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To those that will skim through this text, understanding next to nothing, but still feeling an
aura of mystery. Those that will appreciate it not because of what it contains, but because of
what it means.

To you.

Para aquellos que ojeardn este texto entendiendo mds bien poco, pero sintiendo el misterio que
rodea a la ciencia. Aquellos que lo apreciaran no por lo que contiene, sino por lo que significa.

Para ti.
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The end. That’s how most books close their last page. They are self-contained with a beginning,
some story-telling in the middle, and a clear and distinct end. When they do not end, it is because
a second part is in the works. But this approach limits creativity. It limits imagination. Why
does the whole world need be contained within the book cover and back?

And that’s how most thesis are, aren’t they. A culmination. The mental climax of years of
effort that just... stops. Why does it have to be a farewell? Each day of someone’s life does
not have to be the end of anything. It is the beginning of the rest. The path might change,
the objective might be different, but nothing is finished. Every milestone along the way is just
polishing the one that came before.

That polishing compound that shapes our lives is people. From the moment someone is
born, their life has already depended on others, has already been influenced by others. This
thesis marks just a milestone and, as is tradition, all the polishers will be acknowledged without
naming to avoid the shame from forgetting someone’s name.

Personal computers were expanding like wildfire among the tech-savvy population. For all
I cared, the computer at home was just a gaming machine. But not just any kind of gaming
machine: a serious game one. The term might not have been as popular at that point in time as
educational games, but that is what it was. It was still fun, but it was not only a fun experience
but a learning experience. Even under that premise, playing time was limited to avoid the
omnipresence of eye damage that today plagues society.

But once introduced to the world of “good” addictions, it is not possible to take it back.
Games were ending. New programs had to be installed, The Internet had to be set up.

>ipconfig

I still remember that simple line written over a black canvas. Press enter, and a bunch of white
mono-spaced characters cascaded through the screen conveying some mysterious information.
Unknown information appeared on the screen. What that was is sometimes still today a mystery,
but it was cool. There is something about it. The mystery and astonishment when looking at
something that just works. Like a well-oiled bearing supporting the wheels powered by a V-8,
like the blades of a turbine spinning in place when synchronized to the shutter speed, like a
crane precisely expanding its arm to a previously unreachable place.

A transistor. It’s got something magical, ain’t it?. Even though you cannot see them, you
can feel them as any other engineering marvel.

Years went by and transistors were forgotten. A football was much more appealing and
frankly, much more easy to deal with than a keyboard and mouse. But the interest for things
that just... work, was still there.

It was a robot that brought it back. Ironically, the ones that will eventually take our jobs,
either relegating us to slavery or perpetual artistic freedom. A simple interface where boxes and



lines formed execution graphs that the robot would follow. From a line follower to a calculator
or an automated shooting turret, it was blessed by Turing and could do anything.

But interest faded away after a while. Time was becoming less available, and video games
more prevalent. But even fun games can teach us things. A predecessor to the widely-known
Minecraft, Roblox was a game where Lego-like characters moved around user-created levels built
with Lego blocks. As it turns out, blocks were programmable. On sandbox mode, a weird-looking
screen, reminiscent of that of ipconfig, showed up when clicking on blocks. It said things, in
a very structured language, that could be understood.

They say some brains are better structured for certain tasks. A simple line quickly became a
game of seeing what effects changing the different words and values had on the world. Building
a level was relatively easy. Just copy things that others have done!' with the functionality that
you need and chain them together. Maybe spice it up by changing it a little bit so it does not
do the exact same thing as the source.

That was programming. That was the seed that started polishing what had been dormant
for long.

First it was a simple calculator where the button color palette was more important than
the button functionality. Then it moved to tools that helped in games, purely motivated by
increasing the post count by one in the forums. That’s when some people would say a revelation
happened. A moment that would steer things one way forever. But that had been already
brewing for long.

From there, the official path begun. Alongside a squad of the best people one could possible
desire, supported by the best people one could possibly have behind, and directed by some of
the best guides one could hope for when lost in a forest.

At first it was a simple pocket knife cutting through the tall grass, then a machete slashing
lianas, an ax cutting off tree branches and finally a bulldozer uprooting whole trees. The power
built after iterations of the educational system, topped off with the best real world experience
one could ask for, gives people the freedom to do what they want.

And that was going back to basics, going back to that feeling of things that just... work. The
feeling of information boxes sliding through a data factory filling up containers along the way.
The feeling of doing something that can impress oneself.

This work is not the summary of the last 3 years, is the summary of a lifetime that hasn’t
concluded. The polished stone resulting from all those that have contributed, which could even
get smoother. Through support, revisions, suggestions, corrections, ideas, jokes, entertainment
and love. Because life is a tangled net of interactions, and like a hurricane, it wouldn’t be fair
not to thank the butterfly that started it.

'Sponsored by StackOverflow
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Fin. Asi cierran los libros su tltima pégina. Autocontenidos con un comienzo, nudo, y desenlace
diferenciados. Y, si no terminan, es porque esperan una secuela que cierre los hilos abiertos.
Una aproximacion tradicional que limita la creatividad. La imaginacion. ;Por qué debe estar
contenido un mundo limitado entre la portada y contraportada?

También estd presente esta filosofia en las tesis. Son una culminacién. El climax mental de
anos de esfuerzo que simplemente... termina. ;Por qué tiene que ser una despedida? Cada
dia, momento de la vida no tiene por qué marcar el final de nada. Es el comienzo del resto.
El camino puede cambiar, incluso el destino, pero nada tiene por qué terminar. Los hitos del
camino no se dejan atrds sino que se van puliendo con el acarreo.

Y lo pulen las personas. Desde el momento que nacemos la vida depende de otros, es influ-
enciada por otros. Esta tesis marca solo uno de esos hitos y, siguiendo la tradicién, todos los
pulidores seran agradecidos sin nombrar, evitando la vergiienza de olvidar alguno.

Los ordenadores se expandian a velocidad de vértigo entre la gente aficionada a la tecnologia.
Para mi, el ordenador de casa era solo una maquina para jugar jueguecitos. Pero no juegos
cualesquiera, juegos serios. El término probablemente no era tan popular entonces como si lo
era educativo. Juegos que mantenian la diversién, pero que ademds ensenaban. Pero incluso
bajo esa premisa, el tiempo estaba limitado para evitar, o posponer, los omnipresentes problemas
visuales de hoy en dia en la sociedad.

Y una vez integrado en el mundo de las “buenas” adicciones, no es posible salir. Los juegos se
acababan, se instalaban nuevos programas, e internet tenia que configurarse para seguir adelante.

>ipconfig

Atn recuerdo esa simple linea con un cursor parpadeando sobre un lienzo negro. Presionabas
intro, y un montén de caracteres blancos monoespaciados caian como una cascada, portando
algin tipo de informacion desconocida en el momento. Algunas de las palabras que aparecian
son aun hoy un misterio, pero un misterio molén. Habia, y hay, algo detris. El misterio y
perplejidad al mirar a algo que simplemente funciona. Como un rodamiento bien engrasado que
dirige ruedas alimentadas por ocho cilindros, como las afiladas hojas de una turbina que giran
estaticas al sincronizarse a la velocidad del obturador, como una gria extendiendo su brazo
hasta un lugar inaccesible.

Y un transistor. Tiene algo magico. Incluso sin poder verlo, se puede sentir su poderio como
con cualquier otra maravilla de la ingenieria.

Los anos pasaron y los transistores olvidados. Un balén era mucho més atractivo y, siendo sin-
ceros, mas facil de domar que un teclado y ratén. Pero el interés por las cosas que simplemente...
funcionaban, atin estaba ahi.

Fue un robot quien lo trajo de vuelta. Irénicamente, esos seres que finalmente acabaran con
nuestros trabajos, ya sea haciéndonos esclavos o permitiendo un estado perpetuo de libertad
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artistica. Una simple interfaz con cajitas y lineas conseguia formar grafos de ejecucién que el
robot seguia. Desde un simple seguidor de lineas a una calculadora o torreta de defensa de la
habitaciéon, el robot habia sido bendecido por Turing y podia hacer cualquier cosa.

El interés volvié a desaparecer tras un tiempo. El tiempo se hace escaso, y los videojuegos
mas prevalentes. Pero incluso juegos divertidos pueden ensenar. Roblox, previo al conocido
Minecraft, tenia unos personajes similares a los de lego que se movian por niveles creados por
los usuarios. Y los bloques eran programables. Con una combinacion especial de teclas, una
extrana pantalla, que recordaba a aquella de ipconfig, se mostraba al hacer click en los
bloques. Decia cosas que, en un lenguaje muy estructurado, se podian entender.

Dicen que determinados cerebros estan estructurados para ciertas tareas. Una simple linea
de codigo se convirtié rapidamente en observar qué efectos tenia en el mundo cambiar las pal-
abras. Construir un nivel era sencillo, solo bastaba copiar lo que habfan hecho otros? con
las funcionalidades que interesaban para concatenarlas todas y crear algo a medida. Quiza
cambiandolo un poco para que no hiciera exactamente lo mismo que la fuente.

Eso era programar, eso era la semilla que comenz6 a pulir aquello que habia estado latente
tanto tiempo.

Primero fue una simple calculadora donde la paleta de colores era mds importante que la
funcionalidad de los botones. Posteriormente fueron herramientas que ayudaban en juegos,
puramente motivadas por incrementar el contador de mensajes de los foros. Es este cimulo de
cosas lo que algunos llamarian revelacién, pero era un brebaje que habia estado fermentado ya
mucho tiempo.

Desde ahi, comenzé el camino oficial. Junto un grupo de la mejor gente que uno pudiera
desear, apoyado por la mejor gente que uno pudiera tener, y dirigido por los mejores guias que
uno pudiera esperar al perderse en un bosque oscuro.

Al principio era una simple navaja de bolsillo cortando césped, luego un machete sajando
lianas, un hacha podando ramas y finalmente una excavadora levantando arboles enteros. El
poder adquirido tras iteraciones del sistema educativo, completado con la mejor experiencia en
el mundo real que uno pudiera pedir, es lo que proporciona la libertad de elegir lo que uno
quiere.

Y era volver a lo sencillo, a ese sentimiento de cosas que simplemente... funcionan. El
sentimiento de cajas llenas de componentes que se mueven por una fabrica de datos llenando
contenedores por el camino. El sentimiento de impresionarse.

Este trabajo no es el resumen de los ultimos 3 afios, sino el resumen de una vida que no ha
terminado. La piedra pulida por todos aquellos que han contribuido, y que ain puede tornarse
més brillante. Con apoyo, revisiones, sugerencias, correcciones, ideas, bromas, entretenimiento
y amor. Porque la vida es una confusa red de interacciones y, como un huracan, no seria justo
dejar sin agradecer a la mariposa que empezd todo.

2Patrocinado por StackOverflow
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Abstract

Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely.
This is less intrusive, avoids interferces in the measuring process, and more convenient for the
scientist. One of the most recurrent concerns in the last decades has been sustainability of the
planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen
an explosion in activity, with satellites now being launched on a weekly basis to perform remote
analysis of the earth, and planes surveying vast areas for closer analysis.

One of the most interesting sensors aboard these platforms is the hyperspectral image sensor.
It extends the concept of humanly visible images, instead capturing the intensity of the whole
electromagnetic spectrum at evenly spaced intervals. Hundreds of samples are present per pixel,
providing a much more detailed profile of the image contents. Analysis of these images is of
great importance for all kinds of studies about geology, hydrology, agriculture, vegetation and
many more. However, a problem arises when transmitting or storing the data.

Hyperspectral images are big. A single one can go in the GB range, limiting what on-board
processing can achieve with them. Transmission to ground stations, or on-board storage is a
necessity. To do so efficiently, scientists have been using a technology available since the inception
of computers: compression. Memory and bandwidth have always been limiting factors for data
processing, and reducing the data flow between and into drives helps mitigate this issue.

Hyperspectral compression algorithms have been designed as adaptations of existing tech-
niques, or as newly developed algorithms specific to this kind of data. Their computing require-
ments are usually higher than those of other data compression algorithms due to the inherent
complexity of hyperspectral data. Needing to be executed on air and spaceborne systems, an-
other constraint comes in: power is limited (both electrically and computationally). Custom
ASICs could be developed, but from inception to having an actual usable product, the technology
is already obsolete in a fast-moving world, and too expensive for one-time uses.

Luckily, a powerful platform that is also power efficient, flexible, and fairly fast to develop for
exists: FPGAs. Reprogrammable hardware that can internally change to mimic the behavior
of a custom circuit with few penalties other than limited resources. Furthermore, they are
able to reach real-time constraints where other technologies fall short, being able to sit as a
part of a capture-compression-storage/transmission pipeline where the limit is now the sensor’s
throughput.

In this thesis, compression of hyperspectral images on FPGAs is studied. The different types
of algorithms available, as well as their portability to FPGAs, and which and how can benefit
more from this technologies. Also, from the algorithmic point of view, how optimizations prior
to FPGA development can lead to extensive gains even before implementation, avoiding more
costly optimizations late in the process.

First, the CCSDS 123.0-B-1 algorithm is implemented, a standard by the CCSDS. It is
designed to work by processing raw sensor data, compressing the image in raster order. A
design is made that is parametrized with every algorithm option, producing an optimized core
with each synthesis. While already quite fast, parallelization techniques bring it to a performance



of over 300M S/s on a Virtex-7 for the processing core, and over 140M.S/s on a space-qualified
Virtex-4 board, well above the 30.72M S/ s real-time threshold. These speeds even surpass GPU
implementations while drawing less than ~ 100x the power.

Secondly, a custom lossy hyperspectral image compression algorithm is designed based on a
PCA+JPEG2000 approach. Extensive tests are done to add more compression techniques to the
compression pipeline, as well as optimizing parameter selection over the range of compression
ratios to get the best quality possible. A very efficient algorithm at low bit-rates is achieved,
however its complexity is too high for a full FPGA implementation. Real-time is not achieved
on a general purpose processor, sitting at half the required performance. An FPGA accelerator
is designed for the most time-consuming part: the JPEG2000 encoder. With over 70% of time
devoted to it, a = 100x acceleration accomplishes the real-time constraints.

Finally, a near-lossless algorithm, sitting in between the first two, is also analyzed and an
FPGA core developed for it. Software analysis shows it is competitive in both the lossy and
lossless domain. And with a highly optimized pipeline, hardware results show that it reaches a
single-core performance above that of the parallelized CCSDS core at 322.5M S/s, while taking
a fraction of the resources as the CCSDS core, with < 10% occupancy on a Virtex-5 board. And
it can even be parallelized for further improvements.

It is demonstrated that real-time FPGA compression is possible for the lossless and near-
lossless algorithms with room to spare in case sensors improve over time. Software analysis before
implementing the algorithms proves to be a very useful tool in estimating final performance, and
the selection of the appropriate algorithm is crucial in being able to quickly adapt it to an FPGA.

All implementations have been compared, and their advantages and disadvantages explained
in detail. As it is nearly always the case, there is not a perfect algorithm or technique that solves
all problems. While FPGAs consistently outperform other platforms, the specific core design
has to be carefully crafted to get the maximum performance out of it according to the algorithm
specifications.

In the following chapters, all of these concepts will be expanded upon. A more detailed intro-
duction will be presented in Chapter 1, further explaining the concepts of Hyperspectral images,
compression and FPGAs. Different compression techniques will be explained in Chapter 2 as an
introduction for the hyperspectral compression algorithms. Al three selected algorithms will be
presented in Chapter 3 from an algorithmic point of view, explaining their mathematical basis
as well. Their implementations for FPGA devices will be explained after in Chapter 4, with
emphasis in existing and improved techniques. Results from both the algorithmic and imple-
mentation points of view will be shown in Chapter 5 and put into perspective in Chapter 6.
Conclusions will close this work in Chapter 7 with the most important findings.

Keywords: Hyperspectral image, compression, FPGA, real-time.
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Resumen

Los sensores aparecen hoy en dia en todos los aspectos de nuestra vida. Cuando es posible, de
manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y ademas
facilita el trabajo cientifico. Una de las preocupaciones recurrentes en las tltimas décadas ha
sido la sostenibilidad del planeta, y cémo monitorizar los cambios a los que se enfrenta. Los
estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente
para analizar la superficie, y aviones sobrevolando grandes areas para andlisis més precisos.

Uno de los sensores que vuela en estas plataformas es el de imagenes hiperespectrales. Ex-
tiende el concepto de imdgenes visibles por humanos, capturando la intensidad del espectro
electromagnético completo en intervalos equiespaciados. Cientos de muestras se recogen por
cada punto, dando mucha mas informacién sobre los contenidos de la imagen. El andlisis de
estas imégenes es de gran importancia para multitud de estudios sobre geologia, hidrologia,
agricultura, vegetacion y muchos més. Pese a ello, surge un problema al tratar los datos.

Las imagenes hiperespectrales son grandes. Una sola puede llegar a ocupar varios GB, lim-
itando lo que se puede hacer con procesamiento a bordo. Por tanto, gran capacidad de al-
macenamiento o transmisién son esenciales. Para hacerlo de manera eficiente, los cientificos
han utilizado una tecnologia disponible desde la aparicién de los primeros ordenadores: la com-
presion. La memoria y ancho de banda siempre han limitado el procesamiento de datos, y
reducir el flujo de los mismos ayuda a reducir este problema.

Los algoritmos de compresién hiperespectral se han disenado adaptando técnicas existentes, o
desarrollando nuevas especificas para este tipo de datos. Sus requisitos de computacion son algo
superiores a otros debido a la inherente complejidad de los datos. Siendo necesaria la ejecucion
en plataformas en vuelo, aparece ademas la restriccién del consumo eléctrico y computacional.
Se podrian desarrollar ASICs a medida, pero desde la idea hasta tener un producto 1til, la
tecnologia queda obsoleta en este rapido mundo, siendo muy cara ademés para usos puntuales.

Por suerte, existe una plataforma potente, eficiente energéticamente, flexible, y para la que
el desarrollo es rapido: las FPGA. Hardware reprogramable que puede cambiarse para imitar
el comportamiento de un circuito a medida con pocas restricciones. Son ademds capaces de
conseguir rendimientos en tiempo real donde otras tecnologias se quedan cortas, siendo capaces
de colocarse en la cadena de captura-compresién-almacenamiento/envio, donde ahora el limite
es el ancho de banda del sensor.

En esta tesis, se ha analizado la compresién de imégenes hiperespectrales en FPGAs, los difer-
entes tipos de algoritmos disponibles, y también su portabilidad a FPGAs y ¢cémo se benefician
de la tecnologia. Desde el punto de vista algoritmico, también se analiza cémo las optimiza-
ciones previas al desarrollo en FPGA pueden acarrear grandes beneficios incluso antes de la
implementacién, ahorrando esfuerzos posteriores en el proceso.

En primer lugar se implementa un estandar de la CCSDS, el 123.0-B-1. Esta disefiado para
procesar los datos en crudo del sensor, comprimiendo la imagen en orden de escaneo. Se ha
realizado un diseno parametrizado con todas las opciones del algoritmo, produciendo un ntcleo
optimizado con cada sintesis. Siendo ya suficientemente rapido, las técnicas de paralelizacion
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lo llevan a rendimientos de 3000/ S/s en una Virtex-7, y de méas de 140Ms/s en una placa
Virtex-4 apta para satélites, muy por encima del umbral de 30.72M S/s de tiempo real. Estas
implementaciones incluso superan las de GPUs, consumiendo aproximadamente cien veces menos
energia.

En segundo lugar se ha disenado un algoritmo con pérdida basado en una aproximacién que
incluye PCA y JPEG2000. Se ha realizado una gran bateria de tests para probar diferentes
técnicas de compresion concatenadas, optimizando también los parametros para dar con un
algoritmo altamente eficiente. Se consigue mejorar la literatura, pero una implementacién entera
en FPGA resulta demasiado compleja. Por tanto, se hace un anélisis extenso de las diferentes
partes para alcanzar el tiempo real, que se queda lejos en un procesador de propdsito general.
Finalmente, y acelerando el codificador de JPEG2000, que ocupa el 70% del tiempo, se consigue
superar el tiempo real para este complejo algoritmo.

Finalmente se experimenta con un algoritmo de pérdida limitada que se sitiia entre los dos
anteriores. Un exhaustivo andlisis software muestra que es competitivo tanto entre los algorit-
mos sin pérdida con entre los algoritmos con pérdida. Se genera una segmentacién altamente
optimizada, con resultados mononticleo que superan al CCSDS con 322.5M S/S en rendimiento,
mientras que en recursos se consume una fracciéon de aquellos del CCSDS. En total, se consiguen
ocupaciones de < 10% en una Virtex-5 apta para satélites, pudiendo ademds paralelizarse para
mejorar atin mas el rendimiento.

Con todo esto, se demuestra que la compresién en tiempo real es posible en FPGAs tanto
para los algoritmos con y sin pérdida, con suficientes recursos de sobra en caso de que mejoren
los sensores. El andlisis software previo de los algoritmos queda demostrado como un paso clave
para estimar el rendimiento final, siendo la selecciéon del algoritmo apropiado un paso crucial en
una correcta y rapida implementacién para FPGA.

Todas las implementaciones han sido comparadas, con sus ventajas e inconvenientes explica-
dos en detalle. Como suele ser costumbre, no hay una solucién perfecta para todos los problemas.
Mientras que las FPGAs son mejores que otras plataformas de manera consistente, el diseno con-
creto tiene que ser meticulosamente realizado para conseguir el mejor rendimiento siguiendo al
dedillo las especificaciones.

En los siguientes capitulos, todos estos conceptos se tratan en mucho mayor detalle. Una
introduccién méas extensa y detallada se presenta en el Capitulo 1, explicando los conceptos de
imagen hiperespectral, compresién y FPGAs. Las diferentes técnicas existentes de compresién
se explican en el Capitulo 2 como introduccién a los algoritmos de compresiéon hiperespectral.
Los tres algoritmos seleccionados son explicados en el Capitulo 3 desde el punto de vista al-
goritmico, explicando también la base matematica. Su implementacion en FPGA es explicada
a continuaciéon en el Capitulo 4, con énfasis en las técnicas ya existentes en la literatura, y las
mejoradas. Resultados, tanto desde el punto de vista algoritmico como de implementacién, se
muestran en el Capitulo 5, y se ponen en perspectiva en el Capitulo 6. Las conclusiones cierran
la tesis en el Capitulo 7 con los hallazgos méas importantes, y futuras ideas de continuacion.

Palabras clave: Imagen hiperespectral, compresién, FPGA, tiempo real.
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Chapter 1

Introduction

We have always been, and will always be, fascinated and intrigued by our surroundings. What
once was a feeling of mystery and fear for the unknown is now a pleasure to dive in. Long
gone are the times when we needed to worry about farming, hunting, foraging... in a nutshell,
surviving. When time was a scarce resource that was invested for future generations and not
ourselves.

Thanks to the efforts of those that came before us, and their
motivation to leave a better world than they found, we were able
to progressively be freed from responsibilities. The question be-
came not what we need but what we want. The answer? To know
everything.

Material needs have given way to existential questions and
philosophy. We’ve transcended the physical world slowly rising
towards a world where thoughts are as important, if not more,
than just being alive.

But such a journey is not one that we start alone. Because the
beauty of discovery is lost in the loneliness of solitude. We have
the need to share our experiences. Not because we want others
to be jealous, but because we want to be able to live experiences
that our limited time doesn’t allow us to.

Figure 1.1: Aristotle was one
Sharing is not easy. We are a mixture of emotions, irrational of the first to help develop the
signals that interfere with the objectiveness of logic. Small might scientific method aiming to an-

be enormous, what is fast might take eons to complete, and some- S%Ve" O questions. [102].

thing bright might be a shadow of something brighter.

And that’s why, as rational individuals, we establish the need for a unified system that
allows us to share by comparing against a reference. From economical activities such as trading,
engineering, architecture, landscaping to expressing what we have, or have seen, to others. The
human error is still there, but now as an error of measure, not of expression.

The first units of measure defined distance. With our own bodies as a reference, we were able
to measure small distances in inches (a thumb’s width), medium lengths in feet (length of a foot
as one would imagine), and long travels in miles (two thousand steps). Mass for example took
reference in a single plant grain for small objects. Time was based on celestial body interaction,
with earth’s rotation marking days and earth’s translation defining years.

These units allowed a way of objectively communicating things as long as the same reference
was used. But being based in non-constant references, all of them meant different things de-
pending on time and place. Distance could be halved depending of if a child or an adult was



measuring. A slight genetic variation in a plant could mean that a pound (7000 grains) would
feed a family of 4 or 6. Far from the equator, four hour’s work could mean forging a single sword
in winter or three in the summer.

However, locally (both in time and space), those systems made
sense and were convenient. It was when we had time to exper-
iment and explore that units had to be standardized. Because
if mountains on opposite sides of the globe needed to be mea-
sured, a consistent ruler was needed since both couldn’t be seen
at once. If a chemical reaction needed to be reproduced at two
different points in time, the exact ingredients needed to be mea-
sured against a consistent weight. And if people were to travel
across barren lands, supplies had to be taken to last a specific
amount of time.

Step by step, references were taken from unchangeable quan-
tities that would remain consistent across time and space. The
earth as a reference for distance was proposed in the XVII cen- Figure 1.2: One of many stan-
tury. Water freezing and boiling points were common references dard kilogram prototypes, this

for temperature that were established as standards in the XVIII ©°"¢ residing in the National In-
century. stitute of Standards and Tech-

nology, USA. A platinum-
Units that could be defined based on others were lost for sim- iridium cylinder that differs

plicity. Distance defined volume, which in turn defined mass. Just 0.0000075% in mass with

Velocity could be defined as a function of distance and time, and the reference kilogram. [209].

the magnetic field could be expressed as a function of distance, mass and time.

It was not until 1875 that the International Bureau of Weights and Measures was established.
An international organization seeking to standardize units of measurement. Global prototypes
(Figure 1.2) for different unit of measurement were made to distribute and reproduce across
the world, with slight variations being acceptable in everyday use. Still, units still depended on
those prototypes, without which an exact measurement was not possible.

Over time, increasing scientific knowledge drove change in what the reference point should be
for certain magnitudes. Constants and laws were identified in the universe, and based on those,
units were redefined. A meter was no longer 1/10000000 of a meridian but the distance light
travels in vacuum in 1/299792458 of a second, which in turn is defined as 9192631770 oscillations
of the element Cesium between two defined energy levels. Following the same procedure, all base
units were redefined to be reproducible.

Meanwhile, curiosity was pushing scientists to make new discoveries. New lands, new ele-
ments, new materials, new techniques... We wanted to know what was in every single thing we
could see or feel. Our eyes were always the best tool to analyze things. But how could something
we see be measured? We could measure what we saw, not how we saw it. Our need to share the
most visceral feelings and structured analysis was stuck in our inability to share something we
were the measuring tool for.

Many attempts had been made at capturing the world as we see it through our eyes. The
Shroud of Turin, dating from the XIV century, is believed by some to have been produced using
some ancient type of photography since it so closely resembles a human face. Light sensitive
materials had been documented as early as in the XIII century, and were a subject of interest in
the XVI and XVII centuries. The first ideas for capturing light were documented in the XVIII
century, with science fiction again forecasting the future with a fictional image capturing process
described in Giphantie [167] in 1760.

Different techniques were tried in the first years of the XIX century, with the Dagerreotype
(Figure 1.3) being the first published process describing how to take a photograph:



A silver plate had to be polished
to a mirror finish. To avoid tarnish-
ing, iodine and/or bromine fumes
were used to create silver halides.
The now light-sensitive plate was
placed inside of a camera obscura,
where a small opening projected the
target image onto the plate. Fix-
ing the image took from minutes to
hours, depending on the brightness
of the scene and the halogen used for
sensitization. The exposed plate was
then developed by means of expo-
sure to mercury vapors, enhancing
the image. Then, the light-sensitive
material was no longer needed, and
its removal required of a hot bath in - pjoyre 1.3: The different steps involved in the daguerreotype
a saturated solution of common salt. process for taking a photograph. [35].

An improvement to this method in-
cluded a bath in gold chloride to increase the image’s stability.

e
V. Devclopnrent
VL Fixing

VIL Gilding
VIIL Sealivng,
casing and otler
display optians

Over time, this process was simplified. New substances were discovered that allowed for lower
exposure times, and developing processes no longer needed toxic fumes to form the images. Color
was introduced allowing for a more realistic representation of what our eyes could see. Cameras
became smaller thanks to the use of lenses, and even portable. And with the advent of film, a
single camera could take multiple photographs instead of having to replace a plate after each
one. However the basic idea was still there: a light sensitive substance coating a surface which
was exposed to light, and had to be later developed with chemicals.

But this was to change with computers taking over every task humans had been doing for
the past millennia. Calculators replaced accountants, production lines were automated, even
precise tasks such as watch making were eventually taken over by computer controlled robots.
Data was being collected and then analyzed. We still wanted to know more, but know we were
not the ones skimming through endless rows of information.

The first task to involve imaging was scanning. Documents
were being transferred to a digital format for ease of use. At
first, only characters were scanned, but this changed when, in
1957, a scan of a photograph was made to digitalize a picture of
a child (Figure 1.4). This was a very limited and primitive form
of digital “photography”, since it was limited to objects stuck to
the scanner’s glass.

A remote sensor was developed in 1969 by Willard Boyle and
George Smith called CCD (Charge-coupled device). A matrix of
metal-oxide-semiconductor field-effect transistors (MOSFET or
MOS) is exposed to light, accumulating charges proportional to
the light exposure over time. Then, charges are shifted along the
matrix across both directions so that, one by one, they exit the
matrix and can be amplified, then converted from the analog to
the digital domain. After reading the values from all pixels, the
image is formed and transfered to memory.

Figure 1.4: One of the first
digital images, a scan of a pho-
tograph of a child. [118].

These sensors allowed for the collection (and then study) of images from microscopes, tele-
scopes and, of course, cameras. From bacterias to galaxies, we were able to compare analysis



across time and space, to fix in the digital domain what once was impossible to retain. From
entertainment, sports, education, science... nearly all aspects of life have been impacted by
imaging technology, and now every one of us has at least a couple of cameras at all times.

But measuring wistble light was not enough. What we are able to see is just a fraction of the
electromagnetic spectrum. At first, we wanted to just measure what we saw to be able to share
it. But it was soon realized that, at least for science, there was much more to see in the (to the
naked eye) invisible.

While photography was developing as a technology,
infrared detectors were also invented. In the XIX cen-
tury infrared radiation was discovered and soon remote
thermometers were created. At the start of the XX
century, infrared radiation could be detected at half a
kilometer away with a precision of thousandths of a de-
gree. The first application was iceberg detection, un-
fortunately just after (or maybe due to) the sinking of
the titanic. Scientific applications include astronomy,

chemical imaging or heat analysis (Figure 1.5). Figure 1.5: An infrared image of a steam
locomotive. [101].

Infrared has a longer wavelength than visible light,
and ultraviolet has a shorter one. These high-energy waves were also interesting for scientific
applications, being more reflected by certain materials. This has for example revealed hidden
characteristics of the skin in forensic or medical analysis. The same sensors for traditional
photography, with small modifications, have been used for this purpose since they are also
ionized by the higher-energy waves. A filter is usually placed to block lower-wavelength light
allowing only the high frequencies into the sensor.

So far, electromagnetic radiation has been measured and retained in digital form to be later
studied. But it can only be measured at specific spots across the spectrum. Materials reflect
light at all frequencies with different intensities, giving them a unique spectral signature. A
spectral signature holds much more information than a single point in the spectrum, and so
effort was put into developing sensors that could capture them. Spectrometers were developed
to capture and retain this information, which could be used to even identify the elements present
in a substance.

The usefulness of analyzing the full spectral signature motivated the creation of multispectral
and hyperspectral images. These are not limited to visible light, expanding on both sides of the
spectrum to infrared and ultraviolet. This meant enhanced analysis with a myriad of applications
in astronomy, agriculture, medicine, surveillance... Each pixel, composed of tens to hundreds
of samples of different wavelengths, has enough information to be compared with the spectral
signatures of target elements or materials for comparison. Those can be identified for each
pixel and more in-depth knowledge can be gained from the image than with traditional imaging
techniques.

The challenge now is to properly manage these images. With increasing spatial and spec-
tral dimensions, their size is digitally enormous even by today’s standards, with memory or
bandwidth being a limiting factor for some applications, as well as processing power for others.

With processors reaching the end of Moore’s law, scalability is trending towards horizontal
parallelism. Programming languages such as CUDA or OpenCL have emerged that work on a
completely different paradigm than traditional imperative languages by simultaneously executing
the same code over different sets of data. Processors themselves have been expanding to multi-
core architectures for a while, moving the bottleneck of processing power to intercommunication.
Each core can operate over vectors of data to speed up further the computations. The use of
GPUs with thousands of cores has skyrocketed with data growing in volume and new processing



algorithms adapting to the new paradigm of joining the forces of multiple smaller cores instead
of using few very powerful ones.

When those approaches are not enough, custom hardware emerges that is specifically designed
to operate on certain flows of data and algorithms. However, these specialized systems can only
be used for the task they are designed to perform. More generic options such as multi-core
CPUs or GPUs lack the performance needed for certain tasks, also drawing more power than
simpler options.

When focusing towards hyperspectral applications, the problem resides in being able to
quickly move the immense amount of data with minimal cost, as well as processing it, since
many times the limit is not the capture ability, but the bottleneck that arises when processing
cannot be done fast enough and the storage or communication link fills up. While custom ASICs
can be designed, this is too costly and application specific, since often a single sensor or mission
is targeted.

Field Programmable Gate Arrays (FPGAs) are a completely different option, and allow for
the creation of custom hardware over reprogrammable silicon. A matrix of reprogrammable
gates, interconnected by reprogrammable buses, that can mimic custom logic. A circuit that
is designed in a Hardware Description Language (HDL) can be implemented, using automated
tools, in an FPGA.

Nowadays, FPGAs offer not only reprogrammable resources but also include fixed hardware
such as mathematical accelerators, processors, communication modules, transcoders... These
options enable the creation of hardware that is almost as fast as an ASIC, but in a fraction of
the time and cost, especially for devices that are produced in very small scales. This is the case
with hyperspectral imagery and why FPGAs are very interesting to explore. Additionally, they
can host multiple circuits at the same time, making them very appealing in places where adding
improvements or changing functionality is of interest, such as research applications.

Thus, to explore the problem of processing hyperspectral data, and specifically reducing
its size in real time with FPGAs to enable more data to be captured, this thesis was born:
“Compression techniques for hyperspectral images on reconfigurable hardware”.

1.1 Hyperspectral images

An image is a collection of equally spaced data points across a physical area, indicating the
intensity of light at each point. The most basic image that can be considered is monochrome. A
single sample in each data point (or pixel), indicating the intensity of light that was perceived
at the moment of capture. In other words, the amount of electromagnetic radiation perceived
in a certain part of the spectrum during the time that the sensor was active.

For black and white photographs, sensors are able to detect radiation in the visible spectrum
(approximately 400 — 700nm). The brightness can be determined, but not the color, since all
wavelengths affect the final result: the sensor is not able to differentiate if the intensity was
coming from an orange or purple source.

For color images, three different sensors are used, detecting blue, red and green light. This
is inspired by the cone cells in human eyes, which come in three types, and are sensitive to
those three wavelengths. In practice, three different monochrome images are captured, each for
a different part of the spectrum. These are called bands. When the image is presented back to
the observer, each band will translate to a different color on a viewing device, reconstructing
the original image.

Human perception can only sense these three basic colors. But there is more outside of the
visible spectrum. Radiation types depend on wavelength, and that can range from ultra short,



high frequency and highly energetic gamma rays to long, low frequency and low energy radio
waves. Certain information is only present on those types of waves that lie outside of the visible
spectrum. For example flowers are known to appear different under UV light depending on their
maturity, attracting insects which can detect those short waves. Thermal information is also
visible in the infrared part of the spectrum, remotely giving information about temperature.

Specialized sensors are available for monochrome images in these wavelengths, but more inter-
esting are sensors which are able to capture multiple bands of the spectrum. When the number
of bands is small, and the bands are not evenly spaced, these sensors produce multispectral im-
ages. They capture a subject of interest in the visible spectrum, adding certain characteristics
with other bands (such as thermal or UV).

To consider an image
hyperspectral (Figure 1.6),
it must contain multiple
bands, and those must be
evenly spaced between the
sensor’s lowest and high-
est wavelength. Thus,
discrete points are placed
in that interval that ap-
proximate the continuous
reality that lies between
the extremes. The higher
the number of bands, the
closer the real spectrum
can be represented. And
similar as to how humans
are able to tell apart colors
by going from 1 to 3 bands,
with hyperspectral images
materials and substances
can be distinguished even
when they are the same
color, since other charac-
teristics of their spectrum
do change.

Band

Figure 1.6: A typical hyperspectral image representation. On top, the
projection of the Red, Green and Blue channels forms the visible-light
image. Under it, hundreds of bands capturing intensity information on
An image has N bands different wavelengths. Dimensions and notable sub-structures are high-

in the spectral dimension, lighted.

and Ny frames and Nx

pizels as the spatial dimensions. The term line comes from the fact that sensors, to avoid
complexity, generally capture frames (in the spatial dimension) one at a time, like a document
scanner. Each frame will, in turn, have a number of pizels, which is equal the width of the sensor
(when frame based). A full line of pixels is called a frame. Samples will refer to the individual
values in an image (for each pixel, the value for each wavelength captured).

1.1.1 Sensors

There are plenty of hyperspectral sensors designed to capture hyperspectral images (Figure 1.7).
They vary in how many bands they can capture, the wavelength range that they are able to
sense, ground resolution, time to cover specific areas, and others. These parameters affect what
kinds of studies can be done (depending on wavelength range) and how precise they can be
(depending on the number of bands and the spacing between them). The different bands are



evenly spaced throughout the wavelength range of the sensor. Sometimes, a certain part of
that range is of more interest (e.g: infrared radiation for fire monitoring) and more bands are
captured in specific sub-ranges. Sensors can be used on the ground, but are generally either air
or spaceborne since that is where most applications take place.

Another characteristic of sensors is how they capture the image. The amount of samples per
pixel makes it impractical to build a sensor that captures all pixels at once. To solve this issue,
different scanning techniques are used. Mainly a sensor can be of the push-broom (PB) type or
the whisk-broom type (WB). A push-broom sensor captures whole frames by having a matrix
that is able to capture a full line in all wavelengths at the same time. The image is progressively
composed by capturing successive frames as the sensor moves over the target. A whisk-broom
sensor captures pixels one by one. Commonly, the whole image is formed by having a set of
rotating mirrors that selectively reflect light from different parts of the target in a raster-scan
fashion.

One of the most popular and well-known sensors is
the Airborne Visible and InfraRed Imaging Spectrom-
eter (AVIRIS) [107], from which most images used in
this thesis are taken from. It was developed by the Jet
Propulsion Laboratory in California, and its main pur-
pose has been airborne terrain exploration. With 224
bands, it offers a 10nm resolution across its > 2000nm
wide spectrum, which is precise enough to identify spec-
tral signatures coming from thousands of different ma-
terials [193]. Different aircraft have flown it on-board,
mostly capturing images from the USA. A second ver-
sion called AVIRIS-NG [108] was developed afterwards,
increasing resolution, and thus improving identification
and monitoring of the Earth’s surface and atmosphere.
It maintains spatial resolution bRut doubles the spec-
tral, giving much smoother curves for the obtained spec-
tra. Its detectors are more precise and it increments
data volume from approximately 100GB in gen 1 to Figure 1.7: Crops near Mexicali clearly
1000GB. Both are aimed towards applications in ecol- highlighted over background and cities
ogy, geology, agriculture, environment, atmosphere and thanks to the ASTER sensor. [44].
water analysis, among others.
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Hyperion [156], similar to AVIRIS, takes images with great spectral resolution (220 bands
from infrared to ultraviolet) in a push-broom manner at a depth of 12 bits. But instead of being
airborne, it is designed to be operated on orbit. Radiation hardening is part of the process of
making a sensor, and calibration is important since once launched it is not possible to repair it
in space. HYDICE [164] also works in a similar manner. Having a fine ground resolution of 3m,
it was used for mineral mapping.

Other very popular sensor is the Landsat Thematic Mapper (TM) [150], since it is the longest
lasting mission to supply satellite imagery. Although not hyperspectral (with 7 bands it can only
be considered multispectral), it has a very interesting feature: six of its bands are between 450 —
2000nm, and one is at 11000nm. This band is capable of capturing temperature information,
very useful in forest fire monitoring or nighttime images. The last version, Landsat-8 [148]
extends its range to 11 bands while maintaining its 15m panchromatic resolution.

SPOT (Satellite Pour I’Observation de la Terre) [78], launched two years later than TM,
improved its ground resolution from 30 to 10 meters. The first SPOT version was a multispec-
tral sensor with three bands: Red, Green, and near Infrared. A Panchromatic option yielded
monochrome images at higher resolution. Subsequent versions added a fourth band (short wave



infrared), which was then changed by a blue band, targeting shorter wavelengths. Resolution
has also improved over the years to an impressive 1.5m ground pixel size.

For higher infrared and thermal resolution, ASTER [45] has multiple sensors detecting four
visible near infrared bands (520 — 860nm), six short infrared (1600 — 2430nm) and five thermal
infrared (8125 — 11650nm). It is designed to map the entire globe every 16 days, providing close
to “real time” images for applications such as mineral mapping or water management.

A faster sensor is MODIS [149], capturing the whole
globe every day by sacrificing resolution (250 — 1000m
ground pixel size compared to 15 — 60m of ASTER).
Large scale events can be seen even at this coarse
grain resolutions (Figure 1.8), and a faster response can
be given to understand and analyze terrestrial, atmo-
spheric, and ocean phenomenology. The sensor contains
precise on-board calibrators to extend its lifespan.

Sensors with specific functionality include the
Japanese Fuyo-1 [64], dedicated to geological, coastal
and vegetation analysis. Its eight bands detect vegeta-
tion, chlorophyll, biomass, moisture and hydrothermal

Figure 1.8: Image of forests of Myanmar
characteristics. The Warfighter-1 project [43] included captured by the MODIS sensor, used for

a hyperspectral sensor among its payload to prove the fire detection based on thermal data [147].
viability of military applications of hyperspectral data,

with ground resolutions of 8m. A multispectral sensor with ground resolution of 4m, and a
panchromatic 1m resolution sensor were also included to complement the information recorded.

Newer satellites such as Enmap [63] are gaining spatial resolution for each spectral band,
aiming for large swath widths (290km for the Sentinel-2A sensor[46] which maps all of Europe
and Africa ever 15 days), or focusing on extremely detailed resolution of the panchromatic bands
[47].

There are hundreds [53, 62] of different sensors. Wavelengths, spectral and spatial resolution,
ground pixel size, bit depth, air or spaceborne... All are different variables that prepare the
sensor for different applications. From general observations with 1-day mappings of the whole
earth, to precise images that can resolve people on the street in multiple spectral bands, what
all sensors have in common is the huge image size, ranging from tens of M B to multiple GB
(Table 1.1). Note that, while some of these are not hyperspectral, the same algorithms and
techniques can be applied to them.

1.1.2 Data ordering

Hyperspectral data might be processed in different orders. This can depend on how the data is
stored, but mainly comes from how the sensor captures the data.

Whisk-broom sensors make a full spectral depth scan over the spatial dimensions. They
output whole pixels in sequential raster order, and samples within the pixel are output sorted
by wavelength. This is called Band Interleaved by Pixel (BIP) ordering. Since the spectral
dimension is usually the smallest, this offers the best correlation between neighboring samples
in the output stream.

Push-broom sensors take full frames that will be stored one after another. Each frame itself
is traversed in raster order, either first in the spectral direction (again BIP ordering) or in the
spatial direction within the frame. This yields the Band Interleaved by Line (BIL) ordering.
This ordering offers a optimal memory pattern access for retrieving full bands at the cost of
worse pixel access, though it is not often used.



Sensor Image Wavelength

Platform

Name Type Nz Ny Ny * Bits  Size** Min Max

Aviris WB 224 677 512 12 116 MB 380 2500 Plane
Aviris-ng WB 480 600 512 14 258MB 380 2510 Plane
Hyperion PB 220 250 1000 12 82MB 400 2500  Satellite
HYDICE PB 210 320 320 12 32M B 400 2500 Plane
Landsat TM WB 7 6166 5733 8 250M B 450 12500 Satellite
Landsat 8 PB 11 2k-12k 2k-12k 12 594MB 441 12510 Satellite
SPOT-1 PB 4 3k/6k 3k/6k 8 144MB 500 890 Satellite
SPOT-7 PB 4 10k-40k  10k/40k 12 6.4GB 450 890 Satellite
ASTER Both 14  1k-4k 1k-4k 812 14MB 520 11650 Satellite
MODIS PB 36  2k-9k 10-40 12 20MB 405 14385 Satellite
Fuyo-1 PB 8 4096 2048 6 50MB 520 2400  Satellite
Enmap PB 228 1000 1000 14 423MB 420 2450  Satellite

Sentinel-2A  PB 12 7k-29k  7k-29k 12 3.8GB 443 2190  Satellite
Worldview-3 PB 29  9k-35k  9K-35K 11-14 10GB 400 2245  Satellite

Table 1.1: Comparison between different sensors. PB: Pushbroom, WB: Whiskbroom. *When not
available, the number of frames captured has been assumed to be equal to the number of pixels per frame,
though most sensors capture variable-length runs of frames. **Sizes are approximate since different bands
have different resolutions and bit depths, but offer an idea of how big these images are.

Figure 1.9: BSQ, BIP and BIL data orderings respectively.

Lastly, data might be ordered in a Band Sequential (BSQ) mode. When analyzing each
band separately, this mode offers the best memory layout for quick access, since bands appear
sequentially in memory. Hyperspectral sensors do not usually output directly in this mode, and
it is the result of reordering afterwards to facilitate scientific analysis.

All three types are shown schematically in Figure 1.9. BSQ is oriented towards ease of
full band access, with pixel access being slow since samples of the same pixel are very far
apart. BIP is aimed towards full pixel retrieval, with very costly band access. BIL sits in
between with good frame retrieval, decent band retrieval due to access patterns, and bad pixel
retrieval. For compression algorithms, it will usually be the case that pixels are the basic units
for processing, so BIP will be the preferred mode, also taking advantage of the great spectral
correlation present more easily. It will also offer straightforward data accesses since most images
are already captured this way, incurring in less memory overhead in an FPGA.



1.1.3 Applications

One of the main motivations for the development of hyperspectral images is, as with many
technologies, the military applications [13, 30, 127, 204] that come with it. From training to
war to humanitarian missions, hyperspectral images reveal hidden information about the terrain
that is about to be explored, helping and guiding military personnel to whichever objective they
have.

One of the most useful military applications is target detection and identification [30, 204].
Targets that are camouflaged in a certain wavelength can be detected in others, military vehicles
can be identified and differentiated from civilian ones, and different man-made materials can
also be identified to unveil bases, weapons, aircraft or other subjects of interest. Decoys that fool
traditional detection techniques can also be identified with hyperspectral image processing. For
this, two approaches are commonly used: anomaly detection algorithms detect even unknown
targets by comparing against the background truth, while signature-based detection compares
against a known spectral signature to detect a specific target. Multiple algorithms can even be
used at the same time by using classification fusion [127], improving result accuracy.

Terrain analysis is another motivator for military research, since soil and vegetation can be
characterized ahead of time to allow for more precise ground exploration afterwards. Information
about soil, hydrology, vegetation or topography can be combined with already known information
from maps such as roads and land use to create vehicle trafficability models [190], allowing for
better movement of ground missions. The HY perspetral iMage EXploitation (HYMEX) program
[13], supported by the Canadian Forces, studied different terrains such as forests and grasslands.
Along with the Universities of Lethbridge, York, and Alberta, terrain analysis was performed
to improve and complement maps developed by The Canadian Forces Mapping and Charting
Establishment (MCE).

Water mapping [13] is especially of interest in near-shore applications. For this, interesting
data includes characterization of the seabed in shallow waters, identifying algae and other tidal
vegetation. Bathymetry, indicating water depth, can guide ships where there are dangers of
getting stranded. Beach characterization is also important specially when taking into account
time, defining patterns in coastal changes that are mainly derived from currents and tides.

For vegetation control and analysis, hyperspectral imaging helps identify certain character-
istics and properties of leaves without the need for an in-situ analysis. Indices [202] are inferred
through analysis of hyperspectral data and ground truth. These are formulas that predict mois-
ture, element concentration, biochemical stresses and others. As an example, chlorophyll can be
predicted by the index given in Eq. (1.1), where R, is the reflectance for light with a wavelength

of £ nanometers:
(R700 — Re70) — 0.2 (R700 — Rs50)
R700/ Rero

When growing crops, potassium is a key element in fertilizers. Different predictors have been
proven good indicators of potassium content in leaves [137] by analyzing certain spectral bands
in which this element is most reflective. Different fertilization treatments for corn, soybean and
wheat have also been successfully monitored with these techniques [87].

(1.1)

For certain crop fields, knowing if hazardous materials are present is important in order to
assess the quality of the final product, since these materials are absorbed by the plants. Heavy
metals are of special interest since they are dangerous for human health. Arsenic has been
successfully identified [187] in rice fields thanks to different predictors that exploit its reflectance
in the 716, 568 and 552nm wavelengths. Field sampling, followed by laboratory analysis can be
replaced by hyperspectral imaging to make this assessment process faster.

Crop biophysical variables can also be characterized through hyperspectral images. Wet
biomass for estimating plant size, leaf area index and plant height to gauge development, and
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grain yield are amongst the variables that are identified [203]. Chlorophyll content in leaves,
which is a good indicator of plant activity, mutations or nutritional state is also of interest.
Hyperspectral images estimate chlorophyll with high precision [218] so as to improve precision
agriculture amongst others.

In geology, materials can be remotely identified with hyperspectral images. Ore and hydro-
carbon prospecting, hydrothermal alteration and surface mineral mapping were amongst the first
applications for the first generations of sensors [141]. These were later improved when moving
from multi to hyperspectral imaging, allowing for applications such as vertical mine face mineral
detection [145], where a mountain range can be tagged with the most abundant materials on
each zone.

In mining quarries, the process of identifying ores or rocks that are of interest [125] is sped up,
since overhead images can differentiate different materials that appear the same to the naked eye.
Minerals such as carbonates, silica, muscovite, dolomite or limestone can be remotely detected
from airborne sensors [121]. Even if the maps are noisy, they are a good reference since they
have been found to be coherent with the known geology [50]. Identification starts being difficult
though for spaceborne sensors since their spatial resolution is often too coarse for fine-grain
detection.

Food safety also benefits from hyperspectral imaging because of its non-intrusiveness. Near
infrared spectroscopy is being replaced with hyperspectral analysis [81] since the growing com-
puting power of current devices is able to process hyperspectral data from a processing line in
real time. Usually an analysis is done beforehand to identify the critical spectral bands that are
of interest, to simplify data processing. Meat, fish, fruits, vegetables, mushrooms and cereals are
amongst the most studied products [199], detecting unsafe food before it gets to the consumer.

Animal carcasses can be separated into different classes automatically, identifying septicemic
and tumorous bodies [138]. Spectra were found to be different amongst all different types,
detecting not only unwholesome carcasses but also the different problems they might exhibit.
This techniques can also be applied to vegetables, identifying fungal contamination in fruits [117]
thanks to a dual-illumination system where visible light was complemented with an ultraviolet
lamp that exposed the problematic items.

Specific characteristics of food have also been identified: Strawberry moisture and acidity can
be identified [61] to grade the product’s quality. Potato water content and weight can also be
detected through neural networks [109], allowing for faster sorting than human visual inspection.
Even internal features can be detected. Pickling cucumbers need to be in perfect condition to
avoid degradation in the maturing process. While external injuries are easily identified, internal
ones are difficult to detect. Spectra of the defective cucumbers are similar in shape but of higher
magnitude in injured ones, allowing for detection [55].

Medicine uses close-up hyperspectral images for disease diagnosis and image-guided surgery.
Propagation of light through biological tissues is studied beforehand so that images can be
interpreted to give an accurate result of the target property that is looked for. Cancer detection
is a very popular application [136], especially in skin since it is the most visible organ.

Tongue analysis to diagnose human ailments, traditionally done by an expert with years of
expertise and later on by RGB cameras, has been improved due to the introduction of hyper-
spectral data [241] and segmentation techniques [133] that identify areas of interest that can be
used to generate accurate predictions based on tongue images.

Cancer regrowth is one of the problems when dealing with complex tumors that might not
be completely removed after surgery. Biological markers in cancerous tissue can be detected
thanks to hyperspectral images [155, 237] in real time, aiding cleanup after or during surgery in
vivo. Sensitivity and specificity reach levels comparable with human inspection.
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1.1.4 Algorithms

All of these applications require of powerful algorithms that are able to work with this high-
dimensionality data in a correct, fast and efficient way.

One of the most recurrent problems is being able to identify the different spectral signatures
within an image. Pixels can be of two types: Pure and mixed. Pure pixels contain information
about only one basic element (e.g: a certain type of rock), while mixed pixels contain information
of two or more basic elements (e.g: water and vegetation in coastal images).

Hyperspectral applications require identification [139] of the constituents of the different
pixels. A general assumption is to assume that an image is sufficiently big to contain pure
samples (endmembers) of all basic elements that constitute the rest of mixed pixels. This way,
all pure elements will be vertices of an n-dimensional surface that contains all the mixed pixels
inside. Algorithms usually take into account that outliers might exist due to sensor malfunctions,
transmission errors or plain noise affecting the capture process.

One of the most popular algorithms is N-FINDR, [216]. It is based on the assumption that
the volume contained within a simplex of the purest vertices (pixels) is greater than that of any
other pixel combination. A random selection of candidate endmembers is iteratively tested to
see if other pixels might increase the volume when replacing any of the selection. The algorithm
eventually converges to a simplex of maximum volume (not necessarily a global optimum but it
is a local optimum according to this iterative process). N-FINDR requires an initial estimation
of the amount of endmembers in the image, and cannot determine that number on its own.
Improvements have been done [159] to initialize the algorithm with the appropriate number of
endmembers, increasing its efficiency and reducing iterations until convergence.

The Pixel Purity Index (PPI) [29] is another algorithm that unmixes hyperspectral data based
on creating a convex hull over the set of pixels, in which the vertices are the pure endmembers.
As with N-FINDR, it is iterative and good results are only achieved with long runtimes. There
are however variants [37] of the algorithm which decrease execution time.

Faster algorithms have also been developed under the linear mixing model. VCA [151] does
progressive projections over the current subset of endmembers, adding the projection extreme
to the subset until all endmembers are exhausted. Its simplicity achieves higher classification
performance than N-FINDR or PPI while being much less computationally demanding. MVES
[36] uses linear programming to improve VCA for higher accuracy.

All of these algorithms work under the assumption that the image is of certain quality, and
does not present noise or any kind of spectral or spatial artifacting. This is not always true.

Atmospheric correction is one of the first steps in preparing an image. Heat, humidity and
cloud cover are amongst the variables that greatly affect the end result of imaging a specific
area. Water vapor, oxygen, carbon dioxide and aerosol scattering greatly affect the perceived
signals by the hyperspectral sensors [74]. For example, images of open water bodies usually need
small corrections due to cleaner air, while coastal and turbid water images [73] require a more
aggressive filtering to remove atmospheric absorption and scattering effects, yielding an image
that only contains water-leaving radiances for pure surface analysis.

At first, purely experimental models were used. Heavy assumptions about the available
samples were made, such as a relatively flat (spectrally speaking) portion of the image being
used as a baseline to estimate the atmospheric error and correct it in the rest of the image [166].
Later, corrections became more complex by using radiate transfer models. Variables such as
sun angle, gas concentration, or aerosol presence are measured in order to estimate the expected
errors introduced by the atmosphere in the path the light takes from the sun to the sensor
after bouncing from the surface. Even the information conveyed by some bands can be used to
estimate these variables on a per-pixel basis to precisely adjust the image [72].

12



Even then, anomalies might be present due to errors in the sensing, coding and transmitting
process, as well as unexpected elements or contaminants being placed in between the sensor and
target. In this case, anomaly detection algorithms detect these unexpected anomalies without the
need of reference data [195]. They range from simple linear algorithms, that assume Gaussian
distributions and mixtures of pure pixels, to more complex non-linear approaches [126] that
better differentiate anomalous pixels. Further analysis might classify these anomalies as errors,
or as objects of interest due to their particular characteristics.

Target detection works in a similar way, but instead finding out objects that stand out
[140] within areas where pixels are not necessarily anomalous. This has been one of the main
motivators for military use of hyperspectral data.

Even with corrected images, hyperspectral analysis might be hindered by data availability.
While very high in spectral resolution, spatial resolution might be lacking in some cases. Hy-
perspectral sensors already have thousands of detectors that, if made smaller to fit a bigger
resolution, are not as precise. Spatial resolution of the hyperspectral sensor can be increased in
software in a process called super-resolution. At first [206] the information available in differ-
ent bands was used to increase the resolution. Hardware solutions were partially developed by
also including a higher-resolution multispectral or panchromatic imaging devices along with the
hyperspectral sensor. Techniques were developed [8] that fused both high spatial and high spec-
tral resolution data sources into a single high spatial resolution hyperspectral image. Bayesian
approaches [9], neural networks [236] and coupled hyperspectral unmixing [128] are among the
popular approaches.

Hyperspectral images, despite containing plenty of information themselves, are sometimes
combined with other types of data in a process called Data fusion. This is not a technique new
to hyperspectral images, and has been used in the past to combine information from multiple
sensors into one coherent source of data [88, 211].

Hyperspectral data has been fused with Light Detection and Ranging (LIDAR) in order to
identify both tree species as well as estimating tree canopy height and diameter [176], resulting
in an increase of precision on both domains with respect to just analyzing hyperspectral data
for the former, and LIDAR for the latter.

It has also been mixed with both Synthetic Aperture Radar (SAR) and High Resolution
Imaging (HRI) [94]. The former reduces false detections for the radar images, confirming target
detection for military purposes. The latter combines the hyperspectral cube with the image
plane to create a combined spectral-spatial analysis that allows for a more accurate material
detection process.

These are some examples of algorithms that work with hyperspectral images at a general
level. Of course, each application (Section 1.1.3) will derive its own algorithm suited for its use
case, based on the data enhancement and preprocessing algorithms presented here.

Another main type of generic hyperspectral image algorithms are compression algorithms.
They take the immense amount of data available, reducing its size so that storage and trans-
mission can be more efficient. Generally a part of a more complex processing pipeline, they ease
complex tasks by minimizing data transfer. These are the ones this thesis focuses on.

1.2 Compression

We perceive the world around us as a continuous stream of stimuli. Human senses detect those
and transmit them to the brain, which is able to interpret those signals, creating our own reality.
Those experiences are stored in it, and then can be recovered via memories that can be shared
with others. A more detailed or brief explanation can be given of different experiences to others,
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sharing information that others can use to understand different perceptions of reality. In a naive
way, how much information is transmitted by humans can be measured by the number of words.
Assuming an efficient description, the more words that are transmitted, the better the listener
will be able to reconstruct the original thoughts.

For the digital world, these continuous analog signals are brought into the discrete digital
domain. Sensors measure the signal’s intensity and then the interval of possible values is divided
into sub-intervals. The digital signal’s value will be that of the sub-interval in which the analog
measure falls. Once a discrete number is obtained, it is represented in bits, or a sum of powers
of two. The shorter the sub-intervals, the lower the measurement error at the cost of more bits
per sample, and vice-versa. Normally, a signal is sampled multiple times across time and/or
space. The set of all samples is the data d.

Because storing data takes physical space, the highest possible precision is desired while using
the lowest possible amount of bits. By default, if a signal is measured m times with p bits of
precision, data d is produced of size s(d) = m * p bits. A question arises then: is it possible to
store that data in n < m % p bits?

The short answer is yes. Signals almost always have a certain degree of predictability, that
is, they are not fully random. As with words, when something is redundant, it can be omitted,
either referring to previous information or leaving it out of the speech for the listener to infer
based on context. The techniques are abundant, and allow for conveying all of the information
without transmitting it all.

The art of reducing data size is what is called compression. When compressing data, it can
be done in a lossless way or a lossy way:

e Lossless compression is a process in which the original data, d, gets transformed by some
algorithm a in some new data d’ = a(d). The algorithm or function a is invertible, meaning
the original data can be recovered via a=!(d’) = d.

Of course there are functions that satisfy this property: the identity function is a trivial
example. But if compressing is the objective, at least for some data d of size n it must be
true that s(a(d)) < n. The problem is that, if there is some d; for which that property
holds, then there must exist some dg for which s(a(dz)) > n. Otherwise, by the pigeonhole
principle, two different sets of data collapse to the same result, and the inverse is impossible
to obtain.

So for a compression algorithm to be lossless, and useful, it must reduce the size of some
data combinations while expanding the size of others. At first glance, this seems absurd
since, on average, an algorithm applied over a random set of data will get results that on
average are the same size as the starting data. The key in designing good compression
algorithms is that the data they operate over is not random.

The signals that are compressed are continuous in the analog domain, and even by taking
discrete samples (both at the resolution level and sampling level), their values will be close
together. Values that are similar are easily encoded (for example the differences between
adjacent values can be stored instead of the full values). The original interval can be
clamped to the maximum and minimum values and use less bits for each sample in this
restricted space. Predictive models can be used that, if correct, completely skip the need
for coding certain parts of the signal.

All of these methods will be able to compress most data sets with great efficacy, and those
that are expanded in size will be so rare that they will not pose any problems. This is the
key: compress the common, since the uncommon will not make a difference.

This property of being able to compress any data set gives lossless algorithms a nice
property: they work over any kind of data. Even if they are specialized for images, audio
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or medical data, any can compress data from the others. They are generic even if they
might not be efficient with all types of data.

e When analyzing data, most results do not depend on exact values but on trends or patterns.
For example, to know if temperatures have been higher than in previous years, exact values
are not needed, but an average or trend line showing where anomalies might have occurred.

Lossy compression aims at reducing data size by getting rid of the data that, even when
not present, does not affect those properties that are useful. Noise and outliers caused by
sensor errors will be removed, and signals smoothed out to make them more predictable.

While the effectiveness of a lossless algorithm is measured solely on how much it reduces
some reference set of data, lossy algorithms are measured on two parameters: size re-
duction and quality loss. Of course a lossy algorithm can be perfect in size reduction by
ignoring input data and restoring a blank signal, but the reconstructed signal would be
useless. It can also preserve the signal intact yielding perfect quality, but lossy algorithms
underperform lossless ones in that regard. Generally, a set of parameters will be selected
to achieve a compression of a certain approximate quality or ratio.

The mathematics and computing behind lossy compression are usually more complex than
the lossless counterpart. A transform such as Fourier, cosine or wavelet is the central part
of most lossy algorithms. They map the input signal to a space where it is defined as a
combination of more common and repetitive signals. Generally for a signal s of n samples,
a transform ¢ will map it as:

t(s) = Zcis; (1.2)
i=1

Where the original signal s is expressed as some combination of signals s;. The n coef-
ficients ¢; are of the same size as the n samples of s, so the transform can be inverted
and doesn’t expand the size of the original data. The signals s; usually represent common
patterns that arise in continuous signals, and can mathematically create any other. s} will
be the most common pattern, and ], the most uncommon. This way, when compression
is needed, the least significant m < n coefficients will be set to zero. The reconstructed
signal will be similar to the original one but at a fraction of the size.

Contrary to what happens with lossless algorithms, lossy ones are very specific to the kind
of data they compress. Audio, image or video compression all have different requirements,
and using one compressor for the wrong kind of data yields abysmal results.

1.2.1 History of compression

It was Claude Shannon in 1948 [184] who defined, mathematically, what is now known as infor-
mation theory. With the definition of entropy, a theoretical limit was established that dictated
how much information could be sent over a link of certain properties. If certain properties are
known beforehand (such as what symbols are transmitted, as well as their relative frequencies)
it is possible to send messages using less data than if a random source of symbols was assumed.

This is possible thanks to the use of codes, which are dictionaries that map the symbols that
are to be sent to the symbols that the communication channel supports. A simple code might
map the alphabet to 5-bit fixed-length binary numbers. That way a message of n characters
is transmitted with n * 5 bits. But, if variable length codes are used, where the most common
characters use shorter codes, the same message might be transmitted with e.g: n x4 bits, saving
20% of bandwidth.

Different codes were explored at the beginnings of information theory, exploiting different
mathematical distributions of the input alphabet. Golomb [79] and Huffman [96] codes were
amongst the most popular. The first offered great compression for unbounded collections of
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symbols with known probability, while the latter created the most efficient codes within a fixed
set of symbols. More complex codes were developed afterwards, with arithmetic coding [3]
reaching the limits of what was possible based on information theory.

But of course, as time went on scientists asked themselves whether this limit was really the
limit. A simple string of alternating zeros and ones could not be compressed at all with any of
these methods, since both symbols had exactly a 50% chance of occurring. Nonetheless, such
string is extremely redundant, since the moment symbols are grouped in pairs, suddenly the
same symbol is repeating 100% of the time.

This simple example shows that, even if information theory limits hold for the general case of
an unknown source of random data, some skewed data might be compressible to limits beyond
theoretical. This motivated the creation of the next generation of compression algorithms, based
on dictionaries that evolved over time. Lempel and Ziv were the ones that popularized such
methods with their LZ family of algorithms. In both LZ77 [243] and LZ78 [242] they exploit the
fact that data sequences (in this case mainly text) contain many repeated subsequences. LZ77
maintains a window of previous symbols which it can reference for repetitions. LZ78 builds up
a dictionary in which symbols reference previous entries within the dictionary, creating strings
that can be referenced with the same amount of bits as individual symbols, saving space. Both
algorithms dynamically exploit redundancies and can encode long strings within the space of a
symbol, improving compression over one that just works on individual symbols.

The first improvements for these algorithms were bijective transforms that could be applied
to the data in order to make it more redundant. The Burrows Wheeler transform [31] creates
strings where symbol redundancy is locally higher by applying sorting transformations. A sim-
pler approach is to use delta coding: code the difference between neighboring values, which
for redundant data will be lower in mangitude (and more redundant due to the pidgeonhole
principle) than the originals.

These transforms are still in use today in many algorithms, but that didn’t stop improvements
from being made for the LZ algorithms. LZSS [196] and LZW [215] are two examples that built
up on the base LZ77 and LZ78 algorithms by adding new techniques. But the most popular
is probably the DEFLATE [112] algorithm, that Phil Katz developed for the .zip file format
which most of us still use on a daily basis. It builds up on LZSS by chunking the data and
applying different compression techniques over each chunk, adapting to characteristics that are
optimized for different variations of the same algorithm.

So far, these were all lossless techniques, since data storage was not an issue. But that was
about to change with the digitalization of audio and images. A vinyl disk stores analog audio
within its grooves the same way film is able to capture light in an analog fashion with light-
sensitive materials. The first digital audios and images were mostly experimental, but soon it
was realized that the main thing the digital world was bringing was data. Tremendous amount
of data since the capture media could be reused. The first lossless algorithms fell short.

A CD, at T00M B, could store just one hour of uncompressed music, enough for an album.
However, there was too many useless information in those 700M B. Due to the way the human
ear and brain works, some sounds are virtually imperceptible to us despite being recorded by
a digital microphone. Sounds that are too dim compared to the surrounding effects are not
perceived by our senses, and certain peaks can be completely discarded while still retaining a
high fidelity sound.

Once the inaudible parts are filtered out, Fourier transforms are applied converting the data
from the time domain into the frequency domain. Very high and very low frequencies are
discarded without affecting sound quality. The result is that, in high quality .mp3 format, 7
hours of sound can be stored in a CD. For specific sounds such as speech, with a very limited
frequency domain, up to hundreds of hours can be stored in the same media.
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Images extend the audio concept of one dimensional waves to two dimensional ones. Line by
line, the same concepts can be applied, but image characteristics are more efficiently exploited
when using two dimensional transforms. In the same way that a Fourier transform is used
over subsequent windows of sound samples, images use transforms over small blocks of fixed
size. JPEG [210], one of the most popular compression algorithms, uses the discrete cosine
transform. Operating over 8 x 8 windows, it transforms the block from the spatial domain into
the frequency domain, seeing each block as a combination of two-dimensional waves. In this
case, very high frequencies are discarded or its precision reduced, while low frequencies, that
are more important in the visual domain are kept. This process smooths out the images even
eliminating noise, but can sometimes create sharp edges between adjacent blocks.

To solve this, wavelet transforms were later introduced. They extend the concept of trans-
forming to the frequency domain but over the full image. Blocks are of unlimited size, completely
eliminating edges. But operations are computationally more expensive, which is the reason that
these techniques didn’t emerge until later standards such as JPEG2000 [189] appeared. For
consumer use they are still not being widely used since JPEG usually proves to be sufficient.

Moving onto hyperspectral, a new dimension is introduced. Audio was made up of one-
dimensional waves, images are two-dimensional, and hyperspectral images are three-dimensional.
Two of its dimensions are spatial while one is spectral. While there is still correlation between
adjacent samples, it is generally the result of two distinct effects. Spatially, samples that are
close together tend to be similar due to the smooth nature of images. Spectrally, they are similar
due to the continuous nature of each pixel’s spectrum.

Algorithms have been developed that extend the concepts present in 2D image compression
to 3D. Hierarchical trees (that split the image in blocks which are expected to have similar
samples) give good results [40], while wavelets in three dimensions have been proved to achieve
higher compression ratios [69, 157]. In these cases, both correlations are exploited at once.
Computationally the algorithms are demanding, but obtain good results at compressing the
images, achieving decent ratios with great quality.

A second type of hyperspectral compression is based on dictionaries [104]. Going back to
the origins of compression, if a dictionary is created based on the frequencies of the symbols,
less bits can be used for the most common ones. Since symbols in hyperspectral images are
pixels of hundreds of samples (reaching kilobits), a dictionary can store thousands or millions
of different symbols before being less effective than raw coding. Complex unmixing algorithms
are used in this case, but the results are comparable to others. The benefit here is that, apart
from compressing, each pixel’s material is identified at the same time.

Lastly, methods that separately process both correlations have been proved to outperform the
3D-wavelet and dictionary based ones. The process is usually a spectral dimensionality reduction
followed by some traditional image processing technique. Principal component analysis [57],
combined with JPEG2000 has been shown to get excellent results at very low bit rates. When
also aided by vector quantization, splitting the input pixel space into different categories, the
results improve even further [24]. This is proof that with complex data, complex algorithms
that exploit all possible ways of redundancy do achieve higher compression ratios than simpler
ones.

1.3 Reconfigurable Hardware

The first devices to have any kind of intelligence were mechanical. Clocks and watches kept track
of time by means of precisely engineered gears. Complex models of everyday life looked almost
real thanks to all kinds of inventions that synchronized moving parts. Eventually, complexity
evolved to mechanical calculators, which were able to take arbitrary inputs and convert them
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to the appropriate result. In a sense, this generation of hardware was the hardest. Once built,
functionality was completely fixed. If a watch kept track of seconds, it would always keep track
of seconds and not hours. If a calculator could add but not multiply, then multiplication would
always be out of the equation.

It was this idea of creating artificial calculators or brains, that was able to move us past the
hard hardware barrier. Vacuum tubes enabled the creation of the flip-flop, a circuit able to store
two different states which still is the base of computing.

The first vacuum tube computers were not programmable, being only able to solve specific
problems such as linear equations. In a sense, these were still hard. But, as with many tech-
nologies, war was what really drove it forward. WWII brought the need to decipher encrypted
communications, and with it came the first truly programmable computers. They used switches
and plugs, with which programs could be changed to do different functions over the input data.
Hardware no longer had the functionality within the circuit, the functionality was given by
software, which worked on generic hardware.

Improvements were quickly made over the years, increasing tube quality and count, but
the true revolution came with the transistor. In the 1950s, the so called “second generation”
of computers appeared. Vacuum tubes, which were quickly reaching their limits in size and
efficiency, were replaced by transistors and diodes. The first generations were less reliable than
tubes, but they were already thousands of times more efficient in terms of power.

Soon enough, vacuum tubes were completely obsolete, and it was claimed that transistors were
far away from their limits. Moore was the one to realize this, stating that transistor count would
double every few years. This statement has remained true to this day, even though improvements
are slowing down. But now, the end is near due to physical constraint, with transistors being
just a few atoms wide, heat dissipation nearing its limits, and yield die limiting the silicon area
that a chip can have.

Over time, this generic hardware improved in speed and functionality, but the core idea
remained the same: create circuits that can solve some basic functions that can be combined to
create complex behavior. That combination is programmed, and so a circuit can be reused for
multiple purposes.

The only issue with this kind of hardware is that, due to its versatility, it has more function-
ality than its needed for any specific application. And that unused functionality translates in
unused transistors. This means that operations will take longer to perform and power consump-
tion will be greater.

The solution seems simple: create custom hardware for applications that have specific con-
straints that a multi-purpose circuit cannot cover. But this is very costly. Development of a
chip can cost millions, and for small production runs this is infeasible. Some market niches do
have specific hardware, such as GPUs, video encoding/decoding or encryption. Those chips can
be programmed with software and deliver great performance for their applications. However,
their specificity makes them inviable for general purpose processing, where they are inefficient.

But what if custom hardware could be created for any kind of application? That is exactly
what engineers asked themselves in the 1980s. At first, programmable hardware consisted on a
matrix of connections and logic gates, and was called Programmable Logic Array (PLA). The
input to the logic gates can be programmed, meaning they feed off the user-controlled input or
a programmer-defined value, changing functionality. Complex logical functions can be made,
and these reprogrammable units were used as controllers, where the circuit’s state could define
the different component’s actions in order to control the circuit. In theory, any function could
be programmed if enough resources were available. The problem was that for certain functions,
the size of the gate matrix needed to program them was too big to be practical, with many
resources unused.
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Other technologies also emerged at the same time, such as PALs (Programmable Array
Logic) or GALs (Generic Array Logic), both improving PLAs by having more reprogrammability
options. Still, scalability was an issue, and complex functions could only be made with newer
products that had bigger gate matrices.

Engineers had to go back to basics. When any design is created, it is done in a modular way.
The final circuit has some inputs and generates some outputs based on those. Inside, blocks
of simpler functionality are connected together. This process goes down to the logic gate level,
where simple logic gates are connected to build up functionality all the way to the top.

So that is exactly what they built, an array of simple blocks that could be selectively connected
with others. Any circuit could now be mapped to the internal resources by reprogramming each
block’s functionality and the interconnections with others. Certain blocks had connections to
the outside and would be used as I/O. This was called Field Programmable Gate Array, or
FPGA.

1.3.1 FPGAs

Xilinx was the first company to produce FPGAs [230] along with
watch manufacturer Seiko in 1985. The first FPGA wafers were
full of short-circuits. Out of the initial 25 die run, only one was
partially working. By applying enough current to the chip, the
shorts blew like fuses and the first bitstream was able to be loaded:
a simple inverter. Soon the full chip was able to be configured,
and the manufacturing processes were improved removing the
shorts. FPGAs were moving ahead in uncharted territory.

At a cost of $55 and with a process of 2.5um, the XC2064
[169] offered 800 gates arranged into 64 configurable logic blocks
(CLB). Each of those had a three input look-up table (LUT) that gjgyre 1.10: The first FPGA:
could be configured into any 3-input function. Even at that low The XC2064 [194]

CLB count, transistors went unused for many functions. At a

time when every transistor was valuable, this seemed like a waste of resources and money. But
Xilinx’s founder Ross Freeman trusted Moore’s law and transistors becoming so cheap that it
would soon not be a problem. And he was right.

Xilinx’s invention [231] was so powerful that it soon took over PLAs, PALs and GALs. It
could perform their functions and more, replacing many ICs that previously had to be sourced
independently. In just a couple of years, price went down to $15 with production ramping up
to tens of thousands of units. The software though was a bit more expensive.

FPGAs, while very powerful, had one big limitation. While ICs normally come with simple
instructions of how to handle inputs and outputs, FPGAs also have the added complexity of
building the design that is programmed into them. Xilinx realized this and soon enough was
selling software to automate this process. Logic functions could be defined, and a tool would
automatically translate them to configuration files for the FPGA. This relieved engineers from
having to manually configure the internal logic, which would have defeated the purpose of the
FPGA in the first place. wo FPGAs continued to grow [205] in the 90s. Aside from pure logic,
FPGAs now had integrated memory, and as such could contain much complex circuits than
before. In 1992 the XC4010 surpassed the 10000 gate barrier, and just seven years later, the
XCV1000 would reach a million. Such growth was due to Moore’s law, and it applied everywhere
in the industry. Processors, memories and network devices were growing in size and in types.
While this first generation of FPGAs was useful, providing only reprogrammable logic was not
enough.
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With the expansion of the Internet, the need to process information from multiple sources,
multiple protocols and at the same time was crucial for interconnecting different devices and
networks. Custom ICs were available, but having one for each situation was too costly. FPGAs
found a niche to grow thanks to their quick reprogrammability, and the enormous need for
networking hardware accelerated their growth.

By the start of the 2000s, FPGAs were present in many digital systems. Companies that
used to develop ASICs were moving to FPGASs since their designs were now able to fit in the
reprogrammable logic, saving resources and time when developing new ideas. DSPs (Digital
Signal Processing blocks) provided pre-built modules that were faster than synthesized ones,
providing huge performance boosts. But having such huge FPGAs for small ASICs was a problem
since power consumption and cost would be too prohibitive for some applications. Thus, FPGA
vendors started launching multiple devices of varying capacity to address the needs of low and
high complexity designs (Table 1.2).

But sometimes FPGAs fell short when doing certain tasks. Enough logic resources were
now available for almost any function, but sometimes it just wasn’t enough to meet timing or
power constraints. Thus, resources started being used to integrate “hardwired” functionality.
Microprocessors, multipliers, Ethernet and PCI express interfaces or floating point arithmetic
are just some of the functions that are now pre-built on FPGAs. With no reconfigurability, they
operate just as fast as an ASIC. For any added functionality, the programmable fabric is still
there and can interact with all these modules.

Today, FPGAs have so many resources that they are being used to accelerate all kinds of
tasks. High level synthesis has allowed pure declarative code to be converted into circuits, saving
the pain of learning how to use FPGA-specific programming environments. However, the highest
performance is still only reached by hand-optimized code. Any algorithm can now benefit from
their custom capabilities since they are present all the way from cloud services to edge devices.
Their present certainly seems bright, and their future looks brighter.

1.3.2 FPGA structure

FPGAs have been through an evolution that goes beyond exponential growth. But it is not
only a growth in resources, it is also a growth in the type of resources available. Instead of
just increasing CLBs, those have increased as well in size and functionality (Figure 1.11). New
pre-built blocks have been added to the FPGA fabric to accelerate common functionality beyond
what’s possible with reprogrammable logic. 1/O capacity has increased to accommodate new
types of memory, ports and interconnections, allowing for more and more functions to be built

every day.
Model CLBs RAM I/O FF DSPs Year Adds
XC2064 64 58 122 1985 Gates, registers, routing
XC3195A 484 176 1320 1988 Three state bus
XC4085XL 3136 100kb 448 7168 1991 Carry logic, memory
XCV3200E 16224  852kb 804 34860 1999 Dynamic reconfiguration
XC2VP125 14416  10Mb 1200 111k 2002 Transceivers, processors

XC4VFX140 16128 10Mb 896 126k 192 2005 DSPs, Ethernet, PCle
XC5VLX330 25920  10Mb 1200 207k 192 2006
XC6VLXT760 59280  25Mb 1200 948k 864 2009 System monitor
XC7VX1140T 89000 67Mb 1100 1424k 3360 2010 ADC

VU13P 216000 454Mb 832 3456k 12288 2016

Table 1.2: Xilinx’s FPGA models through time
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Figure 1.11: CLB diagrams for different FPGA models. In reading order: XC2000 series [227], XC4000
series [229], Virtex 4 series [224] and Virtex 5 series [225].

FMC HPC DDR3 SODIMM
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Header NOR Flash Dip Switch

Power Switch

\— 12V Power

User Pushbuttons

USBJTAG
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Figure 1.12: Annotated picture of a VC709 connectivity board for the Virtex-7 [232].
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Figure 1.13: Detail of the interconnections present in a XC3032 [228]. Left: fabric interconnections.
Top right: CLB structure. Bottom right: Switch matrix pin configurations.

A modern FPGA will be shown as an example: The Virtex-7. This is chosen since it’s one of
the models used to test the designs in this work. It is packaged in a test board for ease of use,
as seen in Figure 1.12

These cards connect to the computer either via USB or the PCI express port. As seen,
they have multiple connections to allow for a wide range of applications to take advantage of the
FPGA. In this case, it is accompanied by 8GB of Ram, in two separate 4GB banks. Applications
will usually load the memory with the data to be processed, accelerate that processing on the
FPGA itself, and then transfer the data back to the computer. This concept of FPGAs as
general purpose accelerators has been in use for cloud services [10] such as AWS for a couple of
years.

Aside from connections or applications, the interesting part about a modern FPGA is the
inside of the chip itself. For that, it is necessary to go back to an old FPGA, the XC3032
[228], where configurable blocks were simple enough to fit in one page. Figure 1.13 shows the
internal structure of the FPGA. CLBs are the blocks named by two letters. Every black dot is
a configurable switch that can connect or disconnect the lines it touches. CLB functionality can
be configured for each CLB. Switch matrices can be configured per-pin. So, even for a small
64-CLB FPGA such as this one, the number of reprogrammable bits is enormous. Direct lines
allow for fast connection between elements, while the switching matrices have greater flexibility
but are slower.

Nowadays, each CLB has thousands of configurable bits, while switching matrices have hun-
dreds of pins. Furthermore, FPGAs contain specific blocks such as DSPs that connect to the
fabric as well, providing built-in functions like multiplication or division. Those have less flexi-
bility but are reprogrammable as well, usually allowing trade offs between clock frequency and
latency.

1.3.3 FPGA applications

FPGAs have seen a number of useful applications [197, 205]. Their reprogrammability has made
FPGASs the perfect vehicle to carry circuits or accelerators that are be too costly or timely to
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implement as ASICs. They allow for faster testing, turnout and provide high performance all
at the same time. At first, that was the target market segment. With the growing size of ASIC
design, small production runs became too costly to develop and were replaced by FPGA designs,
which generally perform sufficiently fast.

Due to their capabilities, and the quick expansion of the networking market, that was at one
point the biggest selling target for FPGAs, with reprogrammable switches [134] being cheap,
fast, and ideal for new emerging protocols or updates that could be done at the hardware level.
Instead of having to update the software of an ASIC or CPU which potentially would not be
as fast for the new requirements, the custom implementation of the protocol could be loaded
into the FPGA. Many I/O improvements were brought to FPGAs, which were catering the
telecommunications segment but still remain today.

Specific control systems, where simplicity and reliability are key, have also been implemented
on FPGAs due to the prohibitive cost of ASIC design. Small robots for civilian search and
rescue [39], or semi-automated medical surgery equipment [200] have trusted FPGAs as their
brain power. Control systems based on fuzzy logic [198] have also been targeted instead of using
a specific ASIC because production runs would be very small, and processors require great
amounts of power for the little computing capacity that is needed. FPGAs fit perfectly allowing
for faster responses in those systems.

Over time, ASICs recovered part of their market share by expanding to system-on-chip (SoC)
devices. Generic processors were combined with application specific blocks that would target spe-
cific functionalities. Programmable SoCs [49] were developed as an answer, including processors,
networking processing blocks, Analog to Digital Converters, or multipliers and FP arithmetic
for precise mathematical applications.

FPGAs are capable of performing any function, including running full-fledged operating sys-
tems [192] making FPGA resources available at the kernel level, improving performance and
allowing seamless integration of the FPGA fabric for all processes. Despite these capabilities,
complexity is still high, and FPGAs today are often used for increased performance where custom
hardware is not available.

In neural networks [85] they can replicate the actual network in hardware adapting to their
changes, being much faster than CPU or GPU [131] based systems. In an FPGA, the whole
network is working simultaneously. However in a CPU or GPU different iterations are executed
one after another, slowing down processing. Common applications based on neural networks
on FPGAs [153] include speech recognition, feature extraction, image association, robot vision,
face recognition, fingerprint matching, color quantization, and many more.

Video encoding performs a sequence of costly operations over successive frames in order
to estimate motion and save bandwidth by using previously seen blocks as references. These
complex operations have been accelerated in FPGAs [59, 122]. Decoding procedures have also
been fully developed on FPGAs for the latest and more complex 4K encoding standard HEVC
[2] in real time.

Cloud computing servers have seen the introduction of FPGAs as accelerators [65], which are
far more efficient power-wise than multi-core CPUs or GPUs, and can also adapt to changing
algorithms. Even some older FPGA characteristics such as bitstream encryption have been used
recently [234] to ensure data privacy in FPGA cloud applications.

Low power applications have also been of particular interest [208] since FPGAs are able to
preserve battery life longer, enabling off-the-grid applications or data collection systems that
last longer than if using common SoCs. Even specific improvements have been researched [77,
172] to further decrease FPGA power draw by using different voltage domains or clock gating.

A place where FPGAs are of great use is satellite applications. It makes sense since satellites
cannot be accessed for repairs. If a custom ASIC failed, or a processor had a cosmic ray alter
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some hardware, that failure would be there indefinitely. It might be avoided by software in some
cases, but repairs are not possible. If instead FPGAs are used, any defect on the synthesized
logic, either from programming or from cosmic events, can be fixed by rerouting resources.
New optimizations can be incorporated. Functionality can adapt to different needs, accelerating
different processing flows if needed by reconfiguring when necessary. Communication links [90]
and controllers [89] are two of the main applications that benefit from FPGA use, along with
hyperspectral image compression.

1.3.3.1 Compression of hyperspectral images on FPGAs

FPGAs offer great advantages when flexibility is important. Space is one place where being able
to reprogram a circuit can be extremely useful since repairs are impossible. Many hyperspec-
tral sensors are space-borne, and hyperspectral data has sizes that quickly add up to fill up a
satellite’s memory. Compression is a must in that scenario, not only for storage but also for
being able to send data back to ground stations in a more efficient manner. The cycle closes by
realizing that compression, due to having many but simple operations, can be efficiently carried
out on FPGAs [161, Ch.7][175].

FPGASs have already been used to implement hyperspectral compression algorithms. Lossless
algorithms such as CCSDS 123.0-B-1 [106, 154, 180, 207] and even its predecessor the “fast
lossless” coder [12, 115] have seen many implementations. Integration on real-time reconfigurable
platforms [168] has also been explored, allowing for multi-core processing. Lossy ones such
as the wavelet-based SPIHT [70, 95] have already been around for a while, as well as other
methods such as vector quantization [161]. Other algorithms like JPEG2000 have also seen many
implementations [84] that can also apply in the context of hyperspectral lossy compression. On
the near-lossless side, the newer CCSDS 123.0-B-2 [52] already has an implementation, as well
as the low complexity coder for ExoMars [75, 76].

The topic of compressing hyperspectral data on FPGAs is of interest, specially in satellites
which most of these works apply to. But despite the plethora of options, there has been no effort
to unify and experiment with all types of algorithms. Which one is suited for what application?
Can all kinds of algorithms be space-borne? Is there a better compression algorithm under
certain metrics? What are the trade-offs between all types?

These, as well as more questions, are the ones that this thesis tries to answer.

1.4 Objectives

The general objective of this thesis is to study hyperspectral image compression algorithms
using reconfigurable hardware. The usual problems that arise in this context, like high data
dimensionality, data quantity, processing and transmission times are to be taken into account.
The approach to solving this problem is to study the Field Programmable Gate Array (FPGA)
implementation of some of the most significant hyperspectral compression algorithms in the
literature.

First, extensive research in compression is required to understand the main types of ap-
proaches to general data compression. Their adaptations to hyperspectral images are also of
interest, and specially algorithms developed exclusively for this kind of data. Existing imple-
mentations of these algorithms on FPGAs will also provide with the required knowledge in novel
techniques that can be used for this thesis.

After this first analysis of hyperspectral image compression in the context of FPGAs, three
algorithms have been selected to be implemented and analyzed. Their differences are to be
studied, understanding what the advantages of the different types of techniques are, and to
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derive when and where it is necessary to apply each technique. Each implementation aims
to achieve real-time performance as a baseline, to be able to compare each algorithm in an
applicable scenario where images are compressed after capture in a possible real-world scenario.

e An in-depth analysis of the lossless CCSDS 123.0-B-1 standard [32] will be performed in
order to understand the mathematics behind it. Being an international standard, it has
gathered attention, and a review of existing FPGA implementations will bring ideas to
the table and present their shortcomings in order to develop a novel implementation that
solves them.

Being highly configurable, an extensive review of occupancy impact is to be done, deter-
mining the ideal options to set in order to achieve the desired performance results.

e The JPEG2000 image compression algorithm [163] will be studied next. Its applicability
is well-known for digital images, but the focus will be on hyperspectral adaptation. In this
context, the combination with other algorithms will also be of interest to fully exploit the
redundancies present in hyperspectral data for compression. This method will target an
aggressive lossy compression, to see the feasibility of an FPGA implementation.

An extensive software analysis will be made beforehand in order to look for the best
possible pipeline that, including JPEG2000, is able to compress hyperspectral image. The
pipeline will be optimized at all steps in order to bring this complex array of algorithms
to real-time constraints.

e The low complexity predictive lossy compression (LCPLC) algorithm [5] is the final algo-
rithm to be analyzed. It offers the ability of performing near-lossless compression, provid-
ing a quality threshold that is maintained in the output image. It offers less advantages
than the two other approaches in their respective domains, while at the same time being
competitive in both.

Hardware optimizations will again be targeted to analyze the algorithm under tight timing
and resource constraints, seeing as well how it compares in both compression performance
and processing speed against the other two.

In the following chapters a more in-depth introduction to compression is seen, which is the
main theoretical background that the rest builds upon. After studying compression techniques,
they will be applied to three algorithms in the lossy, lossless and near-lossless category. These
three are algorithms that have already been tested, and modifications are proposed that improve
their performance in certain key aspects relative to prior implementations. Afterwards, the
FPGA implementations will be presented, as well as the key aspects that this work focused on
during development.

Results, showing compression ratios, quality, algorithm speed as well as FPGA occupancy are
shown afterwards, also comparing with existing implementations of similar algorithms. Finally,
conclusions will be drawn as to which algorithms are better suited for certain situations. The
thesis will end with future work ideas, hinting at what might be possible to achieve based
on the experienced gained while writing it. The final objective is to provide the reader with
extensive data and experimental results to be able to decide which algorithm and implementation
techniques are best suited for each application.
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Chapter 2

Compression

It was 1948 when Shannon [184] set the mathematical background for information theory. In
the first paragraph, he wrote:

“The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point”.

That phrase alone establishes that what’s key for transmitting information is the repro-
ducibility of the message. It doesn’t mention how the information is transmitted, just how it
must arrive at its destination. Any kind of digital system that relies on communication with
others usually has its bottlenecks at the communication level. Internally, operations are orders
of magnitude faster: memory is available nearby and connections are extremely short compared
to the long distances information has to travel between two separate systems.

Being the bottleneck, speeding it up is key to enable faster operation. There is a physical
constraint on any communication link: signals cannot travel faster than light, and the bandwidth
available depends on technology. So, with links that have certain imposed limitations, how can
those parameters be improved? The answer is compression.

In this chapter, a broad look is taken at different compression techniques, that are applicable
to many kinds of data, including hyperspectral. Special focus is put into the ones that are used
or influence the algorithms implemented in this thesis. An in-depth look at those is provided in
Chapter 3.

2.1 Basic concepts

Compression is the process through which some piece of information gets processed in order
to reduce the amount of bits it takes to represent it, while still retaining the original meaning.
With the first algorithms, the original data had to be able to be perfectly retrieved. The size
was reduced but not the amount of information. This is lossless compression.

But not all types of data require exact reconstruction. Some signals can be compressed with
a loss in quality while still retaining the important features. This is lossy compression. Going
back to Shannon’s quote, the message is reproduced either exactly or approximately.

When compressing losslessly, there will be a plethora of techniques to achieve the same result:
reduce bit size. To establish which one is preferable, sizes of compressed data are compared. An
algorithm which compresses down to less bits is more desirable than one that uses more bits to
represent the compressed information. To measure this effect two different concepts are used:
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e The compression ratio r. For a dataset D, compressed with an algorithm a, define r as:

r(a,D) = ——— (2.1)
where s(D) is the size in bits of the dataset. For example, a compression ratio of 2 means
the compressed dataset is twice as small as the original. A bigger ratio means compression
is higher.

The inverse compression ratio, which indicate the fraction of the original size that the
compressed data takes, is defined as ir = 1/7.

e Compression can also be measured in bits per pixel per band (bpppb). This is specific to
hyperspectral images. For an image I with bit-depth b(I) (i.e: number of bits per sample)
that is compressed with an algorithm a:

bpppb(a,I) = rl()c(LI)I) =b(I)ir(a,I) (2.2)

In this case, lower bpppb values indicate higher compression. bpppb is inversely proportional
to compression ratio. For this thesis, the factor b(I) is assumed to be 16 unless stated
otherwise.

For lossless algorithms, these concepts are enough, since comparing just output size will de-
termine which algorithm achieves higher compression. (Though other factors such as processing
time might be of interest as well). However for lossy algorithms it is of interest to also know
the quality of the result. Metrics for determining the quality of compression are explained in
Section 2.3.6. To compare lossy algorithms, both compression ratio and compression quality
will be compared at the same time.

When fixing a ratio, the algorithm which yields a higher quality is considered to be better.
And when fixing a quality, the algorithm which achieves it at a higher compression ratio is
preferred. The curves that arise from plotting these values are called distortion-ratio curves.
An algorithm a is better than a’ if a presents higher quality then o’ at the same ratio or higher
ratio at the same quality.

Curves can cross each other, and sometimes an algorithm will outperform others for only
some portions of the curve. Figure 2.1 shows this effect. The bpppb representation is more un-
derstandable since quicker growth means higher quality at a higher ratio. The cr representation
gives an idea of how much compression can be achieved at a given quality.
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bits per pixel per band (bpppb) compression ratio (r)

Figure 2.1: Distortion-ratio curves with both c¢r and bpppb shown. dr, is the curve with highest
distortion-ratio performance, while dry is the one with the lowest. dr, and dr, cross each other, and are
respectively better in their corresponding shaded areas.
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2.2 Lossless compression

Lossless compression is used when it is important to preserve original data exactly as it was
obtained, with no approximations. Lossless compression is usually also faster to perform than
lossy, so certain applications take advantage of this speedup to meet real-time constraints. Fur-
thermore, lossy algorithms generally contain lossless coding after the lossy transformations.

The mathematical background comes from Shannon’s Information Theory [184]. Back then,
messages consisted of symbols transmitted over the communication link. If there is previous
knowledge about the symbol source (how many symbols as well as their frequencies), messages
can be sent using less data than if a random source was assumed.

A symbol is any object that carries information (such as a letter or digit). Symbols usually
combine to form higher order objects (letters become words and digits become numbers). Those
objects can also be symbols themselves. The set of symbols that are used is called the alphabet.
Alphabets can be composed out of few simple symbols or out of many complex symbols. There
will be trade offs between number of symbols in an alphabet and the number of bits that are
needed to represent their symbols.

To transmit symbols over a communication channel, a mapping to an alphabet that the
channel supports is needed. The channels are binary and transmit bits, that is, zeros and ones.
Combinations of those will be used to map the symbols:

Definition 1 A code is a mapping from symbols of an alphabet A to symbols of an alphabet B,
that is the one supported by the communication channel. (In this case, binary words). As an
example, the Latin alphabet can be mapped to five-bit symbols as follows:

C = {a — 00000,b — 00001,...,z — 11000} (2.3)

In this case, the code has a length of five. For fixed length codes, each symbol begins at
a boundary that is a multiple of the code length. But codes can be of variable length if every
symbol can be distinguished by its prefix.

Consider a random variable X that generates symbols z;,i € [1,n] from an alphabet A.
Those symbols can be coded with a fixed length of L(X) = [log, (|X|)], having at least as many
possible combinations as symbols there are in A.

Sometimes, the probabilities of appearance of certain symbols P(z) will be skewed. For
example, if A is the Latin alphabet and a book is being coded, vowels will be much more present
than, for example, the letters q, j or z. In those cases, using a variable length code that assigns
shorter lengths to more common symbols is advantageous, since less bits will be used overall to
transmit the same message. The average length with which symbols of X can be transmitted
has a theoretical limit known as Shannon’s entropy H(X):

H(X) = —ZP(%‘)lng (P(z:)) (2.4)

where the logarithm in base 2 indicates that the alphabet that codes the symbols uses binary
digits to do so.

H(X) < L(X) always holds, so a trivial constant length mapping can usually be improved
with a variable-length coding scheme. A simple example can be found in Shannon’s work where
symbols A, B, C, D are assigned probabilities of 1/2,1/4,1/8,1/8 respectively. In this case L(X)

is 2, however:
1 1 1 1 1 1 7

29



So if a two bit per symbol code is used, part of the sent bits that are redundant are wasted.
Using the following variable-length code: A — 0, B =— 10, C =— 110 and D =— 111, the
theoretical limit is reached since, for N symbols sent:

1 1 2

bitstN)=N|=-14--2+—" =--N 2.

its(N) < 5 + 1 + g 3> (2.6)
This theoretical limit cannot always be reached. A simple example can be found in two-

symbol alphabets. The best code is to assign 0 to one symbol and 1 to the other. So the same

amount of bits and symbols will always be used, but the entropy can be arbitrarily close to zero

when the probability of one of the symbols p = P(z1) tends to 1:

lim (H(X)) = lim — (plog, (p) + (1 — p)logy (1 —p)) = 0 (2.7)
p— p—

In any case, the code that is assigned needs to be decoded in a unique way, otherwise the
message is completely lost in transmission. To solve this issue prefix codes are used, in which no
symbol’s representation is a prefix of a different symbol’s representation, so that when decoding
variable length codes, symbol’s boundaries can be uniquely determined.

2.2.1 Huffman coding

Shannon had established a limit, known as entropy, below which messages could not be further
compressed. That limit was not always reachable.

Huffman was one of the first to create an algorithm [96] that created the optimal mapping
between the input alphabet and the output alphabet with the least average bits per symbol,
according to Shannon’s theory.

Symbols are sorted by descending probability of appearance. The two rarest symbols are
grouped together and their probabilities added. They form a new symbol that gets added to
the original pool of symbols. This process continues iteratively creating a tree of symbols where
low probability symbols appear at very deep leaves, while high probability symbols are near the
root.

To assign codes, the tree is traversed and each branch assigned either 0 or 1. The code for
each symbol is that of grouping together the bits that appear on the branches leading to them.
Figure 2.2

2.2.2 Golomb coding

Huffman coding works on a finite set of symbols with known probabilities. But what if the set
of symbols to be coded was infinite? For this, symbols need to be generated on-the-fly that can
be decoded later.

Golomb coding [79] was originally designed for coding run-lengths of random symbols a and
b such that the probability of one is much higher than the other. Runs a"b were coded, where a
has the higher probability. This is the same as saying that numbers n; € [0,...,00), that follow
a geometric distribution, are coded.

If p is the probability of symbol a, select m such that p™ = 1/2. If p™ = 1/2, then a run
length of n symbols is double as likely to appear as a run of n+m symbols. It makes sense then
for the second run to take up 1 more bit.

By this principle, Golomb codes are created. Let k be the smallest integer satisfying 2¢ > 2m.
Specifically, focus on the case where the equality is met (Golomb power of two coding). The
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Figure 2.2: Huffman tree for the phrase “Implementation of Huffman Coding algorithm”. Leaves
indicate the codes used for each symbol. Numbers on each node indicate the aggregate of appearances
of all the symbols that branch from them.

corresponding code then has m words of every length > k, which are bins. On each bin, the
probability of appearance is halved. If value n is to be coded, it is first expressed as:

n=gq*xm-+r (2.8)

where ¢ and r are the quotient and remainder of the division by m. The resulting code will be
q “ones”, followed by a zero, followed by the remainder r in m — 1-bit format. An example is
shown in Table 2.1.

This way of coding is not only useful for runs of symbols, but also for numbers that follow a
geometrical distribution. In that case, this is the best way of coding without knowing beforehand
what the maximum value will be.

Number 0 1 2 3 4 5 6 7
m=1 0 10 ii0 1110 11110 111110 1111110 11111110
m = 2 00 01 100 101 1100 1101 11100 11101
m=3 000 001 010 011 1000 1001 1010 1011

Table 2.1: Golomb coding. A tradeoff is made between shorter codes at the beginning with longer codes
following, or longer codes at the beginning which do not grow as fast.
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Number 0 1 2 3 5 6 7
k=20 0 010 011 00100 00101 00110 00111 0001000
k=1 10 11 0100 0101 0110 0111 001000 001001
k=2 100 101 110 111 01000 01001 01010 01011

Table 2.2: Exponential Golomb coding.
1T 0.8y 0.72 4 0:720r 0.7104 7
C
0.8 T 0.76 + 0.696 1 0.7152 + 0.70752 +
B
0.6 + 0.72 + 0.672 + 0.7104 + 0.70464 +
A — 0.7
0 - 0.6 + 0.6 0.696 + 0:696»

Figure 2.3: Arithmetic coding of BACAA assuming probabilities P(A) = 0.6; P(B) = 0.2; P(C) = 0.2.
The result is the number of subdivisions (5) along with a representative (e.g: 0.7).

2.2.2.1 Exponential Golomb coding

In the same way that a geometric distribution is used for Golomb-coding, when the data presents
an exponential behavior (with lower values being exponentially more likely to appear), expo-
nential Golomb coding [60] can be used.

To code a value v, it is first normalized to a nonzero value by adding 1 v/ = v + 1. Then, its
magnitude m = [log, (v')] is obtained with m — 1 zeros coded, followed by the binary value (in
m bits) of v'. This is the zero-order exponential Golomb coder. For higher order-coders, where
smaller numbers use more bits but bigger numbers are more compressed, a different technique is
used. First, L:E / QkJ is coded using the zero-order exponential Golomb coder, and then z mod 2%
is coded in k bits in binary. This is a kth order exp-Golomb coder. An example is seen in
Table 2.2

2.2.3 Arithmetic coding

There were other codings different than Huffman’s or Golomb’s, but assigning codes to each
symbol always resulted in some loss of efficiency since no symbol could be represented with less
than 1 bit, steering away from Shannon’s entropy limit.

A technique was developed [3, 26] that is be able to reach that limit by assigning non-integer
lengths to different symbols.

The way of doing this is not trivial. How can a symbol be transmitted by using, for example,
4.32 bits? What arithmetic coding does is different than the previous approach. Based on
the symbols it has to send, arithmetic coding will create a single “word” containing all of the
symbols together.

In arithmetic coding, a message is represented by an interval [c,, ¢, + a,,) C [0,1). From the
interval, a representative p € [c,, ¢, + ay,) is taken, which codes the message. The longer the
message, the shorter the interval will be, and the more bits will be needed to code the repre-
sentative p. The symbols in the message successively reduce the interval’s length (Figure 2.3)
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based on their probabilities. Symbols that are more likely to appear reduce the interval slightly,
while less likely symbols generate more drastic reductions.

To update the interval, a probability function is used that indicates the likelihood of a symbol
x; appearing in the message fx(x;). A cumulative function Fx(z;) = Z;;%) [x(z;) is also used,
indicating the sum of probabilities of all previous symbols. If X = {zg,...,x,}, then Fx(X) = 1.

Updating the interval is thus done as:

Ap41 < aan(xn) (29)
Cnt1 < Cn + anFx(xy) (2.10)

Any value p € [c,, ¢, + ay) is valid as a representative of the coded message. To decode,
subdivisions are followed based on the probability functions described before, placing the value
p down the subdivisions. A slight overhead is introduced to store the number of subdivisions
expected, since otherwise the process could create an infinite message. Even with this slight over-
head, as messages grow in length, the number of bits needed to represent them gets arbitrarily
close to Shannon’s limit.

The limitation was that, to update the intervals, arbitrary precision floating point numbers
were needed. Theoretically arithmetic coding was a good idea, just not practicable. This was
until a full implementation [217] was published that could perform arithmetic coding with no
need of arbitrary precision:

e The implementation deals with integers to simplify the subdivision process, so fx(x;) is
now approximated as:

fx (@) = pl, = 27D, | (2.11)

where care is taken not to round anything to zero.

e Registers for a and ¢ must be of finite length, so their size is limited to N and N + P bits
respectively.

The output bitstream can be decoded even if only a partial fraction is available at any time.
N and P need not be high for an acceptable result, with N + P < 32 giving results close to
theoretical limits that are achieved with arbitrary precision [201, p. 2.3.1].

2.2.4 Binary arithmetic coding
The idea of an arithmetic coder can be further simplified by demonstrating that any coder is
equivalent to a binary one.

Let Ax be the input alphabet (z; € Ax) with cardinality |Ax| = 2%, K € N. Each element
can be represented as a K bit integer.

X is a random variable that generates 2% possible outputs, but can also be interpreted as a
vector of K binary random variables By, ..., Bg_1, where each B is a binary digit of X.

In the general case each symbol z; is coded based on its probability p,,, now K bits are coded
instead:

e For the first bit there is only one probability distribution, either the symbol starts by 0 or
1.
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Figure 2.4: First diagram shows a non-adaptive coder. The model is static and shared. The second
diagram shows an adaptive coder in which the model is updated from the stream of symbols. This ensures
the model is synchronized.

e For the second bit there are two probability distributions, one gives the probability of a 0
or 1 when the first bit was 0 and the other gives the probability when the first bit is 1.

e So for bit i there are 25~ distributions. Adding all together a total of 2% — 1 distributions
arise. Since they are binary, each is defined by a single probability, for a total of 2K — 1
probabilities, the same that were needed when keeping track of the original 2% symbols.

An advantage of binary arithmetic coders is that usually the distributions referring to the
lower bits are mostly uniform, so p can be set to p = 0.5 for them. Doing this will provide a
similar performance as the classic arithmetic coder, having less information to keep track of.

2.2.5 Adaptive entropy coder

Both Huffman and arithmetic coding are entropy coding algorithms. They use the (previously
known) distribution probability of the input symbols with the aim of coding them with results
as close as possible to Shannon’s theoretical limits.

Sometimes the distribution changes over time, or can be adapted for local statistics. As an
example, 000001111110 has an entropy of 1 bit because both symbols (0 and 1) appear the
same number of times. However, splitting it in two yields 000001 and 111110, both with
entropy 0.65 that can be coded at higher efficiencies.

To build an adaptive coder the probability model is changed to update with the stream of
symbols instead of being static (see Figure 2.4). When coding a symbol z;, the model will only
depend on symbols x;,7 < j. As an example, in Huffman coding, the codes for symbols could
change every so often to adapt to local statistics. The decoder will also know the state at that
point and will be able to adapt.

This allows us to break the entropy limit, since that was set for static codes. Information
can be compressed even further in a lossless way.

2.2.6 Entropy reduction

All of the coding techniques so far base their efficiency in the entropy (either local or global) of
the input data. Based on mathematical formulas, their efficiency is limited and cannot go over
certain thresholds.

However, certain symbol sequences hold great correlation between consecutive symbols. In
those cases, even if the entropy when looking at individual symbols is high, decorrelating them
can lead to a great reduction of entropy.
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2.2.6.1 Differential coding

Differential coding works best in temporal series of numbers. These series are usually fairly
smooth, and consecutive samples are usually close together in value. A simple series x = t,t €
[0,99] C N will have the maximum entropy possible since all values in the series are different.

However each value is close to their neighbors. If instead of coding the values 0, ..., 99 their
differences are coded, things will be much easier. In this case, the first value and then the
differences after it are stored, using the vector 0,1,1,...,1. That distribution has an extremely
low entropy and an arithmetic coder is able to code it efficiently.

In general, for any kind of temporal series, the values obtained from the differences of sub-
sequent values will be much lower than the original values. If the same number of samples is
present but with a lower possible range of values, more repetitions will be present and thus the
entropy will be lower.

2.2.6.2 Predictive models

A more generalized idea of differential coding comes from the concept of predictive models.

At any point in coding, when a sample is processed, a prediction is made based on the
previously seen values. For smooth and predictable data, this value will be close to the actual
value. For example, in the previous case where x = ¢, if the model discovers the generative
function, the predictions will always match the actual values.

The differences between the actual and predicted values will be coded. The model approxi-
mates the data, yielding differences with the real values that are smaller than the values them-
selves, and can be more efficiently coded using differential coding.

The good thing about predictive models is that they can adapt to any kind of data, not only
temporal. For example, images have great spatial correlation, which is found in two different
directions at once: horizontal and vertical. When processing an image in raster scan order, the
already processed neighborhood can be used to create a prediction.

Any kind of entropy coder will be able to feed off the predictions and outperform itself if it
was given the raw data, since good predictions will have lower entropy than raw data.

2.2.7 Run-length coding

Run-length coding aims to reduce the size of long repetitive sequences of symbols. Run-length
coding starts with a sequence of symbols. To compress it, runs of consecutive symbols are
replaced by a pair of a number and a symbol. The number indicates the amount of times that
the symbol is repeated. As an example:

aaaaaabbceccaaaa — 6a2bdcda (2.12)

Sequences with many repetitions will be greatly reduced, while more random sequences will
probably be expanded by this method, due to the overhead of including the number of repetitions
along with each symbol.

Some algorithms use run-length coding to perform compression when they detect fairly uni-
form subsequences within the input data. Those regions will be compressed in a run-length way
while other regions may use different techniques.
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2.2.8 Dictionary coding

Dictionary coding exploits the fact that sometimes symbols group together in common con-
structs. Symbols in text are characters, however they are always grouped in words. If, instead
of coding characters, words are coded, coding efficiency will be higher.

Continuing with the previous example, there are 26 letters in the English alphabet. On
average, 5 bits are approximately neded to code each one. This can be improved by using
Huffman coding, for example, with the average frequencies of letters in English.

In this case, letters can be grouped into words. The average word length in English is 4.7
characters. That means that, with no consideration for correlation between letters, each word
has an entropy of approximately log, (26) - 4.7 ~ 22.09 bits. However, with 22 bits, 222 ~ 4
million different combinations exist.

But there are much less words in English. Shakespeare, a reference in writing, used ap-
proximately 31534 different words in his books. Those can all be represented by using just 16
bits. So why use 22 bits per word when just 16 suffice? This is exactly what dictionary coding
does. In the case of words, a dictionary maps them to the string of symbols (characters) they
originate from. Binary codes are assigned to the words that appear on the dictionary, saving
combinations.

This technique is useful when the number of words in the dictionary is significantly lower
than the number of combinations that can arise from the combination of the original symbols
(in this case characters). For natural language, a dictionary approach will almost always result
in savings when compressing.

2.3 Lossy compression

In contrast to lossless compression, lossy compression allows some sort of distortion to be intro-
duced in the decompressed data. This will often be applied over continuous and fairly smooth
data (audio, images, video...) which, even if slightly approximated, retains the original meaning.

Lossy compression is important because lossless techniques have certain limitations. Even if
Shannon’s entropy barrier can be broken with certain techniques, these apply in specific scenarios
and for certain sets of data they will not be efficient. If there are certain restrictions about data
size, transmission speed or others, lossless compression ratios might not be low enough.

Generally, lossy compression will only be applied when its effects do not significantly affect
data analysis afterwards. If data is rendered unusable, then compression is useless in the first
place. Different techniques will apply to different scenarios, and often a mix of them will be
used to properly manipulate the data.

2.3.1 Quantization

The first and easiest technique that can be applied is that of quantization. Quantization maps
symbols from a large set onto a smaller set that can use less bits for representation. For numeric
data, precision is reduced maintaining acceptable quality levels while gaining extra bits in the
process. Any kind of analog-to-digital conversion requires quantization for example, since the
arbitrary precision of the analog world gets lost when translated into a fixed-precision world.

Quantization is done in two different scenarios:

e For floating point data, it usually consists on rounding to the nearest integer, possibly
after multiplying by a factor if the numbers are too small. Integers are easier to deal with
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since operations between them are simpler to carry out in hardware. If the conversion is
done properly, the inverse can recover the original numbers with great precision. A simpler
quantizer can be as follows:

Qz)=A-k k= V + 1J (2.13)

A2
k is the quantized value which is an integer, and to recover the approximation of the
original, a multiplication by the step-size A is performed. The smaller A is, the closer the
reconstruction is, but the higher & will be, requiring more bits for storage.

The mean squared error (MSE) when reconstructing can be found by calculating the MSE
over any interval of length A, since all values within the interval collapse to its center when
quantized. Thus, integrating the difference, we find that the MSE is:
A2 o 3 /914/2 3 A3
f—A/QQ3 dx [.%' /3] -A/2 2%73 - 2«’?3 . A?

A A A 12

(2.14)

By adding or removing one bit from the quantizer, the value of A is halved or duplicated.
This means the MSE goes down or up by a factor of 1/4. Equivalently, the signal quality
changes by 10log;, (1/4) = 5.756dB.

e For integer data, quantization consists on removing the lower bits of the numbers (just
shifting). This saves as many bits as are removed per sample, while keeping decent quality
if values are sufficiently sparse. If they are close together, they can be centered around
the mean and then the upper bits removed instead.

For signal compression, a dead zone (quantization interval wider than the rest) in the quan-
tizer output might be useful as a noise gate that collapses low values to zero to aid in compression.
For this purpose, dead-zone quantizers are used where:

— Y [ | 19

where w is the width of the dead zone, centered around zero in this case, which will collapse to
zero. This type of quantizer is also useful when output values need be in sign-magnitude form,
which is useful for some encoding schemes.

2.3.1.1 Down-scaling

Down-scaling is a special type of quantization where the signal’s precision is reduced by a certain
factor. For example, for floating-point numbers, it might increase their separation € to ce, where
c is the down-scale factor. Note that precision is worse the more separated samples are. An
example can be seen in Figure 2.5.

For integers, down-scaling is usually done with simple shifting. Thus, the down-scale factor
will always be ¢ = 2" for some n. Doing this for a signal with k bits effectively reduces the total
size by a factor of n/k. Cost-wise, it is the cheapest compression to do, since it only requires
shifting of the input data. Recovery is done again with shifting, though the lower bits are lost,
as with any kind of quantization.

2.3.2 Down-sampling
Another simple and fast way of reducing the amount of data is to down-sample the information,

taking away every nth sample. More aggressive down-sampling is called decimation, where
instead only every nth sample is kept.
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Figure 2.5: Original image, down-sampled with cubic interpolation, down-sampled with no interpola-
tion, and down-scaled to 9 bits.

Down-sampling might create artifacts for some signals, so usually filters are used to, instead of
just removing samples, interpolate them to smooth out irregularities. For inverting the process,
the missing values can be interpolated back to get an approximation of the original ones.

Down-sampling by a factor d effectively reduces data size by the same factor. When in-
terpolation is not used for down-sampling, this method is even faster than down-scaling for
size reduction since it does not require any processing at all, just discarding certain samples.
Complex interpolation methods might increase processing times, but increase the quality of the
result, as seen in Figure 2.5.

2.3.3 Domain changes

Data can be represented in multiple ways. Whenever a
signal is sampled, it is done in a certain space: Audio
is sampled in time, images are sampled in space and
in different colors, video is sampled in both time and
space...

This is due to the nature of the sensors. Certain
physical properties are being captured, that require spe-
cific kinds of sensors for them. But there is a correspon-
dence between different domains in which the data can
be represented. There are different formats for audio,
video and still images, all representing the same data in

Figure 2.6: Separation [15] of the Y (lu-
minance), Cb (blue-difference chroma) y
different domains. Cr (red-difference chroma).
Sometimes this transformations make it easier to an-

alyze or, in this case, compress data. Certain domains present more redundancies than others.
For example, for images (see Figure 2.6), the YCbCr color space is often used for storage, since
it separates the original RGB (red, green and blue) data into three channels, two of which can
be down-scaled (the chroma components) without perceptible loss of information for the eye.

These domain changes are called transforms when referring to pure compression purposes.

2.3.4 Transforms

As data increases in redundancy, the potential compression ratio that can be achieved also
increases. Transforms are a way of increasing redundancy in the data with little to no cost.

A transform can be invertible or non-invertible. In the first case, the transformation process
can be reversed and the original data recovered. In the second case the original data will be
lost, with only an approximation available. Transforms work by converting data in a time or
space domain into data that lives in the frequency domain. This is based on Fourier series.
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Joseph Fourier discovered that, given any function f(¢) in an interval, it can be decomposed
in a summation of infinite sinusoidal functions as follows:

f =3 +Z [ancos <2Tt> + by sin <t)] Z e T (2.16)

n=1 n=-—00

where a; and b; are coefficients that can be simplified by using complex values to ¢;. The
interesting part here is that, by the Riemann-Lebesgue lemma, all coefficients tend to zero
with infinity. In practice, they tend to zero fairly fast, and a few tens of coefficients suffice
for approximating fairly well any simple function. Informally, this is equivalent to saying that
lower-index coefficients are more “important” and carry more information than higher-index
ones. This is what is called the energy compaction property.

And this is the key for transforms. Since lower-index coefficients are more important than
higher-index ones, those are kept while the rest are discarded. The more that are ommited, the
more distorted the original data will be, with more compression ratio achieved. Note that for
this to work, the function needs to be fairly smooth, as it usually happens with functions that
represent a real signal source. Of course arbitrary functions can be created that violate this
property up to arbitrarily large indices, but those do not tend to appear naturally.

2.3.4.1 Discrete Fourier Transform (DFT)

The problem with transforms is that they deal with infinite coefficients and continuous functions.
In a practica scenario, sampled data from an analog source is not continuous nor infinite. It
will be composed of multiple discrete samples evenly separated over time, space or any other
dimension. To transform that into the frequency domain, Discrete Transforms are used (in this
case Fourier), that covert the input samples z,,n = 1,..., N into the same number of output
samples Xi, k=1,..., N as follows:

Xp = imn — Nk Zmn [ <lm> — isin G\flmﬂ (2.17)

n=1

And, to reverse it:
N

1 .
_ N ZX]C . ezQﬂ’kn/N (218)

n=1

The same property as with the non-discrete Fourier transform holds: Coefficients Xj for
k ~ N will bear less importance than those with k ~ 1, and so they can be removed with little
impact on reconstruction. Here, the impact of transforms in compression is seen. By removing
half of the original x,, values, half of the information is lost. However, by doing it with the X
instead, information is removed after decorrelating in the frequency domain, losing only the less
important data components.

2.3.4.2 Discrete cosine transform (DCT)

The DFT works over complex values, but it is very rare that the data will consist of complex
numbers. The DCT [146] solves this issue by adapting the DFT to real-valued numbers. The
most common formula for the DCT is as follows:

N
1
Xk:ancos[;<n+2>k} k=1,...,N (2.19)
n=1
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which can be inverted with:

X, 2 ™ 1\]
= — + — X — — =1,...,.N 2.2
Tn = +NkZ:2 % COS [Nk:<n+2)_ n=1,..., (2.20)

Despite being simpler to use than the DFT be-
cause of working in the real number domain, DCT
offers a few more advantages that have popularized
it:

e The DCT performs higher energy com-
paction than the DFT. With less coefficients,
the inverse DCT can reconstruct the original
signal better than the inverse DFT.

e [t can be performed very fast computation-
ally, with different acceleration techniques
when working over small sets of data.

e It has a clear interpretation in the frequency
domain of the obtained coefficients, same as
the DFT, which helps to visually understand
the process.

The DCT is also easy to adapt to higher dimen-

Figure 2.7: The DCT represents each 8 x 8
block as a combination of these 64 basic pat-
terns. Each coefficient indicates the amount of
each in the original [54].

sions, by just successively applying DCTs along each dimension. This makes it perfect for
images, which is what it was originally designed for. As an example, consider the following

transformation:
52 66 70 73 -76 —62 —58
63 122 154 69 cent_e;ing —-65 —6 26
67 104 126 70 —-61 —-24 -2
87 68 65 94 —41 —60 —63

55 —415 27 56 0
59| et | =49 —15 —10 2
8| 7| 12 4 2 3| 22
_34 0 -4 -1 2

As clearly seen, after the transformation, the coefficients that are closer to the upper left
corner are higher in value, while the bottom right ones are lower. Those can be safely ignored
while (usually diagonal lines will be fully discarded) while keeping the high-valued ones. That

is where the DCT gets compression from.

There is one problem however with this kind of technique: the complexity of calculations
grows quadratically with the input size, since all transformed values require of all input values
to be obtained. For small data sets this is not a problem, but it can quickly become a bottleneck.
To solve this issue, data is usually split into small blocks. As an example, for images, they are
tiled into small blocks which are independently processed by the DCT. Each coefficient in the
transformed space indicates the amount of a certain pattern that is present within the block, as

seen in Figure 2.7.

2.3.4.3 Wavelet Transforms

While the problem of complexity for DFT or DCT gets addressed with the tiling of the data,
this can generate artifacts in the signal. Boundaries between tiles will not necessarily match,
and discontinuities will be evident when aggressive compression is performed.
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To solve that problem, wavelet transforms [160] are used. The principle is the same as with
DFT or DCT: create a 1 to 1 mapping where the output set presents more redundancies than
the input set, and where certain samples can be quantized or eliminated. However it does it in
a different way:

Instead of using every input to calculate every output (O(n?)), output i is now a function of
input ¢ and its neighborhood. The neighborhood will be symmetric (e.g: using the three previous
and three following samples). This way, cost is bounded by O(Kn), where K is a constant that
depends on the neighborhood’s (or window) size. For multi-dimensional transforms, this is
applied along each direction, as was done with DFT or DCT. This merely means the cost scales
linearly with the number of dimensions, not a problem in practice.

There is an additional difference: instead of a single function or “filter”, now there are two.
Each is a 1 to 1 mapping of the input space to the output space. At first glance, this doubles
the number of samples. However just half of the samples in the output spaces will be needed
for reconstruction. So how does this work?

Definition 2 A kernel is a function k : R™ — R in which the output generally represents some
property of the input vector. Kernels are usually represented by matrices such as:

ke [-3 1 =3 ] (2.22)
These work as follows:
1 1
k ({Ufl, V0, ’Ul}) = —5’01;1 +v; — §Ui+1 = w; (223)

Normally, kernels are applied as windows (Figure 2.8) that move over longer vectors V €
R™ m > n following: K : V = {v1,...,v,} = W ={ws,...,w,} where:

1 1
w; = *ivi—l +v; — 51)i+1 (224)
where around the edges, samples that go outside V'’s boundaries are usually mirrored or assumed

to be zero.
- Spn—3 Sp—2 Sn—-1 Sn Sn+1 Sn42 Sp43 .-

k_g k_l ko kl k2
~x0
K

(sn)

Figure 2.8: Kernel operating over a sequence. When computing, a window of samples slides over the
kernel, which generates an output value for each input.

For wavelet transforms, two kernels K; and Kj are used, which work as a lowpass and
highpass filter respectively. The lowpass filter keeps the slowly-varying characteristics of the
vector, and is a smoothed out version of the original. The highpass filter keeps the rapidly-
varying characteristics.

The result of filtering is a mapping of the input data to two different images (low-passed and
high-passed) with which it can be reconstructed. A particular property is of interest here: filters
are prepared in such a way that the lowpass filter removes all frequencies above half the maximum
(where maximum refers to half the sampling rate or Nyquist Frequency), and the highpass filter
removes all frequencies below half the maximum [160, fig 4.1]. Therefore, if the original sampling
rate for the discrete signal was sufficient to reconstruct the (original) continuous signal, then
with half the frequency range, half the samples can be discarded safely in the lowpassed signal
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Figure 2.9: (a) is the original series, (b) shows the high and lowpass filtering, (¢) shows (b) after
subsampling.

while allowing for reconstruction. The same can be applied to the highpassed values, removing
every other sample as well, and achieving a 1 to 1 invertible mapping where redundancies on
the output signal are much higher.

Definition 3 Given samples S = {s;};—,, a wavelet transform is an invertible function
W = (K, Kp) : R* — (R?)"/2,

W consists of a tuple of kernels (K;, Ky) that, when applied on S, act as low and highpass
filters, generating sequences L and H respectively:

W(S) = (Ki(S), Kn(S)) = (L, H) = ({li}i=y  {hi}izy) (2.25)

where both L and H are down-scaled to half their sizes and instead L' = {l;},cony  H' = {hi};con
are used, since the rest of the samples are redundant. Finally, the output is W'(S) = §' =

{52}?:15
! i€ 2N
sp={ 12 , (2.26)
h(l._l)/2 otherwise

The inverse wavelet W/~ is a tuple of kernels (K, 1, K} ) which reconstruct S after application.
Figure 2.9 shows how this process works.

By looking at Figure 2.9 it is seen that, while the first part of the transformed signal is
similar to the original, the second is skewed towards zero. This redundancy will be key for
compression. Not only that, wavelets can be recursively applied over the lowpassed part for
increased redundancy. High frequencies are usually very short lived within the signal, so the
highpassed signals are usually random. However, low frequencies last for longer within the
signal, and more redundancy can be extracted by recursively applying the filters to that portion
of the signal.

When dealing with two-dimensional signals, such as images, these wavelets are applied along
both dimensions. Figure 2.10 shows this process, where it can be seen that the lowpassed part is
a small version of the original, while the highpassed parts are dull containing little information.

These four sectors (called subbands) that are formed when applying wavelet transforms to
two-dimensional data present different types of redundancy, shown in Table 2.3.
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Figure 2.10: Original image on the left, transformed on the right after two wavelet passes. Information
is concentrated on the top-left corner.

Pass

Subband Horizontal Vertical Details

LL Low Low Contains most of the information. Difficult to compress.
LH Low High  Presents horizontal redundancy.

HL High Low Presents Vertical redundancy.

HH High High  Contains little information. Diagonal redundancy.

Table 2.3: Types of subbands resulting from a wavelet transform.

Wavelets are often applied recursively over the LL subband. This is because it still contains
redundancy of higher frequencies that can be exploited with another wavelet pass. This breaks
it into new subbands, which will be marked with a subindex that denotes how many times a
wavelet transform has been applied on it (e.g: LHo is the LH subband of the first LL subband).

Depending on the selected kernels, many types of these transforms exist. Usually they differ
on kernel size, and will detect different periods in the input data with their low and high pass
functions. Normally these work on floating point numbers, but that can obviously lead to
rounding errors when reconstructing. For that, integer transforms also exist that, while doing
worse energy compaction, ensure perfect reconstruction.

2.3.5 Dimensionality reduction

Another way to reduce size is to directly reduce information. Normally, information is spread
out within the data, and that is why transforms are useful to condense it into known places.
More resources and time can be dedicated to properly compress these parts of the data.

A different approach is to use mathematical models that directly determine what is considered
relevant information, discarding the rest. Dimensionality reduction methods achieve a fixed
degree of compression by removing a specified amount of information according to those models.

As an example, consider facial recognition [235]. Images have millions of pixels, and doing
recognition based on those can be near-impossible. Instead, the focus is put on features such
as shape, color, length... With a much smaller set of features than pixels, it is possible to
identify what is shown in the image. The same concept applies to data, where by just analyzing
interesting features the full set can be understood.

Mathematically, the samples live in R™, and their dimension is reduced to R™, m < n. The
input vectors of dimension n are projected onto the output space of dimension m. Analysis and
storage are then easier to carry out in the image, since less information is dealt with.
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When doing these transforms information will be inevitably lost. It is expected to lose only
redundant information that the algorithms will be able to recover, but some useful data might
be lost. How far this reduction process is taken will depend on what trade-off is made between
reduction and fidelity.

A dimensionality reduction is a function f : R™ — R™ that transforms a vector € R” in
another ¢ € R™. To go back to the original, a function is usually generated as g : f(R") C
R™ — R”. Ideally ¢ = f~!, but it will not always be possible since f is not injective over its
image, so an approximation g(t) = @’ ~ x is the best approach. That approximation will be
closer the lower m — n is, and will incur in more loss of information when m < n. The original
data is represented as a matrix:

X =[x1,...,2p] € Mpxp (2.27)
with p being the number of samples. The transformed data is thus:

T=f(X)=[f(x1),..., f(xp)] =[t1, ..., tp] € Mpmxp (2.28)

For compression, both T" as well as the function g used to undo the transformation are stored.
g could be generic for multiple images and even be reused, avoiding having to pack it in the
output stream. However, for improved results, it will usually be modified specifically for the set
T, needing to preserve it as well.

2.3.5.1 Principal Component Analysis (PCA)

Principal Component Analysis is a dimensionality reduction technique that is broadly used in
machine learning [27] due to its simplicity. Data visualization or feature extraction [1] are
amongst its uses.

PCA is defined [92] as the orthogonal projection of
n-dimensional data onto a space of lower dimension m,
known as the principal subspace, where the projection’s
variance is maximized.

PCA keeps the maximum amount of variance present
in the input data set, assumming it will keep the most
amount of information in the process. An example of
PCA can be seen in Figure 2.11

To do the projection, vectors {wi,...,wy,},w; €
Ry, w; L w;Vi # j are needed. Those form the matrix
W € Myxm, such that f(x;) = x;W, and g(t;) =
t; W7 define the reduction function f : R® — R™ and
recovery funciton g : R™ — R™.

When W= = W7, then f = ¢g~!, but that is only
possible when:

e W is orthogonal, which by definition it is.

e n = m, which for the purposes of reducing dimen- Figure 2.11: An example of PCA. Eigen-
sionality will never be true vectors are shown in orange. The greatest

variance exists along the direction of the

. . . . eigenvector of greatest eigenvalue.
In practice, since the domain of f is a subset of R™ of

implicit dimension that is not necessarily n, it is possible that g is the inverse of f over its image
even when n < m.
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PCA works best with data centered around zero, and so usually the set Z = X — w will be
used, where:
L

p

w =

(2.29)

To obtain the matrix W, first the covariance matrix S € M,,«,, of the input data X € M,,,
is calculated, with p the number of samples in the original space. It is obtained as:

X-z)(X-=)" zz7

S — pp— =1 (2.30)
Let W" = {wq, ..., wy,} be the eigenvectors and A" = {1, ..., A\, } the associated eigenvalues
of §. Sort the eigenvalues in descending order:
A=y, A 1V EeN" N, >= )\, <= j>k (2.31)
Generate the projection matrix W € M,,x.,, as:
W = [w;,, ..., w;, ]| (2.32)

The reconstruction matrix W is just W7, since WW7'T ~ I,. With this technique, it is
guaranteed that the projection of the input data set maintains maximum variance [27, Ch.12].

2.3.5.2 Singular Value Decomposition (SVD)

SVD is a method similar to PCA, which mainly obtains the same result except for certain
multiplicative factors [188]. SVD looks for the following decomposition:

XT=UsvVT, UeMpsp, &€ Mpxn, VE Mpxn (2.33)

where U and V are orthogonal matrices, and ¥ is a diagonal matrix with the singular values o;
in its diagonal.

The covariance matrix S can be diagonalized:
S =WAW* (2.34)

where W contains the eigenvectors as columns, and A the eigenvalues A; of S on its diagonal.

Substituting for Eq. (2.30), assuming & = 0 (since values can be centered around the mean
with little computational cost):

T\T T T T 2
wsvHTusy? _vsutusv? o 2 g (2.35)

S =
p—1 p—1 p—1

V gives vectors proportional to W scaled by o;/+/p — 1, following \; = o2/(p — 1). This is
only true when z; are centered around zero, which is when S = X*X/(p — 1) holds.

By sorting the values in the diagonal of ¥ in Equation (2.33), in descending order, the so-
called “compact” SVD is obtained, where U € M,,«,, ¥ € M, «, and V € M,.y,,. Here r is
the rank of X. The difference p — r is filled with zeros and thus can be safely removed for the
compact representation, simplifying the matrices. For the hyperspectral matrices used (that can
be considered random), r = m with a probability! of 1.

LA simple proof involves the fact that, given m random vectors, each spans a set of linearly dependent vectors
of measure zero when embedded in m dimensions. Since m is finite, the likelihood of a random vector falling in
one of those m zero-measure subspaces is zero, thus all vectors are expected to be independent.
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Figure 2.12: Data is generated by linear combination of fi(x) = sinx, fo(x) = cos2x and f3(x) which
is just noise. ICA is capable of unmixing the functions g1, g2, g3 extracting the original components.

So, when represented in the compact form, the transformed data is 7 = UY. Since V= = V7,
Equation (2.33) is rewritten as:

XV=Ur = xvyvl=vuxvl =X (2.36)

The projection matrix will be W = V, while the reconstruction matrix will be W = V7T If
the inequality » < m is forced (by removing the lowest m — r values from the diagonal of X)
compression is forced to take place.

When & # 0, both PCA and SVD lose performance since variance is calculated around
zero. If clustering happens elsewhere, eigenvectors might not be as efficient to separate the set
via variance. It is safe to assume however that data will be centered around zero (if not it is
easy to transform), and the method that presents better numerical properties (in the sense of
rounding and cumulative errors) will be used. Either solving directly for S, or calculating the
decomposition UXV T,

2.3.5.3 Independent Component Analysis (ICA)

This method looks for a representation of a data set of dimension n in another dimension m < n
such that the transformed components are as independent among them as possible.

To do so, it minimizes the mutual information [48] of the transformed components. The
advantage over other methods is that ICA is invariant under component scaling (PCA is not).
This is an advantage in the case of the magnitudes of latent components being very different
between them. It can also be a problem in the presence of noise, since it can give the same
importance to noise than to a strong signal.

Different approaches calculate mutual information, which adapt to different kinds of data
and characteristics. Due to the iterative nature of the algorithm, usually functions with low
complexity are used by assuming certain properties on input data [97].

ICA assumes there are m latent independent components in the original R™ space. The
algorithm works best the closest m is to the actual value of latent components (which is unknown
but can be estimated). In the case of exactly matching the number of components, performance
is excellent as shown in Figure 2.12 for n =m =p = 3.
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Figure 2.13: The first, fifth and twentieth components on a sample MNF transform of a hyperspectral
image. Noise is lower for the first components.

2.3.5.4 Minimum Noise Fraction (MNF)

The minimum noise fraction [82] is a dimensionality reduction method similar to PCA, but that,
instead of ordering the principal components based on variance, does so based on the amount
of noise they contain. For that it uses not only the covariance matrix S, but also the noise
covariance matrix Sy € My xn.

Sy is not often known beforehand, but can be estimated [80] if spatial correlation is assumed
between samples x; that are close together. This is reasonable in natural data such as pictures,
where pixels that are close together have similar values. For that, the noise matrix N' =
[n1,...,np] € p X n is created:

n; = % (:l?z — 33i+1) (2.37)
Then N is:
Sy =NNT € Mpsn (2.38)

Solving the generalized eigenvalue problem:

Syw = ASw (2.39)

Then W = [wy, ..., w,] € Myxn.

The set T of data transformed with MNF can be expressed [28] then as T' = W71 Z, where Z
is the set X centered around 0 by subtracting the average value & (Eq. (2.29)).

Here T' € M,,xp. Each t; has successively more noise when 7 grows towards n, as seen in
Figure 2.13. The most noisy m — n components are eliminated to reduce T’s dimensionality.

2.3.5.5 Vertex Component Analysis (VCA)

VCA was designed [151] as a spectral unmixing algorithm: Starting from a hyperspectral image,
it is capable of extracting the spectral signatures of the pure pixels of the image, representing
the rest of the samples as linear combinations of the pure pixels.

VCA starts by performing SVD of the data X. The data is projected as X = XV**¢ (note X
is reused for simplicity). The mean value of the projected data & is obtained, and a projective
projection of X is done on that vector:

X

Now let matrix A € M, where p is the target dimension, be:

A=le,0,...,0l1e,=[0,...,0,1]" (2.41)
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Now, iteratively, do the following p times with ¢ as an iteration variable:

e Generate w as a random zero-mean Gaussian vector of covariance I,. This vector is
statistically expected to be independent than any others already present in A.

e Generate an orthonormal vector f to the subspace spanned by the current A matrix as

follows:
(I — AA)w

(I = AA#)w)|

f= (2.42)

Where A7 is the pseudoinverse of A.
e Let v = fTY, and k the index of v which has the maximum value (the projection extreme).

e The ith row of A becomes the kth row of Y, and index k is stored in a list as k;

The projection matrix W is that formed with the vectors from the SVD decomposition X of
indices k;,i=1,...,p.

Intuitively, this algorithm finds extreme points in the input set, and defines the rest as a
linear combination of those. The reconstruction matrix W is in this case the pseudo-inverse of

W obtained as W = pinv(W) = WT(WWT)~1,

2.3.5.6 Vector Quantization PCA (VQPCA)

VQPCA is a simple extension of PCA to adapt to nonlinear reductions. Linear projections
(such as the methods previously seen) work fairly well when all of the data points are linear
combinations of a certain set. Otherwise, information losses can be amplified.

VQPCA separates the input data set by doing Vector Quantization over it. Similar vectors
end up clustered together. Then, linear dimensionality reduction (in this case PCA) is applied
over each cluster. Thus, a piecewise linear reduction is obtained, which presents an improvement
over plain linear methods [111], while still being fast enough for practical use.

VQPCA receives as an input both X and the number ¢ of subsets that are to be formed.
VQ divides X into ¢ subsets of related vectors, in this case by applying the nearest neighbor
algorithm to cluster them. Indices C' = {ci,...,¢,} are generated, indicating to which subset
X each sample belongs to:

Xj={zine =3}, je{l,....¢} (2.43)

PCA is afterwards performed per subset, generating each transformed set 7 and the recovery
functions g; : T; — X;. To retrieve X, the following values are needed:

e C, to separate T into its subsets, since T; = {t; 1 ¢; = j}.

e The transformed set T' = Uj_, T}

e g;,j €{1,...,c} to perform inverse PCA over each subset.

Saving T' is mandatory for all methods, but VQPCA needs considerably more information than
other methods. C' requires an index per sample, and g; are big matrices which also need to be
stored. Both grow in size with c.

Both T and g;,5 € {1,...,c} use high-precision floats that are not efficiently compressed
in a lossless way. They are thus preprocessed with transforms or quantization incurring in
some losses. However C needs to be kept intact because the exact integers are required for
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Figure 2.14: On the left, PCA. On the right VQPCA. VQPCA is able to separate both clusters,
increasing the performance of PCA afterwards.

Ir1 — — X1
XTo — — T9
xr3 — — I3
Ty — — T4

Figure 2.15: The input and output layers are the same size. The hidden layers perform compression
by reducing the amount of neurons.

decompression. Since it presents great redundancy (samples that are close together tend to be
in the same cluster), an adaptive entropy coder is used which will reduce its size considerably.

The advantages of VQPCA are seen in Figure 2.14. After doing PCA on each cluster obtained
by VQ, separation is more clear than with plain PCA directly.

2.3.5.7 Auto-encoders

Auto-encoders take advantage of neural networks to perform compression. A network is built
with an input and output layer of size n. In the middle, a funnel-like shape reduces the layer
size to the target dimension m. This can be seen in Figure 2.15.

Compression relies on the hidden layers, of which at least one is of the target size m < n. A
vector & = {x1,...,z,} is fed into the n input neurons, and a new vector & = {Z1,...,T,} is
obtained at the output. The network is trained so that & ~ x. This way, the network will be
able to reconstruct the original values as close as possible. For compression, the internal values
of the network at the hidden layer of size m are stored, as well as the layers after that that
reconstruct the information.

This approach can perform linear reductions with just one fully connected layer, and can
go beyond linearity as the number of layers increase. The problem is that the time required
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to train the network is much higher than that of calculating the transform matrices for linear
or piecewise linear methods. For a fixed data set, the network is ideally over-fitted since no
new data will be processed by it. And that might take many iterations until fully completed.
While this is a good method if computing power is available, it will not adapt well to real-time
constraints.

2.3.6 Quality metrics

An important part of lossy compression is knowing how much information is lost. The recon-
structed data (after compression) is compared against the original and a value is obtained. Its
meaning depends on the metric used, and it will indicate how close the reconstructed data is to
the original (i.e: its quality). Quality measures give results over the whole data set, meaning
the resulting value indicates the average quality.

Definition 4 The mazimum square error (mazSE) is defined as the maximum value of the
squares of the differences between each sample and its reconstructed value. Denoting a data set
by D ={dy,...,dp}:

mazSE(D? D) = r;%lx(d? —dj)? (2.44)

This metric is useful to detect the maximum distortion in a data set. If the maxSE is small,
the general distortion will be small as well. However, small anomalies can increase maxSE
without being significant for the overall distortion, so other metrics are often used.

Definition 5 The mean square error (MSE) is defined as the mean of the squares of the
differences between samples and its reconstructed values:

Yoja(df — d})?
n

MSE(D* D% = (2.45)

This measure gives a general idea of the absolute quantity that reconstructed samples deviate
from the originals, but it can be misleading: Imagine all samples are of very low value (e.g: 1)
and the reconstructed samples are either 0 or 2. In this case, the MSE is 1, but relative to the
sample value it is a tremendous error. The reverse is true as well: for samples with high values,
a small error (percent wise) results in a high MSE. Thus it is important to know the magnitude
of the samples before getting conclusions out of this metric.

Definition 6 The peak signal to noise ratio (PSNR) is defined as a function of the MSE
and the maximum value that a sample could store ryax(D):

PSNR(D® D) = 101 _rmax(D?)” 2.4

Here, the MSE is adjusted with the range of the samples, dampening the relative effects that
could arise in MSE. This metric is best suited for when samples are evenly spaced throughout the
sample space. If samples are all clustered towards the range limits, PSNR might give optimistic
results. However, it is reliable for determining distorted sets of data. If PSNR is bad, then the
reconstructed data is of low quality.

Definition 7 The normalized peak signal to mnoise ratio (NPSNR) follows the idea of
PSNR, but instead of taking the mazimum theoretical value, it takes the actual range of the
samples as reference:

(2.47)

NPSNR(DG,Db) = 101logy, <(max(Da) — min(Da))2>

MSE(D®, Db)
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The advantage of this definition is that now, the values obtained are representative of the
actual distortion of the data, instead of just referring to the distortion over the maximum range,
even if values did not appear in that range. NPSNR is invariant under dynamic range changes in
the data. Even if sample precision is increased, if the actual values do not change, the measure
will remain stable. The following holds:

NPSNR(D® D) < PSNR(D®, D°) (2.48)
Definition 8 The power normalized signal to noise ratio (POWSNR) is defined as:

POWSNR(D", D*) = 10logy,, <A£0E“é)lz)m) (2.49)

where pow(D) is defined as:
Z?:1(dj)2

n

pow(D) = (2.50)

This metric is less sensitive to extreme values than NPSNR, and more reliable under noisy
data. The following holds:

POWSNR(D?®, D’ < NPSNR(D®, D" (2.51)
Definition 9 The signal to noise ratio (SNR) is defined as:

“ (D% 2

where a(D)? is the variance of D with mean value u(D):

Yoj(dj — p(D))?

n

o(D)? = (2.53)

Introducing the variance in the equation allows the metric to be more permissive on data sets
that are less smooth, and more strict on narrow data sets with little variation where a small
change can introduce more severe distortions. This is one of the most popular metrics and, as
such, it is used to judge image quality. A SNR of 32 is considered [99] excellent quality, with
acceptable quality being retained at a SNR of 20. The following holds for SNR:

SNR(D® D) < POWSNR(D® D) (2.54)

Definition 10 The mean to standard deviation ratio (MSR) is defined as the quotient of
the mean pu(D) of a reference data set over the standard deviation between D and the recon-
structed dataset:

1 D?)

MSE(D®, DY)

MSR(D® D) = (2.55)

This is a good approximation of the amount of error expected in a sample. For a sample
of value z, an MSR of y indicates that the reconstructed value is most likely within the range

[z —x/y,x +x/y.

Definition 11 The structural similitude index [213] (SSIM) is defined as:

(2u(D*) (D) + ¢1) (20 + ¢2)
(1(D*)? + p(D*)? + 1) (0(D*)? + o(D")? + c3)

SSIM(D®, D) = (2.56)
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where o is the covariance between data sets D® and D°, and ¢1 and ¢y are correction factors,

defined as:

2
max

co = kar? (2.57)

C1 = k%?“ max
with k1 and ko usually set respectively at 0.01 and 0.03. This metric comes directly from the

world of image quality, and those are the values that have been found to work best.

This metric obtains a value between 0 and 1, which indicates higher similitude to the original
the closer it is to 1. This metric is based on how humans perceive images, but it can still give a
good idea of how much visually important information is lost in the case of images.

2.4 Near-lossless compression

Quality metrics can assess a compression algorithm’s quality after it has been executed. For lossy
algorithms, this means that knowing the resulting quality beforehand is not possible. Generally,
the same settings for an algorithm will produce the same quality results for similar images,
so configuration based on experience can usually guide distortion ratio. However, the output
quality is not ensured by these methods.

Near-lossless algorithms ensure that the compressed data is above a certain threshold for a
given metric. When decompressing, the data does not deviate from the original more than what
the compression settings decided. There are different ways (see Fig. 2.16) of accomplishing it:

e Predict and correct: Prediction methods are typical of lossless algorithms. They create
a model based on already seen data, predict the following sample, and code the difference
with the actual values. Since differences are small when a good model is used, compression
can be performed easier than on the original samples. When the difference is coded, both
the actual and the predicted value are known. At that point, the difference is coded
to reconstruct the original value afterwards. If it is skipped, errors are propagated in
reconstruction. But those errors are already known at the time of coding.

This method of compression takes advantage of that fact. It measures the error between
the prediction and the original value and, if it is low enough, it just skips coding the
difference altogether, letting the predictor do the work. A threshold is set for when to skip
a sample, and depending on its permissibility it will skip more or less differences, trading
compression for quality.

e Tterative compression: A different approach is to use a lossy algorithm, configure it to
compress the data, and then decompress and see the result. If the quality matches the ex-
pectations, the algorithm stops. If not, it iteratively repeats the process with compression
parameters that ensure higher quality until it meets the requirements.

This can be applied with any lossy algorithm. Data can also be partitioned in smaller
blocks to make this process faster, benefiting from some areas having more redundancy
than others and thus being more compressible by staying separate.

e Selective coding: This method is an in-between of the two previous ones. Predicting and
coding is blazingly fast, but can only adapt to local characteristics. Iterative compression
can achieve good results but at the cost of repeating the same algorithm over and over,
which can be costly.

Selective coding divides the data into smaller subsets. Compression is applied on each
subset. Then, if the quality for that particular subset meets the threshold, the compressed
data is coded. If the quality does not meet requirements, then the original data is coded
instead in a lossless manner.
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Figure 2.16: The three main near-lossless methods. From left to right: predict and correct, iterative
compression, and selective coding.

This creates a sequence of blocks which are losslessly and lossyly compressed. How many
blocks are lossless or lossy depends on the quality setting, which in ensuring a certain
threshold will force certain blocks to be lossless. The higher the quality setting, the more
blocks will need to be lossless, sacrificing size. The lower the quality, the more lossy blocks
will be allowed to exist, reducing size further.

Near-lossless algorithms combine the simplicity of lossless algorithms, with the great com-
pression ratio of lossy ones. They can range from lossless to lossy, sacrificing little while retaining
good properties from both.

2.5 Summary

Compression techniques are plentiful. Generic ones are aimed to any kind of data. However the
lack of compression efficiency for very specific types of data forces the use of specific algorithms.
Each has their own trade-offs that need to be addressed for each application.

Different techniques can be combined for increased efficiency. Lossy algorithms often use
lossless ones as coders for their transformed data. Near-lossless algorithms often decide between
lossy and lossless methods depending on quality metrics.

The three methods offer different advantages, as seen in Table 2.4, so this thesis will focus
on one of each to see how they fare in an FPGA. Lossless methods are generally the fastest,
offering perfect reconstruction. Lossy methods are much slower but reduce image size by a much
higher factor. Near-lossless methods sit in between, not being generally as fast, but offering a
wide range of compression ratios.
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Quality at

Method ratio low ratio  high ratio complexity speed
Lossless low perfect n/a low fast
Lossy very high moderate  excellent very high  slow
Near-lossless moderate decent moderate  moderate fast

Table 2.4: Some key aspects about the three main compression techniques, when applied on hyperspec-
tral images. Other applications might see different behaviors.

o4



Chapter 3

Algorithms

A lot of effort has been put towards hyperspectral image compression. Many existing compres-
sion techniques have been adapted from the (non-hyperspectral) image compression domain.
New, completely custom approaches have also been created.

This has produced an ecosystem of algorithms that share techniques such as prediction,
coding, quantization, transforms, dimensionality reduction...

In this chapter, an introduction to existing hyperspectral compression algorithms is first made,
showing the diversity that exists even when targeting such specific data. Three algorithms will
be selected that broadly cover the whole spectrum, in order to explore the general applicability
of FPGA implementations to this domain.

All three are explored in detail, delving into the specifics of each to give a good look before
looking at the FPGA implementations in Chapter 4.

3.1 Preliminaries

3.1.1 State of the art

Compression algorithms for any kind of data are often developed as soon as the data is produced.
The data needs to be stored to be studied, and compression allows for more information to be
available within the same space. Generally, the most common methods are adapted first, with
complex and custom variations coming afterwards.

Predictive methods have proven to be useful over and over again for any kinds of compres-
sion. Optimizations for the hyperspectral domain [144, Ch.2] have been done to find the ideal
predictors for different image traversal modes, after which adaptive context-based encoders are
used that take into account hyperspectral characteristics.

Band reordering algorithms [144, Ch.3] have expanded on this idea by enhancing the spectral
properties of images, realizing that for some predictors that use many bands this might be
unnecessary.

Context-based approaches [212] have also been used to avoid the overhead of band reordering.
Lossless algorithms have been refined to the point of developing international standards such as
CCSDS 123.0-B-1 [32], which combine the best techniques and are highly configurable.

Vector Quantization (VQ) has also been extensively used to exploit pixels similarities [171]
that result from pixels being a mixture of pure spectral samples present within the image. Im-
provements to this technique include locally optimized quantization [144, Ch.5, 6] that achieves
less distortion than globally calculated vectors. Other ideas included the use of VQ after perform-
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ing DCTs on small image blocks [144, Ch.9][158], realizing that redundancies in the frequency
domain were also exploitable.

Look-up table (LUT) approaches work in a similar but more local way. Patterns are looked
for in the previous band, and used as predictors when they match the behavior of the current
sample’s neighborhood [95, Ch.8]. Working in blocks is also found to improve performance
since similarities are more correlated, and the search space smaller. Multi-band LUTs [7] have
also been explored in the lossless domain increasing complexity but improving compression.
Dictionary approaches based on reference spectral signatures [104] further extend this concept
improving performance when spectral signature presence is known or estimated beforehand.

Block-based approaches [95, Ch.3][5] have been fruitful in the near-lossless domain, where
multiple samples are predicted at once, saving calculations of doing individual predictions. Cod-
ing is still done in the same way after differences are calculated. Near-lossless compression can be
achieved at the block or sample level, with band reordering increasing slightly performance even
when done per-sensor and not per-image. Even per-block parameter selection [191] has been
done to improve this technique, all while providing random read access at the decompressor.
Sample-level approaches have found its way to the new CCSDS 123.0-B-2 standard [34], with
higher computational complexity but also higher distortion-ratio efficiency than block-based
approaches. Rate control techniques are also included [42] to fulfill specific output constraints.

Wavelet techniques have also been of particular interest. 3D adaptations have been made
[144, Ch.10][69] that extend concepts such as JPEG2000 compression by applying adaptive
arithmetic coding at the wavelet output.

Anisotropic (different in each direction) decomposition [40] proved to improve slightly coding
efficiency by better decorrelating the images. Resolution progressive decoding [157] is also
possible with these techniques. Pure JPEG2000 with its multicomponent coding approach has
also been used, but found [238] to underperform against specifically developed 3D approaches.

Combinations with other transforms such as the Karhunen-Lo¢ve Transform (KLT) have been
found to yield higher compression ratios since the spectral correlation is dealt with separately [95,
Ch.9]. Spatial wavelet transforms, combined with spectral KLT and 3D coding [56] has shown
some of the best lossy distortion-ratio results. Dimensionality reduction techniques such as PCA
[144, Ch.11][57] have been applied before the spatial wavelet decorrelation. Resulting coefficients
are coded with 2D techniques (assuming spectral decorrelation is gone) or 3D adaptations of
those techniques. The high computational cost of PCA has also prompted the development of
segmented PCA techniques, working on subsets of bands [95, Ch.10] reducing computational
cost and improving compression performance by working on more correlated data. Tensor
decomposition [239] has also been tried as a 3D approach, yielding results with slightly higher
distortion-ratio performance than PCA, but at a higher computational burden.

2D techniques such as EBCOT from JPEG2000 [162] have been used as 2D encoders. 3D
adaptations include Embedded Zerotree Wavelet (EZW) [185] where full embedded streams
are achieved by progressively coding the most important coefficients in a wavelet-transformed
image. Coefficients are assumed to be zero, and in the event of finding ones, those are then
coded. Coding starts in the block with most wavelet passes, and the rest depend spatially
on it, referencing previous values for improved coding efficiency. SPIHT (Set Partitioning In
Hierarchical Trees) [173] is an improved technique which smartly traverses the transformed
coefficients to improve the embedded quality reconstruction, and HW-friendly modifications
[95, Ch.4] have also been developed that require almost no memory.

Compression techniques have been found to affect analysis of the decompressed data. Efforts
have been made [144, Ch.7] to improve VQ that still allow for near-perfect classification. More
generally, outliers can be the cause of classification errors, and their independent coding [95,
Ch.5][219] has also been explored to avoid the overhead that results from coding infrequent
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values. Region of interest (ROI) coding has also been used in the lossy domain to improve
quality [186] of the most interesting parts of images.

3.1.2 Selection of algorithms

With all of these options to choose from, the selection of algorithms is based on variety and pre-
liminary results given in their respective papers. As for variety, a lossless, near-lossless, and lossy
algorithms were selected. Result-wise, the lossless algorithm is a robust international standard,
the near-lossless one has a simple but very efficient flow aimed at high-speed implementations,
and the lossy algorithm is a custom design based on the best results from the literature that
separately deal with spectral and spatial correlations.

The CCSDS 123.0-B-1 [32] gives a good starting point to analyze the impact of multiple
parameters at the hardware level on FPGAs. Both on resource use, and on achievable speed,
since many times the techniques used for an algorithm are interchangeable with others.

Next, a custom PCA4+JPEG2000 based-algorithm is developed exploiting the great results
in [57], in order to explore what techniques might be of interest to further increase distortion-
ratio. At the core, a JPEG2000 Tier 1 Coder is developed for FPGAs to accelerate an otherwise
CPU-affine algorithm.

Finally, the simplicity of [5] is explored for near-lossless compression, serving as a link to fill
the gap between lossless and lossy compression.

3.1.3 Terminology

Certain terminology will be used specifically for compression of hyperspectral images, which will
be based on that used by the CCSDS 123.0-B-1 standard [32].

First off, when referring to any kind of hyperspectral image, its samples (that is, information
about each wavelength at each pixel) are being compressed. To identify a sample, three indices
z,y,x are used, where y, x indicate the spatial coordinates, and z the spectral one. Thus, a
sample s, . is a sample located at coordinates (z,y,x). All three indices move within the
following ranges:

z€[0,Nz—1] ye€[0,Ny —1] x€[0,Nx —1] (3.1)
where Nx, Ny, Nz are the image dimensions in number of pixels per frame, frames, and bands
respectively. Sometimes, to ease notation, only one index ¢ will be used to refer to the spatial
coordinates ¢ = x +y - Nx, referring to a sample as s;. Samples can also be referred to as sj ,
or s,(t) for typesetting purposes. A sample’s range is defined by quantities Smin, Smax and Smid,
which indicate the minimum, maximum and intermediate value that a sample can take. For
unsigned values, Smin = 0, Smax = 2° — 1, Smiq = 2P, where D is the bit depth of the sample.
For signed values, spiy is added to every sample to bring them up to unsigned values, so the
same operations and algorithm can be used on both after normalization.

A different terminology for sub-indices is also used for consistency with existing literature,
where instead of variables z,y, z, variables i,n, m are used in reverse order (€.g: Smni = Szy.z)-

Common operations that take place in compression algorithms are:

e modj [z] = ((z +2%7') mod 2%) — 2871 i.e: the result of storing an integer z in an R
bit register in two’s compliment, modulo overflow.

e clip (z, {Zmin, Tmax }) is the result of clipping x to the interval given by [Zmin, Tmax]-

e sgn™(x) is equal to 1 for > 0 and —1 otherwise. It is used to normalize signed values to

unsigned ones via multiplication. (i.e: x -sgn™(z) >0 V).
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Input —— Predictor ——— Encoder —» Compressed image

Figure 3.1: Compressor overview

3.2 CCSDS 123.0-B-1

The Consultative Committee for Space Data Systems (CCSDS) was founded in 1982 by the
major spacial agencies in the world, to serve as a forum to discuss problems in development
and operation of space systems. Over a hundred members are registered, including the most
important space agencies in the world such as NASA (USA), ESA (Europe), JAXA (Japan),
RSFA (Russia) and many others.

The CCSDS has been actively developing standard recommendations since its inception. The
objective is to promote collaboration and interoperability between different agencies and their
systems, both in planned and contingency scenarios that might be critical in space.

CCSDS 123.0-B-1 [32] is one of many standards that have been developed by CCSDS. It tar-
gets lossless compression of hyperspectral images, to compress images before transmission. The
benefits include reducing bandwidth of down-links, reducing storage and buffering requirements
on-board, and reducing transmission time for a given bandwidth. !

It is based on the FL (Fast Lossless) hyperspectral compression algorithm [119], using only
integer arithmetic. This helps reduce computational load, simplifying the algorithm for imple-
mentation on constrained systems such as satellites.

3.2.1 Overview

Input data arrives at the compressor in a sequential manner. The exact ordering of input data
is not important, but it has to satisfy one property: whenever a sample is to be processed, there
is a neighborhood which has to be available in order to make a prediction. All of the samples in
that neighborhood need to be already processed in order to have neighborhood availability. All
sensors deliver data in a way that’s compatible with this ordering, so usually this requirement
is fulfilled automatically since the compressor is set right at the output of the sensor.

After prediction based on linear models, differential coding is performed on the differences
between predicted and real values. These differences are losslessly coded with an adaptive
entropy coder. This predictive compression (Figure 3.1) is a variant of the differential code
pulse modulation (DCPM) in [51].

3.2.2 Predictor

The algorithm will be first described for real-valued samples. An integer version is later defined
and used due to its reduced complexity while retaining numeric similarity.

Prediction is done on a single pass over the input data. The pass has to only ensure that
previous samples for a neighborhood are already processed. This requirement forces each band
to be traversed in raster-scan order. Since statistics are kept per-band, this means that with
any traversal order, both the differences and entropy coder statistics will always be the same
(even though their order might be different). Thus, compression size will not depend on scan
order, even if the compressed files do change depending on it.

! A new version is available named CCSDS 123.0-B-2 [34]. It brings the possibility of lossy compression while
keeping the original lossless flow. Since the algorithm is used solely for lossless compression, all references will be
made to the first version [32].
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Figure 3.2: Sample neighborhood used for predictions

The neighborhood shown in Figure 3.2 is used for prediction. Based on neighboring samples of
S, 4,2 from P previous bands (P can be configured), the predicted sample 3, ,, , will be obtained,
as well as the prediction residual 9, .

NOTE: All formulas assume that certain neighboring values are present (previous band,
line or frame). For some samples this is not true (e.g: the first sample of the image has no
neighborhood). Formulas are adjusted in those cases. To avoid writing all of them down, the
general case is used here. For information about how they are adapted to boundaries, check
[32].

First, a local mean p,, . is calculated to give a first estimation of what the actual value
might be. There are two ways of calculating this value, either using the more expensive but

precise neighbor-oriented way in Equation (3.2):
1
Mz, = 1 (Sz,y,xfl + Szy—1a-1 1 Szy—1a T Sz,yfl,erl) (32)

or the cheaper but less precise column-oriented way in Equation (3.3):

/*'LZ,y,Z' = Sz,y—l,x (3'3)

Figure 3.3 shows both neighborhoods.

Using the generated p, 4, value and the neighborhood, a difference vector is generated:

Szy—1l,x — Mzy,x
Sz,y,:r;—l - /'szy7x
Szy—l,x—1 — Mzyx
Yoy = Sz—lyzx ~ Hzyz (3.4)
82—27971 - :uZ:y7$

Sz—Pryax — MPryx

where P; = min{P, z}, adjusting to boundaries where previous bands are not available. Note
that, Equation (3.4) gives the vector for full prediction mode. Under reduced mode, the first three
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Figure 3.3: Sample neighborhood for p. , ., calculation

entries, corresponding to the north, west, and northwest differences are not present. Reduced
mode is used for not only simplifying operation but also eliminating some dependencies in the
critical paths.

The predicted value §%(t) is equal to the local mean plus a weighted sum of the local differ-
ences:

81(t) = pa(t) + VI (£) L (2) (3.5)

where VI'(t) is a weight vector of the same size as W, (t). A vector is kept per band. These
vectors are updated after each §%(t) using the following formula:

VIt +1) = VI(t) +sgnt(e(t) - 2720 @ (1) (3.6)
where €,(t) = s,(t) — §%(t) is the prediction error.

If the predicted value is higher than the actual one, the sign will be negative and the weights
will decrease. Otherwise, weights will increase. The speed at which the weights change is
controlled by a(t). It starts at a small value and increases up to a user-set limit. This way the
weights adapt faster at the beginning when statistics are not yet stable. This is a variant of
the least mean square (LMS) algorithm, which finds the gradient of the mean square error and
descends through it to minimize it.

3.2.2.1 Mathematical background

The LMS algorithm uses the gradient descent method to find weights that minimize the objective
cost function C,(t), in this case the expected E {-} square of the error:

C:(t) = B{le-(0)’} (3.7)

However, if this cost function is used, then Equation (3.6) becomes:
VIt+1) = V() +e(t)- 2700 0. (1) (3.8)

which despite having faster convergence, has two products, which in hardware are expensive for
real-time applications. So the cost function is simplified for:

C:(t) = E{le-(8)[} (3.9)

Applying the gradient descent method by taking partial derivatives of the weight vector
entries:

VyrCa(t) = VyrE{le.t)]} = B{Vyr(e.(®) - sen (1) } (3.10)
Vyr(e:(t)) = Vyr(s:(t) = 8(1) (3.11)
= Vyr(s:(t) = ps(t) = V() ®(1) = — L. (2) (3.12)
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the following is obained:
VC.(t) = —E{®.(t) -sgn™ (e:(1))} (3.13)

where VO, (t) is a vector pointing in the direction of the greatest descent at point (z,y,z). To
find the minimum, it is subtracted from the current value:

VIt +1) = V() — a(t)  VO:(t) = VI (1) + alt) - E{®.(t) - sgn™ (ex(1)) } (3.14)

where a(t) is the step, chosen by the user. For this, the value F {®,(t) - sgn™ (e,(¢))} is required.
Instead, the following unbiased estimator is used:

N—
E{W.(t) - sgn” %Z (t =) - sgn (e, (t — 1)) (3.15)
=0

Equation (3.6) is derived by taking N = 1 in Equation (3.15) and substituting in Equa-
tion (3.14).

3.2.2.2 Adapting to integers

The algorithm described works on real numbers. Real number arithmetic is complex and costly
when implemented on hardware: numbers take more bits to represent, and precision can be lost
over successive operations. Also, samples received from sensors are quantized to integers, so it
makes sense to stay in the same domain. To adapt to integers [33] the following steps are taken
along the way:

The local sum o, is taken instead of j. , ., since o will always be an integer. Care is taken
to allocate two more bits than the maximum sample bit size to calculate it:

O-Z,y@" = 4/‘L2,y:33 (3‘16)

The differences are also scaled by a factor of 4 to produce integers, creating the vector:

UZ,?J:CE = 4lIIZ,y:fE (3'17)

The parameter € is the resolution (in bits) of the weight vector when dealing with integers.
As such, the weight vector is scaled by 2% and adjusted to € + 3 bits. This is equivalent to
restricting weights to the interval [—4, 4] with a precision of {2 + 3 bits. So instead of V. (t) the
following is used:

W.(t) = 29V, (t) (3.18)

The predicted sample value §%(t) is calculated now with the integer-valued scaled predicted
sample value §,(t):

mod?, [cfz(t) +22(0,(t) — 4Smid)}

glz(t) = 901 + 2Srnid +1
e 3.19
clip (5;(75), {zsmina 28max t+ 1}) t>0 ( )
5.(t) = 2s,_1(t) t=0,P>0,2>0
28mid t=0A(P=0Vz=0)

where sp,iq is the middle point between the minimum and maximum values that a sample s , ,
can take. The operation mod} could potentially imply a loss of information for small values
of R. This does not mean compression will be lossy, but means that compression might lose
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efficiency. To avoid it, the minimum value R* ([33, p. 4.2.5]) that ensures no overflow will
happen is used:
R*=Q+2+ [logy (2P —1)(8P + k) + 1) |
1 reduced mode (3.20)
19 full mode

K =

Both the predicted sample value, and prediction error are now integers and given by the

following equations:
5. (t
8.(t) = {'SQOJ (3.21)

ex(t) = 2s,(t) — 5,(t) (3.22)

Weights are now updated following;:

W.(t +1) = clip <Wz<t> " E sen® [e2(0)] - 2770 - UL (1) + 1J ,{wmm,wmax}> (3.23)

where p(t) substitutes «(t) as an integer-valued exponent:

. t— N
p(t) = clip <’Umin + {tXJ » {Umin vmaX}> +D—-Q (3.24)
mc
being p(t) bounded by:
— 24 < Vin + Dmin — Qmax < P(t) < Umax + Dmax — Qmin < 21 (325)

where Duin, Dmax, Qmin, Qmax are the minimum and maximum values that D and €) can take.
p(t) can be stored in just a 6-bit register, while the register size that avoids overflow in Equa-
tion (3.23) is:

max (2 +3,D + 3+ min (1, vyin + D —Q)) + 1 (3.26)

After calculation, the prediction residual A,(t) = s.(t) — 5,(¢) has to be fed to the encoder.
But the coder works only on unsigned integers, so an invertible mapping ¢ : [—2D —1 ob-1 _ 1] —
[0, 2b — 1] is performed beforehand. Any mapping works, but ideally, low values at the output
are preferred. The following is used:

[Az(8)] +0:(t) [Ax(t)] > 0:()
=4 2180 0= (—)FOALE) < 6.() (3.27)
2|A.(t)| =1  otherwise

where:
AL(t) = s5(t) — 5.(¢)

6.(t) = min (5;(t) — Smin, Smax — 52(t))

(3.28)

3.2.3 Encoder

All of the processes performed by the predictor are reversible, meaning that a stream of predic-
tion residuals can be used to reconstruct the original image. The next step in the compression
process is to losslessly encode those residuals.

For that, a variant of the Low Complexity Lossless Coder (LOCO) [214] is used. Each resid-
ual is coded using Golomb power-of-two (Section 2.2.2) codes since they follow a geometrical
distribution. The golomb parameter m is selected on-the-fly based on statistics from the pre-
ceding residuals. Statistics are kept separate for each spectral band since usually they present
different characteristics due to the way sensors are built, with different detectors for each band.
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The length of each coded data is bounded by a maximum user-defined value U,,q., that
allows an easier hardware implementation since very low probability values will have a bounded
maximum size. This is not true in the general case of encoder, where theoretically arbitrarily
large codes might be generated.

To code a positive integer  with this method, the following formula is used:
S=u-2F4+r (3.29)

where u and r are the quotient and remainder, respectively, when dividing by 2¥. The resulting
code will be the unary representation of u, followed by a zero, followed by 7 in binary format.
If u > Upaz, then U, zeros are coded followed by d in binary format.

The encoder has a counter I'(¢) and an accumulator ¥,(¢) which is different for each band.
The quotient ¥, (t)/T'(t) gives an estimation of 0,(t), and is used to select the parameter k by

using the largest value satisfying:

S.(8) 49
<T@ i (3.30)

This formula is not random, and has been experimentally found to give the values for k that
bring the best compression ratios [116].

3.2.3.1 Mathematical background

The counter I'(¢) will always store the number of samples that have been accumulated in X, (),
which in turn contains an approximation of the summation of those samples, weighting the
newer samples exponentially higher than the older ones (this exponential weighting is why
golomb exponential codes are used). This method ensures that, while older samples are not
taken out of prediction, they have less impact in what the following samples will be predicted
as.

First, equations for both the counter and accumulator are defined:

Y.t —1)+0,(t—1) T(t—-1)<2" —1

2:(t) = ’VZz(t_l);'(sz(t_l)-‘ F(t—1) = 2" 1 (3.31)
t—1)4+1 T(t-1)<2" —-1
I't) = F(t; 1)} F(t—1) =27 —1 (3.32)

where it can be clearly seen that the counter resets periodically (renormalizes) the accumulator
statistics by halving its value.

Observe that counter values are the following (after ¢ = 1):

20 L2V 1T o (3.33)

A direct formula can be derived for the counter:

Iy = 27" _ 970

u(t) = t— (27" —2% 4+ 1) mod 27! (3.34)

) = { 20 —1+t t<Tp ‘
2714 Tu(t) t>Ty

The amount of times 7(t) the accumulator and counter have been renormalized is given by:
0 t<2V =20 41

- t— (27 =27 +1 ,
n(t) { ( 571 )J otherwise (3.35)
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Let £ = 27" — 2% then the following can be derived:

DZ(t) "0 mi(e) N
3.0t = on®) T ;:0 o —i1 X2(t)
min(t,£)

IR (3.36)
Yi(t) = 6,(i-27 L4+ 0)

j=1

(t—f—1) mod 27" —1 .
Nt = > S(i+1+0+(nt)—1)-2771)
i=0

At any point ¢, the set £Z(¢) has been renormalized 7(t) times, the second set ¥?(¢) has been
renormalized 7)(t) —1 times and so on. Thus, these sets of values added between renormalizations,
have each half the weight than the next one. The current one XY (#) has as much weight as all
the previous ones (1 versus Z?Sl) (1/2)%), giving them an exponentially higher weight than older
ones . The reason as to why this readjusting method is appropriate are found in [214, pp. 3.3.2—
3.4].

3.2.4 Summary

Samples s. , , are fed sequentially to the compressor, with the constraint that samples in the
same band (i.e: same value of z) are fed in raster order, and samples in the same pixel (i.e:
same values of (z,y) are fed with increasing values of z). A sample s;, 4, », has to enter the
compressor before a sample s, 4, 2, if:

21 < 22 and T1 = T2, Y1 = Y2 (3.37)
z1=zand y1 - Ny + 21 <ya2 - Ny + 22 '
ensuring that the neighborhoods are present for processing. A prediction is made based on that
neighborhood, that is weighted dynamically adapting to changing statistics.

The differentials between the real and predicted values are then encoded using an adaptive
entropy golomb power of two coder. Based on a expected geometrical distribution of the predic-
tor’s output, parameters are selected to optimally encode the differentials, generating the final
output stream.

The whole process ensures that local similarities, both spatially and spectrally are exploited
for sample prediction, creating models for the expected differences, which are used to approxi-
mate the predicted values as close to the real ones as possible.

Decoding is done in the same way. The process ensures that predictions can be made with
already decoded samples, and instead of using the new raw value to generate the coded stream,
the inverse is done and the decoded stream used to re-create the original values.

3.3 Jypec

When performing lossy compression on any kind of data, a prior analysis of its redundancy is of
great interest. Different kinds of data contain different patterns and redundancies. Predictors
used for compression can be tailored to this particular set of behaviors. Furthermore, when
approximating data, these characteristics can be exploited to produce compressed results that
differ very little from the originals.
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Figure 3.4: Flow of the algorithm. The image is progressively fragmented by removing correlations
until small blocks can be coded and compressed.

Applying traditional image compression algorithms to each band of a hyperspectral image
is a quick and straightforward way of compressing it [170]. However, advantage is only taken
of the spatial correlation present in the image, while the spectral correlation is ignored. These
two-dimensional algorithms have seen extensions to accommodate the spectral dimension [40,
157] with noticeable improvements in distortion-ratio performances. However, the spectral cor-
relation is assumed to be similar to the spatial in this case, not taking full advantage of hyper-
spectral characteristics. Hybrid algorithms [57] that separately decorrelate both characteristics
have proven to outperform the former distortion-ratio wise, while being simpler computationally.

Jypec is born as a lossy algorithm which aims to reach the highest possible compression
ratios while still retaining visual fidelity. First, a dimensionality reduction algorithm is applied,
followed by JPEG2000 compression on each band of the reduced image. Additionally, vector
quantization can be done before the dimensionality reduction to create groups of pixels. These
groups present similar characteristics and less information will be lost if reductions are performed
individually on each of them. This is a similar idea to that presented in [57], but with a few
modifications. Dimensionality reduction is extended beyond PCA, adding the possibility of a
vector quantization step. Variable bit-depths are used for the different components, emphasizing
the information of the ones with the most variance. Lastly, a custom JPEG2000 implementation
is used that avoids headers and markers, compressing the image even further.

The process is seen in Figure 3.4. Information is lost on the dimensionality reduction step
and on the wavelet transform (when quantizing the result). Coding is lossless. Parameters in
both the reduction and wavelet steps will control quality as well as compression ratio. Coding
configuration will allow for higher compression ratios.

A few considerations before defining the different steps are that:
e The stream in JPEG2000 is progressively decodeable thanks to careful ordering of the
output blocks. This is deemed unnecessary for hyperspectral images since full-image com-

pression is being targeted for bulk storage and transmission. Some markers are saved this
way, increasing compression ratio.

e The JPEG2000 standard does provide a dimensionality reduction method for images with
more than three components per pixel [100]. However, specific techniques will be used
that have been found to perform well with hyperspectral data.

e Both the wavelet transform and arithmetic coders are those of JPEG2000.

3.3.1 Dimensionality reduction

Dimensionality reduction has already been explored for hyperspectral image compression, but
few methods have been tried. By including multiple options, the aim is to verify the validity

65



of the current ones being used, and to find ones that outperform the others. The following
dimensionality reduction algorithms have been included in Jypec’s flow: ICA, MNF, PCA,
SVD, VCA y VQPCA (see Section 2.3.5).

All methods generate projection and reconstruction matrices. The projection one is used
for compression, and the reconstruction matrix is used for decompression. The latter has to
be stored in the compressed stream as well as the compressed data. VQPCA uses not one but
many matrices corresponding to each of the quantized clusters. The C' vector, as well as the
matrices, is needed to assign a reconstruction matrix to each of the samples.

The general flow is as follows:

e A preprocessing step is first performed to select a subset of pixels of the input image.
These are the ones used for creating the matrix. The size of this subset determines the time
it takes to create the projection matrix. A bigger subset will imply longer calculation times
but will more closely resemble the original. This step is done just to reduce the algorithm
time. The parameter which controls the portion of the pixels used for preprocessing is
called ¢, and will usually be around 0.01 (1% of total).

e A training step comes right after, and uses the selected data to create the projection
matrix. Additionally, it centers the data around its mean value, improving the performance
of the dimensionality reduction methods.

e The reduction step is the last one in the pipeline. It centers the raw data around the
average vector and then performs the projection. The inverse will be done when recon-
structing: the data will be projected back with the reconstruction matrix, and then de-
centered. Training and preprocessing are only done when compressing, so decompression
skips them.

First, the data X is subsampled according to the parameter t. Let sx = |X|. A random list
of unique indices Ix = {i1,...,isy | is generated, and a subsampled set X, of size sx, = | Xs| is
generated:

Xs=x;e Xnielx (3.38)

Its mean value is obtained as:

Ey = steXs Ls ~ erxx =5 (339)
SX, SX

The original input data is then centered following;:

X, = {2~ %a},en (3.40)

After obtaining X. € Mg, xn, it is processed with one of the algorithms described in Sec-
tion 2.3.5, obtaining a transformed matrix 7' € M, x, of transformed data. The value of m
selected will directly impact compression ratio in this step. If the original dataset X had sx xn
total samples, T' has just sx x m samples. So a compression ratio of n/m is achieved at this
step. Further steps will of course affect this value.

The output from all algorithms is a transformation matrix W and recovery matrix W. W
is directly used to transform the data into 7', while W gets stored in the compressed stream
to later be used to decompress the data. VQPCA works differently since it outputs many W
matrices (one per cluster) as well as the list C' of what cluster each sample x belongs to. Within
clusters, the algorithm performs the projections just as in the rest of algorithms, and saves the
W matrices for reconstruction.

Now, the data from X has been spectrally decorrelated in T'. T is then separated into bands
T; = [Ty,y,iVx, z]. Each of these bands will be processed by the JPEG2000 algorithm.
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3.3.2 Outlier detection

Every dimensionality reduction algorithm does a transformation that globally achieves the best
possible results. This is done based on the general characteristics of the input samples (i.e:
pixels). Outliers in the input set will probably still be outliers in the output set.

These outliers might dissapear in the JPEG2000 flow, since the wavelet transform and quan-
tization afterwards smooth out values that are too different from their neighbors. Still, those
outliers might be critical for image processing, were they are precisely the spots that, for exam-
ple, anomaly detection algorithms look after.

The dimensionality reduction algorithm will ideally have a target number of dimensions that
matches closely the real underlying number of dimensions in the original data. That is where it
will reach the best distortion-ratio performance. Each transformed band can be assumed mostly
independent from each other, and so the detection of outliers is done per band.

To keep those values that otherwise are lost in the JPEG2000 compression flow, a threshold
Po € [0,1] is set. It indicates the percentage of pixels that is to be saved losslessly (losslessly
with respect to JPEG2000, since the dimensionality reduction step has already induced some
loss). To that end, the average value of a band is obtained byyy. All samples b(t) in that band
are sorted in descending order according to the difference |b(t) — bgyg|. For a number Nx x Ny
of samples in a band, the first p, - (Nx x Ny) are saved losslessly by storing their value and
coordinates in raw form.

Afterwards, the minimum and maximum value of the non outliers are calculated, and all
samples in that band are clamped to that interval. Compression proceeds as usual. Note that
if p, = 0, no outlier detection is performed.

Outlier detection is specially useful since a normalization step occurs for the JPEG2000
wavelet transform to the interval (—0.5,0.5). If some samples deviate excessively from the rest,
the rest might be clumped together and thus when quantizing they might fall in the same bin,
losing information that is otherwise kept. This is avoided by storing the outliers in this manner,
which improves separation after the normalization step.

3.3.3 JPEG2000

JPEG is a simple algorithm that took advantage of the mathematical properties of the DCT.
It splits the image in 8 x 8 blocks, applying the DCT to each one individually. High-frequency
components were removed, retaining as much low-frequency ones as required for a specific quality.
This was (and still is) the selected approach for many situations were simplicity is preferred over
newer methods with higher distortion-ratio performances.

JPEG2000 was born as a successor to JPEG in the Internet era. One of the main motivators
was that JPEG2000 could be progressively decoded, meaning prefixes of the compressed stream
could be used to approximate the whole compressed image. This was due to the use of wavelet
transforms that applied to the whole image instead of the DCT that only targeted blocks.
By cleverly arranging the wavelet coefficients in the output stream, the whole image can be
progressively reconstructed. Another advantage is that the encoder works over longer runs of
data, adapting more precisely to statistics.

These two main differences resulted in higher quality at the same bit rates (see Figure 3.5),
however the processing power required grew considerably, which has kept JPEG2000 under the
radar for a while. With computing power growing, it has again found its way to consumers and
specially scientific applications, where the blockiness of JPEG can be detrimental to experiments.
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JPEG2000 has three main steps. A color space B P JPEG 9.14KB
transform (done by the dimensionality reduction
step), followed by a wavelet transform on each
color channel, and finally the encoding of the trans-
formed data via the tier 1 and 2 coders.

The tier 1 coder consists on the bit plane coder
and the arithmetic MQ-coder, which will later be
seen. It losslessly compresses small blocks of data
that have been processed by the wavelet transform
and are full of redundancies. The output of the
tier 1 coder has a special property: any prefix can
be decoded, and gives an approximation of the fi-
nal decoded block. This is useful for progressive
reconstruction of the image, however if blocks are
coded sequentially, while the property still holds
locally per block, it cannot be applied to the whole
image.

Thus, the tier 2 coder works on top of the tier 1 Figure 3.5: The difference [105] between
coder streams, intertwining them to create a pro- JPEG and JPEG2000 compression can be seen,
gressive stream over the full image. This is inter- as the blockiness at high compression ratios is
esting in a streaming scenario such as the Internet, clear.
however it adds unnecessary complexity for this use case, where the full image is always expected
to be decompressed for analysis purposes. Thus, only the tier 1 coder is implemented.

In the following sections, the different parts of the algorithm: wavelet transform, quantization,
and tier 1 coding (including block coding and MQ-coding) are explained, forming the JPEG2000
part of the JYPEC algorithm.

3.3.3.1 Wavelet transform
Recall that data from the dimensionality reduction step is stored in matrix 7"

T = [tl, . ,tp] , t; e R™ (3.41)

The wavelet transform is applied to each transformed band, so T can be divided in bands
B¥ kel,...,m as follows:

Bk = [t’f,...,t’;] = [b1,....by)] (3.42)

Even though for dimensionality reduction, data (X, T, B) were represented as vectors, it is
useful to also see those as matrices. So, if the hyperspectral image size is Nx x Ny x Nz, where
Nx X Ny = Np, and Nz = n for X, Nz = m for T. Define:

Bk = [tﬁj} = [bis], i€{l,....Nx},j€{l,....Ny} bij=biresj (3.43)

The wavelet transform used is applied in both directions (horizontal and vertical). For that,
two kernels (Definition 2) are applied:

Ky =[0.026 —0.016 —0.078 0.266 0.602 0.266 —0.078 —0.016 0.026] (3.44)
K;=1[0.091 —0.057 —0.591 1.115 —0.591 —0.057 0.091] (3.45)
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Figure 3.6: Uniform dead-zone quantizer at work. A sign-magnitude (,v) representation is obtained
that generates a bin double the size of the rest around zero. That is the dead-zone.

The wavelet represented by these kernels is called CDF 9/7 [41], and was designed originally
to operate on infinite signals. In this case, input vectors v = [vy1,...,v,] € R" are extended at
the borders as follows:

V; 1<1<n
V; = § V25 1< 1 (3.46)

Un—(i—n) t>n
From applying both lowpass and highpass kernels, the following is obtained:
Kp(v) =v" Kj(v) = (3.47)

which in turn create the transformed vector:

AR (IR G (348

This process is repeated for each line and each column of the input matrix. It can be then
recursively applied over the LL sub-band if wanted.

3.3.3.2 Quantization

The CDF 9/7 used is a lossy transform that works on real numbers. Quantization is necessary
to bring data to the integer domain. Results from the wavelet transform lie on the (—1/2,1/2)
domain. The output interval after quantization will lie in the range [—2™ + 1,2™ — 1] (Note
that the lower bound is not —2™ due to the deadzone quantizer used). Higher values of n will
increase quality while at the same time lowering compression ratio.

To quantize the values, the following simple quantizer is used:

Szy,x
q,z(sayw) = SgnJr(Sz,y,:c) \"Ay’J (3.49)
b

This is the so-called uniform dead-zone quantizer with quantization step A, = 27" (See
Figure 3.6. Note that index b indicates that each band can have a different quantization step.
Since the wavelet output lies in the ((—1/2,1/2)) interval, the number of possible quantized
values will be 2"*1 — 1, for which bits will be allocated. A finer quantization will inevitably lead
to more bits used.

Functions can be applied prior to quantization to improve separation of samples, avoiding the
collapse of similar samples in the same quantization bins at coarser quantization levels. This aids
in lowering the reconstruction error. To pre-quantize a set of samples X, some pre-quantization
functions are:

log(z—24+1) >z Ve—z x>7 -
flog(x) = log ({E -+ 1) r<T fsqrt(x) = VI—2 <2 flcn(x) - (350)
0 =0 0 =0 "

where Z is the mean value of the set X.
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3.3.3.3 Block coding

Following quantization, each band is then coded. Blocks of 64 x 64 are taken following the
standard maximum size (with size lowered at the edges if necessary) to lower memory loads.

Each block is coded in a way that allows it to be progressively decoded. That way, the
progressive nature of the wavelet is also brought into the coding phase. For each block, its bit
planes (the sets of bits of the same significance for all samples) are coded from high to low
significance. Three pases will be done over each plane, in which bits are prioritized and those
that are predicted to be more important are coded first.

A few variables are introduced to help when describing the algorithm:

7 Position within a block. It is an abstraction of a two-dimensional coordinate to simplify
notation.

y[j] Sample at position j.
v®) [§] pth bit of sample y [4].

X [4] sign of sample y [j].

A predictive model that works on individual bits is at the core of the coding phase. Instead
of working on full samples, like CCSDS 123.0-B-1, predictions will be made on individual bits
and later an arithmetic coder will be used to encode them.

Definition 12 o [t] is the significance of a sample y [t], and can take the three following values:
Insignificant, positive significant and negative significant.

As long as every bit v(P) [7] up to a certain point p that has already been coded are 0, a sample
s insignificant. As soon as a 1 is coded for a sample, it then becomes significant of the same
sign as the sample, given by x [j].

Since bits are coded from more to less significant, the significance of a sample indicates, at
any point, if that sample’s contribution is of interest so far.

This concept of significance is what the three passes (Figure 3.7) of the algorithm are based
on. Within each bit plane, some bits (depending on neighboring conditions as seen later) will
have a higher chance of being “interesting” than others. These skewed probabilities will be taken
advantage of when coding, and will aid in creating a progressively decodeable stream.

Significance propagation pass: Samples that are insignificant but are believed to turn
significant this pass are coded as Algorithm 1 shows. If a sample’s neighborhood has many
significant samples, the actual sample will be included in this pass. The sign is coded in this
pass, and when doing so a special XOR bit, associated to the context, is used to improve
compression.

Refinement pass: When a sample is already significant, the behavior of the bits that are
not yet coded is considered mostly random. These bits are coded in a special pass that does
not have a model as skewed as the other two. Special care is taken for the first refinement
pass compared to the others, since that still contains a fair bit of predictability. This is seen in
Algorithm 2.

Cleanup: What was not coded in previous passes is coded here. Generally, that means zones
that are mostly zeros. Thus, this pass will include a run-length coder to deal with such behavior
in the most efficient manner, shown in Algorithm 3.
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Figure 3.7: Fach bit plane is coded in three passes. A zig-zag pattern of height 4 is followed to traverse
it. This ensures areas that are physically close are visited in quick succession to maximize predictability.

Algorithm 1: EBCoder.codeSignificance

1 for each bit b in the zig-zag traversal of plane do

2 context < significance context of b;

3 if b is not significant, and context # ContextZERO then
4 mqgCoder.code (b, context, bitStream) ;

5 if b is 1 then

6 bs < b’s associated sign bit;

7 context < bg’s associated sign context;

8 xs < context’s associated XOR bit;

9 mqCoder.code (bs ® x4, context, bitStream) ;

10 end

11 Set b as already coded in plane;
12 end

13 end

Algorithm 2: EBCoder.codeRefinement

1 for each bit b in plane’s zig-zag traversal do

2 if b has not been coded and is significant then
3 context < b’s refinement context;

4 mqgCoder.code (b, context, bitStream) ;

5 Set b as already coded in plane;
6 end
7 end
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Algorithm 3: EBCoder.codeCleanup

1 for Fach bit b in the zig-zag traversal of plane do

2 if b s the first of its column, the whole column is uncoded, and every context is
ContextZERO then

3 if Fvery bit in the column is zero then

4 mqCoder.code (0, ContextRUNLENGTH, bitStream) ;
5 else

6 mqCoder.code (1, ContextRUNLENGTH, bitStream) ;
7 j + index of the first non-zero bit within the column;
8 (bj , b{) <+ two-bit representation of j;

9 mqgCoder.code (bg, ContextUNIFORM, bitStream) ;

10 mqCoder.code (b{, ContextUNIFORM, bitStream) ;

11 bs < sign bit of the sample at position j;

12 context < by’s sign context;

13 xs < context’s associated XOR bit;

14 mqCoder.code (bs P x4, context, bitStream) ;

15 Skip to bit in position j + 1 and go to 2;

16 end

17 else

18 Code b as if it was in the significance pass (Algorithm 1);
19 end
20 end

When processing a block, the first plane is only processed with a cleanup pass (since it is
expected to have many zeros). After that, all three passes are used for all planes in the order
they’ve been described. While at first the cleanup pass is the one that codes most bits, for the
last bit planes, significance and then refinement are the ones that process the most bits. This is
seen in Algorithm 4.

Algorithm 4: EBCoder.code

input : A block with n, bit planes

1 for i <~ 0ton,—1do

2 plane < block.getPlane (%) ;

3 if 7+ # 0 then

4 significancePass (plane); /* Algorithm 1 =/
5 refinementPass (plane); /+ Algorithm 2 «/
6 end

7 cleanupPass (plane); /+ Algorithm 3 «/
8 end

There is a special plane that is not processed in these passes: the sign plane. Recall that
samples are in sign-magnitude format. All magnitude planes are coded with the aforementioned
passes, while the sign is only coded whenever a sample turns significant, since it does not bear
any information before that point. Thus, sign bits intertwine with the others.

On magnitude planes, a zig-zag pattern is followed for traversal. Rows are grouped in sets
of four, which are traversed column-wise (Figure 3.8). This ensures neighboring bits follow each
other for coding, which will exploit its similarities. Bits are marked after each pass, ensuring
they are coded only once.

These similarities between neighboring bits are what allows predictive models to perform well.
The significance and cleanup passes are the ones that are more redundant and can take the most
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Figure 3.8: Block coding scheme. The zig-zag pattern is seen. Bit planes are coded from more to less
significant (D to 0 assuming a depth of D +1). All while using contexts given by the significance matrix,
where 3 x 3 neighborhoods are checked.

advantage for this, though the refinement pass will also have a smaller degree of predictability.
There are many predictive models working at once for coding a block, these are based on the
so-called contexts.

Definition 13 A context represents a pattern in the data that is to be coded. Contexts are
generated [201] based on the significance state of neighboring samples (Figure 3.8). The sub-
band that is being coded (LL,LH,HL,HH ) is also taken into account to improve predictability.
38 different contexts might exist, but for simplicity they are collapsed to just 16 different ones
(Figure 3.9). Different contexts are used for the different passes.

Bits with a certain context are thus expected to always have the same behavior. That is, to
have the same probability of being either 0 or 1. So, for a given context, its bits are expected
to be heavily skewed towards either zero or one. And what is ideal for coding a heavily skewed
binary distribution? An arithmetic coder.

3.3.3.4 The MQ arithmetic coder

Bit-context pairs are generated by the block coder, but despite its name it does not perform the
coding itself. The block coder is just an entropy reduction step, while the arithmetic MQ-coder

Figure 3.9: Example of different neighborhoods that generate the same context. Significant samples are
shown in red, insignificant in black. This context is used when a certain vertical and/or diagonal pattern
is found.
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[201, p. 12.1] does the bit reduction. A general diagram of this module is shown in Figure 3.10,
and the full process in Algorithm 5.

Algorithm 5: MQCoder.code

input: A bit-context pair (b context)
input: A table mapping contexts to states
inout: A bitStream where coded data is dumped

1 state < table [context |;

w N

Lo = I BN

©

10
11
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21
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23
24
25
26
27
28
29
30
31
32

pred + prediction associated to state;
prob < probability from the probability table associated to state;

A+ A — prob;
if prob falls outside of the new subinterval (A < prob) then

Change pred to the opposite bit, so the wide subinterval is selected in case of success;
end

if adjusted prediction was successful then

C < C + prob stay in the wide subinterval;
else

A < prob stay in the narrow subinterval;
end

if renormalization is required then
if original unadjusted prediction was successful then
Updated state using the most probable symbol table;
else
Update state using the least probable symbol table, applying the XOR bit if
required;
end
end

while renormalization is required do
C + Cx2;
A Ax2;
t+t—1;
if t =0 then
Create a new byte with C’s upper 8 bits;
if reserved sequence can be formed on next byte output then

t = 7, forcing zero at the beginning of the next byte, avoiding 0x££;
else
t = 8, waiting for 8 bits for a new byte;
end
end

end

This binary arithmetic coder takes the bit-context pairs. It exploits the fact that the input

distribution is skewed, but the skew is not known beforehand, so it is of the adaptive type. Not
only that, it will adapt to every input distribution (one per context) at the same time. How
does it do it?

For each context x, two values are maintained: A symbol s, € {0,1} (the current prediction),

and an integer 3, € {0,...,46}, indicating the state of the predictor for that context. Whenever
the prediction is correct, the state changes to one with more skew towards the predicted bit.

To determine the probability of the prediction s, being correct for a certain state, a table

associates to each state a probability p € {O, o, 216 - 1} that is mapped to the [0,1) interval
by dividing by 2'6.

74



Since probabilities are fixed in the table, state change

is made by using transition tables. These indicate which (Kit2,5k,42)
state to transition to, depending on if the prediction is <”E+1’ Sm;a)
'%Zﬁ Slii

right ¥,,ps (most probable symbol) or wrong X, (least
probable symbol).

To “double” the number of states, a table X (switch
table) indicates for a state X, if prediction s, needs to ’ K= X H MQ }—' 01001...
be inverted since the skew on the input distribution has t
gone below 0.5. That way probabilities are always above
0.5, only the symbol they refer to is changed. ’57 Sinps Sipss Xs

All of these elements make up the predictive part
o.f the arithmetic COfiel“ (th‘e models). Recall from S‘ec— within the MQ-coder. Bit-context pairs
tion 2.2.3 that an arithmetic coder generated a fraction ,.ive The context is used to determine
in the [0, 1) interval. This coder keeps just a part of the the current state, which along with proba-
fraction active, having 16 and 28 bits respectively for bility tables generates the output and up-
registers A and C' that define the interval [c,c+a). Ev- dates the state for the following input.
ery so often, the part of the interval C' that is no longer
going to change is shifted out and A is normalized, freeing up space to keep both registers within
the designed limits. This is done via a variable ¢ that keeps track of the number of fixed bits in

C.

Figure 3.10: Diagram showing data flow

The only restriction is that a coder cannot emit symbols in the 0Ox££90-0x££££f range since
those are reserved, so special care is taken if those are to be shifted out of the C' register. To
that end, a buffer T keeps the last emitted byte to check for reserved sequence formation.

3.4 LCPLC

The Low Complexity Predictive Lossy Compression (LCPLC) presented in [4, 5] is the last of
the algorithms studied here. Despite its name, it allows not only for lossy but also for lossless
compression. Distortion is dynamically measured when compressing and, based on a threshold,
a decision is made whether to code the compressed (lossy) values or the uncompressed (lossless)
ones. If the threshold is set to zero distortion, compression will be lossless. Anything allowing
distortion will incur in compression with progressively more ratio and less quality as the threshold
extends.

The interest of simple algorithms that can work in this near-lossless manner has been ev-
idenced by the recent update to the CCSDS 123 standard (B-2 revision [34]). However the
CCSDS revision works on individual sample skipping, instead of the full block skipping present
in LCPLC. Memory requirements are lower, but hardware complexity higher since more opera-
tions are done per sample on CCSDS.

LCPLC operates on full hyperspectral images, and is designed to locally take advantage of
both spatial and spectral similarities within adjacent image samples. For that, the image is
divided into non-overlapping blocks of size N x M x B (usually N = M making the blocks
square in the spatial direction). B is the number of bands, and any block always spans the full
spectrum of the image. Each sample within a block has a bit-depth of D bits, usually 16. It is
also valid to split blocks further in the spectral direction, though this is not practical since it
makes compression both slower and less efficient distortion-ratio wise as it will be later seen.

A predictive model (Section 2.2.6.2) is used to predict, for each block, the values in a band
based on the values from the previous band. This is done by minimizing the expected mean
square error [5, p. 2.1]. If the prediction is good enough, it is used instead of the raw values going
forward. Otherwise, differential coding (Section 2.2.6.1) is used to process the differences be-
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tween raw and predicted values. Finally, golomb and exponential golomb coding (Section 2.2.2)
create the final bitstream.

3.4.1 Prediction

After blocking the image, the predictor comes into play. For each block, consider z,,,; the
sample at spatial position (m,n) and spectral band i. Blocks are coded in slices, where a slice
comprises all of the samples of a given band ¢ within the block. The first slice to be coded is
slice 0, and then the rest follow in incremental order. Within a slice, a raster scan is followed for
the coding of each sample. Two values are required to define how the algorithm works: 2,
is the decoded value at the given position, while Z,, 5, ; is the prediction at that same position.

A simple two-dimensional predictor is used for slice 0, which is given by:

Tm—1,n,0 + Tm,n—1,0

2

(3.51)

Tm,n,0 =

From it, the prediction error e, ,; is calculated as € ni = Tmni — Tmn,i- Since the error
can be negative, it is mapped to positive values. A simpler version than the one used by CCSDS
(defined in Equation (3.27)) is used here:

e _ { 2 lem,n,i‘ -1 €mn,i > 0

m,n,.
’ ’ 2 |6m7n7z| €m7n7Z < O

m

(3.52)

The rest of the slices are coded by looking at the previous slice for prediction. Z, ;-1 is
made similar to x,, ,; by means of a least squares estimator «;, which minimizes the expected
MSE by using it in Equation (3.54). It is obtained from p and fi, which are the average values
of the raw and decoded values in a slice respectively. They might also be referred as # and &
for readability. « is obtained as follows:

dm,n,i = Tmmn,i — Hi
dm,n,i = jm,n,i - ﬂz
N 7 . )
G = Y (dm,n,z—l ~ dm,n,z> (3.53)
. 2
D _
=D an dm,n,z‘—1>
_ D
o = o

A diagram of how the prediction dependencies can be seen in Figure 3.11. Experimental
results from [5] show that a; can be quantized to 10 bits in the [0,2) range as &;. The same is
done for y; in the range [0,2F — 1), yielding ; with D bits. A prediction is made then as:

T = i + Qi (Bmn,i-1 — Hi-1) (3.54)
while the error follows the same equations as with the first slice.

If higher compression is required, the error can be quantized using a uniform threshold
quantizer of parameter () using powers of two for faster implementation afterwards. So instead
of the prediction error €mni = Tmni — Tmnir Emonyi = SENT (€mni) ((|€mm.il + LQQ_lJ) /29) is
used. An approximation of the original error is €’ = €mn,i* 29 when performing calculations

m,n,t
for Ty n-

3.4.2 Slice skipping

The lossy part of the algorithm comes from the slice skipping process. Any slice other than the
first has a set of predictions that are based on the previous slice. If predictions are good enough,
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Figure 3.11: A diagram of LCPLC dependencies for prediction within a block. The first slice only
depends on itself in a small neighborhood of the current sample (just using the top and left neighbors).
For slice i, aggregates from the original 7 slice, as well as values from the decoded slice i — 1, are combined
with each sample of decoded slice ¢ — 1 to create the corresponding samples from slice 1.

coding can be skipped altogether. The distortion D of a slice is calculated as:

1 NM
D= Nar 2 Cmans
=0

(3.55)

A threshold is set above which a slice needs to be coded since the incurred loss of using

the predictions is unacceptable. However if the error is below the threshold, the slice coding
1
is skipped and predictions used instead. The threshold equation is given by Dthresh — 22247

Experimentally [5], a value of v = 3 has been found to be effective in yielding good qualities at
decent compression ratios. Higher values provide better ratio and worse quality, and vice-versa.

3.4.3 Coding

Two different coders are used in LCPLC: an exponential Golomb coder of order zero, and a
power-of-two Golomb coder (see Section 2.2.2).

For the first slice, the raw x¢,0 is exp-Golomb coded after being quantized, dequantized and
mapped. Then, all mapped errors my, , ; are golomb coded. Now, for simplicity, let [ = m+nl,
and define a,, as the number of past sample errors used for coding. Let Ry, ,; and Jy, ,; be:

-1
Rm,n,i = Rl,i = Z €l (356)

t=max(0,l—aw)
Jm,n,i = Jl,i = min (l, aw) (357)

Define the parameter for the Golomb coder &, ,, ; as:

Kinoni = {logQ (Rm”ﬂﬂ +1 (3.58)

2[1Og2 (Jm,ni

The Golomb parameter is thus obtained from the accumulator that holds the sum of the last
ay, errors for the current slice. Note that in [5], the denominator for Equation (3.58) is just
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Jmon,i, but here the first power of two greater or equal than it is instead used. This simplifies
hardware implementation down the line and no difference in compression efficiency was found.

For slices other than the first, both «; and u; are coded raw (in their 10 and D bit form),
followed by a single bit indicating if the threshold was met. In the first case, coding for the slice
is finished. In the latter, all mapped errors follow coded in the same fashion as with the first
slice.

3.4.4 Summary

So, to sum the algorithm up, the following is done when coding each block.

e Do the following for the first slice:

— Z0,0,0 is quantized, mapped and exp-zero Golomb coded.

— Vm,n, Golomb code my, ,, , with parameter ki, 0.
e Then, for every slice after the first one in ascending order:

— Code & in 10-bits followed by i in D bits.
— Code a bit indicating if the block is skipped.

— If it is not, then Vm,n, Golomb code my, ,, , with parameter Ky, n,;-

Since each block is independently coded, they can be arranged into any order when assembled
into the full compressed image. For simplicity, a raster order will be followed in compression.

If both block skipping and quantization are disabled, the result will be lossless. As quantiza-
tion and the threshold are increased, the result will be progressively more compressed, though
it might be the case that certain configurations still produce lossless results if the image is
predictable enough.
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Chapter 4

Implementation

Implementing algorithms involves as a first step deciding which hardware to target. General
purpose processors are a flexible option, but lack the performance that other platforms offer.
GPUs are good candidates if the algorithm is parallelizable at the data level, performing the
same repetitive operations over different sets of data. A custom ASIC is the best option when
time and money are available, creating the specific circuit that optimally executes the algorithm.

FPGAs offer a reconfigurable fabric of logic elements that can mimic a custom ASIC, and
by slightly reducing performance are able to support implementations that can be developed
almost as fast as CPU or GPU ones, while being far more power-efficient and fast.

When implementing different algorithms on an FPGA, there is not a single approach. The
main goals are to increase throughput, reduce power consumption, and use less resources. Usu-
ally, to improve one of the three implies some loss on the other two.

Throughput is attained through parallelization, pipelining and clock frequency increase. The
first two increase resource use and, in turn, power use. Higher frequency also results in more
power being used proportionally, due to the increased voltage required which is quadratically
proportional to power consumption.

To reduce this undesirable power consumption, the straightforward way is to lower the clock
frequency and voltage. Care must be taken then to not lower throughput under the specified
limit. Resources will be the same, but usually a bit of parallelization will be added to make up
for the throughput loss, again increasing resource use.

And if the circuit is made to fit on a small FPGA, throughput will be sacrificed to spare
the necessary gates to fit. This generally also results in reduced power, so as long as the speed
requirements are met the circuit will be sufficiently good.

Of course, some algorithms are prone to parallelization, while others need strong optimizations
in the critical path. Others might just reach a certain limit given their data dependencies, and
so mathematical optimizations might be useful in those cases, changing the algorithm itself.

Allin all, the ideal scenario is to meet throughput demand, and optimize area and power while
keeping it above threshold. There is not a single best way of doing it, so for all three algorithms it
will become clear that different paths were followed. There was a common methodology though:
first implement the algorithm in software, so that the algorithm structure is made clearer for a
hardware implementation, and then implement the hardware itself.

FPGAs can be targeted with two main tools: HLS synthesis and custom HDL synthesis.
The first approach starts with a constrained high-level language code (such as C++) where some
constructs are forbidden due to FPGA limitations. Without those, automatic tools are able
to transform the high-level code into low-level HDL code. The second (and more traditional)
approach is to directly write the HDL code (normally VHDL or Verilog).
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High level synthesizers are becoming powerful tools capable of creating hardware that is just
as fast as a custom design for easily parallelizable algorithms. But the technology is still limited
for complex constructs or data dependencies, where low-level code is still advantageous. Certain
coding styles that favor hardware implementation are needed, with data flows within high-level
languages having to mimic hardware to achieve the best results in an automated way. Some
constructs still need to be hand-optimized.

In the same way that compilers made obsolete hand-written assembly code, HDL synthesizers
will replace most hand-written HDL. However, for this thesis, the focus is put on the great per-
formance achieved by the latter, which are yet to be surpassed by automatic generation. Thus,
implementations are custom-made in both VHDL and Verilog, and so far have outperformed
HLS alternatives.

In this chapter, the implementation of the algorithms described in Chapter 3 is presented.
First for the lossless CCSDS 123.0-B-1, followed by the JPEG2000’s tier 1 coder in JYPEC,
and finally for LCPLC. Detailed diagrams will be shown when necessary to shed light into the
different optimizations that took place thanks to the custom HDL design.

All three algorithms have been implemented with performance in mind. The different param-
eters (image size, quantization values, register size...) are tunable. The goal is to, given certain
algorithmic constraints, automatically synthesize the most optimized hardware possible, instead
of having a lower-performance generic core. This is because the ultimate target are radiation-
hardened FPGAs, which are ready to fly on satellites, but often need a more optimized circuit
than a normal FPGA to overcome their resource and performance constraints.

4.1 CCSDS 123.0-B-1

Being an international standard, CCSDS 123.B-1 has received plenty of attention regarding
implementations. One of the first golden standards software-wise was Empord4 [83], providing
an easy way of testing other coder/decoders by cross-validation.

A custom implementation [18] was developed for this work, allowing trace generation of
the different values that were generated by the algorithm. Not only the outputs, but also
intermediate operations were traceable. Correctness was ensured by cross-validating it against
Empordd, and by means of applying the compression/decompression cycle and checking for
perfect reconstruction (given that it is a lossless standard).

As for the more interesting part, hardware, a further look was had to existing implementa-
tions, to check for different techniques and to look for what was missing in a pool of already
available designs.

4.1.1 Previous work

Being an international standard, different FPGA implementations of the CCSDS 123.0-B-1 exist
that take advantage of different properties of the algorithm, mainly focusing on the different
types of traversal through the image.

One of the first [180] already mentions the fact that different traversals through the image
need different resources. The amount of memory can be made dependent on the number of
bands or image slices, while the amount of logic resources is usually bound by the parameters
selected for the algorithm, which trade off complexity for compression performance. In the end,
a decision is made to have a 2 x P + 1 port memory to avoid any overhead of memory in the
compressor at all. Improvements in speed are done by pipelining the different stages (mainly
prediction and encoding), noting that memory is a bottleneck.
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Figure 4.1: Full diagram of the CCSDS compression module. Dashed lines indicate potential for
pipelining.

Moving a little bit of overhead to the on-board memory proved to be beneficial in [113]. BIP
ordering is used and a full spectral slice is stored. But this is usually not a problem since, for
the common image sizes, a full slice is under a Mb in size. Pipelining is not used and so even at
low frequencies, a full sample per cycle is compressed, increasing the performance of [180].

Going further, in [68, 207] it is realized that, for BIP mode, pipelining of the main feedback
loop (which updates the weights used for the prediction) is possible. This requires the image to
have more bands than pipeline stages, since otherwise stalling occurs. This is not a problem in
practice since, being hyperspectral, the number of bands is always high enough. Modifications
to the pipeline depth are proposed [207] to take care of it in extreme cases. A full slice still needs
to be stored, and resource use is higher than in [113], but the speed is increased by a factor of
almost 5 thanks to the pipelining of the dot product stage.

Even more resources are used in [154] to generate data-level parallelism, again in BIP mode.
Instead of having just one pipeline, a number n of pipelines are instantiated at once, each
processing every nth sample. This again increases performance and, for four parallel pipelines,
speed is increased by almost a factor of four with respect to [68], where the main limitation is
the synchronization of the output values to make sure standard ordering is preserved.

BIP mode brings the most possibilities on the table, given that pipelining, as well as data-
level parallelism are possible. However, this limits the algorithm to just one type of ordering,
requiring additional memory to reorder the image in case the sensor does not capture it in that
format, and also using more resources for pipeline management. For this implementation, it was
decided to not use external memory, and to have the smallest core capable of dealing with any
input ordering in real time.

4.1.2 Hardware implementation

Every step of the algorithm is performed in its own module for simplicity and correspondence
to the mathematical definition. Figure 4.1 shows the overview of the different modules present
within the compressor.

Samples come in a specified order (BSQ, BIL or BIP) through a single port. This is to avoid
the need of external memory, but comes at the cost of using internal RAM blocks to store frames
or bands.

First, samples s go into a buffer to allow sufficient values to be ready when calculating
neighborhoods. The buffer is a set of FIFO queues with length tailored to a specific image size
so that the head of the FIFO is ready the same cycle it fills up. Afterwards it will emit and
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accept one sample per cycle. This limits flexibility to an exact sensor size, but at the same time
uses the least memory possible.

The input samples, along with any buffered go through to the next stage, where local sums
o and differences d are calculated. The differences go through another buffer to have the appro-
priate ones available at any time.

A third stage takes the local values and transforms them into predictions § using the weights
w. For that, the expensive d is calculated using a dot product between the weight and difference
vector.

Coding comes afterwards, where ¢ is used to update the accumulator, which also uses a buffer
since each band has its own. Along with the counter, they go on to the final stage to be coded.
There, values are used to generate the final codewords and lengths, which a serializer will take
and use to output the final bitstream.

Despite the clear-looking pipeline potential, the cost of the feedback loop in the prediction
stage is so great that it is only useful to pipeline the stage between the prediction and coding
parameter calculation. Any other pipeline stage added does not reduce operation time but does
use additional resources, so it is avoided.

A more detailed diagram and description of the different modules is provided in the following
pages, where the following notation is used for simplicity in the diagrams:

e 17, 41, t; and z; indicate that the respective coordinate is equal to zero. On the other hand,
Th, Yn, th, and zp indicate that coordinate is the last within image boundaries. Note that
sometimes these flags will be inverted (e.g: 7).

e Blue rectangles are inputs for the module depicted in a diagram, while green rectangles
are outputs. Grey rectangles are constants that will bring optimizations to the circuitry
instead of using variables.

4.1.2.1 Local sums

Local sums are calculated depending on the coordinates of the current sample being predicted.
All possibilities are calculated, and muxes select the appropriate one to move forward.

Two different calculations can be done, either the neighbor-oriented from Equation (3.2) or
the column-oriented from Equation (3.3) one, which simplifies the circuit. Both are seen in
Figure 4.2.

00,0,0 is not used within the implementation, but it will be generated anyways by hardware
and discarded by the modules afterwards.

4.1.2.2 Sample storage

To be able to calculate o, ., not only the sample for the current position is necessary but also
previously seen samples. This issue could be solved by having multiple inputs to the modules
with all necessary samples. This however requires multiple accesses to memory at once.

Here, the target is to take information in raster-order from the sensor itself and directly
feed it to the module. Thus, a FIFO system is built for storing neighboring samples and then
retrieving them from within the FPGA. Their design depends on the order in which samples are
fed into the compressor. Three different designs are required, respectively, for neighbor-oriented
and column-oriented sums (Shown in Figure 4.3).
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Figure 4.2: Neighbor-oriented and column-oriented local sum

Figure 4.3: FIFO structure for different configurations. Top are for neighbor oriented sums, bottom for
column-oriented sums. From left to right, BSQ, BIP and BIL orderings.
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Figure 4.4: Difference calculation. North, West and Northwest differences are not used under reduced
prediction mode.

In blue, stored samples are shown. In green, neighboring samples that are used. In red,
the current sample. As seen, the type of prediction has little impact on the size of the FIFOs.
However, the type of ordering for the image has great impact. For BSQ, FIFO size is just Nx,
while for BIP and BIL is Nx Ny. This is unavoidable if only one read-port is desired.

4.1.2.3 Difference calculation

Differences are calculated based on the local sum. The central difference d. , ; is always present,
while north, west and northwest directional differences are only present under full prediction
mode. They all form the vector from Equation (3.4). Figure 4.4 shows both types.

For central differences, calculating them for every sample is time and resource consuming.
Instead, a storage system is devised to buffer the values from previous bands so that they can
be used for calculation.

4.1.2.4 Difference storage

Differences, in the same way samples need to, require to be stored for the difference vector
assembly. Directional differences can and are calculated on-the-fly. But central differences will
come from a FIFO structure with P read ports, one for each difference used. Here, the cost is
Nx Ny P for BSQ ordering, Nx P for BIL ordering, and just P for BSQ ordering.

BSQ requires excessive resources, while BIL is ideal in this case. For BSQ, the FIFO structure
is designed with P memory units of size Nx Ny. For BIL, the same number of memories is used,
but requiring each to be only of size Nx. For BSQ, a simple shift register P samples is used.
This is seen in Figure 4.5.

4.1.2.5 Weighted difference

The dot product from Equation (3.5) between the difference vector and the weight vector is
done by a tree-reduction sum of the individual products as seen in Figure 4.6.
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Figure 4.5: FIFO structure for differences. BSQ, BIP and BIL orderings respectively shown.
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Figure 4.6: Central local predicted difference.

4.1.2.6 Weight vector storage

Weight vectors are initialized to default values when the reset signal is raised. Since vectors
are shared for all samples in a band, for band-interleaved methods such as BIP and BIL, all
vectors need to be stored at the same time, requiring a memory of size Nz P*. This however
is not a problem since in any ordering, either the same or difference memories are going to be
dominating the space requirements.

If on BSQ mode, the weight vector is a simple register which gets reset at t; high. For BIL
and BIL, Nz vectors are saved in a circular FIFO, and on each band change, the top is shifted to
the bottom. The new top register is the active weight vector until a new band change is issued.

4.1.2.7 Error calculation

The prediction error from Equation (3.22) is obtained in Figure 4.7. The standard allows for
loss of information along the way, assuming the error won’t be as precise. This is to avoid using
long registers for §.(¢) from Equation (3.19). Here, the smallest register size that ensures no
overflow (see Equation (3.20)) is used, so no care is taken in case of overflows since they cannot
mathematically happen.

4.1.2.8 Weight vector update

After each sample is processed, weights are updated. This is where the feedback look of the
algorithm is: Before processing the next sample in a band, the weights must be updated. Simple
operations allow for the calculation of p(t) (Equation (3.24)), which can be calculated with just
6 bits (Equation (3.25)).
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Figure 4.7: Error calculation module (left) and weight update module (right)
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Figure 4.8: Prediction residual calculation.

So, for weight updates, the minimum register size to not incur in overflows, is:

max{Q+3,D + 3 +min{l, v, + D —Q}} +1 (4.1)

D + 3 is the size of the elements in U,(t). A look is then taken at p’s lower limit vy, + D —
since it is the one generating a left shift. So assuming maximum value in both the vector’s
entries and p, the length of both is added, and an additional bit reserved in case of carry-outs.
For the sign used in Equation (3.23), a simple mask is done with the upper bit. This all is seen
in Figure 4.7.

4.1.2.9 Mapped prediction residual

For the mapped prediction residual, Equations (3.27) and (3.28) are used. The only trick
here is that, for the mux selector, the conditions are all calculated based only on bit checks
and comparators, instead of using any multipliers. This greatly simplifies hardware and is
mathematically equivalent. The lowest bit of 5,(t) is checked for parity, while the upper bit of
A (t) is checked for sign. Care is taken when A, () is zero to also take that into account despite
the parity of 5,(¢). This is seen in Figure 4.8.

4.1.2.10 Encoder

For the coder, the mapped prediction residuals d,(¢) are used along with an internal accumulator
and counter. The counter is combinationally obtained via Equation (3.34) as seen in Figure 4.9.

For the accumulator, it is restarted when ¢; is high, and otherwise just keeps adding the d,(t)
values until a renormalization barrier is encountered (see Equation (3.31)), when it shifts by
one effectively halving its value. The counter also halves its value, so the average 3, (t)/I',(¢) is
maintained.
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Figure 4.9: Counter and accumulator calculation.

Values for u,(t) and k.(t) from Equation (3.29) are obtained in Figure 4.10. For k,(t), a
trick is used to avoid a sequential calculation that is required with divisions. Since its value is
bounded by D — 3, instead D — 2 shifts are performed, and a priority encoder selects the one of
lowest value since the first k& that satisfies Equation (3.30) is the one looked after. u,(t) is just
the original value shifted by k,(t).

For the output, three values are generated that will then feed a serial converter to generate
a bitstream over a wire. The code will be made up of a certain amount of zeros Z,(t), and of
B.(t) bits of the code C,(t). Z,(t) gets the value of u.(t) unless above the threshold, in which
case it is Upqz. It is zero for the first (uncoded) sample of each band, as seen in Figure 4.11.

The code is either d,(t) when on the first sample of a band, or the lowest k. (t) bits of d.(t)
preceded by a 1.

The amount of bits of the code used will be D for uncoded samples (the first in a band and
if u,(t) > Umaz), and otherwise will be k,(t) + 1 to send the bits in C,(¢) up to, and including,
the inserted 1.

4.1.2.11 Serial converter

A serial converter is also designed to output bits instead of the (Z,(t),C,(t), B.(t)) triplet. It
stores the triplet in a buffer and then outputs its information.

First, a counter is used to emit as many zeros as Z,(t) indicates, at one per cycle. Then, as
many bits as B,(t) indicates are emitted from C,(¢) from most to less significant. At the end of
the process, Z,(t) + B.(t) bits have been emitted in the same amount of cycles.

To make it work properly, a FIFO stores the triplets in the input. The first element is taken
and processed accordingly, as soon as it’s finished, the next element enters the queue. This goes
on until the compression process has finished. A simple bitstream has enough speed to output
the results from a CCSDS core. In the following section, the core is parallelized and throughput
of a bitstream is not enough, a bytestream will take its place.
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Figure 4.10: Coder parameter calculation.
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Figure 4.11: Respectively, the number of zeros to output, codeword, and valid bits from within the
codeword.
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Figure 4.12: Parallel design of the CCSDS 123.0-B-1 algorithm. Multiple copies run in parallel, sharing
the differences. Ordering must be BIP to avoid cascading dependencies on the weights.
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Figure 4.13: The parallel or serial CCSDS option is based on the value of concurrency C'. Depending
on that setting, different modules will be synthesized.

4.1.3 Parallelization and output

A good thing about CCSDS 123.0-B-1 is it can be parallelized at the pixel level. If running
on BIP mode, multiple consecutive samples from the same pixel can be calculated in parallel,
forwarding only the differences from one unit to the next. Since these only depend on the
image samples, and weights are independent per band, cascading effects do not take place
and full parallelization is possible with no penalty brought by the number of concurrent units.
Parallelization is thus possible following a design such as the one shown in Figure 4.12.

One thing to note here is that storages are individual per algorithm instance since they do not
share information. This is possible because the number of instances is always a whole divisor
of the number of bands, and thus each instance will process all of the samples pertaining to
a specific band. Values that are used per-band can then be safely stored without interaction
between instances. The only exception are differences, which are shared between all since, for
the prediction, a dot product is done with differences from previous bands.

Each instance works exactly as a normal CCSDS 123.0-B-1 core with the only change being
the difference vector arriving from either the difference buffer or the previous core instead of a
difference storage module. Aside from that, the sample distributor and results gatherer are the
other main modules that are worth mentioning. They are simplified in Figure 4.12, and the full
diagram is shown in Figure 4.13.

Samples always enter through the same channel, however the core will either be parallel or
serial. The serial case is straightforward, so the parallel one is explained in more detail. Since
it is made up of many serial CCSDS cores, the interface is the same for each one (input is s and
output is (Z,(t), C.(t), B»(t))).
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Figure 4.14: Serial to parallel and parallel to serial modules for CCSDS. A simple array of registers
takes care of storing samples until a parallel vector is sent, and keeping a vector until it has been serialized
respectively. They are only synthesized if C' > 1.

The serial to parallel module feeds of a single sample stream, and outputs C' sample streams,
each containing samples sz, ;% € {1,...,C} where z; mod C' = i. It simply buffers the inputs
for each of the output stream and emits them all at the same time once they are ready, since all
the CCSDS cores are synchronized within the parallel module.

Output is quite similar. All outputs from the C modules are received simultaneously, and a
buffer keeps them all in place while the parallel to serial converter emits them in order. Once
they are all emitted, the next parallel value is ready to be received. Both serial-to-parallel and
parallel-to-serial modules are shown in Figure 4.14.

After that, either with the parallel or serial version, a stream of triplets (Z,(t), C.(t), B,(t))
enters the aligner shown in Figure 4.15. It creates a code by pre-pending Z,(t) followed by the
least significant B, () bits of the code C,(t). All of the bytes that are fully completed exit the
module, and any uncompleted bytes stay in a buffer to be pre-pended to the next triplet. The
number of bytes emitted is limited by the maximum amount of bits that can be input, plus the
maximum number of bits that might be buffered, for a total of 7 4+ Upnax + D + 1, since up to
Unax zeros might be output, and C,(t) can be up to D + 1 bits long.

The byte output module shown in Figure 4.16 receives thus up to (74 Upax + D +1)/8 bytes,
and emits them sequentially in the same way that the parallel to serial converter processed the
triplets. At this point, and depending on the local characteristics of the image, many or very
few bytes might be emitted. The latter case is not a problem, but the former produces stalls.
This is why every point connecting modules within the pipeline is fitted with FIFOs, to be able
to dampen the effect of the last module stalling in the case of going through a low compression
rate part of the image.

4.2 JYPEC

While CCSDS has a simple software and hardware implementation, JYPEC is quite more com-
plex. Not only does it have more steps, but those steps are also more complicated. Implementing
the full algorithm in hardware is a monumental task, so a robust software implementation was
first due to make an analysis of what parts could benefit from acceleration.

CCSDS could directly interface with raw image data by just knowing the bit-depth and
pixel ordering, since the implementation is prepared for tailored synthesis targeting a specific
sensor. JYPEC is more ambitious and deals with whole image compression for different image
data types, sensor configurations, and algorithm settings. Given this variability, image and
compression header information is also processed and compressed to deal with the wide range
of options.
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Figure 4.16: CCSDS module tasked with serializing the output byte arrays.
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Also, since now the algorithm deals with lossy compression, distortion measures are needed to
check its performance, since a simple check for equality between the decompressed and original
values is futile.

4.2.1 Software

A good backbone was needed for the software implementation. This includes both a system
for hyperspectral Image I/0O, and a system for image quality assessment. Along with these
modules, the core was also developed. Dimensionality reduction algorithms and the JPEG2000
compressor were included, with the latter being comprised of wavelet transforms, quantizers,
and the JPEG2000 coder as a final step. The full program is found in [19] (GitHub).

4.2.1.1 Data

Data management is done though hyperspectral Image objects. These contain both the header
and the data, both of them pointing to the raw memory contents. Wrappers ensure that data
is accessed properly in any ordering present, giving a consistent interface across formats.

Compressed images are stored in a special format, containing a header that indicates the
compression parameters, as well as the original image header (in compressed format) and the
compressed stream.

4.2.1.2 Core

The core applies the algorithm step by step. First, a generic interface performs the dimension-
ality reduction over the image. It contains methods for reducing size. Underneath, any of the
dimensionality algorithms might be at work (including no reduction at all). Then, for each band,
the next steps are done:

First, outliers are saved (if requested) and their values clamped to the non-outliers limits.
This improves quality since further steps work over a tighter range of values, decreasing rounding
error loss.

Then, the band is prepared for the wavelet transform by normalizing it to the (—0.5,0.5)
interval, after which the CDF 9/7 transform is performed. Results are pre-quantized and then
quantized, using again generic interfaces that allow for different back-ends.

Finally, the image is split in blocks, which are then processed by the JPEG tier 1 coder and
placed in the output stream one after another. Using the tier 2 coder means reordering these
sub-streams and introducing relocation markers. This increases image size. Since the objective
does not include progressive decoding (which is why the reordering is done), the tier 2 coder is
ignored.

In hardware only the tier 1 coder is implemented, leaving the wavelet and dimensionality
transforms for the CPU to perform. Others [71, 130] have already noted this fact, seeing that
the Tier 1 Coder takes up to 70% of compression time for JPEG2000. Later in Section 5.4.1.10
it is seen that timing-wise, this is justified here too.

4.2.1.3 Quality assessment

Finally, the different quality metrics from Section 2.3.6 are also implemented. When compressing
an image, the uncompressed result can be optionally compared with the original to obtain
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the distortion. This gives a brief summary of compression quality. Compression ratio is also
reported, giving both metrics the overall distortion-ratio performance.

4.2.1.4 Options

To optimize the configuration for the algorithm, different options are present in the code that will
be explored in Section 5.4.1. Multiple reduction algorithms are available, in which the number
of target dimensions can be set, as well as the fraction of input pixels to use for training. A
percent of the resulting points can be configured as outliers for raw coding of its values. Finally,
the number of wavelet passes can be configured, and the quantization function and bit depth
can be set to process the coefficients.

All of these options will modify the base algorithm, obtaining a process that gives preference
to a different set of characteristics. An exhaustive search from the distortion-ratio point of view
will be carried out in the next chapter.

4.2.2 The JPEG2000 tier 1 coder

The JPEG2000 tier 1 coder works over small blocks (of usually 64 x 64 samples) of the image.
It does a bit-by-bit scan of the block, coding each one at a time. In contrast to other methods
such as CCSDS or LCPLC that work over samples, working over bits means that performance
drops unless parallelization can be applied. Luckily, as each block is individually compressed,
multiple instances of the tier 1 coder can run in parallel increasing performance by the same
factor.

Both the bit plane coder (BPC) and the MQ-coder are carefully designed to work in unison
as fast as possible. Different techniques have been found throughout time in both parts, but
usually the efficiency has been assessed separately. The aim here is to look at both the BPC,
the MQ-coder, and their combination to see what works best.

4.2.2.1 Previous work on the BPC

Many BPC implementations have been proposed for the context-data (CxD) pair generator. In
[11] a simple BPC is designed that goes over the full block following a zig-zag pattern (recall
Figure 3.8). It produces at most one CxD pair per cycle. However since it has to do three passes
per bit plane, the actual throughput is expected at around 1/3 CxD pair per cycle.

Improving on that, [130] introduces the concept of skipping. Full 4-bit columns are loaded
one by one, marking positions with flags when they have already been processed by a pass. This
way the BPC can skip samples in the refinement and cleanup passes. Flags are included even
for full columns and full passes, which for the first bit-planes usually allows to skip big chunks
of bits. All of these skipping techniques result in around a 60% saving of clock cycles.

A different approach is taken in [86]. Instead of marking and skipping samples, a parallel
approach is taken. Full columns of 4 bits are processed at once, emitting up to 10 CxD pairs
per cycle. Dependencies within the same column are resolved by cascading operations, but still
this is faster than pipelining within the column. Throughput is doubled with respect to the
sample-skipping technique, and the extra memory for marking samples is removed.

[66] goes even further by simultaneously coding multiple planes using non-default options. It
introduces a small loss in compression efficiency, but is able to increase performance by a factor
in the order of the number of bit planes (normally 16 for hyperspectral images). This is specially
useful in real-time video transmission. However, having this great throughput at the BPC level
means that now the bottleneck in the MQ-coder is also 16 times higher, and so multiple coders
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are needed to deal with it, further deviating from standard settings. In this thesis the focus
is put on the standard approach since it is sufficient for real-time compression and provides a
slightly higher compression efficiency.

4.2.2.2 Previous work on the MQ-coder

More work has been done towards the MQ-coder [103] than the BPC since it has always been
the bottleneck within the tier 1 coder. CxD pairs from the BPC are received, and a compressed
bitstream is generated which can be further processed by the tier 2 coder. Under default settings,
the CxD pairs are processed serially, so little parallelization is possible at this stage. Two main
approaches have been devised to accelerate its execution:

e Pipelining: Pipelining is a traditional way of improving performance. Despite the feed-
back loops, distinct stages have been identified that can be separated and pipelined.
Namely the update of the A and C registers, as well as packing the output bitstream.

¢ Dual symbol processing: An unrolling of the main loop by a factor of 2 is able to im-
prove performance since stronger optimizations are able to take place. This has motivated
the design of MQ-coders with the capability of processing samples in pairs. Two cascading
processing units are incorporated for these designs.

Both approaches have been known for a while, with a two decade old dual-symbol two-stage
pipeline [38] design present. The first stage updates the A interval while the second performs
renormalization and byte output at the same time. All of this is done for two symbols at once,
doubling throughput.

In [183] a pipelined MQ-coder with three stages is proposed. Arithmetic operations are
performed in a first stage, the A and C registers are updated after, and lastly bytes are emitted.
The drawback is that the second stage can stall the first if the amount of shifts to be done in the
C register is above one. This is because they use sequential instead of barrel shifters. However
this turns out not to be a problem since 1) a faster clock domain is used for this second stage
and 2) stalling only occurs around 1% of the time according to experimental results.

In [174] a simpler implementation with no acceleration techniques is presented. They note
that the arithmetic coder is the bottleneck with the BPC being 5 times faster. Speed is thus
increased by sharing the BPC among multiple coders working in parallel, since their simple
implementation allows for replication with low overhead.

In [165], two different pipelining techniques are used: First, “traced pipelining” creates a
pipeline for the most likely cases, where unlikely events create longer stalls at the benefit of
likely events going through the pipeline without stalling. Also, cascading shifts are eliminated
by looking ahead at the number of necessary shifts and performing them all at once.

Going further up the optimization ladder, [132] uses both pipelining and dual symbol process-
ing improving on the already complex design by [58]. Dual processing is solved by having four
different units calculating in parallel the four different scenarios resulting from using the LPS
or MPS when subdividing the intervals. Pipelining is used to separate the A register update, C
register update and byte output procedures.

A different pipelined approach comes from [6], where the three stages mentioned in other
approaches are kept, but two more are added at the beginning by using two memory modules.
First, context information (state and predicted symbol associated) is stored, with a second ROM
outputting state change information. Whenever two consecutive contexts are equal, the second
memory will be read with the updated state that is sent to the first one. This splits reading into
a two-step process that accelerates the pipeline. Optimizations are also made in the shifting
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step which turns out to be the critical path. A maximum of 7 shifts is allowed, stalling when
the number is higher. This however occurs only in a marginal number of cases, so the limit is
justified.

4.2.3 BPC implementation

For the BPC, the implementation presented here starts from the idea in [86] of processing
columns of four at once, following the zig-zag pattern that the coder of JPEG2000 uses.

The general diagram of the coder is seen in Figure 4.17. Only the logic is shown, with memory
modules hidden for visibility. The inputs are:

e The magnitude bits m for each of the four bits in the column, as well as the sign bits sg.

e A flag ic indicating, for each bit in the column, if it’s been coded already by a previous
pass.

e A flag fr indicating if this is the first refinement for each of the four samples which bits
are in m and sg.

e A neighborhood of significance values s. Their sub-indices indicate which memory they
belong to (p for previous, ¢ for current, n for next) and the offset relative to the central
output value.

e Flags pass indicating which pass is being done (c¢ for cleanup, s for significance, r for
refinement).

It works as follows: The significance values are all fed into context generators GC, which
are going to output the context for the bits m and s that need to be coded. A dependency
exists for context generation. For that, two predictors for the cleanup CUP and significance
SGN are used that speed up what otherwise would be a cascading of CGs. Information from
these predictors, along with the pass flags is used to emit the output context vector, which can
contain up to 11 different context-bit pairs (of which up to 10 are valid in cleanup mode, 8 in
significance and 4 in refinement).

The magnitude bits are used to generate flags abz (all bits zero) and fnz (first non zero)
that are used for those predictions. The abz flag turns on when the full column is zero (this
enables run-length mode under the cleanup pass). The fnz flag is used also for cleanup when
the run-length is broken by an unexpected bit turning significant.

On the top-right of the diagram, the magnitude bits are combined with the ic flag and results
from the predictors to generate the o, (output valid) flags, that indicate which of the 11 CxD
pairs in the output vector are valid. Just under it, the new significance values for the current
column s, are output from the predictors. Following down the diagram, the f. and i. flags are
updated with the predictor information to store the refinement and coded status for the next
pass. Finally, all of the information from the context generators is unified and output in the
output bit o, and output context o. vectors, which contain all of the CxD pairs for the current
pass, that will later be processed by a serializer.

Context generation can be seen in Figure 4.18. Neighboring significance values are checked,
and three main outputs can be seen. On the top right, the magnitude refinement context mrc
which selects between two contexts depending on if every neighbor is insignificant or not, and
invokes a third in the case that the sample is not on its first refinement. (This is interpreted as
unpredictable).

96



pass,

passs

pass.

T

CUP, pred s¢ Z
S

S5 4
san. 1T =

Wﬁ:a ﬁrlf -
. e o

J;_

E 4 H L l 1
H L spco
= =k ; mreo
E E E Sc—4 E Se E Sc+4 E WA CGO sbey

sbxg
¥ T I

: : 3
: E : spei
| l : | E mrec
E i ; l Se=3 ‘ ; l Sctl ‘ ; l Sc+5 ‘ i oA CG, sbc
z3s S i
L : : § dji
: : E )
- E 5 spes
| i : | E er2
D] D] [seel ] ] €6 sty
i @ E i ; i E bez

- —
T : : spes
| : : | . mres
l Sc—1 ‘ l Sc+3 ‘ l Sc+7 ‘ CG3  sbes

| - sbis

Figure 4.17: Core of the VYPEC compressor.
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Figure 4.18: Context generation module outputting all contexts at once.

The sign bit context sbc and sign bit xor sbx bit are calculated on the bottom central part.
They take into account the number of significant positive and negative neighbors, detecting
patterns in horizontal and vertical neighbors.

Finally, the significance propagation context spc is the most complex of all. Two methods
of obtaining it are run in parallel. They detect different kinds of patterns in the neighbors’s
significance values, and depending on if the block belongs to a HL, LL, LH or HH pass of the
wavelet transform, use one or the other.

For cleanup, prediction is quite straightforward as seen in Figure 4.19. For the flags indicating
if there is a significance change, the magnitude bit is checked along with the abz and fnz flags
to see whether the bit is zero, or is the first in the column that is different than it. This, along
with the sign, determines whether the new significance value will be preserved, or instead will
be changed by that of the sign associated to the sample.

Things are more complex for the significance propagation prediction that is shown in Fig-
ure 4.20. Here, the inevitable cascading effect is seen as an orange path. But instead of feeding
back into the C'G modules, a simple path is used in the predictor module, greatly speeding up
operation.

The new significance is either the one previously held or the one acquired by the sign bit as-
sociated to the sample being processed. Whether this new significance is valid or not depends on
the neighboring samples being insignificant, and on the cascading feedback loop not converting
any of the above samples in significant.

4.2.3.1 Module memory

Lots of different inputs are fed into the module that come from memories. First, the samples
to be coded are stored in a four-word-wide memory that reads full columns of samples at once.
From there, a mux selects, depending on the plane being coded, which is the magnitude bit m
and which is the sign bit s for each of the four samples, feeding those to the module.
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Figure 4.19: Prediction of the significance value after the cleanup pass.
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Figure 4.20: Prediction of the significance value after the significance propagation pass.
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Figure 4.21: MQ-coder diagram.

The ic and fr flags are stored in the same manner, but this time in a memory with a bit
depth of one. The main difference is that these flags will be updated by the coding process
itself. To do that, and since they are initialized by the first pass, a FIFO memory is used that
can more easily and faster address all the data.

The significance values are, in the same way, stored in a FIFO. But since the current column,
as well as fourteen other neighboring samples are needed, the solution is to have three different
FIFOs chained together. One corresponds to the current ¢ row of columns, and the other two
to the previous p and next n rows of columns. From each FIFO, three columns are output at
once, the current column, the one to the left and the one to the right. A total of 36 values from
which 18 are used. Four are updated and fed back into the FIFO chain.

4.2.4 MQ-coder implementation

Out of the two approaches seen in Section 4.2.2.2, pipelining and dual symbol processing, pipelin-
ing has been chosen here as the accelerating technique. Usually, dual symbol processing is done
when traversal through the block is bit by bit, and at most two CxD pairs are generated at
each clock cycle. This makes dual symbol processing useful to keep up with the output from
the BPC. Here, pipelining is preferred since it results in a simpler design, and the problem of
keeping up with CxD generation (which for this design can be up to 10 pairs per second) is
solved by a CxD FIFO buffer between the BPC and MQ-coder.

The MQ-coder consists of three main parts separated by queues as seen in Figure 4.21.

First an interval update module keeps track of the value of the A register (the width of the
interval). The probability change, whether it was a success or not and the amount of shift
resulting from the probability change are passed to the next stage. These values are used by the
bound update module to update the C register, outputting bytes as necessary. However, these
three values passed can be merged together in some cases to feed less inputs to the last module
(which might stall every so often). To help stalling be less prevalent, a fuser module combines
pairs of the outputs from the interval update module by adding the probabilities and number
of shifts together if the hit flag is either up or down for both outputs.

The first stage, or interval update stage, is seen in Figure 4.22. A clear separation is seen
between both pipeline stages, highlighted by the orange squares that represent registers and
memory modules.

First, the context memory is accessed. Seven outputs are produced, with all of the information
related to that context. The probability estimate, the state to change if the most probably or
least probable symbols are hit, the xor bit for the prediction change when probability goes below
0.5, the already shifted probability value (to avoid a shifter down the pipeline), the shift value
itself, and the prediction.

The memory gets written from the outputs of the state ROM. It contains the same information
for each of the different states of the predictor. Each context has a state associated to it, but
accessing first the context and then the state information would take 2 cycles. Saving the
information from the state ROM along with the context brings this down to 1 cycle. When
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Figure 4.22: MQ-coder interval update module.

the same context appears twice consecutively, forwarding muxes get activated since the context
memory is not yet updated. The values from the state ROM are read using the MPS and
LPS state transitions, which are used if new symbol corresponds to the most probable or least
probable according to the current state of the predictor.

Using the current context information, the prediction is adjusted, updating the A register.
The key to speeding this up comes from the realization that A might be updated in one of four
ways: Either it is not shifted, shifted once, twice, or the contents come from memory. In the
last case, the number of shifts is already known and comes from memory. This results in time
savings since a shifter is not needed, and values that otherwise would enter a barrel shifter are
pre-calculated. The number of shifts, correspondingly, is either 0, 1, 2 or read from memory.

The number of shifts performed, probability value to add to the register C, and hit flag
(indicating C needs to be updated with the probability) are sent to the next stage.

Lastly, the C register gets updated as seen in Figure 4.23. The input probability gets added,
and shifting is performed.

A countdown timer keeps track of the number of bits already used up, and emits them when
the leftmost byte of the C register gets filled. Depending on the value of that byte, different
paths are taken, since the codes Ox££80 and up are reserved. If it is Ox££, the following byte
gets a 0 prepended, and if it is Oxfe, care is taken not to overflow it when adding the next
probability (since this would create a Ox££).

The bytes are buffered to check for these patterns, and when no longer in used they are
output along with a write flag to the output queue. Note that enabling of the circuitry depends
on the queue not being full, so this ensures space is always available.

A finite state machine (Figure 4.24) keeps track of the different registers and controls the
circuitry depending on the state. It also controls the input queue for data, and outputs flags to
indicate the module’s status.

The idle state is the one defaulted to after resetting. Whenever new data is available on the
FIFO, the state turns to values read, and a shift is made to the C register. If more shifts are
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Figure 4.23: MQ-coder bound update module.

needed, the pipeline state is entered. From those two states, either the pipeline is maintained if
necessary, or a new value is read, or the idle state is entered if more data is not available. Once
finished, the termination sequence is entered. All remaining bytes will be dumped, after which
the termination code Oxf£fe will be dumped to the output stream.

Each update, C might be shifted anywhere from 0 to 23 times, resulting in the output of up
to three bytes. Instead of performing shifts bit by bit, full bytes are always shifted. This can
result in stalling since only 1 byte is output per cycle. This could be solved at the expense of
increasing the critical path by outputting all three bytes at once. However stalling has been
found [165] to only happen around 1% of the time. As the critical path increases by over 1%
in length if parallelized, stalling is preferred. In any case, the fuser module placed before will
lower the amount of inputs to the bound update module to around 50%, so even when taking
into account the stalling, the bound update keeps up with the interval update fast enough. In
any case, for the extreme case where it did go slower, FIFOs ensure stalling happens with no
data loss.
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Figure 4.24: FSM of the bound update module within the MQ-coder.
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4.2.5 Pipelined approach

Both the BPC and the MQ-coder are chained together to create the full tier 1 coder within the
JPEG2000 compression flow. The diagram for this implementation is seen in Figure 4.25.

At first, the BPC creates the CxD pairs. Given the design, 