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1. Introduction     

Fuzzy systems have been demonstrated their ability to solve different kinds of problems in 
classification, modeling control and in a considerable number of industry applications. It has 
been shown as a powerful methodology for dealing with imprecision and nonlinearity 
efficiently (Wang, 1994). However, one of the shortcomings of fuzzy logic is the lack of 
learning and adaptation capabilities. As we know, neural network (NN) is one of the 
important technologies towards realizing artificial intelligence and machine learning. Many 
types of neural networks with different learning algorithms have been designed and 
developed (Deng et al., 2002; Levin & Narendra, 1996; Narendra &Parathasarathy, 1998). 
Recently, there is an increasing interest to hybridize the approximate reasoning method of 
fuzzy systems with the learning capabilities of neural networks and evolutionary 
algorithms. Fuzzy neural network (FNN) system is one of the most successful and visible 
directions of that effort. 
FNNs as hybrid systems have been proven to be able to reap the benefits of fuzzy logic and 
neural networks. In these hybrid systems, standard neural networks are designed to 
approximate a fuzzy inference system through the structure of neural networks while the 
parameters of the fuzzy system are modified by means of learning algorithms used in neural 
networks. One purpose of developing hybrid fuzzy neural networks is to create self-
adaptive fuzzy rules for online identification of a singleton or Takagi-Sugeno-kang (TSK) 
type fuzzy model (Takagi & Sugeno, 1985) of a nonlinear time-varying complex system. The 
twin issues associated with a fuzzy system are 1) parameter estimation which involves 
determining parameters of premises and consequences and 2) structure identification which 
involves partitioning the input space and determining the number of fuzzy rules for a 
specific performance.  FNN systems have been found to be very effective and of widespread 
use in several fields. 
 In recent years, the idea of self-organization has been introduced in hybrid systems to 
create adaptive models. Some adaptive approaches also have been introduced in FNNs 
whereby not only the weights but also the structure can be self-adaptive during the learning 
process ( Er & Wu, 2002; Huang et al., 2004; Jang, 1993; Juang &Lin, 1998; Leng et al., 2004; 
Lin &Lee, 1996; Qiao & Wang, 2008).  
The technology of FNNs combines the profound learning capability of neural networks with 
the mechanism of explicit and easily interpretable knowledge presentation provided by 
fuzzy logic. In a word, FNN is able to represent meaningful real-world concepts in 
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comprehensive knowledge bases. The typical approach of designing an FNN system is to 
build standard neural networks first, and then incorporate fuzzy logic in the structure of 
neural networks. The key idea is as follows: Assuming that some particular membership 
functions have been defined, we begin with a fixed number of rules by resorting to either 
trial-and-error methods or expert knowledge. Next, the parameters are modified by learning 
algorithm such as backpropagation (BP) algorithm (Siddique & Tokhi, 2001). The BP is a 
gradient descent search algorithm. It is based on minimization of the total mean squared 
error between the actual output and the desired output. This error is used to guide the 
search of the BP algorithm in the weight space. The BP is widely used in many applications 
in that it is not necessary to determine the exact structure and parameters of neural 
networks in advance. However, the problem of the BP algorithm is that it is often trapped in 
local minima and the learning speed is very slow in searching for global minimum of the 
search space. The speed and robustness of the BP algorithm are sensitive to several 
parameters of the algorithm and the best parameters vary from problems to problems. 
Therefore, many adjustment methods have been developed, notably evolutionary 
algorithms such as genetic algorithms (GAs) or particle swarm optimization (PSO). By 
working with a population of solutions, the GA can seek many local minima, and thus 
increase the likelihood of finding global minimum. This advantage of GA can be applied to 
neural networks to optimize the topology and parameters of weights. The key point is to 
employ an evolutionary learning process to automate the designing of the knowledge base, 
which can be considered as an optimization or search problem. The GA is used to optimize 
the parameters of neural networks (Seng et al., 1999; Siddique & Tokhi, 2001; Zhou & Er, 
2008) or identify the optimal structure of neural networks (Chen et al., 1999; Tang et al., 
1995,). Moreover, the adaptation of neural network parameters can be performed by 
different methods such as orthogonal least square (OLS) (Chen et al.,1991), recursive least 
square (RLS) (Leng et al., 2004), linear least square (LLS) (Er & Wu, 2002), extended Kalman 
filter (EKF)  (Kadirkamanathan & Niranjan, 1993; Er et al., 2010) and so on.  
The objective of this chapter is to develop FNNs by hybrid learning techniques so that these 
systems can be used for online identification, model and control nonlinear and time-varying 
complex systems. In this chapter, we propose two kinds of self-organizing FNN that attempt 
to combine fuzzy logic with neural network and apply these learning algorithms to solve 
several well-known benchmark problems such as static function and linear and nonlinear 
function approximation, Mackey-Glass time-series prediction and real-world benchmark 
regression prediction and so on.  
The chapter is organized as follows. The general frame of self-organizing FNN is described 
in Section 2. The first learning algorithm combined FNN with EKF is presented in Section 3. 
It is simple and effective and is able to generate a FNN with high accuracy and compact 
structure. Furthermore, a novel neuron pruning algorithm based on optimal brain surgeon 
(OBS) for self-organizing FNN is described in Section 4 in detail. Simulation studies on 
several well-known benchmark problems and comparisons with other learning algorithms 
have been conducted in each section. The summary of FNN associated with conclusions and 
future work are discussed in Section 5.  

2. General frame of self-organizing FNNs 

The self-organizing fuzzy neural network system primarily implements TSK or TS type 
(Sugeno & Kang, 1988) fuzzy model. The general architecture is depicted in Fig. 1. This five-
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layer self-organizing FNN implements a TSK type fuzzy system. Without loss of generality, 
we consider a multi-input-single-output (MISO) fuzzy model with input vector 
X=(x1,x2,…,xr) and output variable y. 
 

 

Fig. 1. General architecture of FNNs. 

Layer 1 is an input layer and transmits values of input linguistic variable ( 1,2, )ix i r= A  to 
layer 2 directly, where r is the number of input variables. Each input variable ix  has l 
membership functions (MFs) ( 1,2, , 1,2, , )ij i r j lμ = =A A  as shown in layer 2. The MFs can 
be triangular function (G. Leng et al., 2009) or Gaussian function (Wu and Er, 2004) or other 
functions. In this chapter, we choose Gaussian functions given by 

 

2

2
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x c
x i r j lμ

σ

⎛ ⎞−
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where ijμ  is the jth membership function of the ith input variable ix , ijc  and ijσ are the 
center and width of the jth membership function with respect to the ith neuron, respectively. 
Layer 3 is the rule layer. Each node in this layer represents a possible IF-part of fuzzy rules. 
If the T-norm operator used to compute each rule’s firing strength is multiplication, the 
output of the jth rule ( 1,2, )jR j l= A is  
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Layer 4 is the normalized layer. The number of neurons in this layer is equal to that of layer 
3. The output of the jth neuron in this layer is 

 

1

, 1,2, ,
j

j l
ii

j l
ϕ

ψ
ϕ

=

= =
∑

A  (3) 

Layer 5 is output layer and each node represents an output linguistic variable. The output of 
this layer is the weighted summation of incoming signals given by 

 1
1

( )
l

r j j
j

y x x wψ
=

=∑A  (4)   

 

where y is the output variable and wj is the THEN-part or connection weight of the jth rule.  
For the TSK model, weights are the polynomials of the input variables 

 0 1 1j j j j jr rw A B a a x a x= ⋅ = + +A  (5) 

where Aj=[αj0αj1…αjr] is the weight vector of input variables in jth rule and B=[1x1…xr] is a 
column vector. 
Suppose the nth data pair is arriving, and u RBF units are generated for the n training data 
pairs.  The overall output of the FNN is  

 Y = WΨ (6) 

where for the TSK model, W and Ψ are given by 

 10 20 0 11 21 1 1 2[ ]u u r r urW a a a a a a a a a= A A A  (7) 
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(8)

 
where ψij is the output of the ith neuron in the normalized layer when jth training data arrives. 

3. Self-constructing Fuzzy Neural Networks with Extended Kalman Filter 
(SFNNEKF) 

In this section, a self-constructing fuzzy neural network employing extended Kalman filter 
(SFNNEKF) is designed and developed. The learning algorithm based on EKF is simple and 
effective and is able to generate a FNN with a high accuracy and compact structure. The 
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proposed algorithm comprises of three parts: (1) criteria of rule generation; (2) pruning 
technology and (3) adjustment of free parameters. The EKF algorithm is used to adjust the 
free parameters of the SFNNEKF. The performance of the SFNNEKF is compared with other 
learning algorithms in the tasks of function approximation, nonlinear system identification 
and time-series prediction. Simulation studies and comparisons with other algorithms 
demonstrate that a more compact structure with high performance can be achieved by the 
proposed algorithm. 

3.1 Learning algorithm of SFNNEKF 
3.1.1 Error Reduction Ratio (ERR) 
Suppose that for n observations, the FNN has generated uRBF neurons. The output matrix 
of the hidden layer is given by (8) then (6) can be written as 

 T W E= Φ +  (9) 

where nT R∈  is the desired output vector and E  is the error vector, TΦ = Ψ  can be 
rewritten as follows: 

 KAΦ =  (10) 

where K is a n × u matrix with orthogonal columns and A is a u × u upper triangular matrix. 
Substituting (10) into (9), we obtain 

 T KAW E KG E= + = +  (11) 

The orthogonal lease squares solution G is given by 1( )T TG K K K T−=  or equivalently 

 1
T
i

i T
i i

k T
g i u

k k
= ≤ ≤  (12) 

An error reduction ratio (ERR) due to ki as defined in (Shen et al., 1991) is given by 

 
2

1
T

i i i
i T

g k k
err i u

T T
= ≤ ≤  (13) 

Substituting (12) into (13) yields 

 
2( )

1
T
i

i T T
i i

k T
err i u

k k T T
= ≤ ≤  (14) 

The ERR offers a simple and effective way of seeking a subset of significant regressors. In 
this chapter, we use it as a growing criterion to evaluate the network generalization 
capability. We define 

 
1

u

i
i

errη
=

=∑  (15) 

If η < kerr, where kerr is a prespecified threshold, the FNN needs more hidden nodes to 
achieve good generalization performance and a neuron will be added to the network. 
Otherwise, no neurons will be added.  
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3.1.2 Criteria of growing neurons 
 For the ith observation(Pi,ti), calculate the output error of the SFNNEKF, ei, the distance di(j) 
and the ERR as follows: 

 i i ie t y= −  (16) 

 ( ) , 1, ,i i jd j P C j u= − = A  (17) 

 
1

u

i
i

errη
=

=∑  (18) 

If 

 min,i e d erre k d k and kη> > <  (19) 

where min arg min( ( ))id d j= , 1,2, ,j u= A , ,e dk k  are two predetermined parameters which 

are chosen as follows: 

 max minmax[ , ] 0 1i
ek e eβ β= × < <  (20) 

 max minmax[ , ] 0 1,i
dk d dγ γ= × < <  (21) 

a new neuron is added to the SFNNEKF network and the center, width and the output layer 
weight for the newly generated neuron are set as follows: 

 i iC P=  (22) 

 i iw e=  (23) 

 mini k dσ = ×  (24) 

where k is an overlap factor that determines the overlap of responses of the RBF units. 

3.1.3 Criteria of pruning neurons 
To facilitate the following discussion, we rewrite the output matrix of the hidden layer, as 
follows: 

 
11 1

1

u

n un

p p

p p

⎡ ⎤
⎢ ⎥Φ = ⎢ ⎥
⎢ ⎥⎣ ⎦

A
B B B

A
 (25) 

In order to evaluate the contribution of each hidden neuron to the network output, the root 
mean square error (RMSE) of each hidden node is calculated as follows: 

 / , 1, ,T
i i ih n i uφ φ= = A  (26) 

where 1[ , , ]Ti i inp pφ = A is the column vector of matrixΦ . If i rmseh k<  where rmsek is a 

prespecified threshold, the ith  hidden neuron is inactive and should be deleted. 
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3.1.4 Adjustment of weights 

 When no neurons are added or pruned from the network, the network parameter vector 

WEKF is adjusted using the EKF method (Kadirkamanathan & Niranjan, 1993)  

 ( ) ( 1)EKF EKF n nW n W n e k= − +  (27) 

where 1 1 1[ , , , , , , ]T T
EKF u u uW w C w Cσ σ= A  is the network parameter vector and kn is the 

Kalman gain vector given by 

 1
1 1[ ]T

n n n n n n nk R a P a P a−
− −= +  (28) 

Here, an is the gradient vector and has the following form 
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where Rn is the variance of the measurement noise and Pn is the error covariance matrix 

which is updated by 

 1[ ]T
n n n nP I k a P QI−= − +  (30) 

where Q is a scalar that determines the allowed random step in the direction of gradient 
vector and I is the identity matrix. When a new neuron is allocated, the dimensionality of 
the Pn increases to 

 1

0

0

0
n

n

P
P

P I
−⎛ ⎞
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⎝ ⎠

 (31) 

where P0 is an estimate of uncertainties in the initial values assigned to the parameters. 

3.2 Simulation results 
3.2.1 Function approximation  

First, a very popular function, Hermite polynomial, is used to evaluate the performance of 

the proposed SFNNEKF. The function is given by 

 
2

2( ) 1.1(1 2 )exp( )
2

x
f x x x= − + −  (32) 

Parameters of the SFNNEKF are set as follows: max 1d = , min 0.2d = , max 0.8e = , min 0.01e = , 

0.99errk = , 0.005rmsek = , 0.5k = , 0.97β = , 0.97γ = , 0 1.1P =  and 0.01Q = . A total of 200 

training samples are randomly chosen from the interval [−4, 4] for all the methods. Fig. 1 

shows the growth of hidden neurons and Fig. 2 shows the RMSE with respect to the training 

samples. A comparison of structure and performance with MRAN (Lu et al., 1997) and DFNN 

(Er & Wu, 2002) is summarized in Table 1. It can be seen that the DFNN algorithm achieves the 
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best RMSE performance in this case, but it needs more training time, because the TSK model 

makes the DFNN network structure more complicated. The SFNNEKF algorithm can obtain 

almost the same RMSE performance as the DFNN with faster learning speed and it has better 

performance than the MRAN algorithm in terms of training time and RMSE. 
 

 

Fig. 1. Growth of neurons 

 

 

Fig. 2. RMSE during training 
 

Algorithm Number of neurons RMSE Training time(s) 

SFNNEKF 6 0.0078 0.38 

DFNN 6 0.0052 2.97 

MRAN 7 0.0376 0.53 

Table 1. Comparison of structure and performance of different algorithms (Example 3.2.1) 
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Fig. 3. Identification result: Desired (-) and Identified (---) 
 

 

Fig. 4. RMSE during training 

3.2.2 Nonlinear plant identification 

The plant be identified is described by the second-order difference equation (Narendra & 
Parathasarathy, 1990)  

 ( 1) [ ( ), ( 1)] ( )y t f y t y t u t+ = − +  (33) 

where  
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2 2

( ) ( 1)[ ( ) 2.5]
[ ( ), ( 1)]

1 ( ) ( 1)

y t y t y t
f y t y t

y t y t

− +
− =

+ + −
 (34) 

Parameters of the SFNNEKF are set as follows: 

max 1d = , min 0.2d = , max 0.8e = , min 0.01e = , 0.96errk = , 0.005rmsek = , 0.5k = , 0.97β = , 

0.97γ = , 0 1.1P = , and 0.01Q = . 
The input u(k) is assumed to be independent identically distributed (i.i.d) random signal 
uniformly distributed in the interval [−2, 2] and a total of 2000 samples are randomly chosen 

for the training process. After this, the sinusoidal input signal ( ) sin(2 / 25)u t tπ=  is used to 

test identified model. Fig. 3 depicts the identified results using the SFNNEKF algorithm. In 
order to observe the result clearly, only the first 100 samples are shown in Fig. 3. Here, the 
solid-line curve is the desired plant output and the dash-line curve is for the identified 
model output. It can be seen that the SFNNEKF algorithm can identify the plant very well. 
The RMSE for training samples is shown in Fig. 4. The SFNNEKF algorithm generated a 
total of 15 neurons at the end of the training process. Table 2 shows a comparison of 
structure and performance of different algorithms. It is clear that the SFNNEKF algorithm 
can achieve a satisfactory RMSE performance with a simple network structure. Although the 
RMSE of the DFNN algorithm is 0.056, it needs more neurons (i.e. complicated network 
structure) to realize it. For the training speed, the SFNNEKF algorithm is the fastest method 
in all the three sequential learning algorithms. As a whole, the SFNNEKF algorithm 
demonstrates superior performance than the DFNN and MRAN algorithms in terms of 
networks complexity and training time. 
 

Algorithm Number of neurons RMSE Training time (s) 

SFNNEKF 15 0.087 30.25 

DFNN 26 0.056 608.51 

MRAN 40 0.1525 69.79 

Table 2. Comparison of structure and performance of different algorithms (Example 3.2.2) 

3.2.3 Mackey-Glass time-series prediction 

The Mackey-Glass time-series prediction is a benchmark problem which has been considered 

by a number of researchers (Lu et al., 1997; Wu & Er, 2000; Cho &Wang, 1996; Juang & Tin, 

1998; Kadirkamanathan & Niranjan, 1993). The time series in our simulation is generated by 

  
10

( )
( 1) (1 ) ( )

1 ( )

bx t
x t a x t

x t

τ
τ

−
+ = − +

+ −
 (35) 

for a=0.1, b=0.2 and τ=17. A sampled version of the series is obtained by the above equation. 
The prediction model is given by 

 ( ) [ ( ), ( ), ( 2 ), ( 3 )]x t p f x t x t t x t t x t t+ = − Δ − Δ − Δ  (36) 

 For the purpose of training and testing, 6000 samples are generated between t=0 and t=6000 

from (33) with initial conditions x(t)=0 for t<0 and x(0)=1.2. Hence, these data are used for 

preparing for the input and output pairs in the (34). 
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Suppose p=6, Δt=6, select first 500 sample pairs between 118≤t≤617 as training data. 
Parameters of the SFNNEKF are set as follows: 

max 1d = , min 0.18d = , max 1.1e = , min 0.02e = , 1.2errk = , 0.00025rmsek = , 0.5k = , 0.95β = , 

0.98γ = , 0 1.1P = , and 0.01Q =  
The results for n=500, p=6 are shown in Fig. 5 and Fig. 6. 

Figures illustrate the simulation results of the SFNNEKF in the case that p  is 6 and the 

number of rules is 34. It indicates that the SFNNEKF possesses remarkable generalization 

capability. If we selected p=50 and Δt=6, for the convenience of comparison, the 

generalization capability is evaluated by the normalized root mean squared error (NRMSE) 

or the non-dimensional error index (NDEI), which is defined as the RMSE divided by the 

standard deviation of the target series (Platt, 1991). Generalization comparisons between the 

SFNNEKF, DFNN (Er & Wu, 2002), RAN (Platt, 1991) RANEKF (Kadirkamanathan & 

Niranjan, 1993), and MRAN (Lu et al., 1997) is listed in table 3. It is shown that SFNNEKF 

can obtain better performance even it has generated more rules than DFNN. However, the 

SFNNEKF shows superiority compared with the RAN and RANEKF algorithms in terms of 

the performance of the NRMSE, which measures the average prediction performance. The 

final value of the NRMSE is 0.0327 for SFNNEKF with 41 rules compares with 0.071 for the 

RAN and 0.056 for the RANEKF. 
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Fig. 5. Mackey-Glass time series from 642 to 1141 and six-step 
 

Algorithm Pattern length Number of rules NRMSE 

SFNNEKF 2000 41 0.0327 

DFNN 2000 25 0.0544 

RAN 5000 50 0.071 

RANEKF 5000 56 0.056 

MRAN 5000 28 a 

a The generalization error is measured by weighted prediction error (WPE) (example 3.2.3) 

Table 3. Generalization comparison between SFNNEKF, DFNN, RAN, RANEKF and MRAN 
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Fig. 6. Prediction error 

3.3 Conclusions 

A new self-constructing fuzzy neural network has been proposed in this part. The basic idea 
of the proposed approach is to construct a self-constructing fuzzy neural network based on 
criteria of generating and pruning neurons. The EKF algorithm has been used to adapt the 
consequent parameters when a hidden unit is not added. The superior performance of the 
SFNNEKF over some other learning algorithms has been demonstrated in three examples in 
this part. Simulation results show that a more effective fuzzy neural network with high 
accuracy and compact structure can be self-constructed by the proposed SFNNEKF 
algorithm. 

4. A neuron pruning algorithm based on optimal brain surgeon for self-
organizing fuzzy neural networks with parsimonious structure 

In this section, a novel learning algorithm for creating a self-organizing FNN to implement 

TSK type fuzzy models is proposed. The optimal brain surgeon (OBS) (Hassibi & Stork, 

1993) is employed as a neuron pruning mechanism to remove unimportant neurons directly 

during the training procedure. Distinguished from other pruning strategies based on the 

OBS, there is no need to calculate the inverse matrix of Hessian, we simplify the calculation 

by using LLS method to obtain the Hessian matrix. To acquire precision model, the LLS 

method is performed to obtain the consequent parameters of the network. The proposed 

algorithm has a parsimonious structure and is generated with high accuracy. The 

effectiveness of the proposed algorithm is demonstrated in several well-known benchmark 

problems such as static function approximation, two-input nonlinear function 

approximation and real-world non-uniform benchmark regression problems. Simulation 

studies are compared with other existing published algorithms. The results indicate that the 

proposed algorithm can provide comparable approximation and generalization 

performance with a more compact structure and higher accuracy. 
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4.1 Learning algorithm of the FNN 
The learning procedure of the proposed self-organizing FNN comprises two stages. In the 
first stage, the structure of the FNN is generated based on the growth criteria and the 
proposed OBS-based pruning method. In the second stage, parameters of newly created 
neurons are assigned and consequent parameters of all existing neurons will be updated by 
the LLS method. 

4.1.1 Structure design of the FNN 
To determine the proper number of neurons or fuzzy rules of FNNs, we adopt two growth 
criteria to generate neurons. In order to obtain a compact structure, the OBS algorithm (Hassibi 
& Stork, 1993) is employed as a pruning criterion. An initial structure of the FNN is first 
constructed and the importance of each hidden neuron or fuzzy rule is evaluated by the OBS 
algorithm, the least important neuron will be deleted if the performance of the entire network 
is accepted after deleting this unimportant neuron. This procedure will repeat until the desired 
accuracy can be satisfied. We will describe the learning algorithm in detail in the sequel. 
The learning stage is based on a data set composed by n input-output pairs: 

 { } { }1 2( , ( , , , ), , 1,2 ,k k k k kr kP X t x x x t k n= = =A A . (37) 

When the kth observation (Xt,tk) arrives, the overall FNN output of the existing structure 
using (2)-(4) is denoted by yk, the system error can be defined by (16) 
If 

 k ee k>  (38) 

where ke is a predefined error tolerance, a new fuzzy rule should be considered if other 
criteria of generation have been satisfied simultaneously. The term ke decays during the 
learning process as follows 

 

max

max min

min

1 / 3

max[ , ], / 3 2 / 3

2

i
e

e i n

k e e n i n

e n i n

β

⎧ < <
⎪

= × ≤ ≤⎨
⎪ < ≤⎩

 (39) 

where emax is the maximum error chosen, emin is the desired accuracy of the FNN output and 
β∈(0,1)is a convergence constant. 
The second growth criterion is the accommodation criterion. It can be described as follows: 
when the kth observation (Xt,tk) arrives, calculate the distance dkj between the observation Xk 
and the center Cj of the u existing neurons, i.e. 

 , 1,2, , , 1,2, ,kj k jd X C k n j u= − = =A A , (40) 

the minimum distance between the kth observation and the nearest center is described as 

 min arg min( ), 1,2, , , 1,2 ,kjd d k n j u= = =A A . (41) 

If  

 min dd k>  (42) 
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where kd is determined by (21). 

Here, dmax is the largest length of the input space, dmin is the smallest length of interest and 

(0,1)γ ∈ is the decay constant. If these two growth criteria are satisfied simultaneously, a 

new hidden neuron will be generated. 
When growth procedure is complete, a pruning algorithm is employed to optimize the 
structure of the FNN to obtain a compact network structure.  For this algorithm, we use the 
OBS as a pruning strategy. The OBS algorithm uses the second-order derivative information 
of the error function to find the unimportant neuron to get a tradeoff between the network 
complexity and good performance of entire network. The basic idea of the OBS algorithm is 
described as follows. Firstly, we assume that the pruning algorithm is used after the training 
process has converged or is fully trained. It means that the network reaches a local 
minimum of the error surface. The functional Taylor series of the cost function E with 
respect to parameters w is given by 

 
2

3

2

1
( )

2

T
TE E

E w w w O w
w w

∂ ∂⎛ ⎞Δ = ⋅ Δ + Δ ⋅ ⋅ Δ + Δ⎜ ⎟∂ ∂⎝ ⎠
 (43) 

where 
2

2

E
H

w

∂
=
∂

is the Hessian matrix which contains all second-order derivative 

information. For a network trained to a local minimum in error,  

  0
T

E
w

w

∂⎛ ⎞ ⋅ Δ =⎜ ⎟∂⎝ ⎠
 (44) 

and we also ignore the third and all higher order terms. The goal is to set one of the 
parameters  wq to zero to minimize the increase in error given by (41). Eliminating wq can be 
expressed as 

 0q qw wΔ + = . (45) 

Then the optimal model of OBS can be formulated as an optimization problem as follows 

 

1
min

2

. . 0

T

T
q q

w H w

s t I w w

Δ Δ

Δ + =
 (46) 

where Iq is the unt vector in parameter space corresponding to parameter wq. 
Solving the constrained problem using the Lagrangian method 

 
1

( )
2

T T
q qL w H w I w wλ= Δ Δ + Δ +  (47) 

where λ is a Lagrange undetermined multiplier. After taking functional derivatives, employ 
the constraints and obtain resulting change in error are 

 1
1[ ]

q
q

qq

w
w H I

H

−
−Δ = − ⋅  (48) 
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2

1

1

2 [ ]

q

qq

w
L

H−=  (49) 

where 1H− is the inverse of the Hessian matrix H  and 1[ ]qqH− is the qth element of  1H− . 

Note that the OBS algorithm needs to calculate the inverse of the Hessian matrix. In fact, for 
very small dimension of the Hessian matrix, its inverse can be obtained by standard matrix 
methods while inverting a matrix of hundreds or thousands of terms seems computationally 
intractable. For our algorithm, we use the LLS method to avoid calculating the inverse of the 

Hessian matrix. The cost function used in our algorithm is defined as the training error ( )tE Θ  

 2

1

1
( ) [ ( ) ( ) ]

2

n
T

t
k

E t k kφ
=

Θ = − Θ∑  (50) 

where TWΘ = is the parameter vector, ( )t k  is the desired output of the FNN 

and 1 2 ( 1)( ) [ ( ) ( ) ( )]T
u rk k k kφ φ φ φ × += A , 1,2 ,k n= A . 

The functional Taylor series of the cost function of the FNN with respect to parameter vector 

Θ is 

 
2

3

2

( ) ( )1
( ) ( )

2

T
Tt t

t

E E
E O

∂ Θ ∂ Θ⎛ ⎞Δ Θ = ⋅ ΔΘ + ΔΘ ⋅ ⋅ ΔΘ + ΔΘ⎜ ⎟∂Θ ∂Θ⎝ ⎠
 (51) 

where 
2

2

( )tE
H

∂ Θ
=

∂Θ
 is the Hessian matrix. For a network trained to a local minimum in error, 

 
( )

0
T

tE∂ Θ⎛ ⎞ ⋅ ΔΘ =⎜ ⎟∂Θ⎝ ⎠
 (52) 

and the third and all higher order terms are ignored. Then (49) can be rewritten as 

 
2

2

( )1 1
( )

2 2
T Tt

t

E
E H

∂ Θ
Δ Θ ≈ ΔΘ ⋅ ⋅ ΔΘ = ΔΘ ΔΘ

∂Θ
 (53) 

In the following part, we will discuss how to use the Hessian matrix H  to measure the 

increase in cost function ( )tE Θ due to deleting some parameters and then present the 

pruning algorithm. From (11) and (53) the Hessian matrix can be rewritten as 

 
2

2

( ) TtE
H

∂ Θ
= = Φ Φ

∂Θ
  (54) 

After obtaining the Hessian matrix H , we can calculate the increase in cost function ( )tE Θ  

due to a change in parametersΘ . Since deleting the ith  parameter in Θ  is equivalent to 

setting the value of the corresponding parameter to zero, then the change in  ( )tE Θ  due to 

the removal of a subset G  of parameters is  

 
1

( )
2

T
t G GE HΔ Θ ≈ ΔΘ ΔΘ  (55) 

www.intechopen.com



 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems 

 

296 

where 

 
[ ]

[ ]
0

i
i

if i G

if i G

Θ ∈⎧
ΔΘ = ⎨ ∉⎩

 (56) 

where [ ]iΘ  denotes ith  element ofΘ . 

After all, the importance of each hidden neuron or fuzzy rule can be evaluated by the 

change in cost function or training squared error ΔEt(Θ), the smaller the value of the change 

in the cost function, the less important is the neuron. Based on these descriptions, the 

proposed OBS-based pruning algorithm can be summarized as follows 
1. Calculate the output of the existing FNN after growing all coming data. 

2. According (50, calculate the RMSE for training, Et(Θ). 
3. Compute the Hessian matrix H according to (54). 
4. Evaluate the importance of each hidden neuron in the network: 

1
( )

2
T

t i i iE HΔ Θ = ΔΘ ΔΘ for 1,2 ,i M= A where M is the number of parameters. 

5. Define the tolerance limit of the change in the training for the RMSE as λERMSE, where 
λis a predefined constant and 0<λ<1. 

6. Define the expected RMSE for training as kRMSE. In general, kRMSE is a very small positive 
value. 

7. Find the smallest value of change in cost function  

 min min[ , ] min ( ), 1,2, ,t t i
i

E ind E i MΔ = Δ Θ = A  (57) 

where mintEΔ denotes the smallest value of ( )tEΔ Θ  and minind denotes the index of the 

smallest value. 

8. Calculate the RMSE after deleting the least importance hidden neuron D
RMSEE , choose 

max( , )D
RMSE RMSEE E kλ= , if D D

RMSEE E< , remove this neuron, and go to step 7) for the 

second least important neuron, and so on. Otherwise, do not remove any neurons and 
proceed to the weight adjustment stage.  

Therefore, the structure (number of hidden neurons or fuzzy rules) of FNN is obtained 
based on the growth and pruning criteria. 

4.1.2 Update of parameters and weight adjustment 
After the network structure is established, the network enters the second stage: parameters 
of newly created neurons are assigned and the consequent parameters of all existing 
neurons will be updated by the simple but efficient LLS method. 
For the first observation (X1,t1) arrives, since there are no hidden neurons at the beginning, 
some initializations are conducted. Parameters of the first neuron are assigned as follows 

 1 1C X=  (58) 

 1 0widthσ =  (59) 

 1 1w t=  (60) 
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where 1C and 1σ is the center and width of the first neuron respectively, and 1w is the 

connective weight of the first neuron. 
The objective of weight adjustment is as follows 

 Y W= Ψ  (61) 

 E T Y= −#  (62) 

We try to find an optimal weight vector ( 1)* u rW R × +∈  such that the error energy TE E# #  is 
minimized. By using the LLS method, we can find the optimal *W is in the form of  

 * 1( )T TW T T+ −= Ψ = Ψ Ψ Ψ  (63) 

Since the structure of our FNN is very compact after structure learning process, the 
dimension of W and Ψ is small, the LLS method provides a computationally simple and 
efficient weight adjustment process. 

4.2 Illustrative examples 
In this section, the effectiveness of the proposed algorithm is demonstrated in three kinds of 
well-known benchmark examples: static function approximation, two-input nonlinear 
approximation and real-world non-uniform benchmark regression problems (Boston 
housing, auto-mpg and abalone) (Frank & Asuncion, 2010). The simulation results are also 
compared with other algorithms such as the OLS (Chen et al., 1991), RAN (Platt, 1991), 
RANEKF (Kadirkamanathan & Niranjan, 1993), MRAN (Lu et al., 1997), GAP-RBF(Huang et 
al., 2004), OS-ELM (Liang et al., 2006) GDFNN (Wu et al., 2001), SOFNN (Leng et al., 2005), 
FAOS-PFNN(Wang et al., 2009). 

4.2.1 Static function approximation 
The first example is on static function approximation. The underlying function to be 
approximated is a three-input nonlinear function f(x,y,z) which is widely used to verify the 
effectiveness of proposed algorithms of Khayat et al., 2009; Wu et al., 2001; Qiao & Wang, 
2008; Chen et al., 1991. 

 0.5 1 1.5 2( , , ) (1 )f x y z x y z− −= + + +  (64) 

A total of 216 uniformly training data are randomly sampled from the input ranges 

[1,6] [1,6] [1,6]× ×  and the corresponding target data.  Another 125 uniformly testing data 

are randomly selected from the same operating range to check the generalization of the 

proposed FNN. The parameters are selected as follows: max 5e = , min 0.8e = , max 0.83d = , 

min 0.47d = , 0.97β = , 0.99γ = , 0.8λ = , 0 2width =  and 0.3RMSEk = .  
To be in conformity with other learning algorithms, the same performance index, termed 
average percentage errors (APE) is used  

 
1

( ) ( )1
100%

( )

n

k

t k y k
APE

n t k=

−
= ×∑  (65) 

where n is the number of data pairs, t(k) and y(k) are the kth desired output and actual 
output of the FNN, respectively. 
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Simulation results are shown in Fig. 7, where we see that a four-hidden-neuron structure is 
generated. The RMSE curving of training data with 216 epochs is shown in Fig. 8. The input 
variables x,y and z define four membership functions respectively. As we can see from the 
resulting figures, the trained network obtains a high precision and the RMSE is also 
confined to a very small value.  
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Fig. 7. Growth of fuzzy rules 
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Fig. 8. Root mean squared error (RMSE) during training 
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Model APEtrn % APEchk % 
Parameter 

number 
Training 
set size 

Testing 
set size 

OLS 2.43 2.56 66 216 125 
GDFNN 2.11 1.54 64 216 125 

SOFNN 1.1380 1.1244 60 216 125 

The proposed algorithm 2.76 1.55 40 216 125 

Table 4. Comparisons of the Proposed Algorithm with Other Methods (Static Function 
Approximation) (example 4.2.1) 

Comparative studies of the proposed algorithm with other published works, such as the 

OLS (Chen et al., 1991), GDFNN (Wu et al., 2001) and SOFNN (Leng et al., 2005) are shown 

in Table 4. APEtrn % and APEchk % are APE of training data and testing data, respectively. As 

it can be seen from Table 4, the proposed algorithm has the least number of parameters 

which means that it achieves the most compact structure compared with other algorithms 

while the  approximation performance is worse than that of the SOFNN and GDFNN and 

nearly the same as that of the OLS. It should be noted that the proposed algorithm has a 

satisfactory generalization performance as its APE of testing is only 1.55 which is less than 

OLS and almost the same as that of the GDFNN. In brief, the proposed algorithm achieves 

the most parsimonious structure with good accuracy.   

4.2.2 Two-input nonlinear sinc function 
This example is used to demonstrate the performance of the proposed algorithm in noisy 
and noise-free environments. This function is also used in Leng et al., 2004 and Leng et al., 
2009. It is defined as follows 

 sin( )sin( )
sin ( , ) , [ 10,10], [ 10,10]

x y
z c x y x y

xy
= = ∈ − ∈ −  (66) 

A total of 121 two-input data without noise and the corresponding target data are chosen as 

training data. Another set of uniformly sampled 121 input-target data are selected as testing 

data. The training parameters are selected as follows: max 1.1e = , min 0.02e = , max 2d = , 

min 0.2d = , 0.9β = , 0.97γ = , 0.8λ = , 0 2width = and 0.005RMSEk = .  
A total of 5 hidden neurons (i.e. fuzzy rules) FNN is generated. The number of membership 

functions associated inputs x and y is five. When the training data is without noise, the 

RMSE for training is 0.0073 whilst the RMSE for testing is 0.0057. In order to determine the 

affect of noise, the training data are mixed with Gaussian white noise sequences which have 

zero mean and different variances as shown in Table 5. 

 

Variances 2σ  
NUMBER OF 

Neurons 
NUMBER OF 

MFS 
RMSE for training RMSE for testing 

0σ =  5 5,5 0.0073 0.0057 

0.01σ =  5 5,5 0.0072 0.0056 

0.05σ =  6 6,6 0.0061 0.0048 

0.1σ =  7 7,7 0.0063 0.0050 

Table 5. Performance of two-input sinc function with noise (example 4.2.2) 

www.intechopen.com



 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems 

 

300 

It can be observed from Table 5, the number of hidden neurons increases with the level of 
noise. That is because more neurons will be required to filter the noise. Both the RMSE for 
training and testing are small values though the data mixed with high level of noise. It 
means that the proposed algorithm is robust even when the training data is perturbed by 
noise. It demonstrates that our algorithm is suitable for noisy environment. 

4.2.3 Boston housing prediction 

The Boston housing prediction problem is to predict the median value of owner-occupied 
homes in suburbs of Boston. The database has 506 observations and each observation 
consists of 13 inputs (12 continuous inputs and one binary-valued input) and one 
continuous output (median value of owner-occupied homes). The 13 inputs and the output 
are normalized to the range [0, 1]. For this problem, 481 training data and 25 testing data are 
randomly generated from the Boston housing data set in each trial of simulation studies. 
The training parameters are selected as follows: max 5e = , min 0.8e = , max 0.83d = , 

min 0.47d = , 0.99β = , 0.99γ = , 0.8λ = , 0 2width =  and 0.05RMSEk = . Performance 
comparisons with other algorithms are shown in  Table 6. 
 

Model 
NUMBER OF 

Neurons 
RMSE FOR 

Training 
RMSE for 

testing 
Training set 

size 
Testing 
set size 

RAN 18.8 0.3449 0.3432 481 25 

RANEKF 19.98 0.1328 0.1437 481 25 

MRAN 13.58 0.1440 0.1356 481 25 

GAP-RBF 3.5 0.1507 0.1418 481 25 

The proposed algorithm 2 0.0916 0.0583 481 25 

Table 6. Comparisons of the proposed algorithm with other methods (Boston housing) 

As observed from Table 6, the proposed algorithm obtains the smallest RMSE for training 

and testing, which means that the approximation and generalization performance is better 

than that of other learning algorithms. It is highlighted that the average number of hidden 

neurons generated by the system is only 2, which is less than that of other learning 

algorithms. Therefore, the proposed algorithm has the most compact structure of all the 

learning algorithms. In other words, our algorithm needs the least number of neurons to 

conduct the Boston housing prediction with comparable accuracy simultaneously. 

4.2.4 Auto-mpg prediction 

The auto-mpg problem is to predict the fuel consumption (miles per gallon) of different 
models of cars based on the displacement, horsepower, weight and acceleration of cars. A 
total of 392 observations are collected for the prediction problem. Each observation consists 
of seven inputs (four continuous inputs: displacement, horsepower, weight, acceleration, 
and three discrete inputs: cylinders, model year and origin) and one continuous output (the 
fuel consumption). For simplicity, the seven input attributes and one output have been 
normalized to the range [0, 1]. A total of  320 training data and 72 testing data are randomly 
chosen from the auto-mpg data set in each trial of simulation studies. The training 
parameters are selected as the previous Boston housing problem except the expected RMSE 
for training set is as kRMSF=0.008. Performance comparisons among RAN (Platt, 1991), 
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RANEKF (Kadirkamanathan & Niranjan, 1993), MRAN (Lu et al., 1997), GAP-RBF (Huang 
et al., 2004), OS-ELM (Liang et al., 2006), FAOS-PFNN (Wang et al., 2009) and our proposed 
algorithm are presented in Table 7. It can be seen that the RMSE for testing our algorithm is 
the smallest among these learning algorithms while the RMSE for training is less than other 
algorithms except the FAOS-PFNN. It can be summarized that our proposed algorithm has 
the best generalization ability of all the learning algorithms though the approximation 
performance is a little worse than the FAOS-PFNN. Moreover, the number of fuzzy rules of 
our algorithm is only 2 and is less than other algorithms so that it has the most 
parsimonious structure among these learning algorithms. In brief, the overall performance 
of our algorithm is superior to other algorithms. 
 

Model 
NUMBER OF 

Neurons 
RMSE FOR 

Training 
RMSE for 

testing 
Training 
set size 

Testing 
set size 

RAN 4.44 0.2923 0.3080 320 72 

RANEKF 5.14 0.1088 0.1387 320 72 

MRAN 4.46 0.1086 0.1376 320 72 

GAP-RBF 3.12 0.1144 0.1404 320 72 

FAOS-PFNN 2.9 0.0321 0.0775 320 72 

OS-ELM 25 0.0696 0.0759 320 72 

The proposed algorithm 2 0.0646 0.0513 320 72 

Table 7. Comparisons of the proposed algorithm with other methods (Auto-mpg) 

4.2.5 Abalone age prediction 

The abalone problem has 4177 cases predicting the age of abalone from physical 
measurements. Each observation consists of 8 continuous inputs and 1 integral output. 
Similar to the age-auto prediction problem, the 8 inputs and 1 output are normalized to the 
range [1, 0]. A total of 3000 training data and 1177 testing data are randomly generated from 
the abalone data set in each trial of simulation studies. The training parameters are set as the 
same of the previous Boston housing problem.  
Tab le 8 presents the performance comparisons of our algorithm with other learning 
algorithms. It is clear from the table that the RMSE for testing the proposed algorithm is the 
smallest of all algorithms. It means that our algorithm has the best generalization 
performance and obtained the smallest network size. 
 

Model 
NUMBER OF 

Neurons 
RMSE FOR 

Training 
RMSE for 

testing 
Training 
set size 

Testing 
set size 

RAN 345.58 0.0931 0.0978 3000 1177 

RANEKF 409 0.0738 0.0794 3000 1177 

MRAN 87.571 0.0836 0.0837 3000 1177 

GAP-RBF 23.62 0.0963 0.0972 3000 1177 

FAOS-PFNN 4.54 0.0311 0.0807 3000 1177 

OS-ELM 25 0.0761 0.0770 3000 1177 

The proposed algorithm 2 0.0746 0.0735 3000 1177 

Table 8. Comparisons of the proposed algorithm with other methods (Abalone) 
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4.3 Discussions 

In this part a novel learning algorithm for creating a self-organizing fuzzy neural network 

(FNN) to implement the TSK type fuzzy model with a parsimonious structure was 

proposed. The OBS is employed as a pruning algorithm to remove unimportant neurons 

directly during the training process. Apart from other pruning strategies based on the OBS, 

there is no need to calculate the inverse matrix of Hessian; we simplify the calculation by 

using the LLS method to obtain the Hessian matrix.  

The effectiveness of the proposed algorithm has been demonstrated in four well-known 

benchmark problems: namely static function approximation, nonlinear dynamic system 

identification, two-input nonlinear function and real-world non-uniform benchmark 

problems. Moreover, performance comparisons with other learning algorithms have also 

been presented in this part. The results indicate that the proposed algorithm can provide 

comparable approximation and generalization performance with a more compact 

parsimonious structure and higher accuracy. 

5. Conclusions and future work 

In this chapter, the development of fuzzy neural networks has been reviewed and the 

main issues for designing fuzzy neural networks including growing and pruning criteria 

and different adjustment methods of consequent parameters have been discussed. The 

general frame of fuzzy neural networks based on radial basis function neural networks 

has been described in Section 2. Two self-organization FNNs have been developed. For 

the first FNN, the SFNNEKF algorithm employs ERR as a generation condition in 

constructing the network which makes the growth of neurons smooth and fast. The EKF 

algorithm has been used to adjust free parameters of the FNN to achieve an optimal 

solution. Simulation results show that a more effective fuzzy neural network with high 

accuracy and compact structure can be self-constructed by the proposed SFNNEKF 

algorithm. For the second FNN, it is composed of two stages: the structure identification 

stage and the parameter adjustment stage. The structure identification consists of 

constructive and pruning procedures. An initial structure starts with no hidden neurons 

or fuzzy rule sets and grows neurons based on the criteria of neuron generation. Then the 

OBS is employed as a pruning strategy to further optimal the obtained initial structure. At 

last, the well-known LLS method is adopted to tune the free parameters in the parameter 

adjustment stage for sequentially arriving training data pairs. Simulation studies are 

compared with other algorithms. The simulation results indicate that the proposed 

algorithm can provide comparable approximation and generalization performance with a 

more compact structure and higher accuracy. 

In a word, fuzzy neural networks are hybrid systems that combine the advantages of fuzzy 

logic and neural networks, there existed many kinds of FNN developed by researchers. 

Recently, the idea of self-organizing has been introduced in FNN. The purpose is to develop 

self-organizing fuzzy neural network systems to approximate fuzzy inference through the 

structure of neural networks to create adaptive models, mainly for approximate linear and 

nonlinear and time-varying systems. FNNs have been widely used in many fields. For our 

future work, studies will focus on the structure learning since appropriate number of fuzzy 

rules or find proper network architecture and developing optimal parameter adjustment 

methods. 

www.intechopen.com



Development of Fuzzy Neural Networks: Current Framework and Trends   

 

303 

6. References 

Chen, S.; Cowan, C. F. N. & Grant, P. M. (1991). Orthogonal least squares learning algorithm for 
radial basis function network, IEEE Transactions on Neural Networks, vol. 2, pp. 302-309 

Chen, S.; Wu, Y. & Luk, B. L.(1999). Combined genetic algorithm optimization and regularized 
orthogonal least squares learning for radial basis function networks, IEEE Trans. 
Neural Networks, vol. 10, no. 5, pp. 1239-1243 

Cho, K. B. & Wang, B. H.(1996). Radial basis function based adaptive fuzzy systems and their 
applications to system identification and prediction, Fuzzy Sets and Systems, vol. 83, 
no. 3, pp. 325-339 

Deng, J.; Sundararajan, N. & Saratchandran, P.(2002). Communication channel equalization 
using complex –valued minimal radial basis function neural networks, IEEE 
Transactions on Neural Networks, vol.13, no. 3, pp. 687- 696 

Er, M. J. & Wu, S. Q. (2002) A fast learning algorithm for parsimonious fuzzy neural systems, 
Fuzzy Sets and Systems, vol. 126, pp. 337-351 

Er, M. J.; Liu, F & Li, M. B. (2010). Self-constructing fuzzy neural networks with extended 
Kalman filter, International Journal of Fuzzy Systems, vol. 12, no. 1, pp. 66-72 

Frank, A. & Asuncion, A. (2010), UCI Machine Learning Repository 
[http://archive.ics.uci.edu/ml], Irvine, CA: University of California, School of 
Information and Computer Science  

Hassibi, B. & Stork, D. G.(1993). Second order derivatives for network pruning: optimal brain 
surgeon, in: Advances in Neural Information Processing Systems, Morgan Kaufman, San 
Mateo, CA, pp. 164-171 

Huang, G. B.; Saratchandran, P. & Sundararajan, N.(2004). An efficient sequential learning 
algorithm for growing and pruning (GAP-RBF) networks, IEEE Transactions on 
Systems, Man and Cybernetics, Part B: Cybernetics, vol. 34, pp. 2284-2292 

Jang, J. S. R. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE 
Transactions on Systems, Man, and Cybernetics,  vol. 23, no. 3, pp. 665-684 

Juang, C. F. & Lin, C. T.(1998). An on-line self-constructing neural fuzzy inference network and 
its applications, IEEE Trans. Fuzzy Syst. 6 pp.12–32 

Kadirkamanathan, V & Niranjan, M.(1993). A function estimation approach to sequential 
learning with neural networks, Neural Computation, vol. 5, no. 6, pp. 954-975 

Khayat, O.; Ebadzadeh, M. M.; Shahdoosti, H. R.; Rajaei R. & hajehnasiri, I. K.(2009). A novel 
hybrid algorithm for creating self-organizing fuzzy neural networks, Neurocomputing, 
73(1-3) pp. 517-524 

Leng, G.; Prasad, G. & McGinnity, T. M.(2004). An on-line algorithm for creating self-
organizing fuzzy neural networks, Neural Networks, vol. 17, pp. 1477-1493 

Leng, G.; McGinnity, T.M. & Prasad, G.(2005). An approach for on-line extraction of fuzzy rules 
using a self-organizing fuzzy neural network, Fuzzy Sets and Syst. 150, pp.211-243. 

Leng, G.; Zeng, X. J.  & Keane, J. A .(2009). A hybrid learning algorithm with a similarity-based 
pruning strategy for self-adaptive neuro-fuzzy systems, Applied Softing Computing, 9, 
pp. 1354-1366 

Levin, A.U.& Narendra, K. S. (1996). Control of nonlinear dynamical system using neural 
networks-part II: Observability, identification, and control, IEEE Transactions on 
Neural Networks, vol. 7, no. 1, pp. 30-42 

Liang, N. Y.; Huang, G. B.; Saratchandran, P. & Sundararajan, N.(2006). A fast and accurate 
online sequential learning algorithm for feedforward networks, IEEE Trans. Neural 
Networks 17, pp.1411-1423 

www.intechopen.com



 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems 

 

304 

Lin, C. T. & Lee, C. S. G.(1996). Neural Fuzzy Systems: a Neural-Fuzzy Synergism to Intelligent 
Systems, Englewood Cliffs, NJ: Prentice-Hall 

Lu, Y.; Sundararajan, N. & Saratchandran, P.(1997). A sequential learning scheme for function 
approximation using minimal radial basis function neural networks, Neural 
Computation, vol. 9, no. 2, pp. 461-478 

Narendra, K. S. & Parathasarathy, K. (1990). Identification and control of dynamic systems 
using neural networks, IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4-27 

Platt, J. (1991). A resource-allocating network for function interpolation, Neural Computation, 
vol. 3, no. 2, pp. 213-225 

Qiao, J. F. & Wang, H. D.(2008). A self-organizing fuzzy neural network and its applications to 
function approximation and forecast modeling, Neurocomputing, 71, pp. 564-569 

Seng, T. L.; Khalid, M. B. & Yusof, R.(1999). Tuning of a neuro-fuzzy controller by genetic 
algorithm, IEEE Trans. Syst., Man, Cyhern. B, Cybern., vol. 9, no. 2, pp. 226-236 

Siddique, M. N. H.  & Tokhi, M. O. (2001). Training Neural Networks: Backpropagation vs 
Genetic Algorithms, Proceeding of the International Joint Conference on Neural Networks 
4, pp. 2673-2678 

Sugeno, M. & Kang, G. T.(1988). Structure identification of fuzzy model, Fuzzy Sets and 
Systems, 28, pp. 15-33  

Takagi, T. & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling 
and control, IEEE Transactions on Sytems, Man, and Cybernetics 15 pp. 116-132 

Tang, K. S.; Chan, C. Y.; Man, K. F.; & Kwong, S. (1995). Genetic Structure for NN Topology 
and Weights Optimization, IEE Conference Publication, No. 414, pp.250-255 

Wang, L.X. (1994). Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Englewood 
Cliffs, NJ: Prentice-Hall 

Wang, N.; Er, M. J. & Meng, X. Y. (2009). A fast and accurate online self-organizing scheme for 
parsimonious fuzzy neural networks, Neurocomputing, 72, pp. 3818-3829 

Wu S. Q. & Er, M. J.(2000). Dynamic fuzzy neural networks - a novel approach to function 
approximation, IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 
vol. 30, no. 2, pp. 358-364 

Wu, S. Q.; Er, M. J. & Gao, Y. (2001). A fast approach for automatic generation of fuzzy rules by 
generalized dynamic fuzzy neural networks, IEEE Trans. Fuzzy Syst. 9 pp. 578-594. 

Zhou, Y. & Er, M. J. (2008).  An evolutionary approach toward dynamic self-generated fuzzy 
inference systems, IEEE Transactions on system, man and cybernetics, part b: cybernetics, 
vol. 38, no. 4, pp. 963-969 

www.intechopen.com



New Trends in Technologies: Control, Management,

Computational Intelligence and Network Systems

Edited by Meng Joo Er

ISBN 978-953-307-213-5

Hard cover, 438 pages

Publisher Sciyo

Published online 02, November, 2010

Published in print edition November, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The grandest accomplishments of engineering took place in the twentieth century. The widespread

development and distribution of electricity and clean water, automobiles and airplanes, radio and television,

spacecraft and lasers, antibiotics and medical imaging, computers and the Internet are just some of the

highlights from a century in which engineering revolutionized and improved virtually every aspect of human life.

In this book, the authors provide a glimpse of the new trends of technologies pertaining to control,

management, computational intelligence and network systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Fan Liu and Meng Joo Er (2010). Development of Fuzzy Neural Networks: Current Framework and Trends,

New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems, Meng

Joo Er (Ed.), ISBN: 978-953-307-213-5, InTech, Available from: http://www.intechopen.com/books/new-trends-

in-technologies--control--management--computational-intelligence-and-network-systems/development-of-

fuzzy-neural-networks-current-framework-and-trends



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


