1,036 research outputs found

    Identifying parameters of a broaching design using non-linear optimisation

    Get PDF
    Broaching is one of the most recognised machining processes that can yield high productivity and high quality when applied properly. One big disadvantage of broaching is that all process parameters, except cutting speed, are built into the broaching tools. Therefore, it is not possible to modify the cutting conditions during the process once the tool is manufactured. Optimal design of broaching tools has a significant impact to increase the productivity and to obtain high quality products. In this paper, an optimisation model for broaching design is presented. The model results in a non-linear non-convex optimisation problem. Analysis of the model structure indicates that the model can be decomposed into smaller problems. The model is applied to a turbine disc broaching problem which is considered as one of the most complex broaching operations

    Optimization of broaching design

    Get PDF
    Broaching is one of the most recognized machining processes that can yield high productivity and high quality when applied properly. One big disadvantage of broaching is that all process parameters, except cutting speed, are built into the broaching tools. Therefore, it is not possible to modify the cutting conditions during the process once the tool is manufactured. Optimal design of broaching tools has a significant impact to increase the productivity and to obtain high quality products. In this paper, an optimization model for broaching design is presented. The model results in a non-linear non-convex optimization problem. Analysis of the model structure indicates that the model can be decomposed into smaller problems. The model is applied on a turbine disc broaching problem which is considered as one of the most complex broaching operations

    Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae)

    Get PDF
    Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive, as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric) analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths) and calculated muscle physiological cross sectional area (PCSA) and average tendon cross sectional area from emus across three ontogenetic stages (n = 17, body masses from 3.6 to 42 kg). The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively) and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus) also exhibited positive allometry for length, and two others (femur and first phalanx of digit III) had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle–tendon units in emus

    Towards microagent based DBIST/DBISR

    Get PDF
    We present some ideas and experiments on using microagents for testing and repairing a distributed system, whose elements may or may not have embedded BIST (built in self test) and BISR (built in self repair) facilities. The microagents are software modules that perform monitoring, diagnosis and repair of the faults. They form together a society whose members communicate, set goals and solve tasks. The platforms taken into consideration for mobile tester microagents include Java Micro Edition, BREW, Symbian, PalmOS, as well as more general small scale platforms. Experimental tester agents in Java 2 Micro Edition and PalmOS are also presented, a solution that ensures portability, flexibility, but also a relatively small memory footprint

    The Lantern spring 2004

    Get PDF

    Completing and adapting models of biological processes

    Get PDF
    We present a learning-based method for model completion and adaptation, which is based on the combination of two approaches: 1) R2D2C, a technique for mechanically transforming system requirements via provably equivalent models to running code, and 2) automata learning-based model extrapolation. The intended impact of this new combination is to make model completion and adaptation accessible to experts of the field, like biologists or engineers. The principle is briefly illustrated by generating models of biological procedures concerning gene activities in the production of proteins, although the main application is going to concern autonomic systems for space exploration.1st IFIP International Conference on Biologically Inspired Cooperative Computing - Biological Inspiration 1Red de Universidades con Carreras en Informática (RedUNCI
    corecore