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Abstract: Optoelectronic imaging of integrated-circuits has revolutionized 
device design debug, failure analysis and electrical fault isolation; however 
modern probing techniques like laser-assisted device alteration (LADA) 
have failed to keep pace with the semiconductor industry’s aggressive 
device scaling, meaning that previously satisfactory techniques no longer 
exhibit a sufficient ability to localize electrical faults, instead casting 
suspicion upon dozens of potential root-cause transistors. Here, we 
introduce a new high-resolution probing technique, two-photon laser-
assisted device alteration (2pLADA), which exploits two-photon absorption 
(TPA) to provide precise three-dimensional localization of the photo-
carriers injected by the TPA process, enabling us to implicate individual 
transistors separated by 100 nm. Furthermore, we illustrate the technique's 
capability to reveal speed-limiting transistor switching evolution with an 
unprecedented timing resolution approaching <10 ps. Together, the 
exceptional spatial and temporal resolutions demonstrated here now make it 
possible to extend optical fault localization to sub-14 nm technology nodes. 

©2013 Optical Society of America 

OCIS codes: (180.4315) Nonlinear microscopy; (320.7090) Ultrafast lasers; (130.5990) 
Semiconductors. 
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1. Introduction 

Dynamic laser stimulation (DLS) [1] enables a variety of state-of-the-art integrated-circuit 
(IC) diagnostic solutions, which address the challenges of spatially localizing performance-
limiting circuit failures within CMOS nanoelectronic circuits. Based on the acquisition of 
either laser-induced photo-electric or photo-thermal functional test mapping, these precision 
through-substrate technologies traditionally utilize a continuous-wave (CW) 1064 nm or 1340 
nm laser source, respectively, in order to abate experimental complexity and cost. 
Specifically, continuous laser interrogation guarantees temporal overlap between the incident 
optical radiation and a preconditioned electrical tester stimulus configured to exercise the 
device. Examples of such analytical optoelectronic probing platforms include soft defect 
localization (SDL) [2] and laser-assisted device alteration (LADA) [3]. These advanced 
modalities function by coaxing operationally sensitive transistors to advance or delay their 
switching characteristics in order to alter the pass / fail outcome of a pre-determined marginal 
test stimulus. This outcome provides vital information for globally localizing, with 
diffraction-limited precision, areas of the chip whose designs limit its overall speed. 
However, the absence of temporal information overlooks an important dimension associated 
with speed-limiting performance, and consequently the semiconductor failure-analysis 
community is beginning to develop novel time-resolved, applications-driven laser probing 
methodologies for interrogating nanoscale flip-chip architectures in order to refine the silicon 
validation cycle. 

Recently, Erington et al addressed this challenge by using a software-enhanced CW laser 
scanning microscope (LSM) to extract timing information from pixel-shifted data originating 
from LADA images captured at different scan rates with a temporal resolution on the order of 
μs [4]. In addition, Perdu et al described a modulated CW laser-assisted fault localization 
approach which could glean a few nanoseconds of functional timing information from a 
device under test (DUT) [5]. Although impressively innovative, these extended CW 
techniques are ultimately limited by their reliance on conventional optical sources. Therefore, 
the adoption of advanced mode-locked laser systems is required to extend these technologies 
into the ultrafast temporal domain. Douin et al may have recognized this by utilizing a 
picosecond laser system to demonstrate time-resolved DLS imaging whilst observing signal 
propagation along an 860 MHz ring oscillator structure [6]. This was implemented by 
employing the mode-locked laser repetition rate as the timing reference for the DUT clock 
stimulus. 
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In this article, we describe how two-photon carrier injection at photon energies just below 
the bandgap can be used to configure a novel time-resolved ultrafast optical probing tool for 
the qualitative and quantitative characterization of critical timing path analysis in a silicon IC. 
This was facilitated by combining TPA within the active layer of the DUT with a pulse-to-
DUT synchronization scheme whereby the arrival of femtosecond laser pulses could be 
locked and temporally shifted with respect to the internal clock frequency of a DUT with 
picosecond precision. We show how this technique delivers a significant advance in the 
spatio-temporally resolved probing of silicon ICs, and furthermore how undesirable effects 
associated with traditional LADA are eliminated, such as scattered photons from surrounding 
metal layers and structures, and thermal interactions due to CW 1064 nm interrogation. 

2. Failure localization to individual transistors using 2pLADA 

The test vehicle adopted was a proprietary 28 nm bulk-silicon test device (Vdd = 0.8 V, clock 
frequency = 50 MHz) containing production logic blocks. To exercise the device, a 
production scan test, lasting 21 μs, was modified to engineer a race condition – as illustrated 
in Fig. 1. Data were launched through a data-path circuit at time t1 and captured at t2. The 
data-path propagation delay, tp, depends on the power supply voltage, V, and the test is 
passed if (t2-t1) > tp(V). For LADA, both V and (t2-t1), are chosen to make (t2-t1) ≈tp(V), so 
that the probability of passing the test is naturally 50%. Laser irradiation of any of the circuits 
affects either the effective clock period or the propagation delay, highlighting sensitive 
locations by modulating the probability of failure, so providing the ideal conditions for 
performing LADA. 

 

Fig. 1. For LADA, the power supply voltage, V, and the clock period, (t2-t1), are chosen to 
make (t2-t1) ≈tp(V), so that the probability of failing the test is naturally 50%. Laser irradiation 
of any of the circuits affects either the effective clock period or the propagation delay, 
highlighting sensitive locations by modulating the probability of failure. 

For the 2pLADA work, we employed an ultrafast 1280 nm laser source. This was based 
on Raman self-frequency shifted soliton generation in a highly nonlinear photonic crystal 
fiber (PCF) pumped by an efficient mode-locked ytterbium-doped fiber laser (YDFL) [7]. 
The 1280 nm Raman-soliton pulses were fiber delivered to the LSM with pulse durations of 
200 fs and an average power of 20 mW. The repetition frequency was 100 MHz and could be 
locked to an external 100 MHz clock supplied by the tester. Figures 2(a) and 2(b) illustrate, 
respectively, the imaging capabilities of a conventional CW 1064 nm LADA system and a 
2pLADA system using the 1280 nm ultrafast laser source. The optical power incident on the 
2.45 NA GaAs SIL was 0.35 mW for both techniques, and corresponded to a peak power of 
17.5 W for the mode-locked laser. Two hundred LADA images of a region containing a 
simple inverter structure were acquired with a pixel dwell time of 32 µs and an image size of 
512 × 512. The fail rate was set to 50%, and the laser pulses (separated by 10 ns) were 
synchronized to start arriving 3.06 ns after the test loop trigger. It is immediately clear from 
Fig. 2(a) that the traditional CW 1064 nm LADA methodology is unable to localize its weak 
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signal to individual transistor sites, offering instead a global single polarity (i.e. 
predominantly passing) signal distribution which cannot be overlaid with the accompanying 
computer-aided design (CAD) details defining the layout of the device's active layers (orange 
blocks) and poly-silicon gates (green lines). 

 

Fig. 2. (a) A CW 1064 nm LADA image and (b), a 2pLADA image. The LADA images were 
averaged 200 times before visualization. The CAD overlay in (b) highlights the active 
transistor-area silicon (orange) and poly-silicon gates (green). Horizontal scale bars in (a) and 
(b), 500 nm. 

Under conventional LADA stimulation, such a single polarity signature normally 
dominates, and its characteristics are typically biased towards the PMOS transistor due to its 
favorable light-matter interaction sensitivity [3]. By contrast, our results indicate that 
2pLADA produces highly localized LADA signatures which, when the incident laser pulse is 
accurately synchronized in time with the inverter’s switching event, emanate from the 
inverter’s individual PMOS and NMOS transistors and do not exhibit strong PMOS 
dominance – as illustrated in Fig. 2(b). Moreover, with only 0.35 mW incident at the device 
and averaging of 200 images, it is clear that 2pLADA outperforms its CW 1064 nm LADA 
counterpart in terms of signal acquisition rate, since the higher peak power of the mode-
locked laser pulses makes it possible to perturb and visualize weaker LADA sites without 
damaging the device. Significantly, these results represent the first LADA embodiment 
capable of simultaneously generating a complementary time-resolved LADA signal pair, of 
opposing polarities and of approximately equal signal strengths, at an acquisition rate superior 
to conventional CW 1064 nm LADA. 

3. Two-photon absorption induced single-event upsets 

The 2pLADA data in Fig. 2(b) also reveal additional information in the form of a cluster of 
intense failing sites, which are highly localized to individual transistors within a series of flip-
flops and are optically activated as a direct consequence of the high peak power and localized 
nonlinearity delivered to the device. These unique signatures display incredibly sharp signal 
transitions which clearly outperform the centrally located 2pLADA sites’ when examined 
under the same conditions. Although captured in a LADA image, these strong electrical 
signatures do not correspond to the customary pass / fail signals produced by LADA 
stimulation. Instead, they represent a collection of two-photon absorption induced single-
event upset sites (2pSEU). A single-event upset (SEU), which belongs to a wider group of 
radiation-induced anomalies known as single-event effects (SEE) [8–12], is characterized by 
the non-permanent perturbation (or, more specifically, change of state) in a microprocessor’s 
functionality caused by an individual node’s sensitivity to incident high-energy particles or 
electromagnetic radiation. These soft errors have been widely studied in many programmable 
logic devices [13, 14] and have even, as is demonstrated here, been generated through the use 
of two-photon absorption [15, 16]. However, although linear and nonlinear SEU 
implementation and characterization are commonplace in the aerospace and defense research 
communities, the novelty of this particular result originates in the enhanced 2pLADA signal 
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extraction methodology, which offers a unique and alternative solution to traditional SEU 
investigations. Further research is needed before a comprehensive explanation of the 
underlying mechanism for 2pSEU can be offered. 

4. Lateral fault localization performance using 2pLADA 

For the purposes of evaluating the 2pLADA lateral spatial resolution performance, we 
performed a line-cut profile plot, originating at the peak / trough of the LADA fail / pass 
activation sites, and traversing the edge of each feature until the 2pLADA signal reached the 
nominal 50% pass / fail background. Using these plots it was possible to fit the integral of a 
Gaussian point-spread function, whose full-width at half-maximum (FWHM) provided the 
effective 2pLADA probing resolution [17–19]. From these individual passing and failing 
2pLADA sites, FWHM probing diameters of 380 nm (X) and 215 nm (Y) were calculated, 
respectively. For the incident wavelength of 1.28 μm and an NA = 2.45, the Rayleigh 
criterion Δx = 0.61λ/NA√2 (modified for two-photon excitation) predicts a lateral resolution 
of 222 nm, therefore the observed probing resolutions correspond to 1.73 × and 0.98 × the 
scalar diffraction limit. 

The ultimate purpose of LADA and similar techniques is to identify the location of 
sensitive transistors, so a meaningful distinction can be drawn between the conventional 
imaging resolution (as discussed above) and the isolation resolution, which quantifies the 
ability to localize, as opposed to resolve, a signal within a specific area. For this reason, the 
evaluation of the isolation resolution proceeded by using a separate figure of merit. Figure 
3(a) illustrates the same collection of 2pLADA sites in Fig. 3(b); however, instead of 
accumulating only 200 averages, Fig. 3(a) was constructed from approximately 650 averages 
in order to suppress the background noise in the data set. A vertical line-cut was performed on 
this image and the absolute delay profiles of the PMOS and NMOS LADA signals which it 
provided are presented in Fig. 3(b). The isolation resolution performance can be defined as 
the physical separation between independently addressable LADA sites. The PMOS and 
NMOS sites in Fig. 3(a) qualify as independent sites because they exhibit opposite 2pLADA 
polarities. Measured from the point where the 2pLADA delay reaches the background level, 
the isolation resolution can be estimated to be 98 ± 5 nm. These sites were known from CAD 
data to have an actual separation of 117 nm, which is consistent with our experimental value 
(although slightly outside our uncertainty estimate), and implies that 2pLADA is capable of 
localizing to an accuracy of approximately half of the diffraction-limited optical resolution. 

 

Fig. 3. (a) A 2pLADA image of LADA activation sites using 650 averages and (b), a localized, 
cumulative, line-cut profile, whose direction is represented by the dashed purple line in (a), 
representing the absolute delay of the 2pLADA sites. The resulting lateral isolation resolution 
was measured to be 98 ± 5 nm. Vertical scale bar in (a), 500 nm. 
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5. Time-resolved performance in 2pLADA 

In addition to the enhanced optoelectronic imaging and fault localization capabilities offered 
by 2pLADA, the use of synchronized femtosecond laser pulses makes it possible to 
temporally resolve the switching evolution of individual transistors associated with the 
electrical test. To demonstrate this we concentrated on two separate circuit features, a NOR 
gate (Site A) and an inverter (Site B), which were neighboring logical elements in terms of 
electrical signal propagation. Figure 4(a) illustrates their physical locations in a confocal laser 
scanning microscope (LSM) image acquired using a 100X objective lens. The strongest 
2pLADA images associated with the NOR gate and the inverter are shown in Fig. 4(b) and 
Fig. 4(c), and were acquired when the incident femtosecond laser pulses were synchronized to 
arrive at Site A (B) 2.92 ns (3.06 ns) after the test loop trigger, with a timing accuracy 
approaching <10 ps. These experimental data implied that the electrical LADA stimulus 
required 140 ps to travel the 97.46 μm interconnect path length linking the two structures – 
represented by the purple line in Fig. 4(a). This result can be compared against the 
propagation delay calculated by using a numerical simulation of the circuit's electrical 
performance based on an assumption of the charge injected into each of the circuit nodes by 
the femtosecond laser. We found a precise agreement between the experiment and the 
simulation for an injected charge of 1.2 fC, which can be used to infer an overall two-photon 
stimulation efficiency of 0.07%, on the basis that two incident photons yield (at most) one 
photoelectron. 

 

Fig. 4. (a), A confocal reflection image taken using a 1.28 μm confocal LSM and a 100X 
objective lens to capture the electrical interconnect path, or signal path (represented by the 
purple line), between Site A (NOR gate) and Site B (inverter). (b), A 2pLADA image of Site A 
captured at a laser phase interval that represented 0 ps in time and (c), another 2pLADA image 
of Site B captured approximately 140 ps later, with a timing accuracy in both cases 
approaching <10 ps. The scale bar indicates the magnitude of laser-induced relative electrical 
delay generated at each circuit location through 2pLADA. Horizontal scale bars in (b) and (c), 
500 nm. 

6. Discussion 

Several factors contribute to the enhanced performance observed using 2pLADA, the unique 
benefits of which arise as a natural consequence of the high peak power of the incident 
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femtosecond laser pulses, the axial localization of the technique (at an excitation wavelength 
of 1280 nm, the longitudinal optical FWHM, calculated using Δz = 0.88λ/n√2 [20] - which 
has been modified for two-photon excitation, where n represents the refractive index of 
silicon – is approximately 230 nm; however, the axial optoelectronic interaction will be 
further reduced by LADA’s threshold laser power sensitivity to more accurately overlap with 
the physical longitudinal extent of the transistor’s active layer), and the time-resolved 
capabilities offered by the synchronization scheme. Since the LADA race condition is 
interrogated for only the duration of the incident optical pulse, photo-generated carriers that 
are not injected directly into depletion regions have insufficient time to diffuse into the 
junction and influence the measurement. In addition, the LADA race condition is subject to a 
threshold interaction level which is sensitive to the energy-density of the injected photo-
carriers and the incident laser power, not simply the spatio-temporal laser power profile of the 
optical pulse. Below a given value of carrier density injection, there will be little or no 
measured effect on the resulting fail rate. This effect introduces an added complexity into the 
quantitative analysis of determining LADA resolution performance. There are undoubtedly 
many additional light-matter and physical semiconductor-device effects influencing the 
results presented here which require further study. These include the influence on 2pLADA of 
the polarization dependence of the optical intensity distribution in the focal plane of the high-
NA system, and how a non-uniform focal-plane energy-density distribution can manipulate 
the observed LADA fail rate [17]. 

7. Conclusion 

The results presented here show that 2pLADA has the potential to localize failure sites to a 
precision of around 100 nm, a performance that significantly exceeds the capabilities of 
established CW 1064 nm methodologies and is, for the first time, now sufficient to extend 
optical fault localization to sub-14 nm technology nodes. Improvements in signal generation 
and collection-rate efficiency have been confirmed, along with the creation of new device 
evaluation opportunities such as the acquisition of time-lapsed device functionality data, two-
dimensional propagation delay mapping, the exclusive separation of optoelectronic activity 
emanating from confined PMOS and NMOS structures, and the future investigation of 
2pSEUs. Not only does 2pLADA establish the state-of-the-art in dynamic nanophotonic 
silicon device analysis, but it also directly addresses the growing industrial demand for 
ultrafast time-gated performance. 

Acknowledgments 

This research is based upon work supported by the Office of the Director of National 
Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via Air 
Force Research Laboratory (AFRL) contract number FA8650-11-C-7104. The views and 
conclusions contained herein are those of the authors and should not be interpreted as 
necessarily representing the official policies or endorsements, either expressed or implied, of 
ODNI, IARPA, AFRL, or the U.S. Government. The U.S. Government is authorized to 
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright 
annotation thereon. 

 

#192636 - $15.00 USD Received 20 Jun 2013; accepted 20 Oct 2013; published 18 Nov 2013
(C) 2013 OSA 2 December 2013 | Vol. 21,  No. 24 | DOI:10.1364/OE.21.029083 | OPTICS EXPRESS  29089


