252 research outputs found

    Investigation potential islanding of dispersed PV systems

    Get PDF
    Issued as Report, Monthly progress reports [nos. 1-3], Simulation studies, and Final report, Project no. E-21-62

    Feature analysis of functional MRI data for mapping epileptic networks

    Get PDF
    Issued as final reportUniversity of Pennsylvani

    Real-Time Fault Management for Large-Scale Systems

    Get PDF
    Aprion knowledge of failure modes of a system is an indispensable information for design of robust decentralized hierarchical control schemes. In particular inclusion of system faults as part of the process under control provides greater flexibility for self diagnosis and maintenance of real-time systems. By assigning discrete states to the process under control, an artificial consciousness can be created within the controller which allows the controller to exercise selective actions for each given discrete state. This concept has been implemented to control the utility systems of the Space Station Laboratory Simulator

    Windings fault detection and prognosis in electro-mechanical flight control actuators operating in active-active configuration

    Get PDF
    One of the most significant research trends in the last decades of the aeronautic industry is the effort to move towards the design and the production of “more electric aircraft”. Within this framework, the application of the electrical technology to flight control systems has seen a progressive, although slow, increase: starting with the introduction of fly-by-wire and proceeding with the partial replacement of the traditional hydraulic/electro-hydraulic actuators with purely electro-mechanical ones. This evolution allowed to obtain more flexible solutions, reduced installation issues and enhanced aircraft control capability.Electro-Mechanical Actuators (EMAs) are however far from being a mature technology and still suffer from several safety issues, which can be partially limited by increasing the complexity of their design and hence their production costs. The development of a robust Prognostics and Health Management (PHM) system could provide a way to prevent the occurrence of a critical failure without resorting to complex device design. This paper deals with the first part of the study of a comprehensive PHM system for EMAs employed as primary flight control actuators; the peculiarities of the application are presented and discussed, while a novel approach, based on short pre-flight/post-flight health monitoring tests, is proposed. Turn-to-turn short in the electric motor windings is identified as the most common electrical degradation and a particle filtering framework for anomaly detection and prognosis featuring a self-tuning non-linear model is proposed. Features, anomaly detection and a prognostic algorithm are hence evaluated through state-of-the art performance metrics and their results discussed

    Prognostics

    Get PDF
    Knowledge discovery, statistical learning, and more specifically an understanding of the system evolution in time when it undergoes undesirable fault conditions, are critical for an adequate implementation of successful prognostic systems. Prognosis may be understood as the generation of long-term predictions describing the evolution in time of a particular signal of interest or fault indicator, with the purpose of estimating the remaining useful life (RUL) of a failing component/subsystem. Predictions are made using a thorough understanding of the underlying processes and factor in the anticipated future usage

    Controlling Tracking Performance for System Health Management - A Markov Decision Process Formulation

    Get PDF
    After an incipient fault mode has been detected a logical question to ask is: How long can the system continue to be operated before the incipient fault mode degrades to a failure condition? In many cases answering this question is complicated by the fact that further fault growth will depend on how the system is intended to be used in the future. The problem is then complicated even further when we consider that the future operation of a system may itself be conditioned on estimates of a system’s current health and on predictions of future fault evolution. This paper introduces a notationally convenient formulation of this problem as a Markov decision process. Prognostics-based fault management policies are then shown to be identified using standard Markov decision process optimization techniques. A case study example is analyzed, in which a discrete random walk is used to represent time-varying system loading demands. A comparison of fault management policies computed with and without future uncertainty is used to illustrate the limiting effects of model uncertainty on prognostics-informed fault management policies

    Prognostics and Health Management of an Automated Machining Process

    Get PDF
    Machine failure modes are presenting a major burden to the operator, the plant, and the enterprise causing significant downtime, labor cost, and reduced revenue. New technologies are emerging over the past years to monitor the machine’s performance, detect and isolate incipient failures or faults, and take appropriate actions to mitigate such detrimental events. This paper addresses the development and application of novel Prognostics and Health Management (PHM) technologies to a prototype machining process (a screw-tightening machine). The enabling technologies are built upon a series of tasks starting with failure analysis, testing, and data processing aimed to extract useful features or condition indicators from raw data, a symbolic regression modeling framework, and a Bayesian estimation method called particle filtering to predict the feature state estimate accurately. The detection scheme declares the fault of a machine critical component with user specified accuracy or confidence and given false alarm rate while the prediction algorithm estimates accurately the remaining useful life of the failing component. Simulation results support the efficacy of the approach and match well the experimental data

    A Review of Kernel Methods for Feature Extraction in Nonlinear Process Monitoring

    Get PDF
    Kernel methods are a class of learning machines for the fast recognition of nonlinear patterns in any data set. In this paper, the applications of kernel methods for feature extraction in industrial process monitoring are systematically reviewed. First, we describe the reasons for using kernel methods and contextualize them among other machine learning tools. Second, by reviewing a total of 230 papers, this work has identified 12 major issues surrounding the use of kernel methods for nonlinear feature extraction. Each issue was discussed as to why they are important and how they were addressed through the years by many researchers. We also present a breakdown of the commonly used kernel functions, parameter selection routes, and case studies. Lastly, this review provides an outlook into the future of kernel-based process monitoring, which can hopefully instigate more advanced yet practical solutions in the process industries

    Windings Fault Detection and Prognosis in Electro-Mechanical Flight Control Actuators Operating in Active-Active Configuration

    Get PDF
    One of the most significant research trends in the last decades of the aeronautic industry is the effort to move towards the design and the production of “more electric aircraft”. Within this framework, the application of the electrical technology to flight control systems has seen a progressive, although slow, increase: starting with the introduction of fly-by-wire and proceeding with the partial replacement of the traditional hydraulic/electro-hydraulic actuators with purely electro-mechanical ones. This evolution allowed to obtain more flexible solutions, reduced installation issues and enhanced aircraft control capability. Electro-Mechanical Actuators (EMAs) are however far from being a mature technology and still suffer from several safety issues, which can be partially limited by increasing the complexity of their design and hence their production costs. The development of a robust Prognostics and Health Management (PHM) system could provide a way to prevent the occurrence of a critical failure without resorting to complex device design. This paper deals with the first part of the study of a comprehensive PHM system for EMAs employed as primary flight control actuators; the peculiarities of the application are presented and discussed, while a novel approach, based on short pre-flight/post-flight health monitoring tests, is proposed. Turn-to-turn short in the electric motor windings is identified as the most common electrical degradation and a particle filtering framework for anomaly detection and prognosis featuring a self-tuning non-linear model is proposed. Features, anomaly detection and a prognostic algorithm are hence evaluated through state-of-the art performance metrics and their results discussed

    SILHIL Replication of Electric Aircraft Powertrain Dynamics and Inner-Loop Control for V&V of System Health Management Routines

    Get PDF
    Software-in-the-loop and Hardware-in-the-loop testing of failure prognostics and decision making tools for aircraft systems will facilitate more comprehensive and cost-effective testing than what is practical to conduct with flight tests. A framework is described for the offline recreation of dynamic loads on simulated or physical aircraft powertrain components based on a real-time simulation of airframe dynamics running on a flight simulator, an inner-loop flight control policy executed by either an autopilot routine or a human pilot, and a supervisory fault management control policy. The creation of an offline framework for verifying and validating supervisory failure prognostics and decision making routines is described for the example of battery charge depletion failure scenarios onboard a prototype electric unmanned aerial vehicle
    • …
    corecore