740 research outputs found

    Modeling and Inverse Controller Design for an Unmanned Aerial Vehicle Based on the Self-Organizing Map

    Get PDF
    The next generation of aircraft will have dynamics that vary considerably over the operating regime. A single controller will have difficulty to meet the design specifications. In this paper, a SOM-based local linear modeling scheme of an unmanned aerial vehicle (UAV) is developed to design a set of inverse controllers. The SOM selects the operating regime depending only on the embedded output space information and avoids normalization of the input data. Each local linear model is associated with a linear controller, which is easy to design. Switching of the controllers is done synchronously with the active local linear model that tracks the different operating conditions. The proposed multiple modeling and control strategy has been successfully tested in a simulator that models the LoFLYTE UAV

    Development of Fuzzy Neural Networks: Current Framework and Trends

    Get PDF

    Adaptive structure radial basis function network model for processes with operating region migration

    Get PDF
    An adaptive structure radial basis function (RBF) network model is proposed in this paper to model nonlinear processes with operating region migration. The recursive orthogonal least squares algorithm is adopted to select new centers on-line, as well as to train the network weights. Based on the R matrix in the orthogonal decomposition, an initial center bank is formed and updated in each sample period. A new learning strategy is proposed to gain information from the new data for network structure adaptation. A center grouping algorithm is also developed to divide the centers into active and non-active groups, so that a structure with a smaller size is maintained in the final network model. The proposed RBF model is evaluated and compared to the two fixed-structure RBF networks by modeling a nonlinear time-varying numerical example. The results demonstrate that the proposed adaptive structure model is capable of adapting its structure to fit the operating region of the process effectively with a more compact structure and it significantly outperforms the two fixed structure RBF models

    Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems

    Get PDF
    This paper presents a novel application of a hybrid learning approach to the optimisation of membership and non-membership functions of a newly developed interval type-2 intuitionistic fuzzy logic system (IT2 IFLS) of a Takagi-Sugeno-Kang (TSK) fuzzy inference system with neural network learning capability. The hybrid algorithms consisting of decou- pled extended Kalman filter (DEKF) and gradient descent (GD) are used to tune the parameters of the IT2 IFLS for the first time. The DEKF is used to tune the consequent parameters in the forward pass while the GD method is used to tune the antecedents parts during the backward pass of the hybrid learning. The hybrid algorithm is described and evaluated, prediction and identification results together with the runtime are compared with similar existing studies in the literature. Performance comparison is made between the proposed hybrid learning model of IT2 IFLS, a TSK-type-1 intuitionistic fuzzy logic system (IFLS-TSK) and a TSK-type interval type-2 fuzzy logic system (IT2 FLS-TSK) on two instances of the datasets under investigation. The empirical comparison is made on the designed systems using three artificially generated datasets and three real world datasets. Analysis of results reveal that IT2 IFLS outperforms its type-1 variants, IT2 FLS and most of the existing models in the literature. Moreover, the minimal run time of the proposed hybrid learning model for IT2 IFLS also puts this model forward as a good candidate for application in real time systems

    A Review of Kernel Methods for Feature Extraction in Nonlinear Process Monitoring

    Get PDF
    Kernel methods are a class of learning machines for the fast recognition of nonlinear patterns in any data set. In this paper, the applications of kernel methods for feature extraction in industrial process monitoring are systematically reviewed. First, we describe the reasons for using kernel methods and contextualize them among other machine learning tools. Second, by reviewing a total of 230 papers, this work has identified 12 major issues surrounding the use of kernel methods for nonlinear feature extraction. Each issue was discussed as to why they are important and how they were addressed through the years by many researchers. We also present a breakdown of the commonly used kernel functions, parameter selection routes, and case studies. Lastly, this review provides an outlook into the future of kernel-based process monitoring, which can hopefully instigate more advanced yet practical solutions in the process industries

    Design and implementation of a soft computing-based controller for a complex mechanical system

    Get PDF
    Soft-Computing basierende Regler beinhalten Algorithmen, die im Bereich des Maschinellen Lernens einzuordnen sind. Diese Regler sind in der Lage eine geeignete Steuerungsstrategie durch direkte Interaktion mit einer dynamischen Regelstrecke zu entwerfen. Sowohl klassische als auch moderne Reglerentwurfsmethoden hangen von der Genauigkeit des verwendeten dynamischen Systemmodells ab, was insbesondere bei steigender Komplexitat des Systems und auftretenden Modellunsicherheiten nicht mehr uneingeschrankt gewahrleistet werden kann. Die Ziele von Soft- Computing basierenden Reglern sind die Verbesserung der Gute des Regelverhaltens und eine geeignete Anpassung der Regler ohne eine mathematische Modellbildung auf Grundlage von physikalischen Gesetzen. Im Rahmen dieser Arbeit werden funf Algorithmen zur Modellbildung und Regelung dynamischer Systeme untersucht, welche auf dem Mehrschichten-Perzeptron-Netzwerk (Multi-Layer Perceptron network, MLP), auf der Methode der Support Vector Machine (SVM), der Gau-Prozesse, der radialen Basisfunktionen (Radial Basis Functions, RBF) sowie der Fuzzy-Inferenz-Systeme basieren. Im Anschluss an die Darstellung der zugrunde liegenden mathematischen Zusammenhange dieser Methoden sowie deren Hauptanwendungsfelder im Bereich der Modellbildung und Regelung dynamischer Systeme wird eine systematische Evaluierung der funf Methoden diskutiert. Anhand der Verwendung quantitativer Gutekennziern werden diese Methoden fur die Verwendung in der Modellbildung und Regelung dynamischer Systeme vergleichbar gegenubergestellt. Basierend auf den Ergebnissen der Evaluierung wird der SVM-basierte Algorithmus als Kernalgorithmus des Soft-Computing basierenden Reglers verwendet. Der vorgestellte Regler besteht aus zwei Hauptteilen, wobei der erste Teil aus einer Modellfunktion der dynamischen Regelstrecke und einem SVM-basierten Beobachter besteht, und der zweite Teil basierend auf dem Systemmodell eine geeignete Regelstrategie generiert. Die Verikation des SVM-basierten Regleralgorithmus erfolgt anhand eines FEM-Modells eines dynamischen elastischen Balken bzw. einseitig eingespannten elastischen Balkens. Dieses Modell kann z. B. als Ersatzmodell fur das mechanische Verhalten eines exiblen Roboterarms oder einer Flugzeugtrag ache verwendet werden. Der Hauptteil der Modellfunktion besteht aus einem automatischen Systemidentikationsalgorithmus, der auch die Integration eines systematischen Modellbildungsansatzes fur dynamische Systeme ermoglicht.Die Ergebnisse des SVM-basierten Beobachter zeigen ahnliches Verhalten zum Kalman- Bucy Beobachter. Auch die Sensitivitatsanalyse der Parameter zeigt eine bessere Gute der SVM-basierten Beobachter im Vergleich mit den Kalman-Bucy Beobachtern. Im Anschluss wird der SVM-basierte Regler zur Schwingungsregelung des Kragtragers verwendet. Hierbei werden vergleichbare Ergebnisse zum LQR-Regler erzielt. Eine experimentelle Validierung des SVM basierten Reglers erfolgt an Versuchsst anden eines elastischen Biegebalkens sowie eines invertierten Biegebalkens. Die Zustandsbeobachtung fuhrt zu vergleichbaren Ergebnissen verglichen mit einem Kalman-Bucy Beobachter. Auch die Modellbildung des elastischen Balkens fuhrt zu guten Ubereinstimmungen. Die Regelgute des Soft-Computing basierenden Reglers wurde am Versuchsstand des invertierten Biegebalkens experimentell erprobt. Es wird deutlich, dass Ergebnisse im Rahmen der erforderlichen Vorgaben erzielt werden konnen.The focus of this thesis is to obtain a soft computing-based controller for complex mechanical system. soft computing based controllers are based on machine learning algorithm that able to develop suitable control strategies by direct interaction with targeted dynamic systems. Classical and modern control design methods depend on the accuracy of the system dynamic model which cannot be achieved due to the dynamic system complexity and modeling uncertainties. A soft computing-based controller aims to improve the performance of the close loop system and to give the controller adaptation ability as well as to reduce the need for mathematical modeling based on physical laws. In this work ve dierent softcomputing algorithms used in the eld of modeling and controlling dynamic systems are investigated.These algorithms are Multi-Layer Perceptron(MLP) network, Support Vector Machine (SVM),Gaussian process, Radial Basis Function (RBF), and Fuzzy Inference System (FIS). The basic mathematical description of each algorithm is given. Additionally, the most recent applications in modeling and controlling of dynamic system are summarized. A systematic evaluation of the ve algorithms is proposed. The goal of the evaluation is to provide quantitative measure of the performance of soft computing algorithms when used in modeling and controlling a dynamic system. Based on the evaluation, the SVM algorithm is selected as the core learning algorithm for the soft computing based controller. The controller has two main units. The rst unit has two functions of modeling dynamic system and obtaining a SVM-based observer. The second unit is in charge of generating suitable control strategy based on the dynamic model obtained. The verication of the controller using SVM algorithm is done using an elastic cantilever beam modeled using Finite Element Method (FEM). An elastic cantilever beam can be considered as a representation of exible single-link manipulator or aircraft wing. In the core of the modeling unit, an automatic system identication algorithm which allows a systematic modeling approach of dynamic systems is implemented. The results show that the system dynamic model using SVM algorithm is accurate with respect to the FEM model. As for the SVM-based observer the results show that it has good estimation in comparison with to dierent Kalman-Bucy observers. The sensitivity to parameters variations analysis shows that the SVM-based observer has better performance than Kalman-Bucy observer. The SVM based controller is used to control the vibration of the cantilever beam; the results show that the model reference controller using SVM has a similar performance to LQR controller. The validation of the controller using SVM algorithm is carried out using the elastic cantilever beam test rig and the inverted cantilever beam test rig. The states estimation using SVM-based observer of the elastic cantilever beam test rig is successful and accurate compared to a Kalman-Bucy observer. Modeling of the elastic cantilever beam using the SVM algorithm shows good accuracy. The performance of controller is tested on the inverted cantilever beam test rig. The results show that required performance objective can be realized using this control strategy

    Multilayer perceptron network optimization for chaotic time series modeling

    Get PDF
    Chaotic time series are widely present in practice, but due to their characteristics—such as internal randomness, nonlinearity, and long-term unpredictability—it is difficult to achieve high-precision intermediate or long-term predictions. Multi-layer perceptron (MLP) networks are an effective tool for chaotic time series modeling. Focusing on chaotic time series modeling, this paper presents a generalized degree of freedom approximation method of MLP. We then obtain its Akachi information criterion, which is designed as the loss function for training, hence developing an overall framework for chaotic time series analysis, including phase space reconstruction, model training, and model selection. To verify the effectiveness of the proposed method, it is applied to two artificial chaotic time series and two real-world chaotic time series. The numerical results show that the proposed optimized method is effective to obtain the best model from a group of candidates. Moreover, the optimized models perform very well in multi-step prediction tasks.This research was funded in part by the NSFC grant numbers 61972174 and 62272192, the Science-Technology Development Plan Project of Jilin Province grant number 20210201080GX, the Jilin Province Development and Reform Commission grant number 2021C044-1, the Guangdong Universities’ Innovation Team grant number 2021KCXTD015, and Key Disciplines Projects grant number 2021ZDJS138
    • …
    corecore