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Abstract. An adaptive structure radial basis function (RBF) network model is proposed in 

this paper to model nonlinear processes with operating region migration. The recursive 

orthogonal least squares algorithm is adopted to select new centers on-line, as well as to train 

the network weights. Based on the R matrix in the orthogonal decomposition, an initial center 

bank is formed and updated in each sample period. A new learning strategy is proposed to 

gain information from the new data for network structure adaptation. A center grouping 

algorithm is also developed to divide the centers into active and non-active groups, so that a 

structure with a smaller size is maintained in the final network model. The proposed RBF 

model is evaluated and compared to the two fixed-structure RBF networks by modeling a 

nonlinear time-varying numerical example. The results demonstrate that the proposed 

adaptive structure model is capable of adapting its structure to fit the operating region of the 

process effectively with a more compact structure and it significantly outperforms the two 

fixed structure RBF models. 

Keywords: RBF networks, neural network model, adaptive structure network, ROLS 

algorithm, RBF structure adaptation. 

 

I. INTRODUCTION 

The radial basis function network (RBFN) has been successfully applied as a nonlinear 

function estimator for dynamical system modelling due to its simple architecture and online 

training ability [1, 2]. The RBFN’s structures can be classified into two categories: fixed-
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structure and adaptive structure. For a fixed-structure RBFN (FS-RBFN), the number and 

location of centers are fixed during the modelling and operation process and the model 

parameters (weights) may be adapted. While, an adaptive structure RBFN has the number 

and location of its hidden layer neurons adapted to better fit the dynamics of the process to be 

modeled, in addition to the adaptation of the network parameters. In general, it produces a 

comparatively satisfactory performance. Thus, the performance of an RBFN is heavily 

dependent on its structure and it is imperative to optimize the RBFN’s structure to achieve a 

satisfactory performance, especially in modeling a highly time-varying process. In order to 

achieve a satisfactory network performance, a sufficient number of centers is required and 

there is no prior knowledge to find the exact number of centers that needed [3]. Thus, an 

unnecessary large RBFN is usually used, which causes numerical ill-conditioning in the 

training of the network and the worsen generalization of the trained model [4]. 

In the past decades, the adaptation of RBFN’s structures has been intensively investigated. 

First of all, Platt [5] made a great contribution to the dynamic RBFN’s structure by 

introducing an algorithm called resource allocating network (RAN). For an RAN, the hidden 

units are gradually inserted into the hidden layer based on the novelty of new data. In a latter 

attempt, Karayiannis and Min [6] developed a framework for growing RBFNs which merged 

supervised and unsupervised learning with network growth techniques. They proposed that 

the structure of network could be gradually constructed by splitting and increasing the 

prototypes which represented the network centers. However, the insignificant hidden neurons 

in [5, 6] were not pruned which led to a final network with a huge structure. To solve the 

oversized problem, Lu et al. [7, 8] proposed a sequential learning scheme for function 

approximation using a minimal RBFN which was referred to as minimal RAN (M-RAN). 

Their pruning strategy was to prune the hidden units that had insignificant contributions to 

the network performance. However, the optimal network structure achieved in [7, 8] is only 

for a certain data sets, while the performance would be degraded if it is used to predict future 

behavior in other regions. In recent years, a few methods have been proposed for self-

organizing RBFNs [9, 10]. Although it was claimed that these methods [9, 10] outperformed 

M-RAN [7] and GGAP-RBF [11], the convergence of their algorithms needed to be 

investigated carefully for successful applications, which complicates the entire training 

algorithms. Moreover, there are many unknown parameters in [9, 10] which needs 

preliminary runs to find optimal values for the parameters before the adaptation of network 

take places. 
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Orthogonal decomposition is a numerically stable method for solving the least squares 

problems. Chen and Billings [12, 13] proposed a forward regression learning approach based 

on the batch orthogonal least squares (OLS) algorithm to determine an RBFN’s structure. In 

their approach, the OLS algorithm was employed to determine an appropriate set of centers 

from a large set of candidate centers. The center was chosen, one by one, until an adequate 

RBFN’s structure was achieved. Chen and Grant [4] further extended this method [12, 13] to 

train a multi-input multi-output (MIMO) RBFN. In addition, Chng et al. [14] extended the 

work of Chen and Billings [12, 13] by introducing a local adaptation process for an RBFN’s 

structure. In the work of Chng et al. [14], the subset models with higher accuracy were 

achieved compared to [12, 13]. The advantage in [12-14] is that the structure and parameters 

of the RBFN are decided simultaneously by evaluating the contributions of centers to 

network performance. However, one major drawback is that the optimization of network’s 

weights is of off-line training mode as their methods [12-14] are based on batch OLS 

algorithm, which means that no new data can be considered during the training process. For 

online application in training the weights, Yu at al. [15] showed that ROLS training 

algorithm was capable of maintaining the same accuracy of the RBFN model as the off-line 

training while requiring less computation. Gomm and Yu [3] developed a forward and a 

backward center selection algorithms using ROLS training algorithm. For the backward 

selection algorithm, the structure of network is simplified by removing the centers which had 

smallest contribution to the network performance. On the other hand, for the forward 

selection algorithm the technique is to build a network by adding centers which will 

maximally enhance the network performance. Their method [3] resulted in an acceptable 

level of efficiency and accuracy with a smaller network’s size. The use of the backward 

center selection method was extended in [16] to develop an adaptive RBFN model. However, 

the developed RBFN models in [3, 16] were not ‘fully’ adaptive as the centers can only be 

selected from a pre-specified candidate center set. In their further work, Yu and Yu [17] 

proposed an adaptive algorithm that incorporated the pruning strategy in [3] to ‘fully’ adapt 

an RBFN model using the ROLS training algorithm. The adding and pruning of centers was 

based on the error index between the desired and measured modeling performances. New 

data was added as new center if the desired modeling performance was not achieved. Results 

showed that a compact RBFN was achieved while the desired modeling performance was 

maintained. However, in this method the added new centers did not play a role immediately 

as the performance was degraded for a few sample periods before the positive role is 

observed during the migration of the process’s operating point. 
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This paper proposes a new algorithm for the adaptation of an RBFN structure  for 

modelling process with operating point migration using ROLS training algorithm. The 

advantage of this proposed algorithm is that the RBFN is able to be adapted effectively to fit 

the new dynamics in the new operating region of the process with a compact structure while 

achieving a satisfactory performance. In this developed algorithm, the RBFN’s structure, the 

number and location of centers, and parameter (weight) are adapted based on the novelty of 

new data. An initial center bank with a pre-specified number of centers is formed which 

involves the actions of adding, pruning and grouping of centers. In adding new centers, a new 

strategy is designed to spread more significant centers in the current operating regions to 

maximize the network performance. The pruning method in [17] is extended to prune 

insignificant centers from the center bank. Then, the centers in the center bank are divided 

into two groups – active center and redundant center groups. Active centers are used to 

predict the process output, while redundant centers are preserved for next sample time. When 

the process operating point migrates largely, the original centers will not be effective to act 

for output prediction and the new centers in the region where the operating point moves to 

will be added. The developed algorithm is evaluated using a nonlinear operating point-

migrating numerical example. The effective ness of the developed algorithm is proved by 

comparing it with two fixed structure models. The paper is organized as follows. Section II 

explains the ROLS training algorithm. The adaptation algorithm is presented in Section III 

which includes the adding, pruning and grouping of centers. The evaluation of the developed 

ADS-RBFN and comparison studies is demonstrated in Section IV. 

 

II. ROLS TRAINING ALGORITHM OF AN RBFN 

A standard RBFN, as shown in Fig.1, has three layers: the input layer, hidden layer and the 

output layer. The hidden layer consists of hidden neurons and each hidden neuron has a 

vector called its center. In Fig. 1,           and             are the input and output vectors 

with their entries being network m inputs and p outputs, respectively. 
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Fig. 1 The structure of an RBFN 

A non-linear dynamic systems is presented by an NARX model in (1).  

                                               ( 1) 

where      and      are system input and output, and    and    are input and output 

orders, respectively.      is measurement noise. An RBFN is used as an approximate for 

the nonlinear function in (1), where the RBFN performs a nonlinear static mapping via the 

linear output transformation [3]. The input vector x of the RBFN includes all variables in 

function f(*) in (1), while the network output is ŷ . Here, the Gaussian function is used in the 

RBFN as the nonlinear basis function in (1). 

                                    ( 2) 

where      is the hidden layer output,    is the number of hidden layer nodes (center);      
is the network input vector and    is the  th center with         . The network output is 

the weighted sum of the hidden layer output and is given by,         

where         is the weighting matrix connecting the hidden layer nodes and network 

output; 

 

The multi-output ROLS training algorithm developed in [3] is used here. By considering a set 

of   input-output training data, 

             ( 3) 
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where        is the desired output matrix of the system to be modelled;         is the 

output matrix of neural network.;         is the hidden layer output matrix and        is the error modeling matrix.                                                                          
The least squares problem to solve   becomes 

                   ( 4) 

where      is the F-norm of a matrix defined as                 . 
With orthogonal transformation, (4) becomes 

                                   ( 5) 

where    is an      matrix and    is an          matrix. 

From (5), the optimal   can be solved from backward substitution, 

       ( 6) 

and leaves       as the residual. This is the batch algorithm. 

For recursive ROLS training algorithm, the cost function becomes 

                                                . ( 7) 

Applying QR decomposition to  (k-1) in (7), and multiply the inverse of Q(k-1) to Y(k-1), 

we have                        
                               

                                                 . ( 8) 

With the arrival of new data, the update is described as follows, 

                           ( 9) 
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                                      ( 10) 

The final cost function is  

                                      . ( 11) 

The optimal weight      is then solved as, 

                ( 12) 

and leaves the residual as 

                                                      ( 13) 

The procedure of the ROLS training algorithm is therefore as follows. 

1) Set the initial value for  ,    and           as below, 

a.         where   is a small positive value. 

b.       and            . 

2) At iteration  , with the arrival of new data      , compute     . Then, calculate      and       using (9) and (10), respectively. 

III. ADS-RBFN ADAPTATION 

Model structure adaptation for RBF network is this work is mainly achieved by updating 

the number and locations of the centers according to the current operating region. More 

centers will enable the network to have more accurate mapping but result in a big network 

size, whilst fewer centers will reduce the mapping accuracy but result in a smaller network, 

which consequently enhance the model generalization and reduce computing load.  

The adaptation of the ADS-RBFN is implemented by evaluating the contribution of each 

center to the model prediction performance, and then according to the contribution to decide 

which center will be added or pruned. Also, the location of the added center needs to be 

determined to reflect migration of the system operating point. Firstly, an initial center bank 

with a pre-specified number of centers is formed by arbitrarily selecting some input data 

points as initial centers. Secondly, at each sample time, the network learns the information of 
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the center with the most contribution and the information of the new data. Then, determine 

the location of the added center according to the information.  

The third step is to prune a center, which has the least contribution among the centers in the 

center bank at each sample time. This is to maintain the size of the center bank, which also 

maintains the computational demand that have been increased from the addition of new 

centers. The last step is that, after updating the center bank with the added and pruned centers, 

the centers are classified into two groups, active center group and redundant center group, 

based on their contributions to the network performance. The aim of the strategy to group 

these centers is to achieve a compact optimal network structure without degrading the 

network performance. Active centers will have bigger weight in contribution to the network 

output compared to redundant centers. Active centers are used for network prediction, while 

redundant centers are preserved for the later selection at the next sample time.  

A. Add New Centers 

For the structure of the RBFN, adding a new center means adding a hidden neuron. A new 

strategy of adding new centers is designed based on the information combining the center 

giving the most contribution to the network performance and the new data. At sample time  , 

the matrix        is updated with new data      using ROLS training algorithm. From the 

updated matrix      that contains the information of new data, the contribution of each 

center to the network performance is evaluated. Consider the evaluation index for 

contribution of each center proposed in [3], 

                    
    ( 14) 

where       is the  th row of    . This shows that  th center has a separable contribution of                    . Thus, the center with the most contribution     can be found by 

computing            for each center and then compare them. The location of the added center 

should consider both the center with     and the new data       The former represents the 

location for more effective center, while the latter represents the current operating region of 

the process. Ideally the best location for the added center should be found by the line search 

along the connection line of the most effective center and the new data, which is the optimal 

location in terms of maximal contribution to the prediction of current system output. In this 

research, the location of the new center is determined by the equation in (15) with a proper  ,  
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                     ( 15) 

where       is a parameter to be selected using the trial and error method for specific 

process. Smaller   tends to use the current effective center location, while the bigger   tends 

to move the new center to the new operating region. A compromise between the two can 

generate a smoother move to the new operating region which will benefit the future 

predictions. After adding a new center, new matrix      with previous   samples is 

retrained using [17], 

                                     ( 16) 

                                    ( 17) 

where      and       are the updated matrices with newly added centers. 

B. Prune Centers 

In order to maintain the size of the center bank, an insignificant center is pruned from the 

center bank. In other words, a center which has the least contribution to the network 

performance is removed. For an RBFN’s structure, pruning a center implies removing a 

hidden layer neuron which is associated to a column vector in matrix  . To calculate the 

modeling residual, each column of matrix   is removed, sequentially, and the matrix   is re-

triangularized [3, 18]. The pruning algorithm using orthogonal decomposition developed in 

[3, 18] is as follows. If  th center is removed, the corresponding  th column vector of matrix  ,    is removed as well, which results in matrix   , 
                              ( 18) 

After the removal of the column   , the matrix    is no longer an upper triangular matrix. 

Thus, it is necessary to re-triangularize the matrix   ,  
                                   ( 19) 

and the cost function becomes 
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                                ( 20) 

The weight,    can be solved from 

          ( 21) 

The residual is given as 

                          ( 22) 

From (22), it can be seen that the increment in residual caused by removing the  th column of 

matrix  ,  th center, is         . Thus, the procedure is summarized as: use (18) to remove the 

column of matrix   in turn and compute the residual          using (22). Then, the  th column 

of matrix   with least residual          is removed, and matrix   is re-triangularized using (19). 

 

C. Group Centers 

After the adding and pruning centers, the centers in the center bank are classified into two 

groups which are active centers and redundant centers. The centers in the active group will be 

used to predict the process output, while the centers in the redundant group will not be 

included in the network for process output prediction at this sampling period, but will be 

preserved for later use in the consequent sampling instants. So, the relation between the 

hidden neurons and the output neurons for active and inactive centers are illustrated in Fig.2. 

While, the redundant centers, which may contain the information for next sample time, are 

preserved in the center bank. 

 

Fig. 2 The connections between hidden neuron   and output neuron   for active and 

redundant centers 
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The center pruning algorithm provides a good foundation for center grouping. This is 

implemented by evaluating the modeling residual when each center is grouped as a redundant 

center, sequentially. When the grouping procedure stops, the remaining centers would be 

active centers. In other words, it is the contribution of each center to the network performance 

that decides which group the center belongs to. Akaike’s final prediction error (FPE) criterion 

in is used to stop the grouping procedure, 

                                             ( 23) 

where   is the loss function,    is the number of weights and   is a weighting factor. The 

value of     is suggested in [3]. However, due to that the sample data   is a fixed 

parameter in (23) for every sample time  , the value of   can be manipulated to decide the 

number of active centers. In order to stop the grouping procedure, FPE has to be larger than 

the past FPE     . Thus, the equation to calculate number of active centers is derived as 

or 

            

 

 

                      (24) 

where    is the number of active centers. 

The procedure of center grouping algorithm is summarized as follows: 

Step 1 Initialize   and     for the network after updating the center bank. 

Step 2 Compute the new loss function    when each center is grouped in turn using (18) and 

(22). 

Step 3 Set   = arg min (  ) and compute the     for the smallest loss function,      using 

(23). If          , group the center   as redundant center and go to step 4. If         , go to step 5. 

Step 4 Then, set     ,        ,      ,          and        . Go to step 2. 

Step 5 Stop the grouping procedure. The remaining centers in the center bank are active 

centers and the optimal weight    can be computed using (21). 
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D. ADS-RBFN Adaption Procedure 

At each sample time, the center bank will be updated with the adding, pruning and grouping 

of centers. The main step of the proposed adaptive algorithm is summarized as follows. 

Step 1 Initialize an initial RBFN by using a set of   samples data, form a center bank by 

arbitrarily choosing data points and obtain an initial matrix   and  . 

Step 2 At each sample time  , update the matrix   with new data      using (9). Evaluate 

the contribution of centers and add a new center into center bank using (14) and (15), 

respectively. Then, generate a matrix      and       using (16) and (17), respectively. 

Step 3 Prune a center that causes the least increase in modeling residual from the center bank 

by following the summarized pruning procedure given in Section B. 

Step 4 Group the centers in the center bank into two groups: active and redundant centers, 

using the provided grouping procedure in Section C. Use the active center to form a 

network model to make prediction. 

Step 5      , go to step 2. 

 

IV. NUMERICAL EXAMPLE 

To demonstrate the proposed algorithm, the ADS-RBFN is used to model a nonlinear 

dynamic system with a large migration of the operating point for one-step-ahead prediction. 

The system is chosen from [19], 

                          ( 25) 

A set of 900 input/output data samples has been generated and collected in a specific way 

where the system outputs fall into three obvious different regions. Region 1 represents the 

first 330 data, region 2 represents data samples from 331 to 660, and region 3 represents the 

661 to 900 data. This is to test the effectiveness of adaptation of the proposed algorithm.  
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The ADS-RBFN is chosen to have two inputs, one output and an initial center bank with 20 

centers. The   in FPE is selected as 4. The number of active centers is calculated using (24). 

Thus, there are 13 active centers and 7 redundant centers in the center bank.  

In order to evaluate the performance of the ADS-RBFN, two fixed structure RBF networks 

(FS-RBFNs) are employed for performance comparison purpose. With K-means algorithm, 

first FS-RBFN has 20 centers distributed in region 1 of the system as shown in Fig. 3 (top). 

For second FS-RBFN, which was employed as a two-stage training for an RBFN [20] , 20 

centers are used and are distributed in the whole operating space including all the three 

regions as shown in Fig. 3 (center). In addition, mean absolute error (MAE) is used to 

measure the network prediction errors. After training, another set of data with the same 

number of samples is acquired and used to test the three trained network. The first and the 

second network model with the fixed structure and preselected centers, while the last network 

model uses the proposed algorithm to adapt the structure on-line. The MAE obtained in the 

test for the three networks are listed in Table I. 

TABLE I 
Performance comparison of the three RBFNs 

Networks MAE 
FS-RBFN with 20 centers at region 1 1.123 
FS-RBFN with 20 centers at all regions 0.2638 
ADS-RBFN 0.082 

 

The performance of the two FS-RBFNs is displayed in Fig. 4 and Fig. 5, respectively. In 

Fig. 4, it shows that the first FS-RBFN only performs well in region 1 where the centers are 

distributed, as shown in Fig. 3 (top). The degradation of performance can be clearly observed 

at region 2 and region 3 as the model predictions are considerably deviated from the process 

output. For the second FS-RBFN, the performance is not satisfactory in all regions especially 

in region 3. This is due to that the centers do not sufficiently cover the data region of the 

system. In order to improve its performance, a bigger set of centers is needed but unnecessary 

big size of RBFN will cause poor generalization [4]. In comparison to the two FS-RBFNs, 

the result of the ADS-RBFN in Fig. 6 clearly shows that it is an ideal model that accurately 

predicts the system outputs for all three different regions, because the 13 active centers were 

adapted effectively to all regions of the system output, as illustrated in Fig. 3 (bottom). It can 

be observed that the 13 active centers emigrate from region 1 to region 2, then to region 3 

following the moving of the system’s operating point. Also from Table I, the values of MAE 
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clearly suggest that the ADS-RBFN has the best performance among three networks. 

Moreover, it has a more compact structure with only 13 centers. 

 

Fig. 3 The locations of centers for three networks  
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Fig. 4 Performance of FS-RBFN with centers distributed in region 1 

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40
One-step-ahead network predictions

A
m

pl
itu

de

 

 

System Output

Network Prediction

50 100 150 200 250 300
0.6

0.7

0.8

0.9

1

1.1
Region 1

A
m

pl
itu

de

400 420 440 460 480 500 520 540 560 580 600
7

8

9

10

11
Region 2

A
m

pl
itu

de

700 720 740 760 780 800 820 840 860 880 900
24

26

28

30

32

34
Region 3

t (sec)

A
m

pl
itu

de

Region 1

Region 2

Region 3



16 

 

 

Fig. 5 Performance of FS-RBFN with centers distributed in all three regions 
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Fig. 6 Performance of ADS-RBFN in three regions 
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V. CONCLUSION 

In this paper, a new algorithm based on the ROLS training is proposed for designing a 

structure adaptive RBFN model. A new strategy of adding new centers based on the 

information of the center with the most contribution and the new data is developed. In the 

meantime, the insignificant center is pruned from the center bank to maintain the minimum 

size of the network model. In addition, a small modification on the parameter of FPE enables 

the network to have a compact architecture by grouping the centers in the center bank. The 

effectiveness of the proposed algorithm is demonstrated by applying it in modeling a 

nonlinear numerical example with significant operating point emigration. The simulation 

results demonstrate that the developed ADS-RBFN adapts its structure dynamically following 

the emigration of the system operating point without degrading the prediction performance. 

Comparison with the two fixed structure RBFN shows that it outperforms the FS-RBFNs. 
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