06:00

am on a random day and changes the trace line curve length

to 9 hours. The main view displays movements trajectories of

the last 9 hours — from 09:00 pm the day before to 06:00 am

current time. They can use arrow keys to jump to consecutive

days without changing the time of day and trace line length.

As a result, the common pattern in night movements are more

directly exposed to the viewer (Figure 5.12) (R2). As the shape

of trace lines can be morphed with type and smoothness, the

experts select "bundle" for curved type and slide the 𝜶 value

to maximum smoothing (𝜶 = 1), which produces straight

lines that connect only the origin and destination of the entire

movement, cf. Figure 5.5. This aggressive smoothing technique

allows the experts to make sense of the absolute travel distance

during the night hours (R1).

Insight: Like the example in Figure 5.12, experts found little

correlation between the night activities and geographical dis-

tributions. However, the night travel distances of predators

(lions) are distinctively longer than ones from herbivores. This

indicates that lions are more active during the nights while

wildebeests and zebras tend to stay and rest as much as possible

in the nights.

Examining Grouping/Pairing Behavior

Background: Nuanced understanding of animal social interac-

tions with an awareness of species traits plays a key role in the

study of animal behaviors. As mentioned before, the grouping

and pairing are difficult to detect with the visualization of
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mere locations due to spatial-temporal dependency. Instead,

visualizing the dynamic MR can support the ecologists to

investigate the strength of social bounding in pairs.

Method: When experts find that two animals of the same

species are potentially forming a pair as they stay together

drawing close, comparable traces, the experts select the corre-

sponding animal pair in the dropdown menu from the control

panel (Figure 5.4 C). The global pairwise MR is then plotted

to delineate the intimacy between the two animals. Ups and

downs that vary from month to month or season to season

can be observed (Figure 5.13). As the expert brushes on the

lower half of the chart around the current time, indicated by a

vertical red line, fine variation of MR in the brushed zone are

magnified to a daily or hourly level of detail for examination

(R5). By checking the line shape of MR on both macro and

micro level, experts can make more reflective judgments on

the grouping or pairing behavior.

Figure 5.13: Pairing Examples: A) Zebras 20 and 17 seem to be socially close but their MR does not hold strong for long

enough. B) Distance between lions 1 and 5 have diminished for roughly 2.5 km in the last 5 days 20 hours (filtered).

Stable high pairwise MR is found repeatedly between the two lions.

Insight: The situation in Figure 5.13 A) can be easily identi-

fied as pairing or grouping behavior if only looked at their

temporary collocation from their trace line. The blue ribbon
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in the chord diagram that connects animal 17 and 20 seems to

confirm that for the past 20 hours, the two are staying rather

close together. But the pairwise MR view suggests that such

relation is constantly changing and unstable. Thus, attributing

grouping or pairing behavior in this case is deemed question-

able by the experts, yielding further investigations. Another

example in Figure 5.13 B) tells a very different story of stable

pairing — lions 1 and 5 have approached each other and main-

tained near maximum MR for a rather extended time. Since

the phenomenon has repeated several times, experts believe

the pattern is a more reliable indicator of a strong social pair-

ing. Reusing the same technique, experts have also discovered

similar patterns between lions 2 and 4, wildebeests 12 and

13. A stable one-month long pairing is also found between

wildebeests 10 and 14. But the time window for this is too

small comparing to the other groups and no further rejoining

is found. More in-depth investigation is therefore needed to de-

termine the pairing is strong. The visualization support of MR

confirms that a safer identification of intimate pairs requires

evidence of close movements for longer period. Members of

strong social pairings are likely to rejoin each other soon after

separation.

Analyzing Multi-Species relation

Background: Unlike the MR within the same species, the

inter-species MR may indicate threat instead of cooperation

particularly between predators and herbivores. According to E1,

a real predation process usually takes place within 3-5 minutes,

which is beyond the frequency resolution of the employed GPS

devices. However, unexplored behavioral patterns and multi-

species interactions can still take place over the span of hours,

according to E1. The experts would like to use inter-species MR

to investigate possible instances of such behaviors.



5.6 Use Case 137

Figure 5.14: Three Stages of a Potential Encounter: 1.a) Increased the MR between lion 5 and group of wildebeest 9, 12,

13 suggests the movement pattern of one approaching a group of animals. 1.b) Wildebeest 12 has diverted from the

group. 2) Stabled MR (diminishing capped line length for MR variance) shows the two species kept close distance

during the most of preceding 4 hours. 3) Lion 5 moved away accompanied by MR decrease. Both wildebeest 9 and 13

were found active after potential encounter.

Method: Animals of more than one species can be seen as

a potential stalking if one movement trace follows another

continuously. The smoothed trace line with duration length set

to several hours can be used to validate if the exact travel path

fits well (R1). The expert uses the numerical input to fine-tune

the trace line length to estimate the exact stalking time window.

Clicking on one of the animals in the main view will trigger the

i-G MR of between the selected animal and the distant one(s)

of a different species B. This lets the experts knows the distance

other animal(s) have covered to approach the selected one. In

this case, the start and end of such episodes can be inferred

with the help of pairwise relation.(R5).

Insight: The example in Figure 5.14 illustrates how inter-species

interactions can be studied through their spatial-temporal re-

latedness. The involved animals are lion 5 and wildebeests 9,

12, 13. Through each stage, the MR would show an increase-

stable-decrease process in the inter-species MR episode. The

development of such a pattern can be interpreted as a hypothet-

ical threat between predators and herbivores by the experts.

Without concrete ground truth like onsite direct observations,

we can only assert the likelihood.
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5.7 Evaluation

We invited the experts (§ · 5.3 Project Background) to give

conclusive remarks on the design. The evaluation starts with

an open questions-and-answers session of 20 minutes each,

during which we first clear up confusions on both sides, e.g.

assumptions of animal behavior, or misinterpretation of visual

variables. After that, each expert summarizes a final evalua-

tion in written form. The result was collected by delivering

questionnaires containing questions in three implicit themes

to validate the design’s usefulness – the enabling, the facili-

tating, and the applicability. Enabling emphasizes the aspects

that provide novel analytical capabilities to find undiscovered

insights whereas facilitating consists of cases where the system

solves their existing problems with a significant productivity

boost. Applicability addresses the conditions and contexts un-

der which the system would achieve its maximum value. The

experts were required to return the questionnaires within 24

hours. We unfold the findings followed by our discussions fol-

lowing the three-themes structure based on the questionnaires

data.

Enabling

According to E1, an animal can be influenced not only by

variation in environmental conditions but also by the behavior

and location of another individual or group of animals. Because

of displacements in space and time, such relationships are

difficult to explore visually. The visualization system allows

the experts to analyze movement through space-time variations

(R1) of individual animals as well as the relationships between

them (R5). E1 asserts that exploration into inter-individual

interactions is enabled by the chord diagram with color-coded

MR.
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Regarding the pairwise relationships, the ability to zoom into

specific time periods (in pairwise MR) is very convenient and

easy to use. E2 believes the visualization system highlighted an

important capability which is visualizing data along temporal

dimension, particularly how MR changes over time (R2).

Both of the experts report that the i-G MR enables a visual

understanding of the relatedness with actual distance between

individuals in smaller time frames. The variation range of

MR raises the awareness of the time dependency in shorter

movement trends. Unexpected patterns would emerge after

testing and exploring with varying time scales (R2). E2 believes

that the view mode is not only useful for generating ecolog-

ical insights or hypotheses, but also creates more contextual

awareness for the analysis.

Facilitating

Before using the system, plotting static figures is their pri-

mary way of visual analysis for movements. According to their

comments, the visualization creates depictions beyond static

figures, without which the dynamics in movements are other-

wise hard to interpret. "(Such functionality) is very needed in

data exploration", states E1 (R1).

As they are fully aware of the difficulties introduced by in-

consistent data, the new visual approach to check data avail-

ability/uncertainty is well-appreciated. "To me, this is a very

useful tool for exploration of movement data, allowing to fo-

cus on different potential problems, such as sociality between

individuals, movements relative to predators, home ranging,

etc." says E1. The expert also confirms that the awareness of

uncertainty is reinforced by trace lines and smoothing parame-

ters which can be used to smooth out uncertain measurements

(R3). E2 appreciates the quick configuration changes on the fly.
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He says, "It makes comparisons between configurations very

convenient." (R1).

Applicability

Movement ecology research often requires calculating im-

plicit features from the data such as road impact [303] or

stigmergy [260]. When the optimal features to describe animal

behaviors are still unclear and yet to be confirmed, the research

becomes challenging. Based on their experience, the experts

believe that the system can play a key role in their exploratory

stage of analysis, where setting different parameters and scop-

ing down to subsets of data need to be frequently adjusted.

Under such circumstances, a comprehensive integration of

capabilities that can produce easy to interpret visual insights

with quick and convenient configuration changes is essential.

According to E2, visualizing certain variables in a spatial-

temporal way has changed their way of computing variables,

doing analysis, and develop new hypotheses or insights.

5.8 Next Iteration

Newly Discovered Gaps

Although the current system design suffices previously defined

design requirements (§ ·5.3 Context and Requirements), we

plan to move on with an upgraded system. The planning of

the upgrade is based on insights gained in the previous design

process and the newly discovered gaps. To investigate explicitly

what new functionalities the next iteration should enable or

optimize, we invited two visualization experts (V1 and V2) to

the evaluation group in addition to the aforementioned domain



5.8 Next Iteration 141

experts (E1 and E2). They altogether share useful feedback and

suggestions which lead to the general direction of integrating

more advanced tasks and usability improvements. A more

detailed analysis of these inputs are the following:

G1) the clarity and added value of the chord diagram need improve-
ment. In the previous domain evaluation, the usage of chord

diagram is repetitively explained due to an experts’ reoccur-

ring confusion. This may indicate that the visual encoding

is not sufficiently intuitive for the successful adoption. From

the visualization experts side, V2 also expresses similar doubt

about the design choice of chord diagram — its analytical

benefit is not comparable to its visual weight in the user in-

terface. Although the color differences in the chord diagram

create strong contrast to accelerate the reading of potential

related movements, no additional insights can be derived as

skimming through the main view can achieve similar results.

Therefore, we conclude that the chord diagram has usability

and functionality flaws to reconsider in the next iteration.

G2) a global level view to provide hints for exploration is unprovided.
We observe that domain experts’ initial interactions with the

system are mostly blind and random. They tend to begin by

randomly picking several time points from the global timeline

to get quick snap shots of location distributions, the inference

from which helps them build initial understanding and locate

interesting time periods. As the familiarity with the system

increases, specifying a time window to include trace lines is

discovered to ease this task. We argue that there can be a more

efficient way if 1) global information over the temporal axis can

be provided to prompt the explorations along the temporal

dimension, or b) view of the previous time pick would provide

useful information for the next time choice. This concern is

raised by V1 and verifiable with the documented Skype video

sessions. Regarding this, we think higher level exploration

guidance on the temporal dimension is necessary.
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✍: https://www.mapbox.com

In addition to identified gaps above, we are encouraged to

bring more analytical capabilities to provide richer information

of movements. For instance, the current group selection only

allows for selection of pairs. The dynamics of MRs of animal

groups of three or more entities can be more nuanced and

complex. Informing the clues in this regard can be helpful

to support more hypotheses. Following this thread, V2 also

suggests that we could derive an aggregated layer of movement

patterns to delineate more information on top of existing

trajectory depictions.

These inputs help us to scaffold the next design iteration, the

detail of which is explained in the following section.

Design Improvements

A Basic Landscape Context

The landscape characteristics are ignored in the last version.

This is because the project focuses on movement relations and

the landscape context is sacrificed because of its secondary

importance. However, our experiments show that the landscape

context is revealing in many aspects. As we implemented a

background with the data source from the online map service

platform Mapbox
✍

and reverted the y-axis to match the true

north of landscape. The outcome (Figure 5.15) exhibits some

important lessons.
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Figure 5.15: Landscape Map: A low-

resolution map to show the major

landscape characters such as water

areas, grasslands, and reserve bor-

ders.

For example, the added landscape context helps to explain

the segmentation of two significant crowds of animals during

summer seasons (animals tend to cluster into certain areas as

explained by Figure 5.11) – a separation by the river cutting

from the Southwest to the Northeast corner in the natural

reserve (Figure 5.15). The trajectories rarely cross the river.

This indicates rivers can impact the frequency of traveling in

some directions. Also, we see part of the movement paths

are heavily influenced by the shape of the border (left side of

Figure 5.15). This indicates the chance of a group of animals

walking along the border. If so, the placement of a hard barrier

can play a significant role on the formation of moving groups

as freer movement patterns are coerced to the shape of the

border. The later case tells us that the traveling path of animals

may still be affected by barriers such as resource distribution

or the reserve’s border shape.

With the examples above, the importance of landscape context

is apparently under-estimated in the previous design as the
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MRs of even small scale groups (pairwise relations), which is

the focus of our analytical interest, can be largely affected by

certain physical hindrances in the landscapes. The provision of

landscape information can avoid false interpretations where,

for instance, the distribution of water, herbs, fences are the main

cause of traveling path instead of social dynamics between

animals. Consideration into this issue leads us to prioritize the

landscape as an essential part of our system redesign.

Global View of MR

The analyses of MR need to consider movements in the tem-

poral space and the spatial space simultaneously, which are

tricky on a single two-dimensional plane. The previous design

to analyze pairwise MR is mostly designed to solve this issue.

It enables a novel view with which false pairing can be easily

detected. The design objective to enhance this core function-

ality in the next iteration is to accommodate more advanced

hypotheses, which can be divided into three parts:

1) flexible group selection: MRs of animal pairs can be analyzed

in pairs. However, group members of more than two entities

are possible and equally interesting to the analyses. To this end,

we remove the two drop-down menus for the pair selection and

replace that with free-form lasso selection (pointer drawing

circles to enclose desired group members) in the main view. The

back-end analytical model is redesigned to calculate a density

index as the new the relatedness value to accommodate group

members of more than two (n ⩾ 2). Theoretically, the new

design allows a group size up to all the displayed animals

available.



5.8 Next Iteration 145

[304]: Kruskal (1956), “On the Short-

est Spanning Subtree of a Graph and

the Traveling Salesman Problem”

[305]: Ester et al. (1996), “A Density-

Based Algorithm for Discovering

Clusters in Large Spatial Databases

with Noise”

Figure 5.16: Grouping Candidates:

The system can automatically gen-

erate multiple assumptions of po-

tential groups similar to the current

selection (brighter polygon with an-

imal 06, 08, 23) with the derived

parameter 𝜺.

2) generated grouping hypotheses: When applying a lasso selec-

tion, the system performs a Kruskal’s Euclidean Minimum

Spanning Tree (EMST) process [304] to derive a distance-based

grouping tolerance 𝜺. Under the hood, the algorithms takes

the longest edge in the generated tree, which guarantees all

the members specified by the lasso are reachable, formally:

𝜺 = Max{ mst(lassoSelectionCoordinates) }

where n ⩾ 2. The system then takes the distance parameter

𝜺 to search for other potential groups which are reachable

within the distance threshold of 𝜺 Figure 5.16. The search

task is achieved by applying the density-based clustering

algorithm of DBSCAN [305] upon all the shown animals

(excluding manually excluded ones by clicking on the labels in

the uncertainty view Figure 5.4 D)) to automatically generate

similar grouping candidates to prompt the next action.
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3) searching similar cases in all time points: The automatic genera-

tion of group candidates on the map takes one input and scales

the hypothesis to the global level in the spatial dimensions.

We apply the same idea to the temporal dimension to capture

grouping status along the global timeline of each animal. More

specifically, after clustering with 𝜺 on currently displayed loca-

tions is finished, the same parameter is exploited as a global

threshold to determine if the given animal a is contained by

a group over all time points. The result of animal’s grouping

status history (GSH), i.e. GSHa, is thus composed as:

GSHa = [sat0 , sat1 , sat2 , ..., saTa]

where sat′ is a Boolean value which indicates the grouping

status of animal a at time point t′, t0 ⩽ t′ ⩽ Ta, and Ta is

the time point of the final appearance of the animal a. Since

the GSH is dependent on the specific animal a, we add a

layer of detail to reuse the 25 bars in the uncertainty view

(Figure 5.4 D)) to display each GSH. The visual comparison

of the GSH helps to examine the stability of groupings (the

size of which can be more than two members) as exploration

candidates. The expert can quickly click on positions of any

bars in the uncertainty view to jump into interesting episodes

such as the initial forming of a group or the time point where

new member(s) may join the group. This view also includes all

the members of all the time into a holistic view, based on which

the user can decide which group’s subtle variations of the MR

strength (i.e. the location density of the group) to examine in

the MR view, which is only slightly adapted from the pairwise

MR view in the last version (E.2 of Figure 5.4).
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Figure 5.17: Grouping Status His-

tory: a global view to see if the ani-

mal is in a group (blue) or not (gray)

according to current 𝜺.

To sum, these improvements provide two novel views of the

global MRs. The first improvement paves the way to more

advanced analyses of multiple members with easier and more

flexible selections. The latter two improvements either provide

the global view of spatial relations or a global view of temporal

relations — two essential pillars to support the next level MR

analyses. These improvements collectively enable overviews

of information on the larger context, potentially guiding the

user’s attention to the next relevant interest region. The new

design in this regard is likely to meet the gap of G2.

Figure 5.18: Movement Relatedness

View: the new design supports the

same interactivities of dragging and

brush-to-zoom, whereas the y-axis

can represent the strength of relat-

edness of group size of more than

two entities.
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A) Default (null parameter) B) Group Selection C) Group Selection +
Duration

Figure 5.19: Heatmap Examples: A) The default state: showing locations of all animals of all time in a heatmap if not

parameter is specified. B) Group selection: showing location densities where selected animals are close enough to

be grouped by 𝜺. C) Group selection within a time duration: showing location densities of selected groups existing

within the specified time window.

Substituting the Chord Diagram with a Contour
Heatmap

As mentioned in § ·5.8 Newly Discovered Gaps, the employ-

ment of the chord diagram has raised interpretability and

usefulness concerns. We decide to switch for a different view

where the spatial distribution is the primary focus. The motiva-

tion behind such a change are twofold: 1) We have redesigned

new features that are helpful to serve the same purpose of orig-

inal design. More specifically, automatic grouping generation

and GSH in the uncertainty view already aids in the finding of

potential members to include or exclude into or from a group.

This makes the original design less irreplaceable. 2) The added

landscape map background makes the main view more visu-

ally loaded, especially the trace lines and the concentric plots

are shown on top. This leaves little room for more aggregated

visual artifacts on top of the main view if more information is

being used to aid the analysis. Our solution to this problem is

to employ a down-scaled map to display generalized spatial

information for the tasks where detailed landscape character

information is not critical. Thus, the new map is responsible
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for patterns of large regional distributions, whereas insights

concerning small distance steps or detailed land characters

remain in the main view.

As the analyses of MRs can happen at any level of individ-

ual, group, or all members concerning varying time windows,

the information aggregation can take data inputs of large

and small Figure 5.19. Therefore, we employed a normalized

density-estimation method to accommodate varying input

lengths while keeping visual consistency and interpretability

intact. The visualization result is a contour heatmap imple-

mented through d3.js’ built-in API. In the new design, the

information input is determined by the parameter of group

size n (up to 25, can be an individual when n = 1) and time

selection r (can be specified as a point or a duration, r = null
means all time points are selected). Since a normalization is

applied, the depicted color only indicates the effect of con-

centration instead of the exact number of points. This also

avoids extreme visual results of indistinguishable heavy or

light colors.

The new design is significantly more readable and understand-

able according to a preliminary user study with E1 and E2 (G1).

The expert user can select individuals to identify the potential

home range of the animal. Applying a time selection on top of

that can generate visual patches to study potential migrations

from region A to region B (C in Figure 5.19). Selection of groups

also helps to tell if the company between selected members is

relatively sedentary or dynamic by the spread of the spatial dis-

tribution. The heatmap automatically responds to parameter

adjustments in the main view, time selection in the timeline, or

other parameters in the control panel Figure 5.4. No additional

configuration is required to provide the assistive view to track

aggregated higher level patterns from the side. The new design

should add richer and more nuanced information to help the

MR research.
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5.9 Discussion

Comparing to most of other visualization works in supporting

ecological research [199, 269, 270, 306, 307], this study empha-

sizes more on individual level inquiries, particularly potential

interactions or threats. The study into these issues initially

came as a wicked problem that lacks a proper structure. For

example, the experts are not supported with sufficient clues to

conceptualize deep analyses such as what to look into when

scrutinizing a potential encounter, or how animal pairs form

and lively endure. This is a typical situation when the research

questions contains a high level of problem uncertainty (§ ·
3.1 Problem Uncertainty). This hindrance makes pivotal vi-

sualization a worthy option to support the research from a

knowledge finding perspective.

In this study of wildlife animal movements, the perspective of

MR puts the related information into clarified vision of move-

ments in a relational context. This new semantic attribute is

not only a metric to aggregate proximity in time but also a vari-

ation pattern with a domain-friendly interpretation. Although

the explicit emergence of patterns are difficult to summarize

with simple words. The semantics in MR, either driven by nu-

meric variations or depicted though graphic representations,

expose intuitive patterns that helps the expert to understand

unobserved facets of the complex movements by animals of

different species in diverse time frames. The pivotal effect pro-

vided by the semantic attribute of MR makes easy access to

the unstable nature of animal pairings (Figure 5.13) as well

as other subtleties such as the likely length of social bonding,

presumable pre-stages before a stalking behavior. By the cases

in § ·5.6 Analyzing Multi-Species relation and § ·5.6 Examining

Grouping/Pairing Behavior, we can see that the application of

pivotal visualization in this study not only contributes novel

clusters of hypotheses, but also supports rigorous experimen-
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tation of these hypotheses with factual data (§ ·5.4 Movement

Relatedness as the Semantic Attribute). This dual space support

(hypothesis space and experiment space, cf. § ·3.3 Knowledge

Building as Dual Space Search) together extends the total ex-

ploration space (§ ·3.5 Effect of a Semantic Attribute) to reach

deeper, more sophisticated understanding of behaviors instead

of just movements.

We acknowledge that distribution and behavior patterns in

relation to local resource change and land feature are as inter-

esting to many ecologists, for example, the influence of seasonal

change and its consequences to water access as in § ·5.6 Check-

ing Seasonal Distribution Change. However, reasoning with

more comprehensive environmental factors requires detailed,

up-to-date GIS data to describe as how temperature and rainfall

changes are explicitly reflected in the local landform, which

is unfortunately unfeasible at the time of this study. More

fundamentally, the validation of visual interpretations such

as predatory threat (§ ·5.6 Analyzing Multi-Species relation)

relies on obtaining ground truth data, for instance, onsite au-

tomatic video recordings of lion kills or discovered cadavers

near the reported locations. Like before, the evidence is even

more expensive to get as someone would need to travel and

look to verify. In this regard, the visualization is helpful as it

guides us toward how future research could be improved by

obtaining additional knowledge and data.

5.10 Summary

This chapter introduces a visual exploration system for move-

ment ecologists to discover individual level insights in animal

movements. It exemplifies how the pivotal visualization design

method facilitates a field research project which, like many of its
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kind, are complicated by insufficiencies in measurement capac-

ities. Therefore, following the study in chapter 4, it deals with

extra uncertainties caused by data imperfections in addition

to the problem uncertainties. From an empiricism perspective,

the treatment of data uncertainty is more consequential to the

experimentation support than the hypothesis-forming support

counterpart in a dual space search process (§ ·3.3 Knowledge

Building as Dual Space Search). Its influence to the pivotal

effect is detrimental but limited — problem uncertainty re-

mains existential to the application of the pivotal visualization

approach.

Although analyzing individual level interactions has been

touched by previous works [291, 297], a visualization tool that

analyze small scale animal interactivity through the lens of MR

is novel. Experts confirm the design is useful in identifying of

general movement patterns as well as locating possible pairing

and matching in different time frames. The practicality of MR

approach is supported by real cases and novel insights. As a

visualization effort targeting the emerging field of movement

ecology [207, 244], we see the study in this chapter as a use-

ful contribution to support nuanced insights in fine-grained

relationships of multi-species animals.



Reflections and Discussions 6
Overview: This chapter summarizes reflections from the
applications of pivotal visualization in the two study contexts.
We discuss general takeaways as well as particular findings
following the theoretical narrative structure of pivotal visu-
alization as in chapter 3. By drawing connections from the
theoretical model to practical details, this chapter discusses the
applicability of pivotal visualization regarding the theoretical
components of problem uncertainty, semantic attribute, and
the pivotal effect.

6.1 Overview

Key Results

This chapter aims to generalize how pivotal visualization is

applied in the study A and study B. By referring to the explicit

examples in the studies, we outline the commonalities vs.

differences of how pivotal visualization as a design method

augments explorations leveraging the semantic attributes in

each context. The outcome is presented in Table 6.1.

The leftmost column of Table 6.1 provides an overview of

key components in the theoretical model of pivotal visual-

ization (chapter 3), following which we fill the key results

by their commonalities and differences. The commonalities

provide tested guidelines to assist the deployment of pivotal

visualization in other scenarios. The differences highlight the
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parts where adaptations to include context-dependent factors

are necessary. By looking through the table, we summarize

that the commonalities play a more prominent role than the

differences. This indicates that the theoretical model succeeded

in capturing the most fundamental aspects of designing via

the pivotal visualization approach in practice.

Continued development by adding results from more studies

following this schema should contribute more executable hints

for the early conception of design plans in future cases.

Method and Objective

Revisiting the studies from a retrospective allows us to de-

rive finer descriptions of pivotal visualization. As explained

in chapter 3, the implementation of pivotal visualization is

multifaceted and structured following the several stages in the

analysis pipeline. A project following the pivotal visualization

approach begins with the identification of problem uncertainty,

which determines the knowledge assistance and the defini-

tion of semantic attributes. Then, the pivotal effect realized

through visual expressions of semantic attribute(s) extends the

exploration space to create unprecedented possibilities for new

domain relevant hypotheses and experiments.
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Table 6.1: Key Components in Pivotal Visualization reflected in the Studies

Component Commonality Difference

Study A Study B

Problem

Uncertainty

the disconnection between research

objectives and data

the required concept that are unob-

servable

the required concept is influenced

by both observable and unobserved

features

Semantic

Attribute

supporting knowledge assistance ac-

cording to the question sub-modules

two parallel forms: action complexity
and strategy signature

one parent form with plural variants:

pairwise and i-G

Exploration

Space

to uncover findings beyond immedi-

ate visualization with data

exploration space regarding the ac-

tions complexity and qualitative strat-

egy differences of attempts

exploration space regarding move-

ment relatedness in two modes

Focus &

Continuity

ensures findings are relevant, consis-

tent, and interlinked

by rejection: complexity increase

with score ⊲ “tail optimization”

anomaly

by generalization: social tie re-

silience of wildebeests ⊲ predatory

threat from lion



156 6 Reflections and Discussions

Following the theoretical breakdown in chapter 3, we extract

study-dependent reflections as well as study-independent

insights with explicit references to problem uncertainty, knowl-

edge assistance, pivotal effect, conceptualization of semantic

attribute, and effect on exploration space and processes under

the umbrella of pivotal visualization. By the comparisons of

commonalities and contrasts in each separated context, the

instantiations of pivotal visualization design allows the ear-

lier rationales to be confronted with the actualized effects,

from which we distill the design experiences and lessons to

consolidate the theoretical framework. This effort would con-

tribute useful inspirations to find links between the theoretical

framework and detail design planning in varying contexts.

6.2 Unpacking Problem Uncertainty

The knowledge discovery in both studies is inhibited by a

variety of problem uncertainties. Instead of focusing on the

apparent differences in application domains, we can also study

the problem uncertainties from their roots, i.e. a more general

perspective about the deeper cause concerning the birth and

shaping of the problem uncertainties. Here, we discuss two

perspective of their origins — the data collection policy versus

the angle of interests (taken by explicit research objectives).

The Data Collection Side

Despite the problem uncertainties are largely unaffected by

data quality issues (§ ·3.1 Problem Uncertainty), they can still be

affected by the policy (instead of the means) of data collection.

For gaming analyses, the lack of measurement of the internal

states behind player behaviors are intrinsic and not improvable

with increased apparatus capacity. This same is true for animals’
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social behaviors — we can only give hypothetical explanations

to the intention of certain movements, but we certainly do

not have the access to an animal’s instincts and motivations

in the movement regardless of the tracking duration and fre-

quency. However, some uncertainties are results of practical

trade-offs instead of fundamental inaccessibility. For instance,

trade-offs between battery life, portability, and trajectory reso-

lution are often necessary to balance the conflicting concerns

under practical limitations. As a result, the technically optimal

measurements can be practically infeasible, which produces

compromised data resolutions. Since movements are the sole

material for investigating animal group behaviors in study B,

assumptions of the underlying logic of a behavior heavily rely

on accurate interpretations of movement traces. Thus, visual

results based on compromised data quality can cause increased

problem uncertainty.

In this regard, the seemingly identical problem uncertainty

(both as insufficiency in knowledge support) could have very

different root causes — one is because the kind of knowledge

is inherently inaccessible from the data perspective while the

other is because the optimal data quality is sacrificed due to

technological or economic reasons. The former is challenging

and can only be gradually mitigated by improved (visual)

exploration methods, while the solution to the latter is more

straightforward as the uncertainty can be effectively reduced

with better supplement of budgets, time, or device capacities.

Pinpointing the cause of problem uncertainty is useful to

devise the reduction method accordingly. Fortunately, this can

be done by recognizing the supporting data types, i.e. sensory

data versus log data as explained in § ·3.6 Study Context. For

instance, if the project data contain sensory attributes, the

expenditures in device, people, and time should be sufficiently

allocated to keep problem uncertainty of the second cause

under a manageable threshold. Otherwise, the expert may be
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busy dealing with the noise or distortion of data and distracted

by false depictions.

The Research Objective Side

What plays a more significant role in the problem uncertainty

is the knowledge we intend to generate from analyzing the

data collected in a project. In both studies, it is evident that

the exact problem uncertainties are driven by the research

objectives of the project. But the research objective in the two

studies influences the problem uncertainty implicitly. Take

study A (chapter 4) for an example, learning experts aim

to understand players’ learning which may lead to optimal

training routines. But the observations of learning patterns

are inaccessible at the very beginning. Therefore, the analysis

approaching this research objective needs auxiliary support

from smaller actionable questions on the bottom level. In other

words, the researchers need to dissect the monolithic research

objective into sub-modules like: 1) How to summarize and

compare learning attempts of categorical labels instead of

scalar values when arithmetic relations of attempts and players

are not given by data? 2) How to reflect the non-linearity in

the progression of players’ skill improvements (i.e. anomalies

contrasting steady score increase with more attempts)? 3)

As play styles and strategies are qualitatively diverse, how to

efficiently describe them to collectively consider this qualitative

difference in the comprehensive analyses? (Table 6.1) Concrete

answers to these questions are hard to achieve as the questions

themselves are roughly defined and only semi-formulated,

leaving the researchers to deal with the ambiguities that come

before the ability to definite crisp hypothesis.

Similarly, study B (chapter 5) concentrates on how animals’

movement behaviors influence each other. This research ob-

jective is complicated by several question sub-modules. These
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include: 1) How to treat the signal losses (occasional missing

points as well as continuous poor signal over a duration) to

avoid misconceptions of group movements? 2) How to limit vi-

sual clutter produced by spatial-temporal multi-dimensionality,

presumably by filtering out irrelevant segments in years-long

trajectories? 3) How to exploit the temporal context to verify

potential interaction scenes with species-specific considera-

tions? 4) How to facilitate the search for potential candidates

of future interactions concerning one animal? (Table 6.1)

When the link between possible pathways of hypotheses and

experiments with data and the research objective is unclear,

the problem uncertainty arises. The above questions are ex-

amples of more specific sub-modules where researchers need

additional know-hows to mediate the raw data to support the

exploration toward the research objective. Because a resolution

of the research objective begin to emerge as knowledge pieces

start snowballing, the sufficient exploration means, which grad-

ually fills the gaps between data and question sub-modules,

are essential to complete the whole loop of raw data, question

sub-modules, and the research objective, paving the way to

progressively reduce the problem uncertainty in general.

As aforementioned (§ ·3.2 Guidance from Knowledge Assis-

tance), knowledge assistance, which is known to support the

procedural explorations, is applicable to reduce problem un-

certainty in this regard. And one critical resource to build that

knowledge assistance is the experts’ partial, tacit knowledge (§ ·
3.2 Addressing Problem Uncertainty). However, because the

tacit knowledge is, by definition [308], not easily documented,

locating the most relevant tacit knowledge to pinpoint a suit-

able knowledge assistance for visual analysis is hard. One way

to narrow down the search scope is to begin with the subtle con-

nections between the question sub-modules and the missing

knowledge assistance. When the definition of knowledge assis-

tance follows the interests of questions sub-modules, problem
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uncertainty can be reduced by exploring with the assistance of

relevant tacit knowledge. This benefit can be explained with

explicit examples.
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Table 6.2: Specificity Levels of Questions Sub-modules: question sub-modules by their relative abstract-specific levels to the explicit problem contexts

(cf. Figure 3.1) (S1 = Model Configuration, S2 = Expertise Application, S3 = Project Character)

Question sub-modules S1 S2 S3

A-1)

How to summarize and compare learning attempts of categorical labels instead of

scalar values when arithmetic relations of attempts and players are not given by data?

✓ ✓ ✓

Study A

A-2)

How to reflect the non-linearity in the progression of players’ skill improvements (i.e.

anomalies contrasting steady score increase with more attempts)?

✓ ✓

A-3)

As play styles and strategies are qualitatively diverse, how to efficiently describe them

to collectively consider this qualitative difference in the comprehensive analyses?

✓ ✓ ✓

B-1)

How to treat the signal losses (occasional missing points as well as continuous poor

signal over a duration) to avoid misconceptions of group movements?

✓

Study B

B-2)

How to limit visual clutter produced by spatial-temporal multi-dimensionality, pre-

sumably by filtering out irrelevant segments in years-long trajectories?

✓ ✓

B-3)

How to exploit the temporal context to verify potential interaction scenes with species-

specific considerations?

✓ ✓

B-4)

How to facilitate the search for potential candidates of future interactions concerning

one animal?

✓ ✓
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Take study A, for example, a reduced visual language to capture

strategy modifications along consecutive attempts facilitates

comparisons and grouping of strategies, which helps to the

analyses of learning progression (relating to question sub-

module A-2 in Table 6.2). Building knowledge assistance in

this regard supports the analyses of varying strategies. As a

comparison, tacit knowledge of the Lix’s game mechanism (i.e.

how the discrete actions supports a pathway toward the lixes’

destination) is useful when explaining the cause of certain

actions, but knowledge assistance focusing on this task con-

tributes little regarding the question sub-modules in Table 6.2.

Additionally, it is very likely that the application of this part of

knowledge is automatic and visualization support for knowl-

edge assistance as such may not be necessary. For example,

an expert can provide ad-hoc explanations as he/she contem-

plates on fine-level details of the action data as long as he/she

knows one solution to this puzzle is to dig a tunnel with either

miner or nuke . For this case, knowledge assistance may be

better allocated for other gaps in the project to mitigate the

problem uncertainty.

To further identify the most effective knowledge assistance

within the question sub-modules (i.e. considering multiple

choices of knowledge assistance which all relates to a question

sub-module), this effort can be further enhanced by character-

izing the knowledge assistance with relevance to the specificity

levels of problem uncertainty in § ·3.1 Problem Uncertainty.

Take study B, for example, question sub-module B-1) requires

the expert to devise a data pre-processing model to substitute

missing or wrong data with interpolations. The expert’s tacit

knowledge for this case can help rule out unrealistic values (e.g.

large steps beyond possible movement speed, too long seden-

tary period to maintain survival). But this effort has only small

dependence on the knowledge of specific problem context (S1)

— adapting the generic linear interpolation for spatial-temporal
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data by considering the aforementioned unrealistic patterns

can mostly suffice. As providing higher fidelity for movement

data contributes limited additional knowledge to support novel

explorations, supporting knowledge assistance in this regard

holds lower potential to further reduce the problem uncertainty.

To this end, question sub-module B-3) in Table 6.2 makes a

good comparison against B-1). In B-3), time is a dimensionless

primitive attribute that requires no additional abstraction or

transformation. The challenge of issues related to B-3) is in-

corporating the temporal thinking into the analyses. Eliciting

tacit knowledge associated with the temporal dimension is

challenging as we intuitively relate movement interactions to

spatial contexts instead of temporal contexts. This contradicts

with B-1) as the temporal thinking in animal movements is

complicated by the diversity of species. The mental model

supporting his temporal thinking is constantly updated with

latest knowledge assistance. Because the model to interpret

the temporal-related behaviors is constantly changing, it is

difficult to predict its evolvement and reconfigure the model

by a programmed process. Therefore, knowledge assistance

to incorporate the temporal context yields more benefit to

the snowballing of the knowledge, which ultimately enables

explorations to reduce problem uncertainties more effectively.

The above example explains how it is usually more produc-

tive to focus the knowledge assistance on questions of higher

specificity levels (Figure 3.1).

As we can see, the distinction of problem uncertainties can

be driven by two forces of data collection policy and research

objectives. We discuss the above insights to facilitate the under-

standing of uncertainties, and more importantly, to facilitate

the development of uncertainty reduction methods. Based on

our rationales of knowledge assistance choices, we use the

empirical lessons from the studies to illustrate a rigorous pro-

cess to locate and refine the knowledge assistance, which is
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informative to the definition of semantic attributes.

6.3 Forming Semantic Attribute

After the suitable knowledge assistance is defined with the

above process, using a key concept (e.g. relatedness between

animals or complexity of behaviors) to assemble pieces of tacit

knowledge is necessary to create that knowledge assistance.

This is because visual patterns generated based on a concept are

closer related to the semantics in the explicit problem, making

the intuitive explanations of them more accessible. As project

characters are most specific to the explicit problem, interpreta-

tions such as “a steady relatedness” or “a group of complex

attempts by Player X” are illustrated by the visual patterns. Fol-

lowing this way, embedding the concept into the visual context

ensures the seamless integration of knowledge assistance in a

visual analysis environment, unveiling new hypothesis space

for more investigations around that concept.

However, a concept alone is not enough to realize the function

of a semantic attribute. To make the concept also compatible

with other attributes in the visualization system, it needs a

rigorous format. This format includes a formal description

supported by the data or their transformation models. Such

a description provides the analytical function of the semantic

attribute so that the hypotheses based on the visual seman-

tics are able to be experimented with other attributes in the

context. The analytical function of a semantic attribute can

indicate nuanced variations and provide attributability of the

hypotheses on top of the semantics. For instance, study A

leverages semantic attributes to investigate players’ experience

in each stage through the varying complexities in visual depic-

tions (cf. Figure 4.6). Study B leverages semantic attributes to
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search for segments of potential encounters by visually trac-

ing the trends in movement relatedness (cf. Figure 5.13 and

Figure 5.14). Visual anomalies in the above cases may trigger

new hypotheses relating to the concept in the semantic at-

tributes. Further experiments may be conducted with visual

explorations or quantified outputs. Experts may want to adjust

the hypothesis or simply reject it if there is a disagreement with

the visualized semantics or simply raw data. This verifying

ability provided by the rigorous format of concepts in the

semantic attributes adds an experiment space extension to

follow-up the hypothesis space extension by the concept in the

semantic attributes.

Forming the semantic attribute can be versatile in considering

specific analytical requirements. In some cases, the attribute

is a cohesive and integral one — they illustrate an unvarying

concept to provide additional explanation or analytical power.

However, semantic attributes can also adapt to different forms

according to specific analytical purposes. In some other cases,

the semantic attribute may have multiple subtypes. These in-

stances inherit similar core concepts from one parent concept

but with varying forms. The semantic attribute in study A

better reflects the former case. There, the attribute of action
complexity satisfies a monolithic definition of a concept without

any sub-types, while the strategy signature serves a whole differ-

ent purpose (§ ·4.6 Strategy). As a comparison, the attribute of

movement relatedness in study B has two co-existing sub-types:

one is a single-variable index visualized along the temporal

axis. The other is a compound, multi-variable attribute with

only graphical representation (Figure 5.9). From practical ex-

perience in the studies, we realized that forming the semantic

attribute for the research objective is not like pairing the key

for the lock. Flexible conceptualization with parallel attributes

or attribute sub-types are not only possible but also important

for the analysis. However, the number of semantic attributes
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and its sub-types should be restrained to avoid extra overhead

in both computation and interpretation. Too many concepts

to process all at once potentially undermines the usability or

performance of the outcome view.

6.4 Pivotal Effect by Visual Exploration

The systematic benefit of the pivotal visualization approach

is referred to as the pivotal effect, which is realized through

the visualization of semantic attributes. This effect benefits

knowledge discovery in two ways: 1) extending exploration

space to provide extra accessibility of hidden insights, and 2)

ensuring the focus and continuity of explorations to promote

consistency in a procedural process (§ ·3.5 Concept). We further

explain these effects in the study contexts.

Extending the Exploration Space

The exploration space is a finite region and naturally confined

by the technical feasibility, information availability, personnel

limitations. To extend the exploration space means to add novel,

non-overlapping area(s) to the existing space (Figure 3.7). This

is an iterative effort. The realized size of extended exploration

space determines the effectiveness of a pivotal effect. In the

initial stage of study A, identifying key actions or action combi-

nations (some referred as “motifs” [309]) that secures winning

attempts is drawing a lot of effort as being a common prac-

tice in event sequence analyses [221, 309–311]. As the experts

dig deeper, the associations between action combinations and

other attributes such as performance scores, spent time seems

to be equally interesting. For instance, experts try to verify if

longer and more laborious attempts (containing many used
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actions) contributes to higher scores. But the follow-up proce-

dures can hardly go beyond correlation finding between the

primal measurements. These efforts fail to present game play

as a learning progress during which a player can experience

different episodes of trial and error. As justified by the evalua-

tion, the semantic attribute of action complexity (§ ·4.5 Behavior

Complexity as a Semantic Attribute) exposes novel sectors

of knowledge regarding the learning to the experts. The new

exploration space featuring complexities in the attempts makes

the overall increase of action complexity toward higher scores

and “tail optimizations” (§ ·4.7 Novel Discoveries) visually dis-

tinguishable. A number of new hypotheses and experiments

regarding the concept of action complexity like these are re-

vealed by the pivotal effect. Likewise, the semantic attribute

of movement relatedness (§ ·5.4 Movement Relatedness as the

Semantic Attribute) makes the relationship between moving

entities easy to reason with. The novel experiment space of

local spatial-temporal context can help to reject false pairings

and verifying possible predatory threats.

Searching in the newly extended exploration space is supported

by interactive visualizations interfaces. The visual design of

these interfaces makes the exploration spaces “tangible” and

closer to analysts’ control, which promises swift transitions

between the hypothesis building and experimentation for

deeper insights.

Coherent Explorations

Increased exploration space allows for more knowledge finding

possibilities. But the extension of exploration space by semantic

attributes has another benefit that stabilizes the exploration

trajectory from drifting away from the overarching research

objective. As we know, traditional EDA tends to leverage scat-

tered strands of explorations to find valuable insights. Many of
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the fruitful outcomes are gathered solely by serendipity. This

approach can be rather ineffective if the research objective is

deep and complex, requiring repeated inquiries focusing on

the multiple aspects of the same issue. When the communica-

tion between the explorations into similar issues is supported

by a common ground of the explicit concept (§ ·3.5 Effect of

a Semantic Attribute), explorations can become more effec-

tive. This gives reasons to the earlier effort in identifying a

focus before supporting the knowledge assistance (§ ·6.2 The

Research Objective Side). Evaluation outcomes in the studies

affirm that narrowing down the coverage of knowledge assis-

tance to closely match the research objective safeguards the

coherence of explorations. For instance, the discovery of “tail

optimization (acute complexity turbulence after full score)”

behavior in study A is evoked by a contradiction against the pre-

vious assumption of “higher complexities coexists with higher

scores” — visual results in the sub-group of later successful

attempts proves the assumption is not valid in the ending phase

of skilled players. The counter-intuitiveness experienced by

the experts motivates the verification of this hidden behavior

pattern. In this case, the coherence of explorations ensures the

attention paid to previous exploration leads to more nuanced

explanations of the later, unexplored questions.

The sequential pattern of explorations one following another is

believed to be more effective explorations without a coherent

structure. This is also true in study B. The pairwise relatedness

informs critical evidence suggesting animals’ social ties are

resilient — they tend to restore to previous intimate state after

short separations of two entities. But reapplying this knowl-

edge to cross-species interactions may produce inconsistency

because of probable predation threads between the species.

Reusing the same logic to test for differences between species

with potential predatory relationships uncovers the unusual

behavior pattern between two wildebeests and a lion (cf. § ·
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5.6 Analyzing Multi-Species relation). This may potentially

represent typical stalking behaviors between a predator and

two potential prey. This follow-up test elicits more compli-

cated and nuanced findings compared to previous insights or

salient pairings between animals. This again demonstrates the

value of coherence in the explorations for deep and nuanced

knowledge.

6.5 Limitations

From the examples in chapter, we can see that pivotal visual-

ization is a design method that exploits the value of semantic

attributes to make fundamental improvements to the explo-

ration spaces. The interactive, visual interfaces pursue the

research objective by continuously refining findings and ques-

tions to achieve the pivotal effect to facilitate the experts’ tasks.

The effectiveness of this design method is justified by the expert

evaluations. However, we need to acknowledge two limitations

in the method. The first is the expertise threshold in identifying

the knowledge assistance in the early stage while the second

is lack of support for redefining the semantic attribute during

the analysis.

Since the support of knowledge assistance is oriented toward

the research objective, providing the knowledge assistance to

sufficiently support the research objective inevitably adds the

threshold of expertise relating to the domain. Therefore, the risk

that the domain experts fail to suffice a certain knowledgeable

degree is not negligible. The studies covered in this thesis have

resulted in insightful discoveries considering the experts we

collaborated with. But the chance that the same effectiveness is

not repeated across different experts’ levels needs to be future

verified. Therefore, performance instabilities among a wider

group of experts should be warned.
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Moreover, the dependency of expert knowledge also prolongs

the user study time budget. Our experience shows that the

pivotal visualization method takes another layer of complexity

of pinpointing the domain concept (in the semantic attribute)

on top of existing requirement clarifications. The time spent on

each study varies significantly ranging from 2.5 months to 6

months. We have not measured the time precisely for iterating

the domain concept. But the rough estimation is about 25% to

35% of total time.

Our current account of pivotal visualization is implemented

based on one or a set of pre-defined semantic attribute(s), i.e.

once the semantic attribute is built into the system, there is

little support to adjust the semantic attributes to new contexts

afterwards. Although the requirement for semantic attribute

adjustments is not evident in our studies, it may be critical for

certain other use cases, especially when the defined semantic

attribute fails to follow the new discoveries in the analysis.

For this case, we partially attribute this inconvenience to the

aforementioned cost issue of semantic attributes — developing

support to adjust the semantic attribute within the visualization

system is even more considerable than defining semantic

attributes per se.
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Overview: This chapter summarizes the work presented in
previous chapters. We give conclusive remarks to the outcomes
and contributions of pivotal visualization as a design method.
Lastly, we outline future directions to continue our research.

7.1 Outcomes

Data visualization is to facilitate human understanding of

complex data. In new technological landscape, we reemphasize

on the importance of augmenting human sense-making beside

the increasing analytical capacity of machines. In the light

of such a goal, pivotal visualization is proposed as a design

method to use visualizations as an interface to the obscured

knowledge in a problem domain instead of the data used to

describe the problem. This method augments human abilities

in conceptualizing novel hypotheses based on semantics of

domain-informed concepts. These hypotheses followed by the

consequent experiments enable novel explorations, revealing

under-explored insights and inspiring new research questions.

The interactive visualizations based on this method allow

these new insights and questions to cohesively contribute

to each other along the concept in the semantic attribute so

that new knowledge pieces accumulate the reinforce each

other. Evaluation outcomes suggest that this proposition have

received expected soundness in both studies as the experts have

successfully discovered novel insights which are catalyzed by

the respective pivotal effect in each context.
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✍: The model is an extension from

the original dual space search model

proposed by Klahr and Dunbar [82].

In the beginning of this thesis (§ · 1.4 Visualization to Aug-

ment Human Capacity), we have outlined research questions

to search and crystallize critical factors that could improve

visualization design for knowledge discovery.

Regarding the first question of

▶ How to effectively characterize the design context to

facilitate explorations in problem-driven visualization

research?

experiments from the studies show that the problem uncer-

tainty is closely related to the asked questions driven by the

research objectives. In a problem-driven research context, the

design of visualization interfaces is sparsely informed by the

research objective per se but rather the consequent question

sub-modules as representations of the problem uncertainties in

the specific context (§ ·6.2 The Research Objective Side). In this

way, characterizing the design problem to facilitate the research

objective is mainly pinpointing most relevant problem uncer-

tainties in that context. The outcome of an accurate problem

characterization then provides guidance to the identification of

knowledge assistance, which provides exploration facilitation

to mitigate the problem uncertainty and clarify the underlying

problem at research.

We also raise the question of

▶ Which cognitive process in scientific reasoning is con-

structive to conceptualize novel exploration facilitation

methods?

Our investigation into this question leads to the conceptualiza-

tion of the asymmetric model of dual space search (§ ·3.5 An

Asymmetric Model) based on VAN Joolingen and De Jong

[83]’s dual space search model
✍

in scientific reasoning (§ ·
3.3 Knowledge Building as Dual Space Search). On one hand,
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we identify the alignment between the hypothesis-experiment

loop in scientific reasoning and the data explorations with data

visualizations. On the other hand, we proposed a necessary

adaptation of this model to consider that an exploration space

is finite and restricted by the inference power of ground data

and existing domain knowledge. As discovering knowledge is

the product of explorations, the inability to enhance knowledge

discovery can also be explained by the inability to effectively

extend the exploration space. This discovery draws our atten-

tion to the question of how to improve knowledge discovery

by indirectly modifying the exploration space.

By asking

▶ How can the findings from our studies be theoretically

generalized as a replicable method to scaffold future

design?

we frame our theory with a rigorously defined model (as

elaborated in § ·3.5 Formalism). In this model, we have included

the influence of data, semantic attribute, exploration space,

and time upon the discovered knowledge as an outcome.

This notation clarifies the relations between each factor in the

general process of data exploration. The clarification helps

us describe the mechanism of the pivotal effect and illustrate

how it contributes to both the quality and productivity of

knowledge discovery.

Pivotal visualization in a nutshell is a design method en-

abling the pivotal effect which assists knowledge discovery

by and from novel exploration spaces. The application of this

method should be aware of the induced problem uncertain-

ties determined by the research objective and identify relevant

knowledge assistance support accordingly. The visualization of

semantic attributes embodying that knowledge assistance then

creates a visual, interactive environment that provide treat-
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ments to the problem uncertainties, making novel explorations

possible.

7.2 Contributions

A Macro-level Design Method in Visualization

Pivotal visualization is proposed as a design method than a

design technique, which is a thorough plan to provide cohesive

rationales scaffolding each procedure in a visualization design

project on the macro-level. We consider this macro-level con-

tribution as a design effort following Simon [312]’s account of

design, which features a managerial role of design leading to a

“preferred state”. Instead of techniques to improve the visual

artifacts and interactivity of visualizations, the design method
of pivotal visualization here plays a meta-level role that assist

the designer in navigating through the visualization creation

process for improved design outcomes.

As Moere and Purchase [313], van Wĳk [314], and Judelman

[315] have stated, design is an integral part of visualization.

By elaborating on the design method of pivotal visualization,

this thesis presents a viable interpretation of this idea, with

which we wish to inspires more discussions in the intersection

between scientific and designerly accounts of visualization

creation.

A Theoretic Model to Augment Exploration

The conceptualization of pivotal visualization is not possible

without introducing the mental constructs such as exploration

space and semantic attributes. Explorations in data analyses

are commonly practiced but loosely described without further
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details regarding its explicit function. The construct of explo-

ration space from scientific reasoning provides an intuitive

analogy to the progression of iterative data exploration. Being

probably the most significant reason for analyzing data with in-

teractive visualizations, how explorations progress in the dual

space of hypotheses and experiments is thus made evident.

This account of explorations lays a conceptual cornerstone of

the thesis.

First, it motivates the provision of semantic attribute, which es-

sentially embeds human knowledge to the exploration process

for both hypothesis and experiment improvements. Second, it

elicits a unique perspective of augmenting exploration: instead

of providing higher degrees of freedom with more nuanced

interactivities to visualization interfaces, we demonstrate a

systemic way to augment exploration by making improve-

ments to the essential exploration space to the advantage of

knowledge accumulation. This follow-up visual design enables

the substantiation of semantic attribute and actualization of

exploration space improvements.

A HITL Approach to Data Analyses

Human-in-the-loop (HITL) is a widely-respected criterion in

modern data analyses [316–318]. While the general public are

awed by the surprising power of machine learning [20], contin-

ued applications of machine automation give rise to the increas-

ing concerns of transparency issues (§ ·2.1 Transparency). From

a knowledge discovery perspective, black-box systems tend to

generate outcomes without revealing a convincing thinking

process. Even if the outcomes can reach a satisfactory level of

consistency and reliability, human are unable to learn from the

systems’ reasoning and replicate such a knowledge for their

independent judgments. As seeking for useful knowledge is

an inherent human desire, we argue that a substantial amount
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things I know and start over by learning
from Master AlphaGo

of criticism against non-transparent machine learning models

can be moderated if we can gain general knowledge from pro-

cesses instead of only the outcomes. The experimental practice

of training professional Go players with AI [319–321] is one

the pioneering effort in this regard. However, the knowledge

transfer is still rudimentary, which requires attentive manual

interpretations of AI actions by highly skilled players.

Aligning the pivotal visualization to this endeavor, the ad-

vantage of leverage human knowledge to improve visual ex-

plorations for more insights is apparent. Pivotal visualization

places human intelligence as the driving force behind every

step of it. The identification of knowledge assistance allows the

human expert to formulate research questions more closely

to the research objective. The conceptualization of semantic

attributes incorporates human intelligible semantics into the

visual exploration. Improved exploration spaces then support

hypothesis generation, which is originally a human mental

process. Thus, no information is obscured from human ra-

tionalization end-to-end in the entire pipeline. Therefore, the

analyses are carried out through visual dialogues, where all the

beginning, process, and outcomes of a analysis can be directly

interpreted by the human expert.

In a more general sense, the pivotal visualization method

considers visualizations as knowledge discovery apparatus.

The human-in-the-loop principle puts strong emphasis on

the human involvement in the process of machine inferences.

Our method confirms such a principle as human awareness

and interventions are supported throughout the pivotal effect.

Moreover, pivotal visualization is a viable human-in-the-loop

approach as it gives a higher priority to the design improve-

ments to facilitate human-exclusive capacities (such as curiosity

and hypothesizing) than just analytical utility.
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7.3 Future Work

Applying pivotal visualization to different study contexts is

a non-trivial job. The lessons we have learned from the two

studies identify context-sensitive factors (e.g. different compo-

sition of uncertainty, cf. § ·6.2 Unpacking Problem Uncertainty)

as well as context-independent advantages (e.g. facilitating

behavior studies, cf. § ·3.6 Study Context). Beside the known

contradictions and commonalities (§ ·6.1 Overview), we plan

to continue applying the theoretical model (chapter 3 Pivotal

Visualization) in more realms such as urban transportation,

mobility patterns under emergency, or virtual social behaviors

online. The underlying theme is that behaviors of individuals

take place in a larger context but not verbally communicated.

We will also investigate the possibility of integrating stochastic

models into the definition of semantic attributes. Candidates

are, but not limited to, Hidden Markov Models, Brownian

Motion, Lévy Walks. What these models have in common is

that they present vivid analogies to natural behaviors. The vi-

sualizations featuring these models can help to reveal abstract

patterns of behaviors together with the graphical represen-

tations. Valuable insights may be derived from the overlays

between the analogue and abstract depictions of behaviors.

The conflicts and inconsistencies between model outputs and

the visualized real behaviors are critical materials to inspire

new discoveries. By leveraging pivotal visualization, we can

augment human experts’ ability in understanding the nuance

beyond reduced descriptions from models and conceiving

out-of-box narratives to the complexities in behaviors.

Moreover, the definition of a semantic attribute takes both a do-

main concept and a rigorous formula to provide attributability

with raw data (Figure 3.4). Developing that concept is mostly

a result of human effort due to the necessary manual effort
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[322]: Cambria et al. (2014), “Jump-
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in identifying knowledge assistance. The formula for data at-

tributability, however, can be otherwise. This may indicate an

opportunity to match the human proposed concept with a

automatically generated formula on-the-fly if the advancement

of semantic pattern matching in natural language processing

suffices [322]. Such a possibility need to be verified with cross-

disciplinary collaborations to further test, plan, and iterate.

The potential success in this regard should be able to tackle

the challenges of expertise threshold in the identification of

knowledge assistance and lack of support for semantic attribute

redefinition as mentioned in § ·6.5 Limitations.
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