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To those that will skim through this text, understanding next to nothing, but still feeling an
aura of mystery. Those that will appreciate it not because of what it contains, but because of
what it means.

To you.

Para aquellos que ojearán este texto entendiendo más bien poco, pero sintiendo el misterio que
rodea a la ciencia. Aquellos que lo apreciarán no por lo que contiene, sino por lo que significa.

Para ti.
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The end. That’s how most books close their last page. They are self-contained with a beginning,
some story-telling in the middle, and a clear and distinct end. When they do not end, it is because
a second part is in the works. But this approach limits creativity. It limits imagination. Why
does the whole world need be contained within the book cover and back?

And that’s how most thesis are, aren’t they. A culmination. The mental climax of years of
effort that just... stops. Why does it have to be a farewell? Each day of someone’s life does
not have to be the end of anything. It is the beginning of the rest. The path might change,
the objective might be different, but nothing is finished. Every milestone along the way is just
polishing the one that came before.

That polishing compound that shapes our lives is people. From the moment someone is
born, their life has already depended on others, has already been influenced by others. This
thesis marks just a milestone and, as is tradition, all the polishers will be acknowledged without
naming to avoid the shame from forgetting someone’s name.

Personal computers were expanding like wildfire among the tech-savvy population. For all
I cared, the computer at home was just a gaming machine. But not just any kind of gaming
machine: a serious game one. The term might not have been as popular at that point in time as
educational games, but that is what it was. It was still fun, but it was not only a fun experience
but a learning experience. Even under that premise, playing time was limited to avoid the
omnipresence of eye damage that today plagues society.

But once introduced to the world of “good” addictions, it is not possible to take it back.
Games were ending. New programs had to be installed, The Internet had to be set up.

>ipconfig

I still remember that simple line written over a black canvas. Press enter, and a bunch of white
mono-spaced characters cascaded through the screen conveying some mysterious information.
Unknown information appeared on the screen. What that was is sometimes still today a mystery,
but it was cool. There is something about it. The mystery and astonishment when looking at
something that just works. Like a well-oiled bearing supporting the wheels powered by a V-8,
like the blades of a turbine spinning in place when synchronized to the shutter speed, like a
crane precisely expanding its arm to a previously unreachable place.

A transistor. It’s got something magical, ain’t it?. Even though you cannot see them, you
can feel them as any other engineering marvel.

Years went by and transistors were forgotten. A football was much more appealing and
frankly, much more easy to deal with than a keyboard and mouse. But the interest for things
that just... work, was still there.

It was a robot that brought it back. Ironically, the ones that will eventually take our jobs,
either relegating us to slavery or perpetual artistic freedom. A simple interface where boxes and
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lines formed execution graphs that the robot would follow. From a line follower to a calculator
or an automated shooting turret, it was blessed by Turing and could do anything.

But interest faded away after a while. Time was becoming less available, and video games
more prevalent. But even fun games can teach us things. A predecessor to the widely-known
Minecraft, Roblox was a game where Lego-like characters moved around user-created levels built
with Lego blocks. As it turns out, blocks were programmable. On sandbox mode, a weird-looking
screen, reminiscent of that of ipconfig, showed up when clicking on blocks. It said things, in
a very structured language, that could be understood.

They say some brains are better structured for certain tasks. A simple line quickly became a
game of seeing what effects changing the different words and values had on the world. Building
a level was relatively easy. Just copy things that others have done1 with the functionality that
you need and chain them together. Maybe spice it up by changing it a little bit so it does not
do the exact same thing as the source.

That was programming. That was the seed that started polishing what had been dormant
for long.

First it was a simple calculator where the button color palette was more important than
the button functionality. Then it moved to tools that helped in games, purely motivated by
increasing the post count by one in the forums. That’s when some people would say a revelation
happened. A moment that would steer things one way forever. But that had been already
brewing for long.

From there, the official path begun. Alongside a squad of the best people one could possible
desire, supported by the best people one could possibly have behind, and directed by some of
the best guides one could hope for when lost in a forest.

At first it was a simple pocket knife cutting through the tall grass, then a machete slashing
lianas, an ax cutting off tree branches and finally a bulldozer uprooting whole trees. The power
built after iterations of the educational system, topped off with the best real world experience
one could ask for, gives people the freedom to do what they want.

And that was going back to basics, going back to that feeling of things that just... work. The
feeling of information boxes sliding through a data factory filling up containers along the way.
The feeling of doing something that can impress oneself.

This work is not the summary of the last 3 years, is the summary of a lifetime that hasn’t
concluded. The polished stone resulting from all those that have contributed, which could even
get smoother. Through support, revisions, suggestions, corrections, ideas, jokes, entertainment
and love. Because life is a tangled net of interactions, and like a hurricane, it wouldn’t be fair
not to thank the butterfly that started it.

1Sponsored by StackOverflow
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Fin. Aśı cierran los libros su última página. Autocontenidos con un comienzo, nudo, y desenlace
diferenciados. Y, si no terminan, es porque esperan una secuela que cierre los hilos abiertos.
Una aproximación tradicional que limita la creatividad. La imaginación. ¿Por qué debe estar
contenido un mundo limitado entre la portada y contraportada?

También está presente esta filosof́ıa en las tesis. Son una culminación. El cĺımax mental de
años de esfuerzo que simplemente... termina. ¿Por qué tiene que ser una despedida? Cada
d́ıa, momento de la vida no tiene por qué marcar el final de nada. Es el comienzo del resto.
El camino puede cambiar, incluso el destino, pero nada tiene por qué terminar. Los hitos del
camino no se dejan atrás sino que se van puliendo con el acarreo.

Y lo pulen las personas. Desde el momento que nacemos la vida depende de otros, es influ-
enciada por otros. Esta tesis marca solo uno de esos hitos y, siguiendo la tradición, todos los
pulidores serán agradecidos sin nombrar, evitando la vergüenza de olvidar alguno.

Los ordenadores se expand́ıan a velocidad de vértigo entre la gente aficionada a la tecnoloǵıa.
Para mı́, el ordenador de casa era solo una máquina para jugar jueguecitos. Pero no juegos
cualesquiera, juegos serios. El término probablemente no era tan popular entonces como śı lo
era educativo. Juegos que manteńıan la diversión, pero que además enseñaban. Pero incluso
bajo esa premisa, el tiempo estaba limitado para evitar, o posponer, los omnipresentes problemas
visuales de hoy en d́ıa en la sociedad.

Y una vez integrado en el mundo de las “buenas” adicciones, no es posible salir. Los juegos se
acababan, se instalaban nuevos programas, e internet teńıa que configurarse para seguir adelante.

>ipconfig

Aún recuerdo esa simple ĺınea con un cursor parpadeando sobre un lienzo negro. Presionabas
intro, y un montón de caracteres blancos monoespaciados cáıan como una cascada, portando
algún tipo de información desconocida en el momento. Algunas de las palabras que aparećıan
son aún hoy un misterio, pero un misterio molón. Hab́ıa, y hay, algo detrás. El misterio y
perplejidad al mirar a algo que simplemente funciona. Como un rodamiento bien engrasado que
dirige ruedas alimentadas por ocho cilindros, como las afiladas hojas de una turbina que giran
estáticas al sincronizarse a la velocidad del obturador, como una grúa extendiendo su brazo
hasta un lugar inaccesible.

Y un transistor. Tiene algo mágico. Incluso sin poder verlo, se puede sentir su podeŕıo como
con cualquier otra maravilla de la ingenieŕıa.

Los años pasaron y los transistores olvidados. Un balón era mucho más atractivo y, siendo sin-
ceros, más fácil de domar que un teclado y ratón. Pero el interés por las cosas que simplemente...
funcionaban, aún estaba ah́ı.

Fue un robot quien lo trajo de vuelta. Irónicamente, esos seres que finalmente acabarán con
nuestros trabajos, ya sea haciéndonos esclavos o permitiendo un estado perpetuo de libertad
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art́ıstica. Una simple interfaz con cajitas y ĺıneas consegúıa formar grafos de ejecución que el
robot segúıa. Desde un simple seguidor de ĺıneas a una calculadora o torreta de defensa de la
habitación, el robot hab́ıa sido bendecido por Turing y pod́ıa hacer cualquier cosa.

El interés volvió a desaparecer tras un tiempo. El tiempo se hace escaso, y los videojuegos
más prevalentes. Pero incluso juegos divertidos pueden enseñar. Roblox, previo al conocido
Minecraft, teńıa unos personajes similares a los de lego que se mov́ıan por niveles creados por
los usuarios. Y los bloques eran programables. Con una combinación especial de teclas, una
extraña pantalla, que recordaba a aquella de ipconfig, se mostraba al hacer click en los
bloques. Dećıa cosas que, en un lenguaje muy estructurado, se pod́ıan entender.

Dicen que determinados cerebros están estructurados para ciertas tareas. Una simple ĺınea
de código se convirtió rápidamente en observar qué efectos teńıa en el mundo cambiar las pal-
abras. Construir un nivel era sencillo, solo bastaba copiar lo que hab́ıan hecho otros2 con
las funcionalidades que interesaban para concatenarlas todas y crear algo a medida. Quizá
cambiándolo un poco para que no hiciera exactamente lo mismo que la fuente.

Eso era programar, eso era la semilla que comenzó a pulir aquello que hab́ıa estado latente
tanto tiempo.

Primero fue una simple calculadora donde la paleta de colores era más importante que la
funcionalidad de los botones. Posteriormente fueron herramientas que ayudaban en juegos,
puramente motivadas por incrementar el contador de mensajes de los foros. Es este cúmulo de
cosas lo que algunos llamaŕıan revelación, pero era un brebaje que hab́ıa estado fermentado ya
mucho tiempo.

Desde ah́ı, comenzó el camino oficial. Junto un grupo de la mejor gente que uno pudiera
desear, apoyado por la mejor gente que uno pudiera tener, y dirigido por los mejores gúıas que
uno pudiera esperar al perderse en un bosque oscuro.

Al principio era una simple navaja de bolsillo cortando césped, luego un machete sajando
lianas, un hacha podando ramas y finalmente una excavadora levantando árboles enteros. El
poder adquirido tras iteraciones del sistema educativo, completado con la mejor experiencia en
el mundo real que uno pudiera pedir, es lo que proporciona la libertad de elegir lo que uno
quiere.

Y era volver a lo sencillo, a ese sentimiento de cosas que simplemente... funcionan. El
sentimiento de cajas llenas de componentes que se mueven por una fábrica de datos llenando
contenedores por el camino. El sentimiento de impresionarse.

Este trabajo no es el resumen de los últimos 3 años, sino el resumen de una vida que no ha
terminado. La piedra pulida por todos aquellos que han contribuido, y que aún puede tornarse
más brillante. Con apoyo, revisiones, sugerencias, correcciones, ideas, bromas, entretenimiento
y amor. Porque la vida es una confusa red de interacciones y, como un huracán, no seŕıa justo
dejar sin agradecer a la mariposa que empezó todo.

2Patrocinado por StackOverflow
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Abstract

Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely.
This is less intrusive, avoids interferces in the measuring process, and more convenient for the
scientist. One of the most recurrent concerns in the last decades has been sustainability of the
planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen
an explosion in activity, with satellites now being launched on a weekly basis to perform remote
analysis of the earth, and planes surveying vast areas for closer analysis.

One of the most interesting sensors aboard these platforms is the hyperspectral image sensor.
It extends the concept of humanly visible images, instead capturing the intensity of the whole
electromagnetic spectrum at evenly spaced intervals. Hundreds of samples are present per pixel,
providing a much more detailed profile of the image contents. Analysis of these images is of
great importance for all kinds of studies about geology, hydrology, agriculture, vegetation and
many more. However, a problem arises when transmitting or storing the data.

Hyperspectral images are big. A single one can go in the GB range, limiting what on-board
processing can achieve with them. Transmission to ground stations, or on-board storage is a
necessity. To do so efficiently, scientists have been using a technology available since the inception
of computers: compression. Memory and bandwidth have always been limiting factors for data
processing, and reducing the data flow between and into drives helps mitigate this issue.

Hyperspectral compression algorithms have been designed as adaptations of existing tech-
niques, or as newly developed algorithms specific to this kind of data. Their computing require-
ments are usually higher than those of other data compression algorithms due to the inherent
complexity of hyperspectral data. Needing to be executed on air and spaceborne systems, an-
other constraint comes in: power is limited (both electrically and computationally). Custom
ASICs could be developed, but from inception to having an actual usable product, the technology
is already obsolete in a fast-moving world, and too expensive for one-time uses.

Luckily, a powerful platform that is also power efficient, flexible, and fairly fast to develop for
exists: FPGAs. Reprogrammable hardware that can internally change to mimic the behavior
of a custom circuit with few penalties other than limited resources. Furthermore, they are
able to reach real-time constraints where other technologies fall short, being able to sit as a
part of a capture-compression-storage/transmission pipeline where the limit is now the sensor’s
throughput.

In this thesis, compression of hyperspectral images on FPGAs is studied. The different types
of algorithms available, as well as their portability to FPGAs, and which and how can benefit
more from this technologies. Also, from the algorithmic point of view, how optimizations prior
to FPGA development can lead to extensive gains even before implementation, avoiding more
costly optimizations late in the process.

First, the CCSDS 123.0-B-1 algorithm is implemented, a standard by the CCSDS. It is
designed to work by processing raw sensor data, compressing the image in raster order. A
design is made that is parametrized with every algorithm option, producing an optimized core
with each synthesis. While already quite fast, parallelization techniques bring it to a performance
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of over 300MS/s on a Virtex-7 for the processing core, and over 140MS/s on a space-qualified
Virtex-4 board, well above the 30.72MS/s real-time threshold. These speeds even surpass GPU
implementations while drawing less than ≈ 100× the power.

Secondly, a custom lossy hyperspectral image compression algorithm is designed based on a
PCA+JPEG2000 approach. Extensive tests are done to add more compression techniques to the
compression pipeline, as well as optimizing parameter selection over the range of compression
ratios to get the best quality possible. A very efficient algorithm at low bit-rates is achieved,
however its complexity is too high for a full FPGA implementation. Real-time is not achieved
on a general purpose processor, sitting at half the required performance. An FPGA accelerator
is designed for the most time-consuming part: the JPEG2000 encoder. With over 70% of time
devoted to it, a ≈ 100× acceleration accomplishes the real-time constraints.

Finally, a near-lossless algorithm, sitting in between the first two, is also analyzed and an
FPGA core developed for it. Software analysis shows it is competitive in both the lossy and
lossless domain. And with a highly optimized pipeline, hardware results show that it reaches a
single-core performance above that of the parallelized CCSDS core at 322.5MS/s, while taking
a fraction of the resources as the CCSDS core, with < 10% occupancy on a Virtex-5 board. And
it can even be parallelized for further improvements.

It is demonstrated that real-time FPGA compression is possible for the lossless and near-
lossless algorithms with room to spare in case sensors improve over time. Software analysis before
implementing the algorithms proves to be a very useful tool in estimating final performance, and
the selection of the appropriate algorithm is crucial in being able to quickly adapt it to an FPGA.

All implementations have been compared, and their advantages and disadvantages explained
in detail. As it is nearly always the case, there is not a perfect algorithm or technique that solves
all problems. While FPGAs consistently outperform other platforms, the specific core design
has to be carefully crafted to get the maximum performance out of it according to the algorithm
specifications.

In the following chapters, all of these concepts will be expanded upon. A more detailed intro-
duction will be presented in Chapter 1, further explaining the concepts of Hyperspectral images,
compression and FPGAs. Different compression techniques will be explained in Chapter 2 as an
introduction for the hyperspectral compression algorithms. Al three selected algorithms will be
presented in Chapter 3 from an algorithmic point of view, explaining their mathematical basis
as well. Their implementations for FPGA devices will be explained after in Chapter 4, with
emphasis in existing and improved techniques. Results from both the algorithmic and imple-
mentation points of view will be shown in Chapter 5 and put into perspective in Chapter 6.
Conclusions will close this work in Chapter 7 with the most important findings.

Keywords: Hyperspectral image, compression, FPGA, real-time.
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Resumen

Los sensores aparecen hoy en d́ıa en todos los aspectos de nuestra vida. Cuando es posible, de
manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además
facilita el trabajo cient́ıfico. Una de las preocupaciones recurrentes en las últimas décadas ha
sido la sostenibilidad del planeta, y cómo monitorizar los cambios a los que se enfrenta. Los
estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente
para analizar la superficie, y aviones sobrevolando grandes áreas para análisis más precisos.

Uno de los sensores que vuela en estas plataformas es el de imágenes hiperespectrales. Ex-
tiende el concepto de imágenes visibles por humanos, capturando la intensidad del espectro
electromagnético completo en intervalos equiespaciados. Cientos de muestras se recogen por
cada punto, dando mucha más información sobre los contenidos de la imagen. El análisis de
estas imágenes es de gran importancia para multitud de estudios sobre geoloǵıa, hidroloǵıa,
agricultura, vegetación y muchos más. Pese a ello, surge un problema al tratar los datos.

Las imágenes hiperespectrales son grandes. Una sola puede llegar a ocupar varios GB, lim-
itando lo que se puede hacer con procesamiento a bordo. Por tanto, gran capacidad de al-
macenamiento o transmisión son esenciales. Para hacerlo de manera eficiente, los cient́ıficos
han utilizado una tecnoloǵıa disponible desde la aparición de los primeros ordenadores: la com-
presión. La memoria y ancho de banda siempre han limitado el procesamiento de datos, y
reducir el flujo de los mismos ayuda a reducir este problema.

Los algoritmos de compresión hiperespectral se han diseñado adaptando técnicas existentes, o
desarrollando nuevas espećıficas para este tipo de datos. Sus requisitos de computación son algo
superiores a otros debido a la inherente complejidad de los datos. Siendo necesaria la ejecución
en plataformas en vuelo, aparece además la restricción del consumo eléctrico y computacional.
Se podŕıan desarrollar ASICs a medida, pero desde la idea hasta tener un producto útil, la
tecnoloǵıa queda obsoleta en este rápido mundo, siendo muy cara además para usos puntuales.

Por suerte, existe una plataforma potente, eficiente energéticamente, flexible, y para la que
el desarrollo es rápido: las FPGA. Hardware reprogramable que puede cambiarse para imitar
el comportamiento de un circuito a medida con pocas restricciones. Son además capaces de
conseguir rendimientos en tiempo real donde otras tecnoloǵıas se quedan cortas, siendo capaces
de colocarse en la cadena de captura-compresión-almacenamiento/env́ıo, donde ahora el ĺımite
es el ancho de banda del sensor.

En esta tesis, se ha analizado la compresión de imágenes hiperespectrales en FPGAs, los difer-
entes tipos de algoritmos disponibles, y también su portabilidad a FPGAs y cómo se benefician
de la tecnoloǵıa. Desde el punto de vista algoŕıtmico, también se analiza cómo las optimiza-
ciones previas al desarrollo en FPGA pueden acarrear grandes beneficios incluso antes de la
implementación, ahorrando esfuerzos posteriores en el proceso.

En primer lugar se implementa un estándar de la CCSDS, el 123.0-B-1. Está diseñado para
procesar los datos en crudo del sensor, comprimiendo la imagen en orden de escaneo. Se ha
realizado un diseño parametrizado con todas las opciones del algoritmo, produciendo un núcleo
optimizado con cada śıntesis. Siendo ya suficientemente rápido, las técnicas de paralelización
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lo llevan a rendimientos de 300MS/s en una Virtex-7, y de más de 140Ms/s en una placa
Virtex-4 apta para satélites, muy por encima del umbral de 30.72MS/s de tiempo real. Estas
implementaciones incluso superan las de GPUs, consumiendo aproximadamente cien veces menos
enerǵıa.

En segundo lugar se ha diseñado un algoritmo con pérdida basado en una aproximación que
incluye PCA y JPEG2000. Se ha realizado una gran bateŕıa de tests para probar diferentes
técnicas de compresión concatenadas, optimizando también los parámetros para dar con un
algoritmo altamente eficiente. Se consigue mejorar la literatura, pero una implementación entera
en FPGA resulta demasiado compleja. Por tanto, se hace un análisis extenso de las diferentes
partes para alcanzar el tiempo real, que se queda lejos en un procesador de propósito general.
Finalmente, y acelerando el codificador de JPEG2000, que ocupa el 70% del tiempo, se consigue
superar el tiempo real para este complejo algoritmo.

Finalmente se experimenta con un algoritmo de pérdida limitada que se sitúa entre los dos
anteriores. Un exhaustivo análisis software muestra que es competitivo tanto entre los algorit-
mos sin pérdida con entre los algoritmos con pérdida. Se genera una segmentación altamente
optimizada, con resultados mononúcleo que superan al CCSDS con 322.5MS/S en rendimiento,
mientras que en recursos se consume una fracción de aquellos del CCSDS. En total, se consiguen
ocupaciones de < 10% en una Virtex-5 apta para satélites, pudiendo además paralelizarse para
mejorar aún más el rendimiento.

Con todo esto, se demuestra que la compresión en tiempo real es posible en FPGAs tanto
para los algoritmos con y sin pérdida, con suficientes recursos de sobra en caso de que mejoren
los sensores. El análisis software previo de los algoritmos queda demostrado como un paso clave
para estimar el rendimiento final, siendo la selección del algoritmo apropiado un paso crucial en
una correcta y rápida implementación para FPGA.

Todas las implementaciones han sido comparadas, con sus ventajas e inconvenientes explica-
dos en detalle. Como suele ser costumbre, no hay una solución perfecta para todos los problemas.
Mientras que las FPGAs son mejores que otras plataformas de manera consistente, el diseño con-
creto tiene que ser meticulosamente realizado para conseguir el mejor rendimiento siguiendo al
dedillo las especificaciones.

En los siguientes caṕıtulos, todos estos conceptos se tratan en mucho mayor detalle. Una
introducción más extensa y detallada se presenta en el Caṕıtulo 1, explicando los conceptos de
imagen hiperespectral, compresión y FPGAs. Las diferentes técnicas existentes de compresión
se explican en el Caṕıtulo 2 como introducción a los algoritmos de compresión hiperespectral.
Los tres algoritmos seleccionados son explicados en el Caṕıtulo 3 desde el punto de vista al-
goŕıtmico, explicando también la base matemática. Su implementación en FPGA es explicada
a continuación en el Caṕıtulo 4, con énfasis en las técnicas ya existentes en la literatura, y las
mejoradas. Resultados, tanto desde el punto de vista algoŕıtmico como de implementación, se
muestran en el Caṕıtulo 5, y se ponen en perspectiva en el Caṕıtulo 6. Las conclusiones cierran
la tesis en el Caṕıtulo 7 con los hallazgos más importantes, y futuras ideas de continuación.

Palabras clave: Imagen hiperespectral, compresión, FPGA, tiempo real.
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Chapter 1

Introduction

We have always been, and will always be, fascinated and intrigued by our surroundings. What
once was a feeling of mystery and fear for the unknown is now a pleasure to dive in. Long
gone are the times when we needed to worry about farming, hunting, foraging... in a nutshell,
surviving. When time was a scarce resource that was invested for future generations and not
ourselves.

Figure 1.1: Aristotle was one
of the first to help develop the
scientific method aiming to an-
swer our questions. [102].

Thanks to the efforts of those that came before us, and their
motivation to leave a better world than they found, we were able
to progressively be freed from responsibilities. The question be-
came not what we need but what we want. The answer? To know
everything.

Material needs have given way to existential questions and
philosophy. We’ve transcended the physical world slowly rising
towards a world where thoughts are as important, if not more,
than just being alive.

But such a journey is not one that we start alone. Because the
beauty of discovery is lost in the loneliness of solitude. We have
the need to share our experiences. Not because we want others
to be jealous, but because we want to be able to live experiences
that our limited time doesn’t allow us to.

Sharing is not easy. We are a mixture of emotions, irrational
signals that interfere with the objectiveness of logic. Small might
be enormous, what is fast might take eons to complete, and some-
thing bright might be a shadow of something brighter.

And that’s why, as rational individuals, we establish the need for a unified system that
allows us to share by comparing against a reference. From economical activities such as trading,
engineering, architecture, landscaping to expressing what we have, or have seen, to others. The
human error is still there, but now as an error of measure, not of expression.

The first units of measure defined distance. With our own bodies as a reference, we were able
to measure small distances in inches (a thumb’s width), medium lengths in feet (length of a foot
as one would imagine), and long travels in miles (two thousand steps). Mass for example took
reference in a single plant grain for small objects. Time was based on celestial body interaction,
with earth’s rotation marking days and earth’s translation defining years.

These units allowed a way of objectively communicating things as long as the same reference
was used. But being based in non-constant references, all of them meant different things de-
pending on time and place. Distance could be halved depending of if a child or an adult was
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measuring. A slight genetic variation in a plant could mean that a pound (7000 grains) would
feed a family of 4 or 6. Far from the equator, four hour’s work could mean forging a single sword
in winter or three in the summer.

Figure 1.2: One of many stan-
dard kilogram prototypes, this
one residing in the National In-
stitute of Standards and Tech-
nology, USA. A platinum-
iridium cylinder that differs
just 0.0000075% in mass with
the reference kilogram. [209].

However, locally (both in time and space), those systems made
sense and were convenient. It was when we had time to exper-
iment and explore that units had to be standardized. Because
if mountains on opposite sides of the globe needed to be mea-
sured, a consistent ruler was needed since both couldn’t be seen
at once. If a chemical reaction needed to be reproduced at two
different points in time, the exact ingredients needed to be mea-
sured against a consistent weight. And if people were to travel
across barren lands, supplies had to be taken to last a specific
amount of time.

Step by step, references were taken from unchangeable quan-
tities that would remain consistent across time and space. The
earth as a reference for distance was proposed in the XVII cen-
tury. Water freezing and boiling points were common references
for temperature that were established as standards in the XVIII
century.

Units that could be defined based on others were lost for sim-
plicity. Distance defined volume, which in turn defined mass.
Velocity could be defined as a function of distance and time, and
the magnetic field could be expressed as a function of distance, mass and time.

It was not until 1875 that the International Bureau of Weights and Measures was established.
An international organization seeking to standardize units of measurement. Global prototypes
(Figure 1.2) for different unit of measurement were made to distribute and reproduce across
the world, with slight variations being acceptable in everyday use. Still, units still depended on
those prototypes, without which an exact measurement was not possible.

Over time, increasing scientific knowledge drove change in what the reference point should be
for certain magnitudes. Constants and laws were identified in the universe, and based on those,
units were redefined. A meter was no longer 1/10000000 of a meridian but the distance light
travels in vacuum in 1/299792458 of a second, which in turn is defined as 9192631770 oscillations
of the element Cesium between two defined energy levels. Following the same procedure, all base
units were redefined to be reproducible.

Meanwhile, curiosity was pushing scientists to make new discoveries. New lands, new ele-
ments, new materials, new techniques... We wanted to know what was in every single thing we
could see or feel. Our eyes were always the best tool to analyze things. But how could something
we see be measured? We could measure what we saw, not how we saw it. Our need to share the
most visceral feelings and structured analysis was stuck in our inability to share something we
were the measuring tool for.

Many attempts had been made at capturing the world as we see it through our eyes. The
Shroud of Turin, dating from the XIV century, is believed by some to have been produced using
some ancient type of photography since it so closely resembles a human face. Light sensitive
materials had been documented as early as in the XIII century, and were a subject of interest in
the XVI and XVII centuries. The first ideas for capturing light were documented in the XVIII
century, with science fiction again forecasting the future with a fictional image capturing process
described in Giphantie [167] in 1760.

Different techniques were tried in the first years of the XIX century, with the Dagerreotype
(Figure 1.3) being the first published process describing how to take a photograph:
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Figure 1.3: The different steps involved in the daguerreotype
process for taking a photograph. [35].

A silver plate had to be polished
to a mirror finish. To avoid tarnish-
ing, iodine and/or bromine fumes
were used to create silver halides.
The now light-sensitive plate was
placed inside of a camera obscura,
where a small opening projected the
target image onto the plate. Fix-
ing the image took from minutes to
hours, depending on the brightness
of the scene and the halogen used for
sensitization. The exposed plate was
then developed by means of expo-
sure to mercury vapors, enhancing
the image. Then, the light-sensitive
material was no longer needed, and
its removal required of a hot bath in
a saturated solution of common salt.
An improvement to this method in-
cluded a bath in gold chloride to increase the image’s stability.

Over time, this process was simplified. New substances were discovered that allowed for lower
exposure times, and developing processes no longer needed toxic fumes to form the images. Color
was introduced allowing for a more realistic representation of what our eyes could see. Cameras
became smaller thanks to the use of lenses, and even portable. And with the advent of film, a
single camera could take multiple photographs instead of having to replace a plate after each
one. However the basic idea was still there: a light sensitive substance coating a surface which
was exposed to light, and had to be later developed with chemicals.

But this was to change with computers taking over every task humans had been doing for
the past millennia. Calculators replaced accountants, production lines were automated, even
precise tasks such as watch making were eventually taken over by computer controlled robots.
Data was being collected and then analyzed. We still wanted to know more, but know we were
not the ones skimming through endless rows of information.

Figure 1.4: One of the first
digital images, a scan of a pho-
tograph of a child. [118].

The first task to involve imaging was scanning. Documents
were being transferred to a digital format for ease of use. At
first, only characters were scanned, but this changed when, in
1957, a scan of a photograph was made to digitalize a picture of
a child (Figure 1.4). This was a very limited and primitive form
of digital “photography”, since it was limited to objects stuck to
the scanner’s glass.

A remote sensor was developed in 1969 by Willard Boyle and
George Smith called CCD (Charge-coupled device). A matrix of
metal-oxide-semiconductor field-effect transistors (MOSFET or
MOS) is exposed to light, accumulating charges proportional to
the light exposure over time. Then, charges are shifted along the
matrix across both directions so that, one by one, they exit the
matrix and can be amplified, then converted from the analog to
the digital domain. After reading the values from all pixels, the
image is formed and transfered to memory.

These sensors allowed for the collection (and then study) of images from microscopes, tele-
scopes and, of course, cameras. From bacterias to galaxies, we were able to compare analysis
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across time and space, to fix in the digital domain what once was impossible to retain. From
entertainment, sports, education, science... nearly all aspects of life have been impacted by
imaging technology, and now every one of us has at least a couple of cameras at all times.

But measuring visible light was not enough. What we are able to see is just a fraction of the
electromagnetic spectrum. At first, we wanted to just measure what we saw to be able to share
it. But it was soon realized that, at least for science, there was much more to see in the (to the
naked eye) invisible.

Figure 1.5: An infrared image of a steam
locomotive. [101].

While photography was developing as a technology,
infrared detectors were also invented. In the XIX cen-
tury infrared radiation was discovered and soon remote
thermometers were created. At the start of the XX
century, infrared radiation could be detected at half a
kilometer away with a precision of thousandths of a de-
gree. The first application was iceberg detection, un-
fortunately just after (or maybe due to) the sinking of
the titanic. Scientific applications include astronomy,
chemical imaging or heat analysis (Figure 1.5).

Infrared has a longer wavelength than visible light,
and ultraviolet has a shorter one. These high-energy waves were also interesting for scientific
applications, being more reflected by certain materials. This has for example revealed hidden
characteristics of the skin in forensic or medical analysis. The same sensors for traditional
photography, with small modifications, have been used for this purpose since they are also
ionized by the higher-energy waves. A filter is usually placed to block lower-wavelength light
allowing only the high frequencies into the sensor.

So far, electromagnetic radiation has been measured and retained in digital form to be later
studied. But it can only be measured at specific spots across the spectrum. Materials reflect
light at all frequencies with different intensities, giving them a unique spectral signature. A
spectral signature holds much more information than a single point in the spectrum, and so
effort was put into developing sensors that could capture them. Spectrometers were developed
to capture and retain this information, which could be used to even identify the elements present
in a substance.

The usefulness of analyzing the full spectral signature motivated the creation of multispectral
and hyperspectral images. These are not limited to visible light, expanding on both sides of the
spectrum to infrared and ultraviolet. This meant enhanced analysis with a myriad of applications
in astronomy, agriculture, medicine, surveillance... Each pixel, composed of tens to hundreds
of samples of different wavelengths, has enough information to be compared with the spectral
signatures of target elements or materials for comparison. Those can be identified for each
pixel and more in-depth knowledge can be gained from the image than with traditional imaging
techniques.

The challenge now is to properly manage these images. With increasing spatial and spec-
tral dimensions, their size is digitally enormous even by today’s standards, with memory or
bandwidth being a limiting factor for some applications, as well as processing power for others.

With processors reaching the end of Moore’s law, scalability is trending towards horizontal
parallelism. Programming languages such as CUDA or OpenCL have emerged that work on a
completely different paradigm than traditional imperative languages by simultaneously executing
the same code over different sets of data. Processors themselves have been expanding to multi-
core architectures for a while, moving the bottleneck of processing power to intercommunication.
Each core can operate over vectors of data to speed up further the computations. The use of
GPUs with thousands of cores has skyrocketed with data growing in volume and new processing
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algorithms adapting to the new paradigm of joining the forces of multiple smaller cores instead
of using few very powerful ones.

When those approaches are not enough, custom hardware emerges that is specifically designed
to operate on certain flows of data and algorithms. However, these specialized systems can only
be used for the task they are designed to perform. More generic options such as multi-core
CPUs or GPUs lack the performance needed for certain tasks, also drawing more power than
simpler options.

When focusing towards hyperspectral applications, the problem resides in being able to
quickly move the immense amount of data with minimal cost, as well as processing it, since
many times the limit is not the capture ability, but the bottleneck that arises when processing
cannot be done fast enough and the storage or communication link fills up. While custom ASICs
can be designed, this is too costly and application specific, since often a single sensor or mission
is targeted.

Field Programmable Gate Arrays (FPGAs) are a completely different option, and allow for
the creation of custom hardware over reprogrammable silicon. A matrix of reprogrammable
gates, interconnected by reprogrammable buses, that can mimic custom logic. A circuit that
is designed in a Hardware Description Language (HDL) can be implemented, using automated
tools, in an FPGA.

Nowadays, FPGAs offer not only reprogrammable resources but also include fixed hardware
such as mathematical accelerators, processors, communication modules, transcoders... These
options enable the creation of hardware that is almost as fast as an ASIC, but in a fraction of
the time and cost, especially for devices that are produced in very small scales. This is the case
with hyperspectral imagery and why FPGAs are very interesting to explore. Additionally, they
can host multiple circuits at the same time, making them very appealing in places where adding
improvements or changing functionality is of interest, such as research applications.

Thus, to explore the problem of processing hyperspectral data, and specifically reducing
its size in real time with FPGAs to enable more data to be captured, this thesis was born:
“Compression techniques for hyperspectral images on reconfigurable hardware”.

1.1 Hyperspectral images

An image is a collection of equally spaced data points across a physical area, indicating the
intensity of light at each point. The most basic image that can be considered is monochrome. A
single sample in each data point (or pixel), indicating the intensity of light that was perceived
at the moment of capture. In other words, the amount of electromagnetic radiation perceived
in a certain part of the spectrum during the time that the sensor was active.

For black and white photographs, sensors are able to detect radiation in the visible spectrum
(approximately 400 − 700nm). The brightness can be determined, but not the color, since all
wavelengths affect the final result: the sensor is not able to differentiate if the intensity was
coming from an orange or purple source.

For color images, three different sensors are used, detecting blue, red and green light. This
is inspired by the cone cells in human eyes, which come in three types, and are sensitive to
those three wavelengths. In practice, three different monochrome images are captured, each for
a different part of the spectrum. These are called bands. When the image is presented back to
the observer, each band will translate to a different color on a viewing device, reconstructing
the original image.

Human perception can only sense these three basic colors. But there is more outside of the
visible spectrum. Radiation types depend on wavelength, and that can range from ultra short,
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high frequency and highly energetic gamma rays to long, low frequency and low energy radio
waves. Certain information is only present on those types of waves that lie outside of the visible
spectrum. For example flowers are known to appear different under UV light depending on their
maturity, attracting insects which can detect those short waves. Thermal information is also
visible in the infrared part of the spectrum, remotely giving information about temperature.

Specialized sensors are available for monochrome images in these wavelengths, but more inter-
esting are sensors which are able to capture multiple bands of the spectrum. When the number
of bands is small, and the bands are not evenly spaced, these sensors produce multispectral im-
ages. They capture a subject of interest in the visible spectrum, adding certain characteristics
with other bands (such as thermal or UV).

Frame

Band

NY

NX

NZ

Figure 1.6: A typical hyperspectral image representation. On top, the
projection of the Red, Green and Blue channels forms the visible-light
image. Under it, hundreds of bands capturing intensity information on
different wavelengths. Dimensions and notable sub-structures are high-
lighted.

To consider an image
hyperspectral (Figure 1.6),
it must contain multiple
bands, and those must be
evenly spaced between the
sensor’s lowest and high-
est wavelength. Thus,
discrete points are placed
in that interval that ap-
proximate the continuous
reality that lies between
the extremes. The higher
the number of bands, the
closer the real spectrum
can be represented. And
similar as to how humans
are able to tell apart colors
by going from 1 to 3 bands,
with hyperspectral images
materials and substances
can be distinguished even
when they are the same
color, since other charac-
teristics of their spectrum
do change.

An image has NZ bands
in the spectral dimension,
and NY frames and NX

pixels as the spatial dimensions. The term line comes from the fact that sensors, to avoid
complexity, generally capture frames (in the spatial dimension) one at a time, like a document
scanner. Each frame will, in turn, have a number of pixels, which is equal the width of the sensor
(when frame based). A full line of pixels is called a frame. Samples will refer to the individual
values in an image (for each pixel, the value for each wavelength captured).

1.1.1 Sensors

There are plenty of hyperspectral sensors designed to capture hyperspectral images (Figure 1.7).
They vary in how many bands they can capture, the wavelength range that they are able to
sense, ground resolution, time to cover specific areas, and others. These parameters affect what
kinds of studies can be done (depending on wavelength range) and how precise they can be
(depending on the number of bands and the spacing between them). The different bands are
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evenly spaced throughout the wavelength range of the sensor. Sometimes, a certain part of
that range is of more interest (e.g: infrared radiation for fire monitoring) and more bands are
captured in specific sub-ranges. Sensors can be used on the ground, but are generally either air
or spaceborne since that is where most applications take place.

Another characteristic of sensors is how they capture the image. The amount of samples per
pixel makes it impractical to build a sensor that captures all pixels at once. To solve this issue,
different scanning techniques are used. Mainly a sensor can be of the push-broom (PB) type or
the whisk-broom type (WB). A push-broom sensor captures whole frames by having a matrix
that is able to capture a full line in all wavelengths at the same time. The image is progressively
composed by capturing successive frames as the sensor moves over the target. A whisk-broom
sensor captures pixels one by one. Commonly, the whole image is formed by having a set of
rotating mirrors that selectively reflect light from different parts of the target in a raster-scan
fashion.

Figure 1.7: Crops near Mexicali clearly
highlighted over background and cities
thanks to the ASTER sensor. [44].

One of the most popular and well-known sensors is
the Airborne Visible and InfraRed Imaging Spectrom-
eter (AVIRIS) [107], from which most images used in
this thesis are taken from. It was developed by the Jet
Propulsion Laboratory in California, and its main pur-
pose has been airborne terrain exploration. With 224
bands, it offers a 10nm resolution across its > 2000nm
wide spectrum, which is precise enough to identify spec-
tral signatures coming from thousands of different ma-
terials [193]. Different aircraft have flown it on-board,
mostly capturing images from the USA. A second ver-
sion called AVIRIS-NG [108] was developed afterwards,
increasing resolution, and thus improving identification
and monitoring of the Earth’s surface and atmosphere.
It maintains spatial resolution bRut doubles the spec-
tral, giving much smoother curves for the obtained spec-
tra. Its detectors are more precise and it increments
data volume from approximately 100GB in gen 1 to
1000GB. Both are aimed towards applications in ecol-
ogy, geology, agriculture, environment, atmosphere and
water analysis, among others.

Hyperion [156], similar to AVIRIS, takes images with great spectral resolution (220 bands
from infrared to ultraviolet) in a push-broom manner at a depth of 12 bits. But instead of being
airborne, it is designed to be operated on orbit. Radiation hardening is part of the process of
making a sensor, and calibration is important since once launched it is not possible to repair it
in space. HYDICE [164] also works in a similar manner. Having a fine ground resolution of 3m,
it was used for mineral mapping.

Other very popular sensor is the Landsat Thematic Mapper (TM) [150], since it is the longest
lasting mission to supply satellite imagery. Although not hyperspectral (with 7 bands it can only
be considered multispectral), it has a very interesting feature: six of its bands are between 450−
2000nm, and one is at 11000nm. This band is capable of capturing temperature information,
very useful in forest fire monitoring or nighttime images. The last version, Landsat-8 [148]
extends its range to 11 bands while maintaining its 15m panchromatic resolution.

SPOT (Satellite Pour l’Observation de la Terre) [78], launched two years later than TM,
improved its ground resolution from 30 to 10 meters. The first SPOT version was a multispec-
tral sensor with three bands: Red, Green, and near Infrared. A Panchromatic option yielded
monochrome images at higher resolution. Subsequent versions added a fourth band (short wave
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infrared), which was then changed by a blue band, targeting shorter wavelengths. Resolution
has also improved over the years to an impressive 1.5m ground pixel size.

For higher infrared and thermal resolution, ASTER [45] has multiple sensors detecting four
visible near infrared bands (520− 860nm), six short infrared (1600− 2430nm) and five thermal
infrared (8125−11650nm). It is designed to map the entire globe every 16 days, providing close
to “real time” images for applications such as mineral mapping or water management.

Figure 1.8: Image of forests of Myanmar
captured by the MODIS sensor, used for
fire detection based on thermal data [147].

A faster sensor is MODIS [149], capturing the whole
globe every day by sacrificing resolution (250 − 1000m
ground pixel size compared to 15 − 60m of ASTER).
Large scale events can be seen even at this coarse
grain resolutions (Figure 1.8), and a faster response can
be given to understand and analyze terrestrial, atmo-
spheric, and ocean phenomenology. The sensor contains
precise on-board calibrators to extend its lifespan.

Sensors with specific functionality include the
Japanese Fuyo-1 [64], dedicated to geological, coastal
and vegetation analysis. Its eight bands detect vegeta-
tion, chlorophyll, biomass, moisture and hydrothermal
characteristics. The Warfighter-1 project [43] included
a hyperspectral sensor among its payload to prove the
viability of military applications of hyperspectral data,
with ground resolutions of 8m. A multispectral sensor with ground resolution of 4m, and a
panchromatic 1m resolution sensor were also included to complement the information recorded.

Newer satellites such as Enmap [63] are gaining spatial resolution for each spectral band,
aiming for large swath widths (290km for the Sentinel-2A sensor[46] which maps all of Europe
and Africa ever 15 days), or focusing on extremely detailed resolution of the panchromatic bands
[47].

There are hundreds [53, 62] of different sensors. Wavelengths, spectral and spatial resolution,
ground pixel size, bit depth, air or spaceborne... All are different variables that prepare the
sensor for different applications. From general observations with 1-day mappings of the whole
earth, to precise images that can resolve people on the street in multiple spectral bands, what
all sensors have in common is the huge image size, ranging from tens of MB to multiple GB
(Table 1.1). Note that, while some of these are not hyperspectral, the same algorithms and
techniques can be applied to them.

1.1.2 Data ordering

Hyperspectral data might be processed in different orders. This can depend on how the data is
stored, but mainly comes from how the sensor captures the data.

Whisk-broom sensors make a full spectral depth scan over the spatial dimensions. They
output whole pixels in sequential raster order, and samples within the pixel are output sorted
by wavelength. This is called Band Interleaved by Pixel (BIP) ordering. Since the spectral
dimension is usually the smallest, this offers the best correlation between neighboring samples
in the output stream.

Push-broom sensors take full frames that will be stored one after another. Each frame itself
is traversed in raster order, either first in the spectral direction (again BIP ordering) or in the
spatial direction within the frame. This yields the Band Interleaved by Line (BIL) ordering.
This ordering offers a optimal memory pattern access for retrieving full bands at the cost of
worse pixel access, though it is not often used.
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Sensor Image Wavelength
Platform

Name Type NZ NX NY * Bits Size** Min Max

Aviris WB 224 677 512 12 116MB 380 2500 Plane
Aviris-ng WB 480 600 512 14 258MB 380 2510 Plane
Hyperion PB 220 250 1000 12 82MB 400 2500 Satellite
HYDICE PB 210 320 320 12 32MB 400 2500 Plane
Landsat TM WB 7 6166 5733 8 250MB 450 12500 Satellite
Landsat 8 PB 11 2k-12k 2k-12k 12 594MB 441 12510 Satellite
SPOT-1 PB 4 3k/6k 3k/6k 8 144MB 500 890 Satellite
SPOT-7 PB 4 10k-40k 10k/40k 12 6.4GB 450 890 Satellite
ASTER Both 14 1k-4k 1k-4k 8-12 14MB 520 11650 Satellite
MODIS PB 36 2k-9k 10-40 12 20MB 405 14385 Satellite
Fuyo-1 PB 8 4096 2048 6 50MB 520 2400 Satellite
Enmap PB 228 1000 1000 14 423MB 420 2450 Satellite
Sentinel-2A PB 12 7k-29k 7k-29k 12 3.8GB 443 2190 Satellite
Worldview-3 PB 29 9k-35k 9K-35K 11-14 10GB 400 2245 Satellite

Table 1.1: Comparison between different sensors. PB: Pushbroom, WB: Whiskbroom. *When not
available, the number of frames captured has been assumed to be equal to the number of pixels per frame,
though most sensors capture variable-length runs of frames. **Sizes are approximate since different bands
have different resolutions and bit depths, but offer an idea of how big these images are.

Figure 1.9: BSQ, BIP and BIL data orderings respectively.

Lastly, data might be ordered in a Band Sequential (BSQ) mode. When analyzing each
band separately, this mode offers the best memory layout for quick access, since bands appear
sequentially in memory. Hyperspectral sensors do not usually output directly in this mode, and
it is the result of reordering afterwards to facilitate scientific analysis.

All three types are shown schematically in Figure 1.9. BSQ is oriented towards ease of
full band access, with pixel access being slow since samples of the same pixel are very far
apart. BIP is aimed towards full pixel retrieval, with very costly band access. BIL sits in
between with good frame retrieval, decent band retrieval due to access patterns, and bad pixel
retrieval. For compression algorithms, it will usually be the case that pixels are the basic units
for processing, so BIP will be the preferred mode, also taking advantage of the great spectral
correlation present more easily. It will also offer straightforward data accesses since most images
are already captured this way, incurring in less memory overhead in an FPGA.
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1.1.3 Applications

One of the main motivations for the development of hyperspectral images is, as with many
technologies, the military applications [13, 30, 127, 204] that come with it. From training to
war to humanitarian missions, hyperspectral images reveal hidden information about the terrain
that is about to be explored, helping and guiding military personnel to whichever objective they
have.

One of the most useful military applications is target detection and identification [30, 204].
Targets that are camouflaged in a certain wavelength can be detected in others, military vehicles
can be identified and differentiated from civilian ones, and different man-made materials can
also be identified to unveil bases, weapons, aircraft or other subjects of interest. Decoys that fool
traditional detection techniques can also be identified with hyperspectral image processing. For
this, two approaches are commonly used: anomaly detection algorithms detect even unknown
targets by comparing against the background truth, while signature-based detection compares
against a known spectral signature to detect a specific target. Multiple algorithms can even be
used at the same time by using classification fusion [127], improving result accuracy.

Terrain analysis is another motivator for military research, since soil and vegetation can be
characterized ahead of time to allow for more precise ground exploration afterwards. Information
about soil, hydrology, vegetation or topography can be combined with already known information
from maps such as roads and land use to create vehicle trafficability models [190], allowing for
better movement of ground missions. The HYperspetral iMage EXploitation (HYMEX) program
[13], supported by the Canadian Forces, studied different terrains such as forests and grasslands.
Along with the Universities of Lethbridge, York, and Alberta, terrain analysis was performed
to improve and complement maps developed by The Canadian Forces Mapping and Charting
Establishment (MCE).

Water mapping [13] is especially of interest in near-shore applications. For this, interesting
data includes characterization of the seabed in shallow waters, identifying algae and other tidal
vegetation. Bathymetry, indicating water depth, can guide ships where there are dangers of
getting stranded. Beach characterization is also important specially when taking into account
time, defining patterns in coastal changes that are mainly derived from currents and tides.

For vegetation control and analysis, hyperspectral imaging helps identify certain character-
istics and properties of leaves without the need for an in-situ analysis. Indices [202] are inferred
through analysis of hyperspectral data and ground truth. These are formulas that predict mois-
ture, element concentration, biochemical stresses and others. As an example, chlorophyll can be
predicted by the index given in Eq. (1.1), where Rx is the reflectance for light with a wavelength
of x nanometers:

(R700 −R670)− 0.2 (R700 −R550)

R700/R670
(1.1)

When growing crops, potassium is a key element in fertilizers. Different predictors have been
proven good indicators of potassium content in leaves [137] by analyzing certain spectral bands
in which this element is most reflective. Different fertilization treatments for corn, soybean and
wheat have also been successfully monitored with these techniques [87].

For certain crop fields, knowing if hazardous materials are present is important in order to
assess the quality of the final product, since these materials are absorbed by the plants. Heavy
metals are of special interest since they are dangerous for human health. Arsenic has been
successfully identified [187] in rice fields thanks to different predictors that exploit its reflectance
in the 716, 568 and 552nm wavelengths. Field sampling, followed by laboratory analysis can be
replaced by hyperspectral imaging to make this assessment process faster.

Crop biophysical variables can also be characterized through hyperspectral images. Wet
biomass for estimating plant size, leaf area index and plant height to gauge development, and
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grain yield are amongst the variables that are identified [203]. Chlorophyll content in leaves,
which is a good indicator of plant activity, mutations or nutritional state is also of interest.
Hyperspectral images estimate chlorophyll with high precision [218] so as to improve precision
agriculture amongst others.

In geology, materials can be remotely identified with hyperspectral images. Ore and hydro-
carbon prospecting, hydrothermal alteration and surface mineral mapping were amongst the first
applications for the first generations of sensors [141]. These were later improved when moving
from multi to hyperspectral imaging, allowing for applications such as vertical mine face mineral
detection [145], where a mountain range can be tagged with the most abundant materials on
each zone.

In mining quarries, the process of identifying ores or rocks that are of interest [125] is sped up,
since overhead images can differentiate different materials that appear the same to the naked eye.
Minerals such as carbonates, silica, muscovite, dolomite or limestone can be remotely detected
from airborne sensors [121]. Even if the maps are noisy, they are a good reference since they
have been found to be coherent with the known geology [50]. Identification starts being difficult
though for spaceborne sensors since their spatial resolution is often too coarse for fine-grain
detection.

Food safety also benefits from hyperspectral imaging because of its non-intrusiveness. Near
infrared spectroscopy is being replaced with hyperspectral analysis [81] since the growing com-
puting power of current devices is able to process hyperspectral data from a processing line in
real time. Usually an analysis is done beforehand to identify the critical spectral bands that are
of interest, to simplify data processing. Meat, fish, fruits, vegetables, mushrooms and cereals are
amongst the most studied products [199], detecting unsafe food before it gets to the consumer.

Animal carcasses can be separated into different classes automatically, identifying septicemic
and tumorous bodies [138]. Spectra were found to be different amongst all different types,
detecting not only unwholesome carcasses but also the different problems they might exhibit.
This techniques can also be applied to vegetables, identifying fungal contamination in fruits [117]
thanks to a dual-illumination system where visible light was complemented with an ultraviolet
lamp that exposed the problematic items.

Specific characteristics of food have also been identified: Strawberry moisture and acidity can
be identified [61] to grade the product’s quality. Potato water content and weight can also be
detected through neural networks [109], allowing for faster sorting than human visual inspection.
Even internal features can be detected. Pickling cucumbers need to be in perfect condition to
avoid degradation in the maturing process. While external injuries are easily identified, internal
ones are difficult to detect. Spectra of the defective cucumbers are similar in shape but of higher
magnitude in injured ones, allowing for detection [55].

Medicine uses close-up hyperspectral images for disease diagnosis and image-guided surgery.
Propagation of light through biological tissues is studied beforehand so that images can be
interpreted to give an accurate result of the target property that is looked for. Cancer detection
is a very popular application [136], especially in skin since it is the most visible organ.

Tongue analysis to diagnose human ailments, traditionally done by an expert with years of
expertise and later on by RGB cameras, has been improved due to the introduction of hyper-
spectral data [241] and segmentation techniques [133] that identify areas of interest that can be
used to generate accurate predictions based on tongue images.

Cancer regrowth is one of the problems when dealing with complex tumors that might not
be completely removed after surgery. Biological markers in cancerous tissue can be detected
thanks to hyperspectral images [155, 237] in real time, aiding cleanup after or during surgery in
vivo. Sensitivity and specificity reach levels comparable with human inspection.
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1.1.4 Algorithms

All of these applications require of powerful algorithms that are able to work with this high-
dimensionality data in a correct, fast and efficient way.

One of the most recurrent problems is being able to identify the different spectral signatures
within an image. Pixels can be of two types: Pure and mixed. Pure pixels contain information
about only one basic element (e.g: a certain type of rock), while mixed pixels contain information
of two or more basic elements (e.g: water and vegetation in coastal images).

Hyperspectral applications require identification [139] of the constituents of the different
pixels. A general assumption is to assume that an image is sufficiently big to contain pure
samples (endmembers) of all basic elements that constitute the rest of mixed pixels. This way,
all pure elements will be vertices of an n-dimensional surface that contains all the mixed pixels
inside. Algorithms usually take into account that outliers might exist due to sensor malfunctions,
transmission errors or plain noise affecting the capture process.

One of the most popular algorithms is N-FINDR [216]. It is based on the assumption that
the volume contained within a simplex of the purest vertices (pixels) is greater than that of any
other pixel combination. A random selection of candidate endmembers is iteratively tested to
see if other pixels might increase the volume when replacing any of the selection. The algorithm
eventually converges to a simplex of maximum volume (not necessarily a global optimum but it
is a local optimum according to this iterative process). N-FINDR requires an initial estimation
of the amount of endmembers in the image, and cannot determine that number on its own.
Improvements have been done [159] to initialize the algorithm with the appropriate number of
endmembers, increasing its efficiency and reducing iterations until convergence.

The Pixel Purity Index (PPI) [29] is another algorithm that unmixes hyperspectral data based
on creating a convex hull over the set of pixels, in which the vertices are the pure endmembers.
As with N-FINDR, it is iterative and good results are only achieved with long runtimes. There
are however variants [37] of the algorithm which decrease execution time.

Faster algorithms have also been developed under the linear mixing model. VCA [151] does
progressive projections over the current subset of endmembers, adding the projection extreme
to the subset until all endmembers are exhausted. Its simplicity achieves higher classification
performance than N-FINDR or PPI while being much less computationally demanding. MVES
[36] uses linear programming to improve VCA for higher accuracy.

All of these algorithms work under the assumption that the image is of certain quality, and
does not present noise or any kind of spectral or spatial artifacting. This is not always true.

Atmospheric correction is one of the first steps in preparing an image. Heat, humidity and
cloud cover are amongst the variables that greatly affect the end result of imaging a specific
area. Water vapor, oxygen, carbon dioxide and aerosol scattering greatly affect the perceived
signals by the hyperspectral sensors [74]. For example, images of open water bodies usually need
small corrections due to cleaner air, while coastal and turbid water images [73] require a more
aggressive filtering to remove atmospheric absorption and scattering effects, yielding an image
that only contains water-leaving radiances for pure surface analysis.

At first, purely experimental models were used. Heavy assumptions about the available
samples were made, such as a relatively flat (spectrally speaking) portion of the image being
used as a baseline to estimate the atmospheric error and correct it in the rest of the image [166].
Later, corrections became more complex by using radiate transfer models. Variables such as
sun angle, gas concentration, or aerosol presence are measured in order to estimate the expected
errors introduced by the atmosphere in the path the light takes from the sun to the sensor
after bouncing from the surface. Even the information conveyed by some bands can be used to
estimate these variables on a per-pixel basis to precisely adjust the image [72].
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Even then, anomalies might be present due to errors in the sensing, coding and transmitting
process, as well as unexpected elements or contaminants being placed in between the sensor and
target. In this case, anomaly detection algorithms detect these unexpected anomalies without the
need of reference data [195]. They range from simple linear algorithms, that assume Gaussian
distributions and mixtures of pure pixels, to more complex non-linear approaches [126] that
better differentiate anomalous pixels. Further analysis might classify these anomalies as errors,
or as objects of interest due to their particular characteristics.

Target detection works in a similar way, but instead finding out objects that stand out
[140] within areas where pixels are not necessarily anomalous. This has been one of the main
motivators for military use of hyperspectral data.

Even with corrected images, hyperspectral analysis might be hindered by data availability.
While very high in spectral resolution, spatial resolution might be lacking in some cases. Hy-
perspectral sensors already have thousands of detectors that, if made smaller to fit a bigger
resolution, are not as precise. Spatial resolution of the hyperspectral sensor can be increased in
software in a process called super-resolution. At first [206] the information available in differ-
ent bands was used to increase the resolution. Hardware solutions were partially developed by
also including a higher-resolution multispectral or panchromatic imaging devices along with the
hyperspectral sensor. Techniques were developed [8] that fused both high spatial and high spec-
tral resolution data sources into a single high spatial resolution hyperspectral image. Bayesian
approaches [9], neural networks [236] and coupled hyperspectral unmixing [128] are among the
popular approaches.

Hyperspectral images, despite containing plenty of information themselves, are sometimes
combined with other types of data in a process called Data fusion. This is not a technique new
to hyperspectral images, and has been used in the past to combine information from multiple
sensors into one coherent source of data [88, 211].

Hyperspectral data has been fused with Light Detection and Ranging (LIDAR) in order to
identify both tree species as well as estimating tree canopy height and diameter [176], resulting
in an increase of precision on both domains with respect to just analyzing hyperspectral data
for the former, and LIDAR for the latter.

It has also been mixed with both Synthetic Aperture Radar (SAR) and High Resolution
Imaging (HRI) [94]. The former reduces false detections for the radar images, confirming target
detection for military purposes. The latter combines the hyperspectral cube with the image
plane to create a combined spectral-spatial analysis that allows for a more accurate material
detection process.

These are some examples of algorithms that work with hyperspectral images at a general
level. Of course, each application (Section 1.1.3) will derive its own algorithm suited for its use
case, based on the data enhancement and preprocessing algorithms presented here.

Another main type of generic hyperspectral image algorithms are compression algorithms.
They take the immense amount of data available, reducing its size so that storage and trans-
mission can be more efficient. Generally a part of a more complex processing pipeline, they ease
complex tasks by minimizing data transfer. These are the ones this thesis focuses on.

1.2 Compression

We perceive the world around us as a continuous stream of stimuli. Human senses detect those
and transmit them to the brain, which is able to interpret those signals, creating our own reality.
Those experiences are stored in it, and then can be recovered via memories that can be shared
with others. A more detailed or brief explanation can be given of different experiences to others,
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sharing information that others can use to understand different perceptions of reality. In a naive
way, how much information is transmitted by humans can be measured by the number of words.
Assuming an efficient description, the more words that are transmitted, the better the listener
will be able to reconstruct the original thoughts.

For the digital world, these continuous analog signals are brought into the discrete digital
domain. Sensors measure the signal’s intensity and then the interval of possible values is divided
into sub-intervals. The digital signal’s value will be that of the sub-interval in which the analog
measure falls. Once a discrete number is obtained, it is represented in bits, or a sum of powers
of two. The shorter the sub-intervals, the lower the measurement error at the cost of more bits
per sample, and vice-versa. Normally, a signal is sampled multiple times across time and/or
space. The set of all samples is the data d.

Because storing data takes physical space, the highest possible precision is desired while using
the lowest possible amount of bits. By default, if a signal is measured m times with p bits of
precision, data d is produced of size s(d) = m ∗ p bits. A question arises then: is it possible to
store that data in n < m ∗ p bits?

The short answer is yes. Signals almost always have a certain degree of predictability, that
is, they are not fully random. As with words, when something is redundant, it can be omitted,
either referring to previous information or leaving it out of the speech for the listener to infer
based on context. The techniques are abundant, and allow for conveying all of the information
without transmitting it all.

The art of reducing data size is what is called compression. When compressing data, it can
be done in a lossless way or a lossy way:

� Lossless compression is a process in which the original data, d, gets transformed by some
algorithm a in some new data d′ = a(d). The algorithm or function a is invertible, meaning
the original data can be recovered via a−1(d′) = d.

Of course there are functions that satisfy this property: the identity function is a trivial
example. But if compressing is the objective, at least for some data d of size n it must be
true that s(a(d)) < n. The problem is that, if there is some d1 for which that property
holds, then there must exist some d2 for which s(a(d2)) > n. Otherwise, by the pigeonhole
principle, two different sets of data collapse to the same result, and the inverse is impossible
to obtain.

So for a compression algorithm to be lossless, and useful, it must reduce the size of some
data combinations while expanding the size of others. At first glance, this seems absurd
since, on average, an algorithm applied over a random set of data will get results that on
average are the same size as the starting data. The key in designing good compression
algorithms is that the data they operate over is not random.

The signals that are compressed are continuous in the analog domain, and even by taking
discrete samples (both at the resolution level and sampling level), their values will be close
together. Values that are similar are easily encoded (for example the differences between
adjacent values can be stored instead of the full values). The original interval can be
clamped to the maximum and minimum values and use less bits for each sample in this
restricted space. Predictive models can be used that, if correct, completely skip the need
for coding certain parts of the signal.

All of these methods will be able to compress most data sets with great efficacy, and those
that are expanded in size will be so rare that they will not pose any problems. This is the
key: compress the common, since the uncommon will not make a difference.

This property of being able to compress any data set gives lossless algorithms a nice
property: they work over any kind of data. Even if they are specialized for images, audio
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or medical data, any can compress data from the others. They are generic even if they
might not be efficient with all types of data.

� When analyzing data, most results do not depend on exact values but on trends or patterns.
For example, to know if temperatures have been higher than in previous years, exact values
are not needed, but an average or trend line showing where anomalies might have occurred.

Lossy compression aims at reducing data size by getting rid of the data that, even when
not present, does not affect those properties that are useful. Noise and outliers caused by
sensor errors will be removed, and signals smoothed out to make them more predictable.

While the effectiveness of a lossless algorithm is measured solely on how much it reduces
some reference set of data, lossy algorithms are measured on two parameters: size re-
duction and quality loss. Of course a lossy algorithm can be perfect in size reduction by
ignoring input data and restoring a blank signal, but the reconstructed signal would be
useless. It can also preserve the signal intact yielding perfect quality, but lossy algorithms
underperform lossless ones in that regard. Generally, a set of parameters will be selected
to achieve a compression of a certain approximate quality or ratio.

The mathematics and computing behind lossy compression are usually more complex than
the lossless counterpart. A transform such as Fourier, cosine or wavelet is the central part
of most lossy algorithms. They map the input signal to a space where it is defined as a
combination of more common and repetitive signals. Generally for a signal s of n samples,
a transform t will map it as:

t(s) =
n∑
i=1

cis
′
i (1.2)

Where the original signal s is expressed as some combination of signals s′i. The n coef-
ficients ci are of the same size as the n samples of s, so the transform can be inverted
and doesn’t expand the size of the original data. The signals s′i usually represent common
patterns that arise in continuous signals, and can mathematically create any other. s′1 will
be the most common pattern, and s′n the most uncommon. This way, when compression
is needed, the least significant m < n coefficients will be set to zero. The reconstructed
signal will be similar to the original one but at a fraction of the size.

Contrary to what happens with lossless algorithms, lossy ones are very specific to the kind
of data they compress. Audio, image or video compression all have different requirements,
and using one compressor for the wrong kind of data yields abysmal results.

1.2.1 History of compression

It was Claude Shannon in 1948 [184] who defined, mathematically, what is now known as infor-
mation theory. With the definition of entropy, a theoretical limit was established that dictated
how much information could be sent over a link of certain properties. If certain properties are
known beforehand (such as what symbols are transmitted, as well as their relative frequencies)
it is possible to send messages using less data than if a random source of symbols was assumed.

This is possible thanks to the use of codes, which are dictionaries that map the symbols that
are to be sent to the symbols that the communication channel supports. A simple code might
map the alphabet to 5-bit fixed-length binary numbers. That way a message of n characters
is transmitted with n ∗ 5 bits. But, if variable length codes are used, where the most common
characters use shorter codes, the same message might be transmitted with e.g: n ∗ 4 bits, saving
20% of bandwidth.

Different codes were explored at the beginnings of information theory, exploiting different
mathematical distributions of the input alphabet. Golomb [79] and Huffman [96] codes were
amongst the most popular. The first offered great compression for unbounded collections of
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symbols with known probability, while the latter created the most efficient codes within a fixed
set of symbols. More complex codes were developed afterwards, with arithmetic coding [3]
reaching the limits of what was possible based on information theory.

But of course, as time went on scientists asked themselves whether this limit was really the
limit. A simple string of alternating zeros and ones could not be compressed at all with any of
these methods, since both symbols had exactly a 50% chance of occurring. Nonetheless, such
string is extremely redundant, since the moment symbols are grouped in pairs, suddenly the
same symbol is repeating 100% of the time.

This simple example shows that, even if information theory limits hold for the general case of
an unknown source of random data, some skewed data might be compressible to limits beyond
theoretical. This motivated the creation of the next generation of compression algorithms, based
on dictionaries that evolved over time. Lempel and Ziv were the ones that popularized such
methods with their LZ family of algorithms. In both LZ77 [243] and LZ78 [242] they exploit the
fact that data sequences (in this case mainly text) contain many repeated subsequences. LZ77
maintains a window of previous symbols which it can reference for repetitions. LZ78 builds up
a dictionary in which symbols reference previous entries within the dictionary, creating strings
that can be referenced with the same amount of bits as individual symbols, saving space. Both
algorithms dynamically exploit redundancies and can encode long strings within the space of a
symbol, improving compression over one that just works on individual symbols.

The first improvements for these algorithms were bijective transforms that could be applied
to the data in order to make it more redundant. The Burrows Wheeler transform [31] creates
strings where symbol redundancy is locally higher by applying sorting transformations. A sim-
pler approach is to use delta coding: code the difference between neighboring values, which
for redundant data will be lower in mangitude (and more redundant due to the pidgeonhole
principle) than the originals.

These transforms are still in use today in many algorithms, but that didn’t stop improvements
from being made for the LZ algorithms. LZSS [196] and LZW [215] are two examples that built
up on the base LZ77 and LZ78 algorithms by adding new techniques. But the most popular
is probably the DEFLATE [112] algorithm, that Phil Katz developed for the .zip file format
which most of us still use on a daily basis. It builds up on LZSS by chunking the data and
applying different compression techniques over each chunk, adapting to characteristics that are
optimized for different variations of the same algorithm.

So far, these were all lossless techniques, since data storage was not an issue. But that was
about to change with the digitalization of audio and images. A vinyl disk stores analog audio
within its grooves the same way film is able to capture light in an analog fashion with light-
sensitive materials. The first digital audios and images were mostly experimental, but soon it
was realized that the main thing the digital world was bringing was data. Tremendous amount
of data since the capture media could be reused. The first lossless algorithms fell short.

A CD, at 700MB, could store just one hour of uncompressed music, enough for an album.
However, there was too many useless information in those 700MB. Due to the way the human
ear and brain works, some sounds are virtually imperceptible to us despite being recorded by
a digital microphone. Sounds that are too dim compared to the surrounding effects are not
perceived by our senses, and certain peaks can be completely discarded while still retaining a
high fidelity sound.

Once the inaudible parts are filtered out, Fourier transforms are applied converting the data
from the time domain into the frequency domain. Very high and very low frequencies are
discarded without affecting sound quality. The result is that, in high quality .mp3 format, 7
hours of sound can be stored in a CD. For specific sounds such as speech, with a very limited
frequency domain, up to hundreds of hours can be stored in the same media.
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Images extend the audio concept of one dimensional waves to two dimensional ones. Line by
line, the same concepts can be applied, but image characteristics are more efficiently exploited
when using two dimensional transforms. In the same way that a Fourier transform is used
over subsequent windows of sound samples, images use transforms over small blocks of fixed
size. JPEG [210], one of the most popular compression algorithms, uses the discrete cosine
transform. Operating over 8× 8 windows, it transforms the block from the spatial domain into
the frequency domain, seeing each block as a combination of two-dimensional waves. In this
case, very high frequencies are discarded or its precision reduced, while low frequencies, that
are more important in the visual domain are kept. This process smooths out the images even
eliminating noise, but can sometimes create sharp edges between adjacent blocks.

To solve this, wavelet transforms were later introduced. They extend the concept of trans-
forming to the frequency domain but over the full image. Blocks are of unlimited size, completely
eliminating edges. But operations are computationally more expensive, which is the reason that
these techniques didn’t emerge until later standards such as JPEG2000 [189] appeared. For
consumer use they are still not being widely used since JPEG usually proves to be sufficient.

Moving onto hyperspectral, a new dimension is introduced. Audio was made up of one-
dimensional waves, images are two-dimensional, and hyperspectral images are three-dimensional.
Two of its dimensions are spatial while one is spectral. While there is still correlation between
adjacent samples, it is generally the result of two distinct effects. Spatially, samples that are
close together tend to be similar due to the smooth nature of images. Spectrally, they are similar
due to the continuous nature of each pixel’s spectrum.

Algorithms have been developed that extend the concepts present in 2D image compression
to 3D. Hierarchical trees (that split the image in blocks which are expected to have similar
samples) give good results [40], while wavelets in three dimensions have been proved to achieve
higher compression ratios [69, 157]. In these cases, both correlations are exploited at once.
Computationally the algorithms are demanding, but obtain good results at compressing the
images, achieving decent ratios with great quality.

A second type of hyperspectral compression is based on dictionaries [104]. Going back to
the origins of compression, if a dictionary is created based on the frequencies of the symbols,
less bits can be used for the most common ones. Since symbols in hyperspectral images are
pixels of hundreds of samples (reaching kilobits), a dictionary can store thousands or millions
of different symbols before being less effective than raw coding. Complex unmixing algorithms
are used in this case, but the results are comparable to others. The benefit here is that, apart
from compressing, each pixel’s material is identified at the same time.

Lastly, methods that separately process both correlations have been proved to outperform the
3D-wavelet and dictionary based ones. The process is usually a spectral dimensionality reduction
followed by some traditional image processing technique. Principal component analysis [57],
combined with JPEG2000 has been shown to get excellent results at very low bit rates. When
also aided by vector quantization, splitting the input pixel space into different categories, the
results improve even further [24]. This is proof that with complex data, complex algorithms
that exploit all possible ways of redundancy do achieve higher compression ratios than simpler
ones.

1.3 Reconfigurable Hardware

The first devices to have any kind of intelligence were mechanical. Clocks and watches kept track
of time by means of precisely engineered gears. Complex models of everyday life looked almost
real thanks to all kinds of inventions that synchronized moving parts. Eventually, complexity
evolved to mechanical calculators, which were able to take arbitrary inputs and convert them
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to the appropriate result. In a sense, this generation of hardware was the hardest. Once built,
functionality was completely fixed. If a watch kept track of seconds, it would always keep track
of seconds and not hours. If a calculator could add but not multiply, then multiplication would
always be out of the equation.

It was this idea of creating artificial calculators or brains, that was able to move us past the
hard hardware barrier. Vacuum tubes enabled the creation of the flip-flop, a circuit able to store
two different states which still is the base of computing.

The first vacuum tube computers were not programmable, being only able to solve specific
problems such as linear equations. In a sense, these were still hard. But, as with many tech-
nologies, war was what really drove it forward. WWII brought the need to decipher encrypted
communications, and with it came the first truly programmable computers. They used switches
and plugs, with which programs could be changed to do different functions over the input data.
Hardware no longer had the functionality within the circuit, the functionality was given by
software, which worked on generic hardware.

Improvements were quickly made over the years, increasing tube quality and count, but
the true revolution came with the transistor. In the 1950s, the so called “second generation”
of computers appeared. Vacuum tubes, which were quickly reaching their limits in size and
efficiency, were replaced by transistors and diodes. The first generations were less reliable than
tubes, but they were already thousands of times more efficient in terms of power.

Soon enough, vacuum tubes were completely obsolete, and it was claimed that transistors were
far away from their limits. Moore was the one to realize this, stating that transistor count would
double every few years. This statement has remained true to this day, even though improvements
are slowing down. But now, the end is near due to physical constraint, with transistors being
just a few atoms wide, heat dissipation nearing its limits, and yield die limiting the silicon area
that a chip can have.

Over time, this generic hardware improved in speed and functionality, but the core idea
remained the same: create circuits that can solve some basic functions that can be combined to
create complex behavior. That combination is programmed, and so a circuit can be reused for
multiple purposes.

The only issue with this kind of hardware is that, due to its versatility, it has more function-
ality than its needed for any specific application. And that unused functionality translates in
unused transistors. This means that operations will take longer to perform and power consump-
tion will be greater.

The solution seems simple: create custom hardware for applications that have specific con-
straints that a multi-purpose circuit cannot cover. But this is very costly. Development of a
chip can cost millions, and for small production runs this is infeasible. Some market niches do
have specific hardware, such as GPUs, video encoding/decoding or encryption. Those chips can
be programmed with software and deliver great performance for their applications. However,
their specificity makes them inviable for general purpose processing, where they are inefficient.

But what if custom hardware could be created for any kind of application? That is exactly
what engineers asked themselves in the 1980s. At first, programmable hardware consisted on a
matrix of connections and logic gates, and was called Programmable Logic Array (PLA). The
input to the logic gates can be programmed, meaning they feed off the user-controlled input or
a programmer-defined value, changing functionality. Complex logical functions can be made,
and these reprogrammable units were used as controllers, where the circuit’s state could define
the different component’s actions in order to control the circuit. In theory, any function could
be programmed if enough resources were available. The problem was that for certain functions,
the size of the gate matrix needed to program them was too big to be practical, with many
resources unused.
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Other technologies also emerged at the same time, such as PALs (Programmable Array
Logic) or GALs (Generic Array Logic), both improving PLAs by having more reprogrammability
options. Still, scalability was an issue, and complex functions could only be made with newer
products that had bigger gate matrices.

Engineers had to go back to basics. When any design is created, it is done in a modular way.
The final circuit has some inputs and generates some outputs based on those. Inside, blocks
of simpler functionality are connected together. This process goes down to the logic gate level,
where simple logic gates are connected to build up functionality all the way to the top.

So that is exactly what they built, an array of simple blocks that could be selectively connected
with others. Any circuit could now be mapped to the internal resources by reprogramming each
block’s functionality and the interconnections with others. Certain blocks had connections to
the outside and would be used as I/O. This was called Field Programmable Gate Array, or
FPGA.

1.3.1 FPGAs

Figure 1.10: The first FPGA:
The XC2064 [194]

Xilinx was the first company to produce FPGAs [230] along with
watch manufacturer Seiko in 1985. The first FPGA wafers were
full of short-circuits. Out of the initial 25 die run, only one was
partially working. By applying enough current to the chip, the
shorts blew like fuses and the first bitstream was able to be loaded:
a simple inverter. Soon the full chip was able to be configured,
and the manufacturing processes were improved removing the
shorts. FPGAs were moving ahead in uncharted territory.

At a cost of $55 and with a process of 2.5µm, the XC2064
[169] offered 800 gates arranged into 64 configurable logic blocks
(CLB). Each of those had a three input look-up table (LUT) that
could be configured into any 3-input function. Even at that low
CLB count, transistors went unused for many functions. At a
time when every transistor was valuable, this seemed like a waste of resources and money. But
Xilinx’s founder Ross Freeman trusted Moore’s law and transistors becoming so cheap that it
would soon not be a problem. And he was right.

Xilinx’s invention [231] was so powerful that it soon took over PLAs, PALs and GALs. It
could perform their functions and more, replacing many ICs that previously had to be sourced
independently. In just a couple of years, price went down to $15 with production ramping up
to tens of thousands of units. The software though was a bit more expensive.

FPGAs, while very powerful, had one big limitation. While ICs normally come with simple
instructions of how to handle inputs and outputs, FPGAs also have the added complexity of
building the design that is programmed into them. Xilinx realized this and soon enough was
selling software to automate this process. Logic functions could be defined, and a tool would
automatically translate them to configuration files for the FPGA. This relieved engineers from
having to manually configure the internal logic, which would have defeated the purpose of the
FPGA in the first place. wo FPGAs continued to grow [205] in the 90s. Aside from pure logic,
FPGAs now had integrated memory, and as such could contain much complex circuits than
before. In 1992 the XC4010 surpassed the 10000 gate barrier, and just seven years later, the
XCV1000 would reach a million. Such growth was due to Moore’s law, and it applied everywhere
in the industry. Processors, memories and network devices were growing in size and in types.
While this first generation of FPGAs was useful, providing only reprogrammable logic was not
enough.
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With the expansion of the Internet, the need to process information from multiple sources,
multiple protocols and at the same time was crucial for interconnecting different devices and
networks. Custom ICs were available, but having one for each situation was too costly. FPGAs
found a niche to grow thanks to their quick reprogrammability, and the enormous need for
networking hardware accelerated their growth.

By the start of the 2000s, FPGAs were present in many digital systems. Companies that
used to develop ASICs were moving to FPGAs since their designs were now able to fit in the
reprogrammable logic, saving resources and time when developing new ideas. DSPs (Digital
Signal Processing blocks) provided pre-built modules that were faster than synthesized ones,
providing huge performance boosts. But having such huge FPGAs for small ASICs was a problem
since power consumption and cost would be too prohibitive for some applications. Thus, FPGA
vendors started launching multiple devices of varying capacity to address the needs of low and
high complexity designs (Table 1.2).

But sometimes FPGAs fell short when doing certain tasks. Enough logic resources were
now available for almost any function, but sometimes it just wasn’t enough to meet timing or
power constraints. Thus, resources started being used to integrate “hardwired” functionality.
Microprocessors, multipliers, Ethernet and PCI express interfaces or floating point arithmetic
are just some of the functions that are now pre-built on FPGAs. With no reconfigurability, they
operate just as fast as an ASIC. For any added functionality, the programmable fabric is still
there and can interact with all these modules.

Today, FPGAs have so many resources that they are being used to accelerate all kinds of
tasks. High level synthesis has allowed pure declarative code to be converted into circuits, saving
the pain of learning how to use FPGA-specific programming environments. However, the highest
performance is still only reached by hand-optimized code. Any algorithm can now benefit from
their custom capabilities since they are present all the way from cloud services to edge devices.
Their present certainly seems bright, and their future looks brighter.

1.3.2 FPGA structure

FPGAs have been through an evolution that goes beyond exponential growth. But it is not
only a growth in resources, it is also a growth in the type of resources available. Instead of
just increasing CLBs, those have increased as well in size and functionality (Figure 1.11). New
pre-built blocks have been added to the FPGA fabric to accelerate common functionality beyond
what’s possible with reprogrammable logic. I/O capacity has increased to accommodate new
types of memory, ports and interconnections, allowing for more and more functions to be built
every day.

Model CLBs RAM I/O FF DSPs Year Adds

XC2064 64 58 122 1985 Gates, registers, routing
XC3195A 484 176 1320 1988 Three state bus

XC4085XL 3136 100kb 448 7168 1991 Carry logic, memory
XCV3200E 16224 852kb 804 34860 1999 Dynamic reconfiguration
XC2VP125 14416 10Mb 1200 111k 2002 Transceivers, processors

XC4VFX140 16128 10Mb 896 126k 192 2005 DSPs, Ethernet, PCIe
XC5VLX330 25920 10Mb 1200 207k 192 2006
XC6VLX760 59280 25Mb 1200 948k 864 2009 System monitor

XC7VX1140T 89000 67Mb 1100 1424k 3360 2010 ADC
VU13P 216000 454Mb 832 3456k 12288 2016

Table 1.2: Xilinx’s FPGA models through time
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Figure 1.11: CLB diagrams for different FPGA models. In reading order: XC2000 series [227], XC4000
series [229], Virtex 4 series [224] and Virtex 5 series [225].

Figure 1.12: Annotated picture of a VC709 connectivity board for the Virtex-7 [232].
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Figure 1.13: Detail of the interconnections present in a XC3032 [228]. Left: fabric interconnections.
Top right: CLB structure. Bottom right: Switch matrix pin configurations.

A modern FPGA will be shown as an example: The Virtex-7. This is chosen since it’s one of
the models used to test the designs in this work. It is packaged in a test board for ease of use,
as seen in Figure 1.12

These cards connect to the computer either via USB or the PCI express port. As seen,
they have multiple connections to allow for a wide range of applications to take advantage of the
FPGA. In this case, it is accompanied by 8GB of Ram, in two separate 4GB banks. Applications
will usually load the memory with the data to be processed, accelerate that processing on the
FPGA itself, and then transfer the data back to the computer. This concept of FPGAs as
general purpose accelerators has been in use for cloud services [10] such as AWS for a couple of
years.

Aside from connections or applications, the interesting part about a modern FPGA is the
inside of the chip itself. For that, it is necessary to go back to an old FPGA, the XC3032
[228], where configurable blocks were simple enough to fit in one page. Figure 1.13 shows the
internal structure of the FPGA. CLBs are the blocks named by two letters. Every black dot is
a configurable switch that can connect or disconnect the lines it touches. CLB functionality can
be configured for each CLB. Switch matrices can be configured per-pin. So, even for a small
64-CLB FPGA such as this one, the number of reprogrammable bits is enormous. Direct lines
allow for fast connection between elements, while the switching matrices have greater flexibility
but are slower.

Nowadays, each CLB has thousands of configurable bits, while switching matrices have hun-
dreds of pins. Furthermore, FPGAs contain specific blocks such as DSPs that connect to the
fabric as well, providing built-in functions like multiplication or division. Those have less flexi-
bility but are reprogrammable as well, usually allowing trade offs between clock frequency and
latency.

1.3.3 FPGA applications

FPGAs have seen a number of useful applications [197, 205]. Their reprogrammability has made
FPGAs the perfect vehicle to carry circuits or accelerators that are be too costly or timely to
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implement as ASICs. They allow for faster testing, turnout and provide high performance all
at the same time. At first, that was the target market segment. With the growing size of ASIC
design, small production runs became too costly to develop and were replaced by FPGA designs,
which generally perform sufficiently fast.

Due to their capabilities, and the quick expansion of the networking market, that was at one
point the biggest selling target for FPGAs, with reprogrammable switches [134] being cheap,
fast, and ideal for new emerging protocols or updates that could be done at the hardware level.
Instead of having to update the software of an ASIC or CPU which potentially would not be
as fast for the new requirements, the custom implementation of the protocol could be loaded
into the FPGA. Many I/O improvements were brought to FPGAs, which were catering the
telecommunications segment but still remain today.

Specific control systems, where simplicity and reliability are key, have also been implemented
on FPGAs due to the prohibitive cost of ASIC design. Small robots for civilian search and
rescue [39], or semi-automated medical surgery equipment [200] have trusted FPGAs as their
brain power. Control systems based on fuzzy logic [198] have also been targeted instead of using
a specific ASIC because production runs would be very small, and processors require great
amounts of power for the little computing capacity that is needed. FPGAs fit perfectly allowing
for faster responses in those systems.

Over time, ASICs recovered part of their market share by expanding to system-on-chip (SoC)
devices. Generic processors were combined with application specific blocks that would target spe-
cific functionalities. Programmable SoCs [49] were developed as an answer, including processors,
networking processing blocks, Analog to Digital Converters, or multipliers and FP arithmetic
for precise mathematical applications.

FPGAs are capable of performing any function, including running full-fledged operating sys-
tems [192] making FPGA resources available at the kernel level, improving performance and
allowing seamless integration of the FPGA fabric for all processes. Despite these capabilities,
complexity is still high, and FPGAs today are often used for increased performance where custom
hardware is not available.

In neural networks [85] they can replicate the actual network in hardware adapting to their
changes, being much faster than CPU or GPU [131] based systems. In an FPGA, the whole
network is working simultaneously. However in a CPU or GPU different iterations are executed
one after another, slowing down processing. Common applications based on neural networks
on FPGAs [153] include speech recognition, feature extraction, image association, robot vision,
face recognition, fingerprint matching, color quantization, and many more.

Video encoding performs a sequence of costly operations over successive frames in order
to estimate motion and save bandwidth by using previously seen blocks as references. These
complex operations have been accelerated in FPGAs [59, 122]. Decoding procedures have also
been fully developed on FPGAs for the latest and more complex 4K encoding standard HEVC
[2] in real time.

Cloud computing servers have seen the introduction of FPGAs as accelerators [65], which are
far more efficient power-wise than multi-core CPUs or GPUs, and can also adapt to changing
algorithms. Even some older FPGA characteristics such as bitstream encryption have been used
recently [234] to ensure data privacy in FPGA cloud applications.

Low power applications have also been of particular interest [208] since FPGAs are able to
preserve battery life longer, enabling off-the-grid applications or data collection systems that
last longer than if using common SoCs. Even specific improvements have been researched [77,
172] to further decrease FPGA power draw by using different voltage domains or clock gating.

A place where FPGAs are of great use is satellite applications. It makes sense since satellites
cannot be accessed for repairs. If a custom ASIC failed, or a processor had a cosmic ray alter
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some hardware, that failure would be there indefinitely. It might be avoided by software in some
cases, but repairs are not possible. If instead FPGAs are used, any defect on the synthesized
logic, either from programming or from cosmic events, can be fixed by rerouting resources.
New optimizations can be incorporated. Functionality can adapt to different needs, accelerating
different processing flows if needed by reconfiguring when necessary. Communication links [90]
and controllers [89] are two of the main applications that benefit from FPGA use, along with
hyperspectral image compression.

1.3.3.1 Compression of hyperspectral images on FPGAs

FPGAs offer great advantages when flexibility is important. Space is one place where being able
to reprogram a circuit can be extremely useful since repairs are impossible. Many hyperspec-
tral sensors are space-borne, and hyperspectral data has sizes that quickly add up to fill up a
satellite’s memory. Compression is a must in that scenario, not only for storage but also for
being able to send data back to ground stations in a more efficient manner. The cycle closes by
realizing that compression, due to having many but simple operations, can be efficiently carried
out on FPGAs [161, Ch.7][175].

FPGAs have already been used to implement hyperspectral compression algorithms. Lossless
algorithms such as CCSDS 123.0-B-1 [106, 154, 180, 207] and even its predecessor the “fast
lossless” coder [12, 115] have seen many implementations. Integration on real-time reconfigurable
platforms [168] has also been explored, allowing for multi-core processing. Lossy ones such
as the wavelet-based SPIHT [70, 95] have already been around for a while, as well as other
methods such as vector quantization [161]. Other algorithms like JPEG2000 have also seen many
implementations [84] that can also apply in the context of hyperspectral lossy compression. On
the near-lossless side, the newer CCSDS 123.0-B-2 [52] already has an implementation, as well
as the low complexity coder for ExoMars [75, 76].

The topic of compressing hyperspectral data on FPGAs is of interest, specially in satellites
which most of these works apply to. But despite the plethora of options, there has been no effort
to unify and experiment with all types of algorithms. Which one is suited for what application?
Can all kinds of algorithms be space-borne? Is there a better compression algorithm under
certain metrics? What are the trade-offs between all types?

These, as well as more questions, are the ones that this thesis tries to answer.

1.4 Objectives

The general objective of this thesis is to study hyperspectral image compression algorithms
using reconfigurable hardware. The usual problems that arise in this context, like high data
dimensionality, data quantity, processing and transmission times are to be taken into account.
The approach to solving this problem is to study the Field Programmable Gate Array (FPGA)
implementation of some of the most significant hyperspectral compression algorithms in the
literature.

First, extensive research in compression is required to understand the main types of ap-
proaches to general data compression. Their adaptations to hyperspectral images are also of
interest, and specially algorithms developed exclusively for this kind of data. Existing imple-
mentations of these algorithms on FPGAs will also provide with the required knowledge in novel
techniques that can be used for this thesis.

After this first analysis of hyperspectral image compression in the context of FPGAs, three
algorithms have been selected to be implemented and analyzed. Their differences are to be
studied, understanding what the advantages of the different types of techniques are, and to
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derive when and where it is necessary to apply each technique. Each implementation aims
to achieve real-time performance as a baseline, to be able to compare each algorithm in an
applicable scenario where images are compressed after capture in a possible real-world scenario.

� An in-depth analysis of the lossless CCSDS 123.0-B-1 standard [32] will be performed in
order to understand the mathematics behind it. Being an international standard, it has
gathered attention, and a review of existing FPGA implementations will bring ideas to
the table and present their shortcomings in order to develop a novel implementation that
solves them.

Being highly configurable, an extensive review of occupancy impact is to be done, deter-
mining the ideal options to set in order to achieve the desired performance results.

� The JPEG2000 image compression algorithm [163] will be studied next. Its applicability
is well-known for digital images, but the focus will be on hyperspectral adaptation. In this
context, the combination with other algorithms will also be of interest to fully exploit the
redundancies present in hyperspectral data for compression. This method will target an
aggressive lossy compression, to see the feasibility of an FPGA implementation.

An extensive software analysis will be made beforehand in order to look for the best
possible pipeline that, including JPEG2000, is able to compress hyperspectral image. The
pipeline will be optimized at all steps in order to bring this complex array of algorithms
to real-time constraints.

� The low complexity predictive lossy compression (LCPLC) algorithm [5] is the final algo-
rithm to be analyzed. It offers the ability of performing near-lossless compression, provid-
ing a quality threshold that is maintained in the output image. It offers less advantages
than the two other approaches in their respective domains, while at the same time being
competitive in both.

Hardware optimizations will again be targeted to analyze the algorithm under tight timing
and resource constraints, seeing as well how it compares in both compression performance
and processing speed against the other two.

In the following chapters a more in-depth introduction to compression is seen, which is the
main theoretical background that the rest builds upon. After studying compression techniques,
they will be applied to three algorithms in the lossy, lossless and near-lossless category. These
three are algorithms that have already been tested, and modifications are proposed that improve
their performance in certain key aspects relative to prior implementations. Afterwards, the
FPGA implementations will be presented, as well as the key aspects that this work focused on
during development.

Results, showing compression ratios, quality, algorithm speed as well as FPGA occupancy are
shown afterwards, also comparing with existing implementations of similar algorithms. Finally,
conclusions will be drawn as to which algorithms are better suited for certain situations. The
thesis will end with future work ideas, hinting at what might be possible to achieve based
on the experienced gained while writing it. The final objective is to provide the reader with
extensive data and experimental results to be able to decide which algorithm and implementation
techniques are best suited for each application.
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Chapter 2

Compression

It was 1948 when Shannon [184] set the mathematical background for information theory. In
the first paragraph, he wrote:

“The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point”.

That phrase alone establishes that what’s key for transmitting information is the repro-
ducibility of the message. It doesn’t mention how the information is transmitted, just how it
must arrive at its destination. Any kind of digital system that relies on communication with
others usually has its bottlenecks at the communication level. Internally, operations are orders
of magnitude faster: memory is available nearby and connections are extremely short compared
to the long distances information has to travel between two separate systems.

Being the bottleneck, speeding it up is key to enable faster operation. There is a physical
constraint on any communication link: signals cannot travel faster than light, and the bandwidth
available depends on technology. So, with links that have certain imposed limitations, how can
those parameters be improved? The answer is compression.

In this chapter, a broad look is taken at different compression techniques, that are applicable
to many kinds of data, including hyperspectral. Special focus is put into the ones that are used
or influence the algorithms implemented in this thesis. An in-depth look at those is provided in
Chapter 3.

2.1 Basic concepts

Compression is the process through which some piece of information gets processed in order
to reduce the amount of bits it takes to represent it, while still retaining the original meaning.
With the first algorithms, the original data had to be able to be perfectly retrieved. The size
was reduced but not the amount of information. This is lossless compression.

But not all types of data require exact reconstruction. Some signals can be compressed with
a loss in quality while still retaining the important features. This is lossy compression. Going
back to Shannon’s quote, the message is reproduced either exactly or approximately.

When compressing losslessly, there will be a plethora of techniques to achieve the same result:
reduce bit size. To establish which one is preferable, sizes of compressed data are compared. An
algorithm which compresses down to less bits is more desirable than one that uses more bits to
represent the compressed information. To measure this effect two different concepts are used:
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� The compression ratio r. For a dataset D, compressed with an algorithm a, define r as:

r(a,D) =
s(D)

s(a(D))
(2.1)

where s(D) is the size in bits of the dataset. For example, a compression ratio of 2 means
the compressed dataset is twice as small as the original. A bigger ratio means compression
is higher.

The inverse compression ratio, which indicate the fraction of the original size that the
compressed data takes, is defined as ir = 1/r.

� Compression can also be measured in bits per pixel per band (bpppb). This is specific to
hyperspectral images. For an image I with bit-depth b(I) (i.e: number of bits per sample)
that is compressed with an algorithm a:

bpppb(a, I) =
b(I)

r(a, I)
= b(I)ir(a, I) (2.2)

In this case, lower bpppb values indicate higher compression. bpppb is inversely proportional
to compression ratio. For this thesis, the factor b(I) is assumed to be 16 unless stated
otherwise.

For lossless algorithms, these concepts are enough, since comparing just output size will de-
termine which algorithm achieves higher compression. (Though other factors such as processing
time might be of interest as well). However for lossy algorithms it is of interest to also know
the quality of the result. Metrics for determining the quality of compression are explained in
Section 2.3.6. To compare lossy algorithms, both compression ratio and compression quality
will be compared at the same time.

When fixing a ratio, the algorithm which yields a higher quality is considered to be better.
And when fixing a quality, the algorithm which achieves it at a higher compression ratio is
preferred. The curves that arise from plotting these values are called distortion-ratio curves.
An algorithm a is better than a′ if a presents higher quality then a′ at the same ratio or higher
ratio at the same quality.

Curves can cross each other, and sometimes an algorithm will outperform others for only
some portions of the curve. Figure 2.1 shows this effect. The bpppb representation is more un-
derstandable since quicker growth means higher quality at a higher ratio. The cr representation
gives an idea of how much compression can be achieved at a given quality.
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Figure 2.1: Distortion-ratio curves with both cr and bpppb shown. dro is the curve with highest
distortion-ratio performance, while drb is the one with the lowest. drg and drr cross each other, and are
respectively better in their corresponding shaded areas.
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2.2 Lossless compression

Lossless compression is used when it is important to preserve original data exactly as it was
obtained, with no approximations. Lossless compression is usually also faster to perform than
lossy, so certain applications take advantage of this speedup to meet real-time constraints. Fur-
thermore, lossy algorithms generally contain lossless coding after the lossy transformations.

The mathematical background comes from Shannon’s Information Theory [184]. Back then,
messages consisted of symbols transmitted over the communication link. If there is previous
knowledge about the symbol source (how many symbols as well as their frequencies), messages
can be sent using less data than if a random source was assumed.

A symbol is any object that carries information (such as a letter or digit). Symbols usually
combine to form higher order objects (letters become words and digits become numbers). Those
objects can also be symbols themselves. The set of symbols that are used is called the alphabet.
Alphabets can be composed out of few simple symbols or out of many complex symbols. There
will be trade offs between number of symbols in an alphabet and the number of bits that are
needed to represent their symbols.

To transmit symbols over a communication channel, a mapping to an alphabet that the
channel supports is needed. The channels are binary and transmit bits, that is, zeros and ones.
Combinations of those will be used to map the symbols:

Definition 1 A code is a mapping from symbols of an alphabet A to symbols of an alphabet B,
that is the one supported by the communication channel. (In this case, binary words). As an
example, the Latin alphabet can be mapped to five-bit symbols as follows:

C = {a→ 00000, b→ 00001, . . . , z → 11000} (2.3)

In this case, the code has a length of five. For fixed length codes, each symbol begins at
a boundary that is a multiple of the code length. But codes can be of variable length if every
symbol can be distinguished by its prefix.

Consider a random variable X that generates symbols xi, i ∈ [1, n] from an alphabet A.
Those symbols can be coded with a fixed length of L(X) = dlog2 (|X|)e, having at least as many
possible combinations as symbols there are in A.

Sometimes, the probabilities of appearance of certain symbols P (x) will be skewed. For
example, if A is the Latin alphabet and a book is being coded, vowels will be much more present
than, for example, the letters q, j or z. In those cases, using a variable length code that assigns
shorter lengths to more common symbols is advantageous, since less bits will be used overall to
transmit the same message. The average length with which symbols of X can be transmitted
has a theoretical limit known as Shannon’s entropy H(X):

H(X) = −
n∑
i=1

P (xi) log2 (P (xi)) (2.4)

where the logarithm in base 2 indicates that the alphabet that codes the symbols uses binary
digits to do so.

H(X) ≤ L(X) always holds, so a trivial constant length mapping can usually be improved
with a variable-length coding scheme. A simple example can be found in Shannon’s work where
symbols A,B,C,D are assigned probabilities of 1/2, 1/4, 1/8, 1/8 respectively. In this case L(X)
is 2, however:

H(X) = −
(

1

2
log2

(
1

2

)
+

1

4
log2

(
1

4

)
+ 2

1

8
log2

(
1

8

))
=

7

4
(2.5)
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So if a two bit per symbol code is used, part of the sent bits that are redundant are wasted.
Using the following variable-length code: A → 0, B =→ 10, C =→ 110 and D =→ 111, the
theoretical limit is reached since, for N symbols sent:

bits(N) = N

(
1

2
· 1 +

1

4
· 2 +

2

8
· 3
)

=
7

4
·N (2.6)

This theoretical limit cannot always be reached. A simple example can be found in two-
symbol alphabets. The best code is to assign 0 to one symbol and 1 to the other. So the same
amount of bits and symbols will always be used, but the entropy can be arbitrarily close to zero
when the probability of one of the symbols p = P (x1) tends to 1:

lim
p→1

(H(X)) = lim
p→1
− (p log2 (p) + (1− p) log2 (1− p)) = 0 (2.7)

In any case, the code that is assigned needs to be decoded in a unique way, otherwise the
message is completely lost in transmission. To solve this issue prefix codes are used, in which no
symbol’s representation is a prefix of a different symbol’s representation, so that when decoding
variable length codes, symbol’s boundaries can be uniquely determined.

2.2.1 Huffman coding

Shannon had established a limit, known as entropy, below which messages could not be further
compressed. That limit was not always reachable.

Huffman was one of the first to create an algorithm [96] that created the optimal mapping
between the input alphabet and the output alphabet with the least average bits per symbol,
according to Shannon’s theory.

Symbols are sorted by descending probability of appearance. The two rarest symbols are
grouped together and their probabilities added. They form a new symbol that gets added to
the original pool of symbols. This process continues iteratively creating a tree of symbols where
low probability symbols appear at very deep leaves, while high probability symbols are near the
root.

To assign codes, the tree is traversed and each branch assigned either 0 or 1. The code for
each symbol is that of grouping together the bits that appear on the branches leading to them.
Figure 2.2

2.2.2 Golomb coding

Huffman coding works on a finite set of symbols with known probabilities. But what if the set
of symbols to be coded was infinite? For this, symbols need to be generated on-the-fly that can
be decoded later.

Golomb coding [79] was originally designed for coding run-lengths of random symbols a and
b such that the probability of one is much higher than the other. Runs anb were coded, where a
has the higher probability. This is the same as saying that numbers ni ∈ [0, . . . ,∞), that follow
a geometric distribution, are coded.

If p is the probability of symbol a, select m such that pm = 1/2. If pm = 1/2, then a run
length of n symbols is double as likely to appear as a run of n+m symbols. It makes sense then
for the second run to take up 1 more bit.

By this principle, Golomb codes are created. Let k be the smallest integer satisfying 2k ≥ 2m.
Specifically, focus on the case where the equality is met (Golomb power of two coding). The
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Figure 2.2: Huffman tree for the phrase “Implementation of Huffman Coding algorithm”. Leaves
indicate the codes used for each symbol. Numbers on each node indicate the aggregate of appearances
of all the symbols that branch from them.

corresponding code then has m words of every length ≥ k, which are bins. On each bin, the
probability of appearance is halved. If value n is to be coded, it is first expressed as:

n = q ∗m+ r (2.8)

where q and r are the quotient and remainder of the division by m. The resulting code will be
q “ones”, followed by a zero, followed by the remainder r in m − 1-bit format. An example is
shown in Table 2.1.

This way of coding is not only useful for runs of symbols, but also for numbers that follow a
geometrical distribution. In that case, this is the best way of coding without knowing beforehand
what the maximum value will be.

Number 0 1 2 3 4 5 6 7

m = 1 0 10 110 1110 11110 111110 1111110 11111110
m = 2 00 01 100 101 1100 1101 11100 11101
m = 3 000 001 010 011 1000 1001 1010 1011

Table 2.1: Golomb coding. A tradeoff is made between shorter codes at the beginning with longer codes
following, or longer codes at the beginning which do not grow as fast.
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Number 0 1 2 3 4 5 6 7

k = 0 0 010 011 00100 00101 00110 00111 0001000
k = 1 10 11 0100 0101 0110 0111 001000 001001
k = 2 100 101 110 111 01000 01001 01010 01011

Table 2.2: Exponential Golomb coding.
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Figure 2.3: Arithmetic coding of BACAA assuming probabilities P (A) = 0.6; P (B) = 0.2; P (C) = 0.2.
The result is the number of subdivisions (5) along with a representative (e.g: 0.7).

2.2.2.1 Exponential Golomb coding

In the same way that a geometric distribution is used for Golomb-coding, when the data presents
an exponential behavior (with lower values being exponentially more likely to appear), expo-
nential Golomb coding [60] can be used.

To code a value v, it is first normalized to a nonzero value by adding 1 v′ = v + 1. Then, its
magnitude m = dlog2 (v′)e is obtained with m− 1 zeros coded, followed by the binary value (in
m bits) of v′. This is the zero-order exponential Golomb coder. For higher order-coders, where
smaller numbers use more bits but bigger numbers are more compressed, a different technique is
used. First,

⌊
x/2k

⌋
is coded using the zero-order exponential Golomb coder, and then x mod 2k

is coded in k bits in binary. This is a kth order exp-Golomb coder. An example is seen in
Table 2.2

2.2.3 Arithmetic coding

There were other codings different than Huffman’s or Golomb’s, but assigning codes to each
symbol always resulted in some loss of efficiency since no symbol could be represented with less
than 1 bit, steering away from Shannon’s entropy limit.

A technique was developed [3, 26] that is be able to reach that limit by assigning non-integer
lengths to different symbols.

The way of doing this is not trivial. How can a symbol be transmitted by using, for example,
4.32 bits? What arithmetic coding does is different than the previous approach. Based on
the symbols it has to send, arithmetic coding will create a single “word” containing all of the
symbols together.

In arithmetic coding, a message is represented by an interval [cn, cn + an) ⊆ [0, 1). From the
interval, a representative p ∈ [cn, cn + an) is taken, which codes the message. The longer the
message, the shorter the interval will be, and the more bits will be needed to code the repre-
sentative p. The symbols in the message successively reduce the interval’s length (Figure 2.3)
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based on their probabilities. Symbols that are more likely to appear reduce the interval slightly,
while less likely symbols generate more drastic reductions.

To update the interval, a probability function is used that indicates the likelihood of a symbol
xi appearing in the message fX(xi). A cumulative function FX(xi) =

∑i−1
j=0 fX(xj) is also used,

indicating the sum of probabilities of all previous symbols. IfX = {x0, . . . , xn}, then FX(X) = 1.

Updating the interval is thus done as:

an+1 ← anfX(xn) (2.9)

cn+1 ← cn + anFX(xn) (2.10)

Any value p ∈ [cn, cn + an) is valid as a representative of the coded message. To decode,
subdivisions are followed based on the probability functions described before, placing the value
p down the subdivisions. A slight overhead is introduced to store the number of subdivisions
expected, since otherwise the process could create an infinite message. Even with this slight over-
head, as messages grow in length, the number of bits needed to represent them gets arbitrarily
close to Shannon’s limit.

The limitation was that, to update the intervals, arbitrary precision floating point numbers
were needed. Theoretically arithmetic coding was a good idea, just not practicable. This was
until a full implementation [217] was published that could perform arithmetic coding with no
need of arbitrary precision:

� The implementation deals with integers to simplify the subdivision process, so fX(xi) is
now approximated as:

fX(xi) ≈ p′xi =
⌊
2P pxi

⌋
(2.11)

where care is taken not to round anything to zero.

� Registers for a and c must be of finite length, so their size is limited to N and N +P bits
respectively.

The output bitstream can be decoded even if only a partial fraction is available at any time.
N and P need not be high for an acceptable result, with N + P < 32 giving results close to
theoretical limits that are achieved with arbitrary precision [201, p. 2.3.1].

2.2.4 Binary arithmetic coding

The idea of an arithmetic coder can be further simplified by demonstrating that any coder is
equivalent to a binary one.

Let AX be the input alphabet (xi ∈ AX) with cardinality |AX | = 2K ,K ∈ N. Each element
can be represented as a K bit integer.

X is a random variable that generates 2K possible outputs, but can also be interpreted as a
vector of K binary random variables B0, . . . , BK−1, where each B is a binary digit of X.

In the general case each symbol xi is coded based on its probability pxi , now K bits are coded
instead:

� For the first bit there is only one probability distribution, either the symbol starts by 0 or
1.
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Figure 2.4: First diagram shows a non-adaptive coder. The model is static and shared. The second
diagram shows an adaptive coder in which the model is updated from the stream of symbols. This ensures
the model is synchronized.

� For the second bit there are two probability distributions, one gives the probability of a 0
or 1 when the first bit was 0 and the other gives the probability when the first bit is 1.

� So for bit i there are 2K−1 distributions. Adding all together a total of 2K−1 distributions
arise. Since they are binary, each is defined by a single probability, for a total of 2K − 1
probabilities, the same that were needed when keeping track of the original 2K symbols.

An advantage of binary arithmetic coders is that usually the distributions referring to the
lower bits are mostly uniform, so p can be set to p = 0.5 for them. Doing this will provide a
similar performance as the classic arithmetic coder, having less information to keep track of.

2.2.5 Adaptive entropy coder

Both Huffman and arithmetic coding are entropy coding algorithms. They use the (previously
known) distribution probability of the input symbols with the aim of coding them with results
as close as possible to Shannon’s theoretical limits.

Sometimes the distribution changes over time, or can be adapted for local statistics. As an
example, 000001111110 has an entropy of 1 bit because both symbols (0 and 1) appear the
same number of times. However, splitting it in two yields 000001 and 111110, both with
entropy 0.65 that can be coded at higher efficiencies.

To build an adaptive coder the probability model is changed to update with the stream of
symbols instead of being static (see Figure 2.4). When coding a symbol xj , the model will only
depend on symbols xi, i < j. As an example, in Huffman coding, the codes for symbols could
change every so often to adapt to local statistics. The decoder will also know the state at that
point and will be able to adapt.

This allows us to break the entropy limit, since that was set for static codes. Information
can be compressed even further in a lossless way.

2.2.6 Entropy reduction

All of the coding techniques so far base their efficiency in the entropy (either local or global) of
the input data. Based on mathematical formulas, their efficiency is limited and cannot go over
certain thresholds.

However, certain symbol sequences hold great correlation between consecutive symbols. In
those cases, even if the entropy when looking at individual symbols is high, decorrelating them
can lead to a great reduction of entropy.
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2.2.6.1 Differential coding

Differential coding works best in temporal series of numbers. These series are usually fairly
smooth, and consecutive samples are usually close together in value. A simple series x = t, t ∈
[0, 99] ⊂ N will have the maximum entropy possible since all values in the series are different.

However each value is close to their neighbors. If instead of coding the values 0, . . . , 99 their
differences are coded, things will be much easier. In this case, the first value and then the
differences after it are stored, using the vector 0, 1, 1, . . . , 1. That distribution has an extremely
low entropy and an arithmetic coder is able to code it efficiently.

In general, for any kind of temporal series, the values obtained from the differences of sub-
sequent values will be much lower than the original values. If the same number of samples is
present but with a lower possible range of values, more repetitions will be present and thus the
entropy will be lower.

2.2.6.2 Predictive models

A more generalized idea of differential coding comes from the concept of predictive models.

At any point in coding, when a sample is processed, a prediction is made based on the
previously seen values. For smooth and predictable data, this value will be close to the actual
value. For example, in the previous case where x = t, if the model discovers the generative
function, the predictions will always match the actual values.

The differences between the actual and predicted values will be coded. The model approxi-
mates the data, yielding differences with the real values that are smaller than the values them-
selves, and can be more efficiently coded using differential coding.

The good thing about predictive models is that they can adapt to any kind of data, not only
temporal. For example, images have great spatial correlation, which is found in two different
directions at once: horizontal and vertical. When processing an image in raster scan order, the
already processed neighborhood can be used to create a prediction.

Any kind of entropy coder will be able to feed off the predictions and outperform itself if it
was given the raw data, since good predictions will have lower entropy than raw data.

2.2.7 Run-length coding

Run-length coding aims to reduce the size of long repetitive sequences of symbols. Run-length
coding starts with a sequence of symbols. To compress it, runs of consecutive symbols are
replaced by a pair of a number and a symbol. The number indicates the amount of times that
the symbol is repeated. As an example:

aaaaaabbccccaaaa→ 6a2b4c4a (2.12)

Sequences with many repetitions will be greatly reduced, while more random sequences will
probably be expanded by this method, due to the overhead of including the number of repetitions
along with each symbol.

Some algorithms use run-length coding to perform compression when they detect fairly uni-
form subsequences within the input data. Those regions will be compressed in a run-length way
while other regions may use different techniques.
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2.2.8 Dictionary coding

Dictionary coding exploits the fact that sometimes symbols group together in common con-
structs. Symbols in text are characters, however they are always grouped in words. If, instead
of coding characters, words are coded, coding efficiency will be higher.

Continuing with the previous example, there are 26 letters in the English alphabet. On
average, 5 bits are approximately neded to code each one. This can be improved by using
Huffman coding, for example, with the average frequencies of letters in English.

In this case, letters can be grouped into words. The average word length in English is 4.7
characters. That means that, with no consideration for correlation between letters, each word
has an entropy of approximately log2 (26) · 4.7 ≈ 22.09 bits. However, with 22 bits, 222 ≈ 4
million different combinations exist.

But there are much less words in English. Shakespeare, a reference in writing, used ap-
proximately 31534 different words in his books. Those can all be represented by using just 16
bits. So why use 22 bits per word when just 16 suffice? This is exactly what dictionary coding
does. In the case of words, a dictionary maps them to the string of symbols (characters) they
originate from. Binary codes are assigned to the words that appear on the dictionary, saving
combinations.

This technique is useful when the number of words in the dictionary is significantly lower
than the number of combinations that can arise from the combination of the original symbols
(in this case characters). For natural language, a dictionary approach will almost always result
in savings when compressing.

2.3 Lossy compression

In contrast to lossless compression, lossy compression allows some sort of distortion to be intro-
duced in the decompressed data. This will often be applied over continuous and fairly smooth
data (audio, images, video...) which, even if slightly approximated, retains the original meaning.

Lossy compression is important because lossless techniques have certain limitations. Even if
Shannon’s entropy barrier can be broken with certain techniques, these apply in specific scenarios
and for certain sets of data they will not be efficient. If there are certain restrictions about data
size, transmission speed or others, lossless compression ratios might not be low enough.

Generally, lossy compression will only be applied when its effects do not significantly affect
data analysis afterwards. If data is rendered unusable, then compression is useless in the first
place. Different techniques will apply to different scenarios, and often a mix of them will be
used to properly manipulate the data.

2.3.1 Quantization

The first and easiest technique that can be applied is that of quantization. Quantization maps
symbols from a large set onto a smaller set that can use less bits for representation. For numeric
data, precision is reduced maintaining acceptable quality levels while gaining extra bits in the
process. Any kind of analog-to-digital conversion requires quantization for example, since the
arbitrary precision of the analog world gets lost when translated into a fixed-precision world.

Quantization is done in two different scenarios:

� For floating point data, it usually consists on rounding to the nearest integer, possibly
after multiplying by a factor if the numbers are too small. Integers are easier to deal with
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since operations between them are simpler to carry out in hardware. If the conversion is
done properly, the inverse can recover the original numbers with great precision. A simpler
quantizer can be as follows:

Q(x) = ∆ · k, k =

⌊
x

∆
+

1

2

⌋
(2.13)

k is the quantized value which is an integer, and to recover the approximation of the
original, a multiplication by the step-size ∆ is performed. The smaller ∆ is, the closer the
reconstruction is, but the higher k will be, requiring more bits for storage.

The mean squared error (MSE) when reconstructing can be found by calculating the MSE
over any interval of length ∆, since all values within the interval collapse to its center when
quantized. Thus, integrating the difference, we find that the MSE is:∫ ∆/2

−∆/2 x
2dx

∆
=

[
x3/3

]∆/2
−∆/2

∆
=

∆3

23·3 − −∆3

23·3
∆

=
∆2

12
(2.14)

By adding or removing one bit from the quantizer, the value of ∆ is halved or duplicated.
This means the MSE goes down or up by a factor of 1/4. Equivalently, the signal quality
changes by 10 log10 (1/4) ≈ 5.756dB.

� For integer data, quantization consists on removing the lower bits of the numbers (just
shifting). This saves as many bits as are removed per sample, while keeping decent quality
if values are sufficiently sparse. If they are close together, they can be centered around
the mean and then the upper bits removed instead.

For signal compression, a dead zone (quantization interval wider than the rest) in the quan-
tizer output might be useful as a noise gate that collapses low values to zero to aid in compression.
For this purpose, dead-zone quantizers are used where:

k = sign(x) ·max

{
0,

⌊ |x| − w/2
∆

+ 1

⌋}
(2.15)

where w is the width of the dead zone, centered around zero in this case, which will collapse to
zero. This type of quantizer is also useful when output values need be in sign-magnitude form,
which is useful for some encoding schemes.

2.3.1.1 Down-scaling

Down-scaling is a special type of quantization where the signal’s precision is reduced by a certain
factor. For example, for floating-point numbers, it might increase their separation ε to cε, where
c is the down-scale factor. Note that precision is worse the more separated samples are. An
example can be seen in Figure 2.5.

For integers, down-scaling is usually done with simple shifting. Thus, the down-scale factor
will always be c = 2n for some n. Doing this for a signal with k bits effectively reduces the total
size by a factor of n/k. Cost-wise, it is the cheapest compression to do, since it only requires
shifting of the input data. Recovery is done again with shifting, though the lower bits are lost,
as with any kind of quantization.

2.3.2 Down-sampling

Another simple and fast way of reducing the amount of data is to down-sample the information,
taking away every nth sample. More aggressive down-sampling is called decimation, where
instead only every nth sample is kept.
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Figure 2.5: Original image, down-sampled with cubic interpolation, down-sampled with no interpola-
tion, and down-scaled to 9 bits.

Down-sampling might create artifacts for some signals, so usually filters are used to, instead of
just removing samples, interpolate them to smooth out irregularities. For inverting the process,
the missing values can be interpolated back to get an approximation of the original ones.

Down-sampling by a factor d effectively reduces data size by the same factor. When in-
terpolation is not used for down-sampling, this method is even faster than down-scaling for
size reduction since it does not require any processing at all, just discarding certain samples.
Complex interpolation methods might increase processing times, but increase the quality of the
result, as seen in Figure 2.5.

2.3.3 Domain changes

Figure 2.6: Separation [15] of the Y (lu-
minance), Cb (blue-difference chroma) y
Cr (red-difference chroma).

Data can be represented in multiple ways. Whenever a
signal is sampled, it is done in a certain space: Audio
is sampled in time, images are sampled in space and
in different colors, video is sampled in both time and
space...

This is due to the nature of the sensors. Certain
physical properties are being captured, that require spe-
cific kinds of sensors for them. But there is a correspon-
dence between different domains in which the data can
be represented. There are different formats for audio,
video and still images, all representing the same data in
different domains.

Sometimes this transformations make it easier to an-
alyze or, in this case, compress data. Certain domains present more redundancies than others.
For example, for images (see Figure 2.6), the YCbCr color space is often used for storage, since
it separates the original RGB (red, green and blue) data into three channels, two of which can
be down-scaled (the chroma components) without perceptible loss of information for the eye.

These domain changes are called transforms when referring to pure compression purposes.

2.3.4 Transforms

As data increases in redundancy, the potential compression ratio that can be achieved also
increases. Transforms are a way of increasing redundancy in the data with little to no cost.

A transform can be invertible or non-invertible. In the first case, the transformation process
can be reversed and the original data recovered. In the second case the original data will be
lost, with only an approximation available. Transforms work by converting data in a time or
space domain into data that lives in the frequency domain. This is based on Fourier series.
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Joseph Fourier discovered that, given any function f(t) in an interval, it can be decomposed
in a summation of infinite sinusoidal functions as follows:

f(t) =
a0

2
+

∞∑
n=1

[
an cos

(
2nπ

T
t

)
+ bn sin

(
2nπ

T
t

)]
=

∞∑
n=−∞

cne
i 2πnt
T (2.16)

where ai and bi are coefficients that can be simplified by using complex values to ci. The
interesting part here is that, by the Riemann–Lebesgue lemma, all coefficients tend to zero
with infinity. In practice, they tend to zero fairly fast, and a few tens of coefficients suffice
for approximating fairly well any simple function. Informally, this is equivalent to saying that
lower-index coefficients are more “important” and carry more information than higher-index
ones. This is what is called the energy compaction property.

And this is the key for transforms. Since lower-index coefficients are more important than
higher-index ones, those are kept while the rest are discarded. The more that are ommited, the
more distorted the original data will be, with more compression ratio achieved. Note that for
this to work, the function needs to be fairly smooth, as it usually happens with functions that
represent a real signal source. Of course arbitrary functions can be created that violate this
property up to arbitrarily large indices, but those do not tend to appear naturally.

2.3.4.1 Discrete Fourier Transform (DFT)

The problem with transforms is that they deal with infinite coefficients and continuous functions.
In a practica scenario, sampled data from an analog source is not continuous nor infinite. It
will be composed of multiple discrete samples evenly separated over time, space or any other
dimension. To transform that into the frequency domain, Discrete Transforms are used (in this
case Fourier), that covert the input samples xn, n = 1, . . . , N into the same number of output
samples Xk, k = 1, . . . , N as follows:

Xk =
N∑
n=1

xn · e−
i2π
N
kn =

N∑
n=1

xn ·
[
cos

(
2π

N
kn

)
− i sin

(
2π

N
kn

)]
(2.17)

And, to reverse it:

xn =
1

N

N∑
n=1

Xk · ei2πkn/N (2.18)

The same property as with the non-discrete Fourier transform holds: Coefficients Xk for
k ≈ N will bear less importance than those with k ≈ 1, and so they can be removed with little
impact on reconstruction. Here, the impact of transforms in compression is seen. By removing
half of the original xn values, half of the information is lost. However, by doing it with the Xk

instead, information is removed after decorrelating in the frequency domain, losing only the less
important data components.

2.3.4.2 Discrete cosine transform (DCT)

The DFT works over complex values, but it is very rare that the data will consist of complex
numbers. The DCT [146] solves this issue by adapting the DFT to real-valued numbers. The
most common formula for the DCT is as follows:

Xk =

N∑
n=1

xn cos

[
π

N

(
n+

1

2

)
k

]
k = 1, . . . , N (2.19)
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which can be inverted with:

xn =
X1

N
+

2

N

N∑
k=2

Xk cos

[
π

N
k

(
n+

1

2

)]
n = 1, . . . , N (2.20)

Figure 2.7: The DCT represents each 8 × 8
block as a combination of these 64 basic pat-
terns. Each coefficient indicates the amount of
each in the original [54].

Despite being simpler to use than the DFT be-
cause of working in the real number domain, DCT
offers a few more advantages that have popularized
it:

� The DCT performs higher energy com-
paction than the DFT. With less coefficients,
the inverse DCT can reconstruct the original
signal better than the inverse DFT.

� It can be performed very fast computation-
ally, with different acceleration techniques
when working over small sets of data.

� It has a clear interpretation in the frequency
domain of the obtained coefficients, same as
the DFT, which helps to visually understand
the process.

The DCT is also easy to adapt to higher dimen-
sions, by just successively applying DCTs along each dimension. This makes it perfect for
images, which is what it was originally designed for. As an example, consider the following
transformation:


52 66 70 73
63 122 154 69
67 104 126 70
87 68 65 94

 centering→


−76 −62 −58 −55
−65 −6 26 −59
−61 −24 −2 −58
−41 −60 −63 −34

 dct→


−415 27 56 0
−49 −15 −10 2
12 −4 −2 3
0 −4 −1 2

 (2.21)

As clearly seen, after the transformation, the coefficients that are closer to the upper left
corner are higher in value, while the bottom right ones are lower. Those can be safely ignored
while (usually diagonal lines will be fully discarded) while keeping the high-valued ones. That
is where the DCT gets compression from.

There is one problem however with this kind of technique: the complexity of calculations
grows quadratically with the input size, since all transformed values require of all input values
to be obtained. For small data sets this is not a problem, but it can quickly become a bottleneck.
To solve this issue, data is usually split into small blocks. As an example, for images, they are
tiled into small blocks which are independently processed by the DCT. Each coefficient in the
transformed space indicates the amount of a certain pattern that is present within the block, as
seen in Figure 2.7.

2.3.4.3 Wavelet Transforms

While the problem of complexity for DFT or DCT gets addressed with the tiling of the data,
this can generate artifacts in the signal. Boundaries between tiles will not necessarily match,
and discontinuities will be evident when aggressive compression is performed.
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To solve that problem, wavelet transforms [160] are used. The principle is the same as with
DFT or DCT: create a 1 to 1 mapping where the output set presents more redundancies than
the input set, and where certain samples can be quantized or eliminated. However it does it in
a different way:

Instead of using every input to calculate every output (O(n2)), output i is now a function of
input i and its neighborhood. The neighborhood will be symmetric (e.g: using the three previous
and three following samples). This way, cost is bounded by O(Kn), where K is a constant that
depends on the neighborhood’s (or window) size. For multi-dimensional transforms, this is
applied along each direction, as was done with DFT or DCT. This merely means the cost scales
linearly with the number of dimensions, not a problem in practice.

There is an additional difference: instead of a single function or “filter”, now there are two.
Each is a 1 to 1 mapping of the input space to the output space. At first glance, this doubles
the number of samples. However just half of the samples in the output spaces will be needed
for reconstruction. So how does this work?

Definition 2 A kernel is a function k : Rn → R in which the output generally represents some
property of the input vector. Kernels are usually represented by matrices such as:

k :
[
−1

2 1 −1
2

]
(2.22)

These work as follows:

k ({v−1, v0, v1}) = −1

2
vi−1 + vi −

1

2
vi+1 = wi (2.23)

Normally, kernels are applied as windows (Figure 2.8) that move over longer vectors V ∈
Rm,m� n following: K : V = {v1, . . . , vn} →W = {w1, . . . , wn} where:

wi = −1

2
vi−1 + vi −

1

2
vi+1 (2.24)

where around the edges, samples that go outside V ’s boundaries are usually mirrored or assumed
to be zero.

. . . sn−3 sn−2 sn−1 sn sn+1 sn+2 sn+3 . . .

k−2 k−1 k0 k1 k2

K(sn)

Figure 2.8: Kernel operating over a sequence. When computing, a window of samples slides over the
kernel, which generates an output value for each input.

For wavelet transforms, two kernels Kl and Kh are used, which work as a lowpass and
highpass filter respectively. The lowpass filter keeps the slowly-varying characteristics of the
vector, and is a smoothed out version of the original. The highpass filter keeps the rapidly-
varying characteristics.

The result of filtering is a mapping of the input data to two different images (low-passed and
high-passed) with which it can be reconstructed. A particular property is of interest here: filters
are prepared in such a way that the lowpass filter removes all frequencies above half the maximum
(where maximum refers to half the sampling rate or Nyquist Frequency), and the highpass filter
removes all frequencies below half the maximum [160, fig 4.1]. Therefore, if the original sampling
rate for the discrete signal was sufficient to reconstruct the (original) continuous signal, then
with half the frequency range, half the samples can be discarded safely in the lowpassed signal
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W ′−1 W ′

Figure 2.9: (a) is the original series, (b) shows the high and lowpass filtering, (c) shows (b) after
subsampling.

while allowing for reconstruction. The same can be applied to the highpassed values, removing
every other sample as well, and achieving a 1 to 1 invertible mapping where redundancies on
the output signal are much higher.

Definition 3 Given samples S = {si}ni=1, a wavelet transform is an invertible function
W = (Kl,Kh) : Rn → (R2)n/2.

W consists of a tuple of kernels (Kl,Kh) that, when applied on S, act as low and highpass
filters, generating sequences L and H respectively:

W (S) = (Kl(S),Kh(S)) = (L,H) = ({li}ni=1 , {hi}ni=1) (2.25)

where both L and H are down-scaled to half their sizes and instead L′ = {li}i∈2N H ′ = {hi}i∈2N
are used, since the rest of the samples are redundant. Finally, the output is W ′(S) = S′ =
{s′i}ni=1:

s′i =

{
l′i/2 i ∈ 2N
h′(i−1)/2 otherwise

(2.26)

The inverse wavelet W ′−1 is a tuple of kernels (K ′l ,K
′
h) which reconstruct S after application.

Figure 2.9 shows how this process works.

By looking at Figure 2.9 it is seen that, while the first part of the transformed signal is
similar to the original, the second is skewed towards zero. This redundancy will be key for
compression. Not only that, wavelets can be recursively applied over the lowpassed part for
increased redundancy. High frequencies are usually very short lived within the signal, so the
highpassed signals are usually random. However, low frequencies last for longer within the
signal, and more redundancy can be extracted by recursively applying the filters to that portion
of the signal.

When dealing with two-dimensional signals, such as images, these wavelets are applied along
both dimensions. Figure 2.10 shows this process, where it can be seen that the lowpassed part is
a small version of the original, while the highpassed parts are dull containing little information.

These four sectors (called subbands) that are formed when applying wavelet transforms to
two-dimensional data present different types of redundancy, shown in Table 2.3.
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Figure 2.10: Original image on the left, transformed on the right after two wavelet passes. Information
is concentrated on the top-left corner.

Pass

Subband Horizontal Vertical Details

LL Low Low Contains most of the information. Difficult to compress.
LH Low High Presents horizontal redundancy.
HL High Low Presents Vertical redundancy.
HH High High Contains little information. Diagonal redundancy.

Table 2.3: Types of subbands resulting from a wavelet transform.

Wavelets are often applied recursively over the LL subband. This is because it still contains
redundancy of higher frequencies that can be exploited with another wavelet pass. This breaks
it into new subbands, which will be marked with a subindex that denotes how many times a
wavelet transform has been applied on it (e.g: LH2 is the LH subband of the first LL subband).

Depending on the selected kernels, many types of these transforms exist. Usually they differ
on kernel size, and will detect different periods in the input data with their low and high pass
functions. Normally these work on floating point numbers, but that can obviously lead to
rounding errors when reconstructing. For that, integer transforms also exist that, while doing
worse energy compaction, ensure perfect reconstruction.

2.3.5 Dimensionality reduction

Another way to reduce size is to directly reduce information. Normally, information is spread
out within the data, and that is why transforms are useful to condense it into known places.
More resources and time can be dedicated to properly compress these parts of the data.

A different approach is to use mathematical models that directly determine what is considered
relevant information, discarding the rest. Dimensionality reduction methods achieve a fixed
degree of compression by removing a specified amount of information according to those models.

As an example, consider facial recognition [235]. Images have millions of pixels, and doing
recognition based on those can be near-impossible. Instead, the focus is put on features such
as shape, color, length... With a much smaller set of features than pixels, it is possible to
identify what is shown in the image. The same concept applies to data, where by just analyzing
interesting features the full set can be understood.

Mathematically, the samples live in Rn, and their dimension is reduced to Rm,m < n. The
input vectors of dimension n are projected onto the output space of dimension m. Analysis and
storage are then easier to carry out in the image, since less information is dealt with.
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When doing these transforms information will be inevitably lost. It is expected to lose only
redundant information that the algorithms will be able to recover, but some useful data might
be lost. How far this reduction process is taken will depend on what trade-off is made between
reduction and fidelity.

A dimensionality reduction is a function f : Rn → Rm that transforms a vector x ∈ Rn in
another t ∈ Rm. To go back to the original, a function is usually generated as g : f(Rn) ⊂
Rm → Rn. Ideally g ≡ f−1, but it will not always be possible since f is not injective over its
image, so an approximation g(t) = x′ ≈ x is the best approach. That approximation will be
closer the lower m− n is, and will incur in more loss of information when m� n. The original
data is represented as a matrix:

X = [x1, . . . ,xp] ∈Mn×p (2.27)

with p being the number of samples. The transformed data is thus:

T = f(X) = [f(x1), . . . , f(xp)] = [t1, . . . , tp] ∈Mm×p (2.28)

For compression, both T as well as the function g used to undo the transformation are stored.
g could be generic for multiple images and even be reused, avoiding having to pack it in the
output stream. However, for improved results, it will usually be modified specifically for the set
T , needing to preserve it as well.

2.3.5.1 Principal Component Analysis (PCA)

Principal Component Analysis is a dimensionality reduction technique that is broadly used in
machine learning [27] due to its simplicity. Data visualization or feature extraction [1] are
amongst its uses.

Figure 2.11: An example of PCA. Eigen-
vectors are shown in orange. The greatest
variance exists along the direction of the
eigenvector of greatest eigenvalue.

PCA is defined [92] as the orthogonal projection of
n-dimensional data onto a space of lower dimension m,
known as the principal subspace, where the projection’s
variance is maximized.

PCA keeps the maximum amount of variance present
in the input data set, assumming it will keep the most
amount of information in the process. An example of
PCA can be seen in Figure 2.11

To do the projection, vectors {w1, . . . ,wm} ,wi ∈
Rn,wi ⊥ wj∀i 6= j are needed. Those form the matrix
W ∈ Mn×m, such that f(xi) = xiW , and g(ti) =
tiW

T define the reduction function f : Rn → Rm and
recovery funciton g : Rm → Rn.

When W−1 = W T , then f ≡ g−1, but that is only
possible when:

� W is orthogonal, which by definition it is.

� n = m, which for the purposes of reducing dimen-
sionality will never be true.

In practice, since the domain of f is a subset of Rn of
implicit dimension that is not necessarily n, it is possible that g is the inverse of f over its image
even when n < m.
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PCA works best with data centered around zero, and so usually the set Z = X − w̄ will be
used, where:

w̄ =

∑p
i=1 xi
p

(2.29)

To obtain the matrix W , first the covariance matrix S ∈Mn×n of the input data X ∈Mn×p
is calculated, with p the number of samples in the original space. It is obtained as:

S =
(X − x̄)(X − x̄)T

p− 1
=
ZZT

p− 1
(2.30)

Let W r = {w1, . . . ,wn} be the eigenvectors and Λr = {λ1, . . . , λn} the associated eigenvalues
of S. Sort the eigenvalues in descending order:

Λ = [λi1 , . . . , λin ] q ∀j, k ∈ Nn λij >= λik ⇐⇒ j > k (2.31)

Generate the projection matrix W ∈Mn×m as:

W = [wi1 , . . . ,wim ] (2.32)

The reconstruction matrix W̄ is just W T , since WW T ≈ In. With this technique, it is
guaranteed that the projection of the input data set maintains maximum variance [27, Ch.12].

2.3.5.2 Singular Value Decomposition (SVD)

SVD is a method similar to PCA, which mainly obtains the same result except for certain
multiplicative factors [188]. SVD looks for the following decomposition:

XT = UΣV T , U ∈Mp×p, Σ ∈Mp×n, V ∈Mn×n (2.33)

where U and V are orthogonal matrices, and Σ is a diagonal matrix with the singular values σi
in its diagonal.

The covariance matrix S can be diagonalized:

S = WΛW t (2.34)

where W contains the eigenvectors as columns, and Λ the eigenvalues λi of S on its diagonal.

Substituting for Eq. (2.30), assuming x̄ = 0 (since values can be centered around the mean
with little computational cost):

S =
(UΣV T )TUΣV T

p− 1
=
V ΣUTUΣV T

p− 1
= V

Σ2

p− 1
V T (2.35)

V gives vectors proportional to W scaled by σi/
√
p− 1, following λi = σ2

i /(p − 1). This is
only true when xi are centered around zero, which is when S = XtX/(p− 1) holds.

By sorting the values in the diagonal of Σ in Equation (2.33), in descending order, the so-
called “compact” SVD is obtained, where U ∈ Mn×r, Σ ∈ Mr×r and V ∈ Mr×m. Here r is
the rank of X. The difference p − r is filled with zeros and thus can be safely removed for the
compact representation, simplifying the matrices. For the hyperspectral matrices used (that can
be considered random), r = m with a probability1 of 1.

1A simple proof involves the fact that, given m random vectors, each spans a set of linearly dependent vectors
of measure zero when embedded in m dimensions. Since m is finite, the likelihood of a random vector falling in
one of those m zero-measure subspaces is zero, thus all vectors are expected to be independent.
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Figure 2.12: Data is generated by linear combination of f1(x) = sinx, f2(x) = cos 2x and f3(x) which
is just noise. ICA is capable of unmixing the functions g1, g2, g3 extracting the original components.

So, when represented in the compact form, the transformed data is T = UΣ. Since V −1 = V T ,
Equation (2.33) is rewritten as:

XV = UΣ =⇒ (XV )V T = UΣV T = X (2.36)

The projection matrix will be W = V , while the reconstruction matrix will be W̄ = V T . If
the inequality r < m is forced (by removing the lowest m − r values from the diagonal of Σ)
compression is forced to take place.

When x̄ 6= 0, both PCA and SVD lose performance since variance is calculated around
zero. If clustering happens elsewhere, eigenvectors might not be as efficient to separate the set
via variance. It is safe to assume however that data will be centered around zero (if not it is
easy to transform), and the method that presents better numerical properties (in the sense of
rounding and cumulative errors) will be used. Either solving directly for S, or calculating the
decomposition UΣV T .

2.3.5.3 Independent Component Analysis (ICA)

This method looks for a representation of a data set of dimension n in another dimension m < n
such that the transformed components are as independent among them as possible.

To do so, it minimizes the mutual information [48] of the transformed components. The
advantage over other methods is that ICA is invariant under component scaling (PCA is not).
This is an advantage in the case of the magnitudes of latent components being very different
between them. It can also be a problem in the presence of noise, since it can give the same
importance to noise than to a strong signal.

Different approaches calculate mutual information, which adapt to different kinds of data
and characteristics. Due to the iterative nature of the algorithm, usually functions with low
complexity are used by assuming certain properties on input data [97].

ICA assumes there are m latent independent components in the original Rn space. The
algorithm works best the closest m is to the actual value of latent components (which is unknown
but can be estimated). In the case of exactly matching the number of components, performance
is excellent as shown in Figure 2.12 for n = m = p = 3.
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Figure 2.13: The first, fifth and twentieth components on a sample MNF transform of a hyperspectral
image. Noise is lower for the first components.

2.3.5.4 Minimum Noise Fraction (MNF)

The minimum noise fraction [82] is a dimensionality reduction method similar to PCA, but that,
instead of ordering the principal components based on variance, does so based on the amount
of noise they contain. For that it uses not only the covariance matrix S, but also the noise
covariance matrix SN ∈Mn×n.

SN is not often known beforehand, but can be estimated [80] if spatial correlation is assumed
between samples xi that are close together. This is reasonable in natural data such as pictures,
where pixels that are close together have similar values. For that, the noise matrix N =
[n1, . . . , np] ∈ p× n is created:

ni =
1

2
(xi − xi+1) (2.37)

Then N is:
SN = NN T ∈Mn×n (2.38)

Solving the generalized eigenvalue problem:

SNw = λSw (2.39)

Then W = [w1, . . . ,wn] ∈Mn×n.

The set T of data transformed with MNF can be expressed [28] then as T = W TZ, where Z
is the set X centered around 0 by subtracting the average value x̄ (Eq. (2.29)).

Here T ∈ Mn×p. Each ti has successively more noise when i grows towards n, as seen in
Figure 2.13. The most noisy m− n components are eliminated to reduce T ’s dimensionality.

2.3.5.5 Vertex Component Analysis (VCA)

VCA was designed [151] as a spectral unmixing algorithm: Starting from a hyperspectral image,
it is capable of extracting the spectral signatures of the pure pixels of the image, representing
the rest of the samples as linear combinations of the pure pixels.

VCA starts by performing SVD of the data X. The data is projected as X = XV svd (note X
is reused for simplicity). The mean value of the projected data x̄ is obtained, and a projective
projection of X is done on that vector:

Y =
X

XT x̄
(2.40)

Now let matrix A ∈Mp×p, where p is the target dimension, be:

A = [eu,0, . . . ,0] q eu = [0, . . . , 0, 1]T (2.41)
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Now, iteratively, do the following p times with i as an iteration variable:

� Generate w as a random zero-mean Gaussian vector of covariance Ip. This vector is
statistically expected to be independent than any others already present in A.

� Generate an orthonormal vector f to the subspace spanned by the current A matrix as
follows:

f =
(I −AA#)w

||(I −AA#)w|| (2.42)

Where A# is the pseudoinverse of A.

� Let v = fTY , and k the index of v which has the maximum value (the projection extreme).

� The ith row of A becomes the kth row of Y , and index k is stored in a list as ki

The projection matrix W is that formed with the vectors from the SVD decomposition X of
indices ki, i = 1, . . . , p.

Intuitively, this algorithm finds extreme points in the input set, and defines the rest as a
linear combination of those. The reconstruction matrix W̄ is in this case the pseudo-inverse of
W obtained as W̄ = pinv(W ) = W T (WW T )−1.

2.3.5.6 Vector Quantization PCA (VQPCA)

VQPCA is a simple extension of PCA to adapt to nonlinear reductions. Linear projections
(such as the methods previously seen) work fairly well when all of the data points are linear
combinations of a certain set. Otherwise, information losses can be amplified.

VQPCA separates the input data set by doing Vector Quantization over it. Similar vectors
end up clustered together. Then, linear dimensionality reduction (in this case PCA) is applied
over each cluster. Thus, a piecewise linear reduction is obtained, which presents an improvement
over plain linear methods [111], while still being fast enough for practical use.

VQPCA receives as an input both X and the number c of subsets that are to be formed.
VQ divides X into c subsets of related vectors, in this case by applying the nearest neighbor
algorithm to cluster them. Indices C = {c1, . . . , cp} are generated, indicating to which subset
Xj each sample belongs to:

Xj = {xi q ci = j} , j ∈ {1, . . . , c} (2.43)

PCA is afterwards performed per subset, generating each transformed set Tj and the recovery
functions gj : Tj → Xj . To retrieve X, the following values are needed:

� C, to separate T into its subsets, since Tj = {ti q ci = j}.

� The transformed set T = ∪cj=1Tj

� gj , j ∈ {1, . . . , c} to perform inverse PCA over each subset.

Saving T is mandatory for all methods, but VQPCA needs considerably more information than
other methods. C requires an index per sample, and gj are big matrices which also need to be
stored. Both grow in size with c.

Both T and gj , j ∈ {1, . . . , c} use high-precision floats that are not efficiently compressed
in a lossless way. They are thus preprocessed with transforms or quantization incurring in
some losses. However C needs to be kept intact because the exact integers are required for
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Figure 2.14: On the left, PCA. On the right VQPCA. VQPCA is able to separate both clusters,
increasing the performance of PCA afterwards.
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Figure 2.15: The input and output layers are the same size. The hidden layers perform compression
by reducing the amount of neurons.

decompression. Since it presents great redundancy (samples that are close together tend to be
in the same cluster), an adaptive entropy coder is used which will reduce its size considerably.

The advantages of VQPCA are seen in Figure 2.14. After doing PCA on each cluster obtained
by VQ, separation is more clear than with plain PCA directly.

2.3.5.7 Auto-encoders

Auto-encoders take advantage of neural networks to perform compression. A network is built
with an input and output layer of size n. In the middle, a funnel-like shape reduces the layer
size to the target dimension m. This can be seen in Figure 2.15.

Compression relies on the hidden layers, of which at least one is of the target size m < n. A
vector x = {x1, . . . , xn} is fed into the n input neurons, and a new vector x̃ = {x̃1, . . . , x̃n} is
obtained at the output. The network is trained so that x̃ ≈ x. This way, the network will be
able to reconstruct the original values as close as possible. For compression, the internal values
of the network at the hidden layer of size m are stored, as well as the layers after that that
reconstruct the information.

This approach can perform linear reductions with just one fully connected layer, and can
go beyond linearity as the number of layers increase. The problem is that the time required
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to train the network is much higher than that of calculating the transform matrices for linear
or piecewise linear methods. For a fixed data set, the network is ideally over-fitted since no
new data will be processed by it. And that might take many iterations until fully completed.
While this is a good method if computing power is available, it will not adapt well to real-time
constraints.

2.3.6 Quality metrics

An important part of lossy compression is knowing how much information is lost. The recon-
structed data (after compression) is compared against the original and a value is obtained. Its
meaning depends on the metric used, and it will indicate how close the reconstructed data is to
the original (i.e: its quality). Quality measures give results over the whole data set, meaning
the resulting value indicates the average quality.

Definition 4 The maximum square error (maxSE) is defined as the maximum value of the
squares of the differences between each sample and its reconstructed value. Denoting a data set
by D = {d1, . . . , dn}:

maxSE(Da, Db) =
n

max
j=1

(daj − dbj)2 (2.44)

This metric is useful to detect the maximum distortion in a data set. If the maxSE is small,
the general distortion will be small as well. However, small anomalies can increase maxSE
without being significant for the overall distortion, so other metrics are often used.

Definition 5 The mean square error (MSE) is defined as the mean of the squares of the
differences between samples and its reconstructed values:

MSE(Da, Db) =

∑n
j=1(daj − dbj)2

n
(2.45)

This measure gives a general idea of the absolute quantity that reconstructed samples deviate
from the originals, but it can be misleading: Imagine all samples are of very low value (e.g: 1)
and the reconstructed samples are either 0 or 2. In this case, the MSE is 1, but relative to the
sample value it is a tremendous error. The reverse is true as well: for samples with high values,
a small error (percent wise) results in a high MSE. Thus it is important to know the magnitude
of the samples before getting conclusions out of this metric.

Definition 6 The peak signal to noise ratio (PSNR) is defined as a function of the MSE
and the maximum value that a sample could store rmax(D):

PSNR(Da, Db) = 10 log10

(
rmax(Da)2

MSE(Da, Db)

)
(2.46)

Here, the MSE is adjusted with the range of the samples, dampening the relative effects that
could arise in MSE. This metric is best suited for when samples are evenly spaced throughout the
sample space. If samples are all clustered towards the range limits, PSNR might give optimistic
results. However, it is reliable for determining distorted sets of data. If PSNR is bad, then the
reconstructed data is of low quality.

Definition 7 The normalized peak signal to noise ratio (NPSNR) follows the idea of
PSNR, but instead of taking the maximum theoretical value, it takes the actual range of the
samples as reference:

NPSNR(Da, Db) = 10 log10

(
(max(Da)−min(Da))2

MSE(Da, Db)

)
(2.47)
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The advantage of this definition is that now, the values obtained are representative of the
actual distortion of the data, instead of just referring to the distortion over the maximum range,
even if values did not appear in that range. NPSNR is invariant under dynamic range changes in
the data. Even if sample precision is increased, if the actual values do not change, the measure
will remain stable. The following holds:

NPSNR(Da, Db) ≤ PSNR(Da, Db) (2.48)

Definition 8 The power normalized signal to noise ratio (POWSNR) is defined as:

POWSNR(Da, Db) = 10 log10

(
pow(Da)

MSE(Da, Db)

)
(2.49)

where pow(D) is defined as:

pow(D) =

∑n
j=1(dj)

2

n
(2.50)

This metric is less sensitive to extreme values than NPSNR, and more reliable under noisy
data. The following holds:

POWSNR(Da, Db) ≤ NPSNR(Da, Db) (2.51)

Definition 9 The signal to noise ratio (SNR) is defined as:

SNR(Da, Db) = 10 log10

(
σ(Da)2

MSE(Da, Db)

)
(2.52)

where σ(D)2 is the variance of D with mean value µ(D):

σ(D)2 =

∑n
j=1(dj − µ(D))2

n
(2.53)

Introducing the variance in the equation allows the metric to be more permissive on data sets
that are less smooth, and more strict on narrow data sets with little variation where a small
change can introduce more severe distortions. This is one of the most popular metrics and, as
such, it is used to judge image quality. A SNR of 32 is considered [99] excellent quality, with
acceptable quality being retained at a SNR of 20. The following holds for SNR:

SNR(Da, Db) ≤ POWSNR(Da, Db) (2.54)

Definition 10 The mean to standard deviation ratio (MSR) is defined as the quotient of
the mean µ(D) of a reference data set over the standard deviation between D and the recon-
structed dataset:

MSR(Da, Db) =
µ(D

a)√
MSE(Da, Db)

(2.55)

This is a good approximation of the amount of error expected in a sample. For a sample
of value x, an MSR of y indicates that the reconstructed value is most likely within the range
[x− x/y, x+ x/y].

Definition 11 The structural similitude index [213] (SSIM) is defined as:

SSIM(Da, Db) =

(
2µ(Da)µ(Db) + c1

)
(2σ + c2)

(µ(Da)2 + µ(Db)2 + c1) (σ(Da)2 + σ(Db)2 + c2)
(2.56)
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where σ is the covariance between data sets Da and Db, and c1 and c2 are correction factors,
defined as:

c1 = k2
1r

2
max c2 = k2

2r
2
max (2.57)

with k1 and k2 usually set respectively at 0.01 and 0.03. This metric comes directly from the
world of image quality, and those are the values that have been found to work best.

This metric obtains a value between 0 and 1, which indicates higher similitude to the original
the closer it is to 1. This metric is based on how humans perceive images, but it can still give a
good idea of how much visually important information is lost in the case of images.

2.4 Near-lossless compression

Quality metrics can assess a compression algorithm’s quality after it has been executed. For lossy
algorithms, this means that knowing the resulting quality beforehand is not possible. Generally,
the same settings for an algorithm will produce the same quality results for similar images,
so configuration based on experience can usually guide distortion ratio. However, the output
quality is not ensured by these methods.

Near-lossless algorithms ensure that the compressed data is above a certain threshold for a
given metric. When decompressing, the data does not deviate from the original more than what
the compression settings decided. There are different ways (see Fig. 2.16) of accomplishing it:

� Predict and correct: Prediction methods are typical of lossless algorithms. They create
a model based on already seen data, predict the following sample, and code the difference
with the actual values. Since differences are small when a good model is used, compression
can be performed easier than on the original samples. When the difference is coded, both
the actual and the predicted value are known. At that point, the difference is coded
to reconstruct the original value afterwards. If it is skipped, errors are propagated in
reconstruction. But those errors are already known at the time of coding.

This method of compression takes advantage of that fact. It measures the error between
the prediction and the original value and, if it is low enough, it just skips coding the
difference altogether, letting the predictor do the work. A threshold is set for when to skip
a sample, and depending on its permissibility it will skip more or less differences, trading
compression for quality.

� Iterative compression: A different approach is to use a lossy algorithm, configure it to
compress the data, and then decompress and see the result. If the quality matches the ex-
pectations, the algorithm stops. If not, it iteratively repeats the process with compression
parameters that ensure higher quality until it meets the requirements.

This can be applied with any lossy algorithm. Data can also be partitioned in smaller
blocks to make this process faster, benefiting from some areas having more redundancy
than others and thus being more compressible by staying separate.

� Selective coding: This method is an in-between of the two previous ones. Predicting and
coding is blazingly fast, but can only adapt to local characteristics. Iterative compression
can achieve good results but at the cost of repeating the same algorithm over and over,
which can be costly.

Selective coding divides the data into smaller subsets. Compression is applied on each
subset. Then, if the quality for that particular subset meets the threshold, the compressed
data is coded. If the quality does not meet requirements, then the original data is coded
instead in a lossless manner.
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Figure 2.16: The three main near-lossless methods. From left to right: predict and correct, iterative
compression, and selective coding.

This creates a sequence of blocks which are losslessly and lossyly compressed. How many
blocks are lossless or lossy depends on the quality setting, which in ensuring a certain
threshold will force certain blocks to be lossless. The higher the quality setting, the more
blocks will need to be lossless, sacrificing size. The lower the quality, the more lossy blocks
will be allowed to exist, reducing size further.

Near-lossless algorithms combine the simplicity of lossless algorithms, with the great com-
pression ratio of lossy ones. They can range from lossless to lossy, sacrificing little while retaining
good properties from both.

2.5 Summary

Compression techniques are plentiful. Generic ones are aimed to any kind of data. However the
lack of compression efficiency for very specific types of data forces the use of specific algorithms.
Each has their own trade-offs that need to be addressed for each application.

Different techniques can be combined for increased efficiency. Lossy algorithms often use
lossless ones as coders for their transformed data. Near-lossless algorithms often decide between
lossy and lossless methods depending on quality metrics.

The three methods offer different advantages, as seen in Table 2.4, so this thesis will focus
on one of each to see how they fare in an FPGA. Lossless methods are generally the fastest,
offering perfect reconstruction. Lossy methods are much slower but reduce image size by a much
higher factor. Near-lossless methods sit in between, not being generally as fast, but offering a
wide range of compression ratios.
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Quality at
Method ratio low ratio high ratio complexity speed

Lossless low perfect n/a low fast
Lossy very high moderate excellent very high slow

Near-lossless moderate decent moderate moderate fast

Table 2.4: Some key aspects about the three main compression techniques, when applied on hyperspec-
tral images. Other applications might see different behaviors.
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Chapter 3

Algorithms

A lot of effort has been put towards hyperspectral image compression. Many existing compres-
sion techniques have been adapted from the (non-hyperspectral) image compression domain.
New, completely custom approaches have also been created.

This has produced an ecosystem of algorithms that share techniques such as prediction,
coding, quantization, transforms, dimensionality reduction...

In this chapter, an introduction to existing hyperspectral compression algorithms is first made,
showing the diversity that exists even when targeting such specific data. Three algorithms will
be selected that broadly cover the whole spectrum, in order to explore the general applicability
of FPGA implementations to this domain.

All three are explored in detail, delving into the specifics of each to give a good look before
looking at the FPGA implementations in Chapter 4.

3.1 Preliminaries

3.1.1 State of the art

Compression algorithms for any kind of data are often developed as soon as the data is produced.
The data needs to be stored to be studied, and compression allows for more information to be
available within the same space. Generally, the most common methods are adapted first, with
complex and custom variations coming afterwards.

Predictive methods have proven to be useful over and over again for any kinds of compres-
sion. Optimizations for the hyperspectral domain [144, Ch.2] have been done to find the ideal
predictors for different image traversal modes, after which adaptive context-based encoders are
used that take into account hyperspectral characteristics.

Band reordering algorithms [144, Ch.3] have expanded on this idea by enhancing the spectral
properties of images, realizing that for some predictors that use many bands this might be
unnecessary.

Context-based approaches [212] have also been used to avoid the overhead of band reordering.
Lossless algorithms have been refined to the point of developing international standards such as
CCSDS 123.0-B-1 [32], which combine the best techniques and are highly configurable.

Vector Quantization (VQ) has also been extensively used to exploit pixels similarities [171]
that result from pixels being a mixture of pure spectral samples present within the image. Im-
provements to this technique include locally optimized quantization [144, Ch.5, 6] that achieves
less distortion than globally calculated vectors. Other ideas included the use of VQ after perform-
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ing DCTs on small image blocks [144, Ch.9][158], realizing that redundancies in the frequency
domain were also exploitable.

Look-up table (LUT) approaches work in a similar but more local way. Patterns are looked
for in the previous band, and used as predictors when they match the behavior of the current
sample’s neighborhood [95, Ch.8]. Working in blocks is also found to improve performance
since similarities are more correlated, and the search space smaller. Multi-band LUTs [7] have
also been explored in the lossless domain increasing complexity but improving compression.
Dictionary approaches based on reference spectral signatures [104] further extend this concept
improving performance when spectral signature presence is known or estimated beforehand.

Block-based approaches [95, Ch.3][5] have been fruitful in the near-lossless domain, where
multiple samples are predicted at once, saving calculations of doing individual predictions. Cod-
ing is still done in the same way after differences are calculated. Near-lossless compression can be
achieved at the block or sample level, with band reordering increasing slightly performance even
when done per-sensor and not per-image. Even per-block parameter selection [191] has been
done to improve this technique, all while providing random read access at the decompressor.
Sample-level approaches have found its way to the new CCSDS 123.0-B-2 standard [34], with
higher computational complexity but also higher distortion-ratio efficiency than block-based
approaches. Rate control techniques are also included [42] to fulfill specific output constraints.

Wavelet techniques have also been of particular interest. 3D adaptations have been made
[144, Ch.10][69] that extend concepts such as JPEG2000 compression by applying adaptive
arithmetic coding at the wavelet output.

Anisotropic (different in each direction) decomposition [40] proved to improve slightly coding
efficiency by better decorrelating the images. Resolution progressive decoding [157] is also
possible with these techniques. Pure JPEG2000 with its multicomponent coding approach has
also been used, but found [238] to underperform against specifically developed 3D approaches.

Combinations with other transforms such as the Karhunen–Loève Transform (KLT) have been
found to yield higher compression ratios since the spectral correlation is dealt with separately [95,
Ch.9]. Spatial wavelet transforms, combined with spectral KLT and 3D coding [56] has shown
some of the best lossy distortion-ratio results. Dimensionality reduction techniques such as PCA
[144, Ch.11][57] have been applied before the spatial wavelet decorrelation. Resulting coefficients
are coded with 2D techniques (assuming spectral decorrelation is gone) or 3D adaptations of
those techniques. The high computational cost of PCA has also prompted the development of
segmented PCA techniques, working on subsets of bands [95, Ch.10] reducing computational
cost and improving compression performance by working on more correlated data. Tensor
decomposition [239] has also been tried as a 3D approach, yielding results with slightly higher
distortion-ratio performance than PCA, but at a higher computational burden.

2D techniques such as EBCOT from JPEG2000 [162] have been used as 2D encoders. 3D
adaptations include Embedded Zerotree Wavelet (EZW) [185] where full embedded streams
are achieved by progressively coding the most important coefficients in a wavelet-transformed
image. Coefficients are assumed to be zero, and in the event of finding ones, those are then
coded. Coding starts in the block with most wavelet passes, and the rest depend spatially
on it, referencing previous values for improved coding efficiency. SPIHT (Set Partitioning In
Hierarchical Trees) [173] is an improved technique which smartly traverses the transformed
coefficients to improve the embedded quality reconstruction, and HW-friendly modifications
[95, Ch.4] have also been developed that require almost no memory.

Compression techniques have been found to affect analysis of the decompressed data. Efforts
have been made [144, Ch.7] to improve VQ that still allow for near-perfect classification. More
generally, outliers can be the cause of classification errors, and their independent coding [95,
Ch.5][219] has also been explored to avoid the overhead that results from coding infrequent
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values. Region of interest (ROI) coding has also been used in the lossy domain to improve
quality [186] of the most interesting parts of images.

3.1.2 Selection of algorithms

With all of these options to choose from, the selection of algorithms is based on variety and pre-
liminary results given in their respective papers. As for variety, a lossless, near-lossless, and lossy
algorithms were selected. Result-wise, the lossless algorithm is a robust international standard,
the near-lossless one has a simple but very efficient flow aimed at high-speed implementations,
and the lossy algorithm is a custom design based on the best results from the literature that
separately deal with spectral and spatial correlations.

The CCSDS 123.0-B-1 [32] gives a good starting point to analyze the impact of multiple
parameters at the hardware level on FPGAs. Both on resource use, and on achievable speed,
since many times the techniques used for an algorithm are interchangeable with others.

Next, a custom PCA+JPEG2000 based-algorithm is developed exploiting the great results
in [57], in order to explore what techniques might be of interest to further increase distortion-
ratio. At the core, a JPEG2000 Tier 1 Coder is developed for FPGAs to accelerate an otherwise
CPU-affine algorithm.

Finally, the simplicity of [5] is explored for near-lossless compression, serving as a link to fill
the gap between lossless and lossy compression.

3.1.3 Terminology

Certain terminology will be used specifically for compression of hyperspectral images, which will
be based on that used by the CCSDS 123.0-B-1 standard [32].

First off, when referring to any kind of hyperspectral image, its samples (that is, information
about each wavelength at each pixel) are being compressed. To identify a sample, three indices
z, y, x are used, where y, x indicate the spatial coordinates, and z the spectral one. Thus, a
sample sz,y,x is a sample located at coordinates (z, y, x). All three indices move within the
following ranges:

z ∈ [0, NZ − 1] y ∈ [0, NY − 1] x ∈ [0, NX − 1] (3.1)

where NX , NY , NZ are the image dimensions in number of pixels per frame, frames, and bands
respectively. Sometimes, to ease notation, only one index t will be used to refer to the spatial
coordinates t = x+ y ·NX , referring to a sample as szt . Samples can also be referred to as szy,x
or sz(t) for typesetting purposes. A sample’s range is defined by quantities smin, smax and smid,
which indicate the minimum, maximum and intermediate value that a sample can take. For
unsigned values, smin = 0, smax = 2D − 1, smid = 2D−1, where D is the bit depth of the sample.
For signed values, smin is added to every sample to bring them up to unsigned values, so the
same operations and algorithm can be used on both after normalization.

A different terminology for sub-indices is also used for consistency with existing literature,
where instead of variables z, y, x, variables i, n,m are used in reverse order (e.g: sm,n,i = sz,y,x).

Common operations that take place in compression algorithms are:

� mod∗R [x] =
((
x+ 2R−1

)
mod 2R

)
− 2R−1, i.e: the result of storing an integer x in an R

bit register in two’s compliment, modulo overflow.

� clip (x, {xmin, xmax}) is the result of clipping x to the interval given by [xmin, xmax].

� sgn+(x) is equal to 1 for x ≥ 0 and −1 otherwise. It is used to normalize signed values to
unsigned ones via multiplication. (i.e: x · sgn+(x) ≥ 0 ∀x).
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Figure 3.1: Compressor overview

3.2 CCSDS 123.0-B-1

The Consultative Committee for Space Data Systems (CCSDS) was founded in 1982 by the
major spacial agencies in the world, to serve as a forum to discuss problems in development
and operation of space systems. Over a hundred members are registered, including the most
important space agencies in the world such as NASA (USA), ESA (Europe), JAXA (Japan),
RSFA (Russia) and many others.

The CCSDS has been actively developing standard recommendations since its inception. The
objective is to promote collaboration and interoperability between different agencies and their
systems, both in planned and contingency scenarios that might be critical in space.

CCSDS 123.0-B-1 [32] is one of many standards that have been developed by CCSDS. It tar-
gets lossless compression of hyperspectral images, to compress images before transmission. The
benefits include reducing bandwidth of down-links, reducing storage and buffering requirements
on-board, and reducing transmission time for a given bandwidth. 1

It is based on the FL (Fast Lossless) hyperspectral compression algorithm [119], using only
integer arithmetic. This helps reduce computational load, simplifying the algorithm for imple-
mentation on constrained systems such as satellites.

3.2.1 Overview

Input data arrives at the compressor in a sequential manner. The exact ordering of input data
is not important, but it has to satisfy one property: whenever a sample is to be processed, there
is a neighborhood which has to be available in order to make a prediction. All of the samples in
that neighborhood need to be already processed in order to have neighborhood availability. All
sensors deliver data in a way that’s compatible with this ordering, so usually this requirement
is fulfilled automatically since the compressor is set right at the output of the sensor.

After prediction based on linear models, differential coding is performed on the differences
between predicted and real values. These differences are losslessly coded with an adaptive
entropy coder. This predictive compression (Figure 3.1) is a variant of the differential code
pulse modulation (DCPM) in [51].

3.2.2 Predictor

The algorithm will be first described for real-valued samples. An integer version is later defined
and used due to its reduced complexity while retaining numeric similarity.

Prediction is done on a single pass over the input data. The pass has to only ensure that
previous samples for a neighborhood are already processed. This requirement forces each band
to be traversed in raster-scan order. Since statistics are kept per-band, this means that with
any traversal order, both the differences and entropy coder statistics will always be the same
(even though their order might be different). Thus, compression size will not depend on scan
order, even if the compressed files do change depending on it.

1A new version is available named CCSDS 123.0-B-2 [34]. It brings the possibility of lossy compression while
keeping the original lossless flow. Since the algorithm is used solely for lossless compression, all references will be
made to the first version [32].
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Figure 3.2: Sample neighborhood used for predictions

The neighborhood shown in Figure 3.2 is used for prediction. Based on neighboring samples of
sz,y,x from P previous bands (P can be configured), the predicted sample ŝz,y,x will be obtained,
as well as the prediction residual δz,y,x.

NOTE: All formulas assume that certain neighboring values are present (previous band,
line or frame). For some samples this is not true (e.g: the first sample of the image has no
neighborhood). Formulas are adjusted in those cases. To avoid writing all of them down, the
general case is used here. For information about how they are adapted to boundaries, check
[32].

First, a local mean µz,y,x is calculated to give a first estimation of what the actual value
might be. There are two ways of calculating this value, either using the more expensive but
precise neighbor-oriented way in Equation (3.2):

µz,y,x =
1

4
(sz,y,x−1 + sz,y−1,x−1 + sz,y−1,x + sz,y−1,x+1) (3.2)

or the cheaper but less precise column-oriented way in Equation (3.3):

µz,y,x = sz,y−1,x (3.3)

Figure 3.3 shows both neighborhoods.

Using the generated µz,y,x value and the neighborhood, a difference vector is generated:

Ψz,y,x =



sz,y−1,x − µz,y,x
sz,y,x−1 − µz,y,x
sz,y−1,x−1 − µz,y,x
sz−1,y,x − µz,y,x
sz−2,y,x − µz,y,x

...
sz−P ∗

z ,y,x − µP ∗
z ,y,x


(3.4)

where P ∗z = min{P, z}, adjusting to boundaries where previous bands are not available. Note
that, Equation (3.4) gives the vector for full prediction mode. Under reduced mode, the first three
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Figure 3.3: Sample neighborhood for µz,y,x calculation

entries, corresponding to the north, west, and northwest differences are not present. Reduced
mode is used for not only simplifying operation but also eliminating some dependencies in the
critical paths.

The predicted value ŝ∗z(t) is equal to the local mean plus a weighted sum of the local differ-
ences:

ŝ∗z(t) = µz(t) + V T
z (t)Ψz(t) (3.5)

where V T
z (t) is a weight vector of the same size as Ψz(t). A vector is kept per band. These

vectors are updated after each ŝ∗z(t) using the following formula:

V T
z (t+ 1) = V T

z (t) + sgn+(εz(t)) · 2−α(t) ·Ψz(t) (3.6)

where εz(t) = sz(t)− ŝ∗z(t) is the prediction error.

If the predicted value is higher than the actual one, the sign will be negative and the weights
will decrease. Otherwise, weights will increase. The speed at which the weights change is
controlled by α(t). It starts at a small value and increases up to a user-set limit. This way the
weights adapt faster at the beginning when statistics are not yet stable. This is a variant of
the least mean square (LMS) algorithm, which finds the gradient of the mean square error and
descends through it to minimize it.

3.2.2.1 Mathematical background

The LMS algorithm uses the gradient descent method to find weights that minimize the objective
cost function Cz(t), in this case the expected E {·} square of the error:

Cz(t) = E
{
|εz(t)|2

}
(3.7)

However, if this cost function is used, then Equation (3.6) becomes:

V T
z (t+ 1) = V T

z (t) + εz(t) · 2−α(t) ·Ψz(t) (3.8)

which despite having faster convergence, has two products, which in hardware are expensive for
real-time applications. So the cost function is simplified for:

Cz(t) = E {|εz(t)|} (3.9)

Applying the gradient descent method by taking partial derivatives of the weight vector
entries:

∇V T
z
Cz(t) = ∇V T

z
E {|εz(t)|} = E

{
∇V T

z
(εz(t)) · sgn+(εz(t))

}
(3.10)

∇V T
z

(εz(t)) = ∇V T
z

(sz(t)− ŝ∗z(t)) (3.11)

= ∇V T
z

(sz(t)− µz(t)− V T
z (t)Ψz(t)) = −Ψz(t) (3.12)
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the following is obained:

∇Cz(t) = −E
{
Ψz(t) · sgn+(εz(t))

}
(3.13)

where ∇Cz(t) is a vector pointing in the direction of the greatest descent at point (z, y, x). To
find the minimum, it is subtracted from the current value:

V T
z (t+ 1) = V T

z (t)− α(t) · ∇Cz(t) = V T
z (t) + α(t) · E

{
Ψz(t) · sgn+(εz(t))

}
(3.14)

where α(t) is the step, chosen by the user. For this, the value E {Ψz(t) · sgn+(εz(t))} is required.
Instead, the following unbiased estimator is used:

Ê
{
Ψz(t) · sgn+(εz(t))

}
=

1

N

N−1∑
i=0

Ψz(t− i) · sgn+(εz(t− i)) (3.15)

Equation (3.6) is derived by taking N = 1 in Equation (3.15) and substituting in Equa-
tion (3.14).

3.2.2.2 Adapting to integers

The algorithm described works on real numbers. Real number arithmetic is complex and costly
when implemented on hardware: numbers take more bits to represent, and precision can be lost
over successive operations. Also, samples received from sensors are quantized to integers, so it
makes sense to stay in the same domain. To adapt to integers [33] the following steps are taken
along the way:

The local sum σz,y,x is taken instead of µz,y,x, since σ will always be an integer. Care is taken
to allocate two more bits than the maximum sample bit size to calculate it:

σz,y,x = 4µz,y,x (3.16)

The differences are also scaled by a factor of 4 to produce integers, creating the vector:

Uz,y,x = 4Ψz,y,x (3.17)

The parameter Ω is the resolution (in bits) of the weight vector when dealing with integers.
As such, the weight vector is scaled by 2Ω and adjusted to Ω + 3 bits. This is equivalent to
restricting weights to the interval [−4, 4] with a precision of Ω + 3 bits. So instead of Vz(t) the
following is used:

Wz(t) ≈ 2ΩVz(t) (3.18)

The predicted sample value ŝ∗z(t) is calculated now with the integer-valued scaled predicted
sample value s̃z(t):

s̃′z(t) =

mod∗R

[
d̂z(t) + 2Ω (σz(t)− 4smid)

]
2Ω+1

+ 2smid + 1

s̃z(t) =


clip (s̃′z(t), {2smin, 2smax + 1}) t > 0
2sz−1(t) t = 0, P > 0, z > 0
2smid t = 0 ∧ (P = 0 ∨ z = 0)

(3.19)

where smid is the middle point between the minimum and maximum values that a sample sz,y,x
can take. The operation mod∗R could potentially imply a loss of information for small values
of R. This does not mean compression will be lossy, but means that compression might lose
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efficiency. To avoid it, the minimum value R∗ ([33, p. 4.2.5]) that ensures no overflow will
happen is used:

R∗ = Ω + 2 +
⌈
log2

(
(2D − 1)(8P + κ) + 1

)⌉
κ =

{
1 reduced mode
19 full mode

(3.20)

Both the predicted sample value, and prediction error are now integers and given by the
following equations:

ŝz(t) =

⌊
s̃z(t)

2

⌋
(3.21)

ez(t) = 2sz(t)− s̃z(t) (3.22)

Weights are now updated following:

Wz(t+ 1) = clip

(
Wz(t) +

⌊
1

2
sgn+ [ez(t)] · 2−ρ(t) ·Uz(t) + 1

⌋
, {ωmin, ωmax}

)
(3.23)

where ρ(t) substitutes α(t) as an integer-valued exponent:

ρ(t) = clip

(
vmin +

⌊
t−NX

tinc

⌋
, {vmin, vmax}

)
+D − Ω (3.24)

being ρ(t) bounded by:

− 24 ≤ vmin +Dmin − Ωmax ≤ ρ(t) ≤ vmax +Dmax − Ωmin ≤ 21 (3.25)

where Dmin, Dmax,Ωmin,Ωmax are the minimum and maximum values that D and Ω can take.
ρ(t) can be stored in just a 6-bit register, while the register size that avoids overflow in Equa-
tion (3.23) is:

max (Ω + 3, D + 3 + min (1, vmin +D − Ω)) + 1 (3.26)

After calculation, the prediction residual ∆z(t) = sz(t)− ŝz(t) has to be fed to the encoder.
But the coder works only on unsigned integers, so an invertible mapping δ :

[
−2D−1, 2D−1 − 1

]
→[

0, 2D − 1
]

is performed beforehand. Any mapping works, but ideally, low values at the output
are preferred. The following is used:

δz(t) =


|∆z(t)|+ θz(t) |∆z(t)| > θz(t)

2 |∆z(t)| 0 ≤ (−1)s̃z(t)∆z(t) ≤ θz(t)
2 |∆z(t)| − 1 otherwise

(3.27)

where:
∆z(t) = sz(t)− ŝz(t)

θz(t) = min (ŝz(t)− smin, smax − ŝz(t)) (3.28)

3.2.3 Encoder

All of the processes performed by the predictor are reversible, meaning that a stream of predic-
tion residuals can be used to reconstruct the original image. The next step in the compression
process is to losslessly encode those residuals.

For that, a variant of the Low Complexity Lossless Coder (LOCO) [214] is used. Each resid-
ual is coded using Golomb power-of-two (Section 2.2.2) codes since they follow a geometrical
distribution. The golomb parameter m is selected on-the-fly based on statistics from the pre-
ceding residuals. Statistics are kept separate for each spectral band since usually they present
different characteristics due to the way sensors are built, with different detectors for each band.
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The length of each coded data is bounded by a maximum user-defined value Umax, that
allows an easier hardware implementation since very low probability values will have a bounded
maximum size. This is not true in the general case of encoder, where theoretically arbitrarily
large codes might be generated.

To code a positive integer δ with this method, the following formula is used:

δ = u · 2k + r (3.29)

where u and r are the quotient and remainder, respectively, when dividing by 2k. The resulting
code will be the unary representation of u, followed by a zero, followed by r in binary format.
If u > Umax, then Umax zeros are coded followed by δ in binary format.

The encoder has a counter Γ(t) and an accumulator Σz(t) which is different for each band.
The quotient Σz(t)/Γ(t) gives an estimation of δz(t), and is used to select the parameter k by
using the largest value satisfying:

2k ≤ Σz(t)

Γ(t)
+

49

128
(3.30)

This formula is not random, and has been experimentally found to give the values for k that
bring the best compression ratios [116].

3.2.3.1 Mathematical background

The counter Γ(t) will always store the number of samples that have been accumulated in Σz(t),
which in turn contains an approximation of the summation of those samples, weighting the
newer samples exponentially higher than the older ones (this exponential weighting is why
golomb exponential codes are used). This method ensures that, while older samples are not
taken out of prediction, they have less impact in what the following samples will be predicted
as.

First, equations for both the counter and accumulator are defined:

Σz(t) =

 Σz(t− 1) + δz(t− 1) Γ(t− 1) < 2γ
∗ − 1⌈

Σz(t− 1) + δz(t− 1)

2

⌉
Γ(t− 1) = 2γ

∗ − 1
(3.31)

Γ(t) =

 Γ(t− 1) + 1 Γ(t− 1) < 2γ
∗ − 1⌈

Γ(t− 1)

2

⌉
Γ(t− 1) = 2γ

∗ − 1
(3.32)

where it can be clearly seen that the counter resets periodically (renormalizes) the accumulator
statistics by halving its value.

Observe that counter values are the following (after t = 1):

2γ0 , . . . , 2γ
∗ − 1, 2γ

∗−1, . . . , 2γ
∗ − 1, 2γ

∗−1, . . . , 2γ
∗ − 1, . . . (3.33)

A direct formula can be derived for the counter:

Γ0 = 2γ
∗ − 2γ0

Γa(t) = t− (2γ
∗ − 2γ0 + 1) mod 2γ

∗−1

Γ(t) =

{
2γ0 − 1 + t t ≤ Γ0

2γ
∗−1 + Γa(t) t > Γ0

(3.34)

The amount of times η(t) the accumulator and counter have been renormalized is given by:

η(t) =


0 t < 2γ

∗ − 2γ0 + 1⌊
t−

(
2γ

∗ − 2γ0 + 1
)

2γ∗−1

⌋
otherwise

(3.35)
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Let ` = 2γ
∗ − 2γ0 , then the following can be derived:

Σz(t) =
ΣZ
z (t)

2η(t)
+
η(t)−2∑
i=0

Σi
z(t)

2η(t)−i−1
+ ΣN

z (t)

ΣZ
z (t) =

min(t,`)∑
i=1

δz(i)

Σi
z(t) =

2γ
∗−1∑
j=1

δz(i · 2γ∗−1 + j + `)

ΣN
z (t) =

(t−`−1) mod 2γ
∗−1∑

i=0
δz(i+ 1 + `+ (η(t)− 1) · 2γ∗−1)

(3.36)

At any point t, the set ΣZ
z (t) has been renormalized η(t) times, the second set Σ0

z(t) has been
renormalized η(t)−1 times and so on. Thus, these sets of values added between renormalizations,
have each half the weight than the next one. The current one ΣN

z (t) has as much weight as all

the previous ones (1 versus
∑η(t)

i=1(1/2)i), giving them an exponentially higher weight than older
ones . The reason as to why this readjusting method is appropriate are found in [214, pp. 3.3.2–
3.4].

3.2.4 Summary

Samples sz,y,x are fed sequentially to the compressor, with the constraint that samples in the
same band (i.e: same value of z) are fed in raster order, and samples in the same pixel (i.e:
same values of (x, y) are fed with increasing values of z). A sample sz1,y1,x1 has to enter the
compressor before a sample sz2,y2,x2 if:

z1 < z2 and x1 = x2, y1 = y2

z1 = z2 and y1 ·Nx + x1 < y2 ·Nx + x2
(3.37)

ensuring that the neighborhoods are present for processing. A prediction is made based on that
neighborhood, that is weighted dynamically adapting to changing statistics.

The differentials between the real and predicted values are then encoded using an adaptive
entropy golomb power of two coder. Based on a expected geometrical distribution of the predic-
tor’s output, parameters are selected to optimally encode the differentials, generating the final
output stream.

The whole process ensures that local similarities, both spatially and spectrally are exploited
for sample prediction, creating models for the expected differences, which are used to approxi-
mate the predicted values as close to the real ones as possible.

Decoding is done in the same way. The process ensures that predictions can be made with
already decoded samples, and instead of using the new raw value to generate the coded stream,
the inverse is done and the decoded stream used to re-create the original values.

3.3 Jypec

When performing lossy compression on any kind of data, a prior analysis of its redundancy is of
great interest. Different kinds of data contain different patterns and redundancies. Predictors
used for compression can be tailored to this particular set of behaviors. Furthermore, when
approximating data, these characteristics can be exploited to produce compressed results that
differ very little from the originals.
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Figure 3.4: Flow of the algorithm. The image is progressively fragmented by removing correlations
until small blocks can be coded and compressed.

Applying traditional image compression algorithms to each band of a hyperspectral image
is a quick and straightforward way of compressing it [170]. However, advantage is only taken
of the spatial correlation present in the image, while the spectral correlation is ignored. These
two-dimensional algorithms have seen extensions to accommodate the spectral dimension [40,
157] with noticeable improvements in distortion-ratio performances. However, the spectral cor-
relation is assumed to be similar to the spatial in this case, not taking full advantage of hyper-
spectral characteristics. Hybrid algorithms [57] that separately decorrelate both characteristics
have proven to outperform the former distortion-ratio wise, while being simpler computationally.

Jypec is born as a lossy algorithm which aims to reach the highest possible compression
ratios while still retaining visual fidelity. First, a dimensionality reduction algorithm is applied,
followed by JPEG2000 compression on each band of the reduced image. Additionally, vector
quantization can be done before the dimensionality reduction to create groups of pixels. These
groups present similar characteristics and less information will be lost if reductions are performed
individually on each of them. This is a similar idea to that presented in [57], but with a few
modifications. Dimensionality reduction is extended beyond PCA, adding the possibility of a
vector quantization step. Variable bit-depths are used for the different components, emphasizing
the information of the ones with the most variance. Lastly, a custom JPEG2000 implementation
is used that avoids headers and markers, compressing the image even further.

The process is seen in Figure 3.4. Information is lost on the dimensionality reduction step
and on the wavelet transform (when quantizing the result). Coding is lossless. Parameters in
both the reduction and wavelet steps will control quality as well as compression ratio. Coding
configuration will allow for higher compression ratios.

A few considerations before defining the different steps are that:

� The stream in JPEG2000 is progressively decodeable thanks to careful ordering of the
output blocks. This is deemed unnecessary for hyperspectral images since full-image com-
pression is being targeted for bulk storage and transmission. Some markers are saved this
way, increasing compression ratio.

� The JPEG2000 standard does provide a dimensionality reduction method for images with
more than three components per pixel [100]. However, specific techniques will be used
that have been found to perform well with hyperspectral data.

� Both the wavelet transform and arithmetic coders are those of JPEG2000.

3.3.1 Dimensionality reduction

Dimensionality reduction has already been explored for hyperspectral image compression, but
few methods have been tried. By including multiple options, the aim is to verify the validity
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of the current ones being used, and to find ones that outperform the others. The following
dimensionality reduction algorithms have been included in Jypec’s flow: ICA, MNF, PCA,
SVD, VCA y VQPCA (see Section 2.3.5).

All methods generate projection and reconstruction matrices. The projection one is used
for compression, and the reconstruction matrix is used for decompression. The latter has to
be stored in the compressed stream as well as the compressed data. VQPCA uses not one but
many matrices corresponding to each of the quantized clusters. The C vector, as well as the
matrices, is needed to assign a reconstruction matrix to each of the samples.

The general flow is as follows:

� A preprocessing step is first performed to select a subset of pixels of the input image.
These are the ones used for creating the matrix. The size of this subset determines the time
it takes to create the projection matrix. A bigger subset will imply longer calculation times
but will more closely resemble the original. This step is done just to reduce the algorithm
time. The parameter which controls the portion of the pixels used for preprocessing is
called t, and will usually be around 0.01 (1% of total).

� A training step comes right after, and uses the selected data to create the projection
matrix. Additionally, it centers the data around its mean value, improving the performance
of the dimensionality reduction methods.

� The reduction step is the last one in the pipeline. It centers the raw data around the
average vector and then performs the projection. The inverse will be done when recon-
structing: the data will be projected back with the reconstruction matrix, and then de-
centered. Training and preprocessing are only done when compressing, so decompression
skips them.

First, the data X is subsampled according to the parameter t. Let sX = |X|. A random list
of unique indices IX = {i1, . . . , isX} is generated, and a subsampled set Xs of size sXs = |Xs| is
generated:

Xs = xi ∈ X q i ∈ IX (3.38)

Its mean value is obtained as:

x̄s =

∑
xs∈Xs xs

sXs
≈
∑

x∈X x

sX
= x̄ (3.39)

The original input data is then centered following:

Xc = {x− x̄s}x∈X (3.40)

After obtaining Xc ∈ MsX×n, it is processed with one of the algorithms described in Sec-
tion 2.3.5, obtaining a transformed matrix T ∈ MsX×m of transformed data. The value of m
selected will directly impact compression ratio in this step. If the original dataset X had sX ×n
total samples, T has just sX ×m samples. So a compression ratio of n/m is achieved at this
step. Further steps will of course affect this value.

The output from all algorithms is a transformation matrix W and recovery matrix W̄ . W
is directly used to transform the data into T , while W̄ gets stored in the compressed stream
to later be used to decompress the data. VQPCA works differently since it outputs many W
matrices (one per cluster) as well as the list C of what cluster each sample x belongs to. Within
clusters, the algorithm performs the projections just as in the rest of algorithms, and saves the
W̄ matrices for reconstruction.

Now, the data from X has been spectrally decorrelated in T . T is then separated into bands
Ti = [Tx,y,i∀x, z]. Each of these bands will be processed by the JPEG2000 algorithm.

66



3.3.2 Outlier detection

Every dimensionality reduction algorithm does a transformation that globally achieves the best
possible results. This is done based on the general characteristics of the input samples (i.e:
pixels). Outliers in the input set will probably still be outliers in the output set.

These outliers might dissapear in the JPEG2000 flow, since the wavelet transform and quan-
tization afterwards smooth out values that are too different from their neighbors. Still, those
outliers might be critical for image processing, were they are precisely the spots that, for exam-
ple, anomaly detection algorithms look after.

The dimensionality reduction algorithm will ideally have a target number of dimensions that
matches closely the real underlying number of dimensions in the original data. That is where it
will reach the best distortion-ratio performance. Each transformed band can be assumed mostly
independent from each other, and so the detection of outliers is done per band.

To keep those values that otherwise are lost in the JPEG2000 compression flow, a threshold
po ∈ [0, 1] is set. It indicates the percentage of pixels that is to be saved losslessly (losslessly
with respect to JPEG2000, since the dimensionality reduction step has already induced some
loss). To that end, the average value of a band is obtained bavg. All samples b(t) in that band
are sorted in descending order according to the difference |b(t)− bavg|. For a number NX ×NY

of samples in a band, the first po · (NX × NY ) are saved losslessly by storing their value and
coordinates in raw form.

Afterwards, the minimum and maximum value of the non outliers are calculated, and all
samples in that band are clamped to that interval. Compression proceeds as usual. Note that
if po = 0, no outlier detection is performed.

Outlier detection is specially useful since a normalization step occurs for the JPEG2000
wavelet transform to the interval (−0.5, 0.5). If some samples deviate excessively from the rest,
the rest might be clumped together and thus when quantizing they might fall in the same bin,
losing information that is otherwise kept. This is avoided by storing the outliers in this manner,
which improves separation after the normalization step.

3.3.3 JPEG2000

JPEG is a simple algorithm that took advantage of the mathematical properties of the DCT.
It splits the image in 8× 8 blocks, applying the DCT to each one individually. High-frequency
components were removed, retaining as much low-frequency ones as required for a specific quality.
This was (and still is) the selected approach for many situations were simplicity is preferred over
newer methods with higher distortion-ratio performances.

JPEG2000 was born as a successor to JPEG in the Internet era. One of the main motivators
was that JPEG2000 could be progressively decoded, meaning prefixes of the compressed stream
could be used to approximate the whole compressed image. This was due to the use of wavelet
transforms that applied to the whole image instead of the DCT that only targeted blocks.
By cleverly arranging the wavelet coefficients in the output stream, the whole image can be
progressively reconstructed. Another advantage is that the encoder works over longer runs of
data, adapting more precisely to statistics.

These two main differences resulted in higher quality at the same bit rates (see Figure 3.5),
however the processing power required grew considerably, which has kept JPEG2000 under the
radar for a while. With computing power growing, it has again found its way to consumers and
specially scientific applications, where the blockiness of JPEG can be detrimental to experiments.
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Figure 3.5: The difference [105] between
JPEG and JPEG2000 compression can be seen,
as the blockiness at high compression ratios is
clear.

JPEG2000 has three main steps. A color space
transform (done by the dimensionality reduction
step), followed by a wavelet transform on each
color channel, and finally the encoding of the trans-
formed data via the tier 1 and 2 coders.

The tier 1 coder consists on the bit plane coder
and the arithmetic MQ-coder, which will later be
seen. It losslessly compresses small blocks of data
that have been processed by the wavelet transform
and are full of redundancies. The output of the
tier 1 coder has a special property: any prefix can
be decoded, and gives an approximation of the fi-
nal decoded block. This is useful for progressive
reconstruction of the image, however if blocks are
coded sequentially, while the property still holds
locally per block, it cannot be applied to the whole
image.

Thus, the tier 2 coder works on top of the tier 1
coder streams, intertwining them to create a pro-
gressive stream over the full image. This is inter-
esting in a streaming scenario such as the Internet,
however it adds unnecessary complexity for this use case, where the full image is always expected
to be decompressed for analysis purposes. Thus, only the tier 1 coder is implemented.

In the following sections, the different parts of the algorithm: wavelet transform, quantization,
and tier 1 coding (including block coding and MQ-coding) are explained, forming the JPEG2000
part of the JYPEC algorithm.

3.3.3.1 Wavelet transform

Recall that data from the dimensionality reduction step is stored in matrix T :

T = [t1, . . . , tp] , ti ∈ Rm (3.41)

The wavelet transform is applied to each transformed band, so T can be divided in bands
Bk, k ∈ 1, . . . ,m as follows:

Bk =
[
tk1, . . . , t

k
p

]
= [b1, . . . , bp] (3.42)

Even though for dimensionality reduction, data (X,T,B) were represented as vectors, it is
useful to also see those as matrices. So, if the hyperspectral image size is NX ×NY ×NZ , where
NX ×NY = NP , and NZ = n for X, NZ = m for T . Define:

Bk =
[
tki,j

]
= [bi,j ] , i ∈ {1, . . . , NX} , j ∈ {1, . . . , NY } bi,j = bi∗w+j (3.43)

The wavelet transform used is applied in both directions (horizontal and vertical). For that,
two kernels (Definition 2) are applied:

Kh =
[
0.026 −0.016 −0.078 0.266 0.602 0.266 −0.078 −0.016 0.026

]
(3.44)

Kl =
[
0.091 −0.057 −0.591 1.115 −0.591 −0.057 0.091

]
(3.45)
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Figure 3.6: Uniform dead-zone quantizer at work. A sign-magnitude (χ, v) representation is obtained
that generates a bin double the size of the rest around zero. That is the dead-zone.

The wavelet represented by these kernels is called CDF 9/7 [41], and was designed originally
to operate on infinite signals. In this case, input vectors v = [v1, . . . , vn] ∈ Rn are extended at
the borders as follows:

vi =


vi 1 ≤ i ≤ n
v2−i i < 1

vn−(i−n) i > n

(3.46)

From applying both lowpass and highpass kernels, the following is obtained:

Kh(v) = vh Kl(v) = vl (3.47)

which in turn create the transformed vector:

v′ =
{{

vli

}
i∈2N

,
{
vhi

}
i∈2N

}
(3.48)

This process is repeated for each line and each column of the input matrix. It can be then
recursively applied over the LL sub-band if wanted.

3.3.3.2 Quantization

The CDF 9/7 used is a lossy transform that works on real numbers. Quantization is necessary
to bring data to the integer domain. Results from the wavelet transform lie on the (−1/2, 1/2)
domain. The output interval after quantization will lie in the range [−2nb + 1, 2nb − 1] (Note
that the lower bound is not −2nb due to the deadzone quantizer used). Higher values of n will
increase quality while at the same time lowering compression ratio.

To quantize the values, the following simple quantizer is used:

qz(sz,y,x) = sgn+(sz,y,x)

⌊ |sz,y,x|
∆b

⌋
(3.49)

This is the so-called uniform dead-zone quantizer with quantization step ∆b = 2−nb (See
Figure 3.6. Note that index b indicates that each band can have a different quantization step.
Since the wavelet output lies in the ((−1/2, 1/2)) interval, the number of possible quantized
values will be 2n+1−1, for which bits will be allocated. A finer quantization will inevitably lead
to more bits used.

Functions can be applied prior to quantization to improve separation of samples, avoiding the
collapse of similar samples in the same quantization bins at coarser quantization levels. This aids
in lowering the reconstruction error. To pre-quantize a set of samples X, some pre-quantization
functions are:

flog(x) =


log (x− x̄+ 1) x > x̄
log (x̄− x+ 1) x < x̄

0 x = 0
fsqrt(x) =


√
x− x̄ x > x̄√
x̄− x x < x̄
0 x = 0

f rlin(x) =
x

r
(3.50)

where x̄ is the mean value of the set X.
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3.3.3.3 Block coding

Following quantization, each band is then coded. Blocks of 64 × 64 are taken following the
standard maximum size (with size lowered at the edges if necessary) to lower memory loads.

Each block is coded in a way that allows it to be progressively decoded. That way, the
progressive nature of the wavelet is also brought into the coding phase. For each block, its bit
planes (the sets of bits of the same significance for all samples) are coded from high to low
significance. Three pases will be done over each plane, in which bits are prioritized and those
that are predicted to be more important are coded first.

A few variables are introduced to help when describing the algorithm:

j Position within a block. It is an abstraction of a two-dimensional coordinate to simplify
notation.

y [j] Sample at position j.

v(p) [j] pth bit of sample y [j].

χ [j] sign of sample y [j].

A predictive model that works on individual bits is at the core of the coding phase. Instead
of working on full samples, like CCSDS 123.0-B-1, predictions will be made on individual bits
and later an arithmetic coder will be used to encode them.

Definition 12 σ [t] is the significance of a sample y [t], and can take the three following values:
Insignificant, positive significant and negative significant.

As long as every bit v(p) [j] up to a certain point p that has already been coded are 0, a sample
is insignificant. As soon as a 1 is coded for a sample, it then becomes significant of the same
sign as the sample, given by χ [j].

Since bits are coded from more to less significant, the significance of a sample indicates, at
any point, if that sample’s contribution is of interest so far.

This concept of significance is what the three passes (Figure 3.7) of the algorithm are based
on. Within each bit plane, some bits (depending on neighboring conditions as seen later) will
have a higher chance of being “interesting” than others. These skewed probabilities will be taken
advantage of when coding, and will aid in creating a progressively decodeable stream.

Significance propagation pass: Samples that are insignificant but are believed to turn
significant this pass are coded as Algorithm 1 shows. If a sample’s neighborhood has many
significant samples, the actual sample will be included in this pass. The sign is coded in this
pass, and when doing so a special XOR bit, associated to the context, is used to improve
compression.

Refinement pass: When a sample is already significant, the behavior of the bits that are
not yet coded is considered mostly random. These bits are coded in a special pass that does
not have a model as skewed as the other two. Special care is taken for the first refinement
pass compared to the others, since that still contains a fair bit of predictability. This is seen in
Algorithm 2.

Cleanup: What was not coded in previous passes is coded here. Generally, that means zones
that are mostly zeros. Thus, this pass will include a run-length coder to deal with such behavior
in the most efficient manner, shown in Algorithm 3.
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Figure 3.7: Each bit plane is coded in three passes. A zig-zag pattern of height 4 is followed to traverse
it. This ensures areas that are physically close are visited in quick succession to maximize predictability.

Algorithm 1: EBCoder.codeSignificance

1 for each bit b in the zig-zag traversal of plane do
2 context ← significance context of b;
3 if b is not significant, and context 6= ContextZERO then
4 mqCoder.code(b, context, bitStream);
5 if b is 1 then
6 bs ← b’s associated sign bit;
7 context ← bs’s associated sign context;
8 xs ← context’s associated XOR bit;
9 mqCoder.code(bs ⊕ xs, context, bitStream);

10 end
11 Set b as already coded in plane;

12 end

13 end

Algorithm 2: EBCoder.codeRefinement

1 for each bit b in plane’s zig-zag traversal do
2 if b has not been coded and is significant then
3 context ← b’s refinement context;
4 mqCoder.code(b, context, bitStream);
5 Set b as already coded in plane;

6 end

7 end
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Algorithm 3: EBCoder.codeCleanup

1 for Each bit b in the zig-zag traversal of plane do
2 if b is the first of its column, the whole column is uncoded, and every context is

ContextZERO then
3 if Every bit in the column is zero then
4 mqCoder.code(0, ContextRUNLENGTH, bitStream);
5 else
6 mqCoder.code(1, ContextRUNLENGTH, bitStream);
7 j ← index of the first non-zero bit within the column;

8 (bj0, b
j
1)← two-bit representation of j;

9 mqCoder.code(bj0, ContextUNIFORM, bitStream);

10 mqCoder.code(bj1, ContextUNIFORM, bitStream);
11 bs ← sign bit of the sample at position j;
12 context ← bs’s sign context;
13 xs ← context’s associated XOR bit;
14 mqCoder.code(bs ⊕ xs, context, bitStream);
15 Skip to bit in position j + 1 and go to 2;

16 end

17 else
18 Code b as if it was in the significance pass (Algorithm 1);
19 end

20 end

When processing a block, the first plane is only processed with a cleanup pass (since it is
expected to have many zeros). After that, all three passes are used for all planes in the order
they’ve been described. While at first the cleanup pass is the one that codes most bits, for the
last bit planes, significance and then refinement are the ones that process the most bits. This is
seen in Algorithm 4.

Algorithm 4: EBCoder.code

input : A block with np bit planes

1 for i← 0 to np − 1 do
2 plane ← block.getPlane(i);
3 if i 6= 0 then
4 significancePass(plane); /* Algorithm 1 */
5 refinementPass(plane); /* Algorithm 2 */

6 end
7 cleanupPass(plane); /* Algorithm 3 */

8 end

There is a special plane that is not processed in these passes: the sign plane. Recall that
samples are in sign-magnitude format. All magnitude planes are coded with the aforementioned
passes, while the sign is only coded whenever a sample turns significant, since it does not bear
any information before that point. Thus, sign bits intertwine with the others.

On magnitude planes, a zig-zag pattern is followed for traversal. Rows are grouped in sets
of four, which are traversed column-wise (Figure 3.8). This ensures neighboring bits follow each
other for coding, which will exploit its similarities. Bits are marked after each pass, ensuring
they are coded only once.

These similarities between neighboring bits are what allows predictive models to perform well.
The significance and cleanup passes are the ones that are more redundant and can take the most
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Figure 3.8: Block coding scheme. The zig-zag pattern is seen. Bit planes are coded from more to less
significant (D to 0 assuming a depth of D+ 1). All while using contexts given by the significance matrix,
where 3× 3 neighborhoods are checked.

advantage for this, though the refinement pass will also have a smaller degree of predictability.
There are many predictive models working at once for coding a block, these are based on the
so-called contexts.

Definition 13 A context represents a pattern in the data that is to be coded. Contexts are
generated [201] based on the significance state of neighboring samples (Figure 3.8). The sub-
band that is being coded (LL,LH,HL,HH) is also taken into account to improve predictability.
38 different contexts might exist, but for simplicity they are collapsed to just 16 different ones
(Figure 3.9). Different contexts are used for the different passes.

Bits with a certain context are thus expected to always have the same behavior. That is, to
have the same probability of being either 0 or 1. So, for a given context, its bits are expected
to be heavily skewed towards either zero or one. And what is ideal for coding a heavily skewed
binary distribution? An arithmetic coder.

3.3.3.4 The MQ arithmetic coder

Bit-context pairs are generated by the block coder, but despite its name it does not perform the
coding itself. The block coder is just an entropy reduction step, while the arithmetic MQ-coder

Figure 3.9: Example of different neighborhoods that generate the same context. Significant samples are
shown in red, insignificant in black. This context is used when a certain vertical and/or diagonal pattern
is found.
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[201, p. 12.1] does the bit reduction. A general diagram of this module is shown in Figure 3.10,
and the full process in Algorithm 5.

Algorithm 5: MQCoder.code

input: A bit-context pair (b context)
input: A table mapping contexts to states
inout: A bitStream where coded data is dumped

1 state ← table [context ];
2 pred ← prediction associated to state;
3 prob ← probability from the probability table associated to state;

4 A ← A − prob;
5 if prob falls outside of the new subinterval (A < prob) then
6 Change pred to the opposite bit, so the wide subinterval is selected in case of success;
7 end

8 if adjusted prediction was successful then
9 C ← C + prob stay in the wide subinterval;

10 else
11 A ← prob stay in the narrow subinterval;
12 end

13 if renormalization is required then
14 if original unadjusted prediction was successful then
15 Updated state using the most probable symbol table;
16 else
17 Update state using the least probable symbol table, applying the XOR bit if

required;

18 end

19 end

20 while renormalization is required do
21 C ← C ∗ 2;
22 A ← A ∗ 2;
23 t̄← t̄− 1;
24 if t̄ = 0 then
25 Create a new byte with C’s upper 8 bits;
26 if reserved sequence can be formed on next byte output then
27 t̄ = 7, forcing zero at the beginning of the next byte, avoiding 0xff;
28 else
29 t̄ = 8, waiting for 8 bits for a new byte;
30 end

31 end

32 end

This binary arithmetic coder takes the bit-context pairs. It exploits the fact that the input
distribution is skewed, but the skew is not known beforehand, so it is of the adaptive type. Not
only that, it will adapt to every input distribution (one per context) at the same time. How
does it do it?

For each context κ, two values are maintained: A symbol sκ ∈ {0,1} (the current prediction),
and an integer Σκ ∈ {0, . . . , 46}, indicating the state of the predictor for that context. Whenever
the prediction is correct, the state changes to one with more skew towards the predicted bit.

To determine the probability of the prediction sκ being correct for a certain state, a table
associates to each state a probability p̄ ∈

{
0, . . . , 216 − 1

}
that is mapped to the [0, 1) interval

by dividing by 216.
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Figure 3.10: Diagram showing data flow
within the MQ-coder. Bit-context pairs
arrive. The context is used to determine
the current state, which along with proba-
bility tables generates the output and up-
dates the state for the following input.

Since probabilities are fixed in the table, state change
is made by using transition tables. These indicate which
state to transition to, depending on if the prediction is
right Σmps (most probable symbol) or wrong Σlps (least
probable symbol).

To “double” the number of states, a table Xs (switch
table) indicates for a state Σκ if prediction sκ needs to
be inverted since the skew on the input distribution has
gone below 0.5. That way probabilities are always above
0.5, only the symbol they refer to is changed.

All of these elements make up the predictive part
of the arithmetic coder (the models). Recall from Sec-
tion 2.2.3 that an arithmetic coder generated a fraction
in the [0, 1) interval. This coder keeps just a part of the
fraction active, having 16 and 28 bits respectively for
registers A and C that define the interval [c, c+a). Ev-
ery so often, the part of the interval C that is no longer
going to change is shifted out and A is normalized, freeing up space to keep both registers within
the designed limits. This is done via a variable t̄ that keeps track of the number of fixed bits in
C.

The only restriction is that a coder cannot emit symbols in the 0xff90-0xffff range since
those are reserved, so special care is taken if those are to be shifted out of the C register. To
that end, a buffer T keeps the last emitted byte to check for reserved sequence formation.

3.4 LCPLC

The Low Complexity Predictive Lossy Compression (LCPLC) presented in [4, 5] is the last of
the algorithms studied here. Despite its name, it allows not only for lossy but also for lossless
compression. Distortion is dynamically measured when compressing and, based on a threshold,
a decision is made whether to code the compressed (lossy) values or the uncompressed (lossless)
ones. If the threshold is set to zero distortion, compression will be lossless. Anything allowing
distortion will incur in compression with progressively more ratio and less quality as the threshold
extends.

The interest of simple algorithms that can work in this near-lossless manner has been ev-
idenced by the recent update to the CCSDS 123 standard (B-2 revision [34]). However the
CCSDS revision works on individual sample skipping, instead of the full block skipping present
in LCPLC. Memory requirements are lower, but hardware complexity higher since more opera-
tions are done per sample on CCSDS.

LCPLC operates on full hyperspectral images, and is designed to locally take advantage of
both spatial and spectral similarities within adjacent image samples. For that, the image is
divided into non-overlapping blocks of size N ×M × B (usually N = M making the blocks
square in the spatial direction). B is the number of bands, and any block always spans the full
spectrum of the image. Each sample within a block has a bit-depth of D bits, usually 16. It is
also valid to split blocks further in the spectral direction, though this is not practical since it
makes compression both slower and less efficient distortion-ratio wise as it will be later seen.

A predictive model (Section 2.2.6.2) is used to predict, for each block, the values in a band
based on the values from the previous band. This is done by minimizing the expected mean
square error [5, p. 2.1]. If the prediction is good enough, it is used instead of the raw values going
forward. Otherwise, differential coding (Section 2.2.6.1) is used to process the differences be-
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tween raw and predicted values. Finally, golomb and exponential golomb coding (Section 2.2.2)
create the final bitstream.

3.4.1 Prediction

After blocking the image, the predictor comes into play. For each block, consider xm,n,i the
sample at spatial position (m,n) and spectral band i. Blocks are coded in slices, where a slice
comprises all of the samples of a given band i within the block. The first slice to be coded is
slice 0, and then the rest follow in incremental order. Within a slice, a raster scan is followed for
the coding of each sample. Two values are required to define how the algorithm works: x̂m,n,i
is the decoded value at the given position, while x̃m,n,i is the prediction at that same position.

A simple two-dimensional predictor is used for slice 0, which is given by:

x̃m,n,0 =
x̂m−1,n,0 + x̂m,n−1,0

2
(3.51)

From it, the prediction error em,n,i is calculated as em,n,i = xm,n,i − x̃m,n,i. Since the error
can be negative, it is mapped to positive values. A simpler version than the one used by CCSDS
(defined in Equation (3.27)) is used here:

me
m,n,i =

{
2 |em,n,i| − 1 em,n,i > 0

2 |em,n,i| em,n,i ≤ 0
(3.52)

The rest of the slices are coded by looking at the previous slice for prediction. x̂m,n,i−1 is
made similar to xm,n,i by means of a least squares estimator αi, which minimizes the expected
MSE by using it in Equation (3.54). It is obtained from µ and µ̂, which are the average values
of the raw and decoded values in a slice respectively. They might also be referred as x̄ and ¯̂x
for readability. α is obtained as follows:

dm,n,i = xm,n,i − µi
d̂m,n,i = x̂m,n,i − µ̂i
αNi =

∑
m,n

(
d̂m,n,i−1 · dm,n,i

)
αDi =

∑
m,n

(
d̂m,n,i−1

)2

αi = αDi /α
N
i

(3.53)

A diagram of how the prediction dependencies can be seen in Figure 3.11. Experimental
results from [5] show that αi can be quantized to 10 bits in the [0, 2) range as α̂i. The same is
done for µi in the range [0, 2P − 1), yielding µ̂i with D bits. A prediction is made then as:

x̃m,n,i = µ̂i + α̂i (x̂m,n,i−1 − µi−1) (3.54)

while the error follows the same equations as with the first slice.

If higher compression is required, the error can be quantized using a uniform threshold
quantizer of parameter Q using powers of two for faster implementation afterwards. So instead
of the prediction error em,n,i = xm,n,i − x̃m,n,i, êm,n,i = sgn+ (em,n,i)

((
|em,n,i|+

⌊
2Q−1

⌋)
/2Q

)
is

used. An approximation of the original error is e′m,n,i = êm,n,i ∗2Q when performing calculations
for x̂m,n,i.

3.4.2 Slice skipping

The lossy part of the algorithm comes from the slice skipping process. Any slice other than the
first has a set of predictions that are based on the previous slice. If predictions are good enough,
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Figure 3.11: A diagram of LCPLC dependencies for prediction within a block. The first slice only
depends on itself in a small neighborhood of the current sample (just using the top and left neighbors).
For slice i, aggregates from the original i slice, as well as values from the decoded slice i−1, are combined
with each sample of decoded slice i− 1 to create the corresponding samples from slice i.

coding can be skipped altogether. The distortion D of a slice is calculated as:

D =
1

NM

NM∑
i=0

e2
m,n,i (3.55)

A threshold is set above which a slice needs to be coded since the incurred loss of using
the predictions is unacceptable. However if the error is below the threshold, the slice coding

is skipped and predictions used instead. The threshold equation is given by Dthresh = γ2Q+1

3 .
Experimentally [5], a value of γ = 3 has been found to be effective in yielding good qualities at
decent compression ratios. Higher values provide better ratio and worse quality, and vice-versa.

3.4.3 Coding

Two different coders are used in LCPLC: an exponential Golomb coder of order zero, and a
power-of-two Golomb coder (see Section 2.2.2).

For the first slice, the raw x0,0,0 is exp-Golomb coded after being quantized, dequantized and
mapped. Then, all mapped errors me

m,n,i are golomb coded. Now, for simplicity, let l = m+nM ,
and define aw as the number of past sample errors used for coding. Let Rm,n,i and Jm,n,i be:

Rm,n,i = Rl,i =

l−1∑
i=max(0,l−aw)

el,i (3.56)

Jm,n,i = Jl,i = min (l, aw) (3.57)

Define the parameter for the Golomb coder km,n,i as:

km,n,i =

⌈
log2

(
Rm,n,i

2dlog2 (Jm,n,i)e

)⌉
+ 1 (3.58)

The Golomb parameter is thus obtained from the accumulator that holds the sum of the last
aw errors for the current slice. Note that in [5], the denominator for Equation (3.58) is just
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Jm,n,i, but here the first power of two greater or equal than it is instead used. This simplifies
hardware implementation down the line and no difference in compression efficiency was found.

For slices other than the first, both αi and µi are coded raw (in their 10 and D bit form),
followed by a single bit indicating if the threshold was met. In the first case, coding for the slice
is finished. In the latter, all mapped errors follow coded in the same fashion as with the first
slice.

3.4.4 Summary

So, to sum the algorithm up, the following is done when coding each block.

� Do the following for the first slice:

– x0,0,0 is quantized, mapped and exp-zero Golomb coded.

– ∀m,n, Golomb code me
m,n,0 with parameter km,n,0.

� Then, for every slice after the first one in ascending order:

– Code α̂ in 10-bits followed by µ̂ in D bits.

– Code a bit indicating if the block is skipped.

– If it is not, then ∀m,n, Golomb code me
m,n,0 with parameter km,n,i.

Since each block is independently coded, they can be arranged into any order when assembled
into the full compressed image. For simplicity, a raster order will be followed in compression.

If both block skipping and quantization are disabled, the result will be lossless. As quantiza-
tion and the threshold are increased, the result will be progressively more compressed, though
it might be the case that certain configurations still produce lossless results if the image is
predictable enough.
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Chapter 4

Implementation

Implementing algorithms involves as a first step deciding which hardware to target. General
purpose processors are a flexible option, but lack the performance that other platforms offer.
GPUs are good candidates if the algorithm is parallelizable at the data level, performing the
same repetitive operations over different sets of data. A custom ASIC is the best option when
time and money are available, creating the specific circuit that optimally executes the algorithm.

FPGAs offer a reconfigurable fabric of logic elements that can mimic a custom ASIC, and
by slightly reducing performance are able to support implementations that can be developed
almost as fast as CPU or GPU ones, while being far more power-efficient and fast.

When implementing different algorithms on an FPGA, there is not a single approach. The
main goals are to increase throughput, reduce power consumption, and use less resources. Usu-
ally, to improve one of the three implies some loss on the other two.

Throughput is attained through parallelization, pipelining and clock frequency increase. The
first two increase resource use and, in turn, power use. Higher frequency also results in more
power being used proportionally, due to the increased voltage required which is quadratically
proportional to power consumption.

To reduce this undesirable power consumption, the straightforward way is to lower the clock
frequency and voltage. Care must be taken then to not lower throughput under the specified
limit. Resources will be the same, but usually a bit of parallelization will be added to make up
for the throughput loss, again increasing resource use.

And if the circuit is made to fit on a small FPGA, throughput will be sacrificed to spare
the necessary gates to fit. This generally also results in reduced power, so as long as the speed
requirements are met the circuit will be sufficiently good.

Of course, some algorithms are prone to parallelization, while others need strong optimizations
in the critical path. Others might just reach a certain limit given their data dependencies, and
so mathematical optimizations might be useful in those cases, changing the algorithm itself.

All in all, the ideal scenario is to meet throughput demand, and optimize area and power while
keeping it above threshold. There is not a single best way of doing it, so for all three algorithms it
will become clear that different paths were followed. There was a common methodology though:
first implement the algorithm in software, so that the algorithm structure is made clearer for a
hardware implementation, and then implement the hardware itself.

FPGAs can be targeted with two main tools: HLS synthesis and custom HDL synthesis.
The first approach starts with a constrained high-level language code (such as C++) where some
constructs are forbidden due to FPGA limitations. Without those, automatic tools are able
to transform the high-level code into low-level HDL code. The second (and more traditional)
approach is to directly write the HDL code (normally VHDL or Verilog).
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High level synthesizers are becoming powerful tools capable of creating hardware that is just
as fast as a custom design for easily parallelizable algorithms. But the technology is still limited
for complex constructs or data dependencies, where low-level code is still advantageous. Certain
coding styles that favor hardware implementation are needed, with data flows within high-level
languages having to mimic hardware to achieve the best results in an automated way. Some
constructs still need to be hand-optimized.

In the same way that compilers made obsolete hand-written assembly code, HDL synthesizers
will replace most hand-written HDL. However, for this thesis, the focus is put on the great per-
formance achieved by the latter, which are yet to be surpassed by automatic generation. Thus,
implementations are custom-made in both VHDL and Verilog, and so far have outperformed
HLS alternatives.

In this chapter, the implementation of the algorithms described in Chapter 3 is presented.
First for the lossless CCSDS 123.0-B-1, followed by the JPEG2000’s tier 1 coder in JYPEC,
and finally for LCPLC. Detailed diagrams will be shown when necessary to shed light into the
different optimizations that took place thanks to the custom HDL design.

All three algorithms have been implemented with performance in mind. The different param-
eters (image size, quantization values, register size...) are tunable. The goal is to, given certain
algorithmic constraints, automatically synthesize the most optimized hardware possible, instead
of having a lower-performance generic core. This is because the ultimate target are radiation-
hardened FPGAs, which are ready to fly on satellites, but often need a more optimized circuit
than a normal FPGA to overcome their resource and performance constraints.

4.1 CCSDS 123.0-B-1

Being an international standard, CCSDS 123.B-1 has received plenty of attention regarding
implementations. One of the first golden standards software-wise was Empordá [83], providing
an easy way of testing other coder/decoders by cross-validation.

A custom implementation [18] was developed for this work, allowing trace generation of
the different values that were generated by the algorithm. Not only the outputs, but also
intermediate operations were traceable. Correctness was ensured by cross-validating it against
Empordá, and by means of applying the compression/decompression cycle and checking for
perfect reconstruction (given that it is a lossless standard).

As for the more interesting part, hardware, a further look was had to existing implementa-
tions, to check for different techniques and to look for what was missing in a pool of already
available designs.

4.1.1 Previous work

Being an international standard, different FPGA implementations of the CCSDS 123.0-B-1 exist
that take advantage of different properties of the algorithm, mainly focusing on the different
types of traversal through the image.

One of the first [180] already mentions the fact that different traversals through the image
need different resources. The amount of memory can be made dependent on the number of
bands or image slices, while the amount of logic resources is usually bound by the parameters
selected for the algorithm, which trade off complexity for compression performance. In the end,
a decision is made to have a 2 × P + 1 port memory to avoid any overhead of memory in the
compressor at all. Improvements in speed are done by pipelining the different stages (mainly
prediction and encoding), noting that memory is a bottleneck.
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Figure 4.1: Full diagram of the CCSDS compression module. Dashed lines indicate potential for
pipelining.

Moving a little bit of overhead to the on-board memory proved to be beneficial in [113]. BIP
ordering is used and a full spectral slice is stored. But this is usually not a problem since, for
the common image sizes, a full slice is under a Mb in size. Pipelining is not used and so even at
low frequencies, a full sample per cycle is compressed, increasing the performance of [180].

Going further, in [68, 207] it is realized that, for BIP mode, pipelining of the main feedback
loop (which updates the weights used for the prediction) is possible. This requires the image to
have more bands than pipeline stages, since otherwise stalling occurs. This is not a problem in
practice since, being hyperspectral, the number of bands is always high enough. Modifications
to the pipeline depth are proposed [207] to take care of it in extreme cases. A full slice still needs
to be stored, and resource use is higher than in [113], but the speed is increased by a factor of
almost 5 thanks to the pipelining of the dot product stage.

Even more resources are used in [154] to generate data-level parallelism, again in BIP mode.
Instead of having just one pipeline, a number n of pipelines are instantiated at once, each
processing every nth sample. This again increases performance and, for four parallel pipelines,
speed is increased by almost a factor of four with respect to [68], where the main limitation is
the synchronization of the output values to make sure standard ordering is preserved.

BIP mode brings the most possibilities on the table, given that pipelining, as well as data-
level parallelism are possible. However, this limits the algorithm to just one type of ordering,
requiring additional memory to reorder the image in case the sensor does not capture it in that
format, and also using more resources for pipeline management. For this implementation, it was
decided to not use external memory, and to have the smallest core capable of dealing with any
input ordering in real time.

4.1.2 Hardware implementation

Every step of the algorithm is performed in its own module for simplicity and correspondence
to the mathematical definition. Figure 4.1 shows the overview of the different modules present
within the compressor.

Samples come in a specified order (BSQ, BIL or BIP) through a single port. This is to avoid
the need of external memory, but comes at the cost of using internal RAM blocks to store frames
or bands.

First, samples s go into a buffer to allow sufficient values to be ready when calculating
neighborhoods. The buffer is a set of FIFO queues with length tailored to a specific image size
so that the head of the FIFO is ready the same cycle it fills up. Afterwards it will emit and
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accept one sample per cycle. This limits flexibility to an exact sensor size, but at the same time
uses the least memory possible.

The input samples, along with any buffered go through to the next stage, where local sums
σ and differences d are calculated. The differences go through another buffer to have the appro-
priate ones available at any time.

A third stage takes the local values and transforms them into predictions δ using the weights
ω. For that, the expensive d̂ is calculated using a dot product between the weight and difference
vector.

Coding comes afterwards, where δ is used to update the accumulator, which also uses a buffer
since each band has its own. Along with the counter, they go on to the final stage to be coded.
There, values are used to generate the final codewords and lengths, which a serializer will take
and use to output the final bitstream.

Despite the clear-looking pipeline potential, the cost of the feedback loop in the prediction
stage is so great that it is only useful to pipeline the stage between the prediction and coding
parameter calculation. Any other pipeline stage added does not reduce operation time but does
use additional resources, so it is avoided.

A more detailed diagram and description of the different modules is provided in the following
pages, where the following notation is used for simplicity in the diagrams:

� xl, yl, tl and zl indicate that the respective coordinate is equal to zero. On the other hand,
xh, yh, th, and zh indicate that coordinate is the last within image boundaries. Note that
sometimes these flags will be inverted (e.g: x̄l).

� Blue rectangles are inputs for the module depicted in a diagram, while green rectangles
are outputs. Grey rectangles are constants that will bring optimizations to the circuitry
instead of using variables.

4.1.2.1 Local sums

Local sums are calculated depending on the coordinates of the current sample being predicted.
All possibilities are calculated, and muxes select the appropriate one to move forward.

Two different calculations can be done, either the neighbor-oriented from Equation (3.2) or
the column-oriented from Equation (3.3) one, which simplifies the circuit. Both are seen in
Figure 4.2.

σ0,0,0 is not used within the implementation, but it will be generated anyways by hardware
and discarded by the modules afterwards.

4.1.2.2 Sample storage

To be able to calculate σz,y,x, not only the sample for the current position is necessary but also
previously seen samples. This issue could be solved by having multiple inputs to the modules
with all necessary samples. This however requires multiple accesses to memory at once.

Here, the target is to take information in raster-order from the sensor itself and directly
feed it to the module. Thus, a FIFO system is built for storing neighboring samples and then
retrieving them from within the FPGA. Their design depends on the order in which samples are
fed into the compressor. Three different designs are required, respectively, for neighbor-oriented
and column-oriented sums (Shown in Figure 4.3).
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Figure 4.2: Neighbor-oriented and column-oriented local sum

Figure 4.3: FIFO structure for different configurations. Top are for neighbor oriented sums, bottom for
column-oriented sums. From left to right, BSQ, BIP and BIL orderings.
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Figure 4.4: Difference calculation. North, West and Northwest differences are not used under reduced
prediction mode.

In blue, stored samples are shown. In green, neighboring samples that are used. In red,
the current sample. As seen, the type of prediction has little impact on the size of the FIFOs.
However, the type of ordering for the image has great impact. For BSQ, FIFO size is just NX ,
while for BIP and BIL is NXNY . This is unavoidable if only one read-port is desired.

4.1.2.3 Difference calculation

Differences are calculated based on the local sum. The central difference dz,y,x is always present,
while north, west and northwest directional differences are only present under full prediction
mode. They all form the vector from Equation (3.4). Figure 4.4 shows both types.

For central differences, calculating them for every sample is time and resource consuming.
Instead, a storage system is devised to buffer the values from previous bands so that they can
be used for calculation.

4.1.2.4 Difference storage

Differences, in the same way samples need to, require to be stored for the difference vector
assembly. Directional differences can and are calculated on-the-fly. But central differences will
come from a FIFO structure with P read ports, one for each difference used. Here, the cost is
NXNY P for BSQ ordering, NXP for BIL ordering, and just P for BSQ ordering.

BSQ requires excessive resources, while BIL is ideal in this case. For BSQ, the FIFO structure
is designed with P memory units of size NXNY . For BIL, the same number of memories is used,
but requiring each to be only of size NX . For BSQ, a simple shift register P samples is used.
This is seen in Figure 4.5.

4.1.2.5 Weighted difference

The dot product from Equation (3.5) between the difference vector and the weight vector is
done by a tree-reduction sum of the individual products as seen in Figure 4.6.
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Figure 4.5: FIFO structure for differences. BSQ, BIP and BIL orderings respectively shown.
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Figure 4.6: Central local predicted difference.

4.1.2.6 Weight vector storage

Weight vectors are initialized to default values when the reset signal is raised. Since vectors
are shared for all samples in a band, for band-interleaved methods such as BIP and BIL, all
vectors need to be stored at the same time, requiring a memory of size NZP

∗. This however
is not a problem since in any ordering, either the same or difference memories are going to be
dominating the space requirements.

If on BSQ mode, the weight vector is a simple register which gets reset at tl high. For BIL
and BIL, NZ vectors are saved in a circular FIFO, and on each band change, the top is shifted to
the bottom. The new top register is the active weight vector until a new band change is issued.

4.1.2.7 Error calculation

The prediction error from Equation (3.22) is obtained in Figure 4.7. The standard allows for
loss of information along the way, assuming the error won’t be as precise. This is to avoid using
long registers for s̃z(t) from Equation (3.19). Here, the smallest register size that ensures no
overflow (see Equation (3.20)) is used, so no care is taken in case of overflows since they cannot
mathematically happen.

4.1.2.8 Weight vector update

After each sample is processed, weights are updated. This is where the feedback look of the
algorithm is: Before processing the next sample in a band, the weights must be updated. Simple
operations allow for the calculation of ρ(t) (Equation (3.24)), which can be calculated with just
6 bits (Equation (3.25)).

85



(�)��−1

≪
1

2 + 1����

��

�0

��

>0 >

0

≫
1

(�)� ̂ 
�

−

(�)��

≪
1

(�)��

(�)��

4����

−

+

≫

(�)�
̂ 
�

Ω + 1

2 + 1����

+

(�)� ̃ 
�

2����

≫

−

����

�

������

+

< >

����

+

−Ω �

(�)��

≥

0

(�)�
(�)
�

−

≥

0

≫≪

−

(� + 1)�
(�)
�

(�)�
(�)
�

+

1

≫
1

+

≥ >

��������

Figure 4.7: Error calculation module (left) and weight update module (right)
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Figure 4.8: Prediction residual calculation.

So, for weight updates, the minimum register size to not incur in overflows, is:

max {Ω + 3, D + 3 + min {1, vmin +D − Ω}}+ 1 (4.1)

D+3 is the size of the elements in Uz(t). A look is then taken at ρ’s lower limit vmin+D−Ω
since it is the one generating a left shift. So assuming maximum value in both the vector’s
entries and ρ, the length of both is added, and an additional bit reserved in case of carry-outs.
For the sign used in Equation (3.23), a simple mask is done with the upper bit. This all is seen
in Figure 4.7.

4.1.2.9 Mapped prediction residual

For the mapped prediction residual, Equations (3.27) and (3.28) are used. The only trick
here is that, for the mux selector, the conditions are all calculated based only on bit checks
and comparators, instead of using any multipliers. This greatly simplifies hardware and is
mathematically equivalent. The lowest bit of s̃z(t) is checked for parity, while the upper bit of
∆z(t) is checked for sign. Care is taken when ∆z(t) is zero to also take that into account despite
the parity of s̃z(t). This is seen in Figure 4.8.

4.1.2.10 Encoder

For the coder, the mapped prediction residuals δz(t) are used along with an internal accumulator
and counter. The counter is combinationally obtained via Equation (3.34) as seen in Figure 4.9.

For the accumulator, it is restarted when tl is high, and otherwise just keeps adding the δz(t)
values until a renormalization barrier is encountered (see Equation (3.31)), when it shifts by
one effectively halving its value. The counter also halves its value, so the average Σz(t)/Γz(t) is
maintained.
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Figure 4.9: Counter and accumulator calculation.

Values for uz(t) and kz(t) from Equation (3.29) are obtained in Figure 4.10. For kz(t), a
trick is used to avoid a sequential calculation that is required with divisions. Since its value is
bounded by D− 3, instead D− 2 shifts are performed, and a priority encoder selects the one of
lowest value since the first k that satisfies Equation (3.30) is the one looked after. uz(t) is just
the original value shifted by kz(t).

For the output, three values are generated that will then feed a serial converter to generate
a bitstream over a wire. The code will be made up of a certain amount of zeros Zz(t), and of
Bz(t) bits of the code Cz(t). Zz(t) gets the value of uz(t) unless above the threshold, in which
case it is umax. It is zero for the first (uncoded) sample of each band, as seen in Figure 4.11.

The code is either dz(t) when on the first sample of a band, or the lowest kz(t) bits of dz(t)
preceded by a 1.

The amount of bits of the code used will be D for uncoded samples (the first in a band and
if uz(t) > umax), and otherwise will be kz(t) + 1 to send the bits in Cz(t) up to, and including,
the inserted 1.

4.1.2.11 Serial converter

A serial converter is also designed to output bits instead of the (Zz(t), Cz(t), Bz(t)) triplet. It
stores the triplet in a buffer and then outputs its information.

First, a counter is used to emit as many zeros as Zz(t) indicates, at one per cycle. Then, as
many bits as Bz(t) indicates are emitted from Cz(t) from most to less significant. At the end of
the process, Zz(t) +Bz(t) bits have been emitted in the same amount of cycles.

To make it work properly, a FIFO stores the triplets in the input. The first element is taken
and processed accordingly, as soon as it’s finished, the next element enters the queue. This goes
on until the compression process has finished. A simple bitstream has enough speed to output
the results from a CCSDS core. In the following section, the core is parallelized and throughput
of a bitstream is not enough, a bytestream will take its place.
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Figure 4.13: The parallel or serial CCSDS option is based on the value of concurrency C. Depending
on that setting, different modules will be synthesized.

4.1.3 Parallelization and output

A good thing about CCSDS 123.0-B-1 is it can be parallelized at the pixel level. If running
on BIP mode, multiple consecutive samples from the same pixel can be calculated in parallel,
forwarding only the differences from one unit to the next. Since these only depend on the
image samples, and weights are independent per band, cascading effects do not take place
and full parallelization is possible with no penalty brought by the number of concurrent units.
Parallelization is thus possible following a design such as the one shown in Figure 4.12.

One thing to note here is that storages are individual per algorithm instance since they do not
share information. This is possible because the number of instances is always a whole divisor
of the number of bands, and thus each instance will process all of the samples pertaining to
a specific band. Values that are used per-band can then be safely stored without interaction
between instances. The only exception are differences, which are shared between all since, for
the prediction, a dot product is done with differences from previous bands.

Each instance works exactly as a normal CCSDS 123.0-B-1 core with the only change being
the difference vector arriving from either the difference buffer or the previous core instead of a
difference storage module. Aside from that, the sample distributor and results gatherer are the
other main modules that are worth mentioning. They are simplified in Figure 4.12, and the full
diagram is shown in Figure 4.13.

Samples always enter through the same channel, however the core will either be parallel or
serial. The serial case is straightforward, so the parallel one is explained in more detail. Since
it is made up of many serial CCSDS cores, the interface is the same for each one (input is s and
output is (Zz(t), Cz(t), Bz(t))).
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The serial to parallel module feeds of a single sample stream, and outputs C sample streams,
each containing samples sx,y,zi , i ∈ {1, . . . , C} where zi mod C = i. It simply buffers the inputs
for each of the output stream and emits them all at the same time once they are ready, since all
the CCSDS cores are synchronized within the parallel module.

Output is quite similar. All outputs from the C modules are received simultaneously, and a
buffer keeps them all in place while the parallel to serial converter emits them in order. Once
they are all emitted, the next parallel value is ready to be received. Both serial-to-parallel and
parallel-to-serial modules are shown in Figure 4.14.

After that, either with the parallel or serial version, a stream of triplets (Zz(t), Cz(t), Bz(t))
enters the aligner shown in Figure 4.15. It creates a code by pre-pending Zz(t) followed by the
least significant Bz(t) bits of the code Cz(t). All of the bytes that are fully completed exit the
module, and any uncompleted bytes stay in a buffer to be pre-pended to the next triplet. The
number of bytes emitted is limited by the maximum amount of bits that can be input, plus the
maximum number of bits that might be buffered, for a total of 7 + Umax + D + 1, since up to
Umax zeros might be output, and Cz(t) can be up to D + 1 bits long.

The byte output module shown in Figure 4.16 receives thus up to (7+Umax +D+1)/8 bytes,
and emits them sequentially in the same way that the parallel to serial converter processed the
triplets. At this point, and depending on the local characteristics of the image, many or very
few bytes might be emitted. The latter case is not a problem, but the former produces stalls.
This is why every point connecting modules within the pipeline is fitted with FIFOs, to be able
to dampen the effect of the last module stalling in the case of going through a low compression
rate part of the image.

4.2 JYPEC

While CCSDS has a simple software and hardware implementation, JYPEC is quite more com-
plex. Not only does it have more steps, but those steps are also more complicated. Implementing
the full algorithm in hardware is a monumental task, so a robust software implementation was
first due to make an analysis of what parts could benefit from acceleration.

CCSDS could directly interface with raw image data by just knowing the bit-depth and
pixel ordering, since the implementation is prepared for tailored synthesis targeting a specific
sensor. JYPEC is more ambitious and deals with whole image compression for different image
data types, sensor configurations, and algorithm settings. Given this variability, image and
compression header information is also processed and compressed to deal with the wide range
of options.
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Also, since now the algorithm deals with lossy compression, distortion measures are needed to
check its performance, since a simple check for equality between the decompressed and original
values is futile.

4.2.1 Software

A good backbone was needed for the software implementation. This includes both a system
for hyperspectral Image I/O, and a system for image quality assessment. Along with these
modules, the core was also developed. Dimensionality reduction algorithms and the JPEG2000
compressor were included, with the latter being comprised of wavelet transforms, quantizers,
and the JPEG2000 coder as a final step. The full program is found in [19] (GitHub).

4.2.1.1 Data

Data management is done though hyperspectral Image objects. These contain both the header
and the data, both of them pointing to the raw memory contents. Wrappers ensure that data
is accessed properly in any ordering present, giving a consistent interface across formats.

Compressed images are stored in a special format, containing a header that indicates the
compression parameters, as well as the original image header (in compressed format) and the
compressed stream.

4.2.1.2 Core

The core applies the algorithm step by step. First, a generic interface performs the dimension-
ality reduction over the image. It contains methods for reducing size. Underneath, any of the
dimensionality algorithms might be at work (including no reduction at all). Then, for each band,
the next steps are done:

First, outliers are saved (if requested) and their values clamped to the non-outliers limits.
This improves quality since further steps work over a tighter range of values, decreasing rounding
error loss.

Then, the band is prepared for the wavelet transform by normalizing it to the (−0.5, 0.5)
interval, after which the CDF 9/7 transform is performed. Results are pre-quantized and then
quantized, using again generic interfaces that allow for different back-ends.

Finally, the image is split in blocks, which are then processed by the JPEG tier 1 coder and
placed in the output stream one after another. Using the tier 2 coder means reordering these
sub-streams and introducing relocation markers. This increases image size. Since the objective
does not include progressive decoding (which is why the reordering is done), the tier 2 coder is
ignored.

In hardware only the tier 1 coder is implemented, leaving the wavelet and dimensionality
transforms for the CPU to perform. Others [71, 130] have already noted this fact, seeing that
the Tier 1 Coder takes up to 70% of compression time for JPEG2000. Later in Section 5.4.1.10
it is seen that timing-wise, this is justified here too.

4.2.1.3 Quality assessment

Finally, the different quality metrics from Section 2.3.6 are also implemented. When compressing
an image, the uncompressed result can be optionally compared with the original to obtain
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the distortion. This gives a brief summary of compression quality. Compression ratio is also
reported, giving both metrics the overall distortion-ratio performance.

4.2.1.4 Options

To optimize the configuration for the algorithm, different options are present in the code that will
be explored in Section 5.4.1. Multiple reduction algorithms are available, in which the number
of target dimensions can be set, as well as the fraction of input pixels to use for training. A
percent of the resulting points can be configured as outliers for raw coding of its values. Finally,
the number of wavelet passes can be configured, and the quantization function and bit depth
can be set to process the coefficients.

All of these options will modify the base algorithm, obtaining a process that gives preference
to a different set of characteristics. An exhaustive search from the distortion-ratio point of view
will be carried out in the next chapter.

4.2.2 The JPEG2000 tier 1 coder

The JPEG2000 tier 1 coder works over small blocks (of usually 64× 64 samples) of the image.
It does a bit-by-bit scan of the block, coding each one at a time. In contrast to other methods
such as CCSDS or LCPLC that work over samples, working over bits means that performance
drops unless parallelization can be applied. Luckily, as each block is individually compressed,
multiple instances of the tier 1 coder can run in parallel increasing performance by the same
factor.

Both the bit plane coder (BPC) and the MQ-coder are carefully designed to work in unison
as fast as possible. Different techniques have been found throughout time in both parts, but
usually the efficiency has been assessed separately. The aim here is to look at both the BPC,
the MQ-coder, and their combination to see what works best.

4.2.2.1 Previous work on the BPC

Many BPC implementations have been proposed for the context-data (CxD) pair generator. In
[11] a simple BPC is designed that goes over the full block following a zig-zag pattern (recall
Figure 3.8). It produces at most one CxD pair per cycle. However since it has to do three passes
per bit plane, the actual throughput is expected at around 1/3 CxD pair per cycle.

Improving on that, [130] introduces the concept of skipping. Full 4-bit columns are loaded
one by one, marking positions with flags when they have already been processed by a pass. This
way the BPC can skip samples in the refinement and cleanup passes. Flags are included even
for full columns and full passes, which for the first bit-planes usually allows to skip big chunks
of bits. All of these skipping techniques result in around a 60% saving of clock cycles.

A different approach is taken in [86]. Instead of marking and skipping samples, a parallel
approach is taken. Full columns of 4 bits are processed at once, emitting up to 10 CxD pairs
per cycle. Dependencies within the same column are resolved by cascading operations, but still
this is faster than pipelining within the column. Throughput is doubled with respect to the
sample-skipping technique, and the extra memory for marking samples is removed.

[66] goes even further by simultaneously coding multiple planes using non-default options. It
introduces a small loss in compression efficiency, but is able to increase performance by a factor
in the order of the number of bit planes (normally 16 for hyperspectral images). This is specially
useful in real-time video transmission. However, having this great throughput at the BPC level
means that now the bottleneck in the MQ-coder is also 16 times higher, and so multiple coders
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are needed to deal with it, further deviating from standard settings. In this thesis the focus
is put on the standard approach since it is sufficient for real-time compression and provides a
slightly higher compression efficiency.

4.2.2.2 Previous work on the MQ-coder

More work has been done towards the MQ-coder [103] than the BPC since it has always been
the bottleneck within the tier 1 coder. CxD pairs from the BPC are received, and a compressed
bitstream is generated which can be further processed by the tier 2 coder. Under default settings,
the CxD pairs are processed serially, so little parallelization is possible at this stage. Two main
approaches have been devised to accelerate its execution:

� Pipelining: Pipelining is a traditional way of improving performance. Despite the feed-
back loops, distinct stages have been identified that can be separated and pipelined.
Namely the update of the A and C registers, as well as packing the output bitstream.

� Dual symbol processing: An unrolling of the main loop by a factor of 2 is able to im-
prove performance since stronger optimizations are able to take place. This has motivated
the design of MQ-coders with the capability of processing samples in pairs. Two cascading
processing units are incorporated for these designs.

Both approaches have been known for a while, with a two decade old dual-symbol two-stage
pipeline [38] design present. The first stage updates the A interval while the second performs
renormalization and byte output at the same time. All of this is done for two symbols at once,
doubling throughput.

In [183] a pipelined MQ-coder with three stages is proposed. Arithmetic operations are
performed in a first stage, the A and C registers are updated after, and lastly bytes are emitted.
The drawback is that the second stage can stall the first if the amount of shifts to be done in the
C register is above one. This is because they use sequential instead of barrel shifters. However
this turns out not to be a problem since 1) a faster clock domain is used for this second stage
and 2) stalling only occurs around 1% of the time according to experimental results.

In [174] a simpler implementation with no acceleration techniques is presented. They note
that the arithmetic coder is the bottleneck with the BPC being 5 times faster. Speed is thus
increased by sharing the BPC among multiple coders working in parallel, since their simple
implementation allows for replication with low overhead.

In [165], two different pipelining techniques are used: First, “traced pipelining” creates a
pipeline for the most likely cases, where unlikely events create longer stalls at the benefit of
likely events going through the pipeline without stalling. Also, cascading shifts are eliminated
by looking ahead at the number of necessary shifts and performing them all at once.

Going further up the optimization ladder, [132] uses both pipelining and dual symbol process-
ing improving on the already complex design by [58]. Dual processing is solved by having four
different units calculating in parallel the four different scenarios resulting from using the LPS
or MPS when subdividing the intervals. Pipelining is used to separate the A register update, C
register update and byte output procedures.

A different pipelined approach comes from [6], where the three stages mentioned in other
approaches are kept, but two more are added at the beginning by using two memory modules.
First, context information (state and predicted symbol associated) is stored, with a second ROM
outputting state change information. Whenever two consecutive contexts are equal, the second
memory will be read with the updated state that is sent to the first one. This splits reading into
a two-step process that accelerates the pipeline. Optimizations are also made in the shifting
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step which turns out to be the critical path. A maximum of 7 shifts is allowed, stalling when
the number is higher. This however occurs only in a marginal number of cases, so the limit is
justified.

4.2.3 BPC implementation

For the BPC, the implementation presented here starts from the idea in [86] of processing
columns of four at once, following the zig-zag pattern that the coder of JPEG2000 uses.

The general diagram of the coder is seen in Figure 4.17. Only the logic is shown, with memory
modules hidden for visibility. The inputs are:

� The magnitude bits m for each of the four bits in the column, as well as the sign bits sg.

� A flag ic indicating, for each bit in the column, if it’s been coded already by a previous
pass.

� A flag fr indicating if this is the first refinement for each of the four samples which bits
are in m and sg.

� A neighborhood of significance values s. Their sub-indices indicate which memory they
belong to (p for previous, c for current, n for next) and the offset relative to the central
output value.

� Flags pass indicating which pass is being done (c for cleanup, s for significance, r for
refinement).

It works as follows: The significance values are all fed into context generators GC, which
are going to output the context for the bits m and s that need to be coded. A dependency
exists for context generation. For that, two predictors for the cleanup CUP and significance
SGN are used that speed up what otherwise would be a cascading of CGs. Information from
these predictors, along with the pass flags is used to emit the output context vector, which can
contain up to 11 different context-bit pairs (of which up to 10 are valid in cleanup mode, 8 in
significance and 4 in refinement).

The magnitude bits are used to generate flags abz (all bits zero) and fnz (first non zero)
that are used for those predictions. The abz flag turns on when the full column is zero (this
enables run-length mode under the cleanup pass). The fnz flag is used also for cleanup when
the run-length is broken by an unexpected bit turning significant.

On the top-right of the diagram, the magnitude bits are combined with the ic flag and results
from the predictors to generate the ov (output valid) flags, that indicate which of the 11 CxD
pairs in the output vector are valid. Just under it, the new significance values for the current
column sc are output from the predictors. Following down the diagram, the fr and ic flags are
updated with the predictor information to store the refinement and coded status for the next
pass. Finally, all of the information from the context generators is unified and output in the
output bit ob and output context oc vectors, which contain all of the CxD pairs for the current
pass, that will later be processed by a serializer.

Context generation can be seen in Figure 4.18. Neighboring significance values are checked,
and three main outputs can be seen. On the top right, the magnitude refinement context mrc
which selects between two contexts depending on if every neighbor is insignificant or not, and
invokes a third in the case that the sample is not on its first refinement. (This is interpreted as
unpredictable).
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Figure 4.17: Core of the VYPEC compressor.
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Figure 4.18: Context generation module outputting all contexts at once.

The sign bit context sbc and sign bit xor sbx bit are calculated on the bottom central part.
They take into account the number of significant positive and negative neighbors, detecting
patterns in horizontal and vertical neighbors.

Finally, the significance propagation context spc is the most complex of all. Two methods
of obtaining it are run in parallel. They detect different kinds of patterns in the neighbors’s
significance values, and depending on if the block belongs to a HL, LL, LH or HH pass of the
wavelet transform, use one or the other.

For cleanup, prediction is quite straightforward as seen in Figure 4.19. For the flags indicating
if there is a significance change, the magnitude bit is checked along with the abz and fnz flags
to see whether the bit is zero, or is the first in the column that is different than it. This, along
with the sign, determines whether the new significance value will be preserved, or instead will
be changed by that of the sign associated to the sample.

Things are more complex for the significance propagation prediction that is shown in Fig-
ure 4.20. Here, the inevitable cascading effect is seen as an orange path. But instead of feeding
back into the CG modules, a simple path is used in the predictor module, greatly speeding up
operation.

The new significance is either the one previously held or the one acquired by the sign bit as-
sociated to the sample being processed. Whether this new significance is valid or not depends on
the neighboring samples being insignificant, and on the cascading feedback loop not converting
any of the above samples in significant.

4.2.3.1 Module memory

Lots of different inputs are fed into the module that come from memories. First, the samples
to be coded are stored in a four-word-wide memory that reads full columns of samples at once.
From there, a mux selects, depending on the plane being coded, which is the magnitude bit m
and which is the sign bit s for each of the four samples, feeding those to the module.
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Figure 4.19: Prediction of the significance value after the cleanup pass.
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Figure 4.20: Prediction of the significance value after the significance propagation pass.
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Figure 4.21: MQ-coder diagram.

The ic and fr flags are stored in the same manner, but this time in a memory with a bit
depth of one. The main difference is that these flags will be updated by the coding process
itself. To do that, and since they are initialized by the first pass, a FIFO memory is used that
can more easily and faster address all the data.

The significance values are, in the same way, stored in a FIFO. But since the current column,
as well as fourteen other neighboring samples are needed, the solution is to have three different
FIFOs chained together. One corresponds to the current c row of columns, and the other two
to the previous p and next n rows of columns. From each FIFO, three columns are output at
once, the current column, the one to the left and the one to the right. A total of 36 values from
which 18 are used. Four are updated and fed back into the FIFO chain.

4.2.4 MQ-coder implementation

Out of the two approaches seen in Section 4.2.2.2, pipelining and dual symbol processing, pipelin-
ing has been chosen here as the accelerating technique. Usually, dual symbol processing is done
when traversal through the block is bit by bit, and at most two CxD pairs are generated at
each clock cycle. This makes dual symbol processing useful to keep up with the output from
the BPC. Here, pipelining is preferred since it results in a simpler design, and the problem of
keeping up with CxD generation (which for this design can be up to 10 pairs per second) is
solved by a CxD FIFO buffer between the BPC and MQ-coder.

The MQ-coder consists of three main parts separated by queues as seen in Figure 4.21.

First an interval update module keeps track of the value of the A register (the width of the
interval). The probability change, whether it was a success or not and the amount of shift
resulting from the probability change are passed to the next stage. These values are used by the
bound update module to update the C register, outputting bytes as necessary. However, these
three values passed can be merged together in some cases to feed less inputs to the last module
(which might stall every so often). To help stalling be less prevalent, a fuser module combines
pairs of the outputs from the interval update module by adding the probabilities and number
of shifts together if the hit flag is either up or down for both outputs.

The first stage, or interval update stage, is seen in Figure 4.22. A clear separation is seen
between both pipeline stages, highlighted by the orange squares that represent registers and
memory modules.

First, the context memory is accessed. Seven outputs are produced, with all of the information
related to that context. The probability estimate, the state to change if the most probably or
least probable symbols are hit, the xor bit for the prediction change when probability goes below
0.5, the already shifted probability value (to avoid a shifter down the pipeline), the shift value
itself, and the prediction.

The memory gets written from the outputs of the state ROM. It contains the same information
for each of the different states of the predictor. Each context has a state associated to it, but
accessing first the context and then the state information would take 2 cycles. Saving the
information from the state ROM along with the context brings this down to 1 cycle. When
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Figure 4.22: MQ-coder interval update module.

the same context appears twice consecutively, forwarding muxes get activated since the context
memory is not yet updated. The values from the state ROM are read using the MPS and
LPS state transitions, which are used if new symbol corresponds to the most probable or least
probable according to the current state of the predictor.

Using the current context information, the prediction is adjusted, updating the A register.
The key to speeding this up comes from the realization that A might be updated in one of four
ways: Either it is not shifted, shifted once, twice, or the contents come from memory. In the
last case, the number of shifts is already known and comes from memory. This results in time
savings since a shifter is not needed, and values that otherwise would enter a barrel shifter are
pre-calculated. The number of shifts, correspondingly, is either 0, 1, 2 or read from memory.

The number of shifts performed, probability value to add to the register C, and hit flag
(indicating C needs to be updated with the probability) are sent to the next stage.

Lastly, the C register gets updated as seen in Figure 4.23. The input probability gets added,
and shifting is performed.

A countdown timer keeps track of the number of bits already used up, and emits them when
the leftmost byte of the C register gets filled. Depending on the value of that byte, different
paths are taken, since the codes 0xff80 and up are reserved. If it is 0xff, the following byte
gets a 0 prepended, and if it is 0xfe, care is taken not to overflow it when adding the next
probability (since this would create a 0xff).

The bytes are buffered to check for these patterns, and when no longer in used they are
output along with a write flag to the output queue. Note that enabling of the circuitry depends
on the queue not being full, so this ensures space is always available.

A finite state machine (Figure 4.24) keeps track of the different registers and controls the
circuitry depending on the state. It also controls the input queue for data, and outputs flags to
indicate the module’s status.

The idle state is the one defaulted to after resetting. Whenever new data is available on the
FIFO, the state turns to values read, and a shift is made to the C register. If more shifts are
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Figure 4.23: MQ-coder bound update module.

needed, the pipeline state is entered. From those two states, either the pipeline is maintained if
necessary, or a new value is read, or the idle state is entered if more data is not available. Once
finished, the termination sequence is entered. All remaining bytes will be dumped, after which
the termination code 0xfffe will be dumped to the output stream.

Each update, C might be shifted anywhere from 0 to 23 times, resulting in the output of up
to three bytes. Instead of performing shifts bit by bit, full bytes are always shifted. This can
result in stalling since only 1 byte is output per cycle. This could be solved at the expense of
increasing the critical path by outputting all three bytes at once. However stalling has been
found [165] to only happen around 1% of the time. As the critical path increases by over 1%
in length if parallelized, stalling is preferred. In any case, the fuser module placed before will
lower the amount of inputs to the bound update module to around 50%, so even when taking
into account the stalling, the bound update keeps up with the interval update fast enough. In
any case, for the extreme case where it did go slower, FIFOs ensure stalling happens with no
data loss.

Idle

start

Values read

Pipeline

Start termination Terminating Output ff Output fe Finished

!empty

end ∧ empty

!end

end∧!empty

end ∧ empty

end∧!empty

!end

empty ∧ fin

remaining > 0

Figure 4.24: FSM of the bound update module within the MQ-coder.
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4.2.5 Pipelined approach

Both the BPC and the MQ-coder are chained together to create the full tier 1 coder within the
JPEG2000 compression flow. The diagram for this implementation is seen in Figure 4.25.

At first, the BPC creates the CxD pairs. Given the design, these are created at a variable
rate in a parallel fashion, outputting anywhere from 0 to 10 pairs per cycle. To make the CxD
flow uniform, a serializer is placed afterwards that takes the parallel output and selects only the
valid pairs which are then fed into a single serial queue in the order specified by the standard.
From here, CxD pairs flow to the MQ-coder.

It consists on the interval update module that deals with the value of the A register, followed
by the fuser module, and lastly the bound update module which updates C and emits the
consolidated bytes.

The FIFOs in between stages help mitigate the stalls from the bound update stage, and
mitigate the droughts or excess of CxD pairs by having a big buffer in between the BPC and
MQ-coder.

The full pipeline has a total of fifteen stages. Despite the deep pipeline, this has negligible
impact on speed, since coding of a full 64× 64 block of 16 bits per sample takes a minimum of
1024 · 3 · 14 + 1024 = 44032 cycles, so filling the pipeline takes at most 15/44032 = 0.03% of the
total cycles.

4.3 LCPLC

Lastly, LCPLC is a more novel algorithm that targets near-lossless compression, being able to
compress losslessly and to introduce a slight loss if necessary. In this aspect, it is similar to the
newly released CCSDS 123.0-B-2[34], which is the second revision of CCSDS 123.0-B-1[32].

4.3.1 Software

Software wise, LCPLC does not have the number of implementations that CCSDS has. It was
designed to be used in the Exomars mission. Unfortunately, being a specific algorithm, public
implementations do not exist to the best of the author’s knowledge.

In any case, designing the algorithm in software was as straightforward as following the
equations in the original work [5]. As with the designs for CCSDS 123.B-1 and JYPEC, the
important part was instrumenting the code to be able to trace any of the intermediate values
in the data dependency chain. Specifically for this algorithm, and since its implementation was
going to be highly pipelined, each hardware module has an equivalent software module that
emulates it. This way, simulation values can be easily compared, and errors quickly detected.

The code can be accessed in [20]. It reuses the I/O and distortion measures from JYPEC to
simplify development.
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4.3.2 Previous work

A different approach is taken in LCPLC than in the other two algorithms. Since backwards
dependencies are very few, a highly pipelined design was thought to be the best option. Few
implementations of this algorithm exist, taking advantage of data parallelism [179] or coarse-
grained task parallelism [76, 178] through HLS.

Given the simple nature of LCPLC’s operations, a novel and simple approach is proposed:
create simple modules that operate over streams of data, targeting fine-grained parallelism.
Modules are chained together to create the complex functionality of the whole algorithm. A
common protocol is mandatory to synchronize data transfers, and in this case it is the AXI-
stream [14] protocol.

Many streams will be working in parallel at the different stages of the algorithm. Streams
will split to parallelize execution and re-joined later for further processing. Latencies on each
stream are different, so care is taken to provide proper synchronization. Furthermore, FIFOs
are carefully allocated to avoid deadlocks due to data streams waiting to be synchronized with
data that hasn’t been yet produced.

4.3.3 The AXI-Stream protocol

The AXI-Stream protocol is a quite simple way of interconnecting modules that lie close together.
A transfer can be done each clock cycle, since both the emitter and receiver of the data are clock
synchronized. This makes it extremely efficient since it maintains the maximum efficiency of
1 clock/data transfer of a tightly coupled system while allowing the flexibility of a generic bus
specification.

The AXI-Stream protocol connects just one emitter with one receiver, so it is a point-to-point
connection. Its basic four lanes1, seen in Figure 4.26, are:

� Valid flag. This flag is raised by the emitter, indicating that the data (also set by the
emitter), as well as any information that accompanies it, is valid in this clock cycle.

� Ready flag. This flag, along with the valid flag, takes care of the control of the bus. When
raised (by the receiver), it indicates that the receiver can read information presented on
the bus in this clock cycle.

� Data lane. A variable-width data lane containing the necessary information for a transfer.

� Last flag. An optional flag that signals when a burst of data is finished (e.g. if processing
packets of some kind, it can indicate when the packet is finished).

If the emitter sees the ready flag go up while it has the valid flag up, at the next clock cycle
it can initiate a new transfer, and can safely assume that the receiver has read the data since it
was ready.

Likewise, if the receiver sees the valid flag, it must operate on the input data since next cycle
the emitter could be initiating the next transfer.

The receiver will usually have some kind of buffer which, when empty, raises the ready flag
and waits for a valid signal before storing the contents of the data lane.

Whenever a transfer is made and the last flag is raised, this indicates that the burst is
completed. A burst might just contain one transfer, and as such one can be initiated each clock
cycle.

1More optional lanes exist, but are basically extensions of the data lane since they add no functionality protocol
wise.
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Table 4.1: The basic building blocks for the LCPLC algorithm. All follow the AXI4-Stream protocol
on inputs and outputs.

4.3.3.1 Adapting the protocol

For the purpose of the LCPLC algorithm, the basic lanes have been used, but having four bits
for the “last” lane. This allows to indicate whenever a row, slice, block or image is finished,
giving precise information about where in the image the compressor is working. This, which
implies a communication overhead, greatly reduces the otherwise even bigger overhead of having
a counter to keep track of the current position. It also makes the core more flexible, since a
counter needs to be configured each time with its limits, while a flag-based system can transition
seamlessly between different data sizes.

All the following diagrams will contain interconnected modules, where arrows indicate AXI-
Stream buses. The direction of the arrow indicates the direction of the data. However the ready
flag will always be moving in the opposite direction.

Lower level logic is not considered interesting (aside from the occasional FSM diagram) since
even simple adders have been encapsulated in AXI-Stream modules. The complexity of the
design lies in how these modules interconnect, and not in the modules themselves. Nonetheless,
care is taken to explain in detail the inner workings of the slightly more complex modules.

If that is still not enough detail, the reader is referred to [20] for concrete information about
the implementation by looking at the code itself.

4.3.4 Basic modules

Before delving into LCPLC’s implementation, first a few remarks are given about the simple
modules that are listed in Table 4.1.

� The add, sub, mul and div modules all work in the same fashion: They take two input
AXI-Streams and output a single combined output Stream. First, the inputs are synchro-
nized so that a sample is read from both inputs at the same time. Then, both samples
go through the operation pipeline. This takes a variable number of cycles. For additions
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and substractions, 1 cycle is enough to perform the operation. For multiplications under
18 × 18 bits, three cycles are used, and four for multiplications under 25 × 25 bits (this
is due to using 1 and 2 DSPs respectively). Divisions are done with a simple shift-and-
substract algorithm, which takes up to n cycles where n is the difference in bits between
the dividend and divisor.

Inputs can be configured signed or unsigned, with variable bit-widths which might impact
latency as previously seen. All modules except the divisor are internally pipelined, and
can process 1 sample/cycle once the pipeline is full. The divisor is not pipelined since
divisions naturally do not overlap when executing the algorithm, and so the same registers
can be reused for the division, saving resources.

� The cmp module performs a variety of comparisons between two input streams and puts
the result in an output stream. The inputs are again synchronized like in the arithmetic
modules.

� The shift module again syncs two input streams of data and shift amount, and outputs
the data shifted by its corresponding amount. The maximum amount of shifts that are
done per cycle can be configured (to gain speed) by the user. The stages are pipelined,
and so despite the latency gain, throughput once the pipeline is full is maintained at 1
shift/cycle.

� The sum module works a bit differently. Instead of producing the same amount of outputs
than of inputs, it keeps an internal accumulator growing until the “last” flag is passed along
with a piece of data. It is at that moment when it outputs the current accumulator, and
resets it for the next sample. It thus adapts to any block size, since counters and limits are
not needed. The only thing that needs to be configured is the maximum amount of inputs
that will be accumulated, to make room for the accumulator itself. If the input stream
brings more samples than that number before the “last” flag is raised, then the output
might have overflown. This is not a problem in practice since the number of samples before
the “last” flag goes up is always bounded (less or equal than the block size).

The average module adds a counter to the accumulation process. When outputting, the
accumulator is divided by the counter with a division module. If the counter is a power
of two, the division process is skipped and instead a shift is performed for an increase in
performance.

� The clamp module takes an input value and, if outside a pre-configured interval, rounds
it to the nearest value that lies within that interval. This is done in two (pipelined) stages
for increased performance.

� The filter module feeds off two different streams, one of which is a flag stream which
indicates, for each sample in the data stream, whether or not to keep it. The output will
contain only those samples that are kept.

� The FIFO module serves as a buffer when two different streams split and join later down
the line, but one has more stages than the other. In that case, failing to buffer data might
result in the bigger pipeline stalling because of lack of input data, which would be waiting
for the smaller pipeline to empty. If a feedback loop is present, this might even result in
a deadlock. As a result, FIFOs are important to keep the machinery running.

� The repeat module receives two streams, a data and a flag stream. The data is repeated
until the flag is brought up, at which point the next value in the data stream starts to
get repeated. This is useful for values that need to be used many times for the same
calculation as this doesn’t consume them right away.

� The divert module alternatively redirects a stream between two output ports, depending
on the value of an input flag that is synchronized with the input data stream.
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� The split module, instead of sending the data to only one of its outputs, sends it to every
output. It makes sure that all the output streams have read the output data before putting
up the next value, ensuring no output stream loses samples. For this, a double buffer is
used where first the input sample is stored, and then a buffer is placed for each output
from which the output streams read individually. Once this second buffer is emptied, the
first is dumped there and the process begins again.

� The merge module feeds off two data streams and are alternatively output to the output
data stream. A flag comes with both input streams, and whenever the flag is raised in the
“active” stream, it is switched to the other until its flag is raised and the process repeated.

� The sync module works also on two input streams, but this time the output contains the
combined data of the two inputs. The input streams are first synchronized, and whenever
samples from both of them are available, a single fused value is output.

4.3.5 The core

The main view for the LCPLC core is seen in Figure 4.27. There is just one Axi-Stream input
and one Axi-Stream output. The input is the values x corresponding to the different samples
of the image. Each sample comes accompanied with a set of flags lr, ls, lb, li which respectively
indicate if that sample is the last of its row, slice, block or image. These inputs alone control
all the circuitry that comes after, since bound detection is made using them and not counters.
Thus, the image size is unbounded. However, internal queues are sized according to a (settable)
maximum image size, so the user must decide what the maximum input sizes (NX ×NY ×NZ)
will be beforehand. Anything below that size can be compressed. Anything above might stall
the circuit.

The output is a sequence of bytes, of which the last one will be marked. This mark indicates
that the stream coming from input x has been successfully compressed up to the sample marked
with the li flag, and that further bytes will correspond to the next run of samples starting after.

Each slice is processed independently, with cumulative results form one slice used to process
the next. First, data is split into two streams: one will be used to calculate the error by
comparing the raw values against the predictions, and the other will be used to calculate the
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Figure 4.28: Module for the prediction of the first band.

predictions themselves. The prediction stream is also diverted into two, where the first slice will
feed to the first band predictor, and the rest will feed to the nth band predictor.

Predictions from both predictors are merged and go on to the error calculation module, where
they combine with the previously split raw input stream. There, the distortion is calculated as
the mean squared error, and depending on the distortion threshold, the final value going forward
will either be the raw or predicted values.

After deciding which one to use, the values will feed to the alpha module, where along with
the next slice they will create the alpha value required for prediction of the nth slices. Then,
the cycle keeps repeating until the end of the block is reached, where the input again switches
to the first slice predictor.

4.3.5.1 First band prediction

Prediction for the first band is quite simple as shown in Figures 4.28 and 4.29. First, the samples
go through the quantization process (in case lossy compression is desired), and then continue
on to the predictor itself. The feedback loop is primed with a 0 for the first sample prediction,
and afterwards it keeps emitting predictions until the slice is finished.

For quantization, samples are rounded to the nearest value multiple of the chosen power
of two 2n, by adding 2n−1 then shifting right n times. This quantization method is preferred
to truncating since it minimizes the error according to the distortion measure used for this
algorithm (Equation (3.55)). Dequantization is just a left shift of n.

Reset

start

First sample

First row Rest of slice

ls ∧ lr

l̄r
l̄s ∧ lr

l̄r

ls ∧ lr

l̄s ∧ lr

l̄s ∨ l̄r

ls ∧ lr

Figure 4.29: The FSM for the 2D predictor used
in LCPLC for the first slice of each block.

To keep track of the position within the
slice, a FSM is used. Simply enough, it starts
at the first sample, for which the prediction is
zero. Afterwards, it moves to the “first row”
prediction mode where the prediction is equal
to the previous sample. Finally, when the end
of the row is reached, a third mode is entered
where the sample above the current one (same
position but in the previous row) is also used.
If the sample is the first within the current
row, the prediction is equal to the above sam-
ple. Otherwise, the above and previous sam-
ples are added together then shifted by one to
get the current prediction.

4.3.5.2 Nth band prediction

Also simple is the prediction of any slice after the first one, seen in Figure 4.30. The formula
from Equation (3.54) is taken into circuit form by chaining a subtraction, multiplication, and
addition modules. Since α and µ values are generated once per slice but here are needed as
many times as input samples are, they are repeated until the input samples run dry.
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Figure 4.30: LCPLC module for the prediction of bands after the first.
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Figure 4.31: The error calculation module.

4.3.5.3 Error calculation

Both raw and predicted values are fed into the error module (Figure 4.31). Two main functions
lie within: generate the outputs for the coder, and generate the values for the feedback loop.

Regarding the former, both raw and predicted values are subtracted and then the distortion
is calculated and compared with the threshold. The d flag carries this information, indicating
with either 0 or 1 if the distortion met the threshold or not. This decides what is to be coded,
and what values to use for the prediction of the next band.

The same error that goes onto the d flag calculation is also quantized and mapped to produce
the mapped residuals that are to be coded if under threshold. They get dequantized back to
output the decoded values, as well as to generate the parameter k for the output coder.

Error mapping is done following a simple formula that maps all values to positive integers
for the coder to process:

mê
m,n,i =

{
(|êm,n,i � 1|)− 1 êm,n,i > 0
|êm,n,i| � 1 êm,n,i ≤ 0

(4.2)

The sliding accumulator module keeps a running sum of the 32 latest dequantized errors. A
FIFO queue stores values for 32 cycles and then an add-subtract combo updates the accumulator
value by adding the latest and subtracting the queue’s output. Since the accumulator won’t have
32 samples stored when starting, the actual number is also output along with the accumulated
value. That way, the KJ calculation module can obtain the k parameter for coding based on an
estimated average of the most recent errors seen.

To do so, a pipeline obtains the coding parameter k as follows, using R and J from Equa-
tions (3.56) and (3.57), following Equation (3.58):
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Figure 4.32: Module for the selection of the final value to be coded, depending on distortion.

bJm,n,i = dlog[2]Jm,n,ie
RSm,n,i = Rm,n,i � bJm,n,i

km,n,i =
⌈
log2

(
Rsm,n,i

)⌉
+ 1

(4.3)

Note that this is different from the original design where k is the smallest value such that
J � k ≤ R. There, the straightforward implementation would be to shift right R for every
possible value of k, checking against J the first inequality J ≤ R � k that holds. This would
imply as many comparators as values k might hold (32) as well as the decision muxes, which is
too expensive.

Instead, J is assumed to be of the form J = 2j , then R is shifted right by j, which can
only range from 1 to 5. then, k is equal to the position of the leftmost nonzero bit of k � j.
This is much faster and simpler than the original version, causing no observable difference in
compression efficiency.

4.3.5.4 Coded value selector

Depending on the distortion flag d, values x̂ can come from two different streams, as well as their
average. Since that is used in the feedback loop, the first thing that is done is to pre-calculate
average values from both streams to avoid losing time after deciding which stream to use. This
introduces the overhead of an additional average module, but reduces time by as many cycles
as samples in a slice.

In any case, samples from both streams, as well as averages, wait on FIFO queues until the
flag is ready. Then, they are filtered and only the ones from the correct stream used, as seen in
Figure 4.32.

4.3.5.5 Alpha calculation

Figure 4.33 shows the process of obtaining the α value used in prediction.

Raw values, as well as decoded values are fed into two different lines, which generate the
differences with respect to their respective average values. Those differences get multiplied with
each other and then accumulated. The accumulated values are then divided to generate the α
value, according to Equation (3.53).
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Figure 4.33: Module for the calculation of the α value.
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Figure 4.34: Module for the coding of the outputs in LCPLC.

4.3.5.6 Coder

Finally, the values that exit the main prediction loop get coded. µ̂ and α̂ are first coded. Then,
the d flag decides whether or not to code the mapped residuals and k values based on the
prediction accuracy. Thus, either they are not coded, which will imply having the prediction in
the reconstructed image (lossy), or they are coded and the original data will be reconstructed
(lossless). The coder is shown in Figure 4.34.

Care is taken to send the first instance of each run of mapped errors to the exp-golomb coder,
while the rest go through the normal golomb coder along with parameter k.

For the exp-golomb coder, a code and code length are output for each input value v:

cez(v) = v + 1
lezc (v) = dlog2 (cez(v))e � 1 + 1

(4.4)

Thus, the output stream will contain as many zeros as the length of the code, followed by
the code itself (i.e: a value v of n bits of magnitude will take up 2n bits in the output).

The golomb coder uses an additional parameter k for computing the code and code length:

r(v) = v ∧
(
2k − 1

)
q(v) = v � k
cg(v) = ((1� q(v)− 1)� (k + 1)) ∨ r(v)
lgc (v) = k + q(v) + 1

(4.5)

There is a rare case where the code might be too long, and is split across multiple output
values.

Finally, a control logic module selects the order in which all of this data gets output (Fig-
ure 4.35).

At first, the d flag for the first slice is discarded since it is always losslessly coded. Then, the
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Figure 4.35: Finite state machine for the control logic of the coder in LCPLC. Note that all transitions
occur when flags for data synchronization are up. This is not depicted for simplicity.

average value of the first slice is output. Note how the alpha value for the first slice is never
output since it doesn’t exist.

Afterwards, golomb coding comes into play. First, the exp-golomb coder will output the
sample it codes, followed by the normal golomb coder. Three states are used to increase speed.
A default golomb state that waits until data is ready, a primed state that both reads inputs
values and outputs coded ones, and a last state that just outputs the last value. After that, the
end of block flag is checked. If up, the cycle starts again on the first slice of the next block.

If the block hasn’t ended, that means more slices are present. The flag to indicate if they are
coded or not is output. If it indicates a skip, a path is taken to output just α and µ, and then
check again if the block is finished. Otherwise, the golomb-coded samples are also output.

On each state, the FSM sends the packer the compressed it needs to emit. This is done via
pairs of values which indicate both the code itself and its length. For example, a code might be
00010001 with length 5, indicating that the final output must contain just 10001. The packer
emits byte by byte, so it keeps a buffer with the bits that do not amount to a byte yet. Once
a new value comes in, it is placed on the left of the buffer and, if 8 bits are present, a byte is
emitted and a shift of 8 units done. Since incoming codes can be quite long, the resulting buffer
might contain more than 8 bits after shifting. If that is the case, the packer stops accepting new
inputs until the buffer is below 8 bits. When the last signal is received, what is left in the buffer
is output, padded with zeros.

4.3.6 Doubling the algorithm’s speed

With the main algorithm already explained, the dependencies can be analyzed. The main stages
can be divided in five: average calculation, alpha calculation, prediction, error calculation and
coding. They are slightly different for the first block slice, which doesn’t include the alpha
calculation, but otherwise are the same for the rest of slices (which amount to hundreds in most
cases).

Average calculation has to complete before alpha calculation, but that is not a problem
since all averages could be calculated beforehand. Then, the alpha value is used for prediction.
The problem is that a full slice needs to go through the alpha module before outputting the α
value. So those operations cannot overlap. Error calculation however can be done overlapping
prediction, and its output goes to the coder which doesn’t feed back into the system so for
pipelining purposes can be ignored.

The only problematic slice-to-slice dependency comes because the error calculation of a slice
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Figure 4.36: Timing diagram for the first approach to the LCPLC compressor.

Avg

Alpha	calc

Error	calc

Code

Prediction

Slice	0

Slice	0

Slice	0

Slice	0

Slice	1

Slice	1

Slice	1

Slice	1

Slice	1

Slice	2

Slice	2

Slice	2

Slice	2

Slice	2

Slice	3

Slice	3

Slice	3

Slice	3

Slice	3

Slice	4

Slice	4

Slice	4

Slice	4

Slice	4

Time	slot t0 t1 t2 t3 t4 t5 t6 t7

Figure 4.37: Timing diagram for the second approach to the LCPLC compressor. By forwarding data,
stalls in between slots are eliminated, and perfect pipelining is achieved.

si needs to fully complete before the alpha calculation of the next slice commences, since the
average value used for α calculation depends on the decoded value, which in turn depends on
the distortion: if it’s above threshold, the real average value will be used, and otherwise the
average of the decoded values will be used instead.

So, when pipelining slices, not all stages can overlap, producing a stall of the order of the
slice size, as seen in Figure 4.36.

However this problem can be avoided if the problematic dependency is removed. This is
done via a slight modification of the algorithm. Instead of using the decoded average value, the
encoded average value will be used. Both differ, but over a full slice, it is to be expected that,
even in the lossy case, the average value of a full slice of decoded values will be close to the raw
average value. Indeed, no difference was found in compression ratio when using this shortcut
technique.

To fully achieve continuous operation, another trick has to be used: outputs x̂ and x̃ from
the error calculation module, which would have to wait until the d flag is ready for passing on
to the α calculation, are fed into two different modules. That way, both possible α values are
calculated and ready when the d flag is output. In that moment, all slice values for x̂ and x̃,
which were waiting behind a selector, go through, being selected based on d value. As soon as
the prediction of one slice is finished, the alpha value can directly enter the nth band predictor
since it was pre-calculated due to using the encoded mean. The next slice can thus start its
cycle immediately. The timing diagram for this is seen in Figure 4.37.

All in all, the resulting hardware is slightly more complex, as seen in Figure 4.38. Queues
are a bit longer to ensure no deadlocks occur (the diagram assumes a 16× 16 slice, with values
over the FIFOs indicating their depth), and two alpha modules instead of one are present. The
input control for the alpha calculation modules is also a bit more complex. Other than that,
the rest of the circuit is the same. The total overhead in size is studied in Section 5.5.2, but it
is negligible compared to a gain of double the throughput as is the case.
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Chapter 5

Results

In this chapter, results for all three algorithms will be shown. Both from the algorithmic
point of view (distortion-ratio performance) and from the implementation point of view (power
consumption, frequency, throughput, resources, etc). It is important to make this distinction,
since algorithms might have great algorithmic performance but lack on implementability, and
vice-versa. This approach will give a great overview of the characteristics of each one, presented
in Chapters 3 and 4.

Regarding implementation, three different FPGAs (Table 5.1) have been targeted throughout
the experiments: Two are radiation-hardened and ready for spaceborne missions, while the third
has greater processing capabilities but is not protected against radiation. This one will give a
good idea of the maximum achievable performance for the implementations, while the former
two will give an idea of the usability of these implementations on a more realistic scenario.
Functionality tests have been performed in the former, while syntheses have targeted all three.

To test the algorithm, non-FPGA runs of the algorithms have also been done on a computer.
This is a DELL XPS 13 9360 running Windows 10 as the OS. It has an i7-7500U processor [98]
running at 2.7GHz with 4MB of cache, two physical cores running two threads each for a total
of four, and a TDP of 15 Watts. Alongside it, 8GB of RAM at 1866MHz and 256GB of PCIe
SSD.

Since on-board processing is one of the main targets of this approach, it is interesting that
all algorithms work in real time. The throughput of the most popular sensors has been studied,
and the threshold for real-time has been set as the throughput of AVIRIS-ng (Table 5.2) given
it is fast, already operational, and their images widely used for experiments. A new sensor
with a launch targeted at 2020 is also included [63] for reference in what comes in the future
throughput-wise.

Different images of different sizes have been used to test the algorithms. Their performance
depends on the image characteristics, so using multiple of them serves as a way of smoothing
out these points where performance might be under or over stated. The image characteristics
are seen in Table 5.3 and a preview in Figure 5.1.

Model Logic Cells Slices RAM blocks RAM(Kb) DSP I/O

XQR4VSX55 [223] 55296 24576 320 5760 512 640
XQR5VFX130T [222] 81920 20480 596 10728 320 836
XC7VC690T [220] 693120 108300 2940 52920 3600 1000

Table 5.1: Different FPGA models used for synthesis and testing. The first two models are radiation-
hardened.
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Sensor NZ NX Scan rate S. period Throughput Bits Throughput

AVIRIS [107] 224 677 12 Hz 549.52ns 1819776S/s 12 2729664B/s
AVIRIS-ng [108] 480 640 100 Hz 32.552ns 30720000S/s 14 53760000B/s
EnMAP [63] 228 1000 230 Hz 19.069ns 52440000S/s 14 91770000B/s

Table 5.2: Throughputs of the AVIRIS, AVIRIS-ng and EnMAP sensors. S/s is samples per second.
Note that the reported scan rates are the maximum, and the sensors can also work in lower throughput
modes.

Image NX NY NZ Depth Description

JR 512 614 224 16 Jasper Ridge natural reserve
WTC 512 614 224 16 The World Trace Center
CUP 350 350 188 16 Cuprite valley in Nevada
SUW 320 1200 360 16 Lower Suwannee natural reserve
DHO 320 1260 360 16 Deepwater Horizon oil spill
BEL 320 600 360 16 Crop fields in Belstville
REN 320 600 356 16 Urban and rural mixed area
CRW 614 512 224 16 Cuprite valley full image
HAW 614 512 224 12 Aerial view of Hawaii
MAI 680 512 224 12 Image from Maine, USA
YELXXC 680 512 224 16 Images from Yellowstone National Park

Table 5.3: Images used for testing.

Figure 5.1: Small cutouts of the images from Table 5.3. In reading order: CRW, BEL, CUP, DHO,
HAW, JR, MAI, REN, SUW, WTC, YEL00C, YEL03C, YEL10C, YEL11C, YEL18C.
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5.1 Summary

Different approaches have been used to study the algorithms. Consequently, different kinds
of results and data are available. This small section aims to provide a summary of all the
experiments carried out.

For CCSDS, the analyses focus on how the different parameters impact the characteristics of
the compression module. Compression ratio, occupancy, power draw and timing are analyzed,
looking to find the best compromise between parameter selection and those four metrics.

For Jypec, a dual approach is used. First the software is analyzed in great detail, fine-tuning
and optimizing for execution time, compression ratio and quality. To that end, distortion-
ratio curves are analyzed as a function of different parameters. The effect of these parameters
is profiled, and a multi-step optimization procedure carried out in which default settings are
provided for all parameters. A set of configurations is obtained that optimize distortion-ratio
performace at all the different possible levels, producing from high-quality moderately-sized
images, to low-quality aggressively-compressed images.

Following the first round of analyses, profiling is done of a moderately aggressive configu-
ration (that produces decent-quality highly-compressed images), and the most time-consuming
part identified and accelerated. The throughputs are analyzed according to bitdepth (the only
configurable parameter in this case). The final accelerated times are compared with the original
ones, to see if FPGAs make a significant difference, by looking at the speedups obtained.

Regarding the LCPLC core, both the hardware aspect (occupancy and speed) are analyzed,
as well as the algorithmic performance (compression and quality). Also, an in-depth analysis of
the pipeline is performed to better understand the benefits of this approach.

The idea with the results that are obtained is to be able to put them into perspective with
the literature (by comparing, in their respective fields, against the characteristics that are more
often analyzed) as well as being able to compare the implementations of this thesis with each
other. To that end, Chapter 6 offers conclusions as to which algorithm is better suited for
different situations by comparing the different metrics obtained in this chapter.

5.2 Methodology

The results in the following sections correspond to both software simulations, hardware simula-
tions, and on-board testing. The general procedure followed was to first test the compression/de-
compression cycle in software, then replace the compression part of the cycle for a hardware
simulation, and then verify it with on-board testing. Decompression has been done in software.

All of the results for resource use and clock frequency given are for synthesis estimates from
either Xilinx ISE design suite 14.7 [221] for the Virtex-4 and 5 boards, or from Vivado design
suite 2018.3 [226] for the Virtex-7 board. These estimates are usually conservative, and improve
with implementation, so they are representative within a reasonable margin that errs on the
positive side of performance.

Power draw reports are post-implementation for the Virtex-4 and 5 boards, obtained with
the Xpower tool [233] included in [221], and are pre-implementation for the Virtex-7 obtained
with [226]. These are approximate results based on the maximum clock frequency attainable
by the design, and a default estimate of gate toggling and memory accesses, and should only be
looked at as broad approximations.

For on-board testing, the implementations from Chapter 4 were tested in order to verify
correctness at their reported speeds. Given the unavailability of a hyperspectral sensor, two
approaches were used:
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Figure 5.3: Testing setup for LCPLC. USB is used for data transmission, UART is used for control and
status reports.

For CCSDS and JYPEC, their respective cores work on streams of data. In CCSDS, this
stream comes directly from the sensor, and for JYPEC, it is the result of the wavelet transform
after dimensionality reduction and bit shaving. In any case, the hardware that provides the raw
stream was not present. A UART link was set up with the board to transmit the information.
Even though the information flow and link are slow, the core run at the reported frequencies
producing correct results.

A diagram of the process is shown in Figure 5.2. A RS232 link is set up with the FPGA
through which data is streamed into the FPGA and received at the computer end. Tests lasted
for a few hours given the slow speeds (approximately 230kb/s of the UART link). At the end,
the data received from the FPGA was matched against the reference software result, errors did
not usually arise at this stage and were caught before in simulation runs of small image sections.

For LCPLC, a different approach was used. Since the image had to be in memory for block
access, a memory controller was developed, and the algorithm worked over data stored in RAM,
not coming from a link such as UART. The images were loaded via USB in the FPGA board’s
RAM modules (quite faster than the previous UART), and once loaded the algorithm was run.
Different clock domains were used for memory, status registers and control, and the core itself
as seen in Figure 5.3. A MicroBlaze processor was used to control DMA access as well as the
LCPLC core via the control AXI bus. It run a small script that started data transfer to and
from the LCPLC core, configuring it according to the algorithm’s parameters, and reporting
back the results to the computer via the UART link.

Timing results were taken on-board to verify the algorithm was processing samples at the
reported speed. The exact number of cycles taken to process each slice and block was stored by
the algorithm itself, then compared with simulations. Compression results were again compared
against the software golden standards to verify the implementation was working exactly as the
reference.
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NX = 512 NY = 614 NZ = 224
D = 16 Ω = 19 P = 3

vmin = −1 vmax = 3 tinc = 6
γ0 = 1 γ∗ = 6 umax = 16

kz = 5

Table 5.4: Default parameters for CCSDS

Experiments were carried out physically for the Virtex-4 and 7 FPGAs, and also synthesized
for the Virtex-5. Generally, errors arose only in simulation, and hardware testing was only used
to verify that the algorithm actually worked after having successful virtual tests.

The following sections show the results for each of the algorithms studied in this work.

5.3 CCSDS 123.0-B-1

CCSDS 123.0-B-1 is an algorithm designed for targeting a wide range of possible configurations.
That is why a lot of parameters are tunable to the specific characteristics of the sensor, image,
compression platform, etc. The parameters from Table 5.4 will be used by default, unless
otherwise stated, in the results going forward.

Full prediction mode, as well as neighbor oriented sums are also assumed by default. Results
are presented for the Virtex-7 FPGA.

At first, the effect of compression parameters P and Ω is analyzed in Figure 5.4.

Higher values of P and Ω increase the compression. P is special in the sense that, while
the increase in performance is evident at first, it degrades later, worsening the ratio. Regarding
resources, the effect of P can be seen in Figure 5.5.

Higher P values require more LUTs (given the operations that take place mainly in the weight
update), but the memory resources skyrocket for BSQ traversal mode, while they remain stable
for the frame-based traversal modes. The fact that P is ideal at a value of 3, along with sensors
usually outputting in frame-based modes, makes BSQ impractical for real use.

Regarding speed and power consumption, Figure 5.6 is revealing: power grows in BSQ mode
to enable all the BRAM modules, while clock cycle is similar for all three traversal modes, even
for high values of P . This further supports the idea of P = 3 avoiding BSQ mode.

Ω, on the other hand, doesn’t have as much impact in resources as P . Critical path and power
consumption stayed relatively constant even changing it, and LUT usage went up linearly from
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Figure 5.4: Compression ratio as a function of P and Ω. Scan order is irrelevant in this case.
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Figure 5.7: Compression of different images in different modes. Full (full) and reduced (red) prediction
modes, and neighbor-oriented (neigh) and column oriented (col) modes.

2000 LUTs at Ω = 5 to 2700 at Ω = 19. The increase in compression ratio though is enough to
justify using the maximum value.

Next, the different prediction modes are studied. Figure 5.7 shows how neighbor-oriented
sums provide a good way of improving compression ratio, yet full prediction mode is not as
powerful, sometimes even yielding poorer results.

When it comes to resources, Figure 5.8 shows a clear increase under full prediction mode,
which coincidentally is the mode that doesn’t provide much gain when it comes to compression
ratio. However, neighbor oriented sums do not increase resources as much yet provide approxi-
mately a 4% gain in compression ratio. The ideal combination is thus reduced neighbor, while
full neighbor can be enabled for slightly higher compression ratio if resources are available.
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Figure 5.8: LUTs used for the different prediction modes under different traversal modes.

200 300 400 500
0

200

400

NX

B
R

A
M

s BSQ
BIL
BIP

200 300 400 500
0

200

400

NY

B
R

A
M

s BSQ
BIL
BIP

200 300 400 500
0

200

400

NZ

B
R

A
M

s BSQ
BIL
BIP

Figure 5.9: Number of BRAM used depending on varying image dimensions. Base size for these graphs
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Figure 5.10: Resources used by the Virtex-4 FPGA. The threshold for BRAM is exceeded for BSQ
mode.

As for segmentation, a 4ns gain from 20 to 16ns in the critical path is achieved by pipelining
both sides of the prediction using the stages from Figure 4.1. The total cost for the pipeline is
approximately 250 registers, low enough (< 10% increase in LUTs) to be beneficial to include
considering the 20% increase in performance.

The amount of memory, which is the most limiting factor, is shown in Figure 5.9. BSQ is the
ordering requiring more memory resources, since P full bands need to be stored for differences.
Both BIP and BIL need the exact same amount of resources, which grows with the frame size
NX ×NZ . Ideally, the preferred method is either BIL or BIP, with images that are long in the
NY axis.

5.3.1 Space-grade FPGA

It was of interest to bring the compression core to a spaceborne system. In this case, the Virtex-4
FPGA is targeted, achieving the results shown in Figure 5.10. Critical path length doubles due
to the Virtex-4 having older technology, as well as power consumption. BRAM usage also goes
up (approximately 120 in all cases except BSQ), but LUTs stay at the same count.
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Figure 5.11: Parallel CCSDS occupancy results for the Virtex-4, 5 and 7 respectively. Note the scale
of the Virtex-7 graph maxes out at 20 and not 100.

5.3.2 Parallelization
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Figure 5.12: Throughput for different C
values. CCSDS parallel implementation.

Results almost reach real-time in the Virtex 4, but do
not quite match the speed (Table 5.2) of the AVIRIS-
ng sensor. That’s why the parallelization seen in Sec-
tion 4.1.3 is important. Occupancy results are given in
Figure 5.11, and performance in Figure 5.12.

The Virtex-4 maxes out at C = 7, while the 5 is
still at 80% occupancy at C = 16, and the 7 is below
20% at C = 32. This highlights the capabilities of each
FPGA. In any case, C > 2 is enough for real-time com-
pression on the Virtex 4, while with C = 1 it already
reaches real-time in both the Virtex 5 and 7, so any-
thing higher than that is only useful when compressing
a pre-recorded library of images.

It is worth noting that the speed reported is that of only the core, assuming that it can
receive C samples per cycle and emit C compressed samples per cycle. However, due to the
serial nature of the I/O, a bottleneck arises at those input and output points. In this case,
the limiting factor is at the output former, with 116MS/s on the Virtex-4, 179.7MS/s on the
Virtex-5, and 219.5MS/s on the Virtex-7, which gives us a maximum practical C value of C = 5
on all platforms (when the bottleneck of the serializer arises).

5.4 JYPEC

5.4.1 Software analysis

JYPEC is an algorithm with many options (Section 4.2.1.4) that influence the output quality
and ratio. As such, the effect of the different parameters will be studied in order to determine
the selection that yields the best distortion-ratio curve. But first, let’s see how it fares with
what will be a good selection of parameters in Table 5.5.

One of the first things that pops out is the inconsistency of the results. Using the same
parameters, compression ratios go from 120 to almost 2000, while SNR values vary between
20dB and 30dB. Also, the image that has the worst ratio has also the worst SNR, while others
with higher ratios are also compressed more.

Lossless algorithms already are unpredictable when it comes to compression ratio, depending
on the specific image being compressed for the ratio itself. Lossy algorithms such as JYPEC
introduce this variance also in the quality metric. So, while a general sense of the expected ratio
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Image Compression time Compression ratio SNR SSIM

SUW 7.581s 486.84 30.04 0.99984
DHO 7.513s 1914.37 25.39 0.99968
BEL 7.654s 348.88 30.85 0.99966
REN 7.391s 399.37 27.28 0.99910
CRW 9.209s 121.25 21.28 0.99611
CUP 4.333s 185.81 23.19 0.99921

Table 5.5: Results for the compression of different images under three wavelet passes, ten bits of
quantization, and a PCA of four dimensions trained on 1% of the total samples.
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Figure 5.13: Distortion-ratio results for the different algorithms (REN image). 5 clusters were used for
VQPCA, with t = 1.

and quality is obtained given a set of parameters, exact values are not possible to obtain, which
is something to take into account when using any kind of lossy algorithm.

5.4.1.1 Dimensionality reduction algorithms

The first thing to study is how the dimensionality reduction algorithm affects the results. Fig-
ure 5.13 shows the curves for all dimensionality reduction algorithms, including two different
libraries for vector quantization.

Two things are noteworthy in this graph. First, MNF falls way behind the others. This is due
to not having the noise matrix available. Normally, it works by using the original data matrix
and a noise matrix, which in this case is estimated from the data matrix. This estimation is done
by assuming a uniform noise distribution across the image. However, for hyperspectral images,
noise is often present as anomalies that happen across the width or length of the image differently
at different bands. This creates extreme noise estimations in places where a sensor error might
have occurred, giving them an importance that dims the rest of the image comparatively. Thus,
it is not a good algorithm for this application, at least without prior knowledge of the sensor’s
noise.

Another interesting effect is how VCA fails to properly reduce dimensionality after r = 7.
VCA works best when the target dimensionality is equal to the actual dimensionality of the
embedded subspace. In this case, that value is probably between the 6− 9 range, thus lowering
the performance after that point.

The algorithms with consistent curves are the best, following the same logarithmic curve.
Both versions of the vector quantization are above the rest in quality, with PCA being the best
among linear reduction algorithms.
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Figure 5.14: Time taken to compress for the different algorithms. 5 clusters were used for VQPCA,
with t = 1. (REN image)
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Figure 5.15: Compression ratio obtained by applying the different dimensionality reduction algorithms
for JYPEC. 5 clusters were used for VQPCA, with t = 1. (REN image)

Time-wise, Figure 5.14 shows how the most costly algorithms are those using vector quan-
tization, while PCA is, by far, the fastest. This fact, along with those three being the best in
quality, will imply a trade-off between speed and quality.

Lastly, looking at the compression ratio in Figure 5.15, the least compression comes from
the vector quantization algorithms, while the others are compressing much more (notice the
logarithmic y axis). This is because the additional complexity requires additional resources to
save all the values needed for decompression.

With the more complex VQPCA versions having greater quality but lower compression, the
true performance is seen in Figure 5.16 with the distortion-ratio curves.

The linear algorithms SVD, PCA and ICA go hand in hand, while the nonlinear VQPCA-
based algorithms also present the same curves. While at low compression, nonlinear algorithms
present higher quality, at high compression, the linear dimensionality reduction algorithms out-
perform the former, as the need to store additional information is lower. With PCA being the
best linear reductor, a direct comparison with VQPCA is due, based on the number of clusters.
Figure 5.17 shows this comparison, realizing that PCA is just VQPCA with one cluster.

With more clusters, the SNR is higher at low compression. With less clusters, quality is
higher at high compression. So, ideally, at each moment, the number of clusters should be the
one that maximizes the distortion-ratio curve. This will be optimized in Section 5.4.1.6.
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Figure 5.16: Distortion-ratio curves obtained by applying the different dimensionality reduction algo-
rithms for JYPEC. 5 clusters were used for VQPCA, with t = 1. (REN image)
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Figure 5.17: Distortion-ratio curves obtained by using VQPCA with different number of clusters. t = 1.
(REN image)

5.4.1.2 Training sub-sampling

The training process can be sped up by sub-sampling the training samples using the parameter
t, which indicates the fraction of input pixels used for training the dimensionality reduction
algorithm. Table 5.6 clearly shows that higher values of t imply longer compression times, in
that case by a factor of up to 7 times longer.

This is due to images having a great deal of redundancy. Pixels that are close together are
very similar, and having more of them doesn’t change how the algorithm behaves after training.
A good compromise is found at t = 0.01 where quality is very slightly affected, but time has
been reduced almost to the lower limit.

t 0.001 0.005 0.01 0.03 0.05 0.1 0.3 0.5 0.75 1

Ratio 353.6 350.1 348.9 343.8 349.2 350.8 345.3 344.4 344.7 344.6
SNR 30.67 30.78 30.84 30.88 30.85 30.86 30.88 30.88 30.89 30.89

Time (s) 5.402 5.673 5.918 6.353 6.891 8.338 14.22 20.08 27.62 37.63

Table 5.6: Results for the compression of the BEL image using different values for t. Time is the only
significant parameter changing, while keeping a stable distortion-ratio performance.
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b 2 3 4 5 6 8 10 12 16

SNR
BEL 6.333 9.560 12.33 15.59 19.80 28.03 30.84 31.00 31.01
SUW -0.29 4.304 10.35 14.15 18.08 25.93 30.03 30.39 30.41
CUP -3.87 -0.77 6.881 11.20 13.39 19.82 23.19 23.45 23.46

Ratio
BEL 11458 11087 10191 7168 3472 796.0 348.8 225.1 135.2
SUW 21371 20109 18642 13077 6268 1361 486.8 276.9 150.8
CUP 3363 3314 3200 2975 2237 462.8 185.8 118.7 71.05

Time
BEL 03.26 02.53 02.62 02.78 02.80 03.82 05.52 07.16 10.19
SUW 05.75 04.72 05.38 05.54 05.67 07.54 09.58 12.27 18.37
CUP 01.43 01.14 00.91 00.96 01.17 01.62 02.84 03.87 05.83

Table 5.7: Results of compressing various images with varying values of bit depth b used for quantization
after the dimensionality reduction.

5.4.1.3 Quantization bit depth
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Figure 5.18: Image quality with respect to b

The effect of the quantization bit depth b is
also of interest, since it is the resolution of
each sample that goes into the JPEG2000
coder and directly affects compression ratio.
Figure 5.18 shows that, for values under b = 4,
the noise level in the reconstructed image is
sometimes even higher than the signal level
(SNR < 0). In any case, quality is not ac-
ceptable until the b = 8 levels where the SNR
reaches 20dB.

Above 10 bits, no improvement is seen, sug-
gesting that anything above that is only going
to increase size with no positive impact in im-
age quality. Also, compression time increases
with b as seen in Table 5.7, further supporting
the idea that the maximum values are not the
ideal ones.

5.4.1.4 Target dimension

When applying the dimensionality reduction algorithms, a target dimension r is set. This target
directly impacts time, compression ratio and SNR, since it will take longer to process the image
with more dimensions in the reduced space, increasing quality and worsening the ratio. These
results can be observed in Table 5.8.

Quality starts being acceptable above levels of r > 4, and increases significantly until r = 15,
after which improvement is made slowly, compared to the worse ratio and longer compression
time.

5.4.1.5 Optimizing bit-depth and dimensionality

b and r are the two parameters that affect compression ratio and quality the most. But varying
one without varying the other can mean a much worse result than finding the optimal point
where to set both to achieve a certain distortion-ratio performance. To do so, images SUW,
DHO, BEL, REN, CPR and CUP were all compressed by varying b and r across their range,
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r 1 2 3 4 5 8 15 30 100 200

SNR
BEL 16.54 24.25 28.72 30.84 33.15 36.96 39.36 40.73 43.52 44.10
SUW 18.51 20.91 27.95 30.03 31.19 33.90 36.45 37.63 39.38 39.99
CUP 14.13 16.65 21.45 23.19 25.24 28.53 31.04 33.02 34.66 n/a

Ratio
BEL 1157 684.8 464.8 348.8 272.7 162.4 79.60 35.97 9.733 5.100
SUW 1616 858.9 666.3 486.8 336.8 199.4 84.85 39.44 10.89 5.542
CUP 737.3 373.1 255.4 185.8 130.2 83.25 41.06 18.82 5.032 n/a

Time
BEL 04.14 03.98 04.61 05.80 07.12 11.64 17.40 36.77 2’08 4’09
SUW 06.38 07.35 13.46 09.82 12.10 16.90 33.47 1’12 4’04 7’32
CUP 02.71 02.02 02.45 02.99 03.64 05.22 10.06 20.98 23.30 n/a

Table 5.8: Results in the compression of multiple images when changing the value r of target dimensions.

b\r 1 2 3 4 6 8 10 12 14 16

16 16.55 24.28 28.84 31.01 35.04 37.89 39.35 40.16 40.74 41.26
15 16.55 24.28 28.84 31.01 35.04 37.89 39.35 40.16 40.74 41.26
14 16.55 24.28 28.84 31.01 35.04 37.89 39.35 40.16 40.73 41.25
13 16.55 24.28 28.84 31 35.04 37.88 39.34 40.14 40.71 41.23
12 16.54 24.28 28.84 31 35.01 37.84 39.29 40.07 40.64 41.15
11 16.54 24.28 28.82 30.98 34.92 37.65 39.06 39.86 40.31 40.79
10 16.54 24.25 28.72 30.84 34.5 36.96 38.09 38.79 39.19 39.52
9 16.53 24.13 28.28 30.23 33.18 34.67 35.33 35.67 35.85 36.01
8 16.46 23.65 26.92 28.03 29.62 30.25 30.46 30.56 30.61 30.65
7 16.17 22.03 23.73 24.28 24.75 24.89 24.93 24.95 24.96 24.97
6 15.46 19.14 19.6 19.8 19.93 19.99 20 20.01 20.01 20.01
5 13.61 15.57 15.53 15.59 15.61 15.63 15.63 15.63 15.63 15.63
4 11.59 12.35 12.32 12.33 12.34 12.34 12.34 12.34 12.34 12.34
3 9.69 9.59 9.58 9.56 9.56 9.53 9.52 9.52 9.52 9.52
2 8.07 6.39 6.37 6.33 6.31 6.21 6.21 6.21 6.21 6.21

Table 5.9: Results for quality (SNR) after compressing BEL with varying b and r values.

b\r 1 2 3 4 6 8 10 12 14 16

16 504.41 268.61 180.27 135.26 87.66 65.98 52.15 42.97 36.63 31.79
15 555.41 297.79 200 150.06 96.95 72.99 57.62 47.43 40.4 35.04
14 618.04 334.25 224.7 168.59 108.48 81.71 64.4 52.92 45.05 39.03
13 697.18 381.35 256.66 192.56 123.24 92.89 73.05 59.91 50.95 44.08
12 800.76 445.16 300.07 225.11 142.99 107.84 84.54 69.14 58.72 50.7
11 944.24 537.75 363.3 272.52 171.07 129.14 100.75 82.05 69.53 59.86
10 1157.8 684.8 464.84 348.88 214.78 162.47 125.74 101.68 85.88 73.59
9 1510.9 946.25 650.47 489.97 291.81 222.08 169.56 135.45 113.76 96.69
8 2170.1 1467.9 1041 796.09 450.04 349.12 261.21 204.46 170.31 142.74
7 3546.5 2610.4 1969.7 1562.5 835.95 676.57 498.6 380.78 315.71 259.06
6 6601.7 5146.8 4220.1 3472.2 1960.4 1655.1 1247.8 964.17 814.14 662.3
5 12899 10040 8650.2 7168.2 5284.8 4409 3457.3 2924.1 2583.49 2245.9
4 17803 14120 12033 10191 8027.8 6627.9 5576.4 4810 4252.75 3816
3 18104 15169 12848 11087 8746 7173.8 6124.9 5336.8 4738.79 4258.7
2 19383 15709 13251 11458 9018.7 7435.4 6325 5503.1 4870.34 4368

Table 5.10: Results for compression ratio after compressing BEL with varying b and r values.
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Figure 5.19: Optimization process for parameters b and r. On the left, the points where ratio is maximal
given a specific SNR for the REN image. On the right, the aggregate of all those points, along with a
fitted polynomial showing the general trend.

obtaining tables such as Tables 5.9 and 5.10. (Only the ones for BEL are shown for typesetting
purposes).

It becomes clear that r has no impact on quality for very low values of b, however the ratio
does change. This suggests that, for low qualities, it is preferable to lower r instead of b. Different
conclusions can be drawn at different distortion-ratio performances, but to get the whole picture,
a different approach is taken.

For each image, these tables are obtained, and interpolated to get heat-maps. Contour lines
from the SNR image are over-imposed on the compression ratio image. On each contour, the
maximum points are marked. This process is repeated for all test images, aggregating the results
for them, as seen in Figure 5.19.
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Figure 5.20: Optimization
process for the number of clus-
ters and QR(j) index.

A trend clearly emerges, indicating that some (r, b) combina-
tions are clearly superior to others. The polynomial fit gives us
a path that, from highest to lowest compression ratio, gives the
optimal configuration to get the maximum SNR at that point.
Values from this regression will be referred as QR value, which
gives the optimal values for b and r for a given index j > 0:

QR(j) = {b(j), r(j)} =

{
5 + j j ≤ 3

9 +
⌊
j−4

3

⌋
j > 3

, j + 1

}
(5.1)

5.4.1.6 Optimizing the number of clusters

The exact same optimization process was repeated by matching
the QR index against the number of clusters for VQPCA, obtain-
ing the result given in Figure 5.20. The result is not as clear as with the (b, r) optimization, but
still gives enough information to create a QRC index including also the number of clusters c to
use to optimize distortion-ratio performance:

QRC(j) = {QR(j), c(j)} = {QR(j), bj/6c} (5.2)

5.4.1.7 Optimizing the number of wavelet passes

How many times the wavelet is recursively applied has an obvious impact in both speed (more
passes means slower compression/decompression) and distortion-ratio quality. More passes will
mean more optimal energy concentration, but also the range of the transformed samples dou-
bles every pass, potentially overflowing the maximum quantization range in the latter stages,
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Figure 5.21: Comparison of the distortion-ratio curves when compressing the CUP and BEL images.
Behavior was consistent across the whole image test set. Wx indicates x wavelet passes were performed.

worsening the ratio again. The general trend of changing the number of wavelet passes w is seen
in Figure 5.21.
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Figure 5.22: Different patterns indicating how
many bits they shave on each reduced dimension.

As clearly seen, doing no wavelet passes
worsens the quality. Doing one wavelet pass
works well at low qualities, but falls short
when good quality is required. Between w = 2
and w = 3, results are similar. We use a value
of w = 3, which works well [40, 157].

5.4.1.8 Optimizing bit-depth

After dimensionality reduction, the same al-
gorithm has been applied so far to every re-
sulting band. This means that every dimen-
sion in the embedded subspace obtained after
transforming is treated as if it had equal importance.
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Figure 5.23: Hits indicate a point where
that shave pattern optimized distortion-
ratio performance for a test image.

This doesn’t have to be the case. In fact, the first
components (specially in the case of PCA) will hold
the most information, while the last components will
hold the least. This suggests the possibility of varying
the amount of bits used for the quantization of each
reduced component. For that, multiple shave patterns
(Figure 5.22) have been tested, which remove a certain
amount of bits from each transformed component, with
more bits removed as the band index grows.

To see which one is preferable, the same optimization
procedure as with the QR and QRC indices has been
carried out: test runs have been done on all images,
aggregating the results with the best distortion-ratio
performance. Results from this are seen in Figure 5.23.

Patterns 5 and 8 are the clear winners, not being aggressive on bit shaves, but removing
enough to make a significant dent on ratio without affecting image quality. Pattern 5 shaves a
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Figure 5.24: Comparison between images compressed with shave pattern 7 and no shave pattern. Filled
markers correspond to the shaved version, while hollow ones to the unshaved runs.

bit of the second component, and two bits afterwads. Pattern 8 is the preferred one, halving the
information every 2i component and obtaining the best result more often. With this, the QRC
index from Equation (5.2) is used to create the ideal configuration F , given by Equation (5.3):

F (j) = {QRC(j), si(j)} ==

{
QRC(j),

0 i = 0
blog2 (j + 1)c i > 0

}
(5.3)

When applied to the test image set, ratios improved (compared to not using shave patterns)
across all image qualities (as seen in Figure 5.24). A clear improvement is seen across the image
test set. Shaved (-sh) images present much higher distortion-ratio performances at an average
of 1.5 higher compression ratio for the same quality.

5.4.1.9 Visualizing the results

Up to this point, everything has been theoretical, based on the synthetic quality and ratio mea-
sures. All parameters have been optimized with distortion-ratio performance in mind, creating
the F (j) index to obtain, given a value j, the algorithm configuration to get the best distor-
tion ratio. Low values of j yield great compression, while high values yield high quality. A
visualization is presented in Figure 5.25.

Visually, no loss can be perceived until j = 12, where color starts fading away. This is an
indicator of diminishing spectral resolution, but the spatial resolution can still be resolved quite
clearly until j = 8. Below that value, blurriness starts growing with the loss of spatial resolution,
and spectral resolution is completely lost since the target dimensionality has fallen below the
underlying subspace dimension. However, even at the extreme compression of j = 0, the image
is still recognizable with a size over 20000 smaller than the original.

5.4.1.10 Timing after optimizations

This aggressive theoretical optimization affects performance in different ways. With each addi-
tional dimension, wavelet pass, bits used for quantization, clusters... the time it takes to process
an image increases. As a lossy algorithm, the target distortion-ratio moves away from perfect
reconstruction to good approximation.
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j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

SNR 13.56 16.34 20.98 24.47 28.01 28.55 29.12 32.80 33.09 33.41 36.31 36.55 37.06 38.55 38.77 38.94 39.47 39.66 39.88 40.13
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Figure 5.25: Visualization of the SUW image for values of j = 0 . . . 19, which control quality and ratio
based on the optimizations from the previous sections. C.R is the compression ratio. C.T and D.T are
the compression and decompression times respectively.
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Figure 5.26: Timing results by algorithm steps for JYPEC, using three wavelet passes, 10 bits of depth
and a reduction using PCA to four target dimensions training with 1% of samples.

Looking at real-time, these optimizations are too expensive to execute. For example, looking
at Figure 5.25, it is seen that the minimum time is almost 8 seconds for the SUW image, which
with its 138.24MS takes exactly 4.5s to traverse with the most advanced sensor AVIRIS-ng. Its
old version AVIRIS takes 75.96s in obtaining an image of the same size, so even at high quality
indices j, real time is met without acceleration for old sensors.

However, to target real-time in the fastest sensors, simplicity is key. Values in Figure 5.26
were obtained with a configuration targeted for fast compression. Quality is lowered by around
1 − 2dB on average (compared to the optimized configuration at a similar compression ratio),
but is still of quite good quality.

A clear trend is seen across all images. The time it takes to code the image is by far dominating
the rest of the algorithm. Even though it is the simplest part, the fact that each bit is processed
individually, along with the optimizations made to the training process by using t = 0.01, make
it the most costly part of the algorithm. It is important to note that this are average values of
multiple runs, and the nature of a CPU can introduce slight variations from run to run. Even
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Virtex 7 Virtex 4

Module MHz LUTs BRAM MHz LUTs BRAM

Tier 1 coder 255 2708 4 99.38 3803 8
BPC-core 248 731 2 127.8 1850 4
BPC-serial 390 142 0 183.4 199 0
MQ 321 1778 0 121.2 1689 1

MQ-I/II 322 1326 0 121.7 989 0
MQ-III 535 47 0 233.8 67 0
MQ-IV 331 231 0 116.4 375 0

FIFOS 927 57 2 293.4 114 2

Table 5.11: Frequency and occupancy for the constituents of the tier 1 coder. Results are for the
Virtex-7 and Virtex-4 boards with a depth of 32 set for all FIFO queues.

if some already meet the real-time requirements of AVIRIS-ng, it is important to create a time
margin big enough for any unexpected variations to still fit within constraints.

Accelerating the full algorithm in hardware was deemed to be too time consuming: Di-
mensionality reduction algorithms are complex and rely on floating point arithmetic. Wavelet
transforms are easier to do, but require careful management of memory and again, floating point
arithmetic. Given that the most costly part is coding, a compromise is made, following Amdahl’s
law, of only optimizing the coder, which is exactly what is done in Section 4.2.2.

5.4.1.11 Hardware acceleration

The full JPEG2000 tier 1 coder from Section 4.2.2 is implemented in hardware to help accelerate
the most costly part of the algorithm. Implementing the full JYPEC algorithm would be too time
consuming, and most likely wouldn’t even fit on an FPGA. (Just a fast PCA implementation
takes up almost the entire Virtex-7 board [67]). Table 5.11 shows the occupancy results for a
tier 1 coder module.

Occupancy is very low (for the Virtex-7) at under 3000 LUTs with just 4 BRAM blocks used
for FIFOs. These are necessary to hold the 64 × 64 blocks processed by the algorithm. As for
speed, a more careful analysis is needed, since the different submodules of the implementation
process different data. The following calculations are done for the Virtex-7:

� The BPC core processes blocks of 64× 64× 16b = 65536b in 44032 cycles (Section 4.2.5),
so its expected throughput at the input (when operating at 255MHz) is 380Mb/s. This
will vary if the image has blocks that are smaller in size or with a height not multiple of
four. But in general this is a good approximation.

� The BPC-serial module can output up to 390M CxD pairs per second.

� The MQ coder, at its first two stages, can process up to 322M CxD pairs per second, and
will generate the same amount of updates. The fuser module can keep up with it at 535M
updates per second, and the same thing goes for the last stage that processes up to 331M
updates per second.

� FIFOs have no problem working at the required speed.

However, in a practical setting the same clock is used for the full module. The limitation
then comes from the speed of 255MHz achieved in this case.

132



2 4 6 8 10 12 14 16

200

300

400

Bit depth

T
hr

ou
gh

pu
t

(M
b/
s)

Min Mb/s
Max Mb/s

2 4 6 8 10 12 14 16
0

50

100

150

200

Bit depth

T
hr

ou
gh

pu
t

(M
S
/s

)

Min MS/s
Max MS/s

Figure 5.27: Impact of bit-depth on the throughput of the JPEG2000 tier 1 coder. (Virtex-7 FPGA)

The bottleneck is the number of CxD pairs processed by the MQ-coder (255M CxD pairs
per second). By studying how many of these are produced by the BPC, the throughput of the
full module can be estimated:

The absolute minimum number of CxD pairs that can be generated for a full-sized block
of 64 × 64 × 16 happens when every bit is zero. In this case, a total of 15 · 1024 = 15360
CxD pairs are generated, for a total of 0.234 per input bit. On the other hand, the upper
limit is given by a cleanup pass with run-length interruptions at every position, followed by 14
refinement passes for the remaining bit planes. The number of CxD pairs generated in this case
is 1024 · 10 + 4096 · 14 = 67584, or 1.03125 per input bit.

This means that the input rate to generate 255M CxD pairs per second ranges from 1.01Gb/s
to 247.3Mb/s. The practical range however is limited to the BPC core actual throughput which
was 255 ∗ 65536/44032 ≈ 380Mb/s, so the actual range only goes up to that value.

The actual input speed lies in that range, but depends on the redundancy of the data.
However, studies have shown the average rate of CxD pairs per bit to be approximately 0.56
[183]. This means that, on average, to sustain 255M CxD pairs per second, an input stream of
455Mb/s is needed, far exceeding the throughput accepted by the BPC at 380Mb/s.

Taking this into account, it is expected that the MQ-Coder will be able to keep up with the
maximum input throughput at 380Mb/s, expecting to generate around 380 · 0.56 ≈ 213M CxD
pairs per second, far below the 255M CxD pair limit of the full tier 1 coder implementation.

With this in mind, the expected speed of the module is, for 16b samples, 380/16 = 23.75MS/s,
and the minimum guaranteed speed is 247.3/16 = 15.45MS/s. At first glance, these do not seem
sufficient to keep up with the real-time constraint of 30.72MS/s. However, the tier 1 coder works
on the reduced dimensionality data, so this will not be a problem in practice.

Repeating these calculations for all bit-depths D, yields the graphs seen in Figure 5.27.
It is very interesting to see how the minimum input throughput (corresponding to worst-case
scenarios) is lower with smaller bit-depths, due to more contexts being generated per bit in
the worst case. The best case, however, reaches the maximum throughput of 455Mb/s for low
bit-depths due to less passes needed at lower bit-depths (with only 1 for the first bit-plane). For
high bit-counts, this value is dominated by the BPC core throughput. For both cases, however,
the number of samples processed per second goes down since even when a value increases in
Mb/s, it is not compensated by the bit-depth growth.

However, when looking at MS/s, the throughput actually increases, since the speed loss is,
proportionally, lower than the bit difference between samples. The same results for the space
qualified Virtex 4 FPGA are seen in Figure 5.28.
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Figure 5.28: Impact of bit-depth on the throughput of the JPEG2000 tier 1 coder. (Virtex-4 FPGA)
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Figure 5.29: Timing results (exclusively from the coding part of the algorithm) when compressing
images using JYPEC in both software and an FPGA accelerator.

5.4.1.12 Improvement over software

The impact of this FPGA acceleration vs its software counterpart depends of course on the
speed of the FPGA module, which in turn depends on the bit-depth of the image after applying
the dimensionality reduction algorithm. In this case, the bit-depth selected is 10, so that will
be used going forward. For calculations, this means a speed range of 94.6 → 159Mb/s (or
9.46 → 15.9MS/s) on the Virtex-4, and a range of 242.9 → 408Mb/s (or 24.3 → 40.8MS/s)
on the Virtex-7. Results will be marked with minimum and expected to indicate if the value
corresponds to the minimum guaranteed throughput or the expected one based on the usual
behavior of images.

As an example, if an AVIRIS image of size 614×512×224 is compressed with target dimension
4 and target bit-depth 10. This means that a total of 10 × 614 × 512 × 4 = 12574720b (or
1257472S) will go through the encoder. At a guaranteed minimum speed of 242.9Mb/s, the core,
synthesized on a Virtex-7 FPGA, does its part of the compression algorithm in just 51.77ms.

Comparing these results over the test set of images against the software implementation,
Figure 5.29 is obtained.
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Figure 5.30: The impact of speeding up the coding part of the algorithm in an FPGA, when assuming
the minimum guaranteed throughput on a Virtex-4.

Speedup CUP CRW REN BEL DHO SUW

Block coding (V4Min) 29.09× 43.99× 26.39× 26.39× 6.440× 18.38×
Block coding (V7Exp) 125.4× 189.7× 113.8× 113.8× 27.77× 79.28×

Whole process (V4Min) 3.98× 7.45× 3.03× 2.86× 1.57× 2.71×
Whole process (V7Exp) 4.33× 8.43× 3.23× 3.02× 1.72× 2.93×

Table 5.12: Speedup values with the different FPGA configurations

.

Hardware acceleration can speed up the tier 1 coder, with averages over 20× in the Virtex-4
minimum speed, and over 100× as the expected speedup on the Virtex-7. Furthermorer, the
“minimum speed” is ensured in hardware, meaning that for any image characteristics, it will
perform at that speed. In contrast to software, which heavily depends on image characteristics
(more redundant images get compressed faster as evidenced by DHO results).

To see the impact of this on the full algorithm, Figure 5.30 shows the different parts of the
algorithm, with the time they take to execute, with and without hardware acceleration. The
effect is quite noticeable.

As for numbers, the speedup gained is shown in Table 5.12. The coding speedup is much
greater than the overall speedup, which is still quite high due to the fact that coding took the
most time out of the execution.

5.4.1.13 Achieving real-time performance

Figure 5.31 shows the final results (time wise) of the JYPEC accelerated algorithm.A first version
without optimizations was far away from anything close to real-time, due to long training times
in the dimensionality reduction algorithm. Sub-sampling, as seen in Section 5.4.1.2 is a great
way of drastically reducing this time without affecting the distortion-ratio performance, thanks
to the redundancy present in hyperspectral images.

Results were close (and even on some images such as DHO, better) than real time, but still
not quite there. A close analysis to the timing diagrams from Section 5.4.1.10 showed that
most of the effort was now devoted to the coding step from JPEG2000. Luckily, that could be
accelerated in an FPGA due to the nature of the algorithm (simple bit manipulations with great
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Figure 5.31: Performance of JYPEC through software and hardware optimizations. The effects of
training sub-sampling t and JPEG2000 hardware acceleration are shown.

presence of conditional branching, too inefficient in the CPU). The final results show that, even
on the slower Virtex-4 board, and assuming a worst case scenario where the input is generating
the maximum amount of CxD pairs, the core is still able to beat real time with enough margin.

Care must be taken though with small images such as CUP that have less margin to work with.
Others are nearly doubling the speed of real time thanks to hardware-software co-processing,
being able to take hits from the unpredictable nature of software execution.

5.5 LCPLC

5.5.1 Software

LCPLC is a simple algorithm whose only meaningful tunable parameters are the slice size,
distortion threshold, and quantization step. Quantization and quality do not affect hardware
occupancy, with slice size being the only parameter impacting it. Since prediction is done for
sub-blocks spanning all bands spectrally with a spatial size equal to the slice size, the predictor is
directly affected by this choice. This happens in two ways: first, with bigger slices, less overhead
is needed for storing the µ̂ and α̂ values, as well as the d flag. However, predictions will be less
precise with bigger slices, since they are done for all samples of the slice at once, and big slices
mean less adaptability to small local changes.

The algorithm was run with different slice sizes, distortion thresholds and quantization steps
to see the distortion-ratio curves. Figure 5.32 shows the results. Aside from the small set of
outliers around the 4bpppb mark (corresponding to a quantization step of 28 and γ = 0), the
rest follow a smooth curve that gains quality quite fast at the start and then gradually slopes
up until reaching lossless compression.

Slice sizes of 4 × 4 and 8 × 8 are clearly worse than the bigger counterparts, with the best
results being obtained at the 32 × 32 setting, albeit by a narrow margin against the 16 × 16
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Figure 5.32: The results from compressing respectively the BEL, REN and SUW images on different
compression configurations, containing all possible combinations of quantizations steps 0, 20, 21, 22, 24, 28

and γ values 0, 0.1, 0.25, 0.5, 1, 3, 5 for distortion control. Markers show the results for different slice sizes.
Vertical lines indicate the bpppb at which lossless compression is achieved.
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FPGA Slice LUT Regs DSPs BRAMs Occupancy Power Frequency

Virtex 7

≤ 24 5418 5690 5 0.5 1.25% 0.617W 341.65MHz
≤ 26 5448 5706 5 3.5 1.26% 0.628W 341.88MHz
≤ 28 5625 5827 5 4 1.30% 0.639W 341.30MHz
≤ 210 5785 5953 5 5.5 1.34% 0.655W 340.83MHz
≤ 212 5820 6078 5 17.5 1.34% 0.709W 341.88MHz

Virtex 5

≤ 24 6544 5676 5 1 7.99% 2.650W 251.60MHz
≤ 26 6786 5779 5 2 8.28% 2.668W 229.82MHz
≤ 28 6874 5811 5 4 8.39% 2.710W 229.82MHz
≤ 210 7077 5942 5 6 8.64% 2.723W 229.82MHz
≤ 212 7507 6081 5 18 9.16% 2.796W 242.38MHz

Table 5.13: Original LCPLC core occupancy results for different maximum slice sizes on the Virtex-7
and Virtex-5 FPGAs. Power is estimated at 300MHz and 200MHz on the V7 and V5 respectively.

and 64 × 64 sizes. From a theoretical point of view, smaller sizes are obtained at high gamma
values and quantization steps, while higher qualities are achieved at low gamma values and no
quantization.

5.5.2 Hardware

From the hardware point of view, only two parameters are important for core occupancy on the
FPGA. The maximum slice size that can be processed (this value will be used to size the internal
queues) and the maximum image size that can be processed (this value is used to size internal
counters for the core that do not have an effect on the processing itself). Only the slice size
will be of interest here, since the maximum image size has barely any impact on core occupancy
and is set to a default of 4096 × 4096 × 4096, more than enough to meet any hyperspectral
image demands. As for other values affecting compression, both the quantization and γ value
are configurable in real time, not impacting static hardware resources.

First, a look is taken at the first implementation of the original algorithm from Section 4.3.5,
and then it is compared against the modified implementation from Section 4.3.6.

5.5.2.1 Resource use

The original algorithm described in [5] was implemented in both the Virtex-5 and Virtex-7
FPGAs, obtaining the results from Table 5.13.

Core frequency remains mostly constant throughout the experiments, and the differences are
due to optimizations within the synthesizer. LUT, register and DSP usage is also fairly constant,
with a more noticeable increase in the 32× 32 and 64× 64 slice size versions. Memory, however,
is where the internal queue sizing shows up, by doubling or tripling the amount of blocks in the
biggest slice size. However, given the immense amount of blocks available, this has no impact
on total resources used, since the LUT usage is higher proportionally. Nonetheless, power is
affected, and smaller sizes are prefered for core efficiency.

As for the modified algorithm, the results are shown in Table 5.14. A similar behavior is
seen. Frequency is now more stable at different sizes (though this is due to routing and not the
actual path being more complex). Memory use is a bit higher at big slice sizes. LUT usage is
similar for the modified algorithm due to the increased pipeline being memory heavy and not
calculation heavy. Register usage is consistently up to keep up with the increased pipeline. The
overall impact in logic is not too significant, except in the odd case of the 32× 32 slice size for
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FPGA Slice LUT Regs DSPs BRAMs Occupancy Power Frequency

Virtex 7

≤ 24 5544 5950 7 1 1.27% 0.629W 342.58MHz
≤ 26 5598 5965 7 3 1.29% 0.632W 342.81MHz
≤ 28 5880 6062 7 3.5 1.35% 0.639W 342.23MHz
≤ 210 6371 6172 7 6 1.47% 0.672W 341.99MHz
≤ 212 5963 6245 7 19.5 1.50% 0.714W 321.85MHz

Virtex 5

≤ 24 6551 5940 7 1 8.00% 2.672W 258.74MHz
≤ 26 6803 6016 7 2 8.30% 2.700W 252.69MHz
≤ 28 6931 6039 7 5 8.46% 2.712W 258.68MHz
≤ 210 7096 6139 7 7 8.66% 2.732W 247.36MHz
≤ 212 7432 6253 7 22 9.07% 2.853W 240.66MHz

Table 5.14: Modified LCPLC core occupancy results for different maximum slice sizes on the Virtex-7
and Virtex-5 FPGAs. Power is estimated at 300MHz and 200MHz on the V7 and V5 respectively.

Modified Original

Slice size 42 82 162 322 642 42 82 162 322 642

Samples 16 64 256 1024 4096 16 64 256 1024 4096

1st slice 202 730 3166 13150 53123 243 918 3624 14387 57562
N th slice 156 301 877 3180 12396 137 332 1103 4173 16448
Intra-slice 59 107 299 1067 4139 84 182 562 2102 8243
Block 21k 38k 109k 389k 1.5M 30k 65k 204k 760k 3M

1st slice spc 0.079 0.088 0.081 0.078 0.077 0.066 0.070 0.071 0.071 0.071
N th slice spc 0.271 0.598 0.856 0.960 0.990 0.190 0.352 0.456 0.487 0.497
Block spc 0.273 0.596 0.845 0.943 0.971 0.192 0.355 0.452 0.485 0.493
MS/s 81.95 179.0 254.4 284.3 292.9 57.59 106.8 135.7 145.6 148.3
MB/s 163.9 358.1 508.8 568.6 585.8 115.2 213.6 271.4 291.1 296.5

Table 5.15: Cycles taken to process the different types of slices. For the first slice, the full time is
shown. For the rest, both the time it takes for a slice to be fully processed, as well as the time between
subsequent slices enter the pipeline are shown. This last value is more representative of the real time
taken to process, since the pipeline hides the full execution time by overlapping slices. Nz = 360. spc is
samples per cycle. 300MHz clock and D = 16 assumed for throughput calculations.

the Virtex 7 where optimizations place a memory module on LUTs. Two more DSPs are used,
which are the two extra DSPs used for the secondary α value calculation, but overall the count
is still very low. Power is also affected and is a bit higher to run the memories and registers.

5.5.2.2 Performance of the modified algorithm

The overall resource use is similar in both versions, with more memory used in the modified
version given the duplicity of paths. These are used to calculate the two different α options
for the next band prediction (either the original or predicted values will be used for it). The
modification approximately doubles the speed at which samples can be processed. A more
detailed analysis of the performance gain is presented next.

First, Table 5.15 shows the number of cycles taken to process each slice. This is important
since the predictor for the first slice is different and slower than the one for the other slices. This
induces a penalty for the first slice. Thus, performance will improve with the number of slices.

Results for the first slice are similar, and the difference is due to small optimizations in
the number of pipeline stages in the feedback loop, forwarding results to make it faster. The
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Figure 5.33: Samples per second for LCPLC on the original and modified versions, assuming a 300MHz
clock. Dotted lines correspond to the original, while solid lines are for the modified.

difference in the rest of slices is more significant, and it is approximately 3/4 lower for the
modified version. The difference comes from the fact that the alpha value used for prediction
is pre-calculated in the modified version, instead of having to wait for the full d flag to be
calculated like in the original version. This reduces the number of “steps” for the full slice from
four (average, prediction, error, flag) to three (average, prediction, error).

However, the most interesting improvement comes from the intra-slice results, where the full
pipelining achievable in the modified version brings the total cycle count as close as possible
to the total number of samples being processed, halving the time of the original version. The
penalty for each slice amounts to 43 cycles (time to fill the pipeline between slices), so the
relative penalty is much lower with bigger slices and with higher band counts. There is also a
second effect at play: since the first slice takes many times the time it takes for the rest, more
bands will result in a less noticeable penalty of the first slice (Up to approximately 10× slower
on the bigger slice sizes). These effects can be seen in Figure 5.33.

The modified version doubles the throughput of the original in every slice size. The impact
of filling the pipeline, and the penalty for the first slice is also noticeable, since low band counts
lower efficiency greatly. At band counts above approximately Nz = 50, it starts to stabilize
reaching values above 250MS/s on big slice sizes.

For most of the test images, where NZ = 360, efficiency (spc with full block pipelining) reaches
95% on the ideal slice size of 322 for the modified version, which is quite close to the ideal one
sample per cycle, resulting in a performance of 284.3MS/s (vs 145.6 for the unmodified). These
facts more than justify the use of the modified version, which only required around 15% more
memory resources than the original, producing results with the same distortion-ratio.

For a comparison, the real time performance of an AVIRIS-ng sensor is included in the graph.
Every configuration beats it at Nz > 2. Even though these speeds might even seem excessive, at
high band counts the quite fast throughput can be taken advantage of by lowering clock speed
to decrease power consumption.
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Chapter 6

Comparison

Throughout the previous chapters, there has been a great level of optimization in all three
algorithms:

� From the algorithmic point of view, finding out which small changes could improve perfor-
mance in any of the different aspects of compressing hyperspectral images. When designing
an algorithm, multiple steps are taken along the way that modify the data from its raw
starting form to its processed (in this case compressed) form. Different steps can be
introduced or modified, and their effects have been studied all throughout.

� From the parameter point of view, once an algorithm is defined, finding out the opti-
mal configurations. It can be made more efficient, needing less operations to complete.
Distortion-ratio can be improved by configuration changes alone. Adaptation to user needs
can be done to optimize results. The underlying process is the same, but the results are
improved.

� Lastly, from the hardware point of view. Multiple options can be chosen: CPUs, GPUs,
ASICs and FPGAs are only some of all the available choices. For all of them, small
optimizations are possible in the way code is written. Specifically, for FPGAs, taking ad-
vantage of different resources such as BRAMs or DPSs can be advantageous, and different
hardware tricks can be used to trade off area for performance.

One of the main goals of this thesis is to see how these extensive optimizations work, in
three fronts, affects the end result performance when compared to other approaches. In the
following sections, all three algorithms will be compared with other implementations, to see
which approaches worked best in each case. Lossless, lossy and near-lossless compression will
be studied individually. Finally, all of them will be compared as compression algorithms, to
determine the trade-offs that make each one ideal for a different scenario.

6.1 CCSDS 123

One of the first interesting comparisons to draw is how efficient different platforms are at exe-
cuting the algorithms. Since one of the main targets of CCSDS 123.0-B-1 is spaceborne systems,
where power is limited, it makes sense to develop an implementation that is not only fast enough,
but also consumes as little power as possible. Table 6.1 shows these results for different imple-
mentations. An OpenCL implementation was developed to obtain results for the GT 440 and
610 GPUs, as well as the i7-6700 processor.
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Platform Language Speed Power Efficiency

V-5QV FX130T VHDL 179.9MS/s * 3.04W 59.11MS/s/W
V-5QV FX130T [120] N/S 110.0MS/s * 3.72W 29.54MS/s/W
V-5QV FX130T [207] VHDL 213.0MS/s * 4.72W 45.13MS/s/W
V-5QV FX130T [135] N/S 55.4MS/s * 3.31W 16.70MS/s/W
V-5QV FX130T [180] VHDL 11.3MS/s 2.35W 4.80MS/s/W
RTAX1000S [180] VHDL 4.4MS/s 0.17W 25.82MS/s/W
V-4 XC2VFX60 [25]* VHDL 116.0MS/s * 0.95W 122.60MS/s/W
V-4 LX160 [180] VHDL 11.2MS/s 1.49W 7.51Ms/s/W
V-5 SX50T [114] VHDL 40.0MS/s 0.70W 57.10MS/s/W
V-7 XC7VX690T [25]* VHDL 219.4MS/s 5.30W 31.30MS/s/W
Zynq 7020 [68] VHDL 147.0MS/s 0.29W 489.31MS/s/W
Zynq 7030 [154] VHDL 750.0MS/s 0.52W 1442.31MS/s/W

GT 440 [25]* OpenCL 62.2MS/s < 65.00W 0.96MS/s/W
GT 610 [25]* OpenCL 62.6MS/s < 29.00W 2.15MS/s/W
GTX 560M [91] CUDA 297.1MS/s < 75.00W 3.96MS/s/W
2× GTX 560M [91] CUDA 329.2MS/s < 150.00W 2.19MS/s/W

i7-6700 [25]* OpenCL 35.0MS/s < 65.00W 0.54MS/s/W
i7-2760QM [91] OpenMP 118.0MS/s < 45.00W 2.62MS/s/W

Table 6.1: Results for different platforms and their respective performances, sorted by platform. FPGAs,
GPUs, and CPUs were targeted. Power values with an asterisk are estimates [233]. A less than symbol
indicates maximum TDP (thermal design power) for the platforms, not necessarily the consumed power.
Asterisks on the platform indicate own work.

The first thing to note is that, with just a few exceptions, all of the rest reach speeds above
the real-time requirement of 30.72MS/s, whether on FPGA, CPU or GPU. This means that any
of those systems are valid candidates. However, it is quite clear that FPGAs and GPUs beat
CPUs by quite an ample margin. However, when it comes to efficiency, FPGAs are as much as
three to four hundred times more efficient than GPUs or CPUs.

Hardware that adapts to the specific characteristics of the algorithm only uses the required
resources and does so in an optimal way, resulting in much more efficient circuits that still meet
throughput demands. FPGA versions however take longer to develop, in the case of this work
taking around four months including limited testing, versus two weeks for the OpenCL version.

As for the FPGA implementations, different techniques have been used in the literature,
having different impact in the total amount of resources required as well as the speed achieved.
These values are seen in Table 6.2.

The first implementation [114] is the first adaptation of the Fast Lossless [12] algorithm
that ended up being the CCSDS 123.0-B-1 standard. A sample per cycle is processed in this
implementation, but at low speeds of 40MHz. This means that the external RAM running at
100MHz can provide the input samples at the required speed. An output packer ensures using
LUTs that the outputs are packed in 128-bit words, to output directly to the same RAM. The
system is implemented and tested on-board the twin otter aircraft.

A different approach is taken by [180] where, instead of targeting one sample per cycle, the
core is simplified to process a sample every few cycles, greatly reducing the required resources,
and being able to fit in smaller Space-grade FPGAs. Ordering is changed to BSQ since it provides
less dependencies, but more memory is required in the external RAM to store differences from
multiple bands. Different image sizes are also supported. Arbitrary size is also explored by [120],
realizing that by using BIP mode and enough storage, a full frame can be stored on BRAM to
speed up calculations.
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Implementation Regs LUTs BRAM DSP MS/s Image size Order RAM

Modified FL [114] 1586 12697 8 1 40.0 AVIRIS* BIP Yes
HyLoC [180] 1535 2342 0 1 11.3 Any BSQ Yes
HP CCSDS [120] 2557 5378 22 6 110.0 Any BIP Yes
Parallel CCSDS [25] 141 12783 138 50 179.9 AVIRIS BIP No
Efficient CCSDS [68] 2528 3012 84 6 147.0 AVIRIS BIP No
Fast 3.3G [207] 9990 9462 83 6 213.0 AVIRIS BIP No
SHyLoC [177] 3658 5815 74 8 111.8 AVIRIS** Any Opt
Par. Eff. CCSDS [154] 10696 12033 71 30 750.0 AVIRIS BIP No
SHyLoC 2.0 [16] 2736 4809 74 10 138.3 AVIRIS BIP No

Table 6.2: Different implementations of the CCSDS 123.0-B-1, sorted by chronological order of publica-
tion. [25] is own work. *: AVIRIS frame block with 32 frames. **: Different sizes up to AVIRIS. Results
correspond to the Virtex-5 FPGA except for [68] (Z7020) and [154] (Z7035).

After that, the concept of parallel execution using BIP mode [25] was introduced. Samples
from multiple bands could be compressed at the same time, since dependencies only exist at
the difference level, which can be shared. This concept uses more resources than the previously
optimized versions (in this case long combinatorial paths result in low register use and high LUT
count) but reaches higher performances. The limit is the serial part of the algorithm, where
outputs are packed in 32-bit words. The theoretical throughput limit for a Virtex-5 with optimal
packing is closer to 250MS/s.

Another possibility for increasing performance was used in [68], were execution of samples in
BIP mode was overlapped in a 15-stage pipeline. For images with over 15 bands on BIP mode,
this meant a one sample per cycle performance using a single predictor, and thus resource
requirements fell dramatically while retaining parallel performance. The same concept was
improved upon in [207], where more resources were used in a deeper variable-depth pipeline,
improving again performance.

The concept of arbitrary size compression was again explored in [177] taking advantage of
the developed advancements. Arbitrary image sizes can be compressed, with RAM being used
only if strictly necessary under some configurations such as BSQ with high P value, this was
further improved in [16]. Both algorithms are also capable of using the block encoder from the
standard, which offers more options than the simpler sample-oriented encoder.

Finally, the concepts of parallel band execution and pipelined execution were merged in [154]
yielding an astounding 750MS/s by pipelining packs of 5 bands in a modified pipeline from [68],
capable of compressing a single AVIRIS image in 48.82ms. The power efficiency as well reached
if 1442.31MS/s/W values that allow it to compress approximately 73735 AVIRIS images using
a single Wh of energy.

6.2 JYPEC

As a lossy algorithm, two aspects are compared in the following lines: first, the distortion-ratio
performance, and then, the JPEG2000 coder performance compared to other FPGA implemen-
tations.

6.2.1 Lossy performance

JYPEC was based on the idea from [57] where PCA and JPEG2000 were combined to get a
hyperspectral compression algorithm. It was then demonstrated that this novel algorithm out-
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Figure 6.1: Results of optimally applying JYPEC and PCA+JPEG2000 over some test images.

performed 3D wavelet transforms over the hyperspectral data, since higher spectral decorrelation
was achieved even though the 3D wavelet transform treats all dimensions as independent.

The improvements from Section 3.3 are mainly the vector quantization step before PCA, and
the bit shaving techniques that remove more bits from less important components. When this
parameters, along with all the rest that are given optimally by the F value, are fed into both
JYPEC and PCA+JPEG2000 over the test set of images, the distortion-ratio curves shown in
Figure 6.1 are obtained.
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Figure 6.2: Timing and distortion-ratio results at different values of
Fj for all test images. Bigger marks indicate a higher compression ratio
(always achieved). SNR difference values above 0.0 indicate an increase
in SNR.)

A clear improvement is
shown, seeing that both
quality and ratio are im-
proving by using the tech-
niques from JYPEC. Even
though the images have
different characteristics, im-
provements are seen across
the test set. Further-
more, Figure 6.2 shows
that this is achieved with
faster compression and de-
compression times, gain-
ing for each configuration
both in ratio and qual-
ity. Nearly all config-
urations improve the re-
sults, obtaining smaller
output sizes and better
quality compressed images
in lower times.

6.2.2 Hardware acceleration

The biggest bottleneck in JYPEC was the coding part of JPEG2000. This is not new, and
coding has been known to be the bottleneck of JPEG2000 [93, 130, 132, 152, 182].
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Coder Ref Technology Frequency Speed Slices BRAM/b

BPC
[86] APEX20KE FPGA 51.7MHz 73.44Mb/s 956 n/a**
[110] XCV600e-6BG432 52MHz 94.4Mb/s n/a n/a**
[142] EP20K600EFC672–3 100MHz 40.5Mb/s 1850 0**
This Virtex-4 FPGA 127.8MHz 190.2Mb/s 1850 4
This Virtex-7 FPGA 247.8MHz 368.8Mb/s 731 2

MQ

[38] 0.35µm 90MHz 180MCxD/s n/a n/a
[129] 0.35µm 150MHz 300MCxD/s n/a n/a
[58] Stratix 48.8MHz 97.7MCxD/s 1596 8192b
[58] 0.18µm 211.8MHz 423.7MCxD/s n/a n/a
[142] EP20K600EFC672–3 26.29Mhz 52.58MCxD/s 1811 n/a
[182] Stratix FPGA 153MHz 137.7MCxD/s 279 1344b
[165] 0.18µm 413MHz 413MCxD/s n/a n/a
[123] Stratix FPGA 106.2MHz 212.4MCxD/s 1267 0
[132] XC4VLX80 FPGA 48.3MHz 96.6MCxD/s 6974 1509b
[132] 0.18µm 220MHz 440MCxD/s n/a n/a
[181] Stratix EP1S10B672C6 136.9MHz 136.9MCxD/s 695 3301b
[183] Stratix FPGA 146MHz 146MCxD/s 824 428b
[6] 0.18µm 208MHz 192.8MCxD/s n/a n/a

[124] Stratix II FPGA 106.2MHz 212.4MCxD/s 1267 1321b
This Virtex-4 FPGA 121.2MHz 121.2MCxD/s 1689 1
This Virtex-7 FPGA 321.5MHz 321.5MCxD/s 1778 0

Tier 1
[130] 0.35µm 50MHz 36.5Mb/s n/a n/a
[71] Virtex II XC2V1000 50MHz 91.18Mb/s 4420 3120b**
[174] Virtex II Pro FG 456 112MHz 181.6Mb/s∗ 2504 28
This Virtex-4 FPGA 99.38MHz 147.9Mb/s 3803 8
This Virtex-7 FPGA 255.3MHz 380Mb/s 2708 4

Table 6.3: Comparison of different hardware accelerators for the Tier 1 coder (or parts of it) of
JPEG2000. *The value is not specified, but given the architecture, it is expected to have the same
relationship with frequency than the one presented here. **Requires external memory for data and/or
internal variables.

This has prompted many FPGA and ASIC implementations to arise in order to accelerate
the tier 1 coder, or parts of it, in JPEG2000. This also stems from the fact that any image
capturing device contains accelerators for JPEG encoding, and a transition to the more complex
JPEG2000 coding would mean that accelerators for it would also be required. However, there
are few implementations targeting the full tier 1 coder, and usually focus on either the BPC or
the MQ-coder only.

Different approaches for accelerating the different modules can be seen in Table 6.3.

A comparison is difficult to draw given the multiple architectures and designs available to
choose from. Fortunately, speed is not a problem in the context of hyperspectral image compres-
sion if dimensionality has been reduced. The margin in compression speed from Section 5.4.1.11
is enough that even with a slower implementation, it still meets the imposed real-time con-
straints, since it is so fast already when compared to the software version that time is now
dominated by the slow dimensionality reduction part. Hardware-wise, FPGA implementations
are very light on resources, being able to instantiate many cores even on small FPGAs, which
enables parallel execution on multiple blocks at the same time if necessary. The fastest FPGA
design is this work’s Virtex-7 synthesis, but this could be due to using newer technology and
not necessarily having a better design.
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Design Platform Frequency Speed LUTs BRAMs DSPs Power

[95, Ch.3] 4VLX200 81MHz 70MS/s 10306 21 9 1.1W

[178]
Virtex 5 80.21MHz 30.25MS/s 7836 4 17 n/a
4VLX200 77MHz 29.04MS/s 10015 4 20 n/a

[76]
Virtex 5 86.96MHz 27.9MS/s 7746 4 25 n/a
4VLX200 75.84MHz 24.33MS/s 9283 4 25 n/a

[75] RTAX2000S 18.65MHz 6.05MS/s 18101 7 n/a 0.378W
[179] T-C2075 1150MHz 130MS/s n/a n/a n/a < 225W

This
Virtex 5 247.36MHz 233.25MS/s 7096 6 7 2.732W
Virtex 7 341.99MHz 322.50MS/s 6371 7 7 0.672W

Table 6.4: Different implementations of LCPLC and their characteristics.

Also, the fact that FPGAs and ASICs can compete with each other, is proof for the viability of
using FPGAs directly, instead of spending time and effort in designing a custom ASIC. Specially
for such a small core that only needs a very small FPGA. The ASIC version will of course use less
power, so in very constrained scenarios it might still make sense. However, software solutions
are completely out of the question.

Note that much more efficient BPC exist that deviate from the standard. A pass-parallel
architecture, introduced in [66]. Efficiencies of up to 55MPixel/s are achieved at 16b depths
on 0.18µm CMOS technology [240], later improved to 92.8MPixel/s at 10b [181] on a Stratix
FPGA. Bit-wise, these correspond to 880Mb/s and 928Mb/s respectively. Even over 1.2Gb/s
is reported in [129]. They are much faster than standard bit-sequential BPC. This approach
was not chosen because timing demands are met nonetheless, and the slight loss in compression
ratio lowers the overall algorithm’s performance, as well as taking many more resources due to
MQ-coder replication to keep up with the BPC output.

6.3 LCPLC

The first LCPLC implementation was done by their authors in [95, Ch.3], targeting a space qual-
ified FPGA, achieving high throughput by decomposing the algorithm into elementary blocks
that communicate via ping-pong buffers.

More work was done on simpler HLS implementations [75, 76, 178, 179]. A modular archi-
tecture was developed were each main stage of the algorithm had its own module. Multiple
RAM blocks were used to interconnect and transmit data between the modules. This meant
that data transmission had greater overhead than a direct bus connection, resulting in lower
speeds. However, development was much quicker thanks to the ease of use of HLS synthesis.

A different approach was taken in [179] that used a GPU for acceleration, bringing the design
to speeds four times higher than the fastest previous FPGA version. The parallel nature of
GPUs exploits block predictions processing multiple samples at the same time.

The approach taken in this work, which is that of a very optimized pipeline version of the
algorithm, is able to surpass the GPU version previously mentioned, with less resources used than
the FPGA work that already existed, thanks to using the more customizable VHDL code instead
of HLS synthesis, and AXI-Stream based FIFOs instead of ping-pong buffers. Comparisons can
be seen in Table 6.4.
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CCSDS LCPLC JPEG

Image 123.0-B-1 122-0-B 16 32 LS 2000 ESA LUT

HAW 2.62 3.29 3.00 2.92 3.27 3.99 2.94 3.38
MAI 2.73 3.36 3.14 3.11 3.36 3.09 3.07 3.51
YEL00 6.19 6.7 6.44 6.41 6.95 6.65 6.45 7.15
YEL03 6.06 6.54 6.29 6.28 6.83 6.47 6.3 6.93
YEL00 3.96 4.63 4.13 4.06 4.73 4.46 4.59 4.85
YEL03 3.83 4.5 3.94 3.83 4.63 4.31 4.46 4.65
YEL10 3.37 3.94 3.28 3.12 4.01 3.68 3.8 3.93
YEL11 3.64 4.31 3.70 3.60 4.28 4.1 4.18 4.43
YEL18 3.91 4.68 4.04 3.96 4.68 4.51 4.56 4.86

Average 4.03 4.66 4.22 4.14 4.75 4.58 4.48 4.85

Table 6.5: Results (bpppb) of losslessly compressing multiple images with different algorithms. Data for
algorithms other than LCPLC is taken from [33]

6.4 Algorithm comparison

All three algorithms: CCSDS 123.0-B-1, JYPEC, LCPLC and their implementations have their
own specific applications and characteristics. CCSDS is lossless, JYPEC is lossy, and LCPLC
sits in between with both capabilities being near-lossless. Also, CCSDS and LCPLC are simple
enough to be synthesized as stand-alone cores on an FPGA, while JYPEC is just accelerated by
an FPGA with a general purpose processor behind.

The common characteristic in all of them is the ability to compress hyperspectral images in
real time. With all of them meeting the real-time constraints and the occupancy constraints
of the FPGAs, the following lines are devoted to comparing their distortion-ratio performance.
They are also measured against other hyperspectral algorithms to see their relative performance.

First, lossless compression is compared in Table 6.5 for multiple lossless algorithms. These
include the CCSDS 123.0-B-1 standard and LCPLC algorithm in slice size 16 and 32 that are
studied in this work. Also included are the JPEGLS (JPEG lossless) algorithm and lossless
version of JPEG2000 (both designed for non-hyperspectral images). As for hyperspectral algo-
rithms, the predecessor to CCSDS 123: CCSDS 122 is included, as well as the LUT compressor
[143] and ESA compressor [95, Ch.3] (original LCPLC with no modifications) that target hy-
perspectral compression.

Even though all algorithms are similar in results, CCSDS 123.0-B-1 generally outperforms
the rest, achieving higher compression ratios. LCPLC in its slice size of 32 also achieves some
of the best results for some images, with the ESA algorithm very close on some runs. JPEGLS,
JPEG2000, CCSDS 122-0-B and LUT all follow way behind, proving that more complex al-
gorithms do not necessarily translate in higher compression ratios. It is surprising however to
see how close CCSDS 123.0-B-1 and LCPLC are, considering the much lower complexity of the
latter (batch slice predictions instead of per-sample weighted predictions).

As for lossy algorithms, the performance of LCPLC and JYPEC is measured against the
newly developed near-lossless CCSDS 123.0-B-2 and PCA+JPEG2000 in Figure 6.3.

It is very evident that JYPEC and PCA+JPEG2000 outperform the others at low bpppb.
JYPEC is consistently above, thanks mainly to the increase performance due to selective bit-
depths applied to the different bands after dimensionality reduction. Both lose performance when
approaching the high-quality zone, where the near-lossless algorithms leap forward. Between
those, LCPLC is better at low qualities since its batch-prediction characteristic is able to reduce
much more the size than the sample-based prediction in CCSDS 123.0-B-2. At high bit-rates,
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Figure 6.3: Results of applying different algorithms on the BEL, CUP and SUW image respectively.

however, both algorithms are similar, with performance depending on the image characteristics.
LCPLC is preferred given its faster performance and low occupancy.

All in all, all algorithms can reach their real-time target, and it is best to use them depending
on what the compressed data will be used for. If perfect reconstruction is needed, a lossless
algorithm should be used. For high compression of images and storage, a complex algorithm
such as JYPEC is ideal. However, its multitude of steps introduce losses that are too high at
high bit-rates. For an all-around great algorithm that can perform well in both lossless and lossy
situations, a near-lossless algorithm is a safe bet that will in most cases outperform the former
two choices.
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Chapter 7

Conclusions

7.1 Summary

Hyperspectral images bring endless possibilities in many fields, mainly focusing on different types
of remote studies of the Earth. From military purposes such as target detection, to geological
studies about mineral abundance, to vegetation analysis or urban surveillance, all of the possible
applications have one thing in common: they need massive amounts of data to work with.

The minimum unit of information in the hyperspectral image context can be considered the
hyperspectral pixel. By itself, a single pixel spans a wide range of the electromagnetic spectrum,
sampling wavelengths at evenly spaced intervals throughout its range. At usually two bytes
per sample, a single pixel might end up taking a kilobyte of storage. Millions of these pixels
are needed to perform in-depth studies in different fields, and sensors often capture multiple
TeraBytes of information on their runs in order to build up a strong sample library.

Even though storage has increasingly been made available for cheap, it is not free. Cloud
storage services require expensive fees to maintain, and custom solutions targeting hyperspectral
imagery are expensive to build. Compression of these images seems like a logical step in the
processing flow to reduce these expenses. And doing it in real time is of special interest for being
able to set up a capture-compress-store pipeline that avoids the need for either huge buffers or
capture stalls.

The possibilities for compressing hyperspectral imagery are endless. Lossy algorithms that
preserve the raw information to help with precise scientific studies. Lossless algorithms that
target bulk storage of data in a compact way without sacrificing quality. Near-lossless algorithms
in which quality or data rates can be controlled obtaining results within set size or reconstruction
constraints. All of them with different characteristics but one common objective: reducing data
size.

In this thesis, three algorithms (one on each category) have been studied from the algorithmic
and implementability point of view. FPGAs have been targeted since some models can be used
out of the box in the harsh air or spaceborne conditions that hyperspectral sensors usually work
under. Their reconfigurability offers a unique advantage over other systems: performance and
low power consumption within a single die.

The three algorithms studied have been: CCSDS 123.0-B-1: an international standard aim-
ing at lossless compression. JYPEC: a custom lossy algorithm based on the most promising
published techniques. And LCPLC, a slight modification of a near-lossless algorithm designed
for the Exomars mission.

Results show that every option has been able to reach real-time performance with FPGA
acceleration. Both CCSDS and LCPLC have been developed as stand-alone cores, while JYPEC
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is partially implemented as an accelerator. The first two, thanks to the simple nature of their
predictors and encoders, show remarkable performance beating both GPUs and CPUs in speed
and power efficiency. The latter is more limited in speed and requires co-processing along a
general purpose processor.

7.2 Thesis work

The problem of hyperspectral image compression has been evident since hyperspectral imagery
was developed. As such, multiple algorithms were available at the start of this thesis. The
first step was thus to study and compare the different options that were available, seeking the
best algorithms that might benefit from FPGA execution. Three main types were identified:
Lossless, lossy, and near-lossless.

The first type, targeting perfect reconstruction after the compression-decompression process,
had the most options available. General data compression is mostly lossless, since most ap-
plications compressing text, databases or programs cannot afford to lose a single bit, or the
applications depending on them might stop working or completely malfunction. This availabil-
ity of lossless algorithms translates to hyperspectral compression. An international standard
had already been developed to tackle this exact issue. Multiple options had been proposed, and
the CCSDS 123.0-B-1 algorithm had been developed as a result. It was simple enough to be
implemented on an FPGA, and offered the best compression ratios when compared to other
alternatives, being the best candidate for its category.

For the lossy options, multiple options were also available. This stems from the fact that
images are one of the most common data types in computing. For their general uses, perfect
quality is usually not needed, and losses can be afforded even for scientific studies. Their ideas
usually involve some kind of signal processing over the 2D matrix of pixels. These ideas had been
adapted to hyperspectral imagery. The best results were achieved by separating the spectral
decorrelation from the spatial decorrelation, noticing that they were independent. An algorithm
including PCA and JPEG2000 for the spectral and spatial decorrelation respectively was the
most promising, and was selected as a starting point for the lossy approach.

Finally, near-lossless compression hadn’t been explored as much, with usually lossy or lossless
approaches being sufficient for most applications, since they generally outperform near-lossless
compression in their respective fields. However, it was still interesting to study an algorithm
that, while not being the best at lossy or lossless compression, can seamlessly move between both
to adapt to possibly changing constraints. The algorithm designed for the ExoMars mission was
selected as a starting point in this category.

All of these options were explored with FPGA implementations in mind. Their specific
characteristics were studied aiming for optimizations in the development process, targeting real-
time performances.

7.2.1 Timeline

A CCSDS core was first developed in VHDL, adding parameters for all of the configuration op-
tions available in the standard. The configuration is static, meaning that the core is synthesized
for a specific image size and compression parameters. While this is a problem in ASICs, it can
easily be reconfigured on an FPGA, taking advantage of the fully optimized circuit that results
from this specificity. A software was also developed to cross-check compression results with
both the developed core and existing software implementations. The core was tested, but its
complexity was still too high for real-time compression on small space-grade FPGAs. As such,
parallelization was then tried as a way of speeding up the module. The type of parallelization
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applied restricted some constraints for the algorithm configurations, which luckily were not com-
mon characteristics in the available sensors. Real-time was greatly surpassed, achieving results
even faster than full GPU implementations, and proving that even old FPGAs were still future
proof against sensor improvements.

A more algorithmic approach was first taken for the lossy PCA+JPEG2000 starting point.
With the aim of improving the distortion-ratio performance, the literature was extensively re-
searched for different compression techniques and approaches that were tried to see which worked
best in the hyperspectral context. These were tried in a custom software, designed to pipeline
multiple compression steps to generate a viable compression algorithm. The best results came
from Vector Quantization before the PCA step, plus variable bit-rates in the latent component
compression. This improved the existing algorithm in both distortion-ratio and compression/de-
compression speed. A directed search in the parameter space was performed to find out the best
possible algorithm configurations to get an optimal distortion-ratio curve across the whole spec-
trum of qualities. The resulting algorithm was deemed too complex for a full-on hardware imple-
mentation, which would’ve required multiple FPGA cores and memory synchronization between
them. Instead, the algorithm was profiled and the JPEG2000 coder found to be the bottleneck.
The literature was extensive in this subject, and multiple techniques were tried, arriving at
a core that was competitive even with CMOS technology. The combination of CPU+FPGA
was able to bring lossy hyperspectral compression to real-time, albeit at the cost of needing a
complex system instead of a simple FPGA core, and limiting the algorithm parameters to those
that didn’t require excessive computing resources. This still limited its applicability in air and
spaceborne applications, being more suited for data center processing.

Finally, the near-lossless algorithm LCPLC algorithm from the ExoMars mission was also al-
gorithmically analyzed. With block-oriented predictions instead of sample-oriented predictions,
data dependencies were very far apart in the processing flow. A hugely pipelined execution
was deemed possible, and extremely optimized simple modules were developed as the pipeline
components. Results of this first version already surpassed even the parallelized CCSDS algo-
rithm with a smaller core. Throughout development, it was realized that a small change in the
algorithm, with no impact in distortion-ratio, could be introduced halving the pipeline stalls
(doubling performance). Even though this increased the resource requirements (specially regis-
ters), the modified core still fits in a space-grade FPGA, reaching speeds well above any previous
lossy or lossless hyperspectral compression algorithm, being almost ten times faster than the
real-time constraint from the AVIRIS-ng sensor.

The algorithms and their implementations were then compared, demonstrating that the spe-
cific lossless and lossy algorithms are still the best option in their domains (rather than the
near-lossless one). However, the difference is very close, and the adaptable near-lossless al-
gorithm is also far more efficient resource wise and quite faster in compression speed. These
facts fairly outweigh the slight loss in compression efficiency in the lossless and extremely lossy
extremes.

In any case, the most important factor when determining the algorithm complexity on an
FPGA is whether its design is easily portable or adaptable to reconfigurable hardware. Spending
time in reviewing and adapting the algorithms for FPGAs is almost as important, if not more,
than developing a great implementation. Software tests must be done beforehand to optimize
the algorithm and determine its best parameters for the target application. The target platform
must be taken into account in design, taking advantage of the fast conditional execution of an
FPGA, or the massive parallelism of a GPU. It is also clear that, when that target platform can
be an FPGA, the results far outperform the competition.
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7.3 Future Work

The results from the near-lossless algorithm indicate that this option is the best for FPGA
implementation of hyperspectral compression algorithms. Despite needing more FPGA resources
than the other types, even older models are not limited to host the LCPLC implementation.
This highly pipelined approach could be used for other compression algorithms, or for other
processing algorithms that rely on pipelined steps.

A framework could be built around the individual modules developed, with a specific language
indicating how elements connect with and depend on each other. This would semi-automate
the generation of these kind of cores. The idea is similar to that of HLS, but in this case falling
back to highly hand-optimized modules, which will probably outperform HLS-inferred ones.

This would not be a substitute for HLS, but a niche application for a specific kind of problem,
where the benefits of having a custom pipeline are greatly noticeable. It is of special interest for
any kind of image or signal processing from a sensor, were usually, in real time, the input data
needs to be processed in some way. And specifically, for hyperspectral image processing.

There are many options available, but the flexibility of FPGAs is unpaired. Being cheap and
fast when compared to other options, the development of new tools to ease their programmability
certainly brings them closer to the average user, and help their integration as accelerators in
every platform.

Regarding hyperspectral compression algorithms in general, a unified software framework to
implement them, along with a library of standard test images, would help in making comparisons
more fair. Results are often given for different images, or as averages of multiple runs for lossless
algorithms, making comparisons hard. Lossy algorithms are even harder to compare since quality
metrics are sometimes not uniform across papers.

Unifying this into a testing suite where new algorithms could be implemented, would cer-
tainly benefit the hyperspectral compression community with a tool able to properly compare
performances, since currently comparing different algorithms sometimes involves implementing
them again given the unavailability of either the code or the test image suite used.

Not only on the software side, but being also able to test different architectures would highly
benefit the conclusions as to what platform is better suited for different scenarios. Testing can
be done for multiple platforms once a generic software has been built. GPUs can be targeted for
parallelization capabilities. Architectures such as ARM, more power efficient than x86, can also
be directly targeted as fully self-contained accelerators. Finally, embedded GPUs and vector
processors can be studied under real-time constraints, since they are, as FPGAs, optimized
towards power consumption.

The field is still active and thriving, with special focus put into heavy optimizations now
after a broad theoretical exploration in the early 2000s. New sensors are being made every year,
and are being launched to space even more frequently. With FPGAs growing into every market,
their application to hyperspectral imagery will only continue to grow moving forward.

7.4 Publications and contributions

Throughout the development of this thesis, publications have been made across different Jour-
nals, as well as some participations in different public forums. Below they are listed in chrono-
logical order, along with the importance metrics when appropriate.

� Daniel Báscones, Carlos González, and Daniel Mozos. “FPGA implementation of the
CCSDS 123.0-B-1 standard for real-time hyperspectral lossless compression”. In: IEEE
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Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11.4 (2017),
pp 1158-1165. Impact factor: 2.777. Q2 in Electrical and Electronic Engineering, Remote
Sensing, Image Science and Photographic Technology, Physical and Geography. (Cited 20
times (Google Scholar)).

� Daniel Báscones, Carlos González, and Daniel Mozos. “Parallel implementation of the
CCSDS 123.0-B-1 standard for hyperspectral lossless compression”. In: MDPI Remote
Sensing 9.10 (2017), p 973. Impact factor: 3.406. Q1 in Remote Sensing. (Cited 16 times
(Google Scholar)).

� Daniel Báscones. “Real-time Hyperspectral image compression using FPGAs”. In: Hipeac
ACACES 2018 (2018).

� Daniel Báscones, Carlos González, and Daniel Mozos. “Hyperspectral image compression
using vector quantization, PCA and JPEG2000”. In: MDPI Remote Sensing 10.6 (2018),
p 907. Impact factor: 4.118. Q1 in Remote Sensing. (Cited 13 times (Google Scholar)).

� Daniel Báscones, Carlos González, and Daniel Mozos. “An extremely pipelined FPGA
implementation of a lossy hyperspectral image compression algorithm”. In: IEEE Trans-
actions on Geoscience and Remote Sensing (2020). 2018 Impact Factor: 5.63. Q1 in
Remote Sensing, Geochemistry and Geophysics, Electrical and Electronic Engineering,
Imaging Science and Photographic Technology. (Cited 3 times (Google Scholar)).

� Daniel Báscones, Carlos González, and Daniel Mozos. “An FPGA Accelerator for Real-
Time Lossy Compression of Hyperspectral Images”. In: MDPI Remote Sensing 12.16
(2020), p 2563. Impact factor: 4.118. Q1 in Remote Sensing.

As well as the scientific contributions, the code for all of the projects has been compiled into
repositories and made public for anyone to use or expand upon:

� The CCSDS123 software repository [18], with CCSDS 123.0-B-1 and 2 capabilities for both
compression and decompression, used to verify the CCSDS 123.0-B-1 FPGA core.

� The Parallel CCSDS123 hardware repository [22], containing all of the modules for par-
allel and serial CCSDS 123.0-B-1 core generation, with all of the different options and
parameters that were presented in this work.

� The JYPEC software repository [19]. It contains the full JYPEC compression suite, as well
as packages for hyperspectral image reading and writing, and matrix quality measurements
that can be used for other purposes.

� The VYPEC hardware repository [23]. All of the modules used for the implementation of
the tier 1 coder of JPEC2000, included in the JYPEC flow, are uploaded in this repository.

� The LCPLC repository [20], containing both the software and hardware implementations
of the LCPLC algorithm, using the improved fast version presented in this work.

� The AXI-Modules repository [17], a collection of the basic modules used in LCPLC pack-
aged in a small repository that can be reused for other purposes.

� The MERVI (Matrix ERror VIsualizer) repository [21]. A repository built on top of
JYPEC’s hyperspectral functionality, to visually see the differences between different hy-
perspectral images, as well as easily rendering an image using three bands as RGB colors.
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Glossary

A Interval length register (JYPEC).

arithmetic coding Optimal coding technique for a sequence of symbols with known prob-
abilities.

ASIC Application Specific Integrated Circuit.

BIL Band interleaved by line. Ordering of hyperspectral data where frames
are stored sequentially, and within frames pixels are interleaved by wave-
length.

BIP Band interleaved by pixel. Ordering of hyperspectral data where pixels
are stored in sequential order.

bpppb Bits per pixel per band.

BRAM Block Random Access Memory in an FPGA.

BSQ Band sequential. Ordering of hyperspectral data where bands are stored
sequentially, in turn stored in raster-scan order.

c Number of clusters for VQ (JYPEC).

C Number of parallel cores (CCSDS).

CCSDS Consultative Committee for Space Data Systems.

CDF Cohen–Daubechies–Feauveau wavelet transform.

CLB Configurable Logic Block in an FPGA.

code Mapping between two sets of symbols.

CPU Central Processing Unit.

C Interval base register (JYPEC).

CxD Context-Data pair.

D Bith depth of a hyperspectral sample.

DCT Discrete Cosine Transform.

δ Prediction residual (CCSDS).

DFT Discrete Fourier Transform.

DSP Digital Signal Processing block in an FPGA.

e Error in prediction (CCSDS).
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EBC Embedded Block Coding.

EBCOT Embedded Block Coding with Optimal Truncation.

entropy Amount of information present in the symbols of a data source.

EZW Embedded Zerotree Wavelet.

FIFO First In First Out queue.

FL Fast Lossless algorithm.

FPGA Field Programmable Gate Array.

frame The set of pixels that span the width of an image, in turn given by the
capture width of the sensor.

golomb code A code optimal for coding a sequence which symbols follow a geometric
distribution.

golomb exp code A code optimal for coding a sequence which symbols follow an expo-
nential distribution.

GPU Graphics Processing Unit.

H Shannon’s entropy, the average length limit for transmitting a sequence
of symbols of a fixed set.

z Position of a sample within an image across its height.

HDL Hardware Description Language.

HH Subband with highpass horizontal and highpass vertical filters applied.

HL Subband with highpass horizontal and lowpass vertical filters applied.

hyperspectral image An image capturing many bands at equally spaced wavelength intervals.

ICA Independent Component Analysis.

IR Infrared, referring to a band in the IR wavelength.

ir Inverse Compression Ratio. Value indicating the fraction of the original
size that the compressed data occupies.

JPEG Joint Photographic Experts Group.

JYPEC Java hYPerspEctral Compressor.

KLT Karhunen–Loève Transform.

LCPLC Low Complexity Predictive Lossless Compression.

LH Subband with lowpass horizontal and highpass vertical filters applied.

LL Subband with lowpass horizontal and vertical filters applied.

LMS Least Mean Square.

lossless A type of compression where the data recovered after decompression
exactly matches the original data before compression.

lossy A type of compression where the data recovered after decompression
can be different than the original, normally an approximation.
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LPS Least Probable State.

LUT Look Up Table in a CLB.

maxSE Maximum Square Error.

MS/s Hyperspectral mega samples per second.

MNF Minimum Noise Fraction.

monochrome image An image capturing only one band of a specific wavelength.

MPS Most Probable State.

MSE Mean Square Error.

MSR Mean to Standard deviation Ratio.

µ Local average of neighbors in CCSDS.

multispectral image An image capturing a small number of bands of different wavelengths.

near-lossless A type of compression where either the loss of information or the com-
pression ratio are limited.

NPSNR Normalized PSNR.

NX Number of pixels in each frame of the image, or width.

NY Number of frames of an image, or length.

NZ Number of samples on each pixel of the image, or height.

Ω Weight resolution in CCSDS.

P Number of bands used for prediction (CCSDS).

panchromatic image An image capturing all visible light in a single band, averaging the
intensity of the range of wavelengths.

PB Push-broom, type of sensor that has a detector for each sample within
a frame.

PCA Principal Component Analysis.

pixel The set of sample(s) at the same spatial location within an image.

PowSNR Power Normalized SNR.

PSNR Peak SNR.

quantization Process through which a numeric data sample loses precision.

r Compression Ratio. Value indicating how many times smaller the com-
pressed data is with respect to the original.

radiance Absolute amount of light that bounces off the target and is captured by
the sensor.

raster order Traversal of an image by lines, one after another, flattening the spatial
matrix of pixels to a single vector.

reflectance Amount of light that the target reflects relative to how much it is re-
ceiving.
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RGB Red, Green and Blue. Usually referring to a three-band image in the
red, green, and blue wavelengths.

ρ Update scaling exponent (CCSDS).

ROI Region Of Interest.

run length coding Coding technique that benefits from repetitive sequences of symbols.

sz,y,x A sample of an image at the given coordinates. Also sz(t).

sample Concrete value within a hyperspectral image at a fixed spatial and spec-
tral location.

S/s Hyperspectral samples (S) per second . Used for measuring throughput.

ŝ Prediction of a sample s.

σ Local sum of neighbors in CCSDS.

smax Minimum value of a sample within its range.

smid Central value of a sample within its range.

smin Minimum value of a sample within its range.

SNR Signal to Noise Ratio.

spectral signature A function mapping wavelength to intensity, referring to either pure
synthetic spectra or the contents of a hyperspectral pixel.

SPIHT Set Partitioning In Hierarchical Trees.

SSIM Structural Similitude Index.

SVD Singular Value Decomposition.

swath Width of the image at the ground level, given by the sensor’s charac-
teristics.

t Position of a sample within its band. t = x+ y ·NX .

T The result of performing dimensionality reduction on matrix X for
JYPEC.

t Subsampling factor (JYPEC).

U Difference vector (CCSDS).

UV Ultraviolet, referring to a band in the UV wavelength.

VCA Vertex Component Analysis.

VQ Vector Quantization.

VQPCA Vector Quantization Principal Component Analysis.

W Weight vector (CCSDS).

W Transformation matrix (JYPEC).

wavelet transform Transformation applied to a data matrix that separates high and low
frequency components of the underlying signal.

WB Whisk-broom, type of sensor that has detectors for just one pixel, and
raster scans the target area to generate an image.
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W̄ Inverse Transformation matrix (JYPEC).

x Position of a sample within an image across its width.

X Matrix of pixels used in JYPEC.

y Position of a sample within an image across its length.
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