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Multi-Level Split Regression Wavelet Analysis for
Lossless Compression of Remote Sensing Data

Sara Álvarez-Cortés, Joan Bartrina-Rapesta, and Joan Serra-Sagristà

Abstract—Spectral redundancy is a key element to be ex-
ploited in compression of remote sensing data. Combined with
an entropy encoder, it can achieve competitive lossless coding
performance. One of the latest techniques to decorrelate the
spectral signal is Regression Wavelet Analysis (RWA). RWA
applies a wavelet transform in the spectral domain and estimates
the detail coefficients through the approximation coefficients
using linear regression. RWA was originally coupled with JPEG
2000. This letter introduces a novel coding approach where
RWA is coupled with the predictor of CCSDS-123.0-B-1 standard
and a lightweight contextual arithmetic coder. In addition, we
also propose a smart strategy to select the number of RWA
decomposition levels that maximizes the coding performance.
Experimental results indicate that, on average, the obtained cod-
ing gains vary between 0.1 to 1.35 bits-per-pixel-per-component
compared with other state-of-the-art coding techniques.

Index Terms—Spectral decorrelation, predictive coding, loss-
less coding.

I. INTRODUCTION

The data acquired by on-board remote sensing sensors is
an unvaluable tool for governments, rescue teams, and aid
organizations to manage infrastructure and natural resources,
to appraise climate changes, or to give support when nat-
ural disasters strike. The data produced by these sensors
is increasing unprecedently in each mission and, therefore,
low-complexity and high-performing lossless compression
techniques are of paramount importance.

Lossless coding techniques exploit the redundancy in the
spatial and spectral dimensions of the scenes, allowing perfect
reconstruction. Several transforms, such as Discrete Wavelet
Transform, Principal Component Analysis (PCA) [1], Pair-
wise Orthogonal Transform (POT) [2] or the most recent
Regression Wavelet Analysis (RWA) [3], can be employed
to take advantage of the spectral redundancy. RWA is a
low-complexity transform that reduces the redundancy still
remaining after the computation of a wavelet transform along
the spectral dimension. In [3] it is shown that RWA followed
by JPEG 2000 [4] (RWA+JPEG2000) usually achieves higher
compression ratios than widespread state-of-the-art lossless
coding techniques such as PCA+JPEG2000, POT+JPEG2000,
M-CALIC [5] and CCSDS-123.0-B-1 [6]. Additionally, in [7],
the performance of RWA+JPEG2000 at several decomposition
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levels for different regression models and variants is evalu-
ated, concluding that, when using all the regressors and the
highest number of decomposition levels, RWA gives rise to
the best coding gain on remote sensing data.

Although JPEG 2000 can achieve high lossless compres-
sion ratios, it is too computationally demanding for remote
sensing sensors. In this regard, the Consultive Committee for
Space Data Systems (CCSDS) published in 2012 the CCSDS-
123.0-B-1 standard (CCSDS-123 in what follows), intended
for lossless coding of multispectral and hyperspectral data
and based on prediction and two different entropy encoders.
Spatial and spectral redundancy is exploited through an adap-
tive linear prediction method that makes use of its nearby
samples within a small three-dimensional neighborhood. The
prediction is sequentially conducted in a single pass, entailing
minor computational complexity.

Despite the affordable computational complexity of
CCSDS-123, it allows to achieve high lossless compression
ratios. Lately, several contributions [8]–[11] have been pre-
sented that surpass its coding performance at the expense of
a higher computational cost. In particular, [10], [11] use a
conventional recursive least-squares technique to predict the
current sample and compute the residual, then the residual
is entropy encoded by an arithmetic encoder. Thus, both
contributions are a trade-off between coding performance
and computational complexity. In 2017, Bartrina-Rapesta et
al. [12] presented a compression technique based on the
CCSDS-123 predictor and followed by a low-complexity
arithmetic coder (CCSDS-123-AC) using a novel and simple
context model that only assesses causal adjacent samples
and inexpensive low-cost bitwise operations for the symbol
probability estimations; on average, it improves CCSDS-123
and M-CALIC by 0.1 and 0.86 bits-per-pixel-per-component
(bpppc), respectively.

This letter presents a novel compression technique based
on RWA that obtains higher compression ratios with lower
computational cost than the original [3]. In our proposal, the
computational cost is reduced by employing a smart strategy
that keeps applying further RWA decomposition levels only if
it provides coding gain. After the smart-RWA is conducted,
the decorrelated signal is encoded with the low complexity
CCSDS-123-AC.

This paper is structured as follows: Section II reviews
RWA transform. Section III introduces our proposed coding
technique. Section IV provides experimental results and dis-
cussion of the achieved results as compared to state-of-the-
art techniques for data captured by different hyperspectral
sensors. Section V brings forward our conclusions.
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II. REGRESSION WAVELET ANALYSIS OVERVIEW

RWA [3] is composed by two sequential operations: a dis-
crete wavelet transform (DWT) –commonly the S-Transform–
and a prediction stage -performed through a linear regression-.

A. Discrete Wavelet Transforms

The DWT operation comprises a pyramidal multi-
resolution decomposition along the 1-D spectral dimension.
Considering a multi-component scene with z spectral compo-
nents and m spatial samples per component, let V0∈ Rm×z

be

V0=
[
V0(1), . . . ,V0(z)

]
, with V0(i) = V0

i∈ Rm×1,

where i={1, ..., z · 2−j} and j={1, ..., J}, J = dlog2(z)e.
The original signal V0 is decomposed into the half-resolution
approximation V1 and the half-resolution detail W1 signals.
This process is repeated for Vj−1, yielding Vj∈Rm×(z·2−j)

and Wj∈Rm×(z·2−j) signals. Vj contains a reduced version
of Vj−1 information and Wj retains the detail information,
namely, the difference between Vj−1 and Vj .

The one level DWT decomposition of each Vj−1 can be
expressed as follows:

(DWT)(Vj−1, 1) =
(
Vj ,Wj

)
. (1)

This decomposition is recursively performed in a pyramid
form over Vj , while the detail components W1≤j remain
unchanged. By induction, from V0, the wavelet representation
with J levels is described as follows:

(DWT)(V0, J) =
(
VJ , (Wj)1≤j≤J

)
. (2)

B. Ordinary Least-Squares Method

The second sequential operation of the RWA consists
of a light linear regression aimed to remove the spectral
redundancy that still remains in W1≤j≤J .

At each level j, the regression model estimates each
detail component

(
Ŵj

i∈Rm×(z·2−j)
)

from Vj∈Rm×(z·2−j)

employing an ordinary least-squares (OLS) method [13].
At level j, the estimations can be computed as:

Ŵj
i = fi

[
Vj

i

]
= βj

i,0 + βj
i,1Vj

1 + · · ·+ βj
i,kVj

k, (3)

where βββj correspond to the regression coefficients at level
j, βββj

i∈R(k+1)×1, Vj
i∈Rm×1 and k = z · 2−j is the number

of approximation components employed by the OLS method.
Note that βββj values must be stored as side information for
decoding purposes. The size of the side information amounts
to z2

3 (1− 1
22j )+z(1− 1

2j ) parameters.
Once the predicted signal Ŵj is computed, the residuals

are obtained by subtraction:

Rj = Wj − Ŵj . (4)

Then, assuming that the highest number of decomposition
levels J has been applied, VJ and R1≤j≤J are losslessly
entropy encoded together. At the decoder side, to recover the
signal VJ−1, the approximations VJ and the residuals RJ

are employed. This process is computed in cascade form (for
j = J − 1,. . . , 1). For a more in-detail explanation of RWA
reverse process, see [3].

C. RWA Variants

RWA can be executed on different modes to compute the
estimation Ŵj of the detail components Wj based on the ap-
proximation components Vj : Maximum, Restricted, Fast and
Exogenous variants. The maximum model utilizes all approx-
imation components from Vj for the prediction of each detail
component Wj

i . The restricted model only employs a subset
of components from Vj during the prediction to preserve the
component scalability of the original DWT. The Fast variant
applies a spatial sub-sampling of the approximation compo-
nents only for the regression operation computation. Finally,
as scenes captured by the same hyperspectral sensor may
have similar statistical relationships among their components,
the exogenous variant computes the regression coefficients
only once, for a giving training scene, and employs these
predictions for other scenes captured by the same sensor.
This regression coefficients operation is performed off-line,
not on-board, saving significant computational resources and
execution time. This is a convenient strategy for those scenes
corpora with a very large number of spectral components z.

III. PROPOSED LOW-COMPLEXITY CODING TECHNIQUE

A. RWA with CCSDS-123-AC

Up to now, the RWA output signals VJ and R1≤j≤J

are losslessly entropy encoded with JPEG 2000 bit-plane
and entropy coder machinery [3], [7]. Here we substitute
JPEG 2000 by CCSDS-123-AC [12], which is a coding
technique based on the predictor of CCSDS-123 followed by
a lightweight contextual arithmetic encoder. The performance
of this approach is discussed next.

All the results reported in this letter have been obtained
from 27 hyperspectral scenes1 captured by three different
sensors: the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS), the Infrared Atmospheric Sounding Interferometer
(IASI) and the Atmospheric Infrared Sounder (AIRS). These
instruments store scenes with a bit-depth of 16 bpppc. Table I
depicts the dimensional information of these scenes together
with the sensor’s names abbreviations, the RWA regression
model or variant and the CCSDS-123-AC’s predictor config-
urations used per each sensor. The average order-0 entropy is
also disclosed.

Regarding the RWA configurations: maximum regression
model is applied for UA and CA scenes and exogenous
variant for UI, CI and AG scenes (Table I). Though the
maximum model attains better prediction, it also needs an
important amount of side information to recover the original
signal. For instance, UI, CI and AG sensors need, respectively,
0.918, 0.939 and 1.249 bpppc for the side information if
maximum variant is employed. The expensive storage of the
side information yields to a more competitive result if using
the exogenous variant. The scenes UI-1, CI-1 and AG-129
have been employed only for the training procedure. Results
are therefore not provided for these three scenes.

Leaning on results of [12] and after conducting an extensive
evaluation, experimental results are produced for the CCSDS-
123 predictor’s parameters reported in Table I -columns 6 and
7-.

1The scenes are available at http://cwe.ccsds.org/sls/docs/sls-dc/123.
0-B-Info/TestData.

http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData.
http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData.
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Table I: SUMMARY OF DATA EMPLOYED FOR THE EXPERIMENTAL RESULTS. FROM LEFT TO RIGHT: THE SENSOR NAME
TOGETHER WITH THE DIMENSIONS OF THEIR RECORDED SCENES, SENSOR’S NAMES ABBREVIATIONS, USED SCENES,
SCENES AVERAGE ORDER-0 ENTROPY, RWA REGRESSION MODEL OR VARIANT, AND MODE AND LOCAL SUM USED BY
THE CCSDS-123-AC PREDICTOR. z IS THE NUMBER OF SPECTRAL COMPONENTS, y IS THE HEIGHT AND x IS THE WIDTH.

Sensors & Dimensions Abbreviation Scenes Order-0 entropy RWA Model or Variant Predictor Mode Predictor local sum
Uncalibrated AVIRIS UA Yellowstone, sc: 00, 03, 10, 11, 18 12.16 Maximum Neighbor Oriented Full Mode
z=224, y=512, x=680

Calibrated AVIRIS CA Yellowstone, sc: 00, 03, 10, 11, 18 9.77 Maximum Neighbor Oriented Full Mode
z=224, y=512, x=680

Uncalibrated IASI Level 0 L0 1: 20091007093900Z
z=8359 UI L0 2: 20091007143900Z 8.12 Exogenous Neighbor Oriented Full Mode
y=1528 L0 3: 20100319050300S6
x=60 L0 4: 20120718075700Z

Calibrated IASI Level 1 L1 1: 20130816230553Z
z=8461 L1 2: 20130817004753Z
y=1530 CI L1 3: 20130817041457Z 12.89 Exogenous Neighbor Oriented Full Mode
x=60 L1 4: 20130817055657Z

L1 5: 20130817073857Z
AIRS Gran AG sc: 9, 16, 60, 126, 129, 151, 182, 193 11.39 Exogenous Neighbor Oriented Reduced Mode

z=1501, y=135, x=90

Table II reports average bit-rates for RWA at 1, 5 and
the highest number of decomposition levels followed by
JPEG 2000 standard (RWA+JPEG2000) and CCSDS-123-AC
(RWA+CCSDS-123-AC). RWA+CCSDS-123-AC coding gain
values with respect to RWA+JPEG2000 are also disclosed in
column 6. It is worth noting that, after RWA computation, two
very different types of data must be processed, the approxi-
mations Vj and the residuals R1≤j . As in JPEG 2000 each
component is encoded independently, the approximations and
residuals can be considered a single signal to be encoded.
However with CCSDS-123 and after computing the RWA,
this consideration does not hold, since, to estimate data from
a certain component, the CCSDS-123 predictor can employ
information from other components or even decomposition
levels. This leads to an incorrect prediction that may pe-
nalize the encoding performance. Consequently, for CCSDS-
123-AC, each RWA decomposed signal (approximation and
details) is separately encoded. In this case, the best results
per each sensor are enhanced in bold. From these results
we can see that: 1) RWA+CCSDS-123-AC almost always
outperforms RWA+JPEG2000 at all levels; 2) the best coding
performance for RWA+JPEG2000 is always obtained when
the highest number of decomposition levels is applied; and
3) RWA+CCSDS-123-AC at the highest decomposition level
does not always yield the lowest bit-rates.

B. Multi-Level Split RWA

As seen above, fixing the number of RWA levels is not
the best strategy when CCSDS-123-AC is harnessed. In
order to obtain the best coding performance, we automati-
cally select the adequate number of decomposition levels for
RWA+CCSDS-123-AC, and we name this proposal as MLS-
RWA+CCSDS-123-AC.

Fig. 1. renders our proposed coding technique when ap-
plying RWA for any regression model or variant. The main
insight of MLS-RWA is to process a new RWA decomposition
level over Vj only if the sum of bit-rates of approximations,
residuals and regression coefficients does not exceed the bit-
rate required to losslessly compress the approximations of the
lower level, i.e., BR(Vj) + BR(Rj) + BR(βββj) < BR(Vj−1).

Table II: AVERAGE BIT-RATES (IN BPPPC) WHEN ENCODING
DIFFERENT SCENES CORPORA (TABLE I) WITH JPEG 2000
AND CCSDS-123-AC AFTER RWA AT 1, 5 AND THE HIGH-
EST NUMBER OF DECOMPOSITION LEVELS. PR CORRE-
SPONDS TO THE NUMBER OF PREVIOUS COMPONENTS THAT
THE CCSDS-123 PREDICTOR USES WHEN ESTIMATING THE
RWA RESIDUAL COMPONENTS. THE BEST RESULTS PER
EACH SENSOR ARE ENHANCED IN BOLD.

RWA RWA
RWA + + Coding
levels JPEG2000 CCSDS-123-AC gains

PR = 0 PR = 3

UA
1 7.86 5.79 5.79 2.07
5 5.87 5.71 5.68 0.19
8 5.83 5.72 5.69 0.14

CA
1 5.27 3.64 3.69 1.63
5 3.56 3.52 3.63 0.04
8 3.52 3.53 3.63 -0.01

UI
1 3.86 2.66 2.77 1.20
5 2.54 2.51 2.75 0.03
14 2.44 2.51 2.77 -0.07

CI
1 8.17 6.54 6.41 1.76
5 6.60 6.38 6.24 0.36
14 6.46 6.37 6.23 0.23

AG
1 5.62 4.15 4.23 1.47
5 4.25 3.99 4.16 0.26
11 4.18 4.01 4.17 0.17

Iteratively, further RWA decomposition levels are applied
until no coding gain exists. The code-streams from the last
applied level are discarded and the process stops. In the
figure, CS and the BR refer respectively to the code-stream
term and bit-rate operation. BR(V0) has been previously
obtained after encoding V0 with CCSDS-123-AC. We use
LZMA [14] as entropy coder for encoding the regression
coefficients. However, another lossless coding technique could
be employed. All the residual and regression coefficients
code-streams, and the approximation coefficients code-stream
at the highest decomposition level that satisfy the condition
are stored together into the final code-stream. For exogenous
variant, the regression coefficients would have been fixed
beforehand and would not be stored into the final code-stream.
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BEGIN
j = 1 RWA

Predictor

CCSDS-123-AC

Predictor

CCSDS-123-AC

Entropy

Coder

code-stream
Rj

code-stream
Vj

code-stream
βββj

Predictor
configuration

+
Vj−1

Rj

Vj

βββj BR(βββj)

BR(Rj)

BR(Vj)

BR(RWAj) < BR(Vj−1)
BR(RWAj)

BR(Vj−1)

END

j = j + 1

Final Code-stream

NO

YESVj

CS{Rj,βββj}

CS{Vj−1}

Final Code-stream

Fig. 1. : Proposed coding scheme.

Table III: AVERAGE BIT-RATES (IN BPPPC) FOR PCA+JPEG2000, RWA+JPEG2000, M-CALIC, CCSDS-123, CCSDS-
123-AC AND MLS-RWA+CCSDS-123-AC FOR SCENES OF TABLE I. THE BEST CODING PERFORMANCES OF OUR
PROPOSAL ARE BOLD ENHANCED. THE CODING GAINS WITH RESPECT TO OUR BEST PROPOSAL’S OUTCOMES ARE ALSO
INCLUDED IN PARENTHESES. PR CORRESPONDS TO THE NUMBER OF PREVIOUS COMPONENTS EMPLOYED BY CCSDS-
123-AC’S PREDICTOR STAGE TO ESTIMATE THE RWA RESIDUAL COMPONENTS.

MLS-RWA levels PCA+JPEG2000 RWA+JPEG2000 M-CALIC CCSDS-123 CCSDS-123-AC MLS-RWA+CCSDS-123-AC
PR = 0 PR = 3

UA 4 5.81 (0.14) 5.83 (0.16) 6.06 (0.39) 5.98 (0.31) 5.92 (0.25) 5.69 5.67
CA 4 3.69 (0.17) 3.52 (0.00) 3.86 (0.34) 3.72 (0.20) 3.76 (0.24) 3.52 3.62
UI 6 — 2.44 (-0.07) 2.88 (0.37) 2.88 (0.37) 2.82 (0.31) 2.51 2.75
CI 7 — 6.46 (0.23) 6.88 (0.65) 6.59 (0.36) 6.53 (0.30) 6.36 6.23

AG
4 (sc:16)

5 (sc:126,193)
6 (sc:9,60,151,182)

7.69 (3.70) 4.18 (0.19) 4.34 (0.35) 4.33 (0.34) 4.29 (0.30) 3.99 4.14

Average 5.73 (1.35) 4.48 (0.10) 4.80 (0.42) 4.70 (0.32) 4.66 (0.28) 4.38

MLS-RWA decreases the computational cost by reducing
the number of RWA levels to apply and by replacing JPEG
2000 with CCSDS-123-AC lower complexity encoder. By
applying a lower number of RWA decomposition levels, we
decrease not only the number of floating-point operations,
but also the number of regression coefficients that have
to be computed on-board and stored as side information.
In this work, neither spatial sub-sampling nor a spectral
components selection are proposed to alleviate the complexity
of the regression operation block as explained in [3] and [7],
although MLS-RWA could apply them too. Also, MLS-RWA
could be combined with any other coding system.

IV. DISCUSSION AND RESULTS

Table III reports the lossless coding performance in aver-
age bit-rate for PCA+JPEG2000, RWA+JPEG2000, CCSDS-
123, M-CALIC, CCSDS-123-AC coding techniques -which
are competitive coding techniques-, and our approach MLS-
RWA+CCSDS-123-AC. For CCSDS-123 and CCSDS-123-
AC coding techniques, 3 previous components are used in
the prediction process. The entropy encoder used for CCSDS-
123 is the sample adaptive, which is the entropy coder
that attains higher lossless compression ratios. For CCSDS-
123-AC and when encoding approximation coefficients with
our approach, the number of prediction components is set
to 3 too, because, as with the original image components,
the approximation components are still highly correlated in

the spectral domain. For MLS-RWA+CCSDS-123-AC, the
best performance of the predictor is achieved with different
configurations depending on the sensor, as higher or lower
statistical relationships can still remain within the residual
components after RWA computation. Therefore, and only for
our proposal, we report outcomes when 0 and 3 previous
components are employed for predicting the residuals. The
best coding performance is enhanced in bold. Our proposal’s
best coding gains with respect to each coding technique
are reported within parenthesis. The last row reports the
average of each coding technique; MLS-RWA+CCSDS-123-
AC average value is computed only using the best results.

Comparing with coding techniques based on transforms,
such as PCA+JPEG2000 and RWA+JPEG2000, we can ob-
serve that our proposal yields significant lower bit-rates
for all the sensors, except for CA and UI scenes when
applying RWA+JPEG2000. For CA scenes, no improvement
is achieved, while an average loss of only 0.07 bpppc is
produced for UI sensor. As mentioned, MLS-RWA+CCSDS-
123-AC entails also a decrement of the computational cost.
For CA and UI, our proposal only computes 6 and 14 RWA
decomposition levels, letting aside 130 and 14 components for
which neither a Haar-DWT nor a regression operation to esti-
mate the details need be performed. On average, code-stream
size reductions of, respectively, 23.56% and 2.23% between
our proposal and PCA+JPEG2000 and RWA+JPEG2000 are
achieved. Results for PCA+JPEG2000 are not provided for
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UI and CI scenes due to their large number of spectral com-
ponents, which makes unfeasible the PCA computation, as
the covariance matrix and eigenvalues calculation, the matrix
factorization and the amount of side information become
prohibitive. For AG sensor, PCA’s average side information
requires 3.71 bpppc, yielding a final bit-rate of 7.69 bpppc.

M-CALIC and CCSDS-123 achieve quite competitive re-
sults at low computational complexity too, for instance,
CCSDS-123 is, on average, about 0.1 bpppc worse than
CCSDS-123-AC. However, our low complexity proposal
MLS-RWA+CCSDS-123-AC improves, on average, by about
8.75%, 6.80%, and 6.00% as compared to M-CALIC,
CCSDS-123 and CCSDS-123-AC, respectively.

Comparing with recently published coding techniques
based on conventional recursive least-squares (and adaptations
thereof) for uncalibrated and calibrated AVIRIS scenes, the
best results reported in [10] are, respectively, 5.57 and 3.29
bpppc, while the best results reported in [11] are, respectively,
5.55 and 3.31 bpppc. These results are, respectively, about 0.1
and 0.2 bpppc better than those of MLS-RWA+CCSDS-123-
AC, which is reasonable due to the trade-off between coding
performance and computational complexity of [10] and [11].

V. CONCLUSIONS

This paper introduces a lossless coding technique that
provides superior coding performance than state-of-the-art
coding techniques at low computational complexity. It is
based on Regression Wavelet Analysis (RWA) followed by
a recently presented Lightweight Contextual Arithmetic en-
coder prepended by CCSDS-123 prediction (CCSDS-123-
AC). RWA removes the spectral redundancy by computing
a Discrete Wavelet Transform and, in sequence, a light
regression operation to estimate the detail coefficients from
the approximation coefficients.

Different to what happens when coding RWA code-streams
with JPEG 2000, applying the highest number of RWA
decomposition levels with CCSDS-123-AC does not imply
the best coding performance. To provide lower bit-rates, we
developed a smart strategy to properly select the number of
RWA decomposition levels that affords the highest coding
gain, named Multi-Level Split RWA (MLS-RWA). By de-
creasing the number of levels and by replacing JPEG 2000
by a light arithmetic coder, our proposal also reduces the
computational cost of the original RWA+JPEG200 approach.

Extensive experimental results over 27 hyperspectral scenes
from 5 corpus sensors have been performed, indicating
that MLS-RWA followed by CCSDS-123-AC outperforms
CCSDS-123.0, M-CALIC, PCA+JPEG2000, CCSDS-123-AC

and RWA+JPEG2000, and provides significant average coding
gains of 0.32, 0.42, 1.35, 0.28 and 0.10 bits-per-pixel-per-
component (bpppc), respectively, for lossless compression.
Our approach yields very competitive results even when RWA
is computed only for a single decomposition level. In this
case, an average coding gain of at least 1.74 bpppc over
RWA+JPEG2000 is obtained.
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