
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322391738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

15

Development of Fuzzy Neural Networks:
Current Framework and Trends

Fan Liu and Meng Joo Er
Nanyang Technological University

Singapore

1. Introduction

Fuzzy systems have been demonstrated their ability to solve different kinds of problems in
classification, modeling control and in a considerable number of industry applications. It has
been shown as a powerful methodology for dealing with imprecision and nonlinearity
efficiently (Wang, 1994). However, one of the shortcomings of fuzzy logic is the lack of
learning and adaptation capabilities. As we know, neural network (NN) is one of the
important technologies towards realizing artificial intelligence and machine learning. Many
types of neural networks with different learning algorithms have been designed and
developed (Deng et al., 2002; Levin & Narendra, 1996; Narendra &Parathasarathy, 1998).
Recently, there is an increasing interest to hybridize the approximate reasoning method of
fuzzy systems with the learning capabilities of neural networks and evolutionary
algorithms. Fuzzy neural network (FNN) system is one of the most successful and visible
directions of that effort.
FNNs as hybrid systems have been proven to be able to reap the benefits of fuzzy logic and
neural networks. In these hybrid systems, standard neural networks are designed to
approximate a fuzzy inference system through the structure of neural networks while the
parameters of the fuzzy system are modified by means of learning algorithms used in neural
networks. One purpose of developing hybrid fuzzy neural networks is to create self-
adaptive fuzzy rules for online identification of a singleton or Takagi-Sugeno-kang (TSK)
type fuzzy model (Takagi & Sugeno, 1985) of a nonlinear time-varying complex system. The
twin issues associated with a fuzzy system are 1) parameter estimation which involves
determining parameters of premises and consequences and 2) structure identification which
involves partitioning the input space and determining the number of fuzzy rules for a
specific performance. FNN systems have been found to be very effective and of widespread
use in several fields.
 In recent years, the idea of self-organization has been introduced in hybrid systems to
create adaptive models. Some adaptive approaches also have been introduced in FNNs
whereby not only the weights but also the structure can be self-adaptive during the learning
process (Er & Wu, 2002; Huang et al., 2004; Jang, 1993; Juang &Lin, 1998; Leng et al., 2004;
Lin &Lee, 1996; Qiao & Wang, 2008).
The technology of FNNs combines the profound learning capability of neural networks with
the mechanism of explicit and easily interpretable knowledge presentation provided by
fuzzy logic. In a word, FNN is able to represent meaningful real-world concepts in

www.intechopen.com

 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems

282

comprehensive knowledge bases. The typical approach of designing an FNN system is to
build standard neural networks first, and then incorporate fuzzy logic in the structure of
neural networks. The key idea is as follows: Assuming that some particular membership
functions have been defined, we begin with a fixed number of rules by resorting to either
trial-and-error methods or expert knowledge. Next, the parameters are modified by learning
algorithm such as backpropagation (BP) algorithm (Siddique & Tokhi, 2001). The BP is a
gradient descent search algorithm. It is based on minimization of the total mean squared
error between the actual output and the desired output. This error is used to guide the
search of the BP algorithm in the weight space. The BP is widely used in many applications
in that it is not necessary to determine the exact structure and parameters of neural
networks in advance. However, the problem of the BP algorithm is that it is often trapped in
local minima and the learning speed is very slow in searching for global minimum of the
search space. The speed and robustness of the BP algorithm are sensitive to several
parameters of the algorithm and the best parameters vary from problems to problems.
Therefore, many adjustment methods have been developed, notably evolutionary
algorithms such as genetic algorithms (GAs) or particle swarm optimization (PSO). By
working with a population of solutions, the GA can seek many local minima, and thus
increase the likelihood of finding global minimum. This advantage of GA can be applied to
neural networks to optimize the topology and parameters of weights. The key point is to
employ an evolutionary learning process to automate the designing of the knowledge base,
which can be considered as an optimization or search problem. The GA is used to optimize
the parameters of neural networks (Seng et al., 1999; Siddique & Tokhi, 2001; Zhou & Er,
2008) or identify the optimal structure of neural networks (Chen et al., 1999; Tang et al.,
1995,). Moreover, the adaptation of neural network parameters can be performed by
different methods such as orthogonal least square (OLS) (Chen et al.,1991), recursive least
square (RLS) (Leng et al., 2004), linear least square (LLS) (Er & Wu, 2002), extended Kalman
filter (EKF) (Kadirkamanathan & Niranjan, 1993; Er et al., 2010) and so on.
The objective of this chapter is to develop FNNs by hybrid learning techniques so that these
systems can be used for online identification, model and control nonlinear and time-varying
complex systems. In this chapter, we propose two kinds of self-organizing FNN that attempt
to combine fuzzy logic with neural network and apply these learning algorithms to solve
several well-known benchmark problems such as static function and linear and nonlinear
function approximation, Mackey-Glass time-series prediction and real-world benchmark
regression prediction and so on.
The chapter is organized as follows. The general frame of self-organizing FNN is described
in Section 2. The first learning algorithm combined FNN with EKF is presented in Section 3.
It is simple and effective and is able to generate a FNN with high accuracy and compact
structure. Furthermore, a novel neuron pruning algorithm based on optimal brain surgeon
(OBS) for self-organizing FNN is described in Section 4 in detail. Simulation studies on
several well-known benchmark problems and comparisons with other learning algorithms
have been conducted in each section. The summary of FNN associated with conclusions and
future work are discussed in Section 5.

2. General frame of self-organizing FNNs

The self-organizing fuzzy neural network system primarily implements TSK or TS type
(Sugeno & Kang, 1988) fuzzy model. The general architecture is depicted in Fig. 1. This five-

www.intechopen.com

Development of Fuzzy Neural Networks: Current Framework and Trends

283

layer self-organizing FNN implements a TSK type fuzzy system. Without loss of generality,
we consider a multi-input-single-output (MISO) fuzzy model with input vector
X=(x1,x2,…,xr) and output variable y.

Fig. 1. General architecture of FNNs.

Layer 1 is an input layer and transmits values of input linguistic variable (1,2,)ix i r= A to
layer 2 directly, where r is the number of input variables. Each input variable ix has l
membership functions (MFs) (1,2, , 1,2, ,)ij i r j lμ = =A A as shown in layer 2. The MFs can
be triangular function (G. Leng et al., 2009) or Gaussian function (Wu and Er, 2004) or other
functions. In this chapter, we choose Gaussian functions given by

2

2

()
() exp 1,2, , , 1,2, ,

i ij
ij i

ij

x c
x i r j lμ

σ

⎛ ⎞−
⎜ ⎟= − = =
⎜ ⎟
⎝ ⎠

A A (1)

where ijμ is the jth membership function of the ith input variable ix , ijc and ijσ are the
center and width of the jth membership function with respect to the ith neuron, respectively.
Layer 3 is the rule layer. Each node in this layer represents a possible IF-part of fuzzy rules.
If the T-norm operator used to compute each rule’s firing strength is multiplication, the
output of the jth rule (1,2,)jR j l= A is

2

1 2 2
1

()
(, , ,) exp 1,2, ,

r
i ij

j r
i ij

x c
x x x j lϕ

σ=

⎛ ⎞−
⎜ ⎟= − =
⎜ ⎟
⎝ ⎠
∑… … . (2)

www.intechopen.com

 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems

284

Layer 4 is the normalized layer. The number of neurons in this layer is equal to that of layer
3. The output of the jth neuron in this layer is

1

, 1,2, ,
j

j l
ii

j l
ϕ

ψ
ϕ

=

= =
∑

A (3)

Layer 5 is output layer and each node represents an output linguistic variable. The output of
this layer is the weighted summation of incoming signals given by

 1
1

()
l

r j j
j

y x x wψ
=

=∑A (4)

where y is the output variable and wj is the THEN-part or connection weight of the jth rule.
For the TSK model, weights are the polynomials of the input variables

 0 1 1j j j j jr rw A B a a x a x= ⋅ = + +A (5)

where Aj=[αj0αj1…αjr] is the weight vector of input variables in jth rule and B=[1x1…xr] is a
column vector.
Suppose the nth data pair is arriving, and u RBF units are generated for the n training data
pairs. The overall output of the FNN is

 Y = WΨ (6)

where for the TSK model, W and Ψ are given by

 10 20 0 11 21 1 1 2[]u u r r urW a a a a a a a a a= A A A (7)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Ψ

rnunru

rnnr

nunu

nn

unu

n

xx

xx

xx

xx

ψψ

ψψ

ψψ

ψψ
ψψ

ψψ

A
BBB

A
BBB

A
BBB

A
A

BBB
A

11

1111

1111

111111

1

111

(8)

where ψij is the output of the ith neuron in the normalized layer when jth training data arrives.

3. Self-constructing Fuzzy Neural Networks with Extended Kalman Filter
(SFNNEKF)

In this section, a self-constructing fuzzy neural network employing extended Kalman filter
(SFNNEKF) is designed and developed. The learning algorithm based on EKF is simple and
effective and is able to generate a FNN with a high accuracy and compact structure. The

www.intechopen.com

Development of Fuzzy Neural Networks: Current Framework and Trends

285

proposed algorithm comprises of three parts: (1) criteria of rule generation; (2) pruning
technology and (3) adjustment of free parameters. The EKF algorithm is used to adjust the
free parameters of the SFNNEKF. The performance of the SFNNEKF is compared with other
learning algorithms in the tasks of function approximation, nonlinear system identification
and time-series prediction. Simulation studies and comparisons with other algorithms
demonstrate that a more compact structure with high performance can be achieved by the
proposed algorithm.

3.1 Learning algorithm of SFNNEKF
3.1.1 Error Reduction Ratio (ERR)
Suppose that for n observations, the FNN has generated uRBF neurons. The output matrix
of the hidden layer is given by (8) then (6) can be written as

 T W E= Φ + (9)

where nT R∈ is the desired output vector and E is the error vector, TΦ = Ψ can be
rewritten as follows:

 KAΦ = (10)

where K is a n × u matrix with orthogonal columns and A is a u × u upper triangular matrix.
Substituting (10) into (9), we obtain

 T KAW E KG E= + = + (11)

The orthogonal lease squares solution G is given by 1()T TG K K K T−= or equivalently

 1
T
i

i T
i i

k T
g i u

k k
= ≤ ≤ (12)

An error reduction ratio (ERR) due to ki as defined in (Shen et al., 1991) is given by

2

1
T

i i i
i T

g k k
err i u

T T
= ≤ ≤ (13)

Substituting (12) into (13) yields

2()

1
T
i

i T T
i i

k T
err i u

k k T T
= ≤ ≤ (14)

The ERR offers a simple and effective way of seeking a subset of significant regressors. In
this chapter, we use it as a growing criterion to evaluate the network generalization
capability. We define

1

u

i
i

errη
=

=∑ (15)

If η < kerr, where kerr is a prespecified threshold, the FNN needs more hidden nodes to
achieve good generalization performance and a neuron will be added to the network.
Otherwise, no neurons will be added.

www.intechopen.com

 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems

286

3.1.2 Criteria of growing neurons
 For the ith observation(Pi,ti), calculate the output error of the SFNNEKF, ei, the distance di(j)
and the ERR as follows:

 i i ie t y= − (16)

 () , 1, ,i i jd j P C j u= − = A (17)

1

u

i
i

errη
=

=∑ (18)

If

 min,i e d erre k d k and kη> > < (19)

where min arg min(())id d j= , 1,2, ,j u= A , ,e dk k are two predetermined parameters which

are chosen as follows:

 max minmax[,] 0 1i
ek e eβ β= × < < (20)

 max minmax[,] 0 1,i
dk d dγ γ= × < < (21)

a new neuron is added to the SFNNEKF network and the center, width and the output layer
weight for the newly generated neuron are set as follows:

 i iC P= (22)

 i iw e= (23)

 mini k dσ = × (24)

where k is an overlap factor that determines the overlap of responses of the RBF units.

3.1.3 Criteria of pruning neurons
To facilitate the following discussion, we rewrite the output matrix of the hidden layer, as
follows:

11 1

1

u

n un

p p

p p

⎡ ⎤
⎢ ⎥Φ = ⎢ ⎥
⎢ ⎥⎣ ⎦

A
B B B

A
 (25)

In order to evaluate the contribution of each hidden neuron to the network output, the root
mean square error (RMSE) of each hidden node is calculated as follows:

 / , 1, ,T
i i ih n i uφ φ= = A (26)

where 1[, ,]Ti i inp pφ = A is the column vector of matrixΦ . If i rmseh k< where rmsek is a

prespecified threshold, the ith hidden neuron is inactive and should be deleted.

www.intechopen.com

Development of Fuzzy Neural Networks: Current Framework and Trends

287

3.1.4 Adjustment of weights

 When no neurons are added or pruned from the network, the network parameter vector

WEKF is adjusted using the EKF method (Kadirkamanathan & Niranjan, 1993)

 () (1)EKF EKF n nW n W n e k= − + (27)

where 1 1 1[, , , , , ,]T T
EKF u u uW w C w Cσ σ= A is the network parameter vector and kn is the

Kalman gain vector given by

 1
1 1[]T

n n n n n n nk R a P a P a−
− −= + (28)

Here, an is the gradient vector and has the following form

1 1 1 1 1

23
1 1 1 1

23

[(), ()(2)() ,

()(2) , ,

(), ()(2)() ,

()(2)]

T
n n n n

n n

T
u n u n u u n u

T
u n u u n u

a X X w X C

X w X C

X X w X C

X w X C

ψ ψ σ

ψ σ

ψ ψ σ

ψ σ

= −

−

−

−

A
 (29)

where Rn is the variance of the measurement noise and Pn is the error covariance matrix

which is updated by

 1[]T
n n n nP I k a P QI−= − + (30)

where Q is a scalar that determines the allowed random step in the direction of gradient
vector and I is the identity matrix. When a new neuron is allocated, the dimensionality of
the Pn increases to

 1

0

0

0
n

n

P
P

P I
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (31)

where P0 is an estimate of uncertainties in the initial values assigned to the parameters.

3.2 Simulation results
3.2.1 Function approximation

First, a very popular function, Hermite polynomial, is used to evaluate the performance of

the proposed SFNNEKF. The function is given by

2

2() 1.1(1 2)exp()
2

x
f x x x= − + − (32)

Parameters of the SFNNEKF are set as follows: max 1d = , min 0.2d = , max 0.8e = , min 0.01e = ,

0.99errk = , 0.005rmsek = , 0.5k = , 0.97β = , 0.97γ = , 0 1.1P = and 0.01Q = . A total of 200

training samples are randomly chosen from the interval [−4, 4] for all the methods. Fig. 1

shows the growth of hidden neurons and Fig. 2 shows the RMSE with respect to the training

samples. A comparison of structure and performance with MRAN (Lu et al., 1997) and DFNN

(Er & Wu, 2002) is summarized in Table 1. It can be seen that the DFNN algorithm achieves the

www.intechopen.com

 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems

288

best RMSE performance in this case, but it needs more training time, because the TSK model

makes the DFNN network structure more complicated. The SFNNEKF algorithm can obtain

almost the same RMSE performance as the DFNN with faster learning speed and it has better

performance than the MRAN algorithm in terms of training time and RMSE.

Fig. 1. Growth of neurons

Fig. 2. RMSE during training

Algorithm Number of neurons RMSE Training time(s)

SFNNEKF 6 0.0078 0.38

DFNN 6 0.0052 2.97

MRAN 7 0.0376 0.53

Table 1. Comparison of structure and performance of different algorithms (Example 3.2.1)

www.intechopen.com

Development of Fuzzy Neural Networks: Current Framework and Trends

289

Fig. 3. Identification result: Desired (-) and Identified (---)

Fig. 4. RMSE during training

3.2.2 Nonlinear plant identification

The plant be identified is described by the second-order difference equation (Narendra &
Parathasarathy, 1990)

 (1) [(), (1)] ()y t f y t y t u t+ = − + (33)

where

www.intechopen.com

 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems

290

2 2

() (1)[() 2.5]
[(), (1)]

1 () (1)

y t y t y t
f y t y t

y t y t

− +
− =

+ + −
 (34)

Parameters of the SFNNEKF are set as follows:

max 1d = , min 0.2d = , max 0.8e = , min 0.01e = , 0.96errk = , 0.005rmsek = , 0.5k = , 0.97β = ,

0.97γ = , 0 1.1P = , and 0.01Q = .
The input u(k) is assumed to be independent identically distributed (i.i.d) random signal
uniformly distributed in the interval [−2, 2] and a total of 2000 samples are randomly chosen

for the training process. After this, the sinusoidal input signal () sin(2 / 25)u t tπ= is used to

test identified model. Fig. 3 depicts the identified results using the SFNNEKF algorithm. In
order to observe the result clearly, only the first 100 samples are shown in Fig. 3. Here, the
solid-line curve is the desired plant output and the dash-line curve is for the identified
model output. It can be seen that the SFNNEKF algorithm can identify the plant very well.
The RMSE for training samples is shown in Fig. 4. The SFNNEKF algorithm generated a
total of 15 neurons at the end of the training process. Table 2 shows a comparison of
structure and performance of different algorithms. It is clear that the SFNNEKF algorithm
can achieve a satisfactory RMSE performance with a simple network structure. Although the
RMSE of the DFNN algorithm is 0.056, it needs more neurons (i.e. complicated network
structure) to realize it. For the training speed, the SFNNEKF algorithm is the fastest method
in all the three sequential learning algorithms. As a whole, the SFNNEKF algorithm
demonstrates superior performance than the DFNN and MRAN algorithms in terms of
networks complexity and training time.

Algorithm Number of neurons RMSE Training time (s)

SFNNEKF 15 0.087 30.25

DFNN 26 0.056 608.51

MRAN 40 0.1525 69.79

Table 2. Comparison of structure and performance of different algorithms (Example 3.2.2)

3.2.3 Mackey-Glass time-series prediction

The Mackey-Glass time-series prediction is a benchmark problem which has been considered

by a number of researchers (Lu et al., 1997; Wu & Er, 2000; Cho &Wang, 1996; Juang & Tin,

1998; Kadirkamanathan & Niranjan, 1993). The time series in our simulation is generated by

10

()
(1) (1) ()

1 ()

bx t
x t a x t

x t

τ
τ

−
+ = − +

+ −
 (35)

for a=0.1, b=0.2 and τ=17. A sampled version of the series is obtained by the above equation.
The prediction model is given by

 () [(), (), (2), (3)]x t p f x t x t t x t t x t t+ = − Δ − Δ − Δ (36)

 For the purpose of training and testing, 6000 samples are generated between t=0 and t=6000

from (33) with initial conditions x(t)=0 for t<0 and x(0)=1.2. Hence, these data are used for

preparing for the input and output pairs in the (34).

www.intechopen.com

Development of Fuzzy Neural Networks: Current Framework and Trends

291

Suppose p=6, Δt=6, select first 500 sample pairs between 118≤t≤617 as training data.
Parameters of the SFNNEKF are set as follows:

max 1d = , min 0.18d = , max 1.1e = , min 0.02e = , 1.2errk = , 0.00025rmsek = , 0.5k = , 0.95β = ,

0.98γ = , 0 1.1P = , and 0.01Q =
The results for n=500, p=6 are shown in Fig. 5 and Fig. 6.

Figures illustrate the simulation results of the SFNNEKF in the case that p is 6 and the

number of rules is 34. It indicates that the SFNNEKF possesses remarkable generalization

capability. If we selected p=50 and Δt=6, for the convenience of comparison, the

generalization capability is evaluated by the normalized root mean squared error (NRMSE)

or the non-dimensional error index (NDEI), which is defined as the RMSE divided by the

standard deviation of the target series (Platt, 1991). Generalization comparisons between the

SFNNEKF, DFNN (Er & Wu, 2002), RAN (Platt, 1991) RANEKF (Kadirkamanathan &

Niranjan, 1993), and MRAN (Lu et al., 1997) is listed in table 3. It is shown that SFNNEKF

can obtain better performance even it has generated more rules than DFNN. However, the

SFNNEKF shows superiority compared with the RAN and RANEKF algorithms in terms of

the performance of the NRMSE, which measures the average prediction performance. The

final value of the NRMSE is 0.0327 for SFNNEKF with 41 rules compares with 0.071 for the

RAN and 0.056 for the RANEKF.

0 50 100 150 200 250 300 350 400 450 500
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Training samples

D
e
s
ir
e
d
 &

 p
re

d
ic

te
d
 o

u
tp

u
t

Fig. 5. Mackey-Glass time series from 642 to 1141 and six-step

Algorithm Pattern length Number of rules NRMSE

SFNNEKF 2000 41 0.0327

DFNN 2000 25 0.0544

RAN 5000 50 0.071

RANEKF 5000 56 0.056

MRAN 5000 28 a

a The generalization error is measured by weighted prediction error (WPE) (example 3.2.3)

Table 3. Generalization comparison between SFNNEKF, DFNN, RAN, RANEKF and MRAN

www.intechopen.com

 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems

292

0 50 100 150 200 250 300 350 400 450 500
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time t

P
re

d
ic

ti
o
n
 e

rr
o
r

Fig. 6. Prediction error

3.3 Conclusions

A new self-constructing fuzzy neural network has been proposed in this part. The basic idea
of the proposed approach is to construct a self-constructing fuzzy neural network based on
criteria of generating and pruning neurons. The EKF algorithm has been used to adapt the
consequent parameters when a hidden unit is not added. The superior performance of the
SFNNEKF over some other learning algorithms has been demonstrated in three examples in
this part. Simulation results show that a more effective fuzzy neural network with high
accuracy and compact structure can be self-constructed by the proposed SFNNEKF
algorithm.

4. A neuron pruning algorithm based on optimal brain surgeon for self-
organizing fuzzy neural networks with parsimonious structure

In this section, a novel learning algorithm for creating a self-organizing FNN to implement

TSK type fuzzy models is proposed. The optimal brain surgeon (OBS) (Hassibi & Stork,

1993) is employed as a neuron pruning mechanism to remove unimportant neurons directly

during the training procedure. Distinguished from other pruning strategies based on the

OBS, there is no need to calculate the inverse matrix of Hessian, we simplify the calculation

by using LLS method to obtain the Hessian matrix. To acquire precision model, the LLS

method is performed to obtain the consequent parameters of the network. The proposed

algorithm has a parsimonious structure and is generated with high accuracy. The

effectiveness of the proposed algorithm is demonstrated in several well-known benchmark

problems such as static function approximation, two-input nonlinear function

approximation and real-world non-uniform benchmark regression problems. Simulation

studies are compared with other existing published algorithms. The results indicate that the

proposed algorithm can provide comparable approximation and generalization

performance with a more compact structure and higher accuracy.

www.intechopen.com

Development of Fuzzy Neural Networks: Current Framework and Trends

293

4.1 Learning algorithm of the FNN
The learning procedure of the proposed self-organizing FNN comprises two stages. In the
first stage, the structure of the FNN is generated based on the growth criteria and the
proposed OBS-based pruning method. In the second stage, parameters of newly created
neurons are assigned and consequent parameters of all existing neurons will be updated by
the LLS method.

4.1.1 Structure design of the FNN
To determine the proper number of neurons or fuzzy rules of FNNs, we adopt two growth
criteria to generate neurons. In order to obtain a compact structure, the OBS algorithm (Hassibi
& Stork, 1993) is employed as a pruning criterion. An initial structure of the FNN is first
constructed and the importance of each hidden neuron or fuzzy rule is evaluated by the OBS
algorithm, the least important neuron will be deleted if the performance of the entire network
is accepted after deleting this unimportant neuron. This procedure will repeat until the desired
accuracy can be satisfied. We will describe the learning algorithm in detail in the sequel.
The learning stage is based on a data set composed by n input-output pairs:

 { } { }1 2(, (, , ,), , 1,2 ,k k k k kr kP X t x x x t k n= = =A A . (37)

When the kth observation (Xt,tk) arrives, the overall FNN output of the existing structure
using (2)-(4) is denoted by yk, the system error can be defined by (16)
If

 k ee k> (38)

where ke is a predefined error tolerance, a new fuzzy rule should be considered if other
criteria of generation have been satisfied simultaneously. The term ke decays during the
learning process as follows

max

max min

min

1 / 3

max[,], / 3 2 / 3

2

i
e

e i n

k e e n i n

e n i n

β

⎧ < <
⎪

= × ≤ ≤⎨
⎪ < ≤⎩

 (39)

where emax is the maximum error chosen, emin is the desired accuracy of the FNN output and
β∈(0,1)is a convergence constant.
The second growth criterion is the accommodation criterion. It can be described as follows:
when the kth observation (Xt,tk) arrives, calculate the distance dkj between the observation Xk
and the center Cj of the u existing neurons, i.e.

 , 1,2, , , 1,2, ,kj k jd X C k n j u= − = =A A , (40)

the minimum distance between the kth observation and the nearest center is described as

 min arg min(), 1,2, , , 1,2 ,kjd d k n j u= = =A A . (41)

If

 min dd k> (42)

www.intechopen.com

 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems

294

where kd is determined by (21).

Here, dmax is the largest length of the input space, dmin is the smallest length of interest and

(0,1)γ ∈ is the decay constant. If these two growth criteria are satisfied simultaneously, a

new hidden neuron will be generated.
When growth procedure is complete, a pruning algorithm is employed to optimize the
structure of the FNN to obtain a compact network structure. For this algorithm, we use the
OBS as a pruning strategy. The OBS algorithm uses the second-order derivative information
of the error function to find the unimportant neuron to get a tradeoff between the network
complexity and good performance of entire network. The basic idea of the OBS algorithm is
described as follows. Firstly, we assume that the pruning algorithm is used after the training
process has converged or is fully trained. It means that the network reaches a local
minimum of the error surface. The functional Taylor series of the cost function E with
respect to parameters w is given by

2

3

2

1
()

2

T
TE E

E w w w O w
w w

∂ ∂⎛ ⎞Δ = ⋅ Δ + Δ ⋅ ⋅ Δ + Δ⎜ ⎟∂ ∂⎝ ⎠
 (43)

where
2

2

E
H

w

∂
=
∂

is the Hessian matrix which contains all second-order derivative

information. For a network trained to a local minimum in error,

 0
T

E
w

w

∂⎛ ⎞ ⋅ Δ =⎜ ⎟∂⎝ ⎠
 (44)

and we also ignore the third and all higher order terms. The goal is to set one of the
parameters wq to zero to minimize the increase in error given by (41). Eliminating wq can be
expressed as

 0q qw wΔ + = . (45)

Then the optimal model of OBS can be formulated as an optimization problem as follows

1
min

2

. . 0

T

T
q q

w H w

s t I w w

Δ Δ

Δ + =
 (46)

where Iq is the unt vector in parameter space corresponding to parameter wq.
Solving the constrained problem using the Lagrangian method

1

()
2

T T
q qL w H w I w wλ= Δ Δ + Δ + (47)

where λ is a Lagrange undetermined multiplier. After taking functional derivatives, employ
the constraints and obtain resulting change in error are

 1
1[]

q
q

qq

w
w H I

H

−
−Δ = − ⋅ (48)

www.intechopen.com

Development of Fuzzy Neural Networks: Current Framework and Trends

295

2

1

1

2 []

q

qq

w
L

H−= (49)

where 1H− is the inverse of the Hessian matrix H and 1[]qqH− is the qth element of 1H− .

Note that the OBS algorithm needs to calculate the inverse of the Hessian matrix. In fact, for
very small dimension of the Hessian matrix, its inverse can be obtained by standard matrix
methods while inverting a matrix of hundreds or thousands of terms seems computationally
intractable. For our algorithm, we use the LLS method to avoid calculating the inverse of the

Hessian matrix. The cost function used in our algorithm is defined as the training error ()tE Θ

 2

1

1
() [() ()]

2

n
T

t
k

E t k kφ
=

Θ = − Θ∑ (50)

where TWΘ = is the parameter vector, ()t k is the desired output of the FNN

and 1 2 (1)() [() () ()]T
u rk k k kφ φ φ φ × += A , 1,2 ,k n= A .

The functional Taylor series of the cost function of the FNN with respect to parameter vector

Θ is

2

3

2

() ()1
() ()

2

T
Tt t

t

E E
E O

∂ Θ ∂ Θ⎛ ⎞Δ Θ = ⋅ ΔΘ + ΔΘ ⋅ ⋅ ΔΘ + ΔΘ⎜ ⎟∂Θ ∂Θ⎝ ⎠
 (51)

where
2

2

()tE
H

∂ Θ
=

∂Θ
 is the Hessian matrix. For a network trained to a local minimum in error,

()

0
T

tE∂ Θ⎛ ⎞ ⋅ ΔΘ =⎜ ⎟∂Θ⎝ ⎠
 (52)

and the third and all higher order terms are ignored. Then (49) can be rewritten as

2

2

()1 1
()

2 2
T Tt

t

E
E H

∂ Θ
Δ Θ ≈ ΔΘ ⋅ ⋅ ΔΘ = ΔΘ ΔΘ

∂Θ
 (53)

In the following part, we will discuss how to use the Hessian matrix H to measure the

increase in cost function ()tE Θ due to deleting some parameters and then present the

pruning algorithm. From (11) and (53) the Hessian matrix can be rewritten as

2

2

() TtE
H

∂ Θ
= = Φ Φ

∂Θ
 (54)

After obtaining the Hessian matrix H , we can calculate the increase in cost function ()tE Θ

due to a change in parametersΘ . Since deleting the ith parameter in Θ is equivalent to

setting the value of the corresponding parameter to zero, then the change in ()tE Θ due to

the removal of a subset G of parameters is

1

()
2

T
t G GE HΔ Θ ≈ ΔΘ ΔΘ (55)

www.intechopen.com

 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems

296

where

[]

[]
0

i
i

if i G

if i G

Θ ∈⎧
ΔΘ = ⎨ ∉⎩

 (56)

where []iΘ denotes ith element ofΘ .

After all, the importance of each hidden neuron or fuzzy rule can be evaluated by the

change in cost function or training squared error ΔEt(Θ), the smaller the value of the change

in the cost function, the less important is the neuron. Based on these descriptions, the

proposed OBS-based pruning algorithm can be summarized as follows
1. Calculate the output of the existing FNN after growing all coming data.

2. According (50, calculate the RMSE for training, Et(Θ).
3. Compute the Hessian matrix H according to (54).
4. Evaluate the importance of each hidden neuron in the network:

1
()

2
T

t i i iE HΔ Θ = ΔΘ ΔΘ for 1,2 ,i M= A where M is the number of parameters.

5. Define the tolerance limit of the change in the training for the RMSE as λERMSE, where
λis a predefined constant and 0<λ<1.

6. Define the expected RMSE for training as kRMSE. In general, kRMSE is a very small positive
value.

7. Find the smallest value of change in cost function

 min min[,] min (), 1,2, ,t t i
i

E ind E i MΔ = Δ Θ = A (57)

where mintEΔ denotes the smallest value of ()tEΔ Θ and minind denotes the index of the

smallest value.

8. Calculate the RMSE after deleting the least importance hidden neuron D
RMSEE , choose

max(,)D
RMSE RMSEE E kλ= , if D D

RMSEE E< , remove this neuron, and go to step 7) for the

second least important neuron, and so on. Otherwise, do not remove any neurons and
proceed to the weight adjustment stage.

Therefore, the structure (number of hidden neurons or fuzzy rules) of FNN is obtained
based on the growth and pruning criteria.

4.1.2 Update of parameters and weight adjustment
After the network structure is established, the network enters the second stage: parameters
of newly created neurons are assigned and the consequent parameters of all existing
neurons will be updated by the simple but efficient LLS method.
For the first observation (X1,t1) arrives, since there are no hidden neurons at the beginning,
some initializations are conducted. Parameters of the first neuron are assigned as follows

 1 1C X= (58)

 1 0widthσ = (59)

 1 1w t= (60)

www.intechopen.com

Development of Fuzzy Neural Networks: Current Framework and Trends

297

where 1C and 1σ is the center and width of the first neuron respectively, and 1w is the

connective weight of the first neuron.
The objective of weight adjustment is as follows

 Y W= Ψ (61)

 E T Y= −# (62)

We try to find an optimal weight vector (1)* u rW R × +∈ such that the error energy TE E# # is
minimized. By using the LLS method, we can find the optimal *W is in the form of

 * 1()T TW T T+ −= Ψ = Ψ Ψ Ψ (63)

Since the structure of our FNN is very compact after structure learning process, the
dimension of W and Ψ is small, the LLS method provides a computationally simple and
efficient weight adjustment process.

4.2 Illustrative examples
In this section, the effectiveness of the proposed algorithm is demonstrated in three kinds of
well-known benchmark examples: static function approximation, two-input nonlinear
approximation and real-world non-uniform benchmark regression problems (Boston
housing, auto-mpg and abalone) (Frank & Asuncion, 2010). The simulation results are also
compared with other algorithms such as the OLS (Chen et al., 1991), RAN (Platt, 1991),
RANEKF (Kadirkamanathan & Niranjan, 1993), MRAN (Lu et al., 1997), GAP-RBF(Huang et
al., 2004), OS-ELM (Liang et al., 2006) GDFNN (Wu et al., 2001), SOFNN (Leng et al., 2005),
FAOS-PFNN(Wang et al., 2009).

4.2.1 Static function approximation
The first example is on static function approximation. The underlying function to be
approximated is a three-input nonlinear function f(x,y,z) which is widely used to verify the
effectiveness of proposed algorithms of Khayat et al., 2009; Wu et al., 2001; Qiao & Wang,
2008; Chen et al., 1991.

 0.5 1 1.5 2(, ,) (1)f x y z x y z− −= + + + (64)

A total of 216 uniformly training data are randomly sampled from the input ranges

[1,6] [1,6] [1,6]× × and the corresponding target data. Another 125 uniformly testing data

are randomly selected from the same operating range to check the generalization of the

proposed FNN. The parameters are selected as follows: max 5e = , min 0.8e = , max 0.83d = ,

min 0.47d = , 0.97β = , 0.99γ = , 0.8λ = , 0 2width = and 0.3RMSEk = .
To be in conformity with other learning algorithms, the same performance index, termed
average percentage errors (APE) is used

1

() ()1
100%

()

n

k

t k y k
APE

n t k=

−
= ×∑ (65)

where n is the number of data pairs, t(k) and y(k) are the kth desired output and actual
output of the FNN, respectively.

www.intechopen.com

 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems

298

Simulation results are shown in Fig. 7, where we see that a four-hidden-neuron structure is
generated. The RMSE curving of training data with 216 epochs is shown in Fig. 8. The input
variables x,y and z define four membership functions respectively. As we can see from the
resulting figures, the trained network obtains a high precision and the RMSE is also
confined to a very small value.

0 50 100 150 200 250
1

2

3

4

5

6

7
Rule generation

sample patterns

N
o
 o

f
n
e
u
ro

n
s

Fig. 7. Growth of fuzzy rules

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Root mean square error (RMSE)

sample patterns

R
M

S
E

Fig. 8. Root mean squared error (RMSE) during training

www.intechopen.com

Development of Fuzzy Neural Networks: Current Framework and Trends

299

Model APEtrn % APEchk %
Parameter

number
Training
set size

Testing
set size

OLS 2.43 2.56 66 216 125
GDFNN 2.11 1.54 64 216 125

SOFNN 1.1380 1.1244 60 216 125

The proposed algorithm 2.76 1.55 40 216 125

Table 4. Comparisons of the Proposed Algorithm with Other Methods (Static Function
Approximation) (example 4.2.1)

Comparative studies of the proposed algorithm with other published works, such as the

OLS (Chen et al., 1991), GDFNN (Wu et al., 2001) and SOFNN (Leng et al., 2005) are shown

in Table 4. APEtrn % and APEchk % are APE of training data and testing data, respectively. As

it can be seen from Table 4, the proposed algorithm has the least number of parameters

which means that it achieves the most compact structure compared with other algorithms

while the approximation performance is worse than that of the SOFNN and GDFNN and

nearly the same as that of the OLS. It should be noted that the proposed algorithm has a

satisfactory generalization performance as its APE of testing is only 1.55 which is less than

OLS and almost the same as that of the GDFNN. In brief, the proposed algorithm achieves

the most parsimonious structure with good accuracy.

4.2.2 Two-input nonlinear sinc function
This example is used to demonstrate the performance of the proposed algorithm in noisy
and noise-free environments. This function is also used in Leng et al., 2004 and Leng et al.,
2009. It is defined as follows

 sin()sin()
sin (,) , [10,10], [10,10]

x y
z c x y x y

xy
= = ∈ − ∈ − (66)

A total of 121 two-input data without noise and the corresponding target data are chosen as

training data. Another set of uniformly sampled 121 input-target data are selected as testing

data. The training parameters are selected as follows: max 1.1e = , min 0.02e = , max 2d = ,

min 0.2d = , 0.9β = , 0.97γ = , 0.8λ = , 0 2width = and 0.005RMSEk = .
A total of 5 hidden neurons (i.e. fuzzy rules) FNN is generated. The number of membership

functions associated inputs x and y is five. When the training data is without noise, the

RMSE for training is 0.0073 whilst the RMSE for testing is 0.0057. In order to determine the

affect of noise, the training data are mixed with Gaussian white noise sequences which have

zero mean and different variances as shown in Table 5.

Variances 2σ
NUMBER OF

Neurons
NUMBER OF

MFS
RMSE for training RMSE for testing

0σ = 5 5,5 0.0073 0.0057

0.01σ = 5 5,5 0.0072 0.0056

0.05σ = 6 6,6 0.0061 0.0048

0.1σ = 7 7,7 0.0063 0.0050

Table 5. Performance of two-input sinc function with noise (example 4.2.2)

www.intechopen.com

 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems

300

It can be observed from Table 5, the number of hidden neurons increases with the level of
noise. That is because more neurons will be required to filter the noise. Both the RMSE for
training and testing are small values though the data mixed with high level of noise. It
means that the proposed algorithm is robust even when the training data is perturbed by
noise. It demonstrates that our algorithm is suitable for noisy environment.

4.2.3 Boston housing prediction

The Boston housing prediction problem is to predict the median value of owner-occupied
homes in suburbs of Boston. The database has 506 observations and each observation
consists of 13 inputs (12 continuous inputs and one binary-valued input) and one
continuous output (median value of owner-occupied homes). The 13 inputs and the output
are normalized to the range [0, 1]. For this problem, 481 training data and 25 testing data are
randomly generated from the Boston housing data set in each trial of simulation studies.
The training parameters are selected as follows: max 5e = , min 0.8e = , max 0.83d = ,

min 0.47d = , 0.99β = , 0.99γ = , 0.8λ = , 0 2width = and 0.05RMSEk = . Performance
comparisons with other algorithms are shown in Table 6.

Model
NUMBER OF

Neurons
RMSE FOR

Training
RMSE for

testing
Training set

size
Testing
set size

RAN 18.8 0.3449 0.3432 481 25

RANEKF 19.98 0.1328 0.1437 481 25

MRAN 13.58 0.1440 0.1356 481 25

GAP-RBF 3.5 0.1507 0.1418 481 25

The proposed algorithm 2 0.0916 0.0583 481 25

Table 6. Comparisons of the proposed algorithm with other methods (Boston housing)

As observed from Table 6, the proposed algorithm obtains the smallest RMSE for training

and testing, which means that the approximation and generalization performance is better

than that of other learning algorithms. It is highlighted that the average number of hidden

neurons generated by the system is only 2, which is less than that of other learning

algorithms. Therefore, the proposed algorithm has the most compact structure of all the

learning algorithms. In other words, our algorithm needs the least number of neurons to

conduct the Boston housing prediction with comparable accuracy simultaneously.

4.2.4 Auto-mpg prediction

The auto-mpg problem is to predict the fuel consumption (miles per gallon) of different
models of cars based on the displacement, horsepower, weight and acceleration of cars. A
total of 392 observations are collected for the prediction problem. Each observation consists
of seven inputs (four continuous inputs: displacement, horsepower, weight, acceleration,
and three discrete inputs: cylinders, model year and origin) and one continuous output (the
fuel consumption). For simplicity, the seven input attributes and one output have been
normalized to the range [0, 1]. A total of 320 training data and 72 testing data are randomly
chosen from the auto-mpg data set in each trial of simulation studies. The training
parameters are selected as the previous Boston housing problem except the expected RMSE
for training set is as kRMSF=0.008. Performance comparisons among RAN (Platt, 1991),

www.intechopen.com

Development of Fuzzy Neural Networks: Current Framework and Trends

301

RANEKF (Kadirkamanathan & Niranjan, 1993), MRAN (Lu et al., 1997), GAP-RBF (Huang
et al., 2004), OS-ELM (Liang et al., 2006), FAOS-PFNN (Wang et al., 2009) and our proposed
algorithm are presented in Table 7. It can be seen that the RMSE for testing our algorithm is
the smallest among these learning algorithms while the RMSE for training is less than other
algorithms except the FAOS-PFNN. It can be summarized that our proposed algorithm has
the best generalization ability of all the learning algorithms though the approximation
performance is a little worse than the FAOS-PFNN. Moreover, the number of fuzzy rules of
our algorithm is only 2 and is less than other algorithms so that it has the most
parsimonious structure among these learning algorithms. In brief, the overall performance
of our algorithm is superior to other algorithms.

Model
NUMBER OF

Neurons
RMSE FOR

Training
RMSE for

testing
Training
set size

Testing
set size

RAN 4.44 0.2923 0.3080 320 72

RANEKF 5.14 0.1088 0.1387 320 72

MRAN 4.46 0.1086 0.1376 320 72

GAP-RBF 3.12 0.1144 0.1404 320 72

FAOS-PFNN 2.9 0.0321 0.0775 320 72

OS-ELM 25 0.0696 0.0759 320 72

The proposed algorithm 2 0.0646 0.0513 320 72

Table 7. Comparisons of the proposed algorithm with other methods (Auto-mpg)

4.2.5 Abalone age prediction

The abalone problem has 4177 cases predicting the age of abalone from physical
measurements. Each observation consists of 8 continuous inputs and 1 integral output.
Similar to the age-auto prediction problem, the 8 inputs and 1 output are normalized to the
range [1, 0]. A total of 3000 training data and 1177 testing data are randomly generated from
the abalone data set in each trial of simulation studies. The training parameters are set as the
same of the previous Boston housing problem.
Tab le 8 presents the performance comparisons of our algorithm with other learning
algorithms. It is clear from the table that the RMSE for testing the proposed algorithm is the
smallest of all algorithms. It means that our algorithm has the best generalization
performance and obtained the smallest network size.

Model
NUMBER OF

Neurons
RMSE FOR

Training
RMSE for

testing
Training
set size

Testing
set size

RAN 345.58 0.0931 0.0978 3000 1177

RANEKF 409 0.0738 0.0794 3000 1177

MRAN 87.571 0.0836 0.0837 3000 1177

GAP-RBF 23.62 0.0963 0.0972 3000 1177

FAOS-PFNN 4.54 0.0311 0.0807 3000 1177

OS-ELM 25 0.0761 0.0770 3000 1177

The proposed algorithm 2 0.0746 0.0735 3000 1177

Table 8. Comparisons of the proposed algorithm with other methods (Abalone)

www.intechopen.com

 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems

302

4.3 Discussions

In this part a novel learning algorithm for creating a self-organizing fuzzy neural network

(FNN) to implement the TSK type fuzzy model with a parsimonious structure was

proposed. The OBS is employed as a pruning algorithm to remove unimportant neurons

directly during the training process. Apart from other pruning strategies based on the OBS,

there is no need to calculate the inverse matrix of Hessian; we simplify the calculation by

using the LLS method to obtain the Hessian matrix.

The effectiveness of the proposed algorithm has been demonstrated in four well-known

benchmark problems: namely static function approximation, nonlinear dynamic system

identification, two-input nonlinear function and real-world non-uniform benchmark

problems. Moreover, performance comparisons with other learning algorithms have also

been presented in this part. The results indicate that the proposed algorithm can provide

comparable approximation and generalization performance with a more compact

parsimonious structure and higher accuracy.

5. Conclusions and future work

In this chapter, the development of fuzzy neural networks has been reviewed and the

main issues for designing fuzzy neural networks including growing and pruning criteria

and different adjustment methods of consequent parameters have been discussed. The

general frame of fuzzy neural networks based on radial basis function neural networks

has been described in Section 2. Two self-organization FNNs have been developed. For

the first FNN, the SFNNEKF algorithm employs ERR as a generation condition in

constructing the network which makes the growth of neurons smooth and fast. The EKF

algorithm has been used to adjust free parameters of the FNN to achieve an optimal

solution. Simulation results show that a more effective fuzzy neural network with high

accuracy and compact structure can be self-constructed by the proposed SFNNEKF

algorithm. For the second FNN, it is composed of two stages: the structure identification

stage and the parameter adjustment stage. The structure identification consists of

constructive and pruning procedures. An initial structure starts with no hidden neurons

or fuzzy rule sets and grows neurons based on the criteria of neuron generation. Then the

OBS is employed as a pruning strategy to further optimal the obtained initial structure. At

last, the well-known LLS method is adopted to tune the free parameters in the parameter

adjustment stage for sequentially arriving training data pairs. Simulation studies are

compared with other algorithms. The simulation results indicate that the proposed

algorithm can provide comparable approximation and generalization performance with a

more compact structure and higher accuracy.

In a word, fuzzy neural networks are hybrid systems that combine the advantages of fuzzy

logic and neural networks, there existed many kinds of FNN developed by researchers.

Recently, the idea of self-organizing has been introduced in FNN. The purpose is to develop

self-organizing fuzzy neural network systems to approximate fuzzy inference through the

structure of neural networks to create adaptive models, mainly for approximate linear and

nonlinear and time-varying systems. FNNs have been widely used in many fields. For our

future work, studies will focus on the structure learning since appropriate number of fuzzy

rules or find proper network architecture and developing optimal parameter adjustment

methods.

www.intechopen.com

Development of Fuzzy Neural Networks: Current Framework and Trends

303

6. References

Chen, S.; Cowan, C. F. N. & Grant, P. M. (1991). Orthogonal least squares learning algorithm for
radial basis function network, IEEE Transactions on Neural Networks, vol. 2, pp. 302-309

Chen, S.; Wu, Y. & Luk, B. L.(1999). Combined genetic algorithm optimization and regularized
orthogonal least squares learning for radial basis function networks, IEEE Trans.
Neural Networks, vol. 10, no. 5, pp. 1239-1243

Cho, K. B. & Wang, B. H.(1996). Radial basis function based adaptive fuzzy systems and their
applications to system identification and prediction, Fuzzy Sets and Systems, vol. 83,
no. 3, pp. 325-339

Deng, J.; Sundararajan, N. & Saratchandran, P.(2002). Communication channel equalization
using complex –valued minimal radial basis function neural networks, IEEE
Transactions on Neural Networks, vol.13, no. 3, pp. 687- 696

Er, M. J. & Wu, S. Q. (2002) A fast learning algorithm for parsimonious fuzzy neural systems,
Fuzzy Sets and Systems, vol. 126, pp. 337-351

Er, M. J.; Liu, F & Li, M. B. (2010). Self-constructing fuzzy neural networks with extended
Kalman filter, International Journal of Fuzzy Systems, vol. 12, no. 1, pp. 66-72

Frank, A. & Asuncion, A. (2010), UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml], Irvine, CA: University of California, School of
Information and Computer Science

Hassibi, B. & Stork, D. G.(1993). Second order derivatives for network pruning: optimal brain
surgeon, in: Advances in Neural Information Processing Systems, Morgan Kaufman, San
Mateo, CA, pp. 164-171

Huang, G. B.; Saratchandran, P. & Sundararajan, N.(2004). An efficient sequential learning
algorithm for growing and pruning (GAP-RBF) networks, IEEE Transactions on
Systems, Man and Cybernetics, Part B: Cybernetics, vol. 34, pp. 2284-2292

Jang, J. S. R. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE
Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665-684

Juang, C. F. & Lin, C. T.(1998). An on-line self-constructing neural fuzzy inference network and
its applications, IEEE Trans. Fuzzy Syst. 6 pp.12–32

Kadirkamanathan, V & Niranjan, M.(1993). A function estimation approach to sequential
learning with neural networks, Neural Computation, vol. 5, no. 6, pp. 954-975

Khayat, O.; Ebadzadeh, M. M.; Shahdoosti, H. R.; Rajaei R. & hajehnasiri, I. K.(2009). A novel
hybrid algorithm for creating self-organizing fuzzy neural networks, Neurocomputing,
73(1-3) pp. 517-524

Leng, G.; Prasad, G. & McGinnity, T. M.(2004). An on-line algorithm for creating self-
organizing fuzzy neural networks, Neural Networks, vol. 17, pp. 1477-1493

Leng, G.; McGinnity, T.M. & Prasad, G.(2005). An approach for on-line extraction of fuzzy rules
using a self-organizing fuzzy neural network, Fuzzy Sets and Syst. 150, pp.211-243.

Leng, G.; Zeng, X. J. & Keane, J. A .(2009). A hybrid learning algorithm with a similarity-based
pruning strategy for self-adaptive neuro-fuzzy systems, Applied Softing Computing, 9,
pp. 1354-1366

Levin, A.U.& Narendra, K. S. (1996). Control of nonlinear dynamical system using neural
networks-part II: Observability, identification, and control, IEEE Transactions on
Neural Networks, vol. 7, no. 1, pp. 30-42

Liang, N. Y.; Huang, G. B.; Saratchandran, P. & Sundararajan, N.(2006). A fast and accurate
online sequential learning algorithm for feedforward networks, IEEE Trans. Neural
Networks 17, pp.1411-1423

www.intechopen.com

 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems

304

Lin, C. T. & Lee, C. S. G.(1996). Neural Fuzzy Systems: a Neural-Fuzzy Synergism to Intelligent
Systems, Englewood Cliffs, NJ: Prentice-Hall

Lu, Y.; Sundararajan, N. & Saratchandran, P.(1997). A sequential learning scheme for function
approximation using minimal radial basis function neural networks, Neural
Computation, vol. 9, no. 2, pp. 461-478

Narendra, K. S. & Parathasarathy, K. (1990). Identification and control of dynamic systems
using neural networks, IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4-27

Platt, J. (1991). A resource-allocating network for function interpolation, Neural Computation,
vol. 3, no. 2, pp. 213-225

Qiao, J. F. & Wang, H. D.(2008). A self-organizing fuzzy neural network and its applications to
function approximation and forecast modeling, Neurocomputing, 71, pp. 564-569

Seng, T. L.; Khalid, M. B. & Yusof, R.(1999). Tuning of a neuro-fuzzy controller by genetic
algorithm, IEEE Trans. Syst., Man, Cyhern. B, Cybern., vol. 9, no. 2, pp. 226-236

Siddique, M. N. H. & Tokhi, M. O. (2001). Training Neural Networks: Backpropagation vs
Genetic Algorithms, Proceeding of the International Joint Conference on Neural Networks
4, pp. 2673-2678

Sugeno, M. & Kang, G. T.(1988). Structure identification of fuzzy model, Fuzzy Sets and
Systems, 28, pp. 15-33

Takagi, T. & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling
and control, IEEE Transactions on Sytems, Man, and Cybernetics 15 pp. 116-132

Tang, K. S.; Chan, C. Y.; Man, K. F.; & Kwong, S. (1995). Genetic Structure for NN Topology
and Weights Optimization, IEE Conference Publication, No. 414, pp.250-255

Wang, L.X. (1994). Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Englewood
Cliffs, NJ: Prentice-Hall

Wang, N.; Er, M. J. & Meng, X. Y. (2009). A fast and accurate online self-organizing scheme for
parsimonious fuzzy neural networks, Neurocomputing, 72, pp. 3818-3829

Wu S. Q. & Er, M. J.(2000). Dynamic fuzzy neural networks - a novel approach to function
approximation, IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics,
vol. 30, no. 2, pp. 358-364

Wu, S. Q.; Er, M. J. & Gao, Y. (2001). A fast approach for automatic generation of fuzzy rules by
generalized dynamic fuzzy neural networks, IEEE Trans. Fuzzy Syst. 9 pp. 578-594.

Zhou, Y. & Er, M. J. (2008). An evolutionary approach toward dynamic self-generated fuzzy
inference systems, IEEE Transactions on system, man and cybernetics, part b: cybernetics,
vol. 38, no. 4, pp. 963-969

www.intechopen.com

New Trends in Technologies: Control, Management,

Computational Intelligence and Network Systems

Edited by Meng Joo Er

ISBN 978-953-307-213-5

Hard cover, 438 pages

Publisher Sciyo

Published online 02, November, 2010

Published in print edition November, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The grandest accomplishments of engineering took place in the twentieth century. The widespread

development and distribution of electricity and clean water, automobiles and airplanes, radio and television,

spacecraft and lasers, antibiotics and medical imaging, computers and the Internet are just some of the

highlights from a century in which engineering revolutionized and improved virtually every aspect of human life.

In this book, the authors provide a glimpse of the new trends of technologies pertaining to control,

management, computational intelligence and network systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Fan Liu and Meng Joo Er (2010). Development of Fuzzy Neural Networks: Current Framework and Trends,

New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems, Meng

Joo Er (Ed.), ISBN: 978-953-307-213-5, InTech, Available from: http://www.intechopen.com/books/new-trends-

in-technologies--control--management--computational-intelligence-and-network-systems/development-of-

fuzzy-neural-networks-current-framework-and-trends

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

