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Abstract: Chaotic time series are widely present in practice, but due to their characteristics—such
as internal randomness, nonlinearity, and long-term unpredictability—it is difficult to achieve high-
precision intermediate or long-term predictions. Multi-layer perceptron (MLP) networks are an
effective tool for chaotic time series modeling. Focusing on chaotic time series modeling, this paper
presents a generalized degree of freedom approximation method of MLP. We then obtain its Akachi
information criterion, which is designed as the loss function for training, hence developing an
overall framework for chaotic time series analysis, including phase space reconstruction, model
training, and model selection. To verify the effectiveness of the proposed method, it is applied to
two artificial chaotic time series and two real-world chaotic time series. The numerical results show
that the proposed optimized method is effective to obtain the best model from a group of candidates.
Moreover, the optimized models perform very well in multi-step prediction tasks.

Keywords: chaotic time series; multilayer perceptron network; generalized degrees of freedom;
Akaike information criterion; maximal Lyapunov exponent

1. Introduction

Some nonlinear dynamical systems present a seemingly irregular and random phe-
nomenon, but they are actually produced by deterministic systems. For example, the
famous “butterfly effect” concept describes how the flapping of a butterfly’s wings in
Brazil could ultimately lead to a tornado in Texas that would not have happened otherwise.
In other words, very tiny changes in conditions can result in very large, unpredictable
responses, but this follows basic aerodynamic laws. This characteristic of nonlinear dy-
namical systems is called chaos. Chaotic dynamical systems are ubiquitous in nature, so
they have been extensively studied to solve practical problems in different fields, such as
financial systems analysis [1,2], power system behavior [3,4], information security [5,6],
and the control of nonlinear systems [7,8]. In general, chaotic dynamical systems do not
have an explicit dynamical equation and can only be understood through the available time
series. Therefore, chaotic time series modeling is of great significance, but it is very difficult
due to its complex, chaotic, nonlinear dynamics, such as internal randomness, nonlinearity,
and long-term unpredictability.

Various researchers have shown great interest in chaotic time series analysis, finding
many results, which could be classified into symbolic regression, polynomial model, model
simulation or decomposition, and neural networks. For symbolic regression, Brandejsky
used a GPA-ES system to study symbolic regression of deterministic chaotic systems [9], and
Senkerik et al. proposed a novel tool for symbolic regression and analytical programming
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for the evolutionary synthesis of discrete chaotic systems [10]. The polynomial model is a
widely used method. Lainscsek et al. used a truncated polynomial expansion involving
successive derivatives of the measured time series according to an Ansatz library [11]. This
procedure was introduced and improved by [12]. Han et al. utilized genetic programming
(GP) and multi-objective optimization to identify chaotic systems using the nonlinear auto-
regressive moving average with exogenous inputs (NARMAX) model representing the
basis of the hierarchical tree encoding in GP [13]. Model simulation or decomposition is
another type of method. Karimov et al. constructed a chaotic circuit from data to identify
chaos systems [14]. Yang et al. introduced the Hankel Alternative View of Koopman
analysis to decompose chaotic dynamics into a linear model with intermittent forcing [15].
The most widely used methods of chaotic time series analysis are neural network-related
methods, which are classified into artificial neural networks (ANN) [16–20], fuzzy neural
networks (FNN) [21–24], optimization algorithms with ANN [25–28], and wavelet neural
networks (WNN) [29–32]. One can refer to [33] for a comprehensive review. Although
there have been many attempts at chaotic time series analysis by neural network methods,
including deep learning [16,34–36], there are still many issues to be resolved, such as low
prediction accuracy and difficulty in determining the network topologies. Therefore, some
scholars have studied the network optimization of chaotic time series analysis models. Xie
et al. proposed an enhanced grey wolf optimizer (GWO) by designing four distinctive
search mechanisms and then developed the evolving convolutional neural network–long
short-term memory (CNN-LSTM) networks for time series analysis [37]. Huang et al.
proposed an improved differential evolution (IDE) algorithm to optimize the topology
of DHNNs consisting of CNN and GRU, including CNNs’ filter size and the number of
hidden neurons of the GRU [38]. Focusing on the prediction of short-term traffic flow, Qian
et al. found that the RBF neural network is better than the wavelet neural network, and they
used the genetic algorithm to optimize the initial parameters [39]. Chen et al. presented a
nonlinear ensemble of partially connected neural networks for short-term load forecasting,
in which the genetic algorithm is used to generate diverse and effective neural networks,
and a novel pruning method was developed to optimize the partially connected neural
networks [40]. Kao et al. studied a Takagi-Sugeno-Kang (TSK)-type self-organizing fuzzy
neural network, which not only generates and prunes the learning algorithm automatically
but also adjusts the parameters of existing fuzzy rules [41]. Though all the above methods
work on network structure optimization, they are empirical and have no strict theoretical
basis.

The Akaike information criterion (AIC) [42] is a popular tool to evaluate a linear
auto-regression model. The idea of AIC has been extended to nonlinear models, especially
the neural networks based on the generalized degrees of freedom [43–45]. However, when
employing the Akaike information criterion based on the generalized degrees of freedom
(AICg) to evaluate the MLP network, the generalized degrees of freedom must be estimated.
For a linear regression model, the degrees of freedom are the number of variables in
the model, which is the sum of the sensitivities of each fitted value with respect to the
corresponding observed values. For nonlinear models, Ye [45] defined a new quantity
known as the generalized degrees of freedom (GDF) and proved that the GDF provides an
unbiased estimation of the error variance. However, it is very difficult to calculate the GDF
using the original definition. A Monte Carlo method is therefore suggested to calculate the
GDF for a nonlinear model. This approach requires estimating the nonlinear model many
times and is therefore time-consuming.

Recently, a new method for the estimation of the generalized degrees of freedom for
the RBF-type network has been introduced [44]. Following that method, the generalized
hat matrix for the nonlinear model is defined in this study; its trace is an estimation of the
generalized degrees of freedom. The proposed estimation method simulates the model
procedure once only and therefore is faster than the Monte Carlo method. Using the AICg,
the performances of the MLP networks for different network topologies are evaluated, and
the optimal MLP network for the chaotic time series is then selected. The model-selecting
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method is applied to four chaotic time series, two artificial time series and two real-world
time series. By estimating the maximal Lyapunov exponents and forecasting the time
series, the numerical results show that the MLP network selected by the proposed method
behaves better in terms of the analytic and prediction capabilities than other models. The
main contributions of the paper are the following three points:

1. Present an approximation method to calculate the generalized degree of freedom of
MLP, and then obtain its AICg.

2. Develop a multilayer perceptron network optimization method for chaotic time series
analysis by designing the AICg as the loss function of MLP.

3. Propose an overall framework for chaotic time series analysis, including phase space
reconstruction, model training, and model selection modules.

This paper is arranged as follows: In Section 2, some backgrounds are introduced,
including phase space reconstruction of chaotic systems, the Akaike information criterion of
nonlinear systems, and generalized degrees of freedom of MLP. In Section 3, our proposed
modeling selection framework for MLP networks is described in detail. In Section 4, the
proposed method is applied to four chaotic time series, and the results are presented and
analyzed. The last section gives a brief conclusion.

2. Backgrounds
2.1. Phase Space Reconstruction of Chaotic Systems

Suppose that the chaotic system is an n-dimensional system given by
x(i+1)

1 = f1

(
x(i)1 , x(i)2 , · · · , x(i)n

)
x(i+1)

2 = f2

(
x(i)1 , x(i)2 , · · · , x(i)n

)
· · ·

x(i+1)
n = fn

(
x(i)1 , x(i)2 , · · · , x(i)n

) (1)

where X = (x1, x2, . . . , xn) is an n-dimension vector.
In general, the real observed chaotic time series is only one or a few dimensional

state sequences. In order to analyze the chaotic time series, it is necessary to reconstruct
the phase space of the chaotic system from the observed low-dimensional time series and
restore the chaotic attractor of the original phase space in this high-dimensional embedded
space. Takens’ theorem is the theoretical basis for phase space reconstruction [46].

Theorem 1. (Takens’ theorem [46]): Suppose M is an m-dimensional compact manifold, the map ϕ:
M→M is a smooth differential isomorphism, y: M→R is a smooth function, and the map Φ (ϕ, y):
M→R2m+1 is defined by

Φ (ϕ, y) = (y(x), y(ϕ(x)), y(ϕ2(x)), . . . , y(ϕ2m (x))) (2)

Then, Φ (ϕ, y) is an embedding from M to R2m+1.
This theorem states that for an m-dimensional chaotic dynamic system, as long as

the embedding dimension is greater than or equal to 2m + 1, the chaotic attractor can be
restored in the embedding space; that is, a system with the same dynamic properties as
the original chaotic system can be obtained in the embedding space. This mathematically
guarantees that a phase space equivalent to the original system in the topological sense can
be reconstructed from a lower-dimensional or even one-dimensional chaotic time series.
The coordinate delay method is commonly used to reconstruct the phase space of the
chaotic system. The essence is to construct m-dimensional phase space vectors from an
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observed one-dimensional time series {xi} (i ∈ [1, N]) according to a series with different
time delays, namely, [47]

X =


X1
X2
...

XN−(m−1)τ

 =


x1 x1+τ · · · x1+(m−1)τ
x2 x2+τ · · · x2+(m−1)τ
...

...
. . .

...
xN−(m−1)τ xN−(m−2)τ · · · xN

 (3)

where N is the time series length, m the embedding dimension, and τ the time delay.
According to Takens’ theorem, if the choice of the embedding dimension m and time
delay τ is appropriate, the “orbit” of the reconstructed phase space in the embedded
space is equivalent to the dynamics of the original system (Equation (1)) in the sense of
differential isomorphism. This method is called the delay coordinate embedding approach.
In this approach, the determination of the values of m and τ is the key to phase space
reconstruction.

2.2. Akaike Information Criterion of a Nonlinear System

Assume that a nonlinear system is modeled by the function [44]

y = f (X, α) + ε, (4)

where X = (x1, x2, . . . ,xd) ∈ Rd is the input, α = (α1, α2, . . . , αK) ∈ RK is the model parameter,
ε∈ R is the random noise, and y ∈ R is the output. Assume also that we have N input
samples X = (X1, X2, . . . , XN) and N output observers Y = (ŷ1, ŷ2, . . . , ŷN), and denote the
function output of Xn as yn = f (Xn, α) + ε. Then, the residual sum of squares (RSS) of the
MLP network is [44]

RSS = ∑N
j=1 (yn − ŷn)

2

For a nonlinear model, the quadratic loss of the model can be estimated by [30]

A = RSS− Nσ2 + 2ngσ2 (5)

where σ is the variance of the observation error and ng is the generalized degrees of freedom.
The mean of RSS/(N − ng) was proven to be equal to the variance σ2; hence, the quadratic
loss can be approximated by [45]

A ≈ RSS− Nσ2 + 2ng
RSS

N−ng

= RSS
(

N+ng
N−ng

)
− Nσ2

= RSS( N
N−ng

)
2
(1−

(
ng
N )2

)
− Nσ2

Since ng is much smaller than N and σ is a constant, another criterion G could be obtained
by [48]

G = RSS(
N

N − ng
)

2
(6)

Taking the logarithm for Equation (6), we can obtain

ln(G) = ln(RSS)− 2 ln(1− ng
N )

= ln(RSS/N) + ln(N) + 2ng/N + (
ng
N )

2
+ . . .

≈ ln(RSS/N) + 2ng/N + ln(N)

It should be noted that the above derivation makes use of the Taylor expansion. Then, we
arrive at the form of the Akaike information criterion for an MLP network,

AICg = ln(RSS/N) + 2ng/N (7)



Entropy 2023, 25, 973 5 of 20

which is based on the concept of entropy and able to weigh the complexity of the estimated
model and the goodness of the fitted data of the model.

2.3. Generalized Degrees of Freedom (GDF)

In order to calculate the Akaike information criterion of an MLP network according to
Equation (7), the generalized degrees of freedom (GDF) ng should be obtained in advance.
Xu et al. developed a fast estimation method for GDF of a nonlinear system [44], which is
briefly described in this section for the convenience of the reader.

GDF is defined as “the sum of sensitivity of each fitted value to the perturbation in
the corresponding observed value”, which can measure the complexity of a nonlinear
model [45]. Xu et al. proposed an approximated method to obtain the GDF of a nonlinear
system [44].

Theorem 2. If a nonlinear model f (X, α) is adequate in fitting the data and has bounded second
order derivatives, the generalized degrees of freedom for the nonlinear system can be approximated
by

ng ≈ trace(H) (8)

where H is the generalized hat matrix of the nonlinear system, defined by

H = MT(MTM)
−1

M (9)

where M is the gradient matrix of parameters.

M =



∂ f (X1,α)
∂α1

∂ f (X1,α)
∂α2

· · · ∂ f (X1,α)
∂αk−1

∂ f (X1,α)
∂αk

∂ f (X2,α)
∂α1

∂ f (X2,α)
∂α2

· · · ∂ f (X2,α)
∂αk−1

∂ f (X2,α)
∂αk

...
... · · ·

...
...

∂ f (XN−1,α)
∂α1

∂ f (XN−1,α)
∂α2

· · · ∂ f (XN−1,α)
∂αk−1

∂ f (XN−1,α)
∂αK

∂ f (XN ,α)
∂α1

∂ f (XN ,α)
∂α2

· · · ∂ f (XN ,α)
∂αk−1

∂ f (XN ,α)
∂αK


(10)

Note that the MLP basis functions clearly have bounded second order derivatives.
Hence, Theorem 1 can be applied to calculate the generalized degrees of freedom for an
MLP model.

3. Modeling Selection for MLP Networks
3.1. Pipeline of the Modeling Selection

MLP networks are effective tools for chaotic time series predictions. However, the
network topology seriously affects the performance of algorithms. Therefore, a pipeline of
the modeling selection for MLP networks is proposed in this paper, as shown in Figure 1.
For a chaotic time series dataset, the phase space reconstruction should be performed in
advance. Next, a candidate MLP structure pool is generated. Then, each structure is trained
to determine its parameters. It should be noticed that the Akaike information criterion is
used as the loss function for training. When the training process is completed, the MLP
network structure with the least Akaike information criterion value is selected as the best
one, that is, the final prediction model. The phase space reconstruction process is described
in Section 3.2, and the Akaike information criterion computation is detailed in Section 3.3,
respectively.
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3.2. Phase Space Reconstruction

According to Takens’ theorem, the m-dimensional phase space of the chaotic system
could be reconstructed from an observed one-dimensional time series by the delay coordi-
nate embedding approach (Equation (3)). The key to the method is how to determine the
embedding dimension m and time delay τ. To address this issue, many algorithms have
been proposed: For example, the mutual information method [48] and the autocorrelation
coefficients method [49] are two popular approaches to determine the time delay τ; the false
nearest neighbor method [50] and its improved version the Cao method [51] are often used
to determine the embedding dimension m; and Uzal et al. proposed a noise amplification
approach able to handle these two tasks simultaneously [52]. In our pipeline, the time delay
τ is determined by the mutual information method [48], and the embedding dimension m
is selected by the Cao method [51].

We denote the observed one-dimensional time series {xi} as a discrete system S. The
amount of information contained in this system can be characterized in terms of entropy:

H(S) = ∑s∈S pslogps (11)
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where ps represents the probability of s occurring. We denote the delayed time series {xi+τ}
as another discrete system Q. Then, the joint entropy of the systems S and Q could be
defined by.

H(S, Q) = ∑s∈S,q∈Q psqlogpsq (12)

where psq represents the joint probability of s and q appearing in systems S and Q. Thereby,
the mutual information between the two systems could be defined by

I(S, Q) = H(S) + H(Q)− H(S, Q) (13)

which can be understood as the amount of overlapping information between these two
systems. After fixing the original system S, system Q is determined by the time delay τ.
Taking the time delay τ as a variable, the mutual information I(S, Q) can be treated as a
function of τ, denoted as I(τ). In order to make the correlation between the delayed time
series and the original series as small as possible, the minimum point of I(τ) is taken as the
final time delay:

τ∗ = argmin
τ

I(τ) (14)

Considering that we want a small time delay, the first local minimum point is usu-
ally taken as the final result in the real applications. The pseudocode of the time delay
determination is given by Algorithm 1.

Algorithm 1: Time delay determination

Input: one-dimensional time series S = {xi}; time delay max value τmax; iteration number N
Output: best time delay τ*

1 compute the entropy of S : H(S) = ∑s∈S pslog ps
2 for i = 1: N
3 time delay τ = i × τmax/N
4 time delayed system Q = {xi+τ}
5 compute the entropy of Q : H(Q) = ∑q∈Q pqlog pq
6 compute the joint entropy of S and Q : H(S, Q) = ∑s∈S,q∈Q psqlog psq
7 compute the mutual information of S and Q : I(τ) = H(S) + H(Q)− H(S, Q)
8 end for
9 τ* = arg min

τ
I(τ)

A chaotic time series is a projection in one- or lower-dimensional space of a deter-
ministic dynamical system’s trajectory in a high-dimensional phase space. The projection
modifies the topological properties of the motion trajectory, resulting in “disorder” char-
acteristic of chaotic systems. Thus, we can observe the change in the “nearest neighbor”
distances when the embedding dimension increases, and it stops when it no longer changes.

Let xi be a point of the original time series, and Xi(m) = (xi, xi+τ , . . . , xi+(m−1)τ) and
Xi(m+1) = (xi, xi+τ , . . . , xi+mτ) be its mapping points in the m-dimensional and (m+1)-
dimensional embedding spaces. Denote Xn(i,m) (m) as the nearest neighbor to Xi(m) in the
embedding space, i.e.,

n(i, m) = arg
j

min ‖ X(m)
i − X(m)

j ‖ 2 (15)

Then, the change of the distance of this “nearest neighbor” pair when the embedding
dimension increases from m to m + 1 could be represented by

a(i, m) =
‖ X(m+1)

i − X(m+1)
n(i,m)

‖
∞

‖ X(m)
i − X(m)

n(i,m)
‖

∞

i = 1, 2, · · · , n−mτ (16)
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Thus, the average distance change of the “nearest neighbor” pairs could be expressed as

E(m) =
∑n−mτ

i=1 a(i, m)

n−mτ
m = 1, 2, · · · . (17)

It can be understood as the average scale of the nearest neighbor distance of all mapped
points in m-dimensional embedding space after mapping to (m + 1)-dimensional space.
Thus, we could define

E1(m) =
E(m + 1)

E(m)
m = 1, 2, · · · . (18)

If the time series is not random, there exists an embedding dimension d* satisfying
the Takens’ theorem, such that when m > d*, E1(m) no longer changes; otherwise, E1(m)
continues to increase.

To further ensure the reliability of the method, the following judgment criterion has
been added:

E∗(m) =
∑n−dτ

i=1 |x(i + mτ)− x(n(i, m) + mτ)|
n−mτ

m = 1, 2, · · · , (19)

E2(m) =
E∗(m + 1)

E∗(m)
m = 1, 2, · · · . (20)

Since there is no correlation between random sequence data, E2(m) ≡ 1, and for determinis-
tic sequences, there must exist m, such that E2(m) 6= 1. The pseudocode of the embedding
dimension determination is given by Algorithm 2.

Algorithm 2: Embedding dimension determination

Input: one-dimensional time series S = {xi, . . . , xn}, time delay τ;
max embedding dimension M, threshold ε.

Output: embedding dimension m*

1 for k = 1 : n−mτ

2 for m = 1: M
3 E(m) = 0; E*(m) = 0; m* = 0;
4 for i = 1: n − mτ

5 n(i, m) = arg
j

minX(m)
i − X(m)

j 2

6 a(i, m) =
X(m+1)

i −X(m+1)
n(i,m) ∞

X(m)
i −X(m)

n(i,m)∞

7 E(m) = E(m) + α(i, m)/(n − mτ)
8 E* (m) = E* (m) + |x(i + mτ) − x(n(i,m) + mτ)|/(n − mτ)
9 end for
10 end for
11 E1(1) = E(2)/E(1)
12 E2(1) = E*(2)/E*(1)
13 for m = 2: M − 1
14 E1(m) = E(m + 1)/E(m)
15 E2(m) = E*(m + 1)/E*(m)
16 if (|E1(m) − E1(m − 1)| < ε) and (|E2(m) − 1| > ε)
17 m* = m
18 end if
19 end for

3.3. Calculation of MLP Networks’ Akaike Information Criterion (AICg)

The Akaike information criterion (AICg) offers a relative performance measure when
nonlinear models are used to represent the process that actually generates the data. Hence,
the AICg provides a means for model selection for an MLP network. In practice, several
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candidate MLP networks with different neuron sizes are built and trained using the same
sample set. The residual sum of squares for every candidate network is then obtained. In
order to apply the AICg, the GDF for every candidate network is needed. According to
Equation (8), the GDF can be estimated easily by the gradient matrix of the parameters.
In this study, using the idea of back-propagation, we introduce a method to calculate the
gradient matrix of the parameters for an MLP network.

Consider a multilayer perceptron network with one input layer, K hidden layers, and
one output layer. There are Mk neurons in the kth hidden layer. In order to address the bias
in the MLP network freely, we first expand the input vector and the neurons. Denote the
expanding input vector by

U(0) = (xn,1, xn,2, · · · , xn,d, 1)T (21)

Then, the feed vector in the first hidden layer is

p(1) = w(1)U(0) (22)

The parameter matrix w(1) is given by

w(1) =


w(1)

11 w(1)
12 · · · w(1)

1d β
(1)
1

w(1)
21 w(1)

22 · · · w(1)
2d β

(1)
2

...
... · · ·

...
...

w(1)
M11 w(1)

M12 · · · w(1)
M1d β

(1)
M1

 (23)

where d is the dimension of the input vector, M1 is the number of the first hidden layer
nodes, and βi

(1) is the bias of the ith node, respectively.
In the same way, the input vector in the kth hidden layer can be extended by

U(k− 1) = (o(k−1)
1 , o(k−1)

2 , · · · , o(k−1)
Mk−1

, 1)T

= ( f (p(k−1)
1 , f (p(k−1)

2 , · · · , f (p(k−1)
Mk−1

), 1)T
(24)

The feed vector in the kth hidden layer is then given by

p(k) = w(k)U(k−1) (25)

Finally, the input vector for the output layer is

U(K) = (o(K)1 , o(K)2 , · · · , o(K)MK−1
, 1)

T
(26)

The feed value for the output layer is

p(K+1) = w(K+1)U(K) (27)

The output of the MLP network is then given by

ŷn = g
(

p(K+1)
)

(28)

Let the activation function f in the hidden layer be the sigmoid function

f (s) =
1

1 + exp(−s)
(29)

Then
f ′(s) = f (s)(1− f (s)) (30)
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Let the activation function g in the output layer be the linear function

g(s) = s (31)

Then
g′(s) = 1 (32)

Denote the MLP network as a function

yn = F
(

Xn, w(1), w(2), · · · , w(K+1)
)

(33)

Let Q(k)(i, j) be a matrix with the same dimension as w(k) where all its elements are zero
except qij = 1. Furthermore, define matrix O(k) by

O(k) =



o(k)1

(
1− o(k)1

)
0 · · · 0

0 o(k)2

(
1− o(k)2

)
· · · 0

...
... · · ·

...
0 0 · · · o(k)Mk

(
1− o(k)Mk

)
0 0 · · · 0


(34)

Then, we have
dU(k+1)

dy
= O(k) d

dy

(
w(k)U(k−1)

)
(35)

Hence, the derivative of the MLP function with respect to w(K+1)
j is given by

∂F

∂w(K+1)
j

=
∂

∂w(K+1)
j

(
w(K+1)U(K)

)
= Q(K+1)(1, j)U(K), j = 1, 2, · · · , MK + 1 (36)

Furthermore, the derivative of the MLP function with respect to w(K)
j,m is given by

∂F

∂w(K)
j,m

= w(K+1) ∂

∂w(K)
j,m

U(K) = w(K+1)O(K)Q(K)(j, m)U(K−1) (37)

By the same discussion, we obtain the derivative with respect to w(k)
j,m,

∂F

∂w(k)
j,m

=
(
∏K

n=k w(n+1)O(n)
)

Q(k)(j, m)U(k−1) (38)

Thus, the gradient matrix of parameters M is obtained, and then the generalized hat matrix
H can be calculated according to Equation (9). The trace of the generalized hat matrix is an
estimator of the GDF ng for the MLP network according to Equation (8).

Using the GDF estimated by the generalized hat matrix, the AICg for each MLP
candidate is calculated by

AICg = ln(RSS/N) + 2ng/N = ln(∑N
j=1 (yn − ŷn)

2/N) + 2ng/N (39)

The pseudocode of the calculation of MLP networks’ Akaike information criterion is
given by Algorithm 3.
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Algorithm 3: Calculation of MLP networks’ AICg

Input: ANN model ANN = {wi,m
(k)}, embedded time series data G = {X1, . . . ,XN}, iteration

number N_Max.
Output: MLP networks’ Akaike’s information criterion AICg

1 for i = 1: N_Max
2 for n = 1: N

3 ŷn = ANN(Xn) = g
(

p(K+1)
)

4 ∂F
∂w(k)

j,m

=
(

∏K
n=k w(n+1)O(n)

)
Q(k)(j, m)U(k−1)

5 H = MT(MTM)
−1M

6 ng ≈ trace(H)

7 AICg = ln(∑N
j=1 (yn − ŷn)

2/N) + 2ng/N
8 end for
9 end for

4. Experiments
4.1. Benchmark Datasets

In order to verify the effect of the proposed method, it is applied to simulate four
chaotic time series: two artificial chaotic time series and two real-world time series. The
two artificial benchmarks are the Hénon map [53] and the Lorenz map [54], and the two
real ones are sunspots time series [55] and SST data [56], respectively.

Hénon map: The Hénon map [53] is given as

yn+1 = 1− ayn + byn−1 (40)

It has a chaotic attractor when a = 1.4 and b = 0.3. A time series of length 1500 is
generated with initial conditions y−1 = 1.005 and y0 = −0.3032. The maximal Lyapunov
exponent (MLE) of the Henon attractor is about 0.419.

Lorenz equation: The Lorenz map is [54] defined as
dx
dt = σ(y− x)

dy
dt = −xz + rx− y

dy
dt = xy− bz

(41)

It becomes chaotic for σ = 10, r = 28, and b = 8/3. Equation (41) is a three-dimensional
differential system, which can be solved numerically using the fourth order Runge-Kutta
method with a time step of 0.01 and initial conditions of

x(0) = 2.4151, y(0) = 3.6936, z(0) = 15.1426 (42)

A time series of length 1500 is generated with sampling frequency 0.2,

xn = x(0.2n), 1 ≤ n ≤ 1500

The MLE for the Lorenz attractor is about 0.91. Since the sampling frequency is 0.2, the
maximal Lyapunov exponent for the time series is therefore about 0.182.

Sunspots time series: Sunspots are temporary phenomena on the surface of the Sun
(the photosphere) that are visible as dark spots compared to the surrounding regions.
The sunspots index has been used since 1749. The monthly averaging sunspots index
considered in this study is from 1749 to 2009 with a sample size of 3132. The dataset
can be downloaded from the website: psl.noaa.gov/gcos_wgsp/Timeseries/SUNSPOT/
(accessed on 5 June 2023). The sunspots data are a nonlinear time series, which have been
discussed as a chaotic time series by many authors [55].

psl.noaa.gov/gcos_wgsp/Timeseries/SUNSPOT/
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SST data: The sign and magnitude of equatorial Pacific sea-surface temperature anoma-
lies (SSTA) provide a measure of the ENSO phase and strength. The El Niño phase produces
sea-surface temperatures in the equatorial eastern Pacific that are anomalously warm with
respect to the mean seasonal cycle, while La Niña conditions produce anomalously cold
sea-surface temperature conditions. The S index of Wright [56] provides a continuous
historical record (1881–1986) of SST anomalies averaged over an irregular region of the
equatorial Pacific extending for 5◦ N–5◦ S and 150◦–90◦ W. The dataset is obtained from
Geographic Data Sharing Infrastructure, College of Urban and Environmental Science,
Peking University (http://geodata.pku.edu.cn, (accessed on 8 April 2023)).

4.2. Experiment Setup

Generally, a three-layer MLP network structure is selected for experiments. The
activation function in the hidden layer is given by the sigmoid function, while the activation
function in the output layer is a linear function. Then, we focus on discussing the optimal
neuron size in the hidden layer. The Akaike information criterion based on the generalized
degrees of freedom (AICg) is employed to evaluate the performance of the MLP networks.
During the model training process, the SGD optimization algorithm is used; the momentum
is set to 0.9, the weight decay is 0.0005, and the initial learning rate is 0.01.

In the following section, we first describe the results of phase space reconstruction and
then give the results of the network model optimization. The performance of the models
obtained is also analyzed in detail.

Two measurement methods, the maximum Lyapunov exponent (MLE) and the mean
square error (MSE) of the time series, were considered in the experiment for evaluating the
experimental results.

Maximum Lyapunov Exponents (MLE):
The Lyapunov exponent can quantitatively characterize the chaotic attractor by mea-

suring the sensitivity of the chaotic orbit to the original condition. In general, a time
sequence is considered chaotic only when the MaxLE is positive based on the phase track.
Li and Xu proposed an estimation method of MaxLE by the local Jacobian matrix of the
nonlinear system [57]. In the reconstructed delay phase space, the local Jacobian matrix at
this point is rewritten in the form

An =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
b1,n b2,n b3,n · · · bd,n


where

bk,n =
∂ f (Xn)

∂xn,k
(43)

In this case, the nonlinear function is the three-layer MLP network, and Equation (43) can
be rewritten as

bk,n = ∑M
m=1 w(2)

m om,n(1− om,n)w
(1)
m,k (44)

Mean square error (MSE)
The mean square error (MSE) is defined by

MSE =
1
N ∑N

j=1 (yn − ŷn)
2 (45)

where yn and ŷn are the MLP’s output and expected output of the nth input, and N is the
number of samples.

http://geodata.pku.edu.cn
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4.3. Phase Space Reconstruction

For phase space reconstruction, the two parameters of the delay interval τ* and
embedding dimension m* should be determined. The delay interval τ* is determined by
the mutual information method, and the embedded dimension m* is selected by the Cao
method. Figure 2 shows the variation curve of mutual information with delay interval τ
on four datasets. The first minimum point or inflection point of the four curves is selected
as the final delay interval. In the Henon map dataset, when τ = 11, the curve enters the
stationary region, so the time interval is selected as 11. In the Lorenz dataset, the curve
reaches the first minimum point when τ = 13, so the time interval of the Lorenz dataset is
selected as 13. In the sunspot dataset and the equatorial Pacific sea-surface temperature
dataset, the first minimum is reached at τ = 35 and τ = 24, respectively, so the time interval
is chosen as 35 and 24, respectively. Figure 3 shows the change of the two indicators E1 and
E2 of the CAO method with the embedding dimension on four datasets, and we select the
definite state where E1 reaches a stationary state and E2 does not. As shown in the figure,
in the four datasets of the Henon map, Lorenz, sunspots, and equatorial Pacific sea-surface
temperature, the embedding dimensions are selected as 5, 3, 7, and 4, respectively.

Entropy 2023, 25, x FOR PEER REVIEW 13 of 21 
 

 

the definite state where E1 reaches a stationary state and E2 does not. As shown in the 
figure, in the four datasets of the Henon map, Lorenz, sunspots, and equatorial Pacific 
sea-surface temperature, the embedding dimensions are selected as 5, 3, 7, and 4, respec-
tively. 

 
Figure 2. Variation curve of mutual information with delay interval τ on datasets of the (a) Henon 
map, the (b) Lorenz equation, (c) sunspot, and (d) SST. 

(a) Henon map (b)Lorenz equation 

(c) Sunspot (d) SST 

τ =11 

τ =13 

τ =35 

τ =24 

Figure 2. Variation curve of mutual information with delay interval τ on datasets of the (a) Henon
map, the (b) Lorenz equation, (c) sunspot, and (d) SST.



Entropy 2023, 25, 973 14 of 20Entropy 2023, 25, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 3. The E1 and E2 indicators change curves with the embedded dimension d on datasets of the 
(a) Henon map, (b) Lorenz equation, (c) sunspot, and (d) SST. 

4.4. Analysis for AICg 
We trained different networks on the Lorentz dataset by randomly initializing the 

parameters (here, the same network topology is used but with different network weights). 
The number of nodes in the hidden layer of the network is set to 20, and 10 networks are 
obtained by training from 10 random initialized parameters. Table 1 shows the compari-
son results of generalized degrees of freedom (GDF), Akaike information criterion (AICg), 
and maximum Lyapunov exponents (MLE) for these 10 networks on the Lorenz dataset. 
The results show that the models with small AICg values prefer small MLE values. The 
scatterplots for MLE and AICg also show the same trend (Figure 4). In other words, AICg 
is a good criterion for selecting a good network for chaotic time series. 

Table 1. Comparison results of AICg, GDF, and MLE on 10 networks. 

 GDF AIC MLE 
1 76.00 −9.22 0.230 
2 76.00 −9.37 0.236 
3 69.93 −8.31 0.237 
4 74.01 −8.67 0.226 
5 76.00 −8.99 0.244 
6 73.60 −9.38 0.221 
7 75.98 −8.64 0.234 
8 76.00 −9.82 0.207 
9 76.00 −8.63 0.200 

(a) Henon map (b) Lorenz 

(c) Sunspot (d) SST 

d = 5 d = 3 

d = 6 d = 4 

Figure 3. The E1 and E2 indicators change curves with the embedded dimension d on datasets of the
(a) Henon map, (b) Lorenz equation, (c) sunspot, and (d) SST.

4.4. Analysis for AICg

We trained different networks on the Lorentz dataset by randomly initializing the
parameters (here, the same network topology is used but with different network weights).
The number of nodes in the hidden layer of the network is set to 20, and 10 networks are
obtained by training from 10 random initialized parameters. Table 1 shows the comparison
results of generalized degrees of freedom (GDF), Akaike information criterion (AICg),
and maximum Lyapunov exponents (MLE) for these 10 networks on the Lorenz dataset.
The results show that the models with small AICg values prefer small MLE values. The
scatterplots for MLE and AICg also show the same trend (Figure 4). In other words, AICg
is a good criterion for selecting a good network for chaotic time series.

Table 1. Comparison results of AICg, GDF, and MLE on 10 networks.

GDF AIC MLE

1 76.00 −9.22 0.230
2 76.00 −9.37 0.236
3 69.93 −8.31 0.237
4 74.01 −8.67 0.226
5 76.00 −8.99 0.244
6 73.60 −9.38 0.221
7 75.98 −8.64 0.234
8 76.00 −9.82 0.207
9 76.00 −8.63 0.200
10 76.00 −8.16 0.241
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4.5. Model Optimization

In order to find the optimal network topology for chaotic time series, we select
20 candidate network structures, that is, the number of neurons in the hidden layer from
11 to 30. Each network is trained by randomly selecting initial weights from 10 groups,
and the model parameter with the smallest AICg was selected. Figure 5 shows the changes
of AICg with hidden layer sizes on the Henon map, Lorenz equation, sunspot, and SST
datasets, respectively. For example, as can be seen in Figure 5a, the smallest AICg value
is obtained when the number of hidden layer nodes is 19, which is the selected optimal
structure. Similarly, for the Lorenz equation, sunspots, and equatorial Pacific sea-surface
temperature datasets, the smallest AICg values were obtained with the number of hidden
nodes being 27, 19, and 17.

The maximal Lyapunov exponents (MLEs) are calculated by the above method for
the four chaotic time series. Three MLP networks—one built by the optimal neuron size
and the other two networks built by 20 and 25 neurons, respectively–are employed to
estimate the MLE for the four datasets. The two compared networks are optimized by
simply minimizing the loss function on MSE. The numerical results are listed in Figure 6.
The numerical results show that the network model optimized by our proposed method is
significantly better than the two network structures with a fixed number of hidden layer
nodes of 20 and 25 on the Lorenz and sunspot datasets, slightly better than the other two
types of networks on the Henon map dataset, roughly equivalent to the other two networks
on the SST dataset, slightly better than the 25 hidden layer node network, and slightly
worse than the 20 hidden layer node network results.

In order to further compare the performance of our proposed method, we investigate
the multi-step prediction effect of the above three types of networks on the four datasets,
namely, the optimized network by our proposed method, and two MLP networks with 20
and 25 neurons in the hidden layer, respectively. They are trained by the same dataset. The
comparison results are shown in Figure 7. In Figure 7a, we show that the optimized MLP
network provides significantly better prediction results than the other two MLP networks
on the Henon map dataset; the optimized MLP network performs the best on all time steps.
It also indicates that the AICg performs well in choosing a good MLP network for a chaotic
time series. Figure 7a shows the results of the Lorenz dataset. Except for the fifth time step,
the optimized MLP network performs the best among the three networks. The comparison
results on two real-world time series are shown in Figure 7c,d. For the first five steps, the
MLP networks can predict the time series quite well, but after five steps, the predicting
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errors become larger. The MLP network selected by the AICg also behaves much better
than the other two MLP networks in nearly all cases. It also demonstrates the benefit of
using the AICg to choose a good MLP network for a chaotic time series.
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5. Conclusions

Focusing on chaotic time series modeling, this paper proposes an MLP network-
based framework. First, the generalized degree of freedom approximation method of MLP
networks is derived, and then the Akaike information criterion (AICg) can be calculated.
Next, a multilayer perceptron network optimization method for chaotic time series analysis
is designed according to AICg. Finally, this paper proposes an overall framework for
chaotic time series analysis. To verify the effectiveness of the proposed method, it is
applied to four chaotic time series datasets, including two artificial datasets and two actual
datasets. Experimental results show that the proposed method can effectively optimize the
MLP network, and the selected model has obvious performance advantages. At the same
time, the results show that the model selected in this paper can obtain good prediction
performance on all four datasets. In future work, this approach could be extended to deep
neural network models.

Author Contributions: Conceptualization, X.S. and Y.L.; methodology, X.S.; software, M.Q.; vali-
dation, M.Q.; formal analysis, A.T. and M.Q.; investigation, A.T. and X.S.; writing—original draft
preparation, M.Q.; writing—review and editing, Y.L., A.T. and X.S.; visualization, M.Q.; funding
acquisition, Y.L. and X.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the NSFC grant numbers 61972174 and 62272192, the
Science-Technology Development Plan Project of Jilin Province grant number 20210201080GX, the
Jilin Province Development and Reform Commission grant number 2021C044-1, the Guangdong



Entropy 2023, 25, 973 18 of 20

Universities’ Innovation Team grant number 2021KCXTD015, and Key Disciplines Projects grant
number 2021ZDJS138.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The open-access data that support the findings of this study are made
publicly available at psl.noaa.gov/gcos_wgsp/Timeseries/SUNSPOT/ (accessed on 5 June 2023) and
http://geodata.pku.edu.cn (accessed on 8 April 2023).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Alzaid, S.S.; Kumar, A.; Kumar, S.; Alkahtani, B.S.T. Chaotic behavior of financial dynamical system with generalized fractional

operator. Fractals 2023, 31, 2340056. [CrossRef]
2. Yao, Q.; Jahanshahi, H.; Batrancea, L.M.; Alotaibi, N.D.; Rus, M.-I. Fixed-Time Output-Constrained Synchronization of Unknown

Chaotic Financial Systems Using Neural Learning. Mathematics 2022, 10, 3682. [CrossRef]
3. Zhang, Y.; Li, P.; Li, H.; Zu, W.; Zhang, H. Short-Term Power Prediction of Wind Power Generation System Based on Logistic

Chaos Atom Search Optimization BP Neural Network. Int. Trans. Electr. Energy Syst. 2023, 2023, 6328119. [CrossRef]
4. Wang, M.H.; Lu, S.D.; Liao, R.M. Fault Diagnosis for Power Cables Based on Convolutional Neural Network With Chaotic System

and Discrete Wavelet Transform. IEEE Trans. Power Deliv. 2022, 37, 582–590. [CrossRef]
5. Abuturab, M.R. Multiple-information security system using key image phase and chaotic random phase encoding in Fresnel

transform domain. Opt. Lasers Eng. 2020, 124, 105810. [CrossRef]
6. Liu, Z.Y.; Xia, T.C.; Wang, J.B. Fractional two-dimensional discrete chaotic map and its applications to the information security

with elliptic-curve public key cryptography. J. Vib. Control 2017, 24, 4797–4824. [CrossRef]
7. Yang, G.C.; Yao, J.Y.; Dong, Z.L. Neuroadaptive learning algorithm for constrained nonlinear systems with disturbance rejection.

Int. J. Robust Nonlinear Control 2022, 32, 5811–6215. [CrossRef]
8. Yang, G.C. Asymptotic tracking with novel integral robust schemes for mismatched uncertain nonlinear systems. Int. J. Robust

Nonlinear Control 2023, 33, 1407–2507. [CrossRef]
9. Brandejsky, T. Specific modification of a GPA-ES evolutionary system suitable for deterministic chaos regression. Comput. Math.

Appl. 2013, 66, 106–112. [CrossRef]
10. Senkerik, R.; Oplatková, Z.K.; Zelinka, I.; Chramcov, B.; Davendra, D.; Pluhacek, M. Utilization of analytic programming for the

evolutionary synthesis of the robust multi-chaotic controller for selected sets of discrete chaotic systems. Soft Comput. 2014, 18,
651–668. [CrossRef]

11. Bezruchko, B.P.; Smirnov, D.A. Constructing nonautonomous differential equations from experimental time series. Phys. Rev. E
2000, 63, 016207. [CrossRef]

12. Lainscsek, C.S.M.; Letellier, C.; Schurrer, F. Ansatz library for global modeling with a structure selection. Phys. Rev. E 2001, 64,
016206. [CrossRef] [PubMed]

13. Han, P.; Zhou, S.L.; Wang, D.F. A Multi-objective Genetic Programming/NARMAX Approach to Chaotic Systems Identification.
In Proceedings of the 6th World Congress on Intelligent Control and Automation (2006), Dalian, China, 21–23 June 2006; pp.
1735–1739.

14. Karimov, A.; Rybin, V.; Kopets, E.; Karimov, T.; Nepomuceno, E.; Butusov, D. Identifying empirical equations of chaotic circuit
from data. Nonlinear Dyn. 2023, 111, 871–886. [CrossRef]

15. Yang, J.; Zhao, J.; Song, J.; Wu, J.; Zhao, C.; Leng, H. A Hybrid Method Using HAVOK Analysis and Machine Learning for
Predicting Chaotic Time Series. Entropy 2022, 24, 408. [CrossRef] [PubMed]

16. Sarveswararao, V.; Ravi, V.; Vivek, Y. ATM cash demand forecasting in an Indian bank with chaos and hybrid deep learning
networks. Expert Syst. Appl. 2023, 211, 118645. [CrossRef]

17. Raubitzek, S.; Neubauer, T. Taming the Chaos in Neural Network Time Series Predictions. Entropy 2021, 23, 1424. [CrossRef]
18. Yang, G.; Yao, J.; Ullah, N. Neuroadaptive control of saturated nonlinear systems with disturbance compensation. ISA Trans.

2022, 122, 49–62. [CrossRef]
19. Xu, Y.Q.; Zhen, X.X.; Tang, M. Dynamical System in Chaotic Neurons with Time Delay Self-Feedback and Its Application in Color

Image Encryption. Complexity 2022, 2022, 2832104. [CrossRef]
20. Cheng, W.; Feng, J.B.; Wang, Y. High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks.

Chaos 2022, 32, 053112. [CrossRef]
21. Lee, J.; Huang, Z.; Lin, L.; Guo, Y.; Lee, R. Chaotic Bi-LSTM and attention HLCO predictor-based quantum price level fuzzy logic

trading system. Soft Comput. 2022. [CrossRef]
22. Nasiri, H.; Ebadzadeh, M.M. MFRFNN: Multi-Functional Recurrent Fuzzy Neural Network for Chaotic Time Series Prediction.

Neurocomputing 2022, 507, 292–310. [CrossRef]

psl.noaa.gov/gcos_wgsp/Timeseries/SUNSPOT/
http://geodata.pku.edu.cn
https://doi.org/10.1142/S0218348X2340056X
https://doi.org/10.3390/math10193682
https://doi.org/10.1155/2023/6328119
https://doi.org/10.1109/TPWRD.2021.3065342
https://doi.org/10.1016/j.optlaseng.2019.105810
https://doi.org/10.1177/1077546317734712
https://doi.org/10.1002/rnc.6143
https://doi.org/10.1002/rnc.6499
https://doi.org/10.1016/j.camwa.2013.01.011
https://doi.org/10.1007/s00500-014-1220-1
https://doi.org/10.1103/PhysRevE.63.016207
https://doi.org/10.1103/PhysRevE.64.016206
https://www.ncbi.nlm.nih.gov/pubmed/11461366
https://doi.org/10.1007/s11071-022-07854-0
https://doi.org/10.3390/e24030408
https://www.ncbi.nlm.nih.gov/pubmed/35327919
https://doi.org/10.1016/j.eswa.2022.118645
https://doi.org/10.3390/e23111424
https://doi.org/10.1016/j.isatra.2021.04.017
https://doi.org/10.1155/2022/2832104
https://doi.org/10.1063/5.0082993
https://doi.org/10.1007/s00500-022-07626-3
https://doi.org/10.1016/j.neucom.2022.08.032


Entropy 2023, 25, 973 19 of 20

23. Lee, R.S. Chaotic Type-2 Transient-Fuzzy Deep Neuro-Oscillatory Network (CT2TFDNN) for Worldwide Financial Prediction.
IEEE Trans. Fuzzy Syst. 2020, 28, 731–745. [CrossRef]

24. Chai, S.H.; Lim, J.S. Forecasting business cycle with chaotic time series based on neural network with weighted fuzzy membership
functions. Chaos Solitons Fractals 2016, 90, 118–126. [CrossRef]

25. González-Zapata, A.M.; Tlelo-Cuautle, E.; Ovilla-Martinez, B.; Cruz-Vega, I.; De la Fraga, L.G. Optimizing Echo State Networks
for Enhancing Large Prediction Horizons of Chaotic Time Series. Mathematics 2022, 10, 3886. [CrossRef]

26. Mohanty, S.; Dash, R. A novel chaotic flower pollination algorithm for modelling an optimized low-complexity neural network-
based NAV predictor model. Prog. Artif. Intell. 2022, 11, 349–366. [CrossRef]

27. Wang, Y.F.; Fu, Y.C.; Xue, H. Improved prediction method of PV output power based on optimised chaotic phase space
reconstruction. IET Renew. Power Gener. 2020, 14, 1831–1840. [CrossRef]

28. Xu, X.H.; Ren, W.J. A Hybrid Model Based on a Two-Layer Decomposition Approach and an Optimized Neural Network for
Chaotic Time Series Prediction. Symmetry 2019, 11, 610. [CrossRef]

29. Ong, P.; Zainuddin, Z. Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time
series prediction. Appl. Soft Comput. 2019, 80, 374–386. [CrossRef]

30. Feng, T.; Yang, S.Y.; Han, F. Chaotic time series prediction using wavelet transform and multi-model hybrid method. J. Vibroeng.
2019, 21, 1983–1999. [CrossRef]

31. Huang, F.; Yin, K.; Zhang, G.; Gui, L.; Yang, B.; Liu, L. Landslide displacement prediction using discrete wavelet transform and
extreme learning machine based on chaos theory. Environ. Earth Sci. 2016, 75, 1376. [CrossRef]

32. Lu, R.; Lei, T. Short-term load forecast using maximum overlap discrete wavelet transform and BP neural network based on
chaos theory. In Proceedings of the 2019 31st Chinese Control and Decision Conference (CCDC 2019), Nanchang, China, 3–5 June
2019; pp. 6029–6033.

33. Ramadevi, B.; Bingi, K. Chaotic time series forecasting approaches using machine learning techniques: A review. Symmetry 2022,
14, 955. [CrossRef]

34. Srinivasan, K.; Coble, N.; Hamlin, J.; Antonsen, T.; Ott, E.; Girvan, M. Parallel Machine Learning for Forecasting the Dynamics of
Complex Networks. Phys. Rev. Lett. 2022, 128, 164101. [CrossRef] [PubMed]

35. Li, K.F.H.; Deng, P.F. Chaotic time series prediction using DTIGNet based on improved temporal-inception and GRU. Chaos
Solitons Fractals 2022, 159, 112183.

36. Sangiorgio, M.; Dercole, F.; Guariso, G. Forecasting of noisy chaotic systems with deep neural networks. Chaos Solitons Fractals
2021, 153, 11570. [CrossRef]

37. Xie, H.L.; Zhang, L.; Lim, C.P. Evolving CNN-LSTM Models for Time Series Prediction Using Enhanced Grey Wolf Optimizer.
IEEE Access 2020, 8, 161519–161541. [CrossRef]

38. Huang, W.T.; Li, Y.T.; Huang, Y. Deep Hybrid Neural Network and Improved Differential Neuroevolution for Chaotic Time Series
Prediction. IEEE Access 2020, 8, 159552–159565. [CrossRef]

39. Qian, Y.S.; Zeng, J.W.; Zhang, S.F. Short-Term Traffic Prediction Based on Genetic Algorithm Improved Neural Network. Tech.
Gaz. 2020, 27, 1270–1276.

40. Chen, L.G.; Chiang, H.D.; Dong, N. Group-based chaos genetic algorithm and non-linear ensemble of neural networks for
short-term load forecasting. IET Gener. Transm. Distrib. 2016, 10, 1440–1447. [CrossRef]

41. Kao, C.H.; Hsu, C.F.; Don, H.S. Design of an adaptive self-organizing fuzzy neural network controller for uncertain nonlinear
chaotic systems. Neural Comput. Appl. 2012, 21, 1243–1253. [CrossRef]

42. Akaike, H. Information theory and the maximum likelihood principle. In International Symposium on Information Theory; Petrov, V.,
Csaki, F., Eds.; Akademiai Kiado: Budapest, Hungary, 1973.

43. Jayawardena, A.W.; Xu, P.C.; Tsang, F.L.; Li, W.K. Determining the structure of a radial basis function network for prediction of
nonlinear hydrological time series. Hydrol. Sci. J. 2006, 51, 21–44. [CrossRef]

44. Xu, P.; Jayawardena, A.; Li, W.K. Model selection for RBF network via generalized degree of freedom. Neurocomputing 2013, 99,
163–171. [CrossRef]

45. Ye, J. On measuring and correcting the effects of data mining and model selection. J. Am. Stat. Assoc. 1998, 93, 120–131. [CrossRef]
46. Takens, F. Detecting Strange Attractors in Turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Springer:

Berlin/Heidelberg, Germany, 1981; pp. 366–381.
47. Chen, K.; Han, B.T. A survey of state space recognition of chaotic time series analysis. Comput. Sci. 2005, 32, 67–70. (In Chinese)
48. Graven, P.; Wahba, G. Smoothing noisy data with Spine function. Numer. Math. 1979, 31, 377–403.
49. Carruba, V.; Aljbaae, S.; Domingos, R.C.; Huaman, M.; Barletta, W. Chaos identification through the autocorrelation function

indicator ACFI. Celest. Mech. Dyn. Astron. 2021, 133, 38. [CrossRef]
50. Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical

construction. Phys. Rev. A 1992, 45, 3403. [CrossRef] [PubMed]
51. Cao, L.Y. Practical method for determining the minimum embedding dimension of a scalar time series. Phys D 1997, 110, 43–50.

[CrossRef]
52. Uzal, L.C.; Grinblat, G.L.; Verdes, P.F. Optimal reconstruction of dynamical systems: A noise amplification approach. Phys. Rev. E

2011, 84, 016223. [CrossRef] [PubMed]

https://doi.org/10.1109/TFUZZ.2019.2914642
https://doi.org/10.1016/j.chaos.2016.03.037
https://doi.org/10.3390/math10203886
https://doi.org/10.1007/s13748-022-00289-z
https://doi.org/10.1049/iet-rpg.2019.0809
https://doi.org/10.3390/sym11050610
https://doi.org/10.1016/j.asoc.2019.04.016
https://doi.org/10.21595/jve.2019.20579
https://doi.org/10.1007/s12665-016-6133-0
https://doi.org/10.3390/sym14050955
https://doi.org/10.1103/PhysRevLett.128.164101
https://www.ncbi.nlm.nih.gov/pubmed/35522516
https://doi.org/10.1016/j.chaos.2021.111570
https://doi.org/10.1109/ACCESS.2020.3021527
https://doi.org/10.1109/ACCESS.2020.3020801
https://doi.org/10.1049/iet-gtd.2015.1068
https://doi.org/10.1007/s00521-011-0537-2
https://doi.org/10.1623/hysj.51.1.21
https://doi.org/10.1016/j.neucom.2012.06.005
https://doi.org/10.1080/01621459.1998.10474094
https://doi.org/10.1007/s10569-021-10036-6
https://doi.org/10.1103/PhysRevA.45.3403
https://www.ncbi.nlm.nih.gov/pubmed/9907388
https://doi.org/10.1016/S0167-2789(97)00118-8
https://doi.org/10.1103/PhysRevE.84.016223
https://www.ncbi.nlm.nih.gov/pubmed/21867289


Entropy 2023, 25, 973 20 of 20

53. Keogh, E.J.; Chakrabarti, K.; Pazzani, M.J. Dimensionality reduction for fast similarity search in large time series databases. Knowl.
Inf. Syst. 2001, 3, 263–286. [CrossRef]

54. Chen, Z.; Zuo, W.; Hu, Q.; Lin, L. Kernel sparse representation for time series classification. Inf. Sci. 2015, 292, 15–26. [CrossRef]
55. Rosas-Romero, R.; Diaz-Torres, A.; Etcheverry, G. Forecasting of stock return prices with sparse representation of financial time

series over redundant dictionaries. Expert Syst. Appl. 2016, 57, 37–48. [CrossRef]
56. Kotteti, C.M.M.; Dong, X.S.; Qian, L.J. Ensemble deep learning on time-series representation of tweets for rumor detection in

social media. Appl. Sci. 2020, 10, 7541. [CrossRef]
57. Li, Q.; Xu, P. Estimation of Lyapunov spectrum and model selection of a chaotic time series. Appl. Math. Model. 2012, 36,

6090–6099. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/PL00011669
https://doi.org/10.1016/j.ins.2014.08.066
https://doi.org/10.1016/j.eswa.2016.03.021
https://doi.org/10.3390/app10217541
https://doi.org/10.1016/j.apm.2012.01.024

	Introduction 
	Backgrounds 
	Phase Space Reconstruction of Chaotic Systems 
	Akaike Information Criterion of a Nonlinear System 
	Generalized Degrees of Freedom (GDF) 

	Modeling Selection for MLP Networks 
	Pipeline of the Modeling Selection 
	Phase Space Reconstruction 
	Calculation of MLP Networks’ Akaike Information Criterion (AICg) 

	Experiments 
	Benchmark Datasets 
	Experiment Setup 
	Phase Space Reconstruction 
	Analysis for AICg 
	Model Optimization 

	Conclusions 
	References

