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Abstract 

Gait abnormalities in older adults are very common in clinical practice. They lead to serious 

adverse consequences such as falls and injury resulting in increased care cost. There is therefore a 

national imperative to address this challenge. Currently gait assessment is done using 

standardized clinical tools dependent on subjective evaluation. More objective gold standard 

methods (motion capture systems such as Qualisys and Vicon) to analyse gait rely on access to 

expensive complex equipment based in gait laboratories. These are not widely available for 

several reasons including a scarcity of equipment, need for technical staff, need for patients to 

attend in person, complicated time consuming procedures and overall expense. To broaden the 

use of accurate quantitative gait monitoring and assessment, the major goal of this thesis is to 

develop an affordable automatic gait analysis system that will provide comprehensive gait 

information and allow use in clinic or at home. It will also be able to quantify and visualize gait 

parameters, identify gait variables and changes, monitor abnormal gait patterns of older people in 

order to reduce the potential for falling and support falls risk management. A research program 

based on conducting experiments on volunteers is developed in collaboration with other 

researchers in Bournemouth University, The Royal Bournemouth Hospital and care homes. This 

thesis consists of five different studies toward addressing our major goal. Firstly, a study on the 

effects on sensor output from an Inertial Measurement Unit (IMU) attached to different 

anatomical foot locations. Placing an IMU over the bony prominence of the first cuboid bone is 

the best place as it delivers the most accurate data. Secondly, an automatic gait feature extraction 

method for analysing spatiotemporal gait features which shows that it is possible to extract gait 

features automatically outside of a gait laboratory. Thirdly, user friendly and easy to interpret 

visualization approaches are proposed to demonstrate real time spatiotemporal gait information. 

Four proposed approaches have the potential of helping professionals detect and interpret gait 

asymmetry. Fourthly, a validation study of spatiotemporal IMU extracted features compared with 

gold standard Motion Capture System and Treadmill measurements in young and older adults is 

conducted. The results obtained from three experimental conditions demonstrate that our IMU 

gait extracted features are highly valid for spatiotemporal gait variables in young and older 

adults. In the last study, an evaluation system using Procrustes and Euclidean distance matrix 

analysis is proposed to provide a comprehensive interpretation of shape and form differences 

between individual gaits. The results show that older gaits are distinguishable from young gaits. 

A pictorial and numerical system is proposed which indicates whether the assessed gait is normal 

or abnormal depending on their total feature values. This offers several advantages: 1) it is user 

friendly and is easy to set up and implement; 2) it does not require complex equipment with 

segmentation of body parts; 3) it is relatively inexpensive and therefore increases its affordability 

decreasing health inequality; and 4) its versatility increases its usability at home supporting 

inclusivity of patients who are home bound. A digital transformation strategy framework is 

proposed where stakeholders such as patients, health care professionals and industry partners can 

collaborate through development of new technologies, value creation, structural change, 

affordability and sustainability to improve the diagnosis and treatment of gait abnormalities. 
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1. INTRODUCTION 

This chapter presents my PhD research project, its area, an overview of the research. It includes a 

short literature review around the subject in the background and motivation, the worldwide socio-

economic impact of gait and balance disorder, the challenges of gait analysis, the necessity of this 

research, the aim and objective, the contribution and the structure of this thesis. 

1.1. Background and motivation 

According to the Oxford English Dictionary, gait is defined as “A person's manner of walking”. 

Everyone walks with a distinctive gait and this assumption may assist in identifying someone. 

The first evidence of identifying someone using gait analysis is conducted in the UK in 2000 

where a criminal proceedings in a case of armed robbery, R v. Saunders, heard at The Old Bailey 

Central Criminal Court in London (Kelly 2000). The evidence included closed-circuit television 

images which showed the defendant’s alleged bow-legged gait. Although, there is limited 

scientific research to assist a court in deciding whether such evidence is sufficiently reliable 

and/or of high enough quality to be admitted, the aim of this research is to explore and present 

the latest scientific research in gait analysis and provide guidance upon how gait analysis can 

serve as a tool in diagnosing gait abnormalities in individuals and opens the possibilities for 

home based self-gait assessment. 

Human gait is the systematic study of the way, the manor, the style of walking and the 

ability to maintain balance in an upright posture. It can also be described as an interplay between 

the two lower limbs, one in touch with the ground, producing sequential restraint and propulsion, 

while the other swings freely and carries with it the forward momentum of the body (Lovejoy 

1988). It relies on complex mechanisms depending upon the closely integrated actions of the 

musculoskeletal, nervous system (central and peripheral), visual, vestibular, auditory systems 

leading to the smooth propulsive pattern of movements. Most healthy individuals accomplish 

walking in a similar manner between the ages of 4 and 8 years because everyone has the same 

basic anatomic and physiologic makeup (Lovejoy 1988). Gait patterns are highly repeatable both 

within a subject and between subjects, but clearly each person has a unique walking style. 

Efficiency of walking depends on mobility of the joints, activity of the muscles, coordination and 

rhythm of the movements as well as the ability to smoothly move the center of gravity. This 

rhythmic locomotion is a series of rhythmic alternating movement of arms, legs, and trunk which 

create forward movement of the body (Murray 1967). The components of gait and balance are 
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fundamental to physical function. Together, normal gait and balance enable ambulation, also 

known as mobility which is the primary mode of personal transport.  

Gait analysis started in the 19th century (Muro-de-la-Herran et al. 2014), it is a wide area, a 

search on the Web of Knowledge for scientific articles that include “gait analysis” in the title 

shows 22,988 in 2018 and it means different things to different domains. The gait analysis title is 

not protected, hence there is no formal definition of who is, or is not, permitted to do so. Thus, 

different professional, medical, academic and research groups have focused on different aspects 

of gait analysis and have therefore attracted the interest of researchers in different disciplines 

such as clinical gait analysis, biometric gait analysis, forensic gait analysis and running gait 

analysis etc. This research will be centred and focused to clinical applications on achieving 

quantitative objective measurements of the different parameters that characterise of gait in order 

to apply them to various fields such as clinics (Kirtley 2006; Muro-de-la-Herran et al. 2014; 

Wagner et al. 2018), sports (Lapham and Bartlett 1995; Lees 2002) and rehabilitation (Baker 

2006; Patel et al. 2012). It will provide quantitative measurement of locomotion, assessment of 

human walking and a wide range of spatiotemporal gait information including step, stride, stance, 

swing, speed, cadence and other information. 

Every individual’s gait pattern is assumed to be symmetrical where each leg performs 

identical locomotion. Interestingly every individual has a unique gait pattern and the limb 

movement of one side is not exactly repeated by the other side. This leads to the difference in the 

bilateral behaviour of the legs during walking where high differences indicate gait abnormality. 

Gait analysis provides bilateral locomotive information of gait parameters (e.g., length and period 

of stride, step, stance and swing), kinematic and kinetic measurements (e.g., angular joint 

trajectories, angular joint velocities, joint forces, reaction forces), muscular measurements (e.g., 

muscle contraction, muscle force) and energy expenditure (e.g., oxygen consumption, heart rate) 

(van der Linde et al. 2004; Muro-de-la-Herran et al. 2014). This has been employed in different 

domains such health, sports and rehabilitation. Gait changes can be a determinant of recovery in 

patients with Parkinson’s disease (Plotnik et al. 2005), cerebrovascular accidents (Wall and 

Turnbull 1986), amputees (Skinner and Effeney 1985; Geurts et al. 1992), stroke (Chen et al. 

2005; Hodt-Billington et al. 2008; Patterson et al. 2008; How et al. 2013; Lewek et al. 2014), 

osteoarthritis (Shakoor et al. 2003; Kutilek et al. 2014), spinal deformity (Park et al. 2016), 

fractures (Larsen et al. 2017), limb-length inequality (Kaufman et al. 1996) and cerebral palsy 

(Böhm and Döderlein 2012). It can be used to monitor and improve an athlete’s performance 

(Wahab and Bakar 2011) as well as a patient’s progress in orthopedics and rehabilitation 
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(Steultjens et al. 2000). In biometrics and biomedical engineering areas, gait analysis has been 

used as an assistive tool to characterize human locomotion and has many applications (Bora et al. 

2015b). Gait analysis is important in elderly patient fall risk assessment (Hausdorff et al. 2001; 

Yogev et al. 2007). It is also a predictor of functional and cognitive decline (Plotnik et al. 2011).  

Gait change is an indicator of different diseases and disease progression. It results in 

reduced gait efficiency and activity levels. Therefore, objective assessment of gait is important in 

the treatment and rehabilitation of patients with various conditions such as falls or orthopaedic 

surgery. In order to broaden the use of accurate quantitative gait monitoring in clinical 

application and research and to understand the gait and balance disorder deeply, an affordable 

automatic gait analysis system is required which can provide comprehensive gait information and 

allow to use in clinic or at home. It will also allow to identify gait variables and changes, monitor   

gait and abnormal gait patterns of older people in order to reduce the potential for falling, 

supporting the future development of a falls risk management system that will aim to improve 

their quality of life. To achieve this, the main aim of this thesis is to design and develop an 

automatic affordable lower limb gait analysis system that will provide comprehensive gait 

information and allow use in clinic or at home for older adults. It will be a portable wireless 

wearable multi-sensor based personalized gait monitoring system to analyse gait in real-time, 

monitor gait asymmetry, establish normal range of gait for young and older adults and assess of 

fall risk in order adults to reduce the potential risk associated with elderly fall. A research 

programme conducting experiments on volunteers, collaborated with other researchers in 

Bournemouth University, Bournemouth hospital and care homes are conducted. This system 

significantly simplifies the monitoring protocols and opens possibilities for home based 

assessment and supports digital transformation strategies through the development of new 

technology. This thesis also aims to emphasize how methodological and clinical perspectives that 

demands related to objective measurements and clinical applicability may be united. In order to 

achieve the proposed aims, the scope of our research is listed as follows.  

 Generally, wearable sensor is placed at different body locations for gait analysis. The foot 

is the most important part of the body to balance body weight, transmit body weight to the 

ground and balance posture. It is also responsible for performing locomotion. Thus, 

investigation on foot movement will provide an initial indication of gait/balance disorder 

leading to a fall. As the foot is flexible, placing wearable sensor e.g. IMU on different 

foot locations gives different outputs. The orientation of placing the IMU sensor also 
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affects sensor output. In order to obtain accurate and reliable data and reduce the sensor 

variability, an investigation on finding the optimal foot location for placing IMU sensor is 

essential. 

  The research aims to develop a comprehensive lower limb automatic gait features 

extraction method. Such analysis based on low cost technology to date is not available 

commercially. Currently available motion capture systems (Qualisys, MotionAnalysis, 

Vicon, and Shimmer etc) are expensive and require controlled environmental conditions. 

Gait is generally assessed and reported by physicians, physiotherapists and researchers in 

clinical settings or in gait laboratories. These are mostly based on visual observation 

where gait symmetry is frequently reported as present or not. Such reports may not satisfy 

scientific criteria of reliability and validity. A more objective way of gait assessment tool 

with low cost solution is required which will automatically extract gait features. 

 Visualization of gait information is a common objective in different domains including 

clinics, sports and research laboratories. The most common approaches for quantification 

of gait asymmetry provide discrete number in calculation of the symmetry index (SI), 

symmetry ratio (SR), symmetry angle (SA), trend asymmetry (TA) and other approaches. 

A real time graphical visualization technique is also required. 

 Different gait assessment tools such as the Gait Abnormality Rating Scale (Brach and 

VanSwearingen 2002), Figure of 8 Walk Test (Hess et al. 2010), Four Square Step Test 

(Duncan and Earhart 2013), The Functional Gait Assessment (FGA) (Wrisley and Kumar 

2010), Groningen Meander Walking Test (Bossers et al. 2014) and Berg Balance Scale 

(Berg et al. 1992) are used to observe the quality of a patient’s gait and balance. The 

disadvantage of these methods is that they are subjective measurements with a high 

chance of intra and inter observer variation and human error. This may affect the accuracy 

of diagnosis, follow-up and treatment of the pathologies (Muro-de-la-Herran et al. 2014). 

Therefore, a more objective way of automatic gait assessment is required. 

 Gait evaluation is also important in the treatment and rehabilitation of patients with 

different diseases. With an aging population and the increase in chronic illness such as 

poor mobility and falls there is an increasing drive for new technologies to support 

treatment of patients at their own home. Longitudinal home based gait assessment system 

is therefore required to monitor gait abnormalities across a spectrum of diseases. A series 

of gait feature measurements on a regular basis can identify the progression or recession 

of changes in gait pattern as well as response to treatment with rehabilitation for these 



CHAPTER 1: INTRODUCTION 

5 

 

types of diseases and more. Growing young adults particularly if they have physical 

disabilities may develop gait abnormalities during puberty growth spurts. Periodic 

monitoring is becoming essential to make sure that such gait abnormalities are not 

progressing. Therefore, we will propose an automatic gait evaluation that can be used for 

such longitudinal monitoring for these cases. 

 Gait analysis is a multi-disciplinary research work has diverse research scope. 

1.2. Human gait mechanics 

Human walking requires significant motor coordination and most people can perform such a 

complicated task without even thinking about it. Humans are the only animals who 

characteristically walk upright (Lovejoy 1988). The mechanics of human walking can be 

described and characterized in the context of a gait cycle. A gait cycle is defined as a sequence of 

events between two sequential contacts by the same limb which can also be called as a stride. 

Left and right strides are equal in normal ambulation, but this might not be the case in older 

adults with gait abnormalities. A stride is the equivalent of a gait cycle made-up of two phases: 

stance phase and swing phase. The stance phase, which constitutes approximately 60 percent of 

the normal gait cycle, is the interval in which the foot of the reference extremity is in contact with 

the ground (Michael and Whittle 2002). This stance phase is comprised of five gait events (initial 

contact, loading response, mid stance, terminal stance, pre-swing). The swing phase, which 

makes up the remaining 40 percent of the gait cycle, is the interval in which the reference 

extremity does not contact the ground (Michael and Whittle 2002). This swing phase is 

comprised of three gait events (initial swing, mid-swing and terminal swing). Each gait phase and 

phase events has a functional objective and a critical pattern of selective synergistic motion to 

accomplish its goal. Stance and swing phases of a gait cycle  as described by (Caldas et al. 2017) 

consist of a total of eight relevant gait events shown in Figure 1.1. 
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Figure 1.1: Normal human gait phases 

There are five gait events of the stance phase. The first event is the initial contact (0%) 

which starts when the heel contacts the ground and the waist is in its lowest position during the 

entire step. This marks the beginning of the loading response (0% to 10%) equal to the first 

period of the stance phase. Toe off with the opposite foot is the end of the double support period 

known as loading response and the beginning of mid-stance (10% to 30%). There is deceleration 

of the leg towards the horizontal axis as the velocity moves to zero. Mid-stance is the period of 

the gait cycle between toe off and heel rise. The time at which the heel begins to lift from the 

walking surface (heel rise) marks the transition from mid-stance to terminal stance (30% to 50%). 

The zero velocity remains until the terminal stance phase where the foot is flat on the ground. 

The next phase is pre-swing (50% to 60%) where the toe is off the ground and starts forward 

movement demonstrating initial acceleration towards horizontal axis. Toe off (terminal contact) 

generally occurs at about 60% of the gait cycle separating pre-swing from initial swing (60% to 

73%), indicating the point when the stance phase (foot is on the ground) ends and the swing 
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phase (foot is in the air) begins. The swing phase is when the heel moves off the ground. The 

time when the swinging leg passes the stance phase leg and the two feet are side by side is called 

feed adjacent, separating initial swing from mid-swing (73% to 87%). The acceleration interval 

corresponds to the change from the heel lift to the swing at the height point at mid-swing phase. 

When the tibia of the swinging leg becomes vertical at about 86% of the gait cycle, the terminal 

swing (87% to 100%) begins. Deceleration starts during the terminal swing phase from the 

highest point to the foot back flat on the ground. The gait cycle ends at the next initial contact of 

the same foot (also known as terminal foot contact). There is zero velocity again in the interval 

corresponding to the change from a flat foot to a heel lift. A step period is the time measured 

from an event in one foot to the subsequent occurrence of the same event in the other foot 

(Michael Whittle 2002). Therefore, a stride or gait cycle consists of two steps. The step period is 

useful for identifying and measuring asymmetry between the two sides of the body in pathologic 

conditions. Step length is the distance between one foot in the direction of progression during 

another step. Cadence refers to the number of steps in a period of time (commonly expressed as 

steps per minute). The step length, step time, and cadence are fairly symmetric for both legs in 

normal individuals. These are all useful parameters for conducting gait assessment and the 

change in these parameters are an indicator of different diseases and disease progression that 

results in reduced gait efficiency and activity levels for older adults. 

1.3. Gait and balance changes in older adults 

The ability to walk normally depends on several biomechanical components, including free 

mobility of joints, particularly in the legs, appropriate timing of muscle action, appropriate 

intensity of muscle action and normal sensory input, including vision, proprioception and 

vestibular system. Physical changes associated with aging directly affect an older adult’s ability 

to maintain postural stability and normal gait mechanics (Kang and Dingwell 2008). Aging can 

lead to several physical changes that affect these basic processes: 1) stiffening of connective 

tissue; 2) decreased muscle strength; 3) prolonged reaction times; 4) decreased visual acuity; 5) 

impaired vibratory and proprioceptive sensation, and 6) increased postural sway (Trueblood and 

Rubenstein 1991). Gait problems can stem from simple age-related changes in gait and balance as 

well as from specific dysfunctions of the nervous, muscular, skeletal, circulatory and respiratory 

systems; or from simple deconditioning following a period of inactivity. For older people, muscle 

strength plus effective motor control to coordinate sensory input and muscle contraction become 
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weak that results in different kinds of gait disorders and gait pattern changes over the period of 

time due to natural aging process shown in Figure 1.2. 

 
Figure 1.2: Changes of human gait and balance over time (Captured from OpenSimulator) 

This gait disorders encompass a number of issues, including slowing of gait speed and loss 

of smoothness, symmetry, or synchrony of body movement etc. For living independently, older 

people need to walk, stand from bed, chair, turn, lean and perform other activities. The common 

characteristics of gait with aging include an increased stance width, increased time spent in the 

double support phase (i.e., with both feet on the ground), bent posture, and less vigorous force 

development at the moment of push off. These changes may represent adaptations to alterations 

in sensory or motor systems to produce a safer and more stable gait pattern (Salzman 2010). The 

gait and balance of older people normally changes not only with age but also includes 

involvement of multiple contributing factors like arthritis, orthostatic hypotension and weak 

medical condition etc (Salzman 2010). Based on the comprehensive literature study, the medical 

conditions which may result the change in gait and balance disorder in older adults are presented 

in Table 1.1. 
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Table 1.1: Medical conditions that cause gait and balance disorders in older adults (Tinetti et al. 

1986; Cunha 1998; Salzman 2010; Bridenbaugh and Kressig 2011; Chen et al. 2016) 

Cardiovascular Conditions 

Orthostatic Hypotension, Vertebrobasilar Insufficiency, Intermittent Claudiction, Chronic LE 

Edema, Arrhythmias, Congestive Heart Failure, Coronary Artery Disease, Orthostatic 

Hypotension, Peripheral Arterial Disease, Thromboembolic Disease 

Neurological Conditions 

Parkinson's Disease, Stroke, Etat Lacunaire, Peripheral Neuropathy, Dementia, Chronic Subdural 

Hematoma, Normal Pressure Hydrocephalus, Cerbellar Ataxia, Posterior Column Degeneration, 

Cervical Spondylosis, Vitamin B12 Myelopathy Deficiency, Frontal Lobe Syndrome, 

Encephalopathy, Progressive Supranuclear Palsy, Peripheral Neuropathy, Spinal Cord Lesions, 

Cerebellar Dysfunction Or Degeneration, Delirium, Multiple Sclerosis, Myelopathy, Normal-

Pressure Hydrocephalus, Vertebrobasilar Insufficiency, Vestibular Disorders 

Musculoskeletal Conditions 

Osteoarthritis, Osteoarthrosis, Osteomalacia, Status Post-Ortho Surgery, Foot Problems, 

Unsuspected Fractures, Cervical Spondylosis, Gout, Lumbar Spinal Stenosis, Muscle Weakness 

Or Atrophy, Podiatric Conditions 

Psychological Conditions 

Depression, Fear Of Falling, Sleep Disorders, Substance Abuse 

Endocrinological Conditions 

Hypothyroidism 

Sensory abnormalities 

Hearing Impairment, Peripheral Neuropathy, Visual Impairment 

Other Conditions 

General Weakness, Drug Intoxication/Overdose, Benzodiazepines, Tricyclic Antidepressants, 

Anticonvulsants, Salicylates, Antivertigo Agents, Senile Gait, Idiopathic Gait Disorders, Other 

Acute Medical Illnesses, Recent Hospitalization, Recent Surgery, Use Of Certain Medications 

(i.e., antiarrhythmics, diuretics, digoxin, narcotics, anticonvulsants, psychotropics, and 

antidepressants; especially four or more) 
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1.4. Falls in older adults due to gait and balance disorder 

Human gait is a cyclical activity and the basic assumption is that one step is essentially the same 

as the next step. Normal human gait pattern is described as a succession of repetitive events 

where one complete gait cycle is the period between two consecutive gait events and contains 

both a stance phase and a swing phase. Normal human walking speed known as gait velocity 

remains stable until about age 70. It then declines about 15% per decade for usual gait and 20% 

per decade for fast walking. Gait velocity is a powerful predictor of mortality—as powerful as an 

older person's number of chronic medical conditions and hospitalizations. At age 75, slow 

walkers die ≥ 6 year earlier than normal velocity walkers and ≥ 10 years earlier than fast velocity 

walkers (Wolfson 2001). Gait velocity slows because older people take shorter steps at the same 

rate termed as cadence. The most likely reason for shortened step length which is the distance 

from one heel strike to the next is weakness of the calf muscles, which propel the body forward 

and calf muscle strength is substantially decreased in older people. However, older people seem 

to compensate for decreased lower calf power by using their hip flexor and extensor muscles 

more than young adults (Judge 2016). Although the causes of falls in older adults are associated 

with multiple contributing factors,  gait and balance disorders are the second major cause of these 

falls (Hausdorff and Alexander 2005). Therefore, physicians caring for older patients recommend 

or examine gait assessment at least once annually to understand the contributing factors and 

targeted interventions for the management of fall risk. For older adults who report a fall, 

physicians conduct gait assessment and observe for any gait or balance dysfunctions. Early 

identification of gait and balance disorders and appropriate intervention may prevent dysfunction 

and loss of independence (Whitney et al. 2012). A clear understanding of insight into effect of 

aging on gait and balance is important for therapeutic planning, management, clinical decision 

making and rehabilitation. The worldwide scenario of these users and care cost is described in the 

next section. 

1.5. Worldwide socio-economic impact of gait and balance disorder 

Gait and balance disorders are multifactorial problem associated with intrinsic mental or physical 

health, environment and aging problem etc. There may be other independent reasons for gait and 

balance disorder including affliction, as well as several issues undermining posture and 

ambulation. The effects of aging, deterioration caused by disease and alterations due to 
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medication all are contributing factors. People get old in natural aging process with loss of 

functional independence, unsteady, frailer, unconscious and impairment may result fall. Falls in 

older adults is a major global concern for health and social care providers all over the world. 

Sometime this falls results in different severe injuries, functional disorder, short/long-term care, 

disability and even can lead to death. It is broadly associated with gait/balance disorder, intrinsic 

mental or physical health problem and environment problem. Literature shows that gait and 

balance disorders among older adults are the major cause of fall.  

Demographic projections suggest that the populations of all countries are ageing, which 

will have wide-ranging effects on social, economic, and health systems (Chatterji et al. 2015). 

Healthcare centers across the world are providing various long and short time services including 

primary, behavioural, medical and special care to improve the quality of life. The world’s 

population aged 60 years old and older is set to rise from 841 million in 2013, to over 2 billion by 

2050 (Nations 2013). By 2050, 21.1% of the world population will be 60 years old or older, and 

80% of this demographic group will live in low-income and middle-income countries, compared 

with about two-thirds at present. During the same period, global life expectancies are predicted to 

rise, reaching 83 years in high-income regions and 75 years in low-income and middle-income 

regions by 2045 to 50 (Nations 2013). According to WHO (Organization 2007), approximately 

28-35% of world population aged of 65 and over fall each year increasing to 32-42% for those 

over 70 years of age. In 2016, 3.7 million (15%) of Australian (Welfare 2017) and 49.2 million 

(15%) United States (Jonathan Vespa et al. 2018) people were 65 and over. The older adult fall 

scenario in USA is presented in Figure 1.3. 

 
Figure 1.3: Fall scenario in USA outlined by (CDC) (Anon. 2017) 
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About 30-50% of people living in long-term care institutions fall each year, and 40% of 

them experienced recurrent falls (Organization 2007). Research (R. Craven and P. Bruno 1986; 

Eakman 2002) has shown that more than 1/3 of accidental deaths occur in adults over the age of 

65 results from falls. It has been also found that those older adults who fall two to three times 

more likely to fall again. 53% of the older adults who are discharged for fall-related hip fractures 

will experience another fall within six months (Aging January 2013). According the NHS first 

year treatment costs in the UK for older adults’ fall in home is shown that falls on stairs is £207 

million, falls on the level is £128 million, falls between levels is £84 million and falls associated 

with baths is £16 million (ageUK 2015). In 2009, 2.2 million fall-related injuries among adults 

aged 65 years or older were treated in emergency departments, and more than 581,000 of the 

patients involved were hospitalized (Prevention 2015) and in 2011, due to poor housing more 

than £1.4 billion were expended for NHS treatment (ageUK 2015). In 2012, there were 24,190 

fatal and 3.2 million medically treated non-fatal fall related injuries in the US, direct medical 

costs total of $616.5 million for fatal and $30.3 billion for non-fatal injuries in 2012 and rose to 

$637.5 million and $31.3 billion, respectively in 2015 (Burns et al. 2016); and this cost are 

projected to increase $240 billion by year 2040 (Organization 2007). Although the enhancement 

in life expectancy offers new opportunities, it also creates challenges for future fall in older 

adults’ care facilities. The rapid increased in the number of older adults around the world has 

created an unprecedented demographic revolution which has tremendous impact on socio-

economic development of a country. Consequently, creating comfort living for the older adults 

and ensuring better healthcare, living independently without any attendant with constant remote 

and local health monitoring including prevention of falls in older adults has become a challenging 

task.  

Falls in older adults and the economic impact are now one of the major concerns for 

healthcare providers. To address falls risk researchers used various wearable and ambient sensors 

for fall detection with high accuracy. Fall prediction using long term data aiming to take 

protective actions that prevent falls occurrence is still challenging and limited research has been 

conducted in this area. Technology to help increase mobility and monitor and improve the health 

of older people at home is very much needed. There is also a need to take advantage of the 

opportunities that ICT offer older adults, carers and healthcare professionals. This presents new 

technological challenges as it requires the development of new portable and affordable 

technologies to deliver diagnostic and therapeutic interventions in the patients’ own home within 
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environmental and financial constraints. One area is to develop personalized automatic 

monitoring of gait for older. This will enhance the entire healthcare service-delivery chain from 

diagnosis to post-care while improving the relationship between patients, caregivers, healthcare 

professionals and other leveraged partners. New technologies need to be user friendly and 

relatively inexpensive to deliver more value for money and greater productivity in the provision 

of services. Therefore, the objective assessment of gait and understanding the gait changes has 

many potential uses. 

1.6. Challenges of gait analysis (Problem Statement) 

1.6.1. Gait assessment 

The tools and methodologies used to assess human gait are often arbitrary and often studied in 

artificial controlled conditions. Gait abnormalities are generally assessed and reported by 

physicians, physiotherapists and researchers in clinical settings or in gait laboratories. Clinical 

scales used to analyse gait parameters are subjective or semi-subjective and a poor replacement to 

laboratory based methods for identifying changes in gait asymmetry. There are ground reaction 

forces (Su et al. 2015), dynamic electromyography (Bervet et al. 2013), instrumented walkways 

(Williams et al. 2013) and camera (Shorter et al. 2008; Auvinet et al. 2017; Cabral et al. 2017; 

Polk et al. 2017) based methods for gait assessment in laboratory environment which are often 

carried out by technical or clinical staff. These advanced, accurate gait estimations, time 

consuming and sometime very expensive methodologies are not applicable for practical use in 

clinics due to complexity, labour and costing. The conventional scales used to analyse gait 

parameters in clinical assessment are mainly subjective or semi-subjective. Different assessment 

tools such as the Gait Abnormality Rating Scale (Brach and VanSwearingen 2002), Figure of 8 

Walk Test (Hess et al. 2010), Four Square Step Test (Duncan and Earhart 2013), The Functional 

Gait Assessment (Wrisley and Kumar 2010), Groningen Meander Walking Test (Bossers et al. 

2014) and Berg Balance Scale (Berg et al. 1992), are used to observe the quality of patient’s gait 

and balance. These are mostly based on visual observation, sometime provide scoring based on 

clinical expertise and sometime abnormality reported as present or not. Such reports may not 

satisfy scientific criteria of reliability and validity (Archer et al. 2006), which may affect the 

accuracy of diagnosis, follow-up and treatment (Muro-de-la-Herran et al. 2014). Again, there is 

no commonly accepted guideline, preferred methodology or protocol for gait changes evaluation. 
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The European GAITRite Network Group, developed Guidelines for Clinical Applications of Gait 

Analysis (Kressig and Beauchet 2006), with the intention to facilitate collaboration and provide 

guidance to clinicians who wish to implement spatiotemporal gait analysis to their clinic. Two 

issues addressed in the guideline are 1) environmental conditions and safety issues which 

describe factors such as lighting, noise, visual distraction, clothing, footwear and safety; and 2) 

measurement procedures which describe steady-state gait at different velocities, standardized 

walking instructions, assistive devices, stride-to-stride variability, and gait analysis in association 

with simultaneous cognitive tasks. In order to evaluate stride-to-stride variability, the guideline 

recommends the highest possible number of gait cycles from a practical standpoint, with a 

minimum of three consecutive gait cycles for both left and right sides i.e. a total of six gait 

cycles. There are many issues mentioned which are relevant in gait assessment, however there is 

no recommended systematic procedure in the guideline. Although there are many approaches for 

assessment of gait, there is little research conducted on objective gait assessment system. 

Therefore, a more objective way of assessing gait is required.  

1.6.2. Automatic extraction of gait parameters 

There are a variety of wearable sensors including an accelerometer, gyroscope, magnetometer, 

foot pressure sensor, inclinometer, and goniometer (Agostini et al. 2015; Urbanek et al. 2017) 

that are generally used to measure various characteristics of human gait. IMUs have been used in 

different gait asymmetry techniques such as monitoring of post-operative gait abnormalities 

(Hanly et al. 2016), stride variability (Urbanek et al. 2017), measurement of gait asymmetry 

(Esser et al. 2012), fall-related gait characteristics measured on a treadmill in daily life (Rispens 

et al. 2016), nature of parkinsonian gait (Okuda et al. 2016) and human waking foot trajectory 

(Kitagawa and Ogihara 2016). Therefore, the use of IMU sensor in gait analysis has become 

increasingly popular as it is easily adopted to clinical settings as well as to patients’ homes or 

elsewhere in the community where ambulation normally take place. Research into accelerometer 

based gait parameters such as times of stance, swing, single support and double (Lee et al. 2007); 

stride length and stance phase (Chung et al. 2012); gait velocity, stride duration, cadence and step 

length (Kavanagh 2009); step number, moving distances, every step instant speed and average 

speed (Song et al. 2007); step counting (Foster et al. 2005; Mladenov and Mock 2009; Brajdic 

and Harle 2013); times of heel strike, toe strike, heel-off, and toe-off (Boutaayamou et al. 2015); 

stride length and duration (Rebula et al. 2013); walking distance, time and speed (Brandes et al. 
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2006) are investigated. Researchers also used portable gait analysis system based on force-

sensitive resistor (FSR) placed in insoles to detect ground contact and estimate stance time for 

gait asymmetry (Afzal et al. 2015), Microsoft Kinect based gait asymmetry (Auvinet et al. 2017), 

IMU and pressure sensitive shoe insole based gait onset and toe-off detection (Novak et al. 

2013), IMU-based knee flexion/extension angle measurements (Seel et al. 2014) and gait 

asymmetry using gyroscopes (Gouwanda and Arosha 2011). Although, IMU sensor based gait 

analysis methods are available, automatic gait assessment was actually found in only a few 

studies without fully automatic system including data collection, feature extraction and 

quantitative measurement where both limbs are evaluated. Many investigations carried out using 

a single gait parameter or applying simple statistical methods for comparisons, are additional 

limitations of these studies and there are not enough studies where a substantial number of 

participants took part in the study. In order to use accurate quantitative gait monitoring in clinical 

screening and research, low cost gait assessment tool is required which will provide facility to 

measure in clinic and home. Again, the use of fused accelerometer and gyroscope based 

automatic gait features extraction to identify gait assessment has not been reported.  

1.6.3. Evaluation of gait parameters 

Automated recognition of gait changes has many advantages including, early identification of at-

risk gait and monitoring the progress of treatment outcomes. The available common approaches 

for gait quantification of temporal and spatial gait pattern, symmetry deviations, symmetric 

indices and symmetry ratios are SI (Robinson et al. 1987), SR (Seliktar and Mizrahi 1986), Ratio 

(Vagenas and Hoshizaki 1992), symmetry index (Agrawal et al. 2009) and GA (Plotnik et al. 

2005; Plotnik et al. 2007). The advantages and disadvantages of these approaches are discussed 

in (Sadeghi et al. 2000). The commonly used SI  needs to be normalized to a reference value 

(Zifchock et al. 2008; Błażkiewicz et al. 2014) and there is  potential influence for artificial 

inflation as the normal values for young and older patients are not the same (Herzog et al. 1989). 

Sometimes the mean value calculation used for quantifying gait asymmetry may lead to 

erroneous results as the mean measurements from two abnormal limbs may appear normal.  For 

example, in a situation where a patient has asymmetry in the opposite direction of gait, the true 

magnitude of asymmetry for affected or unaffected limbs may be very small. The effect of the 

direction of gait asymmetry may be eliminated by the use of absolute values in the symmetry 

indices (Zifchock et al. 2008). There are methods (Miller et al. 1996; Crenshaw and Richards 
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2006; Sant'Anna et al. 2011) which do not make it possible to identify the point during the gait 

cycle at which deviations occur. There are other approaches (Sadeghi et al. 2000; Carpes et al. 

2010) including principal component analysis (Sadeghi 2003), regions of deviation analysis 

(DiBerardino III et al. 2012), and paired t-test (Shorter et al. 2008) to quantify gait symmetry. 

However, the number of test subjects and experiments are important for these methods. These 

methods may also need normative data from able-bodied subjects as a reference (Błażkiewicz et 

al. 2014). Although gait abnormality is frequently reported as present or not present which may 

not satisfy scientific criteria of reliability and validity (Archer et al. 2006), an arbitrary cut-off 

value of 10% deviation from perfect symmetry has been used as a criterion of abnormality in gait 

assessment (Robinson et al. 1987; Balasubramanian et al. 2009). This is later criticized due to its 

non-parameter specific nature (Herzog et al. 1989). Other previously used criteria to describe the 

absence or presence of gait abnormality include sensitivity and specificity of parameter 

measurement (Leddy et al. 2011), the use of 95% confidence interval (CI) where gait abnormality 

within the limits of a 95% CI obtained in a healthy population would define able-bodied gait, 

while gait abnormality outside the 95% CI would define pathologic gait (Herzog et al. 1989), and 

significant limbs difference (Sadeghi et al. 2000) etc. Although there are many approaches for 

quantifying gait, there is little research conducted on a gait evaluation method based on overall 

gait features. To date, research on comprehensive understanding of gait quantification based on 

overall gait features to allow assessment and monitoring of gait changes from young and older 

adults has received little attention. Therefore, automatic gait evaluation is required.  

1.7. Necessity of this research 

Gait analysis is important for fall risk assessment of elderly patients (Hausdorff et al. 2001) as 

well as the prediction (Maki 1997), detection (Bianchi et al. 2008) and prevention of falls 

(Bridenbaugh and Kressig 2011). It is also a predictor of functional and cognitive decline 

(Marquis et al. 2002; Verghese et al. 2007). Gait disorders are common in older people due to 

physiological age related changes in the musculoskeletal system as well as increased prevalence 

of several diseases promoting postural instability such as arthritis of the leg or foot, other foot 

conditions (such as a callus, corn, ingrown toenail, wart, pain, skin sore, swelling, or spasms), 

fractures, psychological disorders (Shelat 2/3/2015) and several others. Importantly, gait 

disturbances may also be a marker of the development of Parkinson’s disease (van Nuenen et al. 

2008), cardiovascular disease (Bloem et al. 2000), diabetic neuropathy (Tahir Khan August 2012) 
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and dementia (Snijders et al.; Verghese et al. 2007). Research investigations also show that gait 

changes as a determinant of recovery in patients with Parkinson’s disease (Plotnik et al. 2005), 

cerebrovascular accidents (Wall and Turnbull 1986), amputees (Skinner and Effeney 1985; 

Geurts et al. 1992), stroke (Chen et al. 2005; Hodt-Billington et al. 2008; Patterson et al. 2008; 

How et al. 2013; Lewek et al. 2014), osteoarthritis (Shakoor et al. 2003; Kutilek et al. 2014), 

spinal deformity (Park et al. 2016), fractures(Larsen et al. 2017), limb-length inequality 

(Kaufman et al. 1996) and cerebral palsy (Böhm and Döderlein 2012). In biometrics and 

biomedical engineering areas, gait analysis has been used as a fundamental method and assistive 

tool to characterize human locomotion and has many applications (Bora et al. 2015b). Finally, 

gait disorders are associated with a reduced quality of life, falls and mortality. Gait analysis has 

therefore attracted the interest of researchers in different disciplines. 

Older adults in number are growing all over the world and about a third of people with age 

over 65 years fall each year and over half of seniors aged 80 years fall annually. UK statistics 

show that falls and fractures in people aged over 65 account for over 4 million hospital bed days 

each year in England alone, and the healthcare cost associated with fragility fractures is estimated 

at £2 billion a year (England 2017b). Considering all these factors there is a national imperative 

to develop new more cost-effective models of care underpinned by new technologies that are less 

expensive to develop and run to help increase the mobility and monitor the health of older people 

at home is very much needed. This needs to adapt to take advantage of the opportunities that 

science and technology offer patients, carers and health care professionals. This presents new 

technological challenges as it requires the development of new portable technologies to deliver 

diagnostic and therapeutic interventions in the patient’s own home. This need to develop new 

technologies also need to take place in an environment that is financially stringent   New 

technologies need to be user friendly and relatively inexpensive to deliver more value for money 

and greater productivity in the provision of services. Our proposed research therefore is timely in 

addressing various of these requirements set in this national agenda. 

Therefore, an automatic gait analysis system is proposed in this research. It starts with 

exploring the optimal location of placing the sensors on different foot locations to maximize the 

interpretable information for gait analysis. An automatic time and distance based gait features 

(stride number, distance, speed, length and period of stride, stance and swing) extraction method 

is proposed with the aim to identify gait asymmetry and monitor abnormal gait pattern changes 

over time. Four spatiotemporal gait visualization approaches are proposed to provide automatic 
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graphical visualizations of information about gait. Next, validation study is conducted with the 

aims to determine the concurrent validity of spatiotemporal gait extracted features from proposed 

system against Motion Capture System e.g. Qualisys and Treadmill measurements in young and 

older adults and to compare the levels of agreement for average spatiotemporal gait parameters. 

Finally, a gait evaluation system is proposed using Procrustes and Euclidean distance matrix 

analysis based on overall gait features. While there are systems to analyse gait and balance to our 

knowledge, but this is one of the first body warn low cost systems to collect synchronous data 

from sensors intended to do this. The system will have the potential to be used in assessment of 

gait, gait change monitoring, gait asymmetry and clinical use associated with gait pattern. This 

has considerable potential to identify long time gait pattern changes based on these automatic gait 

features and explore ways how these features can be useful to classify gait changes over time and 

identify abnormal gait patterns for the assessment of elderly fall risk, rehabitation and sports 

applications. Older adults in home could use this system to decide their health condition for 

admission to hospital.  

1.8. Aim and objective 

Falls in older adults are one of the major health care concerns. Due ageing populations the 

frequency of falls is increasing and the health economic burden of this is of concern. 

Considerable research in the area of balance and gait disorders associated with falls is required. 

To address this challenge, a comprehensive investigation of gait and balance deficits that increase 

fall risk is required.  The association between gait pattern changes over a period of time and falls 

requires further study to determine which aspects of balance are most predisposing to falls. 

Nevertheless, at present no affordable automatic objective gait assessment system exists in 

clinics and research laboratories that can be applied reliably across different settings to quantify, 

monitor and identify gait abnormalities. Among the available existing tools, only few have been 

validated in different settings. Thus, the main aim of this thesis is to design and develop an 

automatic affordable lower limb gait analysis system that will provide comprehensive gait 

information and allow use in clinic or at home for older adults. The system will continuously 

monitor user’s gait information, quantify, monitor and identify gait abnormalities through sensors 

in order to reduce the potential risk associated with elderly fall so that older people could lead 

quality of life. The specific research objectives of this research are following. 
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1. To conduct a literature review of available wearable sensors and its application for gait 

analysis to identify research gap (Chapter 2). 

2. To design and develop a data collection platform, sensor selection, design and 

development of sensor protection system, design and development of an android app, 

synchronous data collection platform and the proposed multi-sensor based gait analysis 

framework (Chapter 3, Section 3.2.2 to 3.2.7).  

3. To find the optimal foot location of placing IMU sensors in order to obtain accurate, 

reliable and robust sensor output to maximize the highest possible interpretable 

information for gait analysis. This also investigates the influence of parametric 

uncertainties for extracting automatic features from gait parameters with the aim of 

improving the quality of IMU sensor output (Chapter 3). 

4. To design and implement a wireless wearable automatic gait feature extraction method 

(Chapter 4.2) and collect data from both young and older adults. To determine the effect 

of young and older adults walking condition on major descriptive gait statistical features 

in terms of total distance, total time, total velocity, stride, step, cadence, step ratio, stance, 

and swing. 

5. To demonstrate a tool for visualizing, quantifying, monitoring and accessing gait cycle 

with comprehensive gait symmetry information for users, clinical use and rehabilitation 

(Chapter 4.3).  

6. To determine the concurrent validity of spatiotemporal automatic gait extracted features 

with “gold standard” measurements in young and older adults and to compare the levels 

of agreement for average spatiotemporal gait parameters (Chapter 4.4). 

7. To allow assessment and monitoring of gait changes based on overall gait features for 

comprehensive understanding of gait from young and older adults in both a clinic and at 

home which increases the availability and affordability of gait assessment (Chapter 5). 

8. To propose a hypothetical digital transformation strategy framework for gait analysis 

based on the development and the possible use of new technology, changes to value 

creation, structural change, affordability and sustainability (Chapter 6.5). 

1.9. Ethics and participant evaluation 

This research involves studies with young and older adult participants, ethical issues regarding 

human participation are taken into consideration. I have studied thoroughly and understood the 
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Helsinki Declaration. An online course of “Ethics1: Good Research Practice” is completed with 

a certificate. An ethical approval is permitted from Bournemouth University ethical review 

committee to conduct this research. This research considered young and older adult participants’ 

safety and emergency aids. A Participant Information Sheet and signed an informed Participant 

Agreement Form are prepared for young and elderly participants. Before the data collection 

sessions, the participants are given brief introduction about the study and an explanation about 

the data collection processes by reading the Participant Information Sheet and Participant 

Agreement Form written informed consents are obtained from all participants and they are 

informed they could withdraw at any time from the study. The certificate of “Ethics1: Good 

Research Practice”, Participant Information Sheet and Participant Agreement Form are 

presented in Appendix A. 

1.10. Contribution 

The major contributions of this research are the following 

1) Finding the optimal location from five anatomical foot locations for placing IMU sensors 

for the analysis of gait 

2) Developing an automatic gait feature extraction method (a stride detection technique, a 

stance and swing detection technique, and a method for estimating travelled distance) to 

monitor gait asymmetry 

3) Demonstrating four visualization approaches for monitoring gait asymmetry to provide 

automatic graphical visualizations of information about gait 

4)  Determining the concurrent validity of spatiotemporal IMU gait extracted features 

against Motion Capture System and Treadmill measurements in young and older adults 

and comparing the levels of agreement for average spatiotemporal gait parameters 

5) Developing a novel gait evaluation method using Procrustes and Euclidean distance 

matrix analysis 

6) Proposing a digital transformation strategy framework for gait analysis based on the 

development and use of new technology, changes to value creation, structural change, 

affordability and sustainability 

7) Designing and developing an android app to collect real time synchronous IMU data 
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8) Creating a data set for each study using our developed app and designed sensor protection 

system (MetaWear casing, Velcro elastic belt, and buckles) for validating the designed 

app and the proposed methods 

The detailed discussion of these contributions is provided in the upcoming chapters and is 

summarized below. 

Chapter 2: An extensive literature review has been conducted on wearable sensor based gait 

analysis, available gait assessment procedures and its application in clinics and at home. The lack 

of empirical studies of the currently available systems for gait analysis are identified. Addressing 

the research gaps to propose framework for automatic gait assessment.  

Chapter 3: The details of designing a sensor casing using 3D printer, Velcro elastic belt, and 

buckles for data collection are described. The details research approach is also described. An 

investigation of placing the IMU sensor on five different foot locations is conducted. The 

investigation results give indication to find the best foot location for placing an IMU sensor as it 

delivers the most accurate output signal. A gait features extraction method is also proposed. This 

chapter is published in IEEE Sensors Journal. 

Anwary A R, Yu H, Vassallo M, “Optimal foot location for placing wearable IMU 

sensors and automatic feature extraction for gait analysis”, IEEE Sensors Journal, vol. 

18, no. 6, pp. 2555-2567, 2018, (Impact Factor: 2.617) 

Chapter 4: In this chapter, we propose an automatic gait feature extraction method (a novel 

stride detection technique, a stance and swing detection technique, and a method for estimating 

travelled distance). The Section 4.2 is published in Sensors. 

Anwary A R, Yu H, Vassallo M, “Automatic gait feature extraction method for 

identifying gait asymmetry using wearable sensors”, SENSORS, vol. 18, no. 2, p. 676, 

2018, (5-Year Impact Factor: 3.014) 

We propose a tool for visualizing, quantifying, monitoring and accessing gait cycle with 

comprehensive gait symmetry information for users in Section 5.3. The section is published in 

The 24th Americas Conference On Information Systems (AMCIS 2018). This is Rank A 

conference through http://portal.core.edu.au/conf-ranks/115/. 
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Anwary A R, Yu H, Vassallo M, “Wearable sensor based gait asymmetry 

visualization”, The 24th Americas Conference On Information Systems, AMCIS 2018 

We conduct a concurrent validity of spatiotemporal automatic gait extracted features with 

“gold standard” measurements under three experiments in young and older adults in Chapter 4.4. 

The section is under review in the Journal of Biomechanics. 

Anwary A R, Yu H, Callaway A, Vassallo M, “Validity of an automatic 

spatiotemporal gait features extraction system using wearable IMUs”, (Under 

Review) 

Chapter 5: We propose a novel gait evaluation method using Procrustes and Euclidean Distance 

Matrix Analysis. The study is published in the IEEE Journal of Biomedical and Health 

Informatics. 

Anwary A R, Yu H, Vassallo M, “Gait Evaluation using Procrustes and Euclidean 

Distance Matrix Analysis”, IEEE Journal of Biomedical and Health Informatics, 2018 

(Impact Factor:3.85) 

Chapter 6: We design a novel digital transformation strategy framework for gait analysis based 

on the development and use of new technology, changes to value creation, structural change, 

affordability and sustainability. The initial concept of digital strategy framework is published in 

Connected Everything 2018 Conference. 

Anwary A R, Yu H, Vassallo M, “Digital Transformation Strategy Framework for 

Gait Analysis”, Connected Everything 2018 Conference 

The extended concept of proposing digital transformation strategy framework is under 

review in the Business & Information Systems Engineering. 

Anwary A R, Yu H, Vassallo M, “Digital Transformation Strategy Framework with a 

Pilot Study for Gait Analysis”, (Under Review) 

1.11. Thesis outline and organization 

In this thesis, five thematically related studies are presented to accomplish the objectives 

presented in Section 1.8. Each study is presented as an independent publication. Chapter 2 

discusses the literature review on available gait assessment systems in clinics and laboratory 

(Objective 1). It also discusses about wearable sensor placing location and research gap and 
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research design. The optimal location of placing IMU sensors is studied in Chapter 3. Chapter 3 

address Objective 3 and is accepted for publication in IEEE Sensors Journal. The findings of 

these two chapters provide evidence for placing IMU sensors at the best foot location to collect 

data for automatic gait analysis. In response to current challenges in analysing multivariate 

spatiotemporal gait feature extraction generated by quantitative objective measures, Section 4.2 

describes a novel wireless wearable automatic gait feature extraction method. Section 4.2 

addresses Objective 4 and is accepted for publication in Sensors. Section 4.3 describes real time 

based gait spatiotemporal visualization tool that addresses Objective 5 and is accepted in The 

24th Americas Conference On Information Systems (AMCIS 2018). Section 4.4 describes the 

concurrent validity of spatiotemporal automatic gait extracted features with “gold standard” 

measurements in young and older adults and to compare the levels of agreement for average 

spatiotemporal gait parameters. This section addresses Objective 6 and is under review. Chapter 5 

describes a novel assessment and monitoring of gait changes method based on overall gait 

features for comprehensive understanding of gait from young and older adults in both a clinic and 

at home which increases the availability and affordability of gait assessment. This chapter 

addresses Objective 7 and is accepted for publication in the IEEE Journal of Biomedical and 

Health Informatics. The digital transformation strategy framework for gait analysis is described 

in Chapter 6 and is accepted at Connected Everything 2018 Conference. The extended version of 

the concept is under review. 

This thesis has six chapters and five appendixes. The chapters are organized in the framework 

shown in Figure 1.4. 
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Figure 1.4: The proposed multi-sensor based gait analysis framework 
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1.11.1. Chapter 1 (current chapter) 

Chapter 1 presents the statement of problem and motivation. It also provides a brief introduction 

of the gait related terms and scope. Finally, it discusses the objective and contribution of this 

thesis.  

1.11.2. Chapter 2  

Gait analysis is currently carried out in three very different ways. One is based on visual 

observation available in clinical settings. A second analysis modality is conducted in a motion 

laboratory and third is based on wearable technology. In this chapter, a comprehensive literature 

review of current research covering these major three areas including a history of wearable 

sensors, current state of art and methodology for gait analysis is presented. Initially, a systematic 

approach is used for literature review. The gait analysis scope in older adults is reviewed. Next, 

the conventional gait analysis methods are presented. Then, the available wearable sensors for 

gait analysis such as accelerometer, gyroscope and magnetometer etc are reviewed. The methods 

for extracting commonly used gait features such as stride, step, stance, and swing related 

information etc. are reviewed. 

1.11.3. Chapter 3 

Finding the optimal location for placing sensors and the influence of parametric uncertainties for 

extracting automatic gait features are important to improve the quality of an IMU sensor output to 

maximize the highest possible interpretable information for gait analysis. In this Chapter 3, we 

investigate to find the optimal location of placing an IMU sensor on the barefoot and the 

parameters that influence the automatic extraction of gait features. Sensors are generally worn or 

attached directly or indirectly to different body locations such as foot, wrist, chest and head, and 

sometime attached using belts, clips or other accessories (Matthews et al. 2012). Various factors 

can affect the signal input and output. For example during locomotion, movement of clothes can 

cause interference with accelerometer output (Bouten et al. 1997). There can be vibration or 

momentum noise if the sensor is not attached properly. Again, attaching the sensor with a belt or 

keeping in a pocket can induce relative motion interference (Plasqui and Westerterp 2007). The 

placement and orientation of IMU sensor also have an influence on sensor output (Intille et al. 

2012). To address these issues, the aim of this chapter is to determine the sensor orientation and 
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optimal location for sensor placement to extract automatic feature information from 

accelerometer and gyroscope data when attached to different areas of the foot. The proposed 

positions for finding the optimal location are our novel approach in this gait analysis research 

area and has not been explored before to our best knowledge. 

Research into accelerometer based gait parameters such as times of stance, swing, single 

and double support (Lee et al. 2007); stride length and stance phase (Chung et al. 2012); gait 

velocity, stride duration, cadence and step length (Kavanagh 2009); step number, moving 

distances, instant step speed and average speed (Song et al. 2007); step counting (Foster et al. 

2005; Mladenov and Mock 2009; Brajdic and Harle 2013); times of heel strike, toe strike, heel-

off, and toe-off (Boutaayamou et al. 2015); stride length and duration (Rebula et al. 2013); 

walking distance, time and speed (Brandes et al. 2006) are investigated. However, a low cost 

multi-sensor based synchronous data collection system for a comprehensive physical gait 

analysis totalling ten parameters has to our knowledge not been reported so far. Our android app 

is used for collecting synchronous information and an automatic gait features extraction method 

is applied to extract features on stride number, total distance, total speed, stride length, stride 

period, stance length, stance period, swing length, swing period and ratio of stance and swing 

events, using low cost wearable IMU sensors. It covers the strategy for selecting wearable sensor, 

design and development of sensor protection system, design and development of Android App, 

synchronous data collection and the proposed multi-sensor based gait analysis framework. It 

describes output differences of placing the sensor in different body locations and available 

methods of extraction gait features. It also investigated for finding the optimal location to place 

the sensor. The details result of this study is presented in Appendix B. 

1.11.4. Chapter 4  

In order to broaden the use of accurate quantitative gait monitoring in clinical screening and 

research, an affordable gait analysis tool is required which can be used in clinic or home. This 

study aims to design and implement an automatic lower limb gait features extraction method 

based on accelerometer and gyroscope data to increase the reliability and validity of gait 

monitoring. We set out to develop an affordable multi-sensor based synchronous data collection 

system for a comprehensive physical gait analysis extracting 24 commonly reported gait features. 

We use our android app for collecting synchronous accelerometer and gyroscope data from both 

legs. Features include total distance, total time, total velocity, stride, step, cadence, step ratio, 
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stance, and swing. We also estimate the mean, standard deviation, variance, minimum and 

maximum values.  This chapter describes available gait assessment methods and tools currently 

being used in clinics and other applications. It also proposed systematic methods to extract 

automatic gait features for monitoring gait variability. The details analysis results of automatic 

gait features are presented in Appendix C. It presents four spatiotemporal real time gait 

visualization approaches: 1) Real time dial visualization; 2) Visualization of individual leg time 

variation; 3) Visualization of both legs asymmetry; and 4) Boxplot-based visualization. Real time 

dial visualization shows the instantaneous gait asymmetry of both legs from distance and time of 

stride, step and swing phases of each gait cycle using a dial and an indicator. It also showed 

instantaneous distance and time of stride, step and swing values in a seven segment display. 

Individual leg variation visualization showed the variation in stride, stance and swing phases in 

time. Both legs asymmetry visualization showed the asymmetry between two legs for strides and 

steps. Boxplot-based visualization showed the overall stride, step, stance and swing phases 

distribution. These methods are user friendly and easy to interpret and have the potential of 

helping professionals detect and interpret gait asymmetry. It also describes with the aims to 

determine the concurrent validity of spatiotemporal IMU gait extracted features with Motion 

Capture System (MCS) and Treadmill measurements in young and older adults and to compare 

the levels of agreement for average spatiotemporal gait parameters. 48 subjects (28 young and 20 

older adults) participate in the study. We validate our system using three experiments; 1) 

Treadmill at various walking paces vs MCS, 2) Self-selected (free) walking vs MCS, and 3) Self-

selected (free) walking vs Digital tape for distance. The details validation results are presented in 

Appendix D. 

1.11.5. Chapter 5 

Quantification of gait variabilities, kinematic and kinetic measurements, muscular measurements 

and energy expenditure,  provide comprehensive locomotive gait information (Muro-de-la-

Herran et al. 2014). Gait quantification information is used to 1) distinguish the type of gait 

impairments and suggest possible diagnoses; 2) measure and monitor the severity of an injury or 

a disease and determine the most appropriate treatment (Baker 2006); 3) be a determinant of 

progression in patients with medical conditions causing gait disorders (Böhm and Döderlein 

2012; Lewek et al. 2014) monitor response to treatment in orthopaedic rehabilitation (Steultjens 

et al. 2000); 4) monitor and improve an athlete’s performance (Wahab and Bakar 2011); and 5) in 
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biometrics and biomedical engineering areas, be an assistive tool to characterize human 

locomotion and have many applications (Bora et al. 2015a). Gait quantification information is 

important in elderly patient fall risk assessment (Yogev et al. 2007) and also a predictor of 

functional and cognitive decline (Plotnik et al. 2011).  Therefore, the objective evaluation of gait 

and understanding the gait changes has many potential uses. 

Although there are many approaches for quantifying gait, there is little research conducted 

on a gait quantification method based on overall gait features. In order to provide comprehensive 

gait information and evaluation in clinical screening and research, an affordable gait evaluation 

system is required which will provide the facility in clinic or a home. Considering all the various 

parameters that constitute the gait cycle, we propose a gait evaluation system using Procrustes 

and Euclidean distance matrix analysis which may offer a simple and easily interpretable 

assessment of gait with good accuracy and comprehensive features. An alignment technique to 

better express the normal mean gait shape (NMGS) using Procrustes superimposition (Bookstein 

1991; Goodall 1991) is applied. Our technique can also find the shape and size difference 

between the NMGS and individual gaits. Four shape and size comparison techniques 

(Riemannian shape distance (RSD) (Kendall 1984), Riemannian size-and-shape distance (RSSD) 

(Le 2016), Procrustes size-and-shape distance (PSSD) (Dryden and Mardia 1998) and Root mean 

square deviation (RMSD) (Dryden and Mardia 1998)) are applied to quantify individual gait 

based on all gait features. We also investigate how each feature impacts on a gait using EDMA. 

We estimate a mean form, inter-feature distances and mean form difference from all young 

subjects using EDMA. The mean form estimated from all young is considered as a standard 

normal mean gait form (NMGF). The degree of abnormality of individual features for form 

difference between the NMGF and each gait is estimated. A high value indicates high degree of 

feature difference in the gait and low value indicates close to normal gait. To date, research on 

comprehensive understanding of gait quantification based on overall gait features to allow 

assessment and monitoring of gait changes from young and older adults has received little 

attention. Our method provides the facility to quantify gait and gait changes in both a clinic and 

at home which increases the availability and affordability of gait assessment. The details analysis 

results are presented in Appendix E. 
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1.11.6. Chapter 6 

In this research, a multiple IMU based automatic gait analysis system is proposed for older adults 

to support assisted living applications. The average age and number of co-morbidities per person 

has rapidly increased worldwide over the past decades. This has a major effect on health care 

where issues such as a rise in care cost, high demand in long-term care, burden to carers, and 

insufficient and ineffective care are likely to occur. Our automatic gait analysis system can be 

used as the key part of intelligent systems to allow older adults to monitor their gait at home to 

live independently, reduce care cost and burden to the carers, provide ensuring for the families, 

and promote better care. Through our comprehensive literature on gait analysis and wearable gait 

analysis, it is found that gait abnormalities are very common in clinical practice and there is an 

increasing need to improve technology for its analysis. Such abnormalities lead to serious adverse 

consequences such as falls and injury resulting in increased cost. There is therefore a national 

imperative to address this challenge. Currently assessment is done using standardized clinical 

tools dependent on subjective evaluation. More objective gold standard methods to analyse gait 

rely on accessing to expensive complex equipment based in gait laboratories. These are not 

widely available for several reasons including requirement for expensive equipment, need for 

technical clinical staff, need for patients to attend in person, complicated time consuming 

procedures and overall expense. Improving opportunities for gait analysis to increase 

accessibility requires a development of an automatic gait analysis system using of new and 

affordable technologies for diagnosis and monitoring of gait using digital technology, 

nevertheless with population ageing it will soon be a huge market and in order to compete in such 

market, the cost will be a vital factor. There remain many issues and challenges in developing 

gait analysis systems including user acceptance, usability, privacy, visibility, systems accuracy, 

lack of human and social interaction and cost. Therefore, in this research, an automatic gait 

analysis system is proposed and developed considering both practical and technical aspects using 

wearable, inexpensive wireless sensors so that the acceptance and usability are increased 

allowing the system to be used in reality. 
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2. LITERATURE REVIEW 

This chapter has four major sections that critically review the relevant literature to get a clear 

picture of available techniques in gait analysis (Section 2.2), wearable sensor based gait analysis 

(Section 2.3), user requirement (2.4) and research gap identification (Section 2.5). A summary is 

presented in Section 2.6. 

2.1. Literature search strategy 

In this research, we choose carefully what criteria are to be included in this study because these 

criteria determine the quality of the study; therefore, in the search only the most relevant articles 

are chosen for this research. Therefore, in the initial of review demands a formation of research 

questions that need to be considered in order to fully cover the research area of conventional gait 

assessment techniques and wearable sensors for gait analysis. The answers to the following 

questions are provided through this review paper relying on the proposed review process: 

 What are the conventional gait analysis systems used in clinics? 

 How is it possible to assess gait of a user by the way he walks relying on data acquired by 

wearable single, multiple and fusion sensors? 

 What are the methodological constraints and how are those addressed? 

 What are the gait related constrains and how are those addressed? 

 How is the monitoring procedure of gait analysis and what are the relevance validation 

procedure and results? 

 What is the performance and reliability of the most practical approach and how efficient 

are those approaches? 

 What is the potential for the general use in real world circumstances for clinic and home 

use? 

 What are the underlying problems and in which direction the further development is 

aimed? 

For the study to be more reliable, it is also necessary to exclude some criteria just as it is crucial 

to include some criteria. Any article that does not fall within the subject of the study is not 

considered. A general list of inclusion and exclusion criteria is shown in following Table 2.1. 
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Table 2.1: Inclusion and exclusion criteria for searching literature 

Inclusion criteria Exclusion criteria 

1. Articles directly related with gait and 

mobility analysis or assessment, 

wearable feedback used to either assess, 

train human gait or wearable sensors to 

detect balance and provided instant 

biofeedback based on the detected 

information 

2. Articles that included healthy adults, as 

well as patients with balance disorders 

3. Articles that are available to us 

4. Articles available in full text 

5. Articles from engineering, technology, 

medical, bio-technology, and 

rehabilitation areas 

6. Articles from peer reviewed impact 

factor journals 

7. Articles of most recent work 

1. Articles that are not relevant of our 

study domain 

2. Articles of movement analysis other 

than gait domain 

3. Articles not related with human 

movement 

4. Articles without any abstract 

5. Articles require charge 

6. Articles not written in English 

 

 

 

Based on the inclusion and exclusion criteria for searching literature in Table 2.1, a systematic 

literature search is conducted to find related works to the research area related to engineering, 

computing and medicine etc. Eight major databases on biomedical engineering, computing and 

medicine are searched up to May, 2018: Web of Science, ScienceDirect, IEEE Xplore, ACM 

Digital Library, EBSCO, PubMed, SCOPUS and Cochrane Library for selecting relevant 

publications. Figure 2.1 shows the review process and criteria and it also shows a glimpse the 

distribution of research efforts in gait analysis using wearable sensors. Overall, gait analysis has 

already become an established field, given that over 600000 papers from the eight databases are 

associated with gait analysis. For this systematic search, the search terms are defined as (gait OR 

walking OR locomotion) AND (analysis OR evaluation OR assessment) AND (wearable OR 

inertial OR inertial measurement unit OR accelerometer OR gyroscope OR magnetometer OR 

sensors) AND (artificial intelligence OR machine learning OR adaptive OR intelligent 
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algorithm). In the first phase of the review process, these keywords are passed to search engines 

databases and digital libraries. The results are shown in Figure 2.1. The selection of these specific 

datasets stems from their significance in the field of engineering, as well as in biomechanics, 

medicine, and biometry etc. Studies evaluating kinematic of gait parameters e.g. stride, stance, 

swing etc gait phases or spatiotemporal features of healthy, older adults or impaired subjects are 

included with artificial intelligence for processing data collected using IMUs, accelerometers or 

gyroscopes etc. Next, these papers (i.e., searched by the key words “inertial sensor gait”) are 

manually screened to eliminate work that has not yet been applied to patient studies or not 

relevant to research interest. After the careful consideration of all abstracts, the papers that are 

insignificant or are not directly related to wearable sensor based gait analysis are omitted. Finally, 

all of the manually screened papers from all eight databases are selected again to eliminate 

duplication, papers that have not provided enough insight into gait pathologies and papers fulfill 

the criteria presented in Table 2.1. In this manner, a total of 162 papers that cover the reviewed 

topic are obtained. 
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Figure 2.1 Systematic search for current research on wearable gait analysis (up to May 2018)
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After careful review of a total of 162 papers, 30 papers that reflect the most significant 

contribution for conventional gait assessments, 62 papers that reflect on the sensor selection, 33 

papers that reflect sensor placing locations, 13 papers that reflect on sensor fusion, 33 papers that 

reflect on feature selection, 27 papers that reflect on quantification and visualization, 10 papers 

that reflect on feature selection methods, 22 papers that reflect on feature classification and 10 

papers that reflect on validation topic are selected. Majority of these papers are published in 

recognised high impact factor journals while some of them are published in proceedings of 

significant conferences. There are many patents available for gait analysis, however objective 

gait assessment for older adults using affordable system are found in few studies. This area will 

be explored in our future study at the time of designing the system for commercialization.   

2.2. Current state-of-the-art on gait analysis 

Analysis of gait and balance is a useful clinical tool in the management of walking and 

movement problems for patients with different gait abnormalities since the later part of the 

twentieth century. Technology related to gait analysis in clinical assessment and management are 

improved significantly in recent years. The following describes the currently available 

assessment systems of gait and balance. 

2.2.1. Clinical gait assessment 

Clinical gait assessment is the process by which quantitative information is collected to aid in 

understanding the quality of patient’s gait and balance abnormalities and in treatment decision-

making. The conventional scales used to analyse gait parameters in clinical assessment are 

mainly subjective or semi-subjective. These methods usually consist of analyses carried out in 

clinical conditions by a clinician. The various gait-related parameters of the patient are observed 

and evaluated while the patient walks on a pre-determined circuit. The following describes the 

most common subjective or semi-subjective gait analysis techniques. 

2.2.1.1. Gait abnormality rating scale 

Gait Abnormality Rating Scale (GARS) instrument incorporates evaluations of total of 16 facts. 

It is a screening tool to identify patients at risk for injury from falls. The screening tool has a 

scale that comprises of three categories: five general facts, four lower extremity facts and seven 

trunks, head and upper extremity facts. Each fact is scored range from 0 (good) to 3 (poor) that 
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mark characteristics of abnormal gaits (Wolfson et al. 1990). A modified version is published 

later GARS-M (VanSwearingen et al. 1996). 

2.2.1.2. Timed 25-foot walk 

Timed 25-Foot Walk (T25-FW) is also known as the 25 foot walk test. A standardised 

quantitative evaluation instrument consisting of three parts for use in clinical studies, particularly 

clinical tests on multiple sclerosis (Cutter et al. 1999). A specialist measures the time it takes the 

subject to walk a distance of 7 and a half meters in a straight line in the test. 

2.2.1.3. Clinical test of sensory interaction and balance 

Clinical Test of Sensory Interaction and Balance (CTSIB) (Shumway-Cook and Horak 1986) is 

developed to assess the contribution of the visual, somatosensory, and vestibular systems to 

postural control. The test evaluates static postural stability in 6 distinct standing conditions with 

eyes open, with eyes closed, and with the use of a dome to alter visual input on both firm and 

foam surfaces. This test has been modified to include eyes open and eyes closed on both firm and 

foam surfaces, given the finding that altered visual inputs from the dome are not different from 

those in the eyes closed condition (Cohen et al. 1993).  

2.2.1.4. Tinetti performance oriented mobility assessment 

Tinetti Performance Oriented Mobility Assessment (POMA) assessment tool is an easily 

administered task-oriented test that measures an older adult’s gait and balance abilities. Patient is 

required to walk forward at least 3 meter, turnaround of 180° and then walk quickly back to the 

chair  (Tinetti 1986). Patients use their habitual walking stick or walker aid. The assessment on 

balance disorders is based on 13 parameters organized in three levels and the study of the human 

gait is based on nine additional parameters classified in four levels. This assessment makes it 

possible to accurately evaluate elderly persons’ balance and gait disorders in everyday situations. 

However, the test requires a great deal of time with active participation from the subjects. 

2.2.1.5. Timed "Up and Go" test 

Timed "Up and Go" Test (TU&GT) test is a timed test that requires patients to get up from a 

sitting position, walk a short distance, turn around, walk back to the chair and sit down again 

(Mathias et al. 1986). It is widely employed in the examination of elders for basic mobility skills 
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including a sequence of functional manoeuvres used in everyday life, but definitive normative 

reference values are lacking.  

2.2.1.6. Figure of 8 walk test 

Figure of 8 Walk Test (F8W)  (Hess et al. 2010) test is designed to assess motor skill (speed, 

amplitude and accuracy of movement) through curved-path as well as straight-path walking for 

daily life in older people with walking difficulties. Participants walk a figure-of-eight at their 

self-selected usual pace around 2 cones placed 5 ft apart. 

2.2.1.7. Four square step test 

Four Square Step Test (4SST) (Duncan and Earhart 2013) is a quick and simple test of 

multidirectional stepping which is useful in predicting falls in people with Parkinson disease.  

2.2.1.8. Extra-laboratory gait assessment method 

Extra-Laboratory Gait Assessment Method (ELGAM) (Fried et al. 1990) evaluates gait in the 

home or community to identify of risk factors for fallers among elderly. The parameters study 

includes step length, speed, initial gait style, ability to turn the head while walking and static 

balance. Low speed (under 0.5 m/s), short steps, difficulty turning the head and lack of balance 

are significantly linked to unstable gait. 

2.2.1.9. Functional gait assessment 

Functional Gait Assessment (FGA) (Wrisley and Kumar 2010) is a 10-item gait assessment based 

on the dynamic gait index (DGI) (Vander Linden 1996). It comprises 7 of the 8 items from the 

original DGI and 3 new items, including “gait with narrow base of support,” “ambulating 

backwards,” and “gait with eyes closed”. 

2.2.1.10. Groningen meander walking test 

Groningen Meander Walking Test (GMWT) (Bossers et al. 2014) measures dynamic walking 

ability by walking over a meandering curved line, with an emphasis on walking speed and 

stepping accuracy while changing direction specifically for people with dementia.  

 



CHAPTER 2: LITERATURE REVIEW 

37 

 

2.2.1.11. Berg balance scale 

Berg Balance Scale (BBS) (Berg et al. 1992) is a widely used clinical test that measures balance 

among older people with impairment in balance function by assessing the performance of 

functional tasks. It is a 14 item list qualitative measure that assesses balance via performing 

functional activities such as reaching, bending, transferring, and standing that incorporates most 

components of postural control: sitting and transferring safely between chairs; standing with feet 

apart, feet together, in single-leg stance, and feet in the tandem Romberg position with eyes open 

or closed; reaching and stooping down to pick something off the floor. Each item is scored along 

a 5-point scale, ranging from 0 to 4, each grade with well-established criteria. Zero indicates the 

lowest level of function and 4 the highest level of function. The total score ranges from 0 to 56. It 

takes approximately 20 minutes to complete. However, it does not include the assessment of gait. 

These subjective or semi-subjective methods usually consist of analyses carried out in 

clinical conditions by a specialist and abnormalities are generally assessed and reported by 

physicians, physiotherapists and researchers in clinical settings or in gait laboratories, where 

assessment time is limited, using visual observation, questionnaires or functional assessment to 

determine abnormalities in spatiotemporal gait parameters etc. These gait assessments are highly 

dependent on assessors’ experience and judgment. Such visual assessments may not satisfy 

scientific criteria of reliability and validity (Archer et al. 2006), which may affect the accuracy of 

diagnosis, follow-up and treatment (Muro-de-la-Herran et al. 2014). Again, there is no commonly 

accepted guideline, preferred methodology or protocol for gait changes evaluation. Therefore, a 

more objective gait assessment supporting tool is required. 

2.2.2. Laboratory gait assessment 

There are also “gold standard” methodology for assessment of gait parameters e.g. three-

dimensional kinematic analysis using a marker based motion capture system such as Vicon 

Motion Systems Ltd (www.vicon.com), Qualisys Motion Capture Systems (www.qualisys.com), 

Motion Analysis Corporation (www.motionanalysis.com), Northern Digital Inc 

(www.ndigital.com), OptiTrack Motion Capture Systems (https://optitrack.com), and 

Codamotion (www.codamotion.com), force plate and pressure activated sensors  (Bilney et al. 

2003; Moeslund et al. 2006; Beauchet et al. 2008; Zammit et al. 2010), ground reaction forces 

(Su et al. 2015), dynamic electromyography (Bervet et al. 2013), instrumented walkways 
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(Williams et al. 2013) and camera (Shorter et al. 2008; Auvinet et al. 2017; Cabral et al. 2017; 

Polk et al. 2017). These methods provide accurate gait parameters, high measurement resolution, 

very low marker jitter, sometimes do not require the user to wear wires or electronic equipment, 

capacity of multiple performance capture and high capture frequency etc. These methods for gait 

assessment are conducted in specialized locomotion laboratory environment which are often 

carried out by technical or clinical staff. However, these current available technologies are 

expensive, lengthy set up and post-processing times, sometime limited to capture small gait 

cycles, extensive post-processing, markers can be blocked by body parts or clothes, and 

laboratory based which reduce their feasibility to be used at home and in clinics. Moreover, 

limitations in terms of the moving area and gait cycles for the observed subject/patient have been 

observed (Tao et al. 2012). Therefore, an inexpensive, portable and easy to use gait assessment 

supporting tool is required. 

2.2.1. Other gait assessment 

Along with the wide application of wearable sensors in gait analysis, some commercialized 

wearable sensors are commercially available in the market. Xsens 3D motion tracking 

(www.xsens.com) uses sensors fusion and provides information of six degrees of freedom, force 

and moment to estimate joint moments and powers of the ankle. The 3D displacements of center 

of mass during gait are calculated using measurements of the sensor system (Schepers et al. 

2009). Other commercially available systems are Shimmer Sensing (www.shimmersensing.com), 

iSen (www.stt-systems.com), Synertial Motion Capture (www.synertial.com), Rokoko 

(www.rokoko.com), Trivisio (www.trivisio.com), Polhemus (https://polhemus.com), Inertial 

Labs (https://inertiallabs.com), Eliko (www.eliko.ee), Motion Shadow 

(www.motionshadow.com), LaiTronic (http://www.laitronic.com) and Perception Neuron 

(https://neuronmocap.com) etc. These are also expensive, restricted movement, predefined 

marker configuration and capture smaller area. Although several low cost instruments e.g. Kinect 

(Auvinet et al. 2017) and camera (Krishnan et al. 2015) are appealing, they are restricted to a 

small capture volume, lead to a lack of privacy and only a few gait parameters can be analysed. 

Therefore, an affordable, user-friendly, portable multi-sensor based gait analysis system which is 

able to capture long time data and allow comprehensive gait information are potentially important 

for users at home and in clinics. 
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2.3. Survey on wearable sensor based gait analysis 

The primary purpose of this chapter is to review the current status of gait analysis technology 

based on wearable sensors. Therefore, this research is centred and focused to clinical applications 

on achieving qualitative objective measurements of the different parameters that characteristics of 

gait using wearable sensors. Hence, the literature covers every step for developing an automatic 

gait assessment system from sensor input to evaluation. As the literature review on this area is 

vast, therefore much attention has been given to wearable sensors. 

2.3.1. Sensor selection 

The sensor selection is typically used as a starting point of any data analysis system. For an 

automatic gait assessment system, a variety of wearable, ambient, camera and remote sensors are 

available and many of them are integrated into the garment’s fabric, simultaneously collecting 

signals in a non-invasive and unobtrusive way. There are most commonly used wearable sensors 

such as accelerometer, gyroscope, magnetometer sensors, ultrasonic sensors, flexible goniometer, 

electromagnetic tracking system, sensing fabric, force sensor, strain gauges, inclinometers, 

electromyography so on are used for gait analysis (Tao et al. 2012; Muro-de-la-Herran et al. 

2014; Agostini et al. 2015; Mukhopadhyay 2015; Chen et al. 2016). Many of these sensors 

information is used to perform the gait analysis e.g. the temporal characteristics of gait are 

collected and estimated from body-worn accelerometers and pressure sensors inside footwear 

(Lee et al. 2007; Khan et al. 2010; Rodríguez-Martín et al. 2013; Okuda et al. 2016).  The 

goniometric measurements at the hip, knee, and ankle joints are used to detect five different gait 

phases (Chizeck 1997). The three-dimensional ground reaction forces are estimated from the 

insole based on foot pressure data (Cordero et al. 2004). With the development of motion-sensing 

technology, an increasing number of wearable sensors will be developed for gait analysis in the 

future (Tao et al. 2012). Therefore, gait analysis using wearable sensors are becoming popular 

and widely used in the clinical field. Different sensors characteristics, application, accuracy and 

price is studied in (Muro-de-la-Herran et al. 2014).The basic principles and features of these most 

commonly used sensors are described in the following.  

 

 



CHAPTER 2: LITERATURE REVIEW 

40 

 

2.3.1.1. Inertial measurement unit 

IMUs are electronic devices that measure an object's velocity, acceleration, orientation, and 

gravitational forces, using a combination of accelerometers and gyroscopes and sometimes 

magnetometers (Morrison 1987). IMU has a 3-axis accelerometer, a 3-axis gyroscopes and a 3-

axis magnetometer. IMU has been used in different spatiotemporal and kinematic assessments of 

gait such as monitoring of post-operative gait abnormalities (Hanly et al. 2016), stride variability 

(Urbanek et al. 2017), measurement of gait asymmetry (Esser et al. 2012), fall-related gait 

characteristics measured on a treadmill in daily life (Rispens et al. 2016), nature of parkinsonian 

gait (Okuda et al. 2016) and human walking foot trajectory (Kitagawa and Ogihara 2016). IMUs 

are relatively inexpensive with low power consumption which allows long time data collection 

(virtually unlimited number of steps to be evaluated), and Bluetooth™ embedded within IMU 

enables portability, and provides the ability to evaluate gait and movement disorders outside the 

constrained environments of the clinic and research laboratory. Therefore, the use of IMU sensor 

in gait analysis has become increasingly popular as it is easily adopted to clinical settings as well 

as to patients’ homes or elsewhere in the community where ambulation normally takes place. 

Although, IMU sensor based gait analysis methods are available, the specific objective of gait 

analysis for users at home and in clinical areas is actually found in only a few studies. Many 

investigations are carried out using a single gait parameter or applying simple statistical methods 

for comparisons. Studies also include a small number of participants. 

2.3.1.2. Accelerometer 

Accelerometer is an electronic device for measuring the acceleration of a moving object or 

vibration of a body. Three common types of accelerometers are available, namely, piezoelectric, 

piezoresistive, and capacitive accelerometers (Westbrook 1994). It consists of different parts and 

works in many ways. The piezoelectric effect is widely used form of accelerometer which uses 

microscopic crystal structures that become stressed due to accelerative forces. These crystals 

create a voltage from the stress, and the accelerometer interprets the voltage to determine velocity 

and orientation.  
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Figure 2.2: ADXL 335 Accelerometer Device (Anon. Accessed on 27/01/2016) 

Again, the capacitance accelerometer senses changes in capacitance between microstructures 

located next to the device. If an accelerative force moves in one of these structures, the 

capacitance will change and the accelerometer will translate that capacitance to voltage for 

interpretation which means measuring of the change in velocity or speed divided by time. The 

movement data towards three dimensional coordinates x, y and z are generated by accelerometer 

is measure the motion status in the human gait (Urbanek et al. 2017). There are many wearable 

accelerometer sensor manufactures around the world and among them Actismile 

(http://www.actismile.ch/index.php/en/), Activinsights (http://www.geneactiv.org/), Alpenheat 

(http://alpenheat.com/) and Adafruith (http://cpc.farnell.com/adafruit-industries) are based in UK.  

2.3.1.3. Gyroscope 

Gyroscope is a device consisting of a wheel or disc mounted so that it can spin rapidly about an 

axis which is free to alter in direction. The orientation of the axis is not affected by tilting of the 

mounting, so gyroscopes can be used to provide stability or maintain a reference direction in 

navigation systems, automatic pilots, and stabilizers (Anon. 2016).  

 

Figure 2.3: Gyroscope Device (Anon. Accessed on 27/01/2016) 

Gyroscope gives angular velocity which changes in rotational angle per unit of time termed 

degrees per second. The working principal is based on the concept of measuring the Coriolis 

force, which is an apparent force proportional to the angular rate of rotation in a rotating 
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reference frame. By detecting the linear motion from the Coriolis effort and performing an 

integration of the gyroscopic signal, the angular rate can be obtained (Tao et al. 2012). Gyroscope 

is used for the measurement of the motion and posture of the human segment in gait analysis 

(Tong and Granat 1999; Greene et al. 2010a). Although, gyroscope based motion and posture of 

the human segment in gait analysis methods are available, the specific objective of gait analysis 

for users at home and in clinical areas is actually found in only a few studies. It is mentioned 

earlier that gait change is multi-contributing factors, only one sensor information is not sufficient 

for addressing objective gait assessment. 

2.3.1.4. Magnetometer 

A magnetometer measures magnetic fields as the earth has two magnetic poles, it can be used as 

a compass to determine absolute orientation in the NESW plane. If a magnetic flux (magnetic 

field) is not applied, the current flows straight through a plate. A Lorentz force proportional to the 

magnetic flux density will deflect the current path if a magnetic flux is applied. As the current 

path is deflected, the current flows through the plate for a longer distance, causing the resistance 

to be increased. That is, the magneto resistive effect refers to the change in the resistivity of a 

current carrying ferromagnetic material resulting from a magnetic field, with the resistance 

change proportional to the tilt angle in relation to the magnetic field direction (Graham et al. 

2004).  The magnetic North or the vertical axis of a body segment in relation to in the gait 

analysis can be estimated based on the magneto resistive sensors information (O’Donovan et al. 

2007; Choi et al. 2008).  Although, magnetometer based orientation changes of the human body 

segment in gait analysis methods are available, the specific objective of gait analysis for users at 

home and in clinical areas is actually found in only a few studies. It is mentioned earlier that gait 

change is multi-contributing factors, only one sensor information is not sufficient for addressing 

objective gait assessment. 

2.3.1.5. Barometric pressure 

Barometric pressure is the measurement of air pressure in the atmosphere, specifically the 

measurement of the weight exerted by air molecules at a given point on earth. Researchers (Nam 

and Park 2013; Moncada-Torres et al. 2014) used acceleration and barometric pressure 

information from different body locations for activity classification. Barometric pressure changes 
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constantly and is always different depending on where the reading takes place. Not many 

research has been conducted for gait analysis using barometric pressure. 

2.3.1.6. Pressure and force sensors 

Force sensors measure the ground reaction force under the foot and return a current or voltage 

proportional to the pressure measured. Pressure sensors measure the force applied on the sensor 

without taking into account the components of this force on all the axes. The most widely used 

models of this type are capacitive, resistive piezoelectric and piezo resistive sensors. This type of 

sensor is small and can be integrated into instrumented shoes (Howell et al. 2013; Rösevall et al. 

2014; Rosa et al. 2015). Such shoe where an insole containing 12 capacitive sensors shows a high 

correlation to the simultaneous measurements from a clinical motion analysis laboratory (Howell 

et al. 2013). Another shoe is developed that is sensitive to normal and shear loads and uses 

reflected light intensity to detect the proximity of a reflective material (Lincoln et al. 2012).  

2.3.1.7. Summary of wearable gait analysis sensors 

Based on the literature review, a list of wearable gait analysis sensors is presented in a Table 2.2  

Table 2.2: Wearable sensors for gait analysis 

Index Sensor Parameters Reference 

1. Accelerometer X, Y and Z axes (Foster et al. 2005; Brandes et al. 

2006; Lee et al. 2007; Song et al. 

2007; Kavanagh 2009; Mladenov 

and Mock 2009; Chung et al. 2012; 

Brajdic and Harle 2013; Rebula et 

al. 2013; Boutaayamou et al. 2015; 

Urbanek et al. 2017) 

2. Gyroscope Rotation along X, Y 

and Z axes 

(Tong and Granat 1999; Greene et 

al. 2010a; Tao et al. 2012) 

3. Magnetometer Magnetic field along X, 

Y and Z axes 

(Graham et al. 2004; O’Donovan et 

al. 2007; Choi et al. 2008) 

4. IMU 3-axis accelerometer, 

3-axis gyroscopes and 

3-axis magnetometer 

(Esser et al. 2012; Hanly et al. 

2016; Kitagawa and Ogihara 2016; 

Okuda et al. 2016; Rispens et al. 

2016; Urbanek et al. 2017) 

5. Barometric pressure Atmospheric air 

pressure 

(Nam and Park 2013; Moncada-

Torres et al. 2014) 

6. Pressure and Force 

Sensors 

Force per unit area (Lincoln et al. 2012; Howell et al. 

2013; Rösevall et al. 2014; Rosa et 

al. 2015) 
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7. Electromyography 

(EMG) 

Electrical impulse (Erni and Colombo 1998; Rainoldi 

et al. 2004; Frigo and Crenna 2009) 

8. Goniometers Relative rotation (Donno et al. 2008; Laskoski et al. 

2009; Domínguez et al. 2013) 

9. Global Positioning 

System  

Location API (Cavallo et al. 2005; Terrier and 

Schutz 2005) 

10. Microphone Audio (Li et al. 2012) 

11. Radar Feedback signal  (Otero 2005; Liang et al. 2011; 

Liang et al. 2014; Wu et al. 2015) 

12. Electrocardiogram 

(ECG) 

Electrical impulse (Heck and van Dongen 2008) 

13. Ultrasonic Sensors Sound reflection (Wahab and Bakar 2011; Maki et 

al. 2012) 

14. Sensing Fabric Fabric flexibility (Scilingo et al. 2003; Tognetti et al. 

2007) 

15. Photoplethysmographic Physical information (Shaltis et al. 2006; Wood and 

Asada 2007) 

16. Radio-frequency 

identification (RFID) 

Electromagnetic field (Chen and Lin 2010; Krigslund et 

al. 2013) 

2.3.2. Sensor placing location 

Studies in wearable sensor based gait analysis have been carried out investigating the use of 

sensors on different body locations. The locations where the sensors are placed and how the 

sensors are attached to those locations are important for collecting accurate reliable robust data. 

Wearable sensors can be placed on different body locations whose movements are being studied. 

It also depends on the interest for the purpose of data collection, for example, in many cases 

sensors are commonly placed on the sternum (Najafi et al. 2003) lower back (Meijer et al. 1991),  

waist (Karantonis et al. 2006) to measure the whole-body movement and other locations 

presented in (Jarchi et al. 2018). Many studies show that the sensors are mounted at waist 

because of the fact that the waist is close to the center of mass of a whole human body and the 

torso occupies the most mass of a human body (Yang and Hsu 2010). This implies that the user 

movement measured by a single sensor at this location can better represent the major human 

motion. Therefore, the sensors are attached to or detached from a belt around waist level. Hence, 

sensors placement at the waist causes less constraint in body movement and discomfort can be 

minimized as well. A range of basic daily activities, including walking, postures and activity 

transitions can be classified according to the accelerations measured from a waist-worn 

accelerometer (Karantonis et al. 2006; Yang and Hsu 2010). The ergonomic guideline of 

“wearability” that the interaction between the human body and wearable objects is described in 
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(Gemperle et al. 1998). The proper locations of a human body for unobtrusive sensor placement 

is generalized using “wearability map”. These locations include collar area, rear of upper arm, 

forearm, front and rear sides of ribcage, waist, leg, arm, wrist, upper arm, upper torso, shoulder, 

hip, ankle, chest, hand, thigh, trunk, shank, shin, feet, abdominal, lower back and top of the foot. 

Current research on different body locations of placing sensors for gait analysis is presented in 

Table 2.3. 

Table 2.3: Location of placing wearable sensors for gait analysis 

Sensor Locations Parameters Application Reference 

IMU 
Thigs, shanks, 

feet 

Flexion or 

extension angle, 

gait cycle, 

balance level 

measured by 

joint angle at 

particular gait 

events 

Balance and knee 

extensibility of 

hemiplegic gait 

(Guo et al. 2013) 

IMU, geo-

magnetic 

Barefoot soles, 

ankles, knees, hip 

joints 

Joint kinematics, 

shank angular 

velocity, toe 

trajectory, 

spatiotemporal 

parameters   

reconstructed 

joint kinematics 

difference 

between normal 

and overweight/ 

obese subjects 

(Agostini et al. 

2017) 

IMU Top of feet 

Stance time, 

swing time, 

turning rate, 

stride length, 

clearance, cycle 

time, cadence, 

speed 

non-hospital 

settings for 

neurological 

disorders 

(Tunca et al. 

2017) 

IMU 
Wrists, both 

shanks and waist 

Temporal 

features, gait 

complexity, gait 

Assessment of 

multiple sclerosis 
(Chen 2013) 
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stability, gait 

speed 

IMU 

Right thigh, right 

shank and both 

feet 

Cadence, step 

length, thigh and 

knee angle of 

right leg, gait 

events 

Gait phase 

detection for 

dementia patients 

(Meng et al. 

2013) 

gyroscopes 
Both shanks and 

both wrists 

Symbolic 

symmetry index 

Movement 

symmetry 

detection in early 

Parkinsonian gait 

(Sant’Anna et al. 

2011) 

IMU and Kinect 

forearms, 

arms,  thighs,  

shanks, chest 

Knee flexion, 

joint position 

and angle 

Whole body 

tracking 

(Destelle et al. 

2014) 

IMU and Kinect Thigh, shank 
knee flexion 

angles 

functional 

rehabilitation 

movements 

(Tannous et al. 

2016) 

IMU 
Bilateral shanks, 

feet 

Ankle joint 

angle, range of 

motion 

Assessing 

efficacy of ankle-

foot orthoses for 

children with 

cerebral palsy 

(Chen et al. 

2011) 

Accelerometer, 

gyroscope 
Shoes, waist 

No of strides, 

walking time, 

stride length, 

cadence, swing 

time, stance time 

Gait and balance 

test for patients 

with Alzheimer’ 

disease 

(Hsu et al. 2014) 

IMU Back 

Step and stride 

length, gait 

speed, stride 

duration, stance 

and swing time, 

Assessing the 

potential benefit 

of ankle-foot 

orthoses for 

patients with 

(Benedetti et al. 

2011) 
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double support 

time, stride 

length and height 

ratio, cadence, 

symmetry 

hemiplegia 

IMU Both shoes 

Reconstructed 

gait trajectory, 

walking speed, 

stride length, foot 

swing time, 

stance time 

Characterizing 

hemiplegic gait 

in post-stroke 

patients 

(Wang et al. 

2013) 

Accelerometer, 

gyroscope 

Wrists, shanks, 

waist 

Cadence, double 

stance time, gait 

speed, gait 

stability 

Differential 

diagnosis for 

normal pressure 

hydrocephalus 

(Chen et al. 

2012) 

IMU Shank 

Cadence, step 

length, symmetry 

of strides 

Detection of 

freezing of gait 

episode in 

Parkinson’s 

desease 

(Azevedo Coste 

et al. 2014) 

Accelerometer, 

gyroscope 
pelvis 

Speed, cadence, 

step time, step 

length, step 

irregularity, step 

asymmetry, 

range of motion 

Gait, sit-to-stance 

transfers and 

step-up transfers 

in patients after 

knee operations 

(Bolink et al. 

2012) 

Accelerometer, 

gyroscope 
Dorsal spine 

Autocorrelation 

coefficient, 

walking speed 

Walking speed 

and symmetry 

assessment after 

hip arthroplasty 

(Gong et al. 

2015) 

Accelerometer Lower back 
Improved local 

dynamic stability 

Stability to 

differentiate 

(Ihlen et al. 

2016) 
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fallers and non-

fallers 

Plantar force 

sensors 

Planter surface of 

the foot 
Vibrotactile 

Provide 

simultaneous 

vibration based 

on the detected 

gait phase 

transitions 

(Crea et al. 2015) 

IMU Feet 
ankle joint 

clearance 

robust foot 

clearance 

estimation 

(Benoussaad et 

al. 2015) 

Goniometer, 

accelerometer 
Thigh, shank 

flexion-extension 

angles 
Daily Life 

(Tognetti et al. 

2015) 

force-sensitive 

resistors, IMU 
Insoles 

gait phases, 

loading response 

time, mid-stance 

time, terminal 

stance time, pre-

swing time, 

swing time 

healthy 

ambulatory 

system 

(González et al. 

2015) 

IMU 
T4 position at 

back 
Voltage 

patients with 

balance 

disorders vs. 

normal subjects 

(Nukala et al. 

2016) 

These locations have common characteristics of similar area for men and women, a relatively 

larger continuous surface, and low movement and flexibility. The output of a wearable sensor 

depends on the position at which it is placed, its orientation, posture, and activity being 

performed (Merryn et al. 2004). Summary of wearable sensor placing location and accuracy is 

presented details in (Moncada-Torres et al. 2014). Various factors can affect the signal input and 

output. For example, during locomotion, movement of clothes can cause interference with 

accelerometer output (Bouten et al. 1997). There can be vibration or momentum noise if the 

sensor is not attached properly. Attaching the sensor with a belt or keeping in a pocket can also 
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induce relative motion interference (Plasqui and Westerterp 2007). To increase the reliability and 

validity of automatic feature extraction from gait parameters for gait analysis, the influence of 

sensor location and attachment has to be determined.  Further study on the best location for 

sensor placement is therefore required (Intille et al. 2012). Therefore, an investigation for placing 

the sensor on different foot locations is conducted to find the optimal location of placing the 

sensor for collection accurate, reliable and robust data described in Chapter 3. 

2.3.3. Sensor fusion 

Sensor fusion is the technique to combine multiple sensor information for the purpose of 

improving performance of the system. Combining data from multiple sensors corrects for the 

deficiencies of the individual sensors to calculate accurate position and orientation information 

(Kramer 1997). The technique of sensor fusion can be a simple idea like concatenate all sensor 

information together and treat it as one single source or more complicated by associating 

different sources using probability theory. The details of sensor data fusion is presented in (Llinas 

and Hall 1998) where wearable sensor based gait analysis use more than one sensor to obtain 

movement and orientation information (Casamassima et al. 2014; Agostini et al. 2015; 

Mukhopadhyay 2015; Cornacchia et al. 2017). A list of sensor fusion algorithm is presented in 

Table 2.4. 

Table 2.4: Sensors fusion algorithm, fusion output and application 

Sensors 

Fusion 

Algorithm Fusion output Application Reference 

IMU, Kinect Weighted 

averaging 

Joint position and 

angle 

body 

tracking 

(Glonek and 

Wojciechowski 2016) 

IMU, Kinect Kalman filter Joint position and 

angle 

body 

tracking 

(Tian et al. 2015) 

IMU, Kinect Linear 

Kalman filter 

Joint position body 

tracking 

(Kalkbrenner et al. 

2014) 

IMU, Kinect Multi-rate 

linear 

Kalman filter 

Joint position Hand tracking (Feng and Murray-

Smith 2014) 

IMU, Kinect Separate Joint position body (Destelle et al. 2014) 
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and angle tracking 

IMUs neural 

networks and 

the hidden 

Markov 

models 

Transitional and 

displacement 

activities 

elderly daily 

activity 

classification 

(Zhu and Sheng 2009) 

 

For feature fusion, data from different wearable sensors are combined together and pass through a 

single classifier. Such approach has advantage that more information is obtained thus recognition 

accuracy may be improved. However, research (Gunatilaka and Baertlein 2001) shows that 

sensor fusion at feature level may be difficult to perform for non-commensurate data i.e. data that 

are not comparable. Sensor information from different sensors are different in form and size. For 

example, captured image from camera represents in pixel information and accelerometer provides 

movement information respective to x, y and z axis. Again, different sampling rate or deployment 

in different platform makes the fusion more complicated. Therefore, an appropriate pre-

processing technique e.g. data normalisation and feature reduction or selection needs to be carried 

out to normalise and reduce the size of the feature space. This approach is normally employed 

due to its simplicity. Again, the use of fused multi-sensor based synchronous data collection for 

automatic gait features extraction of gait assessment has not been reported. In order to use 

accurate quantitative gait monitoring in clinical screening and research, multi-sensor based 

synchronous data collection platform for gait assessment is required which will provide facility to 

measure in clinic and home.  

2.3.4. Feature selection 

After collecting raw data from different sensors, pre-processing of collected data is essential to 

minimize the occurrence of different noise, motion artefact and sensor errors. Pre-processing 

involves filtering unusual data to remove artefacts and remove high frequency noise (Daby et al. 

2013). There are statistical tools like mean, standard deviation, peak-to-peak amplitude, fast 

Fourier transform (FFT) coefficients, wavelet features, power spectral density (PSD), and low-

pass or high-pass filtering etc commonly used for raw data processing. When the data is collected 

from different wearable and ambient sensors, normalization and synchronization of sensory data 

is also important. The appropriate selection of the pre-processing for input data depends on the 
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data set and type of noise in the data set. Michael Marschollek et al. (Marschollek et al. 2008) 

used Waikato Environment for Knowledge Analysis (WEKA) toolkit in R to filter raw 

accelerometer data with a 0.25-4 Hz band-pass Butterworth filter for gait patterns of elderly 

persons. Accelerometer data is collected where the raw data includes acceleration due to body 

movement, gravitational acceleration, external vibrations, not produced by the body itself (e. g. , 

resulting from vehicles) and accelerations due to bouncing of the sensor against other objects, 

eventually resulting in mechanical resonance (Yi et al. 2012). The first and second sources are 

directly related to intentional movement of the body and third and fourth are considered as noise 

which are attenuated by using a median filter with n=3 results a nice smoothing effect. 

Accelerometer data is collected and applied a linear interpolated to match 20 Hz on each 10 

second clips (Albert et al. 2012). Researcher (Popescu et al. 2008) used acoustic data recorded on 

a laptop using a National Instruments data acquisition card NI 9162 and applied Wiener filter to 

minimize noise. The pre-processing techniques from different sensors are almost similar in 

different areas like bio-data, medical data and environmental data. Researchers (Daby et al. 2013; 

Hadi et al. 2013) addressed the detail challenges of pre-processing area in healthcare including 

formatting, normalization and synchronization of sensory collected data. Moreover, there is no 

real time detailed scenario data based on these challenges presented. After the pre-processing, 

post-processing is the next step to reduce the number of features by applying feature 

selection/extraction and dimensionality reduction techniques. 

Discovering the most important characteristics that identically represent the originality of 

that sensor from pre-processed dataset is another important task for automatic gait assessment. 

Due to the magnitude and complexity of raw data from wearable or ambient sensors, the feature 

extraction provides a meaningful representation of the sensor data which can formulate the 

relation of the raw data with the expected knowledge for decision making. A summary table is 

shown for the most commonly used features of each wearable sensor (Hadi et al. 2013). General 

measurement of gait features includes cadence, stride length and gait velocity (Michael and 

Whittle 2002), alone or in combination with other outcome measures such as stride to stride 

variability assessed by an accelerometer, gyroscope and magnetometer (Novak et al. 2013; Afzal 

et al. 2015; Boutaayamou et al. 2015; Urbanek et al. 2017). Researchers presented a set of 31 gait 

variables in (Thingstad et al. 2015) and 16 variables were investigated. Stride-to-stride variability 

(Hausdorff et al. 1998) is commonly used to quantify walking consistency which is strongly 

associated with motor ability (Zeni and Higginson 2010), mild cognitive impairment (Beauchet et 
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al. 2013), dementia (IJmker and Lamoth 2012) and stroke (Balasubramanian et al. 2009). 

Research into accelerometer based gait parameters such as times of stance, swing, single support 

and double (Lee et al. 2007); stride length and stance phase (Chung et al. 2012); gait velocity, 

stride duration, cadence and step length (Kavanagh 2009); step number, moving distances, every 

step instant speed and average speed (Song et al. 2007); step counting (Foster et al. 2005; 

Mladenov and Mock 2009; Brajdic and Harle 2013); times of heel strike, toe strike, heel-off, and 

toe-off (Boutaayamou et al. 2015); stride length and duration (Rebula et al. 2013); walking 

distance, time and speed (Brandes et al. 2006) were investigated. Researchers also used portable 

gait analysis system based on force-sensitive resistor (FSR) placed in insoles to detect ground 

contact and estimate stance time for gait asymmetry (Afzal et al. 2015), Microsoft Kinect based 

gait asymmetry (Auvinet et al. 2017), IMU and pressure sensitive shoe insole based gait onset 

and toe-off detection (Novak et al. 2013), IMU-based knee flexion/extension angle measurements 

(Seel et al. 2014) and gait asymmetry using gyroscopes (Gouwanda and Arosha 2011). The 

current gait features and disorder type for different applications is presented in Table 2.5. 

Table 2.5: Current research on gait features and disorder type for different applications (Esser et 

al. 2013; Muro-de-la-Herran et al. 2014; Chen et al. 2016; Mikos et al. 2017) 

Gait feature Disorder type Application 

Stride time Gait stability Clinics, sports, 

research 

Stride length Parkinson's disease freezing of gait Clinics, sports, 

research 

Stride velocity Stability Clinics, sports, 

research 

Stance time Antalgic gait, hesitation Clinics 

Swing time Difficulty in clearing off at toe off, 

difficulty in swinging 

Clinics 

Swing length Stability Clinics 

Step length Parkinson gait, small steps, gait with little 

steps 

Clinics 

Step width Cerebellar gait (ataxic gait), wide base, 

extremely narrow base 

Clinics 
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Step height Peripheral neuropathic gait, foot drop, 

high stepping gait 

Clinics 

Gait speed Slow walking Clinics 

Cadence Slow walking, gait efficiency Clinics 

Stride-stride variability Abnormal rhythm of gait Clinics 

Knee joint angle Crouch gait, drop foot, equine gait, stiff 

knee 

Clinics 

Ankle joint angle Equine gait, crouch gait Clinics 

No. of steps during turning Difficulty with turning Clinics 

Hip flexion Myopathic gait, waddling gait, excessive 

hip sway, drop of pelvis 

Clinics 

Heel-strike amplitude, ground 

reaction forces 

Sensory gait, stomping, stamping Clinics 

Motion signal distribution Tremor Clinics, sports 

Double support time Steadiness Clinics, sports, 

research  

Bilateral sensor comparison Gait asymmetry Clinics, sports, 

research 

Muscle force from EMG Muscle weakness, abnormal muscle 

activity 

Clinics, sports, 

research  

2.3.5. Quantification and visualization 

The available common approaches for quantifying the temporal and spatial of gait are presented 

in Table 2.6. 

Table 2.6: Equations used to calculate and quantify gait 

Index Formula name Equation 

1. Symmetry index (SI) (Robinson 

et al. 1987) 
SI(%)= 100*

)(5.0 LeftLegRightLeg

LeftLegRightLeg
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2. Symmetry ratio (SR) (Seliktar 

and Mizrahi 1986) 
SR(%)= 100*

LeftLeg

RightLeg
 

3. Ratio (Ia) (Vagenas and 

Hoshizaki 1992) 
Ia(%)= 100*

),max( RightLegLeftLeg

RightLegLeftLeg 
 

4. Symmetry index (Agrawal et al. 

2009) 
SI(%)= 



















PI

PI

WW

WW
*100100  

WI=Work done by intact limb 

WP=Work done by prosthetic limb 

5. Gait asymmetry (GA) (Plotnik et 

al. 2005; Plotnik et al. 2007) 
GA=









),min(

),min(
ln

LeftLegRightLeg

LeftLegRightLeg
 

6. Symmetry angle (SA) (Zifchock 

et al. 2008) 
a) SIleft= 100*

)(

LeftLeg

RightLegLeftLeg 
% 

b) SIright= 100*
)(

RightLeg

RightLegLeftLeg 
% 

c) SIleft= 100*
),( RightLegLeftLegavg

RightLegLeftLeg 
% 

d) SA(%)=

%100*
90

))/arctan(45(


 RightLegLeftLeg

 

7. Trend symmetry (TA) 

(Crenshaw and Richards 2006) 
TA=









)var(

)var(
*100

n

R

n

L
n

Xrot

Xrot
mean where 

)sin()cos(  n

R

n

L

n

L XmXmXrot   

)sin()cos(  n

L

n

R

n

R XmXmXrot 
 

  is the angle between the first eigenvector of 
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 n

N

n

R XmXmM ,
and the horizontal axis, 

)( )()()(

n

LR

n

LR

n

LR XmeanXXm 
, and 

n

LRXm )( is 

the signal from the right (left) side for cycle n 

8. Latency corrected ensemble 

average (LCEA) (Miller et al. 

1996; Sant'Anna et al. 2011) 

LCEA=












LLRR

RL





*
max*100 where 

RL is the cross-correlation between LCEAR and 

LCEAL, )(LLRR is the autocorrelation of LCEAR(L) 

, LCEAR(L) is the column-wise average of LxN 

matrix SR(L) and each row of SR(L) contains the 

signal for once cycle of the data, normalized to L 

samples. N is the total number of cycles in the 

dataset for the right (left) side 

9. Relative asymmetry index (RAI) 

(Forczek and Staszkiewicz 

2012) 

RAI= %100*
Y

X
 where 

GC

LR

X

ni

i

ii

%

1








  

X is the average difference between the values 

noted from the right and left limbs in a given 

phase of the gait cycle. Y is total range of 

motion of the angular changes in the given 

phases. R, L instantaneous value of the angle 

individual joints in the right and left lower limb, 

%GC relative duration of the given phase in the 

gait cycle. 

10. Asymmetry (A) (Carabello et al. 

2010) 
A(%)= 100*

alueStrongLegV

alueStrongLegVueWeakLegVal 
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11. Vertical energy ratio (ERz) 

(Audigié et al. 2002) 
ERz(%)= %100*2

1

2 2

2

2









 amp

amp

amp
where 

amp2 is the symmetrical component and amp1 is 

the asymmetrical component estimated using 

Fourier analysis. 

12. Kinematic symmetry index 

(KSI) (Pourcelot et al. 1997) 
KSI=

   
    







22

2

*

*

MeanLLMeanRR

MeanLLMeanRR
X

jj

jj

where 

Rj and Lj represent right and left displacement 

values at frame number j. MeanR and MeanL are 

the mean displacement values across the stride. 

13. Symmetry indices (Hodt-

Billington et al. 2011) mbAffectedLi

LimbUnaffected
SI  1

 

14. Symmetry indices   (Brandstater 

et al. 1983) LimbUnaffected

mbAffectedLi
SI  1

 

15. Symmetry indices (Hodt-

Billington et al. 2011) gherValueLimbWithHi

werValueLimbWithLo
SI  1

 

 

However, each approach has advantages and disadvantages (Sadeghi et al. 2000). Gait 

abnormality is frequently reported as present or not present which may not satisfy scientific 

criteria of reliability and validity (Archer et al. 2006). Thus, an arbitrary cut-off value of 10% 

deviation from perfect asymmetry has been used as a criterion of asymmetry in gait assessment 

(Robinson et al. 1987; Balasubramanian et al. 2009) This was later criticized due to its non-

parameter specific nature (Herzog et al. 1989). Other previously used criteria to describe the 

absence or presence of gait asymmetry include sensitivity and specificity of measurements of 

what? (Leddy et al. 2011), the use of 95% confidence intervals where gait asymmetry within the 

limits of a 95% CI obtained in a healthy population would define able-bodied gait, while gait 

asymmetry outside the 95% CI would define pathologic gait) (Herzog et al. 1989), and significant 
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limbs difference (Sadeghi et al. 2000) etc. Although, there are many approaches for quantifying 

gait symmetry, a user friendly visualization of gait asymmetry is not readily available. 

Researchers (Manal and Stanhope 2004) proposed a visual representation of examining gait 

change behavior where the method are presented in the context of clinical gait analysis and 

displayed movement pattern deviations relative to normative data by color-coding the magnitude 

and the direction of the deviation. This approach provides a single-page summary of all the 

deviation magnitudes and can be displayed simultaneously in a manner of concise, visually 

effective and reduces complexity. However, quantitative information of the gait quantification for 

the comparison and analysis of complex movement patterns are missing and it does not examine 

changes in symmetry of bilateral parameters. Common approaches for the quantification of gait 

give the numerical values of parameters such as symmetry index, symmetry ratio, symmetry 

angle etc. It may be difficult for users to understand those numerical values. In order to 

conveniently use quantitative gait monitoring for users, an affordable visualization tool is useful 

to provide a facility for their use in clinic and at home. This will provide the facility to measure 

gait asymmetry in both a clinic and at home. To date, an automatic real time gait symmetry 

visualization technique based on fused accelerometer and gyroscope data has not been reported. 

After gait quantification, validation of those features are important for accuracy, reliability and 

robustness.  

2.3.6. Feature selection methods 

There are many approaches for dimensionality reduction are principle component analysis 

(PCA), independent component analysis (ICA), linear discriminate analysis (LDA), threshold 

based rule, analysis based variance (ANOVA), and Fourier transformations (Achmad and Bo-Suk 

2007). Due to easy interpretation, simple logistic regression algorithm is applied for classifier 

using a combined machine learning algorithms WEKA Workbench (Waikato Environment for 

Knowledge Analysis, version 3.4.7) (Marschollek et al. 2008). Signal Magnitude Area (SMA) is 

applied to distinguish between periods of user activity and rest which characterizes the degree of 

change of human movement as the high value indicates violent motion state changes (Yi et al. 

2012). The current feature selection methods of gait analysis are summarised in Table 2.7. 
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Table 2.7: Current feature selection methods of gait analysis 

Features Method Procedure Result Reference 

Ground-reaction 

force 

Genetic 

algorithm 

Verify the 

combination of 

genetic algorithm 

with artificial neural 

network against the 

back-propagation 

algorithm for more 

accurate in 

classification of the 

gait patterns of 

patients with ankle 

arthrodesis and 

healthy subjects 

Genetic algorithm 

with artificial neural 

network model 

classified with 

accuracy up 98.7%, 

due to selection of 

the 5 most relevant 

features from 9 

features, while the 

back-propagation 

algorithm (without 

feature selection 

method) presented 

recognition rates of 

89.7% 

(Su and 

Wu 2000) 

Spatiotemporal 

parameters of the 

segment 

motion 

principal 

component 

analysis 

Select the spatial and 

temporal information 

more relevant in the 

classification of 

distinct gait patterns 

(elderly and young 

healthy subjects) 

Maximum accuracy 

(95.8%) was reached 

when using 36 to 39 

PCs. The worst 

distinction between 

elderly and young 

gait patterns had an 

accuracy of 58% 

using only 10 PCs 

(Eskofier 

et al. 

2013) 

Minimum toe 

clearance values 

Hill-

climbing 

Computational cost 

reduction using the 

classification with 

SVM and extract the 

most significant 

features in the 

An accuracy of 100% 

when 512, 256, 128 

64 and 32 

features combined. 

The worst accuracy 

of classification 

(Lai et al. 

2008) 
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distinction between 

tripping patterns 

from healthy patterns 

of adults 

was 52.17% when are 

only used 8 features 

biomechanical 

features that best 

characterize the 

differences between 

knee osteoarthritis 

and control groups 

principal 

component 

analysis 

Magnitude of flexion 

angle, range of 

motion, phase shift 

of flexion angle, 

magnitude of flexion 

moment during 

stance, amplitude of 

flexion moment, 

phase shift of flexion 

moment, magnitude 

of adduction moment 

during stance, 

magnitude of 

adduction moment in 

first half of stance of 

the knee 

Differences in the 

gait patterns of 

patients with knee 

osteoarthritis and 

healthy subjects are 

characterized by 4 

PCs from 8 features. 

The distinction of the 

both gait patterns 

with 4 PCs resulted 

in an accuracy of 

92% 

(Deluzio 

and 

Astephen 

2007) 

Cadence, symmetry 

and step regularity in 

vertical and anterior-

posterior directions, 

root mean square, 

integral of power 

spectral density and 

stride regularity in 

vertical, medio-

lateral, anterior- 

posterior directions 

Hill-

climbing 

Assess the use of 

hill-climbing method 

leads to a smaller 

subset of features to 

distinguish the 

difference between 

younger and older 

adults locomotion by 

means of support 

vector machine, 

multilayer 

perceptron,  Naïve 

Hill-climbing shows 

increasing the 

accuracy from 82.9% 

to 84.9% due to 

dimensional 

reduction of 14 to 10 

gait features 

(Chan et 

al. 2013) 
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Bayes and decision 

tree classifiers 

Pulse rate, respiration 

rate, skin 

conductance level, 

skin conductance 

response, skin 

temperature 

principal 

component 

analysis 

Possibility of 

reducing number of 

features in the 

evaluation of distinct 

machine learning 

approaches in the 

estimation of 

physiological states 

in a robot-assisted 

training 

Best classification 

(91.3% of accuracy) 

is achieved using the 

3 PCs (using feature 

extraction) and 5 PCs 

(no feature 

extraction) 

in the support vector 

machine classifier, 

meanwhile the worst 

classification 

(49.52% of accuracy) 

was performed by 

Naïve Bayes with 1st 

PC 

(Badesa et 

al. 2014) 

Stride length, stride 

duration, gait 

velocity, single 

support duration, 

stance duration, 

swing duration, gait 

cadence, and hip, 

knee and ankle angles 

and angular range of 

motion during the 

stance phases, swing 

phases and three 

intervals (heel contact 

to toe contact, toe 

contact to heel rise, 

principal 

component 

analysis and 

kernel based 

principal 

component 

analysis 

Evaluate the 

principal component 

analysis and kernel 

based principal 

component analysis 

for extracting more 

significant gait 

features than only 

principal component 

analysis in the 

classification of 

young-elderly gait 

patterns 

The combination of 

principal component 

analysis and kernel 

based principal 

component analysis; 

and support vector 

machine achieved 

best performance 

(accuracy of 91%) 

than the combination 

of principal 

component analysis 

with support vector 

machine 

(accuracy of 87%), 

(Wu et al. 

2007) 
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and heel rise to toe-

off 

have been selected 17 

and 14 PCs from the 

36 gait features, 

respectively. No 

implementation of 

principal component 

analysis and principal 

component analysis 

and kernel based 

principal component 

analysis resulted in 

an support vector 

machine performance 

of 85% 

 

2.3.7. Feature classification 

A large number of data is accumulated from different sensors and features are identified 

mentioned in the Section 2.4.3 and 2.4.4. This data from different sensors is multivariate with 

possible dependencies. In order to make sense of the data, appropriate data processing techniques 

are essential for objective gait assessment. Threshold, machine learning, context-awareness and 

other algorithm based methods have been implemented in wearable gait analysis. The common 

techniques of feature classification are described in the following. 

Support Vector Machines (SVM) is based on the concept of decision planes that define 

decision boundaries. It can classify unseen information by deriving selected features and 

constructing a higher dimensional place to separate the data points into two classes in order to 

make a decision model. SVM is applied for the automatic recognition of young-old gait types 

from their respective gait-patterns (Begg et al. 2005). The effectiveness of a wavelet based multi-

scale analysis is used of a gait variable for developing a model using SVMs for screening of 

balance impairments in the elderly (Khandoker et al. 2007). SVM methods are also used for 

ECG, HR and SpO2. SVM classifier is used for congestive heart failure from ECG signals (Ken 

Ying-Kai Liao et al. 2015). SVM methods are generally proposed for anomaly detection and 
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decision making tasks in healthcare services. However, SVM is not an appropriate method to 

integrate domain knowledge in order to use metadata symbolic knowledge seamlessly with the 

measurements from the sensors and like other classifiers, SVM could not be applied to find the 

unexpected information from unlabelled data (Hadi et al. 2013).  

Artificial Neural Network (ANN) is widely used for classification and prediction. The 

method train the data by learning the known classification of the records and comparing with 

predicted classes of the records in order to modify the network weights for the next iteration of 

learning and due to admissible predictive performance of neural network, it is presently the most 

popular data modelling method used in different domains (Mussarat Yasmin et al. 2013). Linear-

discriminant analysis and ANNs are applied to recognize three states and 15 activities with an 

average accuracy of 97.9% using only a single tri-axial accelerometer attached to the subject’s 

chest (Khan et al. 2010). An assessment is proposed using a neural network to distinguish 

‘healthy’ from ‘pathological’ gait (Holzreiter and Köhle 1993).  A framework is proposed to 

recognize heart rate variability pattern using ECG and Accelerometer sensors (Thi Hong Nhan 

Vua et al. 2010). A three layer ANN is used to incrementally learn the extracted patterns and 

classify them. Three classifications of data for location, activity and heart status are performed by 

the three nodes in the output layer. The ANN is commonly used in clinical conditions with large 

and complicated data sets for decision making. As the modelling process in ANN is a black box 

process, ANN method needs to justify for each input data (Hadi et al. 2013). There are other 

methods like Hidden Markov Models (Rabiner and Juang 1986), Rule Based Methods (Ahmad 

A. Al-Hajji March 2012) and Statistical Tools (Apiletti 2009) etc. 

Decision Tree is a way of learning to provide an efficient representation of rule 

classification and it a reliable technique to use a different areas of medicine domain in order to 

take a right decision (Vili et al. 2002). Fuzzy based decision trees are used for linking clinical 

measurements and kinematic gait patterns of toe-walking to increase understanding of gait 

deviation, and could help clinicians plan treatment (Armand et al. 2007).  

Gaussian Mixture Models (GMM) is statistical model used for classification, pattern 

recognition and proposed a GMM method using inter-pulse interval (IPI) signals of ECG in order 

to make the secure body sensor communication (Wei et al. 2011). GMM is able to detect unseen 

information in physiological data and it has been used for prediction tasks (Hadi et al. 2013).  

GMM system is used to allow better detection of short-duration movements and achieve a mean 
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accuracy of 91.3%, distinguishing between three postures (sitting, standing and lying) and five 

movements (sit-to-stand, stand-to-sit, lie-to-stand, stand-to-lie and walking), compared to 71.1% 

achieved by the Heuristic system (Allen et al. 2006). The summary is presented in Table 2.8 on 

current features classification methods of gait analysis.  

Table 2.8: Current feature classification methods of gait analysis 

Classifier Objective Features Cross 

validation 

Result Reference 

Support 

vector 

machine with 

a linear 

Kernel 

Gait patterns 

classification 

of younger 

and elderly 

subject 

Spatial and 

temporal 

Parameters 

Leave-

one-out 

Support vector 

machine 

distinguished 

the two patterns 

with an 

accuracy of 

95.8% 

(Eskofier et al. 

2013) 

Support 

vector 

machine with 

linear, 

Polynomial 

and radial 

basis function 

Kernels 

Recognition 

of gait 

patterns 

during lower 

extremity 

muscular 

fatigue and 

no-fatigue 

Step width, 

step length, 

stride duration, 

heel contact 

velocity, stance 

time 

5-fold 

cross-

validation 

scheme 

Support vector 

machine with 

linear and radial 

basis function 

Kernels 

recognized the 

fatigued and no-

fatigued gait 

With an 

accuracy of 

96% 

(Zhang et al. 

2014) 

Support 

vector 

machine with 

linear, 

Polynomial 

and radial 

basis function 

Automatic 

recognition of 

gait patterns 

related to 

balance 

impairments 

Minimum foot 

clearance data 

from the first 

512 continuous 

gait cycles of 

each subject 

Leave-

one-out 

Polynomial 

kernel 

performed better 

(accuracy of 

100%) than 

linear (accuracy 

of 86.95%) and 

(Khandoker et 

al. 2007) 



CHAPTER 2: LITERATURE REVIEW 

64 

 

kernels radial basis 

function 

(accuracy of 

86.95%) kernels 

Multilayer 

perceptron,  

support 

vector 

machine with 

Polynomial 

kernel, 

Naïve Bayes 

and decision 

tree 

Gait patterns 

classification 

of young and 

older 

individuals 

Root mean 

square, integral 

of power 

spectral 

density, 

cadence, 

stride and step 

in vertical, 

medio-lateral 

and anterior-

posterior 

directions 

10-fold 

cross-

validation 

scheme 

Multilayer 

perceptron 

achieved the 

best accuracy 

(80.6%) to 

discriminate 

young and 

elderly gait 

patterns 

(Chan et al. 

2013) 

Support 

vector 

machine  

(linear, 

polynomial 

and radial 

basis function 

kernels) 

Classification 

of gait 

patterns of 

young and 

elderly 

subjects 

Spatiotemporal, 

kinematic and 

kinetic 

parameters 

6-fold 

cross-

validation 

scheme 

Support vector 

machine with 

linear, 

polynomial and 

radial basis 

function kernel 

achieved the 

same accuracy 

(91.7%) 

(Begg and 

Kamruzzaman 

2005) 

Artificial 

neural 

networks 

(three-layer) 

and 

Support 

vector 

Classification 

of gait 

patterns of 

young and 

elderly 

subjects 

Minimum, 

maximum, 

median, 1st and 

3rd quartile 

values of 

minimum foot 

clearance 

3-fold 

cross-

validation 

scheme 

The best 

distinction of 

both gait 

patterns was 

achieved with 

support vector 

machine using 

(Begg et al. 

2005) 



CHAPTER 2: LITERATURE REVIEW 

65 

 

machine  

(linear, 

Polynomial 

and radial 

basis function 

Kernels) 

 linear kernel 

(accuracy of 

83.3%), while 

the artificial 

neural networks 

showed the 

worst accuracy 

(75%) 

Five-class 

classification 

with support 

vector  

machine, 

decision tree, 

K-nearest 

neighbours, 

Naïve Bayes 

and artificial 

neural 

networks 

An early 

automatic 

recognition 

tool of distinct 

abnormal gait 

patterns 

Angles, 

spatiotemporal 

parameters 

from shoulders, 

elbows, hips, 

knees and 

ankles 

 

10-fold 

cross-

validation 

scheme 

Accuracy of 

97.9%, 90.1%, 

100%, 

97.2%, 100% 

for support 

vector machine, 

decision tree, 

K-nearest 

neighbours, 

Naïve Bayes, 

and artificial 

neural networks, 

respectively 

(Pogorelc et 

al. 2012) 

Support 

vector 

machine 

Distinguish 

the gait 

patterns of an 

osteoarthritis 

patient from a 

control subject 

Features 

extracted from 

3d kinematics 

5-fold 

cross-

validation 

scheme 

Support vector 

machine 

distinguished 

the gait patterns 

of osteoarthritis 

and healthy 

participants 

with an 

accuracy of 

88% 

(Laroche et al. 

2014) 

K-nearest Automatic Features based Leave- K-nearest (Alaqtash et 
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neighbours 

and artificial 

neural 

networks 

classification 

of 

pathological 

gait patterns 

(cerebral palsy 

and multiple 

sclerosis) 

from healthy 

walking 

on amplitude 

and temporal 

parameters of 

ground reaction 

forces 

one-out neighbours were 

more accurate 

than artificial 

neural networks 

(accuracy of 

85% against 

80%) in the 

classification of 

3 gait patterns 

through ground 

reaction forces 

data 

al. 2011) 

2.3.8. Validation 

Validity in research is concerned with the accuracy and truthfulness of scientific findings 

(LeCompte and Goetz 1982). Thus it refers to the credibility or believability of the research. A 

validity study demonstrates what actually exists and a valid instrument or measure actually 

measure that it is supposed to measure (Brink 1993). It is a discussion that how the chosen 

research methodology can achieve validity forms an integral part of any rigorous research effort. 

However, few scientific techniques have been developed to address the scientific worth and 

rigour of qualitative research, in particular case study research (De Ruyter and Scholl 1998). Six 

specific criteria to judge the validity and reliability of case study research within the realism 

paradigm are presented in (Healy and Perry 2000). Although they presented six specific criteria, a 

thorough comparison and discussion on theoretical paradigms and philosophical foundations 

concluding that the realism perspective appears to be the most appropriate one for marketing 

researchers etc, it does not conclude as to what “really needs to be done” to establish validity and 

reliability in case study research. There are many validation studies of gait analysis available. A 

concurrent validity of a real time temporal gait parameters of (gait cycle time, single limb support 

time, and double limb support time) is conducted derived from Noise-Zero Crossing algorithm 

against parameters measured by an instrumented walkway (Allseits et al. 2017). Four consecutive 

fundamental events of walking heel strike, toe strike, heel off and toe off gait phases are validated 

in seven healthy volunteers against reference data provided by a force place, a kinematic 3D 



CHAPTER 2: LITERATURE REVIEW 

67 

 

analysis system and video camera (Boutaayamou et al. 2015). There are many studies conducted 

for validating gait parameters (Bilney et al. 2003; Ghoussayni et al. 2004; Leddy et al. 2011; 

Washabaugh et al. 2017). A validity of our developed gait assessment system is conducted to 

determine the concurrent validity of spatiotemporal IMU gait extracted features with Qualisys 

and Treadmill measurements in young and older adults and to compare the levels of agreement 

for average spatiotemporal gait parameters. We validate our system using three experiments; 1) 

Treadmill at various walking paces vs 3D camera system, 2) Self-selected (free) walking vs 3D 

camera system, and 3) Self-selected (free) walking vs Digital tape for distance (details in Chapter 

6).  

2.4. User requirement 

At the beginning of this research, the current clinical methods of analysing gait are investigated. 

We have visited Royal Bournemouth Hospital and Agargaon Probin Hitoishi Sangha hospital 

(Dhaka, Bangladesh) to study their available gait assessment tools. We have discussed with 

medical doctors (Professor Mike Vassallo, Royal Bournemouth Hospital; Dr. Azizur Rob and Dr. 

Aman, Agargaon Probin Hitoishi Sangha hospital, Bangladesh), and experts in biomedical 

engineering and physiotherapy (Dr. Jonathan Williams, Principal Academic in Physiotherapy, 

Bournemouth University and Dr. Osman Ahmed, Physiotherapy in the Faculty of Health and 

Social Sciences, Bournemouth University) regarding methodology for gait and fall risk 

assessment of older adults. We have directly talked with older adults in two different elderly care 

homes (Agargaon Probin Hitioshi Shongho and Old Rehabilitation Centre (বয়স্ক পুনববাসন কেন্দ্র), 

Dhaka, Bangladesh) to get their requirements. We have studied older adult’s needs and 

requirements, recommendations from clinical perspective and available technologies. Several 

meeting with caregivers, medical doctors, therapists, geriatricians, assistive technology experts 

and older adults (both living in care home and living home independently) are conducted. Current 

clinical methods of analysing gait fall into two extremes. The first is based on observational gait 

analysis which is inexpensive but qualitative. The second is analysis in a motion laboratory 

which is quantitative but expensive. In both methods, the subject is very aware of being observed 

and analysed which is likely to affect the gait of the subject. In the first method, gait 

abnormalities are generally assessed and reported by physicians, physiotherapists and researchers 

in clinical settings. Clinical scales used to analyse gait parameters are subjective or semi-

subjective and a poor replacement to laboratory based methods for identifying changes in gait. 
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Sometime these methods provide scoring based on clinical expertise and sometimes 

abnormalities are reported as present or not which may affect the accuracy of diagnosis, follow-

up and treatment. In the second method, the motion laboratory based gait analysis is considered 

as “gold standard”. However, the current available “gold standard” methods are expensive, time 

consuming, limited to a single gait cycle and laboratory based which reduce their feasibility to be 

used at home and in clinics. A clear understanding of the gait abnormality is important for 

therapeutic planning, management, clinical decision making and rehabilitation. There is no such 

system available which is inexpensive, easy to use and easy to interpret results based gait analysis 

system available in current clinical applications. Therefore, a high demand of automatic objective 

gait analysis system is appealing from therapists, geriatrics and doctors for gait monitoring and 

rehabilitation.  

On the other hand, older adults with mobility problem need to go through a regular visit to 

hospital for health check-up. A self-assessment gait analysis system will help them to monitor 

gait abnormality in their own home which will reduce their burden of visiting hospital. It will 

also enable older adults to live longer in their preferred environment, to enhance the quality of 

lives and to reduce costs for society and public health system. Especially with the population 

ageing, an automatic gait analysis system will be the key component of monitoring mobility 

problems and reduce potential risk of falls. Therefore, an inexpensive, wireless, portable, simple 

and easily to use and visualize results, multi-sensor based synchronous gait analysis system is 

necessary for users at home and in clinics. The system will provide the facility to quantify gait 

and gait changes both in clinic and at home which increases the availability and affordability of 

gait assessment. It will also allow identifying gait variables and changes, monitor of gait and 

abnormal gait patterns of older people in order to reduce the potential for falling support falls risk 

management aiming to improve their quality of life. It will significantly simplify the monitoring 

protocol and opens the possibilities for home and clinics based assessment. 

2.5. Research gap identification 

This section discusses and identifies the gaps attained from the analysis of literature reviews in 

wearable sensor based gait analysis for gait assessment in clinics and at home. It also discusses 

how the research is different from previous studies.  
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2.5.1. Challenges of current gait assessments  

A clear understanding of the gait abnormality is important for therapeutic planning, management, 

clinical decision making and rehabilitation for patients. As the literature shows that the 

conventional approaches of gait abnormality assessment in clinics are based on visual 

observation. The assessment is conducted and reported by physicians, physiotherapists and 

researchers in clinical settings or in gait laboratories where the assessment time is limited, using 

visual observation, questionnaires or functional assessment to determine abnormalities in 

spatiotemporal gait parameters etc. These gait assessments are highly dependent on assessors’ 

experience and judgment. Such visual assessments may not satisfy scientific criteria of reliability 

and validity (Archer et al. 2006), which may affect the accuracy of diagnosis, follow-up and 

treatment (Muro-de-la-Herran et al. 2014). Again, there is no commonly accepted guideline, 

preferred methodology or protocol for gait changes evaluation. There are “gold standard” 

technologies for assessment of gait parameters e.g. three-dimensional kinematic analysis using a 

motion capture system, force plate and pressure activated sensors. However, the current available 

technologies are expensive, time consuming, limited to a single gait cycle and laboratory based 

which reduce their feasibility to be used at home and in clinics. Although several low cost 

instruments e.g. Kinect (Auvinet et al. 2017) and camera (Krishnan et al. 2015) are appealing, 

they are restricted to a small capture volume, lead to a lack of privacy and only a few gait 

parameters can be analysed. Therefore, an affordable, user-friendly, portable multi-sensor based 

objective gait analysis system which is able to capture long time data and allow comprehensive 

gait information are potentially important for users at home and in clinics. 

2.5.1.1. Sensor selection 

Several comprehensive reviews about the subject of gait analysis with wearable sensors have 

been previously presented in the literature. Although, many wearable sensors based gait analysis 

methods are available, the specific objective of gait analysis for users at home and in clinical 

areas is actually found in only a few studies. These studies do not demonstrate a fully automatic 

system including data collection, feature extraction and quantitative measurement where both 

limbs are evaluated. Many investigations are carried out using a single gait parameter or applying 

simple statistical methods for comparisons. Studies also include a small number of participants. 

Again, research on comprehensive understanding of gait quantification based on overall gait 
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features to allow assessment and monitoring of gait changes from young and older adults has 

received little attention. 

Using IMUs for gait analysis has been well explored in the literature with promising 

results. IMUs are relatively inexpensive with low power consumption which allows long time 

data collection (virtually unlimited number of steps to be evaluated), and sometimes Bluetooth™ 

embedded within IMU enables portability, and provides the ability to evaluate gait and 

movement disorders outside the constrained environments of the clinic and research laboratory. 

However, the majority of the existing work does not consider realistic conditions where data 

collection and sensor placement imperfections are imminent. Moreover, some of the underlying 

assumptions of the existing work are not compatible with pathological gait that decreases the 

accuracy. Again, accelerometer, gyroscope and magnetometer sensors in IMU are susceptible to 

noise in practical application and other small errors, which cause significant drift when the raw 

measurements are integrated. The drift errors due to integration result in a linearly-growing error 

in angle and position. Other sources of errors from IMU sensors are described details in (Lan and 

Shih 2013; Ilyas et al. 2016). Some of these challenges can be overcome by the state of the art 

proposals in the literature, while some of them are not yet addressed or solved. Hence, there is a 

need for additional domain knowledge to estimate and eliminate drift periodically.  

2.5.1.2. Sensor placing location  

The output of sensors depend on the position at which it is placed, its orientation, posture, and 

activity being performed (Merryn et al. 2004). The signal also varies depending on the position 

on the foot (Markowitz and Herr 2016). Various factors can affect the signal input and output. 

For example, during locomotion, movement of clothes can cause interference with accelerometer 

output (Bouten et al. 1997). Factors such as location of the sensor, number of sensors are linked 

with the acceptance and usability level of an automatic gait assessment system. Certain sensors 

location or multiple sensor locations may prevent elderly people from performing activities 

normally or may cause discomfort. Also, some sensor types may be perceived as stigmatisation 

or too complicated to use resulting in low acceptance. Again, a system solely consisting of 

wearable sensors, without the aid of infrastructural system elements, rarely achieves 

completeness in terms of gait metrics. The literature still lacks a complete system that can be 

easily used by non-professionals in clinics or at home. To increase the reliability and validity of 

automatic feature extraction from gait parameters for gait analysis, the influence of sensor 
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location and attachment has to be determined. Further study on the best location for sensor 

placement is therefore required (Intille et al. 2012).  

2.5.1.3. Sensor fusion 

Many gait analyses use a single sensor of user information. Since many wearable sensor 

applications require sophisticated signal processing techniques and algorithms (Tognetti et al. 

2015), their design and implementation remain a challenging task still today. Sensor’s streaming 

data collection, processing and transmitting remotely by means of wearable devices with limited 

resources in terms of energy availability, computational power, and storage capacity are crucial. 

Although, sensor fusion technology combines sensor outputs to maximum accuracy and 

efficiency, as well as minimal noise and power consumption, a lot of sensors come with specific 

constraints in terms of power efficiency, frequency, latency and plays a crucial part in efficient 

sensor-fusion designs. The details of wearable sensor fusion challenges are described in (Gravina 

et al. 2017). There are many studies conducted with sensor fusion, however only a limited 

number of studies are found for collecting synchronous data from multiple sensors for gait 

analysis. 

2.5.1.4. Quantification and visualization 

The most common approaches for the quantification of gait give the numerical values of 

parameters such as symmetry index, symmetry ratio, symmetry angle etc. It may be difficult for 

users to understand those numerical values. However, there are often difficulties in how to 

interpret results and number of test subjects and experiments are low. Although, there are many 

approaches for quantifying gait symmetry (described in Section 2.3.5), a user friendly 

visualization of gait information is not readily available. Researchers (Manal and Stanhope 2004) 

proposed a visual representation of examining asymmetric behavior where the method is 

presented in the context of clinical gait analysis and displays movement pattern deviations 

relative to normative data by color-coding the magnitude and the direction of the deviation. This 

approach provides a single-page summary of all the deviation magnitudes and can be displayed 

simultaneously in a manner of concise, visually effective and reduces complexity. However, 

quantitative information of the gait for the comparison and analysis of complex movement 

patterns are missing and it does not examine changes in symmetry of bilateral parameters.  
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2.5.1.5. Feature selection 

There is no commonly accepted superior guideline, preferred methodology or protocol for gait 

feature selection. To evaluate stride-to-stride variability, European GAITRite Network Group 

developed Guidelines for Clinical Applications of Gait Analysis (Kressig and Beauchet 2006) 

recommend the highest possible number of gait cycles from a practical standpoint, with a 

minimum of three consecutive gait cycles for both left and right sides (i.e., a total of six gait 

cycles) (Kressig and Beauchet 2006). Although most of the proposed frameworks in the gait 

analysis contain feature extraction/selection phases, the main challenge still is to balance between 

the optimum feature extraction/selection methods and their costs for the system. Researchers 

(Daby et al. 2013; Hadi et al. 2013) addressed the detail challenges of feature extraction area 

including formatting, normalization and synchronization of sensory collected data. The optimal 

feature selection for gait analysis of older adults is still challenging to balance between the 

optimum feature extraction or selection methods and their cost for the system. 

2.5.1.6. Feature classification 

There are different machine learning algorithms used for classification of human gait phases 

using threshold, context-awareness, multi-layer perceptron SVM, Decision tree, Genetic 

Algorithm and other algorithms can be seen from (Igual et al. 2013). Current research work 

shows that most of the work on gait phase detection has mainly focused on simplified use one 

accelerometer sensor data involving single-user. In the real world, gait phases and events are 

often in complex manner. Thus, high level activity real time detection is a complex process due 

to manipulation with huge sensory data. The challenging task is to develop algorithm which will 

need less supervision for high-level gait phases and events detection. 

Through the comprehensive literature on gait analysis and wearable gait analysis, it is found 

that gait abnormalities are very common in clinical practice and there is an increasing need to 

improve technology for its analysis. Such abnormalities lead to serious adverse consequences 

such as falls and injury resulting in increased cost. There is therefore a national imperative to 

address this challenge. Currently assessment is done using standardized clinical tools dependent 

on subjective evaluation. More objective gold standard methods to analyses gait rely on access to 

expensive complex equipment based in gait laboratories. These are not widely available for 

several reasons including requirement for expensive equipment, need for technical clinical staff, 
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need for patients to attend in person, complicated time consuming procedures and overall 

expense. Improving opportunities for gait analysis to increase accessibility requires a 

development of an automatic gait analysis system using of new and affordable technologies for 

diagnosis and monitoring of gait using digital technology, nevertheless with population ageing it 

will soon be a huge market and in order to compete in such market, the cost will be a vital factor. 

There remain many issues and challenges in developing gait analysis systems including user 

acceptance, usability, privacy, visibility, systems accuracy, lack of human and social interaction 

and cost. Therefore, in this research, an automatic gait analysis system is proposed and 

developed. In broad aspect, there are two main gaps identified based on comprehensive literature 

on wearable gait analysis. The first is related with practical aspect which includes user 

acceptance, usability, cost and privacy. The second aspect is the technical issues. The identified 

technical issues in wearable sensor based gait analysis system for users at home and in clinics are 

listed following. 

1. Investigation of the effect for placing sensors on different anatomical foot locations are 

not available to collect accurate and reliable data 

2. Multi-sensor fused and synchronous data collection for gait analysis is found only few 

papers  

3. Automatic comprehensive gait features extraction methods are not available for objective 

gait assessment to monitor and identify gait abnormalities over time 

4. Visualization of spatiotemporal gait parameters in real time is not available for 

monitoring and rehabilitation program 

5.  Validation of extracted gait features against gold standard systems in different settings 

with young and older adults are found only in few studies 

6. Evaluation of gait based on all gait features using morphological techniques are not 

available. 

2.6. Summary 

This literature review covers the state-of-the-art on conventional gait analysis approaches, 

wearable sensors based gait analysis including sensor selection, sensor placing location, sensor 

fusion, feature selection, quantification and visualization, feature selection methods, feature 

classification and validation. From this literature analysis, we verify that proper and reliable 

wearable sensors based gait analysis system should involve several phases. The sensor selection 
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phase is to collect movement data. Sensor should be an inexpensive, wireless, portable, low 

powered, simple and easy to use. Location of placing sensor is important to maximize the 

interpretable sensor data information. Feature extraction/selection should be normalized to 

achieve the most significant features to distinguish the classes based on dependence of classifier 

performance of features for more robust gait events. Quantification and visualization should be 

used to easily interpret gait information for monitoring. Feature classification methods should be 

applied to form the training and testing datasets to prevent over-fitting and generalize the 

classifier performance. Sixth, evaluation of gait information should be used for monitoring and 

rehabilitation. Therefore, in this research, considering all the various aspects described above, an 

inexpensive, wireless, portable, simple and easily to use, multi-sensor based synchronous gait 

analysis system should be designed and developed for users at home and in clinics.  

The detail research gap is described in Section 2.5.  There are two main aspects of the research 

gaps in wearable sensor based gait analysis system. The first gap is related to practical aspects 

including cost, user acceptance, usability and privacy. The other gap is related to technical 

aspects described in Section 2.5.2. To overcome these limitations, an affordable wearable multi-

sensor based gait analysis system is developed. The developed gait analysis system significantly 

simplifies the monitoring protocol and opens the possibilities for home based assessment. This 

section discusses the research design for developing the automatic gait analysis system. Older 

people generally walk slow and sensitive sensors are necessary to transfer locomotive 

information to electric signals. From the literature, it is found that an IMU is an electronic device 

that measures an object's velocity, acceleration, orientation, and gravitational forces, using a 

combination of accelerometers, gyroscopes and sometimes magnetometers. Due to low cost and 

small size, researchers use it in different areas for movement analysis. An accelerometer is used 

for measuring the acceleration of a moving body and a gyroscope is used for measuring or 

maintaining orientation and angular velocity. Therefore, it is decided that fused accelerometer 

and gyroscope in IMU will be used for collecting movement data from older adults. From the 

literature, the optimal placing of IMU sensors on different foot locations are not available. 

Therefore, the effect of IMU sensor output on different anatomical foot locations needs 

investigation to maximize the interpretable information for gait analysis. It is also important to 

understand the parameters that influence the extraction of automatic gait features. The next step is 

to perform an analysis to bring out meaningful information from collected data from IMU 

sensors. From the literature, researchers used a variety of methods (Brajdic and Harle 2013) for 
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gait phases detection using IMU sensors. However, difficulty arises to find the automatic 

selection of the threshold value which can vary between users, surfaces and shoes (Gafurov and 

Snekkenes 2008). Most of these studies were carried under laboratory conditions (Rebula et al. 

2013) and tested on a relatively small number of subjects (Brajdic and Harle 2013). Therefore, an 

automatic gait features extraction method is developed for comprehensive understanding of gait. 

These automatic extracted features then need to be displayed in a user friendly way to enable 

users to understand the information easily. From the literature, the most common approaches for 

the quantification of gait give the numerical values of parameters such as symmetry index, 

symmetry ratio, symmetry angle etc which may be difficult for users to understand. Therefore, an 

easy visualization tool is useful to provide a facility for their use in clinic and at home. Next 

comes the validation of the developed automatic gait feature extraction method. The validation is 

conducted for both young and older adult’s data in different environment against a gold standard 

system. The final phase is to provide an automatic gait assessment system based on all features 

where the assessment will be conducted by users automatically without the intervention of a 

physician or expert. For developing the above mentioned system, tools including MATLAB, R 

and Android Studio are used for data collection, analysis, and model evaluations. SolidWorks is 

used for designing sensor casing and printed using 3D printer. MATLAB is a popular platform 

which can be used for exploring, visualising, and modelling data; R is a popular platform for 

statistical analysis and Android Studio is the official integrated development environment for 

Google's Android operating system. Android Studio has built on JetBrains' IntelliJ IDEA 

software and it is designed specifically for Android mobile phones. The choices of techniques 

used and investigated in the research are selected based on literature reviews e.g. techniques that 

are successfully applied and popularly used in related problems. As part of this research is 

concerned on the practicality of the automatic gait analysis system, the validation and evaluation 

are carried out such that issues such as cost, usability, privacy, and acceptance are considered. 
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3. OPTIMAL LOCATION OF PLACING IMU SENSOR 

The chapter is organized in the following sections. Section 3.1 presents methods includes the 

participant selection, sensor selection, design and develop sensor protection system, design and 

develop android app, sensor placing location, data collection, raw data processing, velocity and 

distance calculation, stride event detection, stance and swing events detection and gait features 

extractions. Section 3.2 delivers the experimental results for 15 participants to demonstrate the 

proposed method, and the discussions. The conclusion is given in section 3.3. 

3.1. Methods 

The experimental materials and methods used for the development of this work are described in 

the following subsections. 

3.1.1. Participants selection 

A convenience sample of 15 young subjects are recruited: 10 male and 5 female participants 

(mean age: 25.3 years (19 to 35), weight: 60.7 kg and height: 1.658 meter). The subjects are 

selected with no signs of gait, balance or walking abnormalities. The exclusion criteria for 

selecting these young subjects are recent ligament major injury, abnormal gait pattern, 

musculoskeletal or neurological pathology, contraindication to exercise, recent surgery, fracture 

or muscle injury, impairment attributable to other cause by history or other health conditions that 

may adversely impact the outcomes of the study. In this initial part of our study and development 

we purposefully select young subjects with normal gait to find the optimal location for placing an 

IMU sensor. We want to maximize the highest possible interpretable information for gait analysis 

in this normal group of subjects. We have no reason to believe that this optimal location will be 

different in young and older subjects but in future research we will aim to demonstrate whether 

this is the case or not. Gait abnormalities are common in older adults and IMU sensor output 

from this group might affect sensor output but will aim to explore this in future research.  

3.1.2. Sensor selection 

The accelerometer measures the acceleration while the gyroscope measures the angular rotation 

of the reference object. This sensor array is known as IMU. When an object changes its position 

with respect to gravity, or goes through the inclination or gets tilted, the movement is rather 
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slowly interpreted as compared to the vibrations and shock the device goes through. Due to this, 

the sensing range varies from low g to high g today, to facilitate the bandwidth capability 

associated with the potential applications of device for sensing human locomotion. This research 

involves the use of multiple IMU sensors to detect gait information. Chapter 2 describes available 

sensors for gait analysis. There are wearable wireless IMU sensors commercially used for health 

rehabilitation, movement monitoring, sports tracking or research. A wireless wearable Bluetooth, 

long autonomy, minimum consumption, multiple synchronised data transmission supported IMU 

senor with low cost is important for our investigation. More specifically, since our later 

investigation is to identify older adults gait pattern changes over long time, the IMU device is 

required to last approximately a week or more with low price. Selecting a sensor should also have 

generic considerations such as protection from pressure, water and temperature; and the battery 

life etc. Therefore, the following criteria are set in order to select the suitable sensors that meet 

the research aim. 

 Human gait provides locomotive information and the sensors need to capture that 

locomotive information 

 The sensors need to be inexpensive, wireless, portable, low powered, simple and easily to 

use and easy to acquire (preferably off-the-shelf) 

 The sensors need to fulfil criteria for user acceptance, usability and privacy 

 The sensors need be easy to implement and/or develop and/or integrate and/or extend on 

an existing sensor board or system 

 The sensors need to allow fusion and synchronous data collection platform 

A variety of sensors have been investigated in wearable sensor based gait analysis research 

(Patel et al. 2012; Mukhopadhyay 2015). For collecting human locomotive information, we 

conduct investigation using passive infrared (PIR), 3-Space™ (Inc 2015), SensorTag 

CC2650STK (Instruments) and MetaWearCPro (MbientLab (accessed on 03/08/2016)). Other 

miniature sensors such as tri-axis accelerometer (ADXL 335, ADXL 345, LIS331), tri-axis 

gyroscope (L3G4200D, ITG-3200), 6 DOF Digital Combo, 9 DOF IMU (Razor, LSM9DSO, 

AltIMU10, MiniIMU9) are also investigated. These sensors need to combine with wireless data 

transmission module and power supply to make it wearable user-friendly. Therefore, we search 

for an integrated low powered device to serve our purpose. The PIR sensor has two slots and each 

slot is made of a special material sensitive to infrared. The first slot (one half of the PIR sensor) 

intercepts when a warm body like a human passes results a positive differential change between 
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the two halves. The reverse happens when the warm body leaves the sensing area and the sensor 

generates a negative differential change. These change pulses are indicators of human movement. 

This is an ambient type sensor which needs to install in environment and hence, not good to serve 

our purpose. The Yost Labs 3-Space™ Sensor Wireless integrates a miniature, IMU with a 

2.4GHz DSSS communication interface and a rechargeable lithium-polymer battery. The battery 

lasts up to 5 hours after a full research. Unit price is $265.00. Due to short battery last, cost and 

size of the device, it is not suitable for our research. Texas Instruments’ the SensorTag 

(CC2650STK) is based on Bluetooth low energy offers 75% lower power consumption and years 

of battery lifetime from a single coin cell battery. However, the data sampling rate is 10 Hz which 

is low for human gait analysis and not suitable for our research. Based on the criteria mentioned 

above, literatures and with considering all aspects of our research, the MetaWearCPro sensor is 

found the most suitable for our research. 

This sensor, introduced by MbientLab, Portola, San Francisco, CA, 94134 USA, is used to 

collect accelerometer and gyroscope data. It is sensitive to acceleration and rotatory movements 

that occur during normal human locomotion (Figure 3.1). It has a 32-bit ARM Cortex-M0 SOC - 

nRF51822 CPU, Embedded 2.4GHz BLE transceiver, radio-peak currents below 10 mA 3V, and 

powered by a coin-cell battery. It has internal 256K FLASH /16K RAM, BOSCH BMI160 

accelerometer + gyroscope, BOSCH BMP280 barometer + temperature, Lite-On LTR329 light 

sensor, BOSCH BMM150 magnetometer, temperature sensor, indicator LEDs, and GPIOs / I2C. 

The board is 24mm diameter x 7.0mm height. Sensor data can stream at up to 100Hz using the 

Bluetooth Low Energy link and log up to 10K entries of sensor data at 800Hz in the MetaWear 

memory. The price was $30.00. 

 

Figure 3.1: IMU sensor MetaWearCPro (MbientLab (accessed on 03/08/2016)) 
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The sensor has a high accurate BOSCH BMI160 component which is a 6-axis IMU comprised of 

a 16-bit accelerometer and an ultra-low power gyroscope with an amplitude up to ±16g (S8g 

sensitivity 4096 LSB/g) and a range of 2000 degrees/sec (RFS500 sensitivity 65.6 LSB/deg/sec) 

with a frequency up to 1600Hz (Figure 3.1). It can achieve 99% accuracy. Investigation showed 

that IMU based sensors are sampled at a frequency range of 20Hz to 200Hz (Hegde et al. 2016). 

In practice, a low sampling rate for the accelerometer possibly produces excellent recognition and 

accuracy in posture and activity classification (Aminian et al. 1994; Sazonov et al. 2011). In 

(Aminian et al. 1994) acceleration data are sampled at 25Hz, in (Hikihara et al. 2014) data are 

sampled at 32Hz and in (Truong et al. 2016) at 50Hz. For this study, the accelerometer range is 

set to ± 8 m/s2 and gyroscope range is set to ± 500 degs/s. The sampling rate of data collection is 

set to 50Hz. The power consumption of our sensor is low during sleep mode and high during 

operation mode. The sensor is in an active state when connected by Bluetooth to our android 

device and only goes to sleep mode once it is disconnected. 

3.1.3. Design and development of sensor protection system 

Once the sensor is selected, it is necessary to design the sensor protection system. Sensor 

protection is a very important infrastructure for lower limb gait analysis. The system will ensure 

that the sensor is protected from pressure, water and temperature etc. Due to damage of the 

protection system may directly affect the sensor output and its economic benefit. Therefore, case 

damage is a serious problem to be considered during the design and development of the casing 

system, and in general, sensor casing damage are caused due to material stress factors, 

engineering technique factors and corrosion factors during body movement. Considering all 

issues, the goal is to design a sensor casing that is physically robust, simple, and easy to 

construct. The fundamental design parameters addressed during the development of the sensor 

casing are based on size, simplicity, cost, adaptability, scalability, wearable, flexible for 

attachment with body and should not move or change orientation during movement. SolidWorks 

(SolidWorks 2002) is used to design the case for the sensors and printed using 3D printer.  

Acrylonitrile Butadiene Styrene material is used in the 3D printer for developing the sensor 

casting. This material is one of the first plastics to be used with industrial 3D printers and it is 

still a very popular material due to its low cost and good mechanical properties. It is known for 

its toughness and impact resistance, allowing to print durable parts that will hold up to extra 

usage and wear. LEGO building blocks are therefore made from this material for that same 
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reason. It also has a higher glass transition temperature, which means the material can withstand 

much higher temperatures before it begins to deform. All these characteristics make a great 

choice of using this material for indoor or outdoor applications. The sensor casing securely holds 

the IMU sensors and provides protection. A Velcro elastic belt and buckles are used to adjust and 

attach the sensor. In Figure 3.2: (1) Buckle and Elastic Belt: the buckle is sewn onto an elastic 

belt for fastening to Velcro; (2) Bottom case which keeps the sensor safe from pressure, 

temperature and water; (3) Lock Open Edge which helps to open the cover from bottom case; (4) 

Sensor Lock Mechanism: The four locks keep the sensor sideways movement and orientation; (5) 

Cover Lock Mechanism which tightly locks with the case; (6) Velcro-Elastic Joint: The elastic 

belt is sewed with Velcro; (7) Velcro which adjusts and tighten when the sensor is attached; and 

(8) IMU sensor and Coin Cell battery. 

 
Figure 3.2. Proposed MetaWear casing, Velcro elastic belt, buckles and IMU sensor 

3.1.4. Design and development of Android App 

The MetaWear CPro sensor provides an Android API library for interacting with the MetaWear 

board on an Android mobile phone. A minimum of Android 4.3 (SDK 19) is required to use this 

library, however some features will not function properly due to the underlying Bluetooth LE 

(BLE) implementation. To get the best results, it is recommended to use an Android 4.4 (SDK 

19) or higher.  MetaWear CPro uses BLE 4.0. The app is designed through the following. 

 Requirement: Requirement analysis is conducted through the literature review, discussion 

with the expert and users.  

 Market availability: The market available mobile software development platforms are 

reviewed. Mobile platforms and supporting devices are selected considering hardware 
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performance, battery life, ruggedness, required peripherals, device coverage, device 

support and performance.  

 Initial design:  Activity classes are reviewed including SplashActivity, MenuActivity, 

PlayActivity and HelpActivity etc. A very basic design is implemented using Android 

Studio 2.2. 

 Testing and debugging: The app is tested and users’ feedbacks are recorded. All issues are 

addressed, the app is improvement and documented. 

 Multi-sensor synchronous data collection: The app is designed to collect up to 7 IMU 

sensors data synchronous through Bluetooth LE 4.1. 

The Android app is developed to collect real time data from the MetaWear sensor. The HTC M9 

mobile phone which has BLE 4.1 is used to connect to multiple MetaWear Cpro sensors. This 

mobile phone supported up to 7 MetaWear Cpro devices and it is able to collect synchronous 

data. The app collected accelerometer and gyroscope data, and stored data on an external SD card 

as a csv file. The data storing format in the csv file is date (dd/mm/yyyy), time (HH:MM:SS.ss), 

system clock (Millisecond), accelerometer (X, Y, Z) and gyroscope (X, Y, Z). The screenshot of 

the android app is shown in Figure 3.3. 
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Figure 3.3 Proposed android app to collect data from MetaWear CPro. 

Initially the SCAN button on the app is pressed to find all the MetaWear CPro devices available 

for data collection. The order of data collection is selected by the Slot number. Each sensor then 

automatically connects with the corresponding mac address by showing “CONNECTED”. Once 

the DATA RECORDING switch is pressed, a dialog box appeared prompting for a file name. 

Data collection starts when the “OK” button was pressed. When the “STOP” button is pressed, 

the collected data is stored as a CSV file. 

3.1.5. Synchronous data collection 

The MetaWear CPro transfers the measurements from 3-axis accelerometer and 3-axis gyroscope 

sensors information through Bluetooth LE to Mobile phone. The algorithm in (MbientLab 
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(accessed on 03/08/2016)) fuses the raw data in an intelligent way to improve each sensors 

output. The HTC M9 mobile phone which has BLE 4.1 is used for collecting MetaWear Cpro 

data. The developed Android app supports up to 7 MetaWear Cpro devices concurrent connection 

and it is able to collect synchronous data. 

3.1.6. Sensor placing location  

Initially the sensor placing effect is explored by placing two sensors once with loosely fitted and 

another with tightly fitted with Velcro elastic belt. The data output from the loose fit is poor 

output with high relative motion noise and the accuracy of tightly fitted result is high. The output 

of an accelerometer depends on the position at which it is placed, its orientation, posture, and 

activity being performed (Merryn et al. 2004). The signal also varies depending on the position 

on the foot (Markowitz and Herr 2016). We find that placing a sensor in different foot locations 

give different signal patterns and affect sensor output. A Velcro elastic belt and buckles are used 

to adjust and attach the sensor (Figure 3.4). 

 
Figure 3.4: Proposed MetaWear casing, Velcro elastic belt, buckles and sensor placement on foot. 

We also observe that the orientation of the sensor has a significant effect on output data and 

placing the sensor in different locations gives a different shape in data. If data are to be collected 

regularly, the position and orientation of the sensor is crucial as changes in position through 

human error may give different data patterns which might be difficult to interpret. This highlights 

the importance of properly fixing the sensor to the optimal location to avoid inaccuracies. The 

orientation of the sensor at placing time is also important. Other possible areas of error may arise 

from frictional noise and relative movement of clothing and shoes of the sensor. The placing of 

sensor on foot locations requires other generic considerations. There is a need to try to extend the 
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battery life as much as possible. The power consumption of our sensor is low during sleep mode 

and high during on operation mode. As there is no switch in the sensor, it is always in active 

state, if the sensor is disconnected from the Bluetooth android, it goes to sleep mode 

automatically after a short delay. The sensor output can vary due to relative movement between 

foot, shoe and sensor (Gafurov and Snekkenes 2008). In order to increase the sensor output 

accuracy and reliability, and reduce the variability, all sensors are fitted tightly to the barefoot. 

We chose the barefoot rather than sensors attached to a shoe because wear and tear in the shoe 

can affect the position of the sensor and accuracy of the data output. The plantar aspect is not 

covered as this is the part of the foot in contact with the floor and is not practical for the subject 

to walk on the sensor. Our subjects walk barefoot and it is not possible to wear a shoe over the 

sensor as this would have caused discomfort. However, our work has established our method for 

finding optimal location and extracting automatic gait features. Indeed, we agree that for future 

development and for widespread use the sensor needs to be incorporated into a shoe. Reaching 

this final goal is however a process that needs to happen in several stages. After this study, we 

now know how the best signal can be extracted from the bare foot. The next step is therefore to 

incorporate the sensors into a shoe and compare the output to our barefoot readings. This will 

ensure that the best possible signal from a shoe based sensor can be achieved. The proposed 

positions are our novel approach in this gait analysis research area and has not been explored 

before to our best knowledge. 

The sensors do not need to be worn in a perfectly upright position as this is not user-

friendly and very hard to achieve. Any discrepancy between the sensor, foot and earth frame, is 

compensated using transformation of the sensor frame to earth frame assuming that the relative 

movement between the sensor frame and foot frame is negligible. 

Accelerometer and gyroscope data are collected by placing the sensors in five selected foot 

locations that covers all of the regions of the barefoot (Figure 3.5): the positions are chosen to 

include the medial, lateral, anterior dorsal, posterior dorsal and posterior of the foot. 
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Figure 3.5: Proposed IMU sensor placement of participants to five barefoot locations 1) 

metatarsal, 2) proximal phalange, 3) side metatarsal, 4) talus and 5) Achilles tendon 

Location 1 - Medial aspect of foot over the bony prominence of the first cuneiform: This 

location is chosen to provide stability to the sensor and minimize its movement during motion of 

the foot.   

Location 2 – Anterior dorsal aspect of foot over the second Metatarso pharyngeal joint: It is 

a flexible part of the foot during motion. 

Location 3 - lateral aspect of foot over the base of the 5th metatarsal: The location is a 

flexible part of the foot during motion. 

Location 4 – Posterior dorsal over the Talar dome anterior to the ankle joint: It is a mobile 

part of the foot.  

Location 5 - Achilles tendon: over the insertion of the Achilles tendon into the calcaneum, 

evaluates sensor data from the posterior aspect of the foot. As the sensor is placed over the 

calcaneum it is considered a relatively stable part of the foot during motion. 

3.1.7. Experimental protocol and calibration 

The experiment is performed in a straight corridor. All subjects perform a trial in a straight 

corridor comprising 25 strides of normal walking, a turn-around and another 25 strides. 

Accelerometer and gyroscope data from sensors attached on two foot locations are recorded in a 

database synchronously using our Android app. The distance carried out by walking on the 
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corridor is measured by a tape. Calibration is performed individually where the distance travelled 

is measured manually and the result compared to the output from the sensor. 

3.1.8. Data collection 

In natural walking the head, torso and hips are synchronized in a smooth bouncing vertical 

motion with each step. This vertical motion is in the same direction as the earth’s gravitational 

force. Legs do most of the work during walking as the joints produce greater ranges of motion to 

move the body forward in the horizontal direction. This repetitive movement involves steps and 

strides known as the gait cycle. This horizontal movement produces high acceleration and this is 

the movement investigated in this study. An accelerometer and a gyroscope are used to collect 

this horizontal movement information and then data are analyzed using our proposed method to 

find strides, stance and swing event information. The raw data from the accelerometer and 

gyroscope for location 1 to location 5 is presented in Figure 3.6 and will be analyzed in Section 

3.3. 

 

Figure 3.6: Raw accelerometer and gyroscope data from test subject 1 for five locations 

Location 1) Metatarsal 

 

Location 2) Proximal 

phalange 

Location 3) Side 

metatarsal 

Location 4) Talus 

 

Location 5) Achilles tendon 
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3.1.9. Gait features extraction  

3.1.9.1. Raw data processing 

It is noted that accelerometers are sensitive to altitude and impact forces, while gyroscopes are 

sensitive to temperature changes and suffer from a low-changing bias. Consequently 

accelerometers have poor dynamic features and gyroscopes have poor static features (Zhi 2016). 

IMU sensor produces some noise (such as constant bias, flicker noise, temperature effects and 

calibration errors) which are described details in (S Flenniken et al. 2017). One way of reducing 

noise is to apply advanced optimal recursive filter techniques such as Kalman filter (Yun and 

Bachmann 2006). It (Kalman 1960) is a filtering algorithm which can remove noise from a signal 

while retaining the useful information. It uses a feedback control mechanism in order to estimate 

a process. Noisy measurements are taken as feedback and using them, the process is estimated. 

The recursive approach for minimizing errors ensures that estimated state from previous step and 

current measurement are used to estimate the current state, therefore no history of previous 

measurements is required. MetaWear CPro uses Kalman filter fusion to reduce noise, provide 

distortion-free and refined orientation vectors (MbientLab (accessed on 03/08/2016)). The IMU 

sensor gives three dimensional accelerometer data A=[ax, ay, az] and gyroscope data G=[gx, gy, 

gz] with respect to time t. As the accelerometer is sensitive to linear acceleration due to 

movement and the local gravitational force, the input data consists of user acceleration and 

gravitational acceleration. The user movement will result in positive data towards the ax, ay, and 

az axis of the sensor and, by convention, these are defined so that a linear acceleration aligned in 

the direction of these axes will give a positive acceleration output. Again a gravitational force 

component aligned along the same axes directions will, however, result in a negative reading on 

the accelerometer.  

In this study, there are three coordinate systems: the foot frame, the sensor frame and the 

earth frame. Since the sensor is attached to the foot tightly, the sensor does not slip or move 

during walking time. The relative movement between the sensor frame and foot frame is assumed 

to be negligible; hence the foot frame and sensor frame are treated as a same frame. The sensor 

frame and the earth frame are the two coordinates and the sensor frame should be transferred to 

the earth frame and remove gravitational component.  The Ax axis is aligned along the foot axis of 

the IMU sensor, the Az axis points downwards so that it is aligned with gravity and the Ay axis is 
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aligned at right angles to both Ax and Az axes so that the three axes from a right handed coordinate 

system are shown in Figure 3.7.  

 

Figure 3.7: Three dimensional IMU axes (XYZ is the foot coordinate; ĀxĀyĀz is the earth 

coordinate) 

There are many conventional methods to split the gravitational component from 

accelerometer data and three of them (Mizell 2003; Mahony et al. 2008; Madgwick 2010) are 

investigated. The method developed by (Mizell 2003) is used to estimate the vertical component 

and the magnitude of the horizontal component of the user’s motion. This method is applied as it 

is simple and easy to understand. The average initial gravity component on each axis is estimated 

at standing position before starting to walk.  
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Thus the initial gravity acceleration vector ],,[ zyx aaa  consisted of the average magnitude of n 

samples of accelerometer data and is estimated using equation (3.1),where i=1,2,3,…,n and 

n=10. It is noted that initially the earth frame and the foot frame are the same. Here A  is used as 

the acceleration under the earth frame.  

],,[],,[ zzyyxxzyxd aaaaaadddA           (3.2) 

The dynamic component of the acceleration estimated using equation (3.2) is due to user motion 

rather than gravitational force, where Ad is the acceleration under the foot frame.  
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The projection Ap of Ad on the axis A  using equation (3.3) (Mizell 2003). In equation (3.3), 

Ap is the projection component of the dynamic acceleration vector Ad on A .  

pdh AAA           (3.4) 

As a three-dimensional vector consists of its vertical and horizontal components, the 

horizontal component Ah of the dynamic acceleration is computed using equation (3.4). The 

conversion of the accelerometer from gravitational force g to user acceleration of movement 

(AM) m/s2 is AMxyz=Ah*9.81 where AMxyz=[amx, amy, amz]. The three axis data are transformed 

due to the fact that mapping at specific axes is sensitive to the sensor orientation (Starlino 2009). 

If the data are mapped on each axis individually, small changes in orientation or attached location 

may erroneously be flagged as a change in movement. The sensor orientation and attachment are 

maintained using a small casing and Velcro elastic buckles, every time the sensor is attached. We 

aim to put in the same orientation even though a different orientation would have given similar 

results.  

222
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     (3.5) 
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      (3.6) 

The acceleration of total Axyz and gyroscope Gxyz towards three axes x, y and z directions are 

estimated by using equations (3.5) and (3.6) where i=1,2,3,…,n. The preliminary experimental 

data are collected in this section from one male subject age 35 years old, height 1.72m and weight 

73kg to develop and demonstrate our method. At this stage of the experiment the aim is to prove 

the concept and that data can be collected and analyzed. It is not intended to generate conclusions 

about the optimal location for placing sensors. The total walking distance is measured offline and 

then compared with the calculated distance. The wearable MetaWear CPro sensors are placed in 

five different locations on the right foot. The subject performed a trail in a straight corridor 

walking on a hard floor. The trail comprised of 25 strides of normal walking, a turn-around and 

another 25 strides. The distance is measured by a tape and the Android app is used to record the 
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time. For example, for the data from this subject, total acceleration 
ixyzA  and gyroscope 

ixyzG  

signals are shown in Figure 3.8. From 
ixyzA and 

ixyzG , we found that data are normally 

distributed.  

 
Figure 3.8: Total acceleration Axyz and gyroscope Gxyz towards three axes x, y and z directions 

from Location 1 to 5 

The Axyz and Gxyz signals are then filtered by the Savitzky-Golay (SG) filter (Orfanidis 1996) 

to get Asg and Gsg. This filter tends to filter out a significant portion of the original signal’s high 

frequency content along with the noise and minimized the error by fitting a polynomial to frames 

of noisy data. Axyz, Gxyz, Asg and Gsg are then shifted to the center shown in Figure 3.9. 



CHAPTER 3: OPTIMAL LOCATION OF PLACING IMU SENSOR 

91 

 

 

Figure 3.9: Original (Axyz and Gxyz) and filtered (Asg and Gsg) acceleration and gyroscope data 

using Savitzky-Golay 

3.1.9.2. Velocity and distance calculation 

The accelerometer gives information about acceleration, velocity and position. In an ideal world, 

the position can be estimated by applying double integration formula to the acceleration signal 

captured from the sensor after removing the gravity component. First integration is applied to 

obtain velocity vector using equation (3.7). This velocity vector is then integrated second time to 

obtain the distance using equations (3.8). 

     

t

t

datvtv

0

0          (3.7) 

     

t

t

dvtsts

0

0         (3.8) 

where  tv  is the velocity vector,  a  is the acceleration vector,  ts  is the distance, t0 is the 

initial time and v(t0) is the initial velocity, which is a constant. These equations are applicable for 

continuous data that is used after measurement. However, our IMU requires real time 

displacement updates and uses discrete input values. Therefore, trapezoidal integration formula 

(Slifka 2004) is applied for this study. There are some discrete integration methods available to 
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perform numerical integration and a list of distance estimation approaches can be seen in (Truong 

et al. 2016).  

         ...3,2,1,1
2

1
1  nnxnx

f
nyny

s

    (3.9) 

Trapezoidal integration is a discrete method that uses the current and previous measurement 

to determine the integrand shown in (3.9). In this equation  ny  is the integrated output,  1ny  

is the previous output, sf is the sampling frequency,  1nx  is the previous input  nx is the 

current input. This integration method is applied first to the acceleration and second to the 

velocity to obtain the distance. Using the trapezoidal integration method will work for noise-less 

data that does not come from IMU accelerometers. Low-cost accelerometers do not have the 

required precision, and there are many errors sources associated with IMUs (S Flenniken et al. 

2017). Two problems are important that need to be addressed when performing a double 

integration (Slifka 2004). First problem is the unknown initial conditions. Integration requires a 

known initial condition, whether it is initial velocity or position. Second problem is the drift in an 

accelerometer signal. Both can lead to serious integration errors if not corrected. To address 

those, each filtering step applied will result losing the ability to track a certain kind of motion. 

Related work in this field processes the signal in the frequency domain (Ribeiro et al. 2001; 

Slifka 2004). 

The first problem of double integration on an acceleration signal is the lack of initial 

conditions where for proper integration, both initial velocity and initial position must be known 

from a direct measurement. If acceleration signal is integrated for an integer number of periods, 

the velocity function will have no DC component and therefore, there would be no need to add an 

initial condition (Slifka 2004). The second problem is acceleration drift that is an unwanted 

phenomenon caused by a small DC bias generally occurs in the acceleration signal (Ribeiro et al. 

2001; Thong et al. 2004), because integrating a constant gives a slope and the second integration 

will give an exponential function, quickly making the output data unusable. To prevent this a 

high-pass filter must be applied to the input data, to correct this even better a high-pass filter 

should be implemented between every integration step as well (Thong et al. 2004). 

During walking, horizontal distance can be obtained by integrating the acceleration. In this 

analysis, the distance travelled by walking is obtained principally from the trapezoidal double 
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integration method of the user movement accelerometer signal Axyz in the walking direction. As 

the displacement signal emphasizes the low frequency data more than the acceleration signal, the 

input Axyz data are passed through a high-pass filter to remove the DC component of the 

acceleration signal. The double integral process is shown in Figure 3.10 for calculating travelled 

distance. The Figure 3.10 is prepared based on the concept by (Thong et al. 2004). 

 

Figure 3.10: Double integral process 

In order to obtain the velocity and distance in time series, two stages of integration and two 

stages of high-pass filtering are applied. A second-order od=2 Butterworth high-pass filter is 

designed with sampling frequency fs=50 Hz, cut off frequency fc=0.001 Hz. The Butterworth 

filter is used with fc and od which have a magnitude response that is maximally flat in the band-

pass and monotonic overall. This smoothness comes at the price of decreased roll off steepness. 

The output from Butterworth filter is then passed to filtfilt filter. The filtfilt corrected for phase 

distortion introduced by a one-pass filter, though it does square the magnitude response in the 

process (Oppenheim 1989). The first integral operation is applied on Af data with respect to time t 

that gives the Avl velocity (Figure 3.11). 

 

Figure 3.11: Velocity Avl after first integral 

Linear trends are removed using detrend function by computing the least-squares fit of a 

straight line to the data and subtracted the resulting function from the data. Avl is then passed 

through the high-pass filter for the second time and then the distance AD is estimated after a 

second integral operation that is shown in Figure 3.12. 
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Figure 3.12: Distance AD after second integral 

The double integral process shown in Figure 3.10 and equation 3.9 are applied to estimate 

the walking distance. The result is presented in Table 3.1. 

TABLE 3.1 
Distance and Speed calculation 

SL RD (m) ED (m) Accuracy (%) Period (s) ES (m/s) 

1 60.96 60.38 99.05 29.86 2.02 

2 60.96 55.11 90.40 29.86 1.85 

3 60.96 68.24 88.06 29.86 2.29 

4 60.96 40.46 66.37 29.86 1.35 

5 60.96 61.35 99.36 29.86 2.05 

RD=Real Distance, ED=Estimated Distance, ES=Estimated Speed 

The highest accuracy 99.36% is found at location 5. The second best accuracy is found at 

location 1 (99.05%) followed by location 2, location 3 and location 4. The period of walking is 

recorded using the android app. The estimated walking speed varied from 1.35 m/s to 2.29 m/s 

depending on the location. These results are consistent with human walking speed 1.5m/s to 

2.5m/s previously documented in (Minetti 2000; Mohler et al. 2007). 

3.1.9.3. Stride event detection 

Human walking can be described and characterized in the context of a gait cycle and the details 

are described in Section 1.2. The period from the initial contact to pre-swing composes about 

60% and initial swing and terminal swing composes about 40% of the gait cycle shown clearly in 

Figure 3.13. As each stride consists of stance and swing events, thus the initial contact and the 

border between pre-swing and initial swing are detected to get stance and swing information. 
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Figure 3.13. Normal human gait phases (Liu et al. 2016) 

These different phases of gait cycle are identifiable from IMU acceleration data (Figure 

3.14a). The gait cycle signal patterns from literature accelerometer data (Patterson et al. 2014; 

Liu et al. 2016) and literature gyroscope data (Greene et al. 2010b; Casamassima et al. 2014) are 

compared to our gait cycle signal patterns i.e. the different phases labelled in Figure 3.13 with the 

corresponding accelerometer data are shown in Figure 3.14a. 

 

(a) 

 

(b) 

Figure 3.14: Eight different phases of a gait cycle from (a) accelerometer data and (b) gyroscope 

data 
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As we can see from Figure 3.14 that the mid-swing phase in accelerometer and gyroscope 

data is a reliable indicator for the performance of the gait cycle, we select this mark for counting 

the number of strides. The number of mid-swing phases in the accelerometer data is therefore 

equal to the number of strides.  

Researchers used a variety of methods (Brajdic and Harle 2013) for stride event detection 

from IMU sensors. During human walking, a consistent sequence of motions is performed at each 

stride that results in a maximum peak value in the mid-swing phase. This mid-swing phase 

appears when the person lifts up his/her foot, shortening the limb to clear the ground, releasing 

the foot until it is again in contact with the ground. A particular threshold value is set to detect 

these characteristics for (HenkMuller 2003; Kim et al. 2004; Goyal et al. 2011). A disadvantage 

of these methods is that any motion with a similar periodicity of walking will trigger off a false 

stride event. Difficulty arises to find the automatic selection of the threshold value which can 

vary between users, surfaces and shoes (Gafurov and Snekkenes 2008). Most of these studies are 

carried under laboratory conditions (Rebula et al. 2013) and tested on a relatively small number 

of subjects (Brajdic and Harle 2013).  

From Gyroscopic data the highest peak occurs at the mid-swing at the 7th phase (Figure 

3.14b). Figure 3.8 shows that terminal stance and mid-swing events have very similar amplitudes. 

Applying a threshold based method to detect the stride number has a low accuracy as it detects 

two strides instead of single stride.  

The main idea behind stride detection is identifying the characteristics of local maximal 

prominences of Asg and Gsg signals that correspond to a single stride phase shown in Figure 3.14 

(a). The prominence of a peak measures how much the peak stands out due to its intrinsic height 

and its location relative to other peaks. Measurement of the prominence of a peak requires three 

steps. First a marker is placed on the peak. One way of marking the peaks is to make use of the 

fact that the first derivative of a peak has a downward-going zero-crossing at the peak maximum. 

Second, a horizontal line from the trough is extended to the left and right side until the line 

crosses the signal or reaches the left or right end of the signal. Third calculate the maximum 

perpendicular distance from the peak to the horizontal line. This is defined as the maximum 

prominence of the peak. Figure 3.15 demonstrates an example of these three steps. Each peak is 

assigned to a marker labelled 1 to 3 (peak) and a to c (trough). A horizontal line from each 

through is extended to right and left side. The line from marker a reaching to the left end. The 
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maximum perpendicular distance is then estimated between the marker a and the endpoint. The 

similar procedure is followed for finding the maximal prominence of the peak. 

 

Figure 3.15: Finding the maximum prominence of the peak 

To perform the analysis, the characteristics of local maximal prominences of Asg and Gsg are 

estimated through to a MATLAB built-in function findpeaks (The MathWorks  Inc 2016). The 

findpeaks finds local peaks in the data vector and ignores small peaks that occur in the 

neighbourhood of a larger peak. It returns two vectors with the peaks (local maximal) and 

locations at which the peaks occur. A local peak is a data sample that is either larger than its two 

neighbouring samples or is equal to Inf. If a peak is flat, the function returns only the point with 

the lowest index. The outputs of these steps are shown in Figure 3.16. The blue triangles show 

mid-swing phases for accelerometer (upper plot) and gyroscope (lower plot) in each stride.  

 
Figure 3.16: Strides detection from accelerometer and gyroscope data 
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These strides contain two arrays, one containing amplitude AP, GP in m/s2 (peaks) and the 

time of those amplitudes AL, GL in Time(t) (locations) for corresponding accelerometer and 

gyroscope data. The number of AP and GP give the number of strides.  
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The accuracy of the stride number estimated from five locations is computed using 

equation (3.10) and compared to the offline measured values shown in Table 3.2. The accuracy 

for both accelerometer and gyroscope data is estimated using equation (3.10) where ActualStride 

= 50. 

TABLE 3.2 

Stride detection accuracy from accelerometer and gyroscope data 

Stride Number Estimation 

 SL SNAcc AccuracyAcc SNGyr AccuracyGyr 

1 48 96% 50 100% 

2 43 86% 46 92% 

3 48 96% 49 98% 

4 48 96% 48 96% 

5 50 100% 50 100% 

SL=Sensor Location, SN=Stride Number 

From Table 3.2, the highest detection is 100% from both acceleration and gyroscope data at 

location 5 which is over the insertion of the Achilles tendon into the calcaneum. The sensor 

orientation is also at a phase of 90 degrees with the earth frame that gave significant information 

of each stride. The second best result is 96% from accelerometer and 100% from gyroscope data 

at location 1 (medial aspect of foot over the bony prominence of the first cuneiform). The sensor 

orientation and location of this place is the most stable as it is over a bone and relative movement 

is low. The third and fourth best locations are location 3 and 4 where the sensor orientation is 

tilted and the relative movement is high. The stride information of test subject 1 is presented in 

Table 3.3. 
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TABLE 3.3 

Stride length and period for subject 1 

Stride Information 

 Length (m) Period (s) 

SL M SD M SD 

1 1.042 0.134 0.509 0.077 

2 1.543 0.313 0.485 0.098 

3 0.541 0.166 0.434 0.133 

4 0.917 0.163 0.476 0.085 

5 0.904 0.247 0.453 0.124 

M=Mean, SD=Standard Deviation 

The standard deviations of the mean length and the mean period from location 1 are the 

lowest compared to location 2 to 5. Location 1 is therefore the more consistent and stable 

location. Location 2 has the highest standard deviation for mean length and location 3 for mean 

period indicating that these locations has more variation and poorer reliability.  

3.1.9.4. Stance and swing events detection 

The stance and swing events are then detected by finding the local minima prominences before 

and after each mid-swing from AP, and AL using function findpeaks. A loop from 1 to total stride 

number is used to find each stance and swing events for each stride. The output to extract stance 

and swing phases is shown in Figure 3.17.  

 
Figure 3.17. Stance and swing phases 

In natural walking, the foot is on the ground for a little more than 60% of the total gait 

cycle referred as stance phase. A stance length is the distance between the heel contact and pre-

swing phases and stance period is the interval of stance length. The stance information of test 

subject 1 is presented in Table 3.4. During the remainder of the gait cycle which is around 40%, 

the foot is off the ground as the limb is swung forward to begin the next stride referred as the 

swing phase. A swing length is the distance between the initial swing and terminal swing phases 
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and the swing period is the interval of swing length. The swing information of test subject 1 is 

presented in Table 3.5. 

Using the stride and distance data, our method is used to estimate stance and swing phase 

movement information shown in Tables 3.4-3.5. 

TABLE 3.4 

Stance length, period and ratio for subject 1 

Stance Information 

 Length (m) Period (s) % of Stride 
SL M SD M SD  

1 0.555 0.011 0.271 0.057 53.214 

2 0.560 0.012 0.176 0.038 36.292 

3 0.196 0.054 0.157 0.044 36.178 

4 0.534 0.010 0.278 0.053 58.309 

5 0.526 0.014 0.264 0.074 58.245 

M=Mean, SD=Standard Deviation 

TABLE 3.5 

Swing length, period and ratio for subject 1Swing Information 

 Length (m) Period (s) % of Stride 

SL M SD M SD  

1 0.488 0.010 0.238 0.051 46.786 

2 0.983 0.025 0.309 0.079 63.708 

3 0.345 0.012 0.277 0.098 63.822 

4 0.382 0.008 0.198 0.042 41.691 

5 0.377 0.010 0.189 0.051 41.755 

M=Mean, SD=Standard Deviation 

Stance is the first part of a stride. The standard deviations of length and period for stance 

and swing are low (Table 3.4). The highest % of stride is found at location 5 and location 4. 

According to the literature the stance and swing ratio is 60:40% of the stride location 5 and 4 are 

close to 60:40 % split of the stride for this subject. Although location 5 shows close to 60% of the 

stride for this subject, statistical analysis for this will be conducted in Section 3.3 experiment and 

discussion. 

3.1.9.5. Summary of gait features extraction 

Number of stride, travelled distance, speed, stride length, stride period, stance length, stance 

period, swing length and swing period and the ratio of stance and swing are estimated from the 

method described above. To summarize the above discussion, our proposed gait features 

extraction method is shown in Figure 3.18. 
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Figure 3.18: The process diagram of the automatic features extraction from accelerometer and 

gyroscope 

3.2. Experiments and discussion 

In this section, we apply the method developed in Section 3.2 from one participant to 15 

participants. We present the results to demonstrate our proposed method statistically and the 

discussion. 

3.2.1. Experiments 

 The procedure for gait features extraction is conducted for a total of 10 male and 5 female 

participants.  
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TABLE 3.6 

Stride detection accuracy for 15 subjects 

Average Stride Number Estimation 

 SL SNAcc AccuracyAcc SNGyr AccuracyGyr 

1 47.73 95.47% 46.80 93.60% 

2 45.07 90.13% 46.33 92.66% 

3 44.93 89.87% 46.40 92.80% 

4 47.00 94.00% 46.53 93.06% 

5 47.40 94.80% 46.60 93.20% 

SL=Sensor Location, SN=Stride Number 

Table 3.6 shows the average stride number detected for 15 participants. The highest accuracy for 

the detection of stride count from accelerometer and gyroscopic data is  in location 1 closely 

followed by locations 5 and 4. Although, location 5 gave the highest accuracy during the method 

development in Section 3.2, with more participants location 1 shows the best result in being the 

closest to correlate estimated distance travelled to measured (actual) distance travelled (Table 

3.7) and is also closest to the 60:40% split for average stride, stance and swing information 

(Table 3.8). 

TABLE 3.7 

Swing length, period and ratio for subject 1 

SL ED (m) 95% Confidence 

Accuracy (%) 

Period (s) 95% Confidence 

ES (m/s) 1 58.45 56.05 60.84 1.40 1.24 1.56 
2 60.10 58.12 62.09 1.46 1.27 1.65 

3 56.46 52.95 59.98 1.37 1.17 1.58 

4 56.68 53.68 59.67 1.38 1.20 1.56 

5 56.01 53.65 58.37 1.35 1.18 1.52 

ED=Estimated Distance 

We checked the data for statistical errors and assessed whether the estimated values are 

reasonable. A boxplot of stride number estimation and accuracy of detection from accelerometer 

and gyroscope data for location 1 to location 5 from 15 participants is presented in Figure 3.19.  
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Figure 3.19: Boxplot of Stride number estimation and accuracy of detection from Accelerometer 

and Gyroscope data for location 1 to location 5 from 15 participants 

It is to be noted that the observations identified by the boxplots are not especially extreme. 

Our method to detect the stride number from location 1 to location 5 shows about 45±5 strides 

with accuracy of about 90±5% for accelerometer and accuracy of about 90±10% for gyroscope 

data. The highest value of the average stride number estimation from the gyroscope is in location 

1 but the data distribution is wider than other locations. The overall mean values of stride 

detection show that the IMU data collected from five different foot locations do not have a high 

variation from accelerometer data. However, the accelerometer data distribution of location 1 is 

more stable compared to the gyroscope data distribution showing it to be more reliable for gait 

analysis. Location 5 of gyroscope data shows a good data capture. Based on these observations, 

location 1 appeared to be the most stable to collect reliable and quality data from an 

accelerometer for lower limb gait analysis. 
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The average actual and estimated distance travelled by 15 participants, their accuracy, 

period of walking and estimated speed information with confidence intervals from location 1 to 

location 5 are presented in Table 8. The average estimated walking speed from young participants 

varies from 1.35m/s to 1.46m/s. The highest accuracy of distance estimation is found from 

location 1 with an accuracy of 95.24% followed by location 5, location 2, location 3 and location 

4. 

TABLE 3.8 

Accuracy and confidence interval of distance and speed for 15 subjects 

Average Distance and Speed calculation 

SL AD (m) ED (m) (%) 95% CI 

 

P(s) ES (m/s) 95% CI 

 1 59.21 58.45 95.24 56.05 60.84 41.22 1.40 1.24 1.56 

2 59.21 60.10 85.95 58.12 62.09 41.22 1.46 1.27 1.65 

3 59.21 56.46 85.87 52.95 59.98 41.22 1.37 1.17 1.58 

4 59.21 56.68 85.06 53.68 59.67 41.22 1.38 1.20 1.56 

5 59.21 56.01 90.85 53.65 58.37 41.22 1.35 1.18 1.52 

AD=Actual Distance, ED=Estimated Distance, (%) =Accuracy, P=Period, ES=Estimated Speed, 

CI=Confidence Intervals 

The total actual and estimated distances for performing 25 strides of normal walking, a 

turn-around and another 25 strides, traveling period and speed summary are presented in Figure 

3.20. 

 
Figure 3.20: Boxplot of actual and estimation distance, their accuracy, period and speed from 

accelerometer data for location 1 to location 5 

Due to different age groups, height and walking style, participants walks from 45m to 70m 

to complete a total of 50 strides. The actual distance and the estimated distance are very close in 

the dataset with average accuracy is more than 90%. The average stride, stance and swing phase 

information for 15 participants are presented in Table 3.9.  
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TABLE 3.9 

Stride, stance and swing information for 15 subjects 

SL Average Stride Average Stance Average Swing 

L (m) P (s) L (m) P (s) % S L (m) P (s) % S 
1 1.104 0.503 0.649 0.259 59.501 0.455 0.244 40.499 

2 1.304 0.460 0.659 0.229 63.705 0.413 0.228 48.169 

3 1.251 0.468 0.614 0.228 56.438 0.465 0.238 51.013 

4 0.971 0.512 0.499 0.261 82.399 0.372 0.247 47.225 

5 1.223 0.503 0.621 0.255 49.907 0.590 0.244 48.782 

L=Length, P=Period, % S=% of Stride 

The calculated average stride is based on heel to heel contact. The length and period from 

location 1 to 5 varies low and for normal walking, the stride length varies from person to person. 

Location 1 is closest to the 60:40% split for stance : swing that agrees with the literature  (Iosa et 

al. 2013; Liu et al. 2016). The individual participant information including anthropometric 

characteristics is provided in Appendix B. 

3.2.2. Discussion 

From the above results, this study has shown that placing an IMU sensor at location 1 located on 

the medial aspect of foot over the bony prominence of the first cuneiform maximizes the 

accuracy of the collected accelerometer and gyroscope data. In this location the sensor offers the 

best performance to identify the stride count, calculated distance and average stride, stance and 

swing information. Location 1 is closely followed by locations 4 and 5. This may well be because 

it is easier to secure the sensor at these locations. Sensor locations 1 and 5 have less relative 

movement; locations 4 and 3 have slight movement during walking time while location 2 has 

movement due to expansion and squeezing of the foot during step movement. Location 3 also has 

an angular orientation when the sensor is placed that cancels the prominent data. 

We have identified that placing the sensor on different locations of the foot parts affects 

sensor output. It is also noted that the orientation of the sensor has a significant effect on output 

data and placing the sensor in different locations gives a different pattern to the data. If data are to 

be collected regularly, the position and orientation of the sensor are crucial as changes in position 

through human error may give different data patterns which might be difficult to interpret. This 

highlights the importance of properly fixing the sensor to the optimal location to avoid 

inaccuracies.  
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Other possible areas of error may arise from frictional noise and the relative movement of 

clothing and shoes to the sensor. The placing of sensors on foot locations requires other generic 

considerations such as battery life and android device that is BLE enable to pick up sensor data.  

In order to track the position in a virtual environment, several navigation methods (Hasan et 

al. 2009) are available to derive pose estimates from electrical measurements of mechanical, 

inertial, acoustic, magnetic, optical, and radio frequency sensors. Each approach has advantages 

and limitations including modality-specific limitations related to the physical medium, 

measurement-specific limitations imposed by the devices, associated signal-processing 

electronics, and circumstantial limitations that arise in a specific application (Welch and Foxlin 

2002).  

Our distance estimation method is based on results of a double integral of acceleration data 

and removes linear trend from the signal to estimate distance. We used the simplest technique of 

trapezoidal rule for estimating distance for our collected data and our estimated distance results 

are close to the actual distance. There are many other types of numerical integration schemes 

available which are much more involved and with the potential for more accuracy. However, the 

trapezoidal rule is the simplest technique of an entire class of numerical integration schemes 

which is known as the Newton-Cotes Formulas (Weisstein 2004) and which we have adopted. 

Our future plan is to investigate other methods with our collected data. 

Our proposed method for detecting stride information is based on local maxima, stance and 

swing event information is based on local minima prominence characteristics instead of 

conventional threshold based detections mentioned in section 3.2.9.3. We found that that when 

turning or when stopping there is a poor acceleration signal. For this reason, we used local 

maxima or minima prominence characteristics to detect different events to avoid these crucial 

phases. We have shown that it is possible to detect stride, stance and swing event but further 

analysis of the eight events in a gait cycle is necessary to provide more accurate information of 

gait pattern. Automatic gait features (stride number, distance, speed, length and period of stride, 

stance and swing) extracted from accelerometer and gyroscope data can be used to identify and 

monitor abnormal gait patterns changes over time. They can provide real time monitoring of 

patients. This has considerable potential for future developments to identify long time gait pattern 

changes and explore ways how these features can be useful for fall risk assessment in an elderly 

population. This study has shown that this is possible. 
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The number of subjects is small (10 male and 5 female) which is a limitation of this study. 

There is also potential of a Type 1 error in detecting an effect that is not there. In addition, our 

subjects are walking barefoot and it is not possible to wear a shoe over the sensor as this would 

have caused discomfort.  

We have shown that our method is capable of extracting these automatic features and has 

the potential to be used in assessment of gait, gait change monitoring, gait asymmetry and 

clinical use associated with gait pattern. Gait with slow velocity is common in elderly people 

(Brach and VanSwearingen 2013) and gait analysis where the gait cycle is relatively slower 

compared to young adult. Our low cost portable personalized proposed solution could bring out 

automatic gait features for monitoring longitudinal gait changes or abnormalities. In future 

works, we plan to use our automatic extracted gait features information to classify gait changes 

over time to identify abnormal gait patterns for the assessment of elderly fall risk, rehabitation 

and sports applications. 

3.3. Conclusion 

In our study we have found the optimal or best location on the foot for placing an IMU sensor for 

interpreting human locomotion. We have developed a mobile phone app for synchronized data 

collection from a low cost MetaWear CPro sensor. We also propose a method for automatic gait 

features and present our own real time physical data. 

The influence of IMU sensor orientation and sensor placement on different foot locations 

had been investigated to improve the accuracy for gait analysis. The IMU accelerometer and 

gyroscope data had been analysed using our method to extract ten automatic features: Number of 

Strides, Distance, Speed, Stride Length, Stride Period, Stance Length, Stance Period, Swing 

Length, Swing Period and ratio of stance and swing. The trapezoidal rule based double 

integrating technique is applied on acceleration data to estimate the horizontal displacement of 

the foot and compared the result with actual distance in the real world. Our study shows that the 

sensor orientation and small changes of sensor location influence the sensor output. The results 

show that location 1 over the bony prominence of the first cuboid bone is the best place for 

placing a sensor as it delivers the most accurate data. This location is also the centre point of foot 

length. The sensor is attached with a Velcro elastic belt and buckles to adjust the fitting. As the 

sensor is attached on bone the relative movement between the sensor frame and foot frame is 
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assumed to be zero. Currently, the proposed method is only applied on estimating distance of 

normal walking on ground level and this method will be extended to assessment of gait, gait 

change monitoring, gait asymmetry and clinical use associated with gait pattern. The comparison 

between the real and estimated distance and speed shows a good agreement with low errors 

which shows that these features could be used for gait analysis in a normal daily living 

environment. Our future work aims to use the optimal foot location for placing IMU sensors and 

analyze to classify long term gait pattern changes for identifying abnormal gait patterns for the 

assessment of elderly fall risk, rehabilitation and sports applications. 
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4. GAIT FEATURE EXTRACTION, VISUALIZATION AND 

VALIDATION 

This chapter is organized in the following sections: Section 4.1 presents the design and the 

method of the proposed automatic gait features extraction. Section 4.2 presents visualization of 

gait features information. Section 4.3 presents concurrent validation of the extracted gait features. 

The conclusion is given in Section 4.4. 

4.1. Gait feature extraction methods 

4.1.1. Participants selection 

We recruit a convenience sample of 20 subjects with 10 healthy young subjects (9 male, mean 

age 25.3 years, standard deviation 4.64, range 19–35 years), and 10 older subjects (9 male, mean 

age 69.4 years, standard deviation 7.28, range 62–86 years). Older subjects 1, 3, 5, 6, 9 and 10 do 

not have any known health problem. Subject 2 has a right foot drop and drags the foot and toes. 

Subject 4 has pain in the right leg lower muscle and walks without any support. Subject 7 has 

pain in the lower part of his left leg and uses a crutch during walking. Subject 8 has pain in both 

ankles and walks with support of a walker. According to World Health Organization (WHO), the 

life expectancy at birth is 71 years in Bangladesh (Paranietharan 2017). Therefore, 65+ is 

considered old age in Bangladesh although would be viewed as young old in the Western 

countries. The subjects are purposefully chosen for this study to provide a variety of gaits for 

evaluation. 

4.1.2. Experimental protocol and calibration 

The experiment is performed in two different locations for young and older. The older subjects 

are residents in a care home. All subjects perform a walk in a straight corridor comprising of 15 

strides of normal forward walking, a turn-around and another 15 strides. Accelerometer and 

gyroscope data from sensors attached on two foot locations are recorded in a database 

synchronously using our Android app. The distance carried out by walking on the corridor is 

measured by a tape. The several older subjects perform less than 15 strides. Calibration is 

performed individually where the distance travelled is measured manually and the result 

compared to the output from the sensor. 
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4.1.3. Sensor placing location 

It is observed that the orientation of the IMU sensor has a significant effect on output data. In 

order to increase the sensor accuracy and reliability, and reduce the variability, all sensors are 

fitted tightly to the barefoot. From our investigation in Chapter 3, it is found that placing a sensor 

in different foot locations gives quite different signal patterns. In this study, the sensors are 

placed at metatarsal foot locations of both legs (Figure 4.1) for collecting data since the best 

performance can be achieved (according to the results presented in Chapter 3). 

 
Figure 4.1: IMU sensors placement in right and left metatarsal foot locations of the barefoot. 

This horizontal movement produces high acceleration during walking and this movement is the 

subject of investigation in this study for gait monitoring. The data with the horizontal movement 

information from the feet are analysed using our method to find gait information. Figure 4.2 

shows the raw data of accelerometer and gyroscope collected from both right and left legs. 

 
Figure 4.2: Raw accelerometer and gyroscope data from right and left feet of older subject 1. 
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The red, green and blue lines in Figure 4.2 stand for accelerometer readings on x, y and z axis, 

respectively, with g units (9.81 m/s2) in the sensor frame. We can observe from the raw data that 

the accelerometer reading on x is the highest and z is the lowest before the commencement of 

walking for right leg indicative of the initial gravitational force. Similarly, the accelerometer 

reading on y is the highest and z is the lowest before the commencement of walking for left leg. 

The initial data is not aligned to zero means that the sensors are not placed perfectly upright 

position with the earth frame in the foot locations due to the initial gravity part of y and z. For this 

study, the sensors do not need to be perfectly upright which in any case is not user-friendly and 

impossible. The discrepancy between the sensor frame, the foot frame and the earth frame are 

compensated for in this study. 

4.1.4. Raw data processing 

To provide a robust absolute orientation vector in the form of quaternion or Euler angles, the 

MetaWear CPro IMU sensor combines the measurements from 3-axis accelerometer and 3-axis 

gyroscope sensors. The IMU sensor provides accelerometer A(ax, ay, az) and gyroscope G(gx, gy, 

gz) with respect to time t. As the accelerometer is sensitive to acceleration due to movement and 

the local gravitational force, the input data consists of the user acceleration and gravitational 

acceleration.  

4.1.5. Coordinate systems 

In this study, there are three coordinate systems, the foot frame describing the foot rotation, the 

sensor frame describing the motion of the sensor and the global or Earth frame. Since the sensor 

is attached to the foot tightly using an elastic Velcro belt, we assume that the sensor does not slip 

or move during walking time. Therefore, we consider that the foot frame and sensor frame are the 

same. Our approach is to transfer the sensor frame to the Earth frame and then to remove the 

gravitational component. The high gravitational force of the Earth frame is downward towards 

Earth. The Ax axis is aligned along the foot axis of the IMU sensor, Az points downwards so that 

it is aligned with gravity so that the three axes from a right handed coordinate system shown in 

Figure 4.3a. 
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4.1.6. Quaternion 

Quaternion is a concept related to the foundations of algebra and number theory. While the 

accelerometer and gyroscope sensors enable the tracking of translational and rotational 

movements, the accurate measurement of the sensor orientation is important to interpret sensor 

information. Quaternions are a mathematical construct that consist of four individual numeric 

complex number components that can be used to represent the orientation of a ridged body or 

coordinate frame in a three dimensional space. Many quaternions are available to estimate the 

orientation from accelerometer, gyroscope and magnetometer data. We use the technique 

(Madgwick 2010) which fuses accelerometer, gyroscope and magnetometer for estimating 

quaternion. An arbitrary orientation of frame S relative to frame E can be achieved through a 

rotation of angle θ around an axis of Sxyz defined in frame E shown in Figure 4.3b where the 

mutually orthogonal unit vectors Sx, Sy, Sz and Ex, Ey, Ez define the principle axis of coordinate 

frames S and E, respectively.  

 
Figure 4.3: (a) Sensor frame and earth frame of accelerometer and gyroscope axes; (b) The 

orientation of frame E is achieved by a rotation, from alignment with frame S, of angle of φ, θ, 

and ψ around the axis Sxyz. 

Sx, Sy and Sz define the components of the unit vector Sxyz in the three dimensional x, y and z 

axes of the frame S respectively.  
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To denote the relative frames of orientations and vectors, qS

E


in equation (4.1) represents 

the orientation of frame E relative to frame S and Sxyz is a vector described in frame S (Madgwick 
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2010). Quaternion arithmetic often requires that a quaternion describing an orientation is first 

normalised which is therefore conventional for all quaternions describing an orientation to be of 

unit length (Madgwick 2010).  

 4321* qqqqqq E

S

S

E 


     (4.2) 

Equation (4.2) shows the conjugate of qS

E


. The quaternion product denoted by  can be 

used to define compound orientations. For example, two orientations described by qS

E


 and qE

F


, 

the compounded orientation qS

F


 are defined as 

qqq E

S

E

F

S

F


       (4.3) 

*qSqE E

Sv

S

Ev


      (4.4) 

A three dimensional vector can be rotated by a quaternion using the relationship described 

in equation (4.4) (Kuipers 2002) where Sv and Ev are the same vector described in frame S and 

frame E respectively and each vector contains a 0 inserted as the first element to make them four 

element row vectors. 
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The orientation described by qS

E


can be represented as the rotation matrix RS

E defined by 

equation (4.5). 

)12,22(2tan 2

2

2

14132  qqqqqqS      (4.6) 

)22(sin 3142

1 qqqq         (4.7) 

)122,22(2tan 2

4

2

12143  qqqqqqS      (4.8) 

The three Euler angles roll ( ), pitch ( ) and yaw ( ) are known aerospace sequence 

(Kuipers 2002) that describe an orientation of frame E achieved by the sequential rotation to 
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alignment with frame S, of  around Ex,  around Ey and  around Ez. The Euler angles 

represented by qS

E


are presented in equations (4.6), (4.7) and (4.8). 

4.1.6.1. Orientation from angular rate 

A three dimensional gyroscope measured the angular rate about the x, y and z axes of the sensor 

frame defined as x , y and 
z  respectively.  

 zyx

S  0        (4.9) 

SS

E

S

E qq  ˆ
2

1
        (4.10) 

The quaternion derivative describing the rate of change of orientation of the earth frame 

relative to the sensor frame qS

E
 can be calculated by the parameters x , y and 

z in rads-1 

arranged into the vector S  defined by equations (4.9) and (4.10) (Madgwick 2010). 

t

S

test

S

Et

S

E qq   1,,
ˆ

2

1
       (4.11) 

The orientation of the earth frame relative to the sensor frame at time t, t

S

E q ,
 , can be 

computed by numerically integrating the quaternion derivative t

S

E q ,
  as described by equations 

(4.11) and (4.12) provided that initial conditions are known. 

tqqq t

S

Etest

S

Et

S

E   ,1,,
ˆ


       (4.12) 

where t

S is the angular rate measured at time t, t is the sampling period and 1,
ˆ

test

S

E q  is the 

previous estimation of the orientation. The subscript   indicates that the quaternion is calculated 

from angular rate. 

4.1.6.2. Orientation from vector observations 

An accelerometer sensor measures the magnitude and the gravitational force of the direction in 

the sensor frame compounded with linear accelerations due to motion of the sensor. In this 

application of gait asymmetry, it may be acceptable to use a Euler angle representation allowing 



CHAPTER 4: GAIT FEATURE EXTRACTION, VISUALIZATION AND VALIDATION 

115 

 

an incomplete solution to be found as two known Euler angles. However, a quaternion 

representation requires a complete solution to be found which may be achieved through the 

formulation of an optimization problem where an orientation of the sensor, qS

E
ˆ

, is that which 

aligns a predefined reference direction of the field in the earth frame, qE ˆ , with the measured 

direction of the field in the sensor frame sS ˆ , using the rotation operation described by equation 

(4.4) (Madgwick 2010).  

)ˆ,ˆ,ˆ(
ˆ

min
4
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      (4.13) 
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 zyx
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 zyx

S ssss 0ˆ        (4.17) 

Therefore qS

E
ˆ may be found as the solution to equation (4.13) where equation (4.14) defines the 

objective function. The components of each vector are defined in equations (4.15) to (4.17) 

(Madgwick 2010). 
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The gradient descent algorithm is one of the simplest to both implement and compute 

presented in equation (4.18) that describes the gradient descent algorithm for n iterations 

resulting in an orientation estimation of 1
ˆ

n

S

E q based on an ‘initial guess’ orientation 0q̂S

E and a 

step-size  and equation (4.19) computes the gradient of the solution surface defined by the 

objective function and its Jacobian which is simplified to the 3rd row vectors defined by equations 

(4.20) and (4.21) respectively (Madgwick 2010). Equations (4.18) to (4.21) describe the general 

form of the algorithm applicable to a field predefined in any direction. However, if the direction 

of the field can be assumed to only have components within 1 or 2 of the principle axis of the 

global or earth coordinate frame then the equations simplify.  
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An appropriate convention would be to assume that the direction of gravity defines the 

vertical z axis as shows in equation (4.22) then substituting gE ˆ and normalized accelerometer 

measurement aE ˆ  for dE ˆ and ss ˆ respectively in equations (4.20) and (4.21) yields equations (4.24) 

and (4.25) (Madgwick 2010).  
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The solution surface created by the object function in equations (4.25) and (4.26) has a 

minimum defined by a line and the measurements and reference directions of both fields may be 

combined as described in equations (4.27) and (4.28) (Madgwick 2010). A conventional 

approach to optimize would require multiple iterations of equation (4.18) to be computed for each 

new orientation and corresponding sensor measurements and an efficient algorithm would also 

require the step-size  to be adjusted each iteration to an optimal value which usually obtain 

based on the second derivative of the objective function called the Hessian in (Madgwick 2010).  
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However, these requirements considerably increase the computational load of the algorithm 

and are not necessary in this application and it is acceptable to compute one iteration per time 

sample provided that the convergence rate governed by t is equal or greater than the physical 

rate of change of orientation presented in equation (4.28) that calculates the estimated orientation 

t

S

E q , computed at time t based on a previous estimate of orientation 1,
ˆ

test

S

E q and the objective 

function gradient f  defined by sensor measurements of t

S â sampled at time t described in 

(Madgwick 2010) where the form of f is chosen according to the sensors in use shown in 

equation (4.29) and the subscript  indicates that the quaternion is calculated using the gradient 

descent algorithm. 

1,,    tq t
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Et
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An optimal value of t can be defined as that ensures the convergence rate of t

S

E q , is 

limited to the physical orientation rate as this avoids overshooting due to unnecessarily large step 

size and therefore t can be calculated using equation (4.30) from (Madgwick 2010) where t is 

the sampling period and t

S

E q ,
 is the physical orientation rate measured by gyroscopes and  is an 

augmentation of  to account for noise in accelerometer measurements. 

4.1.6.3. Accelerometer and gyroscope filter fusion algorithm 

An estimated orientation of the sensor frame relative to the earth frame t

S

E q ,
 is obtained through 

the fusion of the orientation calculations t

S

E q , and t

S

E q , calculated using equations (4.12) and 

(4.28) respectively.  
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The fusion t

S

E q ,
ˆ
 and t

S

E q , is described by equation (4.31) where 
t and )1( t are weights 

applied to each orientation calculation (Madgwick 2010).  
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An optimal value of 
t can be defined that ensures the weighted divergence of qS

E is equal 

to the weighted convergence of qS

E represented in equation (4.32) where 
t

t




is the convergence 

rate of qS

E and  is the divergence rate of qS

E expressed as the magnitude of a quaternion 

derivative corresponding to the gyroscope measurement error with rearranging of equation (4.32) 

to define 
t  in equation (4.33) (Madgwick 2010). Equations (4.32) and (4.33) ensure the optimal 

fusion of t

S

E q , and t

S

E q ,  assuming that the convergence rate of qS

E  governed by t

S

E q ,  and   is 

equal or greater than the physical rate of change of orientation. Therefore  has no upper bound.  
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If  is assumed to be very large then t defined by equation (4.30) also becomes very large 

and the orientation filter equations simplify and a large value of t used in equation (4.28) means 

that 1,
ˆ

test

S

E q becomes negligible and the equation can be rewritten as equation (4.34) (Madgwick 

2010). 
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The definition of t in equation (4.33) also simplifies as the   term in the denominator 

becomes negligible and the equation can be rewritten as equation (4.35) (Madgwick 2010) 

assuming that 0t . 
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Substituting equations (4.12), (4.34) and (4.35) into equation (4.30) directly yields equation 

(4.36) (Madgwick 2010) by noting that in equation (37), t has been substituted as both as 

equations (4.34) and 0. Equation (4.36) can be simplified to equation (4.37) where test

S

E q ,
 is the 

estimated rate of change of orientation defined by equation (4.38) and t

S

E q ,
 is the direction of the 

error of test

S

E q ,
 defined by equation (4.39) (Madgwick 2010). It can be seen from equations (4.37) 

and (4.39) that the filter calculates the orientation est

S

E q by numerically integrating the estimated 

orientation rate est

S

E q and the filter computes est

S

E q as the rate of change of orientation measured by 
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the gyroscope qS

E
 with the magnitude of the gyroscope measurement error   removed in the 

direction of the estimated error qS

E
̂ computed from accelerometer measurement. 

Any practical implementation of an IMU must also address the gyroscope zero bias drift 

over time with temperature and motion. Therefore, gyroscope bias drift may be compensated for 

any simpler orientation filters through the integral feedback of the error in the rate of change of 

orientation (Mahony et al. 2008).  

t
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Etest

S

Et

S qq ,1,,
ˆ*ˆ2           (4.40) 

We use the approach similar in (Madgwick 2010) to normalize the direction of the 

estimated error in the rate of change of orientation qS

E
̂

by expressing the angular error in each 

gyroscope axis using equation (4.40) derived as the inverse to the relationship defined in equation 

(4.10).  
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The gyroscope bias 
S

is represented by the DC component of 
S

and so may remove as 

the integral of 
S

 weighted by an appropriate gain  which yield the compensated gyroscope 

measurements c

S
 as shown in equation (4.41) and (4.42) where the first element of c

S is 

always assumed to be zero (Madgwick 2010). The compensated gyroscope measurement c

S

then be used in place of the gyroscope measurements S in equation (4.10) where the magnitude 

of the angular error in each axis 
S

is equal to a quaternion derivative of unit length and then the 

integral gain  directly defines the rate of convergence of the estimated gyroscope bias b

S

expressed as the magnitude of a quaternion derivative (Madgwick 2010). The complete 

orientation of 
test

S

E q ,
ˆ is achieved and Figure 4.4 shows a block diagram representation of the 

complete orientation filter implemented for an IMU. 



CHAPTER 4: GAIT FEATURE EXTRACTION, VISUALIZATION AND VALIDATION 

121 

 

 
Figure 4.4: The process diagram of the complete orientation filter for an IMU. 

We apply the technique shown in Figure 4.4 to our collected data for body acceleration to 

the Earth frame with a sampling frequency of 50 Hz, β gain of 0.1. The gravity components are 

removed and the conversion of the accelerometer from gravitational force g to user acceleration 

of movement (AMxyz) m/s2 is achieved by multiplying 9.81. The three axis data are transformed 

due to the fact that looking at specific axes is sensitive to the sensor orientation (Starlino 2009). 

Figure 4.5 shows the acceleration due to user movement AMxyz = [amx, amy, amz] for both feet of 

older subject 1. 

 

 
Figure 4.5: Acceleration due to user movement AMxyz after removing gravity component. 



CHAPTER 4: GAIT FEATURE EXTRACTION, VISUALIZATION AND VALIDATION 

122 

 

Figure 4.6 shows the acceleration of total ATxyz and gyroscope GTxyz towards x, y and z 

directions estimated using equation (4.43): 

222

iziyixxyz amamamAT
i

  and 
222

iziyixxyz gggGT
i

  (4.43) 

Statistical information of acceleration 
ixyzAT  and gyroscope 

ixyzGT  are investigated and 

found that data are normally distributed.  

 
Figure 4.6: The total acceleration ATxyz and gyroscope GTxyz. 

4.1.7. Stride, stance, swing and step events detection 

The first phase starts when the heel contacts the ground and the waist is in its lowest position 

during the entire step. There is deceleration of the leg towards the horizontal axis as the velocity 

moves to zero. The zero velocity remains until the terminal stance phase where the foot is flat on 

the ground. The next phase is pre-swing where the toe is off the ground and starts forward 

movement demonstrating initial acceleration towards horizontal axis. The swing phase is when 

the heel moves off the ground. The acceleration interval corresponds to the change from the heel 

lift to the swing at the height point at mid-swing phase. Deceleration starts during the terminal 

swing phase from the highest point to the foot back flat on the ground. There is zero velocity 

again in the interval corresponding to the change from a flat foot to a heel lift. These different 

phases of gait cycle presented in Figure 10 are identifiable from the IMU acceleration signal. The 

same phenomenon of human limb kinematic with accelerometer signal output during a typical 
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walking cycle has been identified in the literature. Our gait cycle accelerometer signal ATxyz 

(Figure 4.10) agrees with the signal pattern in (Patterson et al. 2014; Liu et al. 2016). The 

different phases of the gait cycle (Figure 3.13) with corresponding accelerometer signal are 

shown in Figure 3.14 in Section 3.2.9.3. 

  Many algorithms (Brajdic and Harle 2013) are available for stride event detection from 

IMU sensors. During human walking, a consistent sequence of motions is performed at each 

stride that results in a maximum peak value that lies in the mid-swing phase. This mid-swing 

phase appears when a user pushes off this foot and shortens the limb to clear ground thus 

releasing the foot from the ground until it again contacts with ground as shown in Figures 3.13 

and 3.14. A particular threshold value is set to detect these characteristics for detecting stride 

(Mladenov and Mock 2009; Chon et al. 2012). One disadvantage of these algorithms is that any 

motion with a similar periodicity of walking will trigger for a false stride event. In addition, 

difficulty arises in finding the automatic selection of the threshold value which can vary between 

users, surfaces and shoes (Gafurov and Snekkenes 2008). The variation in the peak magnitude 

gets larger for faster human waking velocities (Lee et al. 2015) and a window based threshold 

calculation (Chon et al. 2012) is used to obtain an acceptable level of accuracy for a larger 

window size. However increasing the window size may degrade the step detection accuracy 

during the translation of step mode because the threshold calculated from a larger window may 

not be able to effectively handle the variation in the recent statistics (Lee et al. 2015). Due to 

peak magnitude variation, the threshold value also varies based on individuals walking style and 

even differs from left to right leg as shown in Figure 4.7. 

 
Figure 4.7: Peaks magnitude variation from Figure 4.6. 
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The different threshold may result in a different output of detecting steps. From our 

experience, we observe that older adults gait speed is slow and foot goes up a little during normal 

walking. Therefore, threshold based detection is not suitable for our research. Another important 

point is that when a subject begins walking from a standing state, stops walking for a turnaround 

or stops, there is poor acceleration and it is crucial to detect the gait cycle in these situations. For 

this reason the 1st stride is not considered for gait analysis by researchers (Truong et al. 2016). 

We take this in consideration to address this point in this study. As the mid-swing phase in 

accelerometer data is a good indicator for performing a complete gait cycle, thus for counting the 

number of strides, the number of mid-swing phase in accelerometer data is analysed as walking 

strides are equal to the number of mid-swing phases. The highest peak occurs at the push off 

phase starting from the terminal stance at the 4th to pre-swing at 5th phases shown in Figure 

4.10b for gyroscope data. We apply threshold based algorithms obtaining low accuracy to detect 

the stride number for our collected accelerometer and gyroscope dataset. As the peaks at terminal 

stance phase are more prominent than the mid-swing phase, the threshold based algorithm detects 

two strides instead of single stride. We also investigate the maximum provenance of the peak for 

detecting strides in Section 3.2.9.3. To improve our previous study and to avoid the above 

problems, a novel stride detection technique is proposed based on the local minimal prominence 

characteristics of strides (minimal prominence of stance phase in Figure 3.14b) associated with 

the time-varying magnitude of acceleration shown in Figure 4.8. Our investigation shows that the 

minimal prominence has less variation than the peak of maximal prominence. Therefore, the 

minimal prominence of stance phase (phase 1 and 2 in Figure 3.14b) and swing phase (phases 5 

and 6 in Figure 3.14b) are detected. The technique consists of designing a high-pass filter, 

computing the absolute value, designing a low-pass filter, shifting data to centroid and finding the 

strides from minimal prominence of the signal. To measure the prominence of a peak requires 

three steps described in Section 3.2.9.3. For implementing to find the minimal prominence of the 

signal, findpeaks (The MathWorks  Inc 2016) function is used. 

 
Figure 4.8: The proposed step detection technique. 

The accelerometer converts acceleration to an electrical signal and in the process, unwanted 

constant bias in acceleration becomes a linear error called drift. Thus the 2nd order Butterworth 
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digital high-pass filter with a sampling rate fs = 50 Hz and cut off frequency fc = 0.001 Hz is 

applied to ATxyz to remove the linear DC component of the acceleration signal. The smoothness is 

achieved at the price of decreased roll off steepness. The phase response of this filter is not linear 

that means if a signal is passed through this filter, then different frequency components of this 

signal will be delayed by different lengths of time, causing distortion (Thong et al. 2004). To 

linearize the phase, we filter the signal, time reverse the signal, and filter it again with the same 

filter (Thong et al. 2004). The second time through the filter corrects the phase response. The 

phase distortion after the digital high-pass filter is corrected by applying a zero phase filtfilt delay 

filter (Oppenheim 1989).  

)( LPLPCen AmeanAA   (4.44) 

The output of filtfilt filter then is passed through a low-pass filter with fc = 5 Hz for 

smoothing to obtain ALP which is shifted to centroid using equation (4.44). To find the local 

minima prominences, ACen is passed through a findpeaks function which finds local peaks in the 

data vector and ignores small peaks that occur in the neighbourhood of a larger peak. A local 

peak is a data sample that is either greater than its two neighbouring samples or is equal to Inf. If 

a peak is flat, the function returns only the point with the lowest index. The findpeaks function 

detects the stationary periods when the foot touches the ground the point of minimal prominence 

during walking. The function returns two vectors containing the minimal local peaks AStrides and 

the locations ATIME at which the peaks occur. The number of strides is the same as the length of 

AStrides vector. Again, as each stride consists of stance and swing events, thus the initial contact 

and the transition between pre-swing and initial swing (4th and 5th phases in Figure 3.14b) are 

detected using steps in Figure 4.9 to get stance and swing information. 

 
Figure 4.9: Proposed stance and swing detection technique. 

A window is prepared whose size is the difference between a pairwise consecutive strides 

from AStrides. Each window is then passed through findpeaks function as there is only one local 

maximum in each stride located between 4th and 5th phases (Figure 3.12). A loop from 1 to total 

detected strides number is used to find the stance and swing event for all strides. The detected 

Start (purple circle), SS (cyan triangle) and End (black rectangle) information of each stride are 
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shown in Figure 4.10 for right and legs where the stance phase information is provided by the 

difference between Start and SS; and the swing information is the difference between SS and End. 

 
Figure 4.10: Result of stride, stance and swing event detection using proposed method. 

A step is the sequence of events between the contact of one foot and the next contact of the 

opposite foot. At the beginning of the stance phase, the initial contact of the foot contacts with 

ground of the one leg. The loading response begins at the initial contact and ends when the toe of 

opposite leg leaves the ground, mid-stance then begins and finishes when the center of gravity is 

over the same foot. The terminal stance begins when the center of gravity is over the supporting 

foot and ends when the opposite leg contacts the ground. The strides, stance and swing event are 

detected from right and left legs. The step event is then detected between the heel of two 

subsequent feet shown in Figure 4.11. 

 
Figure 4.11: Result of step event detection using proposed method. 
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4.1.8. Velocity and distance estimation 

We consider the walking constrains of a user with an IMU fitted on the both right and left 

legs. We apply appropriate methods to detect the movement of the leg, changes in position and 

compute its velocity and travelled distance from the initial location by means of the data collected 

from the accelerometers. The basic approach lies on the double integral of the accelerometer data 

where the first applying integration retrieves the current velocity and then the second applying 

integration computed on the velocity provides the distance travelled. Distance travelled is 

obtained principally from trapezoidal double integration (Thong et al. 2004) of the user 

movement signal on each stride detected in the direction of travel as mentioned in Section 4.3.4. 

However, there are two main problems for performing a double integration of the acceleration 

signal, unknown initial condition and drift. The unknown initial condition problem means 

integration requires a known initial condition. Drift means IMU sensors are subject to errors in 

acceleration that when integrated in to velocity and distance, leads to drastic integration error. 

This can be unbound over time if the acceleration signal is integrated without filtering (Thong et 

al. 2004; Foxlin 2005; Sukumar and Hazas 2012; Lan and Shih 2013; Ilyas et al. 2016). The 

integration works properly with known initial conditions. Thus, to calculate the actual 

displacement, integration errors must be minimized. A method known as zero-velocity update 

(ZUPT) (Fang et al. 2008; Lan and Shih 2013; Ilyas et al. 2016) is often used to correct for drift 

and is often used to aid in autonomous inertial pedestrian navigation. ZUPT uses the fact that 

during human walking time, one foot is always stationary on the ground. When a stationary 

period of the acceleration is detected the assumption is made that the foot is on the ground and 

the velocity at that time is set to 0. In this way, the drift is greatly reduced. However, ZUPT 

assumption implies that the angular rate is 0 as well and consequently if the accelerometer is 

moving at a constant velocity, the algorithm would misjudge the motion as stationary. ZUPT 

therefore cannot reduce all errors (Ilyas et al. 2016; Zhi 2016). Based on our experience, an 

accelerometer is very sensitive to movement and walking is a complex course of acceleration and 

deceleration. The detection of zero velocity does not fail due to misjudgment, but adjusting the 

threshold value for motion detection plays an important role in that misjudgment when motion 

detection is not properly set (discussed and showed in Section 4.2.7). 

In addition, this issue may not be relevant to this study as the “foot stationary event” is 

already detected based on local minimal prominence as described in Section 4.2.7. The stationary 
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period remains in the stance phase and the movement period remain in the swing. As IMU 

sensors are mounted on each foot, the acceleration is high in the swing phase due to the 

movement of the leg during walking. The zero-velocity in non-stationary period of stance phase 

is used in the ZUPT scheme to reduce the drift. The ZUPT based on local minimal prominence to 

detect the swing phase is shown in Figure 4.12. 

 

Figure 4.12: Zero-velocity update (ZUPT) from ixyzAT
 

Another concern regarding the double integration is that the displacement signal 

emphasizes the low frequency data more than the acceleration signal, a low-pass filter effect of 

the integrator. Therefore, the input data are passed through a high-pass filter to remove the direct 

component of the acceleration signal. Considering these issues, a double integral method shown 

in Figure 4.13 is proposed for calculating travelled distance.  

 
Figure 4.13: Proposed method for estimating travelled distance 

In order to obtain the velocity and distance in time series, two stages of integration and two 

stages of high-pass filtering are applied. A stride window is prepared from AStrides and AMxyz. The 

swing and stance windows are brought out from the corresponding stride window using Start, SS 
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and End mentioned in Section 4.3.4. A 1st order Butterworth high-pass filer is designed with fs = 

50 Hz and fc = 0.001 Hz. The integration procedure is described in Section 4.2.5.2. The 1st 

integral operation is applied on SWfi with respect to time t that gives the Vsi(t) velocity for the 1st 

swing phase. The ZUPT is applied on stance phase to set the stationary velocity to 0. The non-

stationary period of swing velocity and stationary period of stance zero velocity are then 

combined to obtain Vi(t) shown in Figure 4.14. 

 
Figure 4.14: First integral operation to get velocity Vi(t). 

As the stationary period in stance phase velocity is set to zero, the integral constant from 

non-stationary period in swing phase exists in Vi(t). Therefore, it is important to remove the drift 

caused by integration from Vi(t). To remove the integral drift (Zhi 2016), the velocity difference 

between the initial and end of a non-stationary period is estimated. The velocity difference is then 

divided by the number of samples during this non-stationary period to get the drift rate. The drift 

rate is multiplied with the corresponding data index to estimate the drift value at that certain 

point. The drift value is then subtracted from the calculated velocity Vi(t) to obtain the error free 

velocity Vdi(t). Vdi(t) is then passed through the high-pass filter for the 2nd time and the distance 

Di(t) is estimated after 2nd integral operation. Di(t) consists of the distance towards x, y and z 

coordinates. Repeat the same procedure for all strides to calculate velocity and distance. Then 

estimate the travelled distance using equation (4.45): 

222

iiii zyxxyz DDDTD   (4.45) 
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Figure 4.15 shows the estimated distance Di(t) towards x, y and z and travelled distance 

TDxyz. 

 
Figure 4.15: 2nd integral operation to get distance Di(t). 

4.1.9. Selection of gait asymmetry variables 

In our study, a set of 24 commonly reported physical gait variables are initially considered for 

this analysis from both right and left legs. Figure 4.16 shows the gait variables. 

 

Figure 4.16: Proposed variability monitoring for GA. 
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4.1.10. Experimental Results 

4.1.10.1. Results of gait features extraction 

Initial experimental results from older subject 1 (male, age 67, height 1.52 m and weight 68 kg) 

are presented. We extract automatic GA features based on the data collected from both feet.  

4.1.10.2. Results of older Subject 1 

Table 4.1 shows the accuracy of the distance travelled and estimated, detecting stride and step 

number from both legs. 

Table 4.1. Velocity, distance, stride and step information 
Older subject 1 Age Height (m) Weight (Kg) Gender  

 67 1.57 68 Male  

Total Time (s) 99.3 

 Actual * Right Leg ** Accuracy (%) Left Leg ** Accuracy (%) 

Total Distance (m) 21.03 20.59 97.91 20.47 97.34 

Estimated Velocity (m/s) 0.21 0.21 97.91 0.21 97.34 

Detected Stride Number 30 30 100 30 100 

Detected Step Number 30 30 100 30 100 

*ActualValue, ** EstimatedValue. 

%100100 












ActualVale

alueEstimatedVeActualValu
Accuracy  (4.51) 

The accuracy is estimated using equation (4.51). The actual distance travelled is 21.03 m 

measured using manual tape with 99.3 s walking time. The estimated both legs travelled 

distances are 20.59 m and 20.47 m. The actual and estimated distances are very close. Normal 

human walking velocity may vary from 1.5 to 2.5 m/s (Mohler et al. 2007) and the walking 

velocity for this subject is 0.21 m/s which is slow. The accuracy of stride and step event detection 

are 100%. Table 4.2 shows the summery of average gait variability. 

Table 4.2. Gait Asymmetry Variability 
 Right Leg Left Leg 

Gait Features Mean Std Var Min Max Mean Std Var Min Max 

Stride Length (m) 0.69 0.07 0.00 0.56 0.84 0.69 0.09 0.01 0.49 1.05 

Stride Time (s) 2.80 0.28 0.08 2.30 3.40 2.85 0.37 0.13 2.05 4.30 

Stride Velocity (m/s) 0.25     0.24     

Step length (m) 0.27 0.06 0.00 0.14 0.46 0.32 0.05 0.00 0.23 0.46 

Step time(s) 1.28 0.30 0.09 0.65 2.15 1.52 0.26 0.07 1.10 2.15 

Step Velocity (m/s) 0.25     0.24     

Cadence (step/min) 18.13     18.13     

Step Ratio (Step 

length/cadence) 

0.02     0.02     
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Stance Time (s) 1.65 0.23 0.05   1.67 0.35 0.12   

Swing Length (m) 0.69 0.35 0.12   0.69 0.44 0.19   

Swing Time (s) 1.16 0.23 0.05   1.18 0.21 0.04   

Swing Velocity (m/s) 0.59     0.58     

Std = Standard Deviation, Var = Variance, Min = Minimum and Max = Maximum 

We can observe from Table 4.2 that the mean stride lengths of both legs are the same. Although, 

the standard deviations are low and the right leg’s value is lower indicating that the left stride 

length has more variation compared to the right stride length. The highest stride length is found at 

the 15th stride (last stride) on the left leg which is before turning. The mean stride times are close 

for both legs. Although, the right and left leg stride length, time and velocity difference is low, 

Figure 4.17 shows that a little stride asymmetry is noticeable in right and left strides time and 

distance. The difference of other parameters between the legs is also low. However, it is noted 

from Figure 4.18 that step asymmetry is more prominent than stride asymmetry which may result 

in an inconsistent gait. 

4.1.10.3. Results of young and older Subjects 

Table 4.3 shows the gait data from the 10 young subjects and shows that the accuracy of 

estimating the total distance compared with the actual distance is also high for both legs. The 

detected stride and step number using the proposed method is excellent. For all young subjects, 

the accuracy of detecting stride number using proposed method is 100%. The accuracy of 

estimating travelled distance using proposed method is 97.73% for right and 98.82% for left legs. 

Table 4.3. Velocity, distance, stride and step results for young subjects. 

AVERAGE Age Height (m) Weight (Kg) Gender  

 25.30 1.61 61.90 9 M, 1 F  

Total Time (s) 51.85 

 Actual * Right Leg ** Accuracy Left Leg ** Accuracy 

Total Distance (m) 37.77 37.19 97.73 37.81 98.82 

Estimated Velocity (m/s) 0.73 0.72 97.73 0.73 98.82 

Detected Stride Number 30.00 30.00 100.00 30.00 100.00 

Detected Step Number 30.00 30.00 100.00 30.00 100.00 

* ActualValue, ** EstimatedValue. 

Table 4.3 shows the details of both legs asymmetry variables information. The stride lengths 

of legs are the same for young subjects. The overall difference between legs is low for young 

subjects. In natural walking, the foot is on the ground for about 60% of the total gait cycle during 

stance phase and 40% during swing phase. The ratio of stance and swing is found closest to the 

60:40% split for average stride, stance and swing information (Table 4.4) for young subjects. 
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Table 4.4 Right and left legs asymmetry of young subjects. 

 Right Left 

Gait Features Mean Std Var Min Max Mean Std Var Min Max 

Stride Length (m) 1.17 0.17 0.03 0.91 1.65 1.17 0.17 0.03 0.89 1.61 

Stride Time (s) 1.41 0.20 0.04 1.10 1.97 1.39 0.19 0.04 1.07 1.91 

Stride Velocity (m/s) 0.83 0.83 0.83   0.84 0.84 0.84   

Cadence (step/min) 34.93     34.93     

Step Velocity (m/s) 0.83 0.85 0.75   0.84 0.86 0.77   

Step length (m) 0.50 0.14 0.02 0.15 0.84 0.54 0.18 0.04 0.24 1.10 

Step time(s) 0.68 0.19 0.04 0.21 1.14 0.74 0.24 0.07 0.33 1.48 

Step Ratio (Step length/cadence) 0.01     0.01     

Stance Time (s) 0.84 0.16 0.03   0.83 0.13 0.02   

Swing Length (m) 1.17 0.68 0.49   1.17 0.94 1.14   

Swing Time (s) 0.58 0.12 0.02   0.57 0.15 0.02   

Swing Velocity (m/s) 2.07 1.80 1.80   2.10 1.83 1.83   

 

Table 4.5 shows that the accuracy of estimating the total distance compared with the actual 

distance is high for both legs of 10 older subjects. For all older subjects the accuracy of detecting 

stride number using the proposed method is 92.67%. The accuracy of estimating the travelled 

distance using the proposed method is 88.71% for the right and 89.88% for the left legs. The 

detected stride and step number using the proposed method is also high. However, comparing to 

results in young subjects (Table 4.4), the accuracy is lower for older subjects. This is likely to be 

due to older people walking slowly resulting in a poorer signal output. Table 4.6 shows the 

details of both legs asymmetry variables for older subjects. Overall the stride lengths of both legs 

are similar. The overall difference between legs is very low. 

Table 4.5. Velocity, distance, stride and step results for older subjects. 

Average Age Height (m) Weight (Kg) Gender  

 69.40 1.52 63.40 9 M, 1F  

Total Time (s) 80.26 

 Actual * Right Leg ** Accuracy Left Leg ** Accuracy 

Total Distance (m) 22.49 22.21 88.71 21.19 89.88 

Estimated Velocity (m/s) 0.31 0.29 88.71 0.27 89.88 

Detected Stride Number 30 27.80 92.67 27.80 92.67 

Detected Step Number 30 27.80 92.67 27.80 92.67 

*ActualValue, **EstimatedValue 

We check the data for statistical errors and assessed whether the estimated values are reasonable. 

Figure 4.17 shows the boxplot of travelled distance from young and older subjects. It is noted that 

the observations identified by the boxplots are not especially extreme. The young subjects’ 

travelled distance for 30 strides has a wider range and is significantly different than older ones. 

On average young subjects travelled distance is 37.77 (95% CI ± 3.57) m and in older ones is 

22.50 (95% CI ± 2.34) m. Similarly, the legs stride and step variation is low for older ones than 
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young ones. Older one’s gait is slow and results in a low variation in walking comparing with 

young ones. The step length has more variation then stride length. Based on the total travelled 

distance, stride and step information, it can be seen that young and older subjects are 

distinguishable. 

Table 4.6. Right and left legs asymmetry of older subjects. 

 Right Left 

Gait Features Mean Std Var Min Max Mean Std Var Min Max 

Stride Length (m) 0.74 0.14 0.02 0.54 1.16 0.74 0.13 0.02 0.55 1.09 

Stride Time (s) 2.47 0.46 0.24 1.84 3.88 2.44 0.39 0.16 1.80 3.47 

Stride Velocity (m/s) 0.32 0.32 0.32   0.33 0.32 0.32   

Cadence (step/min) 24.34     24.34     

Step Velocity (m/s) 0.32 0.33 0.13   0.33 0.33 0.13   

Step length (m) 0.22 0.23 0.06 0.22 0.63 0.35 0.18 0.04 0.04 0.57 

Step time(s) 0.54 0.86 1.02 1.02 2.07 1.13 0.73 0.81 0.18 2.20 

Step Ratio (Step length/cadence) 0.007     0.014     

Stance Time (s) 1.39 0.30 0.10   1.37 0.28 0.08   

Swing Length (m) 0.74 0.78 0.73   0.74 0.76 0.66   

Swing Time (s) 1.09 0.30 0.10   1.07 0.23 0.05   

Swing Velocity (m/s) 0.78 0.68 0.68   0.78 0.65 0.65   

 

 
Figure 4.17: BoxPlot of stride and step asymmetry in distances from right and left legs. 

Figure 4.18 shows a boxplot of total time from young and older subjects with their 

difference. The total time for performing a total of 30 strides is lower for young subjects than 

older ones. On average the young subjects travelled time is 51.85 (95% CI ± 3.08) s and older 

ones is 84.02 (95% CI ± 9.98) s. Young subjects show low leg variation with a lower range than 

older ones. Based on the total time, stride and step timing information, it can be seen that young 

subjects and older ones are distinguishable. The detailed results of the 20 subjects are presented 

in Appendix C. 
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Figure 4.18: Box Plot of stride and step asymmetry in times from right and left legs. 

4.1.11. Discussion 

In this research we show that in a clinical setting outside of a gait laboratory it is possible to 

collect information about gait using IMU sensors. From Figure 4.10, we can see that our gait 

cycle accelerometer signal ATxyz is agreed with the signal pattern in (Patterson et al. 2014; Liu et 

al. 2016). We demonstrate the systematic steps of an automatic gait features extraction method 

that we deployed. Our research enriches the current literature in gait assessment. It is possible to 

evaluate walking distance using a multi-sensor approach. Current methods however rely on the 

threshold based detection of the spike (Mladenov and Mock 2009; Chon et al. 2012; 

Boutaayamou et al. 2015; Truong et al. 2016). Our method uses minimal prominence 

characteristics for detecting gait phases. The former relies on generating a movement of sufficient 

magnitude to generate the spike and therefore has limited utility in people with slow gait. Our 

method therefore has the potential for broader use as it can be used in people with slower gaits 

such as older adults. We demonstrate that our method can deliver accurate results of stride 

detection and distance travelled similar to accuracy levels demonstrated by other authors 

(Boutaayamou et al. 2015; Truong et al. 2016). We believe that there are advantages to using the 

minimal prominence approach as it can be used in a wider population people with different gait 

patterns. 

For this study, the number of subjects is still relatively small (20). There is potential of a 

Type 1 error (false positive) in detecting an effect that is not there. IMU calibration is an essential 
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part for distance estimation. Although in our methods we try to minimize errors, as gait features 

are intrinsically variable from person to person, any such algorithm should involve a degree of 

calibration and error in the measurements. Individual quirks, heel strike, significant body up-

down movement and other factors can affect the results. However, we have established our 

method for extracting automatic gait features. There are several other possible sources of errors 

(S Flenniken et al. 2017) that may arise from the use of IMU sensors including errors of 

repeatability, stability and drift. Although IMU sensors performance has been ramped up 

dramatically, the errors in measurement are unavoidable, especially for miniature micro-electro-

mechanical (MEMS) sensors. Future developments should focus on MEMS sensor error 

modelling and accommodation to further improve parameter estimation accuracy (Yang et al. 

2012). Other possible areas of error may arise from frictional noise and the relative movement of 

clothing and shoes to the sensor. However, we have tried to making the effect of such errors 

minimal. 

To achieve our goal, data are collected from two sensors placed on the barefoot at the 

medial aspect of foot over the bony prominence of the first metatarsal. It is noted that the 

orientation of the sensor has a significant effect on output and placing the sensor in different 

locations gives a different pattern to the data. The position and orientation of the sensor are 

crucial as changes in position through human error may give different data patterns which might 

be difficult to interpret. This highlights the importance of properly fixing the sensor to the 

optimal location to avoid inaccuracies. The placing of sensors on foot locations requires other 

generic considerations such as battery life and Android device that is BLE enabled to pick up 

sensor data.  

To estimate the orientation of the IMU sensors, we apply (Madgwick 2010) technique for 

our collected data but not the magnetic field parameter. The technique is developed assuming that 

the acceleration would only measure gravity. In practice, accelerations due to motion will result 

in an erroneous observed direction of gravity and the distortion will present for only short periods 

of time. Therefore, the magnitude of the filter gain β (Section 4.2.6) is chosen low enough that 

the divergence caused by the erroneous gravitational observations is reduced to an acceptance 

level over the period. In future, an investigation of dynamic values of gain β will be conducted to 

reduce errors. 
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A threshold is used for detecting steps (Boutaayamou et al. 2015; Truong et al. 2016) and 

different value may result in a different output. It is crucial to detect the 1st and last strides of gait 

cycle when a person starts and stop walking. Thus, the 1st stride is not considered by researchers 

(Truong et al. 2016). Our proposed method for detecting the stride information is based on the 

local minimal prominence which starts when the heel contacts the ground resulting in the 

stationary period and estimated the total number of strides. We also confirm these results 

obtained by counting the highest peak in the mid-swing phase as it also is a good indicator for a 

complete gait cycle. From each stride, the local minimal prominence which is the transition 

between pre-swing and initial swing (4th and 5th phases in Figure 3.13) is detected. We find that 

that when turning or when stopping there is a poor acceleration signal. As gait of older subjects is 

much slower, it is crucial to detect strides, stance and swing phases from the gait cycle. However, 

the stationary stance phase is prominent for both young and older subjects. For this reason, we 

use the local minimal prominence characteristics to detect different events to avoid these crucial 

phases. We have shown that it is possible to detect, stride, stance and swing events but further 

analysis of the eight events including single and double support phases in a gait cycle is 

necessary to provide more accurate information for gait asymmetry analysis.  

In order to track the position in a virtual environment, several navigation methods (Hasan et 

al. 2009) are available to derive pose estimates from electrical measurements of mechanical, 

inertial, acoustic, magnetic, optical, and radio frequency sensors. Each approach has advantages 

and limitations including modality-specific limitations related to the physical medium, 

measurement-specific limitations imposed by the devices, associated signal-processing 

electronics, and circumstantial limitations that arise in a specific application (Welch and Foxlin 

2002). Our velocity and distance estimation is based on results of a double integral with ZUPT. 

We apply the high pass filter on acceleration data that removes linear trend from the signal and 

then remove drift to estimate distance. We use the simplest technique of trapezoidal rule for 

estimating distance for our collected data and our estimated distance results are close to the actual 

distance. There are many other types of numerical integration schemes available which are much 

more involved and with the potential for more accuracy. However, the trapezoidal rule is the 

simplest technique of an entire class of numerical integration schemes which are known as the 

Newton-Cotes formulas (Weisstein 2004) and which we have adopted. Our future plan is to 

investigate other methods with our collected data. 
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The results show that our method is capable of automatic extracting gait features and has the 

potential to be used in gait assessment and gait change monitoring for home and clinical use. Gait 

with slow velocity is common in older adults (Brach and VanSwearingen 2013) and an automatic 

system sensitive enough to detect gait features in these circumstances is required. Our low cost 

portable personalized proposed solution could bring out automatic gait features for monitoring 

longitudinal gait changes or abnormalities. In future work, we plan to use our automatic extracted 

gait features information to classify gait changes over time to identify abnormal gait patterns for 

the assessment of elderly fall risk, rehabitation and sports applications.  

4.2. Visualization of spatiotemporal gait features 

We describe the materials and methods used for the development of this work in the following 

subsections. 

4.2.1. Data and statistical analysis 

We obtain values for ten spatial-temporal gait parameters separately from the right and left lower 

limbs that include stride length (m), stride time (s), stride velocity (m/s), step length (m), step 

time (s), step velocity (m/s), stance time (s), swing length (m), swing time (s) and swing velocity 

(m/s). The asymmetry factors SI (Robinson et al. 1987), SR (Seliktar and Mizrahi 1986), Ia 

(Vagenas and Hoshizaki 1992), GA (Plotnik et al. 2005; Plotnik et al. 2007) and SA (Zifchock et 

al. 2008) are calculated for each parameter using equations (4.46) to (4.50). These are chosen 

because they are very commonly used approaches of evaluating gait asymmetry (Patterson et al. 

2010). 

SL1 - SI (Robinson et al. 1987): SI(%)= 100*
)(5.0 LeftLegRightLeg

LeftLegRightLeg




           

 

(4.46) 

SL2 - SR (Seliktar and Mizrahi 

1986): 
SR(%)= 100*

LeftLeg

RightLeg
                    

 

(4.47) 

SL3 - Ia (Vagenas and Hoshizaki 

1992): 
Ia(%)= 100*

),max( LeftLegRightLeg
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(4.48) 
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SL4 - GA (Plotnik et al. 2005; 

Plotnik et al. 2007): 
GA=









),min(
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(4.49) 

SL5 - SA (Zifchock et al. 2008): %100*
90

))/arctan(45(
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(4.50) 

SL1 is based on percentage assessment of the difference between the kinematic and kinetic 

parameters for both legs during walking. SI=0 indicates that there is no asymmetry and SI ≥ 

100% indicates high asymmetry. SL2 indicates the highest value results asymmetries. SR=100 

indicates no asymmetry, SR > 100 indicates right leg value is higher than left leg and SR<100 

indicates that left leg value is higher. SL3 is based on kinematic asymmetry of the lower limbs. 

Ia=0 indicates no asymmetry. Ia = ±0, the higher the value indicates the higher level of 

asymmetry. SL4 is based on logarithmic transformation of right and left leg’s ratio of gait 

asymmetry. GA=0 and GA=1 denote no asymmetry and highest asymmetry respectively. SL5 is 

the symmetry angle calculated for the angle of the vector plotted from the right and left values of 

discrete gait parameters. SA shows absolute value of right and left leg’s ratio in percentage. 

SA=0 indicates no asymmetry and SA≥100% indicates asymmetry. 

Pearson’s linear correlation coefficients are calculated. The correlation between the 

experimental results and linear least square regression is analyzed. Although the available 

asymmetry factors SI (Robinson et al. 1987), SR (Seliktar and Mizrahi 1986), Ia (Vagenas and 

Hoshizaki 1992), GA (Plotnik et al. 2005; Plotnik et al. 2007) and SA (Zifchock et al. 2008) 

provide a numerical indication of  the  degree of asymmetry they are not easily interpretable to 

users. These rely on the computation of complex equations as well as knowledge to interpret the 

results. This may affect the accuracy of use. Therefore, in order to conveniently use quantitative 

gait asymmetry monitoring, an easy to interpret and affordable gait symmetry visualization tool is 

required to provide a facility for use in clinic and at home. This section mainly presents the gait 

asymmetry visualization to the users, not give the cause of gait asymmetry. The cause of gait 

asymmetry is an important topic to conduct research in future. 
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4.2.2. Spatiotemporal gait visualization 

We purposely show the visualizations from a single subject as there is no point in showing an 

aggregate of the results from our 20 subjects. Individual visualizations for all are shown in 

Appendix B and C. This section presents four novel gait asymmetry visualization approaches 

aimed to show the various aspects of gait symmetry analysis and make the results accessible and 

useful to both patients, for self-directed care, and therapists: 1) Real time dial visualization: this 

is intended for patient use by providing a spatiotemporal gait information to the patient who can 

then identify  and make attempts to rectify gait asymmetry; 2) Visualization of individual leg 

time variation: this is intended for therapists assessing gait by giving an overall picture of time 

asymmetry over a series of strides. In normal human gait the period from the initial contact to 

pre-swing composes about 60% of the time and initial swing and terminal swing composes about 

40% of the time in the gait cycle shown in Figure 2a. This visualisation provides the therapists 

the opportunity easily identifies any deviation from this 60:40 split; 3) Visualization of both legs 

asymmetry: this visualization shows both time and distance for stride and step for both right and 

left legs. As they are comparing both legs then they would be expected to be as near to equal as 

possible and any difference is asymmetry; This will also indicate which of the legs is most 

affected and helps therapists’ direct attention to the legs with most abnormality; and 4) Boxplot-

based visualization: this visualization provides an overall summery of the results obtained 

through the above and therefore can be used to monitor progress with therapy. 

4.2.2.1. Real time dial visualization 

The stride, step and swing information is considered for visualization. We extract stride, stance, 

swing and step features of gait. The stance is a stationary phase of a gait cycle and the distance 

travelled in the stationary phase is zero. Initially we estimate the maximum (max), minimum 

(min), and confidence interval (CI) of each feature. We draw a circle from θ=0 to 2π of duration 

of 0.01 using )cos(),sin(   yx . We define the interval α=50 and the value of each step 

increment (δ) is computed by  /min)(max . The interval angle ω is estimated using 

 /*  with λ =1.25. The scale is represented from 0 to α using  **/*  ni , 

for n= 0 to α. 

The small scale line is then drawn using )cos(),sin(   yx . The minimum and 

maximum values of the scale are the lower CI and upper CI respectively. The indicator line (β) is 
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then set with the instantaneous difference between left and right value of the feature (η) using 

 */min)(*  . The indicator line is drawn from 0 to β. We draw gradient colors 

to make it colorful looking. The instantaneous feature value is displayed at the bottom of each 

dial with seven segment display. The same procedure is followed for displaying instantaneous 

distance and time from stride, step and swing information. 

When the app is run for the first time, there is an option to input a number of last performed 

strides. By default, the value is set as 30. It will then detect phases and display corresponding 

information on to dial. Every time it starts, it will restore the last calculated CI for scaling and it 

will update automatically after each 30 or specified numbers of strides. There is an option to 

change the scaling factor according to SI (Robinson et al. 1987), SR (Seliktar and Mizrahi 1986), 

Ia (Vagenas and Hoshizaki 1992), GA (Plotnik et al. 2005; Plotnik et al. 2007) and SA (Zifchock 

et al. 2008) format. 

4.2.2.2. Visualization of individual leg time variation 

Each stride is composed of stance and swing phases. The stride time is composed of stance time 

and swing time. To visualize the individual legs variation, we estimate the maximum and 

minimum values of each feature. We draw an outline rectangle using blue color towards vertical 

line to represent right of the first stride value with aspect ratio of the maximum value. A cyan 

color rectangle of stance time is drawn on that stride rectangle and a yellow color rectangle of 

swing time is drawn at the top of the stance rectangle. All rectangles are followed the aspect ratio 

with the maximum value. This process is conducted for all stored strides.  

4.2.2.3. Visualization of both legs asymmetry 

Each stride and step feature has distance and time information. Initially we calculate the 

maximum and minimum of features. A red color rectangle is drawn which height is the first right 

stride distance with aspect ratio of the maximum value. A blue rectangle is drawn which height is 

the left stride distance at the side of right rectangle. We follow this procedure for both strides and 

step asymmetry visualization of all stored strides considering the aspect ratio with the maximum 

value.  
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4.2.2.4. Boxplot-based visualization 

We estimate median, upper-quartile, lower quartile and whisker values from features and plot a 

Boxplot. This is a simple representation of descriptive statistics to understand each features 

distribution, non-normal/unusual level, outliers, symmetry and overall gait asymmetry 

information. 

4.2.3. Results of visualization of spatiotemporal gait features 

The total time taken to travel 33.38 meters is 22.21 seconds. The estimated legs travelled 

distances are 33.35 meters and 32.87 meters with accuracy of 99.92% and 98.48%. The actual 

and estimated distances are very close. The accuracy of stride and step event detection is 100%. 

Table 4.7 shows the average gait variability and quantifying gait asymmetry using five 

techniques. 

Table 4.7: Gait variability and asymmetry factors (SI, SR, Ia, GA and SA) 

 
Right Leg Left Leg SL1 SL2 SL3 SL4 SL5 

Gait Features Mea

n 

95% 

CI 

Mean 95% CI SI 

(Robins

on et 

al. 

1987) 

SR 

(Selikta

r and 

Mizrahi 

1986) 

Ia 

(Vagen

as and 

Hoshiz

aki 

1992) 

GA 

(Plotni

k et al. 

2005; 

Plotnik 

et al. 

2007) 

SA 

(Zifcho

ck et al. 

2008) 

Stride Length (m) 1.112 0.225 1.096 0.230 1.45 101.46 -1.44 0.01 0.46 

Stride Time (s) 0.595 0.027 0.588 0.026 1.13 101.13 -1.12 0.01 0.36 

Stride Velocity 

(m/s) 

1.823 0.308 1.855 0.371 -1.73 98.29 1.71 0.02 -0.55 

Step length (m) 0.507 0.041 0.387 0.043 26.68 130.79 -23.54 0.27 8.44 

Step time(s) 0.258 0.028 0.337 0.027 -26.58 76.53 23.47 0.27 -8.41 

Step Velocity (m/s) 2.185 0.337 1.256 0.223 53.98 173.94 -42.51 0.55 16.78 

Stance Time (s) 0.315 0.018 0.278 0.021 12.36 113.17 -11.64 0.12 3.93 

Swing Length (m) 1.009 0.202 0.990 0.207 1.88 101.90 -1.86 0.02 0.60 

Swing Time (s) 0.280 0.019 0.310 0.021 -10.18 90.31 9.69 0.10 -3.24 

Swing Velocity 

(m/s) 

1.729 0.248 1.537 0.248 11.79 112.53 -11.13 0.12 3.75 

From Table 4.7 we can see that the mean stride lengths and times of both legs are very close. 

However, high asymmetry is found in step length, time and velocity. The estimated asymmetry 

factors show numerical values that indicate differences both between the features and between 

the indicators. The lowest gait asymmetry is observed during the stride phase and the highest is 

found during the step event. Using the Shapiro-Wilk test, most of the parameters show normal 

distribution for 20 participants. Additionally, the lowest confidence intervals are observed for 

most of the parameters indicating consistent data. 

The analysis of Pearson linear correlation coefficients between the SL1, SL2, SL3, SL4 and 

SL5 factors indicates a very strong association (p<0.001) for most of the cases excluding SL4. As 
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such, it is more useful to analyze the compatibility of the results for individual factors in the 

assessment of the symmetry of the factors indicating high symmetry. The coefficient ordered 

rank also agrees for most of the cases. The linear least square regressions show very high 

correlations. It is important for clinical practice to evaluate the impact of individual factors 

resulting high gait symmetry and the interpretation of these numerical values provide limited 

information. Therefore, a visual representation of these values with interpretation would provide 

much more user friendly information.  

4.2.4. Results of spatiotemporal gait visualization 

Next, we show the results of the four gait asymmetry visualizations. 

4.2.4.1. Real Time Dial Visualization 

Figure 4.19 demonstrates spatiotemporal measurements in a dial fashion taken from one subject. 

Both legs should theoretically give identical results and therefore perfect asymmetry should give 

dial indicator readings of zero. The first dial is an asymmetry display for stride length and time 

comparing both legs. The second dial displays the real time measurement of step length and time. 

It is noted that there is a difference in the level of asymmetry. The third dial shows the swing 

phase distance and time. Similarly, there is little asymmetry between two legs. The scales on all 

three dials represent the confidence intervals and the pointer represents the instantaneous real 

time difference between two legs. For example, in this case although the dials for stride and 

swing show near perfect symmetry, measurements relating to step are not. Step measurement 

entails information on distance and time. The distance dial shows that the right leg is travelling 

longer (0.51m) than the left leg (0.39m). The patient therefore needs to shorten the distance 

travelled by the right leg and/or make the left step longer.  The time dial demonstrates that the 

right leg travels the longer distance in a shorter time (0.26s) compared to the left leg (0.34s). The 

digital number below the dial is showing the absolute measure for all three markers. 
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Figure 4.19: Real time gait asymmetry visualization 

4.2.4.2. Visualization of Individual Leg Time Variation 

30 strides are performed and the time of stride, stance and swing phases is presented in Figure 

4.20 where each bar shows the stride time. 

Figure 4.20: Time of stride, stance and swing phases from right and left legs 
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The cyan and yellow colors represent the time of stance and swing phases respectively. There is a 

small variation of stance and swing phase timing. This visualization clearly represents the 

variability of stance and swing phases in each stride of the legs. The ratio of stance and swing is 

found closest to the 60:40% split for average stride, stance and swing information (Figure 4.20). 

4.2.4.3. Visualization of Both Legs Asymmetry 

In this visualization the stride and step asymmetry information for both time and distance from 

both legs are presented in Figure 4.21. We can see that while there is good symmetry in the stride 

there is strong variation in the step phases. 

 
Figure 4.21: Gait asymmetry of stride and step phases from right and left legs 

4.2.4.4. Boxplot-Based Visualization 

Figure 4.22 shows a boxplot of the distribution of values for individual factors where the mean 

values obtained for stride and step for both legs. The quartile ranges are identified in the boxplot 

and show low variation for the stride. The first box plot shows higher variation in the step length 

on the left leg than on the right. This demonstrates that although the stride length is similar on the 

right and left there can be a higher variation in the step length. The boxplots for time indicate that 

variation is low for both legs. 
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Figure 4.22: Boxplot of stride, stance and swing information 

If we exclude the first and last stride of each walking on the corridor, the asymmetry is not that 

high. Those phases consist of more variation due to initial acceleration and ending momentum. It 

is noted that the observations identified by the boxplots are not especially extreme. 

4.2.5. Discussion 

This study adds to current literature by demonstrating a new visual method of demonstrating gait 

asymmetry that increases the reliability and validity of monitoring gait abnormalities. In addition, 

our sensors are wearable and can be used in different clinical setting and the patient’s home and 

do not rely on complex equipment. This has the potential of a significant advance. As, gait 

asymmetry has been shown to be a determinant of recovery in patients suffering from several 

conditions with stroke (Hodt-Billington et al. 2008), lower limb amputations (Skinner and 

Effeney 1985), osteoarthritis (Shakoor et al. 2003) and cerebral palsy (Winiarski) such equipment 

may have a role in the evaluation of such patients. It can also be used to monitor patient progress 

in orthopedics and rehabilitation (Steultjens et al. 2000). There is also a potential use in sports 

training where running as close as possible to zero asymmetry may improve an athlete’s 

performance (Wahab and Bakar 2011).  

Our proposed real time dial based visualization tools offer an easy and user friendly way to 

visualize and monitor gait asymmetry. Our visualization techniques offer several advantages: 1) it 

shows real time gait features using graphical visualization which it is easy to interpret; 2) it does 

not require complex set up and equipment with segmentation of body parts required in a gait lab 

3) it provides compressive longitudinal gait information for clinical use; and 4) its versatility has 

the potential to increase its usability at home supporting inclusivity of patients who are home 

bound. Therefore, our proposed gait information visualization approaches can be used for 
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different applications at home as well as in clinics for gait monitoring and rehabilitation. This has 

the potential of making gait asymmetry analysis more widely available for use. 

4.3. Validation of extracted gait features 

In order to use accurate quantitative gait monitoring in clinical applications, a low cost gait 

assessment tool is required which can provide the facility to analyse gait in clinic and at home.  

To address these issues, primarily we developed an affordable, wireless, wearable, simple and 

easy to use automatic spatiotemporal gait features extraction system that allows the subject to 

measure in indoor and outdoor (Anwary et al. 2018). This study has two main purposes: 1) to 

determine the concurrent validity of spatiotemporal automatic gait features collected using 

(Anwary et al. 2018) with the Motion Capture System (MCS) and Treadmill in both young and 

older adults, and 2) to compare the levels of agreement for average spatiotemporal gait 

parameters. We validate our proposed method using three experiments; 1) Treadmill at various 

walking paces vs MCS, 2) self-selected (free) walking vs MCS, and 3) self-selected (free) 

walking vs Digital tape for distance. 

Three experimental materials and methods used for the development of this work are 

described in the following subsections. 

4.3.1. Common experimental setup  

Motion data are collected using a 10 camera Qualisys MCS operating at 100Hz (Qualisys Motion 

Capture). The data from these markers are processed for signal smoothing and stored in a data 

file with a C3D format. The data collected using IMU sensors are stored in another data file with 

a CSV format. 

4.3.2. Experiment 1: Participants 

A convenient set of 8 young subjects (7 males and 1 female, age 33.5 ± 5.06 years, weight 78.68 

± 16.51 kg, height 1.73 ± 0.6 m, BMI 26.14 ± 4.30 kg/m2) are selected for this experiment. The 

subjects are selected with no signs of gait, balance or walking abnormalities. The exclusion 

criterion for selecting young subjects are recent ligament major injury, abnormal gait pattern, 

musculoskeletal or neurological pathology, contraindication to exercise, recent surgery, fracture 
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or muscle injury, impairment attributable to other cause by history or other health conditions that 

may adversely impact the outcomes of the study. 

4.3.2.1. Experimental setup and protocols 

Two reflective marks are placed on proximal phalange and ankle locations on both legs. Each 

subject walked on the treadmill with different speed settings at 0.6, 1.0, 1.4, 1.8, 2.0, 2.2 and 2.5 

m/s, respectively. The subjects perform a walk on single belt treadmill (Woodway, model ELG) 

comprising of 30 strides.  

4.3.3. Experiment 2: Participant selection 

A convenient set of 10 young subjects (All males, age 27.55 ± 3.54 years, weight 62.56 ± 6.75 

kg, height 1.59 ± 0.2 m, BMI 25 ± 3.8 kg/m2) are recruited for this experiment. The exclusion 

criterion for young subjects mentioned in Section 4.4.2 is followed. 

4.3.3.1. Experimental setup and protocol 

Two reflective marks are placed on proximal phalange and ankle locations on both legs. Each 

subject walked in a straight line for 10 m at a self-selected (free) walking pace.  

4.3.4. Experiment 3: Participants  

A convenience sample of 30 subjects are recruited: 10 healthy young subjects (9 males and 1 

female, age 25.3 ± 4.64 years, weight 61.9± 4.61 kg, height 1.61 ± 0.1 m, BMI 24.45 ± 5.77 

kg/m2); 20 older adults (19 males and 1 female, age 71.86 ± 8.55 years, weight 63.4 ± 3.03 kg, 

height 1.52 ± 0.1 m, BMI 28.14 ± 6.07 kg/m2). The exclusion criterion for young subjects 

mentioned in Section 4.4.2 is followed. The older adults are resident in a care home. Several of 

the older adults have problems with their gait. The subjects are purposefully chosen for this study 

to provide a variety of gaits for evaluation. 

4.3.4.1. Experimental setup and protocol 

Young subjects walk in a straight line along a corridor comprising of 15 strides at a self-selected 

(free) walking pace, a turn-around and another 15 strides. The distance travelled is measured by a 

digital tape. Older adults are also asked to perform a trail in a straight corridor comprising 15 

strides of their walking, turn-around and another 15 strides. Several of the older participants 
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perform less than 15 strides. The distance carried out by walking on the corridor is then measured 

by a digital tape. 

For experiments 1 and 2, the data collected from Qualysis is the 3D positions of the 

reflective markers from both legs. The position signals along the three coordinates are analysed to 

obtain the total distance, total time, stride (number, length, and time) and speed. 

4.3.5. Statistical analysis 

The data analysis is performed using SPSS (IBM Corp 2016) and R statistical software (R 

Development Core Team 2018). The gait features extracted from IMU using (Anwary et al. 

2018) are validated against the data collected from either the treadmill and/or MCS. The treadmill 

and MCS are considered to be either gold or clinical standards. The treadmill gives information 

of speed and the MCS gives information of total distance, total time, stride number, stride length, 

stride time and speed. The collected gait features are explored for normality using the Shapiro-

Wilk test. A series of statistical tests are applied, some of which may seem redundant in order to 

provide a complete representation of the system’s validity. The level of absolute agreement 

between the extracted gait features and the MCS are analysed with Interclass correlations (ICC) 

by ICC(2,1) (Shrout and Fleiss 1979) for consistency (two-way mixed). Lin’s concordance 

correlation coefficients (Lin 1989) (LCC - an index of how a new test reproduces a “gold 

standard” test) is applied to validate IMU gait features and MCS. LCC captures any subtle 

deviations in agreement between the measured variables and the reference criteria. Pearson's 

correlation coefficients (r) are applied to measure the linear strength of association between IMU 

gait features and MCS. This correlations are a poor indicator of validity since they do not account 

for absolute agreement, but they indicate if measurements can be fixed with recalibration (i.e., if 

a variable has a high PCC, a scaling or offset can be applied to allow absolute agreement) 

(Washabaugh et al. 2017). Means, SDs and CI for both systems are calculated. Bland-Altman 

plots are produced to provide a visual representation of heteroscedasticity by plotting the 

individual subject difference between the two systems against the individual mean of the two 

systems (Bland and Altman 1999). T-tests are also used to identify differences in IMU gait 

extracted features and MCS measurements. 
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4.3.6. Results of validation of extracted gait features 

We present the validation results between automatic IMU gait extracted features with MCS and 

Treadmill measurements in the following sections. 

4.3.6.1. Experiment 1: Using Treadmill and MCS 

Table 4.8 shows the MCS and IMU gait features information where the treadmill speed is set to 

0.6 m/s. The MCS estimation is considered as ‘gold standard’/ ‘clinical standard’ and the 

accuracy of IMU gait features are estimated. The results for the treadmill speed settings at 1.0, 

1.4, 1.8, 2.0, 2.2 and 2.5 m/s are provided in Appendix D. On the treadmill each participant walks 

for a total of 30 strides with a constant speed set to 0.6 m/s. The sample size is 1680 strides (8 

subjects walk for 30 strides with 7 different speeds in total of 8x30x7 strides). The total distance 

travelled and the total time of each participant are recorded from both right and left legs 

concurrently by IMU and MCS. The speed is then obtained from distance and time information. 

Table 4.8: IMU gait extracted features accuracy with MCS and Treadmill 

 

D=Distance, T=Time, S=Speed 

The accuracy is estimated using equation (4.51). The stride to stride information is analysed and 

the accuracy of IMU gait extracted features distance, time and speed are very high, indicating that 

the measurements are significant comparing with MCS. From the time column of Table 4.8, we 

can see that the accuracy of walking time is good comparing with the distance as it is recorded 

directly from the signal. The distance is obtained from accelerometer signal with mathematical 

analysis. The speed is also estimated based on distance and time information. Therefore, the 

accuracy of distance and speed are lower comparing with the time accuracy. The relative 

accuracy of our IMU sensors is between 85.48% - 99.96% for travel distance and 99.49%-

99.97% for Time measurement. The lowest accuracy is 85.48% found in the travelled distance 
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from the right leg of subject 8. Actually the speed of 0.6 m/s is low comparing with normal 

human walking and subjects needed to adjust with the speed. However, the overall accuracy for 

all speeds is high. The distance and time of IMU and MCS are found normally distributed. The 

ICC(2,1), LCC and Pearson’s correlation (r) are shown in Table 4.9. 

Table 4.9: Validity of the IMU gait features and MCS 

  
S

u
b

je
ct

s 

Interclass correlations Lin’s correlation coefficients Pearson's correlation coefficients 

Right Leg Left Leg Right Leg Left Leg Right Leg Left Leg 

Dis Tim Dis Tim Dis Tim Dis Tim Dis Tim Dis Tim 

ICC ICC ICC ICC LCC LCC LCC LCC r r r r 

1 0.88 0.97 0.88 0.97 0.79 0.94 0.78 0.93 0.81 0.94 0.81 0.93 

2 0.99 1.00 0.99 1.00 0.98 1.00 0.98 1.00 0.98 1.00 0.99 1.00 

3 0.98 1.00 0.98 0.99 0.96 1.00 0.96 0.99 0.96 1.00 0.96 0.99 

4 0.93 1.00 0.96 1.00 0.83 1.00 0.91 1.00 0.88 1.00 0.93 1.00 

5 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 

6 0.99 1.00 0.99 1.00 0.97 1.00 0.98 1.00 0.98 1.00 0.99 1.00 

7 0.94 1.00 0.97 1.00 0.89 1.00 0.93 1.00 0.89 1.00 0.94 1.00 

8 0.97 1.00 0.99 1.00 0.94 1.00 0.97 1.00 0.94 1.00 0.98 1.00 

Dis=Distance, Tim=Time, r (Pearson's correlation coefficient) 

The level of agreement using ICC(2,1), LCC and r between IMU gait extracted features and 

MCS for each gait variable of distance and time at different speed levels from right and left legs 

from all subjects is good (from 0.78 to 1). The mean, standard deviation and 95% confidence 

interval (CI) are provided in Appendix D. The Bland-Altman plots of subject 1 are shown in 

Figure 4.23 and plots for other subjects are provided in Appendix D. 

 

Figure 4.23: Bland-Altman plots for validity of distance and time measured for right and left legs 

with IMU and MCS from subject 1. 
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  The plots in Figure 4.23 show the validity of gait extracted features as measured with the 

IMUs against the MCS measurement for subject 1. The y-axis of the plot corresponds to the 

difference between the two measurement systems, while the x-axis is the average of the two 

measurements. The line at the middle passes through zero axis is the average difference for the 

whole sample, while the upper and lower lines correspond to the 95% limits of agreement. It is 

observed from Figure 1 that the mean difference of the two estimations is zero and the most of 

the difference lies in between the 95% limits of agreement.  

4.3.6.2. Experiment 2: MCS 

Table 4.10 shows the accuracy of the IMU gait extracted feature and MCS measurements. The 

average accuracy of the result is 97.57% with 95% confidence interval ±1.327 for the estimated 

distance and 99.01% with 95% confidence interval ±0.266 for the Time. 

Table 4.10: Validation of IMU gait extracted features with MCS 

Subjects 
Leg Qualisys IMU 

 
Qualisys IMU 

 
 Distance (m) Accuracy (%) Time (s) Accuracy (%) 

1 
Right 7.650 7.607 99.435 12.670 12.510 98.740 

Left 7.522 7.459 99.159 12.330 12.330 100.000 

2 
Right 7.402 7.155 96.664 12.670 12.830 98.740 

Left 7.456 7.327 98.270 12.330 12.280 99.590 

3 
Right 8.181 8.126 99.330 8.720 8.740 99.770 

Left 7.984 7.747 97.034 8.280 8.150 98.430 

4 
Right 7.978 7.806 97.848 8.720 8.880 98.170 

Left 8.121 8.061 99.259 8.280 8.180 98.790 

5 
Right 7.735 7.699 99.531 9.780 9.750 99.690 

Left 7.842 7.791 99.345 9.720 9.640 99.180 

6 
Right 7.564 7.493 99.066 9.780 9.710 99.280 

Left 7.481 7.518 99.505 9.720 9.830 98.870 

7 
Right 7.693 6.784 88.181 7.380 7.250 98.240 

Left 7.626 7.197 94.377 7.030 7.130 98.580 

8 
Right 7.422 6.939 93.497 7.380 7.310 99.050 

Left 7.144 6.669 93.344 7.030 7.140 98.440 

9 
Right 7.769 7.744 99.678 7.940 7.910 99.620 

Left 7.755 7.626 98.331 7.870 8.000 98.350 

10 
Right 7.508 7.485 99.698 7.940 7.960 99.750 

Left 7.623 7.613 99.870 7.870 7.800 99.110 

 

The t-test shows that there is no difference in means (p = 0.094) between MCS (μ1 = 7.67, 

σ1 = 0.26) and Estimated Distance (μ2 = 7.49, σ2 = 0.39). Pearson's correlation coefficient (r = 

0.81) indicates a strong correlation. 
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4.3.6.3. Experiment 3: Digital tape 

Table 4.11 shows the average IMU gait extracted features information for both right and left legs 

from 10 young subjects. 

Table 4.11. Validation of IMU gait features with digital tape for young subjects 

AVERAGE Age(y) Height (m) Weight (Kg) Gender 
 

 
25.30 1.61 61.90 9 M, 1 F 

 
Total Time (s) 57.85 

 
Actual * Right Leg ** Accuracy Left Leg ** Accuracy 

Total Distance (m) 37.77 37.19 97.73 37.81 98.82 

Estimated Velocity (m/s) 0.73 0.72 97.73 0.73 98.82 

Detected Stride Number 30.00 30.00 100.00 30.00 100.00 

Detected Step Number 30.00 30.00 100.00 30.00 100.00 

* ActualValue = recorded using digital tape, ** EstimatedValue = using IMU gait extracted features measurements 

Table 4.12. Gait features information from young subjects 
 Right Leg Left Leg 

Gait Features Mean Std Var Min Ma

x 

Mean Std Var Min Max 

Stride Length (m) 1.17 0.17 0.03 0.91 1.65 1.17 0.17 0.03 0.89 1.61 

Stride Time (s) 1.41 0.20 0.04 1.10 1.97 1.39 0.19 0.04 1.07 1.91 

Stride Velocity (m/s) 0.83 0.83 0.83   0.84 0.84 0.84   

Step length (m) 34.93     34.93     

Step time(s) 0.83 0.85 0.75   0.84 0.86 0.77   

Step Velocity (m/s) 0.50 0.14 0.02 0.15 0.84 0.54 0.18 0.04 0.24 1.10 

Cadence (step/min) 0.68 0.19 0.04 0.21 1.14 0.74 0.24 0.07 0.33 1.48 

Step Ratio (Step 

length/cadence) 

0.01     0.01     

Stance Time (s) 0.84 0.16 0.03   0.83 0.13 0.02   

Swing Length (m) 1.17 0.68 0.49   1.17 0.94 1.14   

Swing Time (s) 0.58 0.12 0.02   0.57 0.15 0.02   

Swing Velocity (m/s) 2.07 1.80 1.80   2.10 1.83 1.83   

Std = Standard Deviation, Var = Variance, Min = Minimum and Max = Maximum 

The accuracy is estimated using equation (4.51). The distance travelled by each young 

subject is measured using a digital tape and the average travelled distance is 37.77 m. The 

average estimated travel distance is 37.19 m for right leg and 37.81 for left leg. The accuracy of 

estimating average distance compared with the average actual distance is high for both legs. The 

accuracy of detected stride and step number achieves 100%. The accuracy of estimating travelled 

distance is 97.73% for right and 98.82% for left legs. Normal human walking velocity may vary 

from 1.5 to 2.5 m/s (Mohler et al. 2007) and the estimated average speed is 1.53 m/s which 

agrees with the literature. The stride lengths of legs are the same and the overall difference 

between legs is low. In natural walking, foot is on the ground for about 60% of the total time of 
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gait cycle during stance phase and 40% during swing phase. The ratio of stance and swing is 

found closest to the 60:40% split for average stride, stance and swing information (Table 4.12) 

for young subjects. 

The accuracy of estimating the total distance compared with the actual distance is high for 

both legs for older adults shown in Table 4.13. The accuracy of detecting stride and step number 

is 92.67%. The accuracy of estimating the travelled distance is 88.71% for right and 89.88% for 

left legs. However, comparing to results in young subjects (Table 4.12), the accuracy is lower for 

older subjects with less than 9%. This may be due to older people walking slowly resulting in a 

poorer signal output. We will investigate this in our future work. 

Table 4.13. Validation of IMU gait features with digital tape for older subjects 
Average Age Height (m) Weight (Kg) Gender  

 72.15 1.53 63.55 28 M, 2F  

Total Time (s) 86.71 

 Actual * Right Leg ** Accuracy Left Leg ** Accuracy 

Total Distance (m) 21.74 21.48 89.09 20.47 89.94 

Estimated Velocity (m/s) 0.26 0.26 89.09 0.24 89.94 

Detected Stride Number 30 28.4 91.48 29.33 91.2 

Detected Step Number 30 28.4 91.48 29.33 91.2 

 

Table 4.14. Gait features information from older subjects 
 

  Right Left 

Gait Features Mean Std Var Min Max Mean Std Var Min Max 

Stride Length (m) 0.74 0.17 0.03 0.51 1.29 0.74 0.15 0.03 0.53 1.16 

Stride Time (s) 2.72 0.62 0.5 1.91 4.75 2.69 0.51 0.32 1.85 4.02 

Stride Velocity (m/s) 0.28 0.28 0.28   0.28 0.3 0.3   

Cadence (step/min) 24.34     24.34     

Step Velocity (m/s) 0.33 0.28 0.13   0.34 0.3 0.1   

Step length (m) 0.28 0.25 0.06 0.22 0.63 0.28 0.22 0.07 0.04 0.57 

Step time(s) 0.2 1.01 1.02 1.02 2.07 0.32 0.93 1.42 0.18 2.2 

Step Ratio (Step length/cadence) 0.01     0.01     

Stance Time (s) 1.39 0.51 0.17   1.37 0.46 0.52   

Swing Length (m) 0.74 0.8 0.76   0.74 0.9 0.98   

Swing Time (s) 1.09 0.41 0.21   1.07 0.32 0.14   

Swing Velocity (m/s) 0.78 0.6 0.6   0.78 0.59 0.59   
*ActualValue, **EstimatedValue 

Table 4.14 shows the details of both legs gait variables for older subjects. Overall the stride 

lengths of both legs are similar for older adults. The overall difference between legs is very low. 

We check the data for statistical errors and assess whether the estimated values are reasonable. 

The young subjects’ travelled distance for 30 strides has a wider range and is significantly 

different than older ones. On average young subjects travelled distance is 37.77 (95% CI ± 3.57) 

m and the distance of older ones is 22.50 (95% CI ± 2.34) m. Similarly, the legs stride and step 
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variation is low for older ones than young ones. Older one’s gait is slow and results in a low 

variation in walking comparing with young ones. 

4.3.7. Discussion 

This study evaluates the validity of an automatic spatiotemporal gait features extraction system 

using wearable IMUs from young and older subjects so that clinicians and researchers can better 

interpret gait information. Based on the three experiments, the findings of this study indicate that 

our automatic IMU gait extracted features are accurate for measuring comprehensive 

spatiotemporal gait features comparing with ‘gold standard’ MCS and Treadmill.  

In Experiment 1, the use of a treadmill condition allows us to select different walking 

speeds and tease out the true instrumentation error from the measurement error due to biological 

variation (i.e., natural variation in walking patterns) because of the fact that gait patterns are more 

invariant on a treadmill than over ground (Hollman et al. 2016). The different speeds minimize 

the contribution of intra-individual variability of performance. The features extracted from both 

systems indicate that the instrumentation error is acceptable for most of the gait variables. To 

develop from the results of Experiment 1, we conducted repeated with additional subject over 

ground (in laboratory) in a free condition. The accuracy of our system is comparable with that of 

MCS. As the laboratory space is limited to only few meters, we conducted Experiment 3 with 

young and older subjects in their home and find the results are also acceptable. 

We analyse our results using various methods of correlation as each method has different 

strengths and weaknesses. ICCs are often thought to be more reliable at assessing correlations 

than Person’s r and Spearman’s rho test. Results need to be interpreted with caution as a high 

ICC does not necessarily mean good reliability, particularly in situations where there is a large 

variation of readings within the same subject. To address this, an absolute measure of reliability 

such as the coefficient of variation or limits of agreement (Bland and Altman 1986) is often used. 

The coefficient of variation is not affected by the presence of a heterogeneous sample such that a 

measurement that has a high ICC may not be reliable if the coefficient of variation is large. The 

determination of acceptable limits of the coefficient of variation is set depending on the level of 

agreement that the researcher aims to achieve when comparing groups or the outcomes of the 

intervention. As ICCs have limits in the accuracy they can achieve, we also use LCCs. Measuring 

using LCCs requires making less assumptions than that using ICC and identifies subtle deviations 
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in agreement between measured variables and reference criteria. We also use Pearson's 

correlation coefficients (r) to measure the linear strength of association between the IMU gait 

extracted features and MCS measurements. Pearson’s correlations are a poor indicator of validity 

since they do not account for absolute agreement, but they indicate if measurements can be fixed 

with recalibration (Washabaugh et al. 2017). Bland-Altman plots are generated for IMU gait 

extracted and MCS measurements to visually display any systematic errors present in our IMU 

measurements. 

There are a number of limitations to our study. We recruited a total of 48 young and older 

subjects where most did not have gait abnormality. A larger, more diverse population with 

multiple trails is needed that will include specific gait abnormality, children with gait pathology, 

severe Parkinsonian gait and other neurological disorder etc. IMU calibration is an essential part 

for automatic gait extraction features estimation. Although in our methods we try to minimize 

errors, as gait features are intrinsically variable from person to person, any such algorithm should 

involve a degree of calibration which we address. Individual quirks, heel strike, significant body 

up-down movement and other factors can also affect the results. There are several other possible 

sources of errors (S Flenniken et al. 2017) that may arise from the use of IMU sensors including 

errors of repeatability, stability and drift. Although IMU sensors performance has been ramped 

up dramatically, the errors in measurement are unavoidable, especially for miniature micro-

electro-mechanical (MEMS) sensors. Future developments should focus on MEMS sensor error 

modelling and accommodation to further improve parameter estimation accuracy (Yang et al. 

2012). Other possible areas of error may arise from frictional noise and the relative movement of 

clothing and shoes to the sensor. However, we compared our results to what is currently 

considered as gold standards MCS and Treadmill which show good accuracy making the effect of 

such errors acceptable. 

The results from three experiments show that our proposed system provides acceptable results 

comparing with those of MCS and Treadmill and has the potential to be used in gait assessment 

and change monitoring for home and clinical use. Gait with slow velocity is common in older 

adults and an automatic system sensitive enough to detect gait features in these circumstances is 

required. Our low cost portable personalized proposed solution could bring out automatic gait 

features for monitoring longitudinal gait changes or abnormalities. In future work, we plan to use 

our automatic gait extracted features information to classify gait changes over time to identify 

abnormal gait patterns for the assessment of elderly fall risk, rehabitation and sports applications. 
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4.4. Conclusions 

In the present work, two IMU sensors are placed at right and left metatarsal barefoot locations to 

collect accelerometer and gyroscope data. We design and develop an android app to collect real 

time synchronous data from both sensors. We propose a systematic method to extract automatic 

gait features for the gait assessment. We first apply the quaternion technique to raw data for 

estimating actual sensor orientation. We apply our proposed stride, stance, swing and step event 

detection technique and analysed for stride, step, cadence, step ratio, stance, and swing. We then 

estimate distance using double integration with drift removing from acceleration and analyzed for 

total velocity, distance and time. We apply our method for 10 young and 10 older subjects. Our 

results show that it is possible to extract GA features automatically in a clinical setting outside of 

a gait laboratory. This has the potential to make the evaluation of gait widely available in clinical 

practice rather than being limited to gait laboratories.  

In biometrics and biomedical engineering, gait analysis has been used to characterize 

human locomotion and has many applications (Sadeghi et al. 2000; Bora et al. 2015b). This paper 

presented four gait asymmetry visualization approaches: 1) Real time dial visualization; 2) 

Visualization of individual leg time variation; 3) Visualization of both legs asymmetry; and 4) 

Boxplot-based visualization. Real time dial visualization showed the instantaneous gait 

asymmetry of both legs from distance and time of stride, step and swing phases of each gait cycle 

using a dial and an indicator. It also showed instantaneous distance and time of stride, step and 

swing values in a seven segment display. Individual leg variation visualization showed the 

variation in stride, stance and swing phases in time. Both legs asymmetry visualization showed 

the asymmetry between two legs for strides and steps. Boxplot-based visualization showed the 

overall stride, step, stance and swing phases distribution. These methods are user friendly and 

easy to interpret and have the potential of helping professionals detect and interpret gait 

asymmetry. 

We develop an affordable, wireless, wearable, simple and easy to use automatic 

spatiotemporal gait features extraction system using IMU sensors that allows the subject to 

measure gait information in indoor and outdoor (open ground). We validate our IMU system with 

more generic variation of age and environment with a sample size of 900 strides. We apply ICC, 

LCC and Pearson’s correlation to compare the levels of agreement for average spatiotemporal 

gait parameters obtained using IMU gait extracted features. We also perform t-test and generate 
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Bland-Altman plots. The results obtained from three experimental conditions demonstrate that 

our IMU gait extracted features are highly valid for spatiotemporal gait variables in young and 

older adults. The ICC, LCC and r values observed for the IMU system are comparable to MCS 

and Treadmill. These findings have meaningful implications for clinicians and researchers who 

use IMUs for evaluating and study gait abnormality.  Our results show that our automatic IMU 

gait extraction features provide comprehensive spatiotemporal gait information in a clinical 

setting outside of a gait laboratory. This has the potential to make the evaluation of gait 

abnormality widely available in clinical practice rather than being limited to gait laboratories. 
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5. EVALUATION OF GAIT USING PROCRUSTES ANALYSIS 

AND EUCLIDEAN DISTANCE MATRIX ANALYSIS 

The Chapter is organized in the following sections. Section 5.1 presents methods includes the 

participant selection, placing location, data collection, statistical shape analysis, understanding of 

shape, form and size, Procrustes analysis, and EDMA. Section 5.2 delivers the experimental 

results for 32 participants to demonstrate the proposed method. The discussions and conclusion 

are given in section 5.3 and 5.4. 

5.1. Methods 

5.1.1. Participants Selection 

A convenience sample of 32 subjects are recruited: 12 healthy young subjects (9 male, mean age 

25.4 years, standard deviation 4.64, range 19-35 years); 20 older adults (19 male, mean age 71.86 

years, standard deviation 8.55, range 62-86 years). Among 12 young subjects, 10 are used for 

modelling while an additional 2 are used for validation. Young subjects are selected with no signs 

of gait, balance or walking abnormalities. Older adults from a care home are invited to 

participate. They are a group of patients chosen with some having a normal and others an 

abnormal gait. It is coincidental that the majority of subjects are male. 

5.1.2. Sensor placing location 

In this study, the sensors are placed at the base of the first metatarsal of both feet. This position is 

previously determined and validated for collecting data since this can achieve the best 

performance compared to other foot locations details presented in Chapter 3.  

5.1.3. Data collection 

The subjects perform a walk in a straight corridor comprising of 15 strides of normal forward 

walking, a turn-around and another 15 strides. Accelerometer and gyroscope data are collected by 

placing the sensors on right and left metatarsal foot locations of the barefoot and the procedure is 

described in Chapter 4. The gait time and distance based features of stride, stance, swing and step 

are also described in Chapter 4. 
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5.1.4. Statistical shape analysis 

Statistical shape analysis is a type of geometrical analysis that involves a set of visual shapes in 

which statistics are measured to describe shape components of similar or different shapes. For 

example, the difference between male and female Gorilla skull shapes (Dryden and Mardia 

1998). Some of the important aspects of shape analysis are to obtain a measure of distance 

between shapes, to estimate average shapes from a (possibly random) sample and to estimate 

shape variability in a sample (Dryden and Mardia 1998). Statistical shape analysis plays an 

important role in many kinds of biological studies (Kendall 1977; Bookstein 1978; Bookstein 

1997; Kendall et al. 1999). Shape analysis is mainly automatic analysis of geometric shapes, for 

example using a computer to detect similarly shaped objects in a database or parts that fit 

together. For a computer to automatically analyze and process geometric shapes, the objects have 

to be represented in a digital form or mathematical representation. (Kendall 1977; Kendall 1984) 

and (Bookstein 1978; Bookstein 1997) are two of the early pioneers of  the statistical theory of 

shape. Subsequently, developments have led to a deep differential geometric theory of shape 

spaces (Kendall et al. 1999), as well as practical statistical approaches to analysing objects using 

probability distributions of shape and likelihood based inference. In this research, Procrustes 

analysis and Euclidean distance matrix analysis (EDMA) have been investigated for gait analysis.  

The method of superimposition, particularly the Procrustes superimposition, was originally 

developed and introduced to the biological sciences by famed anthropologist Franz Boaz and his 

student Eleanor Phelps (Lele and Richtsmeier 2001). Later, the idea of studying shape change 

using superimposition and deformation approaches has been seriously considered and further 

developed by many different researchers (Kendall 1984; Bookstein 1998; Dryden and Mardia 

1998). Goodall reported Procrustes methods in the statistical analysis of shape (Goodall 1991). 

His methods are useful for estimating an average shape and for exploring the structure of shape 

variability in a dataset. Procrustes analysis has been used in a wide range of biological 

applications, for example assessing differences between Chinese and Caucasian head shapes 

(Ball et al. 2010) and assessing differences in body shape in horses (Druml et al. 2009). 

Therefore, Procrustes analysis can also be used for assessing of gait features shape changes. 

Euclidean distance matrix analysis (EDMA) is applied for comparing two shapes using 

landmark data (Lele and Richtsmeier 1991). EDMA allows form variation or growth differences 

to be examined through the comparisons of ratios of landmarks of equivalent configurations. This 
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method can compare the form and/or growth of organisms that have been measured using two or 

three-dimensional coordinates. EDMA has been used to quantify form and growth differences for 

cebus apella skulls (Lele and Richtsmeier 1991), the cranial growth of squirrel monkeys (Corner 

and Richtsmeier 1992) and sexual dimorphism in macaques (Richtsmeier et al. 1993). Therefore, 

EDMA can also be used to quantify gait form differences for abnormal gait patterns. 

5.1.5. Understanding of shape, form and size 

Both shape and form consist of geometrical representation of an object and a set of points or 

landmarks can represent that information. A form change of an object occurs when differential 

change in magnitude occurs along various axes and there is difference in volume between the 

sphere surrounding the landmark in the reference form and the ellipsoid surrounding the 

landmark in the target form (Richtsmeier et al. 1992),. The relationship between shape, size and 

form changes is shown in Figure 5.1. 

 
Figure 5.1: Geometric representation of form change relating with shape and size (Richtsmeier et 

al. 1992) 

These landmarks remain invariant when an object is 1) moved within a given coordinate system 

(translation), 2) turned on any axis of a given coordinate system (rotation) and 3) flipped of a 

given coordinate system (reflection). For example, a triangle consists of three vertices. 

Considering those vertices as landmarks, the triangle can be rotated, translated or reflected to any 

arbitrary amount. Each such movement of the triangle results in changes in the coordinate 

locations of the three vertices, although no changes are made regarding the relative locations of 

the landmarks. As the triangle is moved, the coordinates of the vertices are translated, rotated or 
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reflected and a new set of coordinates is required to define the new location of the three 

landmarks. This means that the landmark coordinates matrix changes upon reflection, translation 

or rotation and that the landmark coordinate matrix is not invariant with respect to translation, 

rotation or reflection. In this research a total of eight gait features from the 13 extracted features 

used from right and left legs are considered as landmarks from 10 young and 20 older adult 

subjects 

5.1.6. Procrustes analysis 

Shape analysis is an important aspect of visualizing and understanding of shape information. The 

analysis of shape plays a vital role, not only in determining the differences between shape groups, 

but also in determining the location of differences among shapes. The form of statistical shape 

analysis used to analyse the distribution of a set of shapes in this work is Procrustes analysis 

(Gower and Dijksterhuis 2004). According to (Crosilla and Beinat 2002), Procrustes analysis is a 

set of mathematical least-squares tools to directly estimate and perform simultaneous similarity 

transformations among the model point coordinates matrices up to their maximal agreement. 

Procrustes analysis is a rigid shape analysis that uses translation, isotropic scaling  and rotation to 

find the best fit between two or more landmarks shapes (Gower and Dijksterhuis 2004). It has 

variations and forms, of which are Orthogonal Procrustes analysis (OPA), Extended Orthogonal 

Procrustes analysis (EOPA), Weighted Extended Orthogonal Procrustes analysis (WEOPA), and 

Generalized Procrustes analysis (GPA) etc (Schonemann 1966; Schoenemann and Carroll 1970; 

Gower 1975; Goodall 1991). The former is a multivariate exploratory technique that involves 

transformations (i.e., translation, rotation, reflection, isotropic rescaling,) of individual data 

matrices to provide optimal comparability (Gower 1975) i.e. it is the evaluation of many sets of 

configurations which can be aligned to one target shape or aligned to each other. GPA is used in 

several domains. For example, it can be used in sensory analysis before a Preference Mapping to 

reduce the scale effects and to obtain a consensus configuration. It also allows a comparison the 

proximity between the terms that are used by different experts to describe products (Kristof and 

Wingersky 1971). On the other hand, OPA is used for matching two configurations (Ten Berge 

1977).  

Shapes and landmarks are two important concepts involved with Procrustes analysis. They 

have their own role in the process of aligning shapes. Dryden and Mardia define shape as the 
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geometrical information that remains when location, scale and rotational effects are filtered out 

from an object (Dryden and Mardia 1998). By this definition of shape, there exists transforms 

that allow the shape to move so that the differences may be removed between two shapes while 

proving the shape itself. The transforms used in aligning the shapes are; scaling, translation and 

rotation. They used the notation OPA as ordinary Procrustes analysis. 

5.1.6.1. Graphical representation of Procrustes transformations 

A representation of two configurations X and Y consisting of n = 9 landmarks on each object in k 

= 2 dimensional space can be seen in Figure 5.2(a). The landmarks are joined together by 

drawing lines between them to visualize the outline of two shape configurations. It can be seen 

that the two shapes are not aligned in the same way and they do not have the same origin. Their 

height and width are also different. The purpose of applying Procrustes analysis is to find the best 

fit between these two configurations. We can do this by superimposing the second configuration 

on to the first configuration and eliminating differences in scale and rotation. The result of the 

translation is shown in Figure 5.2 (b), Figure 5.2 (c) shows the result of scaling and the result of 

the rotation is shown in Figure 5.2 (d). 
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Figure 5.2: Removing variation due to differences in translation, scale and rotation (a) Original 

data of two configurations; (b) After translating the centroid of X to the centroid of Y; (c) After 

removing differences in scale; (d) After removing differences in rotation. 

X 

Y 

(a) 

(b) 

(c) 

(d) 
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It is now important to understand mathematical formulae for these steps to implement this 

technique for object shape analysis. 

5.1.6.2. Mathematical representation 

Let Xi (i=1,2,3,…,m) be a series of m matrices that contain the coordinates of a set of p landmarks 

on the m shape configurations in k dimensions. The translation, rotation and scaling of a 

configuration can be described as (Gower 1975)  

T

iiiii jtOXcX ˆ                                                      (5.1) 

Where iX̂ gives the new coordinates of the landmarks in the configuration. Oi is the rotation 

matrix, ci is the scaling factor, ti is the translation vector and j is the unit vector. The superscript T 

indicates the transpose of the matrix. For GPA, the configurations are translated, rotated and 

scaled until the sum of the squares of the distances between the equivalent landmarks are 

minimized to give the best possible match between all configurations. The function to be 

minimized is thus 
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The procedure can be described pictorially (Crosilla and Beinat 2002) as shown in Figure 5.3 

where the individual configurations are translated, rotated and scaled so that they can be 

“superimposed” on each other to achieve a “best” fit.  

 

Figure 5.3: Concept of generalised Procrustes analysis 
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If the trivial solution found by setting all ci to zero is excluded, another possible solution to the 

minimisation problem can be to select one configuration as the “norm” and scale all the other 

configurations relative to that one. However, this means that fitting X1 to X2 does not give an 

identical result to fitting X2 to X1. It is more satisfactory to estimate all ci parameters such that  
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                                                         (5.3) 

This means the sum of squares about the origin of the rotated, scaled and translated 

configurations is unchanged from the original value; in other words, some configurations are 

increased in size while others are reduced so that the overall sum remains the same. 
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Where the operator .. represents normal vector space or norm and X is mean. 

Let us consider the sum-of-squares between each cluster of points Pi
(q) where i=1,2,3,…m and 

their centroid is Gi which is summed over all P clusters. So the Euclidean distance between the 

pairs of points Pi and Gi is ),(
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because of the identity of different configurations 
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Now it is required to estimate the scaling factor ci , the rotation matrix Oi and the translation 

vector ti so that the residual sum-of-squares of equation (5.5) is minimized. 

There is no unique solution for Oi as equation (5.2) is invariant to orthogonal rotations of 

the total system of pm points. A unique solution can be determined by referring all final co-
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ordinates to the principal axes of the set of centroid points Gi where i=1,2,3,….,m. Equation (5.2) 

can therefore be minimized subject to the constraints of equation (5.3). 

Every Oi  (Gower 1975) is orthogonal can be represented by  
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where uv  is the Kronecker- , for u v where v=1,2,3,……,p 

Associating with equation (5.3) the Lagrange multiplier  and with equation (5.7) the 

)1(
2

1
kmk  Lagrange 

)(i

uv . Considering these as arranged in m symmetric matrices  i where i 

=1,2,3,….,m with general elements )(
)(

vu
i

uv   and 
)(

2
i

uv  on the diagonal. Thus finally we have 

to minimize  

 
 


m

r

iq

k

l

r

qk

r

il

k

qi

r

iq

T

ii

m

i

T

iii

m

i

ooXXXXcE
1 1

)()()(

1

2

1

)())(tr)(tr(      (5.8) 

5.1.6.3. Translation 

The only terms involving the translation matrix, ti, occur in equation (5.2) 
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Now differentiating equation (3.9) (Gower 1975) with respect to the elements of row vector ti 

gives i
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. So the minimum is t1=t2= t3…..= 

tm. It shows that all m configurations should be translated to have the same centroid. Thus the 

terms of equation (5.2) in ti (i= 1, 2, 3,…,m) can be dropped from further consideration. 

5.1.6.4. Rotation 

Now differentiating equation (5.8) with respect to 
)(r

iqo  ( iqo  represents individual elements in Oi ) 

gives  
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Equating it to zero and expressing it in matrix terms gives (Gower 1975) 

rrrrr

T

rr OOXcmYXc  )(                                                            (5.11) 

where r=1,2,3,….,m and iii

m

i

OXc
m

Y 



1

1
 are the co-ordinates of the centroid of the group or 

consensus configuration after rotation and scaling. Post-multiplying by 
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The singular value form of YXc
T

rr is written as Ur
TSrVr where Ur and Vr are orthogonal and Sr is 

diagonal. The right-hand-side of equation (5.12) is symmetric and thus equation (5.12) reduces to  

r
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Therefore, the rotation is completed by multiplying Ur
TVr by the Xi matrix in order to align it with 

the iX matrix. Thus 
rrr XOX   is minimized for the value Or. 

5.1.6.5. Scale 

Differentiating equation (5.9) with respect to ci and equating the result to zero gives 
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Finally, 
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Multiplying equation (5.16) by ci and summing over i=1, 2,3, ….., m and recalling the constraints 

of equation (5.4) yields  
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and hence 
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The alternative form can be written as 
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Because Y itself involves the scaling factors, the above formulae do not give a direct method for 

calculating ci, but have to be used iteratively. However, equation (5.16) is the same equation for 

determining ci as when given Xi,Oi are to be scaled to fit any configuration Y and equations (5.18) 

and (5.19) still follow but with )( TYYtr  replaced by mYOXctr T
m

i

iii /)(
1




.  

  Iterative procedures are used for the minimization process in GPA. The shapes are 

repeatedly scaled, rotated and translated until the sum-of-squares defining the distances between 

the equivalent landmarks on all shapes has been minimised. 

5.1.6.6. Algorithm for GPA 

The procedure to align the configurations using GPA is as follows: 

1. Calculate the initial approximate mean with all centroids at the origin 

2. Align all shapes to this mean: 

a. Calculate centroid for each shape 



CHAPTER 5: 5. EVALUATION OF GAIT USING PROCRUSTES ANALYSIS AND 

EUCLIDEAN DISTANCE MATRIX ANALYSIS 

170 

 

b. Translate each shape to origin (common centroid) 

c. Scale each shape for best fit 

d. Rotate each shape for best fit 

3. Calculate new approximate mean from aligned shapes. 

4. If the approximate mean from 3 differs by more than a set tolerance from the previous 

approximate mean, then repeat steps 2 and 3. 

5.1.6.7. Algorithm for OPA 

Ordinary Procrustes analysis is a special case of GPA where the number of configurations is two. 

The second configuration is translated, scaled and rotated to find the best match on the first 

configuration. 

5.1.7. Normal mean gait shape estimation using Procrustes 

In order to quantify and compare gait, a common procedure is to normalise the obtained gait 

features both in time and length. In total of eight gait features (stride length, stride time, stride 

velocity, step length, step time, step velocity, stance time, swing length, swing time and swing 

velocity) from right and left legs are presented in the Cartesian coordinate. The x and y axes 

represent the features of the right and left legs with the dimensionless numbers respectively. This 

two dimension Cartesian coordinate represents the shape based on gait features collected from 

both legs. For estimating NMGS using GPA, 10 young subjects gait information is used. GPA 

provides the least square correspondence of more than two data matrix configurations. 

Translation, rotation and scaling of a configuration can be described (Dryden and Mardia 1998) 

using equation (5.1). Using GPA, the configurations are translated, rotated and rescaled until the 

sum of the squares of the distances between the equivalent landmarks are minimized to give the 

best possible match between all configurations. The Procrustes superimposition computes a mean 

shape referred as NMGS for the young subjects based on gait features where scaling and 

reflection are not performed in this analysis. The shape of each subject’s gait is defined by its 

Procrustes residuals which are the deviation of the landmarks from the NMGS. 
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5.1.8. Gait shape comparison 

To quantify gait based on all gait features, RSD (Kendall 1984), RSSD (Le 2016), PSSD (Dryden 

and Mardia 1998) and RMSD (Dryden and Mardia 1998) are investigated. Riemannian geometry 

(Carmo 1992) studies higher dimensional space. A shortest curve between any pair of points on a 

curved surface is called a minimal geodesic. On some surfaces, there may be pairs of points 

which have more than one minimal geodesic between them (for example a sphere). The RSD 

gives a measure of the relationship between the curvature of a space and its shape. The RSD 

parameter has a value between 0 and π/2; the smaller this value, the smaller the difference 

between the gaits. The RSSD is the Riemannian distance between the size-and-shape of the 

configurations found by minimizing the Euclidean distance over rotations. The smaller the value 

is, the closer the configurations in size-and-shape distance. The PSSD is defined as the distance 

between two shapes as the closest distance between the fibers on the pre-shape sphere in a non-

Euclidean shape metric space. This allows us to compare two configurations which are 

independent of position, scale and rotation. The small value means the small distance between 

them. The RMSD is another measure of size-and-shape differences between configurations where 

the value is estimated from the square root of ordinary Procrustes sum of squares divided by the 

number of landmarks and number of dimensions. The small value means the small deviation 

between the configurations. RSD, RSSD, PSSD and RMSD are estimated for distinguishing 

degree of abnormality of each gait compared to NMGS. Each gait is translated and rotated to find 

the best match with the NMGS using OPA and the distances are then estimated between the 

NMGS and each best match gait.  

5.1.9. Euclidean distance matrix analysis 

5.1.9.1. The perturbation model for landmarks 

Suppose n=9 landmarks have been selected from the object in 2D, then the landmarks data 

matrix for one subject look as follows: 
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where x and y denote the two-dimensional coordinates, 

 

Figure 5.4: Diagram of an object indication the locations of 9 landmarks. 

Assuming the configuration of these landmarks represents the form of a configuration as shown 

in Figure 5.4, the question is how to measure the variability among individuals that are 

represented by these two-dimensional landmark data. In statistical studies, when analysing 

landmark data, variability is particularly difficult to characterize, because data on an individual is 

collected in a coordinate system specific to the orientation of that individual during data 

collection. Sometimes it makes the problem statistically challenging. It is known that the general 

variance parameter is non-identifiable (Lele 1993; Lele and McCulloch 2002). For this analysis, a 

simple approach based on EDMA is used to estimate the parameters consistently.    

Suppose K landmarks on a D-dimensional object are given. Then a matrix can be 

constructed of DK  whose jth row consists of the D coordinates of the jth landmark. Usually D is 

either 2 or 3 and K is assumed to be larger than D. All the information about the form of an object 

defined on the basis of landmark coordinates is summarized in the collection of all distances 

between pairs of landmarks, a matrix consisting of such a collection of distances are known as 

form matrix. The number of unique pair-wise linear distances in a form matrix is L where 

L=K(K-1)/2.  Xi can be considered as an individual configuration and to denote the DK   matrix 

of coordinates for the ith individual. A DK  matrix is designated M which describes the mean 

for the population of objects, where each row represents the D dimensional coordinates of a 

single landmark. The mean M is considered as the standard normal object, which is a 

mathematical construction based on a set of twenty normal objects in this research. No single 
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normal object is likely to be identical in form to the mean M and no two individuals are likely to 

be identical as normal objects also vary from person to person.  

A graphical example of 9 landmark variations in normal objects can be seen from Figure 

5.5. The variation is manifested as perturbation around the mean landmark configuration of M.  

 

Figure 5.5: The landmarks for objects where individual differences in form originate. Plus signs 

(+) represent the mean configuration for a hypothetical standard object with nine landmarks. The 

triangles, rectangles and circles represent the landmark locations of different normal objects. 

5.1.9.2. Perturbation Model 

Landmarks data are commonly modelled using the perturbation model (Goodall 1991; Lele 1993) 

and it may be thought of as representing the following process. To generate a random geometrical 

object or equivalently, a K point configuration in D dimensional Euclidean space, nature first 

chooses a mean form (represented by matrix M) and perturbs the elements of this matrix by 

adding noise to this mean form according to a matrix-valued Gaussian distribution (Lele 1993). 

The K point configuration so obtained is then rotated and/or reflected by an unknown angle and 

translated by an unknown amount. Such perturbed, translated, rotated or reflected K point 

configurations generate our data. 

The above description can be put in a mathematical form as follows. Let M denote the 

DK  landmark coordinate matrix corresponding to the mean form. Let Ei be the DK  matrix 

representing the error for the ith individual and assume Ei is Gaussian with mean matrix 0 and 

variance-covariance matrix DK  where K is a KK   positive definite matrix representing 
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the variance among elements within the same column of Ei and 
D is a DD positive definite 

matrix representing the variance among elements within the row of Ei. Ei also describes how Xi 

differs from mean M in the real data. The symbol   represents the Kronecker product. 
K

describes the variances and covariances of the landmarks, while D describes the variances and 

covariances of the perturbation with respect to the real space coordinate axes. Let i  be an DD

orthogonal matrix representing rotation and/or reflection of )( iEM   and ti, a DK  matrix with 

identical rows representing translation. Then the landmark coordinate matrix corresponding to the 

ith individual may be represented as iiii tEMX  )( . It then follows that  

),,(~ iD

T

iKiiDKi tMMNX                                   (5.20) 

for i=1,2,…,n. Here “MN” stands for “matrix normal”. Parameters of interest are ),,( DKM  and 

),( ii t are the nuisance parameters. The details of these parameters are discussed in (Lele and 

Richtsmeier 1991). 

5.1.9.3. Eliminating the nuisance parameters 

Before estimating the mean form M and the variance-covariance matrix 
K and 

D , it is 

important to eliminate the nuisance parameters first. The data can be transferred in such a way 

that the distribution of the transformed data is independent of the nuisance parameters. Lele (Lele 

1993) and Lele and McCulloch (Lele and McCulloch 2002) use a maximal invariant statistic )(T

to eliminate nuisance parameters. They define the maximal invariant as follows. Let S denote the 

space of all DK   matrices and let )(T  be a function defined on this space such that for X and 

*X  in S, )()( *XTXT  if and only if 
*X is just a rotation, translation, and/or reflection of X. 

Then )(T  is called a maximal invariant defined on the space S under the group of rotation, 

translation and reflection of X. 

Let )11(
1 T

K
IH  where I=(1,1,…,1) a K1 row vector be a KK  centering  matrix. Let 

HXX C  , then the column of XC sum to zero. The following theorem gives a maximal invariant 

of X, a DK  matrix of landmark coordinates. 



CHAPTER 5: 5. EVALUATION OF GAIT USING PROCRUSTES ANALYSIS AND 

EUCLIDEAN DISTANCE MATRIX ANALYSIS 

175 

 

 

Theorem 5.1. 
TT HHXXXT )( is a maximal invariant statistic, where X is a DK  matrix. 

Proof: 

1) )(XT  is invariant. 

)())(()( XTHHXHtXtXHtXT TTTTTT                   (5.22) 

since t has identical rows and then Ht = 0. 

2) )(XT  is maximal invariant. 

To show that it is a maximal invariant, it is important to show that, given )(XT , it can be mapped 

object to a unique orbit in the original space. This can be proved using the fact that )(XT  is a 

centered inner product matrix and so there exists a unique (up to rotation, translation, reflection) 

mapping from the centered inner product matrix to a coordinate matrix (Lele 1991, 1993; Lele 

and McCulloch 2002). Furthermore, it follows from standard multivariave normal distribution 

theory (Arnold 1981) that if I
D

  

TC

i

C

iii XXXTB )()(  ~Wishart ),,( * T

KK MMD  that is, the random variables iB s are KK 

matrices and have a Wishart distribution independent of nuisance parameters, where 

T

KK HH*

is a KK   non-negative definite matrix of rank 1K corresponding to the 

variance of the columns of C

iX . Lele (Lele 1993) shows that 
*

K and TC

i

C

i XX )( are identifiable 

and provides a consistent estimator of 
*

K and TC

i

C

i XX )( based on the method of moments. It can 

be noted that HHMMMMMT TTC

i

C

i  )()( is a centered inner product matrix corresponding to 

the mean form M. The second point of the proof of Theorem 2.1 establishes that estimation of 

TC

i

C

i MM )(  are equivalent to estimating the mean form. In other words, given TC

i

C

i MM )( one 

can construct M (up to translation, rotation and reflection). 

5.1.9.4. The estimation of 
TCC MM )(  and 

*

K  

The following notations are used from (Lele and Richtsmeier 1991)  
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(i) 
km

kllmFXF
,...,2,1

,...,2,1][)(


  where Flm is the Euclidean distance between landmarks l and m. 

Euclidean distance is the straight line distance between two points that can be measured by the 

ruler. 

(ii) ][][)( 2

lmlm eFxEu   denotes the matrix of squared distances. 

(iii) 
TCC MMXB )()(  denotes the centered inner product matrix. 

(iv) Let 
km

kllmK

,...,2,1

,...,2,1][


   be the variance-covariance matrix and, 

km

kllmMEu
,...,2,1

,...,2,1][)(


  be the Euclidean distance corresponding to the mean form M. 

The following theorems lead to the consistent moment estimator for ’s. The proof 

follows from the consistency of the sample moments and the consistency of a continuous 

function of sample moments. The properties of non-central distribution follow from (Welch 

1972). 

 Theorem 5.2. that is, squared Euclidean distances between pairs of 

landmarks have a non-central distribution with D degrees of freedom, non-centrality 

parameter  and scaling parameter , where . 

 Theorem 5.3. For a two-dimensional object, 

1,,, 2)(   mlmlmleE                                      (5.23) 

Var 2,,

2

,, 44)(   mlmlmlmle                                 (5.23) 

and 

2

,21 )( ml                                               (5.24) 

lm

2

)/(~ 2

, lmlmDlmmle 

2

lm lm lmmmlllm  2
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We can then equate the sample moments to the population moments to obtain a moment 

estimator for . 

Theorem 5.4. Let i

lme denote the squared distance Euclidean distance between landmarks l and m 

in the ith object. 

Let 



n

i

i

lmml e
n

e
1

,

1
                                             (5.25) 

2

,

1

,

2 )(
1

)( ml

n

i

i

lmml ee
n

eS  


                                   (5.26) 

and 

2/1

,

22

,, ))]()[(ˆ
mlmlml eSeS                                      (5.27) 

then as n  , mlml ,,
ˆ   in probability 

We can now obtain the moment estimator of ml ,  for three-dimensional objects. 

Theorem 5.5. 

1,,, 3)(   mlmlmleE                                       (5.28) 

Var 2,,

2

,, 46)(   mlmlmlmle                              (5.29) 

and 

2

,2

2

1 )(
2

3
ml                                               (5.30) 

Theorem 2.5. Using the same notation as in Theorem 5.4, and   

2/1

,

22

,, ))](5.1)[(ˆ
mlmlml eSeS                                   (5.31) 

it follows that as n  , mlml ,,
ˆ   in probability. 

lm
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Next theorem utilizes the estimators of ml , to obtain a consistent estimator of the variance-

covariance parameter 
*

K . The proof allows from Arnold (Arnold 1981) and consistency of 

moments and consistency of continuous function of moments from Theorem 5.1.  

Theorem 5.6. 

)())(( * MBDXBE K   and *

1

* )()(
11ˆ

K

n

i

K MBXB
nD









 



in probability 

Following the theorems, the algorithm of obtaining and M̂ and 
*

K can be shown as bellow: 

Step1. Calculate  HMEuHMB )(
2

1
)(  where )11(/1 TKIH  is a KK  symmetric matrix 

such that its diagonal entrees are 1-1/K and off diagonal entrees are –1/K 

Step2. Calculate the eigenvalues and eigenvectors of B(M). Let the eigenvalues be 

K  21 and the corresponding eigenvectors be Khhh ,,, 21  . 

Step3. The estimator of the centered mean from 
CM̂ is given by: 

For a two-dimensional object ],[ˆ
2211 hhM C   

For a three-dimensional object ],,[ˆ
332211 hhhM C   

Step4. The estimator of 
*

K is given by *

1

* )()(
11ˆ

K

n

i

K MBXB
nD









 



 

This shows that 
T

KK HH*
is identifiable and estimable. 

5.1.9.5. The estimation of K  

However, it is our interest to estimate K . Unfortunately, mapping from 
*

K  to K  is non-unique 

because the centering matrix H is singular and hence it is not invertible (recall that 
T

KK HH*

). To make this mapping unique, it is needed to impose conditions on K . Let L be a KK  )1(

matrix whose first column consists of  -1 s and the rest of the matrix an identity matrix of 
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dimension )1()1(  KK . Let T

KK LL
~

. It should be noted that 
K is a symmetric KK 

matrix of full rank K while K
~

is a )1()1(  KK matrix of rank )1( K . Lele and McCulloch 

(Lele and McCulloch 2002) give the conditions under which 
K  is a unique transformation of 

K
~

. Thus if K
~

is estimable, then 
K is also estimable.  

5.1.10. Mean form and inter-feature distance estimation 

EDMA for comparing two shapes using landmark data is a method for comparing the forms of 

organisms that are measured using two or three-dimensional coordinates of homologous 

landmarks. Homologous landmarks are those landmarks chosen to represent features on 

organisms that are similar due to a phylogenetic relationship. The organisms being compared thus 

share a common ancestor and the feature under study is present in all organisms under 

consideration due to each inheriting it from the common ancestor (Lele and Richtsmeier 2001). 

EDMA also allows form variation, shape or growth differences to examine through the 

comparisons of ratios of landmarks of equivalent configurations. (Lele and Richtsmeier 1991; 

Lele 1993; Lele and Cole III 1996; Lele 1999). 

The gait features extracted from each subject consist of variation due to their different 

walking style, speed and body characteristics etc. This variation is manifested as perturbations 

around the mean gait configuration. These perturbations can vary in size and shape from feature 

to feature. Initially, the Euclidean distance between all possible pairs of features are estimated 

which is known as inter-feature distances (Lele 1993). This data is stored in an 8x8 matrix which 

is symmetric from the diagonal known as inter-feature distance matrix. The inter-feature distance 

matrix from all young subjects is then used to calculate the mean form matrix. 

5.1.11. Form matrix and form difference matrix estimation 

Suppose A is a matrix consisting of all possible pair-wise distances between landmarks.  
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where ),( jid denotes the Euclidean distance between landmarks i and j.  

FM(A) is as the form matrix (FM) and returns all the relevant information about the form of 

an object as summarized by landmark coordinates. 

Since FM(A) is systematic with diagonal elements zero, one can equivalently use a vector 

consisting of all the off-diagonal, upper entries of the matrix to represent FM(A), of the form of 

the object A. The form of an object with K landmarks is then uniquely represented by a vector of 

K(K-1)/2 distances between all possible pairs of landmarks. Equivalently, an object with K 

landmarks is represented by a point in the L=K(K-1)/2 dimensional Euclidean space, which is 

called the form space (Lele and Richtsmeier 1991). The form space is a subset of the L-

dimensional Euclidean space (Richtsmeier and Lele 1993). 

For a form difference matrix, suppose the forms of two objects, A and B, each with K 

landmarks are to be compared. Following the ideas presented above, the forms of these two 

objects correspond to two points in an L-dimensional Euclidean space. If the forms are identical, 

these two points are the same. If the forms are similar (i.e. their spaces are the same) then these 

two points lie on a ray going through the origin. If neither of these conditions is true, then it can 

be concluded that the forms are different. There are several ways to describe this difference. An 

obvious description is the vector difference F(B)-F(A) where subtraction is done element-wise 

(i.e., for each individual linear distance). This representation defines the absolute difference 

between forms. Alternatively, to study the changed morphology relative to be initial morphology, 

Richtsmeier and Lele used the form difference matrix (FDM) (Lele 1991; Lele and Richtsmeier 

1991) as following 

)(

)(
),(

AFM

BFM
ABFDM

ij

ij

ij  where Kji ,,2,1,            (5.33) 

where A represents the form of the gait features each subject (including both young and older), B 

represents the mean form which is estimated from a set of 10 young subjects using EDMA. 

FMij(B) represents the reference form which is the NMGF. FMij(A) represents the real form 

measured from the individual. The ratios of corresponding linear distances from the two forms 

are calculated. 
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FDMs contain all the relevant information (as represented by the landmarks collected) 

regarding morphological distances between two forms (or sample of forms). Differences of form 

can reflect a simple difference in scaling of two forms (i.e. only in size), or a combination of 

difference in size and shape.  

FDMij(B,A) is then used to estimate the form difference from all young and older subjects. 

The variance and covariance are estimated for individual features. Two gait features have the 

same form if their Euclidean matrixes are identical. Two gait features also have the same form if 

the Euclidean matrix describing one form is a constant multiple of the Euclidean matrix 

describing the second form. 

5.2. Experimental results 

To verify the proposed gait quantification approach, we perform experiments to our collected gait 

features from young and older adult subjects. We also present detailed analysis on the 

experimental results using the statistical software R (Team 2017). 

5.2.1. Data collection 

A database is created for our experiment using the automatic gait feature extraction method 

presented in Chapter 4. The database consists of eight selected gait features among the 13 

features extracted from right and left legs: include total distance (m), total time (s), velocity 

(m/s), swing length (m), swing velocity (m/s), stride length (m), stride time (s), stride velocity 

(m/s), step length (m), step time (s), step velocity (m/s), stance time (s), and swing time (s) for 12 

young and 20 older subjects. Figure 5.6 shows the gait features arising from right and left legs in 

both young and older subjects. From our evaluation, we conclude that the first five features are 

redundant since they can be estimated from the rest eight features. Therefore, we use the last 

eight features as these are all an average reading from 30 strides. Eight features of all individual 

subjects are plotted and each of these points is notionally joined together to represent a shape.  
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Figure 5.6: Gait features from young and older adults 

Figure 5.6 shows that gait features of young subjects from the right and left legs are very similar, 

i.e., the features lying on or close to a diagonal 450 line indicative of equal features arising from 

the right and left legs. Conversely for the older subjects there is more variability in output of 

features from right and left legs. This results in a greater scatter in the output recorded, indicative 

of greater asymmetry shown in Figure 5.6. For this reason, we chose to perform our GPA on the 

young subjects who had a more normal gait than the older subjects with a view of developing a 

reference NMGS.  

5.2.2. Estimating of mean normal gait shape 

We perform the GPA on the features (shapes) derived from young subjects. To do this all 10 

shapes of the young subjects obtained from both legs are plotted after GPA best fit alignment 

shown in Figure 5.7. This GPA translates and rotates each of the shapes to find the best fit.  The 

mean of each shape of the features is then estimated and plotted generating the shape of NMGS 

shown in Figure 5.7 (black line). 
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Figure 5.7: Gait features from young after GPA and the black line represents NMGS 

Figure 5.7 shows that gait features and the MNGS obtained as the mean features from the 

individual young subjects are very close to the diagonal.  

5.2.3. Gait quantification 

Next, we determine the shape differences between each pair of shapes i.e. the MNGS with the 

individual gait shapes. To quantify a gait based on all gait features we use four shape comparison 

techniques. The RSD, RSSD, PSSD and RMSD are calculated and presented in Table 5.1. 

Results closer to 0 suggest a gait shape close to the NMGS gait. 

TABLE 5.1 

Gait Quantification Information 

  RSD RSSD PSSD RMSD 

Y
o
u
n
g
 

1 0.129 0.152 0.129 0.054 

2 0.245 0.292 0.243 0.103 

3 0.304 0.364 0.299 0.129 

4 0.223 0.329 0.222 0.116 

5 0.367 0.467 0.359 0.165 

6 0.264 0.33 0.261 0.117 

7 0.204 0.237 0.202 0.084 

8 0.418 0.473 0.406 0.167 

9 0.38 0.441 0.371 0.156 

10 0.205 0.251 0.204 0.089 

11 0.270 0.324 0.267 0.156 

12 0.186 0.262 0.185 0.078 



CHAPTER 5: 5. EVALUATION OF GAIT USING PROCRUSTES ANALYSIS AND 

EUCLIDEAN DISTANCE MATRIX ANALYSIS 

184 

 

O
ld

er
 A

d
u
lt

s 

1 0.977 2.872 0.829 1.015 

2 0.922 1.885 0.797 0.666 

3 1.144 4.35 0.91 1.538 

4 0.905 1.79 0.786 0.633 

5 0.92 3.586 0.795 1.268 

6 0.886 3.104 0.775 1.097 

7 0.918 2.372 0.795 0.838 

8 0.874 1.711 0.767 0.605 

9 1.154 2.291 0.915 0.81 

10 0.959 3.417 0.819 1.208 

11 0.934 3.319 0.804 1.173 

12 1.058 3.755 0.872 1.328 

13 1.442 6.6 0.992 2.333 

14 1.018 2.989 0.851 1.057 

15 1.019 2.977 0.852 1.053 

16 1.173 5.084 0.922 1.798 

17 1.001 2.548 0.842 0.901 

18 0.94 1.848 0.807 0.653 

19 1.202 2.843 0.933 1.005 

20 1.01 3.809 0.847 1.347 

 

Table 5.1 shows that variations of the distances of the young subjects are smaller than those of 

the older subjects. Therefore, Table 5.1 can help distinguishing different gait patterns in young 

and older adults. 

We evaluate the data for statistical errors and assessed whether the estimated values are 

reasonable. A t-test comparing the mean values of RSD, RSSD, PSSD and RMSD values is 

carried out with a statistical significance level (alpha) of 0.05. The two sample unpaired t-test 

summary are given in Table 5.2.  

TABLE 5.2: T-test for distances between MNGS and gaits 

 MD SD t-value 
p-

value 
df 

95% Confidence Interval 

Lower Upper 

Riemannian shape distance 

Young 0.274 0.092 9.441 0.000 9 0.208 0.340 

Older Adults 1.023 0.140 32.708 0.000 19 0.957 1.088 

Riemannian size-and-shape distance 

Young 0.334 0.106 9.979 0.000 9 0.258 0.409 

Older Adults 3.158 1.199 11.775 0.000 19 2.596 3.719 

Procrustes size-and-shape distance 

Young 0.270 0.088 9.706 0.000 9 0.207 0.332 

Older Adults 0.846 0.061 61.831 0.000 19 0.817 0.874 
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Root mean square deviation 

Young 0.118 0.037 10.013 0.000 9 0.091 0.145 

Older Adults 1.116 0.424 11.773 0.000 19 0.918 1.315 

MD= Mean Difference 

The t-tests indicate (p<0.05) that there is a significant mean difference between the gait of young 

and older subjects for RSD, RSSD, PSSD and RMSD values.  

In order to study the variability in gait shapes we plot a box plot (Figure 5.8) and determine 

the range of results. From the box plot and t-test above, it is clearly seen that the mean values of 

RSD, RSSD, PSSD and RMSD of the normal young is significantly lower than those of older 

adults. 

 
Figure 5.8: Boxplot of RSD, PSSD, RMSD and PSSD 

Figure 5.8 shows that for young subjects, RSSD and RMSD are more consistent with less 

standard deviation (SD) than RSD and PSSD. For older subjects the opposite is identified with a 

wider SD for RSSD and RMSD than RSD and PSSD. The boxplot confirms the expected 

difference in gait shapes between young and older subjects. From Figure 5.8, we can observe that 

the RSSD provides the best indication among the four approaches since the variation of the older 

is large while the variation of the young is small. RMSD approach is the second best, followed by 

RSD and then PSSD. Next we determine what features of gait contribute to abnormality. 
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5.2.4. NMGF and inter-feature distance estimation 

The mean form based on these normal gaits is estimated and is considered as the NMGF. The 

NMGF is estimated directly from the unit less feature coordinate data using EDMA, which is 

shown in Table 5.3. 

TABLE 5.3: Normal Mean Gait Form (NMGF) Information 

Index Right Left 

F1 -0.48296 0.109081 

F2 -0.77767 -0.09042 

F3 -0.01428 0.002893 

F4 0.489212 -0.05726 

F5 0.192591 0.07357 

F6 0.175095 -0.12865 

F7 0.211629 0.007791 

F8 0.206385 0.083 

The Euclidean distance between all possible pairs of features are estimated from the NMGF for 

the inter-feature distances. This data is stored in an 8*8 matrix which is a symmetric matrix. 

Thus, Table 5.4 presents the lower triangular part of the matrix. 

TABLE 5.4: Inter-feature distances 

 
F1 F2 F3 F4 F5 F6 F7 F8 

F1 0        

F2 0.356 0       

F3 0.481 0.769 0      

F4 0.986 1.267 0.507 0     

F5 0.676 0.984 0.219 0.324 0    

F6 0.700 0.954 0.231 0.322 0.203 0   

F7 0.702 0.994 0.226 0.285 0.068 0.141 0 
 

F8 0.690 0.999 0.235 0.316 0.017 0.214 0.075 0 

Each cell in Table 5.4 of the inter-feature distance matrix shows the distance in two-dimensions 

that does not require a coordinate system. For example, the cell, that contains the number 0.356 

in the mean form matrix of the young subjects, represents the distance between features F1 and 

F2. This is the distance estimated directly from the feature coordinate data. The inter-feature 

distance of NMGF is used to estimate the form difference matrix between the NMGF and each 

gait to understand the degree of abnormality. 
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5.2.5. Form difference and form difference matrix between NMGF and 

each gait 

Estimation of the FDM is carried out for all gaits relative to the NMGF. The sum of divergences 

to the median value for each feature is estimated considering the whole FDM matrix (Claude 

2008). This is the matrix of the degree of abnormality where the higher the degree of difference 

the greater the abnormality. Lower values imply that the gait features of the individual are closer 

to the NMGF and conversely higher values mean that there is greater abnormality as there is 

greater deviation from the MNGF. To represent the degree of abnormality in a meaningful and 

easily interpretable way we propose a two dimensional plot to summarize, explore and interpret 

the FDM results. Figure 5.9 shows such a plot where the x axis represents individual gait features 

and the y axis represents the degree of abnormality in relation to the other features. The form 

difference for all eight gait features with respect to NMGF is plotted. For example, in Figure 5.9 

feature 1 has the highest difference with feature 2 but is very close to features 3-8. This analysis 

is applied to a set of 32 gaits (12 young and 20 older). 

 
Figure 5.9: The degree of abnormality of Young Subject 1 with respect to the MNGF for all the 

eight gait features. 

5.3. Discussion 

This study demonstrates a comprehensive analysis of gait using Procrustes and EDMA methods. 

Procrustes is valuable in determining variation of gaits from NMGS while EDMA is useful in 
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determining the degree of abnormality of the gait feature. The data is collected from 12 young 

(10 for modelling and 2 for validation) and 20 older subjects. We obtain the results using eight 

gait features collected automatically from both right and left legs by adopting low cost IMU 

sensors synchronously. Generalized Procrustes analysis is used to estimate a standard normal 

mean gait shape (NMGS) for 10 young subjects which is our benchmark. Each gait feature of 

both young and older subjects is then converted to find the best match with the NMGS using 

ordinary Procrustes analysis. The shape distance between the NMGS and each gait shape is 

estimated using RSD, RSSD, PSSD and RMSD. In our results we have shown that a normal gait 

provides a set distribution of features. Any deviation from this distribution is identifiable as 

abnormal. This to our knowledge has not been done before. Although at this stage one cannot 

extrapolate this information to make accurate diagnoses, the ability to identify such subtle 

differences in gait may have the potential to support specific diagnoses as well as treatment. This 

new method is more comprehensive using a range of parameters that include eight features from 

each leg whereas other methods (Seliktar and Mizrahi 1986; Robinson et al. 1987; Vagenas and 

Hoshizaki 1992; Agrawal et al. 2009) often rely on single or a smaller number of features. We 

also introduce a morphological analysis to the evaluation of gait where one can see a pattern of 

gait and identify where changes occur in the gait pattern. Different parameters of gait indicate 

different type of gait abnormalities.  

Although our results are encouraging, there are a number of limitations. The number of 

subjects is relatively small (32) and no steps are taken to ensure a random sample. Coincidentally 

there is a gender bias with most subjects being male. The aim of the study is to see whether a 

Procrustes method can be used to analyse gait and not to study gait differences between the 

genders.  This gender bias is therefore unlikely to impact the value of our results and what they 

are trying to achieve. Other possible confounding factors are speed of walking as well as different 

height resulting in different gait parameters such as stride length. Our study was however 

intended to evaluate the normal baseline gait of our subjects only. The influence of these other 

factors will be studied in the future. Lastly, NMGS and NMGF are estimated using only 10 

young subjects, while additional 2 young subjects are used for validation of our estimated NMGS 

and NMGF. There is the potential of a Type 1 error (false positive) in detecting an effect that is 

not there. 
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However, our work has established our method for gait evaluation. Future work is to establish 

a database with a larger number of subjects which stores more medical and physical information 

as well as longitudinal data across a longer period of time. Such longitudinal information will 

demonstrate the potential for using our method in monitoring response to treatment in patient 

with gait disorders. 

Normal gait is not determined by time and distance travelled. It is determined by the degree of 

variation in the gait features. While the time and distance can be assessed relatively easily using 

visual observation the variation is more difficult to determine. The Procrustes analysis uses 

translation and rotation among all gait feature shapes to find the best fit to identify such variation. 

This normalization technique is used for a set of 10 normal young subjects to estimate the 

NMGS. In total 32 (12 young and 20 older) gaits are then translated and rotated according to the 

NMGS for the best fit.  The RSD, RSSD, PSSD and RMSD distances between the NMGS and all 

gaits are then calculated. From Table 5.1 we can see that the highest and lowest of RSD, RSSD, 

PSSD and RMSD distances are found in Y8 (young 8) and Y1 for young subjects, O13 (older 13) 

and O8 for older subjects respectively. From the individual gait features, the highest and lowest 

travelled distance are found from Y5 and Y10, the highest and lowest time are found from Y4 

and Y8. Interestingly, considering all gait features, the highest variation lies in Y8. This is 

demonstrated in the Procrustes shape obtained in Figure 5.10a. Although, other young subjects 

travelled distance and time are higher than Y8, based on the overall gait features, the shape 

difference between the MNGS, Y8 is the highest. Similar findings are also found for older 

subjects. The lowest and highest shape difference is found for O8 and O13 shown in Figure 

5.10b. 
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Figure 5.10: Lowest and highest shape differences from (a) young and (b) older subjects 

Investigating the history of O13 helps explain the shape of the graph. In this case O13 had a 

stroke and numbness in the right leg. He is unable to move his right leg and used crutches for 

moving. Thus most of the movement during walking is covered by the left leg and crutches are 

used to keep body balance. In Figure 5.10b we can see that the normal left leg shows greater 

movement but the abnormal right leg has less movement detected. In the future we will 

investigate further the impact of specific diagnoses and patient health on these gait parameters by 

exploring gait patterns obtained in specific diagnoses such as Parkinsons disease, Stroke, and 

other conditions causing abnormal gaits. 

A t-test and Boxplots using RSD, RSSD, PSSD and RMSD distances show that the gait of 

young are distinguishable from older. The standard deviations are close to the mean indicating 

that the gait data distribution from young subjects’ is more consistent than that from older. The 

Box plots of the four different distance approaches, RSD, RSSD, PSSD and RMSD, show 

different distributions. The Box plots indicate that for young subjects RSSD and RMSD provides 

more consistent results with less standard deviation (SD) than RSD and PSSD. For older subjects 

the opposite is identified with a wider SD for RSSD and RMSD than RSD and PSSD. This 

difference is likely to arise as a consequence of the different mathematical formulas involved in 

calculating these measurements. In the future we will explore the reasons for this in more detail.  

To fully understand the degree of gait abnormality for older subjects, we use EDMA to 

locate the specific feature of the gait contributing to the abnormality. The process starts with 

estimating a mean form from a set of normal young gaits called as NMGF. It is then used to 
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estimate the inter-feature distances that represents the distance between each features from one to 

another. The form difference matrix is then estimated between NMGF and all gaits. The form 

difference of Y1, Y8, O8 and O13 are shown in Figure 5.11. The details of the form difference 

matrix results are presented in the Appendix E. 

 
Figure 5.11: Degree of abnormality from (a) young and (b) older adults 

Gait quantification and evaluation is a challenging problem and has attracted growing interest. 

However, there is no baseline algorithm or standard acceptable commercially available automatic 

gait evaluation method for measuring and determining what factors affect gait performance. The 

commonly used approaches for quantification of gait are based on human observation and include 

scales such as the Gait Abnormality Rating Scale (Brach and VanSwearingen 2002), Figure of 8 

Walk Test (Hess et al. 2010), Four Square Step Test (Duncan and Earhart 2013), The Functional 

Gait Assessment (Wrisley and Kumar 2010), Groningen Meander Walking Test (Bossers et al. 

2014) and Berg Balance Scale (Berg et al. 1992). These approaches require clinician or expert 

help for gait assessment. Our method of gait evaluation is object, simple and user friendly. Our 

proposed gait evaluation method has two parts: we use 1) Procrustes for shape normalisation, 2) 

four techniques shown in Table 5.1 for gait quantification and 3) EDMA for identifying the 

degree of abnormality shown in Figures 5.10 and 5.11. Another advantage is that our proposed 

system is affordable and does not require laboratory setup. 

With an aging population and the increase in chronic illness such as poor mobility and falls 

there is an increasing drive for new technologies to support treatment of patients in their own 
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home. Human gait becomes weak over time. Our proposed system can be used to monitor gait 

abnormality. This can apply to many diseases such as the slow, shuffling, festinant gait of 

Parkinson’s disease, the hemiplegic gait of a stroke or the steppage gait seen in foot drop or 

myopathy. A series of gait feature measurements on a regular basis can identify the progression 

or recession of changes in gait pattern as well as response to treatment with rehabilitation for 

these types of diseases and more. Growing young adults particularly if they have physical 

disabilities may develop gait abnormalities during puberty growth spurts. The treatment for gait 

abnormality mainly depends on the severity and the potential growth of the patient and type of 

abnormality. Periodic monitoring is becoming essential to make sure that such gait abnormalities 

are not progressing. Our method of gait evaluation can be used for such longitudinal monitoring 

for these cases. The continuous monitoring is essential to determine any treatment regarding 

rehabilitation. Thus, our low cost gait evaluation system has the potential for widespread clinical 

use both at home and in a hospital setting. Using our methods, it is possible to identify where in 

the gait cycle the abnormality lies and this enables therapists to identify problems to address 

these timely and in a more specific way. In future works, we plan to use our gait evaluation 

information to classify gait changes over time to identify abnormal gait patterns for the 

assessment of elderly fall risk, rehabitation and sports applications. 

5.4. Conclusion 

We designed and implemented a system that is portable and can be used in both home and clinics 

without requiring access to a gait laboratory. We also designed and developed an android app to 

collect accelerometer and gyroscope data from multiple IMUs synchronously. We collected gait 

movement data from both right and left legs for 12 young and 20 older subjects using our 

developed system. The Procrustes and EDMA analysis are used for gait evaluation that provide a 

comprehensive interpretation of shape and form differences between individual gaits. This 

method creates a new way of gait quantification and provides information to distinguish young 

from older gaits taking the full features distribution into account rather than extracting specific 

length and time. Initially, GPA is used to normalize gait features from 10 young subjects and 

estimate the NMGS. Each gait is then translated and rotated to find the best fit with the NMGS 

using OPA. The shape distance between the NMGS and each gait are estimated using RSD, 

RSSD, PSSD and RMSD. The distance values for the young subjects are significantly lower than 

those for the older subjects. This suggests that the RSD, RSSD, PSSD and RMSD parameter may 
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be suitable for evaluating between young and older gait. A t-test is performed to provide 

statistical evidence that young gait is significantly different from older gaits. The distribution of 

the shape distances is presented in Boxplot. It shows that the data spread for young gait is very 

compact compared to that for the older gait. From the above scenario, it can be concluded that 

older gaits are distinguishable from the young gaits and assessing a number from individual gaits 

based on all gait features a value is obtained which indicates whether the assessed gait is normal 

or abnormal depending on their feature values. EDMA is used to estimate the degree of 

abnormality of individual features in a gait and visualize the feature in a gait. Initially NMGF and 

inter-feature distances are estimated from a set of 10 young subjects. Form difference is estimated 

between the NMGF and individual gaits. The degree of abnormality is then estimated for 

individual features and the result is plotted to visualize the feature in a gait. A conclusion is 

drawn from this analysis is that EDMA can help to estimate and visualize the position of the gait 

abnormality. The high value indicates the high degree of abnormality relative to the NMGF while 

the low value indicates low abnormality. Our method offers several advantages: 1) it is user 

friendly and is easy to set up and implement; 2) it does not require complex equipment with 

segmentation of body parts; 3) it is relatively inexpensive and therefore increases its affordability 

decreasing health inequality; and 4) its versatility increases its usability at home supporting 

inclusivity of patients who are home bound. Therefore, our method can help improve the 

accuracy of assessment and monitor the rehabilitation of patients with mobility problems. 
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6. CONCLUSION AND FUTURE WORKS 

6.1. Conclusion 

This thesis sought to develop an automatic gait analysis system suitable for use in homes 

and clinics environments. The recommended system needs to be customized and modified in 

future studies to understand of insight into effect of aging on gait and balance for therapeutic for 

planning, management, clinical decision making and rehabilitation. 

6.2. Achievement of objectives 

In this thesis eight objectives are set, five separate studies are conducted, and the results 

obtained from the studies are combined to address our primary objectives. 

Objective 1:  

Chapter 2 provides a review of prior studies in wearable sensors for gait analysis and identifies 

the shortcomings on previous gait analysis systems for home based users. A detailed research gap 

is described in Section 2.5.  There are two main aspects of the research gaps in wearable sensor 

based gait analysis system. The first gap is related to practical aspects including cost, user 

acceptance, usability and privacy. The other gap is related to technical aspects described in 

Section 2.5.2. To overcome the practicality issues in terms of cost and acceptance and to extend 

the types of accuracy and reliability and improve in order to broaden the use of accurate 

quantitative gait monitoring in clinical application and research and to understand the gait and 

balance disorder deeply, an affordable automatic gait analysis system is required which can 

provide comprehensive gait information and allow to use in clinic or at home. It will also enable 

the identification of gait variables and changes, monitoring of gait and abnormal gait patterns of 

older people to reduce the potential for falling, support future falls risk management aiming to 

improve their quality of life. 

Objective 2:  

There are wearable wireless IMU sensors commercially used for health rehabilitation, movement 

monitoring, sports tracking or research. A wireless wearable Bluetooth, long autonomy, 

minimum consumption, multiple synchronised data transmission supported IMU sensor with low 

cost is important for our investigation. More specifically, since our later investigation is to 
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identify older adults gait pattern changes over long time, the IMU device is required to last 

approximately a week or more. Selecting a sensor should also have generic considerations such 

as protection from pressure, water and temperature, and the battery life etc. Based on the different 

aspect of our research and literatures, the MetaWearCPro sensor is selected for our research.  

Once the sensor is selected, it is necessary to design the sensor protection system. Sensor 

protection is a very important infrastructure for lower limb gait analysis. The system will ensure 

that the sensor is protected from pressure, water and temperature etc. Due to damage of the 

protection system may directly affect the sensor output and its economic benefit. Therefore, 

casing damage is a serious problem to be considered during the design and development of the 

casing system, and in general, sensor casing damage are caused due to material stress factors, 

engineering technique factors and corrosion factors during body movement. Considering all 

issues, the sensor casing is designed and printed using 3d printer. A Velcro elastic belt and 

buckles are used to adjust and attach the sensor. Buckle and Elastic Belt: the buckle is sewn onto 

an elastic belt for fastening to Velcro; Bottom case keeps the sensor safe from pressure, 

temperature and water. Lock Open Edge which helps to open the cover from bottom case. Sensor 

Lock Mechanism: The four locks keep the sensor sideways movement and orientation. Cover 

Lock Mechanism which tightly locks with the case. Velcro-Elastic Joint: The elastic belt is sewed 

with Velcro. Velcro which adjusts and tighten when the sensor is attached. 

The Android app is developed to collect real time data from the MetaWear sensor. The HTC M9 

mobile phone which has BLE 4.1 is used to connect to multiple MetaWear Cpro sensors. This 

mobile phone supported up to 7 MetaWear Cpro devices and it is able to collect synchronous 

data. The app collected accelerometer and gyroscope data, and stored data on an external SD card 

as a csv file. 

Objective 3:  

The aim is to maximize the interpretable information for gait analysis. To achieve this, it is 

important to find the optimal sensor placement and the parameters that influence the extraction of 

automatic gait features. We investigated the effect of different anatomical foot locations on IMU 

sensor output. We selected a set of five anatomical foot locations covering most of the foot 

regions to place wearable wireless IMU sensors for data collection. We collected accelerometer 

and gyroscope data from 15 participants. Each participant performed a trial in a straight corridor 

comprising 25 strides of normal walking, a turn-around and another 25 strides. We also propose 
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an automatic gait features extraction method to analyze the data for stride number, distance, 

speed, length and period of stride, stance, and swing phases during walking. The highest accuracy 

for detecting stride number is in location 1 (first cuneiform) followed by location 5 (Achilles 

Tendon) and 4 (Talus). Location 1 is the closest to correlate estimate to the measured distance 

travelled. The accuracy of detecting number of strides on average is 95.47% from accelerometer 

data and 93.60% from gyroscope data and closest to the 60:40% split for average stance and 

swing for 15 subjects. To validate our results, using 10 young participants, we conducted trials 

using the Qualisys motion capture instrument and from our IMU sensor concurrently. The 

average accuracy of our result is 97.77% with 95% confidence interval 0.767 for Distance and 

99.01% with 95% confidence interval 0.266 for Period. 

Objective 4:  

The aim is to assess the use of IMU sensors to identify gait asymmetry by extracting automatic 

gait features. The data are collected from 10 young and 10 older subjects. Each performed a trial 

in a straight corridor comprising 15 strides of normal walking, a turn around and another 15 

strides. We analyse the data for total distance, total time, total velocity, stride, step, cadence, step 

ratio, stance, and swing. The accuracy of detecting the stride number using the proposed method 

is 100% for young and 92.67% for older subjects. The accuracy of estimating travelled distance 

using the proposed method for young subjects is 97.73% and 98.82% for right and left legs; and 

for the older, is 88.71% and 89.88% for right and left legs. The average travelled distance is 

37.77 (95% CI ± 3.57) meters for young subjects and is 22.50 (95% CI ± 2.34) meters for older 

subjects. The average travelled time for young subjects is 51.85 (95% CI ± 3.08) seconds and for 

older subjects is 84.02 (95% CI ± 9.98) seconds. The results show that wearable sensors can be 

used for identifying gait asymmetry without the requirement and expense of an elaborate 

laboratory setup. This can serve as a tool in diagnosing gait abnormalities in individuals and 

opens the possibilities for home based self-gait asymmetry assessment. 

Objective 5:  

Visualization of gait asymmetry can provide added value in rehabilitation, clinics and sports. 

Common approaches for the quantification of gait asymmetry give the numerical values of 

parameters such as symmetry index, symmetry ratio, symmetry angle etc. It may be difficult for 

users to understand those numerical values. In order to conveniently use quantitative gait 

asymmetry monitoring for users, an affordable visualization tool is useful to provide a facility for 
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their use in clinic and at home. We investigate four approaches for monitoring gait asymmetry to 

provide automatic graphical visualizations of information about gait. The results show that 

affordable wearable IMUs can be used for objective gait asymmetry feature extraction without 

the requirement and expense of an elaborate laboratory setup. Our procedure significantly 

simplifies the monitoring protocols and opens possibilities for home based assessment and 

supports digital transformation strategies through the development of new technology. 

Objective 6:  

The assessment of gait features is important in treatment and rehabilitation of patients suffering 

from various conditions causing gait abnormalities. Currently such assessments depend on access 

to expensive complex equipment often based in gait laboratories. In order to increase the use of 

accurate quantitative gait monitoring in clinic and at home, a low cost gait assessment tool is 

required. The aims are to determine the concurrent validity of spatiotemporal IMU gait extracted 

features with MCS and Treadmill measurements in young and older adults and to compare the 

levels of agreement for average spatiotemporal gait parameters. 48 subjects (28 young and 20 

older adults) participate in the study. We validate our system using three experiments; 1) 

Treadmill at various walking paces vs MCS, 2) Self-selected (free) walking vs MCS, and 3) Self-

selected (free) walking vs Digital tape for distance. We apply ICC, LCC and r to measure the 

level of agreement between IMU gait extracted features and MCS measurements. The 

experimental results demonstrate that our IMU gait extracted features are highly valid for 

spatiotemporal gait variables in young and older adults.  Experiment 1 shows that the relative 

accuracy of our IMU sensors is between 85.48%-99.96% for travel distance and 99.49%-99.97% 

for Time measurement. The level of agreement using ICC(2,1), LCC and r between IMU gait 

extracted features and MCS for each gait variable of distance and time at different speed levels 

from right and left legs from all subjects demonstrates excellent agreement is good (from 0.78-1). 

Experiment 2 shows the average accuracy is 97.57% with 95% confidence interval ±1.327 for the 

estimated distance and 99.01% with 95% confidence interval ±0.266 for the Time. Experiment 3, 

we validate our IMU system with more generic variation of age and environment with a sample 

size of 900 strides. The results show that the accuracy of detected stride and step number is 

achieves 100% excellent for young subjects. The accuracy of estimating travelled distance is 

97.73% for right and 98.82% for left legs. The ratio of stance and swing is found closest to the 

60:40% split for average stride, stance and swing. For older adults, the accuracy of detecting 

stride and step number is 92.67% and the accuracy of estimating the travelled distance is 88.71% 
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for right and 89.88% for left legs. We demonstrate that automatic gait features extraction can be 

done without the need to access an expensive gait laboratory. This can be the base of developing 

tools that can be used in the treatment, rehabilitation and self-assessment of gait at home. 

Objective 7:  

Objective assessment of gait is important in the treatment and rehabilitation of patients with 

different diseases. We propose a gait evaluation system using Procrustes and Euclidean distance 

matrix analysis. The data is collected from 12 young and 20 older subjects. We analyse the data 

collected from real world for stride, step, stance time and swing time. We validate our method 

with measurements of gait features. Our method is objective and simple.  It has three parts: we 

use 1) Procrustes for shape normalisation, 2) four techniques shown in Table 5.1 for gait 

quantification and 3) EDMA for identifying the degree of abnormality shown in Figures 5.9 and 

5.11. This method also provides information to distinguish young from older gaits taking the full 

features distribution into account rather than relying on individual parameters such as specific 

length and time. EDMA can help to estimate and visualize the position of the gait abnormality. 

Experimental results to demonstrate the performance of the proposed method. 

Objective 8:  

To increase accessibility to sophisticated gait assessment a major transformation strategy 

framework is necessary. We propose a digital transformation strategy framework for gait analysis 

based on the development and use of new technology, changes to value creation, structural 

change, affordability and sustainability. We use sensors to collect gait parameters. Via 

connectivity and cloud computing such information is analysed using machine learning 

techniques. This will enable a human (health care professionals, social carers and patients) 

computer interaction to support diagnosis and treatment of gait abnormalities. Therapists will be 

able to make complex assessments and patients will be able to monitor gait in their own home 

removing the need to attend hospitals or clinics. By using remote monitoring technology 

therapists, general practitioners and patients can use the same platform to monitor and make 

treatment decisions together. The details of this framework is described in Chapter 6.5. 
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6.3. Contributions 

In order to address our primary objective, following engineering and clinical contributions are 

made. 

6.3.1. Contribution in biomedical engineering 

Gait Data Acquisition 

 An Android app is developed to collect multiple IMUs data synchronously. The data can 

be stored in local storage or in the cloud. 

 A sensor protection system (MetaWear casing, Velcro elastic belt, and buckles) is 

designed and developed to keep the sensor safe from pressure, water and temperature. 

 Pre-processing methods are presented to clean-up and extract useful gait information from 

the recorded IMU sensor data including the spatiotemporal gait parameters. 

 An engineering setup of the sensors in long open corridor and care home environment are 

shown and used to collect gait data from young and older adults. 

Gait Data Analysis 

It is shown how to use novel computational gait analysis algorithm and validate approaches to 

analyze high dimensional time-dependent gait data: 

 A gait feature extraction method for finding the optimal location of placing IMU sensors 

on foot 

 An automatic gait feature extraction method (a novel stride detection technique, a stance 

and swing detection technique, and a method for estimating travelled distance) to monitor 

gait asymmetry 

 Four visualization approaches for monitoring gait asymmetry to provide automatic 

graphical visualizations of information about gait 

  Concurrent validity of spatiotemporal IMU gait extracted features against MCS and 

Treadmill measurements in young and older adults and comparing the levels of agreement 

for average spatiotemporal gait parameters 

 Gait evaluation method using Procrustes and Euclidean distance matrix analysis 
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6.3.2. Clinical contribution 

Gait Data Acquisition 

The presented automatic gait analysis system can be used in clinical settings as an alternative to 

currently used visual based observations or three dimensional motion capture system or pressure 

sensitive mats. 

 Compared with the visual based observation assessments (details in Chapter 2), these 

conventional assessments are highly dependent on assessors’ experience and judgment 

and such may not satisfy scientific criteria of reliability and validity which may affect the 

accuracy of diagnosis, follow-up and treatment. 

 Compared with “gold standard” technologies such as three-dimensional kinematic 

analysis using a motion capture system, force plate and pressure activated sensors, these 

technologies are expensive, time consuming, limited to a single gait cycle and laboratory 

based which reduce their feasibility to be used in clinics. 

 Compared with the pressure sensitive mat, it is not sensitive to foot placement and ground 

reaction force. These mats require the subjects to walk within the narrow width of the mat 

(88 cm), which is challenging for populations with vision impairment, stroke, Parkinson's 

or brain injuries. 

 Gait Data Analysis 

The presented gait analysis tool can also help clinicians better interpret and analyze complicated 

gait data through the following applications:  

 A gait monitoring system: The real time visualization of gait information and 

asymmetry can provide added value in rehabilitation, clinics and sports. The four 

visualization approaches (1) Real time dial visualization; 2) Visualization of individual 

leg time variation; 3) Visualization of both legs asymmetry; and 4) Boxplot-based 

visualization) are useful for people in health professionals as well as patient. Real time 

dial visualization showed the instantaneous gait asymmetry of both legs from distance and 

time of stride, step and swing phases of each gait cycle using a dial and an indicator. It 

also showed instantaneous distance and time of stride, step and swing values in a seven 

segment display. Individual leg variation visualization showed the variation in stride, 
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stance and swing phases in time. Both legs asymmetry visualization showed the 

asymmetry between two legs for strides and steps. Boxplot-based visualization showed 

the overall stride, step, stance and swing phases distribution. These approaches are user 

friendly and easy to interpret and have the potential of helping professionals detect and 

interpret gait associated abnormalities. This has the potential of a significant advance. As, 

gait asymmetry has been shown to be a determinant of recovery in patients suffering from 

several conditions with stroke (Hodt-Billington et al. 2008), lower limb amputations 

(Skinner and Effeney 1985), osteoarthritis (Shakoor et al. 2003) and cerebral palsy 

(Winiarski) such equipment may have a role in the evaluation of such patients. It can also 

be used to monitor patient progress in orthopedics and rehabilitation (Steultjens et al. 

2000). Therefore, proposed real time dial based visualization tools offer an easy and user 

friendly way to visualize, monitor and rehabilitation of gait, and can be used for different 

applications at home as well as in clinics. 

 A gait evaluation system: With an aging population and the increase in chronic illness 

such as poor mobility and falls there is an increasing drive for new technologies to 

support treatment of patients in their own home. Human gait becomes weak over time. 

Proposed gait evaluation system can be used to monitor gait abnormality. This can apply 

to many diseases such as the slow, shuffling, festinant gait of Parkinson’s disease, the 

hemiplegic gait of a stroke or the steppage gait seen in foot drop or myopathy. A series of 

gait feature measurements on a regular basis can identify the progression or recession of 

changes in gait pattern as well as response to treatment with rehabilitation for these types 

of diseases and more. Growing young adults particularly if they have physical disabilities 

may develop gait abnormalities during puberty growth spurts. The treatment for gait 

abnormality mainly depends on the severity and the potential growth of the patient and 

type of abnormality. Periodic monitoring is becoming essential to make sure that such gait 

abnormalities are not progressing. Our method of gait evaluation can be used for such 

longitudinal monitoring for these cases. The continuous monitoring is essential to 

determine any treatment regarding rehabilitation. Thus, our low cost gait evaluation 

system has the potential for widespread clinical use both at home and in a hospital setting. 

Using our method, it is possible to identify where in the gait cycle the abnormality lies 

and this enables therapists to identify problems to address these timely and in a more 

specific way. 
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In general, the gait monitoring and diagnostic tools are potentially appropriate for frequent gait 

analysis in the home, i.e., without the need to visit a specialized gait clinic. It enables automated 

capture and analysis of gait for longitudinal monitoring. 

6.4. Limitation 

The ultimate goal of our research is to make the evaluation of gait widely available in diagnosing 

gait abnormalities in individuals and opens the possibilities for home based self-gait assessment 

aiming to identify long term gait changes and classify gait abnormalities. Home based 

monitoring, real-time identification of gait changes has many benefits such as early identification 

of potential fall risk and monitoring the progress of treatment outcomes. However, each of the 

five studies included in this thesis have limitations. The limitation of each studies are described 

details in each chapter Sections 3.3.2, 4.1.11, 4.2.5, 4.3.7 and 5.3. 

6.5. Future work 

The analysis and methods conducted in this thesis demonstrate a prototype for an automated gait 

analysis system which is designed to demonstrate feasibility for older adults to use in their home. 

Our future work therefore encompasses all essential steps required to transfer the developed 

prototype design to a real-world clinical application. Specifically, our future work will involve 

conducting a sizable number of clinical trials. Clinical trials will be used to gather information on 

how the tool actually performs for a range of rehabilitation applications. This would demonstrate 

acceptability to the clinicians and patients and also improve areas where problems are 

encountered. For instance, in order to explore burdens and problems that are specific to using 

such a technology in homes and residences, a future study will include making a series of 

experiments in older adults own homes or long-term care facilities where longitudinal monitoring 

of gait can be achieved over days, weeks or months. Furthermore, it is essential to provide 

education to understand the functionality of the system to healthcare providers (e.g. physical 

therapists) on appropriate use of the system. These two steps will make the prototype ready for 

market assessment and clinical use.  

To increase sustainable accessibility of our developed gait assessment system a major 

digital transformation strategy is necessary. Therefore, we propose a digital transformation 

strategy framework based on our system and to use of new technology, changes to value creation, 
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structural change, affordability and sustainability. This will enable a human (healthcare 

professionals, social carers and patients) computer interaction to support diagnosis and treatment. 

Therapists will be able to make complex assessments and patients will be able to monitor gait at 

home. By using remote monitoring technology therapists, doctors and patients can use the same 

platform to monitor and make treatment decisions together. This will open opportunities for 

business companies to establish structures for the development and manufacture of equipment as 

well as opportunities for interaction with healthcare providers to improve the care of people with 

gait abnormalities. 

Digital transformation drives a significant shift in the business operations, products, 

processes and organisational structure of a company facilitating its initiatives to make use of 

digital technologies (Matt et al. 2015). Digital transformation has revolutionized business models 

in a variety of industries. However, the adoption of digital services in healthcare has progressed 

at a relatively slow pace. Healthcare service providers are still in an experimental phase when it 

comes to offering digital services beyond traditional hospital based approaches. Therefore, the 

need for more profound transformation in healthcare systems has intensified in recent years due 

to social needs and technological developments (Barnett et al. 2011). On the one hand, the 

increasing demand for care challenges the sustainability of the current system due to the increase 

of an ageing population with complex health and social care needs (Lopreite and Mauro 2017). 

On the other hand, health economic studies point out that supply pressures also threaten the 

sustainability of healthcare systems (Lehoux et al. 2016). The challenge is of meeting increased 

demand while reducing the costs of healthcare systems. Digital transformation  can play an 

important role driving the shaping of industry as digital services beyond the product itself are 

being integrated into the range of offerings that enables safer, accessible and more affordable 

healthcare systems  (Agarwal et al. 2010). It has already been used on many fronts in healthcare, 

but products or services have mainly been targeted to professionals (e.g. electronic medical 

records) and are aligned with the prevailing logic in healthcare that focuses on ‘production of 

healthcare’ as opposed to producing health (Asch and Volpp 2012). Many digital health 

innovations aim to make healthcare more affordable through redesigning workflows or through 

automation of tasks previously conducted by health professionals, such as automatic image 

analysis. Together these innovations have become a phenomenon, referred to as the digital 

transformation or revolution of healthcare. This highlights expectations of the dramatic changes 

in the field of healthcare in the coming decades (Topol and Hill 2012).  
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6.5.1. Requirements of a digital transformation strategy framework for 

gait analysis 

In this section, we address the requirements of a Digital Transformation Strategy Framework for 

Gait analysis by considering 1) affordability and portability; 2) reduction of inequality; 3) patient 

centred; 4) compatibility; 5) commercialisation. 

6.5.1.1. Affordability and portability of personalized tools for healthcare 

An important aspect of any new developments is a cost benefit analysis to ensure that any new 

developments offer good value for money. At present the detailed analysis of gait depends on 

expensive gait analysis equipment based in gait labs (Lipsitz et al. 2015; Mentiplay et al. 2015), 

which is financially unaffordable to the majority of patients. On the other hand, it requires 

patients to travel to the site where the equipment is based and therefore is not suitable for patients 

who have difficulty in travelling. Therefore, new affordable and portable products are needed to 

increase the availability to all patients. IMU has been used in several different spatiotemporal and 

kinematic assessments of gait. These include monitoring of post-operative gait abnormalities 

(Hanly et al. 2016), stride variability (Urbanek et al. 2017), measurement of gait asymmetry 

(Esser et al. 2012), fall-related gait characteristics measured on a treadmill in daily life (Rispens 

et al. 2016), nature of Parkinson gait (Okuda et al. 2016) and human walking foot trajectory 

(Kitagawa and Ogihara 2016). IMUs are relatively inexpensive with low power consumption 

which allows data collection over a long period of time where virtually an unlimited number of 

steps can be evaluated). Linking software with Bluetooth Low Energy based IMU technology, 

smart phones and tablets is a possible way of delivering gait analysis addressing issues of 

affordability and portability. 

6.5.1.2. Reduction of health inequalities 

Affordable portable equipment which is available to all helps address the social imperatives of 

reducing health inequalities and offers opportunities to those with mobility difficulty and unable 

to travel to hospital. The persistence of socioeconomic inequalities in health, even in the highly 

developed ‘welfare states’ of Western Europe, is one of the great challenges of public health 

(Mackenbach 2012). This includes three areas: 1) inequalities in access to material and 

immaterial resources that have not been eliminated by the welfare state, and are still substantial; 
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2) greater intergenerational mobility, i.e., the composition of lower socioeconomic groups has 

become more homogeneous with regard to personal characteristics associated with ill-health; and 

3) change in epidemiological regime, in which consumption behaviour became the most 

important determinant of ill-health, increasing access to the marginal benefits of the immaterial 

resources by a higher social group (Mackenbach 2012).  

6.5.1.3. Patient and user involvement 

Patient-centered care, shared decision-making, patient participation and the recovery model are 

models of care which incorporate user involvement and patients’ perspectives on their treatment 

and care (Storm and Edwards 2013). User involvement will increase influence of patients on 

decisions about their treatment, ensure that services are provided in accordance with patients’ 

needs and enhance patients’ control over their own healthcare (Borg et al. 2000). Technology 

needs to be acceptable to majority users (older people, caregivers, health professionals, 

community members). Barriers to the development and adoption of the technology need to be 

identified. To date no wearable systems have penetrated into clinical practice at scale (Kirtley 

2006). There are various reasons that may contribute to this including poor tolerance of existing 

wearable devices, a lack of reliability of the information collected, very limited battery life and 

limited subsequent use of the data for clinical decision support. The inputs, requirements, issues, 

attitudes from the users need to be considered in relating with our innovative technology to 

conduct the design and technical choices while developing the proposed system. Public 

engagement events need to explore cross-cutting issues such as trustworthy data use and privacy. 

6.5.1.4. Compatibility with other systems 

Any systems that are developed need to be compatible with existing information technology 

systems (Drummond et al. 2015; Guthrie et al. 2015) to facilitate information collection, sharing 

and storing. The aim will be to facilitate information sharing with other systems used by other 

clinicians in NHS hospitals and GP surgeries. This will support integrated care by multi-

professional and interdisciplinary specialists which is another aim in the NHS 5-year plan 

(England 2017a). The benefits of more coordinated care are several which include more 

efficiency with financial benefits in avoiding duplication/complications from missed treatments.  
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6.5.1.5. Market opportunity 

The remote digital automatic gait assessment system we proposed offers a great market 

opportunity for equipment manufacturers, internet service providers and application developers. 

The digital smart objects are expected to reach 212 billion entities deployed globally with market 

forecast to exceed $7 trillion by the end of 2020 (Gantz and Reinsel 2012) and could generate up 

to $11.1 trillion a year in economic value by 2025 (Manyika et al. 2015). Considering the above 

aspects, an innovative digital strategy framework for gait analysis is proposed in the next section. 

We consider all above requirements in proposing the framework and demonstrate it through a 

pilot study. 

6.5.2. Proposed digital transformation strategy framework for gait 

analysis 

A major challenge for researchers and clinicians who address healthcare issues in the ageing 

population, is to monitor functioning, and to timely initiate interventions that aim to prevent loss 

of functional abilities  to improve the quality of life of older people (Zijlstra and Aminian 2007). 

Gait assessment around the world urgently demands the transformation of gait assessment from a 

hospital or laboratory centered system to a person or home centered environment. Within this aim 

we have developed an automatic wearable multi-sensor IMU based system for gait analysis. This 

technology has the ability to make sophisticated real time assessments of various gait parameters. 

Information collected automatically is then uploaded to a cloud and using artificial intelligence 

(AI) this information can be analysed and subsequently accessed and shared by patients, care 

professionals including hospital specialists, general practitioners, therapists and social workers 

who can interact and decide on management plans. Figure 6.1 shows the proposed digital 

transformation strategy framework which consists of 1) human gait; 2) sensors; 3) connectivity; 

4) cloud computing; 5) intelligence and 6) human computer interaction. 

 

Figure 6.1: Proposed digital transformation strategy framework 
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The proposed framework will offer the ability to measure, infer and understand gait information 

to provide support and intervention through healthcare professionals. Human gait information 

will be collected using sensors and blend seamlessly from older adults in care homes or clinics, 

and the information is shared across platforms through connectivity, cloud computing and 

intelligence in order to develop a common operating picture for human computer interaction. 

Various sensors will be used for gait data collection. Sensors network technologies will be used 

for connectivity in which information and communication systems are invisibly embedded in the 

environment for automatic gait data collection. This generates enormous amounts of data which 

have to be stored, processed and presented in a seamless, efficient, and easily interpretable form. 

Cloud computing will provide the virtual infrastructure for such utility computing which 

integrates sensors, storage devices, analytics tools, visualization platforms and client delivery. AI 

and intelligent machine learning technologies will be used for information interpretation and 

generate assistive decision. Human computer interaction will provide a user-friendly interface for 

various users, e.g. healthcare professionals, patients, caregivers, etc. to manage, plan and 

treatment. The proposed digital transformation strategy framework is  inspired by the Internet of 

Things (IoT) architecture (Gubbi et al. 2013).  The detailed descriptions of Figure 6.1 are shown 

in the following subsections. 

6.5.2.1. Human gait 

The proposed digital transformation framework for gait analysis starts with understanding of 

human gait. Human gait is the systematic study of the way, the manor, the style of walking and 

the ability to maintain balance in an upright posture. Gait patterns are highly repeatable both 

within a subject and between subjects, but clearly each person has a unique walking style. 

Efficiency of walking depends on mobility of the joints, activity of the muscles, coordination and 

rhythm of the movements as well as the ability to smoothly move the center of gravity. This 

rhythmic locomotion is a series of rhythmic alternating movement of arms, legs, and trunk which 

create forward movement of the body (Murray 1967). The components of gait and balance are 

fundamental to physical function. Together, normal gait and balance enable ambulation, also 

known as mobility which is the primary mode of personal transport. Human gait analysis 

includes measureable parameters including spatiotemporal, kinematics, kinetics and dynamic and 

other features. Comprehensive gait parameters are shown in Figure 6.2. 



CHAPTER 6: CONCLUSION AND FUTURE WORKS 

208 

 

 

Figure 6.2: Gait parameters tree of human gait 

Basic prerequisites for gait analysis are the assessment of spatiotemporal distance and time based 

gait parameters (e.g. stride, step, cadence, stance and swing) and the analysis of movements 

within subsequent stride cycles (Zijlstra and Hof 2003). The analysis of kinematic or physiologic 

signals (e.g. angle of joints such as trunk angle, hip angle, knee angle, ankle angle and foot) and 

kinetic signals (e.g. ground reaction force, muscle-tendon length, muscle moment arm and 

biofeedback) during subsequent stride cycles is also important for gait analysis where these 

parameters may contribute to development and/or progression of knee osteoarthritis (Hart et al. 

2015). Gait analysis also includes EMG to record the electrical signals activating the muscle 

fibers, combined parameters (e.g. joint angles and ground reaction forces) and anthropometric 

information (e.g. age, gender, height, weight, limb length and body mass index) (Tasch et al. 

2008). 

6.5.2.2. Sensors 

Clinical gait assessment is the process by which quantitative information is collected to aid in 

understanding the quality of patient’s gait and balance abnormalities and in treatment decision-

making. The details of sensors are discussed in Section 2.4.1. Conventionally, gait analysis is 

considered subjectively through visual observations but now with advanced technology, human 

gait analysis can be done objectively and empirically for the better quality of life. With the new 

technology for gait analysis, a variety of vision, wearable and ambient sensors are available 
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(Figure 6.3) and many of them are integrated into the garment’s fabric, simultaneously collecting 

signals in a non-invasive and unobtrusive way.  

 

Figure 6.3: Sensors for gait data collection 

Wearable, computer vision and ambient based solutions focus on gait analysis, motion 

analysis, posture analysis, proximity analysis, inactive detection, body shape and 3D head motion 

analysis (Yu 2008; Khan and Hoey 2017) have become a very active research area (Rafi et al. 

2011). The details of sensor related issues are discussed in Sections 2.4.1 to 2.4.4. The collected 

data will be transferred to the needed locations through connectivity to be discussed in the next 

subsection. 

6.5.2.3. Connectivity 

The architecture and the platform of the sensor networks for gait analysis play a significant role 

for continuous monitoring of gait parameters especially of the older adults or chronic patient. The 

network should be selected based on cost, performance, ease of configuration, addition of extra 

sensor nodes, security, range and power consumption and other characteristics. Body area 

networks (BAN) are therefore designed to connect and operate sensors within, on or at close of 

human body (Lo et al. 2013; Akbar et al. 2017). It plays a unique role in health applications e.g. 

gait patterns (Jarchi et al. 2014), motor fluctuations gait assessment in Parkinson’s patients 

(Cancela et al. 2014), balance and  fall (Lai et al. 2014) in real time monitoring, decision making 

and therapeutic treatments (Poon et al. 2015). The IEEE wireless BAN standard (IEEE 804.15.6 

TG6) (The Institute of Electrical and Electronics Engineers 2018) is formed in order to 

standardize the Physical  Layer and Medium Access Control (MAC) protocols for short-range, 

low-power, and reliable wireless body sensors. Although BAN provide emerging research 

directions, however in the context of autonomic, context-aware, collaborative, and cloud-assisted 

of BAN are still challenging (Gravina et al. 2017). Other commercially available IoT wireless 

sensor network platforms are shown in Figure 6.4.  
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Figure 6.4: Connectivity for transferring sensor data to server through network 

IoT was initially inspired by members of Radio Frequency Identification (RFID) 

community (Union 2005) for identifying of an object or person wirelessly using radio waves by 

browsing an internet address that corresponds to a particular RFID or Near Field Communication 

(NFC) (Want 2006). Clinical wireless devices used 6LowPAN/IEEE 802.15.4, Bluetooth, BLE 

(Bluetooth Low Energy), ZigBee, Z-wave and NFC for mobile-Health and electronic-Health 

applications (López et al. 2013). Mobile computing, medical sensors and communication 

technologies for healthcare services is a novel healthcare connectivity model that connects the 

6LowPAN with evolving 4G (GSM) networks for future internet based health service (Islam et 

al. 2015). Wireless Fidelity (Wi-Fi), currently the most common standard used in homes and 

many businesses is 802.11n, which offers serious throughput in the range of hundreds of megabit 

per second, which is fine for file transfers, but may be too power-consuming for many IoT 

applications (Islam et al. 2015). The sensor connectivity architecture comprises of body worn 

sensors, vision and ambient sensors distributed in the environment. The software architecture and 

conceptual design for gait analysis platform along with the performance of the sensor network in 

terms of latencies and battery lifetime etc should be considered. The data from sensors will be 

stored in the cloud to be discussed in the next subsection.  

6.5.2.4. Cloud computing 

Cloud computing (CC) provides facilities for smart devices to send their data to the cloud, for big 

data to be processed in real-time, and eventually for end-users to benefit from the knowledge 

extracted from the collected big data (Al-Fuqaha et al. 2015). Providing high quality gait 

monitoring service by means of new technologies service based on personalized gait data is a 

challenging task comparing to traditional medical service within hospitals. Therefore, a CC 

platform based framework of gait analysis system will be designed to implement pervasive gait 

monitoring. Security needs to be considered to current connectivity and cloud support. There are 

still challenges for gait analysis applications such as 1) sensors node can be easily lost or 
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abducted as they are tiny in terms of size, 2) security solutions must be resource-efficient as 

sensors node have limited processing power, memory, and communication bandwidth. There are 

a lot of free and commercial cloud platforms and frameworks available to host IoT services (Al-

Fuqaha et al. 2015). Therefore, during the architectural design physical security, network 

security, data protection, human engagements privacy, and services should be considered (Figure 

6.5). The data stored at CC will be analysed using the intelligent approaches to be discussed in 

the next subsection.   

 

Figure 6.5: Cloud computing for servers hosted on the Internet to store, manage, and process 

data, provide security and safe communication 

6.5.2.5. Intelligence 

To promote sustainable development in gait analysis, the proposed digital strategy framework 

implies a global vision that adopts AI, big data, decision making, ontology, machine learning and 

intelligent dashboard presentation (Figure 6.6). The ageing issue is an aspect that researchers, 

business organizations, health professionals, patients and government should devote efforts in 

developing innovative gait analysis technology for people with gait abnormalities. Typical 

emerging optimization algorithms (such as evolutionary (Elkady and Abdelsalam 2016; Momete 

2016), stochastic (Marti 2005; Faber and Behnke 2007) and combinatorial optimization (Denoyel 

et al. 2017)) and machine learning algorithms (such as unsupervised learning (Niebles et al. 

2008), supervised learning (Williamson and Andrews 2000) and semi-supervised learning (Zhang 

et al. 2005)) will be explored. The results from intelligence will be presented to the users using 

human computer interaction to be discussed in the next subsection. 

 

Figure 6.6: Intelligence 
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6.5.2.6. Human computer interaction 

Human computer interaction will reduce the socioeconomic inequalities in healthcare 

(Mackenbach 2012). The information stored in the cloud is accessible to stake holders including 

patients’ general practitioners, therapists, social carers and hospital specialists on a need to know 

basis (Figure 6.7).  

 

Figure 6.7: Human computer interaction 

This will facilitate the interaction between the relevant members of the group who can 

make treatment recommendations and follow progress remotely. This will speed up considerable 

the assessment and treatment process as it removes the need for conventional medical and 

therapy consultation procedures often requiring the patients to attend pre booked clinics. This 

will also enable all stakeholders to see what each individual facilitating communication between 

members of the multidisciplinary team. 

We describe the materials and methods of the proposed digital strategy framework. Based on this 

we describe the impact of the prosed digital strategy framework in the next subsections. 

6.5.3. Impact of proposed digital strategy framework 

The proposed digital transformation strategy framework requires the coming together of various 

components as shown in Figure 6.8. This will have an impact and require change across the 

whole spectrum of stakeholders. Health Professionals will need to look at new ways of working 

leading to different scenarios for consultations with more happening remotely. There will be 

different forms of communication between various professionals in hospital and in the 

community. Patients who are technology savvy will be able to participate more effectively with 

these new forms of treatment. As younger generations age it is likely that such technology will 

become more acceptable. Social carers will have the opportunity to interact with care 

professionals and carers with greater ease. Finally, such a strategy will offer several opportunities 



CHAPTER 6: CONCLUSION AND FUTURE WORKS 

213 

 

to develop new business strategies and tap into new markets through interacting with users of this 

new technology. 

 

Figure 6.8: Impact analysis 

6.5.3.1. Potential benefits 

Most transformation initiatives fail due to their fragmented view and outdated theories of change 

that ignore the relationship aspects of organizations (Von Kutzschenbach and Brønn 2017). 

Therefore, a digital transformation strategy needs to be developed within the context of need. In 

order to implement and realize the benefits of digital transformation for gait analysis, we 

understand the consequences of the socio-technical change and identify the potential unintended 

consequences of the digital transformation. Figure 1 shows the components of such a strategy. 

The goals of such a transformation vary from a health sector perspective and a business 

perspective, while from a business, industry and IT perspective the strategy will focus on the 

development of new technologies and new equipment, from a healthcare perspective the strategy 

will need to be focused on the effective delivery of these new technologies. Both will need to 

address the organisational, staffing and leadership transformation to develop the strategy. 

Inevitably there will need to be a period of adjustment to the new technology and to recognise the 

opportunities this will present. It is therefore of vital importance that there is a close fit between 

the strategies of all stakeholders. There are several common aspects of developing such a strategy 

although the detail will inevitably differ. There needs to be a coming together of business and 
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health strategies to the point of effective diagnosis and treatment of gait disorders in patients in 

their own home.  

From an industry perspective, there are various modes for the implementation of a Digital 

Transformation Framework. The basic requirements of such a strategy depends on the balancing 

of four transformation dimensions, the use of technologies, financial considerations, structural 

changes and changes to value creation. Although these basic tenants have been described as 

requirements for industry they also apply to health.  

6.5.3.2. Structural change in healthcare 

With different technologies in use and different forms of structural changes is often needed to 

provide an adequate basis for the new operations in digital transformation (Matt et al. 2015). The 

introduction of new technology needs to be accompanied by structural change to enable new 

ways of assessment and treatment. The care pathway for the assessment of patients with gait and 

mobility delivery of services is hospital centric and the aim should be to deliver the care currently 

delivered in hospital at home. A lot of work has been done in this regard already. However, 

patients needing access to specialist equipment still need to go to hospital or specialist centres for 

assessment. Here lies the potential for change in the digital transformation. While at present 

technology is used mostly for remote monitoring, the use of new technologies increases the 

possibilities of diagnosis and treatment of patients at home. Establishing a cloud will enable the 

upload of data remotely. This data can then be reviewed remotely by therapists, general 

practitioners, hospital specialists or tertiary centres and patients to coordinate management plans. 

The degree of change can vary with locality depending on the current infrastructure 

6.5.3.3. Use of technologies 

The use of technologies addresses a company’s attitude towards new technologies as well as its 

ability to exploit these technologies which therefore contains the strategic role of IT for a 

company and its future technological ambition (Matt et al. 2015). This would be crucial for the 

development of a strategy. The take up of new technologies are slow and the successful 

implementation requires an understanding of attitude of stake holders to it. Localities need to 

decide whether they want to become leaders in the implementation of the new technology and 

models of care with the ability in setting new standards of care or stick with current models. 
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While being a leader can lead to advantages in setting one’s own standards, it might be risky as it 

requires technological competence. This is the challenge that interested parties must address. 

6.5.3.4. Financial considerations 

Digital transformation offers great opportunities for healthcare and community care. Healthcare 

and manufacturing applications are projected to form the biggest economic impact. Healthcare 

applications such as mobile health and telecare that enable medical wellness, prevention, 

diagnosis, treatment and monitoring services are expected to create about $1.1–$2.5 trillion in 

growth annually by 2025 (Al-Fuqaha et al. 2015). Within this area of growth there remain 

financial pressures on the delivery of care due to increasing of aging population. Inevitably any 

developments need to take this into consideration. Financial pressures on delivering care can be a 

driver for change provided new care pathways can be delivered cost effectively and save money. 

Our proposed cost effective digital transformation strategy framework for gait analysis offers the 

ideal opportunity to develop in this context with benefit for all concerned.   

6.5.3.5. Changes to value creation 

From a business perspective, the use of new technologies often implies changes in value creation 

(Matt et al. 2015). The introduction of new technologies invariably results in a change of culture 

and the need to work in different ways. Introducing digital technology and treating patients in 

their own home requires different forms of funding and adjustments to commissioning of 

services. This may have to happen in parallel with more conventional ways of doing things. The 

technology must be user friendly and delivers on expectations. The changes also require 

management of this transition period to overcome barriers and scepticism. There are needs on 

acceptance of new forms of working to enable the new structure to work.  

For our future research, we propose a digital transformation strategy framework of gait 

analysis for all stakeholders to develop the fertile area of gait analysis. We present an overview of 

technology we are developing to support this strategy. Applications in clinical diagnosis, geriatric 

care, sports, biometrics, rehabilitation, and industrial area are proposed separately. Available 

machine learning techniques are also presented with available datasets for gait analysis. The 

prospective opportunities in gait analysis are also discussed. A digital transformation of 

assessment of gait is a continuous complex undertaking requiring a change in the care pathway 

and the delivery of care. This needs to be managed carefully with good leadership. A half-hearted 
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approach may risk losing focus to overcome operational difficulties. The potential benefits are 

several, for example, 1) from a business perspective, increasing sales and productivity; and 2) 

from a health perspective, better and cost effective patient care delivered in the patient’s home. 
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Young Adult Participant Information Sheet 

 

Project Title An intelligent multi-sensor based personalized risk assessment system of 

elderly fall 

 

Aim of the Research 

This research will investigate on how to predict and identify real time elderly fall based on 

longitudinal gait pattern and physical information. The research will also compare how different 

a person’s gait and physical condition from a normal person result a fall based on gait pattern and 

vital physical information to provide real time necessary interventions. The aim of this research is 

to develop a real time based automatic elderly fall detection system. The system will perform fall 

risk assessment based on user’s inertial, gait and physical information through sensors. It will 

also provide risk notification in order to reduce the potential risk associated with fall so that 

elderly people could lead quality of life. The system will be designed in a way that will not affect 

the normal daily activities of the user. It will provide an early warning to the user when an 

abnormality over a period of time is found. 

 

Invitation 

You are invited to participate in this research project. Before you decide for participation, it is 

important for you to understand why the research is being done and what it will involve. Please 

take time to read the following information carefully and consult it with others if you wish. Ask 

me if there is anything which is not clear or if you would like more information. Take time to 

decide whether or not you wish to participate. 

 

Why have I been chosen? 

You are chosen for this research because you are a person in the age range of 20 to 39 (or 40) 

with acting ability and considered as a young adult. A group of 5 to 10 young adult will be 

selected for data collection. Your participation will actively promote the research progress.  

 

Do I have to take part? 

Your decision to participate in this study is entirely voluntary and you may decide at any time to 

withdraw from the study. You will be able to withdraw up to the point of anonymisation when 

your identity will no longer be identifiable. You do not need to explain your reason. If you do 

decide to participate you will be given this information sheet to keep (and be asked to sign a 

consent form).  

 

What will happen if I take part, and what do I have to do? 

You are expected to participate with others. You will be asked to wear user friendly Inertial 

Measurement Unit (IMU) sensors like wrist watch. You will then be asked to walk 10 steps and 

turn around and walk another 10 steps for up to 4 times. You will also be asked to act like 

different kinds of pretend falling. We will record this information of walking and falling pattern 

for the research.  

 

What are the benefits (if any) of taking part? 

We will show our sincere gratitude for your participation. You will also be a part of contributing 

to the knowledge of this research area.  
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Will I be recorded, and how will the recorded media be used? 

This research will not involve producing recorded media. 

 

 

What are the risks (if any) of taking part? 

A data collector with a nurse will be present during the data collection. It may take around 20 to 

30 minutes for collecting your data. There is no side effect of IMU sensors. 

 

 

How will information about me be used? 

The collected data will be stored securely and will be used only for the purpose of this research 

study. The data will be completely anonymised before it appears in any type of publication. No 

other use will be made of them without your written permission and no one outside the project 

will be allowed access to the original data. 

 

Who will have access to information about be? 

Your confidentiality will be safeguarded during and after the study. Only the research team will 

have access to your data. The data will be stored securely in softcopy. 

 

Who is funding this research? 

This Research Project is funded by the Erasmus Mundus FUSION project, www.fusion-edu.eu. 

What if there is a problem? 

If you have a concern about any aspect of this study, you may wish to speak to the researcher 

who will do their best to answer your questions. You can contact with the researcher Md. Arif 

Reza Anwary, ROOM P319, Poole House, Talbot Campus, Fern Barrow, Poole, BH12 5BB, 

manwary@bournemouth.ac.uk and a local address will be provided to you before data collection. 

 

If you remain unhappy about the research and/wish to raise a complaint about any aspect of the 

way that you have been approached or treated during the research, please write to my supervisor 

Professor Hongnian Yu yuh@bournemouth.ac.uk Or Professor Matt Bentley who is the deputy 

dean of Research and Professional Practice and independent to this study. His email account is 

mbentley@bournemouth.ac.uk 

You can also contact with Dr. Azizur Rab, Karim Pharmacy, Chawk Bazar, Dhaka, Bangladesh. 

Mobile:+8801711604363 

Finally  

Thank you for taking time to read through the information.  If you decide to participate in this 

project you will be given a copy of the Participant Agreement Form and, you can sign and keep a 

record with you. 

 

 

 

 

mailto:manwary@bournemouth.ac.uk
mailto:yuh@bournemouth.ac.uk
mailto:mbentley@bournemouth.ac.uk
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Young Adult Participant Agreement Form 

 

Project Title: An intelligent multi-sensor based personalized risk assessment 

system of elderly fall 

 

Name and contact details of researcher: 

 

Md. Arif Reza Anwary 

ROOM P319, Poole House, Talbot Campus, Fern Barrow, Poole. BH12 5BB 

manwary@bournemouth.ac.uk  

 

Please tick box if you agree with the statement: 

 

1. I confirm that I have read and understood the participant information sheet for the 

above research project and have had the opportunity to ask questions  

 

□ 

2. I understand that I am free to withdraw at any time up to the point where the data 

are processed and become anonymous, so my identity cannot be determined  
 

□ 

3. I understand that data collected about me will not be revealed at any time. I 

understand that my name will not be linked with the research materials 

 

□ 

4. I give permission for members of the research team to use my identifiable 

information for the purposes of this research project if it is needed 

 

□ 

 

 

 

 

 

________________   ________________        ________________ 

Name of Participant                             Date                               Signature 

 

 

 

 

________________   ________________        ________________ 

Name of Researcher                                  Date                              Signature 

 

 

 

 

 

 

 

 

mailto:manwary@bournemouth.ac.uk
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Elderly Participant Information Sheet 

 

Project Title An intelligent multi-sensor based personalized risk assessment system of 

elderly fall 

 

Aim of the Research 

This research will investigate how to predict and identify real time elderly fall based on 

longitudinal gait pattern and physical information. The research will also compare how different 

a person’s gait and physical condition from a normal person could result in a fall based on gait 

pattern and vital physical information in order to provide real time necessary interventions. The 

aim of this research is to develop a real time based automatic elderly fall detection system. The 

system will perform a fall risk assessment based on users’ inertial, gait and physical information 

through sensors. It will also provide risk notification in order to reduce the potential risk 

associated with a fall so that elderly people could lead a better quality of life. The system will be 

designed in a way that will not affect the normal daily activities of the user. It will provide an 

early warning to the user when an abnormality over a period of time is found. 

 

Invitation 

You are invited to participate in this research project. Before you decide to participate, it is 

important for you to understand why the research is being done and what it will involve. Please 

take time to read the following information carefully and consult with others if you wish. Ask me 

if there is anything which is not clear or if you would like more information. Take time to decide 

whether or not you wish to participate. 

 

Why have I been chosen? 

You have been chosen for this research because you are over 65 years old and considered as an 

elderly person. Three groups: 1. One group with elderly participants with previous fall history, 2. 

One group of elderly participants with no fall history and 3. One group of young adults. Each 

group will consist of 5 to 10 participants for data collection. The elderly participants will be 

selected from an elderly care home for long term monitoring. Your participation will actively 

promote the research progress.  

 

Do I have to take part? 

Your decision to participate in this study is entirely voluntary and you may decide at any time to 

withdraw from the study. You will be able to withdraw up to the point of anonymization when 

your identity will no longer be identifiable. You do not need to explain your reason. If you do 

decide to participate you will be given this information sheet to keep (and be asked to sign a 

consent form).  

 

What will happen if I take part, and what do I have to do? 

You are expected to participate in this research with others. You will be asked to wear user 

friendly Inertial Measurement Unit (IMU) sensors like wrist watch. You will then be asked to 

walk 10 steps and turn around and walk another 10 steps for up to 4 times. Your medical 

information (Electrocardiogram (ECG), Oxygen saturation (SpO2), Pulse rate (PR), Respiratory 

rate (RR), Blood pressure (BP), and other medical history suggested by healthcare professional 

(like diabetes, tranquilizer, cardiac and hypertensive etc) will also be recorded with the help of a 
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nurse. Each session may take up to 30 minutes. Your data will be collected every Monday and 

Thursday for three months from the starting date. Another three months of data will be collected 

subsequently. 

 

What are the benefits (if any) of taking part? 

There are no specific benefit to take part in this research however you will be contributing to 

increased knowledge in this research area. We will be sincerely grateful for your contribution. 

 

Will I be recorded, and how will the recorded media be used? 

This research will not involve producing any recorded media. 

 

What are the risks (if any) of taking part? 

A data collector with a nurse will be present during the data collection. It may take around 20 to 

30 minutes to collect your data. There are no side effects of IMU sensors. 

 

How will information about me be used? 

The collected data will be stored securely and will be used only for the purpose of this research 

study. The data will be completely anonymised before it appears in any type of publication. No 

other use will be made of them without your written permission and no one outside the project 

will be allowed access to the original data. 

 

Who will have access to information about be? 

Your confidentiality will be safeguarded during and after the study. Only the research team will 

have access to your data. The data will be stored securely in softcopy. 

 

Who is funding this research? 

This Research Project is funded by the Erasmus Mundus FUSION project, www.fusion-edu.eu. 

What if there is a problem? 

If you have a concern about any aspect of this study, you may wish to speak to the researcher 

who will do the best to answer your questions. You can contact the researcher Md. Arif Reza 

Anwary, ROOM P319, Poole House, Talbot Campus, Fern Barrow, Poole, BH12 5BB, 

manwary@bournemouth.ac.uk and a local address will be provided to you before data collection. 

If you remain unhappy about the research and/wish to raise a complaint about any aspect of the 

way that you have been approached or treated during the research, please write to researcher 

supervisor Professor Hongnian Yu yuh@bournemouth.ac.uk Or Professor Matt Bentley who is 

the deputy dean of Research and Professional Practice and is independent to this study. His email 

account is mbentley@bournemouth.ac.uk 

You can also contact with Dr. Azizur Rab, Karim Pharmacy, Chawk Bazar, Dhaka, Bangladesh. 

Mobile:+8801711604363 

Finally  

Thank you for taking time to read through the information.  If you decide to participate in this 

project you will be given a copy of the Participant Agreement Form and, you can sign and keep a 

record with you. 

mailto:manwary@bournemouth.ac.uk
mailto:yuh@bournemouth.ac.uk
mailto:mbentley@bournemouth.ac.uk
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Elderly Participant Agreement Form 

 

Project Title: An intelligent multi-sensor based personalized risk assessment 

system of elderly fall 

 

Name and contact details of researcher: 

 

Md. Arif Reza Anwary 

ROOM P319, Poole House, Talbot Campus, Fern Barrow, Poole. BH12 5BB 

manwary@bournemouth.ac.uk  

 

Please tick box if you agree with the statement: 

 

1. I confirm that I have read and understood the participant information sheet for the 

above research project and have had the opportunity to ask questions  

 

□ 

2. I understand that I am free to withdraw up at any time to the point where the data 

are processed and become anonymous, so my identity cannot be determined  
 

□ 

3. I understand that data collected about me during this study will be anonymised and 

my identity will not be revealed at any time. I understand that my name will not be 

linked with the research materials 

 

□ 

4. I give permission for members of the research team to use my identifiable 

information for the purposes of this research project if it is needed 

 

□ 

 

 

 

 

 

________________   ________________        ________________ 

Name of Participant                             Date                               Signature 

 

 

 

 

________________   ________________        ________________ 

Name of Researcher                                  Date                              Signature 

 

 

 

 

 

 

mailto:manwary@bournemouth.ac.uk
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Appendix B 
1. Participant 1 

 

TABLE 1.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 48 96% 50 100% 

2 43 86% 46 92% 

3 48 96% 49 98% 

4 48 96% 48 96% 

5 50 100% 50 100% 

 

TABLE 1.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 60.96 60.38 99.05 29.86 2.02 

2 60.96 55.11 90.40 29.86 1.85 

3 60.96 68.24 88.06 29.86 2.29 

4 60.96 40.46 66.37 29.86 1.35 

5 60.96 61.35 99.36 29.86 2.05 
* Distance 

TABLE 1.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 1.099 0.514 0.626 0.264 56.954 0.473 0.250 43.046 

2 1.639 0.510 0.574 0.189 35.036 1.065 0.320 64.964 

3 0.744 0.567 0.377 0.298 50.652 0.367 0.269 49.348 

4 0.927 0.478 0.414 0.271 44.626 0.513 0.207 55.364 

5 0.977 0.462 0.590 0.263 60.313 0.388 0.199 39.697 
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2. Participant 2 

 

 

TABLE 2.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 49 98% 48 96% 

2 41 82% 44 88% 

3 34 68% 35 70% 

4 42 84% 38 76% 

5 45 90% 46 92% 

 

 

TABLE 2.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 64.00 59.59 93.11 45.60 1.31 

2 64.00 58.98 92.15 45.60 1.29 

3 64.00 70.72 89.50 45.60 1.55 

4 64.00 47.26 73.84 45.60 1.04 

5 64.00 60.99 95.30 45.60 1.34 
* Distance 

 

 

TABLE 2.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 1.201 0.492 0.654 0.262 54.455 0.547 0.230 45.545 

2 0.688 0.295 0.328 0.148 46.802 0.366 0.147 52.326 

3 0.815 0.268 0.356 0.110 42.086 0.472 0.158 56.319 

4 0.645 0.288 0.288 0.131 43.876 0.362 0.158 55.349 

5 1.204 0.422 0.611 0.217 49.834 0.604 0.205 49.252 
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3. Participant 3 

 

 

TABLE 3.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 48 96% 49 98% 

2 51 98% 46 92% 

3 49 98% 48 96% 

4 46 92% 48 96% 

5 40 80% 37 74% 

 

TABLE 3.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 67.20 64.20 95.54 59.20 1.08 

2 67.20 60.97 90.72 59.20 1.03 

3 67.20 58.46 86.99 59.20 0.99 

4 67.20 52.35 77.90 59.20 0.88 

5 67.20 64.05 95.31 59.20 1.08 
* Distance 

TABLE 3.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 
1.190 0.597 0.890 0.309 74.790 0.300 0.288 25.210 

2 
0.230 0.531 0.180 0.288 59.130 0.366 0.243 21.739 

3 
0.290 0.266 0.155 0.134 62.759 0.472 0.132 46.552 

4 
0.074 0.552 0.054 0.261 389.189 0.362 0.291 27.027 

5 
0.405 0.600 0.204 0.304 49.136 0.604 0.296 49.630 
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4. Participant 4 

 

 

TABLE 4.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 50 100% 49 98% 

2 51 98% 50 100% 

3 49 98% 47 94% 

4 49 98% 49 98% 

5 49 98% 44 88% 

 

 

TABLE 4.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 58.40 58.27 99.77 33.16 1.76 

2 58.40 62.56 92.87 33.16 1.89 

3 58.40 59.56 98.01 33.16 1.80 

4 58.40 60.61 96.21 33.16 1.83 

5 58.40 51.72 88.56 33.16 1.56 
* Distance 

 

TABLE 4.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 
1.169 0.525 0.705 0.264 60.308 0.464 0.261 39.692 

2 
1.572 0.516 0.795 0.261 76.718 0.366 0.256 49.427 

3 
1.591 0.524 0.844 0.264 70.333 0.472 0.260 46.952 

4 
0.828 0.532 0.423 0.265 56.280 0.362 0.267 48.913 

5 
1.928 0.513 0.972 0.258 68.672 0.604 0.255 49.585 
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5. Participant 5 

 

 

TABLE 5.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 48 96% 44 88% 

2 47 94% 47 94% 

3 48 96% 47 94% 

4 48 96% 44 88% 

5 46 92% 47 94% 

 

 

TABLE 5.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 61.60 62.45 98.62 45.16 0.63 

2 61.60 62.56 98.43 45.16 0.64 

3 61.60 58.84 95.52 45.16 0.62 

4 61.60 52.79 85.71 45.16 0.62 

5 61.60 59.69 96.90 45.16 0.62 
* Distance 

 

TABLE 5.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 
0.870 0.512 0.526 0.259 60.460 0.344 0.253 39.540 

2 
1.120 0.489 0.583 0.245 67.321 0.366 0.244 47.946 

3 
0.705 0.480 0.355 0.239 33.050 0.472 0.241 49.645 

4 
1.140 0.477 0.583 0.243 68.246 0.362 0.234 48.860 

5 
0.859 0.491 0.438 0.248 29.686 0.604 0.243 49.010 
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6. Participant 6 

 

 

TABLE 6.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 48 96% 45 90% 

2 45 90% 46 92% 

3 45 90% 46 92% 

4 47 94% 46 92% 

5 47 94% 47 94% 

 

 

TABLE 6.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 56.08 59.56 93.79 37.21 1.60 

2 56.08 62.56 88.44 37.21 1.68 

3 56.08 51.12 91.15 37.21 1.37 

4 56.08 59.69 93.56 37.21 1.60 

5 56.08 51.94 92.61 37.21 1.40 
* Distance 

 

TABLE 6.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 
0.435 0.731 0.317 0.361 72.874 0.118 0.370 27.126 

2 
1.807 0.722 0.892 0.354 79.745 0.366 0.367 50.636 

3 
1.715 0.689 0.812 0.327 72.478 0.472 0.361 52.653 

4 
1.304 0.659 0.661 0.337 72.239 0.362 0.322 49.310 

5 
1.667 0.601 0.766 0.285 63.767 0.604 0.316 54.049 
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7. Participant 7 

 

 

TABLE 7.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 47 94% 44 88% 

2 42 84% 45 90% 

3 42 84% 45 90% 

4 46 92% 47 94% 

5 47 94% 46 92% 

 

 

TABLE 7.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 50.59 51.94 97.34 33.57 1.55 

2 50.59 62.56 76.33 33.57 1.86 

3 50.59 45.74 90.40 33.57 1.36 

4 50.59 59.69 82.01 33.57 1.78 

5 50.59 59.56 82.27 33.57 1.77 
* Distance 

 

TABLE 7.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 
0.887 0.681 0.451 0.340 50.846 0.436 0.341 49.154 

2 
1.250 0.653 0.603 0.304 70.720 0.366 0.349 51.760 

3 
1.099 0.643 0.551 0.318 57.052 0.472 0.324 49.864 

4 
0.792 0.682 0.394 0.341 54.293 0.362 0.341 50.253 

5 
0.872 0.620 0.403 0.300 30.734 0.604 0.320 53.784 
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8. Participant 8 

 

 

TABLE 8.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 48 96% 41 82% 

2 44 88% 47 94% 

3 41 82% 46 92% 

4 49 98% 48 96% 

5 48 96% 48 96% 

 

 

TABLE 8.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 45.45 51.12 87.53 31.62 1.62 

2 45.45 62.56 62.34 31.62 1.98 

3 45.45 59.56 68.96 31.62 1.88 

4 45.45 59.69 68.66 31.62 1.89 

5 45.45 51.94 85.73 31.62 1.64 
* Distance 

 

TABLE 8.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 
1.203 0.697 0.684 0.335 56.858 0.519 0.361 43.142 

2 
1.979 0.668 0.870 0.305 81.506 0.366 0.363 56.038 

3 
1.852 0.652 0.828 0.307 74.514 0.472 0.344 55.292 

4 
1.633 0.691 0.837 0.343 77.832 0.362 0.348 48.745 

5 
1.883 0.633 0.830 0.294 67.924 0.604 0.339 55.921 
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9. Participant 9 

 

TABLE 9.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 48 96% 44 88% 

2 46 92% 45 90% 

3 44 88% 46 92% 

4 47 94% 46 92% 

5 50 100% 48 96% 

 

 

TABLE 9.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 51.20 51.12 99.84 42.18 1.21 

2 51.20 62.56 77.80 42.18 1.48 

3 51.20 59.56 83.67 42.18 1.41 

4 51.20 59.69 83.41 42.18 1.42 

5 51.20 51.94 98.56 42.18 1.23 
* Distance 

 

 

TABLE 9.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 
1.140 0.675 0.596 0.334 52.281 0.544 0.341 47.719 

2 
1.449 0.675 0.699 0.292 74.741 0.366 0.332 51.760 

3 
1.633 0.675 0.798 0.322 71.096 0.472 0.330 51.133 

4 
0.954 0.675 0.476 0.304 62.055 0.362 0.313 50.105 

5 
1.168 0.675 0.534 0.290 48.288 0.604 0.326 54.281 
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10. Participant 10 

 

 

TABLE 10.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 45 90% 41 82% 

2 42 84% 42 84% 

3 42 84% 44 88% 

4 45 90% 46 92% 

5 46 92% 48 96% 

 

 

TABLE 10.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 54.86 51.12 93.18 38.61 1.32 

2 54.86 62.56 85.96 38.61 1.62 

3 54.86 59.56 91.43 38.61 1.54 

4 54.86 59.69 91.19 38.61 1.55 

5 54.86 51.94 94.67 38.61 1.35 
* Distance 

 

 

TABLE 10.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 
1.054 0.577 0.629 0.298 59.677 0.425 0.279 40.323 

2 
0.774 0.419 0.383 0.196 52.713 0.366 0.222 50.517 

3 
0.763 0.448 0.358 0.210 38.139 0.472 0.238 53.080 

4 
0.848 0.564 0.472 0.314 57.311 0.362 0.250 44.340 

5 
1.040 0.460 0.522 0.238 41.923 0.604 0.222 49.808 
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11. Participant 11 

 

 

TABLE 11.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 50 100% 50 100% 

2 51 98% 52 96% 

3 52 96% 53 94% 

4 53 94% 46 92% 

5 53 94% 49 98% 

 

 

TABLE 11.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 55.62 59.56 92.92 45.61 1.31 

2 55.62 62.56 87.52 45.61 1.37 

3 55.62 51.12 91.90 45.61 1.12 

4 55.62 59.69 92.68 45.61 1.31 

5 55.62 51.94 93.37 45.61 1.14 
* Distance 

 

 

TABLE 11.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 
1.018 0.406 0.597 0.227 58.644 0.421 0.179 41.356 

2 
0.738 0.406 0.364 0.209 50.407 0.366 0.197 50.678 

3 
0.688 0.295 0.328 0.148 31.395 0.472 0.147 52.326 

4 
0.834 0.431 0.495 0.253 56.595 0.362 0.178 40.647 

5 
1.204 0.422 0.611 0.217 49.834 0.604 0.205 49.252 
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12. Participant 12 

 

TABLE 12.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 48 96% 49 98% 

2 47 94% 49 98% 

3 46 92% 49 98% 

4 49 98% 49 98% 

5 49 98% 46 92% 

 

 

TABLE 12.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 68.43 62.56 91.43 46.19 1.35 

2 68.43 51.94 75.90 46.19 1.12 

3 68.43 51.12 74.70 46.19 1.11 

4 68.43 59.69 87.23 46.19 1.29 

5 68.43 59.56 87.04 46.19 1.29 
* Distance 

 

 

TABLE 12.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 
1.705 0.480 0.991 0.259 58.123 0.714 0.222 41.877 

2 
2.489 0.440 1.493 0.253 85.295 0.366 0.187 40.016 

3 
2.644 0.370 1.534 0.211 82.148 0.472 0.160 41.982 

4 
1.661 0.491 0.847 0.248 78.206 0.362 0.243 49.007 

5 
1.793 0.481 0.945 0.254 66.313 0.604 0.227 47.295 
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13. Participant 13 

 

TABLE 13.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 49 98% 50 100% 

2 47 94% 47 94% 

3 46 92% 47 94% 

4 48 96% 49 98% 

5 47 94% 48 96% 

 

 

TABLE 13.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 63.44 59.69 94.09 38.64 1.54 

2 63.44 62.56 98.62 38.64 1.62 

3 63.44 51.12 80.58 38.64 1.32 

4 63.44 59.56 93.88 38.64 1.54 

5 63.44 51.94 81.87 38.64 1.34 
* Distance 

 

 

 

TABLE 13.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 
0.904 0.294 0.603 0.169 66.704 0.301 0.125 33.296 

2 
0.454 0.253 0.243 0.137 19.383 0.366 0.116 46.476 

3 
0.579 0.292 0.245 0.117 18.480 0.472 0.175 57.686 

4 
0.858 0.285 0.424 0.141 57.809 0.362 0.145 50.583 

5 
0.756 0.288 0.427 0.164 20.106 0.604 0.125 43.519 
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14. Participant 14 

 

TABLE 14.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 45 90% 42 84% 

2 39 78% 43 86% 

3 39 78% 40 80% 

4 37 74% 44 88% 

5 42 84% 45 90% 

 

 

TABLE 14.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 62.76 62.56 99.69 43.29 1.45 

2 62.76 59.56 94.90 43.29 1.38 

3 62.76 51.12 81.45 43.29 1.18 

4 62.76 59.69 95.11 43.29 1.38 

5 62.76 51.94 82.75 43.29 1.20 
* Distance 

 

 

TABLE 14.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 
1.053 0.416 0.576 0.231 54.701 0.477 0.185 45.299 

2 
1.492 0.403 0.856 0.219 75.469 0.366 0.184 42.627 

3 
1.243 0.407 0.718 0.231 62.027 0.472 0.176 42.237 

4 
0.632 0.408 0.363 0.228 42.722 0.362 0.179 42.563 

5 
1.016 0.418 0.579 0.240 40.551 0.604 0.179 43.012 
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15. Participant 15 

 

TABLE 15.1. Stride number estimation 

Sensor Location StrideNumberAcc Accuracy StrideNumberGyr Accuracy 

1 50 100% 50 100% 

2 40 80% 44 88% 

3 49 98% 48 96% 

4 51 98% 50 100% 

5 50 100% 48 96% 

 

 

TABLE 15.2. Distance and speed estimation 

Sensor Location Real* (m) Estimated* (m) Accuracy(%) Period(s) Speed (m/s) 

1 67.54 62.56 92.63 48.37 1.29 

2 67.54 51.94 76.90 48.37 1.07 

3 67.54 51.12 75.69 48.37 1.06 

4 67.54 59.56 88.18 48.37 1.23 

5 67.54 59.69 88.38 48.37 1.23 
* Distance 

 

 

TABLE 15.3. Stride, Stance and Swing information 

Sensor 

Location 

Average Stride Average Stance Average Swing 

Length (m) Period (s) Length (m) Period (s) % of Stride Length (m) Period (s) % of Stride 

1 1.632 0.451 0.895 0.231 54.841 0.737 0.220 45.159 

2 1.885 0.427 1.025 0.220 80.584 0.366 0.206 45.623 

3 2.403 0.436 0.958 0.178 80.358 0.472 0.258 60.133 

4 1.431 0.467 0.754 0.241 74.703 0.362 0.226 47.310 

5 1.570 0.460 0.885 0.257 61.529 0.604 0.204 43.631 
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Appendix C 
1: Young Participant 1 

 
Figure 1.1: Accelerometer and gyroscope data from right and left legs 

 
Figure 1.2: Result of stride, stance and swing event detection using proposed method 
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Figure 1.3: Result of distance estimation using proposed method 

 

 
Figure 1.4: Stride asymmetry estimation of right and left legs 

 

 
Figure 1.5: Step asymmetry estimation of right and left legs 

 

 

2: Young Participant 2 

 

 
Figure 2.1: Accelerometer and gyroscope data from right and left legs 
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Figure 2.2:Result of stride, stance and swing event detection using proposed method 

 

 

       Figure 2.3: Result of distance estimation using proposed method 
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Figure 2.4: Stride asymmetry estimation of right and left legs 

 

Figure 2.5: Step asymmetry estimation of right and left legs 

 

3: Young Participant 3 
 

 

Figure 3.1: Accelerometer and gyroscope data from right and left legs 
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Figure 3.2: Result of stride, stance and swing event detection using proposed method 

 

 

Figure 3.3: Result of distance estimation using proposed method 

 

              Figure 3.4: Stride asymmetry estimation of right and left legs 
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Figure 3.5: Step asymmetry estimation of right and left legs 

 

4: Young Participant 4

 

Figure 4.1: Accelerometer and gyroscope data from right and left legs 

 

Figure 4.2: Result of stride, stance and swing event detection using proposed method 
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Figure 4.3: Result of distance estimation using proposed method 

 

 

Figure 4.4: Stride asymmetry estimation of right and left legs 
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Figure 4.5: Step asymmetry estimation of right and left legs 

 

5: Young Participant 5 

 

 

Figure 5.1: Accelerometer and gyroscope data from right and left legs 

 

Figure 5.2: Result of stride, stance and swing event detection using proposed method 
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Figure 5.3: Result of distance estimation using proposed method 

 

Figure 5.4: Stride asymmetry estimation of right and left legs 

 

 

Figure 5.5: Step asymmetry estimation of right and left legs 
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6: Young Participant 6 

 

 

Figure 6.1: Accelerometer and gyroscope data from right and left legs 

 

Figure 6.2: Result of stride, stance and swing event detection using proposed method 
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Figure 6.3: Result of distance estimation using proposed method 

 

 

Figure 6.4: Stride asymmetry estimation of right and left legs 
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                 Figure 6.5: Step asymmetry estimation of right and left legs 

 

7: Young Participant 7 

 

 

Figure 7.1: Accelerometer and gyroscope data from right and left legs 

 

Figure 7.2: Result of stride, stance and swing event detection using proposed method 
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Figure 7.3: Result of distance estimation using proposed method 

 

 

                     Figure 7.4: Stride asymmetry estimation of right and left legs 

 

Figure 7.5: Step asymmetry estimation of right and left legs 
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8: Young Participant 8 

 

 

Figure 8.1: Accelerometer and gyroscope data from right and left legs 

 

 

Figure 8.2: Result of stride, stance and swing event detection using proposed method 
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Figure 8.3: Result of distance estimation using proposed method 

 

               Figure 8.4: Stride asymmetry estimation of right and left legs 

 

Figure 8.5: Step asymmetry estimation of right and left legs 
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9: Young Participant 9 

 

Figure 9.1: Accelerometer and gyroscope data from right and left legs 

 

  Figure 9.2: Result of stride, stance and swing event detection using proposed method 
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Figure 9.3: Result of distance estimation using proposed method 

 

Figure 9.4: Stride asymmetry estimation of right and left legs 

 

Figure 9.5: Step asymmetry estimation of right and left legs 
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10: Young Participant 10 

 

 

Figure 10.1: Accelerometer and gyroscope data from right and left legs 

 

Figure 10.2: Result of stride, stance and swing event detection using proposed method 
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Figure 10.3: Result of distance estimation using proposed method 

 

 

Figure 10.4: Stride asymmetry estimation of right and left legs 
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Figure 10.5: Step asymmetry estimation of right and left legs 

 

1:Elderly Participant 1 

 
Figure 1.1: Accelerometer and gyroscope data from right and left foots 

 
Figure 1.2: Result of stride, stance and swing event detection using proposed method 
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Figure 1.3: Result of distance estimation using proposed method 

 

 
Figure 1.4: Stride asymmetry estimation of right and left legs 

 

 
Figure 1.5: Step asymmetry estimation of right and left legs 
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2: Elderly Participant 2 
 

 
Figure 2.1: Accelerometer and gyroscope data from right and left legs 

 

 

 

 
Figure 2.2: Result of stride, stance and swing event detection using proposed method 
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Figure 2.3: Result of distance estimation using proposed method 

 

 

 
Figure 2.4: Stride asymmetry estimation of right and left legs 

 

 
Figure 2.5: Step asymmetry estimation of right and left legs 
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3: Elderly Participant 3 

 

 
           Figure 3.1: Accelerometer and gyroscope data from right and left legs 
 

 
  Figure 3.2: Result of stride, stance and swing event detection using proposed method 
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Figure 3.3: Result of distance estimation using proposed method 

 

 

 
Figure 3.4: Stride asymmetry estimation of right and left legs 

 

 

 
Figure 3.5: Step asymmetry estimation of right and left legs 

 

4: Elderly Participant 4 
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Figure 4.1: Accelerometer and gyroscope data from right and left legs 

 
Figure 4.2: Result of stride, stance and swing event detection using proposed method 

 

 
Figure 4.3: Result of distance estimation using proposed method 

 

 
Figure 4.4: Stride asymmetry estimation of right and left legs 
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Figure 4.5: Step asymmetry estimation of right and left legs 

 

5: Elderly Participant 5 

 
Figure 5.1: Accelerometer and gyroscope data from right and left legs 

 

 
Figure 5.2: Result of stride, stance and swing event detection using proposed method 
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             Figure 5.3: Result of distance estimation using proposed method 

 

 
                   Figure 5.4: Stride asymmetry estimation of right and left legs 

 
Figure 5.5: Step asymmetry estimation of right and left legs 
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6: Elderly Participant 6 

 

 
Figure 6.1: Accelerometer and gyroscope data from right and left legs 

 

 
    Figure 6.2: Result of stride, stance and swing event detection using proposed method 

 
            Figure 6.3: Result of distance estimation using proposed method 
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Figure 6.4: Stride asymmetry estimation of right and left legs 

 

 

 
Figure 6.5: Step asymmetry estimation of right and left legs 

 

7: Elderly Participant 7 

 

 
Figure 7.1: Accelerometer and gyroscope data from right and left legs 
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Figure 7.2: Result of stride, stance and swing event detection using proposed method 

 

 

 
Figure 7.3: Result of distance estimation using proposed method 
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Figure 7.4: Stride asymmetry estimation of right and left legs 

 

 
Figure 7.5: Step asymmetry estimation of right and left legs 

 

 

8: Elderly Participant 8 

 

 
   Figure 8.1: Accelerometer and gyroscope data from right and left legs 
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Figure 8.2: Result of stride, stance and swing event detection using proposed method 

 
 

Figure 8.3: Result of distance estimation using proposed method 

 

 
                        Figure 8.4: Stride asymmetry estimation of right and left legs 
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Figure 8.5: Step asymmetry estimation of right and left legs 

 

 

9: Elderly Participant 9 

 

 
Figure 9.1: Accelerometer and gyroscope data from right and left legs 

 
Figure 9.2: Result of stride, stance and swing event detection using proposed method 
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Figure 9.3: Result of distance estimation using proposed method 

 

 
Figure 9.4: Stride asymmetry estimation of right and left legs 

 

 
Figure 9.5: Step asymmetry estimation of right and left legs 
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10: Elderly Participant 10 

 

 
Figure 10.1: Accelerometer and gyroscope data from right and left legs 

 
Figure 10.2: Result of stride, stance and swing event detection using proposed method 
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Figure 10.3: Result of distance estimation using proposed method 

 

 
              Figure 10.4: Stride asymmetry estimation of right and left legs 

 

 
 

Figure 10.5: Step asymmetry estimation of right and left legs 
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Young Participant 1 Age Height (m) Weight (Kg) Gender       

 23.0000 1.6500 60.0000 Male       

           

Total Time (s) 52.0500          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 38.6600 37.2979 96.4767 38.5012 99.5892      

Estimated Velocity (m/s) 0.7427 0.7166 96.4767 0.7397 99.5892      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 1.2656 0.1588 0.0252 0.9540 1.6456 1.2665 0.2036 0.0415 0.9631 1.9032 

Stride Time (s) 1.3523 0.1666 0.0277 1.0255 1.7508 1.4065 0.2221 0.0493 1.0755 2.1010 

Stride Velocity (m/s) 0.9359 0.9359 0.9359   0.9005 0.9005 0.9005   

           

Cadence (step/min) 34.5821     34.5821     

Step Speed (m/s) 0.9359 0.9535 0.9092   0.9005 0.9168 0.8404   

Step length (m) 0.4688 0.1279 0.0164 0.1115 0.7617 0.5357 0.1314 0.0173 0.2787 0.7803 

Step time(s) 0.6311 0.1722 0.0297 0.1501 1.0255 0.7212 0.1769 0.0313 0.3752 1.0505 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 0.6887 0.1510 0.0221   0.7337 0.1314 0.0163   

Swing Length (m) 1.2510 0.5693 0.3241   1.2917 0.6358 0.4042   

Swing Time (s) 0.6637 0.1115 0.0131   0.6728 0.1755 0.0308   

Swing Velocity (m/s) 1.8850 1.8830 1.8830   1.9463 1.9158 1.9158   
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Young Participant 2 Age Height (m) Weight (Kg) Gender       

 19.0000 1.1700 55.0000 Female       

           

Total Time (s) 51.2250          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 42.0600 41.8235 99.4378 43.4401 96.7187      

Estimated Velocity (m/s) 0.8211 0.8165 99.4378 0.8480 96.7187      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 0.6894 0.1029 0.0106 0.5389 0.9701 0.6893 0.0975 0.0095 0.4854 1.0193 

Stride Time (s) 1.4649 0.2148 0.0462 1.1506 2.0510 1.4457 0.2009 0.0404 1.0255 2.1260 

Stride Velocity (m/s) 0.4706 0.4706 0.4706   0.4768 0.4768 0.4768   

           

Cadence (step/min) 35.13     35.13     

Step Speed (m/s) 0.4706 0.4788 0.2293   0.4768 0.4852 0.2354   

Step length (m) 0.5032 0.1258 0.0158 0.3286 0.9242 0.6996 0.1368 0.0187 0.4518 1.1501 

Step time(s) 0.6128 0.1532 0.0235 0.4002 1.1255 0.8521 0.1666 0.0277 0.5503 1.4007 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 0.7270 0.2032 0.0413   0.7204 0.0890 0.0079   

Swing Length (m) 1.4004 0.8569 0.7343   1.4550 1.0381 1.0776   

Swing Time (s) 0.7379 0.1442 0.0208   0.7254 0.1441 0.0208   

Swing Velocity (m/s) 1.8980 1.8980 1.8980   1.9719 2.0059 2.0059   
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Young Participant 3 Age Height (m) Weight (Kg) Gender       

 23.0000 1.7200 63.0000 Male       

           

Total Time (s) 55.5250          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 33.3800 32.9581 98.7360 32.8014 98.2667      

Estimated Velocity (m/s) 0.6012 0.5936 98.7360 0.5908 98.2667      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 1.0946 0.1369 0.0188 0.8612 1.4603 1.0944 0.1328 0.0176 0.7952 1.3064 

Stride Time (s) 1.4873 0.1829 0.0335 1.1755 1.9759 1.4707 0.1754 0.0308 1.0755 1.7508 

Stride Velocity (m/s) 0.7359 0.7359 0.7359   0.7441 0.7441 0.7441   

           

Cadence (step/min) 32.41     32.41     

Step Speed (m/s) 0.7359 0.7485 0.5603   0.7441 0.7570 0.5731   

Step length (m) 0.5067 0.1101 0.0121 0.2556 0.6766 0.3874 0.1145 0.0131 0.2105 0.7368 

Step time(s) 0.8429 0.1831 0.0335 0.4252 1.1255 0.6445 0.1904 0.0363 0.3502 1.2256 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 0.7879 0.1227 0.0150   0.6961 0.1387 0.0192   

Swing Length (m) 1.1076 0.5979 0.3574   1.0975 0.6184 0.3825   

Swing Time (s) 0.6995 0.1300 0.0169   0.7745 0.1389 0.0193   

Swing Velocity (m/s) 1.5834 1.5834 1.5834   1.5690 1.4170 1.4170   
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Young Participant 4 Age Height (m) Weight (Kg) Gender       

 25.0000 1.5500 63.0000 Male       

           

Total Time (s) 59.9000          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 38.5800 38.7624 99.5271 38.0767 98.6954      

Estimated Velocity (m/s) 0.6441 0.6471 99.5271 0.6357 98.6954      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 1.2661 0.1447 0.0209 1.0277 1.6032 1.2661 0.1546 0.0239 0.9671 1.5638 

Stride Time (s) 1.5657 0.1761 0.0310 1.2755 1.9758 1.5640 0.1879 0.0353 1.2005 1.9258 

Stride Velocity (m/s) 0.8087 0.8087 0.8087   0.8095 0.8095 0.8095   

           

Cadence (step/min) 30.05     30.05     

Step Speed (m/s) 0.8087 0.8218 0.6754   0.8095 0.8227 0.6768   

Step length (m) 0.4328 0.1033 0.0107 0.1450 0.5960 0.5756 0.1141 0.0130 0.3383 0.8376 

Step time(s) 0.6719 0.1604 0.0257 0.2251 0.9254 0.8937 0.1771 0.0314 0.5252 1.3005 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 0.7153 0.1611 0.0260   0.7845 0.1296 0.0168   

Swing Length (m) 1.2961 0.4891 0.2393   1.2750 0.7640 0.5837   

Swing Time (s) 0.8504 0.1279 0.0163   0.7795 0.1601 0.0256   

Swing Velocity (m/s) 1.5241 1.5241 1.5241   1.4993 1.6356 1.6356   
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Young Participant 5 Age Height (m) Weight (Kg) Gender       

 26.0000 1.6500 61.0000 Male       

           

Total Time (s) 51.9000          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 45.3600 43.8421 96.6537 45.4254 99.8559      

Estimated Velocity (m/s) 0.8740 0.8447 96.6537 0.8752 99.8559      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 1.4856 0.2062 0.0425 1.1190 2.2107 1.4855 0.1590 0.0253 1.2348 1.8660 

Stride Time (s) 1.3865 0.1890 0.0357 1.0505 2.0510 1.3790 0.1449 0.0210 1.1506 1.7258 

Stride Velocity (m/s) 1.0715 1.0715 1.0715   1.0772 1.0772 1.0772   

           

Cadence (step/min) 34.68     34.68     

Step Speed (m/s) 1.0715 1.0912 1.1907   1.0772 1.0971 1.2037   

Step length (m) 0.5727 0.1710 0.0292 0.0219 0.9400 0.6405 0.1883 0.0355 0.3279 1.3116 

Step time(s) 0.6553 0.1957 0.0383 0.0250 1.0755 0.7329 0.2155 0.0464 0.3752 1.5007 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 0.7420 0.1313 0.0172   0.7879 0.1266 0.0160   

Swing Length (m) 1.4712 1.0718 1.1487   1.5330 1.1008 1.2118   

Swing Time (s) 0.6445 0.1366 0.0187   0.5911 0.0980 0.0096   

Swing Velocity (m/s) 2.2827 2.2827 2.2827   2.3786 2.5933 2.5933   
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Young Participant 6 Age Height (m) Weight (Kg) Gender       

 25.0000 1.7200 60.0000 Male       

           

Total Time (s) 56.5250          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 34.8600 34.9764 99.6662 35.4092 98.4245      

Estimated Velocity (m/s) 0.6167 0.6188 99.6662 0.6264 98.4245      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 1.1437 0.1515 0.0230 0.9089 1.4580 1.1431 0.1315 0.0173 0.9169 1.4631 

Stride Time (s) 1.5357 0.2002 0.0401 1.2255 1.9509 1.4907 0.1686 0.0284 1.2005 1.9008 

Stride Velocity (m/s) 0.7447 0.7447 0.7447   0.7669 0.7669 0.7669   

           

Cadence (step/min) 38.14     38.14     

Step Speed (m/s) 0.7447 0.7571 0.5732   0.7669 0.7800 0.6083   

Step length (m) 0.4190 0.1484 0.0220 0.1542 0.9255 0.5280 0.1197 0.0143 0.1542 0.7095 

Step time(s) 0.6795 0.2406 0.0579 0.2501 1.5007 0.8562 0.1940 0.0376 0.2501 1.1505 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 0.7328 0.1617 0.0262   0.7695 0.1000 0.0100   

Swing Length (m) 1.1707 0.5774 0.3334   1.1844 0.8454 0.7148   

Swing Time (s) 0.8029 0.1236 0.0153   0.7212 0.1451 0.0211   

Swing Velocity (m/s) 1.4582 1.4582 1.4582   1.4752 1.6423 1.6423   
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Young Participant 7 Age Height (m) Weight (Kg) Gender       

 29.0000 1.6500 62.0000 Male       

           

Total Time (s) 48.6750          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 33.9800 32.8346 96.6292 34.3799 98.8230      

Estimated Velocity (m/s) 0.6981 0.6746 96.6292 0.7063 98.8230      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 1.1133 0.2098 0.0440 0.8028 1.6860 1.1126 0.2106 0.0443 0.7283 1.6230 

Stride Time (s) 1.4124 0.2615 0.0684 1.0255 2.1261 1.3624 0.2531 0.0641 0.9005 1.9760 

Stride Velocity (m/s) 0.7882 0.7882 0.7882   0.8166 0.8166 0.8166   

           

Cadence (step/min) 36.98     36.98     

Step Speed (m/s) 0.7882 0.8024 0.6439   0.8166 0.8319 0.6921   

Step length (m) 0.4784 0.1638 0.0268 0.1222 0.9429 0.6112 0.3713 0.1379 0.0349 1.5715 

Step time(s) 0.6854 0.2347 0.0551 0.1751 1.3507 0.8754 0.5319 0.2829 0.0500 2.2512 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 0.6428 0.2228 0.0496   0.6595 0.2127 0.0452   

Swing Length (m) 1.0983 0.7311 0.5344   1.1511 0.7527 0.5666   

Swing Time (s) 0.7696 0.1448 0.0210   0.7029 0.1485 0.0221   

Swing Velocity (m/s) 1.4271 1.4271 1.4271   1.4957 1.6377 1.6377   
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Young Participant 8 Age Height (m) Weight (Kg) Gender       

 20.0000 1.5700 59.0000 Male       

           

Total Time (s) 47.0000          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 40.0400 40.8586 97.9555 39.5247 98.7130      

Estimated Velocity (m/s) 0.8519 0.8693 97.9555 0.8410 98.7130      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 1.3106 0.2313 0.0535 0.9942 2.1126 1.3086 0.2375 0.0564 0.8622 1.7784 

Stride Time (s) 1.3440 0.2328 0.0542 1.0255 2.1511 1.2398 0.2205 0.0486 0.8254 1.6759 

Stride Velocity (m/s) 0.9751 0.9751 0.9751   1.0555 1.0555 1.0555   

           

Cadence (step/min) 38.29     38.29     

Step Speed (m/s) 0.9751 0.9936 0.9873   1.0555 1.0772 1.1604   

Step length (m) 0.6933 0.1765 0.0312 0.1065 1.0868 0.4518 0.2975 0.0885 0.0639 1.7260 

Step time(s) 0.8138 0.2072 0.0429 0.1251 1.2757 0.5303 0.3492 0.1219 0.0750 2.0261 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 0.7221 0.2019 0.0408   0.5311 0.1529 0.0234   

Swing Length (m) 1.3743 0.7833 0.6135   1.3201 0.8302 0.6893   

Swing Time (s) 0.6220 0.1006 0.0101   0.7087 0.1698 0.0288   

Swing Velocity (m/s) 2.2095 2.2095 2.2095   2.1224 1.8627 1.8627   
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Young Participant 9 Age Height (m) Weight (Kg) Gender       

 28.0000 1.7100 63.0000 Male       

           

Total Time (s) 47.6250          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 42.0600 41.9621 99.7673 41.7334 99.2236      

Estimated Velocity (m/s) 0.8831 0.8811 99.7673 0.8763 99.2236      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

   Right      Left  

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 1.3761 0.1767 0.0312 1.1266 2.0118 1.3762 0.2322 0.0539 1.1476 2.3485 

Stride Time (s) 1.3082 0.1648 0.0271 1.0756 1.9010 1.3149 0.2176 0.0474 1.1006 2.2262 

Stride Velocity (m/s) 1.0519 1.0519 1.0519   1.0467 1.0467 1.0467   

           

Cadence (step/min) 37.79     37.79     

Step Speed (m/s) 1.0519 1.0724 1.1500   1.0467 1.0670 1.1384   

Step length (m) 0.5795 0.1636 0.0268 0.0442 0.9720 0.5758 0.2088 0.0436 0.2651 1.4801 

Step time(s) 0.6562 0.1853 0.0343 0.0500 1.1006 0.6520 0.2364 0.0559 0.3002 1.6759 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 0.6862 0.1366 0.0187   0.6345 0.1044 0.0109   

Swing Length (m) 1.4099 0.5759 0.3317   1.3937 2.3612 5.5754   

Swing Time (s) 0.6220 0.1019 0.0104   0.6804 0.1955 0.0382   

Swing Velocity (m/s) 2.2667 2.2667 2.2667   2.2407 2.0485 2.0485   



Appendix C 

309 

 

 

 

          

Young Participant 10 Age Height (m) Weight (Kg) Gender       

 35.0000 1.7500 73.0000 Male       

           

Total Time (s) 48.0500          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 28.7600 26.5916 92.4603 28.7914 99.8909      

Estimated Velocity (m/s) 0.5985 0.5534 92.4603 0.5992 99.8909      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 0.9404 0.1343 0.0180 0.7181 1.3416 0.9404 0.0938 0.0088 0.8487 1.2447 

Stride Time (s) 1.2698 0.1778 0.0316 0.9755 1.8009 1.2723 0.1244 0.0155 1.1506 1.6759 

Stride Velocity (m/s) 0.7406 0.7406 0.7406   0.7391 0.7391 0.7391   

           

Cadence (step/min) 37.46     37.46     

Step Speed (m/s) 0.7406 0.7555 0.5707   0.7391 0.7540 0.5685   

Step length (m) 0.3498 0.0818 0.0067 0.1647 0.5539 0.4102 0.0994 0.0099 0.2695 0.7037 

Step time(s) 0.5845 0.1366 0.0187 0.2751 0.9255 0.6854 0.1661 0.0276 0.4502 1.1756 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 0.6462 0.1190 0.0142   0.6412 0.0909 0.0083   

Swing Length (m) 0.8935 0.5170 0.2673   0.9670 0.4313 0.1860   

Swing Time (s) 0.6237 0.1275 0.0163   0.6312 0.1292 0.0167   

Swing Velocity (m/s) 1.4327 1.4327 1.4327   1.5506 1.5322 1.5322   
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Elderly Participant 1 Age Height (m) Weight (Kg) Gender       

 67.0000 1.5700 68.0000 Male       

           

Total Time (s) 99.3000          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 21.0300 20.5910 97.9123 20.4708 97.3409      

Estimated Velocity (m/s) 0.2118 0.2074 97.9123 0.2062 97.3409      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 0.6889 0.0702 0.0049 0.5630 0.8382 0.6891 0.0902 0.0081 0.4931 1.0478 

Stride Time (s) 2.8047 0.2805 0.0787 2.3012 3.4017 2.8464 0.3660 0.1340 2.0510 4.3022 

Stride Velocity (m/s) 0.2456 0.2456 0.2456   0.2421 0.2421 0.2421   

           

Cadence (step/min) 11.13     11.13     

Step Speed (m/s) 0.2456 0.2501 0.0625   0.2421 0.2464 0.0607   

Step length (m) 0.2719 0.0643 0.0041 0.1377 0.4556 0.3221 0.0541 0.0029 0.2331 0.4556 

Step time(s) 1.2840 0.3037 0.0922 0.6503 2.1511 1.5208 0.2556 0.0653 1.1006 2.1511 

Step Ratio (Step length/cadence) 0.02     0.02     

           

Stance Time (s) 1.3457 0.2315 0.0535   1.4274 0.3481 0.1216   

Swing Length (m) 0.6896 0.3485 0.1215   0.6853 0.4392 0.1929   

Swing Time (s) 1.4591 0.2341 0.0549   1.4194 0.2071 0.0418   

Swing Velocity (m/s) 0.4726 0.4717 0.4717   0.4688 0.4831 0.4831   
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Elderly Participant 2 Age Height (m) Weight (Kg) Gender       

 63.0000 1.7300 62.0000 Female       

           

Total Time (s) 73.4500          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 26.8200 26.4892 98.7666 25.2723 94.2292      

Estimated Velocity (m/s) 0.3651 0.3606 98.7666 0.3441 94.2292      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 0.6929 0.1353 0.0183 0.4184 0.9373 0.6930 0.1357 0.0184 0.4527 0.9548 

Stride Time (s) 2.0957 0.4044 0.1635 1.2754 2.8260 2.1307 0.4124 0.1701 1.4005 2.9260 

Stride Velocity (m/s) 0.3306 0.3306 0.3306   0.3253 0.3253 0.3253   

           

Cadence (step/min) 24.50     24.50     

Step Speed (m/s) 0.3306 0.3346 0.1120   0.3253 0.3291 0.1083   

Step length (m) 0.1820 0.1408 0.0198 -0.1461 0.5662 0.5832 0.1458 0.0212 0.2922 0.7762 

Step time(s) 0.4985 0.3856 0.1487 -0.4001 1.5505 1.5972 0.3992 0.1594 0.8003 2.1257 

Step Ratio (Step length/cadence) 0.02     0.02     

           

Stance Time (s) 0.9853 0.2655 0.0705   1.0870 0.2469 0.0609   

Swing Length (m) 0.8820 0.6585 0.4336   0.8433 0.6916 0.4783   

Swing Time (s) 1.1104 0.2307 0.0532   1.0437 0.2568 0.0659   

Swing Velocity (m/s) 0.7943 0.7943 0.7943   0.7595 0.8080 0.8080   
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Elderly Participant 3 Age Height (m) Weight (Kg) Gender       

 86.0000 1.4200 64.0000 Male       

           

Total Time (s) 96.5750          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 20.7000 20.8989 99.0393 20.6760 99.8842      

Estimated Velocity (m/s) 0.2143 0.2164 99.0393 0.2141 99.8842      

Detected Stride Number 26.0000 26.0000 100.0000 26.0000 100.0000      

Detected Step Number 26.0000 26.0000 100.0000 26.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 0.7901 0.1315 0.0173 0.6653 1.2490 0.7898 0.0780 0.0061 0.6586 0.9616 

Stride Time (s) 3.1729 0.5238 0.2744 2.6757 5.0013 3.0239 0.2961 0.0877 2.5257 3.6760 

Stride Velocity (m/s) 0.2490 0.2490 0.2490   0.2612 0.2612 0.2612   

           

Cadence (step/min) 18.63     18.63     

Step Speed (m/s) 0.2490 0.2510 0.0630   0.2612 0.2634 0.0694   

Step length (m) -0.1633 0.3575 0.1278 -0.5682 0.4824 0.1952 0.3440 0.1183 -0.2519 0.7236 

Step time(s) -0.7617 1.6678 2.7816 -2.6507 2.2506 0.9108 1.6050 2.5759 -1.1753 3.3759 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 1.6427 0.4033 0.1626   1.5292 0.2439 0.0595   

Swing Length (m) 0.8025 1.1141 1.2413   0.7953 0.5205 0.2709   

Swing Time (s) 1.5302 0.3247 0.1054   1.4946 0.2224 0.0494   

Swing Velocity (m/s) 0.5244 0.5244 0.5244   0.5198 0.5321 0.5321   
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Elderly Participant 4 Age Height (m) Weight (Kg) Gender       

 73.0000 1.4400 65.0000 Male       

           

Total Time (s) 71.8250          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 24.6000 24.6303 99.8769 25.4147 96.6884      

Estimated Velocity (m/s) 0.3425 0.3429 99.8769 0.3538 96.6884      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 0.6929 0.0989 0.0098 0.4836 0.9506 0.6928 0.1469 0.0216 0.4318 0.9990 

Stride Time (s) 2.1032 0.2967 0.0881 1.4755 2.8760 2.0716 0.4340 0.1883 1.3005 2.9760 

Stride Velocity (m/s) 0.3295 0.3295 0.3295   0.3344 0.3344 0.3344   

           

Cadence (step/min) 25.06     25.06     

Step Speed (m/s) 0.3295 0.3334 0.1112   0.3344 0.3385 0.1146   

Step length (m) 0.2484 0.1259 0.0158 -0.0257 0.5311 0.4720 0.1252 0.0157 0.2313 0.7709 

Step time(s) 0.7253 0.3675 0.1351 -0.0750 1.5505 1.3780 0.3655 0.1336 0.6752 2.2508 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 1.1029 0.1900 0.0361   1.0204 0.2560 0.0655   

Swing Length (m) 0.8217 0.3438 0.1182   0.8482 0.6649 0.4421   

Swing Time (s) 1.0003 0.2136 0.0456   1.0512 0.2618 0.0685   

Swing Velocity (m/s) 0.8214 0.8214 0.8214   0.8479 0.8069 0.8069   
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Elderly Participant 5 Age Height (m) Weight (Kg) Gender       

 75.0000 1.3200 62.0000 Male       

           

Total Time (s) 105.6250          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 15.5000 20.1874 69.7587 19.0633 77.0108      

Estimated Velocity (m/s) 0.1467 0.1911 69.7587 0.1805 77.0108      

Detected Stride Number 26.0000 26.0000 100.0000 26.0000 100.0000      

Detected Step Number 26.0000 26.0000 100.0000 26.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 0.5917 0.1095 0.0120 0.4283 0.9947 0.5917 0.0937 0.0088 0.4640 0.8545 

Stride Time (s) 3.2383 0.5948 0.3538 2.3506 5.4263 3.2460 0.5103 0.2604 2.5506 4.6761 

Stride Velocity (m/s) 0.1827 0.1827 0.1827   0.1823 0.1823 0.1823   

           

Cadence (step/min) 17.04     17.04     

Step Speed (m/s) 0.1827 0.1842 0.0339   0.1823 0.1837 0.0338   

Step length (m) -0.0557 0.2005 0.0402 -0.4257 0.2569 0.0546 0.2006 0.0402 -0.2569 0.4257 

Step time(s) -0.3799 1.3664 1.8669 -2.9007 1.7504 0.3722 1.3671 1.8689 -1.7504 2.9007 

Step Ratio (Step length/cadence) 0.003     0.003     

           

Stance Time (s) 1.6196 0.3026 0.0916   1.6292 0.3636 0.1322   

Swing Length (m) 0.7756 0.9104 0.8289   0.7327 0.8279 0.6855   

Swing Time (s) 1.6187 0.4003 0.1602   1.6167 0.2991 0.0895   

Swing Velocity (m/s) 0.4791 0.4791 0.4791   0.4527 0.4532 0.4532   
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Elderly Participant 6 Age Height (m) Weight (Kg) Gender       

 62.0000 1.6800 59.0000 Male       

           

Total Time (s) 96.5750          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 20.7000 20.7377 99.8179 20.6760 99.8842      

Estimated Velocity (m/s) 0.2143 0.2147 99.8179 0.2141 99.8842      

Detected Stride Number 26.0000 26.0000 100.0000 26.0000 100.0000      

Detected Step Number 26.0000 26.0000 100.0000 26.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 0.7900 0.1314 0.0173 0.6737 1.2648 0.7898 0.0780 0.0061 0.6586 0.9616 

Stride Time (s) 3.1335 0.5171 0.2674 2.6757 5.0013 3.0239 0.2961 0.0877 2.5257 3.6760 

Stride Velocity (m/s) 0.2521 0.2521 0.2521   0.2612 0.2612 0.2612   

           

Cadence (step/min) 18.63     18.63     

Step Speed (m/s) 0.2521 0.2542 0.0646   0.2612 0.2634 0.0694   

Step length (m) -0.1633 0.3575 0.1278 -0.5682 0.4824 0.1868 0.3330 0.1109 -0.2519 0.5682 

Step time(s) -0.7617 1.6678 2.7816 -2.6507 2.2506 0.8714 1.5538 2.4142 -1.1753 2.6507 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 1.6091 0.3821 0.1460   1.5292 0.2439 0.0595   

Swing Length (m) 0.7961 1.0520 1.1068   0.7953 0.5205 0.2709   

Swing Time (s) 1.5244 0.3275 0.1072   1.4946 0.2224 0.0494   

Swing Velocity (m/s) 0.5223 0.5223 0.5223   0.5217 0.5321 0.5321   
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Elderly Participant 7 Age Height (m) Weight (Kg) Gender       

 71.0000 1.6500 64.0000 Male       

           

Total Time (s) 80.1000          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 23.7700 22.9554 96.5728 23.2947 98.0005      

Estimated Velocity (m/s) 0.2968 0.2866 96.5728 0.2908 98.0005      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 0.6941 0.1794 0.0322 0.4334 0.9947 0.6939 0.1307 0.0171 0.4543 0.9453 

Stride Time (s) 2.4683 0.6315 0.3988 1.5505 3.5261 2.3932 0.4462 0.1991 1.5755 3.2510 

Stride Velocity (m/s) 0.2812 0.2812 0.2812   0.2899 0.2899 0.2899   

           

Cadence (step/min) 21.47     21.47     

Step Speed (m/s) 0.2812 0.2841 0.0807   0.2899 0.2930 0.0859   

Step length (m) 0.1680 0.1747 0.0305 -0.2152 0.4750 0.5645 0.1912 0.0365 0.1484 1.0464 

Step time(s) 0.5660 0.5888 0.3467 -0.7252 1.6005 1.9023 0.6442 0.4150 0.5002 3.5261 

Step Ratio (Step length/cadence) 0.02     0.02     

           

Stance Time (s) 1.2662 0.3561 0.1268   1.1787 0.2943 0.0866   

Swing Length (m) 0.7653 0.9251 0.8558   0.7766 0.8934 0.7981   

Swing Time (s) 1.2020 0.3521 0.1240   1.2145 0.2146 0.0460   

Swing Velocity (m/s) 0.6366 0.6366 0.6366   0.6460 0.6394 0.6394   
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Elderly Participant 8 Age Height (m) Weight (Kg) Gender       

 67.0000 1.5800 60.0000 Male       

           

Total Time (s) 74.8000          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 26.2100 26.8913 97.4006 23.5050 89.6797      

Estimated Velocity (m/s) 0.3504 0.3595 97.4006 0.3142 89.6797      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 0.6932 0.2528 0.0639 0.4953 1.9081 0.6926 0.1675 0.0280 0.4538 1.2217 

Stride Time (s) 2.1599 0.7787 0.6064 1.5505 5.9020 2.0098 0.4799 0.2303 1.3254 3.5262 

Stride Velocity (m/s) 0.3209 0.3209 0.3209   0.3446 0.3446 0.3446   

           

Cadence (step/min) 24.06     24.06     

Step Speed (m/s) 0.3209 0.3247 0.1054   0.3446 0.3489 0.1218   

Step length (m) 0.3444 0.3203 0.1026 -0.7536 0.7010 0.3124 0.1583 0.0251 0.0526 0.5345 

Step time(s) 0.9828 0.9140 0.8354 -2.1507 2.0007 0.8604 0.4435 0.1967 0.1501 1.5255 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 1.0495 0.4316 0.1863   1.0278 0.2793 0.0780   

Swing Length (m) 0.8962 1.3252 1.7561   0.7856 1.2665 1.6041   

Swing Time (s) 1.1104 0.4352 0.1894   0.9820 0.2690 0.0724   

Swing Velocity (m/s) 0.8071 0.8071 0.8071   0.7075 0.8000 0.8000   
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Elderly Participant 9 Age Height (m) Weight (Kg) Gender       

 63.0000 1.2700 62.0000 Female       

           

Total Time (s) 66.7500          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 23.2600 27.9676 79.7611 22.9786 98.7900      

Estimated Velocity (m/s) 0.3485 0.4190 79.7611 0.3442 98.7900      

Detected Stride Number 30.0000 30.0000 100.0000 30.0000 100.0000      

Detected Step Number 30.0000 30.0000 100.0000 30.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 0.6927 0.1188 0.0141 0.4727 0.9368 0.6926 0.0968 0.0094 0.4697 0.8697 

Stride Time (s) 2.0408 0.3457 0.1195 1.4005 2.7510 2.0166 0.2782 0.0774 1.3755 2.5259 

Stride Velocity (m/s) 0.3394 0.3394 0.3394   0.3434 0.3434 0.3434   

           

Cadence (step/min) 26.99     26.99     

Step Speed (m/s) 0.3394 0.3436 0.1181   0.3434 0.3478 0.1209   

Step length (m) 0.8462 0.3802 0.1445 0.1307 1.3508 0.3622 0.1700 0.0289 0.0610 0.6275 

Step time(s) 2.4284 1.0910 1.1903 0.3751 3.8765 1.0396 0.4878 0.2380 0.1751 1.8007 

Step Ratio (Step length/cadence) 0.03     0.01     

           

Stance Time (s) 1.0621 0.2186 0.0478   0.9837 0.2181 0.0475   

Swing Length (m) 0.9328 0.8875 0.7877   0.7679 1.2501 1.5628   

Swing Time (s) 0.9787 0.2440 0.0595   1.0329 0.2003 0.0401   

Swing Velocity (m/s) 0.9531 0.9531 0.9531   0.7846 0.7434 0.7434   
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Elderly Participant 10 Age Height (m) Weight (Kg) Gender       

 67.0000 1.5700 68.0000 Male       

           

Total Time (s) 37.6000          

 Actual Right Leg Accuracy Left Leg Accuracy      

Total Distance (m) 22.3500 10.7724 48.1985 10.5724 47.3039      

Estimated Velocity (m/s) 0.5944 0.2865 48.1985 0.2812 47.3039      

Detected Stride Number 20.0000 20.0000 100.0000 20.0000 100.0000      

Detected Step Number 20.0000 20.0000 100.0000 20.0000 100.0000      

           

 Right Left 

Gait Features Mean StaDev Variance MinRange MaxRange Mean StaDev Variance MinRange MaxRange 

Stride Length (m) 1.0824 0.1372 0.0188 0.7758 1.4777 1.0842 0.2780 0.0773 0.9227 2.1188 

Stride Time (s) 1.5170 0.1860 0.0346 1.1015 2.0527 1.5996 0.4074 0.1659 1.4019 3.1542 

Stride Velocity (m/s) 0.7135 0.7135 0.7135   0.6778 0.6617 0.6617   

           

Cadence (step/min) 31.91     31.91     

Step Speed (m/s) 0.7135 0.7379 0.5444   0.6778 0.6826 0.4659   

Step length (m) 0.4955 0.1494 0.0223 0.2083 1.0119 0.4896 0.0870 0.0076 -0.6250 -0.2083 

Step time(s) 0.8336 0.2513 0.0631 0.3505 1.7023 0.8236 0.1463 0.0214 -1.0514 -0.3505 

Step Ratio (Step length/cadence) 0.01     0.01     

           

Stance Time (s) 0.8186 0.2151 0.0462   0.7911 0.2637 0.0696   

Swing Length (m) 0.5294 0.2644 0.0699   0.5929 0.5208 0.2712   

Swing Time (s) 0.6984 0.2642 0.0698   0.8486 0.1604 0.0257   

Swing Velocity (m/s) 0.7579 0.7579 0.7579   0.8489 0.6986 0.6986   
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 Participant 1: Treadmill speed 0.6 m/s 

Qualisys IMU 

Right Leg Left Leg Right Leg Left Leg 

Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.235 1.480 1.203 1.450 1.248 1.404 1.080 1.279 

2 1.153 1.425 1.070 1.490 1.165 1.193 0.854 1.368 

3 1.165 1.575 1.153 1.425 1.177 1.377 1.071 1.180 

4 1.137 1.870 1.052 1.615 1.149 1.712 0.800 1.448 

5 1.126 1.220 1.087 1.465 1.138 1.369 0.966 1.352 

6 1.186 1.795 1.085 1.505 1.198 1.673 1.088 1.432 

7 1.141 1.180 1.126 2.000 1.152 1.337 1.078 1.973 

8 1.123 1.585 1.049 1.090 1.134 1.731 0.892 1.208 

9 1.048 1.600 1.034 2.015 1.058 1.603 1.112 1.838 

10 1.040 1.705 0.951 1.245 1.050 1.638 0.684 1.524 

11 1.044 2.310 0.930 1.615 1.054 2.205 0.882 1.547 

12 1.101 1.645 1.002 1.795 1.112 1.501 0.863 1.742 

13 1.039 1.695 1.014 1.635 1.049 1.705 0.865 1.558 

14 1.083 1.150 1.050 1.815 1.094 1.214 1.074 1.833 

15 1.147 2.380 1.086 1.630 1.158 2.355 1.089 1.593 

16 1.107 1.060 1.088 1.835 1.118 1.295 1.348 1.810 

17 1.079 2.240 1.063 2.040 1.090 2.078 0.950 1.822 

18 1.204 1.820 1.037 1.375 1.216 1.743 0.793 1.673 

19 1.046 1.085 1.029 2.180 1.056 1.402 1.197 2.005 

20 1.031 1.630 1.038 1.130 1.042 1.743 0.830 1.260 

21 1.029 1.340 1.062 1.445 1.040 1.383 1.154 1.764 

22 1.088 1.435 1.023 1.535 1.099 1.437 0.919 1.363 

23 1.069 1.890 1.053 1.360 1.080 1.779 1.213 1.403 

24 1.059 1.580 1.093 1.480 1.069 1.646 1.203 1.627 

25 1.054 1.540 1.072 1.520 1.064 1.322 1.191 1.524 

26 1.104 1.540 1.112 1.480 1.116 1.755 0.964 1.501 

27 1.069 1.890 1.053 1.360 1.080 1.700 1.315 1.570 

28 1.059 1.580 1.093 1.480 1.069 1.626 1.115 1.615 

29 1.054 1.540 1.072 1.520 1.064 1.486 1.189 1.455 

30 1.104 1.540 1.112 1.480 1.116 1.673 1.009 1.547 

  
 Participant 1: Treadmill speed 1.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.864 0.950 0.854 0.860 0.944 0.923 0.768 0.745 

2 0.897 0.925 0.819 0.915 0.781 0.900 0.739 0.689 

3 0.887 0.890 0.826 0.875 1.100 0.811 1.005 1.067 

4 0.882 0.985 0.804 1.035 1.049 0.889 0.714 0.811 

5 0.891 0.745 0.856 0.880 0.790 1.045 0.704 1.067 

6 0.824 0.910 0.835 0.850 0.704 0.967 0.940 0.978 

7 0.902 1.030 0.890 1.015 0.928 0.968 0.746 0.811 

8 0.927 0.895 0.878 0.820 1.215 1.167 1.103 1.012 

9 0.897 0.910 0.843 0.875 0.602 0.845 0.915 1.123 

10 0.931 0.935 0.892 0.895 0.776 0.878 1.041 1.134 

11 0.933 0.820 0.895 0.960 0.830 0.789 0.598 1.023 

12 0.943 1.000 0.939 0.895 0.971 1.145 0.716 0.667 

13 0.956 0.785 0.899 0.935 1.007 0.878 0.808 0.656 



Appendix D 

322 

 

14 0.948 1.035 0.905 0.905 0.833 1.034 0.673 0.945 

15 0.961 0.790 0.915 0.905 0.789 0.634 0.657 0.967 

16 0.956 1.105 0.915 0.975 1.185 1.112 0.946 1.089 

17 0.963 0.805 0.956 0.945 0.990 0.978 0.803 0.823 

18 0.944 1.065 0.901 0.950 0.719 1.000 0.706 1.056 

19 0.946 0.915 0.931 0.905 0.714 0.923 0.973 0.978 

20 0.965 0.785 0.928 0.915 0.810 0.900 0.640 0.800 

21 0.975 1.020 0.967 0.910 0.961 0.923 1.246 1.025 

22 0.975 0.810 0.975 0.905 0.839 0.978 0.918 0.700 

23 0.984 1.150 0.966 0.945 0.849 0.900 0.855 0.656 

24 0.988 0.895 0.950 0.965 0.886 0.945 0.773 1.123 

25 0.959 0.810 0.918 0.935 0.948 0.945 0.630 0.967 

26 0.923 1.065 0.908 0.945 0.844 0.911 0.790 0.967 

27 0.946 0.825 0.915 0.950 0.858 0.978 0.994 1.134 

28 0.959 1.110 0.912 0.935 0.805 0.934 0.746 0.789 

29 1.002 1.110 0.952 1.030 1.182 1.012 0.997 0.956 

30 0.860 1.110 0.855 1.030 0.813 0.923 0.768 0.950 

  
 Participant 1: Treadmill speed 1.4 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.097 0.770 1.112 0.680 1.157 0.778 0.822 0.623 

2 1.172 0.795 1.107 0.750 1.375 0.811 0.973 0.856 

3 1.145 0.625 1.118 0.735 0.946 0.723 0.896 0.645 

4 1.133 0.845 1.125 0.720 1.235 0.767 0.969 0.834 

5 1.148 0.690 1.087 0.765 1.103 0.689 1.061 0.634 

6 1.102 0.855 1.024 0.765 0.908 0.789 0.891 0.867 

7 1.059 0.680 0.991 0.765 1.239 0.822 0.994 0.723 

8 1.055 0.835 1.044 0.760 0.814 0.789 0.827 0.645 

9 1.115 0.850 1.106 0.820 1.035 0.878 1.127 0.867 

10 1.104 0.720 1.087 0.835 1.099 0.912 1.064 0.745 

11 1.087 0.885 1.033 0.830 1.155 1.078 0.815 1.067 

12 1.069 0.725 1.056 0.790 0.874 0.511 0.987 0.734 

13 1.047 0.890 1.037 0.785 0.892 1.078 1.023 0.700 

14 1.084 0.730 1.110 0.810 1.234 0.845 1.267 0.889 

15 1.091 0.855 1.113 0.785 0.944 0.567 1.287 0.945 

16 1.157 0.755 1.128 0.810 1.192 0.797 0.994 0.667 

17 1.112 0.785 1.087 0.840 1.343 0.889 1.154 0.856 

18 1.108 0.825 1.094 0.780 1.086 0.756 1.153 0.889 

19 1.093 0.855 1.135 0.820 0.796 0.856 0.982 0.700 

20 1.172 0.765 1.176 0.805 1.145 0.778 1.054 0.678 

21 1.126 0.935 1.079 0.820 1.262 0.823 1.113 0.900 

22 1.090 0.690 1.052 0.810 0.914 0.567 1.017 0.856 

23 1.114 0.860 1.062 0.840 0.907 1.112 1.146 0.811 

24 1.072 0.900 1.111 0.865 0.875 0.789 1.310 0.867 

25 1.140 0.840 1.107 0.890 1.416 1.003 1.204 0.900 

26 1.115 0.855 1.082 0.845 1.383 0.778 1.199 1.089 

27 1.089 0.940 1.090 0.850 1.290 0.912 0.909 0.811 

28 1.135 0.820 1.124 0.835 1.133 0.789 0.926 0.778 

29 1.172 0.775 1.153 0.795 1.164 0.511 1.448 0.745 

30 1.200 0.775 1.171 0.850 1.030 0.511 1.448 0.745 
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 Participant 1: Treadmill speed 1.8 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.189 0.675 1.167 0.775 1.194 0.912 1.085 0.611 

2 1.237 0.750 1.238 0.720 1.000 0.611 1.057 0.656 

3 1.258 0.670 1.218 0.695 1.522 0.700 1.478 0.734 

4 1.206 0.735 1.208 0.680 1.457 0.845 1.242 0.734 

5 1.238 0.710 1.229 0.720 1.169 0.678 1.476 0.834 

6 1.230 0.680 1.217 0.690 1.130 0.689 1.096 0.600 

7 1.247 0.700 1.244 0.695 1.253 0.667 1.400 0.834 

8 1.261 0.725 1.235 0.690 1.206 0.734 1.116 0.734 

9 1.209 0.650 1.178 0.700 1.073 0.678 1.091 0.611 

10 1.265 0.665 1.237 0.665 1.054 0.723 1.003 0.578 

11 1.280 0.665 1.222 0.660 1.205 0.634 1.189 0.745 

12 1.257 0.680 1.217 0.685 1.209 0.589 1.108 0.667 

13 1.145 0.695 1.121 0.685 1.426 0.767 1.205 0.589 

14 1.212 0.640 1.226 0.680 0.936 0.734 1.174 0.867 

15 1.282 0.675 1.267 0.680 1.192 0.567 1.284 0.793 

16 1.256 0.670 1.214 0.660 1.245 0.789 1.307 0.756 

17 1.233 0.655 1.251 0.660 1.040 0.645 1.550 0.723 

18 1.280 0.705 1.265 0.670 1.075 0.678 1.529 0.700 

19 1.333 0.695 1.292 0.685 1.143 0.711 1.003 0.789 

20 1.331 0.730 1.311 0.715 1.039 0.778 1.275 0.623 

21 1.253 0.670 1.244 0.725 1.540 0.689 1.149 0.656 

22 1.270 0.695 1.255 0.675 1.061 0.678 0.961 0.623 

23 1.267 0.710 1.261 0.695 1.290 0.745 1.203 0.856 

24 1.260 0.785 1.243 0.720 1.177 0.700 0.952 0.667 

25 1.312 0.645 1.299 0.715 1.280 0.600 1.430 0.623 

26 1.283 0.755 1.250 0.725 1.294 0.823 1.336 0.889 

27 1.260 0.640 1.286 0.700 1.462 0.634 1.379 0.723 

28 1.292 0.735 1.267 0.700 1.201 0.700 1.524 0.611 

29 1.236 0.760 1.242 0.705 1.357 0.778 1.453 0.700 

30 1.278 0.850 1.271 0.725 1.169 0.656 1.470 0.700 

  
 Participant 1: Treadmill speed 2.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.311 0.655 1.339 0.650 1.179 0.623 1.253 0.623 

2 1.321 0.675 1.207 0.675 1.232 0.656 1.471 0.723 

3 1.328 0.650 1.285 0.665 1.407 0.689 1.083 0.656 

4 1.278 0.685 1.295 0.655 1.330 0.689 1.171 0.578 

5 1.302 0.645 1.327 0.655 1.094 0.567 1.392 0.856 

6 1.338 0.720 1.327 0.675 1.096 0.634 1.191 0.511 

7 1.400 0.650 1.339 0.675 1.510 0.789 1.131 0.634 

8 1.424 0.690 1.271 0.695 1.626 0.800 1.282 0.989 

9 1.399 0.705 1.330 0.680 1.211 0.645 1.040 0.511 

10 1.426 0.695 1.325 0.710 1.454 0.689 1.202 0.789 

11 1.402 0.695 1.320 0.695 1.693 0.723 1.053 0.611 

12 1.460 0.675 1.427 0.675 1.482 0.678 1.460 0.945 
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13 1.441 0.645 1.383 0.685 1.582 0.645 1.322 0.743 

14 1.412 0.705 1.409 0.695 1.560 0.767 1.492 0.789 

15 1.385 0.665 1.350 0.650 1.155 0.667 1.091 0.578 

16 1.372 0.710 1.322 0.705 1.161 0.700 1.451 0.711 

17 1.344 0.695 1.292 0.705 1.327 0.623 1.013 0.700 

18 1.304 0.735 1.307 0.700 1.432 0.745 1.456 0.734 

19 1.284 0.665 1.259 0.700 1.329 0.711 1.425 0.723 

20 1.313 0.705 1.342 0.690 1.324 0.734 1.523 0.734 

21 1.301 0.685 1.317 0.695 1.376 0.700 1.416 0.934 

22 1.312 0.690 1.276 0.695 1.312 0.711 1.047 0.600 

23 1.364 0.710 1.346 0.695 1.343 0.700 1.243 0.600 

24 1.359 0.670 1.344 0.710 1.244 0.756 1.158 0.611 

25 1.373 0.720 1.385 0.690 1.223 0.623 1.620 0.823 

26 1.347 0.690 1.298 0.725 1.270 0.689 1.080 0.634 

27 1.320 0.650 1.281 0.670 1.319 0.667 1.206 0.545 

28 1.305 0.695 1.283 0.645 1.229 0.723 1.005 0.556 

29 1.340 0.695 1.339 0.685 1.254 0.667 1.246 0.611 

30 1.353 0.695 1.366 0.685 1.330 0.667 1.212 0.611 

  

 Participant 1: Treadmill speed 2.2 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.407 0.655 1.400 0.685 1.297 0.556 1.377 0.567 

2 1.495 0.635 1.447 0.625 1.490 0.634 1.703 0.900 

3 1.343 0.730 1.380 0.660 1.358 0.556 1.297 0.623 

4 1.422 0.610 1.411 0.665 1.631 0.856 1.282 0.567 

5 1.420 0.630 1.417 0.610 1.160 0.589 1.387 0.623 

6 1.473 0.640 1.412 0.635 1.529 0.934 1.390 0.656 

7 1.426 0.630 1.399 0.655 1.615 0.738 1.551 0.634 

8 1.410 0.655 1.386 0.655 1.688 0.623 1.462 0.611 

9 1.362 0.645 1.395 0.625 1.619 0.634 1.527 0.689 

10 1.356 0.620 1.398 0.625 1.360 0.689 1.422 0.812 

11 1.369 0.655 1.370 0.635 1.313 0.545 1.154 0.656 

12 1.393 0.645 1.385 0.660 1.408 0.734 1.351 0.634 

13 1.435 0.645 1.424 0.655 1.393 0.534 1.673 0.767 

14 1.416 0.655 1.451 0.650 1.274 0.756 1.669 0.711 

15 1.410 0.670 1.428 0.640 1.295 0.689 1.169 0.611 

16 1.427 0.635 1.354 0.635 1.211 0.567 1.289 0.545 

17 1.343 0.630 1.300 0.665 1.419 0.723 1.300 0.645 

18 1.386 0.690 1.371 0.675 1.108 0.600 1.466 0.800 

19 1.413 0.605 1.364 0.670 1.398 0.734 1.361 0.511 

20 1.411 0.680 1.413 0.635 1.396 0.611 1.635 0.789 

21 1.450 0.675 1.444 0.655 1.457 0.789 1.373 0.545 

22 1.530 0.660 1.462 0.675 1.276 0.511 1.663 0.867 

23 1.472 0.635 1.490 0.645 1.497 0.912 1.378 0.511 

24 1.451 0.645 1.514 0.645 1.450 0.656 1.534 0.934 

25 1.626 0.655 1.593 0.665 1.358 0.623 1.455 0.545 

26 1.642 0.665 1.625 0.655 1.614 0.511 1.329 0.545 

27 1.629 0.670 1.608 0.645 1.404 0.645 1.641 0.723 

28 1.517 0.635 1.519 0.635 1.243 0.711 1.320 0.667 

29 1.473 0.710 1.551 0.710 1.309 0.667 1.602 0.634 

30 1.571 0.710 1.541 0.710 1.309 0.667 1.506 0.700 
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 Participant 1: Treadmill speed 2.5 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.611 0.580 1.601 0.595 1.346 0.445 1.654 0.734 

2 1.551 0.650 1.533 0.625 1.534 0.578 1.792 0.623 

3 1.535 0.595 1.550 0.605 1.506 0.623 1.780 0.656 

4 1.563 0.590 1.558 0.620 1.672 0.667 1.320 0.589 

5 1.507 0.620 1.538 0.595 1.751 0.689 1.544 0.645 

6 1.606 0.625 1.513 0.635 1.416 0.511 1.457 0.611 

7 1.571 0.595 1.539 0.595 1.625 0.700 1.381 0.589 

8 1.573 0.620 1.556 0.630 1.848 0.812 1.623 0.678 

9 1.558 0.615 1.548 0.615 1.296 0.611 1.322 0.600 

10 1.504 0.615 1.529 0.605 1.318 0.378 1.251 0.623 

11 1.575 0.580 1.541 0.605 1.680 0.611 1.591 0.578 

12 1.579 0.620 1.569 0.605 1.665 0.667 1.641 0.634 

13 1.601 0.570 1.538 0.595 1.424 0.567 1.756 0.578 

14 1.511 0.640 1.505 0.605 1.777 0.800 1.683 0.656 

15 1.660 0.585 1.608 0.590 1.845 0.623 1.783 0.578 

16 1.609 0.630 1.616 0.580 1.851 0.600 1.726 0.611 

17 1.459 0.570 1.525 0.595 1.429 0.389 1.290 0.600 

18 1.430 0.590 1.411 0.615 1.473 0.656 1.442 0.623 

19 1.485 0.655 1.463 0.600 1.390 0.578 1.604 0.623 

20 1.604 0.560 1.493 0.610 1.721 0.778 1.487 0.589 

21 1.458 0.615 1.511 0.610 1.328 0.656 1.218 0.578 

22 1.497 0.640 1.499 0.615 1.332 0.434 1.308 0.645 

23 1.546 0.595 1.467 0.615 1.456 0.478 1.429 0.634 

24 1.496 0.615 1.440 0.605 1.685 0.723 1.277 0.623 

25 1.450 0.600 1.357 0.600 1.700 0.623 1.539 0.600 

26 1.492 0.595 1.418 0.600 1.434 0.545 1.607 0.611 

27 1.464 0.620 1.426 0.600 1.736 0.878 1.167 0.600 

28 1.493 0.595 1.443 0.625 1.359 0.578 1.465 0.611 

29 1.512 0.630 1.446 0.660 1.283 0.422 1.249 0.600 

30 1.453 0.630 1.453 0.660 1.205 0.434 1.691 0.689 
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 Participant 2: Treadmill speed 0.6 m/s 

Qualisys IMU 

Right Leg Left Leg Right Leg Left Leg 

Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.660 0.945 0.933 0.716 0.723 0.945 0.971 0.736 

2 0.799 0.947 0.766 1.092 0.798 0.950 0.763 1.087 

3 0.923 1.084 0.894 0.964 0.921 1.087 0.890 1.031 

4 0.939 1.003 0.929 1.050 0.942 1.003 0.886 1.036 

5 0.827 1.040 0.868 1.330 0.829 1.074 0.873 1.328 

6 0.831 1.202 0.755 0.917 0.838 1.202 0.849 0.935 

7 0.697 0.871 0.779 1.058 0.698 0.874 0.787 1.055 

8 0.729 1.224 0.627 1.070 0.719 1.221 0.629 1.071 

9 0.668 1.096 0.735 1.257 0.723 1.114 0.755 1.281 

10 0.541 1.196 0.546 1.149 0.558 1.190 0.551 1.149 
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11 0.472 1.202 0.521 1.188 0.473 1.197 0.521 1.190 

12 0.446 1.038 0.538 1.292 0.461 1.050 0.543 1.276 

13 0.632 1.228 0.519 0.948 0.635 1.220 0.576 0.968 

14 0.565 0.961 0.566 1.151 0.574 0.965 0.575 1.148 

15 0.528 1.078 0.500 1.109 0.537 1.081 0.490 1.096 

16 0.602 1.076 0.584 1.062 0.606 1.076 0.676 1.062 

17 0.697 1.078 0.591 1.074 0.697 1.078 0.626 1.077 

18 0.702 1.234 0.688 1.233 0.693 1.217 0.663 1.230 

19 0.652 1.210 0.700 1.711 0.744 1.209 0.759 1.659 

20 0.622 1.252 0.660 0.759 0.607 1.249 0.636 0.772 

21 0.480 0.945 0.557 1.074 0.489 0.950 0.563 1.073 

22 0.583 1.076 0.528 1.025 0.590 1.073 0.532 1.029 

23 0.653 0.971 0.720 1.064 1.013 0.971 0.721 1.082 

24 0.584 1.136 0.597 1.153 0.581 1.090 0.597 1.146 

25 0.601 1.164 0.553 1.186 0.614 1.165 0.559 1.183 

26 0.567 1.064 0.574 0.962 0.566 1.065 0.563 0.957 

27 0.680 1.182 0.608 1.257 0.668 1.167 0.604 1.251 

28 0.722 1.140 0.656 1.546 0.714 1.136 0.672 1.546 

29 0.638 1.140 0.626 0.740 0.663 1.140 0.664 0.742 

30 0.714 1.140 0.611 0.740 0.718 1.132 0.625 0.763 

  

 Participant 2: Treadmill speed 1.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.880 1.125 0.785 1.030 0.893 1.145 0.788 1.057 

2 0.848 1.465 0.804 1.215 0.842 1.458 0.799 1.216 

3 0.803 0.930 0.856 1.320 0.760 0.934 0.854 1.312 

4 0.833 1.205 0.793 1.030 0.845 1.205 0.808 1.032 

5 0.891 1.170 0.837 1.370 0.905 1.174 0.810 1.359 

6 0.903 1.195 0.906 1.025 0.944 1.195 0.936 1.030 

7 0.856 1.140 0.908 1.195 0.854 1.138 0.905 1.147 

8 0.879 1.130 0.912 1.045 0.878 1.129 0.887 1.048 

9 0.928 1.155 0.990 1.215 1.047 1.156 1.005 1.243 

10 0.953 1.145 0.974 1.075 0.945 1.143 0.944 1.077 

11 1.055 1.145 1.021 1.305 1.048 1.146 1.026 1.307 

12 1.114 1.145 1.126 1.140 1.131 1.151 1.119 1.134 

13 1.084 1.120 1.135 1.110 1.084 1.128 1.134 1.104 

14 1.085 1.095 1.105 1.045 1.040 1.092 1.085 1.042 

15 1.144 1.205 1.099 1.045 1.144 1.200 1.111 1.056 

16 1.134 1.040 1.119 1.020 1.069 1.040 1.101 0.995 

17 1.208 0.905 1.142 1.050 1.186 0.907 1.140 1.072 

18 1.254 1.125 1.222 1.145 1.224 1.116 1.213 1.121 

19 1.244 0.995 1.276 1.045 1.297 1.006 1.308 1.044 

20 1.325 1.060 1.332 1.035 1.304 1.056 1.263 1.047 

21 1.378 1.075 1.367 0.930 1.369 1.076 1.362 0.933 

22 1.353 0.995 1.349 1.135 1.334 0.995 1.310 1.122 

23 1.421 1.115 1.389 1.100 1.445 1.119 1.392 1.102 

24 1.448 1.100 1.363 1.020 1.439 1.091 1.222 1.012 

25 1.360 0.985 1.338 1.100 1.298 1.000 1.321 1.100 

26 1.303 1.115 1.379 0.985 1.149 1.124 1.337 0.985 

27 1.343 0.920 1.343 0.995 1.202 0.920 1.313 0.974 

28 1.362 1.030 1.392 1.015 1.310 1.026 1.383 1.017 
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29 1.366 0.990 1.366 1.075 1.366 0.990 1.347 1.071 

30 1.411 0.990 1.392 1.075 1.388 0.987 1.368 1.070 

  

 Participant 2: Treadmill speed 1.4 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.011 1.050 1.041 0.830 1.013 1.049 1.051 0.832 

2 1.061 0.755 1.051 0.815 1.082 0.766 1.029 0.808 

3 1.077 0.855 1.094 0.895 1.051 0.854 1.025 0.896 

4 1.119 0.840 1.091 0.785 1.036 0.831 1.091 0.787 

5 1.080 0.830 1.099 0.950 1.059 0.839 1.099 0.949 

6 1.156 0.945 1.128 0.795 1.145 0.941 1.123 0.799 

7 1.084 0.775 1.111 0.840 1.057 0.785 1.107 0.833 

8 1.054 0.895 1.071 0.900 1.052 0.895 1.067 0.892 

9 1.083 0.880 1.065 0.930 1.084 0.885 1.115 0.935 

10 1.074 0.865 1.075 0.855 1.069 0.865 1.034 0.843 

11 1.113 0.820 1.085 0.745 1.102 0.820 1.043 0.768 

12 1.084 0.785 1.105 0.835 1.055 0.787 1.086 0.838 

13 1.159 0.825 1.133 0.850 1.147 0.827 1.131 0.861 

14 1.244 0.860 1.236 0.880 1.191 0.868 1.224 0.877 

15 1.264 0.885 1.216 0.770 1.076 0.884 1.158 0.777 

16 1.198 0.900 1.159 0.865 1.174 0.900 1.115 0.846 

17 1.235 0.740 1.188 0.765 1.235 0.745 1.048 0.792 

18 1.254 0.730 1.199 0.735 1.248 0.732 1.157 0.737 

19 1.236 0.785 1.252 0.805 1.234 0.791 1.239 0.815 

20 1.274 0.785 1.303 0.825 1.235 0.776 1.294 0.822 

21 1.313 0.810 1.365 0.740 1.297 0.812 1.308 0.740 

22 1.256 0.850 1.298 0.885 1.173 0.850 1.277 0.885 

23 1.256 0.765 1.212 0.780 1.244 0.769 1.197 0.782 

24 1.230 0.770 1.268 0.805 1.067 0.770 1.087 0.804 

25 1.267 0.835 1.278 0.875 1.228 0.850 1.180 0.878 

26 1.226 0.895 1.191 0.800 1.132 0.894 1.176 0.804 

27 1.149 0.770 1.139 0.835 1.121 0.769 1.063 0.816 

28 1.124 0.920 1.134 0.830 1.102 0.922 1.129 0.829 

29 1.156 0.795 1.200 0.895 1.142 0.796 1.218 0.896 

30 1.183 0.795 1.235 0.895 1.092 0.795 1.244 0.896 

  
 Participant 2: Treadmill speed 1.8 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.986 0.710 1.063 0.780 0.975 0.712 1.045 0.796 

2 0.960 0.730 1.044 0.705 0.957 0.732 1.044 0.713 

3 0.958 0.720 1.022 0.655 0.830 0.713 1.014 0.655 

4 0.980 0.675 1.024 0.710 0.972 0.692 0.982 0.709 

5 0.964 0.700 1.039 0.675 0.943 0.694 1.007 0.676 

6 0.973 0.805 1.060 0.730 0.973 0.805 1.033 0.731 

7 1.012 0.680 1.055 0.735 0.959 0.680 1.040 0.732 

8 1.012 0.665 1.053 0.705 0.970 0.679 1.052 0.705 

9 1.006 0.685 1.044 0.720 0.920 0.686 0.997 0.717 

10 1.023 0.715 1.099 0.715 1.022 0.699 1.098 0.723 
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11 1.061 0.720 1.098 0.655 1.056 0.721 1.087 0.657 

12 1.027 0.670 1.083 0.710 1.026 0.727 1.070 0.715 

13 1.048 0.685 1.107 0.715 1.023 0.680 1.071 0.716 

14 1.025 0.740 1.121 0.755 1.010 0.740 1.104 0.752 

15 0.994 0.815 1.083 0.720 0.886 0.798 1.042 0.709 

16 0.997 0.615 1.069 0.705 0.954 0.627 1.031 0.705 

17 1.039 0.740 1.105 0.690 1.003 0.746 1.091 0.695 

18 1.043 0.690 1.099 0.705 1.040 0.679 1.080 0.703 

19 1.008 0.720 1.110 0.700 1.040 0.721 1.095 0.700 

20 1.013 0.715 1.082 0.685 1.006 0.716 1.082 0.685 

21 1.054 0.660 1.098 0.675 1.036 0.660 1.078 0.676 

22 1.028 0.705 1.102 0.720 0.995 0.705 1.070 0.710 

23 1.010 0.670 1.101 0.680 1.000 0.674 1.101 0.683 

24 1.027 0.710 1.089 0.720 0.898 0.710 1.024 0.716 

25 0.993 0.695 1.073 0.700 0.995 0.696 1.029 0.705 

26 0.976 0.690 1.047 0.640 0.920 0.685 1.018 0.663 

27 0.960 0.690 1.052 0.760 0.927 0.691 1.051 0.753 

28 0.931 0.715 1.024 0.635 0.920 0.716 0.976 0.638 

29 0.935 0.675 0.990 0.705 0.929 0.679 0.976 0.703 

30 0.945 0.675 0.987 0.705 0.906 0.676 0.903 0.705 

  

 Participant 2: Treadmill speed 2.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.165 0.670 1.167 0.700 1.175 0.679 1.192 0.700 

2 1.150 0.665 1.163 0.695 1.143 0.665 1.055 0.679 

3 1.203 0.690 1.206 0.665 1.188 0.688 1.153 0.662 

4 1.258 0.715 1.199 0.705 1.159 0.713 1.204 0.706 

5 1.311 0.650 1.285 0.680 1.251 0.686 1.132 0.667 

6 1.397 0.655 1.313 0.650 1.397 0.721 1.203 0.634 

7 1.443 0.705 1.385 0.685 1.442 0.705 1.342 0.685 

8 1.465 0.665 1.429 0.650 1.429 0.662 1.230 0.650 

9 1.403 0.680 1.349 0.695 1.360 0.681 1.313 0.699 

10 1.274 0.705 1.191 0.715 1.187 0.707 1.143 0.714 

11 1.279 0.675 1.298 0.685 1.279 0.677 1.299 0.698 

12 1.338 0.755 1.345 0.635 1.231 0.730 1.350 0.641 

13 1.360 0.580 1.332 0.665 1.322 0.574 1.329 0.665 

14 1.397 0.665 1.360 0.695 1.406 0.706 1.347 0.695 

15 1.391 0.675 1.369 0.690 1.372 0.675 1.317 0.687 

16 1.443 0.695 1.448 0.690 1.329 0.695 1.240 0.685 

17 1.473 0.695 1.410 0.665 1.432 0.686 1.376 0.670 

18 1.460 0.650 1.445 0.670 1.424 0.651 1.418 0.668 

19 1.507 0.725 1.485 0.715 1.379 0.723 1.484 0.715 

20 1.553 0.650 1.530 0.665 1.545 0.650 1.456 0.670 

21 1.510 0.710 1.490 0.675 1.510 0.711 1.416 0.675 

22 1.539 0.710 1.539 0.665 1.496 0.740 1.460 0.675 

23 1.586 0.690 1.549 0.765 1.398 0.703 1.469 0.763 

24 1.601 0.660 1.566 0.640 1.535 0.660 1.545 0.658 

25 1.573 0.635 1.556 0.650 1.450 0.634 1.543 0.651 

26 1.555 0.680 1.539 0.660 1.543 0.667 1.538 0.658 

27 1.559 0.670 1.540 0.710 1.465 0.669 1.466 0.708 

28 1.557 0.690 1.558 0.645 1.428 0.686 1.508 0.664 
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29 1.542 0.860 1.559 0.745 1.472 0.848 1.341 0.742 

30 1.562 0.860 1.572 0.745 1.560 0.851 1.455 0.740 

  

 Participant 2: Treadmill speed 2.2 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.389 0.690 1.376 0.615 1.348 0.690 1.355 0.617 

2 1.397 0.655 1.410 0.670 1.391 0.659 1.245 0.670 

3 1.356 0.645 1.343 0.640 1.311 0.645 1.335 0.631 

4 1.394 0.620 1.380 0.660 1.297 0.636 1.375 0.661 

5 1.435 0.645 1.428 0.610 1.400 0.639 1.426 0.614 

6 1.477 0.615 1.471 0.630 1.467 0.643 1.468 0.635 

7 1.512 0.645 1.514 0.635 1.501 0.663 1.506 0.635 

8 1.513 0.640 1.501 0.630 1.492 0.643 1.476 0.630 

9 1.506 0.605 1.499 0.635 1.489 0.584 1.447 0.636 

10 1.586 0.670 1.550 0.650 1.543 0.669 1.498 0.651 

11 1.499 0.660 1.496 0.655 1.434 0.657 1.443 0.656 

12 1.410 0.615 1.413 0.605 1.331 0.616 1.247 0.608 

13 1.413 0.630 1.431 0.665 1.404 0.638 1.421 0.662 

14 1.434 0.635 1.443 0.655 1.418 0.634 1.345 0.650 

15 1.392 0.680 1.423 0.650 1.307 0.676 1.385 0.659 

16 1.479 0.670 1.413 0.690 1.448 0.671 1.410 0.693 

17 1.427 0.665 1.376 0.630 1.399 0.678 1.348 0.637 

18 1.405 0.615 1.425 0.610 1.399 0.617 1.375 0.610 

19 1.495 0.675 1.512 0.700 1.416 0.668 1.322 0.694 

20 1.481 0.695 1.514 0.675 1.407 0.695 1.509 0.676 

21 1.478 0.635 1.468 0.640 1.474 0.692 1.456 0.632 

22 1.522 0.665 1.536 0.690 1.497 0.654 1.524 0.693 

23 1.548 0.665 1.545 0.655 1.445 0.644 1.390 0.653 

24 1.551 0.645 1.520 0.615 1.544 0.645 1.409 0.618 

25 1.569 0.630 1.528 0.680 1.567 0.631 1.495 0.683 

26 1.561 0.690 1.554 0.660 1.492 0.695 1.514 0.660 

27 1.588 0.635 1.556 0.605 1.527 0.632 1.551 0.608 

28 1.643 0.670 1.610 0.725 1.640 0.683 1.464 0.725 

29 1.579 0.650 1.577 0.620 1.537 0.652 1.569 0.626 

30 1.567 0.690 1.555 0.620 1.566 0.694 1.395 0.619 

  
 Participant 2: Treadmill speed 2.5 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.411 0.615 1.385 0.655 1.343 0.590 1.347 0.648 

2 1.401 0.610 1.404 0.600 1.375 0.612 1.380 0.600 

3 1.414 0.590 1.423 0.610 1.340 0.589 1.394 0.611 

4 1.384 0.610 1.375 0.575 1.268 0.610 1.362 0.576 

5 1.355 0.605 1.351 0.625 1.355 0.605 1.303 0.606 

6 1.389 0.605 1.395 0.620 1.389 0.610 1.311 0.611 

7 1.408 0.610 1.399 0.610 1.283 0.597 1.244 0.585 

8 1.416 0.595 1.411 0.575 1.399 0.594 1.377 0.576 

9 1.410 0.630 1.414 0.655 1.408 0.626 1.366 0.653 

10 1.397 0.620 1.397 0.600 1.405 0.630 1.383 0.600 
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11 1.390 0.600 1.353 0.610 1.239 0.600 1.283 0.610 

12 1.368 0.615 1.388 0.610 1.258 0.603 1.214 0.610 

13 1.399 0.615 1.417 0.625 1.286 0.617 1.401 0.625 

14 1.458 0.620 1.420 0.595 1.413 0.620 1.404 0.583 

15 1.446 0.605 1.442 0.605 1.269 0.600 1.422 0.608 

16 1.452 0.625 1.464 0.620 1.447 0.626 1.450 0.640 

17 1.416 0.605 1.426 0.615 1.348 0.603 1.379 0.622 

18 1.461 0.610 1.466 0.625 1.445 0.610 1.457 0.647 

19 1.477 0.615 1.456 0.605 1.392 0.615 1.431 0.602 

20 1.455 0.620 1.485 0.625 1.459 0.626 1.453 0.625 

21 1.474 0.615 1.490 0.600 1.362 0.611 1.467 0.601 

22 1.517 0.610 1.509 0.635 1.477 0.606 1.439 0.633 

23 1.521 0.615 1.523 0.600 1.495 0.617 1.476 0.601 

24 1.554 0.630 1.538 0.640 1.472 0.630 1.531 0.636 

25 1.522 0.580 1.483 0.570 1.455 0.578 1.425 0.576 

26 1.469 0.595 1.437 0.620 1.466 0.603 1.426 0.620 

27 1.460 0.630 1.504 0.605 1.210 0.626 1.358 0.608 

28 1.488 0.640 1.510 0.640 1.474 0.633 1.465 0.641 

29 1.490 0.620 1.470 0.600 1.456 0.621 1.289 0.604 

30 1.457 0.630 1.419 0.610 1.345 0.623 1.386 0.614 
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 Participant 3: Treadmill speed 0.6 m/s 

Qualisys IMU 

Right Leg Left Leg Right Leg Left Leg 

Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.162 1.900 1.162 2.045 1.160 1.885 1.193 1.993 

2 1.280 1.825 1.280 2.065 1.210 1.850 1.309 2.066 

3 1.223 2.210 1.223 1.985 1.210 2.213 1.257 1.996 

4 1.301 2.105 1.301 1.910 1.301 2.100 1.306 1.907 

5 1.277 2.015 1.277 2.140 1.294 2.022 1.275 2.148 

6 1.274 2.140 1.274 2.265 1.200 2.130 1.255 2.256 

7 1.290 1.995 1.290 1.765 1.186 1.998 1.105 1.772 

8 1.365 2.025 1.365 2.105 1.364 2.029 1.333 2.105 

9 1.412 2.075 1.412 2.160 1.412 2.074 1.354 2.157 

10 1.393 1.955 1.393 1.980 1.433 1.955 1.387 1.981 

11 1.439 1.935 1.439 1.585 1.429 1.976 1.438 1.598 

12 1.513 2.010 1.513 2.295 1.510 2.028 1.514 2.252 

13 1.585 2.250 1.585 2.210 1.587 2.246 1.573 2.215 

14 1.504 2.375 1.504 2.325 1.447 2.364 1.491 2.324 

15 1.378 2.095 1.378 1.695 1.397 2.108 1.377 1.722 

16 1.303 1.750 1.303 2.560 1.303 1.783 1.283 2.530 

17 1.307 2.275 1.307 1.810 1.311 2.259 1.387 1.810 

18 1.434 2.185 1.434 2.280 1.434 2.198 1.499 2.281 

19 1.388 2.090 1.388 2.105 1.615 2.091 1.387 2.104 

20 1.340 2.030 1.340 1.880 1.362 2.022 1.338 1.901 

21 1.383 1.670 1.383 2.120 1.389 1.707 1.341 2.110 

22 1.396 2.050 1.396 2.310 1.396 2.083 1.386 2.309 

23 1.304 2.670 1.304 2.135 1.347 2.651 1.432 2.159 

24 1.239 1.865 1.239 2.145 1.261 1.894 1.173 2.147 

25 1.187 2.115 1.187 1.900 1.208 2.115 1.031 1.900 

26 1.201 1.980 1.201 2.230 1.200 1.995 1.245 2.218 

27 1.158 2.245 1.158 1.910 1.373 2.227 1.195 1.942 
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28 1.261 1.855 1.261 1.825 1.281 1.877 1.378 1.862 

29 1.342 2.210 1.342 2.570 1.350 2.211 1.348 2.486 

30 1.305 2.210 1.305 2.570 1.355 2.210 1.337 2.504 

  

 Participant 3: Treadmill speed 1.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.909 0.920 0.860 0.980 0.904 0.922 0.928 0.983 

2 0.927 1.040 0.965 0.935 0.928 1.040 0.965 0.935 

3 0.959 1.015 0.974 1.020 1.004 1.020 1.012 1.024 

4 0.999 1.120 1.017 1.055 0.999 1.117 1.085 1.066 

5 1.031 0.985 1.078 1.020 1.116 0.986 1.194 1.020 

6 1.112 1.050 1.139 1.145 1.160 1.050 1.144 1.127 

7 1.131 1.030 1.090 1.020 1.169 1.031 1.063 1.019 

8 1.115 1.130 1.108 1.095 1.137 1.125 1.122 1.096 

9 1.113 0.945 1.121 0.990 1.127 0.947 1.082 0.980 

10 1.137 1.045 1.140 1.060 1.140 1.040 1.139 1.052 

11 1.169 1.010 1.158 0.895 1.268 1.010 1.204 0.898 

12 1.204 1.025 1.152 1.025 1.198 1.025 1.141 1.008 

13 1.162 0.990 1.137 1.025 1.135 0.990 1.122 0.974 

14 1.202 0.960 1.168 1.170 1.266 0.969 1.158 1.169 

15 1.245 1.295 1.221 0.975 1.192 1.263 1.303 0.984 

16 1.135 0.940 1.150 1.155 1.129 0.948 1.161 1.150 

17 1.128 1.115 1.104 0.890 1.275 1.117 1.108 0.892 

18 1.061 1.000 1.064 1.065 1.058 1.000 1.060 1.056 

19 1.027 1.035 1.051 1.110 1.015 1.033 1.019 1.107 

20 1.032 1.020 1.000 1.095 1.034 1.020 0.987 1.083 

21 1.006 1.085 0.940 1.025 1.092 1.091 0.972 1.026 

22 0.967 1.090 0.951 0.930 0.967 1.090 0.975 0.932 

23 0.963 1.070 0.960 1.085 0.954 1.070 0.964 1.086 

24 0.998 1.115 0.978 1.100 1.019 1.123 1.029 1.123 

25 0.957 1.010 0.952 1.245 0.983 1.011 0.929 1.245 

26 0.951 1.030 0.950 1.050 0.950 1.033 0.965 1.051 

27 0.949 1.200 0.957 0.895 0.949 1.196 0.958 0.899 

28 0.947 1.060 0.971 1.295 0.919 1.050 1.056 1.297 

29 0.975 1.010 0.973 0.910 0.960 1.010 1.031 0.916 

30 0.994 1.160 1.017 1.080 0.900 1.156 1.011 1.045 

  

 Participant 3: Treadmill speed 1.4 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.032 0.900 1.014 0.930 1.017 0.904 1.004 0.894 

2 1.139 0.995 1.122 1.010 1.143 1.001 1.040 0.978 

3 1.186 0.875 1.204 0.910 1.166 0.875 1.170 0.910 

4 1.195 1.010 1.219 0.890 1.176 0.999 1.190 0.891 

5 1.193 0.885 1.207 0.965 1.179 0.892 1.204 0.966 

6 1.275 1.010 1.285 0.945 1.270 1.010 1.283 0.942 

7 1.278 0.985 1.292 0.965 1.298 0.984 1.307 0.973 

8 1.367 0.970 1.371 0.920 1.364 0.969 1.431 0.928 

9 1.409 0.975 1.367 1.010 1.420 1.006 1.367 1.007 
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10 1.408 0.950 1.386 0.955 1.401 0.945 1.385 0.956 

11 1.424 0.975 1.409 1.120 1.366 0.972 1.364 1.107 

12 1.392 0.990 1.405 0.855 1.392 1.018 1.405 0.859 

13 1.380 1.020 1.379 0.995 1.266 1.018 1.378 0.992 

14 1.381 1.010 1.382 1.000 1.313 1.011 1.371 1.009 

15 1.404 0.955 1.411 0.985 1.235 0.955 1.399 0.984 

16 1.413 1.000 1.423 1.005 1.391 1.003 1.506 1.069 

17 1.401 1.000 1.379 1.010 1.392 0.989 1.374 0.994 

18 1.408 0.965 1.385 0.945 1.458 0.971 1.373 0.935 

19 1.335 1.025 1.358 0.995 1.317 1.018 1.373 1.000 

20 1.399 0.945 1.417 0.985 1.433 0.947 1.417 1.006 

21 1.353 0.985 1.395 0.985 1.355 0.985 1.398 0.985 

22 1.443 0.955 1.449 0.930 1.444 0.948 1.412 0.930 

23 1.461 1.005 1.472 1.050 1.499 1.005 1.466 1.048 

24 1.494 1.000 1.505 1.010 1.521 1.000 1.507 1.010 

25 1.444 0.995 1.442 0.940 1.451 0.996 1.501 0.949 

26 1.470 1.015 1.501 1.010 1.478 1.017 1.500 1.009 

27 1.466 0.960 1.512 1.065 1.454 0.957 1.494 1.000 

28 1.452 0.990 1.461 0.920 1.454 0.996 1.558 0.926 

29 1.568 0.975 1.556 1.150 1.552 0.974 1.477 1.134 

30 1.526 1.030 1.534 1.000 1.523 1.027 1.569 1.004 

  

 Participant 3: Treadmill speed 1.8 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.795 0.845 1.283 0.930 1.795 0.838 1.289 0.930 

2 1.336 0.875 1.406 0.920 1.511 0.876 1.491 0.919 

3 1.426 0.880 1.424 0.830 1.569 0.881 1.424 0.830 

4 1.368 0.890 1.384 0.850 1.453 0.890 1.369 0.848 

5 1.339 0.830 1.397 0.935 1.339 0.825 1.376 0.911 

6 1.381 0.890 1.441 0.800 1.384 0.891 1.433 0.786 

7 1.445 0.870 1.455 0.935 1.407 0.874 1.537 0.964 

8 1.434 0.850 1.457 0.785 1.368 0.845 1.276 0.776 

9 1.436 0.845 1.474 0.915 1.297 0.841 1.299 0.914 

10 1.477 0.845 1.542 0.850 1.419 0.850 1.543 0.895 

11 1.522 0.855 1.543 0.765 1.519 0.855 1.530 0.769 

12 1.537 0.745 1.557 0.915 1.399 0.747 1.521 0.877 

13 1.537 0.920 1.565 0.805 1.537 0.928 1.568 0.806 

14 1.563 0.845 1.585 0.805 1.557 0.848 1.569 0.805 

15 1.543 0.850 1.536 0.920 1.522 0.828 1.374 0.907 

16 1.532 0.835 1.583 0.760 1.510 0.835 1.666 0.850 

17 1.509 0.870 1.588 0.885 1.510 0.876 1.588 0.884 

18 1.534 0.840 1.585 0.840 1.535 0.845 1.565 0.827 

19 1.551 0.875 1.605 0.910 1.472 0.872 1.598 0.907 

20 1.610 0.830 1.648 0.810 1.575 0.831 1.594 0.810 

21 1.552 0.795 1.612 0.825 1.515 0.795 1.605 0.823 

22 1.610 0.860 1.706 0.855 1.508 0.848 1.638 0.855 

23 1.698 0.865 1.705 0.870 1.763 0.879 1.703 0.870 

24 1.631 0.860 1.606 0.805 1.631 0.857 1.592 0.802 

25 1.551 0.850 1.609 0.935 1.566 0.855 1.711 0.937 

26 1.595 0.885 1.588 0.870 1.516 0.884 1.583 0.857 

27 1.576 0.855 1.617 0.855 1.576 0.866 1.650 0.869 
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28 1.592 0.815 1.605 0.825 1.593 0.821 1.608 0.826 

29 1.595 0.820 1.607 0.840 1.546 0.799 1.590 0.836 

30 1.652 0.820 1.530 0.840 1.547 0.818 1.529 0.840 

  

 Participant 3: Treadmill speed 2.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.442 0.750 1.448 0.795 1.429 0.751 1.448 0.792 

2 1.577 0.830 1.539 0.765 1.554 0.830 1.545 0.767 

3 1.551 0.755 1.530 0.820 1.531 0.756 1.564 0.820 

4 1.521 0.800 1.573 0.780 1.496 0.803 1.553 0.773 

5 1.518 0.790 1.527 0.805 1.517 0.790 1.536 0.807 

6 1.523 0.785 1.539 0.790 1.525 0.792 1.601 0.792 

7 1.523 0.820 1.498 0.795 1.447 0.809 1.567 0.834 

8 1.573 0.735 1.574 0.790 1.557 0.735 1.572 0.802 

9 1.567 0.850 1.549 0.750 1.583 0.847 1.498 0.751 

10 1.485 0.745 1.497 0.765 1.484 0.747 1.410 0.755 

11 1.506 0.745 1.549 0.745 1.503 0.745 1.539 0.745 

12 1.583 0.715 1.599 0.765 1.532 0.718 1.465 0.766 

13 1.644 0.785 1.636 0.760 1.626 0.784 1.530 0.751 

14 1.691 0.780 1.684 0.775 1.694 0.796 1.684 0.776 

15 1.680 0.750 1.666 0.850 1.676 0.752 1.615 0.843 

16 1.614 0.840 1.642 0.750 1.635 0.840 1.637 0.750 

17 1.657 0.790 1.668 0.775 1.658 0.786 1.633 0.771 

18 1.589 0.755 1.583 0.775 1.616 0.762 1.560 0.771 

19 1.594 0.785 1.591 0.790 1.594 0.786 1.572 0.793 

20 1.584 0.800 1.608 0.805 1.648 0.798 1.609 0.807 

21 1.591 0.785 1.661 0.775 1.586 0.786 1.631 0.764 

22 1.569 0.790 1.612 0.795 1.567 0.790 1.617 0.798 

23 1.649 0.800 1.665 0.785 1.618 0.794 1.680 0.786 

24 1.652 0.780 1.672 0.760 1.653 0.783 1.653 0.760 

25 1.565 0.755 1.610 0.810 1.564 0.754 1.616 0.810 

26 1.522 0.780 1.554 0.775 1.404 0.780 1.557 0.774 

27 1.528 0.730 1.530 0.690 1.488 0.732 1.528 0.690 

28 1.496 0.795 1.486 0.830 1.445 0.795 1.511 0.820 

29 1.425 0.800 1.467 0.870 1.378 0.798 1.442 0.868 

30 1.433 0.800 1.465 0.870 1.430 0.797 1.402 0.853 

  

 Participant 3: Treadmill speed 2.2 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.515 0.760 1.552 0.730 1.480 0.763 1.397 0.728 

2 1.547 0.690 1.552 0.710 1.527 0.691 1.554 0.717 

3 1.549 0.740 1.558 0.750 1.533 0.740 1.554 0.746 

4 1.613 0.715 1.593 0.700 1.610 0.721 1.583 0.699 

5 1.656 0.730 1.628 0.730 1.596 0.724 1.616 0.722 

6 1.632 0.770 1.595 0.770 1.634 0.787 1.560 0.764 

7 1.530 0.715 1.545 0.725 1.435 0.715 1.534 0.733 

8 1.533 0.750 1.540 0.735 1.516 0.748 1.516 0.739 

9 1.553 0.705 1.542 0.725 1.553 0.713 1.494 0.724 
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10 1.535 0.755 1.499 0.720 1.479 0.755 1.496 0.731 

11 1.570 0.710 1.524 0.725 1.465 0.709 1.503 0.723 

12 1.581 0.700 1.542 0.710 1.573 0.704 1.538 0.713 

13 1.654 0.740 1.686 0.755 1.649 0.737 1.639 0.756 

14 1.627 0.725 1.628 0.730 1.679 0.732 1.629 0.731 

15 1.685 0.725 1.644 0.745 1.682 0.725 1.634 0.741 

16 1.634 0.800 1.579 0.735 1.674 0.801 1.575 0.736 

17 1.596 0.720 1.621 0.725 1.601 0.720 1.629 0.740 

18 1.608 0.695 1.577 0.745 1.580 0.693 1.585 0.747 

19 1.643 0.760 1.634 0.690 1.620 0.751 1.620 0.691 

20 1.709 0.730 1.691 0.745 1.708 0.730 1.687 0.745 

21 1.727 0.745 1.726 0.780 1.747 0.752 1.697 0.759 

22 1.695 0.710 1.636 0.715 1.709 0.716 1.643 0.721 

23 1.621 0.760 1.607 0.715 1.622 0.759 1.598 0.714 

24 1.651 0.715 1.633 0.720 1.651 0.716 1.646 0.721 

25 1.654 0.710 1.656 0.780 1.620 0.705 1.665 0.783 

26 1.666 0.715 1.646 0.690 1.569 0.715 1.642 0.695 

27 1.666 0.780 1.622 0.740 1.637 0.780 1.601 0.737 

28 1.631 0.700 1.615 0.725 1.607 0.701 1.611 0.714 

29 1.611 0.815 1.635 0.730 1.607 0.814 1.681 0.731 

30 1.740 0.815 1.739 0.730 1.735 0.815 1.684 0.725 

  

 Participant 3: Treadmill speed 2.5 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.842 0.715 1.864 0.670 1.842 0.715 1.863 0.671 

2 1.833 0.670 1.836 0.690 1.833 0.669 1.753 0.689 

3 1.775 0.730 1.778 0.710 1.776 0.731 1.778 0.715 

4 1.694 0.660 1.702 0.695 1.691 0.658 1.673 0.696 

5 1.622 0.705 1.626 0.690 1.618 0.706 1.623 0.690 

6 1.607 0.695 1.639 0.680 1.604 0.695 1.636 0.680 

7 1.658 0.690 1.622 0.680 1.655 0.689 1.622 0.681 

8 1.609 0.650 1.600 0.640 1.608 0.650 1.589 0.640 

9 1.582 0.620 1.544 0.655 1.581 0.620 1.544 0.655 

10 1.593 0.705 1.543 0.690 1.593 0.705 1.543 0.687 

11 1.656 0.675 1.628 0.660 1.656 0.672 1.627 0.659 

12 1.643 0.675 1.578 0.675 1.642 0.675 1.586 0.675 

13 1.645 0.615 1.577 0.625 1.645 0.616 1.561 0.624 

14 1.713 0.685 1.652 0.690 1.722 0.686 1.652 0.690 

15 1.751 0.685 1.693 0.665 1.747 0.685 1.660 0.663 

16 1.773 0.670 1.708 0.655 1.781 0.671 1.709 0.655 

17 1.669 0.605 1.695 0.630 1.666 0.605 1.697 0.630 

18 1.630 0.645 1.632 0.660 1.611 0.645 1.631 0.660 

19 1.659 0.650 1.646 0.645 1.647 0.650 1.634 0.643 

20 1.647 0.645 1.640 0.620 1.639 0.643 1.631 0.613 

21 1.629 0.625 1.629 0.635 1.721 0.671 1.630 0.650 

22 1.657 0.620 1.627 0.635 1.657 0.625 1.625 0.635 

23 1.590 0.635 1.600 0.615 1.596 0.637 1.600 0.616 

24 1.609 0.635 1.635 0.625 1.606 0.633 1.634 0.625 

25 1.639 0.610 1.590 0.620 1.645 0.615 1.598 0.621 

26 1.622 0.615 1.608 0.620 1.621 0.615 1.610 0.622 

27 1.657 0.655 1.680 0.675 1.653 0.652 1.674 0.675 
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28 1.712 0.685 1.716 0.690 1.708 0.685 1.704 0.689 

29 1.752 0.800 1.719 0.690 1.739 0.795 1.712 0.690 

30 1.721 0.800 1.556 0.690 2.300 0.823 2.106 1.816 
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 Participant 4: Treadmill speed 0.6 m/s 

Qualisys IMU 

Right Leg Left Leg Right Leg Left Leg 

Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.625 2.510 1.628 2.485 1.630 2.495 1.627 2.480 

2 1.721 2.495 1.681 2.350 1.735 2.612 1.846 2.413 

3 1.693 3.435 1.656 3.010 1.745 3.393 1.664 2.959 

4 1.599 3.895 1.514 3.680 2.035 3.865 1.619 3.660 

5 1.653 3.715 1.592 3.900 1.706 3.732 1.520 3.878 

6 1.649 4.485 1.656 4.270 1.748 4.456 1.648 4.083 

7 1.654 2.980 1.526 3.310 2.542 2.980 1.548 3.415 

8 1.804 2.890 1.586 2.860 1.826 2.894 1.585 2.859 

9 1.905 3.430 1.898 3.365 1.931 3.405 1.891 3.341 

10 1.697 3.695 1.693 3.335 1.688 3.607 1.646 3.232 

11 1.635 2.925 1.782 3.325 1.638 2.944 1.922 3.313 

12 1.794 3.065 1.763 3.115 1.916 3.121 1.884 3.085 

13 1.806 3.710 1.760 2.990 1.833 3.709 1.763 2.979 

14 1.918 2.585 1.764 3.410 2.158 2.723 1.922 3.409 

15 1.454 2.960 1.495 2.980 1.455 2.943 1.654 2.981 

16 1.556 3.050 1.415 3.110 1.766 3.064 1.345 3.004 

17 1.558 2.830 1.539 2.815 1.584 2.828 1.605 2.837 

18 1.615 2.620 1.612 2.650 1.642 2.598 1.701 2.683 

19 1.706 2.540 1.660 2.820 1.795 2.553 1.671 2.830 

20 1.643 2.470 1.592 2.335 1.658 2.447 1.664 2.396 

21 1.503 1.875 1.565 1.905 1.638 1.888 1.588 1.945 

22 1.670 1.850 1.711 2.430 1.690 1.850 1.890 2.458 

23 1.772 3.080 1.806 2.380 1.818 3.029 1.839 2.397 

24 1.686 2.450 1.886 2.600 1.685 2.426 1.846 2.545 

25 1.863 2.240 1.917 2.365 1.854 2.284 1.907 2.358 

26 1.841 2.145 1.897 2.155 2.084 2.164 1.881 2.155 

27 1.777 2.410 1.976 2.035 1.673 2.407 1.990 2.068 

28 1.457 1.835 1.590 2.170 1.537 1.852 1.653 2.181 

29 1.608 2.040 1.596 2.135 1.593 2.037 1.613 2.136 

30 1.691 2.040 1.772 1.915 1.658 2.038 1.792 1.922 

  

 Participant 4: Treadmill speed 1.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.190 1.400 1.123 1.460 1.192 1.400 1.149 1.447 

2 1.273 1.050 1.226 0.995 1.297 1.076 1.296 1.033 

3 1.276 1.310 1.254 1.265 1.272 1.301 1.220 1.264 

4 1.318 1.390 1.303 1.255 1.322 1.384 1.320 1.255 

5 1.303 1.235 1.323 1.295 1.266 1.241 1.310 1.296 

6 1.262 1.195 1.279 1.225 1.195 1.197 1.251 1.226 

7 1.288 1.245 1.258 1.540 1.287 1.246 1.173 1.524 

8 1.359 1.450 1.311 1.395 1.305 1.446 1.302 1.387 

9 1.082 1.370 1.073 1.040 1.077 1.337 1.056 1.048 
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10 0.945 1.165 0.955 1.240 0.940 1.166 0.914 1.247 

11 1.004 1.150 0.969 1.460 1.003 1.150 1.005 1.462 

12 1.105 1.405 1.013 0.980 1.197 1.405 1.014 0.985 

13 1.093 1.035 1.090 1.260 1.072 1.042 1.086 1.260 

14 1.136 1.350 1.104 1.160 1.018 1.338 1.049 1.172 

15 1.250 0.995 1.240 1.385 1.212 1.020 1.222 1.385 

16 1.327 1.480 1.300 1.090 1.122 1.466 1.139 1.096 

17 1.170 0.950 1.178 1.140 1.063 0.994 1.176 1.144 

18 1.204 1.135 1.106 1.400 1.145 1.151 1.091 1.400 

19 1.348 1.455 1.244 1.155 1.214 1.448 1.421 1.174 

20 1.300 0.940 1.316 1.005 1.267 0.946 1.254 1.039 

21 1.364 1.205 1.342 1.255 1.363 1.206 1.212 1.248 

22 1.351 1.245 1.338 1.245 1.343 1.236 1.131 1.252 

23 1.308 1.220 1.309 1.170 1.293 1.220 1.223 1.195 

24 1.362 1.415 1.326 1.190 1.293 1.415 1.319 1.188 

25 1.350 1.245 1.371 1.215 1.136 1.244 1.350 1.216 

26 1.369 1.270 1.379 1.265 1.173 1.268 1.377 1.259 

27 1.341 0.930 1.362 1.180 1.276 0.940 1.250 1.183 

28 1.370 1.195 1.340 1.300 1.322 1.203 1.323 1.291 

29 1.277 1.575 1.368 1.260 1.149 1.530 1.173 1.249 

30 1.260 1.575 1.290 1.260 1.248 1.503 1.284 1.260 

  

 Participant 4: Treadmill speed 1.4 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.429 0.950 1.448 0.805 1.468 0.937 1.522 0.822 

2 1.421 0.870 1.375 0.925 1.423 0.869 1.524 0.934 

3 1.330 0.905 1.326 0.945 1.466 0.907 1.594 0.953 

4 1.330 0.855 1.295 0.880 1.683 0.907 1.461 0.878 

5 1.353 0.895 1.399 0.835 1.461 0.900 1.462 0.824 

6 1.455 0.945 1.451 0.975 1.466 0.942 1.551 0.974 

7 1.373 0.920 1.248 0.810 1.495 0.920 1.312 0.810 

8 1.210 0.805 1.228 0.890 1.267 0.809 1.436 0.885 

9 1.215 0.865 1.208 0.915 1.329 0.833 1.226 0.903 

10 1.282 0.885 1.273 0.825 1.342 0.878 1.289 0.823 

11 1.321 0.840 1.337 0.850 1.525 0.838 1.337 0.835 

12 1.380 0.945 1.370 0.930 1.525 0.931 1.358 0.912 

13 1.341 0.965 1.275 0.940 1.453 0.960 1.335 0.936 

14 1.237 0.795 1.210 0.860 1.440 0.833 1.222 0.861 

15 1.222 0.870 1.239 0.875 1.238 0.838 1.371 0.879 

16 1.219 0.830 1.201 0.810 1.351 0.831 1.207 0.807 

17 1.172 0.885 1.198 0.935 1.321 0.884 1.279 0.935 

18 1.179 0.870 1.191 0.865 1.265 0.870 1.191 0.862 

19 1.177 0.840 1.177 0.850 1.229 0.840 1.273 0.853 

20 1.135 0.840 1.215 0.870 1.371 0.860 1.382 0.886 

21 1.236 0.945 1.268 0.860 1.334 0.945 1.326 0.842 

22 1.217 0.865 1.174 0.850 1.221 0.865 1.299 0.857 

23 1.152 0.925 1.162 0.890 1.287 0.940 1.222 0.889 

24 1.138 0.850 1.152 0.870 1.265 0.851 1.121 0.869 

25 1.124 0.880 1.139 0.875 1.138 0.876 1.223 0.873 

26 1.119 0.960 1.133 0.885 1.304 0.946 1.236 0.890 

27 1.118 0.835 1.120 0.960 1.353 0.853 1.126 0.956 
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28 1.073 0.840 1.072 0.855 1.075 0.835 1.309 0.906 

29 1.100 0.935 1.150 0.910 1.116 0.962 1.158 0.904 

30 1.110 0.935 1.012 0.910 1.125 0.935 1.220 0.911 

  

 Participant 4: Treadmill speed 1.8 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.246 0.795 1.264 0.790 1.246 0.790 1.264 0.787 

2 1.304 0.755 1.298 0.745 1.503 0.764 1.300 0.749 

3 1.345 0.755 1.351 0.790 1.407 0.755 1.357 0.790 

4 1.351 0.755 1.404 0.750 1.372 0.761 1.446 0.750 

5 1.392 0.745 1.406 0.755 1.501 0.745 1.412 0.755 

6 1.396 0.845 1.436 0.765 1.507 0.845 1.509 0.765 

7 1.393 0.695 1.435 0.755 1.610 0.696 1.442 0.755 

8 1.413 0.750 1.475 0.740 1.520 0.750 1.609 0.740 

9 1.426 0.735 1.435 0.765 1.595 0.744 1.463 0.765 

10 1.440 0.805 1.501 0.770 1.480 0.805 1.501 0.770 

11 1.423 0.765 1.454 0.730 1.481 0.762 1.460 0.728 

12 1.446 0.720 1.464 0.750 1.475 0.720 1.469 0.751 

13 1.464 0.750 1.502 0.745 1.552 0.773 1.507 0.745 

14 1.434 0.760 1.517 0.775 1.498 0.760 1.530 0.775 

15 1.307 0.825 1.426 0.820 1.341 0.824 1.434 0.821 

16 1.242 0.740 1.272 0.760 1.313 0.740 1.269 0.757 

17 1.300 0.785 1.311 0.790 1.308 0.785 1.316 0.788 

18 1.284 0.765 1.315 0.760 1.305 0.767 1.352 0.759 

19 1.291 0.760 1.310 0.735 1.303 0.762 1.325 0.735 

20 1.313 0.770 1.329 0.765 1.387 0.768 1.360 0.765 

21 1.318 0.750 1.335 0.750 1.404 0.750 1.336 0.750 

22 1.357 0.750 1.375 0.775 1.417 0.750 1.381 0.773 

23 1.310 0.785 1.361 0.785 1.331 0.785 1.380 0.783 

24 1.368 0.740 1.370 0.745 1.370 0.740 1.384 0.744 

25 1.375 0.750 1.383 0.730 1.376 0.749 1.393 0.730 

26 1.408 0.735 1.404 0.770 1.409 0.735 1.548 0.768 

27 1.400 0.790 1.429 0.745 1.511 0.790 1.430 0.743 

28 1.410 0.780 1.398 0.780 1.510 0.780 1.418 0.780 

29 1.451 0.735 1.450 0.870 1.453 0.735 1.460 0.869 

30 1.489 0.735 1.133 0.870 1.590 0.736 1.143 0.870 

  

 Participant 4: Treadmill speed 2.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.438 0.565 1.499 0.765 1.464 0.569 1.533 0.758 

2 1.326 0.705 1.401 0.760 1.357 0.705 1.469 0.760 

3 1.288 0.720 1.354 0.725 1.288 0.674 1.415 0.727 

4 1.380 0.760 1.439 0.780 1.407 0.754 1.479 0.785 

5 1.417 0.750 1.460 0.760 1.870 0.752 1.495 0.751 

6 1.408 0.775 1.443 0.745 1.562 0.770 1.497 0.754 

7 1.397 0.715 1.430 0.710 1.402 0.717 1.608 0.702 

8 1.390 0.715 1.403 0.685 1.691 0.764 1.489 0.686 

9 1.459 0.690 1.457 0.755 1.647 0.647 1.547 0.756 
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10 1.448 0.775 1.453 0.765 1.461 0.757 1.493 0.765 

11 1.463 0.740 1.511 0.725 1.485 0.740 1.528 0.726 

12 1.464 0.785 1.485 0.770 1.526 0.775 1.824 0.770 

13 1.435 0.795 1.501 0.765 1.651 0.802 1.568 0.769 

14 1.432 0.680 1.448 0.735 1.647 0.687 1.455 0.730 

15 1.503 0.750 1.515 0.725 1.550 0.738 1.559 0.739 

16 1.518 0.725 1.567 0.730 1.663 0.738 1.598 0.730 

17 1.530 0.745 1.567 0.710 1.556 0.749 1.788 0.710 

18 1.541 0.675 1.552 0.690 1.631 0.675 1.820 0.691 

19 1.535 0.685 1.569 0.715 1.751 0.700 1.660 0.715 

20 1.449 0.765 1.451 0.735 1.483 0.748 1.530 0.724 

21 1.431 0.710 1.469 0.760 1.517 0.743 1.728 0.760 

22 1.411 0.745 1.481 0.720 1.431 0.745 1.542 0.749 

23 1.480 0.735 1.482 0.715 1.474 0.710 1.531 0.713 

24 1.465 0.685 1.527 0.695 1.560 0.666 1.656 0.709 

25 1.483 0.720 1.507 0.745 1.532 0.719 1.537 0.739 

26 1.478 0.735 1.510 0.725 1.600 0.726 1.556 0.722 

27 1.462 0.745 1.506 0.710 1.488 0.743 1.594 0.711 

28 1.489 0.700 1.520 0.730 1.530 0.700 1.562 0.734 

29 1.477 0.740 1.505 0.745 1.619 0.742 1.961 0.747 

30 1.495 0.710 1.080 0.745 1.681 0.707 1.286 0.748 

  

 Participant 4: Treadmill speed 2.2 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.625 0.730 1.621 0.745 1.679 0.730 1.710 0.744 

2 1.558 0.725 1.610 0.705 1.581 0.725 1.669 0.706 

3 1.589 0.735 1.623 0.745 1.595 0.734 1.626 0.746 

4 1.563 0.725 1.619 0.745 1.578 0.726 1.632 0.746 

5 1.620 0.780 1.671 0.725 1.615 0.771 1.672 0.725 

6 1.589 0.700 1.611 0.730 1.594 0.700 1.618 0.730 

7 1.593 0.685 1.620 0.710 1.593 0.668 1.649 0.710 

8 1.665 0.740 1.737 0.730 1.671 0.739 1.861 0.730 

9 1.691 0.755 1.718 0.740 1.864 0.749 1.721 0.740 

10 1.666 0.740 1.690 0.715 1.755 0.740 1.716 0.717 

11 1.689 0.720 1.723 0.720 1.752 0.725 1.765 0.721 

12 1.722 0.695 1.746 0.750 1.724 0.687 1.765 0.752 

13 1.610 0.750 1.667 0.725 1.612 0.750 1.808 0.722 

14 1.634 0.715 1.674 0.735 1.634 0.715 1.764 0.735 

15 1.631 0.725 1.672 0.720 1.659 0.725 1.824 0.720 

16 1.600 0.765 1.630 0.735 1.926 0.767 1.651 0.735 

17 1.541 0.710 1.579 0.710 1.541 0.710 1.604 0.712 

18 1.564 0.705 1.585 0.735 1.694 0.705 1.601 0.733 

19 1.555 0.745 1.582 0.730 1.573 0.745 1.696 0.730 

20 1.583 0.715 1.585 0.730 1.838 0.724 1.585 0.728 

21 1.558 0.720 1.591 0.715 1.566 0.720 1.671 0.717 

22 1.573 0.725 1.606 0.700 1.626 0.725 1.766 0.701 

23 1.595 0.720 1.625 0.760 1.597 0.719 1.662 0.760 

24 1.561 0.755 1.628 0.715 1.836 0.755 1.629 0.715 

25 1.601 0.715 1.603 0.715 1.612 0.714 1.604 0.715 

26 1.569 0.705 1.616 0.715 1.577 0.705 1.649 0.717 

27 1.621 0.730 1.656 0.745 1.645 0.731 1.667 0.745 
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28 1.611 0.745 1.683 0.750 1.611 0.745 1.712 0.750 

29 1.598 0.770 1.642 0.855 1.642 0.770 1.655 0.852 

30 1.646 0.770 1.028 0.855 1.649 0.770 1.044 0.855 

  

 Participant 4: Treadmill speed 2.5 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.428 0.670 1.458 0.685 1.560 0.695 1.401 0.673 

2 1.483 0.705 1.461 0.695 1.444 0.705 1.461 0.695 

3 1.490 0.685 1.474 0.695 1.760 0.688 1.436 0.687 

4 1.546 0.715 1.538 0.705 1.676 0.714 1.537 0.696 

5 1.516 0.685 1.503 0.680 1.765 0.684 1.565 0.683 

6 1.586 0.690 1.577 0.685 1.770 0.696 1.566 0.655 

7 1.599 0.670 1.603 0.680 1.839 0.678 1.699 0.682 

8 1.630 0.685 1.620 0.690 1.635 0.685 1.751 0.690 

9 1.690 0.685 1.685 0.685 1.907 0.682 1.923 0.684 

10 1.655 0.675 1.676 0.685 1.790 0.676 1.769 0.685 

11 1.723 0.680 1.715 0.680 1.725 0.681 1.825 0.680 

12 1.705 0.685 1.719 0.665 1.706 0.689 1.676 0.665 

13 1.824 0.700 1.786 0.660 1.818 0.695 1.603 0.660 

14 1.863 0.630 1.855 0.675 1.858 0.633 1.852 0.680 

15 1.861 0.685 1.891 0.675 1.861 0.675 1.742 0.670 

16 1.839 0.690 1.912 0.700 1.970 0.686 1.904 0.703 

17 1.608 0.685 1.757 0.685 1.685 0.685 1.759 0.682 

18 1.614 0.680 1.586 0.670 1.646 0.680 1.593 0.671 

19 1.655 0.660 1.618 0.665 1.596 0.653 1.620 0.666 

20 1.706 0.680 1.690 0.665 1.889 0.682 1.728 0.671 

21 1.745 0.650 1.701 0.695 1.629 0.645 1.726 0.693 

22 1.726 0.700 1.770 0.675 1.829 0.706 1.829 0.674 

23 1.731 0.670 1.725 0.635 1.672 0.662 1.731 0.635 

24 1.775 0.655 1.752 0.675 1.826 0.655 1.748 0.677 

25 1.829 0.655 1.830 0.660 1.950 0.657 1.830 0.661 

26 1.859 0.680 1.861 0.680 1.866 0.679 1.919 0.680 

27 1.842 0.695 1.876 0.680 1.957 0.692 2.102 0.680 

28 1.800 0.665 1.800 0.705 1.937 0.671 1.900 0.705 

29 1.776 0.680 1.795 0.690 1.795 0.661 1.803 0.690 

30 1.834 0.680 1.806 0.690 1.912 0.668 1.838 0.689 
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 Participant 5: Treadmill speed 0.6 m/s 

Qualisys IMU 

Right Leg Left Leg Right Leg Left Leg 

Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.402 0.825 0.399 0.885 0.414 0.824 0.395 0.885 

2 0.417 0.965 0.400 0.890 0.428 0.965 0.387 0.889 

3 0.431 0.835 0.416 0.825 0.434 0.836 0.423 0.836 

4 0.459 0.830 0.434 0.855 0.458 0.830 0.434 0.855 

5 0.466 0.785 0.452 0.860 0.462 0.785 0.402 0.853 

6 0.483 0.870 0.470 0.790 0.469 0.868 0.461 0.801 

7 0.498 0.865 0.500 0.800 0.497 0.865 0.488 0.798 

8 0.496 0.825 0.504 0.885 0.477 0.828 0.496 0.885 

9 0.521 0.805 0.527 0.805 0.509 0.810 0.515 0.810 
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10 0.542 0.850 0.541 0.835 0.527 0.850 0.504 0.835 

11 0.557 0.815 0.550 0.845 0.554 0.817 0.544 0.838 

12 0.546 0.850 0.555 0.870 0.536 0.850 0.595 0.901 

13 0.540 0.840 0.564 0.825 0.536 0.841 0.562 0.801 

14 0.546 0.880 0.541 0.870 0.540 0.880 0.513 0.870 

15 0.515 0.865 0.534 0.905 0.500 0.865 0.491 0.904 

16 0.522 0.910 0.521 0.900 0.518 0.910 0.520 0.907 

17 0.521 0.930 0.517 0.940 0.505 0.942 0.516 0.940 

18 0.528 0.820 0.521 0.855 0.500 0.811 0.469 0.851 

19 0.550 0.930 0.538 0.875 0.544 0.943 0.552 0.895 

20 0.561 0.830 0.556 0.920 0.550 0.830 0.541 0.915 

21 0.575 0.920 0.551 0.820 0.539 0.920 0.548 0.821 

22 0.580 0.805 0.566 0.670 0.574 0.806 0.552 0.670 

23 0.562 0.780 0.581 0.945 0.546 0.783 0.580 0.936 

24 0.548 0.920 0.542 0.900 0.535 0.920 0.529 0.915 

25 0.503 0.880 0.532 0.750 0.496 0.879 0.531 0.757 

26 0.483 0.825 0.502 0.950 0.463 0.825 0.481 0.919 

27 0.484 0.820 0.502 0.785 0.484 0.825 0.503 0.787 

28 0.505 0.830 0.482 0.845 0.504 0.828 0.479 0.843 

29 0.513 0.825 0.515 0.865 0.499 0.815 0.505 0.865 

30 0.526 0.900 0.506 0.765 0.526 0.903 0.510 0.782 

  

 Participant 5: Treadmill speed 1.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.656 0.710 0.670 0.665 0.663 0.746 0.637 0.667 

2 0.629 0.655 0.648 0.685 0.602 0.654 0.643 0.685 

3 0.555 0.650 0.545 0.620 0.528 0.650 0.523 0.618 

4 0.579 0.620 0.576 0.685 0.539 0.618 0.563 0.685 

5 0.584 0.620 0.604 0.630 0.582 0.622 0.571 0.630 

6 0.624 0.635 0.626 0.615 0.544 0.635 0.613 0.619 

7 0.642 0.655 0.654 0.640 0.590 0.654 0.578 0.640 

8 0.647 0.630 0.654 0.665 0.635 0.633 0.643 0.663 

9 0.646 0.645 0.655 0.625 0.645 0.649 0.641 0.626 

10 0.644 0.610 0.643 0.615 0.602 0.609 0.602 0.615 

11 0.650 0.650 0.664 0.655 0.645 0.650 0.612 0.646 

12 0.652 0.650 0.661 0.610 0.651 0.652 0.654 0.612 

13 0.653 0.615 0.652 0.660 0.620 0.617 0.618 0.659 

14 0.629 0.685 0.633 0.680 0.624 0.679 0.628 0.680 

15 0.620 0.675 0.631 0.660 0.615 0.674 0.622 0.648 

16 0.623 0.630 0.618 0.615 0.631 0.631 0.615 0.644 

17 0.630 0.665 0.635 0.690 0.613 0.665 0.631 0.689 

18 0.640 0.665 0.652 0.640 0.624 0.672 0.651 0.645 

19 0.644 0.655 0.653 0.675 0.635 0.655 0.622 0.670 

20 0.649 0.655 0.661 0.615 0.635 0.653 0.590 0.617 

21 0.661 0.645 0.660 0.665 0.641 0.645 0.659 0.664 

22 0.669 0.635 0.659 0.605 0.663 0.635 0.647 0.605 

23 0.677 0.645 0.665 0.670 0.663 0.645 0.662 0.670 

24 0.682 0.615 0.671 0.635 0.649 0.615 0.669 0.635 

25 0.670 0.650 0.669 0.625 0.666 0.651 0.668 0.626 

26 0.689 0.620 0.676 0.640 0.688 0.620 0.646 0.629 

27 0.674 0.625 0.669 0.635 0.652 0.624 0.667 0.636 
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28 0.674 0.620 0.663 0.615 0.660 0.624 0.663 0.617 

29 0.651 0.640 0.658 0.605 0.644 0.637 0.621 0.603 

30 0.656 0.625 0.579 0.660 0.617 0.624 0.569 0.658 

  

 Participant 5: Treadmill speed 1.4 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.806 0.605 0.771 0.595 0.793 0.605 0.769 0.598 

2 0.823 0.565 0.832 0.595 0.803 0.561 0.827 0.594 

3 0.835 0.620 0.833 0.590 0.830 0.620 0.802 0.599 

4 0.848 0.570 0.849 0.615 0.818 0.571 0.841 0.614 

5 0.826 0.640 0.863 0.610 0.820 0.640 0.862 0.611 

6 0.835 0.600 0.852 0.595 0.832 0.606 0.808 0.598 

7 0.822 0.615 0.854 0.610 0.816 0.613 0.741 0.609 

8 0.814 0.595 0.825 0.605 0.810 0.597 0.812 0.606 

9 0.806 0.605 0.827 0.605 0.804 0.605 0.782 0.619 

10 0.794 0.600 0.814 0.615 0.782 0.602 0.814 0.606 

11 0.785 0.620 0.797 0.585 0.765 0.617 0.769 0.588 

12 0.788 0.600 0.813 0.625 0.736 0.602 0.751 0.622 

13 0.782 0.595 0.786 0.600 0.780 0.593 0.773 0.600 

14 0.795 0.625 0.796 0.615 0.757 0.622 0.792 0.621 

15 0.849 0.600 0.842 0.630 0.841 0.604 0.808 0.643 

16 0.888 0.585 0.887 0.570 0.877 0.585 0.844 0.570 

17 0.877 0.645 0.897 0.600 0.834 0.644 0.836 0.600 

18 0.858 0.585 0.866 0.645 0.857 0.585 0.815 0.646 

19 0.859 0.625 0.875 0.610 0.858 0.625 0.743 0.610 

20 0.878 0.605 0.876 0.600 0.853 0.610 0.833 0.600 

21 0.869 0.610 0.873 0.620 0.863 0.609 0.851 0.614 

22 0.871 0.615 0.869 0.565 0.872 0.616 0.819 0.573 

23 0.861 0.580 0.856 0.580 0.838 0.579 0.807 0.579 

24 0.862 0.570 0.849 0.565 0.827 0.570 0.841 0.565 

25 0.853 0.580 0.845 0.620 0.802 0.578 0.807 0.617 

26 0.853 0.595 0.837 0.600 0.800 0.598 0.820 0.604 

27 0.865 0.615 0.847 0.550 0.832 0.624 0.814 0.558 

28 0.850 0.580 0.858 0.585 0.826 0.580 0.829 0.583 

29 0.876 0.580 0.858 0.620 0.866 0.579 0.826 0.619 

30 0.889 0.580 0.816 0.620 0.881 0.561 0.742 0.616 

  

 Participant 5: Treadmill speed 1.8 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.982 0.570 0.939 0.540 0.989 0.581 0.906 0.541 

2 0.978 0.540 0.959 0.550 0.978 0.542 0.793 0.550 

3 0.945 0.570 0.949 0.565 0.897 0.573 0.828 0.566 

4 0.946 0.550 0.956 0.545 0.849 0.547 0.929 0.543 

5 0.920 0.520 0.926 0.530 0.919 0.524 0.904 0.533 

6 0.841 0.545 0.822 0.560 0.855 0.543 0.790 0.559 

7 0.788 0.560 0.722 0.515 0.770 0.555 0.706 0.514 

8 0.846 0.555 0.837 0.565 0.842 0.556 0.834 0.566 

9 0.859 0.575 0.878 0.565 0.836 0.583 0.818 0.573 
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10 0.886 0.565 0.877 0.550 0.880 0.565 0.858 0.550 

11 0.945 0.560 0.930 0.585 0.862 0.560 0.903 0.585 

12 0.999 0.545 0.983 0.570 0.952 0.552 0.882 0.574 

13 1.041 0.560 1.032 0.510 0.918 0.559 0.994 0.509 

14 1.075 0.570 1.060 0.600 1.074 0.570 0.959 0.597 

15 1.083 0.565 1.074 0.575 1.071 0.565 1.044 0.578 

16 1.061 0.545 1.048 0.565 1.057 0.547 1.018 0.567 

17 1.041 0.555 1.047 0.530 1.030 0.554 1.025 0.529 

18 1.065 0.600 1.076 0.550 1.037 0.600 0.959 0.550 

19 1.089 0.560 1.100 0.595 1.078 0.567 1.099 0.597 

20 1.099 0.570 1.141 0.570 1.047 0.570 1.111 0.578 

21 1.108 0.570 1.100 0.590 1.082 0.565 1.068 0.589 

22 1.092 0.535 1.082 0.560 1.050 0.547 1.010 0.570 

23 1.091 0.580 1.087 0.540 1.042 0.580 0.909 0.540 

24 1.095 0.560 1.082 0.540 1.049 0.562 1.067 0.541 

25 1.075 0.565 1.090 0.565 1.070 0.560 1.084 0.563 

26 1.061 0.575 1.075 0.570 0.995 0.576 1.034 0.579 

27 1.050 0.560 1.070 0.605 1.023 0.561 1.042 0.595 

28 1.075 0.560 1.095 0.565 1.067 0.559 0.964 0.566 

29 1.078 0.570 1.095 0.550 1.076 0.571 1.094 0.553 

30 1.082 0.570 1.064 0.550 1.036 0.574 1.007 0.556 

  

 Participant 5: Treadmill speed 2.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.273 0.550 1.295 0.560 1.217 0.551 1.274 0.561 

2 1.250 0.565 1.277 0.590 1.149 0.568 1.267 0.590 

3 1.255 0.550 1.269 0.515 1.239 0.546 1.087 0.515 

4 1.200 0.570 1.237 0.605 1.189 0.570 1.236 0.603 

5 1.183 0.535 1.221 0.530 1.183 0.536 1.209 0.531 

6 1.109 0.550 1.102 0.525 1.129 0.554 1.097 0.530 

7 1.031 0.525 1.070 0.535 1.009 0.525 1.058 0.535 

8 1.038 0.550 1.058 0.560 1.058 0.554 0.993 0.552 

9 1.027 0.575 1.071 0.560 1.007 0.574 1.027 0.564 

10 1.015 0.540 1.035 0.570 1.015 0.541 1.012 0.571 

11 0.948 0.590 0.992 0.565 0.986 0.590 0.989 0.567 

12 0.946 0.555 0.945 0.575 0.945 0.553 0.939 0.572 

13 0.877 0.570 0.897 0.565 0.884 0.570 0.892 0.564 

14 0.954 0.560 0.976 0.555 0.904 0.560 0.948 0.557 

15 1.053 0.555 1.075 0.545 1.052 0.555 1.073 0.546 

16 1.112 0.555 1.123 0.570 1.105 0.555 1.103 0.564 

17 1.091 0.550 1.145 0.560 1.089 0.551 1.144 0.561 

18 1.083 0.605 1.113 0.565 1.099 0.604 1.113 0.565 

19 1.120 0.515 1.142 0.540 1.105 0.516 1.138 0.541 

20 1.146 0.565 1.159 0.535 1.146 0.565 1.120 0.541 

21 1.151 0.545 1.174 0.565 1.136 0.542 1.121 0.552 

22 1.144 0.560 1.192 0.560 1.104 0.560 1.177 0.560 

23 1.157 0.580 1.195 0.575 1.239 0.581 1.202 0.579 

24 1.174 0.545 1.205 0.570 1.149 0.546 1.184 0.569 

25 1.175 0.580 1.205 0.570 1.172 0.580 1.101 0.571 

26 1.195 0.565 1.226 0.575 1.180 0.567 1.096 0.575 

27 1.143 0.570 1.197 0.565 1.142 0.570 1.153 0.569 
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28 1.158 0.585 1.210 0.565 1.156 0.585 1.192 0.562 

29 1.207 0.535 1.260 0.685 1.151 0.527 1.231 0.653 

30 1.252 0.535 1.023 0.685 1.086 0.533 0.959 0.680 

  

 Participant 5: Treadmill speed 2.2 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.096 0.535 1.164 0.530 1.094 0.537 1.164 0.540 

2 1.135 0.550 1.174 0.575 1.092 0.551 1.087 0.575 

3 1.116 0.550 1.172 0.550 1.101 0.553 1.164 0.553 

4 1.163 0.560 1.219 0.575 1.144 0.559 1.201 0.575 

5 1.240 0.530 1.274 0.550 1.174 0.533 1.253 0.545 

6 1.261 0.570 1.284 0.555 1.256 0.571 1.167 0.556 

7 1.254 0.540 1.286 0.530 1.254 0.541 1.225 0.532 

8 1.223 0.585 1.250 0.600 1.147 0.576 1.251 0.600 

9 1.192 0.520 1.255 0.495 1.189 0.524 1.219 0.496 

10 1.197 0.580 1.200 0.560 1.111 0.579 1.164 0.561 

11 1.187 0.510 1.224 0.540 1.174 0.511 1.176 0.540 

12 1.205 0.550 1.212 0.555 1.203 0.552 1.208 0.554 

13 1.165 0.570 1.237 0.555 1.195 0.571 1.151 0.547 

14 1.197 0.570 1.276 0.570 1.156 0.566 1.284 0.579 

15 1.259 0.570 1.329 0.560 1.199 0.571 1.329 0.560 

16 1.262 0.540 1.297 0.540 1.116 0.541 1.247 0.542 

17 1.274 0.580 1.311 0.625 1.231 0.580 1.292 0.624 

18 1.282 0.545 1.324 0.515 1.208 0.550 1.320 0.521 

19 1.267 0.565 1.281 0.555 1.157 0.567 1.227 0.557 

20 1.244 0.565 1.281 0.580 1.240 0.565 1.235 0.580 

21 1.251 0.555 1.271 0.565 1.144 0.559 1.241 0.564 

22 1.247 0.560 1.242 0.525 1.239 0.557 1.172 0.527 

23 1.241 0.555 1.235 0.575 1.188 0.557 1.055 0.567 

24 1.277 0.580 1.260 0.570 1.185 0.579 1.240 0.570 

25 1.250 0.550 1.264 0.560 1.179 0.550 1.232 0.555 

26 1.282 0.560 1.265 0.570 1.279 0.561 1.263 0.574 

27 1.237 0.580 1.279 0.560 1.143 0.580 1.278 0.562 

28 1.240 0.550 1.249 0.560 1.240 0.550 1.240 0.557 

29 1.247 0.560 1.249 0.680 1.182 0.558 1.248 0.671 

30 1.247 0.560 0.959 0.680 1.134 0.522 0.950 0.678 

  

 Participant 5: Treadmill speed 2.5 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.379 0.545 1.414 0.560 1.378 0.554 1.399 0.573 

2 1.366 0.530 1.418 0.505 1.325 0.533 1.407 0.506 

3 1.322 0.565 1.392 0.550 1.322 0.562 1.362 0.595 

4 1.334 0.530 1.356 0.555 1.325 0.532 1.356 0.556 

5 1.291 0.525 1.352 0.515 1.269 0.529 1.361 0.545 

6 1.278 0.540 1.324 0.530 1.266 0.540 1.310 0.531 

7 1.262 0.550 1.345 0.570 1.215 0.550 1.232 0.571 

8 1.267 0.520 1.330 0.525 1.242 0.523 1.329 0.526 

9 1.252 0.550 1.324 0.520 1.242 0.550 1.320 0.520 
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10 1.285 0.525 1.320 0.555 1.256 0.525 1.306 0.556 

11 1.274 0.580 1.353 0.555 1.161 0.580 1.344 0.555 

12 1.291 0.555 1.338 0.535 1.271 0.567 1.286 0.529 

13 1.279 0.505 1.340 0.565 1.210 0.494 1.335 0.570 

14 1.230 0.530 1.316 0.500 1.230 0.532 1.284 0.499 

15 1.239 0.540 1.273 0.540 1.191 0.536 1.249 0.542 

16 1.285 0.565 1.283 0.560 1.281 0.565 1.262 0.558 

17 1.317 0.535 1.330 0.550 1.248 0.531 1.309 0.553 

18 1.343 0.535 1.387 0.545 1.264 0.535 1.384 0.543 

19 1.376 0.565 1.404 0.535 1.358 0.565 1.393 0.534 

20 1.395 0.540 1.433 0.550 1.313 0.540 1.400 0.551 

21 1.400 0.530 1.448 0.540 1.308 0.533 1.439 0.546 

22 1.413 0.565 1.477 0.545 1.407 0.563 1.301 0.544 

23 1.405 0.535 1.468 0.550 1.387 0.536 1.459 0.545 

24 1.419 0.535 1.473 0.535 1.410 0.533 1.457 0.536 

25 1.406 0.550 1.455 0.540 1.377 0.550 1.358 0.539 

26 1.416 0.540 1.425 0.535 1.412 0.540 1.377 0.535 

27 1.419 0.550 1.462 0.550 1.364 0.548 1.394 0.550 

28 1.404 0.525 1.448 0.545 1.395 0.526 1.428 0.545 

29 1.371 0.425 1.418 0.650 1.309 0.431 1.413 0.616 

30 1.319 0.425 1.056 0.650 1.147 0.437 1.055 0.589 

 

S
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 Participant 6: Treadmill speed 0.6 m/s 

Qualisys IMU 

Right Leg Left Leg Right Leg Left Leg 

Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.388 0.940 0.377 0.900 0.387 0.942 0.374 0.888 

2 0.376 0.940 0.366 0.980 0.367 0.937 0.376 0.986 

3 0.364 0.840 0.353 0.880 0.361 0.838 0.356 0.895 

4 0.362 0.955 0.407 0.880 0.370 0.952 0.362 0.870 

5 0.492 0.825 0.556 0.865 0.496 0.836 0.559 0.869 

6 0.583 0.790 0.646 0.760 0.582 0.789 0.644 0.759 

7 0.617 0.800 0.650 0.835 0.616 0.802 0.635 0.850 

8 0.647 0.845 0.657 0.825 0.656 0.846 0.656 0.828 

9 0.635 0.840 0.634 0.830 0.624 0.803 0.588 0.821 

10 0.632 0.835 0.608 0.850 0.629 0.836 0.547 0.835 

11 0.605 0.855 0.571 0.830 0.530 0.854 0.570 0.832 

12 0.578 0.870 0.552 0.855 0.575 0.887 0.491 0.873 

13 0.550 0.860 0.542 0.845 0.545 0.856 0.532 0.844 

14 0.543 0.865 0.537 0.875 0.542 0.865 0.498 0.885 

15 0.536 0.875 0.540 0.885 0.535 0.884 0.539 0.885 

16 0.537 0.880 0.541 0.855 0.522 0.863 0.508 0.837 

17 0.534 0.865 0.535 0.870 0.526 0.866 0.537 0.880 

18 0.540 0.820 0.527 0.855 0.518 0.820 0.484 0.857 

19 0.531 0.840 0.523 0.860 0.529 0.852 0.506 0.860 

20 0.522 0.825 0.533 0.820 0.488 0.828 0.525 0.827 

21 0.522 0.830 0.525 0.840 0.518 0.830 0.488 0.837 

22 0.518 0.835 0.516 0.795 0.516 0.838 0.485 0.795 

23 0.512 0.845 0.506 0.865 0.502 0.845 0.488 0.860 

24 0.502 0.825 0.491 0.840 0.471 0.827 0.487 0.841 

25 0.490 0.885 0.478 0.860 0.472 0.882 0.429 0.854 

26 0.469 0.815 0.465 0.840 0.460 0.833 0.459 0.852 
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27 0.452 0.865 0.457 0.850 0.417 0.868 0.413 0.855 

28 0.438 0.840 0.442 0.860 0.433 0.826 0.382 0.841 

29 0.421 0.810 0.436 0.840 0.411 0.820 0.410 0.844 

30 0.418 0.810 0.383 0.840 0.413 0.812 0.372 0.844 

  

 Participant 6: Treadmill speed 1.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.799 1.455 1.636 1.465 1.770 1.437 1.672 1.467 

2 1.682 1.865 1.653 1.565 1.681 1.798 1.729 1.555 

3 1.676 1.140 1.658 1.500 1.640 1.144 1.648 1.500 

4 1.565 1.460 1.564 1.600 1.598 1.474 1.569 1.595 

5 1.551 1.995 1.612 1.430 1.546 1.961 1.597 1.431 

6 1.481 1.135 1.591 1.425 1.454 1.169 1.557 1.426 

7 1.464 1.395 1.555 1.640 1.482 1.416 1.555 1.682 

8 1.602 1.620 1.546 1.520 1.586 1.619 1.535 1.491 

9 1.477 2.085 1.540 1.635 1.561 2.027 1.532 1.635 

10 1.528 1.125 1.607 1.460 1.948 1.144 1.605 1.466 

11 1.518 2.170 1.497 1.655 1.534 2.133 1.474 1.658 

12 1.524 1.645 1.495 1.665 1.525 1.645 1.465 1.663 

13 1.445 1.585 1.427 1.625 1.450 1.589 1.440 1.625 

14 1.397 1.590 1.392 1.740 1.397 1.591 1.399 1.728 

15 1.395 1.135 1.386 1.480 1.372 1.176 1.421 1.487 

16 1.402 1.545 1.337 1.610 1.415 1.551 1.476 1.614 

17 1.382 1.585 1.379 1.585 1.421 1.574 1.369 1.585 

18 1.242 1.510 1.303 1.620 1.436 1.511 1.353 1.621 

19 1.345 1.985 1.434 1.395 1.326 1.971 1.428 1.400 

20 1.421 1.440 1.502 1.510 1.406 1.441 1.537 1.510 

21 1.330 1.245 1.400 1.525 1.279 1.301 1.349 1.523 

22 1.391 1.250 1.404 1.375 1.383 1.257 1.368 1.375 

23 1.333 1.305 1.412 1.475 1.359 1.306 1.403 1.476 

24 1.422 1.775 1.501 1.350 1.425 1.735 1.463 1.350 

25 1.467 1.415 1.551 1.375 1.437 1.416 1.428 1.379 

26 1.465 1.250 1.606 1.410 1.451 1.280 1.587 1.410 

27 1.534 1.275 1.555 1.270 1.525 1.287 1.467 1.270 

28 1.520 1.205 1.480 1.330 1.520 1.211 1.494 1.329 

29 1.551 1.160 1.650 1.295 1.545 1.162 1.635 1.289 

30 1.602 1.160 1.158 1.295 1.525 1.161 1.170 1.282 

  

 Participant 6: Treadmill speed 1.4 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.190 0.835 1.152 0.875 1.184 0.836 1.147 0.876 

2 1.198 0.850 1.214 0.810 1.197 0.850 1.166 0.816 

3 1.174 0.800 1.196 0.795 1.186 0.802 1.157 0.798 

4 1.171 0.775 1.204 0.855 1.162 0.779 1.196 0.855 

5 1.185 0.825 1.195 0.770 1.156 0.824 1.139 0.771 

6 1.134 0.835 1.185 0.860 1.126 0.835 1.072 0.860 

7 1.180 0.845 1.140 0.830 1.167 0.845 1.064 0.830 

8 1.129 0.825 1.179 0.840 1.128 0.825 1.159 0.822 
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9 1.147 0.840 1.197 0.870 1.135 0.844 1.254 0.890 

10 1.134 0.830 1.145 0.795 1.132 0.830 1.145 0.797 

11 1.143 0.805 1.174 0.805 1.134 0.806 1.115 0.809 

12 1.118 0.810 1.151 0.795 1.123 0.813 1.145 0.799 

13 1.156 0.795 1.158 0.770 1.038 0.792 1.115 0.770 

14 1.162 0.775 1.146 0.795 1.156 0.776 1.127 0.795 

15 1.068 0.840 1.096 0.825 1.110 0.840 1.095 0.830 

16 1.113 0.790 1.121 0.810 1.106 0.786 1.106 0.806 

17 1.152 0.800 1.121 0.795 1.087 0.800 1.113 0.798 

18 1.101 0.805 1.119 0.795 1.092 0.807 1.109 0.795 

19 1.103 0.795 1.102 0.815 1.101 0.786 1.015 0.803 

20 1.124 0.810 1.101 0.825 1.119 0.819 1.058 0.847 

21 1.150 0.845 1.135 0.825 1.158 0.848 1.126 0.827 

22 1.083 0.775 1.097 0.790 1.052 0.775 1.075 0.789 

23 1.102 0.810 1.110 0.800 1.090 0.810 1.092 0.800 

24 1.086 0.805 1.125 0.820 1.069 0.802 1.128 0.820 

25 1.129 0.820 1.127 0.755 1.108 0.823 1.095 0.755 

26 1.125 0.775 1.136 0.795 1.124 0.787 1.135 0.803 

27 1.028 0.785 1.122 0.780 1.054 0.785 1.043 0.781 

28 1.092 0.785 1.150 0.765 1.037 0.785 1.146 0.765 

29 1.102 0.765 1.146 0.815 1.030 0.739 1.123 0.787 

30 1.131 0.765 0.769 0.815 1.123 0.746 0.606 0.812 

  

 Participant 6: Treadmill speed 1.8 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.205 0.700 1.220 0.690 1.169 0.692 1.225 0.692 

2 1.181 0.705 1.226 0.665 1.179 0.748 1.182 0.671 

3 1.197 0.690 1.200 0.715 1.163 0.669 1.136 0.705 

4 1.219 0.680 1.242 0.690 1.141 0.682 1.198 0.714 

5 1.226 0.675 1.264 0.670 1.199 0.676 1.248 0.671 

6 1.206 0.685 1.256 0.670 1.172 0.683 1.255 0.669 

7 1.266 0.705 1.299 0.685 1.201 0.707 1.291 0.686 

8 1.282 0.650 1.307 0.660 1.257 0.643 1.295 0.657 

9 1.260 0.660 1.315 0.655 1.222 0.661 1.305 0.655 

10 1.240 0.695 1.332 0.690 1.186 0.713 1.356 0.717 

11 1.272 0.660 1.290 0.650 1.270 0.663 1.285 0.651 

12 1.256 0.680 1.288 0.660 1.209 0.682 1.284 0.661 

13 1.226 0.630 1.324 0.680 1.057 0.630 1.221 0.641 

14 1.264 0.670 1.323 0.670 1.211 0.667 1.454 0.689 

15 1.240 0.695 1.292 0.645 1.056 0.659 1.233 0.646 

16 1.218 0.640 1.235 0.700 1.149 0.642 1.183 0.686 

17 1.202 0.685 1.221 0.675 1.173 0.638 1.008 0.674 

18 1.217 0.670 1.205 0.650 1.216 0.666 1.168 0.667 

19 1.174 0.685 1.188 0.720 1.173 0.685 1.086 0.720 

20 1.189 0.675 1.183 0.670 1.184 0.676 1.181 0.669 

21 1.236 0.680 1.194 0.685 1.176 0.678 1.186 0.683 

22 1.170 0.690 1.208 0.665 1.055 0.685 1.184 0.665 

23 1.222 0.670 1.221 0.690 1.157 0.657 1.217 0.681 

24 1.217 0.675 1.227 0.670 1.196 0.673 1.126 0.668 

25 1.228 0.655 1.229 0.645 1.184 0.672 1.228 0.658 

26 1.177 0.670 1.225 0.665 1.175 0.686 1.149 0.655 
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27 1.207 0.650 1.224 0.670 1.082 0.642 1.165 0.668 

28 1.144 0.660 1.193 0.655 1.058 0.651 1.173 0.658 

29 1.194 0.675 1.179 0.805 1.193 0.672 1.001 0.771 

30 1.099 0.675 0.735 0.805 1.009 0.672 0.711 0.792 

  

 Participant 6: Treadmill speed 2.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.235 0.635 1.230 0.640 1.238 0.636 1.222 0.632 

2 1.255 0.660 1.265 0.670 1.194 0.660 1.264 0.667 

3 1.277 0.650 1.298 0.635 1.271 0.651 1.268 0.646 

4 1.307 0.650 1.307 0.635 1.257 0.652 1.200 0.639 

5 1.273 0.655 1.268 0.675 1.239 0.660 1.262 0.697 

6 1.275 0.670 1.292 0.650 1.255 0.649 1.164 0.649 

7 1.305 0.605 1.289 0.645 1.238 0.605 1.273 0.644 

8 1.303 0.635 1.297 0.635 1.247 0.634 1.272 0.630 

9 1.285 0.645 1.337 0.605 1.285 0.641 1.336 0.607 

10 1.306 0.635 1.340 0.645 1.305 0.641 1.164 0.647 

11 1.286 0.615 1.332 0.625 1.270 0.615 1.324 0.614 

12 1.296 0.635 1.332 0.645 1.283 0.635 1.324 0.646 

13 1.240 0.640 1.249 0.605 1.202 0.640 1.057 0.608 

14 1.269 0.650 1.242 0.645 1.149 0.650 1.129 0.645 

15 1.293 0.605 1.270 0.655 1.242 0.606 1.245 0.661 

16 1.288 0.620 1.321 0.600 1.249 0.621 1.262 0.601 

17 1.316 0.650 1.282 0.645 1.222 0.650 1.257 0.644 

18 1.308 0.615 1.342 0.630 1.158 0.619 1.337 0.628 

19 1.334 0.655 1.336 0.645 1.308 0.657 1.293 0.647 

20 1.285 0.630 1.334 0.630 1.249 0.624 1.231 0.626 

21 1.243 0.650 1.212 0.640 1.008 0.650 1.189 0.640 

22 1.261 0.640 1.217 0.635 1.206 0.640 1.109 0.646 

23 1.245 0.635 1.233 0.640 1.245 0.638 1.222 0.643 

24 1.253 0.615 1.243 0.635 1.230 0.619 1.189 0.635 

25 1.225 0.635 1.186 0.615 1.198 0.633 1.178 0.616 

26 1.240 0.630 1.223 0.645 1.206 0.631 1.142 0.645 

27 1.248 0.635 1.219 0.625 1.110 0.633 1.129 0.624 

28 1.269 0.635 1.315 0.645 1.211 0.634 1.297 0.645 

29 1.236 0.630 1.274 0.615 1.140 0.626 1.188 0.615 

30 1.232 0.630 1.114 0.640 1.207 0.609 1.075 0.627 

  

 Participant 6: Treadmill speed 2.2 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.298 0.715 1.304 0.650 1.246 0.715 1.291 0.651 

2 1.345 0.680 1.341 0.630 1.327 0.679 1.269 0.629 

3 1.429 0.635 1.392 0.665 1.372 0.636 1.366 0.669 

4 1.417 0.650 1.430 0.650 1.406 0.648 1.422 0.657 

5 1.415 0.610 1.388 0.610 1.369 0.612 1.243 0.609 

6 1.438 0.650 1.438 0.645 1.248 0.650 1.426 0.646 

7 1.454 0.620 1.437 0.610 1.448 0.623 1.394 0.618 

8 1.410 0.610 1.428 0.640 1.299 0.610 1.410 0.640 
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9 1.382 0.635 1.434 0.630 1.357 0.646 1.384 0.634 

10 1.370 0.655 1.428 0.650 1.329 0.650 1.352 0.650 

11 1.377 0.630 1.426 0.635 1.361 0.630 1.418 0.629 

12 1.379 0.640 1.416 0.615 1.305 0.640 1.411 0.629 

13 1.413 0.610 1.418 0.645 1.325 0.610 1.349 0.641 

14 1.386 0.660 1.452 0.665 1.385 0.664 1.204 0.663 

15 1.364 0.620 1.426 0.610 1.255 0.620 1.403 0.607 

16 1.333 0.635 1.385 0.635 1.322 0.635 1.356 0.631 

17 1.323 0.640 1.376 0.620 1.288 0.640 1.374 0.620 

18 1.319 0.625 1.391 0.605 1.281 0.625 1.381 0.609 

19 1.397 0.640 1.368 0.660 1.369 0.616 1.329 0.660 

20 1.411 0.625 1.467 0.620 1.322 0.618 1.440 0.625 

21 1.385 0.635 1.457 0.615 1.385 0.659 1.427 0.614 

22 1.413 0.615 1.430 0.640 1.362 0.595 1.354 0.640 

23 1.481 0.630 1.499 0.630 1.290 0.637 1.469 0.632 

24 1.495 0.610 1.507 0.610 1.403 0.617 1.502 0.609 

25 1.442 0.630 1.480 0.625 1.164 0.629 1.338 0.634 

26 1.373 0.620 1.401 0.625 1.345 0.620 1.348 0.625 

27 1.380 0.625 1.365 0.620 1.360 0.625 1.365 0.623 

28 1.399 0.615 1.401 0.605 1.297 0.615 1.348 0.602 

29 1.372 0.615 1.350 0.625 1.305 0.609 1.277 0.630 

30 1.421 0.625 0.831 0.740 1.378 0.602 0.816 0.738 

  

 Participant 6: Treadmill speed 2.5 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.459 0.605 1.469 0.550 1.415 0.605 1.348 0.554 

2 1.456 0.615 1.482 0.610 1.450 0.618 1.461 0.612 

3 1.470 0.620 1.504 0.595 1.384 0.618 1.482 0.595 

4 1.511 0.600 1.553 0.635 1.452 0.600 1.467 0.637 

5 1.511 0.610 1.526 0.575 1.409 0.610 1.500 0.576 

6 1.510 0.615 1.503 0.645 1.468 0.616 1.411 0.644 

7 1.478 0.615 1.494 0.625 1.230 0.610 1.472 0.625 

8 1.490 0.610 1.510 0.590 1.449 0.611 1.426 0.596 

9 1.517 0.630 1.531 0.620 1.497 0.630 1.386 0.619 

10 1.498 0.620 1.520 0.620 1.412 0.619 1.511 0.619 

11 1.558 0.600 1.549 0.625 1.543 0.612 1.540 0.631 

12 1.517 0.650 1.521 0.625 1.505 0.640 1.499 0.624 

13 1.540 0.610 1.553 0.595 1.424 0.622 1.495 0.595 

14 1.517 0.610 1.537 0.645 1.257 0.609 1.527 0.644 

15 1.531 0.625 1.586 0.615 1.419 0.625 1.542 0.616 

16 1.542 0.630 1.523 0.630 1.373 0.634 1.517 0.630 

17 1.521 0.590 1.547 0.595 1.518 0.590 1.411 0.595 

18 1.594 0.625 1.579 0.630 1.583 0.622 1.342 0.629 

19 1.575 0.620 1.584 0.605 1.512 0.620 1.577 0.606 

20 1.570 0.615 1.559 0.620 1.569 0.615 1.499 0.620 

21 1.589 0.655 1.585 0.630 1.536 0.655 1.534 0.630 

22 1.584 0.625 1.629 0.635 1.489 0.624 1.625 0.632 

23 1.642 0.615 1.681 0.620 1.461 0.615 1.683 0.622 

24 1.649 0.605 1.658 0.635 1.643 0.605 1.656 0.635 

25 1.531 0.630 1.610 0.605 1.527 0.630 1.582 0.605 

26 1.571 0.615 1.615 0.625 1.416 0.617 1.514 0.625 
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27 1.558 0.645 1.585 0.635 1.548 0.645 1.584 0.632 

28 1.582 0.625 1.642 0.640 1.471 0.626 1.641 0.640 

29 1.635 0.610 1.642 0.590 1.591 0.609 1.562 0.588 

30 1.681 0.610 1.096 0.680 1.626 0.607 1.081 0.672 

 

S
tr

id
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 Participant 7: Treadmill speed 0.6 m/s 

Qualisys IMU 

Right Leg Left Leg Right Leg Left Leg 

Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 2.623 3.135 2.444 2.775 2.391 3.111 2.430 2.677 

2 1.695 2.710 1.710 4.055 1.737 2.694 2.007 3.942 

3 1.806 3.160 1.755 1.830 1.724 3.133 1.768 1.840 

4 1.740 3.290 1.594 4.000 1.750 3.154 1.592 3.987 

5 1.423 2.315 1.864 2.455 1.447 2.284 1.826 2.473 

6 1.821 2.650 2.227 2.765 2.262 2.662 2.296 2.827 

7 2.134 2.755 2.146 2.760 2.151 2.755 2.028 2.760 

8 1.795 2.755 1.769 1.960 2.206 2.769 1.773 2.025 

9 1.677 2.470 1.652 1.865 1.692 2.476 2.456 1.926 

10 1.659 3.010 1.264 1.845 1.659 3.000 1.272 1.859 

11 1.325 2.195 1.058 2.840 1.446 2.195 1.061 2.831 

12 1.233 2.770 1.420 2.260 2.469 2.770 1.419 2.272 

13 1.352 2.620 1.102 2.520 1.705 2.620 1.105 2.525 

14 0.908 2.270 0.938 2.865 1.071 2.273 0.943 2.864 

15 0.949 2.615 1.625 3.545 0.978 2.601 1.676 3.525 

16 1.449 3.205 1.503 3.630 1.486 3.205 1.493 3.433 

17 1.535 2.155 1.847 2.395 1.638 2.176 1.801 2.409 

18 1.606 1.790 2.010 2.555 1.701 1.833 1.982 2.513 

19 1.712 2.645 2.074 2.685 1.975 2.579 1.998 2.686 

20 1.575 3.665 1.578 2.400 1.723 3.635 1.653 2.419 

21 1.423 2.180 1.677 2.305 1.444 2.209 1.631 2.300 

22 1.411 1.875 1.547 2.530 1.508 1.910 1.556 2.590 

23 1.580 3.290 1.682 2.495 1.648 3.271 1.614 2.461 

24 1.614 1.930 1.570 2.350 1.889 1.962 1.558 2.336 

25 1.325 3.055 1.194 2.645 1.329 3.020 1.200 2.681 

26 1.125 1.780 1.037 2.315 1.154 1.802 1.037 2.315 

27 0.997 2.020 0.842 2.385 1.026 2.103 1.012 2.388 

28 1.201 1.935 1.574 2.130 1.719 1.937 1.603 2.134 

29 1.724 2.400 2.041 2.370 1.735 2.396 2.018 2.370 

30 1.812 2.400 1.000 2.370 2.307 2.357 0.065 2.367 

  

 Participant 7: Treadmill speed 1.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.292 1.320 1.264 1.335 1.294 1.318 1.244 1.317 

2 1.406 1.330 1.343 1.285 1.448 1.357 1.295 1.286 

3 1.492 1.490 1.506 1.090 1.518 1.484 1.493 1.091 

4 1.587 1.075 1.472 1.505 1.581 1.074 1.423 1.427 

5 1.211 1.310 1.328 1.150 1.392 1.356 1.383 1.188 

6 1.274 1.235 1.354 1.410 1.279 1.241 1.405 1.410 

7 1.370 1.300 1.384 1.100 1.369 1.281 1.387 1.119 

8 1.313 1.550 1.338 1.465 1.341 1.545 1.317 1.465 
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9 1.353 1.065 1.402 1.305 1.345 1.068 1.421 1.355 

10 1.574 1.215 1.594 1.215 1.577 1.219 1.479 1.196 

11 1.700 1.335 1.828 1.365 1.664 1.336 1.811 1.359 

12 1.461 1.315 1.532 1.140 1.447 1.254 1.523 1.149 

13 1.634 1.135 1.561 1.355 1.613 1.162 1.561 1.355 

14 1.484 1.820 1.448 1.330 1.468 1.696 1.469 1.330 

15 1.180 1.340 1.187 1.535 1.183 1.341 1.169 1.482 

16 0.933 1.070 0.939 1.110 0.952 1.071 0.923 1.136 

17 1.041 1.345 1.032 1.565 1.020 1.358 1.136 1.568 

18 0.940 1.355 0.996 1.090 0.972 1.355 0.978 1.091 

19 1.033 1.530 0.923 1.505 1.028 1.529 0.951 1.429 

20 1.109 1.185 1.202 1.420 1.106 1.167 1.215 1.421 

21 1.285 1.250 1.192 1.285 1.298 1.274 1.137 1.249 

22 1.347 1.675 1.349 1.060 1.269 1.669 1.355 1.227 

23 1.312 1.320 1.320 1.695 1.312 1.323 1.306 1.661 

24 1.203 1.070 1.202 1.380 1.206 1.076 1.132 1.380 

25 1.333 1.380 1.337 1.070 1.337 1.380 1.314 1.072 

26 1.319 1.345 1.359 1.390 1.296 1.306 1.363 1.397 

27 1.325 1.340 1.312 1.250 1.325 1.340 1.314 1.270 

28 1.365 1.295 1.320 1.585 1.348 1.293 1.291 1.576 

29 1.368 1.430 1.351 1.385 1.368 1.431 1.352 1.386 

30 1.613 1.430 1.388 1.385 1.576 1.430 1.399 1.387 

  

 Participant 7: Treadmill speed 1.4 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.170 1.175 1.272 0.965 1.138 1.166 1.272 0.967 

2 1.438 0.985 1.439 1.105 1.503 1.011 1.384 1.125 

3 1.476 1.130 1.490 1.185 1.572 1.135 1.499 1.179 

4 1.465 1.140 1.391 1.130 1.465 1.137 1.279 1.125 

5 1.273 1.100 1.289 1.070 1.263 1.101 1.297 1.074 

6 1.457 1.115 1.387 1.110 1.464 1.118 1.373 1.115 

7 1.311 1.250 1.295 1.120 1.285 1.230 1.258 1.119 

8 1.260 0.905 1.230 0.915 1.257 0.918 1.223 0.910 

9 1.196 1.105 1.203 1.095 1.195 1.106 1.227 1.142 

10 1.269 1.025 1.270 1.160 1.236 1.006 1.260 1.151 

11 1.408 1.070 1.307 1.045 1.411 1.068 1.307 1.017 

12 1.395 1.060 1.311 1.130 1.383 1.061 1.292 1.130 

13 1.399 1.035 1.300 1.045 1.272 1.019 1.290 1.038 

14 1.564 1.205 1.573 1.010 1.562 1.186 1.514 1.011 

15 1.783 0.955 1.784 0.950 1.805 0.963 1.783 0.953 

16 1.627 1.035 1.614 1.195 1.604 1.037 1.508 1.190 

17 1.620 1.225 1.622 1.105 1.585 1.228 1.636 1.149 

18 1.534 1.050 1.443 1.045 1.520 1.043 1.403 1.037 

19 1.588 0.965 1.611 1.110 1.408 0.932 1.607 1.132 

20 1.654 1.135 1.551 0.995 1.600 1.139 1.314 0.992 

21 1.649 0.950 1.697 1.075 1.619 0.951 1.673 1.085 

22 1.624 1.140 1.723 1.055 1.558 1.134 1.675 1.054 

23 1.649 1.030 1.707 1.000 1.652 1.030 1.694 1.001 

24 1.734 1.085 1.741 1.085 1.732 1.085 1.680 1.111 

25 1.601 1.025 1.749 1.020 1.589 1.025 1.747 1.024 

26 1.618 0.940 1.715 1.025 1.614 0.935 1.551 1.028 
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27 1.652 1.100 1.586 1.125 1.652 1.100 1.571 1.124 

28 1.525 1.045 1.571 1.030 1.532 1.050 1.311 1.016 

29 1.535 1.070 1.523 1.065 1.461 1.070 1.470 1.092 

30 1.501 1.070 1.457 1.065 1.500 1.071 1.441 1.072 

  

 Participant 7: Treadmill speed 1.8 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.084 0.845 1.048 0.490 1.083 0.843 1.048 0.496 

2 1.233 0.855 0.990 0.835 1.211 0.857 1.063 0.835 

3 1.590 0.885 1.395 0.900 1.420 0.875 1.337 0.898 

4 1.473 0.875 1.475 0.825 1.451 0.885 1.457 0.833 

5 1.479 0.865 1.410 0.905 1.447 0.865 1.374 0.896 

6 1.536 0.860 1.432 0.880 1.516 0.861 1.435 0.887 

7 1.423 0.890 1.484 0.905 1.422 0.893 1.473 0.905 

8 1.350 0.910 1.351 0.895 1.271 0.910 1.333 0.895 

9 1.413 0.885 1.416 0.825 1.401 0.885 1.312 0.825 

10 1.479 0.870 1.459 0.935 1.476 0.872 1.328 0.933 

11 1.468 0.890 1.420 0.850 1.387 0.891 1.418 0.852 

12 1.751 0.865 1.538 0.885 1.654 0.830 1.508 0.880 

13 1.838 0.875 1.771 0.915 1.838 0.882 1.732 0.913 

14 1.776 0.900 1.794 0.895 1.571 0.900 1.726 0.896 

15 1.504 0.935 1.594 0.910 1.475 0.935 1.567 0.911 

16 1.476 0.860 1.400 0.890 1.477 0.862 1.406 0.892 

17 1.538 0.985 1.509 0.885 1.522 0.985 1.491 0.885 

18 1.573 0.840 1.518 0.885 1.553 0.849 1.533 0.886 

19 1.635 0.850 1.558 0.885 1.609 0.851 1.505 0.881 

20 1.710 0.875 1.592 0.835 1.706 0.875 1.590 0.846 

21 1.730 0.845 1.640 0.890 1.706 0.848 1.623 0.890 

22 1.717 0.905 1.719 0.895 1.565 0.899 1.602 0.894 

23 1.692 0.905 1.627 0.845 1.596 0.905 1.622 0.847 

24 1.780 0.960 1.724 0.960 1.738 0.957 1.707 0.957 

25 1.790 0.815 1.718 0.860 1.742 0.815 1.675 0.831 

26 1.881 0.870 1.782 0.890 1.866 0.871 1.728 0.890 

27 1.974 1.020 1.974 0.930 1.948 1.019 1.964 0.940 

28 1.811 0.835 1.947 0.905 1.674 0.836 1.917 0.908 

29 1.985 0.980 1.843 0.890 1.951 0.976 1.841 0.891 

30 1.432 0.980 2.014 0.890 1.396 0.976 2.005 0.891 

  

 Participant 7: Treadmill speed 2.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.585 0.815 1.578 0.845 1.536 0.821 1.618 0.846 

2 1.638 0.835 1.618 0.850 1.607 0.835 1.521 0.850 

3 1.774 0.870 1.777 0.765 1.687 0.882 1.775 0.763 

4 1.759 0.920 1.667 0.970 1.641 0.919 1.664 0.983 

5 1.690 0.835 1.761 0.870 1.654 0.839 1.735 0.870 

6 1.619 0.890 1.699 0.900 1.445 0.890 1.611 0.898 

7 1.649 0.860 1.705 0.840 1.631 0.864 1.691 0.819 

8 1.606 0.935 1.614 0.890 1.583 0.935 1.569 0.899 
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9 1.600 0.920 1.713 0.920 1.591 0.922 1.680 0.921 

10 1.644 0.835 1.676 0.905 1.567 0.847 1.583 0.904 

11 1.658 0.885 1.675 0.880 1.590 0.887 1.598 0.883 

12 1.768 0.990 1.782 0.925 1.718 0.992 1.720 0.955 

13 1.743 0.835 1.827 0.910 1.615 0.825 1.790 0.908 

14 1.628 0.870 1.629 0.875 1.594 0.869 1.585 0.853 

15 1.523 0.915 1.519 0.845 1.372 0.915 1.465 0.855 

16 1.645 0.870 1.609 0.885 1.631 0.834 1.578 0.882 

17 1.771 0.860 1.831 0.885 1.718 0.856 1.783 0.854 

18 1.703 0.850 1.693 0.855 1.702 0.876 1.524 0.813 

19 1.645 0.875 1.626 0.835 1.645 0.868 1.571 0.830 

20 1.610 0.855 1.606 0.900 1.600 0.854 1.532 0.898 

21 1.628 0.840 1.661 0.850 1.553 0.869 1.646 0.860 

22 1.677 0.885 1.703 0.840 1.577 0.864 1.702 0.831 

23 1.749 0.865 1.861 0.850 1.617 0.865 1.820 0.852 

24 1.758 0.800 1.794 0.890 1.655 0.803 1.671 0.891 

25 1.783 0.875 1.812 0.795 1.699 0.875 1.670 0.797 

26 1.788 0.810 1.827 0.865 1.788 0.809 1.807 0.860 

27 1.832 0.860 1.888 0.880 1.824 0.857 1.877 0.878 

28 1.837 0.920 1.884 0.825 1.832 0.929 1.882 0.841 

29 1.845 0.440 1.943 0.870 1.744 0.462 1.933 0.869 

30 1.367 0.440 2.205 0.870 1.338 0.485 2.113 0.869 

  

 Participant 7: Treadmill speed 2.2 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.654 0.835 1.669 0.855 1.646 0.807 1.598 0.854 

2 1.698 0.795 1.676 0.775 1.693 0.798 1.575 0.776 

3 1.790 0.815 1.755 0.790 1.747 0.816 1.752 0.792 

4 1.895 0.815 1.806 0.835 1.863 0.814 1.758 0.834 

5 1.790 0.810 1.791 0.790 1.733 0.817 1.771 0.793 

6 1.689 0.835 1.720 0.895 1.688 0.834 1.719 0.884 

7 1.666 0.830 1.586 0.810 1.653 0.834 1.581 0.818 

8 1.677 0.845 1.608 0.815 1.638 0.843 1.588 0.815 

9 1.747 0.835 1.670 0.865 1.736 0.835 1.658 0.865 

10 1.816 0.795 1.788 0.795 1.779 0.796 1.779 0.799 

11 1.882 0.815 1.829 0.790 1.825 0.817 1.737 0.798 

12 2.023 0.790 1.956 0.820 1.995 0.790 1.876 0.820 

13 2.008 0.840 1.920 0.860 1.994 0.840 1.859 0.859 

14 1.927 0.835 1.937 0.805 1.864 0.834 1.910 0.802 

15 1.865 0.880 1.849 0.885 1.847 0.880 1.849 0.885 

16 2.005 0.810 1.942 0.845 1.982 0.812 1.892 0.844 

17 1.971 0.865 1.891 0.860 1.971 0.865 1.891 0.861 

18 1.807 0.835 1.720 0.810 1.765 0.836 1.679 0.813 

19 1.785 0.820 1.699 0.790 1.780 0.822 1.581 0.791 

20 1.851 0.855 1.827 0.895 1.785 0.855 1.776 0.895 

21 1.973 0.835 1.948 0.775 1.909 0.835 1.859 0.778 

22 2.041 0.840 1.977 0.835 2.022 0.840 1.909 0.835 

23 2.121 0.890 2.024 0.905 2.090 0.897 2.097 0.901 

24 2.031 0.865 2.007 0.875 1.984 0.869 1.991 0.876 

25 1.914 0.800 1.868 0.870 1.757 0.810 1.949 0.871 

26 1.874 0.850 1.767 0.830 1.846 0.850 1.767 0.827 
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27 1.803 0.880 1.786 0.800 1.738 0.878 1.835 0.801 

28 1.897 0.805 1.883 0.900 1.863 0.808 1.890 0.898 

29 1.970 1.065 1.881 0.700 1.772 1.056 2.011 0.720 

30 1.833 1.065 1.735 0.700 1.682 1.057 1.789 0.709 

  

 Participant 7: Treadmill speed 2.5 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.769 0.785 1.839 0.765 1.589 0.779 1.804 0.762 

2 1.827 0.780 1.873 0.800 1.632 0.772 1.866 0.776 

3 1.894 0.800 1.970 0.795 1.853 0.821 1.961 0.796 

4 1.962 0.775 1.988 0.775 1.907 0.774 1.969 0.754 

5 1.847 0.805 1.831 0.795 1.823 0.805 1.813 0.800 

6 1.740 0.745 1.828 0.790 1.740 0.761 1.699 0.790 

7 1.735 0.780 1.852 0.760 1.688 0.779 1.758 0.760 

8 1.724 0.775 1.864 0.785 1.724 0.774 1.826 0.784 

9 1.856 0.785 1.864 0.780 1.808 0.756 1.822 0.786 

10 1.892 0.765 1.999 0.775 1.842 0.779 1.914 0.777 

11 1.831 0.790 1.894 0.750 1.813 0.789 1.806 0.752 

12 1.971 0.785 2.079 0.800 1.932 0.790 1.987 0.794 

13 2.102 0.765 2.217 0.770 2.040 0.765 2.072 0.769 

14 2.019 0.825 2.153 0.800 1.877 0.824 2.108 0.801 

15 1.894 0.780 1.994 0.760 1.879 0.782 1.921 0.760 

16 1.795 0.780 1.839 0.810 1.649 0.785 1.790 0.810 

17 1.662 0.775 1.754 0.810 1.612 0.777 1.713 0.810 

18 1.757 0.800 1.797 0.750 1.745 0.801 1.772 0.755 

19 1.812 0.740 1.924 0.745 1.700 0.741 1.858 0.746 

20 1.896 0.750 2.040 0.800 1.886 0.753 2.030 0.800 

21 1.974 0.795 1.999 0.770 1.948 0.763 1.960 0.766 

22 1.998 0.770 2.087 0.775 1.853 0.771 1.986 0.775 

23 1.841 0.780 1.963 0.765 1.828 0.813 1.819 0.767 

24 1.769 0.765 1.830 0.775 1.757 0.764 1.731 0.774 

25 1.780 0.715 1.873 0.735 1.779 0.716 1.836 0.737 

26 1.782 0.805 1.828 0.785 1.756 0.805 1.605 0.785 

27 1.960 0.725 2.047 0.745 1.959 0.699 2.016 0.740 

28 1.917 0.785 2.005 0.765 1.913 0.785 2.001 0.765 

29 1.985 0.530 2.030 0.680 1.985 0.541 1.970 0.695 

30 2.982 0.530 1.476 0.680 2.776 0.598 1.411 0.682 

 

S
tr

id
e 

N
o

 Participant 8: Treadmill speed 0.6 m/s 

Qualisys IMU 

Right Leg Left Leg Right Leg Left Leg 

Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.681 0.905 0.667 0.970 0.664 0.907 0.606 0.971 

2 0.672 0.930 0.665 0.870 0.669 0.933 0.659 0.872 

3 0.657 0.920 0.645 1.040 0.657 0.925 0.637 1.015 

4 0.655 1.000 0.647 0.995 0.639 1.000 0.647 0.998 

5 0.647 1.045 0.629 1.050 0.639 1.045 0.624 1.031 

6 0.642 1.050 0.629 1.020 0.627 1.049 0.629 1.030 

7 0.648 1.015 0.639 1.125 0.587 1.013 0.580 1.124 

8 0.653 1.100 0.634 1.130 0.646 1.101 0.629 1.130 
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9 0.650 1.175 0.633 1.035 0.725 1.194 0.599 1.035 

10 0.653 1.060 0.636 1.130 0.653 1.062 0.641 1.127 

11 0.639 1.105 0.639 1.140 0.646 1.105 0.620 1.138 

12 0.635 0.990 0.652 1.035 0.650 0.990 0.658 1.090 

13 0.635 1.085 0.655 1.015 0.647 1.089 0.654 1.015 

14 0.645 1.070 0.658 1.100 0.648 1.069 0.657 1.099 

15 0.664 1.070 0.660 1.095 0.750 1.071 0.643 1.089 

16 0.684 1.100 0.682 1.080 0.800 1.102 0.692 1.097 

17 0.667 1.120 0.678 1.050 0.669 1.119 0.731 1.062 

18 0.653 1.045 0.666 1.090 0.666 1.047 0.668 1.091 

19 0.664 1.015 0.665 1.070 0.665 1.023 0.669 1.070 

20 0.653 1.125 0.646 1.145 0.897 1.132 0.650 1.144 

21 0.626 1.225 0.631 1.285 1.045 1.221 0.646 1.277 

22 0.634 1.035 0.632 1.200 1.187 1.036 0.662 1.197 

23 0.646 1.420 0.673 1.080 0.841 1.417 1.185 1.082 

24 0.639 0.985 0.650 1.235 0.758 0.988 0.729 1.235 

25 0.645 1.360 0.650 1.170 0.743 1.291 0.659 1.163 

26 0.643 1.105 0.636 1.090 0.787 1.105 0.711 1.082 

27 0.633 1.085 0.648 1.085 1.472 1.101 0.723 1.080 

28 0.628 1.045 0.642 1.100 0.630 1.050 0.653 1.104 

29 0.631 1.105 0.644 1.020 0.632 1.094 0.687 1.029 

30 0.634 1.130 0.652 1.020 0.642 1.118 0.673 1.028 

  

 Participant 8: Treadmill speed 1.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.592 0.925 0.594 0.465 0.592 0.924 0.593 0.470 

2 0.596 0.765 0.602 0.855 0.574 0.770 0.595 0.854 

3 0.500 0.840 0.549 0.755 0.469 0.839 0.552 0.766 

4 0.531 0.800 0.541 0.800 0.523 0.795 0.529 0.795 

5 0.605 0.830 0.570 0.905 0.605 0.832 0.564 0.907 

6 0.774 0.790 0.664 0.710 0.760 0.795 0.658 0.711 

7 0.946 0.785 0.820 0.835 0.941 0.784 0.819 0.828 

8 0.935 0.800 0.892 0.840 0.904 0.803 0.883 0.841 

9 0.896 0.800 0.884 0.740 0.891 0.806 0.866 0.744 

10 0.875 0.800 0.890 0.825 0.830 0.801 0.863 0.822 

11 0.849 0.795 0.850 0.730 0.778 0.783 0.833 0.733 

12 0.834 0.770 0.820 0.810 0.830 0.774 0.807 0.801 

13 0.764 0.875 0.818 0.755 0.762 0.869 0.815 0.755 

14 0.705 0.755 0.742 0.845 0.704 0.754 0.734 0.880 

15 0.782 0.845 0.726 0.845 0.785 0.846 0.688 0.840 

16 0.875 0.910 0.821 0.790 0.804 0.898 0.779 0.807 

17 0.845 0.775 0.861 0.830 0.802 0.780 0.857 0.829 

18 0.722 0.800 0.744 0.875 0.652 0.805 0.742 0.873 

19 0.724 0.815 0.693 0.840 0.723 0.813 0.687 0.837 

20 0.700 0.835 0.681 0.795 0.698 0.842 0.680 0.809 

21 0.679 0.770 0.667 0.785 0.650 0.767 0.663 0.782 

22 0.647 0.810 0.620 0.860 0.647 0.812 0.618 0.863 

23 0.706 0.780 0.587 0.700 0.665 0.780 0.587 0.699 

24 1.008 0.685 0.841 0.805 0.971 0.687 0.805 0.793 

25 1.009 0.770 1.013 0.710 1.009 0.766 0.939 0.713 

26 1.021 0.715 1.018 0.695 1.019 0.718 0.883 0.703 
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27 1.012 0.720 1.039 0.700 0.978 0.720 0.959 0.701 

28 0.980 0.695 1.011 0.805 0.886 0.696 0.962 0.801 

29 0.931 0.820 1.007 0.670 0.922 0.817 0.939 0.672 

30 0.856 0.820 0.689 0.670 0.775 0.818 0.678 0.682 

  

 Participant 8: Treadmill speed 1.4 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 0.893 0.635 0.874 0.585 0.855 0.642 0.877 0.595 

2 0.912 0.680 0.915 0.670 0.909 0.680 0.852 0.670 

3 0.967 0.655 0.942 0.660 0.964 0.655 0.900 0.662 

4 1.006 0.695 0.992 0.710 0.996 0.695 0.915 0.706 

5 0.961 0.655 0.995 0.685 0.936 0.656 0.962 0.700 

6 1.008 0.690 0.982 0.655 0.995 0.691 0.972 0.661 

7 0.967 0.685 0.955 0.665 0.901 0.685 0.947 0.657 

8 0.963 0.640 0.948 0.660 0.941 0.640 0.939 0.664 

9 0.901 0.680 0.939 0.660 0.884 0.677 0.915 0.660 

10 0.837 0.600 0.885 0.650 0.818 0.604 0.834 0.648 

11 0.780 0.640 0.834 0.620 0.749 0.644 0.833 0.620 

12 0.738 0.635 0.775 0.605 0.597 0.627 0.750 0.608 

13 0.741 0.635 0.742 0.635 0.736 0.635 0.636 0.640 

14 0.778 0.625 0.704 0.620 0.775 0.625 0.699 0.621 

15 0.874 0.645 0.816 0.660 0.856 0.642 0.778 0.664 

16 0.930 0.640 0.905 0.675 0.899 0.640 0.859 0.656 

17 0.923 0.635 0.952 0.625 0.913 0.633 0.879 0.625 

18 0.927 0.665 0.964 0.690 0.835 0.672 0.963 0.686 

19 1.006 0.635 0.950 0.625 0.932 0.635 0.948 0.639 

20 0.972 0.635 0.981 0.645 0.969 0.635 0.872 0.636 

21 0.939 0.615 0.945 0.610 0.930 0.612 0.911 0.611 

22 0.939 0.675 0.936 0.655 0.938 0.678 0.849 0.654 

23 0.911 0.640 0.900 0.585 0.861 0.627 0.884 0.592 

24 0.934 0.655 0.928 0.695 0.930 0.657 0.898 0.687 

25 0.935 0.655 0.941 0.630 0.933 0.656 0.924 0.636 

26 0.875 0.605 0.922 0.635 0.868 0.605 0.900 0.636 

27 0.890 0.685 0.878 0.680 0.811 0.685 0.823 0.673 

28 0.874 0.630 0.863 0.615 0.814 0.630 0.829 0.618 

29 0.945 0.655 0.893 0.665 0.944 0.671 0.880 0.658 

30 0.945 0.655 0.962 0.665 0.922 0.656 0.956 0.679 

  

 Participant 8: Treadmill speed 1.8 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.175 0.595 1.238 0.605 1.162 0.597 1.235 0.608 

2 1.220 0.605 1.234 0.615 1.182 0.605 1.180 0.611 

3 1.171 0.600 1.237 0.590 1.156 0.604 1.208 0.594 

4 1.223 0.615 1.272 0.615 1.176 0.615 1.227 0.614 

5 1.160 0.620 1.216 0.585 1.120 0.620 1.076 0.590 

6 1.206 0.585 1.232 0.670 1.140 0.585 1.183 0.665 

7 1.157 0.645 1.197 0.620 1.083 0.645 1.065 0.620 

8 1.127 0.585 1.163 0.570 1.124 0.596 1.158 0.571 
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9 1.121 0.620 1.122 0.575 1.106 0.619 1.119 0.577 

10 1.100 0.550 1.148 0.585 0.966 0.551 1.047 0.580 

11 1.299 0.585 1.300 0.605 1.270 0.585 1.298 0.605 

12 1.137 0.640 1.217 0.600 1.041 0.640 1.209 0.608 

13 1.064 0.560 1.120 0.585 1.018 0.569 0.995 0.585 

14 1.156 0.570 1.114 0.540 1.108 0.574 1.111 0.546 

15 1.088 0.565 1.022 0.625 0.996 0.567 0.981 0.625 

16 1.060 0.625 0.989 0.580 1.060 0.624 0.935 0.575 

17 1.104 0.590 1.148 0.630 1.097 0.591 1.112 0.637 

18 1.134 0.630 1.160 0.590 1.129 0.630 1.086 0.590 

19 1.180 0.595 1.152 0.620 1.138 0.594 1.092 0.620 

20 1.174 0.600 1.123 0.625 1.170 0.599 1.118 0.617 

21 1.079 0.600 1.062 0.555 1.071 0.604 0.931 0.556 

22 1.044 0.640 0.985 0.660 1.043 0.636 0.969 0.656 

23 1.004 0.615 1.057 0.620 0.990 0.616 0.976 0.620 

24 1.047 0.595 1.049 0.560 0.983 0.599 1.049 0.564 

25 0.944 0.625 0.899 0.650 0.909 0.622 0.885 0.648 

26 0.846 0.625 0.822 0.600 0.831 0.625 0.772 0.604 

27 0.857 0.595 0.832 0.670 0.798 0.596 0.829 0.670 

28 0.757 0.620 0.800 0.580 0.704 0.622 0.791 0.589 

29 1.026 0.625 0.990 0.675 0.994 0.625 0.960 0.675 

30 1.009 0.625 1.006 0.675 0.924 0.625 1.003 0.661 

  

 Participant 8: Treadmill speed 2.0 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.467 0.665 1.456 0.585 1.466 0.663 1.303 0.575 

2 1.382 0.610 1.430 0.595 1.375 0.609 1.330 0.602 

3 1.455 0.565 1.383 0.650 1.453 0.577 1.361 0.653 

4 1.475 0.680 1.537 0.610 1.440 0.680 1.496 0.610 

5 1.454 0.660 1.522 0.650 1.382 0.666 1.521 0.650 

6 1.485 0.650 1.479 0.675 1.412 0.659 1.401 0.675 

7 1.328 0.615 1.460 0.710 1.230 0.612 1.353 0.708 

8 1.252 0.665 1.340 0.595 1.142 0.665 1.273 0.602 

9 1.253 0.635 1.287 0.645 1.252 0.635 1.285 0.649 

10 1.058 0.650 1.168 0.685 0.951 0.650 1.166 0.681 

11 1.057 0.635 1.115 0.565 1.031 0.645 1.092 0.578 

12 1.147 0.630 1.089 0.690 1.141 0.630 1.032 0.682 

13 1.197 0.685 1.201 0.655 1.098 0.685 1.196 0.656 

14 1.328 0.675 1.258 0.705 1.271 0.673 1.208 0.706 

15 1.333 0.645 1.307 0.610 1.324 0.654 1.261 0.612 

16 1.279 0.665 1.324 0.675 1.267 0.664 1.322 0.675 

17 1.370 0.630 1.388 0.610 1.292 0.630 1.367 0.613 

18 1.496 0.640 1.358 0.630 1.474 0.641 1.355 0.630 

19 1.537 0.655 1.338 0.625 1.526 0.656 1.335 0.627 

20 1.461 0.595 1.427 0.640 1.447 0.635 1.316 0.640 

21 1.415 0.685 1.390 0.660 1.366 0.681 1.262 0.659 

22 1.458 0.605 1.365 0.645 1.455 0.599 1.320 0.646 

23 1.474 0.625 1.406 0.635 1.416 0.631 1.387 0.632 

24 1.360 0.650 1.379 0.615 1.358 0.651 1.284 0.615 

25 1.253 0.685 1.283 0.680 1.250 0.685 1.277 0.683 

26 1.006 0.645 1.148 0.665 1.006 0.667 1.080 0.664 
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27 0.946 0.655 0.888 0.625 0.933 0.649 0.853 0.624 

28 0.962 0.670 0.903 0.690 0.930 0.664 0.843 0.688 

29 0.983 0.640 1.033 0.650 0.958 0.647 0.995 0.657 

30 1.059 0.650 0.988 0.650 1.043 0.653 0.968 0.652 

  

 Participant 8: Treadmill speed 2.2 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.220 0.600 1.280 0.530 1.200 0.615 1.258 0.534 

2 1.257 0.575 1.252 0.610 1.250 0.575 1.225 0.613 

3 1.286 0.555 1.279 0.560 1.285 0.555 1.252 0.560 

4 1.343 0.580 1.350 0.575 1.303 0.583 1.310 0.581 

5 1.262 0.585 1.311 0.570 1.230 0.577 1.220 0.570 

6 1.265 0.580 1.237 0.590 1.257 0.580 1.227 0.590 

7 1.354 0.580 1.295 0.560 1.335 0.580 1.291 0.550 

8 1.302 0.560 1.313 0.580 1.296 0.556 1.252 0.580 

9 1.306 0.590 1.276 0.580 1.282 0.594 1.260 0.584 

10 1.330 0.565 1.246 0.560 1.252 0.565 1.228 0.559 

11 1.360 0.580 1.313 0.575 1.357 0.581 1.306 0.580 

12 1.331 0.595 1.370 0.580 1.253 0.593 1.362 0.580 

13 1.301 0.570 1.339 0.600 1.299 0.570 1.337 0.601 

14 1.315 0.575 1.237 0.580 1.296 0.575 1.167 0.579 

15 1.250 0.590 1.221 0.575 1.233 0.590 1.075 0.574 

16 1.259 0.570 1.219 0.575 1.236 0.570 1.222 0.582 

17 1.257 0.570 1.229 0.575 1.228 0.568 1.161 0.575 

18 1.214 0.570 1.158 0.575 1.209 0.571 1.120 0.575 

19 1.135 0.580 1.163 0.570 1.135 0.582 1.180 0.587 

20 1.231 0.605 1.236 0.620 1.230 0.605 1.167 0.609 

21 1.305 0.580 1.336 0.615 1.291 0.575 1.312 0.590 

22 1.238 0.615 1.309 0.565 1.236 0.614 1.289 0.570 

23 1.303 0.590 1.204 0.585 1.285 0.587 1.139 0.586 

24 1.360 0.590 1.298 0.610 1.358 0.591 1.230 0.610 

25 1.359 0.610 1.367 0.645 1.314 0.601 1.249 0.635 

26 1.371 0.630 1.389 0.590 1.348 0.624 1.339 0.588 

27 1.319 0.620 1.393 0.640 1.308 0.617 1.390 0.635 

28 1.327 0.635 1.370 0.615 1.326 0.632 1.340 0.610 

29 1.406 0.600 1.384 0.605 1.384 0.597 1.291 0.604 

30 1.352 0.640 1.390 0.605 1.326 0.640 1.309 0.605 

  

 Participant 8: Treadmill speed 2.5 m/s 

 Qualisys IMU 

 Right Leg Left Leg Right Leg Left Leg 

 Distance (m) Period (s) Distance (m) Period (s) Distance(m) Period(s) Distance(m) Period(s) 

1 1.190 0.550 1.311 0.530 1.178 0.547 1.226 0.530 

2 1.343 0.530 1.298 0.585 1.325 0.531 1.285 0.588 

3 1.331 0.565 1.370 0.545 1.330 0.555 1.351 0.540 

4 1.470 0.555 1.414 0.560 1.410 0.555 1.298 0.561 

5 1.371 0.570 1.419 0.545 1.346 0.579 1.260 0.546 

6 1.351 0.555 1.407 0.590 1.152 0.555 1.334 0.588 

7 1.446 0.560 1.450 0.545 1.439 0.563 1.296 0.549 

8 1.448 0.580 1.459 0.585 1.253 0.577 1.456 0.583 
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9 1.452 0.550 1.446 0.560 1.262 0.551 1.440 0.573 

10 1.406 0.555 1.438 0.540 1.238 0.552 1.434 0.539 

11 1.397 0.575 1.374 0.575 1.310 0.574 1.340 0.574 

12 1.201 0.570 1.348 0.555 1.109 0.571 1.338 0.556 

13 1.308 0.545 1.331 0.570 1.267 0.547 1.207 0.569 

14 1.362 0.585 1.342 0.545 1.362 0.585 1.107 0.546 

15 1.359 0.550 1.388 0.575 1.285 0.552 1.372 0.564 

16 1.462 0.530 1.469 0.535 1.449 0.530 1.346 0.536 

17 1.436 0.595 1.496 0.595 1.301 0.595 1.313 0.595 

18 1.499 0.550 1.484 0.575 1.493 0.551 1.470 0.575 

19 1.473 0.580 1.500 0.545 1.415 0.577 1.465 0.542 

20 1.526 0.560 1.502 0.560 1.443 0.566 1.438 0.562 

21 1.415 0.555 1.525 0.550 1.320 0.555 1.513 0.546 

22 1.564 0.560 1.567 0.560 1.508 0.566 1.566 0.560 

23 1.520 0.555 1.497 0.560 1.475 0.555 1.470 0.563 

24 1.466 0.550 1.534 0.545 1.355 0.550 1.407 0.545 

25 1.453 0.555 1.520 0.580 1.413 0.555 1.323 0.576 

26 1.481 0.545 1.470 0.525 1.470 0.546 1.448 0.525 

27 1.281 0.560 1.314 0.555 1.155 0.561 1.282 0.556 

28 1.224 0.535 1.278 0.535 1.123 0.536 1.225 0.536 

29 1.298 0.550 1.223 0.690 1.120 0.550 1.063 0.665 

30 1.293 0.550 1.349 0.690 1.216 0.548 1.190 0.682 
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Table 1: IMU gait extracted features accuracy with Qualisys and Treadmill (0.6 m/s) 

 
Treadmill Speed = 0.6 m/s 

S
u

b
je

ct
s QUALISYS IMU Accuracy (%) 

Right Leg Left Leg Right Leg Left Leg Right Leg Left Leg 
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1 26.

34 
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66 

0.6
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51 
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95.

75 

99.

94 

95.

70 7 36.

98 

61.

64 

0.6

0 

38.

19 

62.

32 

0.6

1 

40.

78 

61.

51 

0.6

6 

38.

30 

62.

19 

0.6

2 

89.

75 

99.

80 

89.

52 

99.

72 

99.

78 

99.

50 8 19.

45 

32.

42 

0.6

0 

19.

48 

32.

47 

0.6

0 

22.

28 

32.

40 

0.6

9 

20.

22 

32.

50 

0.6

2 

85.

48 

99.

92 

85.

38 

96.

23 

99.

91 

96.

32 D=Distance, T=Time, S=Speed 

Table 2: IMU gait extracted features accuracy with Qualisys and Treadmill (1.0 m/s) 

 
Treadmill Speed = 1.0 m/s 

S
u

b
je

ct

s 

QUALISYS IMU Accuracy (%) 

Right Leg Left Leg Right Leg Left Leg Right Leg Left Leg 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 
1 27.

99 

28.

19 

0.9

9 

27.

00 

27.

87 

0.9

7 

26.

72 

28.

24 

0.9

5 

24.

91 

27.

71 

0.9

0 

95.

47 

99.

84 

95.

32 

92.

27 

99.

44 

92.

80 2 34.

16 

32.

81 

1.0

4 

34.

02 

32.

89 

1.0

3 

33.

74 

32.

84 

1.0

3 

33.

59 

32.

83 

1.0

2 

98.

76 

99.

91 

98.

67 

98.

73 

99.

79 

98.

94 3 31.

50 

31.

50 

1.0

0 

31.

34 

31.

34 

1.0

0 

31.

95 

31.

48 

1.0

1 

31.

89 

31.

24 

1.0

2 

98.

59 

99.

93 

98.

52 

98.

28 

99.

67 

97.

94 4 37.

59 

37.

59 

1.0

0 

37.

09 

37.

09 

1.0

0 

36.

06 

37.

52 

0.9

6 

36.

09 

37.

18 

0.9

7 

95.

95 

99.

82 

96.

12 

97.

31 

99.

75 

97.

06 5 19.

30 

19.

30 

1.0

0 

19.

30 

19.

30 

1.0

0 

18.

77 

19.

34 

0.9

7 

18.

73 

19.

30 

0.9

7 

97.

23 

99.

80 

97.

04 

97.

02 

99.

99 

97.

03 6 44.

51 

44.

51 

1.0

0 

44.

83 

44.

83 

1.0

0 

45.

00 

44.

49 

1.0

1 

44.

73 

44.

82 

1.0

0 

98.

91 

99.

95 

98.

85 

99.

77 

99.

99 

99.

79 7 39.

86 

39.

86 

1.0

0 

39.

77 

39.

77 

1.0

0 

39.

93 

39.

73 

1.0

0 

39.

55 

39.

78 

0.9

9 

99.

82 

99.

68 

99.

50 

99.

45 

99.

97 

99.

42 8 23.

90 

23.

90 

1.0

0 

23.

25 

23.

25 

1.0

0 

23.

15 

23.

89 

0.9

7 

22.

58 

23.

31 

0.9

7 

96.

85 

99.

97 

96.

88 

97.

11 

99.

74 

96.

86 D=Distance, T=Time, S=Speed 

Table 3: IMU gait extracted features accuracy with Qualisys and Treadmill (1.4 m/s) 

 
Treadmill Speed = 1.4 m/s 

S
u

b
je

ct
s QUALISYS IMU Accuracy (%) 

Right Leg Left Leg Right Leg Left Leg Right Leg Left Leg 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 
1 33.

40 

24.

13 

1.3

8 

32.

80 

24.

05 

1.3

6 

32.

94 

23.

91 

1.3

8 

32.

06 

24.

07 

1.3

3 

98.

62 

99.

08 

99.

54 

97.

73 

99.

95 

97.

69 2 35.

02 

25.

01 

1.4

0 

35.

02 

25.

01 

1.4

0 

33.

94 

25.

07 

1.3

5 

34.

11 

25.

04 

1.3

6 

96.

92 

99.

79 

96.

72 

97.

40 

99.

91 

97.

31 3 41.

10 

29.

35 

1.4

0 

41.

24 

29.

46 

1.4

0 

40.

73 

29.

39 

1.3

9 

41.

22 

29.

40 

1.4

0 

99.

11 

99.

87 

98.

98 

99.

94 

99.

78 

99.

84 4 37.

17 

26.

55 

1.4

0 

37.

04 

26.

46 

1.4

0 

40.

34 

26.

60 

1.5

2 

39.

57 

26.

47 

1.5

0 

91.

48 

99.

82 

91.

67 

93.

17 

99.

97 

93.

20 5 25.

21 

18.

01 

1.4

0 

25.

26 

18.

04 

1.4

0 

24.

67 

18.

00 

1.3

7 

24.

18 

18.

08 

1.3

4 

97.

85 

99.

96 

97.

89 

95.

71 

99.

79 

95.

51 6 33.

91 

24.

22 

1.4

0 

34.

01 

24.

29 

1.4

0 

33.

48 

24.

20 

1.3

8 

33.

07 

24.

31 

1.3

6 

98.

74 

99.

90 

98.

84 

97.

22 

99.

95 

97.

17 7 44.

97 

32.

12 

1.4

0 

44.

85 

32.

03 

1.4

0 

44.

44 

32.

06 

1.3

9 

43.

54 

32.

16 

1.3

5 

98.

80 

99.

79 

99.

02 

97.

08 

99.

60 

96.

69 8 27.

27 

19.

48 

1.4

0 

27.

22 

19.

44 

1.4

0 

26.

41 

19.

49 

1.3

6 

26.

18 

19.

46 

1.3

5 

96.

84 

99.

96 

96.

80 

96.

21 

99.

89 

96.

10 D=Distance, T=Time, S=Speed 

Table 4: IMU gait extracted features accuracy with Qualisys and Treadmill (1.8 m/s) 

 
Treadmill Speed = 1.8 m/s 
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S
u

b
je

ct
s QUALISYS IMU Accuracy (%) 

Right Leg Left Leg Right Leg Left Leg Right Leg Left Leg 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(s

) 

S(

m/s

) 
1 37.

66 

21.

02 

1.7

9 

37.

17 

20.

90 

1.7

8 

36.

40 

21.

13 

1.7

2 

37.

52 

21.

23 

1.7

7 

96.

65 

99.

47 

96.

14 

99.

06 

98.

44 

99.

39 2 29.

99 

21.

08 

1.4

2 

32.

02 

21.

11 

1.5

2 

29.

09 

21.

14 

1.3

8 

31.

29 

21.

15 

1.4

8 

97.

01 

99.

74 

96.

76 

97.

72 

99.

85 

97.

57 3 45.

93 

25.

52 

1.8

0 

46.

24 

25.

69 

1.8

0 

45.

44 

25.

50 

1.7

8 

45.

82 

25.

73 

1.7

8 

98.

94 

99.

94 

99.

00 

99.

08 

99.

84 

98.

92 4 41.

09 

22.

83 

1.8

0 

41.

54 

23.

08 

1.8

0 

43.

07 

22.

87 

1.8

8 

42.

20 

23.

06 

1.8

3 

95.

18 

99.

84 

95.

35 

98.

43 

99.

92 

98.

35 5 30.

29 

16.

83 

1.8

0 

30.

19 

16.

77 

1.8

0 

29.

43 

16.

87 

1.7

4 

28.

64 

16.

81 

1.7

0 

97.

15 

99.

77 

96.

93 

94.

85 

99.

77 

94.

64 6 36.

43 

20.

24 

1.8

0 

36.

85 

20.

47 

1.8

0 

34.

88 

20.

17 

1.7

3 

35.

74 

20.

44 

1.7

5 

95.

73 

99.

65 

96.

06 

96.

99 

99.

86 

97.

12 7 48.

12 

26.

74 

1.8

0 

47.

14 

26.

19 

1.8

0 

46.

67 

26.

71 

1.7

5 

46.

32 

26.

18 

1.7

7 

96.

98 

99.

90 

97.

08 

98.

26 

99.

98 

98.

28 8 32.

67 

18.

15 

1.8

0 

32.

90 

18.

28 

1.8

0 

31.

49 

18.

18 

1.7

3 

31.

60 

18.

28 

1.7

3 

96.

38 

99.

84 

96.

23 

96.

04 

100

.00 

96.

04 D=Distance, T=Time, S=Speed 

Table 5: IMU gait extracted features accuracy with Qualisys and Treadmill (2.0 m/s) 

 
Treadmill Speed = 2.0 m/s 

S
u

b
je

ct
s QUALISYS IMU Accuracy (%) 

Right Leg Left Leg Right Leg Left Leg Right Leg Left Leg 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 
1 40.

62 

20.

57 

1.9

7 

39.

69 

20.

53 

1.9

3 

40.

08 

20.

68 

1.9

4 

37.

74 

20.

66 

1.8

3 

98.

69 

99.

48 

98.

18 

95.

07 

99.

38 

94.

49 2 42.

86 

20.

74 

2.0

7 

42.

18 

20.

52 

2.0

6 

41.

31 

20.

84 

1.9

8 

40.

33 

20.

53 

1.9

6 

96.

38 

99.

49 

95.

89 

95.

61 

99.

97 

95.

57 3 46.

85 

23.

42 

2.0

0 

47.

22 

23.

61 

2.0

0 

46.

44 

23.

44 

1.9

8 

46.

77 

23.

59 

1.9

8 

99.

12 

99.

95 

99.

07 

99.

06 

99.

91 

99.

15 4 43.

49 

21.

74 

2.0

0 

44.

09 

22.

04 

2.0

0 

46.

53 

21.

66 

2.1

5 

47.

31 

22.

08 

2.1

4 

93.

01 

99.

63 

92.

61 

92.

70 

99.

85 

92.

86 5 33.

47 

16.

73 

2.0

0 

34.

09 

17.

05 

2.0

0 

33.

03 

16.

73 

1.9

7 

33.

14 

17.

00 

1.9

5 

98.

68 

99.

97 

98.

71 

97.

21 

99.

72 

97.

48 6 38.

19 

19.

09 

2.0

0 

38.

20 

19.

10 

2.0

0 

36.

62 

19.

06 

1.9

2 

36.

60 

19.

11 

1.9

1 

95.

89 

99.

82 

96.

06 

95.

81 

99.

93 

95.

74 7 50.

52 

25.

26 

2.0

0 

52.

18 

26.

09 

2.0

0 

48.

75 

25.

35 

1.9

2 

50.

71 

26.

03 

1.9

5 

96.

50 

99.

65 

96.

16 

97.

19 

99.

78 

97.

41 8 38.

73 

19.

36 

2.0

0 

38.

65 

19.

32 

2.0

0 

37.

69 

19.

46 

1.9

4 

37.

24 

19.

35 

1.9

3 

97.

31 

99.

53 

96.

86 

96.

36 

99.

89 

96.

26 D=Distance, T=Time, S=Speed 

Table 6: IMU gait extracted features accuracy with Qualisys and Treadmill (2.2 m/s) 

 
Treadmill Speed = 2.2 m/s 

S
u

b
je

ct
s QUALISYS IMU Accuracy (%) 

Right Leg Left Leg Right Leg Left Leg Right Leg Left Leg 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 
1 43.

48 

19.

62 

2.2

2 

43.

26 

19.

60 

2.2

1 

41.

88 

19.

99 

2.0

9 

43.

27 

20.

02 

2.1

6 

96.

32 

98.

12 

94.

55 

99.

98 

97.

87 

97.

94 2 44.

60 

19.

55 

2.2

8 

44.

37 

19.

42 

2.2

8 

43.

49 

19.

64 

2.2

1 

42.

70 

19.

44 

2.2

0 

97.

50 

99.

52 

97.

03 

96.

24 

99.

91 

96.

16 3 48.

63 

22.

11 

2.2

0 

48.

25 

21.

93 

2.2

0 

48.

10 

22.

13 

2.1

7 

47.

81 

21.

93 

2.1

8 

98.

91 

99.

88 

98.

79 

99.

10 

99.

98 

99.

11 4 48.

22 

21.

92 

2.2

0 

48.

64 

22.

11 

2.2

0 

49.

84 

21.

89 

2.2

8 

49.

99 

22.

11 

2.2

6 

96.

65 

99.

86 

96.

50 

97.

22 

99.

99 

97.

21 5 36.

74 

16.

70 

2.2

0 

37.

32 

16.

97 

2.2

0 

35.

35 

16.

67 

2.1

2 

36.

28 

16.

96 

2.1

4 

96.

22 

99.

81 

96.

40 

97.

21 

99.

97 

97.

24 6 41.

82 

19.

01 

2.2

0 

41.

87 

19.

03 

2.2

0 

39.

90 

18.

98 

2.1

0 

40.

47 

19.

06 

2.1

2 

95.

41 

99.

82 

95.

58 

96.

66 

99.

82 

96.

48 7 56.

00 

25.

46 

2.2

0 

54.

52 

24.

78 

2.2

0 

54.

65 

25.

45 

2.1

5 

53.

92 

24.

81 

2.1

7 

97.

58 

99.

96 

97.

62 

98.

91 

99.

86 

98.

77 8 38.

92 

17.

69 

2.2

0 

38.

76 

17.

62 

2.2

0 

38.

34 

17.

66 

2.1

7 

37.

51 

17.

60 

2.1

3 

98.

52 

99.

85 

98.

67 

96.

76 

99.

86 

96.

89 D=Distance, T=Time, S=Speed 

Table 7: IMU gait extracted features accuracy with Qualisys and Treadmill (2.5 m/s) 

 
Treadmill Speed = 2.5 m/s 

S
u

b
j

ec
ts

 QUALISYS IMU Accuracy (%) 

Right Leg Left Leg Right Leg Left Leg Right Leg Left Leg 
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D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(

s) 

S(

m/s

) 

D(

m) 

T(s

) 

S(

m/s

) 
1 45.

96 

18.

24 

2.5

2 

45.

19 

18.

31 

2.4

7 

46.

08 

18.

05 

2.5

5 

45.

08 

18.

61 

2.4

2 

99.

72 

98.

95 

98.

66 

99.

75 

98.

39 

98.

17 2 43.

26 

18.

39 

2.3

5 

43.

16 

18.

38 

2.3

5 

41.

33 

18.

33 

2.2

5 

41.

62 

18.

37 

2.2

7 

95.

55 

99.

67 

95.

86 

96.

45 

99.

93 

96.

52 3 50.

19 

20.

08 

2.5

0 

49.

56 

19.

83 

2.5

0 

50.

80 

20.

14 

2.5

2 

49.

91 

20.

96 

2.3

8 

98.

77 

99.

68 

99.

09 

99.

31 

94.

29 

95.

26 4 50.

94 

20.

37 

2.5

0 

51.

04 

20.

41 

2.5

0 

53.

27 

20.

36 

2.6

2 

51.

84 

20.

37 

2.5

5 

95.

41 

99.

92 

95.

33 

98.

44 

99.

76 

98.

20 5 40.

04 

16.

01 

2.5

0 

41.

16 

16.

47 

2.5

0 

38.

88 

16.

04 

2.4

2 

40.

31 

16.

46 

2.4

5 

97.

11 

99.

83 

96.

95 

97.

93 

99.

96 

97.

96 6 46.

39 

18.

55 

2.5

0 

46.

37 

18.

55 

2.5

0 

44.

17 

18.

56 

2.3

8 

44.

87 

18.

55 

2.4

2 

95.

23 

99.

97 

95.

20 

96.

76 

100

.00 

96.

76 7 56.

97 

22.

79 

2.5

0 

57.

74 

23.

09 

2.5

0 

55.

29 

22.

86 

2.4

2 

55.

82 

23.

07 

2.4

2 

97.

05 

99.

68 

96.

74 

96.

68 

99.

87 

96.

80 8 41.

82 

16.

73 

2.5
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Figure 7: Bland-Altman plots for validity of distance and time measured for right and left legs with IMU and Qualisys from subject 1 to 4 
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Figure 8: Bland-Altman plots for validity of distance and time measured for right and left legs with IMU and Qualisys from subject 5 to 8
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