168 research outputs found

    Quality criteria benchmark for hyperspectral imagery

    Get PDF
    Hyperspectral data appear to be of a growing interest over the past few years. However, applications for hyperspectral data are still in their infancy as handling the significant size of the data presents a challenge for the user community. Efficient compression techniques are required, and lossy compression, specifically, will have a role to play, provided its impact on remote sensing applications remains insignificant. To assess the data quality, suitable distortion measures relevant to end-user applications are required. Quality criteria are also of a major interest for the conception and development of new sensors to define their requirements and specifications. This paper proposes a method to evaluate quality criteria in the context of hyperspectral images. The purpose is to provide quality criteria relevant to the impact of degradations on several classification applications. Different quality criteria are considered. Some are traditionnally used in image and video coding and are adapted here to hyperspectral images. Others are specific to hyperspectral data.We also propose the adaptation of two advanced criteria in the presence of different simulated degradations on AVIRIS hyperspectral images. Finally, five criteria are selected to give an accurate representation of the nature and the level of the degradation affecting hyperspectral data

    Hyperspectral image compression : adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding

    Get PDF
    Hyperspectral images present some specific characteristics that should be used by an efficient compression system. In compression, wavelets have shown a good adaptability to a wide range of data, while being of reasonable complexity. Some wavelet-based compression algorithms have been successfully used for some hyperspectral space missions. This paper focuses on the optimization of a full wavelet compression system for hyperspectral images. Each step of the compression algorithm is studied and optimized. First, an algorithm to find the optimal 3-D wavelet decomposition in a rate-distortion sense is defined. Then, it is shown that a specific fixed decomposition has almost the same performance, while being more useful in terms of complexity issues. It is shown that this decomposition significantly improves the classical isotropic decomposition. One of the most useful properties of this fixed decomposition is that it allows the use of zero tree algorithms. Various tree structures, creating a relationship between coefficients, are compared. Two efficient compression methods based on zerotree coding (EZW and SPIHT) are adapted on this near-optimal decomposition with the best tree structure found. Performances are compared with the adaptation of JPEG 2000 for hyperspectral images on six different areas presenting different statistical properties

    Iterative enhanced multivariance products representation for effective compression of hyperspectral images.

    Get PDF
    Effective compression of hyperspectral (HS) images is essential due to their large data volume. Since these images are high dimensional, processing them is also another challenging issue. In this work, an efficient lossy HS image compression method based on enhanced multivariance products representation (EMPR) is proposed. As an efficient data decomposition method, EMPR enables us to represent the given multidimensional data with lower-dimensional entities. EMPR, as a finite expansion with relevant approximations, can be acquired by truncating this expansion at certain levels. Thus, EMPR can be utilized as a highly effective lossy compression algorithm for hyper spectral images. In addition to these, an efficient variety of EMPR is also introduced in this article, in order to increase the compression efficiency. The results are benchmarked with several state-of-the-art lossy compression methods. It is observed that both higher peak signal-to-noise ratio values and improved classification accuracy are achieved from EMPR-based methods

    An Optimal HSI Image Compression using DWT and CP

    Get PDF
    The compression of hyperspectral images (HSIs) has recently become a very attractive issue for remote sensing applications because of their volumetric data. An efficient method for hyperspectral image compression is presented. The proposed algorithm, based on Discrete Wavelet Transform and CANDECOM/PARAFAC (DWT-CP), exploits both the spectral and the spatial information in the images. The core idea behind our proposed technique is to apply CP on the DWT coefficients of spectral bands of HSIs. We use DWT to effectively separate HSIs into different sub-images and CP to efficiently compact the energy of sub-images. We evaluate the effect of the proposed method on real HSIs and also compare the results with the well-known compression methods. The obtained results show a better performance when comparing with the existing method PCA with JPEG 2000 and 3D SPECK.DOI:http://dx.doi.org/10.11591/ijece.v4i3.6326

    Compression of Spectral Images

    Get PDF

    Multilevel split regression wavelet analysis for lossless compression of remote sensing data

    Get PDF
    Spectral redundancy is a key element to be exploited in compression of remote sensing data. Combined with an entropy encoder, it can achieve competitive lossless coding performance. One of the latest techniques to decorrelate the spectral signal is the regression wavelet analysis (RWA). RWA applies a wavelet transform in the spectral domain and estimates the detail coeffi- cients through the approximation coefficients using linear regres- sion. RWA was originally coupled with JPEG 2000. This letter introduces a novel coding approach, where RWA is coupled with the predictor of CCSDS-123.0-B-1 standard and a lightweight contextual arithmetic coder. In addition, we also propose a smart strategy to select the number of RWA decomposition levels that maximize the coding performance. Experimental results indicate that, on average, the obtained coding gains vary between 0.1 and 1.35 bits-per-pixel-per-component compared with the other state- of-the-art coding technique

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu
    corecore